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1. Introduction

This dissertation is a contribution to the research on fundamental substructures

of infinite directed or undirected graphs. The substructures that we focus on are

of three different types and each type is the topic of one of the three parts of this

dissertation.

First, we consider paths in infinite undirected graphs and confirm a Ramsey-

type conjecture of Soukup: Every r-edge-coloured complete bipartite graph with

bipartition classes of the same infinite cardinality admits a partition of its vertex

set into 2r − 1 monochromatic generalised paths.

In the second part, we propose and investigate a notion of ends of digraphs, for

which we then develop an end space theory. While ends of undirected graphs are

one of the most important concepts of infinite undirected graph theory, a similarly

useful notion and theory of ends of digraphs has never been found before.

In the third part, we determine structures whose existence is complementary

to the existence of two substructures that are particularly fundamental to the

study of connectedness in infinite graphs: stars and combs. Our theorems are

phrased in terms of tree-decompositions, normal spanning trees, rayless trees,

ranks of rayless graphs and tangle-distinguishing separators.

I. Monochromatic generalised paths

Erdős proved (unpublished [61]) that the vertex set of every 2-edge-coloured

complete graph of countably infinite order, can be partitioned into monochromatic

paths of different colours, where ‘path’ means either a finite path or a one-way

infinite path. Rado subsequently extended Erdős’ result to any finite number of

colours [61, Theorem 2]. In the same paper, Rado then asked whether a similar

result holds for all infinite complete graphs and a notion of generalised path that

he proposed.

Soukup [68] answered Rado’s question in the affirmative and conjectured that
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a similar result should hold for complete bipartite graphs: Every r-edge-coloured

complete bipartite graph with bipartition classes of the same infinite cardinality

admits a partition of its vertex set into 2r − 1 monochromatic generalised paths.

In the first part of this dissertation we answer Soukup’s conjecture in the

affirmative. In fact, our discussion will also lead to a new, conceptually simpler

closing argument for Soukup’s proof of Rado’s conjecture.

II. Ends of digraphs

Ends of undirected graphs are the single most important concept in infinite graph

theory. They can be thought of as points at infinity to which its rays converge.

Formally, an end of an undirected graph G is an equivalence class of its rays,

where two rays are equivalent if for every finite vertex set X ⊆ V (G) they have a

subray in the same component of G−X [20].

There is a whole branch of graph theory that is based on ends: topological

infinite graph theory studies the topological space |G| formed by an undirected

graph G together with its ends. Many statements about finite undirected graphs

that do not generalise verbatim to arbitrary infinite graphs extend to the space |G|.
Examples include Nash-William’s tree-packing theorem [18], Fleischner’s Hamil-

tonicity theorem [35] and Whitney’s planarity criterion [2]. In the formulation

of these theorems, topological arcs and circles take the role of paths and cycles,

respectively.

For directed graphs, a similarly useful notion and theory of ends has never been

found. There have been a few attempts, most notably by Zuther [72], but not

with very encouraging results. In this part we propose a new notion of ends of

digraphs and develop a corresponding theory of their end spaces.

As for undirected graphs, the ends of a digraph are points at infinity to which

its rays converge. Furthermore, we extend to digraphs the notion of directions of

an undirected graph, a tangle-like description of its ends: we provide a natural

one-to-one correspondence between the ‘directions’ of a digraph and its ends and

limit edges.

Unlike for undirected graphs, some ends of digraphs are joined by limit edges.

We introduce a topological space |D| formed by a digraph D together with its

ends and limit edges. This makes it possible to extend to the space |D| statements
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about finite digraphs that do not generalise verbatim to infinite digraphs. Further-

more, we introduce a concept of depth-first search trees in infinite digraphs,

which we call normal spanning arborescences. We show that normal spanning

arborescences capture the structure of the set of ends of the digraphs they span,

both combinatorially and topologically.

III. Stars and combs

The star-comb lemma is a standard tool in infinite graph theory. Recall that a

comb is the union of a ray R (the comb’s spine) with infinitely many disjoint finite

paths, possibly trivial, that have precisely their first vertex on R. The last vertices

of those paths are the teeth of this comb. Given a vertex set U , a comb attached

to U is a comb with all its teeth in U , and a star attached to U is a subdivided

infinite star with all its leaves in U . Then the set of teeth is the attachment set

of the comb, and the set of leaves is the attachment set of the star.

Star-comb lemma. Let U be an infinite set of vertices in a connected graph G.

Then G contains either a comb attached to U or a star attached to U .

The star-comb lemma is not primarily about the existence of one subgraph

or another. Rather, it tells us something about the nature of connectedness in

infinite graphs: that the way in which they link up their infinite sets of vertices

can take two fundamentally different forms, a star and a comb.

Call two properties of infinite graphs dual, or complementary, in a class of

infinite graphs if they partition that class. The existence of stars or combs attached

to a given set U is not complementary (in the class of all infinite connected graphs

containing U): an infinite complete graph, for example, contains both.

In the third part of this dissertation, we determine structures that are comple-

mentary to stars, and structures that are complementary to combs (always with

respect to a fixed set U).

As stars and combs can interact with each other, this is not the end of the

story. Stars and combs can be combined, positively as well as negatively. For

example, a given set U might be connected in G by both a star and a comb, even

with infinitely intersecting sets of leaves and teeth. We shall find complementary
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structures to the existence of these substructures (again, with respect to some

fixed set U).

Just like the original star-comb lemma, our results can be applied as structural

tools in other contexts. We dedicate a whole chapter to one of these applications:

In the last chapter of this part we make progress to a largely open problem raised

by Halin, who asked for a characterisation of the class of graphs with an end-

faithful spanning tree [37]. A well-studied subclass is formed by the graphs with

a normal spanning tree. We determine a larger subclass, the class of normally

traceable graphs, which consists of the connected graphs with a rayless tree-

decomposition into normally spanned parts.

4



2. Preliminaries

For graph theoretic notation we follow the text book Graph Theory [20] by

Diestel. All the graphs in Part I and in Part III will be undirected. The graphs

in Part II will usually be directed, in which case we speak of digraphs. We

usually consider digraphs without multi-edges and without loops, but possibly

with inversely directed edges between distinct vertices. For a digraph D, we write

V (D) for the vertex set of D and we write E(D) for the edge set of D. We write

edges as ordered pairs (v, w) of vertices v, w ∈ V (D), and we usually write (v, w)

simply as vw.

Further preliminaries can be found in each part of this dissertation. Prelimi-

naries for Part I can be found in Chapter 3, those for Part II in Chapters 8.1, 9.1

and 10.1 and those for Part III in Chapter 11.1.
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Part I.

Monochromatic generalised paths
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Throughout this part, the term colouring always refers to edge-colourings of

graphs with finitely many colours.

In the 1970s, Erdős proved (unpublished) that the vertex set of every 2-coloured

complete graph of countably infinite order, i.e., every 2-coloured Kℵ0 , can be

partitioned into monochromatic paths of different colours, where ‘path’ means

either a finite path or a one-way infinite ray. Rado subsequently extended Erdős

result to any finite number of colours [61, Theorem 2].

In the same paper, Rado then asked whether a similar result holds for all infinite

complete graphs, even the uncountable ones. Clearly, it is not possible to partition

such a graph into finitely many ‘usual’ paths, as graph-theoretic paths and rays are

inherently countable. Hence, Rado introduced the following notion of generalised

path: A generalised path is a graph P together with a well-order ≺ on V (P )

(called the path order on P ) satisfying that the set {w ∈ N(v) : w ≺ v} of down-

neighbours of v is cofinal below v for every vertex v ∈ V (P ), i.e., for every v′ ≺ v

there is a neighbour w of v with v′ � w ≺ v (cf. Figure 2.0.1).

Figure 2.0.1.: A generalised path.

In particular, every successor element is adjacent to its predecessor in the well-

order. Calling such a graph P a ‘generalised path’ is justified by the fact that

between any two vertices v ≺ w of P there exists a finite path from v to w strictly

increasing with respect to ≺, see e.g. [51, Observation 5.2]. If the situation is

clear, we write P instead of (P,≺) and treat P as a graph. By Λ(P,≺) = Λ(P )

we denote the limit elements of the well-order (P,≺). When the situation is

clear, we sometimes write Λ instead of Λ(P ). If necessary, the path-order ≺ on

V (P ) will be referred to as ≺P . If v, v′ ∈ P , then we denote by (v, v′) and [v, v′]

the open and closed intervals with respect to ≺, and by [v, v + ω) the ray of P

starting at v compatible with the path order. Note that a one-way infinite ray can

be viewed quite naturally as a generalised path of order type ω, and conversely,

every generalised path of order type ω contains a spanning one-way infinite ray.
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Thus, partitioning a graph into monochromatic generalised paths of order type ω

is equivalent to partitioning it into monochromatic rays.

Within this part, the term path is used in the extended sense of a generalised

path.

Elekes, Soukup, Soukup and Szentmiklòssy [51] have recently answered a special

case of Rado’s question for ℵ1-sized complete graphs and two colours in the

affirmative. Shortly after, Soukup [68] gave a complete answer to Rado’s question

for any finite number of colours and complete graphs of arbitrary infinite cardi-

nality.

Theorem 2.1 (Soukup, [68, Theorem 7.1]). Let r be a positive integer. Every

r-edge-coloured complete graph of infinite order can be partitioned into monochro-

matic generalised paths of different colours.

In [68, Conjecture 8.1], Soukup conjectures that a similar result holds for

complete bipartite graphs, namely that every r-coloured complete bipartite graph

with bipartition classes of cardinality κ ≥ ℵ0 can be partitioned into 2r − 1

monochromatic generalised paths, and has proven his conjecture in the countable

case κ = ℵ0 [67, Theorem 2.4.1]. If true, this bound would be best possible in the

sense that there are r-colourings of Kκ,κ for which the graph cannot be partitioned

into 2r − 2 monochromatic paths, see [67, Theorem 2.4.1].

We remark that Soukup’s conjecture is inspired by the corresponding conjecture

in the finite case, due to Prokovskiy [55, Conjecture 4.5]. In contrast to the infinite

case, the finite conjecture is only known for two colours [49, p. 169 (footnote)].

The main result of this part is to prove Soukup’s conjecture for all uncountable

cardinalities and any (finite) number of colours.

Theorem 2.2. Let r be a positive integer. Every r-edge-coloured complete bipar-

tite graph with bipartition classes of the same infinite cardinality can be partitioned

into 2r − 1 monochromatic generalised paths with each colour being used at most

twice.

The first uncountable case of Theorem 2.2, where the bipartition classes have

size ℵ1, was proved in my Master’s thesis [4]. In this part, we extend these ideas

to give a proof for all uncountable cardinalities.

Our proof relies on the methods developed by Soukup in his original paper [68].

However, we re-introduce in this part the new, helpful notion of X-robust paths
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from [4]—generalised paths which are resistant against the deletion of vertices

from X. After introducing such paths, we will state in Chapter 4 three high-level

results relying on this new notion, and then provide a proof of Theorem 2.2 from

these auxiliary results. In fact, our discussion will also lead to a new, conceptually

simpler closing argument for a proof of Soukup’s Theorem 2.1.

In Chapter 5 and 6, we then provide proofs of the auxiliary results. For the

second of these auxiliary results, to be proved in Chapter 5, we need to strengthen

a result by Soukup [68, §5] to give the statement that any edge-coloured complete

bipartite graph with bipartition classes (A,B) of cardinality κ > ℵ0 contains a

monochromatic path P of order type κ in colour k (say) covering a large subset

X ⊆ A which itself is κ-star-linked in colour k, where it is precisely the κ-star-

linked-property (to be defined below) which is new. We remark that while our

statement is slightly stronger, our proof very much relies on Soukup’s proof [68, §5]

and does not give an independent proof of Soukup’s result. A discussion how one

obtains the strengthened version of Soukup’s result is provided in Chapter 7.

Finally, in Chapter 6 we prove our third auxiliary result. This part contains a

crucial new idea how to directly construct anX-robust pathQ of order type κ > ℵ0

with X ∈ [V (Q)]κ from a given generalised path P with the star-linked property

as above, using nothing but countable combinatorics and avoiding intricate set

theoretical arguments using elementary submodels as employed in [68] and [4].
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3. Preliminaries

For a natural number n ∈ N we write [n] = {1, 2, . . . , n} and if m ≤ n, we write

[m,n] = {m,m + 1, . . . , n}. Let G = (V,E) be a graph, r ≥ 1 and k ∈ [r].

An r-edge-colouring (or simply r-colouring) of G is a map c : E → [r]. A path

P ⊆ G is monochromatic (in colour k with regard to the colouring c) if P is

also a path in the graph induced by the edges of colour k, i.e., if P is a path in

(V, c−1(k)). More generally, suppose that P is a graph property. We say that G

has property P in colour k if (V, c−1(k)) has property P . For a vertex v of G

we write N(v, k) for the neighbourhood of v in (V, c−1(k)). As a shorthand, we

also write N(v, 6=k) := N(v) r N(v, k) for the neighbourhood of v in all colours

but k. Let A ⊆ V . The common neighbourhood
⋂
{N(v) : v ∈ A} of vertices in

A is written as N [A]. The common neighbourhood of A in colour k is written

as N [A, k]. For a cardinal κ, we say that A is κ-star-linked in B, if N [F ]∩B has

cardinality κ for every finite F ⊆ A. In the case where B = V (G) we simply say

that A is κ-star-linked.

When talking about partitions of G we always mean vertex partitions and we

allow empty partition classes. If A,B ⊆ V (G) are disjoint sets of vertices, then

G[A,B] denotes the bipartite graph on A ∪ B given by all the edges between A

and B.

We write [X]κ = {Y ⊆ X : |Y | = κ } and [X]<κ = {Y ⊆ X : |Y | < κ }, for a

given set X.

10



4. A high-level proof of the main result

The aim of this chapter is to give an overview of the proof of Theorem 2.2. We

shall start with a rough idea, inspired by Soukup’s work in [68, Theorem 7.1].

After that, we present three main ingredients for our proof of Theorem 2.2:

Theorem 4.0.2, Lemma 4.1 and Lemma 4.2. For the moment, we will skip the

latter two and discuss them below in Chapter 5 and Chapter 6. We conclude this

chapter with a proof of Theorem 2.2 and a proof of Theorem 2.1—also based on

the three lemmas.

4.0.1. A rough outline

First, let us have a look at an important idea in Soukup’s proof of Theorem 2.1. In

[68, Lemma 4.6], Soukup provides some conditions which guarantee the existence

of a spanning generalised path in a graph. Let us refer to these conditions

by (†). Let κ be an infinite cardinal and G = (V,E) the complete graph of

order κ. Suppose that the edges of G are coloured with r ≥ 1 many colours. In

[68, Claim 7.1.2], Soukup shows that one can find sets X ⊆ W ⊆ V and a colour

k ∈ [r], such that

(i) G[W rX ′] satisfies (†) in colour k for every X ′ ⊆ X, and

(ii) V rW is covered by disjoint monochromatic paths of different colours not

equal to k in the graph G[V rW,X].

Once such W,X and k are found, we just have to find r−1 disjoint monochromatic

paths of different colours 6= k covering V rW in G[V rW,X] as in (2), let X ′ ⊆ X

be the vertices of X covered by these r− 1 paths, and apply (1) to guarantee the

existence of a monochromatic path in colour k disjoint from all previous ones and

covering the remaining vertices.

Whilst it is difficult to work with the conditions from (†) in the bipartite setting

directly, the use of (†) in (1) motivates the following definition:
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Definition 4.0.1. Let P be a path and X ⊆ V (P ). We say that P is X-robust

iff for every X ′ ⊆ X the graph P −X ′ admits a well-order for which P −X ′ is a

path of the same order type as P .

Our strategy for the bipartite case can now by summarised as follows. Let κ be

an infinite cardinal and G = (V,E) the complete bipartite graph with bipartition

classes of cardinality κ, where the edges of G are coloured with r ≥ 1 many

colours. Assume that we find X ⊆ W ⊆ V and a colour k ∈ [r], such that

(1′) G[W ] has a spanning X-robust path in colour k, and

(2′) V r W is covered by 2r − 2 disjoint monochromatic paths in the graph

G[V rW,X] in colours not equal to k with every colour appearing at most

twice.

Then it is clear that we can complete a proof of Theorem 2.2 in a similar way as

above.

4.0.2. The three ingredients

To prove our main theorem, we shall need the following three ingredients. The

first is a special case of Soukup’s [68, Thm 6.2].

Theorem 4.0.2. Let G be an infinite bipartite graph with bipartition classes A

and B. Suppose that |A| ≤ |B| and that |BrN(a)| < |B| for every vertex a ∈ A.

Then for every finite edge colouring of G, there are disjoint monochromatic paths

of different colours in G covering A.

That the above theorem follows from [68, Thm 6.2] can be verified by a similar

argument as in [68, p. 271, l. 17-20] which we spell out for the convenience of the

reader:

Proof. Let κ be the cardinality of A and µ the cardinality of B. By [68, Thm 6.2]

it suffices to show that A is (A, κ)-centred, i.e. we have to find a set A =

{(Aiα)α<λi : i ∈ I} for some finite set I, so that

(i) Aiα ⊆ Aiβ if α < β < λi and i ∈ I,

(ii) A ⊆
⋃
{Aiα : α < λi} for each i ∈ I, and
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(iii)

|NG[
⋂
i∈I

Aiαi ]| ≥ κ

for all (αi)i∈I ∈ Πi∈Iλi.

We consider three cases. First, assume that cf(µ) > κ. Then

NG[A] = B r
⋃
{B rN(a) : a ∈ A}

still has size µ and therefore A = {A} works. Next, assume that cf(µ) = κ.

Write A as an ascending union of sets
⋃
{A1

α : α < κ} each of size < κ and

let A = {(A1
α)α<κ}. Then A is (A, κ)-centred since each A1

α has size < cf(µ) and

BrN(a) has size < µ for every a ∈ A1
α and α < κ. Finally, assume that cf(µ) < κ.

In particular, µ is a limit cardinal, so we may fix an increasing sequence (µα)α<cf(µ)

of cardinals cofinal in µ. Additionally to the previously chosen sequence (A1
α)α<κ

define A2
α := {a ∈ A : |BrN(a)| < µα} for α < cf(µ). Let λ1 := κ and λ2 := cf(µ),

then A := {(Aiα)α<λi : i ∈ {1, 2}} satisfies (1), and since the µα’s are cofinal in µ,

also (2). Condition (3) is true for A because for all (α1, α2) ∈ λ1 × λ2, both

A1
α1
∩ A2

α2
and B rN(a) have size less than some cardinal γ < µ.

The next main lemma, which is a strengthening of a similar result by Soukup

[68, §5], helps to find a monochromatic path P which has some desirable additional

properties.

Lemma 4.1. Let κ be an infinite cardinal and G the complete bipartite graph

with bipartition classes A,B both of cardinality κ. Suppose that c : E(G)→ [r] is a

colouring of G with r ≥ 1 many colours. Then there are disjoint sets A1, A2 ∈ [A]κ,

B1, B2 ∈ [B]κ such that (up to renaming the colours):

• G[A1, B1] has a spanning path P of order type κ in colour 1 all of whose

limits are contained in B1, and

• A1 t A2 is κ-star-linked in B2 in colour 1. (cf. Figure 4.0.1)

Our final ingredient converts the path P from above into a new path Q that

has two additional properties: first, Q will be X-robust for some large X, and

secondly, Q will be able to additionally cover certain highly inseparable sets of

vertices.
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A1 A2

B1 B2

Figure 4.0.1.: The colour 1 is indicated blue in the figure.

Definition 4.0.3 (cf. Diestel, [20, p. 354]). Let G be a graph and κ a cardinal.

A set U ⊆ V (G) of vertices is <κ-inseparable if distinct vertices v, w ∈ U cannot

be separated by less than κ many vertices, i.e. v and w are contained in the same

component of G−W for every W ∈ [V (G) r {v, w}]<κ.

Lemma 4.2. Let κ be an uncountable cardinal and G a bipartite graph with

bipartition classes A,B both of size κ. Suppose there are disjoint sets A1, A2 ∈
[A]κ, B1, B2 ∈ [B]κ such that

• G[A1, B1] has a spanning path P of order type κ with Λ(P ) ⊆ B1, and

• A1 t A2 is κ-star-linked in B2.

Then there is a set X ∈ [A2]κ and an X-robust path Q covering A1 t A2 with

Λ(P ) = Λ(Q). Moreover, if C ⊆ (A r A1) t (B r Λ) covers A2 and is <κ-

inseparable in G[Ar A1, B r Λ], then Q can be chosen to cover C.

4.0.3. Combining the ingredients

Our three main ingredients can be applied to yield a proof of Theorem 2.2 as

follows:

Theorem 2.2. Let r be a positive integer. Every r-edge-coloured complete bipar-

tite graph with bipartition classes of the same infinite cardinality can be partitioned

into 2r − 1 monochromatic generalised paths with each colour being used at most

twice.

14



Proof of Theorem 2.2. Let κ be an infinite cardinal and let G be the complete

bipartite graph with bipartition classes A,B both of cardinality κ. Suppose that

c : E(G) → [r] is a colouring of G. Since the countable case has been solved in

[67, Theorem 2.4.1] already, we may assume that κ is uncountable.

We will construct a partition A = {A1, . . . , A4} of A and a partition B =

{B1, . . . , B4} of B such that, up to renaming the colours,

(i) G[A1, B1] has a spanning path P of order type κ in colour 1 with Λ(P ) ⊆ B1,

and |A2| = κ,

(ii) A1 t A2 is κ-star-linked in B2 in colour 1,

(iii) A2 t A3 is <κ-inseparable in G[A2 t A3, B2 tB3] in colour 1, and

(iv) A4 t B4 can be partitioned into r − 1 monochromatic paths P2, . . . , Pr in

G[A4, B4] with distinct colours in [2, r].

A1 A2

B1 B2

A3 A4

B3 B4

P2 Pr. . .

Figure 4.0.2.: The colour 1 is indicated blue in the figure.

Let us first see how to complete the proof with these partitions established:

Let C be the set of vertices with A ∩ C = A2 ∪ A3 and where B ∩ C consists

of those vertices in B r (Λ ∪ B4) that send κ many edges in colour 1 to A2, and

observe that (iii) implies that C is <κ-inseparable in G[Ar(A1∪A4), Br(Λ∪B4)]

in colour 1. Hence, by (i) and (ii), we may apply Lemma 4.2 in the subgraph

of G[A r A4, B r B4] induced by the edge of colour 1 in order to obtain a set

X ∈ [A2]κ and an X-robust, monochromatic path Q in colour 1 with limits Λ =

Λ(Q) = Λ(P ), covering A1 ∪ A2 ∪ A3 ∪ C ∪ Λ.

Next, note that since X ⊆ A2, it follows by choice of C that |X rN(b, 6=1)| =
|X ∩ N(b, 1)| < κ = |X| for every vertex b in B r (Q ∪ B4). Therefore, we may

apply Theorem 4.0.2 to the bipartite graph G[B r (QtB4), X] with the edges in
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colour 6= 1 to obtain disjoint monochromatic paths Pr+1, . . . , P2r−1 with different

colours in [2, r] covering B r (Q tB4).

Let P1 be the path that results by deleting X ′ = X ∩
(⋃2r−1

i=r+1 Pi
)

from Q, using

that Q is X-robust. Together with the paths P2, . . . , Pr provided by (iv), we have

found a partition of G into 2r − 1 disjoint monochromatic paths P1, . . . , P2r−1

using every colour at most twice.

To complete the proof, it remains to construct the partitions A and B.

Claim. There are disjoint sets A1, A2 ∈ [A]κ and B1, B̃2 ∈ [B]κ such that (up to

renaming the colours)

• G[A1, B1] has a spanning path P of order type κ in colour 1 all whose limits

are contained in B1 and

• A1 t A2 is κ-star-linked in B̃2 in colour 1.

Proof. Apply Lemma 4.1 to the graph G and the colouring c. 3

Claim. There is a partition {B2, B̃3} of B̃2 such that

• A1 t A2 is κ-star-linked in B2 in colour 1 and

• G[A2, B̃3] has a perfect matching M in colour 1.

Proof. Write A1 t A2 as an ascending union of sets {Aα : α < cf(κ)} each of

size < κ. (Note that if κ = λ+, we eventually have |Aα| = λ for every α <

cf(κ).) Simultaneously define in cf(κ) many steps ascending sets {B′α : α < cf(κ)},
{B′′α : α < cf(κ)} of vertices, and an increasing sequence of matchings {Mα : α <

cf(κ)} as follows:

To begin let B′0, B′′0 and M0 be the empty set. In step α > 0, let us write

B′<α :=
⋃
{B′β : β < α}, B′′<α :=

⋃
{B′′β : β < α} and M<α :=

⋃
{Mβ : β < α}.

Fix a matching Mα of A2 ∩ Aα extending M<α and avoiding B′′<α, i.e. so that no

vertex from B′′<α is incident with an edge in Mα. This is possible because A2∩Aα

is κ-star-linked. Next let B′α consist of the matching partners of A2 ∩ Aα with

regard to Mα, i.e. B′α = B ∩
⋃
Mα. Finally, fix a set B′′α ⊆ B̃2 r B′α of size |Aα|

extending B′′<α and so that B′′α r B′′<α contains |Aα| many vertices from N [F, 1]

for every finite F ⊆ Aα (possible because Aα is κ-star-linked).

It is straightforward to check that the sets B̃3 :=
⋃
{B′α : α < cf(κ)}, B2 :=

B̃2 r B̃3 and M :=
⋃
{Mα : α < cf(κ)} are as desired. 3
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Let A3 consist of those vertices in A r (A1 t A2) that send κ many edges in

colour 1 to B̃3. Note that since A2 is κ-star linked in B2 in colour 1, it follows

that A2 t A3 is <κ-inseparable in G[A2 t A3, B2 t B̃3] in colour 1.

Claim. There is a partition {B̂3, B̃4} of B̃3 such that

• A2 t A3 is <κ-inseparable in G[A2 t A3, B2 t B̂3] in colour 1, and

• B̃4 has cardinality κ.

Proof. If A3 is empty, then just take a balanced partition {B̂3, B̃4} of B̃3. Other-

wise, fix a sequence (aα)α<κ of vertices in A3 such that every vertex in A3 appears κ

many times. Then fix a vertex in NG(aα, 1)∩B̃3 for B̂3 and another in NG(aα)∩B̃3

for B̃4 for every α < κ (all distinct). This can be done recursively in κ many steps

using that every vertex in A3 sends κ many edges in colour 1 to B̃3. It is easy to

check that sets B̂3 and B̃4 that arise in this manner fulfil our requirements. 3

The last partition class of A is just A4 := A r (A1 t A2 t A3). Applying

Theorem 4.0.2 to the spanning subgraph of G[A4, B̃4] induced by the colours

2, . . . , r (and the induced colouring) gives rise to disjoint monochromatic paths

P2, . . . , Pr of different colours in [2, r]. Let B4 :=
⋃
{B ∩ Pi : i ∈ [2, r]} and

B3 := B r (B1 tB2 tB4).

We claim that A = {A1, . . . , A4} and B = {B1, . . . , B4} are as desired. Indeed,

it is clear by construction that they are partitions of A and B respectively. From

the first and second claim, it follows that (i) and (ii) is satisfied respectively. By

the definition of A4 and B4 in the last paragraph, we have (iv). And by the third

claim, since B3 ⊇ B̂3, it follows that (iii) holds.

Finally, we demonstrate that our approach for the proof of Theorem 2.2, which

itself of course relies in many ways on ideas and results from Soukup’s [68], can be

used to give a conceptually simple closing argument for a proof of Theorem 2.1:

Theorem 2.1 (Soukup, [68, Theorem 7.1]). Let r be a positive integer. Every

r-edge-coloured complete graph of infinite order can be partitioned into monochro-

matic generalised paths of different colours.

Proof. Let κ be an infinite cardinal, G the complete graph on κ and c : E(G) →
[r] a colouring for some r ≥ 1. Since the countable case has been solved in
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[61, Theorem 2], we may assume that κ is uncountable. Fix a partition {A,B} of

V (G) such that both partition classes have cardinality κ. Apply Lemma 4.1—to

the graph G[A,B] and the colouring induced by c—in order to get disjoint sets

A1, A2 ∈ [A]κ, B1, B2 ∈ [B]κ and a path P as in the lemma. Let Λ be the set of

limits of P and write A′ := A1 tA2, B′ := V (G)rA′. Furthermore, let C consist

of A′ together with all those vertices in V (G) r (A′ ∪ Λ) that send κ many edges

in colour 1 to A2. Apply Lemma 4.2—to the graph induced by the edges of colour

1 in G[A′, B′] and the set C—in order to find a set X ∈ [A2]κ and an X-robust

path Q as in the lemma. Next, apply Theorem 4.0.2—to the graph induced by

the edges of colour 6= 1 in G[X,B′rQ] and the colouring induced by c—in order

to find paths P2, . . . , Pr of different colours in [2, r]. The last path in colour 1 is

Qr
⋃
i Pi, which is a path due to the X-robustness of Q.
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5. Monochromatic paths covering a

κ-star-linked set

In this chapter, we prove Lemma 4.1. A partial result of Soukup’s [68] will assist

us: It implies that an edge-coloured complete bipartite graph with bipartition

classes (A,B) both of cardinality κ > ℵ0 contains a monochromatic path P of

order type κ covering a large <κ-inseparable subset of A (cf. [68, Theorem 5.10]).

By modifying the proof, we obtain a strengthened version where this <κ-inse-

parable subset is even κ-star-linked, Theorem 5.0.1 below. As the main result

of this chapter, we explain how to establish Lemma 4.1 as a consequence of

Theorem 5.0.1. The detailed proof of Theorem 5.0.1 we defer until the end of

this part.

5.0.1. Finding a monochromatic path covering a

κ-star-linked set

First we remind the reader of a few concepts from Soukup’s [68]: Let κ be a

cardinal. Then Hκ,κ denotes the graph (κ× {0} ∪ κ× {1}, E) where

{(α, i), (β, j)} ∈ E iff i = 1, j = 2 and α < β < κ

(cf. [68, p.250, l.10–13]). Furthermore, a graph G = (V,E) is of type Hκ,κ if there

are (not necessarily disjoint) subsets A,B ⊆ V with V = A∪B, and enumerations

A = {aξ : ξ < κ} and B = {bξ : ξ < κ} such that

{a, b} ∈ E(G) if a = aξ, b = bζ for some ξ ≤ ζ < κ.

The vertex set A is called the main class of G and B is called the second class

of G (cf. [68, Definition 5.3]). Informally speaking, a type Hκ,κ graph is just a

copy of Hκ,κ where the bipartition classes are allowed to intersect.

Another concept that we need is that of a concentrated path [68, Definition 4.1]:

Let G be a graph and A ⊆ V (G). A path P ⊆ G is concentrated on A if and only
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if

N(v) ∩ A ∩ V (P � [x, v)) 6= ∅

for all v ∈ Λ(P ) and x ≺P v.

Theorem 5.0.1. If G is an r-edge coloured graph of type Hκ,κ with main class A,

then there is a colour k ∈ [r] and X ∈ [A]κ which is κ-star-linked in colour k, such

that X is covered by a monochromatic path of order type κ in colour k concentrated

on X.

Proof. Theorem 5.0.1 follows from Theorem 7.0.4 which is a strengthening of

[68, Theorem 5.10], to be proved in our last Chapter 7 below.

5.0.2. Finding a monochromatic path covering an

improved κ-star-linked set

We need two more lemmas before we can prove Lemma 4.1.

Lemma 5.0.2. Let G be a bipartite graph with bipartition classes A,B. A path

P ⊆ G is concentrated on A if and only if all limits of P are contained in B.

Lemma 5.0.3 (cf. [68], Lemma 3.4). Let κ be an infinite cardinal, G = (V,E)

a graph and A,B ⊆ V (G). Suppose A is κ-star-linked in B. Moreover, let

c : E(G) → [r] be a colouring of G with r ≥ 1 many colours. Then there

is a partition {Ai : i ∈ [r]} such that Ai is κ-star-linked in B in colour i for

every i ∈ [r].

Proof. Take a uniform ultrafilter U on B with B ∩ N [F ] ∈ U for every finite

F ⊆ A and write Ai = {v ∈ A : N(v, i) ∈ U}. Then for i ∈ [r] and F ⊆ Ai, we

have N [F, i] ∩B ∈ U and thus N [F, i] ∩B has cardinality κ.

We are now ready to provide the proof for Lemma 4.1 which we restate here

for convenience of the reader.

Lemma 4.1. Let κ be an infinite cardinal and G the complete bipartite graph

with bipartition classes A,B both of cardinality κ. Suppose that c : E(G)→ [r] is a

colouring of G with r ≥ 1 many colours. Then there are disjoint sets A1, A2 ∈ [A]κ,

B1, B2 ∈ [B]κ such that (up to renaming the colours):
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• G[A1, B1] has a spanning path P of order type κ in colour 1 all of whose

limits are contained in B1, and

• A1 t A2 is κ-star-linked in B2 in colour 1. (cf. Figure 4.0.1)

Proof. Fix a set A′ ∈ [A]κ that is κ-star-linked in as many colours as possible and

let I be the set of those colours. By Lemma 5.0.3, the set I is non-empty and we

may assume that colour 1 is contained in I.

Claim. There are disjoint sets B′1, B
′
2 ⊆ B such that A′ is κ-star-linked in B′1

and B′2, in all colours in I.

Proof. Write the set A′ as an ascending union of sets {Aα : α < cf(κ)} each of

size < κ. Simultaneously define in cf(κ) steps ascending sets {B1
α : α < cf(κ)} and

{B2
α : α < cf(κ)} such that B1

α and B2
α are disjoint and |B1

α| = |Aα| = |B2
α| for all

α as follows.

To begin, let B1
0 and B2

0 be the empty set. In step α > 0, let us write B1
<α :=⋃

{B1
β : β < α} and B2

<α :=
⋃
{B2

β : β < α}. Since Aα is κ-star-linked in all

colours in I, we first find a set B1
α ⊆ B r B2

<α of size |Aα| extending B1
<α and so

that B1
α r B1

<α contains |Aα| many vertices from N [F, i] for every finite F ⊆ Aα

and i ∈ I. In a second step, we find a set B2
α ⊆ B r B1

α of size |Aα| extending

B2
<α so that B2

α r B2
<α contains |Aα| many vertices from N [F, i] for every finite

F ⊆ Aα and i ∈ I.

It is straightforward to check that the sets B′1 =
⋃
{B1

α : α < cf(κ)} and B′2 =⋃
{B2

α : α < cf(κ)} are as desired. 3

Fix B′1 and B′2 as in the above claim and let {A′1, A′2} be a partition of A′

such that both partition classes have cardinality κ. Since G[A′1, B
′
1] is complete

bipartite, it is in particular of type Hκ,κ, and so we may apply Theorem 5.0.1 to

G[A′1, B
′
1] to find a colour k ∈ [r] and X ∈ [A′1]κ which is κ-star-linked in colour

k such that X is covered by a monochromatic path P (say) of size κ in colour k

concentrated on X.

By the maximality of I we have k ∈ I and we may assume k = 1. Furthermore,

by Lemma 5.0.2 we know that all limits of P are contained in B′1. Hence, letting

A1 := A ∩ P , A2 := A′2, B1 := B ∩ P and B2 := B′2 completes the proof.
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6. Constructing robust paths

In this chapter we will prove Lemma 4.2. There are two major steps: First, we

show how to find a ray R that is {x}-robust for a single vertex x. Second, we will

construct the path Q as a concatenation of rays each including a copy of R. The

set X for which Q is X-robust will be the set of vertices x in the various copies

of R.

6.0.1. Constructing countable robust paths

Consider the one-way infinite ladder on the positive integers shown in Figure 6.0.1.

The well-order ≤ on the positive integers together with this ladder then forms a

(generalised) path R, and it is easy to see that R is {2}-robust. Indeed, the

graph R′ = R−{2} has the one-way infinite path R′ = 1436587 . . . as a spanning

subgraph. Note that additionally, the first vertices of R′ and of R coincide.

2 3 6 7 10

1 4 5 8 9

Figure 6.0.1.: The fat edges indicate the path order of the one-way ladder on the

positive integers.

As we work in the bipartite setting, it is of importance that generalised paths

that we want to install are bipartite. Our ray R is bipartite as shown in Fi-

gure 6.0.2.

All countably infinite robust paths we construct will always consist of some finite

path Q followed by a copy of R, where we denote this concatenation by Q_R.
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2 4 6 8 10

1 3 5 7 9

Figure 6.0.2.: The top and bottom vertices in the ladder define the two bipartition

classes of the one-way infinite ladder. The path order from

Figure 6.0.1 is indicated fat again.

It is easy to see that the path Q_R is then {x}-robust, where x is the vertex

corresponding to the vertex 2 ∈ V (R). The following lemma is our key lemma for

constructing paths of that kind:

Lemma 6.0.1. Let G be a bipartite graph with bipartition classes A,B such that

A is countably infinite. Suppose further that A is ℵ0-star-linked and a ∈ A is

some fixed vertex. Then for any vertex x ∈ A r {a} there is an x-robust ray R

in G starting in the vertex a and covering A. Moreover, there is a path order of

R− x with first vertex a.

Proof. Fix an enumeration (an)n≥1 of A with a1 = a and a2 = x. For n ≥ 1 fix

distinct vertices (bn)n≥1 such that bn is contained in the common neighbourhood

of {an, an+1, an+2} for n ≥ 1. This can be done since A is ℵ0-star-linked.

Let us write B′ = {bn : n ≥ 1}. Then G[(A r {a1}) ∪ B′] has a copy1 of the

one-way infinite ladder L on ω as a spanning subgraph where b1 corresponds to

the vertex 1 and x corresponds to the vertex 2 of L. Let us write R′ for this copy

of L and endow R′ with the path order induced by the path order ≤ on L. By our

observations at the beginning of this chapter, the ray R = a1
_R′ is {x}-robust

and starts with a.

1The vertices in A r {a1} correspond to the upper vertices in Figure 6.0.2 and the vertices

in B′ to the bottom vertices. The enumerations of A r {a1} and respectively B′ are the

enumeration which ‘go from left to the right’.
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6.0.2. Constructing uncountable robust paths

Lemma 4.2. Let κ be an uncountable cardinal and G a bipartite graph with

bipartition classes A,B both of size κ. Suppose there are disjoint sets A1, A2 ∈
[A]κ, B1, B2 ∈ [B]κ such that

• G[A1, B1] has a spanning path P of order type κ with Λ(P ) ⊆ B1, and

• A1 t A2 is κ-star-linked in B2.

Then there is a set X ∈ [A2]κ and an X-robust path Q covering A1 t A2 with

Λ(P ) = Λ(Q). Moreover, if C ⊆ (A r A1) t (B r Λ) covers A2 and is <κ-

inseparable in G[Ar A1, B r Λ], then Q can be chosen to cover C.

Proof. Let us write λ0 for the first vertex on P and let {λα : 1 ≤ α < κ} be the

enumeration of the limits of P along the path order of P , i.e. we have λα ≺P λβ
whenever 1 ≤ α < β. Fix an enumeration {cα : α < κ} of C, (choose C = A2 if

C is not specified). Note that C has indeed cardinality κ as A2 is included in C.

We construct a sequence of pairwise disjoint paths S = (Sα)α<κ and a sequence

of distinct vertices (xα)α<κ from A2 satisfying the following:

(i) Sα has order type ω,

(ii) Sα has first vertex λα and doesn’t meet any other limits of P ,

(iii) Sα is xα-robust and there is a path order ≺Sα−xα of Sα − xα that has first

vertex λα,

(iv) Sα ∩ A ∩ P = A ∩ P � [λα, λα + ω) and

(v)
⋃
β≤α Sα contains cα.

Once S is defined we obtain Q as the concatenation Q = S_0 S
_
1 S

_
2 · · · (formally,

the path order is given by the lexicographic order on
⋃
α<κ{α} × Sα). Indeed,

conditions (1) and (2) guarantee that the limits of Q and the limits of P coincide,

and so it follows from (4) that Q is indeed a generalised path. By condition (5),

the path Q covers C. Finally, put X = {xα : α < κ}.

Claim. The path Q is X-robust.

Proof. In order to see that Q is X-robust, let X ′ ⊆ X be arbitrary. Let S ′α

be the path (Sα − xα,≺Sα−xα), if Sα meets X ′ and S ′α = Sα otherwise. Then

Q′ = S ′_0 S ′_1 S ′_2 · · · is a path of order type κ covering Q−X ′. 3
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It remains to define S = (Sα)α<κ. Suppose that Sα has already been defined

for α < β. Write Σβ :=
⋃
α<β Sα, a set of cardinality <κ. We first find a finite

path T that

• starts in λβ,

• ends in a vertex a ∈ A2 (say),

• contains cβ (unless cβ ∈ Σβ already),

• avoids Σβ and meets P only in P � [λβ, λβ + ω).

Claim. A path T as above exists.

Proof. Let T1 be the path of (edge-)length 1 or 0, that starts in λβ and is followed

by the successor of λβ on P if λβ is not already contained2 in A1.

Let w1 denote the last vertex on T1, and note that w1 /∈ Σβ by (4). Since

A1 tA2 is κ-star-linked in B2, we may chose any w2 ∈ A2 r Σβ and find a vertex

w3 ∈ (B2∩N [{w1, w2}])rΣβ so that T2 := w1w3w2 forms a path of (edge-)length

two.

If cβ is not yet covered by Σβ, as C is <κ-inseparable in G[ArA1, B r Λ] and

Σβ ∪ V (T1) ∪ V (T2) has size < κ, we find a finite path T3 that contains cβ, starts

in the vertex w2 and ends in a vertex a ∈ A2 and avoids

A1 ∪ Λ(P ) ∪ Σβ ∪ V (T1) ∪ V (T2).

Otherwise, we put T3 = ∅ and a = w2. Then T can be chosen as T_1 T_2 T3. 3

To complete the proof, we now find a path R of order type ω such that it

• starts in the vertex a and avoids T everywhere else,

• is {xβ}-robust for a vertex xβ ∈ A2r{a} and there is a path order of R−xβ
that starts with a,

• avoids Σβ and meets P precisely in (A ∩ P � [λβ, λβ + ω)) r V (T ).

Claim. A path R as above exists.

2Since all limits of P are contained in B1, we have λβ /∈ A1 as soon as β ≥ 1. In the case

where β = 0, we might have λβ ∈ A1.
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Proof. Choose xβ ∈ A2 r (Σβ ∪ V (T )) arbitrary. Apply Lemma 6.0.1 inside the

bipartite graph G[A′, B′] with the vertex a and the vertex x = xβ, where

A′ = {a, xβ} ∪ ((A ∩ P � [λβ, λβ + ω)) r V (T ))

is countable, and B′ = B2 r (Σβ ∪ V (T )). 3

Letting Sβ = T_R completes the construction of Sβ and thereby our proof is

complete.
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7. Constructing large monochromatic

paths

The following lemma of Soukup is the main tool of constructing large generalised

paths. To state the lemma, we need the following definition.

Definition 7.0.1 ([68, Definition 4.4]). Suppose that G = (V,E) is a graph and

A ⊆ V . We say that A satisfies ♠κ if for each λ < κ there are κ many disjoint

paths concentrated on A each of order type λ.

Moreover, if we have a fixed edge-colouring c : E → [r] in mind, we write ♠κ,i
for “♠κ in colour i”.

Lemma 7.0.2 ([68, Lemma 4.6]). Suppose that G = (V,E) is a graph, κ an

infinite cardinal, and A ∈ [V ]κ. If

(i) A is <κ-inseparable and if κ is uncountable, then

(ii) A satisfies ♠κ, and

(iii) there is a nice sequence of elementary submodels (Mα)α<cf(κ) for {A,G}
covering A so that there is xβ ∈ ArMβ, yβ ∈ V rMβ with xβyβ ∈ E and

|NG(yβ) ∩ A ∩Mβ rMα| ≥ ω

for all α < β < cf(κ),

then A is covered by a generalised path P concentrated on A.

Recall that Soukup considers for fixed κ the following statements:

(IH)κ,r Let H be a graph of type Hκ,κ with main class A and second class B. Then

for every r-colouring of H, there is a colour k and an X ∈ [A]κ so that X

satisfies all three conditions of Lemma 7.0.2 in colour k.

(IH)κ The statement (IH)κ,r holds for every r ≥ 1.
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Soukup’s main result is then

Theorem 7.0.3 ([68, Theorem 5.10]). (IH)κ holds for all κ. In particular, if G is

a graph of type Hκ,κ with a finite-edge colouring, then we can find a monochromatic

path of size κ concentrated on the main class of G.

We now strengthen Soukup’s results as follows, and consider the statements:

(IH)′κ,r The statement (IH)κ,r with the additional requirement that X is also κ-star-

linked in colour k.

(IH)′κ The statement (IH)′κ,r holds for every r ≥ 1.

The corresponding version of theorem [68, Theorem 5.10] then reads:

Theorem 7.0.4. (IH)′κ holds for all κ. In particular, if G is a graph of type

Hκ,κ with main class A with an r-edge colouring, then there is a colour k ∈ [r]

and X ∈ [A]κ which is κ-star-linked in colour k, such that X is covered by a

monochromatic path of size κ in colour k concentrated on X.

The proof of Theorem 7.0.4 relies on the following lemma.

Lemma 7.0.5 (cf. [68, Lemma 5.9]). Let κ be an infinite cardinal. Suppose that

c is an r-edge colouring of a graph G = (V,E) of type Hκ,κ with main class A and

second class B. Let I ( [r], X ∈ [A]κ and suppose that X is κ-star linked in all

colours i ∈ I. If (IH)λ holds for all λ < κ then either

(a) there is an i ∈ I such that X satisfies ♠κ,i , or

(b) there is X̃ ∈ [X]<κ and a partition {Xj : j ∈ [r] r I} of X r X̃ such that

Xj is κ-star-linked in B in colour j for each j ∈ [r] r I.

Proof of Lemma 7.0.5. Follow the proof of [68, Lemma 5.9, p. 261] and in the

last line apply the following Claim A instead of [68, Claim 5.9.3].

Claim A (cf. [68, Claim 5.9.3]). Suppose that c is an r-edge colouring of a

graph G = (V,E) of type Hκ,κ with main class A and second class B. Let I ⊆ r

and X ⊆ A. If for each finite subset F ⊆ A we have

|B r
⋃
{N(x, i) : x ∈ F, i ∈ I }| = κ,

then there is a partition {Xj : j ∈ r r I} of X such that Xj is κ-star-linked in B

in colour j for each j ∈ [r] r I.

28



Proof. Take a uniform ultrafilter U on B so that Br
⋃
{N(x, i) : x ∈ F, i ∈ I } ∈

U for all finite subsets F ⊆ A. Define Xj = {x ∈ X r X̃ : N(x, j) ∈ U} for

each colour j and note that {Xj : j ∈ [r] r I } partitions X. Since ultrafilters are

closed under finite intersections, it follows that

N [F, j] ∈ U

for all finite subsets F ⊆ Xj and j ∈ [r] r I, and since the filter U is uniform, we

have |N [F, j]| = κ and therefore that Xj is κ-star-linked in B for each such j. 3

Indeed, by applying Claim A to the set X r
(
X∗ ∪ Ã

)
(defined in Soukup’s

proof), we readily obtain the stronger conclusion that the Xj are not only <κ-

inseparable, but even κ-star-linked.

Proof of Theorem 7.0.4. We prove (IH)′κ,r by induction on κ and r.

Note that (IH)′ω holds by [68, Lemma 3.4], so we may suppose that κ is

uncountable. Also, (IH)′κ,1 holds: From [68, Observation 5.7], we know that for any

graph G of type Hκ,κ, the main class of G satisfies all conditions of Lemma 7.0.2

(and so (IH)κ,1 holds). However, it is clear that the main class A is automatically

κ-star-linked in G, and hence we have (IH)′κ,1.

Now fix an r-edge colouring with r > 1 of a graph G of type Hκ,κ with main

class A and second class B. As in the six line argument in Soukup’s proof of

[68, Theorem 5.10] (Theorem 7.0.3 above), we may assume by the induction

assumption (IH)′κ,r−1 that every X ∈ [A]κ satisfies condition (3) in Lemma 7.0.2

for each colour in [r].

Next, Soukup fixes a maximal I ⊆ [r] with the property that there is a set

X ∈ [A]κ such that X is <κ-inseparable in all colours i ∈ I and he fixes such

I and X. Instead, we now fix I maximal with the property that there is a set

X ∈ [A]κ such that X is κ-star-linked in all colours i ∈ I. Then fix such I and X.

Note that I 6= ∅ by Lemma 7.0.5.

Claim B (cf. [68, Claim 5.10.1]). There is k ∈ I such that ♠κ,k holds for X.

Proof. Suppose that X fails ♠κ,i for all i ∈ I. If I ( [r], then apply Lemma 7.0.5

in G to the set X and the set of colours I. As X fails ♠κ,i for all i ∈ I, condition

(b) of Lemma 7.0.5 must hold (note that by induction assumption, (IH)′λ and

hence (IH)λ hold for all λ < κ, so we may apply Lemma 7.0.5): However, this

29



means there is a colour j ∈ [r] r I and a set Xj ∈ [X]κ such that Xj is κ-star-

linked in colour j as well. But the fact that Xj is then κ-star-linked in all colours

i ∈ I ∪ {j} contradicts the maximality of I.

Therefore, I = [r] must hold. From this, however, we may obtain a contradiction

precisely as in the second half of the proof of [68, Claim 5.10.1]. 3

Hence, the “in particular” part of the theorem, and hence Theorem 5.0.1 follows

by applying Lemma 7.0.2 to the set X provided by (IH)′κ. The proof is complete.
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Part II.

Ends of digraphs
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Ends of graphs are one of the most important concepts in infinite graph theory.

They can be thought of as points at infinity to which its rays converge. Formally,

an end of a graphG is an equivalence class of its rays, where two rays are equivalent

if for every finite vertex set X ⊆ V (G) they have a tail in the same component

of G−X. For example, infinite complete graphs or grids have one end, while the

binary tree has continuum many ends, one for every rooted ray [20]. The concept

of ends was introduced in 1931 by Freudenthal [33], who defined ends for certain

topological spaces. In 1964, Halin [37] introduced ends for infinite undirected

graphs, taking his cue directly from Carathéodory’s Primenden of regions in the

complex plane [14].

There is a natural topology on the set of ends of a graph G, which makes it

into the end space Ω(G). Polat [58, 59] studied the topological properties of this

space. Diestel and Kühn [26] extended this topological space to the space |G|
formed by the graph G together with its ends. Many well known theorems of

finite graph theory extend to this space |G|, while they do not generalise verbatim

to infinite graphs. Examples include Nash-William’s tree-packing theorem [18],

Fleischner’s Hamiltonicity theorem [35], and Whitney’s planarity criterion [2]. In

the formulation of these theorems, topological arcs and circles take the role of

paths and cycles, respectively.

For directed graphs, a similarly useful notion and theory of ends has never been

found. There have been a few attempts, most notably by Zuther [72], but not

with very encouraging results. In this part we propose a new notion of ends of

digraphs and develop a corresponding theory of their end spaces. Let us give a

brief overview of the part.

In the first chapter of this part we lay the foundation for the whole part by

extending to digraphs a number of techniques that are important in the study of

ends of graphs.

As our main result we show that the one-to-one correspondence between the

directions and the ends of a graph has an analogue for digraphs. A direction of a

graph G is a map f , with domain the set of finite vertex sets X of G, that maps

every such X to a component of G−X so that f(X) ⊇ f(Y ) whenever X ⊆ Y .

Every end ω of G naturally defines a direction fω which maps every finite vertex

set X ⊆ V (G) to the unique component of G−X in which every ray representing

ω has a tail. It is straightforward to show that fω is indeed a direction of G.
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Conversely, Diestel and Kühn [25] proved that for every direction f of G there is

a (unique) end ω of G that defines f in that fω = f .

For a digraphD we will adapt the definition of a direction by first replacing every

occurrence of the word ‘component’ with ‘strong component’. These directions of

D will correspond bijectively to the ends of D. However, as there may be edges

between distinct strong components of D, there will be another type of direction:

one that maps finite vertex sets X ⊆ V (D) to the set of edges between two distinct

strong components of D−X. These latter directions of digraphs will correspond

bijectively to its limit edges—additional edges between distinct ends, or between

ends and vertices, of a digraph.

In the course of proving that the ends and limit edges of a digraph correspond

to its two types of directions in this way, we extend to digraphs a number of

fundamental tools and techniques for ends of graphs, such as the star-comb lemma

[20, Lemma 8.2.2] and Schmidt’s ranking of rayless graphs [64].

In the second chapter of this part we will define a topology on the space |D|
formed by the digraph D together with its ends and limit edges. To illustrate

the typical use of this space |D|, we extend to it two statements about finite

digraphs that do not generalise verbatim to infinite digraphs. The first statement

is the characterisation of Eulerian digraphs by the condition that the in-degree of

every vertex equals its out-degree. The second statement is the characterisation

of strongly connected digraphs by the existence of a closed Hamilton walk, see [1].

In the course of our proofs we extend to the space |D| a number of techniques that

have become standard in proofs of statements about |G|, such as the jumping arc

lemma or the fact that |G| is an inverse limit of finite contraction minors of G.

In the third chapter of this part we consider normal spanning trees, one of

the most important structural tools in infinite graph theory. Here a rooted tree

T ⊆ G is normal in G if the endvertices of every T -path in G are comparable in

the tree-order of T . (A T -path in G is a non-trivial path that meets T exactly in its

endvertices.) In finite graphs, normal spanning trees are precisely the depth-first

search trees [20].

As a directed analogue of normal spanning trees we introduce and study normal

spanning arborescences of digraphs. These are generalisations of depth-first search

trees to infinite digraphs, which promise to be as powerful for a structural analysis

of digraphs as normal spanning trees are for graphs. We show that normal
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spanning arborescences capture the structure of the set of ends of the digraphs

they span, both combinatorially and topologically. Furthermore, we provide a

Jung-type [43] criterion for the existence of normal spanning arborescences in

digraphs.
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8. Basic theory

In order to state the main results of this first chapter of this part more formally,

we need a few definitions.

A directed ray is an infinite directed path that has a first vertex (but no last

vertex). The directed subrays of a directed ray are its tails. For the sake of

readability we shall omit the word ‘directed’ in ‘directed path’ and ‘directed ray’

if there is no danger of confusion. We call a ray in a digraph D solid in D if it has

a tail in some strong component of D −X for every finite vertex set X ⊆ V (D).

We call two solid rays in a digraph D equivalent if for every finite vertex set

X ⊆ V (D) they have a tail in the same strong component of D−X. The classes

of this equivalence relation are the ends of D. The set of ends of D is denoted

by Ω(D). In Chapter 9 we will equip Ω(D) with a topology and we will call Ω(D)

together with this topology the end space of D. Note that two solid rays R and

R′ in D represent the same end if and only if D contains infinitely many disjoint

paths from R to R′ and infinitely many disjoint paths from R′ to R.

For example, the digraph D in Figure 8.0.1 has two ends, which are shown as

small dots on the right. Both the upper ray R and the lower ray R′ are solid

in D because the vertex set of any tail of R or R′ is strongly connected in D.

Deleting finitely many vertices of D always results in precisely two infinite strong

components (and finitely many finite strong components) spanned by the vertex

sets of tails of R or R′.

R

R′

Figure 8.0.1.: A digraph with two ends (depicted as small dots) linked by a limit

edge (depicted as a dashed line). Every undirected edge in the figure

represents a pair of inversely directed edges.
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Similarly to ends of graphs, the ends of a digraph can be thought of as points

at infinity to which its rays converge. We will make this formal in Chapter 9, but

roughly one can think of this as follows. For a finite vertex set X ⊆ V (D) and

an end ω ∈ Ω(D) we write C(X,ω) for the unique strong component of D − X
that contains a tail of every ray that represents ω; the end ω is then said to live

in that strong component. In our topological space the strong components of the

form C(X,ω) together with all the ends that live in them will essentially form the

basic open neighbourhoods around ω.

Given an infinite vertex set U ⊆ V (D), we say that an end ω is in the closure

of U in D if C(X,ω) meets U for every finite vertex set X ⊆ V (D). (It will turn

out that an end is in the closure of U in D if and only if it is in the topological

closure of U .)

For undirected graphs G one often needs to know whether an end ω is in the

closure of a given vertex set U , i.e., whether U meets C(X,ω) for every finite

vertex set X ⊆ V (G). This is equivalent to G containing a comb with all its teeth

in U . Recall that a comb is the union of a ray R (the comb’s spine) with infinitely

many disjoint finite paths, possibly trivial, that have precisely their first vertex

on R. The last vertices of those paths are the teeth of this comb. A standard

tool in this context is the star-comb lemma [20, Lemma 8.2.2] which states that

a connected graph contains for a given set U of vertices either a comb with all its

teeth in U or an infinite subdivided star with all its leaves in U . In this chapter

we will prove a directed version of the star-comb lemma.

Call two statements A and B complementary if the negation of A is equivalent

toB. For a graphG, the statement thatG has an end in the closure of U ⊆ V (G) is

complementary to the statement that G has a U -rank, see [5]. For U = V (G), the

U -rank is known as Schmidt’s ranking of rayless graphs [20, 64]. It is a standard

technique to prove statements about rayless graphs by transfinite induction on

Schmidt’s rank. For example Bruhn, Diestel, Georgakopoulos, and Sprüssel [3]

employed this technique to prove the unfriendly partition conjecture for countable

rayless graphs.

The directed analogue of a comb with all its teeth in U will be a ‘necklace’

attached to U . The symmetric ray is the digraph obtained from an undirected

ray by replacing each of its edges by its two orientations as separate directed edges.

A necklace is an inflated symmetric ray with finite branch sets. (An inflated H
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is obtained from a digraph H by subdividing some edges of H finitely often and

then replacing the ‘old’ vertices by strongly connected digraphs. The branch sets

of the inflated H are these strongly connected digraphs. See Section 8.1 for the

formal definition of inflated, and of branch sets.) Figure 8.0.2 shows an example

of a necklace. Given a set U of vertices in a digraph D, a necklace N ⊆ D is

Figure 8.0.2.: A necklace up to the fourth branch set. Every undirected edge in

the figure represents a pair of inversely directed edges.

attached to U if infinitely many of the branch sets of N contain a vertex from U .

We will see that the statement that D has an end in the closure of U is equivalent

to the statement that D contains a necklace attached to U as a subdigraph.

We extend Schmidt’s result that a graph is rayless if and only if it has a rank.

See Section 8.2 for the definition of ‘U -rank’ in digraphs.

Lemma 8.1 (Necklace Lemma). Let D be any digraph and U any set of vertices

in D. Then the following statements are complementary:

(i) D has a necklace attached to U;

(ii) D has a U-rank.

Let us now define a directed analogue of the directions of undirected infinite

graphs. Consider any digraph D, and write X (D) for the set of finite vertex sets

in D. A (vertex-)direction of D is a map f with domain X (D) that sends every

X ∈ X (D) to a strong component ofD−X so that f(X) ⊇ f(Y ) wheneverX ⊆ Y .

Ends of digraphs define vertex-directions in the same way as ends of graphs do;

for every end ω ∈ Ω(D) we write fω for the vertex-direction that maps every

X ∈ X (D) to the strong component C(X,ω) of D − X. We will show that this

correspondence between ends and vertex-directions is bijective:

Theorem 8.2. Let D be any infinite digraph. The map ω 7→ fω with domain

Ω(D) is a bijection between the ends and the vertex-directions of D.

While most of the concepts that we investigate have undirected counterparts,

there is one important exception: limit edges. If ω and η are distinct ends of
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Figure 8.0.3.: A digraph with one end (depicted as a small dot) and a limit edge

(depicted as a dashed line) from the lower vertex to the end. Every

undirected edge in the figure represents a pair of inversely directed

edges.

a digraph, there exists a finite vertex set X ∈ X (D) such that ω and η live in

distinct strong components of D−X. Let us say that such a vertex set X separates

ω and η. For two distinct ends ω, η ∈ Ω(D) we call the pair (ω, η) a limit edge

from ω to η if D has an edge from C(X,ω) to C(X, η) for every finite vertex set

X that separates ω and η.

Similarly, for a vertex v ∈ V (D) and an end ω ∈ Ω(D) we call the pair (v, ω) a

limit edge from v to ω if D has an edge from v to C(X,ω) for every finite vertex

set X ⊆ V (D) with v 6∈ C(X,ω). And we call the pair (ω, v) a limit edge from

ω to v if D has an edge from C(X,ω) to v for every finite vertex set X ⊆ V (D)

with v 6∈ C(X,ω). We write Λ(D) for the set of limit edges of D.

The digraph in Figure 8.0.1 has a limit edge from the lower end to the upper

end, and the digraph in Figure 8.0.3 has a limit edge from the lower vertex to

the unique end. Let us enumerate from left to right the vertical edges e0, e1, . . .

of the digraph D in Figure 8.0.1. We may think of the en as converging towards

the unique limit edge. This will be made precise in Chapter 9.

Every limit edge ωη between two ends naturally defines a map fωη with domain

X (D) as follows. If X ∈ X (D) separates ω and η, then fωη maps X to the

set of edges between C(X,ω) and C(X, η); otherwise fωη maps X to the strong

component of D −X in which both ends live. The map fωη is consistent in that

fωη(X) ⊇ fωη(Y ) whenever X ⊆ Y .1

This gives rise to a second type of direction of a digraph D, as follows. Given

X ∈ X (D), a non-empty set of edges is a bundle of D−X if it is the set of all the

1Here, as later in this context, we do not distinguish rigorously between a strong component

and its set of edges. Thus if Y separates ω and η but X ⊆ Y does not, the expression

fωη(X) ⊇ fωη(Y ) means that the strong component fωη(X) of D−X contains all the edges

from the edge set fωη(Y ).
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edges from C to C ′, or from v to C, or from C to v, for strong components C and

C ′ of D−X and a vertex v ∈ X. A direction of D is a map f with domain X (D)

that maps every X ∈ X (D) to a strong component of D − X or to a bundle of

D−X so that f(X) ⊇ f(Y ) whenever X ⊆ Y . We call a direction of D an edge-

direction of D if there is some X ∈ X (D) such that f(X) is a bundle of D −X,

in other words, if it is not a vertex-direction. Hence fλ is an edge-direction for

limit edges λ between two ends, and for limit edges λ between vertices and ends

an edge-direction fλ can be defined analogously. Our next theorem states that

every edge-direction can be described in this way:

Theorem 8.3. Let D be any infinite digraph. The map λ 7→ fλ with domain

Λ(D) is a bijection between the limit edges and the edge-directions of D.

This chapter is organised as follows. In Section 8.1 we provide the basic termino-

logy that we use throughout this part. In Section 8.2 we prove the necklace lemma

and discuss some basic properties of ends of digraphs. In Section 8.3 we prove

Theorem 8.2. Finally, in Section 8.4 we investigate limit edges and prove Theo-

rem 8.3.

8.1. Preliminaries

For the sake of readability, we sometimes omit curly brackets of singletons, i.e., we

write x instead of {x} for a set x. Furthermore, we omit the word ‘directed’—for

example in ‘directed path’—if there is no danger of confusion.

Throughout this paper D is an infinite digraph without multi-edges and without

loops, but which may have inversely directed edges between distinct vertices. For

a digraph D, we write V (D) for the vertex set of D, we write E(D) for the edge

set of D and X (D) for the set of finite vertex sets of D. We write edges as

ordered pairs (v, w) of vertices v, w ∈ V (D), and we usually write (v, w) simply

as vw. The reverse of an edge vw is the edge wv. More generally, the reverse

of a digraph D is the digraph on V (D) where we replace every edge of D by its

reverse, i.e., the reverse of D has the edge set { vw | wv ∈ E(D) }. A symmetric

path is a digraph obtained from an undirected path by replacing each of its edges

by its two orientations as separate directed edges. Similarly, a symmetric ray is a

digraph obtained from an undirected ray by replacing each of its edges by its two

39



orientations as separate directed edges. Hence the reverse of any symmetric path

or symmetric ray is a symmetric path or symmetric ray, respectively.

The directed subrays of a ray are its tails. Call a ray solid in D if it has a tail

in some strong component of D −X for every finite vertex set X ⊆ V (D).

Two solid rays in D are equivalent, if they have a tail in the same strong

component of D−X for every finite vertex set X ⊆ V (D). We call the equivalence

classes of this relation the ends of D and we write Ω(D) for the set of ends of D.

Similarly, the reverse subrays of a reverse ray are its tails. We call a reverse

ray solid in D if it has a tail in some strong component of D−X for every finite

vertex set X ⊆ V (D). With a slight abuse of notation, we say that a reverse ray

R represents an end ω if there is a solid ray R′ in D that represents ω such that R

and R′ have a tail in the same strong component of D−X for every finite vertex

set X ⊆ V (D).

For a finite vertex set X ⊆ V (D) and a strong component C of D−X an end ω

is said to live in C if one (equivalent every) solid ray in D that represents ω has a

tail in C. We write C(X,ω) for the strong component of D−X in which ω lives.

For two ends ω and η of D a finite set X ⊆ V (D) is said to separate ω and η if

C(X,ω) 6= C(X, η), i.e., if ω and η live in distinct strong components of D −X.

Given sets A,B ⊆ V (D) of vertices a path from A to B, or A–B path is a path

that meets A precisely in its first vertex and B precisely in its last vertex. We say

that a vertex v can reach a vertex w in D if there is a v–w path in D. A set W

of vertices is strongly connected in D if every vertex of W can reach every other

vertex of W in D[W ].

Let H be a fixed digraph. A subdivision of H is a digraph that is obtained from

H by replacing every edge vw of H by a path Pvw with first vertex v and last vertex

w so that the paths Pvw are internally disjoint and do not meet V (H) r {v, w}. We

call the paths Pvw subdividing paths. If D is a subdivision of H, then the original

vertices of H are the branch vertices of D and the new vertices its subdividing

vertices.

An inflated H is any digraph that arises from a subdivision H ′ of H as follows.

Replace every branch vertex v of H ′ by a strongly connected digraph Hv so that

the Hv are disjoint and do not meet any subdividing vertex; here replacing means

that we first delete v from H ′ and then add V (Hv) to the vertex set and E(Hv)

to the edge set. Then replace every subdividing path Pvw that starts in v and
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ends in w by an Hv–Hw path that coincides with Pvw on inner vertices. We call

the vertex sets V (Hv) the branch sets of the inflated H. A necklace is an inflated

symmetric ray with finite branch sets; the branch sets of a necklace are its beads.

(See Figure 8.0.2 for an example of a necklace.)

A vertex set Y ⊆ V (D) separates A and B in D with A,B ⊆ V (D) if every

A–B path meets Y , or if every B–A path meets Y . For two vertices v and w

of D we say that Y ⊆ V (D) r {v, w} separates v and w in D, if it separates

{v} and {w} in D. A separation of D is an ordered pair (A,B) of vertex sets

A and B with V (D) = A ∪ B for which there is no edge from B r A to A r B.

The set A ∩ B is the separator of (A,B) and the vertex sets A and B are the

two sides of the separation (A,B). Note that the separator of a separation indeed

separates its two sides. The size of the separator of a separation (A,B) is the order

of (A,B). Separations of finite order are also called finite order separations. There

is a natural way to compare separations, namely one defines (A1, B1) ≤ (A2, B2)

if A1 ⊆ A2 and B2 ⊆ B1. Regarding to this partial order (A1 ∪ A2, B1 ∩ B2) is

the supremum and (A1 ∩A2, B1 ∪B2) is the infimum of two separations (A1, B1)

and (A2, B2). More generally, if ((Ai, Bi))i∈I is a family of separations, then

(
⋃
i∈I

Ai,
⋂
i∈I

Bi) and (
⋂
i∈I

Ai,
⋃
i∈I

Bi)

is its supremum and infimum, respectively.

For vertex sets A,B ⊆ V (D) let E(A,B) be the set of edges from A to B, i.e.,

E(A,B) = (A×B)∩E(D). Given a subdigraph H ⊆ D, a bundle of H is a non-

empty edge set of the form E(C,C ′), E(v, C), or E(C, v) for strong components

C and C ′ of H and a vertex v ∈ V (D)rV (H). We say that E(C,C ′) is a bundle,

between strong components and E(v, C) and E(C, v) are bundles between a vertex

and a strong component. In this paper we consider only bundles of subdigraphs

H with H = D −X for some X ∈ X (D).

Now, consider a vertex v ∈ V (D), two ends ω, η ∈ Ω(D) and a finite vertex

set X ⊆ V (D). If X separates ω and η we write E(X,ωη) as short for the edge set

E(C(X,ω), C(X, η)). Similarly, if v ∈ C ′ for a strong component C ′ 6= C(X,ω) of

D−X we write E(X, vω) and E(X,ωv) as short for the edge set E(C ′, C(X,ω))

and E(C(X,ω), C ′), respectively. If v ∈ X we write E(X, vω) and E(X,ωv)

as short for E(v, C(X,ω)) and E(C(X,ω), v), respectively. Note that E(X,ωη),

E(X, vω) and E(X,ωv) each are bundles if they are non-empty.
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An arborescence is a rooted oriented tree T that contains for every vertex

v ∈ V (T ) a directed path from the root to v. The vertices of any arborescence are

partially ordered as v ≤T w if T contains a directed path from v to w. We write

bvcT for the up-closure of v in T .

A directed star is an arborescence whose underlying tree is an undirected star

that is centred in the root of the arborescence. A directed comb is the union of

a ray with infinitely many finite paths (possibly trivial) that have precisely their

first vertex on R. Hence the underlying graph of a directed comb is an undirected

comb. The teeth of a directed comb or reverse directed comb are the teeth of the

underlying comb. The ray from the definition of a comb is the spine of the comb.

8.2. Necklace Lemma

This section is dedicated to the necklace lemma. We begin with our directed

version of the star-comb lemma, which motivates the necklace lemma. Then we

continue with the definition of the U -rank, in fact we will define the U -rank in a

slightly more general setting by considering not only one set U but finitely many.

Finally, we prove the necklace lemma and provide two of its applications.

The star-comb lemma [20] for undirected graphs is a standard tool in infinite

graph theory and reads as follows:

Lemma 8.2.1 (Star-Comb Lemma). Let U be an infinite set of vertices in a

connected undirected graph G. Then G contains a comb with all its teeth in U or

a subdivided infinite star with all its leaves in U .

Let us see how to translate the star-comb lemma to digraphs. Given a set U of

vertices in a digraph, a comb attached to U is a comb with all its teeth in U and

a star attached to U is a subdivided infinite star with all its leaves in U . The set

of teeth is the attachment set of the comb and the set of leaves is the attachment

set of the star. We adapt the notions of ‘attached to’ and ‘attachment sets’ to

reverse combs or reverse stars, respectively.

Lemma 8.2.2 (Directed Star-Comb Lemma). Let D be any strongly connected

digraph and let U ⊆ V (D) be infinite. Then D contains a star or comb attached

to U and a reverse star or reverse comb attached to U sharing their attachment

sets.
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Proof. Since D is strongly connected we find a spanning arborescence T . Applying

the star-comb lemma in the undirected tree underlying T yields a comb or a star

attached to U . Let U ′ be the attachment set in either case.

Again using that D is strongly connected we find a reverse spanning arbores-

cence T ′. Applying the star-comb lemma a second time, now in the undirected

tree underlying T ′ yields a reverse comb or a reverse star attached to U ′. Thinning

out the teeth or leaves of the comb or star, respectively, completes the proof.

The star-comb lemma fundamentally describes how an infinite set of vertices

can be connected in an infinite graph, namely through stars and combs. Similarly,

the directed star-comb lemma describes the nature of strongly connectedness

in infinite digraphs. Indeed, adding a single path from the first vertex of the

reverse comb’s spine or centre of the reverse star to the first vertex of the comb’s

spine or centre of the star, respectively, yields a strongly connected digraphs that

contains U . We shall use the directed star-comb lemma in the proof of one of our

main results of Chapter 9.

As noted in the introduction the star-comb lemma is often used in order to find

an end of a given undirected graph G in the closure of an infinite set U ⊆ V (G) of

vertices. This is usually done in situations where G contains no infinite subdivided

star with all its leaves in U ; for example if the graph is locally finite. Then the

star-comb lemma in G applied to U always returns a comb with all its teeth in U

and the end represented by the comb’s spine is contained in the closure of U .

The directed star-comb lemma however does not manage the task of finding an

end of a digraph in the closure of an infinite set of vertices. Consider for example

the digraph D that is obtained from the digraph in Figure 8.0.1 by subdividing

each vertical edge once. We write U for the set of subdividing vertices. As D

contains neither an infinite star nor an infinite reverse star, the directed star-

comb lemma applied to U returns a comb attached to U and a reverse comb

attached to U sharing their attachment sets. Therefore we would expect that the

ends that are represented by the spines are contained in the closure of U . But

U does not have any end in its closure because the subdividing vertices all lie in

singleton strong components of D.

The necklace lemma will perform the task of finding and end in the closure of

a given set of vertices. Before we state it, we need to introduce the U -rank for
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digraphs: For this, consider a finite set U and think of U as consisting of infinite

sets of vertices. We define in a transfinite recursion the class of digraphs that have

a U -rank. A digraph D has U-rank 0 if there is a set U ∈ U such that U ∩V (D) is

finite. It has U-rank α if it has no U -rank < α and there is some X ∈ X (D) such

that every strong component of D−X has a U -rank < α. In the case U = V (D)

we call the U -rank of D the rank of D (provided that D has a U -rank). Note that

if U ⊇ V (D) for a digraph, then its U -rank equals its rank.

We remark that our notion of ranking extends the notion of Schmidt’s ranking of

rayless graphs, in that the rank of a given undirected graph G is precisely the rank

of the digraph obtained from G by replacing every edge by its two orientations

as separate directed edges, see [64] or Chapter 8.5 of [20] for Schmidt’s rank.

More generally, for a set U , our U -rank of digraphs extends the notion of the

U -rank of graphs, in that an undirected graph G has a U -rank if and only if the

digraph that is obtained from G by replacing every edge by its two orientations

as separate directed edges has a U -rank; see [5] for the definition of the U -rank of

an undirected graph.

Before we prove the necklace lemma, we provide two basic lemmas for the U -

rank of digraphs:

Lemma 8.2.3. Let D be a digraph and let U be a finite set. If D has U-rank α

and H ⊆ D, then H has some U-rank ≤ α.

Proof. We prove the statement by transfinite induction on the U -rank of D.

Clearly, if D has U -rank 0, then so does every subdigraph. Let D be a digraph

with U -rank α and H ⊆ D. We find a finite vertex set X ⊆ V (D) such that every

strong component of D −X has U -rank less than α. As every strong component

of H −X is contained in a strong component of D −X, every strong component

of H −X has a U -rank less than α by the induction hypothesis. Hence H has a

U -rank ≤ α.

Lemma 8.2.4. Let D be any digraph and let U be a finite set. If D has a U-rank

α > 0 and X ⊆ V (D) is a finite vertex set such that every strong component of

D−X has a U-rank < α, then infinitely many strong components of D−X meet

every set in U .

Proof. Suppose for a contradiction that the set C of strong components of D−X
that meet every set in U is finite. We find for every C ∈ C a finite vertex set
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XC ⊆ V (D) witnessing that C has a U -rank < α. Let Y be the union of X

with all the finite vertex sets XC . Then Y witnesses that D has a U -rank < α

contradicting our assumption that D has U -rank α.

Given a set U , a necklace N ⊆ D is attached to U if infinitely many beads of N

meet every set in U .

Lemma 8.1 (Necklace Lemma). Let D be any digraph and U a finite set of vertex

sets of D. Then the following statements are complementary:

(i) D has a necklace attached to U ;

(ii) D has a U-rank.

Proof. Let us start by showing that not both statements hold at the same time.

Suppose for a contradiction there is a digraph D that has a U -rank and contains

a necklace attached to U as a subdigraph. Then, by Lemma 8.2.3, every necklace

N ⊆ D has a U -rank. But deleting finitely many vertices from any necklace

attached to U leaves a strong component that is a necklace attached to U by its

own. Hence choosing a necklace N ⊆ D attached to U with minimal U -rank

results in a contradiction.

In order to prove that at least one of (i) and (ii) holds, let us assume that D

has no U -rank. Then for every X ∈ X (D), the digraph D − X has a strong

component that has no U -rank. In particular, every such strong component

contains a vertex—in fact infinitely many—from every set in U .

We will recursively construct an ascending sequence (Hn)n∈N of inflated sym-

metric paths with finite branch sets, so that Hn extends Hn−1, by adding an

inflated vertex Yn that meets every set in U . In order to make the construction

work, we will make sure that Yn is contained in a strong component of D − Xn

that has no U -rank, where Xn = HnrYn. The overall union of the Hn then gives

a necklace attached to U .

Let H0 = Y0 be a finite strongly connected vertex set that is included in a

strong component of D = D − ∅, that has no U -rank, and that meets every set

in U . Now, suppose that n ∈ N and that Hn and Yn have already been defined.

Let C be the strong component of D−Xn that includes Yn. As C has no U -rank,

the digraph C − Yn has a strong component C ′ that has no U -rank. Let P be

a path in C from Yn to C ′ and Q a path from C ′ to Yn. Let Yn+1 ⊆ C ′ be a
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strongly connected vertex set that contains the last vertex of P , the first vertex

of Q and one vertex of every set in U . We define Hn+1 to be the union of Hn, P ,

Q and Yn+1.

As our first application of the necklace lemma we describe the connection

between Zuther’s notion of ends from [72], which we call pre-ends, with our notion

of ends. Two rays or reverse rays R1, R2 ⊆ D are equivalent, if there are infinitely

many disjoint paths from R1 to R2 and infinitely many disjoint paths from R2

to R1. We call the equivalence classes of this relation the pre-ends of D.

Lemma 8.2.5. Let D be any digraph and γ a pre-end of D. Then γ includes

an end ω of D if and only if γ is represented both by a ray and a reverse ray.

Moreover, ω is the unique end of D included in γ.

Proof. Consider any pre-end γ of D. For the forward implication suppose that

γ includes an end ω of D. Then there is a ray R that is solid in D and that

represents γ. It suffices to find a necklace that is attached to U := V (R). Indeed,

every necklace N contains a ray and a reverse ray and if N is attached to R then

these rays must be equivalent to R.

So suppose for a contradiction that there is no such necklace. Then by the

necklace lemma applied to U in D, the digraph D has a U -rank, say α. Let

X ⊆ V (D) be a finite vertex set that witnesses that the U -rank of D is α. As

U ⊆ V (D) is infinite, we have α > 0. Now, it follows by Lemma 8.2.4 that the

ray R meets infinitely many strong components of D − X. We conclude that R

has no tail in any strong component of D−X contradicting that R is solid in D.

For the backward implication we assume that γ is represented by a ray and a

reverse ray. We prove that every ray R that represents γ is solid in D. So let R

be any ray that represents γ and let R′ be a reverse ray that represents γ. As R

and R′ are equivalent we find a path system P that consists of infinitely many

pairwise disjoint paths from R to R′ and infinitely many pairwise disjoint paths

from R′ to R.

The subdigraph H of D that consists of R, R′ and all the paths in P has

exactly one infinite strong component and finitely many finite strong components

(possibly none). Moreover, deleting finitely many vertices from H results again in

exactly one infinite strong component and finitely many finite strong components.
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Consequently, R has a tail that is contained in a strong component of D −X for

every finite vertex set X ⊆ V (D).

For the ‘moreover’ part note that the above argument shows that any ray that

represents γ has a tail in the same strong component of D − X as the reverse

ray R′, for every finite vertex set X ⊆ V (D). Consequently, any two rays that

represent γ have a tail in the same strong component of D − X for every finite

vertex set X ⊆ V (D).

Our second application of the necklace lemma demonstrates how the rank can

be used to prove statements about digraphs that have no end. A set of vertices of

a digraph D is acyclic in D if its induced subdigraph does not contain a directed

cycle. The dichromatic number [52] of a digraph D is the smallest cardinal κ so

that D admits a vertex partition into κ partition classes that are acyclic in D.

As a consequence of the necklace lemma we obtain a sufficient condition for D to

have a countable dichromatic number:

Theorem 8.2.6. If D is a digraph that contains no necklace as a subdigraph, then

the dichromatic number of D is countable.

Proof. By the necklace lemma, the statement that D contains no necklace as a

subdigraph is equivalent to the statement that D has a rank. Therefore we can

apply induction on the rank of D. The vertex set of a finite digraph clearly has a

partition into finitely many singleton—and thus acyclic—partition classes, which

settles the base case. Now assume that D has rank α > 0 and that the statement

is true for all ordinals < α. We find a finite vertex set X ⊆ V (D) such that every

strong component of D −X has some rank < α. Hence the induction hypothesis

yields a partition {Vn(C) | n ∈ N } of every strong component C of D −X into

acyclic partition classes. For every n ∈ N, let Vn consist of the union of all the

sets Vn(C) with C a strong component of D − X. Note that Vn is acyclic in D.

Combining a partition of X into singleton partition classes with the partition

{Vn | n ∈ N } of V (D −X) completes the induction step.
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8.3. Directions

In this section we will prove the main result of this chapter. To state it properly

we need two definitions. A direction of a digraph D is a map f with domain X (D)

that sends every X ∈ X (D) to a strong component or a bundle of D−X so that

f(X) ⊇ f(Y ) whenever X ⊆ Y . We call a direction f of D a vertex-direction if

f(X) is a strong component of D −X for every X ∈ X (D).

Every end of D naturally defines a direction fω which maps every finite vertex

set X ⊆ V (D) to the unique strong component of D−X in which every ray that

represents ω has a tail. Now, our main theorem reads as follows:

Theorem 8.2. Let D be any infinite digraph. The map ω 7→ fω with domain

Ω(D) is a bijection between the ends and the vertex-directions of D.

The proof of this needs some preparation. Let D be any digraph and let U be a

set of vertex sets of D. We say that an end ω of D is contained in the closure of U
if C(X,ω) meets every vertex set in U ∈ U for every finite vertex set X ⊆ V (D).

In Chapter 9 we will define a topology on the space |D| formed by D together

with its ends and limit edges and in this topology an end ω will be in the closure

of U if and only if it is in the topological closure of every set in U . Note that

an end ω is contained in the closure of the vertex set of a ray R if and only if R

represents ω.

Similarly, we say that a vertex-direction f of D is contained in the closure of U ,

if f(X) meets every U ∈ U for every X ∈ X (D). Note that if f is contained in the

closure of U , then f(X) meets every U ∈ U in an infinite vertex set. The following

lemma describes the connection between ends in the closure of U , vertex-directions

in the closure of U and necklaces attached to U :

Lemma 8.3.1. Let D be any digraph, and let U be a finite set of vertex sets of D.

Then the following assertions are equivalent:

(i) D has an end in the closure of U ;

(ii) D has a vertex-direction in the closure of U ;

(iii) D has a necklace attached to U .

Proof. (i)→(ii): Let ω be any end in the closure of U . It is straightforward to

check that fω is a vertex-direction in the closure of U .
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(ii)→(iii): Suppose that f is a vertex-direction in the closure of U . We need

to find a necklace attached to U . By the necklace lemma we may equivalently

show that D has no U -rank. Suppose for a contradiction that D has a U -rank α.

By Lemma 8.2.3 subdigraphs of digraphs that have a U -rank have a U -rank and

thus we may choose X ′ such that f(X ′) has the smallest U -rank among all f(X)

with X ∈ X (D). Note that f(X) has U -rank ≥ 1 for every X ∈ X (D). Indeed,

if f(X) ∩ U is finite for some U ∈ U , then

f(X ∪ (f(X) ∩ U)) ∩ U = ∅

contradicting that f is a vertex-direction in the closure of U . Hence we find a

finite vertex set X ′′ ⊆ f(X ′) such that all strong components of f(X ′)−X ′′ have

U -rank less than that of f(X ′). But then X ′∪X ′′ would have been a better choice

for X ′.

(iii)→(i): Given a necklace N attached to U , let R ⊆ N be a ray. Then R is

solid in D. It is straightforward to show that the end that is represented by R is

contained in the closure of U .

Let D be any digraph and let f be any vertex-direction of D. We think of a

separation (A,B) of D as pointing towards its side B. Now, if (A,B) is a finite

order separation of D, then f(A ∩ B) is either included in B r A or A r B. In

the first case we say that (A,B) points towards f and in the second case we say

that (A,B) points away from f . If two separations point towards or away from f ,

then the same is true for their supremum or infimum, respectively:

Lemma 8.3.2. Let D be any digraph and let f be a vertex-direction of D. Suppose

that (A1, B1) and (A2, B2) are finite order separations of D.

(i) If (A1, B1) and (A2, B2) point towards f , then (A1 ∪ A2, B1 ∩ B2) points

towards f .

(ii) If (A1, B1) and (A2, B2) point away from f , then (A1 ∩ A2, B1 ∪ B2) points

away from f .

Proof. (i) We have to show that for (A,B) := (A1∪A2, B1∩B2) and X = A∩B the

strong component f(X) is included in BrA. For this let us consider the auxiliary

separation (A,B′) := (A,X ′ ∪ B), where X ′ :=
⋃
i=1,2Ai ∩ Bi (cf. Figure 8.3.1).
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X X ′

A1 B1 B1A1

B2

A2 A2

B2

B r A B′ r A

Figure 8.3.1.: The separations (A,B) and (A,B′) from the proof of Lemma 8.3.2.

Recall that the separator of a separation separates its two sides. Hence the vertex

set B r A is partitioned into the strong components of D −X that it meets.

First, we observe that (A,B′) points towards f , a fact that we verify as follows:

Since Ai ∩Bi ⊆ X ′ and because (Ai, Bi) points towards f we have

f(X ′) ⊆ f(Ai ∩Bi) ⊆ Bi

for i = 1, 2. Hence f(X ′) ⊆ B1 ∩ B2 = B. Now, f(X ′) avoids X ′ because it is a

strong component of D −X ′, giving f(X ′) ⊆ B rX ′. As B rX ′ = B′ r A, we

conclude that f(X ′) is included in B′ r A.

Second, we observe that the strong components of D−X that partition BrA

are exactly the strong components of D − X ′ that meet B′ r A; the reason for

this is that B′ is obtained from B by adding only vertices from ArB.

Finally, we employ the two observation in order to prove that (A,B) points

towards f . Indeed, since X ⊆ X ′ and because f is a vertex-direction, we have that

f(X ′) ⊆ f(X). Now, the first observation says that f(X ′) is included in B′ r A.

Together with the second observation we obtain f(X ′) = f(X). So the equation

B′ r A = B r A yields f(X) ⊆ B r A as desired.

(ii) Apply (i) to the reverse of D.

Recall, that for a given undirected graph G a vertex v is said to dominate an

end ω of G if there is an infinite v–R fan in G for some (equivalently every)

ray R that represents ω. Equivalently v dominates ω if v is contained in C(X,ω)

for every finite vertex set X ⊆ V (G) r {v}. An end ω ∈ Ω(G) is dominated

if some vertex of G dominates it. Ends not dominated by any vertex of G are

undominated, see [20]. The main case distinction in the proof of Diestel and

Kühn’s theorem [25, Theorem 2.2], which states that the ends of an undirected
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graph correspond bijectively to its directions, essentially distinguishes between

directions that correspond to dominated ends and those that correspond to undo-

minated ends. Our plan is to make a similar case distinction for which we need a

concept of domination for ends of digraphs.

Let D be any digraph. For a vertex a ∈ V (D) and B ⊆ V (D) a set of a–B paths

in D is called an a–B fan if any two of the paths meet precisely in a. Similarly,

a set of B–a paths in D is called an a–B reverse fan if any two of the paths

meet precisely in a. We say that a vertex v ∈ V (D) dominates a ray R ⊆ D if

there is an infinite v–R fan in D. The vertex v dominates an end ω ∈ Ω(D) if

it dominates some (equivalently every) ray that represents ω. Similarly, a vertex

v ∈ V (D) reverse dominates a ray R ⊆ D if D contains a v–R reverse fan.

The vertex v reverse dominates an end ω ∈ Ω(D) if it reverse dominates some

(equivalently every) ray that represents ω. An end of D is dominated or reverse

dominated if some vertex dominates or reverse dominates it, respectively.

Now, we translate the concept of domination and reverse domination to vertex-

directions of digraphs. A vertex v ∈ V (D) dominates a vertex-direction f in D,

if v ∈ A for every finite order separation (A,B) of D that points away from f .

If f is dominated by some vertex, then it is dominated. Similarly, v reverse

dominates f if v ∈ B for every finite order separation (A,B) of D that points

towards f . If f is reverse dominated by some vertex, then f is reverse dominated.

The following proposition shows that our translation of the concept forwards and

reverse domination to vertex-directions of digraphs is accurate:

Proposition 8.3.3. Let D be any digraph and ω an end of D. A vertex (reverse)

dominates ω if and only if it (reverse) dominates fω.

Proof. We prove the statement in its ‘dominates’ version; for the ‘reverse domi-

nates’ version consider the reverse of D. First, suppose that v ∈ V (D) dominates

ω and let (A,B) be a finite order separation pointing away from fω. Every ray R

that represents ω has a tail in fω(A∩B); in particular in D[A]. As D contains an

infinite v–R fan and the separator of (A,B) is finite, it follows that v is contained

in A as well.

For the backward implication suppose that v ∈ V (D) dominates fω. Given a

ray R that represents ω, with v /∈ R say, we need to find an infinite v–R fan

in D. For this, we show that every finite v–R fan F in D can be extended by one
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additional v–R path; then an infinite such fan can be constructed recursively in

countably many steps. Let H be the union of the paths in F and let X consist

of V (H − v) together with the vertices of some finite initial segment of R that

contains all the vertices that H meets on R. We may view the strong components

of D−X partially ordered by C1 ≤ C2 if there is a path in D−X from C1 to C2.

Let C be the strong component of D−X that contains v and let bCc be the set of

all the strong components of D−X that are ≥ C. If C(X,ω) is contained in bCc,
then it is easy to find a v–R path in D that extends our fan F . We claim that

this is always the case: Otherwise consider the finite order separation (A,B) with

A := V (D) r
⋃
bCc and B := X ∪

⋃
bCc. On the one hand, (A,B) points away

from fω. On the other hand, we have v /∈ A contracting that v dominates fω.

Lemma 8.3.4. Let D be any strongly connected digraph and let f be any vertex-

direction of D. Then the following assertions are complementary:

(i) f is (reverse) dominated;

(ii) there is a strictly descending (ascending) sequence ((Ai, Bi))i∈N of finite

order separations in D with pairwise disjoint separators all pointing away

from (towards) f .

Moreover, a vertex-direction f as in (ii) is the unique vertex-direction in the

closure of U for any vertex set U consisting of one vertex of f(Ai ∩ Bi) for

every i ∈ N.

Proof. We prove the case where f is dominated and that the sequence in (ii) is

descending; the proof of the case where f is reverse dominated and the sequence

in (ii) is ascending can then be obtained by considering the reverse of D. To

begin, we will show that not both assertions can hold at the same time. Suppose

that ((Ai, Bi))i∈N is as in (ii). We show that for every v ∈ V (D) there is a

separation (A,B) of D pointing away from f with v ∈ B r A. We claim that

(A,B) := (Aj, Bj) can be taken for j ∈ N large enough, a fact that we verify as

follows:

As D is strongly connected there is path from B0rA0 to v. Let j be the length

of a shortest path P from B0 rA0 to v. Then v is contained in Bj rAj, because

otherwise P would contain j+ 1 vertices—one from each of the separators Bi∩Ai
with i ≤ j—contradicting that P has length ≤ j.
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Next, we assume that f is not dominated and construct a sequence ((Ai, Bi))i∈N

as in (ii). Let (A0, B0) be any finite order separation with non-empty separator

pointing away from f . To see that such a separation exist consider any non-

empty finite vertex set X ⊆ V (D). We may view the strong components of

D −X partially ordered by C1 ≤ C2 if there is a path in D −X from C1 to C2.

Let df(X)e be the down-closure of all the strong components ≤ f(X). Then we

can take A0 := df(X)e ∪X and B0 := V (D) r df(X)e.
Now, assume that (An, Bn) has already been defined. Since no vertex in Xn

dominates f we find for every x ∈ An ∩ Bn a separation (Ax, Bx) pointing away

from f such that x ∈ Bx r Ax. Letting (An+1, Bn+1) be the infimum of all the

(Ax, Bx) and (An, Bn) completes the construction. Indeed, (An+1, Bn+1) points

away from f by Lemma 8.3.2 and its separator is disjoint from all the previous

ones as An+1 ∩Bn+1 ⊆ An rBn.

For the ‘moreover’ part let us write Xi := Ai ∩ Bi for every i ∈ N. We first

show that f is a vertex-direction in the closure of U . Given X ∈ X (D) we need

to show that f(X) meets U . With a distance argument as above one finds j such

that all the vertices of X are contained in Bj r Aj. Then f(Xj) is included in

f(X) because f(Xj) = f(X ∪ Xj). In particular f(X) contains the vertex from

U that was picked from f(Xj).

Finally, we prove that f = f ′ for every vertex-direction f ′ that is in the closure

of U . Given f ′ it suffices to show that f(Xi) = f ′(Xi) for every i ∈ N: then

f(X) = f ′(X) for every X ∈ X (D) since we have

f(Xj) = f(X ∪Xj) ⊆ f(X) and f ′(Xj) = f ′(X ∪Xj) ⊆ f ′(X)

for j large enough. We verify that f(Xi) = f ′(Xi) for every i ∈ N as follows: First

note that the sequence (f(Xi))i∈N is descending, because

f(Xi+1) = f(Xi ∪Xi+1) ⊆ f(Xi).

Hence f(Xi) contains all but finitely many vertices from U for every i ∈ N. In

particular f(Xi) is the only strong component of D −Xi that contains infinitely

many vertices from U . As a consequence we have f(Xi) = f ′(Xi) for every i ∈ N.

Proof of Theorem 8.2. It is straightforward to show that the map ω 7→ fω with

domain Ω(D) and codomain the set of vertex-directions of D is injective; we prove

53



that it is onto. So given a vertex-direction f of D we need to find an end ω ∈ Ω(D)

such that fω = f . Let S∗1 be the set of all the vertices that dominate f and S∗2

the set of all the vertices that reverse dominate f . We split the proof into three

cases:

First, assume that both vertex sets S∗1 ∩ f(X) and S∗2 ∩ f(X) are non-empty

for every X ∈ X (D). Then f is a vertex-direction in the closure of U for the

set U := {S∗1 , S∗2}. By Lemma 8.3.1 we find an end ω in the closure of U and

we claim that fω = f . Indeed, given a finite vertex set X ∈ X (D) we need

to show that C(X,ω) = f(X). We may view the strong components of D − X
partially ordered by C1 ≤ C2 if there is a path in D −X from C1 to C2. By the

order-extension-principle we choose a linear extension of ≤. Let

(A1, B1) := (
⋃
A1 ∪X,X ∪

⋃
B1),

where A1 consists of all the strong components of D − X strictly smaller than

f(X) and B1 of all the others. Then (A1, B1) points towards f . Since S∗2 consists

of the vertices reverse dominating f we have S∗2 ⊆ B1. Since ω is in the closure

of U we have C(X,ω) ∈ B1. Similarly, let

(A2, B2) := (
⋃
A2 ∪X,X ∪

⋃
B2),

where A2 consists of all the strong components of D−X smaller or equal to f(X)

and B2 of all the others. Analogously to the argumentation for C(X,ω) ∈ B1, one

finds out that C(X,ω) ∈ A2; together C(X,ω) ∈ B1 ∩A2. Now, f(X) = C(X,ω)

follows from the fact that f(X) is the only element in the intersection B1 ∩ A2.

Second, suppose that S∗1 ∩ f(X) is empty for some X ∈ X (D). If even S∗1 is

empty and D strongly connected, then Lemma 8.3.4 and Lemma 8.3.1 do the rest:

with U as in the ‘moreover’ part of Lemma 8.3.4, we have that f is the unique

vertex-direction in the closure of U and Lemma 8.3.1 yields an end ω in the closure

of U ; by uniqueness fω = f .

In the following we will argue that we may assume S∗1 to be empty and D to

be strongly connected. Fix X ′ ∈ X (D) with S∗1 ∩ f(X ′) = ∅. Let D′ = f(X ′)

and let f ′ be the vertex-direction of D′ induced by f , i.e., f ′ sends a finite vertex

set X ⊆ V (D′) to f(X ∪X ′). Then the set of all the vertices that dominate f ′ is

empty: If (A,B) is a finite order separation of D that points away from f , then

(A∩V (D′), B∩V (D′)) is a finite order separation of D′ that points away from f ′.
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As a consequence, any vertex from D′ that dominates f ′ also dominates f , which

means there is none.

Now, consider the end ω′ of D′ with fω′ = f ′ and the unique end ω of D that

contains ω′ as a subset (of rays). We claim fω = f , a fact that we verify as follows.

First observe that for X ∈ X (D) with X ′ ⊆ X we have

fω(X) = fω′(X ∩ V (D′)) = f ′(X ∩ V (D′)) = f(X).

Now let X be an arbitrary finite vertex set of D. Since f and fω are vertex-

directions we have that f(X∪X ′) ⊆ f(X) and fω(X∪X ′) ⊆ fω(X). Furthermore,

by our observation we have f(X ∪X ′) = fω(X ∪X ′). Hence also f(X) = fω(X)

using that both f(X) and fω(X) are strong components of D −X.

Finally, the proof of the last case, that S∗2 ∩f(X) is empty for some X ∈ X (D),

is analogue to the proof of the second case.

8.4. Limit edges and edge-directions

In this section, we investigate limit edges of digraphs. Recall that, for two distinct

ends ω, η ∈ Ω(D), we call the pair (ω, η) a limit edge from ω to η, if D has an edge

from C(X,ω) to C(X, η) for every finite vertex set X ⊆ V (D) that separates ω

and η. For a vertex v ∈ V (D) and an end ω ∈ Ω(D) we call the pair (v, ω) a limit

edge from v to ω if D has an edge from v to C(X,ω) for every finite vertex set

X ⊆ V (D) with v 6∈ C(X,ω). Similarly, we call the pair (ω, v) a limit edge from

ω to v if D has an edge from C(X,ω) to v for every finite vertex set X ⊆ V (D)

with v 6∈ C(X,ω). We write Λ(D) for the set of limit edges of D. As we do for

‘ordinary’ edges of a digraph, we will suppress the brackets and the comma in our

notation of limit edges. For example we write ωη instead of (ω, η) for a limit edge

between ends ω and η.

We begin this section with two propositions (Proposition 8.4.1 and Proposi-

tion 8.4.2) saying that limit edges are witnessed by subdigraphs that are essentially

the digraphs in Figure 8.0.1 or Figure 8.0.3. Subsequently we prove Theorem 8.3.

Let D be any digraph and let ω ∈ Ω(D). With a slight abuse of notation, we say

that a necklace N ⊆ D represents an end ω of D if one (equivalently every) ray in

N represents ω. Note that for every end ω there is a necklace that represents ω.

Indeed, apply the necklace lemma to any ray that represents ω.
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Proposition 8.4.1. For a digraph D and two distinct ends ω and η of D the

following assertions are equivalent:

(i) D has a limit edge from ω to η;

(ii) there are necklaces Nω ⊆ D and Nη ⊆ D that represent ω and η respectively

such that every bead of Nω sends an edge to a bead of Nη.

Moreover, the necklaces may be chosen disjoint from each other and such that the

nth bead of Nω sends an edge to the nth bead of Nη.

Proof. We begin with the forward implication (i)→(ii). By possibly deleting a

finite vertex set of D that separate ω and η, we may assume that ω and η live in

distinct strong components of D. Given a necklace N let us write N [n,m] for the

inflated symmetric path from the nth bead to the mth bead of N and N [n] for

the inflated symmetric path from the first bead to the nth bead of N . First, let us

fix auxiliary necklaces N ′ω ⊆ D and N ′η ⊆ D that represent ω and η, respectively.

We inductively construct sequences (Nn
α )n∈N of necklaces, for α ∈ {ω, η}, so

that Nn
α [n − 1] = Nn−1

α [n − 1] and the nth bead of Nn
ω sends an edge to the nth

bead of Nn
η . Furthermore, we will make sure that N ′α[n] ⊆ Nn

α [n].

Then the unions
⋃
{Nn

α [n] | n ∈ N } define necklaces Nα, for α ∈ {ω, η},
as desired. Indeed, as Nα includes N ′α it also represents α. Note, that our

construction yields the ‘moreover’ part. Let n ∈ N and suppose that Nn
ω and

Nn
η have already been constructed. Let X be the union of Nn

ω [n], Nn
η [n] and the

two paths between the nth bead and the (n+1)th bead of Nn
ω and Nn

η , respectively.

So X might be empty for n = 0. Note that by our assumption ω and η live in

distinct strong components of D, so in particular they also live in distinct strong

components of D−X. As D has a limit edge from ω to η we find an edge e from

C(X,ω) to C(X, η). Fix a finite strongly connected vertex set Yα ⊆ C(X,α) that

includes Nn
α [n+ 1,m] for a suitable m ≥ n+ 1 and the endvertex of e in C(X,α)

but that avoids the rest of Nn
α for α ∈ {ω, η}. Replacing the inflated symmetric

subpath Nn
α [n + 1,m] by Yα and declaring Yα as the (n + 1)th bead of Nn+1

α for

α ∈ {ω, η} yields necklaces Nn+1
ω and Nn+1

η that are as desired.

Now, let us prove the backward implication (ii)→(i). As every finite vertex set

X meets only finitely many beads of Nω and Nη there are beads of Nω and Nη

that are included in C(X,ω) and C(X, η), respectively. Hence, if X separates ω

and η, there is an edge from C(X,ω) to C(X, η).
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There is a natural partial order on the set of ends, where ω ≤ η if for every two

rays Rω and Rη that represent ω and η, respectively, there are infinitely many

pairwise disjoint paths from Rω to Rη. By Proposition 8.4.1 we have that ω ≤ η,

whenever ωη is a limit edge for ends ω and η. The converse of this is in general

false, for example in the digraph that is obtained from the digraph in Figure 8.0.1

by subdividing every vertical edge once.

Proposition 8.4.2. For a digraph D, a vertex v and an end ω of D the following

assertions are equivalent:

(i) D has a limit edge from v to ω (from ω to v);

(ii) there is a necklace N ⊆ D that represents ω such that v sends (receives) an

edge to (from) every bead of N .

Proof. We consider the case that v sends an edge to every bead of N ; for the other

case consider the reverse of D.

For the forward implication (i)→(ii) a similar recursive construction as in the

proof of Proposition 8.4.1 yields a necklace N as desired.

Now, let us prove the backward implication (ii)→(i). As every finite vertex setX

hits only finitely many beads of N , there is one bead that is contained in C(X,ω).

Therefore there is an edge from v to C(X,ω) whenever v /∈ C(X,ω).

As a consequence of this proposition, every vertex v ∈ V (D) for which D has

a limit edge from v to an end ω ∈ Ω(D) dominates ω. The converse of this is

in general false, for example in the digraph that is obtained from the digraph

in Figure 8.0.3 by subdividing every edge once. Similarly, if ωv is a limit edge

between an end ω and a vertex v, then v reverse dominates ω; the converse is

again false in general.

Now, let us turn to our second type of directions. We call a direction f of D an

edge-direction, if there is some X ∈ X (D) such that f(X) is a bundle of D −X,

i.e., if f is not a vertex-direction. Recall that every end defines a vertex-direction.

Similarly, every limit edge λ defines an edge-direction as follows.

We say that a limit edge λ = ωη lives in the bundle defined by E(X,λ) if

X ∈ X (D) separates ω and η. If X ∈ X (D) does not separate ω and η, we say

that λ = ωη lives in the strong component C(X,ω) = C(X, η) of D−X. We use

similar notations for limit edges of the form λ = vω or λ = ωv with v ∈ V (D) and
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ω ∈ Ω(D): We say that a limit edge λ lives in the bundle E(X,λ) if v 6∈ C(X,ω)

and we say that λ lives in the strong component C(X,ω) of D−X, if v ∈ C(X,ω).

The edge-direction fλ defined by λ is the edge-direction that sends every finite

vertex set X ⊆ V (D) to the bundle or strong component of D − X in which λ

lives. Our next theorem states that there is a one-to-one correspondence between

the edge-directions of a digraph and its limit edges:

Theorem 8.3. Let D be any infinite digraph. The map λ 7→ fλ with domain

Λ(D) is a bijection between the limit edges and the edge-directions of D.

Proof. It is straightforward to show that the map given in (ii) is injective; we prove

onto. So let f be any edge-direction of D. First suppose that f(X) is always a

strong component or a bundle between strong components for every X ∈ X (D).

Then f defines two vertex-directions f1 and f2 as follows. If f(X) = E(C1, C2)

is a bundle then let f1(X) = C1 and f2(X) = C2. Otherwise, f(X) is a strong

component and we put f1(X) = f2(X) = f(X). Now, the inverse of the function

from Theorem 8.2 returns ends ω and η for f1 and f2, respectively. We conclude

that ωη is a limit edge and that f = fωη.

Now, suppose that f maps some finite vertex set X ′ to a bundle between a

vertex v ∈ X ′ and a strong component of D −X ′. Then also f({v}) is a bundle

between v and a strong component. We consider the case where f({v}) is of the

form E(v, Cv) for some strong component Cv of D− v; the other case is analogue.

Let us define a vertex-direction f ′ of D. First, for every X ∈ X (D) with v ∈ X
we have that f(X) is a bundle of the form E(v, C) for a strong component C of

D−X and we put f ′(X) = C. Second, if v /∈ X for some X ∈ X (D) we have that

f(X) is either a strong component C ′ of D−X or a bundle E(C,C ′) with v ∈ C.

We then put f ′(X) = C ′. It is straightforward to check that f ′ is indeed a vertex-

direction. Finally, the inverse of the map from Theorem 8.2 applied to f ′ returns

an end ω. By the definition of f ′ we have that vω is a limit edge of D and a close

look to the definitions involved points out that f = fvω.
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9. The topological point of view

In 2004, Diestel and Kühn [26] introduced a topological framework for infinite

graphs which makes it possible to extend theorems about finite graphs to infinite

graphs that do not generalise verbatim. The main point is to consider not only

the graph itself but the graph together with its ends, and to equip both together

with a suitable topology. For locally finite graphs G, this space |G| coincides with

the Freudenthal compactification of G [20, 30].

Diestel and Kühn’s approach has become standard and has lead to several

results found by various authors. Examples include Nash-William’s tree-packing

theorem [18], Fleischner’s Hamiltonicity theorem [35], and Whitney’s planarity

criterion [2]. In the formulation of these theorems, topological arcs and circles

take the role of paths and cycles, respectively.

To illustrate this, consider Euler’s theorem that a connected finite graph con-

tains an Euler tour if and only if every vertex has even degree. This statement

fails for infinite graphs, since a closed walk in a connected infinite graph cannot

traverse all its infinitely many edges. Diestel and Kühn [26] extended Euler’s

Theorem to the space |G| for locally finite graphs G, as follows. A topological

Euler tour of |G| is a continuous map σ : S1 → |G| such that every inner point

of an edge of G is the image of exactly one point of S1. Hence a topological

Euler tour ‘traverses’ every edge exactly once. Diestel and Kühn showed that for

a connected locally finite graph G the space |G| admits a topological Euler tour if

and only if every finite cut in G is even. Note that in a finite graph every vertex

has even degree if and only if all finite cuts are even, but even for locally finite

infinite graphs the latter statement is stronger. Theorem 9.3 below is a directed

analogue of the Diestel-Kühn theorem about topological Euler tours.

In Chapter 8 we introduced the concept of ends and limit edges of a digraph. A

directed ray is an infinite directed path that has a first vertex (but no last vertex).

The directed subrays of a directed ray are its tails. For the sake of readability

we shall omit the word ‘directed’ in ‘directed path’ and ‘directed ray’ if there is
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no danger of confusion. We call a ray in a digraph solid in D if it has a tail in

some strong component of D −X for every finite vertex set X ⊆ V (D). We call

two solid rays in a digraph D equivalent if for every finite vertex set X ⊆ V (D)

they have a tail in the same strong component of D − X. The classes of this

equivalence relation are the ends of D. The ends of a digraph can be thought of

as points at infinity to which its solid rays converge.

For limit edges the situation is similar. Informally, they are additional edges

that naturally arise between distinct ends of a digraph, as follows. Unlike graphs,

digraphs may have two rays R and R′ that represent distinct ends and yet there

may be a set E of infinitely many independent edges from R to R′. In this situation

there will be a limit edge from the end represented by R to the end represented

by R′, and the edges in E can be thought of as converging towards this limit edge.

The precise definition of limit edges can be found in Section 8.1.

We begin this chapter by introducing a topology, which we call DTop, on the

space |D| formed by the digraph D together with its ends and limit edges. In

this topology rays and edges will converge to ends and limit edges, respectively.

As our first main result we characterise those digraphs for which |D| with DTop

compactifies D.

For graphs G, a necessary condition for |G| to be compact is that G − X has

only finitely many components for every finite vertex set X ⊆ V (G): if G − X
has infinitely many components, then these components together with all ends

living in them will form a disjoint family of open sets, and combining this family

with a suitable cover of the finite graph G[X] yields an open cover of |G| that

has no finite subcover. In [24], Diestel proves that this necessary condition is also

sufficient. In analogy to this, let us call a digraph D solid if D − X has only

finitely many strong components for every finite vertex set X ⊆ V (D).

Our first main result is that Diestel’s characterisation carries over to digraphs:

Theorem 9.1. The space |D| is compact if and only if D is solid.

We remark that for every digraph D the space |D| is Hausdorff and that D is

dense in |D|. Hence if D is solid, the space |D| is a Hausdorff compactification

of D.

A common way to generalise statements about finite graphs to infinite graphs is

to use so-called compactness arguments. These can be phrased in terms of inverse
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limits. For example, the ray given by Kőnig’s infinity lemma [20, Lemma 8.1.2]

exists because the inverse limit of compact discrete spaces is non-empty. In order

to make this technique applicable for the space |D| we provide the following:

Theorem 9.2. For a solid digraph D the space |D| is the inverse limit of finite

contraction minors of D.

For the precise statement of this theorem see Section 9.3.

Recall that our motivation for introducing a topology on a digraph D, together

with its ends and limit edges, was to extend to the space |D| theorems about

finite digraphs that would be either false, or trivial, or undefined for D itself. As

a proof of concept, we prove two such applications for |D|.
For our first application recall that a finite digraph with a connected underlying

graph contains an Euler tour if and only if the in-degree equals the out-degree at

every vertex [1]. This statement fails for infinite digraphs, since a closed walk can

only traverse finitely many edges.

As in the case of undirected graphs, however, there is a natural topological

notion of Euler tours of |D|. Call a continuous map α : [0, 1]→ |D| that respects

the direction of the edges of |D| a topological path in |D|, which is closed if

α(0) = α(1). Call a closed topological path an Euler tour if it traverses every

edge exactly once, and call |D| Eulerian if it admits an Euler tour. See Section 9.4

for precise definitions.

If |D| is Eulerian, then the in-degree equals the out-degree at every vertex. The

converse of this fails in general. For example, the digraph D on Z with edges

n(n + 1) for every n ∈ Z has in- and out-degrees 1 at every vertex, but |D| has

no Euler tour.

A cut of a digraph D is an ordered pair (V1, V2) of non-empty sets V1, V2 ⊆ V (D)

such that V1 ∪ V2 = V (D) and V1 ∩ V2 = ∅. The sets V1 and V2 are the sides of

the cut, and its size is the cardinality of the set of edges from V1 to V2. We call a

cut (V1, V2) balanced if its size equals that of (V2, V1). Note that in a finite digraph

the in-degree at every vertex equals the out-degree if and only if all finite cuts are

balanced, but our Z-example shows that for infinite digraphs, even locally finite

ones, the latter statement is stronger.

Any unbalanced finite cut in a digraph D is an obstruction that prevents |D|
from being Eulerian: by the directed jumping arc lemma (Lemma 9.4.1), any Euler
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tour enters a side of a finite cut as often as it leaves it. A second obstruction is

a vertex of infinite in- or out-degree, as an Euler tour that traverses a vertex

infinitely often forces the tour to converge to that vertex.

As our first application we show that there are no further obstructions. A

digraph is locally finite if all of its vertices have finite in- and out-degree.

Theorem 9.3. For a digraph D with a connected underlying graph the following

assertions are equivalent:

(i) |D| is Eulerian;

(ii) D is locally finite and every finite cut of D is balanced.

In our second application we characterise the digraphs that are strongly connec-

ted. It is easy to see that a finite digraph is strongly connected if and only if

it contains a closed directed walk that contains all its vertices. We obtain the

following characterisation of strongly connected infinite digraphs:

Theorem 9.4. For a countable solid digraph D the following assertions are equi-

valent:

(i) D is strongly connected;

(ii) there is a closed topological path in |D| that contains all the vertices of D.

We remark that the requirements ‘countable’ and ‘solid’ for D are necessary.

Indeed, any closed topological path in |D| that traverses uncountably many verti-

ces also traverses uncountably many edges of D. This gives rise to uncountably

many disjoint open intervals in [0, 1], which is impossible. Furthermore, recall that

the image of a compact space under a continuous map is compact. In particular

the image of every topological path that contains all the vertices of D is compact

in |D|. Hence the closure of V (D) is compact, which implies that D is solid.

Indeed, if D−X has infinitely many strong components for some finite vertex set

X ⊆ V (D), then these strong components together with all the ends that live in

them will form a disjoint family of open sets, and combining this family with a

suitable cover of X yields an open cover of the closure of V (D) that has no finite

subcover.

This chapter is organised as follows. In Section 9.1 we collect together the results

that we need from Chapter 8, or from general topology. In Section 9.2 we formally
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define the topological space |D| for a given digraph D and prove Theorem 9.1. In

Section 9.3 we define an inverse system for a given digraph D and show that the

inverse limit of this system coincides with |D| if D is solid (Theorem 9.2). Finally,

in Section 9.4 we prove our two applications of our framework, Theorem 9.3 and

Theorem 9.4.

9.1. Tools and terminology

In this section we provide further tools and terminology that we use throughout

this chapter. We also collect together some tools and terminology from Chapter 8

that become particularly important in this chapter.

Let D be any digraph. We write edges as order pairs (v, w) with v, w ∈ V (D),

and usually we write (v, w) simply as vw; except if D is a multi-digraph in which

case we write edges of D as triples (e, v, w). The vertex v is the tail of vw and

the vertex w its head.

A direction of a digraph D is a map f with domain X (D) that sends every

X ∈ X (D) to a strong component or a bundle of D − X so that f(X) ⊇ f(Y )

whenever X ⊆ Y .1 We call a direction f on D a vertex-direction if f(X) is a

strong component of D−X for every X ∈ X (D), and we call it an edge-direction

otherwise, i.e., if f(X) is a bundle of D−X for some X ∈ X (D). Every end ω of

a digraph D defines a direction fω on D in that it maps X ∈ X (D) to C(X,ω).

The ends of D correspond bijectively to its vertex-directions:

Theorem 8.2. Let D be any infinite digraph. The map ω 7→ fω with domain

Ω(D) is a bijection between the ends and the vertex-directions of D.

We denote by Λ(D) the set of all the limit edges of D and we use the usual

definitions for edges accordingly; for example we will speak of the head and the tail

of a limit edge. Every limit edge λ defines an edge-direction as follows. We say that

a limit edge λ = ωη lives in the bundle defined by E(X,λ) if X ∈ X (D) separates

ω and η. If X ∈ X (D) does not separate ω and η, we say that λ = ωη lives in

1Here, as later in this context, we do not distinguish rigorously between a strong component

and its set of edges. Thus if Y separates ω and η but X ⊆ Y does not, the expression

fωη(X) ⊇ fωη(Y ) means that the strong component fωη(X) of D−X contains all the edges

from the edge set fωη(Y ).

63



the strong component C(X,ω) = C(X, η) of D−X. We use similar notations for

limit edges of the form λ = vω or λ = ωv with v ∈ V (D) and ω ∈ Ω(D): We

say that the limit edge λ lives in the bundle E(X,λ) if x 6∈ C(X,ω) and we say

that λ lives in the strong component C(X,ω) of D − X, if v ∈ C(X,ω). The

edge-direction fλ defined by λ is the edge-direction that maps every finite vertex

set X ∈ X (D) to the bundle or strong component of D−X in which λ lives. The

limit edges of any digraph correspond bijectively to its edge-directions:

Theorem 8.3. Let D be any infinite digraph. The map λ 7→ fλ with domain

Λ(D) is a bijection between the limit edges and the edge-directions of D.

With a slight abuse of notation, we say that a necklace N ⊆ D represents an

end ω of D if one (equivalently every) ray in N represents ω. For limit edges we

have the following:

Proposition 8.4.1. For a digraph D and two distinct ends ω and η of D the

following assertions are equivalent:

(i) D has a limit edge from ω to η;

(ii) there are necklaces Nω ⊆ D and Nη ⊆ D that represent ω and η respectively

such that every bead of Nω sends an edge to a bead of Nη.

Moreover, the necklaces may be chosen disjoint from each other and such that the

nth bead of Nω sends an edge to the nth bead of Nη.

Proposition 8.4.2. For a digraph D, a vertex v and an end ω of D the following

assertions are equivalent:

(i) D has a limit edge from v to ω (from ω to v);

(ii) there is a necklace N ⊆ D that represents ω such that v sends (receives) an

edge to (from) every bead of N .

For a digraph D and a set U we say that a necklace N ⊆ D is attached to U if

infinitely many beads of N meet every set of U . In Chapter 8 we introduced an

ordinal rank function that can be used to find out whether a digraph D contains

for a given set U a necklace attached to U . For this, consider a finite set U and

think of U as consisting of infinite sets of vertices. We define in a transfinite

recursion the class of digraphs that have a U-rank. A digraph D has U-rank 0 if
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there is a set U ∈ U such that U ∩ V (D) is finite. It has U-rank α if it has no

U -rank < α and there is some X ∈ X (D) such that every strong component of

D−X has a U -rank < α. In the case U = V (D) we call the U -rank of D the rank

of D (provided that D has a U -rank). Note that more generally if U ⊇ V (D) for

a digraph, then its U -rank equals its rank.

Lemma 8.1 (Necklace Lemma). Let D be any digraph and U a finite set of vertex

sets of D. Then exactly one of the statements is true:

(i) D has a necklace attached to U ;

(ii) D has a U-rank.

Given a set U of vertices in a digraph, a comb attached to U is a comb with

all its teeth in U and a star attached to U is a subdivided infinite star with all

its leaves in U . The set of teeth is the attachment set of the comb and the set

of leaves is the attachment set of the star. We adapt the notions of ‘attached to’

and ‘attachment sets’ to reverse combs or reverse stars, respectively.

Lemma 9.1.1 (Directed Star-Comb Lemma). Let D be any strongly connected

digraph and let U ⊆ V (D) be infinite. Then D contains a star or comb attached

to U and a reverse star or reverse comb attached to U sharing their attachment

sets.

In the second part of this section, we list the tools and terminology about inverse

limits that we need. Here we follow the textbook of Zalesskii and Ribes [50].

Let (I,≤) be a directed partially ordered set, i.e., I is partially ordered by ≤
and for any two elements i, j ∈ I there exist an element k ∈ I such that i, j ≤ k.

A collection {Xi | i ∈ I } of topological spaces together with continuous maps

fji : Xj → Xi, for all i ≤ j, is called inverse system if fki = fji ◦ fkj whenever

i ≤ j ≤ k and fii is the identity on Xi, for all i ∈ I. We denote such an inverse

system by {Xi, fij, I}. The continuous maps fji : Xj → Xi are called bonding

maps. The inverse limit lim←−(Xi)i∈I is the subspace of the product space
∏

i∈I Xi

that consists of all the (xi)i∈I with fji(xj) = xi for all i ≤ j. In this setup, we write

fi for the projection from lim←−(Xi)i∈I to Xi. If all the Xi are Hausdorff, the inverse

limit is closed in the product space. Therefore, by Tychonoff’s theorem, if all the

Xi are in addition compact, then the inverse limit is compact. For a topological
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space Y together with continuous maps ϕi : Y → Xi, for all i ∈ I, the collection

of maps {ϕi | i ∈ I } is called compatible if ϕi = fji ◦ϕj for all i ≤ j. The inverse

limit of an inverse system is (up to unique homeomorphism) characterised by the

following universal property :

For every topological space Y together with compatible maps ϕi : Y → Xi, for

i ∈ I, there is a unique continuous map Φ: Y → lim←−(Xi)i∈I with ϕi = fi ◦Φ for

all i ∈ I.

In this situation, we say that the map Φ is induced by the maps ϕi. For

a topological space Y together compatible maps ϕi : Y → Xi, for i ∈ I, the

collection of maps {ϕi | i ∈ I } is called eventually injective if for every two

distinct y, y′ ∈ Y there is some i ∈ I with ϕi(y) 6= ϕi(y
′), see [20, Lemma 8.8.4].

Lemma 9.1.2 (Lifting Lemma). Let {Xi, fij, I} be any inverse system and let

Y be a topological space together with eventually injective maps ϕi : Y → Xi, for

i ∈ I. Then the unique continuous map Φ: Y → lim←−(Xi)i∈I given by the universal

property of the inverse limit is injective.

We need the following two results [50, Lemma 1.1.7] and [50, Lemma 1.1.9]:

Lemma 9.1.3. Let {Xi, fij, I} be an inverse system of topological spaces over

a directed set I, and let ϕi : X → Xi be surjections from the space X onto the

spaces Xi (i ∈ I). Then either lim←−(Xi)i∈I = ∅ or the induced mapping Φ: X →
lim←−(Xi)i∈I maps X onto a dense subset of lim←−(Xi)i∈I .

For a partially ordered set I a subset I ′ ⊆ I is called cofinal if for all i ∈ I there

is an i′ ∈ I ′ with i ≤ i′.

Lemma 9.1.4. Let {Xi, fij, I} be an inverse system of compact topological spaces

over a directed poset I and assume that I ′ is a cofinal subset of I. Then

lim←−(Xi)i∈I ∼= lim←−(Xi′)i′∈I′ .

Finally, we need the following theorem [32, Theorem 3.1.13] from basic topology:

Lemma 9.1.5. Every continuous one-to-one mapping of a compact space onto a

Hausdorff space is a homeomorphism.
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9.2. A topology for digraphs

In this section we define a topology on the space |D| formed by a digraph D

together with its ends and limit edges that we call DTop.

In this topological space, topological arcs and circles take the role of paths and

cycles, respectively. This makes it possible to extend to the space |D| statements

about finite digraphs. As an important cornerstone we characterise, in this section,

those digraphs D for which |D| is compact, see Theorem 9.1.

Consider a digraph D = (V,E) with its set Ω = Ω(D) of ends and its set

Λ = Λ(D) of limit edges. The ground set |D| of our topological space is defined

as follows. Take V ∪ Ω together with a copy [0, 1]e of the unit interval for every

edge e ∈ E ∪ Λ. Now, identify every vertex or end x with the copy of 0 in [0, 1]e

for which x is the tail of e and with the copy of 1 in [0, 1]f for which x is the head

of f , for all e, f ∈ E ∪ Λ.

For inner points ze ∈ [0, 1]e and zf ∈ [0, 1]f of edges e, f ∈ E ∪Λ we say that ze

corresponds to zf if both correspond to the same point of the unit interval. For

e ∈ E ∪ Λ the point set obtained from [0, 1]e in |D| is an edge of |D|. The vertex

or end that was identified with the copy of 0 is the tail of the edge of |D| and the

vertex or end that was identified with the copy of 1 its head.

We define the topological space DTop on |D| by specifying the basic open sets.

For a vertex v we take the collection of uniform stars of radius ε around v as basic

open neighbourhoods. For inner points z of edges [0, 1]e with e ∈ E we keep the

open balls around z of radius ε as basic open sets (considered as subsets of [0, 1]e).

Here we make the convention that for edges e (possibly limit edges) the ε of open

balls Bε(z) of radius ε around points z ∈ e is implicitly chosen small enough to

guarantee Bε(z) ⊆ e.

Neighbourhoods Ĉε(X,ω) of an end ω are of the following form: Given X ∈
X (D) let Ĉε(X,ω) be the union of (see Figure 9.2.1)

• the point set of C(X,ω),

• the set of all ends and points of limit edges that live in C(X,ω) and

• half-open partial edges (ε, y]e respectively [y, ε)e for every edge e ∈ E ∪ Λ

for which y is contained or lives in C(X,ω).
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ω

X

Figure 9.2.1.: A basic open neighbourhood of the form Ĉε(X,ω).

Neighbourhoods Êε,z(X,ωη) of an inner point z of a limit edge ωη between ends

are of the following form: Given X ∈ X (D) that separates ω and η let Êε,z(X,ωη)

be the union of (see Figure 9.2.2)

• the open balls of radius ε around points ze of edges e ∈ E(X,ωη) and with

ze corresponding to z and

• the open balls of radius ε around points zλ of limit edges λ that live in the

bundle E(X,ωη) and with zλ corresponding to z.

Similarly, for an inner point z of a limit edge vω between a vertex v and an end

ω we define the open neighbourhoods Êε,z(X, vω) as follows. Given X ∈ X (D)

with v ∈ X let Êε,z(X, vω) be the union of

• the open balls of radius ε around points ze of edges e ∈ E(X, vω) and with

ze corresponding to z and

• the open balls of radius ε around points zλ of limit edges λ that live in the

bundle E(X, vω) and with zλ corresponding to z.

Open sets Êε,z(X,ωv) for a limit edge ωv between an end ω and a vertex v are

defined analogously.
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ω ηz

X

Figure 9.2.2.: A basic open neighbourhood of the form Êε,z(X,ωη).

We view a digraph D as a subspace of |D|, namely the subspace that is formed

by all the (equivalence classes of) vertices and inner points of edges of D. If there

is no danger of confusion we will not distinguish between the digraph D and the

topological space D. Furthermore, we call the subspace Ω(D) of |D| the end space

of D. The end space of an undirected graph G coincides with the end space of

the digraph obtained from G by replacing every edge by its two orientations as

separate directed edges.

One of the key definitions in Chapter 8, was that an end ω of D is said to be in

the closure of U , for a set of vertex sets U , if for all X ∈ X (D) every U ∈ U has

a vertex in C(X,ω). Now that DTop is at hand this is tantamount to ω ∈ U for

every U ∈ U . We therefore obtain an extension of [10, Lemma 4.1]:

Lemma 9.2.1. Let D be any digraph, and let U be a finite set of vertex sets of

D. Then the following assertions are equivalent:

(i) D has an end in the closure of U ;

(ii) D has a vertex-direction in the closure of U ;

(iii) D has a necklace attached to U ;

(iv) D has an end in
⋂
{U | U ∈ U }.
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Recall that we call a digraph D solid if D − X has finitely many strong

components for every X ∈ X (D). The main result of this section reads as follows:

Theorem 9.1. The space |D| is compact if and only if D is solid.

Proof. We prove the forward implication with contraposition. If D is not solid

let X be a finite vertex set such that D−X has infinitely many strong components.

We obtain an open cover O of |D| that has no finite subcover as follows. Fix for

every strong component C of D −X a vertex uc ∈ C and denote by U the set of

all the vertices uc. It is straightforward to check that every point in |D|rU has a

basic open neighbourhood that avoids U ; this shows that U is closed in |D|. Let

O consist of the uniform stars of radius 1
2

around each uc and the open set |D|rU .

Then, O is the desired open cover.

Now, let us prove the backward implication. For this, let D be any solid digraph

and let O be an open cover of |D|. We may assume that O consists of basic open

sets. For every X ∈ X (D) and every strong component C of D −X, we let Ĉ be

the union of the point set of C, the set of all the ends that live in C and the point

set of all the limit edges that live in C. For a bundle F of D −X, let F̂ consist

of the inner points of edges in F and all the inner points of limit edges that live

in F . A strong component C of D − X is bad for X if Ĉ is not covered by any

cover set in O. A bundle F of D −X is bad for X if F̂ is not covered by finitely

many cover sets in O. A bad strong component for X or a bad bundle for X is a

bad set for X.

If there is no bad set for some X ∈ X (D), we find a finite subcover as follows.

For every strong component C of D − X fix a cover set from O that covers Ĉ.

And for every bundle of D−X fix finitely many cover sets from O that cover F̂ .

Note that our assumption that D is solid ensures that there are only finitely many

strong components and bundles of D −X. Therefore, we have fixed only finitely

many cover sets in total. Combining these with a finite subcover of D[X], which

exists because D[X] is a finite digraph, yields a finite subcover of |D|. Note that

all the edges between vertices x ∈ X and strong components of D−X are covered,

as they are bundles.

So let us assume for a contradiction that there is a bad set for every X ∈ X (D).

We will find a bad set for every X ∈ X (D) in a consistent way, i.e., for every two

vertex sets X, Y ∈ X (D) the bad set of X contains that of Y whenever X ⊆ Y . In
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other words the bad sets will give rise to a direction f and we will then conclude

that f(X) is covered by finitely many sets in O for some X ∈ X (D), contradicting

that f(X) is bad.

Given X ∈ X (D), let BX be the union of all the sets B̂ for which B is bad

for X. It is straightforward to see that {BX : X ∈ X } is a filter base on |D| and

we denote by B some ultrafilter that extends it. On the one hand, B contains for

every X ∈ X (D) at most one set Ĉ or F̂ with C a strong component of D −X
or F a bundle of D −X, respectively, because intersections of filter sets are non-

empty. On the other hand, there is at least one strong component C or bundle

F of D −X such that Ĉ or F̂ is contained in B: Otherwise, B contains |D|r Ĉ

and |D| r F̂ for every strong component of D − X respectively every bundle F

of D−X. As B does not contain the point set of D[X] we have |D|rD[X] ∈ B.

But, the intersection of all the |D| r Ĉ and |D| r F̂ with |D| r D[X] is empty.

Consequently, B contains for every X ∈ X (D) exactly one set of the form Ĉ or F̂

with C a strong component of D −X or F a bundle of D −X, respectively. As

intersections of filter sets are non-empty, these bundles and strong components

form a direction f . Note, that for every X ∈ X (D) the set f(X) is bad for X as

it is the superset of BY for some Y ∈ X (D).

In order to arrive at a contradiction we consider three cases. First, if f is a

vertex-direction, then by Theorem 8.2, we have that f corresponds to an end ω

which is covered by some cover set O ∈ O. As O is a basic open set it is of the

form Ĉε(X,ω) for some X ∈ X (D). This contradicts that f(X) is bad.

Second, suppose that f is an edge-direction and that f corresponds to a limit

edge ωη between ends in the sense of Theorem 8.3. This limit edge ωη is covered

by a finite subset O′ ⊆ O, as it is homeomorphic to the unit interval. Since each

cover set O ∈ O′ is basic open it comes by its definition together with a finite

vertex set XO ∈ X (D). Let X ′ := {XO | O ∈ O } and let X be large enough so

that it contains
⋃
X ′ and so that it separates ω and η. To get a contradiction,

we show that f̂(X) is covered by O′. Consider a point z ∈ f̂(X) and let z′ be its

corresponding point on ωη. Then z′ is covered by some O ∈ O′. Since XO ⊆ X

we have f(X) ⊆ f(X ′) and therefore O′ also contains z.

Finally, the case that f is an edge-direction and f corresponds to a limit edge

between an end and a vertex is analogue to the second case.
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We complete this section by listing a few more properties that are equivalent

to the assertion that |D| is compact.

Corollary 9.2.2. The following statements are equivalent for any digraph D:

(i) |D| is compact;

(ii) every closed set of vertices is finite;

(iii) D has no U-rank for any infinite vertex set U;

(iv) for every infinite set U of vertices there is a necklace attached to U;

(v) D is solid.

Proof. (i)→(ii): If U ⊆ V (D) is closed and infinite, then any open cover that

consists of |D| − U and pairwise disjoint open neighbourhoods for the vertices in

U has no finite subcover.

(ii)→(iii): Suppose that there is an infinite vertex set U for which D has a

U -rank α. We may choose U so that α is minimal. Let X ∈ X (D) witness that

D has U -rank α. By the choice of U , all the strong components of D−X contain

only finitely many vertices of U . Hence, U is closed in |D|, as every point in |D|
has an open neighbourhood that avoids U .

(iii)→(iv) This is immediate by the necklace lemma.

(iv)→(v) If D is not solid, say D−X has infinitely many strong components for

X ∈ X (D); then let U be a vertex set that contains exactly one vertex of every

strong component of D −X. Clearly, there is no necklace attached to U .

(v)→(i) Theorem 9.1.

9.3. The space |D| as an inverse limit

In this section we show that the space |D| for a solid digraph D can be obtained

as an inverse limit of finite contraction minors of D, Theorem 9.2. We begin

by defining an inverse system of finite digraphs for any digraph. Then, we show

that every digraph embeds in the inverse limit of its inverse system. This gives a

compactification for arbitrary digraphs, Theorem 9.3.1.

Let us introduce an inverse system for a given digraph D. For this, we define

a directed partially ordered set (P,≤) as follows. We call a finite partition P of

V (D) admissible if any two partition classes of P can be separated in D by a finite
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vertex set. We denote by P := P(D) the set of all the admissible partitions of D.

For any two partitions P1 and P2 of the vertex set of D we write P1 ≤ P2 and

say that P2 is finer than P1 if every partition class of P2 is a subset of a partition

class of P1.

We claim that the set of admissible partitions is a directed partially ordered

set. Indeed, the relation ≤ is easily seen to be a partial order on the set of all the

partitions of V (D). In particular, it restricts to a partial order on the set of all

the admissible partitions. To see that P is directed, let P, P ′ ∈ P be admissible

partitions, and let P ′′ be the partition that consists of all the non-empty sets of

the form p ∩ p′ with p ∈ P and p′ ∈ P ′. Clearly, P ′′ is finer than both P and P ′.

To see that P ′′ is admissible, let any two distinct partition classes of P ′′ be given,

say p1 ∩ p′1 and p2 ∩ p′2 with p1, p2 ∈ P and p′1, p
′
2 ∈ P ′. As these partition classes

are distinct, we have p1 6= p2 or p′1 6= p′2, say p1 6= p2. Since P is admissible D has

a finite vertex set that separates p1 and p2, which in particular separates p1 ∩ p′1
and p2 ∩ p′2.

Let us proceed by defining the topological spaces associated with the admissible

partitions of D. Every admissible partition P of D gives rise to a finite (multi-)

digraph D/P by contracting each partition class and replacing all the edges

between two partition classes by a single edge whenever there are infinitely many.

Formally, declare P to be the vertex set of D/P . Given distinct partition classes

p1, p2 ∈ P we define an edge (e, p1, p2) of D/P for every edge e in D from p1 to

p2 if there are finitely many such edges. And if there are infinitely many edges

from p1 to p2 we just define a single edge (p1p2, p1, p2). We call the latter type of

edges quotient edges. Endowing D/P with the 1-complex topology turns it into a

compact Hausdorff space, i.e., basic open sets are uniform ε stars around vertices

and open subintervals of edges. In other words, D/P is defined as our topological

space from the previous section (for finite D) with the only difference that multi-

edges are taken into account. We will usually not distinguish between the finite

(multi-) digraphs D/P and the topological space |D/P |. Now, let us turn to the

final ingredient of our inverse system for D: bonding maps. We define for every

two distinct admissible partitions P ≤ P ′ ofD a bonding map fP ′P : D/P ′ → D/P

as follows. Vertices p′ ∈ P ′ of D/P ′ get mapped to the unique vertex p ∈ P of

D/P with p′ ⊆ p. Edges get mapped according to their endvertices: For edges

(e′, p′1, p
′
2) of D/P ′ we consider two cases: First, if p′1, p

′
2 ⊆ p for a partition class
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p ∈ P , then (e′, p′1, p
′
2) gets mapped to the vertex p of D/P . Second, if p′1 ⊆ p1

and p′2 ⊆ p2 for two distinct partition classes p1, p2 ∈ P , then there is at least one

edge from p1 to p2 in D/P . If (e′, p′1, p
′
2) is a quotient edge in D/P ′, then also

(p1p2, p1, p2) is a quotient edge in D/P and we map (e′, p′1, p
′
2) to (p1p2, p1, p2). If

(e′, p′1, p
′
2) is not a quotient edge in D/P ′ and (p1p2, p1, p2) is a quotient edge in

D/P , we map (e′, p′1, p
′
2) to (p1p2, p1, p2). Finally, if (e′, p′1, p

′
2) is not a quotient

edge and there is no quotient edge between p1 and p2, then (e′, p1, p2) is an edge

in D/P and we map (e′, p′1, p
′
2) to (e′, p1, p2).

It is straightforward to check that the fP ′P are continuous and that we have

fP ′′P = fP ′P ◦ fP ′′P ′ for all admissible partitions P ≤ P ′ ≤ P ′′. The bonding

maps turn {D/P, fP ′P ,P} in an inverses system and we denote its inverse limit

by lim←−(D/P )P∈P . Note that lim←−(D/P )P∈P is non-empty, as the collection of points

that consists for every P ∈ P of the vertex of D/P that contains a fixed vertex

of D is an element of lim←−(D/P )P∈P .

Our next goal is to find an embedding from D to the inverse limit lim←−(D/P )P∈P

witnessing that the inverse limit is a Hausdorff compactification of D. We obtain

this embedding by defining continuous maps ϕP : D → D/P , one for every

admissible partition P ∈ P. Once the ϕP are defined, the universal property

of the inverse limit gives rise to the desired embedding.

So let us define ϕP for a given admissible partition P ∈P. For a vertex v of D

let ϕP (v) be the partition class of P that contains v. For an inner point z of an

edge vw of D, consider the partition classes that contain v and w, respectively. If

these coincide, map z to the partition class that contains v and w. Otherwise the

partition classes that contain v respectively w differ and there is an edge e from

ϕP (v) to ϕP (w) in D/P , which is either a copy of vw considered as an edge of D/P

or a quotient edge. Map z to its corresponding point on e. It is straightforward

to see that ϕP is continuous for every P ∈ P and that fP ′P ◦ ϕP ′ = ϕP for

every admissible partitions P ≤ P ′, i.e., the collection of maps {ϕP | P ∈P } is

compatible. Hence, by the universal property of the inverse limit, the ϕP induce

a map Φ: D → lim←−(D/P )P∈P with ϕP = fP ◦ Φ, for every P ∈ P .
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Theorem 9.3.1. For every digraph D the space lim←−(D/P )P∈P is a Hausdorff

compactification of D, in particular, the map

Φ: D → lim←−(D/P )P∈P

is an embedding and its image is dense in lim←−(D/P )P∈P .

Proof. We have to show that lim←−(D/P )P∈P is compact and Hausdorff, that the

image of Φ is dense in lim←−(D/P )P∈P and that Φ is an embedding i.e., it is a

homeomorphism onto its image. The inverse limit lim←−(D/P )P∈P is compact and

Hausdorff because all the topological spaces D/P are compact and Hausdorff. As

every ϕP is surjective the image of Φ is dense in lim←−(D/P )P∈P , by Lemma 9.1.3.

In order to show that Φ is a homeomorphism onto its image, note first that the

collection of maps {ϕP | P ∈P } is eventually injective. Hence Φ is injective by

the lifting lemma.

It remains to show that the inverse of Φ is continuous, for which we equivalently

show that Φ is open, i.e., the image under Φ of open sets in D is open in Φ(D).

It suffices to show this on a base for the open sets in D. We prove that Φ is

open for the base B given by the open uniform stars around vertices and the open

subintervals of edges. Our goal is to find for every B ∈ B an open set O such

that Φ(B) = O ∩ Φ(D). First consider the case where B = Bε(v) is an open ball

of radius ε around a vertex v. Then let P be any admissible partition in which

{v} is a singleton partition class. In D/P we have that ϕP (B) is an open ball of

radius ε around the vertex ϕP (v). We claim that O := f−1
P (ϕP (B)) is the desired

open set. Clearly, Φ(B) ⊆ O∩Φ(D), we prove the converse inclusion. For this let

x ∈ O∩Φ(D) be given. Let d ∈ D be the preimage of x under Φ. We have to show

that d ∈ B. If d 6∈ B, then ϕP (d) 6∈ ϕP (B), contradicting the fact that x ∈ O.

Second let B be an open subinterval of an edge e in D, say with end points v

and w. Then let P be any admissible partition in which {v} and {w} are singleton

partition classes. A similar argument as above shows that O := f−1
P (ϕP (B)) is as

desired.

For example consider the directed ray R. Note first that every admissible partition

of R has exactly one infinite partition class. One can check that lim←−(R/P )P∈P is

homeomorphic to the space where one adds a single point ω at infinity to R and

where a neighbourhood base of ω is given by the tails of R together with ω.
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We now extend the maps ϕP to maps ϕ̂P : |D| → D/P . For this we define how

ϕ̂P behaves on ends and on inner points of limit edges; the values of ϕ̂P on D are

then given by the values of ϕP on D. For an end ω of D all the rays that represent

ω have a tail in the same partition class p of P . The reason for this is that any

two partition classes of P can be separated by a finite vertex set. Here we map ω

to p.

Now, consider an inner point z of a limit edge λ. Note that we have already

defined the images of the two endpoints of λ. If these images coincide, then map

z to the unique image of the endpoints of λ. Otherwise, Proposition 8.4.1 or

Proposition 8.4.2 gives rise to a quotient edge λ′ between the partition classes of

the endpoints of λ. In this case we map z to the corresponding point on λ′. This

completes the definition of ϕ̂P .

Lemma 9.3.2. The map ϕ̂P : |D| → D/P is continuous for every P ∈P.

Proof. In order to prove that ϕ̂P is continuous, we show that the preimage of

every open ball with radius ε around a vertex of D/P is open in |D| and that the

preimage of every open subinterval of an edge in D/P is open in |D|. As these

open sets form a base of the topology of D/P , the map ϕ̂P is continuous.

Consider an open ball Bε(p) of radius ε around a vertex p ∈ P in D/P . To see

that ϕ̂−1
P (Bε(p)) is open in |D| we will define for every y ∈ ϕ̂−1

P (p) an open set Oy

in |D| such that ϕ̂P (Oy) ⊆ Bε(p); in other words, the union of the open sets Oy is

included in ϕ̂−1
P (Bε(p)). A closer look on the definition of the Oy will show that

this latter inclusion is in fact an equality.

So let y ∈ |D| with ϕ̂P (y) = p be given. To begin, if y is a vertex of D let Oy

be the open ball in |D| of radius ε around y. If y is an inner point of an edge e

of D, then the whole edge e is mapped to p and we choose Oy to be the interior

of e. If y is an end or an inner point of a limit edge, we fix a finite vertex set

X that separates p from every other partition class in P . Note, that a strong

component of D − X is either contained in p or is disjoint from p. If y is an

end, let Oy be the basic open neighbourhood Ĉε(X, y). Note that, by the choice

of X, the strong component C(X, y) is included in the partition class p. If y

is an inner point of a limit edge λ, and X separates the endpoints of this limit

edge, then let Oy = Êε′,y(X,λ) with ε′ < ε small enough to fit into λ, i.e., such

that Bε′(y) ⊆ λ where the Bε′(y) is considered in the space [0, 1]λ; otherwise let
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C(X,ω) be the strong component of D − X that contains both endpoints of λ

and let Oy = Ĉε(X,ω).

Clearly, the union of the Oy is included in ϕ̂−1
P (Bε(p)). Moreover, for every

z 6= p in Bε(p) the set ϕ̂−1
P (z) is a set of inner points of edges (possibly limit

edges). Each such inner point is contained in an ε-neighbourhood of the endpoint

e that is mapped to p, for e the edge that contains the inner point. Hence each

of these inner points is contained in at least one of the open sets Oy.

Now, consider an open subinterval Bε(z) of radius ε around z for an inner point

z of an edge (e, p, p′) of D/P . If (e, p, p′) is not a quotient edge of D/P , then e

is an edge of D and the preimage of Bε(z) is an open subinterval of e considered

as an edge in |D|, namely around the point ϕ̂−1
P (z) of radius ε. So suppose that

(e, p, p′) is a quotient edge. We will find for every point y ∈ ϕ̂−1
P (z) an open

neighbourhood Oy of y in |D| with Oy ⊆ ϕ̂−1
P (Bε(z)). A similar argument for

every point in Bε(z) shows that ϕ̂−1
P (Bε(z)) is the union of open subsets in |D|.

Note that all the points in ϕ̂−1
P (z) are inner points of edges in |D| (possibly

limit edges). Let y ∈ ϕ̂−1
P (z) be given. First, if y is an inner point of an edge of D,

then let Oy be the open subinterval of radius ε around y. Second, suppose that y

is an inner point of a limit edge whose end points are ends, say ω and η, and with

ϕ̂P (ω) = p and ϕ̂P (η) = p′. Fix finite vertex sets Xp, Xp′ ⊆ V (D) that separate p

respectively p′ from every other partition class in P . Note, that Xp∪Xp′ separates

ω and η. Now, every edge that is contained in or lives in E(Xp∪Xp′ , ωη) is mapped

to (e, p, p′); thus the basic open neighbourhood Êε,y(Xp ∪ Xp′ , ωη) is mapped to

Bε(z). Finally, suppose that y is an inner point of a limit edge λ between a vertex

v and an end ω, say with ϕ̂P (v) = p and ϕ̂P (ω) = p′; the other case is analogue.

Let Xp′ be a finite vertex set of D that separates the partition class p′ from every

other partition class in P . Then Êε,y(Xp′ ∪ {v}, λ) is mapped to Bε(z).

We are now ready to prove the main result of this section:

Theorem 9.2. Let D be a solid digraph. The map induced by the ϕ̂P : |D| → D/P

Φ̂ : |D| → lim←−(D/P )P∈P

is a homeomorphism.

Proof. It is straightforward to show that the ϕ̂P are compatible. Let us show that

the collection of maps { ϕ̂P | P ∈ P } is eventually injective, that is to say for
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every two points x, y ∈ |D| there is a P ∈ P such that ϕ̂P (x) 6= ϕ̂P (y). Such

an admissible partition is easily defined if at least one of the points x and y lies

in D. So suppose x and y are ends or inner points of limit edges. If x and y

are both ends choose an X ∈ X (D) that separates x and y. Then the admissible

partition PX given by the strong components of D−X and all the vertices in X as

singletons, is the desired partition. Similarly, if x is an end and y is an inner point

of a limit edge of the form ωη for two ends of D, then choose an X ∈ X (D) that

separates all the ends in {x, ω, η} simultaneously. Again the admissible partition

given by the strong components of D −X and all the vertices in X as singletons

is as desired. The other cases are analogue and we leave the details to the reader.

By the lifting lemma and Lemma 9.3.2 the ϕ̂P induce a continuous injective map

Φ̂ : |D| → lim←−(D/P )P∈P . By Lemma 9.1.3 we have that the image of the map Φ̂

is dense in lim←−(D/P )P∈P . Moreover, as D is solid, we have that |D| is compact

by Theorem 9.1 so the image of Φ̂ is closed; hence it is all of lim←−(D/P )P∈P . The

statement now follows from Lemma 9.1.5.

Corollary 9.3.3. For a solid digraph D the topology DTop is the finest compact

topology on |D|.

Proof. Let D be solid and T a compact topology on |D| that is finer than DTop.

Our goal is to show that T = DTop. For this it suffices to find a homeomorphism

from (|D|, T ) to lim←−(D/P )P∈P since the latter is homeomorphic (|D|,DTop).

Consider the collection of maps { ϕ̂P | P ∈ P } from the text before Lem-

ma 9.3.2. As T is finer than DTop these maps are continuous for (|D|, T ).

Clearly, the collection of these maps is still compatible and eventually injective.

Therefore, we obtain an injective continuous map Φ′ : (|D|, T ) → lim←−(D/P )P∈P ,

by Lemma 9.1.2. As the ϕ̂P are still surjective, we have by Lemma 9.1.3 that the

image of Φ′ is dense. As (|D|, T ) is compact the image of Φ′ is also closed and

it follows that Φ′ is surjective. Using Lemma 9.1.5 we conclude that the map Φ′

with domain (|D|, T ) is a homeomorphism.

In the proof of Theorem 9.2 we used those admissible partitions that arise by

deleting a finite vertex set from a solid digraph to ensure that the map Φ that

is induced by the ϕ̂P is injective. Next, we show that these admissible partitions

capture the whole inverse system for a solid digraph.
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To make this formal, let D be a solid digraph and X ∈ X (D). We denote by

PX the admissible partition where each vertex in X is a singleton partition class

and the other partition classes consist of the strong components of D − X. We

claim that PX := {PX | X ∈ X (D) } is cofinal in the set of admissible partitions

of D, that is for every admissible partition P there is an X such that P ≤ PX .

Indeed, given P ∈P we have P ≤ PX for any finite set X ∈ X (D) that separates

any two partition classes in P .

Now, {D/PX , fPXPX′ ,PX} is an inverse system by itself and by Lemma 9.1.4

we have that

lim←−(D/P )P∈P ∼= lim←−(D/PX)X∈X .

If D is countable one can simplify the directed system even further: Fix an

enumeration v0, v1, . . . of the vertex set of D and write Xn for the set of the

first n vertices. Then the set of all the PXn is cofinal in PX and therefore it is also

cofinal in the set of all the admissible partitions of D.

Corollary 9.3.4. Let D be a countable solid digraph and let Xn consist of the

first n vertices of D with regard to a any fixed enumeration of V (D). Then

|D| ∼= lim←−(D/PXn)n∈N.

9.4. Applications

In this last section we prove two statements about finite digraphs that naturally

generalise to the space |D|, but do not generalise verbatim to infinite digraphs,

Theorem 9.3 and Theorem 9.4. We begin this section by introducing all the

definitions needed. We then provide an important tool that describes how (topolo-

gical) paths in |D| can pass through cuts in D, the directed jumping arc lemma.

Finally, we prove our two main results of this section, Theorem 9.3 and Theo-

rem 9.4.

A continuous function α : [0, 1] → |D| is called a local homeomorphism on the

edges of |D| if for every x ∈ [0, 1] that is mapped to an inner point of an edge

e ∈ E ∪ Λ, there is a neighbourhood (a, b) of x such that α restricts on (a, b)

to a homeomorphism to the interior of e, i.e., α � (a, b) ∼= e̊. Note that by the

continuity of α any such homeomorphism α � (a, b) extends to a homeomorphism

α � [a, b] ∼= e. If in addition α respects the orientation of the edges in |D|, that
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is if [a, b] ⊆ [0, 1] is mapped to an edge e ∈ E ∪ Λ we have that x ≤ y implies

α(x) ≤ α(y) for all the x, y ∈ [a, b], then we call α a directed topological path

in |D|. (Here α(x) ≤ α(y) refers to ≤ in [0, 1]e.)

We think of directed topological paths in |D| as generalised directed walks in D.

Here the edges of a directed walk in D are directed along the walk. Indeed, every

directed walk in D defines via a suitable parametrisation a directed topological

path in |D|. If the image of α contains a vertex or an end x we simply say that α

contains x. We say that a directed topological path α traverses an edge e ∈ E∪Λ

of |D| if α restricts on a subinterval of [0, 1] to a homeomorphism on e. The

points α(0) and α(1) are called the endpoints of α and we say that α connects

α(0) to α(1). A directed topological path whose endpoints coincide is closed.

Next, let us gain some understanding of how directed topological paths in |D|
can pass through cuts of D, see also the jumping arc lemma [20, Lemma 8.6.3].

Lemma 9.4.1 (Directed Jumping Arc Lemma). Let D be any digraph and let

{V1, V2} be any bipartition of V (D).

(i) If V1 ∩ V2 = ∅, then every directed topological path in |D| from V1 to V2

traverses an edge of |D| with tail in V1 and head in V2.

(ii) If V1∩V2 6= ∅, there will be a directed topological path in |D| from V1 to V2

that traverses none of the edges between V1 and V2 if both D[V1] and D[V2]

are solid.

Proof. (i) Suppose that V1∩V2 is empty. Then every end of D is either contained

in V1 or V2. First, we show that every edge of |D| that has both of its endpoints in

D[Vi] is contained in D[Vi], for i = 1, 2. For edges of D this is trivial. So consider

a limit edge λ with both endpoints in D[Vi]. All but finitely many vertices of a

subdigraph obtained by Proposition 8.4.1 or Proposition 8.4.2 applied to λ are

contained in D[Vi], otherwise this gives an end in V1∩V2. Consequently, for every

inner point z ∈ λ there is a sequence of inner points of edges in D[Vi] that converge

to z, giving z ∈ D[Vi].

From this first observation, we now know that |D| r (D[V1] ∪ D[V2]) consists

only of inner points of edges (possibly limit edges) between V1 and V2. Now,

consider a directed topological path α that connects a point in V1 to a point

in V2. As [0, 1] is connected and α is continuous there is a point x ∈ [0, 1] with
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α(x) ∈ |D|r (D[V1]∪D[V2]). Hence the preimage of |D|r (D[V1]∪D[V2]) is non-

empty and a union of pairwise disjoint intervals (a, b) each of which is mapped

homeomorphic to an open edge between V1 and V2. The usual relation ≤ on the

reals defines a linear order on these intervals. Among these intervals, choose (a, b)

minimal. That this is possible can be seen as follows: If not, we find a strictly

decreasing sequence (a0, b0) ≥ (a1, b1) ≥ . . . of intervals with α � [ai, bi] ∼= ei

for some edges ei between V1 and V2. Then (ai)i∈N and (bi)i∈N converge to some

c ∈ [0, 1] and using that α is continuous, we get α(c) ∈ V1 ∩ V2, a contradiction.

We claim that the image of (a, b) under α is an edge from V1 to V2. To see this,

it suffices to show that α(a) ∈ V1. So suppose for a contradiction that α(a) ∈ V2.

Then α � [0, a] gives a directed topological path from V1 to V2. By a similar

argument as above there is a point in [0, a] mapped to an edge between V1 and V2,

contradicting the choice of (a, b).

(ii) First note that no inner point of a limit edge is a limit point of a set of

vertices. Hence D has at least one end that is contained in both the closure of V1

and V2. By Lemma 9.2.1 we find a necklace N ⊆ D attached to {V1, V2}. Let ω be

the end that is represented by N . Apply Corollary 9.2.2 to the solid digraph D[V1]

and the infinite set U1 := V1 ∩ V (N) in order to obtain a necklace N1 attached

to U1. Let U2 consist of all the vertices in V2 that are contained in those beads of

N that intersect a bead of N1. Apply Corollary 9.2.2 to the solid digraph D[V2]

and the infinite set U2 in order to obtain a necklace N2 attached to U2. Note that

both necklaces N1 and N2 represent ω. A ray in N1 together with a reverse ray

in N2 defines a directed topological path that is as desired.

Now, let us turn to our applications. A finite digraph is called Eulerian if

there is a closed directed walk that contains every edge exactly once. A cut of a

digraph D is an ordered pair (V1, V2) of non-empty sets V1, V2 ⊆ V (D) such that

V1∪V2 = V (D) and V1∩V2 = ∅. The sets V1 and V2 are the sides of the cut, and

its size is the cardinality of the set of edges from V1 to V2. We call a cut (V1, V2)

balanced if its size equals that of (V2, V1). An unbalanced cut is a cut that is not

balanced. It is well known that a finite digraph (with a connected underlying

graph) is Eulerian if and only if all of its cuts are balanced.

A closed directed topological path α that traverses every edge of |D| exactly

once is called Euler tour, i.e., for every edge e of |D| there is exactly one subinterval
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of [0, 1] that is mapped homeomorphic to e via α. If |D| has an Euler tour we

call |D| Eulerian. There are two obstructions for digraph D to be Eulerian: one

is a vertex of infinite degree and the other one is an unbalanced cut. A digraph is

locally finite if all its vertices have finite in- and out-degree. Theorem 9.3 states

that there are no further obstructions. We need one more lemma for its proof:

Lemma 9.4.2. Let D be a digraph with a connected underlying graph. If D is

locally finite and every finite cut of D is balanced, then D is solid.

Proof. Suppose for a contradiction that D is not solid and fix a finite vertex set

X ⊆ V (D) such that D−X has infinitely many strong components. Our goal is to

find a finite unbalanced cut of D. We may view the strong components of D−X
partially ordered by C1 ≤ C2 if there is a path in D −X from C1 to C2. We first

note that any strong component C of D −X receives and sends out only finitely

many edges in D−X. Indeed, if C sends out infinitely many edges, then (V1, V2)

is a finite unbalanced cut, where V1 is the union of all the strong components

strictly greater than C and where V2 := V (D) r V1. A similar argument shows

that C receives only finitely many edges. Now, the (multi-)digraph D′ obtained

from D by contracting all the strong components of D−X is locally finite. Note

that also every finite cut of D′ is balanced.

Now, D′ is also strongly connected. Indeed, if there is a vertex v ∈ V (D′) that

cannot reach all the other vertices, then (V1, V2) is a finite unbalanced cut of D′,

where V1 is the set of vertices in V (D′) that can be reached from v and where

V2 := V (D′)r V1 (here we use that the graph underlying D is connected). Hence

we may apply the directed star-comb lemma in D′ to V (D′). As D′ is locally

finite, the return is a comb and a reverse comb sharing their attachment sets; we

may assume that both avoid X. Let R be the spine of the comb and R′ the spine

of the reverse comb. Let V2 be the set of all the vertices in D′ − X that can be

reached from R′ in D′ −X and V1 := V (D′) r V2.

As D′−X is acyclic we have that the vertex set of R is included in V1. But then

(V1, V2) is a finite unbalanced cut, which in turn gives rise to a finite unbalanced

cut of D.
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Theorem 9.3. For a digraph D with a connected underlying graph the following

assertions are equivalent:

(i) |D| is Eulerian;

(ii) D is locally finite and every finite cut of D is balanced.

Proof. For the forward implication (i)→(ii) suppose that D has an Euler tour α.

Using the directed jumping arc lemma it is straightforward to show that D has

only balanced cuts. Let us show that D needs to be locally finite for α to be

continuous. Suppose for a contradiction there is a v ∈ V (D) with infinitely many

edges e0, e1, . . . with head v; the case where v is the tail of infinitely many edges

is analogue. Let (ai, bi) ⊆ [0, 1] the subinterval that is mapped homeomorphic by

α to ei. As the unit interval is compact, the sequence of the ai has a convergent

subsequence (ain)n∈N and we write x for the limit point of this subsequence. Now,

the subsequence (bin)n∈N of the bi forms a convergent subsequence, too, with limit

point x. As α(bin) = v for all the n ∈ N we have α(x) = v, by the continuity of α;

but α(ain) is a sequence of neighbours of v which does not converge in |D| to v,

a contradiction.

For the backward implication (ii)→(i) let us first show that |D| contains no

limit edges. As D is locally finite there is no limit edge between a vertex and an

end. So suppose for a contradiction there is a limit edge ωη between two ends

of D. Fix a finite vertex set X that separates ω and η. We may view the strong

components of D −X partially ordered by C1 ≤ C2 if there is a path in D −X
from C1 to C2. Let V1 consist of all the vertices in strong components of D −X
that are strictly smaller than C(X, η) and let V2 := V (D) r V1. Then (V1, V2)

is an unbalanced cut: On the one hand there are infinitely many edges from V1

to V2 because there are infinitely many from C(X,ω) to C(X, η). On the other

hand, there are only finitely many edges from V2 to V1 by our assumption that D

is locally finite.

Let us now find an Euler tour for |D|. By Lemma 9.4.2 the digraph D is solid.

As it is locally finite and its underlying graph is connected V (D) is countable.

Choose an enumeration of V (D) and let Xn denote the set of the first n vertices.

Then D/PXn contains no quotient edge and every cut of D/PXn is balanced. As

the statement of Theorem 9.3 holds for finite digraphs, we have that D/PXn is

Eulerian. Moreover, as D/PXn is a finite digraph there are only finitely many
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(combinatorial) Euler tours of D/PXn . By Kőnig’s infinity lemma there is a

consistent choice of one Euler tour for every D/PXn . Now, take a parametrisation

αn : [0, 1] → D/PXn of the Euler tour chosen for D/PXn such that the αn are

compatible. Using Theorem 9.2 it is straightforward to check that the universal

property of the inverse limit gives an Euler tour for |D|.

It is well know that a finite digraph is strongly connected if and only if it has a

directed closed walk that contains all its vertices. Clearly, the statement does not

generalise verbatim to infinite digraphs nor does a spanning directed (double)–ray

ensure the digraph to be strongly connected. Moreover, the statement does not

hold if one adds the ends of the underling undirected graph:

R

R′

Figure 9.4.1.: A solid digraph (every undirected edge in the figure stands for two

directed edges in opposite directions) that is not strongly connected.

Adding the one end of the underling undirected graph makes it

possible to find a closed directed topological path that contains all

the vertices.

Adding the ends and limit edges of the digraph turns out to be the right setting

for the statement to generalise:

Theorem 9.4. For a countable solid digraph D the following assertions are equi-

valent:

(i) D is strongly connected;

(ii) there is a closed topological path in |D| that contains all the vertices of D.

Proof. For the forward implication (i)→(ii) fix an enumeration v1, v2, . . . of V (D)

and denote by Xn the set of the first n vertices. We will recursively define a

sequence of walks W1,W2, . . . such that Wn is a directed closed walk of D/PXn

that contains all the vertices of D/PXn and such that the projection of Wn to

D/PXn−1 is exactly Wn−1.
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Once the Wn are defined, it is not hard to find parametrisations αn of each Wn

such that fXnXn−1 ◦ αn = αn−1. Then the universal property of the inverse limit

together with Corollary 9.3.4 and Theorem 9.2 gives the desired closed directed

topological path in |D|.
To begin, let W1 be an arbitrary closed walk in D − X1 that contains all its

vertices. Now suppose that n > 1 and that Wn−1 has already been defined. Let

C be the strong component of D −Xn−1 that contains vn. Note that the strong

components of D −Xn are exactly the strong components of D −Xn−1 that are

distinct from C together with all the strong components of C−vn. As C is strongly

connected the digraph C/Pvn is strongly connected, as well. We now extend Wn−1

to Wn by plugging in a directed walk that contains all the vertices of C/Pvn each

time Wn−1 meets C. Formally, we fix for every edge ei of Wn−1 with one of its

endvertices in C an edge fi in D/PXn that is mapped to ei by fXnXn−1 . For every

occurrence of C in Wn−1 there are consecutive edges ei and ei+1 in Wn−1 such that

C is the head of ei and the tail of ei+1. Now, fix a directed walk Qi in C/Pvn from

the head of fi to the tail of fi+1 that contains all the vertices of C/Pvn . We define

Wn by replacing any such consecutive edges ei and ei+1 in Wn−1 by fiQifi+1.

We prove the implication (ii)→(i) via contraposition. Suppose that D is not

strongly connected. Then there are vertices v, w ∈ V (D) so that there is no path

from v to w. Let V1 consist of all the vertices that can be reached from v and let

V2 := V (D) r V1. As w 6∈ V1, we have V2 6= ∅. Moreover, the edges between V1

and V2 form a cut with no edge from V1 to V2 (in particular no limit edge). Hence

the intersection V1 ∩ V2 is empty. By the directed jumping arc lemma there is no

directed topological path in |D| from v to w. We conclude that there is no closed

directed topological path in |D| that contains all the vertices of D.
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10. Normal arborescences

Depth-first search trees are a standard tool in finite graph and digraph theory.

These trees arise from an algorithm on a graph or digraph called depth-first search.

Starting from a fixed vertex, the ‘root’, the algorithm moves along the edges, going

to a vertex not visited yet whenever this is possible, and going back otherwise.

Depth-first search stops when all vertices have been visited, and the trees defined

by the traversed edges are called depth-first search trees.

For connected finite graphs, the depth-first search trees are precisely the normal

spanning trees. Here, a rooted tree T ⊆ G is normal inG if the endvertices of every

T -path in G are comparable in the tree-order of T . (A T -path in G is a non-trivial

path that meets T exactly in its endvertices.) Normal spanning trees generalise

depth-first search trees, since they are also defined for infinite graphs; they are

perhaps the single most important structural tool in infinite graph theory [20].

In this chapter we introduce and study normal spanning arborescences. These

are generalisations of depth-first search trees to infinite digraphs that promise to

be as powerful for a structural analysis of digraphs as normal spanning trees are

for graphs, both from a combinatorial and a topological point of view.

An arborescence is a rooted oriented tree T that contains for every vertex

v ∈ V (T ) a directed path from the root to v. The vertices of any arborescence are

partially ordered as v ≤T w if T contains a directed path from v to w. We write

bvcT for the up-closure of v in T .

Consider any finite digraph D together with a spanning depth-first search

tree T ⊆ D. If vw is an edge of D between ≤T -incomparable vertices of T , then

w is visited at an earlier stage of the depth-first search than v.1 Together with all

1Indeed, if v was visited before w, the algorithm would have traversed the edge vw rather than

backtracking from v, which it must have done since v and w are incomparable. Note that

all the visits to v happen while the algorithm searches bvcT , and likewise for w, so visiting

‘before’ and ‘after’ are well-defined for incomparable vertices.
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Figure 10.0.1.: A depth-first search arborescence visiting vertices from right to

left.

such edges, T forms an acyclic subdigraph of D [16].2

Let us use this property of depth-first search trees in finite digraphs as the

definition of our infinite analogue, i.e., as the defining property for ‘normal’

arborescences in infinite digraphs. More precisely, consider a (possibly infinite)

digraph D and an arborescence T ⊆ D, not necessarily spanning. A T -path in D

is a non-trivial directed path that meets T exactly in its endvertices. The normal

assistant of T in D is the auxiliary digraph H that is obtained from T by adding

an edge vw for every two ≤T -incomparable vertices v, w ∈ V (T ) for which there is

a T -path from bvcT to bwcT in D, regardless of whether D contains such an edge.

The arborescence T is normal in D if the normal assistant of T in D is acyclic.

It is straightforward to check that this indeed generalises depth-first search trees

in that for finite D a spanning arborescence T of D is normal in D if and only if

T defines a depth-first search tree; see Corollary 10.2.3.

One aspect of why normal spanning trees of infinite undirected graphs are so

useful is that they are end-faithful. A spanning tree T of a graph G is end-faithful

if the map that assigns to every end of T the end of G that contains it as a subset

(of rays) is bijective, see [20]. Equivalently T is end-faithful if every end of G is

represented by a unique ray in T that starts from a fixed root. Our first theorem

will be an analogue of this for normal arborescences, so let us recall the definition

2Indeed, any cycle would, but cannot, lie in the up-closure of its first-visited vertex.
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of ends of digraphs from Chapter 8.

A directed ray is an infinite directed path that has a first vertex (but no last

vertex). The directed subrays of a directed ray are its tails. For the sake of

readability we shall omit the word ‘directed’ in ‘directed path’ and ‘directed ray’

if there is no danger of confusion. We call a ray in a digraph solid in D if it has a

tail in some strong component of D−X for every finite vertex set X ⊆ V (D). We

call two solid rays in a digraph D equivalent if for every finite vertex set X ⊆ V (D)

they have a tail in the same strong component of D−X. The equivalence classes

of this equivalence relation are the ends of D. For a finite vertex set X ⊆ V (D)

and an end ω of D we write C(X,ω) for the unique strong component of D −X
that contains a tail of every ray that represents ω; the end ω is then said to live

in that strong component. The set of ends of D is denoted by Ω(D).

Let T ⊆ D be a spanning arborescence of a digraph D. We say that T is end-

faithful if every end of D is represented by a unique ray in T starting from the

root of T . (Note that, conversely, rays in T will only represent ends of D if they

are solid in D.) Here is our first main result:

Theorem 10.1. Every normal spanning arborescence of a digraph is end-faithful.

In fact we will prove a localised version of this for normal arborescences in D that

are not necessarily spanning.

The end space of any normal spanning tree T of an undirected graph G coincides

with the end space of G, not only combinatorially but also topologically. Indeed,

the map that assigns to every end of T the end of G that contains it as a subset is

a homeomorphism between the end space of T and that of G, see [20]. Hence, in

order to understand the end space of G one just needs to understand the simple

structure of the tree T .

We also have an analogue of this for digraphs and their normal arborescences.

To state this, let us recall the notion of limit edges of a digraph D.

For two distinct ends ω and η of D, we call the pair (ω, η) a limit edge from

ω to η if D has an edge from C(X,ω) to C(X, η) for every finite vertex set X

for which ω and η live in distinct strong components of D − X. Similarly, for a

vertex v ∈ V (D) and an end ω of D we call the pair (v, ω) a limit edge from v

to ω if D has an edge from v to C(X,ω) for every finite vertex set X ⊆ V (D)

with v 6∈ C(X,ω). And we call the pair (ω, v) a limit edge from ω to v if D has an
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edge from C(X,ω) to v for every finite vertex set X ⊆ V (D) with v 6∈ C(X,ω).

The digraph D, its ends, and its limit edges together form a topological space |D|,
in which the edges are copies of the real interval [0, 1]; see Chapter 9.

The horizon of a digraph D is the subspace of |D| formed by the ends of D and

all the limit edges between them. Arborescences do not themselves have ends or

limit edges, but there is a natural way to endow an arborescence T in a digraph

D with a meaningful horizon. The solidification of an arborescence T ⊆ D, or

of its normal assistant H in D, is obtained from T or H, respectively, by adding

all the edges wv with vw ∈ E(T ). Note that all the rays of T are solid in its

solidification and thus represent ends there. Let us define the horizon of T as the

horizon of the solidification of its normal assistant.

Recall that the digraphs D that are compactified by |D| are precisely the

solid ones, those such that D − X has only finitely many strong components

for every finite vertex set X ⊆ V (D), see Chapter 9. Let T be a normal spanning

arborescence of D, with root r, say. By Theorem 10.1, there exists a well-defined

map ψ that sends every end ω of D to the end of the solidification T of T

represented by the unique ray R ⊆ T starting from r that represents ω in D.

This map ψ is clearly injective. If D is solid, every ray in T represents an end

of D, so ψ is also surjective. Let ζ denote the map from the set of ends of T to

that of the solidification H of the normal assistant H of T in D that assigns to

every end of T the end of H that contains it as a subset (of rays). This is always

bijective, see Lemma 10.4.1. Note that H, unlike T , can have limit edges. We

say that T reflects the horizon of D if the map ζ ◦ ψ : Ω(D) → Ω(H) extends to

a homeomorphism from the horizon of D to that of H.

As our second main result we prove that normal spanning arborescences of solid

digraphs reflect the horizon of the digraph they span:

Theorem 10.2. Every normal spanning arborescence of a solid digraph reflects

its horizon.

Not every connected graph has a normal spanning tree; for example, uncoun-

table complete graphs have none. Thus it is not surprising that there are also

strongly connected digraphs without normal spanning arborescences—such as any

digraph obtained from an uncountable complete graph by replacing every edge by

its two orientations as separate directed edges.
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Jung [43] characterised the connected graphs with a normal spanning tree in

terms of dispersed sets. A set U ⊆ V (G) of vertices of a graph G is dispersed if

there is no comb in G with all its teeth in U . Recall that a comb is the union

of a ray R with infinitely many disjoint finite paths, possibly trivial, that have

precisely their first vertex on R. The last vertices of those paths are the teeth of

this comb, see [20]. Jung proved that a connected graph has a normal spanning

tree if and only if its vertex set is a countable union of dispersed sets.

Translating this to digraphs, a directed comb is the union of a directed ray with

infinitely many finite paths (possibly trivial) that have precisely their first vertex

on R. Hence the underlying graph of a directed comb is an undirected comb.

The teeth of a directed comb are the teeth of the underlying comb. We call a set

U ⊆ V (D) of vertices of a digraph D dispersed if there is no directed comb in D

with all its teeth in U . For two vertices v, w ∈ V (D), we say that v can reach w

if D contains a path from v to w.

Theorem 10.3. Let D be any digraph and suppose that r ∈ V (D) can reach all

the vertices of D. If V (D) is a countable union of dispersed sets, then D has a

normal spanning arborescence rooted in r.

In fact we will prove a slightly stronger version of this where we show how to find

a normal arborescence in D that contains a given set of vertices of D.

In an undirected graph, the levels of any normal spanning tree are dispersed, so

the forward implication in Jung’s characterisation is easy. Theorem 10.3 implies

the harder backward implication when applied to the digraph obtained from the

graph by replacing every edge by its two orientations as separate directed edges.

The easy forward implication in Jung’s theorem does not have a directed ana-

logue, since the converse implication in Theorem 10.3 may fail. For example

consider the digraph obtained from a ray by adding a new vertex r and an edge

from r to every vertex of the ray. In this digraph, the first level of the normal

arborescence that consists of all edges at r is not dispersed. However, the converse

of Theorem 10.3 does hold if the digraph D is solid.

This chapter is organised as follows. We provide further tools and terminology

that we use throughout this chapter in Section 10.1. Then in Section 10.2 we

introduce normal arborescences and provide some basic lemmas that we need for

the proofs of our main results. In Section 10.3, we show that normal spanning

90



arborescences are end-faithful, Theorem 10.1. In Section 10.4, we prove that

normal spanning arborescences reflect the horizon, Theorem 10.2. Finally, we

prove our existence criterion for normal arborescences in digraphs, Theorem 10.3,

in Section 10.5.

10.1. Tools and terminology

In this section we provide further tools and terminology that we use throughout

this chapter. We also collect together some tools and terminology from Chapter 8

that become particularly important in this chapter.

Let D be any digraph. We write edges as ordered pairs (v, w) with v, w ∈ V (D),

and we usually write (v, w) simply as vw. The vertex v is the tail of vw and the

vertex w its head. The reverse of an edge vw is the edge wv. More generally, the

reverse of a digraph D is the digraph on V (D) where we replace every edge of

D by its reverse, i.e., the reverse of D has the edge set { vw | wv ∈ E(D) }. We

write
←
D for the reverse of a digraph D.

The directed subrays of a ray are its tails. Call a ray solid in D if it has a tail

in some strong component of D −X for every finite vertex set X ⊆ V (D). Two

solid rays in D are equivalent, if they have a tail in the same strong component of

D − X for every finite vertex set X ⊆ V (D). We call the equivalence classes of

this relation the ends of D and we write Ω(D) for the set of ends of D.

Similarly, the reverse subrays of a reverse ray are its tails. We call a reverse

ray solid in D if it has a tail in some strong component of D−X for every finite

vertex set X ⊆ V (D). With a slight abuse of notation, we say that a reverse ray

R represents an end ω if there is a solid ray R′ in D that represents ω such that R

and R′ have a tail in the same strong component of D−X for every finite vertex

set X ⊆ V (D).

Given sets A,B ⊆ V (D) of vertices a path from A to B, or A–B path is a path

that meets A precisely in its first vertex and B precisely in its last vertex. We

say that a vertex v can reach a vertex w in D and w can be reached from v in

D if there is a v–w path in D. A non-trivial path P is an A-path for a set of

vertices A if P has both its endvertices but none of its inner vertices in A. A

set W of vertices is strongly connected in D if every vertex of W can reach every

other vertex of W in D[W ].
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We say that a digraph is acyclic if it contains no directed cycle as a subdigraph.

The vertices of any acyclic digraph D are partially ordered by v ≤D w if D

contains a path from v to w.

An arborescence is a rooted oriented tree that contains for every vertex v ∈ V (T )

a directed path from its root to v. Note that arborescences T are acyclic and that

≤T coincides with the tree-order of the undirected tree underlying T . For vertices

v ∈ V (T ), we write bvcT for the up-closure and dveT for the down-closure of v

with regard to ≤T . The nth level of T is the nth level of the undirected tree

underlying T .

A directed comb is the union of a ray with infinitely many finite paths (possibly

trivial) that have precisely their first vertex on R. Hence the undirected graph

underlying a directed comb is an undirected comb. The teeth of a directed comb

are the teeth of the underlying undirected comb. The ray from the definition of a

directed comb is the spine of the directed comb.

We write Λ(D) for the set of all the limit edges of D. As we do for ‘ordinary’

edges of a digraph, we will suppress the brackets and the comma in our notation

of limit edges. For example we write ωη instead of (ω, η) for a limit edge between

ends ω and η. For limit edges we need the following proposition from Chapter 8.

Proposition 8.4.2. For a digraph D, a vertex v and an end ω of D the following

assertions are equivalent:

(i) D has a limit edge from v to ω;

(ii) there is a necklace N ⊆ D that represents ω such that v sends an edge to

every bead of N .

For vertex sets A,B ⊆ V (D) let E(A,B) be the set of edges from A to B, i.e.,

E(A,B) = (A × B) ∩ E(D). Now, consider two ends ω, η ∈ Ω(D) and a finite

vertex set X ⊆ V (D). If X separates ω and η we write E(X,ωη) as short for

E(C(X,ω), C(X, η)) and if additionally ωη is a limit edge, then we say that it

lives in E(X,ωη).

10.2. Normal arborescences

In this section we introduce normal arborescences and we provide some basic

lemmas that we need for the proofs of our main results.
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Consider a digraph D and an arborescence T ⊆ D, not necessarily spanning.

The normal assistant of T in D is the auxiliary digraph H that is obtained from

T by adding an edge vw for every two ≤T -incomparable vertices v, w ∈ V (T ) for

which there is a T -path from bvcT to bwcT in D, regardless of whether D contains

such an edge. The arborescence T is normal in D if the normal assistant of T

in D is acyclic; in this case, we write ET :=≤H and we call ET the normal order

of T . Similarly, a reverse arborescence T is normal in D if
←
T is normal in

←
D.

Lemma 10.2.1. Let D be any digraph and let T ⊆ D be an arborescence. If the

normal assistant of T in D contains a cycle, then it also contains a cycle so that

consecutive vertices on the cycle are ≤T -incomparable.

Proof. Let H be the normal assistant of T in D and let C be a cycle in H

of minimal length. Suppose for a contradiction that C contains consecutive

vertices that are ≤T -comparable. As T is acyclic the cycle C cannot be contained

entirely in T ; in particular C has length at least three. Thus we find a subpath

uvw ⊆ C such that u is the ≤T -predecessor of v, and such that v and w are

≤T -incomparable. But then also uw ∈ E(H) and replacing the path uvw in C by

the edge uw gives a shorter cycle.

An extension � of ≤T on an arborescence T is branch sensitive if for any two

≤T -incomparable vertices v � w of T there is no v′ ∈ bvcT with w � v′. An

extension � of ≤T on T is path sensitive if for no two ≤T -incomparable vertices

v � w the digraph D contains a T -path from w to v. Note that the normal order

of any normal arborescence T ⊆ D is both branch sensitive and path sensitive. A

sensitive order on T is a linear extension of ≤T on T that is both branch sensitive

and path sensitive.

Lemma 10.2.2. Let D be any digraph and let T ⊆ D be an arborescence in D.

Then T is normal in D if and only if there is a sensitive order on T .

Proof. For the forward implication assume that T is normal in D. Let us write

Ln for the nth level of T and let us write Tn for the arborescence that T induces

on
⋃
{Lm | m ≤ n }. We recursively construct an ascending sequence of orders

(�n)n∈N such that �n is a sensitive order on the arborescence Tn as follows. In the

base case, we let �0:=≤T0 . In the recursive step, suppose that we have defined �n.

Let us write for every v ∈ Ln the set of up-neighbours (children) of v in T as Nv.
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For every v ∈ Ln let �v be a linear extension of the restriction of ET to Nv.

And for every two distinct vertices v, w ∈ Ln with v �n w we define v′ �vw w′

whenever v′ ∈ Nv and w′ ∈ dNweT rdveT . Now, let �n+1 be the transitive closure

of

�n ∪
⋃
{�v| v ∈ Ln } ∪

⋃
{�vw| v 6= w in Ln }.

It is straightforward to check that the order �n+1 is a sensitive order on Tn+1.

Hence
⋃
{�n| n ∈ N } is a sensitive order on T as an ascending union of sensitive

orders on subarborescences of T .

For the backward implication assume that T has a sensitive order � on T .

Suppose for a contradiction that T is not normal in D. Let H be the normal

assistant of T in D. Then H contains a cycle C and by Lemma 10.2.1 we may

assume that consecutive vertices on C are≤T -incomparable. Let c be the�-largest

vertex on C and let c′ be its successor on C. Note that c′ � c by the choice of c.

The edge cc′ of C ⊆ H is witnessed by a T -path P from bccT to bc′cT . Let

w be the first vertex and v the last vertex of P . As � is branch sensitive, we

have v � w. But then the two vertices v and w together with P show that � is

not path sensitive contradicting that � is a sensitive order on T .

Corollary 10.2.3. A spanning arborescence of a finite digraph is normal if and

only if it defines a depth-first search tree.

Proof. Let T be a spanning arborescence of a finite digraph D. For the forward

implication assume that T is normal in D. By Lemma 10.2.2, we find a sensitive

order � on T . Then T is defined by the traversed edges of the depth-first search

that starts in the root of T and always chooses the �-largest up-neighbour (child)

in T in each step.

For the backward implication assume that T is a depth-first search tree and

suppose for a contradiction that T is not normal in D. Then the normal assistant

of T contains a cycle C and by Lemma 10.2.1 we may choose C so that consecutive

vertices on C are ≤T -incomparable. Let x be the vertex on C that is visited first

in the depth-first search and let y be its successor on C. The edge xy of the normal

assistant of T is witnessed by a T -path from bxcT to bycT . As T is spanning this

path is just an edge e. Note that all vertices in bxcT are visited earlier than those

in bycT in the depth-first search. Hence the edge e should have been visited by

the depth-first search; this is a contraction because e is not an edge of T .
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We think of (countable) normal spanning arborescence T ⊆ D as being drawn

in the plane with all the edges between ≤T -incomparable vertices running from

left to right; see Figure 10.0.1.

Let us see that, similar to their undirected counterparts, normal arborescences

capture the separation properties of D, while they carry the simple structure of

an arborescence:

Lemma 10.2.4. Let D be any digraph and let T ⊆ D be a normal arborescence

in D. If v, w ∈ V (T ) are ≤T -incomparable vertices of T with w 5T v, then every

w–v path in D meets X := dveT ∩dweT . In particular, X separates v and w in D.

Proof. Suppose for a contradiction that P is a w–v path in D that avoids X,

for ≤T -incomparable vertices v, w ∈ V (T ) with w 5T v. Let NX consist of all

neighbours of X in the digraph T that are contained in V (T −X), let N1
X consist

of all vertices y ∈ NX with y ET v and let N2
X := NX rN1

X . Moreover, let Zi be

the union of the up-closures bscT with s ∈ N i
X , for i = 1, 2. Note that Z1 and Z2

partition V (T −X). As ET is branch sensitive, we observe that any two vertices

z1, z2 ∈ V (T ) rX with z1 ∈ Z1 and z2 ∈ Z2 are either incomparable with regard

to ET , or satisfy z1 ET z2. Let z1 be the first vertex of P in Z1 and let z2 be

the last vertex of P in T that precedes z1 in the path-order of P . Note that z2

is contained in Z2 by our assumption that P avoids X. Hence the T -path z2Pz1

witnesses that z2 ET z1 contradicting our aforementioned observation.

The dichromatic number [52] of a digraph D is the smallest cardinal κ so that

D admits a vertex partition into κ many partition classes that are acyclic in D.

From the path sensitivity of normal arborescences we obtain the following:

Proposition 10.2.5. Every digraph that has a normal spanning arborescence does

have a countable dichromatic number.

Proof. We denote by Ln the nth level of the arborescence T and claim that Ln

is acyclic for every n ∈ N. The vertices in Ln are pairwise ≤T -incomparable.

As T is path sensitive there is no w-v path in D[Ln] between vertices v ET w

in Ln. This would be violated by the ET -largest vertex w and its successor v in

C of any directed cycle C ⊆ D[Ln]. Hence the non-empty Ln define a partition

of V (D) into acyclic vertex sets, witnessing that D has a countable dichromatic

number.

95



10.3. Arborescences are end-faithful

In this section we prove that normal spanning arborescences capture the end space

combinatorially. Let T ⊆ D be a fixed arborescence of a digraph D and let Ψ

be a set of ends of D. We say that T is end-faithful for Ψ if every end in Ψ is

represented by a unique ray of T that starts from the root. We call the rays in a

normal arborescence T that start from the root normal rays of T . We say that

an end ω of D is contained in the closure of a vertex set U ⊆ V (D) if C(X,ω)

meets U for every finite vertex set X ⊆ V (D). Note that an end ω is contained

in the closure of the vertex set of a ray R if and only if R represents ω.

Theorem 10.1. Let D be any digraph and let U ⊆ V (D) be any vertex set. If T

is a normal arborescence containing U , then T is end-faithful for the set of ends

in the closure of U .

We will employ the following star-comb lemma [20, Lemma 8.2.2] in order to

prove Theorem 10.1:

Lemma 10.3.1 (Star-comb lemma). Let W be an infinite set of vertices in a

connected undirected graph G. Then G contains a comb with all its teeth in W or

a subdivided infinite star with all its leaves in W .

Proof of Theorem 10.1. First, let R1 and R2 be distinct normal rays of T that

represent ends of D in the closure of U , say ω1 and ω2, respectively. Our goal is

to show that ω1 and ω2 are distinct ends of D. By Lemma 10.2.4, the rays R1 and

R2 have tails in distinct strong components of D − X for X = V (R1) ∩ V (R2).

Hence X witnesses that R1 and R2 are not equivalent; in particular ω1 6= ω2.

It remains two show that every end ω in the closure of U is represented by

a normal ray of T . We claim that there is a necklace N attached to U in D

that represents ω. For this consider the auxiliary digraph D′ obtained from D by

adding a new vertex v∗ and adding new edges v∗u, one for every u ∈ U . Since

ω is contained in the closure of U , we have that v∗ω is a limit edge of D′. Note,

that adding v∗ does not change the set of ends, in the sense that every end of D′

contains a unique end of D as a subset (of rays), and we may identify the ends

of D′ with the ends of D. Now, Proposition 8.4.2 yields a necklace N ⊆ D that

represents ω such that v∗ sends an edge to every bead of N . By the definition

of D′, we conclude that N is attached to U .
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Having N at hand, fix a vertex from U of every bead of N and let W be the set

of these fixed vertices. Now, apply the star-comb lemma in the undirected tree

underlying T to W . We claim that the return is a comb. Indeed, suppose for a

contradiction that we get a star and let c be its centre. By Lemma 10.2.4, the

finite set dceT separates any two leaves of the star, which is impossible because

they are all contained in the necklace N ⊆ D.

So the return of the star-comb lemma is indeed a comb and we may assume that

its spine R, considered as a ray in T , is a normal ray. Our aim is to prove that

R represents ω and we may equivalently show that ω is contained in the closure

of V (R). So given a finite vertex set X ⊆ V (D), fix teeth u and u′ of the comb

that are contained in C(X,ω). These exist because the teeth of the comb are

contained in W and the choice of W . By Lemma 10.2.4, the strong component

C(X,ω) contains a vertex of dueT ∩ du′eT . As this intersection is included in R

we have verified that C(X,ω) contains a vertex of R. This completes the proof

that ω is contained in the closure of R and with it the proof of this theorem.

Corollary 10.3.2. Let D be any digraph and let U ⊆ V (D) be any vertex set. If

T is a reverse normal spanning arborescence containing U , then T is end-faithful

for the set of ends in the closure of U .

Proof. Applying Theorem 10.1 to the digraph
←
D and the normal arborescence

←
T ⊆

←
D shows that

←
T is end-faithful for the ends of

←
D in the closure of U . Hence

the statement is a consequence of the fact that the ends of D in the closure of

U correspond bijectively to the ends of
←
D in the closure of U , via the map that

sends an end ω of D to the end of
←
D that is represented by some (equivalently

every) reverse ray of D that represents ω.

10.4. Arborescences reflect the horizon

One of the most useful facts about normal spanning trees is that the end space

of any normal spanning tree T coincides with the end space of the graph G it

spans—even topologically, i.e., the map that assigns to every end of T the end of

G that contains it as a subset is a homeomorphism, see [17]. Hence, in order to

understand the end space of G one just needs to understand the simple structure

of the tree T .
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In [11] we defined a topological space |D| formed by a digraph D together with

its ends and limit edges. The horizon of a digraph D is the subspace of |D| formed

by the ends of D and all the limit edges between them. In order to understand

the results of this section it is not necessary to know the topology on |D|, as the

subspace topology on the horizon of D is particularly simple. Let us give a brief

description of the subspace topology for the horizon of D.

The ground set of the horizon of a digraph D is defined as follows. Take the

set of ends Ω(D) of D together with a copy [0, 1]λ of the unit interval for every

limit edge λ between two ends of D. Now, identify every end ω with the copy of

0 in [0, 1]λ for which ω is the tail of λ and with the copy of 1 in [0, 1]λ′ for which

ω is the head of λ′, for all the limit edges λ and λ′ between ends of D. For inner

points zλ ∈ [0, 1]λ and zλ′ ∈ [0, 1]λ′ of limit edges λ and λ′ between ends of D we

say that zλ corresponds to zλ′ if both correspond to the same point of the unit

interval.

We describe the topology of the horizon of D by specifying the basic open sets.

Neighbourhoods Ωε(X,ω) of an end ω are of the following form: Given X ∈ X (D)

let Ωε(X,ω) be the union of

• the set of all the ends that live in C(X,ω) and the points of limit edges

between ends that live in C(X,ω) and

• half-open partial edges (ε, y]λ respectively [y, ε)λ for every limit edge λ

between ends for which y lives in C(X,ω).

Neighbourhoods Λε,z(X,λ) of inner points z of a limit edge λ between ends

are of the following form: Given X ∈ X (D) that separates the endpoints of λ

let Λε,z(X,λ) be the union of all the open balls of radius ε around points zλ′

with λ′ a limit edge between ends that lives in the bundle E(X,λ) and with zλ′

corresponding to z. Here we make the convention that for limit edges λ between

ends the ε of open balls Bε(z) of radius ε around points z ∈ λ is implicitly chosen

small enough to guarantee Bε(z) ⊆ λ.

Arborescences do not themselves have ends or limit edges, but there is a natural

way to endow an arborescence T in a digraph D with a meaningful horizon. The

solidification of an arborescence T ⊆ D, or of its normal assistant H in D, is

obtained from T or H, respectively, by adding all the edges wv with vw ∈ E(T ).
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Note that all the rays of T are solid in its solidification and thus represent ends

there. Let us define the horizon of T as the horizon of the solidification of its

normal assistant.

Now suppose that we have fixed a root r of T and suppose that every ray of

D is solid in D. By Theorem 10.1, there exists a well-defined map ψ that sends

every end ω of D to the end of the solidification T of T represented by the unique

ray R ⊆ T starting from r that represents ω in D. This map ψ is clearly injective.

Note that the map ψ is also surjective, by our assumption that every ray of D

is solid in D. Let ζ denote the map from the set of ends of T to that of the

solidification H of the normal assistant H of T in D that assigns to every end of

T the end of H that contains it as a subset (of rays). This is always bijective:

Lemma 10.4.1. Let D be a digraph, T a normal spanning arborescence of D and

H the normal assistant of T in D. The map ζ : Ω(T ) → Ω(H) that assigns to

every end of T the end of H that contains it as a subset is bijective.

Proof. To see that ζ is injective, let ω1 and ω2 be distinct ends of T and let Ri

be the ray in T starting from the root of T that represents ωi for i = 1, 2. By

Lemma 10.2.4 the two rays R1 and R2 have a tail in distinct strong components

of H −X for X := dR1eT ∩ dR2eT ; hence ζ maps the ends ω1 and ω2 to distinct

ends of H.

To see that ζ is onto, let ω be an end of H and let R be any solid ray in H

that represents ω. Our goal is to find a solid ray R′ in T that is equivalent to R

in H: then the end of T that is represented by R′ is included in ω as a subset

of rays. For this apply the star-comb lemma in the undirected tree underlying

T to the vertex set of R. If the return is a comb, then the comb’s spine defines

the desired ray R′. Indeed, the paths between the comb’s spine and its teeth,

define (in H) a family of disjoint directed paths from R′ to R and from R to R′,

hence R′ and R are equivalent in H. It now suffices to show that the return of the

star-comb lemma is always a comb; so suppose for a contradiction that it is a star

with centre c say. Then, by Lemma 10.2.4, the down-closure of c in T separates

infinitely many vertices of V (R) in H, contradicting that R has a tail in a strong

component of H −X for every finite vertex set X.

Note that H, unlike T , can have limit edges. We say that T reflects the horizon

of D if the map ζ ◦ ψ : Ω(D) → Ω(H) extends to a homeomorphism from the
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horizon of D to that of H.

The horizon of a normal spanning arborescences might differ from the horizon

of the digraph it spans. This is due to the nature of connectivity in digraphs: a

digraph might have a normal spanning arborescence and many strong components

at the same time. For example consider the digraph D depicted in Figure 10.4.1.

On the one hand, every ray in D is solid in D. On the other hand, consider the

unique normal spanning arborescence T that is rooted in the leftmost vertex of

the bottom ray. Note that T coincides with its normal assistant. Hence T is

normal in D and the end ω in the horizon of T is a limit point of the ends ωi in

the horizon of T . In contrast to that, all points in the horizon of D are isolated

as every end lives in exactly one strong component of D.

ω0 ω1 ω2 ω3 ω4 ω5

ω

Figure 10.4.1.: A digraph D with a normal spanning arborescence T where the

horizon of T differs from that of D. Every undirected edge in the

figure represents a pair of inversely directed edges. Every line that

ends with an arrow stands for a symmetric ray.

However, it turns out that the horizon of a digraph D coincides with the horizon

of any normal spanning arborescence of D if D belongs to an important class of

digraphs, namely to the class of solid digraphs:

Theorem 10.2. Every normal spanning arborescence of a solid digraph reflects

its horizon.

The proof of this will be a consequence of the following two lemmas:
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Lemma 10.4.2. Let D be a solid digraph, let T be a normal spanning arborescence

of D and H the normal assistant of T in D. For ends ω of D and ω′ of H, with

ω′ = ζ(ψ(ω)) the following statements hold:

(i) For every finite vertex set X ⊆ V (D) there is a finite vertex set X ′ ⊆ V (H)

such that the vertex set of C(X ′, ω′) is contained in that of C(X,ω).

(ii) For every finite vertex set X ′ ⊆ V (H) there is a finite vertex set X ⊆ V (D)

such that the vertex set of C(X,ω) is contained in that of C(X ′, ω′).

Proof. (i) Let X be any finite vertex set of D. We may assume that X is down-

closed with respect to ≤T . We write Rω′ for the unique ray of T that starts from

the root of T and represents ω′, Theorem 10.1. Note that since D is solid every

ray in T is solid in D. We will find a vertex v ∈ Rω′ such that the up-closure

of v in T is contained in C(X,ω); then X ′ := dveT r {v} is as desired by the

separation properties of normal arborescences, Lemma 10.2.4.

For this, we call a vertex v ∈ Rω′ bad if bvcT meets V (T ) r C(X,ω). Let us

show that Rω′ has only finitely many bad vertices. As T is normal in D and X is

down-closed we have that every strong component of D −X other than C(X,ω)

receives at most one edge of T from C(X,ω). Now, using that D − X has only

finitely many strong components, it follows that only finitely many edges of T

leave C(X,ω). Let B be the finite set of all tails of edges of T that leave C(X,ω).

Then also dBeT is finite and no vertex of Rω′ − dBeT is bad. This shows that

there are indeed only finitely many bad vertices on Rω′ . Now, choosing a vertex

v on Rω′ higher than any bad vertex and high enough so that the subray of Rω′

that starts at v is included in C(X,ω) gives bvcT ⊆ C(X,ω).

(ii) Let X ′ be any finite vertex set of H. By the separation properties of normal

arborescences, Lemma 10.2.4, the finite vertex set X := dX ′eT is as desired.

Lemma 10.4.3. Let D be a solid digraph, T a normal spanning arborescence of

D and H the normal assistant of T in D. Then ωη is a limit edge of D if and

only if ω′η′ is a limit edge of H, where ω′ and η′ is the image under the map ζ ◦ψ
of ω and η, respectively.

Proof. We write ω′ and η′ for the image under the map ζ ◦ ψ of ω and η,

respectively. Let us first show that ω′η′ is a limit edge of H if ωη is a limit edge

of D. For this let any finite vertex set X ′ that separates ω′ and η′ in H be given.
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Our goal is to find an edge in H from C(X ′, ω′) to C(X ′, η′). By Theorem 10.1

there are rays Rω and Rη in T that represent ω and η in D, respectively. As

ωη is a limit edge of D, there is an edge in D from bvωcT to bvηcT for any two

≤T -incomparable vertices vω ∈ Rω and vη ∈ Rη. Now, choose such vertices vω

and vη so that both bvωcT and bvηcT avoid X ′. In H both bvωcT and bvηcT are

strongly connected, by the definition of the solidification. And as Rω and Rη have

a tail in C(X ′, ω′) and C(X ′, η′), respectively, we have that bvωcT ⊆ C(X ′, ω′)

and bvηcT ⊆ C(X ′, η′). In particular, bvωcT ∩ bvηcT = ∅. Consequently, any edge

in D from bvωcT to bvηcT has ≤T -incomparable endvertices and therefore is an

edge in H from C(X ′, ω′) to C(X ′, η′).

Now, let ω′η′ be a limit edge of H. We write ω and η for the unique preimage

under ζ ◦ ψ of ω′ and η′, respectively. We show that ωη is a limit edge in D. For

this let any finite vertex set X that separates ω and η in D be given. Our goal is

to find an edge in D from C(X,ω) to C(X, η). As in the proof of Lemma 10.4.2,

there are vertices vω and vη such that bvωcT ⊆ C(X,ω) and bvηcT ⊆ C(X, η).

Let X ′ = (dvωeT ∪ dvηeT ) r {vω, vη} and consider C(X ′, ω′) and C(X ′, η′) in H.

Using that T is normal in D it is easy to show that C(X ′, ω′) = bvωcT and

C(X ′, η′) = bvηcT . As ω′η′ is a limit edge of H there is an edge e in H from

C(X ′, ω′) to C(X ′, η′). Furthermore, the endpoints of e are ≤T -incomparable.

Now, e was added to T in the definition of H because there is an edge f of D

from bvωcT to bvηcT and this edge f is as desired.

Proof of Theorem 10.2. By Lemma 10.4.1 and its preceding text, the map ζ◦ψ is a

bijection. We extend this map to a bijection Θ between the horizon of D and that

of H as follows. Let y be an inner point of a limit edge ωη between ends of D. We

write ω′ and η′ for the image under ζ◦ψ of ω and η, respectively. By Lemma 10.4.3

we have that ω′η′ is a limit edge of H. Then we declare Θ(y) := y′ for y′ the point

that corresponds to y on ω′η′. Again, by Lemma 10.4.3, the map Θ is bijective;

we claim that Θ is even a homeomorphism. Indeed, using Lemma 10.4.2 (ii) it

is straightforward to check that Θ is continuous and using Lemma 10.4.2 (i) it is

straightforward to check that the inverse of Θ is continuous.
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10.5. Existence of arborescences

Not every digraph with a vertex that can reach all the other vertices has a normal

spanning arborescence, for example any digraph D obtained from an uncountable

complete graph by replacing every edge by its two orientations as separate directed

edges has none. Indeed, if T is a normal arborescence of D, then any two of its

vertices must be contained in the same ray starting from the root of T . Hence

T cannot be spanning. In this section we give a Jung-type existence criterion for

normal spanning arborescence.

For a digraph D we call a set U ⊆ V (D) of vertices dispersed in D if there is no

comb in D with all its teeth in U . Our main result of this section reads as follows:

Theorem 10.3. Let D be any digraph, U ⊆ V (D) and suppose that r ∈ V (D)

can reach all the vertices in U . If U is a countable union of dispersed sets, then

D has a normal arborescence that contains U and is rooted in r.

The converse of this is false in general. To see this consider the digraph D =

(ω1, E) with E = { (α, β) | α < β } and U = V (D). Here ω1 denotes the first

uncountable ordinal. On the one hand, no infinite subset of ω1 is dispersed, so ω1

cannot be written as a countable union of dispersed sets. On the other hand, the

spanning arborescence that consists of all the edges with tail 0 is normal in D.

However, the converse of Theorem 10.3 holds in an important case, namely if

the digraph D is solid. Indeed, if D is solid then any arborescence T ⊆ D that is

normal in D is locally finite by the separation properties of normal arborescences,

Lemma 10.2.4. Hence the levels of T are finite; in particular, dispersed.

An analogue of Theorem 10.3 holds for reverse normal arborescences:

Corollary 10.5.1. Let D be any digraph and suppose that U ⊆ V (D) is a

countable union of dispersed sets in
←
D. If r ∈ V (D) can be reached by all the

vertices in U , then D has a reverse normal arborescence that contains U and is

rooted in r.

Proof. Apply Theorem 10.3 to the reverse of D.

Proof of Theorem 10.3. Suppose that the vertex set U can be written as a count-

able union
⋃
{Un | n ∈ N } of sets that are dispersed in D. Then we can write U

as a collection {uα | α < κ} for a finite or limit ordinal κ such that every proper
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initial segment of the collection is dispersed in D as follows: We may assume that

the Un are pairwise disjoint. Choose a well-ordering ≤n of every Un. Then write

u ≤ u′ for vertices u ∈ Um and u′ ∈ Un with m < n, or with m = n and u ≤m u′.

It is straightforward to show that ≤ defines a well-ordering of U that is as desired.

We may assume that for every limit ordinal α < κ the vertex uα coincides with

some uξ with ξ < α; indeed, just increment the subscripts of the uα by one for α

an infinite ordinal, and recursively redefine uα to be some uξ with ξ < α for α a

limit ordinal.

Now, we recursively define ascending sequences (Tα)α<κ and (�α)α<κ such that

Tα is an arborescence and �α is a sensitive order of Tα that satisfies the following

conditions:

(i) Tα contains {uξ | ξ ≤ α } cofinally3 with regard to ≤Tα ;

(ii) if v, w ∈ Tα with v �α w are distinct and have a common ≤Tα-predecessor,

then w ∈ Tξ and v /∈ Tξ for some ξ < α;

(iii) there is no infinite strictly ascending sequence of vertices in Tα with regard

to �α.

Once the Tα are defined the arborescence T :=
⋃
{Tα | α < κ } is as desired;

indeed,
⋃
{�α| α < κ} is a sensitive order on T and thus T is normal in D by

Lemma 10.2.2. Finally, V (T ) contains U by condition (i).

Conditions (ii) and (iii) become relevant in the construction of the Tα, which

now follows. If α = 0, then let T0 be any r–u0 path in D and let �0:=≤T0 .
Otherwise β > 0. If β is a limit ordinal, then let Tβ :=

⋃
{Tα | α < β } and

�β=
⋃
{�α| α < β}. Then �β is a sensitive order on Tβ as each �α with α < β

is a sensitive order on Tα. Condition (i) for β follows from (i) for α < β and our

assumption that uβ coincides with uα for some α < β. Similarly, condition (ii) for

β follows from (ii) for α < β. Condition (iii) can be seen as follows. Suppose for

a contraction that there is an infinite strictly ascending sequence (wn)n∈N in Tβ

with regard to �β. Apply the star-comb lemma to the set {wn | n ∈ N } in the

undirected tree underlying Tβ. The return is an infinite subdivided undirected

star since an undirected comb would give rise to a directed comb in Tβ with all its

teeth in U ; here we use that by (i) every tooth has a vertex of U in its up-closure

3A subset B of a poset A = (A,≤) is cofinal in A if for every a ∈ A there is a b ∈ B with

a ≤ b.
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and that every proper initial segment of {uα | α < κ} is dispersed. Let Z be the

set of ≤Tβ -up-neighbours of the centre of the subdivided star that contain a tooth

in their ≤Tβ -up-closure. Since �β is branch sensitive we may write Z as a strictly

ascending collection Z = { zn | n ∈ N } with regard to �β. Choose z∗ ∈ Z∩V (Tα)

so that α is minimal with Z ∩V (Tα) 6= ∅. By (ii) we have that zn �β z∗ for every

zn 6= z∗ contradicting that the zn form a strictly ascending sequence with regard

to �β.

Now, suppose that β = α + 1 is a successor ordinal. If Tα already contains uβ,

we let Tβ := Tα. Otherwise uβ is not contained in Tα. As r can reach uβ there is

a Tα–uβ path P . By (iii) for α, we may choose P such that its first vertex vP is

�β-maximal among all the starting vertices of Tα–uβ paths. We let Tβ := Tα ∪P .

Note that this ensures condition (i) for Tβ.

In order to define �β we only need to describe how the vertices from v̊PP relate

to the vertices in Tα. We define vertices of P − vP to be smaller than all the

vertices larger than vP and larger than all others (with regard to the normal order

of Tα). Note that this ensures (ii). Condition (iii) holds because there is no infinite

strictly ascending sequence of vertices in Tα with regard to �α and Tβ extends Tα

finitely.

It remains to show that �β is a sensitive order on Tβ. That �β is branch

sensitive is immediate from the construction so let us prove that it is path sensitive.

Suppose for a contradiction thatQ is a Tβ-path from w to v with≤Tβ -incomparable

vertices v �β w. Since Tα is normal either v or w are contained in P − vP . If

w ∈ P − vP , then vPPwQv is a path violating that �α is path sensitive; unless

vP and v are ≤Tβ comparable, but then we would have w �β v by the definition

of �β. In the other case, the path wQvPuβ would have been a better choice

for P .
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Part III.

Stars and combs
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It is well known, and easy to see, that every finite connected graph contains either

a long path or a vertex of high degree. Similarly,

Every infinite connected graph contains either a ray or a vertex of

infinite degree
(∗)

[20, Proposition 8.2.1]. Here, a ray is a one-way infinite path. Call two properties

of infinite graphs dual, or complementary, in a class of infinite graphs if they

partition that class. Despite (∗), the two properties of ‘containing a ray’ and

‘containing a vertex of infinite degree’ are not complementary in the class of all

infinite graphs: an infinite complete graph, for example, contains both. Hence

it is natural to ask for structures, more specific than vertices of infinite degree

and rays, whose existence is complementary to that of rays and vertices of infinite

degree, respectively. Such structures do indeed exist.

For example, the property of having a vertex of infinite degree is trivially

complementary, for connected infinite graphs, to the property that all distance

classes from any fixed vertex are finite. This duality is employed to prove (∗):
if all the distance classes from some vertex are finite, then applying the infinity

lemma [20, Lemma 8.1.2] to these classes yields a ray.

Similarly, having a rank in the sense of Schmidt [64] is complementary for

infinite graphs to containing a ray, see [20, Lemma 8.5.2]. This duality allows for

an alternative proof of (∗) that avoids the use of compactness, as follows. If G

is rayless, connected and infinite, then it has some rank α > 0. Hence there is a

finite vertex set X ⊆ V (G) such that every component of G −X has rank < α.

Then G−X must have infinitely many components, and so by pigeonhole principle

some vertex in X has infinite degree in G.

A stronger and localised version of (∗) is the star-comb lemma [20, Lemma 8.2.2],

a standard tool in infinite graph theory. Recall that a comb is the union of a ray

R (the comb’s spine) with infinitely many disjoint finite paths, possibly trivial,

that have precisely their first vertex on R. The last vertices of those paths are the

teeth of this comb. Given a vertex set U , a comb attached to U is a comb with all

its teeth in U , and a star attached to U is a subdivided infinite star with all its

leaves in U . Then the set of teeth is the attachment set of the comb, and the set

of leaves is the attachment set of the star.
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Star-comb lemma. Let U be an infinite set of vertices in a connected graph G.

Then G contains either a comb attached to U or a star attached to U .

Although the star-comb lemma trivially implies assertion (∗), with U := V (G),

it is not primarily about the existence of one subgraph or another. Rather, it tells

us something about the nature of connectedness in infinite graphs: that the way

in which they link up their infinite sets of vertices can take two fundamentally

different forms, a star and a comb. These two possibilities apply separately to

all their infinite sets U of vertices, and clearly, the smaller U the stronger the

assertion.

Just like the existence of rays or vertices of infinite degree, the existence of

stars or combs attached to a given set U is not complementary (in the class of

all infinite connected graphs containing U). In the first chapter of this part, we

determine structures that are complementary to stars, and structures that are

complementary to combs (always with respect to a fixed set U).

As stars and combs can interact with each other, this is not the end of the

story. For example, a given set U might be connected in G by both a star and

a comb, even with infinitely intersecting sets of leaves and teeth. To formalise

this, let us say that a subdivided star S dominates a comb C if infinitely many

of the leaves of S are also teeth of C. A dominating star in a graph G then is

a subdivided star S ⊆ G that dominates some comb C ⊆ G; and a dominated

comb in G is a comb C ⊆ G that is dominated by some subdivided star S ⊆ G.

In three further chapters we shall find complementary structures to the existence

of these substructures (again, with respect to some fixed set U). Here, then is an

overview of the first four chapters in this part, each naming the substructure for

which duality theorems are proved in its title:

10: arbitrary stars and combs

11: dominating stars and dominated combs

12: undominated combs

13: undominating stars

Just like the original star-comb lemma, our results can be applied as structural

tools in other contexts. Examples of such applications can be found in Chapter 12,

13, 14 and in this part’s last chapter, which can be seen as a spin-off of its previous
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chapters: There we provide further applications of our duality theorems and of

the techniques that we use in order to prove them.
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11. Arbitrary stars and comb

In this chapter we prove five duality theorems for combs, and two for stars. The

complementary structures they offer are quite different, and not obviously inter-

derivable.

Our first result is obtained by techniques of Jung [43]. Recall that a rooted tree

T ⊆ G is normal in G if the endvertices of every T -path in G are comparable in

the tree-order of T , cf. [20].

Theorem 11.1. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a comb attached to U ;

(ii) there is a rayless normal tree T ⊆ G that contains U .

To see that (ii) implies that G—in fact, the normal tree T—contains a star

attached to U when U is infinite, pick from among the nodes of T that lie below

infinitely many vertices of T in U one that is maximal in the tree-order of T .

Then its up-closure in T contains the desired star.

Even though the normal tree from (ii) is in general not spanning, its separation

properties still tell us a lot about the ambient graph G. Our next result captures

this overall structure of G more explicitly (refer to [20] for the definition of tree-

decompositions and adhesion sets):

Theorem 11.2. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a comb attached to U ;

(ii) G has a rayless tree-decomposition into parts each containing at most finitely

many vertices from U and whose parts at non-leaves of the decomposition

tree are all finite.
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Moreover, the tree-decomposition in (ii) can be chosen with connected adhesion

sets.

For U = V (G), this theorem implies the following characterisation of rayless

graphs by Halin [39]: G is rayless if and only if G has a rayless tree-decomposition

into finite parts.

While Theorems 11.1 and 11.2 tell us about the structure of the graph around U ,

they further imply a more localised duality theorem for combs. Call a finite vertex

set X ⊆ V (G) critical if the collection C̆X of the components of G − X having

their neighbourhood precisely equal to X is infinite.

Theorem 11.3. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a comb attached to U ;

(ii) for every infinite U ′ ⊆ U there is a critical vertex set X ⊆ V (G) such that

infinitely many of the components in C̆X meet U ′.

Critical vertex sets were introduced in [48]. As tangle-distinguishing separators,

they have a surprising background involving the Stone-Čech compactification of G,

Robertson and Seymour’s tangles from their graph-minor series, and Diestel’s

tangle compactification, cf. [21,47,63]. Moreover, it turns out that Theorem 11.3

implies another characterisation of rayless graphs by Halin [38].

Schmidt’s ranking of rayless graphs was employed by Bruhn, Diestel, Georga-

kopoulos and Sprüssel [3] to prove the unfriendly partition conjecture for the class

of rayless graphs by an involved transfinite induction on their rank. We will show

how the notion of a rank can be adapted to take into account a given set U , so as

to give a recursive definition of those graphs that do not contain a comb attached

to U . This yields our fourth duality theorem for combs:

Theorem 11.4. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a comb attached to U ;

(ii) G has a U-rank.

With these four complementary structures for combs at hand, the question

arises whether there is another complementary structure combining them all. Our

fifth duality theorem for combs shows that this is indeed possible:
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Theorem 11.5. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a comb attached to U ;

(ii) G has a tree-decomposition that has the list (†) of properties.

For the precise statement of this theorem, see Section 11.2.5. Essentially, the

list (†) consists of the following four properties:

– its decomposition tree stems from a normal tree as in Theorem 11.1;

– it has the properties of the tree-decomposition in Theorem 11.2;

– the infinite-degree nodes of its decomposition tree correspond bijectively to

the critical vertex sets of G that are relevant in Theorem 11.3;

– the rank of its decomposition tree is equal to the U -rank of G

from Theorem 11.4.

Now that we have stated all the duality theorems for combs, let us turn to our

two duality theorems for stars. Recall that a vertex v of G dominates a ray R ⊆ G

if there is an infinite v–(R − v) fan in G. Rays not dominated by any vertex are

undominated, cf. [20]. Our first duality theorem for stars reads as follows:

Theorem 11.6. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a star attached to U ;

(ii) there is a locally finite normal tree T ⊆ G that contains U and all whose

rays are undominated in G.

To see that (ii) implies that G—in fact, the normal tree—contains a comb attached

to U when U is infinite, pick a ray in the locally finite down-closure of U in the

tree and extend it to a comb attached to U .

We have seen normal trees before in our first duality theorem for combs, Theo-

rem 11.1. Theorem 11.6 above compares with Theorem 11.1 as follows. The only

additional property required of the normal trees that are complementary to combs

is that they are rayless. Similarly, the normal trees that are complementary to
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stars have the additional property that they are locally finite. However, they have

the further property that all their rays are undominated in G.

This further property is necessary to ensure that the normal trees and stars in

Theorem 11.6 exclude each other. To see this, let G be obtained from a ray R by

completely joining its first vertex r to all the other vertices of R, and suppose that

U = V (G). Then R ⊆ G with root r is a locally finite normal tree containing U .

But the edges of G at r form a star attached to U , so the further property is

indeed necessary.

By contrast, we do not need to require in Theorem 11.1 that all the stars in

the normal trees that are complementary to combs are undominating in G: this

is already ensured by the nature of normal trees (see Lemma 11.2.4 for details).

Our second duality theorem for stars is phrased in terms of tree-decompositions,

similar to Theorem 11.2:

Theorem 11.7. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a star attached to U ;

(ii) G has a locally finite tree-decomposition with finite and pairwise disjoint

adhesion sets such that each part contains at most finitely many vertices

from U .

Moreover, the tree-decomposition in (ii) can be chosen with connected adhesion

sets.

This chapter is organised as follows. Section 11.1 provides the tools and termino-

logy that we use throughout this part. Section 11.2 and 11.3 are dedicated to the

duality theorems for combs and stars respectively.

Throughout this part, G = (V,E) is an arbitrary graph.

11.1. Tools and terminology

An independent set M of edges in a graph G is called a matching of A and B for

vertex sets A,B ⊆ V (G) if every edge in M has one endvertex in A and the other

in B.
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11.1.1. Star-Comb Lemma

The predecessors of the star-comb lemma are the following facts:

Lemma 11.1.1 ([20, Proposition 9.4.1]). For every m ∈ N there is an n ∈ N such

that each connected finite graph with at least n vertices either contains a path of

length m or a star with m leaves as a subgraph.

Lemma 11.1.2 ([20, Proposition 8.2.1]). A connected infinite graph contains

either a ray or a vertex of infinite degree.

The latter is a direct consequence of the infinity lemma, [20, Lemma 8.1.2].

Lemma 11.1.1 has been generalised to higher connectivity, [34,42,53], and so has

Lemma 11.1.2 in [36, 40, 53]. For an overview we recommend the introduction of

[36].

For locally finite trees, Lemma 11.1.2 already yields a comb:

Lemma 11.1.3. If U is an infinite set of vertices in a locally finite rooted tree T ,

then T contains a comb attached to U whose spine starts at the root.

Proof. The down-closure of U in the tree-order of T induces a locally finite subtree

which, by Lemma 11.1.2 above, contains a ray starting at the root, say. This ray

can be extended recursively to the desired comb.

For rayless trees, the situation is simpler:

Lemma 11.1.4. If U is an infinite set of vertices in a rayless rooted tree T , then

T contains a star attached to U which is contained in the up-closure of its central

vertex in the tree-order of T .

Proof. Among all the nodes of T that lie below some infinitely nodes from U , pick

one node t, say, that is maximal in the tree-order of T . Then t has infinite degree

and we find the desired star with centre t in the up-closure of t.

We already stated the star-comb lemma in its basic form in the introduction,

but a stronger version is known:

Lemma 11.1.5 (Star–comb lemma). Let G be any connected graph and let U ⊆
V (G) be infinite. If κ ≤ |U | is a regular 1 cardinal, then U has a subset U ′ of size

κ such that at least one of the following assertions holds:

1A cardinal κ is regular if there is no family (κα | α < λ ) with λ < κ and all κα < κ such that⋃
α<λ κα = κ. For example, ℵ0 and ℵ1 are regular while ℵω =

⋃
n<ω ℵn is not.
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(i) G contains a comb attached to U whose attachment set is U ′;

(ii) G contains a star attached to U whose attachment set is U ′.

In particular, if κ is uncountable, then (i) fails and (ii) holds for every such U ′.

For singular cardinals κ this version of the star-comb lemma is not true in general,

as the following example demonstrates. Consider the singular cardinal κ = ℵω.

Let G be the rayless tree that is obtained from a K1,ω with ω as set of leaves by

adding pairwise disjoint copies of K1,ℵn , one for each non-zero n < ω, such that

K1,ℵn meets K1,ω precisely in n and n happens to be the central vertex of K1,ℵn .

Then the rayless tree G cannot contain a comb, and it cannot contain subdivision

of a star K1,κ since every vertex of G has degree < κ, but the vertex set of G has

size κ.

Recently, Gollin and Heuer [36] introduced a way more complex version of the

star-comb lemma above for the more difficult singular case, the Frayed-Star-Comb

Lemma, [36, Corollary 8.1].

The version for regular cardinals has been proved in, e.g., [27] and [36]. We

repeat the short proof here for the sake of convenience:

Proof of Lemma 11.1.5. Using Zorn’s lemma we find a maximal tree T ⊆ G all

whose edges lie on a U -path in T . Then T contains U .

If T has a vertex v of degree κ, then its incident edges extend to v–U paths

whose union is the desired star with U ′ its attachment set.

Otherwise every vertex of T has degree < κ. After fixing an arbitrary vertex,

an inductive argument—utilising the regularity of κ—shows that every distance

class of T has size < κ. As V (T ) is the countable union of these distance classes,

we deduce from the regularity of κ that κ = ℵ0 is the only possibility. This, then,

means that T is locally finite, and hence contains a ray by Lemma 11.1.2. As every

edge of T lies on a U -path in T , an inductive construction turns this ray into a

comb attached to U , and we may let U ′ consist of its ℵ0 = κ many teeth.

We remark that this version of the star-comb lemma can be proved alternatively

by means of [46, Lemma III.6.14].
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11.1.2. Separations

For a vertex set X ⊆ V (G) we denote the collection of the components of G−X
by CX . If any X ⊆ V (G) and C ⊆ CX are given, then these give rise to a

separation of G which we denote by

{X,C } :=
{
V r V [C ] , X ∪ V [C ]

}
where V [C ] =

⋃
{V (C) | C ∈ C }. Note that every separation {A,B} of G can

be written in this way. For the orientations of {X,C } we write

(X,C ) :=
(
V r V [C ] , X ∪ V [C ]

)
and (C , X) :=

(
V [C ] ∪X , V r V [C ]

)
.

We write {X,C} and (X,C) and (C,X) instead of {X, {C}} and (X, {C}) and

({C}, X) respectively. The set of all finite-order separations of a graph G is

denoted by Sℵ0 = Sℵ0(G).

11.1.3. Ends of graphs

We write X = X (G) for the collection of all finite subsets of the vertex set V

of G, partially ordered by inclusion. An end of G, as defined by Halin [37], is an

equivalence class of rays of G, where a ray is a one-way infinite path. Here, two

rays are said to be equivalent if for every X ∈ X both have a subray (also called

tail) in the same component of G−X. So in particular every end ω of G chooses,

for every X ∈ X , a unique component C(X,ω) = CG(X,ω) of G − X in which

every ray of ω has a tail. In this situation, the end ω is said to live in C(X,ω).

The set of ends of a graph G is denoted by Ω(G). We use the convention that Ω

always denotes the set of ends Ω(G) of the graph named G.

A vertex v of G dominates a ray R ⊆ G if there is an infinite v–(R − v)

fan in G. Rays not dominated by any vertex are undominated. An end of G is

dominated and undominated if one (equivalently: each) of its rays is dominated

and undominated, respectively. If v does not dominate ω, then there is an X ∈ X
which strictly separates v from ω in that v /∈ X ∪ C(X,ω). More generally, if no

vertex of Y ∈ X dominates ω, then there is an X ∈ X strictly separating Y from

ω in that Y avoids the union X∪C(X,ω). Let us say that an oriented finite-order

separation (A,B) strictly separates a set X ⊆ V (G) of vertices from a set Ψ ⊆ Ω

of ends if X ⊆ ArB and every end in Ψ lives in a component of G[B r A].
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Let us say that an end ω of G is contained in the closure of M , where M is

either a subgraph of G or a set of vertices of G, if for every X ∈ X the component

C(X,ω) meets M . Equivalently, ω lies in the closure of M if and only if G contains

a comb attached to M with its spine in ω. We write ∂ΩM for the subset of Ω

that consists of the ends of G lying in the closure of M . Note that ∂ΩH usually

differs from Ω(H) for subgraphs H ⊆ G: For example, if G is a ladder and H is

its outer double ray, then ∂ΩH consists of the single end of G while Ω(H) consists

of the two ends of the double ray in H. Readers familiar with |G| as in [20] will

note that ∂ΩM is the intersection of Ω with the closure of M in |G|, which in

turn coincides with the topological frontier of M r E̊ in the space |G| r E̊. If

an end ω of G does not lie in the closure of M , and if X ∈ X witnesses this (in

that C(X,ω) avoids M), then X is said to separate ω from M (and M from ω).

Carmesin [15] observed that

Lemma 11.1.6. Let G be any graph. If H ⊆ G is a connected subgraph and ω is

an undominated end of G lying in the closure of H, then H contains a ray from ω.

Proof. Since ω lies in the closure of H we find a comb in G attached to H with

spine in ω. And as ω is undominated in G, the star-comb lemma in H must

return a comb in H attached to the attachment set of the first comb. Then the

two combs’ spines are equivalent in G.

Another way of viewing the ends of a graph goes via its directions : choice maps

f assigning to every X ∈ X a component of G − X such that f(X ′) ⊆ f(X)

whenever X ′ ⊇ X. Every end ω defines a unique direction fω by mapping every

X ∈ X to C(X,ω). Conversely, Diestel and Kühn proved in [27] (Theorem 11.1.7

below) that every direction in fact comes from a unique end in this way, thus giving

a one-to-one correspondence between the ends and the directions of a graph.

The advantage of this point of view stems from an inverse limit2 description

of the directions: note that X is directed3 by inclusion; for every X ∈ X let CX

consist of the components of G −X; endow each CX with the discrete topology;

and let cX′,X : CX′ → CX for X ′ ⊇ X send each component of G − X ′ to the

component of G − X containing it; then {CX , cX′,X , X} is an inverse system

whose inverse limit, by construction, consists of the directions.

2For details on inverse limits, see e.g. [32] or [62].
3A poset (P,≤) is said to be directed if for all p, q ∈ P there is an r ∈ P with r ≥ p and r ≥ q.
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Theorem 11.1.7 ([27, Theorem 2.2]). Let G be any graph. Then the map ω 7→ fω

is a bijection between the ends of G and its directions, i.e. Ω = lim←−CX .

From now on we do not distinguish between Ω and the inverse limit space lim←−CX

with the inverse limit topology, and we call Ω the end space.

If a graph G is locally finite, then the star-comb lemma always yields a comb.

This fact has been generalised in Lemma 11.1.8 below, where the proof relies on

the combination of Halin’s combinatorial definition of an end with the topological

inverse limit point of view on ends as directions:

Lemma 11.1.8. Let G be any graph and let U ⊆ V (G) be infinite. If for every

X ∈ X only finitely many components of G−X meet U , then ∂ΩU is a non-empty

and compact subspace of Ω.

Proof. For every X ∈ X let KX ⊆ CX consist of the finitely many components of

G−X that meet U . Then the closed subspace ∂ΩU of the inverse limit Ω = lim←−CX

is non-empty and compact as inverse limit of its non-empty compact Hausdorff

projections KX , cf. [32, Corollary 2.5.7].

The combination of topology and infinite graph theory is known as topological

infinite graph theory.4 And in fact, Lemma 11.1.8 can be employed5 to deduce a

well-known result of Diestel from this field, [24, Theorem 4.1], which states that

a graph is compactified by its ends if and only if it is tough in that deleting any

finite set of vertices always leaves only finitely many components.

Since Lemma 11.1.8 yields combs even when there are both combs and stars

(for example if G is an infinite complete graph), this plus of control makes it a

useful addition to the star-comb lemma.

11.1.4. Critical vertex sets

We have indicated above that adding the ends generally does not suffice to compa-

ctify a graph with the usual topologies.

4An overview on this young field is presented in [19,20].
5If G is tough and a covering of G tΩ with basic open sets is given, first apply Lemma 11.1.8

to V to obtain a finite subcover O of Ω, then apply Lemma 11.1.8 to U = V r
⋃
O to deduce

that U is finite and, therefore, Gr
⋃
O is compact.
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However, every graph is naturally compactified by its ends plus critical vertex

sets, where a finite setX of vertices of an infinite graphG is critical if the collection

C̆X := {C ∈ CX | N(C) = X }

is infinite (cf. [21, 47, 48]). When G is connected, all its critical vertex sets are

non-empty, and so it follows that G having a critical vertex set is stronger than G

containing an infinite star: On the one hand, given a critical vertex set X, each

x ∈ X sends an edge to each of the infinitely many components C ∈ C̆X and

therefore is the centre of an infinite star. On the other hand, if G is obtained from

a ray R by completely joining its first vertex r to all the other vertices of R, then

G contains an infinite star but no critical vertex set.

Let us say that a critical vertex set X of G lies in the closure of M where M is

either a subgraph ofG or a set of vertices of G, if infinitely many components in C̆X

meet M . The collection of all critical vertex sets of G is denoted by crit(G). The

combinatorial remainder of a graph G is the disjoint union Γ(G) := Ω(G)tcrit(G).

As usual, Γ = Γ(G), and ∂ΓM consists of those γ ∈ Γ lying in the closure of M .

We obtain a slight strengthening of the star-comb lemma:

Lemma 11.1.9. Let G be any graph and let U ⊆ V (G) be infinite. Then at least

one of the following assertions holds:

(i) G has an end lying in the closure of U ;

(ii) G has a critical vertex set lying in the closure of U .

Proof. If there is a vertex set X ′ ∈ X such that infinitely many components of

G−X ′ meet U , then X ′ includes a critical vertex set X such that infinitely many

components in C̆X meet U , giving (ii). Otherwise Lemma 11.1.8 gives (i).

11.1.5. Normal trees

A rooted tree T ⊆ G, not necessarily spanning, is said to be normal in G if the

endvertices of every T -path in G are comparable in the tree-order of T , [20, p. 220].

We say that a vertex set W ⊆ V (G) is normally spanned in G if there is a normal

tree in G that contains W . A graph G is normally spanned if V (G) is normally

spanned, i.e., if G has a normal spanning tree.
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The generalised up-closure bbxcc of a vertex x ∈ T is the union of bxc with

the vertex set of
⋃

C (x), where the set C (x) consists of those components of

G − T whose neighbourhoods meet bxc. Every graph G reflects the separation

properties of each normal tree T ⊆ G (we generalise [20, Lemma 1.5.5] to possibly

non-spanning normal trees):

Lemma 11.1.10. Let G be any graph and let T ⊆ G be any normal tree.

(i) Any two vertices x, y ∈ T are separated in G by the vertex set dxe ∩ dye.

(ii) Let W ⊆ V (T ) be down-closed. Then the components of G −W come in

two types: the components that avoid T ; and the components that meet T ,

which are spanned by the sets bbxcc with x minimal in T −W .

Proof. (i) The proof is that of [20, Lemma 1.5.5 (i)].

(ii) In a first step, we prove that if a component C of G −W meets T and x

is minimal in C ∩ T , then C = G[bbxcc]. The backward inclusion holds because

bbxcc is connected, avoids W and contains x. The forward inclusion can be seen

as follows. On the one hand, C ∩T ⊆ bxc. Indeed, by (i), any x–y path in C with

y ∈ C ∩ T contains a vertex below both x and y and every such vertex must be

the minimal vertex x itself. On the other hand, C − T ⊆
⋃

C (x). Indeed, every

component C ′ of C−T is a component of G−T since W ⊆ T , and by C∩T ⊆ bxc
each neighbour of C ′ inside C must be contained in bxc.

Now let us deduce (ii). Without loss of generality W is not empty. To begin,

we prove that each component C of G − W meeting T is spanned by bbxcc for

some minimal x in T −W . By the first step, it suffices to show that a minimal

vertex x of C ∩ T is also minimal in T −W , a fact that we verify as follows. The

vertices below x form a chain dte in T . As t is a neighbour of x, the maximality

of C as a component of G −W implies that t ∈ W , giving dte ⊆ W since W is

down-closed. Hence x is also minimal in T −W .

Conversely, if x is any minimal element of T −W , it is clearly also minimal in

C ∩ T for the component C of G −W to which it belongs. Together with the

first step we conclude that C is a component of G −W meeting T and spanned

by bbxcc.

As a consequence, the normal rays of a normal spanning tree T ⊆ G, those that

start at the root, reflect the end structure of G in that every end of G contains

exactly one normal ray of T , [20, Lemma 8.2.3]. More generally,
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Lemma 11.1.11. If G is any graph and T ⊆ G is any normal tree, then every end

of G in the closure of T contains exactly one normal ray of T . Moreover, sending

these ends to the normal rays they contain defines a bijection between ∂ΩT and

the normal rays of T .

Proof. Let ω be any end of G in the closure of T . By Lemma 11.1.10 (i) at most

one normal ray of T is contained in ω, and so it remains to find a normal ray of

T that lies in ω. For this, we pick a comb in G attached to T with its spine in ω.

We construct a normal ray of T in ω, as follows.

Starting with the root v0 of T , recursively choose nodes v0, v1, v2, . . . of T such

that vn+1 is the minimal vertex of T−dvne for which bbvn+1cc spans the component

of G−dvne that contains all but finitely many vertices of the comb. Such a vertex

vn+1 exists by Lemma 11.1.10 (ii). And it is an upward neighbour of vn, which can

be seen by applying Lemma 11.1.10 (i) to vn and vn+1. In conclusion v0v1v2 . . . is

a normal ray of T that is equivalent in G to the spine of the comb.

The ‘moreover’ part holds as every normal ray of T has its end in G contained

in the closure of T .

Consequently, if G contains a comb attached to T , then T contains exactly one

normal ray that is equivalent in G to that comb’s spine.

Lemma 11.1.12. Let G be any graph and let T ⊆ G be any normal tree. Then

every critical vertex set of G in the closure of T is contained in T as a chain.

Proof. Let X be any critical vertex set of G that lies in the closure of T . For

every component C ∈ C̆X that meets T , pick a C–X edge from T . By the

pigeonhole principle, some infinitely many of these edges have the same endpoint

x ∈ X, giving rise to an infinite star in T . Then, by Lemma 11.1.10, dxe pairwise

separates all the leaves of the star above x at once; let us write L for the set

of these leaves. Since dxe is finite, all but finitely many of the infinitely many

components in C̆X that meet L are also components of G−dxe. And every vertex

from X defines at least one path of length two between distinct such components,

by the definition of critical vertex sets. Therefore, no vertex in X can be contained

in a component of G− dxe; in other words, X is contained in the chain dxe.
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11.1.6. Containing vertex sets cofinally

We say that a rooted tree T ⊆ G contains a set W cofinally if W ⊆ V (T ) and W

is cofinal6 in the tree-order of T . Interestingly, our next lemma does not require

T to be normal.

Lemma 11.1.13. Let G be any graph. If T ⊆ G is a rooted tree that contains a

vertex set W cofinally, then ∂ΓT = ∂ΓW .

Proof. We first prove that ∂ΩT = ∂ΩW . The backward inclusion ∂ΩT ⊇ ∂ΩW

holds as T contains W . For the forward inclusion we prove equivalently that

every end of G that is not contained in the closure of W also does not lie in

the closure of T . So consider any end ω ∈ Ω r ∂ΩW , and pick a finite vertex

set X ⊆ V (G) separating W from ω. We claim that the finite set X ′ consisting

of the vertices in X and all vertices in the down-closure of X ∩ V (T ) in T , i.e.

X ′ := X ∪ dX ∩V (T )eT , separates T from ω. Indeed, suppose for a contradiction

that the component C := C(X ′, ω) ofG−X ′ meets T . Consider a vertex v ∈ C∩T .

As X ′ ∩ V (T ) is down-closed in T , the up-closure bvcT is included in C. Hence—

as T contains W cofinally—the component C also contains a vertex from W ,

contradicting the assumption that X ⊆ X ′ separates W from ω.

It remains to show that ∂ΓT and ∂ΓW coincide on crit(G). From W ⊆ T we

infer ∂ΓW ⊆ ∂ΓT , so it suffices to show that every critical vertex set that lies in

the closure of T does also lie in the closure of W . For this, let any critical vertex

set X ∈ ∂ΓT be given. We pick, for every component C ∈ C̆X meeting T , a vertex

u(C) of T in C. Then applying the star-comb lemma in T to this infinite vertex

set yields either a star or a comb attached to it. Since the finite vertex set X

pairwise separates every two vertices in the attachment set at once, we in fact get

a star. Consider the centre of the star. This is a vertex of T that has infinitely

many pairwise incomparable vertices u(C) above it. Using that T contains W

cofinally, we find a vertex w(C) in T ∩W above every u(C). As X is finite, we

may assume without loss of generality that every vertex w(C) is contained C.

Then X lies in the closure of the vertex set formed by the vertices w(C), and

hence X ∈ ∂ΓW follows.

6A subset X of a poset P = (P,≤) is cofinal in P , and ≤, if for every x ∈ X there is a p ∈ P
with p ≥ x.
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11.1.7. Tree-decompositions and S-trees

In this part we assume familiarity with [20, Section 12.3] up to but not including

Lemma 12.3.2, and with the concepts of oriented separations and S-trees for S a

set of separations of a given graph as presented in [20, Section 12.5]. Whenever

we introduce a tree-decomposition as (T,V) we tacitly assume that V = (Vt)t∈T .

Usually we refer to the adhesion sets of a tree-decompositions as separators. We

call a tree-decomposition rayless and locally finite if the decomposition tree T is

rayless and locally finite, respectively. A star-decomposition is a tree-decomposi-

tion whose decomposition-tree is a star K1,κ for some cardinal κ. A rooted tree-

decomposition is a tree-decomposition (T,V) where T is rooted. We say that a

rooted tree-decomposition (T,V) of G covers a vertex set U ⊆ V (G) cofinally if

the set of nodes of T whose parts meet U is cofinal in the tree-order of T .

We will need the following standard facts about tree-decompositions:

Lemma 11.1.14 ([20, Lemma 12.3.1]). Let G be any graph with a tree-decomposi-

tion (T,V) and let t1t2 be any edge of T and let T1, T2 be the components of

T − t1t2, with t1 ∈ T1 and t2 ∈ T2. Then Vt1 ∩ Vt2 separates A1 :=
⋃
t∈T1 Vt from

A2 :=
⋃
t∈T2 Vt in G.

Corollary 11.1.15. Let (T,V) be any tree-decomposition of any graph G. If a

connected subgraph H ⊆ G avoids a part Vt, then there is a unique component T ′

of T − t with H ⊆
⋃
t′∈T ′ G[Vt′ ] and H avoids every part that is not at a node of

the component T ′.

A tree-decomposition (T,V) makes T into an S-tree for the set S of separations

it induces, cf. [20]. The converse is true, for example if T is rayless, but false in

general (it is no longer clear that every vertex of G lives in some part if T contains

a ray). By a simple distance argument, however, the converse holds in a special

case for which we need the following definition. Suppose that (T, α) is an S-tree

with T rooted in r ∈ T . We say that the separators of (T, α) are upwards disjoint

if for every two edges
→
e <

→
f pointing away from the root r the separators of α(

→
e)

and α(
→
f ) are disjoint. Then every S-tree with upwards disjoint separators induces

a tree-decomposition.

We use the following non-standard notation for S-trees (T, α): for an edge

xy = e of the decomposition tree T we abbreviate α(e, x, y) = α(x, y).
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11.1.8. Tree-decompositions and S-trees displaying sets of

ends

In this section we give a brief summary of how the ends of G relate to the

decomposition trees of tree-decompositions and S-trees. For the sake of readabi-

lity, we introduce all needed concepts for S-trees and let the tree-decompositions

inherit these concepts from their corresponding S-trees.

Let (T, α) be any Sℵ0-tree. If ω is an end of G, then ω orients every finite-order

separation {A,B} ∈ Sℵ0 of G towards the side K ∈ {A,B} for which every ray

in ω has a tail in G[K]. In this way, ω induces a consistent orientation of
→
Sℵ0

and, via α, also induces a consistent orientation O of
→
E(T ). Then ω either lives

at a unique node t ∈ T in that the star
→
Ft = { (e, s, t) ∈

→
E(T ) | e = st ∈ T }

at t is included in O, or corresponds naturally to a unique end η of T in that for

some (equivalently: every) ray t1t2 . . . in η all oriented edges (tntn+1, tn, tn+1) are

contained in O. When (T, α) corresponds to a tree-decomposition (T,V) and ω

lives at t, then we also say that ω lives in the part Vt at t. Moreover, we remark

that ω lives in Vt if and only if some (equivalently: every) ray in ω has infinitely

many vertices in Vt. Likewise, ω corresponds to η if and only if some (equivalently:

every) ray R ∈ ω follows the course of some (equivalently: every) ray W ∈ η (in

that for every tail W ′ ⊆ W the ray R has infinitely many vertices in
⋃
t∈W ′ Vt).

In both cases ‘having infinitely many vertices in’ cannot be replaced with ‘having

a tail in’, e.g. consider decomposition trees that are infinite stars or combs whose

teeth avoid their spines.

Consider the map τ : Ω(G)→ Ω(T )tV (T ) that takes each end of G to the end

or node of T which it corresponds to or lives at respectively. This map essentially

captures how the ends of G relate to the ends of T . We say that (T, α) displays

a set of ends Ψ ⊆ Ω(G) if τ restricts to a bijection τ � Ψ: Ψ → Ω(T ) between Ψ

and the end space of T and maps every end that is not contained in Ψ to some

node of T .

It is a natural and largely open question for which subsets Ψ ⊆ Ω(G) a graph G

has a tree-decomposition (T,V) that displays Ψ. Only recently, Carmesin achieved

a major breakthrough by providing a positive answer for Ψ the set of undominated

ends of G. In order to state his result in its full strength, we introduce two more

definitions and motivate them in a lemma.
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Suppose that T is rooted in r ∈ T . Let us say that the separators of (T, α) are

upwards disjoint if for every two edges
→
e <

→
f pointing away from the root r the

separators of α(
→
e) and α(

→
f ) are disjoint. Here,

→
e = (e, s, t) points away from r if

r ≤T s <T t, i.e., if s ∈ rT t. If the finite separators of (T, α) are upwards disjoint,

then by the star-comb lemma and a simple distance argument, every end of T

has some ends of G corresponding to it (i.e. τ−1(η) 6= ∅ for every end η of T ).

And if additionally (T, α) is upwards connected in that for every edge
→
e pointing

away from the root r the induced subgraph G[B] stemming from (A,B) = α(
→
e)

is connected, then T already displays the set of those ends of G that correspond

naturally to ends of T (i.e. |τ−1(η)| = 1 for every end η of T ):

Lemma 11.1.16. Let G be any graph. Every upwards connected rooted Sℵ0-tree

(T, α) with upwards disjoint separators displays the ends of G that correspond to

the ends of T .

Proof. By our preliminary remarks it remains to show that for every end η of T

there is at most one end of G corresponding to η. Suppose for a contradiction that

η is an end of T such that two distinct ends ω 6= ω′ of G correspond to it, and write

R for the rooted ray of T that represents η. Pick X ∈ X such that ω and ω′ live

in distinct components of G−X. As the separators of (T, α) are upwards disjoint,

by a distance argument we find an edge e ∈ R with orientation
→
e away from the

root such that the separation (A,B) = α(
→
e ) satisfies B∩X = ∅. Now both of the

two ends ω and ω′ have rays in G[B] because both of them correspond to η. And

in G[B] we find paths connecting these rays, since (T, α) is upwards connected.

But then these rays and paths avoid X, contradicting the choice of X.

Now we are ready to state the following result of Carmesin [15] that solved a

conjecture of Diestel [17] from 1992 (in amended form) and, as a corollary, also

solved a conjectured of Halin [37] from 1964 (again in amended form):

Theorem 11.1.17 (Carmesin 2014). Every connected graph G has an upwards

connected rooted tree-decomposition with upwards disjoint finite separators that

displays the undominated ends of G.

The theorem above accumulates Carmesin’s Theorem 1, Remark 6.6 and the

second paragraph of his ‘Proof that Theorem 1 implies Corollary 2.6’.
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Our [6, Lemma 3.7] will allow us to strengthen Carmesin’s theorem so that it

states that every connected graph G has a tree-decomposition with pairwise disjoint

finite connected separators that displays the undominated ends of G.

11.2. Combs

Jung [43] noted that, given any connected graph G and any vertex set U ⊆ V (G),

the absence of a comb attached to U is equivalent to U being dispersed in G,

meaning that for every ray R ⊆ G there is a finite vertex set X ⊆ V (G) separating

R from U . This equivalence then gives another equivalence as U being dispersed

rephrases to ‘no end of G lies in the closure of U ’. For readers familiar with the

topological space |G| = G t Ω as in [20], this is to say that U is closed in |G|.
These assertions—while equivalent to the absence of a comb—are abstract and do

not immediately provide concrete structures that are complementary to combs.

Providing concrete complementary structures is the aim of this section.

11.2.1. Normal trees

In this section we prove

Theorem 11.1. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a comb attached to U ;

(ii) there is a rayless normal tree T ⊆ G that contains U .

Moreover, the normal tree T in (ii) can be chosen such that it contains U cofinally.

For this, we need the following key results of Jung’s proof of his 1967 characterisa-

tion, Theorem 11.2.5, of the connected graphs that have normal spanning trees.

Proposition 11.2.1 (Jung). Let G be any connected graph and let U ⊆ V (G) be

any vertex set. If U is a countable union
⋃
n∈N Un of dispersed sets Un ⊆ V (G)

and v is any vertex of G, then G contains an ascending sequence T0 ⊆ T1 ⊆ · · ·
of rayless normal trees Tn ⊆ G such that each Tn contains U0 ∪ · · · ∪ Un cofinally

and is rooted in v. In particular, the overall union T :=
⋃
n∈N Tn is a normal tree

in G that contains U cofinally and is rooted in v.
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Proof. It suffices to show that, given a rayless normal tree Tn containing U≤n :=

U0 ∪ · · · ∪ Un cofinally, we find a rayless normal tree Tn+1 extending Tn and

containing U≤n+1 = U≤n ∪ Un+1 cofinally. For this, let any Tn be given. Consider

the collection of all normal trees T ⊇ Tn with T ∩ U≤n+1 cofinal in the tree-order

of T , partially ordered by letting T ≤ T ′ whenever T is extended by T ′ as normal

tree. Since Un+1 is dispersed and Tn is rayless, all of these trees must be rayless.

Let Tn+1 be a maximal tree that Zorn’s lemma provides for this poset. In the

following we show that Tn+1 is as desired.

Assume for a contradiction that some vertex u ∈ U≤n+1 is not contained in

Tn+1. Since Tn+1 is normal, the neighbourhood of the component C of G− Tn+1

that contains u forms a chain in the tree-order of Tn+1. As Tn+1 is rayless, this

chain has a maximal node x ∈ Tn+1. Let T ′ be the union of Tn+1 and an x–u path

P with P̊ ⊆ C. Then the neighbourhood in T ′ of any new component C ′ ⊆ C

of G − T ′ is a chain in T ′, so T ′ is again normal. But then T ′ contradicts the

maximality of Tn+1, completing the proof that Tn+1 is as desired.

Corollary 11.2.2 (Jung). Let G be any graph and let U ⊆ V (G) be any vertex

set. If U is dispersed itself and v is any vertex of G, then G contains a rayless

normal tree that contains U cofinally and is rooted in v.

Corollary 11.2.3 (Jung). Let G be any graph and let U ⊆ V (G) be any vertex

set. If U is countable and v is any vertex of G, then G contains a normal tree

that contains U cofinally and is rooted in v.

Lemma 11.2.4. Let G be any graph. The vertex set of any rayless normal tree

T ⊆ G is dispersed. In particular, the levels of any normal tree T ⊆ G are

dispersed.

Proof. Lemma 11.1.11.

Jung’s abstract characterisation of the normally spanned graphs goes as follows:

Theorem 11.2.5 (Jung, [43, Satz 6]). Let G be any graph. A vertex set W ⊆
V (G) is normally spanned in G if and only if it is a countable union of dispersed

sets. In particular, G is normally spanned if and only if V (G) is a countable union

of dispersed sets.

For an excluded-minor characterisation of the connected graphs with normal

spanning trees see Diestel and Leader’s [29].

127



Proof of Theorem 11.2.5. The backward implication holds by Proposition 11.2.1.

The forward implication holds as the levels of any normal tree are dispersed,

Lemma 11.2.4.

We are now ready to prove Theorem 11.1:

Proof of Theorem 11.1. First, to show that at most one of (i) and (ii) holds, we

show (ii)→ ¬(i). If T ⊆ G is a rayless normal tree containing U , then V (T ) is

dispersed by Lemma 11.2.4, and hence so is U ⊆ V (T ).

It remains to show that at least one of (i) and (ii) holds; we show ¬(i)→(ii).

Since the absence of a comb with all its teeth in U means that U is dispersed,

Corollary 11.2.2 yields a rayless normal tree in G that contains U cofinally.

11.2.2. Tree-decompositions

In this section, we show how the rayless normal tree from Theorem 11.1 gives rise

to a tree-decomposition that is complementary to combs.

Theorem 11.2. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a comb attached to U ;

(ii) G has a rayless tree-decomposition into parts each containing at most finitely

many vertices from U and whose parts at non-leaves of the decomposition

tree are all finite.

Moreover, the rayless tree-decomposition in (ii) displays ∂ΩU and may be chosen

with connected separators.

We start with a lemma which shows that at most one of (i) and (ii) holds.

Lemma 11.2.6. Let G be any graph and let U ⊆ V (G) be any vertex set. Suppose

that G has a rayless tree-decomposition into parts each containing at most finitely

many vertices from U and whose parts at non-leaves of the decomposition tree are

all finite. Then for every infinite U ′ ⊆ U there is a critical vertex set of G that

lies in the closure of U ′.
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Proof. Let such a tree-decomposition (T,V) of G be given for U , and let U ′ be

an arbitrary infinite subset of U . For every u ∈ U ′ we choose a node tu ∈ T

with u ∈ Vtu . Since each part of the tree-decomposition contains at most finitely

many vertices from U , we may assume without loss of generality (moving to an

infinite subset of U ′) that the nodes tu are pairwise distinct. Hence applying

Lemma 11.1.4 in the rayless tree T yields a star S attached to { tu | u ∈ U ′ }.
Without loss of generality (as before) we may assume that the nodes tu form

precisely the attachment set of S and that no vertex u from U ′ is contained in

the finite part Vc at the central node c of S ⊆ T . For every u ∈ U ′ let Cu be the

component of G− Vc containing u. Then distinct vertices from U ′ are contained

in distinct components of G − Vc by Lemma 11.1.14. Since the finite part Vc

contains the neighbourhood of each component Cu, by pigeon-hole principle we

find a subset X ⊆ Vc which is precisely equal to the neighbourhood of Cu for some

infinitely many u ∈ U ′.

Proof of Theorem 11.2. By Lemma 11.2.6 at most one of (i) and (ii) holds. It

remains to show that at least one of (i) and (ii) holds.

We show ¬(i)→(ii). Let Tnt ⊆ G be a rayless normal tree containing U as

provided by Theorem 11.1. We construct the desired tree-decomposition from

Tnt. As Tnt is rayless and normal, the neighbourhood of any component C of

G−Tnt is a finite chain in the tree-order of Tnt, and hence has a maximal element

tC ∈ Tnt. Now, let the tree T be obtained from Tnt by adding each component

C of G − Tnt as a new vertex and joining it precisely to tC . The tree T will be

our decomposition tree; it remains to name the parts. For nodes t ∈ Tnt ⊆ T

we let Vt consist of the down-closure dteTnt of t in the normal tree Tnt. And for

newly added nodes C ∈ T − Tnt we let VC be the union of VtC and the vertex

set of the component C, i.e., we put VC = dtCeTnt ∪ V (C). It is straightforward

to check that T with these parts forms a tree-decomposition of G that meets the

requirements of (ii) and satisfies the theorem’s ‘moreover’ part.

Our next example shows that Theorem 11.2 (ii) cannot be strengthened so as

to get a star as decomposition tree or to have pairwise disjoint separators:

Example 11.2.7. Suppose that G consists of the first three levels of Tℵ0 , the tree

all whose vertices have countably infinite degree, and let U = V (G). Then G is

rayless so there is no comb attached to U .
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First, G has no star-decomposition into parts each containing at most finitely

many vertices from U : Indeed, assume for a contradiction that G has such a

star-decomposition (S,V), and let c be the centre of the infinite star S. As the

part Vc contains at most finitely many vertices from U = V (G) it must be finite.

Then each component of G− Vc is contained in some G[V`] with ` a leaf of S by

Corollary 11.1.15. As each part of (S,V) contains at most finitely many vertices

from U , this means that every component of G−Vc contains at most finitely many

vertices from U = V (G) and hence is finite. But as Vc is finite, G− Vc must have

an infinite component, a contradiction.

Second, G also has no rayless tree-decomposition with finite and pairwise dis-

joint separators such that each part contains at most finitely many vertices from U :

Indeed, suppose for a contradiction that G has such a tree-decomposition (T,V).

Without loss of generality we may assume that all its parts are non-empty. The

rayless decomposition tree T has a vertex t of infinite degree, so Vt contains

infinitely many of the finite and pairwise disjoint separators. As G is connected,

all of these are non-empty by Lemma 11.1.14, so Vt is infinite, and hence so is

Vt ∩ U = Vt. But this contradicts our assumptions.

11.2.3. Critical vertex sets

The absence of a comb attached to U is equivalent to U being dispersed, which

is to say that no end of G lies in the closure of U . With the combinatorial

remainder Γ(G) = Ω(G)t crit(G) compactifying G in mind, this means that only

critical vertex sets of G lie in the closure of U , i.e. ∂ΓU ⊆ crit(G). Phrasing this

combinatorially gives

Theorem 11.3. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a comb attached to U ;

(ii) for every infinite U ′ ⊆ U there is a critical vertex set X ⊆ V (G) such that

infinitely many of the components in C̆X meet U ′.

Quantifying over all U ′ in Theorem 11.3 is necessary for (ii)→ ¬(i), e.g., if G

is an infinite star of rays with U = V (G). We remark that Theorem 11.3 implies

Halin’s [38, Satz 1] from 1965 which reads as follows: A graph G is rayless if and
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only if every infinite M ⊆ V (G) has an infinite subset M ′ for which there is a

finite H ⊆ G such that every component of G − H contains only finitely many

vertices of M ′.

Since, by now, the right tools are at hand, we can prove Theorem 11.3 in two

efficient ways:

Combinatorial proof of Theorem 11.3 using Theorem 11.1 or 11.2. Evidently, at

most one of (i) and (ii) can hold. And if G contains no comb attached to U ,

then (ii) holds by Theorem 11.1 with Lemma 11.1.4 or by Theorem 11.2 with

Lemma 11.2.6.

Inverse limit proof of Theorem 11.3. Lemma 11.1.9 gives ¬(i)→(ii).

Note that condition (ii) yields a star attached to U .

11.2.4. Rank

In 1983, Schmidt [64] introduced a notion that is now known as the rank of a

graph, cf. Chapter 8.5 of [20]. His rank provides a recursive definition of the class

of rayless graphs which enables us to prove assertions about rayless graphs by

transfinite induction. An outstanding application of this technique is the proof of

the unfriendly partition conjecture for rayless graphs, cf. [3,20]. Since the absence

of a comb attached to U is equivalent to the existence of a rayless normal tree

containing U , Theorem 11.1, one may wonder whether there somehow is a link to

Schmidt’s rank. In this section we show that this is indeed the case.

Schmidt defines the rank of a graph as follows. He assigns rank 0 to all the finite

graphs. And given an ordinal α > 0, he assigns rank α to every (not necessarily

connected) graph G that does not already have a rank β < α and which has a

finite set X of vertices such that every component of G−X has some rank < α.

Lemma 11.2.8 ([20, Lemma 8.5.2]). Let G be any graph. Then the following

assertions are complementary:

(i) G contains a ray;

(ii) G has a rank.
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Now we introduce the notion of a U -rank, based on Schmidt’s rank, which

additionally takes into account a fixed set U . For this, suppose that U is any set.

Even though, formally, U is an arbitrary set, we think of U as a set of vertices. Let

us assign U -rank 0 to all the graphs that contain at most finitely many vertices

from U . Given an ordinal α > 0, we assign U -rank α to every graph G that does

not already have a U -rank β < α and which has a finite set X of vertices such

that every component of G −X has some U -rank < α. Note that the rank of G

is equal to the V -rank of G.

The U -rank behaves quite similar to Schmidt’s rank, [20, p. 243]: When disjoint

graphs Gi have U -ranks αi < α, their union clearly has a U -rank of at most α; if

the union is finite, it has U -rank maxi αi. Induction on α shows that subgraphs of

graphs of U -rank α also have a U -rank of at most α. Conversely, joining finitely

many new vertices to a graph, no matter how, will not change its U -rank.

Not every graph has a U -rank. Indeed, a comb attached to U cannot have

a U -rank, since deleting finitely many of its vertices always leaves a component

that is a comb attached to U . As subgraphs of graphs with a U -rank also have a

U -rank, this means that only graphs without such combs can have a U -rank. But

all these do:

Theorem 11.4. Let G be any graph and let U be any set. Then the following

assertions are complementary:

(i) G contains a comb attached to U ;

(ii) G has a U-rank.

Phrased differently, the U -rank provides a recursive definition of the class of the

graphs in which U is dispersed.

Proof of Theorem 11.4. We show the equivalence (i)↔¬(ii). The forward impli-

cation has already been pointed out above. For the backward implication suppose

that G has no U -rank; we show that G must contain a comb attached to U . As

G has no U -rank, one of its components, C0 say, has no U -rank as well. Pick

u0 ∈ U ∩ C0 arbitrarily. Since C0 has no U -rank, it follows that C0 − u0 has a

component C1 that has no U -rank; let u1 ∈ U ∩ C1 and pick a u0–u1 path P1 in

C0 with P̊1 ⊆ C1. Next, delete P1 from C1 and let C2 ⊆ C1 − P1 be a component

that has no U -rank. Let u2 ∈ U ∩C2, pick any P1–u2 path P2 in C1 with P̊2 ⊆ C2
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and note that P2 meets P1 in ů1P1. Therefore, if we continue inductively to find

paths P1, P2, . . . in G, then their union
⋃
n Pn is a comb with attachment set

{un | n ∈ N } ⊆ U .

There is a way to see immediately that for a connected graph G having a U -

rank is stronger than G containing a star attached to U when U is infinite. For

this, suppose that G has U -rank α. Then α > 0 as U ⊆ V (G) is infinite. Hence

G has a finite set X of vertices such that every component of G − X has some

U -rank < α. In particular, G − X must have some infinitely many components

that meet U . Each of these components gives some U–X path avoiding all other

components, so the pigeon-hole principle yields a star attached to U as desired.

The U -rank of a graph has many properties. In the remainder of this section,

we prove three such properties that we will put to use in the next section.

Lemma 11.2.9. Let G be any graph, let U be any set and suppose that G has

U-rank α. Then the following assertions hold:

(i) for every subset U ′ ⊆ U the graph G has U ′-rank ≤ α;

(ii) for every subgraph H ⊆ G the graph H has U-rank ≤ α.

Proof. Induction on α.

Lemma 11.2.10. Let U be any set. If T is a rooted rayless tree containing

U ∩ V (T ) cofinally, then the U-rank of T is equal to the rank of T .

Proof. Let α be the U -rank of T and let β be the rank of T . Since the V (T )-rank

of T is the same as the rank of T , Lemma 11.2.9 (i) gives the inequality α ≤ β. An

induction on α shows the converse inequality (in the induction step consider a set

X ⊆ V (T ) witnessing that T has U -rank α and employ the induction hypothesis

to see that every component of T −X has rank < α; it is convenient to assume

X to be down-closed, which is possible by Lemma 11.2.9 (ii)).

Lemma 11.2.11. If G is any graph and T ⊆ G is a rayless normal tree containing

U ∩G cofinally, then the following three ordinals are all equal:

(i) the rank of T ;

(ii) the U-rank of T ;

(iii) the U-rank of G.
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Proof. The equality (i) = (ii) is the subject of Lemma 11.2.10. Lemma 11.2.9

gives the inequality (ii) ≤ (iii). We show the remaining inequality (iii) ≤ (ii) by

induction on the U -rank of T , as follows.

If the U -rank of T is 0, then U ∩ T = U ∩ G is finite, and thus the U -rank of

G is 0 as well. For the induction step, suppose that T has U -rank α > 0, and

let X ⊆ V (T ) be any finite vertex set such that every component of T − X has

U -rank < α. By Lemma 11.2.9 (ii) we may assume that X is down-closed in T .

It suffices to show that every component of G−X has a U -rank < α.

If C is a component of G−X, then either C avoids T ⊇ U ∩C and has U -rank

0 < α, or C meets T . In the case that C meets T , by Lemma 11.1.10 we know

that C is spanned by bbxcc with x minimal in T −X, so T ∩ C ⊆ C is a normal

tree containing U ∩ C cofinally. Finally, by the induction hypothesis,

(U -rank of C) ≤ (U -rank of T ∩ C) < α.

11.2.5. Combining the duality theorems

So far we have seen duality theorems for combs in terms of normal trees, tree-

decompositions, critical vertex sets and rank. With these four complementary

structures for combs at hand, the question arises whether it is possible to combine

them all. In this section we will answer the question in the affirmative. That is,

we will present a fifth complementary structure for combs that combines all of the

four above.

This fifth structure will be a tree-decomposition that is more specific than the

one listed above. It will stem from a normal tree in a way that we call ‘squeezed

expansion’. Just like the tree-decomposition listed above, all its parts will meet

U finitely, and all its parts at non-leaves will be finite. Moreover, it will display

not only the ends in the closure of U , but also the critical vertex sets in the

closure of U . In order to realise this, we will extend the definition of ‘display’ in a

reasonable way. Finally, the decomposition tree will have a rank that is equal to

the U -rank of the whole graph. The combined duality theorem reads as follows:
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Theorem 11.5. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a comb attached to U ;

(ii) G has a rooted tame tree-decomposition (T,V) that covers U cofinally and

satisfies the following four assertions:

– (T,V) is the squeezed expansion of a normal tree in G that contains the

vertex set U cofinally;

– every part of (T,V) meets U finitely and parts at non-leaves are finite;

– (T,V) displays ∂ΓU ⊆ crit(G);

– the rank of T is equal to the U-rank of G.

Corollary 11.2.12. If a connected graph G is rayless (equivalently: if G has a

rank), then G has a tame tree-decomposition into finite parts that displays the

combinatorial remainder of G and has a decomposition tree whose rank is equal

to the rank of G.

Here we remark that, in this chapter, we consider Schmidt’s ranking of rayless

graphs as discussed in Section 11.2.4. In particular, when we consider the rank

of a (possibly rooted) tree, we do not mean the rank for rooted trees that defines

recursive prunability (cf. [20, p. 242 & 243]).

The proof of the theorem above is organised as follows. First, we will state

Proposition 11.2.13, which lists some useful properties of squeezed expansions.

Then, we will employ this proposition in a high level proof of Theorem 11.5.

In order to follow the line of argumentation up to here, it is not necessary to

know the definitions of ‘display’ and ‘squeezed’ ‘expansion’, which is why we

will introduce them subsequently to our high level proof. Finally, we will prove

Proposition 11.2.13.
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Proposition 11.2.13. Let G be any graph and suppose that Tnt ⊆ G is a normal

tree such that every component of G − Tnt has finite neighbourhood, that (T,V)

is the expansion of Tnt and that (T ′,W) is a squeezed (T,V). Then the following

assertions hold:

(i) (T,V) is upwards connected;

(ii) both (T,V) and (T ′,W) display ∂ΓTnt;

(iii) all the parts of (T,V) and (T ′,W) meet Tnt finitely;

(iv) parts of (T ′,W) at non-leaves of T ′ are finite;

(v) T ′ is rayless if and only if T is rayless if and only if Tnt is rayless;

(vi) if one of T ′, T and Tnt is rayless, then the ranks of T ′, T and Tnt all exist

and are all equal.

The proposition has a corollary that is immediate because every normal spann-

ing tree will have an expansion, and expansions will be rooted and tame:

Corollary 11.2.14. Every normally spanned graph has a rooted tame tree-decom-

position displaying its combinatorial remainder.

Now we prove Theorem 11.5 using Proposition 11.2.13 above:

Proof of Theorem 11.5. (i) and (ii) exclude each other for various reasons we have

already discussed.

For the implication ¬(i)→(ii) suppose that G contains no comb attached to

U . By Theorem 11.1 there is a rayless normal tree Tnt ⊆ G that contains

U cofinally. We show that the squeezed expansion (T,V) of Tnt is as desired.

By Proposition 11.2.13 every part of (T,V) meets Tnt ⊇ U finitely and parts

at non-leaves of T are finite. As we have ∂ΓTnt = ∂ΓU by Lemma 11.1.13,

Proposition 11.2.13 also ensures that the squeezed expansion (T,V) of Tnt displays

∂ΓU . Finally, the U -rank of G exists by Theorem 11.4 and is equal to the

rank of Tnt by Lemma 11.2.11, which in turn is equal to the rank of T by

Proposition 11.2.13.

Next, we provide all the definitions needed: First, we extend the definition of

‘display’ to include critical vertex sets (Definition 11.2.16). Second, we define
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the ‘expansion’ of a normal tree (Definition 11.2.17), which is a certain tree-

decomposition. Finally we define what it means to ‘squeeze’ a tree-decomposition

(Definition 11.2.18).

Recall that the definition of ‘display’, as discussed in Section 11.1, highly relies

on the fact that the ends of a graph orient all its finite-order separations. Now,

critical vertex sets are closely related to ends, as they together with the ends turn

graphs into compact topological spaces. This is why we may hope that every

critical vertex set X orients the finite-order separations so as to lead immediately

to a notion of ‘displaying a collection of critical vertex sets’. Probably the most

natural way how a critical vertex set X could orient a finite-order separation

{A,B} towards a side K ∈ {A,B} is that X together with all but finitely many

of the components in C̆X are contained in K.

However, this is too much to ask: For example consider an infinite star. The

centre c of the star forms a critical vertex set X = {c}, and any separation with

separator X that has infinitely many leaves on both sides will not be oriented by

X in this way.

But focusing on a suitable class of separations, those that are tame, leads

to a natural extension of ‘display’ to include critical vertex sets: A finite-order

separation {X,C } of G is tame if for no Y ⊆ X both C and CX r C contain

infinitely many components whose neighbourhoods are precisely equal to Y . The

tame separations of G are precisely those finite-order separations of G that respect

the critical vertex sets:

Lemma 11.2.15. A finite-order separation {A,B} of a graph G is tame if and

only if every critical vertex set X of G together with all but finitely many compo-

nents from C̆X is contained in one side of {A,B}.

Proof. For the forward implication, note that every distinct two vertices of a

critical vertex set are linked in G[X∪
⋃

C̆X ] by infinitely many independent paths,

so every critical vertex set of G meets at most one component of G− (A∩B).

We say that an Sℵ0-tree (T, α) is tame if all the separations in the image of α

are tame. And we say that a tree-decomposition is tame if it corresponds to a

tame Sℵ0-tree.

If X is a critical vertex set of G and (T, α) is a tame Sℵ0-tree, then X induces

a consistent orientation of the image of α by orienting every tame finite-order
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separation {A,B} towards the side that contains X and all but finitely many of

the components from C̆X (cf. Lemma 11.2.15 above). This consistent orientation

also induces a consistent orientation of
→
E(T ) via α. Then, just like for ends, the

critical vertex set X either lives at a unique node t ∈ T or corresponds to a unique

end of T . In this way, we obtain an extension σ : Γ(G) → Ω(T ) t V (T ) of the

map τ : Ω(G)→ Ω(T ) t V (T ) from Section 11.1.8.

Since σ extends τ from the end space Ω(G) of G to the full combinatorial

remainder Γ(G) of G, it is reasonable to wonder why the target set of σ is that of τ ,

namely Ω(T )t V (T ), rather than analogously taking the target set Γ(T )t V (T ).

At a closer look, the critical vertex sets of T are already contained in the target

set Ω(T ) t V (T ), for they are precisely the infinite degree nodes of T . This, and

the fact that every critical vertex set X of G naturally comes with an oriented

tame separation (X, C̆X) of G, motivate the following definition.

Definition 11.2.16. [Display Ψ ⊆ Γ(G)] Let G be any graph. A rooted tame

Sℵ0-tree (T, α) displays a subset Ψ of the combinatorial remainder Γ(G) = Ω(G)t
crit(G) of G if σ satisfies the following three conditions:

• σ restricts to a bijection between Ψ ∩ Ω(G) and Ω(T );

• σ restricts to a bijection between Ψ ∩ crit(G) and the infinite-degree nodes

of T so that: whenever σ sends a critical vertex set X ∈ Ψ to t ∈ T , then t

has a predecessor s ∈ T with α(s, t) = (X,C ) such that C ⊆ C̆X is cofinite

and α restricts to a bijection between
→
Ft and the star in

→
Sℵ0 that consists

of the separation (X,C ) and all the separations (C,X) with C ∈ C ;

• σ sends all the elements of Γ(G) r Ψ to finite-degree nodes of T .

Note that this definition of displays is not exactly an extension of the original

definition given in Section 11.1.8. Indeed, if (T, α) displays Ψ and ω ∈ Ψ is an end,

then with the original definition ω may correspond to an infinite degree vertex

of T , but not with the new definition. However, the new definition is stronger

than the original one: if (T, α) displays Ψ ⊆ Γ(G) in the new sense, then (T, α)

displays Ψ ∩ Ω(G) in the original sense.

We solve this ambiguity as follows. Whenever we say that a tree-decomposition

or Sℵ0-tree displays some set Ψ of ends of G and it is clearly understood that we

view Ψ as a subset of Ω(G), e.g. when we let Ψ consist of the undominated ends
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of G or consider Ψ = ∂ΩU , then by ‘displays’ we refer to the original definition

from Section 11.1.8. But whenever we explicitly introduce Ψ as a subset of

the combinatorial remainder Γ(G) of G, e.g. when we let Ψ consist of critical

vertex sets or consider Ψ = ∂ΓU , then by ‘displays’ we refer to the new definition

introduced above.

We wish to make a few remarks on our new definition. If (T, α) is a rooted

tame Sℵ0-tree displaying some Ψ ⊆ Γ(G) and the tree-decomposition (T,V)

corresponding to (T, α) exists, then Vσ(X) = X whenever X is a critical vertex

set in Ψ. We do not require C = C̆X in the definition of displays because

there are simply structured normally spanned graphs for which otherwise none

of their tree-decompositions would display their combinatorial remainder. See

[31, Examples 3.6 & 3.7] for details.

Now, let us turn to the expansion of a normal tree. Given vertex sets Y ⊆
X ⊆ V (G) we write CX(Y ) for the collection of all components C ∈ CX with

N(C) = Y .

Definition 11.2.17 (Expansion of a normal tree). In order to define the expan-

sion, suppose that G is any connected graph and Tnt ⊆ G is any normal tree such

that every component of G−Tnt has finite neighbourhood. From the normal tree

Tnt we obtain the expansion (T,V) of Tnt in G in two steps, as follows.

For the first step, let us suppose without loss of generality that for all nodes

t ∈ Tnt every up-neighbour t′ of t in Tnt is named as the component bbt′cc of G−dte
containing t′. We define a map β :

→
E(Tnt)→

→
Sℵ0 by letting β(t, C) := (N(C), C)

and β(C, t) := β(t, C)∗ whenever C is an up-neighbour of a node t in Tnt. Then

(Tnt, β) is a rooted tame Sℵ0-tree that displays ∂ΩTnt ⊆ Ω(G).

In the second step, we obtain from (Tnt, β) a rooted tame Sℵ0-tree (T, α)

displaying ∂ΓTnt ⊆ Γ(G). Informally speaking we sort the separations of the

form β(t, C) with t ∈ Tnt an infinite degree-node and C an up-neighbour of t

in Tnt by the critical vertex sets X ⊆ dte in the closure of Tnt with C ∈ C̆X .

Formally this is done as follows (cf. Figure 11.2.1).

For every infinite-degree node t ∈ Tnt and every critical vertex set X ∈ ∂ΓTnt

satisfying t ∈ X ⊆ dte we do the following:

(i) we add a new vertex named X to Tnt and join it to t;

(ii) for every component C ∈ Cdte(X) ⊆ C̆X we delete the edge tC (this is
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Cdte(X)
Cdte(X

′)
Cdte(X

′′)Tnt

t

T

t

Figure 11.2.1.: The second step in the construction of the expansion of normal

trees. The critical vertex sets X and X ′ are in the closure of Tnt,

while X ′′ is not. The three sets X, X ′ and X ′′ are all the critical

vertex sets of G that contain t and are contained in dte.

redundant when Tnt avoids C) and add the new edge XC (note that in

particular the vertex C gets added as well, even if Tnt avoids C);

(iii) we let α(t,X) := (X,Cdte(X)), and for every component C ∈ Cdte(X) we let

α(X,C) := (X,C).

Then we take T to be the resulting tree, and we extend α to all of
→
E(T ) by letting

α(
→
e) := β(

→
e) whenever the edge e of T is also an edge of the normal tree Tnt. The

rooted tame tree-decomposition (T,V) corresponding to (T, α) is the expansion of

Tnt in G. ♦

And here is the definition of squeezing:

Definition 11.2.18 (Squeezing a tree-decomposition). Suppose that (T,V) and

(T ′,W) are tree-decompositions of G. We say that (T ′,W) is a squeezed (T,V)

if (T ′,W) is obtained from (T,V) as follows. The tree T ′ is obtained from T by

adding, for every node t ∈ T that has finite degree > 1 and whose part Vt is

infinite, a new node t′ to T and joining it to t. For all these nodes t the part Wt

is the union of the separators of (T,V) associated with the edges of T at t, and

the part Wt′ is taken to be the part Vt. For all other nodes t the part Wt is Vt.

Note that if (T ′,W) is the squeezed (T,V) and all separators of (T,V) are finite,

then all the infinite parts Vt with t an internal finite-degree node of T become finite

parts Wt. Thus, all parts Wt with t an internal finite-degree node of T ′ are finite.

Achieving this property is the purpose of squeezing.

Squeezing preserves tameness:
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Lemma 11.2.19. Let G be any graph, let (T,V) be any tree-decomposition of G

with finite separators and let (T ′,W) be the squeezed (T,V). If (T,V) is tame,

then (T ′,W) is tame as well.

Proof. Suppose that (T,V) is a tame tree-decomposition of G and that (T ′,W) is

the squeezed (T,V). Separations of G that are induced by (T ′,W) are tame when

they are induced by edges of T ′ that are also edges of T ⊆ T ′. Hence it suffices

to show that for every leaf ` ∈ T ′ − T with neighbour t ∈ T ⊆ T ′ the separation

induced by `t ∈ T ′ is tame. For this, let any edge `t ∈ T ′ be given and write

s0, . . . , sn for the finitely many neighbours of t in T . Let (T ′, α′) be the Sℵ0-tree

corresponding to (T ′,W), let (A,B) := α′(`, t) and define (Ai, Bi) := α′(t, si) for

all i ≤ n. Then, by the definition of (T ′,W), we have A =
⋂
iAi and B =

⋃
iBi.

Our aim is to show that the separation {A,B} is tame. By Lemma 11.2.15 it

suffices to show that for every critical vertex set X of G there is a cofinite subset

C ⊆ C̆X such that either G[X ∪
⋃

C ] ⊆ G[A] or G[X ∪
⋃

C ] ⊆ G[B]. For this,

let any critical vertex set X of G be given.

The critical vertex set X lives at or correspond to the unique node or end σ(X)

of T with regard to (T,V) because (T,V) is tame. If σ(X) is distinct from t,

then there is a cofinite subset C ⊆ C̆X such that G[X ∪
⋃

C ] ⊆ G[Bi] for some

i ≤ n, and G[X ∪
⋃

C ] ⊆ G[B] follows as desired. Hence we may assume that

σ(X) = t. Thus, for every i ≤ n there is a cofinite subset C (i) ⊆ C̆X such that

G[X ∪
⋃

C (i)] ⊆ G[Ai]. Then G[X ∪
⋃

C ] ⊆ G[A] as desired for the cofinite

subset C :=
⋂
i C (i) ⊆ C̆X .

Now that we have formally introduced all the definitions involved, we are ready

to prove Proposition 11.2.13:

Proof of Proposition 11.2.13. (i) The expansion is upwards connected by its defi-

nition.

(ii) Using Lemma 11.1.11 and the fact that every component of G−Tnt has finite

neighbourhood, it is straightforward to check that the tree-decomposition (T,V)

displays ∂ΩTnt ⊆ Ω(G). We verify that (T,V) even displays ∂ΓTnt ⊆ Γ(G). On

the one hand, by Lemma 11.1.12 every critical vertex set X ∈ ∂ΓTnt is contained

in Tnt as a chain, and hence appears precisely once as a node of T by the definition

of the expansion. On the other hand, every node of infinite degree of T stems

from such a critical vertex set. Together we obtain that (T,V) displays ∂ΓTnt. The
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tree-decomposition (T ′,W) is tame because (T,V) is, cf. Lemma 11.2.19. From

here, it is straightforward to show that (T ′,W) displays ∂ΓTnt as well.

(iii) and (iv) are straightforward.

(v) follows from (ii) and Lemma 11.1.11.

(vi) It is straightforward to check by induction on the rank that the rank is

preserved under taking contraction minors with finite branch sets. Similarly, one

can show that two infinite trees have the same rank if one is obtained from the

other by adding new leaves to some of its nodes of infinite degree. Now we deduce

(vi) as follows. For every node t ∈ Tnt let us write St for the finite star with

centre t and leaves the critical vertex sets X ∈ ∂ΓTnt with t ∈ X ⊆ dte. The

decomposition tree T of the expansion of Tnt is obtained from an ITnt ⊆ T with

finite branch sets (the non-trivial branch sets are precisely the vertex sets of the

stars St for the nodes t ∈ Tnt of infinite degree) by adding leaves to nodes of infinite

degree (each leaf is a component C ∈ Cdte(X) avoiding Tnt for some X ∈ St and

gets joined to X ∈ ITnt ⊆ T ). Therefore, the ranks of T and Tnt coincide. The

decomposition tree T ′ is obtained from T by adding at most one new leaf to

each node of T , and new leaves are only added to finite-degree nodes of T . An

induction on the rank shows that the rank is preserved under this operation, and

so the ranks of T ′ and T coincide as well.

Carmesin [15] showed that every connected graph G has a tree-decomposition

with finite separators that displays Ψ for Ψ the set undominated ends of G,

cf. Theorem 11.1.17. He then asked for a characterisation of those pairs of a

graph G and a subset Ψ ⊆ Ω(G) for which G has such a tree-decomposition

displaying Ψ. In the same spirit, our findings motivate the following problem:

Problem 11.2.20. Characterise, for all connected graphs G, the subsets Ψ ⊆
Γ(G) for which G admits a rooted tame tree-decomposition displaying Ψ.
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11.3. Stars

11.3.1. Normal trees

In this section we prove a duality theorem for stars in terms of normal trees.

Theorem 11.6. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a star attached to U ;

(ii) there is a locally finite normal tree T ⊆ G that contains U and all whose

rays are undominated in G.

Moreover, the normal tree T in (ii) can be chosen such that it contains U cofinally

and every component of G− T has finite neighbourhood.

Proof of Theorem 11.6 without the ‘moreover’ part. First, we show that at most

one of (i) and (ii) holds. Assume for a contradiction that both hold. Let T ⊆ G

be a normal tree as in (ii) and let U ′ ⊆ U form the attachment set of some star

attached to U . By Lemma 11.1.3 the locally finite tree T contains a comb attached

to U ′. That comb’s spine, then, is dominated in G by the centre of the star, a

contradiction.

It remains to show that at least one of (i) and (ii) holds; we show ¬(i)→(ii).

We have that U is countable, since otherwise the star-comb lemma yields a star

attached to U . By Corollary 11.2.3 we find a normal tree T ⊆ G that contains U

cofinally. Clearly, T must be locally finite since G contains no star attached to U .

For the same reason, every ray of T is undominated in G.

The remaining ‘moreover’ part is a consequence of Theorem 12.1, which is why

its proof is placed in Chapter 12. To see immediately that a locally finite normal

tree T as in (ii) is more specific than a comb when U is infinite, apply Lemma 11.1.3

to T .

11.3.2. Tree-decompositions

For combs we have provided a duality theorem in terms of normal trees, and that

theorem then gave rise to another duality theorem in terms of tree-decompositions.

Since we have shown a duality theorem for stars in terms of normal trees in the
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previous section, a natural question to ask is whether this theorem gives rise to a

duality theorem for stars in terms of tree-decompositions, just like for combs. It

turns out that stars have a duality theorem in terms of tree-decompositions. But

this theorem cannot be proved by imitating the proof of the respective theorem for

combs, and so we will have to come up with a whole new strategy. Our theorem

reads as follows:

Theorem 11.7. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a star attached to U ;

(ii) G has a locally finite tree-decomposition with finite and pairwise disjoint

separators such that each part contains at most finitely many vertices of U .

Moreover, the tree-decomposition in (ii) can be chosen with connected separators

and such that it displays ∂ΓU which consists only of ends.

We remark that (ii) is equivalent to the assertion that ‘G has a ray-decomposition

with finite and pairwise disjoint separators such that each part contains at most

finitely many vertices of U ’ since the distance classes of locally finite trees are

finite.

To see that a tree-decomposition as in (ii) is more specific than a comb, start

with a ray in the decomposition tree (cf. Lemma 11.1.3) and then inductively

construct a comb in the connected parts along that ray. To see that a locally

finite tree-decomposition (T,V) as in (ii) is more specific than a comb attached

to U , consider the nodes of T whose parts meet U and apply Lemma 11.1.4 in

T to find a comb C attached to them. Then inductively construct a comb in G

attached to U working inside the connected parts along C ⊆ T .

To prove the theorem, we start by showing that (i) and (ii) exclude each other:

Lemma 11.3.1. In Theorem 11.7 the graph G cannot satisfy both (i) and (ii).

Proof. Let (T,V) be a tree-decomposition as in (ii) of Theorem 11.7. Assume

for a contradiction that G contains a star S attached to U . As the separators of

(T,V) are pairwise disjoint, the centre c of S is contained in at most two parts

of (T,V). Let T ′ ⊆ T be the finite subtree induced by the nodes of these parts

plus their neighbours in T . As the parts at the nodes of T ′ altogether contain at
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most finitely many vertices from U , the star S must send infinitely many paths to

vertices in parts at T −T ′. But the centre c is separated from the parts at T −T ′

by the finite union of the finite separators associated with the edges of T leaving

T ′, a contradiction.

Now, to prove Theorem 11.7 it remains to show ¬(i)→(ii). This time, however,

it is harder to see how the normal tree from Theorem 11.6 can be employed to

yield a tree-decomposition. That is why we do not take the detour via normal

trees and instead construct the tree-decomposition directly. Still, this requires

some effort.

First of all, assuming the absence of a star as in (i), we need a strategy to

construct a tree-decomposition as in (ii). Fortunately, we do not have to start

from scratch. In the proof of [27, Theorem 2.2], Diestel and Kühn proved the

following as a technical key result: If ω is an undominated end of G, then there

exists a sequence (Xn)n∈N of non-empty finite vertex sets Xn ⊆ V (G) such that,

for all n ∈ N, the component C(Xn, ω) contains Xn+1 ∪ C(Xn+1, ω). Now if ∂ΩU

is a singleton {ω}, then ω must be undominated as (i) fails, and we consider such

a sequence (Xn)n∈N. By making all the Xn+1 connected in C(Xn, ω) first, and

then moving to a suitable subsequence, we obtain a ray-decomposition of G that

meets the requirements of (ii). Our strategy is to generalise this fundamental

observation using that ∂ΩU is compact in our situation:

Lemma 11.3.2. If G contains no star attached to U , then ∂ΩU is non-empty,

compact and contains only undominated ends.

Proof. By the pigeonhole principle, for every X ∈ X only finitely many compo-

nents of G−X may meet U . Thus we have that ∂ΩU is non-empty and compact

by Lemma 11.1.8.

Our next lemma generalises the fact that a vertex can be strictly separated

from every end which it does not dominate.

Lemma 11.3.3. Suppose that X is a finite set of vertices in a (possibly disconne-

cted) graph G such that G−X is connected, and that Ψ ⊆ Ω(G) is a non-empty

and compact subspace consisting only of undominated ends. Then there is a finite-

order separation of G that strictly separates X from Ψ and whose separator is

connected.
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Proof. No end in Ψ is dominated and X is finite, so for every end ω ∈ Ψ we find a

finite vertex set Y (ω) ⊆ V (G) with Y (ω)∪C(Y (ω), ω) disjoint from X. Since the

components C(Y (ω), ω) induce a covering of Ψ by open sets, the compactness of Ψ

yields finitely many ends ω1, . . . , ωn ∈ Ψ such that every end in Ψ lives in at least

one of the components C(Y (ωi), ωi). Let the vertex set Y be obtained from the

finite union of the finite sets Y (ωi) by adding some finitely many vertices from the

connected subgraph G−X so as to ensure that G[Y ] is connected. Note that Y

avoids X, and write D for the collection of the components of G−Y in which ends

of Ψ live. We claim that (Y,D) strictly separates X from Ψ. For this, let ω be any

end in Ψ. Pick an index k for which ω lives in the component C(Y (ωk), ωk) =: C.

Then, by the choice of Y (ωk), there is no X–C path in G−Y (ωk). By Y (ωk) ⊆ Y

and C(Y, ω) ⊆ C then there certainly is no X–C(Y, ω) path in G− Y . Therefore,

(Y,D) strictly separates X from Ψ.

Proposition 11.3.4. Let G be any connected graph and suppose that Ψ ⊆ Ω

is a non-empty and compact subspace that consists only of undominated ends.

Then there exists a locally finite Sℵ0-tree (T, α) with connected pairwise disjoint

separators that displays Ψ.

Proof. We inductively construct a sequence
(
(Tn, αn)

)
n∈N of rooted Sℵ0-trees with

root r ∈ T0 ⊆ T1 ⊆ · · · and α0 ⊆ α1 ⊆ · · · , as follows.

To define (T0, α0), let T0 consist of one edge rt and put α0(r, t) := ({v}, V )

for an arbitrary vertex v of G. Now, to obtain (Tn+1, αn+1) from (Tn, αn), we

do the following for every edge t` of Tn at a leaf ` 6= r. Consider the separation

α(t, `) = (X,C ) with C1, . . . , Cn the finitely many components in C in which ends

of Ψ live (these are finitely many as Ψ is compact). For each component Ci apply

Lemma 11.3.3 in G[X ∪Ci] to X and Ψ∩ ∂ΩCi to obtain a finite-order separation

(Ai, Bi) of G[X ∪ Ci] that strictly separates X from Ψ ∩ ∂ΩCi in G[X ∪ Ci] and

has a connected separator Ai ∩ Bi. Then (A′i, B
′
i) with A′i := Ai ∪ (V r Ci) and

B′i := Bi is a finite-order separation of G that strictly separates X from Ψ∩ ∂ΩCi

in G and has a connected separator A′i ∩B′i = Ai ∩Bi. We add each Ci as a new

node to Tn, join it precisely to the leaf ` and let αn+1(`, Ci) := (A′i, B
′
i). This

completes the description of our construction.

We claim that the pair (T, α) given by T :=
⋃
n Tn and α :=

⋃
n αn is as required.

Our construction ensures that T is locally finite and that the separators of (T, α)
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are connected and pairwise disjoint. Furthermore, our construction ensures that

every end in Ψ corresponds to an end of T . It remains to show that (T, α)

displays Ψ. By Lemma 11.1.16 it suffices to show that, for every end of T , there

is an end in Ψ corresponding to it. And indeed, every ray in T avoiding the root

is, literally, a descending sequence C1 ⊇ C2 ⊇ · · · of components for which some

end of the compact Ψ lives in all Cn by the finite intersection property of the

collection {Ψ ∩ ∂ΩCn | n ∈ N }.

Proof of Theorem 11.7. By Lemma 11.3.1 at most one of (i) and (ii) can hold.

To establish that at least one of them holds, we show ¬(i)→(ii). Suppose that

G contains no star attached to U . By Lemma 11.3.2 we know that the subspace

∂ΩU ⊆ Ω consisting of the ends lying in the closure of U actually contains only

undominated ones, and is both non-empty and compact. Proposition 11.3.4 then

yields a locally finite Sℵ0-tree (T, α) with connected pairwise disjoint separators

that displays ∂ΩU . Let (T,V) be the tree-decomposition corresponding to (T, α).

As G contains no star attached to U , there is no critical vertex set in the closure

of U , and hence (T,V) even displays ∂ΓU . It remains to show that each part of

(T,V) contains at most finitely many vertices from U . Suppose for a contradiction

that some part Vt contains some infinitely many vertices from U , and write U ′ for

that subset of U . As (i) fails, applying Lemma 11.3.2 in G to U ′ yields an end

in ∂ΩU
′. But then this end lies in Ψ but does not correspond to an end of T , a

contradiction.
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12. Dominating stars and dominated

combs

In the first chapter of this part we found structures whose existence is comple-

mentary to the existence of a star or a comb attached to a given set U of vertices.

A comb is the union of a ray R (the comb’s spine) with infinitely many disjoint

finite paths, possibly trivial, that have precisely their first vertex on R. The last

vertices of those paths are the teeth of this comb. Given a vertex set U , a comb

attached to U is a comb with all its teeth in U , and a star attached to U is a

subdivided infinite star with all its leaves in U . Then the set of teeth is the

attachment set of the comb, and the set of leaves is the attachment set of the star.

As stars and combs can interact with each other, this is not the end of the story.

For example, a given vertex set U might be connected in a graph G by both a star

and a comb, even with infinitely intersecting sets of leaves and teeth. To formalise

this, let us say that a subdivided star S dominates a comb C if infinitely many

of the leaves of S are also teeth of C. A dominating star in a graph G then is

a subdivided star S ⊆ G that dominates some comb C ⊆ G; and a dominated

comb in G is a comb C ⊆ G that is dominated by some subdivided star S ⊆ G.

In this chapter we determine structures whose existence is complementary to the

existence of dominating stars and dominated combs. Note that duality theorems

for dominated combs are by nature also duality theorems for dominating stars,

because for a graph G and a vertex set U ⊆ V (G) the existence of a dominated

comb attached to U is equivalent to the existence of a dominating star attached

to U . For the sake of readability, we will state our duality theorems only for

dominated combs.

Our first duality theorem for dominated combs is phrased in terms of normal

trees. A rooted tree T ⊆ G is normal in G if the endvertices of every T -path in

G are comparable in the tree-order of T . A vertex v of G dominates a ray R ⊆ G

if there is an infinite v–(R − v) fan in G. For example, a comb is dominated
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in G if and only if its spine is dominated in G. Rays not dominated by any

vertex are undominated. An end of G is dominated and undominated if one

(equivalently: each) of its rays is dominated and undominated, respectively. (See

Diestel’s textbook [20].)

Theorem 12.1. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a dominated comb attached to U ;

(ii) there is a normal tree T ⊆ G that contains U and all whose rays are

undominated in G.

Moreover, the normal tree T in (ii) can be chosen such that it contains U cofinally

and every component of G− T has finite neighbourhood.

When a graph contains no star or no comb attached to U , then in particular

it contains no dominated comb attached to U . Hence, by our theorem, the graph

contains a certain normal tree. If there is no star, then this normal tree will

be locally finite; and if there is no comb, then it will be rayless. Therefore, our

duality theorem for dominated combs in terms of normal trees implies our duality

theorems for arbitrary stars and combs in terms of normal trees from Chapter 11,

Theorems 12.1.1 and 12.1.2. This is surprising given that infinite trees cannot be

locally finite and rayless at the same time.

As an application, we will partially generalise Diestel’s structural characterisa-

tion [24] of the graphs for which the topological spaces obtained by adding their

ends are metrisable. Depending on the topology chosen, Diestel characterised

these graphs in terms of normal spanning trees, dominated combs, and infinite

stars. Applying Theorem 12.1, we can now provide, for any given set U of vertices,

existence criteria for metrisable (standard) subspaces containing U in the various

topologies. Our criteria will be in terms of normal trees containing U , dominated

combs attached to U , and stars attached to U . For one of the topologies we

obtain a characterisation.

Theorem 12.1 is significantly strengthened by its ‘moreover’ part. It will be

needed in the proof of our second duality theorem for dominated combs which is

phrased in terms of tree-decompositions. For the definition of tree-decompositions

see [20]. ‘Essentially disjoint’ and ‘displaying’ are defined in Section 12.2. An end
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ω of a graph G is contained in the closure of a vertex set U ⊆ V (G) in G if G

contains a comb attached to U whose spine lies in ω.

Theorem 12.2. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a dominated comb attached to U ;

(ii) G has a tree-decomposition (T,V) such that:

– each part contains at most finitely many vertices from U ;

– all parts at non-leaves of T are finite;

– (T,V) has essentially disjoint connected adhesion sets;

– (T,V) displays the ends of G in the closure of U in G.

Similar to Theorem 12.1, our duality theorem for dominated combs in terms of

tree-decompositions implies our duality theorems for arbitrary stars and combs in

terms of tree-decompositions from Chapter 11, Theorems 12.2.1 and 12.2.2.

In our proof of Theorem 12.2 we employ a profound theorem of Carmesin [15],

which states that every graph has a tree-decomposition displaying all its undomi-

nated ends. As it will be the case in this paper, Carmesin’s theorem might often

be used for graphs with normal spanning trees. For this particular case we provide

a substantially shorter proof.

This chapter is organised as follows. Section 12.1 establishes our duality theo-

rem for dominated combs in terms of normal trees. In Section 12.2 we prove our

duality theorems for dominated combs in terms of tree-decompositions. Our short

proof of Carmesin’s theorem for graphs with a normal spanning tree can be found

there as well.

Throughout this chapter, G = (V,E) is an arbitrary infinite graph. We assume

familiarity with the tools and terminology described in the first chapter of this

part.
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12.1. Normal trees

In this section we obtain the following duality theorem for dominated combs in

terms of normal trees:

Theorem 12.1. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a dominated comb attached to U ;

(ii) there is a normal tree T ⊆ G that contains U and all whose rays are

undominated in G.

Moreover, the normal tree T in (ii) can be chosen such that it contains U cofinally

and every component of G− T has finite neighbourhood.

The inconspicuous ‘moreover’ part will pave the way for our duality theorem for

dominated combs in terms of tree-decompositions (Theorem 12.2).

Before we provide a proof of Theorem 12.1 above, we shall discuss some conse-

quences and applications. As a first consequence, Theorem 12.1 above builds

a bridge between the duality theorems for combs (Theorem 12.1.1) and stars

(Theorem 12.1.2) in terms of normal trees (from the first chapter of this part),

which we recall here.

Theorem 12.1.1. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a comb attached to U ;

(ii) there is a rayless normal tree T ⊆ G that contains U .

Moreover, the normal tree T in (ii) can be chosen so that it contains U cofinally.

Theorem 12.1.2. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a star attached to U ;

(ii) there is a locally finite normal tree T ⊆ G that contains U and all whose

rays are undominated in G.

Moreover, the normal tree T in (ii) can be chosen such that it contains U cofinally

and every component of G− T has finite neighbourhood.
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Our duality theorem for dominated combs in terms of normal trees implies the

corresponding duality theorems for combs and stars above. This becomes apparent

by a close look at Figure 12.1.1. The three columns of the diagram summarise

the three duality theorems. Arrows depict implications between the statements;

the dashed arrows indicate that further assumptions are needed to obtain their

implications. On the left hand side, the extra assumption is that there is no comb

attached to U ; on the right hand side, the extra assumption is that there is no

star attached to U .

@ dominated comb

attached to U

@ comb attached to U

∃ normal tree with

all rays undom-

inated and (∗)
@ star attached to U

∃ rayless normal tree

with (∗)

∃ locally finite normal

tree with all rays un-

dominated and (∗)

Figure 12.1.1.: The relations between the duality theorems for combs, stars and

dominated combs in terms of normal trees.

Condition (∗) says that the normal tree contains U cofinally and

every component of the graph minus the normal tree has finite

neighbourhood.

As a consequence of the two dashed arrows, we obtain the implications ¬(i)→(ii)

of Theorem 12.1.1 and of Theorem 12.1.2 from the corresponding implication of

Theorem 12.1. Indeed, if G does not contain a comb attached to U , then in

particular it does not contain a dominated comb attached to U . Hence Theo-

rem 12.1 yields a normal tree, which additionally must be rayless. Similarly, if

G does not contain a star attached to U , then in particular it does not contain a

dominated comb attached to U . Hence Theorem 12.1 yields a normal tree, which

additionally must be locally finite and satisfy that all its rays are undominated.
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Since (i) and (ii) of Theorem 12.1.1 and of Theorem 12.1.2 exclude each other

almost immediately we have, so far, derived these two duality theorems for combs

and stars from our duality theorem for dominated combs—except for the ‘more-

over’ part of Theorem 12.1.2.

We proved Theorem 12.1.2 without its ‘moreover’ part in the first chapter of

this part. There, instead of proving the ‘moreover’ part as well, we announced

that we would prove it in this chapter. And here we prove it, by deriving it from

the identical ‘moreover’ part of Theorem 12.1:

Proof of Theorem 12.1.2. Employ Theorem 12.1 as above.

Another consequence of Theorem 12.1 is a fact whose previous proof, [24,

Lemma 2.3], relied on the theorem of Halin [40] which states that every connected

graph without a subdivided Kℵ0 has a normal spanning tree:

Corollary 12.1.3. If G is a connected graph none of whose ends is dominated,

then G is normally spanned.

For the proof of Theorem 12.1, we shall need the following four lemmas and a

result by Jung (cf. [43, Satz 6] or Theorem 11.2.5). The first lemma is from the

first chapter of this part and we remark that the original statement also takes

critical vertex sets in the closure of T or W into account.

Lemma 12.1.4 (see Chapter 11). Let G be any graph. If T ⊆ G is a rooted tree

that contains a vertex set W cofinally, then ∂ΩT = ∂ΩW .

Recall that for a graph G and a normal tree T ⊆ G the generalised up-closure

bbxcc of a vertex x ∈ T is the union of bxc with the vertex set of
⋃

C (x), where the

set C (x) consists of those components of G− T whose neighbourhoods meet bxc.

Lemma 11.1.10. Let G be any graph and T ⊆ G any normal tree.

(i) Any two vertices x, y ∈ T are separated in G by the vertex set dxe ∩ dye.

(ii) Let W ⊆ V (T ) be down-closed. Then the components of G −W come in

two types: the components that avoid T ; and the components that meet T ,

which are spanned by the sets bbxcc with x minimal in T −W .
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Lemma 11.1.11. If G is any graph and T ⊆ G is any normal tree, then every end

of G in the closure of T contains exactly one normal ray of T . Moreover, sending

these ends to the normal rays they contain defines a bijection between ∂ΩT and

the normal rays of T .

Lemma 12.1.5. Let G be a connected graph, let D0, D1, . . . be the distance classes

of G with respect to an arbitrary vertex of G, and let n ≥ 1. Then for every infinite

U ⊆ Dn the induced subgraph G[D0 ∪ · · · ∪Dn] contains a star attached to U .

Proof. By induction on n. For n = 1 there is a star in G[D0 ∪D1] with centre in

D0 and attachment set U . Now suppose that n > 1, and let any infinite U ⊆ Dn

be given. For every u ∈ U pick an edge eu at u incident with some vertex wu

in Dn−1, and let W ⊆ Dn−1 consist of the vertices wu. If some vertex w ∈ W

is incident with infinitely many edges of the form eu, we have the desired star.

Otherwise every vertex w ∈ W is incident with only finitely many such edges.

In that case, we find an infinite subset W ′ ⊆ W together with a matching of W ′

and an infinite subset of U formed by edges eu. Then we employ the induction

hypothesis to W ′ to yield a star S in G[D0 ∪ · · · ∪Dn−1] attached to W ′, and we

extend S to the desired star by adding edges of the matching.

Theorem 11.2.5 (Jung). Let G be any graph. A vertex set W ⊆ V (G) is

normally spanned if and only if it is a countable union of dispersed sets. In

particular, G is normally spanned if and only if V (G) is a countable union of

dispersed sets.

Now we are ready to prove our first duality theorem for dominated combs:

Proof of Theorem 12.1. First, we show that at most one of (i) and (ii) holds.

Assume for a contradiction that both hold, let R be the spine of a dominated

comb attached to U and let T be a normal tree as in (ii). Then the end of R lies

in the closure of U ⊆ T , so by Lemma 11.1.11 the normal tree T contains a normal

ray from that end. But then the vertices dominating R in G also dominate that

normal ray, a contradiction.

It remains to show that at least one of (i) and (ii) holds; we show ¬(i)→(ii). For

this, pick an arbitrary vertex v0 of G and write Dn for the nth distance class of G

with respect to v0. If for some distance class Dn there was a comb in G attached

to Dn ∩U , then that comb would be dominated by Lemma 12.1.5 contrary to our
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assumptions. Therefore, all the sets Dn∩U with n ∈ N are dispersed. Now, Jung’s

Theorem 11.2.5 yields a normal tree T ′ ⊆ G that contains U , and by replacing

T ′ with the down-closure of U we may assume that T ′ even contains U cofinally.

The normal rays of T ′ cannot be dominated in G because a normal ray of T ′ that

is dominated in G would give rise to a dominated comb attached to U .

For the ‘moreover’ part it remains to find a normal tree T ⊆ G just like T ′, but

such that additionally every component of G− T has finite neighbourhood. Our

proof proceeds in three steps, as follows.

It will turn out that if a component C of G − T ′ has infinite neighbourhood,

then there are rays in C whose ends in G lie in the closure of U . In step one we

define a superset Û ⊇ U that extends V (T ′) by carefully chosen vertex sets of

such rays, and we verify ∂ΩÛ = ∂ΩU . The choice of Û allows us in step two to

apply Theorem 12.1 (without the ‘moreover’ part) to Û , yielding a normal tree

T ′′ ⊆ G (which contains V (T ′) but in general does not extend T ′) for which we

then verify that every component of G − T ′′ has finite neighbourhood. As T ′′

contains Û cofinally, it also contains U , but it need not do so cofinally. Hence

in step three we fix this by taking T to be the down-closure of U in T ′′, and we

verify that T is as desired.

As our first step, we prepare the construction of T ′′. Write DT ′ for the collection

of the components of G−T ′ that have infinite neighbourhood. For each component

C ∈ DT ′ the down-closure dN(C)e is a normal ray in T ′ which we denote by RC .

Using Zorn’s lemma we choose, for every component C ∈ DT ′ , an inclusionwise

maximal collection RC of pairwise disjoint rays in the end of RC in G such that

all these rays are contained in C. We write UC for the vertex set of
⋃

RC and put

Û := V (T ′) ∪
⋃
{UC | C ∈ DT ′ }

while noting U ⊆ V (T ′) ⊆ Û .

We claim that ∂ΩÛ = ∂ΩU holds. The backward inclusion is immediate from

the inclusion Û ⊇ U . For the forward inclusion, consider any end ω of G that is

not contained in the closure of U ; we show ω /∈ ∂ΩÛ . As T ′ contains U cofinally,

it follows from Lemma 12.1.4 that the end ω does not lie in the closure of T ′

either. Let X ⊆ V (G) be a finite set of vertices witnessing that ω does not lie in

the closure of T ′. The plan is to slightly expand X so that it witnesses that ω

does not lie in the closure of Û as well. The component C(X,ω) avoids T ′, and
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in particular C(X,ω) avoids U . But C(X,ω) may meet some UC with C ∈ DT ′ .

However, the rays in the union of all sets RC over C ∈ DT ′ are pairwise disjoint by

the choice of the sets RC , and none of these rays’ ends lives in C(X,ω) ⊆ G−T ′.
So as X is finite this means that at most finitely many vertices of C(X,ω) belong

to rays from the sets RC , and therefore adding these vertices to X results in the

finite X separating ω from Û as well.

Now that we have ∂ΩÛ = ∂ΩU we apply Theorem 12.1 (without its ‘moreover’

part which we are currently proving) to Û in G and obtain a normal tree T ′′ ⊆ G

that contains Û cofinally and all whose rays are undominated in G. We claim

that every component C of G − T ′′ has finite neighbourhood. For this, assume

for a contradiction that some component C of G−T ′′ has infinite neighbourhood.

Let R be the normal ray in T ′′ given by the down-closure of that neighbourhood

in T ′′, and write Z for the set of those vertices in C that send edges to T ′′. Since

T ′′ contains Û cofinally it follows from Lemma 12.1.4 that ∂ΩT
′′ = ∂ΩÛ and thus

also ∂ΩT
′′ = ∂ΩU . As a consequence we know that the end ω of R in G lies in the

closure of U .

If some z ∈ Z would send infinitely many edges to T ′′, then z would dominate R,

contradicting the choice of T ′′. Thus every vertex in Z may send only finitely many

edges to R, and in particular Z must be infinite. Therefore, we find an infinite

subset Z ′ ⊆ Z for which G contains a matching of Z ′ and an infinite subset

of V (R). Applying the star-comb lemma in C to Z ′ then, as R was just noted to

be undominated, must yield a comb in C attached to Z ′. That comb’s spine R′ is

equivalent in G to R. Now consider the component D of G− T ′ that contains C.

Having in mind that ω lies in the closure of U , we find that the normal tree T ′ that

contains U cofinally does contain a normal ray equivalent to R, cf. Lemma 11.1.11.

This normal ray in T ′ must be RD, so in particular we have D ∈ DT ′ . But then

the spine R′ ⊆ C is disjoint from all the rays in RD since C avoids UD ⊆ T ′′,

contradicting the maximality of RD. Thus, every component C of G − T ′′ must

have finite neighbourhood.

Finally, let T ⊆ G be the normal tree given by the down-closure of U in T ′′.

Then T contains U cofinally. We claim that every component of G − T has

a finite neighbourhood. Indeed, consider any component C of G−T . If C is also a

component of G−T ′′, then—as we have already seen—it has finite neighbourhood.

Otherwise, by Lemma 11.1.10, the component C is spanned by bbxcc with respect
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to T ′′ for the minimal node x in C ∩ T ′′. Now, as T ′′ is normal, C can only send

edges to the finite set dxer{x}. Hence the component C has finite neighbourhood

as claimed.

Let us discuss an application of our duality theorem for dominated combs in

terms of normal trees. In [24], Diestel proves the following theorem that relates

the metrisability of |G| to the existence of normal spanning trees (we refer to

[24, Section 2] for definitions concerning |G|, MTop, VTop and Top):

Theorem 12.1.6 ([24, Theorem 3.1]). Let G be any connected graph.

(i) In MTop, |G| is metrisable if and only if G has a normal spanning tree.

(ii) In VTop, |G| is metrisable if and only if no end of G is dominated.

(iii) In Top, |G| is metrisable if and only if G is locally finite.

Assertions (ii) and (iii) of this theorem can be reformulated so as to speak about

normal spanning trees: By Theorem 12.1 with U = V (G), the graph G having

no dominated end is equivalent to G having a normal spanning tree all of whose

normal rays are undominated. And by Theorem 12.1.2 with U = V (G), the graph

G being locally finite is equivalent to G having a locally finite normal spanning

tree all of whose normal rays are undominated. That is why we may hope that

these theorems allow us to localise Theorem 12.1.6 above to arbitrary vertex

sets U ⊆ V (G). We will show that this is largely possible.

Recall that a standard subspace of |G| (with regard to MTop, VTop or Top)

is a subspace Y of |G| that is the closure H of a subgraph H of G (see Diestel’s

textbook [20, p. 246]).

Lemma 12.1.7. Let G be any graph, let T ⊆ G be any normal tree and consider

the spaces |T | and |G|, both in the same choice of one of the three topologies

MTop, VTop or Top. Then |T | is homeomorphic to the standard subspace T

of |G|.

Proof. By Lemma 11.1.11, the identity on T extends to a bijection |T | → T ⊆
|G| that sends every end of T to the unique end of G including it. Using

Lemma 11.1.10 it is straightforward to verify that the bijection is a homeo-

morphism, no matter which of the three topologies we chose.
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Theorem 12.1.8. Let G be any connected graph and U ⊆ V (G) any vertex set.

(i) In MTop, |G| has a metrisable standard subspace containing U if and only

if there is a normal tree T ⊆ G that contains U .

(ii) In VTop, |G| has a metrisable standard subspace containing U whenever

there is no dominated comb in G attached to U .

(iii) In Top, |G| has a metrisable standard subspace containing U whenever there

is no star in G attached to U .

Proof. (i) First, suppose that there is a metrisable standard subspace contai-

ning U . We imitate Diestel’s proof of the corresponding implication of Theo-

rem 12.1.6 (i). Recall from [24] that a set of vertices of G is dispersed in G if

and only it is closed in |G|. So by Jung’s Theorem 11.2.5, it suffices to show that

U can be written as a countable union of closed vertex sets. For this, the sets

Un consisting of the vertices in U that have distance ≥ 1/n from every end can

be taken: On the one hand, every Un is the intersection of complements of open

balls of radius 1/n, and hence closed. On the other hand, every vertex u ∈ U is

contained in Un for some n ∈ N because G is open in |G|.
Now, suppose that there is a normal tree T ⊆ G containing U and consider the

standard subspace T . By Lemma 12.1.7 the spaces T and |T | are homeomorphic.

Since T normally spans itself, |T | is metrisable by Theorem 12.1.6 (i).

(ii) Suppose that G contains no dominated comb attached to U . By Theo-

rem 12.1, there is a normal tree T ⊆ G that contains U cofinally. Then T ∼= |T |
by Lemma 12.1.7, and |T | is metrisable by Theorem 12.1.6 (ii).

(iii) If G contains no star attached to U , then by Theorem 12.1.2 there is a

locally finite normal tree T ⊆ G that contains U cofinally. By Lemma 12.1.7

we have that the standard subspace that arises from T is homeomorphic to |T |
with Top. Since T is locally finite, Top coincides with MTop on |T | which is

metrisable by Theorem 12.1.6 (i).

The statements (ii) and (iii) of Theorem 12.1.8 cannot be extended so as to

give equivalent statements: Let R be a ray, U = V (R) and consider the graph

G := R∗v where v /∈ R is any vertex (that is, G is obtained from R+v by adding

all possible v–R edges). By Lemma 12.1.7 the standard subspace that arises from

R is homeomorphic to |R|, which in turn is metrisable by Theorem 12.1.6. But

R ⊆ G is a dominated comb attached to U .
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12.2. Tree-decompositions

In the previous section, we have presented a duality theorem for dominated combs

in terms of normal trees. And we have deduced from this theorem the hard

implications ¬(i)→(ii) of Theorem 12.1.1 and of Theorem 12.1.2 (the duality

theorems for combs and stars in terms of normal trees).

Therefore we may expect from a duality theorem for dominated combs in terms

of tree-decompositions to reestablish the hard implications ¬(i)→(ii) of the duality

theorems for combs and stars in terms of tree-decompositions (Theorem 12.2.1

and Theorem 12.2.2 below)—by following arrows in Figure 12.2.1 like we did in

Figure 12.1.1.

Theorem 12.2.1 (see Chapter 11). Let G be any connected graph, and let U ⊆
V (G) be infinite. Then the following assertions are complementary:

(i) G contains a comb attached to U ;

(ii) G has a rayless tree-decomposition into parts each containing at most finitely

many vertices from U and whose parts at non-leaves of the decomposition

tree are all finite.

Moreover, the tree-decomposition in (ii) can be chosen with connected separators.

Recall from Chapter 11 that a tree-decomposition (T,V) of a given graph G

with finite separators displays a set Ψ of ends of G if τ restricts to a bijection

τ � Ψ: Ψ→ Ω(T ) between Ψ and the end space of T and maps every end that is

not contained in Ψ to some node of T , where τ : Ω(G)→ Ω(T )tV (T ) maps every

end of G to the end or node of T which it corresponds to or lives at, respectively.

Theorem 12.2.2 (see Chapter 11). Let G be any connected graph, and let U ⊆
V (G) be infinite. Then the following assertions are complementary:

(i) G contains a star attached to U ;

(ii) G has a locally finite tree-decomposition with finite and pairwise disjoint

separators such that each part contains at most finitely many vertices of U .

Moreover, the tree-decomposition in (ii) can be chosen with connected separators

and so that it displays ∂ΩU .
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In Section 12.2.1, we will prove a duality theorem for dominated combs in

terms of tree-decompositions, making the left but not the right dashed arrow in

Figure 12.2.1 true. In Section 12.2.2, the situation is reversed: we will prove a

duality theorem making the right but not the left dashed arrow in Figure 12.2.1

true. Here we also provide a short proof of Carmesin’s result [15], which states

that every graph has a tree-decomposition displaying all its undominated ends,

for normally spanned graphs. Finally, in Section 12.2.3, we will prove a duality

theorem that makes both the left and the right dashed arrow in Figure 12.2.1

true. This will be achieved by combining our proof technique from Section 12.2.1

and our duality theorem from Section 12.2.2.

@ dominated comb

attached to U

@ comb attached

to U
?

@ star attached

to U

∃ complementary

rayless tree-

decomposition

∃ complementary

locally finite tree-

decomposition

Figure 12.2.1.: The desired relation between stars, combs, dominated combs and

complementary tree-decompositions.

The left and right dashed arrow describe an implication whenever

there is no comb and no star attached to U , respectively.

12.2.1. A duality theorem related to combs

Here we present a duality theorem for dominated combs in terms of tree-decom-

positions making the left but not the right dashed arrow of Figure 12.2.1 true:
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Theorem 12.2.3. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a dominated comb attached to U ;

(ii) G has a tree-decomposition (T,V) that satisfies:

(a) each part contains at most finitely many vertices from U ;

(b) all parts at non-leaves of T are finite;

(c) every dominated end of G lives in a part at a leaf of T .

Moreover, the tree-decomposition in (ii) can be chosen with connected separators

and so that it displays ∂ΩU .

Before we provide a proof of this theorem, let us deduce the left dashed arrow

of Figure 12.2.1 from it (also see Figure 12.2.2 which shows the first two columns

of Figure 12.2.1 in greater detail and with Theorem 12.2.3 (ii) including the

theorem’s ‘moreover’ part inserted for ‘?’): If G does not contain a comb attached

to U , then in particular it does not contain a dominated comb attached to U .

Hence Theorem 12.2.3 returns a tree-decomposition (T,V) of G which we may

choose so that it satisfies the theorem’s ‘moreover’ part; in particular (T,V)

displays ∂ΩU . Our assumption that there is no comb attached to U implies that

∂ΩU is empty and hence T is rayless. Using the corresponding conditions from

Theorem 12.2.3 (ii) including the theorem’s ‘moreover’ part, we conclude that

(T,V) is as in Theorem 12.2.1 (ii) including the theorem’s ‘moreover’ part.

Finally, we prove Theorem 12.2.3:

Proof of Theorem 12.2.3. First, we show that at most one of (i) and (ii) holds.

Assume for a contradiction that G contains a dominated comb attached to U and

has, at the same time, a tree-decomposition (T,V) as in (ii). Let R be the comb’s

spine. Since every dominated end of G lives in a part at a leaf of T , and since

all parts at non-leaves are finite, we find without loss of generality a leaf ` of T

with R ⊆ G[V`]. But each part contains at most finitely many vertices from U .

In particular, V` contains at most finitely many vertices from U . Therefore, the

comb must send some infinitely many pairwise disjoint paths to vertices in UrV`.
But the separator of G that is associated with the edge `t ∈ T at ` is contained

in the intersection V` ∩ Vt ⊆ Vt which is finite since Vt is, a contradiction.
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@ comb attached to U
@ dominated comb

attached to U

∃ rayless tree-

decomposition

with (∗)

∃ tree-decomposition

with (∗) such that

dominated ends live

in parts at leaves and

that displays ∂ΩU

Figure 12.2.2.: The first two columns of Figure 12.2.1 with Theorem 12.2.3 (ii)

including the theorem’s ‘moreover’ part inserted for ‘?’.

Condition (∗) says that parts contain at most finitely many vertices

from U , that parts at non-leaves are finite and that the separators

are connected.

Now, to show that at least one of (i) and (ii) holds, we show ¬(i)→(ii). By

Theorem 12.1 we find a normal tree Tnt ⊆ G containing U cofinally all whose

rays are undominated in G and such that every component of G− Tnt has finite

neighbourhood. We construct the desired tree-decomposition from Tnt.

Given a component C of G−Tnt the neighbourhood of C is a finite chain in the

tree-order of Tnt, and hence has a maximal element tC ∈ Tnt. We obtain the tree

T from Tnt by adding each component C of G− Tnt as a new vertex and joining

it precisely to tC .

Having defined the decomposition tree T it remains to define the parts of the

desired tree-decomposition. For nodes t ∈ Tnt ⊆ T we let Vt consist of the down-

closure dteTnt of t in the normal tree Tnt. And for newly added nodes C we

let VC be the union of VtC and the vertex set of the component C, i.e., we put

VC := dteTnt ∪ V (C).

Since Tnt is normal and contains U cofinally, it follows by standard arguments

employing Lemma 12.1.4 and Lemma 11.1.11 that (T,V) displays ∂ΩU . Conditions

(a) and (b) hold by construction. Combining (b) with (T,V) displaying ∂ΩU

gives (c), which in turn is—as the rest of the ‘moreover’ part—a direct consequence

of how the parts are defined.
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Example 12.2.4. The tree-decomposition in Theorem 12.2.3 (ii) cannot be cho-

sen to additionally have pairwise disjoint separators, which shows that the theorem

does not make the right dashed arrow in Figure 12.2.1 true. To see this suppose

that G consists of the first three levels of Tℵ0 , the tree all whose vertices have

countably infinite degree, and let U = V (G). Then G contains no comb attached

to U . Suppose for a contradiction that G has a tree-decomposition (T,V) as

in Theorem 12.2.3 (ii) which additionally has pairwise disjoint separators. The

graph G being rayless and U being the whole vertex set of G together with our

assumption that (T,V) has pairwise disjoint separators makes sure that (T,V)

also displays ∂ΩU . In particular, by our argumentation in the text below Theo-

rem 12.2.3, (T,V) is also a tree-decomposition of G complementary to combs as

in Theorem 12.2.1. But then (T,V) cannot have pairwise disjoint separators, as

pointed out in Example 11.2.7.

12.2.2. A duality theorem related to stars

Here we present a duality theorem for dominated combs in terms of tree-decom-

positions making the right but not the left dashed arrow in Figure 12.2.1 true.

Theorem 12.2.5. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a dominated comb attached to U ;

(ii) G has a tree-decomposition with pairwise disjoint finite separators that dis-

plays ∂ΩU .

Moreover, the tree-decomposition in (ii) can be chosen with connected separators

and rooted so that it covers U cofinally.

Before we prepare the proof of our theorem, let us deduce the right dashed

arrow of Figure 12.2.1 from it (also see Figure 12.2.3 which shows the last two

columns of Figure 12.2.1 in greater detail and where Theorem 12.2.5 (ii) including

the theorem’s ‘moreover’ part is inserted for ‘?’): If G does not contain a star

attached to U , then in particular it does not contain a dominated comb attached

to U . Hence Theorem 12.2.5 yields a tree-decomposition (T,V) of G which we

choose so that it also satisfies the theorem’s ‘moreover’ part; in particular (T,V)
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is rooted so that it covers U cofinally. By assumption, the star-comb lemma yields

a comb in G attached to U ′ for every infinite subset U ′ of U . Since (T,V) displays

∂ΩU this means that no part can meet U infinitely. And additionally employing

the pairwise disjoint finite separators plus U being cofinally covered by the tree-

decomposition, we deduce that no node of T can have infinite degree: Suppose for

a contradiction that t ∈ T is a vertex of infinite degree. For every up-neighbour

t′ of t we choose a vertex from U that is contained in a part Vt′′ with t′′ ≥ t′ in T .

Then applying the star-comb lemma in G to the infinitely many chosen vertices

from U yields a comb. The end of the comb’s spine must then live at t because the

separators of (T,V) are all finite and pairwise disjoint. But this contradicts the

fact that (T,V) displays ∂ΩU which contains the end of the comb’s spine. Finally,

(T,V) inherits the properties of the ‘moreover’ part of Theorem 12.2.2 from the

identical properties of Theorem 12.2.5 (ii) including that theorem’s ‘moreover’

part.

@ dominated comb

attached to U
@ star attached to U

∃ tree-decomposition

with (∗) that covers

U cofinally

∃ locally finite tree-

decomposition with

all parts meeting U

finitely and with (∗)

Figure 12.2.3.: The last two columns of Figure 12.2.1 with Theorem 12.2.5 (ii)

including the theorem’s ‘moreover’ part inserted for ‘?’.

Condition (∗) says that the tree-decomposition displays ∂ΩU and

has pairwise disjoint finite connected separators.

In order to prove Theorem 12.2.5, we will employ the following result by Car-

mesin. Recall that a rooted Sℵ0-tree (T, α) has upwards disjoint separators if for

every two edges
→
e <

→
f pointing away from the root r of T the separators of α(

→
e)

and α(
→
f ) are disjoint. And (T, α) is upwards connected if for every edge

→
e pointing

away from the root r the induced subgraph G[B] stemming from (A,B) = α(
→
e)

is connected. A rooted tree-decomposition has upwards disjoint separators or is
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upwards connected if its corresponding Sℵ0-tree is.

Theorem 12.2.6 (Theorem 11.1.17). Every connected graph G has an upwards

connected rooted tree-decomposition with upwards disjoint finite separators that

displays the undominated ends of G.

Carmesin’s proof of this theorem in [15] is long and complex. However, in this

paper we need his theorem only for normally spanned graphs. This is why we will

provide a substantially shorter proof for this class of graphs (cf. Theorem 12.2.9).

Furthermore, we prove that the separators of the tree-decomposition in Theo-

rem 12.2.6 can be chosen pairwise disjoint and connect, which makes it easier for

us to apply the theorem. The latter is essentially accomplished by the following

lemma:

Lemma 12.2.7. Let G be any connected graph and let Ψ be any set of ends of G.

Then the following assertions are equivalent:

(i) G has an upwards connected rooted tree-decomposition with upwards disjoint

finite separators that displays Ψ;

(ii) G has a tree-decomposition with pairwise disjoint finite connected separators

that displays Ψ.

Indeed, this lemma together with Theorem 12.2.6 yields the following theorem:

Theorem 12.2.8. Every connected graph G has a tree-decomposition with pair-

wise disjoint finite connected separators that displays the undominated ends of G.

For the proof of Lemma 12.2.7 we need the following lemma from the first

chapter of this part:

Lemma 11.1.16. Let G be any graph. Every upwards connected rooted Sℵ0-tree

(T, α) with upwards disjoint separators displays the ends of G that correspond to

the ends of T .

Proof of Lemma 12.2.7. The implication (ii)→(i) is immediate, we prove (i)→(ii).

Let (T,V) be an upwards connected rooted tree-decomposition of G with up-

wards disjoint finite separators that displays Ψ. We consider the Sℵ0-tree (T, α)
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corresponding to (T,V). For every edge e = t1t2 of T with t1 ≤ t2 and α(t1, t2) =

(A,B) we use that (T, α) is upwards connected to find a finite connected subgraph

He of G[B] that contains A∩B. We define A′ := A∪ V (He) and B′ := B so that

the separator A′ ∩ B′ = V (He) is connected. Then we define α′(t1, t2) := (A′, B′)

and α′(t2, t1) := (B′, A′) to obtain another map α′ :
→
E(T )→

→
Sℵ0 . The pair (T, α′)

does not need to be an Sℵ0-tree, for some of its separations might cross. To fix

this, we will carefully ‘thin out’ the tree and, consequently, the set of separations

associated with it via α′. This will result in a contraction minor T̃ of T such

that (T̃ , α̃′) with α̃′ := α′ � E(T̃ ) is an Sℵ0-tree with upwards disjoint finite

connected separators that still displays Ψ. Then, in order to obtain the desired

tree-decomposition, we just have to contract all the edges of T̃ that are at an even

distance from the root, and restrict α̃′ to the smaller edge set of the resulting

contraction minor of T̃ .

To begin the construction of T̃ , we partially order E(T ) by letting e ≤ f

whenever e precedes f on a path in T starting at the root. For every edge e

of T we do the following. We write Te for the component of T − e that does

not contain the root. Then, we let Fe ⊆ E(Te) consist of the down-closure in

E(Te) of those edges whose α′-separator (the separator of the separation that

α′ associates with the edge) meets the α′-separator of e. A distance argument

employing the original upwards disjoint α-separators ensures that Fe induces a

rayless down-closed subtree of Te.

In order to reasonably name edges of T whose contraction leads to T̃ , we

recursively construct a sequence E0, E1, . . . of pairwise disjoint subsets of E(T )

such that their overall union E ′ :=
⊔
n∈NEn induces a partition { {e}, Fe | e ∈ E ′ }

of E(T ). The construction goes as follows. Take E0 to be the set of minimal edges

of E(T ), i.e., take E0 to be the set of edges of T at the root. Then at step n > 0

consider the edges of E(T ) that are not contained in the down-closed edge set⋃
{ {e}, Fe | e ∈ E0 ∪ · · · ∪ En−1 }, and take the minimal ones to form En.

Once we have constructed E ′, we take T̃ to be the contraction minor of T that

is obtained by contracting all the edges occurring in some Fe with e ∈ E ′. Then

(T̃ , α̃′) has upwards disjoint finite connected separators and displays Ψ, as we

verify now. Consider any distinct two edges e and f of T̃ , that is, edges e, f ∈ E ′.
If the two edges are comparable with e < f , say, then their α′-separators are

disjoint as f is not in Fe, and so in particular their α′-separations are nested.
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Otherwise e and f are incomparable, and then their α′-separations are nested

by the construction of α′ from α. Therefore, the separators of (T̃ , α̃′) are finite,

connected and pairwise disjoint. It remains to show that (T̃ , α̃′) displays Ψ.

Since all Fe are rayless, we deduce that every ray of T meets E ′ infinitely.

Consequently, the rooted rays of T correspond bijectively to the rooted rays of T̃

via the map R 7→ R̃ satisfying E(R) ⊇ E(R̃). Now to see that (T̃ , α̃′) displays Ψ,

consider any end ω of G. If ω is not contained in Ψ, then ω lives at a node t ∈ T
(with regard to (T, α)), and hence ω lives at the node t̃ ∈ T̃ (with regard to

(T̃ , α̃′)) that contains t. Otherwise ω lies in Ψ. Then ω corresponds to an end

of T . This end is uniquely represented by a rooted ray R of T . And then from

E(R̃) ⊆ E(R) it follows that ω corresponds to the end of R̃ in T̃ . So the ends

in Ψ correspond to ends of T̃ while all ends in Ω r Ψ live at nodes. Then by

Lemma 11.1.16 this correspondence is bijective, and hence (T̃ , α̃′) displays Ψ as

desired.

Theorem 12.2.9. Let G be any connected graph. If Tnt ⊆ G is a normal tree

such that every component of G − Tnt has finite neighbourhood, then G has a

rooted tree-decomposition (T,V) with the following three properties:

• the separators are pairwise disjoint, finite and connected;

• (T,V) displays the undominated ends in the closure of Tnt;

• (T,V) covers V (Tnt) cofinally.

Proof. Given the normal tree Tnt, by Lemma 12.2.7 it suffices to find an upwards

connected rooted tree-decomposition (T,V) of G that diplays the undominated

ends in the closure of Tnt and that has upwards disjoint finite separators all of

which meet V (Tnt).

Let us write r for the root of Tnt. Recall that every component of G− Tnt has

finite neighbourhood by assumption. Hence every end ω ∈ Ω r ∂ΩTnt lives in a

unique component of G − Tnt; we define the height of ω to be the height of the

maximal neighbour of this component in Tnt.

Starting with T0 = r and α0 = ∅ we recursively construct an ascending1

1Here, we mean ascending in both entries with regard to inclusion, i.e., Tn ⊆ Tn+1 and αn ⊆
αn+1 for all n ∈ N.
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sequence of Sℵ0-trees (Tn, αn) all rooted in r and satisfying the following con-

ditions:

(i) the separators of (Tn, αn) are upwards disjoint and they are vertex sets of

ascending paths in Tnt;

(ii) Tn arises from Tn−1 by adding edges to its (n− 1)th level;

(iii) undominated ends in the closure of Tnt live at nodes of the nth level of Tn

with regard to (Tn, αn);

(iv) if ω ∈ Ω r ∂ΩTnt has height < n, then ω lives at a node of Tn of height < n

with regard to (Tn, αn).

Before pointing out the details of our construction, let us see how to complete

the proof once the (Tn, αn) are defined. Consider the Sℵ0-tree (T, α) defined by

letting T :=
⋃
n∈N Tn and α :=

⋃
n∈N αn, and let (T,V) be the corresponding

tree-decomposition of G. By (i) we have that (T,V) is indeed a rooted tree-

decomposition with upwards disjoint finite connected separators all of which meet

the vertex set of Tnt. It remains to prove that (T,V) displays the undominated

ends in the closure of Tnt.

By Lemma 11.1.16 it suffices to show that the undominated ends in the closure

of Tnt are precisely the ends of G that correspond to the ends of T . For the

forward inclusion, consider any undominated end ω in the closure of Tnt. By (iii),

it follows that ω lives at a node tn of Tn (with regard to (Tn, αn)) at level n for

every n ∈ N, and these nodes form a ray R = t0t1 . . . of T . Then ω corresponds

to the end of T containing R.

For an indirect proof of the backward inclusion, consider any end ω of G that

is either dominated or not contained in the closure of Tnt. We show that ω does

not correspond to any end of T . If ω is dominated, then this follows from the fact

that (T,V) has upwards disjoint finite separators. Otherwise ω is not contained

in the closure of Tnt. Let n ∈ N be strictly larger than the height of ω. By (iv), it

follows that ω lives at a node tω of Tn of height < n with regard to (Tn, αn). And

by (ii), the tree Tn consists precisely of the first n levels of T . We conclude that

ω lives in the part of (T,V) corresponding to tω.

Now, we turn to the construction of the (Tn, αn), also see Figure 12.2.4. At

step n + 1 suppose that (Tn, αn) has already been defined and recall that the
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X
Y
Z

y

Zy

Byz

y′

Zy′ = ∅

Figure 12.2.4.: The construction of the (Tn, αn) in the proof of Theorem 12.2.9.

Here the vertex set Z consists of all vertices that are contained in

some Zy with y ∈ Y . The depicted tree is Tnt.

separators of (Tn, αn) are vertex sets of ascending paths in Tnt by (i). Let L be

the nth level of Tn. To obtain (Tn+1, αn+1) from (Tn, αn), we will add for each

` ∈ L new vertices (possibly none) to Tn that we join exactly to ` and define the

image of the so emerging edges under αn+1. So fix ` ∈ L. Let X be the separator

of the separation corresponding to the edge between ` and its predecessor in Tn

(if n = 0 put X = ∅). Recall that X is the vertex set of an ascending path in Tnt

by (i). In Tnt, let Y be the set of up-neighbours of the maximal vertices in X (for

n = 0 let Y := {r}). For each y ∈ Y let Zy be the set of those z ∈ bycTnt that

are minimal with the property that G contains no Tnt-path starting in dyeTnt and

ending in bzcTnt . (Note that a normal ray of Tnt that contains y meets Zy if and

only if it is not dominated by any of the vertices in dyeTnt ; this fact together with (i)

will guarantee (iii) for n+1.) Then the vertex set of yTntz separates the connected

sets Ayz := (V r bbzccTnt) ∪ V (yTntz) and Byz := V (yTntz) ∪ bbzccTnt whenever

y ∈ Y and z ∈ Zy. Join a node tyz to ` for every pair (y, z) with y ∈ Y and

z ∈ Zy, and put αn+1(`tyz) := (Ayz, Byz). Then the Sℵ0-tree (Tn+1, αn+1) clearly

satisfies (i) and (ii). That it satisfies (iii) was already argued in the construction

and (iv) follows from (i) and the definition of αn+1(`tyz).

With Theorem 12.2.9 at hand, we are finally able to prove Theorem 12.2.5:

169



Proof of Theorem 12.2.5. First, we show that (i) and (ii) cannot hold at the same

time. For this, assume for a contradiction that G contains a dominated comb

attached to U and has a tree-decomposition (T,V) with pairwise disjoint finite

separators that displays ∂ΩU . We write ω for the end of G containing the comb’s

spine. Then ω lies in the closure of U , and since (T,V) displays ∂ΩU there is a

unique end η of T to which ω corresponds. But as the finite separators of (T,V)

are pairwise disjoint, it follows that ω is undominated in G, contradicting that ω

contains the spine of a dominated comb.

Now, to show that at least one of (i) and (ii) holds, we prove ¬(i)→(ii).

Using Theorem 12.1 we find a normal tree Tnt ⊆ G that contains U cofinally

and all whose rays are undominated in G. Furthermore, by the ‘moreover’ part

of Theorem 12.1 we may assume that every component of G − Tnt has finite

neighbourhood, and by Lemma 12.1.4 we have ∂ΩU = ∂ΩTnt. Then Theo-

rem 12.2.9 yields a rooted tree-decomposition (T ′,V ′) of G as in (ii) that has

connected separators and covers V (Tnt) cofinally. It remains to show that (T ′,V ′)
can be chosen so as to cover U cofinally. For this, consider the nodes of T ′ whose

parts meet U , and let T ⊆ T ′ be induced by their down-closure in T ′. Then let

(T ′, α′) be the Sℵ0-tree of G that corresponds to (T ′,V ′) and consider the rooted

tree-decomposition (T,V) of G that corresponds to (T, α′ �
→
E(T ) ). Now (T,V) is

as in (ii) and satisfies the theorem’s ‘moreover’ part.

12.2.3. A duality theorem related to stars and combs

Finally, we present a duality theorem for dominated combs in terms of tree-

decompositions that makes both the left and the right dashed arrow in Fig-

ure 12.2.1 true. In order to state the theorem, we need one more definition.

A tree-decomposition (T,V) of a graph G has essentially disjoint separators if

there is an edge set F ⊆ E(T ) meeting every ray of T infinitely often such that

the separators of (T,V) associated with the edges in F are pairwise disjoint.

170



Theorem 12.2. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains a dominated comb attached to U ;

(ii) G has a tree-decomposition (T,V) such that:

– each part contains at most finitely many vertices from U ;

– all parts at non-leaves of T are finite;

– (T,V) has essentially disjoint connected separators;

– (T,V) displays the ends in the closure of U .

Before we provide a proof of this theorem, let us see that it relates to the

duality theorems for stars and combs in terms of tree-decompositions as desired

(also see Figure 12.2.5, which shows Figure 12.2.1 in greater detail and where

Theorem 12.2 (ii) including the theorem’s ‘moreover’ part is inserted for ‘?’).

On the one hand, if G does not contain a comb attached to U , then in particular

it does not contain a dominated comb attached to U . Hence Theorem 12.2 returns

a tree-decomposition (T,V). By our assumption that there is no comb attached

to U , and since (T,V) displays ∂ΩU , it follows that the decomposition-tree T

is rayless. We conclude that (T,V) is as in Theorem 12.2.1 (ii) including the

theorem’s ‘moreover’ part.

On the other hand, if G does not contain a star attached to U , then in particular

it does not contain a dominated comb attached to U . Hence Theorem 12.2

returns a tree-decomposition (T,V) that, in particular, has essentially disjoint

finite connected separators and displays ∂ΩU . Write (T, α) for the Sℵ0-tree that

corresponds to (T,V). Let F ⊆ E(T ) witness that (T,V) has essentially disjoint

separators and root T arbitrarily. By possibly thinning out F , we may assume

that each edge in F meets a rooted ray of T . Consider the tree T̃ that is obtained

from T by contracting all the edges of T that are not in F and let α̃ be the

restriction of α to
→
F =

→
E(T̃ ). Then (T̃ , α̃) corresponds to a tree-decomposition

(T̃ ,W) of G with pairwise disjoint finite connected separators that displays ∂ΩU .

Thus, the tree-decomposition (T̃ ,W) is one of the tree-decompositions of G that

are complementary to dominated combs as in Theorem 12.2.5 (ii) including the

theorem’s ‘moreover’ part (it covers U cofinally as F meets every rooted ray of
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@ dominated comb

attached to U

@ comb attached to U

∃ tree-decomposition

with (∗), essentially

disjoint separators

and parts at non-

leaves finite

@ star attached to U

∃ rayless tree-decom-

position with (∗)
and parts at non-

leaves finite

∃ locally finite tree-

decomposition with

(∗) and pairwise

disjoint separators

Figure 12.2.5.: The relation between the duality theorems for combs, stars and

the final duality theorem for the dominated combs in terms of

tree-decompositions.

Condition (∗) says that parts contain at most finitely many vertices

from U , that the separators are finite and connected, and that the

tree-decomposition displays ∂ΩU .

T while (T,V) displays ∂ΩU). Then, as we have already argued below Theo-

rem 12.2.5, the tree-decomposition (T̃ ,W) must be locally finite and each part

may contain at most finitely many vertices of U . That is to say that (T̃ ,W) is as

in Theorem 12.2.2 (ii) including the theorem’s ‘moreover’ part.

As we work with contraction minors in the proof of Theorem 12.2 we need some

preparation. Let H and G be any two graphs. We say that H is a contraction

minor of G with fixed branch sets if an indexed collection of branch sets {Vx | x ∈
V (H) } is fixed to witness that G is an IH. In this case, we write [v] = [v]H for

the branch set Vx containing a vertex v of G and also refer to x by [v]. Similarly,

we write [U ] = [U ]H := { [u] | u ∈ U } for vertex sets U ⊆ V (G).

The following notation will help us to translate between the endspace of G and

that of H. Consider a contraction minor H of a graph G with fixed finite branch
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sets. Every direction f of G defines a direction [f ] of H by letting [f ](X) :=

[f(
⋃
X)] for every finite vertex set X ⊆ V (H). In fact, it its straightforward to

check that every direction of H is defined by a direction of G in this way:

Lemma 12.2.10. Let H be a contraction minor of a graph G with fixed finite

branch sets. Then the map f 7→ [f ] is a bijection between the directions of G and

the directions of H.

This one-to-one correspondence then combines with the well-known one-to-one

correspondence between the directions and ends of a graph (see Theorem 11.1.7),

giving rise to a bijection ω 7→ [ω] between the ends of G and the ends of H. The

natural one-to-one correspondence between the two end spaces extends to other

aspects of the graphs and their ends:

Lemma 12.2.11. Let H be a contraction minor of a graph G with fixed finite

branch sets, let ω be an end of G and let U ⊆ V (G) be any vertex set. Then ω

lies in the closure of U in G if and only if [ω] lies in the closure of [U ] in H; and

ω is dominated in G if and only if [ω] is dominated in H.

We remark that this extends [20, Exercise 82 (i)].

Proof. Write fω for the direction of G that corresponds to ω. Then the following

statements are equivalent:

(i) ω lies in the closure of U in G;

(ii) fω(X) meets U for every finite vertex set X ⊆ V (G);

(iii) [fω](X) meets [U ] for every finite vertex set X ⊆ V (H);

(iv) [ω] lies in the closure of [U ] in H.

Indeed, one easily verifies (i)↔(ii)↔(iii)↔(iv).

This establishes that the end ω of G lies in the closure of U in G if and only

if [ω] lies in the closure of [U ] in H. Similarly, it is straightforward to check that

the following statements are equivalent for any vertex v of G (except for (iii)→(ii)

which we will verify in detail):
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(i) there is a vertex z ∈ [v] that dominates ω in G;

(ii) there is a vertex z ∈ [v] such that z ∈ fω(X) for every finite vertex set

X ⊆ V (G) r {z};

(iii) [v] ∈ [fω](X) for every finite vertex set X ⊆ V (H) r {[v]};

(iv) [v] dominates [ω] in H.

To see (iii)→(ii) we show ¬(ii)→¬(iii). Since (ii) fails, there is for every vertex

z ∈ [v] a finite vertex set Xz ⊆ V (G) r {z} such that z is not contained in

fω(Xz). Consider the finite vertex set X :=
⋃
zXz. Then no z ∈ [v] is contained

in the component fω(X) or is one of its neighbours, because fω(X) ⊆ fω(Xz) and

z /∈ Xz ∪ fω(Xz). Hence [v] /∈ [fω]([X ′]) for the neighbourhood X ′ of fω(X) in G

that avoids [v]. Therefore the end ω of G is dominated in G if and only if [ω] is

dominated in H.

Suppose that (T,V) is a tree-decomposition of a given graph G and that H is

a contraction minor of G with fixed branch sets. The tree-decomposition of H

that is obtained by passing on (T,V) to H is the tree-decomposition (T, ([Vt])t∈T ).

Note that this is indeed a tree-decomposition, cf. [20, Lemma 12.3.3].

Lemma 12.2.12. Let G be any graph, let U ⊆ V (G) be any vertex set, and let

(T,V) be any tree-decomposition of G with finite separators. Furthermore, let H

be any contraction minor of G with fixed finite branch sets. Then (T,V) displays

the ends of G in the closure of U if and only if the tree-decomposition of H that

is obtained by passing on (T,V) to H displays the ends of H in the closure of [U ].

Proof. Let (T, α) be the Sℵ0-tree corresponding to (T,V) and let (T, α′) be the

Sℵ0-tree corresponding to the tree-decomposition of H that is obtained by passing

on (T,V) to H. The ends of G correspond bijectively to the ends of H through

the bijection Ω(G)→ Ω(H) that maps ω to [ω]. By Lemma 12.2.11, this bijection

restricts to a bijection between the ends of G in the closure of U and the ends

of H in the closure of [U ]. Hence it suffices to show that every end ω of G

induces the same orientation on
→
E(T ) with regard to (T, α) as [ω] does with

regard to (T, α′). For this, let ω be any end of G and write fω for the direction

of G that corresponds to ω. The following statements are equivalent for every

oriented edge (e, s, t) ∈
→
E(T ) and α(s, t) = (A,B):
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(i) (e, s, t) is contained in the orientation of
→
E(T ) induced by ω;

(ii) every ray in ω has a tail in G[B];

(iii) fω(A ∩B) is included in G[B];

(iv) [fω]([A] ∩ [B]) is included in H[ [B] ];

(v) every ray in [ω] has a tail in H[ [B] ];

(vi) (e, s, t) is contained in the orientation of
→
E(T ) induced by [ω].

Indeed, having in mind that α′(s, t) = ([A], [B]) one easily verifies the implications

(i)↔(ii)↔(iii)↔(iv)↔(v)↔(vi) in the given order.

Lemma 12.2.13. Let G be any graph, let U ⊆ V (G) be any vertex set and let

H be any contraction minor of G with fixed finite branch sets. If assertion (ii)

of Theorem 12.2 holds with G and U replaced by H and [U ] respectively, then

assertion (ii) also holds for G and U .

Proof. Let (T,W) be any tree-decomposition of H that witnesses that asser-

tion (ii) holds with G and U replaced by H and [U ]. Then the tree-decomposition

(T,W) of H gives rise to a tree-decomposition (T,V) of G by replacing every

part with the union of the branch sets that correspond to its vertices. We claim

that (T,V) witnesses that assertion (ii) holds for G and U . For this, we have to

show that (T,V) satisfies four conditions, of which only the fourth condition—that

(T,V) displays the ends of G in the closure of U—is not immediate. This fourth

condition, however, is covered by Lemma 12.2.12.

Proof of Theorem 12.2. Since the tree-decomposition from (ii) displays ∂ΩU and

has essentially disjoint finite separators, it follows by standard arguments that not

both (i) and (ii) can hold at the same time.

In order to show that at least one of (i) and (ii) holds, we prove ¬(i)→(ii).

For this, suppose that G contains no dominated comb attached to U . Using

Theorem 12.2.5 we find a tree-decomposition Tdisj = (Tdisj,Vdisj) of G with pair-

wise disjoint connected finite separators that displays the ends of G in the closure

of U . Then the contraction minor H of G that is obtained from G by contracting

every separator of Tdisj does not contain any dominated comb attached to [U ] by

Lemma 12.2.11. By Lemma 12.2.13 it suffices to show assertion (ii) with G and

175



U replaced by H and [U ]. That is why in order to show assertion (ii) for G and

U we may assume that the separators of Tdisj are singletons.

By Theorem 12.1 we find a normal tree Tnt ⊆ G that contains U cofinally and

all whose rays are undominated. Furthermore, by the theorem’s ‘moreover’ part

we may choose Tnt so that every component of G−Tnt has finite neighbourhood.

As the nodes of Tdisj whose parts meet Tnt induce a subtree T ′disj of Tdisj, we may

additionally assume that Tnt meets every part of Tdisj: we may replace Tdisj with

the tree-decomposition of G that corresponds to the Sℵ0-tree (T ′disj, α �
→
E(T ′disj) )

where (Tdisj, α) is the Sℵ0-tree corresponding to Tdisj (here Lemma 12.1.4 ensures

that the new tree-decomposition still displays ∂ΩU).

As Tnt is normal, the neighbourhood of every such component C is a chain in

Tnt and thus has a maximal element tC . Now, let T ′ be the tree that is obtained

from Tnt by adding every component C of G − Tnt as a new vertex and joining

it precisely to tC . We define a tree-decomposition (T ′,V ′) of G that is almost as

desired.

Before we do that, let us have a closer look at how Tnt interacts with the tree-

decomposition Tdisj, also see Figure 12.2.6. For every node x ∈ Tdisj the normal

tree Tnt restricts to a normal tree T xnt := Tnt∩G[Vx] in G[Vx] that contains all the

vertices of U in the part Vx from Vdisj cofinally. We write rx for the root of T xnt.

As the tree-decomposition Tdisj of G displays all the ends in the closure of U , each

T xnt must be rayless. The normal trees T xnt intersect each other as follows. For

every two distinct nodes x, y ∈ Tdisj the normal trees T xnt and T ynt avoid each other

if xy is not an edge of Tdisj, and they intersect precisely in the single vertex of the

separator associated with the edge xy if xy is an edge of Tdisj.

Now let us define the parts V ′t of (T ′,V ′) for every node t ∈ T ′. For this, we

choose for every node t ∈ Tnt a root r(t) of some of the normal trees T xnt with

x ∈ Tdisj as follows. If just one of the normal trees T xnt contains t, then we let

r(t) be the root rx of T xnt. Otherwise there are two normal trees T xnt and T ynt

with xy ∈ Tdisj and we choose the smaller node of rx and ry with regard to the

tree-order of Tnt as r(t) (in particular, if rx < ry then r(ry) = rx). For all nodes

t ∈ Tnt ⊆ T ′ we let V ′t be the vertex set of the decreasing path tTntr(t) in Tnt.

For newly added nodes C ∈ T ′ − Tnt coming from components of G− Tnt we let

V ′C be the union of V ′tC and the vertex set of the component C.

In a final construction, we obtain the desired tree-decomposition (T,V) from
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C
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Vx

Vz
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rx

ry
rz

Figure 12.2.6.: The construction of (T ′,V ′) in the proof of Theorem 12.2. The tree

depicted is the normal tree Tnt and the grey disks are the parts of

Tdisj. Here the root rx of T xnt agrees with the root of Tnt. Also we

have r(ry) = r(rz) = rx and r(t) = ry.

the tree-decomposition (T ′,V ′). For every vertex x ∈ Tdisj let Tx be the tree that

is obtained from T xnt as follows: Take a copy sx of rx (making sure that sx /∈ Tnt
and sx 6= sy for all x 6= y ∈ Tdisj) and join it precisely to the neighbours of rx in

T xnt and to rx. Then delete all edges incident to rx other than rxsx. We let T be

the union of all the trees Tx and define the parts of (T,V) as follows. For every

node t ∈ V (T ′) ⊆ V (T ) we let Vt := V ′t and for all vertices sx ∈ T − T ′ we let

Vsx be the singleton consisting only of rx. Let us prove that (T,V) is as desired.

Each part contains at most finitely many vertices from U because U ⊆ V (Tnt)

and Vt∩Tnt is the vertex set of a finite path (or a singleton) for every node t ∈ T .

Quite similarly, all parts at non-leaves of T ′ are finite because they are vertex sets

of finite paths of Tnt.

To see that (T,V) has essentially disjoint separators, let F ⊆ E(T ) be the set

of all edges rxsx with x ∈ Tdisj and rx distinct from the root of Tnt. The latter

requirement becomes necessary when the root of Tnt forms a separator Z of Tdisj:
then the root is chosen as rx = ry for the edge xy ∈ Tdisj with which the separator
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Z is associated in Tdisj, meaning that both edges rxsx and rysy of T have the

same separator {rx} = {ry} associated with them in (T,V). In particular, the

requirement affects at most two edges of T . Now, let us see that F witnesses

that (T,V) has essentially disjoint separators. On the one hand, the separators

of (T,V) associated with edges rxsx ∈ F are singletons of the form {rx} and thus

are pairwise disjoint. On the other hand, using that the trees T xnt with x ∈ Tdisj
are rayless, it is easy to see that every ray R ⊆ T passes through infinitely many

edges from F .

In order to see that (T,V) displays the ends in the closure of U it suffices to

show that (T ′,V ′) displays the ends in the closure of U . For this in turn, by

Lemma 12.1.4, it suffices to show that (T ′,V ′) displays the ends in the closure

of Tnt, which follows from standard arguments.

Example 12.2.14. The tree-decomposition in Theorem 12.2 (ii) cannot be chosen

with pairwise disjoint separators instead of essentially disjoint separators: Suppose

that G consists of the first three levels of Tℵ0 and let U := V (G). Then G contains

no comb attached to U . In particular, as we have already argued in the text below

Theorem 12.2, every tree-decomposition (T,V) of G complementary to dominated

combs as in Theorem 12.2 is also a tree-decomposition of G complementary to

combs as in Theorem 12.2.1. But then (T,V) cannot be chosen with pairwise

disjoint separators, as pointed out in Example 11.2.7.
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13. Undominated combs

In the first Chapter 11 of this part we found structures whose existence is comple-

mentary to the existence of a star or a comb attached to a given set U of vertices,

and two types of these structures turned out to be relevant for both stars and

combs: normal trees and tree-decompositions. A comb is the union of a ray R

(the comb’s spine) with infinitely many disjoint finite paths, possibly trivial, that

have precisely their first vertex on R. The last vertices of those paths are the

teeth of this comb. Given a vertex set U , a comb attached to U is a comb with

all its teeth in U , and a star attached to U is a subdivided infinite star with all

its leaves in U . Then the set of teeth is the attachment set of the comb, and the

set of leaves is the attachment set of the star. Given a graph G, a rooted tree

T ⊆ G is normal in G if the endvertices of every T -path in G are comparable in

the tree-order of T , cf. [20]. For the definition of tree-decompositions see [20].

As stars and combs can interact with each other, this is not the end of the story.

For example, a given vertex set U might be connected in a graph G by both a star

and a comb, even with infinitely intersecting sets of leaves and teeth. To formalise

this, let us say that a subdivided star S dominates a comb C if infinitely many

of the leaves of S are also teeth of C. A dominating star in a graph G then is a

subdivided star S ⊆ G that dominates some comb C ⊆ G; and a dominated comb

in G is a comb C ⊆ G that is dominated by some subdivided star S ⊆ G. Thus, a

comb C ⊆ G is undominated in G if it is not dominated in G. Recall that a vertex

v of G dominates a ray R ⊆ G if there is an infinite v–(R− v) fan in G, see [20].

A ray R ⊆ G is dominated if some vertex of G dominates it. Rays not dominated

by any vertex of G are undominated. Dominated combs are related to dominated

rays in that a comb is dominated in G if and only if its spine is dominated in G.

In Chapter 12 we determined structures whose existence is complementary to

the existence of dominating stars or dominated combs—again in terms of normal

trees or tree-decompositions.

Here, in this chapter, we determine structures whose existence is complementary
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to the existence of undominated combs. A candidate for a normal tree that is

complementary to an undominated comb in G attached to a given set U of vertices

is a normal tree T ⊆ G that contains U and all whose rays are dominated in G,

for if U = V (G) then T is spanning and hence its (dominated) rooted rays are in

a natural one-to-one correspondence to the ends of G. Such normal trees T are

easily seen to be complementary structures for undominated combs whenever G

happens to contain some normal tree that contains U . But in general, normal trees

T ⊆ G containing U all whose rays are dominated in G are not complementary

to undominated combs, because the absence of an undominated comb does not

imply the existence of such a normal tree: for example if G is an uncountable

complete graph and U = V (G), then every normal tree in G containing U must

be spanning but G does not have any normal spanning tree.

As our first main result, we show that if U is contained in any normal tree

T ⊆ G, there is a more elementary structure that is complementary to undomina-

ted combs attached to U and which obstructs undominated combs attached to U

immediately: a rayless tree containing U . Call a set U ⊆ V (G) of vertices of a

graph G normally spanned in G if U is contained in a tree T ⊆ G that is normal

in G. The graph G is normally spanned if V (G) is normally spanned in G, i.e., if

G has a normal spanning tree.

Theorem 13.1. Let G be any graph and let U ⊆ V (G) be normally spanned in G.

Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;

(ii) there is a rayless tree T ⊆ G that contains U .

This extends results of Polat [56,57] and Širáň [73], who proved the case U = V (G)

for countable G: A countable connected graph has a rayless spanning tree if and

only if all its rays are dominated.

There are uncountable graphs G for which this duality fails, even for U = V (G).

By Theorem 13.1, such graphs G cannot have a normal spanning tree. There are

two known constructions of such graphs, by Seymour and Thomas [65] and by

Thomassen [70]. Both these constructions are involved.

As a corollary of Theorem 13.1 we obtain a full characterisation of the graphs

that contain a rayless tree containing a given set U of vertices: they are precisely
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the graphs G that have a subgraph H in which U is normally spanned and all

whose rays are dominated in H. In particular, we obtain the following corollary:

Corollary 13.2. Graphs with a normal spanning tree have a rayless spanning tree

if and only if all their rays are dominated.

The graphs with a normal spanning tree are well studied and are quite well known:

see [29, 43].

Our duality theorem for undominated combs in terms of rayless trees, Theo-

rem 13.1, has two applications, Theorems 13.3 and 13.5 below. In order to

state our first application we need the following notation for arbitrary graphs G.

Suppose that H is any subgraph of G and ϕ : Ω(H) → Ω(G) is the natural

map satisfying η ⊆ ϕ(η) for every end η of H. Furthermore suppose that a set

Ψ ⊆ Ω(G) of ends of G is given. We say that H is end-faithful for Ψ if ϕ � ϕ−1(Ψ)

is injective and im(ϕ) ⊇ Ψ. And H reflects Ψ if ϕ is injective with im(ϕ) = Ψ.

An end of G is dominated and undominated if one (equivalently: each) of its rays

is dominated and undominated, respectively (see [20]).

Carmesin [15] proved that every connected graph G has a spanning tree that

is end-faithful for the undominated ends of G. He also pointed out that his

result becomes false when ‘end-faithful’ is replaced with ‘reflecting’. As our first

application of Theorem 13.1 we characterise the graphs that have spanning trees

reflecting their undominated ends. An end ω of G is contained in the closure of

a vertex set U ⊆ V (G) in G if G contains a comb attached to U whose spine lies

in ω.

Theorem 13.3. Let G be any graph and let U ⊆ V (G) be any vertex set. Then

the following assertions are equivalent:

(i) There exists a tree T ⊆ G that contains U and reflects the undominated ends

of G in the closure of U in G;

(ii) G has a subgraph H with U ⊆ V (H) normally spanned in H and all whose

undominated ends are included in distinct undominated ends of G.

Corollary 13.4. Every graph that has a normal spanning tree does have a span-

ning tree reflecting its undominated ends.

As a consequence of the star-comb lemma, every spanning tree of a graph G

contains a ray from every undominated end of G. Thus, rayless spanning trees
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always reflect the undominated ends of the graphs they span. In this sense,

spanning trees reflecting the undominated ends can be seen as a generalisation of

rayless spanning trees.

Spanning trees reflecting the undominated ends are particularly interesting

for finitely separable graphs. A graph is finitely separable if every two of its

vertices can be separated by finitely many edges, cf. [2]. Our second application

of Theorem 13.1 reads as follows:

Theorem 13.5. Let G be any graph and let T ⊆ G be any spanning tree.

(i) All the fundamental cuts of T are finite if and only if G is finitely separable

and T reflects the undominated ends of G.

(ii) If G is finitely separable, then it has a spanning tree all whose fundamental

cuts are finite.

For a finitely separable graph G, the spanning trees of G all whose fundamental

cuts are finite are precisely the spanning trees ofG whose closure in G̃ = (G̃, ITop)

contains no (topological) cycle, see [2] for definitions. The space G̃ was used by

Bruhn and Diestel [2] to extend Whitney’s theorem [20, 71]—which states that a

finite graph is planar if and only if it has an abstract dual—to finitely separable

infinite graphs. Bruhn and Diestel also showed that G̃ permits the extension of

another well known duality theorem for finite graphs: that the complement of the

edge set of any spanning tree of G defines a spanning tree in any abstract dual

of G, and conversely that any two graphs with the same edge sets so that their

spanning trees complement each other form a pair of abstract duals. Their latter

extension speaks of spanning trees whose closure in G̃ contains no (topological)

cycle instead of arbitrary spanning trees. Solving a problem of Diestel and

Kühn [28, Problem 7.9], they showed that such spanning trees always exist in

connected finitely separable graphs. Our Theorem 13.5 provides an alternative

proof:

Corollary 13.6. Every connected finitely separable graph G has a spanning tree

whose closure in G̃ contains no topological cycle.

In contrast to Bruhn and Diestel’s proof, ours is rather methodic in that it

combines various structural results.
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Let us return to our initial problem of finding complementary structures for

undominated combs. While it is not always possible to find normal trees or rayless

trees that are complementary to undominated combs, it turns out that suitable

tree-decompositions still serve as complementary structures:

Theorem 13.7. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;

(ii) G has a star-decomposition with finite adhesion sets such that U is contained

in the central part and all undominated ends of G live in the leaves’ parts.

Moreover, we may assume that the adhesion sets of the tree-decomposition in (ii)

are pairwise disjoint and connected.

As discussed above, rayless trees are in general too strong to serve as comple-

mentary structures for undominated combs. It turns out that less specific struc-

tures than rayless trees, subgraphs all of whose rays are dominated, yield another

complementary structure for undominated combs:

Theorem 13.8. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;

(ii) G has a connected subgraph that contains U and all whose rays are dominated

in it.

Moreover, the subgraph H in (ii) can be chosen so as to reflect the ends in the

closure of H.

This chapter is organised as follows. In Section 13.1, we prove our duality

theorem for undominated combs in terms of rayless trees, Theorem 13.1. In

Section 13.2, we discuss our applications of this duality theorem, i.e., we prove

Theorem 13.3 and Theorem 13.5. In Section 13.3, we provide our two full duality

theorems for undominated combs: Theorem 13.7 and Theorem 13.8.

We assume familiarity with the tools and terminology described in the first

chapter of this part.
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13.1. Rayless trees

In this section, we will consider rayless trees as structures that are complementary

to undominated combs. As usual, let G be any connected graph and let U ⊆ V (G)

be any vertex set. There are three reasons why rayless trees containing U are good

candidates. First, an undominated comb attached to U is more specific than a

comb attached to U and in Chapter 11 (Theorem 11.1) we proved that rayless

normal trees T ⊆ G that contain U are complementary to combs. Therefore,

structures that are complementary to undominated combs should be less specific

than such normal trees.

Second, by the star-comb lemma, G containing no undominated comb attached

to U can be rephrased as follows: for every infinite subset U ′ ⊆ U the graph G

contains a star attached to U ′. So combining such stars in a clever way might

lead to a rayless tree containing U .

Finally, a graph cannot contain both an undominated comb attached to U and

a rayless tree containing U at the same time:

Lemma 11.1.4. If U is an infinite set of vertices in a rayless rooted tree T , then

T contains a star attached to U which is contained in the up-closure of its central

vertex in the tree-order of T .

For U = V (G), Širáň [73] conjectured that G having a rayless spanning tree is

complementary to G containing an undominated comb attached to U . Surpri-

singly, his conjecture has turned out to be false, as shown by Seymour and

Thomas [65]. The counterexample they have found is also a big surprise. Recall

that Tκ for a cardinal κ denotes the tree all whose vertices have degree κ.

Theorem 13.1.1 ([65, Theorem 1.6]). There is an infinitely connected, in parti-

cular one-ended, graph G of order 2ℵ0 which does not contain a subdivided Kℵ1,

such that every spanning tree of G contains a subdivision of Tℵ1.

Indeed, the end of a graph G as in Theorem 13.1.1 is dominated as G is infinitely

connected, but for U = V (G) the graph does not contain a rayless tree that

contains U .

A similar counterexample has been obtained independently by Thomassen [70].

Set-theoretic points of view are presented in [65] and Komjáth’s [45]. Komjáth

even gives a positive consistency result under Martin’s axiom for graphs G with
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< 2ℵ0 many vertices: If κ < 2ℵ0 is a cardinal, MA(κ) holds, and G is infinitely

connected with |V (G)| ≤ κ, then G has a rayless spanning tree.

Nevertheless, it is known that requiring G to be countable does suffice to ensure

the existence of a rayless spanning tree when G is connected and every end is

dominated, giving the following duality:

Theorem 13.1.2. Let G be any connected countable graph. Then the following

assertions are complementary:

(i) G contains an undominated comb attached to V (G);

(ii) G has a rayless spanning tree.

Proofs are due to Polat [56, 57] and Širáň [73]. Our main result in this section

extends Theorem 13.1.2:

Theorem 13.1. Let G be any graph and let U ⊆ V (G) be normally spanned in G.

Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;

(ii) there is a rayless tree T ⊆ G that contains U .

Note that this extends Theorem 13.1.2 twofold: On the one hand, we localise the

statement to an arbitrary vertex set U ⊆ V (G). On the other hand, we extend

the statement to the class of all graphs in which U is normally spanned.

While our focus in this chapter is to find duality theorems for undominated

combs, Polat and Širáň were rather interested in a characterisation of those

graphs that have rayless spanning trees. The strongest sufficient condition for the

existence of a rayless spanning tree, other than Theorem 13.1 (to the knowledge

of the authors), is due to Polat [60]: If every end of a connected graph G is

dominated and G contains no subdivided Tℵ1, then G has a rayless spanning

tree. His result does not imply our Theorem 13.1, for example consider G to

be the graph obtained from Tℵ1 by completely joining an arbitrarily chosen root

to all other nodes, and U = V (G). However, as a corollary of Theorem 13.1, we

obtain a full characterisation of the graphs that have rayless spanning trees. Our

characterisation even takes an arbitrary vertex set U ⊆ V (G) into account:
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Corollary 13.1.3. Let G be any graph. Then the following assertions are equi-

valent:

(i) There is a rayless tree T ⊆ G that contains U ;

(ii) G has a subgraph H in which U ⊆ V (H) is normally spanned and all whose

rays are dominated in H.

If the graph G itself has a normal spanning tree, then our characterisation sim-

plifies as follows:

Corollary 13.2. Graphs with a normal spanning tree have a rayless spanning tree

if and only if all their rays are dominated.

This section is organised as follows. In Section 13.1.1 we will prove Theorem 13.1

for normally spanned graphs. Then, in Section 13.1.2, we will deduce Theo-

rem 13.1.

13.1.1. Proof for normally spanned graphs

As a first approximation to Theorem 13.1 we prove the following:

Theorem 13.1.4. Let G be any normally spanned graph and let U ⊆ V (G) be

any vertex set. Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;

(ii) G contains a rayless tree that contains U .

Our proof consists of three key ideas, organised in the following three lemmas:

Lemma 11.1.13, Lemma 13.1.5 and Lemma 13.1.6.

Lemma 11.1.13. Let G be any graph. If T ⊆ G is a rooted tree that contains a

vertex set W cofinally, then ∂ΩT = ∂ΩW .

Lemma 13.1.5. Let G be any graph and let U ⊆ V (G) be any vertex set. If Û is

the superset of U also containing all the vertices dominating an end in the closure

of U , then ∂ΩÛ = ∂ΩU . In particular, ∂ΩU
′ = ∂ΩU for all vertex sets U ′ with

U ⊆ U ′ ⊆ Û and Û contains all the vertices dominating an end in the closure

of Û .
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Proof. Every end in the closure of U is contained in the closure of Û because Û

contains U . For the other inclusion consider any end ω in the closure of Û . Given

a finite vertex set X ∈ X we show that C(X,ω) contains a vertex from U . Fix a

comb attached to Û and with spine in ω, and pick any tooth v of the comb in the

component C(X,ω) of G − X. Then either v is contained in U , or v dominates

an end ω′ in the closure of U in which case U must meet C(X,ω′) = C(X,ω).

Therefore, C(X,ω) meets U for all X ∈ X , and so ω lies in the closure of U .

For our last key lemma, we shall need the following result of Jung, which we recall

here:

Theorem 11.2.5. Let G be any graph. A vertex set W ⊆ V (G) is normally

spanned in G if and only if it is a countable union of dispersed sets. In particular,

G is normally spanned if and only if V (G) is a countable union of dispersed sets.

Lemma 13.1.6. Let G be any graph and let U ⊆ V (G) be normally spanned. If

every end in the closure of U is dominated by some vertex in U , then there is a

rayless tree T ⊆ G containing U .

Normal trees follow the concept of depth-first search trees. Speaking informally,

all ends of G are ‘far away’ from the perspective of any fixed vertex. This is why

normal spanning trees grow towards the ends of the underlying graph in the sense

that they contain (precisely) one normal ray from every end. We, however, seek

to avoid having any rays in our tree. This is why our construction of a rayless tree

containing U will follow the opposite concept of depth-first search trees, namely

that of breadth-first search trees.

Proof of Lemma 13.1.6. First we choose a well-ordering of U all whose proper

initial segments are dispersed: By Theorem 11.2.5, we have that U is a countable

union
⋃
n∈N Un of, say pairwise disjoint, dispersed sets Un. Choose a well-ordering

�n of every vertex set Un. Given u, u′ ∈ U with u ∈ Um and u′ ∈ Un, we write

u � u′ if either m < n or m = n with u �m u′ holds. It is straightforward to show

that � defines a well-ordering of U that is as desired. From now on we view U as

well-ordered set (U,�).

We recursively construct an ascending sequence (Tα)α<κ of rooted trees Tα

sharing their root and satisfying that the overall union of the Tα is a rayless

tree containing U . Let T0 be the tree consisting of and rooted in the smallest
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vertex of U . In a limit step β > 0 we let Tβ be the tree
⋃
{Tα | α < β }. In

a successor step β = α + 1 we terminate and set κ = β if U is included in Tα.

Otherwise we let u be the smallest vertex in U rV (Tα). Following the concept of

a breadth-first search tree, among all u–Tα paths fix one Pβ whose endvertex in

Tα has minimal height in Tα. We obtain Tβ from Tα by adding the path Pβ.

Let T be the overall union of the trees Tα, i.e., T :=
⋃
{Tα | α < κ }. Then T

is a rooted tree that contains U cofinally. It remains to check that T is rayless.

Suppose for a contradiction that R is a ray in T starting in the root, say. By

Lemma 11.1.13 the end of the ray R is contained in the closure of U . As all ends

in ∂ΩU are dominated by vertices in U , we find a vertex u∗ ∈ U dominating R.

Let Pα∗ be the path from the construction of T that added u∗.

We claim that every tree Tα meets R in a finite initial subpath. This can be seen

as follows. Since all proper initial segments of U are dispersed, by Lemma 11.1.13

it suffices to show that every Tα with α > 0 contains a subset of such a segment

cofinally. A transfinite induction on α shows that for Tα this subset may be chosen

as the set of starting vertices of the paths Pξ with ξ ≤ α a successor ordinal while

the proper initial segment may be chosen as the down-closure in U of the starting

vertex of Pα+1. Here we remark that α + 1 < κ for all α < κ (i.e. κ is a limit

ordinal): indeed, by our assumption that R ⊆ T we know that the vertex set U

is not dispersed and, therefore, meets infinitely many Un.

Finally, we derive the desired contradiction. Fix β > α∗ so that the endvertex

x of Pβ+1 in Tβ has larger height than u∗ has in Tβ and so that Pβ+1 contains an

edge of R. Let u be the first vertex of Pβ+1, i.e., the smallest vertex in U rV (Tβ).

Note that the first vertex w of Pβ+1 that is contained in R is distinct from x. (Also

see Figure 13.1.1.) As u∗ dominates R we find an infinite set Q of u∗–R paths in

G such that distinct paths in Q only meet in u∗. All but finitely many paths in

Q meet Tβ+1 precisely in u∗: Otherwise the end of R is contained in the closure

of Tβ+1 contradicting that the vertex set of Tβ+1 is dispersed. Fix a path Q ∈ Q
meeting Tβ+1 precisely in u∗ and having its endvertex v in ẘR. We conclude that

uPβ+1wRvQu
∗ would have been a better choice than Pβ+1 in the construction of

Tβ+1 (contradiction).

Proof of Theorem 13.1.4. By Lemma 11.1.4 at most one of (i) and (ii) holds at

a time. To verify that least one of (i) and (ii) holds, we show ¬(i)→(ii). By
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Figure 13.1.1.: The situation in the last paragraph of the proof of Lemma 13.1.6.

Lemma 13.1.5 we may assume that U contains all vertices dominating an end

in the closure of U , and by Lemma 13.1.6 there is a rayless tree T ⊆ G that

contains U .

13.1.2. Deducing our duality theorem in terms of rayless

trees

Let us analyse why the proof of our duality theorem for undominated combs in

terms of rayless trees for normally spanned graphs, Theorem 13.1.4, does not

immediately give a proof for arbitrary graphs. For this, consider any graph G and

let U ⊆ V (G) be any vertex set. Furthermore, suppose that there is a normal

tree T ⊆ G that contains U and that G contains no undominated comb attached

to U . In the proof of Theorem 13.1.4 we assume without loss of generality that U

contains all the vertices dominating an end in the closure of U . This is possible

because, by Lemma 13.1.5, adding all the vertices to U that dominate an end in

the closure of U does not change the set ∂ΩU of ends in the closure of U . However,

after adding all these vertices it may happen—in contrast to the situation in the

proof of Theorem 13.1.4 where G has a normal spanning tree—that U is no longer

normally spanned in G (e.g. consider any countably infinite set U of vertices in an

uncountable complete graph). And U being normally spanned in G is a crucial
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requirement of the lemma that yields the desired rayless tree, Lemma 13.1.6.

But maybe adding all the vertices that dominate an end in the closure of U

and maintaining that U is normally spanned was too much to ask. Indeed,

Lemma 13.1.6 only requires that U contains for every end ω ∈ ∂ΩU at least

one vertex dominating ω, and adding just one dominating vertex for every end

ω might preserve the property of U being normally spanned in G. The following

example shows that this is in general false:

Example 13.1.7. Let G be a binary tree with tops, i.e., let G be obtained from the

rooted infinite binary tree T2 by adding for every normal ray R of T2 a new vertex

vR, its top, that is joined completely to R (cf. Diestel and Leader’s [29]). Let U be

the vertex set of T2. Then ∂ΩU = Ω(G) and every end ω is dominated precisely

by the top that was added for the unique normal ray of T2 that is contained in ω.

Hence adding for every end in ∂ΩU a vertex dominating it to U results in the

whole vertex set of G. However, as pointed out in [29], the graph G does not have

a normal spanning tree.

Our way out is to work in a suitable contraction minor, which requires some

preparation: Let H and G be any two graphs. We say that H is a contraction

minor of G with fixed branch sets if an indexed collection {Vx | x ∈ V (H) } of

branch sets is fixed to witness that G is an IH. In this case, we write [v] = [v]H for

the branch set Vx containing a vertex v of G and also refer to x by [v]. Similarly,

we write [U ] = [U ]H := { [u] | u ∈ U } for vertex sets U ⊆ V (G).

Lemma 13.1.8. Let G be any graph and let H be any contraction minor of G

with fixed branch sets that induce subgraphs of G with rayless spanning trees.

Furthermore, let U ⊆ V (G) be any vertex set. If H contains a rayless tree that

contains [U ], then G contains a rayless tree that contains U .

Proof. Let T ⊆ H be a rayless tree that contains [U ]. Fix for every branch set

W ∈ [V (T )] a rayless spanning tree TW in the subgraph that G induces on W .

Furthermore, select one edge ef ∈ EG(t1, t2) for every edge f = t1t2 ∈ T . It is

straightforward to show that the union of all the trees TW plus all the edges ef is

a rayless tree in G that contains U .

Let H be a contraction minor of a graph G with fixed branch sets. A subgraph

G′ = (V ′, E ′) of G can be passed on to H as follows. Take as vertex set the set
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[V ′] and declare W1W2 to be an edge whenever E ′ contains an edge between W1

and W2. We write [G′] = [G′]H for the resulting subgraph of H and call it the

graph that is obtained by passing on G′ to H. If every vertex W ∈ [V ′] meets V ′

in precisely one vertex, then we say that G′ is properly passed on to H. Note that

if G′ is properly passed on to H, then [G′] and G′ are isomorphic.

Lemma 13.1.9. Let H be a contraction minor of a graph G with fixed branch

sets and let T ⊆ G be a tree that is normal in G. If T is properly passed on to H,

then [T ] ⊆ H is a tree that is normal in H.

Proof. Since T is properly passed on to G we have that T and [T ] are isomorphic

as witnessed by the bijection ϕ that maps every vertex t ∈ T to [t]. In order to see

that [T ] is normal in H when it is rooted in [r] for the root r of T , consider any [T ]-

path W0 . . .Wk in [H]. Using that branch sets are connected, it is straightforward

to show that there is T -path in G between the two vertices ϕ−1(W0) and ϕ−1(Wk)

of T . Hence W0 and Wk must be comparable in [T ].

We need two more lemmas for the proof of Theorem 13.1. Recall that the

generalised up-closure bbxcc of a vertex x ∈ T is the union of bxc with the vertex

set of
⋃

C (x), where the set C (x) consists of those components of G − T whose

neighbourhoods meet bxc.

Lemma 11.1.10. Let G be any graph and T ⊆ G any normal tree.

(i) Any two vertices x, y ∈ T are separated in G by the vertex set dxe ∩ dye.

(ii) Let W ⊆ V (T ) be down-closed. Then the components of G −W come in

two types: the components that avoid T ; and the components that meet T ,

which are spanned by the sets bbxcc with x minimal in T −W .

Lemma 11.1.11. If G is any graph and T ⊆ G is any normal tree, then every end

of G in the closure of T contains exactly one normal ray of T . Moreover, sending

these ends to the normal rays they contain defines a bijection between ∂ΩT and

the normal rays of T .

Proof of Theorem 13.1. Given a normally spanned vertex set U ⊆ V (G) we have

to show that the following assertions are complementary:

191



(i) G contains an undominated comb attached to U ;

(ii) G contains a rayless tree that contains U .

By Lemma 11.1.4 at most one of (i) and (ii) holds at a time. To verify that at

least one of (i) and (ii) holds, we show ¬(i)→(ii). For this, we may assume by

Lemma 11.1.13 that U is the vertex set of a normal tree T ⊆ G. In the following

we will find a contraction minor H of G with fixed branch sets Vx such that:

– all G[Vx] have rayless spanning trees;

– T is properly passed on to H;

– and every end of H in the closure of [T ] ⊆ H is dominated in H by some

vertex of [T ].

Before we prove that such H exists, let us see how to complete the proof once H

is found. By Lemma 13.1.9, the tree [T ] is normal in H, and it has vertex set [U ]

because V (T ) = U . So, by Lemma 13.1.6, the graph H contains a rayless tree

that contains [U ]. Finally, by Lemma 13.1.8, this rayless tree in H containing [U ]

gives rise to a rayless tree in G containing U as desired.

In order to construct H, fix for every normal ray R of T a vertex vR dominating

R in G. Let R be the set of all normal rays R of T for which vR is contained in

a component CR of G − T . Note that the down-closure of the neighbourhood of

each CR is V (R) due to the separation properties of normal trees (Lemma 11.1.10).

Thus, we have CR 6= CR′ for distinct normal rays R,R′ ∈ R. Fix a vR–R path PR

for every R ∈ R. Then the overall union of the paths PR is a forest of subdivided

stars, each having its centre on T . Let us refer by SR to the subdivided star that

contains vR for R ∈ R, i.e., SR is the union of all the paths PR′ that contain the

last vertex of PR and this last vertex is the centre of SR. Let H be the contraction

minor of G with fixed branch sets defined as follows: if v is contained on a path

PR, then put [v] := SR; otherwise let [v] := {v}. Then, in particular, every branch

set of H induces a subgraph of G that has a rayless spanning tree.

As every star SR meets T precisely in its centre, the tree T is properly passed

on to H. By Lemma 13.1.9, the tree [T ] ⊆ H is normal in H and V ([T ]) = [U ]

since V (T ) = U . And by Lemma 11.1.11 it remains to show that every normal ray

of [T ] is dominated in H by some vertex of [T ]. For this, we consider three cases.
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In all three cases, fix any normal ray R ⊆ T and some collection P of infinitely

many vR–R paths in G meeting precisely in vR.

First assume that R ∈ R. Note that only finitely many of the paths in P meet

v̊RPR, without loss of generality none. Then all graphs [P ] ⊆ H with P ∈ P are

[vR]–[R] paths that meet only in [vR]. This shows that [vR] ∈ [T ] dominates [R]

in H.

Second, suppose that R /∈ R and that every branch set of H other than [vR]

meets only finitely many of the paths in P . By thinning out P we may assume

that every branch set other than [vR] meets at most one of the paths in P . Then

the connected graphs [P ] with P ∈ P pairwise meet in [vR] but nowhere else and

all contain a vertex of [R] other than [vR]. Taking one [vR]–([R]− [vR]) path inside

each [P ] yields a fan witnessing that [vR] ∈ [T ] dominates [R] in H.

Finally, suppose that R /∈ R and that some branch set S 6= [vR] of H meets

infinitely many of the paths in P , say all of them. We write c for the centre of S.

Without loss of generality none of the paths in P contains c. Also note that c

is contained in V (R) as otherwise all the paths in P need to pass through the

finite down-closure of c in T in vertices other than vR. Let R′ be the collection of

normal rays of T that satisfies S =
⋃
{V (PR′) | R′ ∈ R′ }. For every vR–R path

P ∈ P let vP be the last vertex on P that is contained in S, let wP be the first

vertex on P after vP in which P meets T and let QP be the unique wP–R path

in T . (See Figure 13.1.2.) For every path P ∈ P let P ′ = P ′(P ) := vPPwPQP ,

and let P ′ = P ′(P) := {P ′ | P ∈ P }.
Each path PR′ c̊ ⊆ S with R′ ∈ R′ meets only finitely many paths from P ′, and

these latter paths are precisely the paths in P ′ that meet CR′ : This is because

every path in P ′ that meets CR′ starts in a vertex vP ∈ CR′ and after leaving CR′

only traverses through vertices of T . Therefore, by replacing P with an infinite

subset of P , we can see to it that every component CR′ with R′ ∈ R′ meets at

most one of the paths in the then smaller set P ′ = P ′(P). In countably many

steps we fix paths P ′1, P
′
2, . . . in P ′ so that their last vertices are pairwise distinct:

In order to see that this is possible suppose for a contradiction that t ∈ R is

maximal in the tree order of T so that t is the last vertex of a path in P ′. Note

that R together with the paths vPP with P ∈ P forms a comb in G. Hence

infinitely many of the paths vPP are contained in the same component of G−dte
as some tail of R. By Lemma 11.1.10, this component is of the form bbt′cc for the
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Figure 13.1.2.: The final case in the proof of our duality theorem for undominated

combs in term of rayless trees.

successor t′ of t on R. In particular, we find some P ∈ P so that wP lies above

t′ in the tree order of T . But then the endvertex of QP in R lies above t′ and, in

particular, above t, contradicting the choice of t.

So let P ′1, P
′
2, . . . be paths in P ′ with pairwise distinct last vertices. We show

that the paths P ′i give rise to S–[R] paths [P ′i ] in H that form an infinite S–[R]

fan witnessing that S dominates [R] in H. Every path P ′i is an S–R path because

every path in P ′ is an S–R path by the choice of the vertices vP . Moreover,

the paths P ′i are pairwise disjoint: Every path P ′i starts in a component CR′ .

Using the choice of the vertices vP with P ∈ P as the last vertex on P that is

contained in S we have that the [P ′i ] are S–[R] paths of H that only share their

first vertex S. Hence the [P ′i ] form an infinite S–R fan in H and we conclude that

S ∈ [T ] dominates [R] in H.
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13.2. Spanning trees reflecting the undominated

ends

In [37], Halin conjectured that every connected graph has a spanning tree that

is end-faithful for all its ends. However, Seymour and Thomas’ counterexample

in Theorem 13.1.1 shows that his conjecture is in general false. Recently, Carme-

sin [15] amended Halin’s conjecture by proving the follwing:

Theorem 13.2.1 (Carmesin 2014). Every connected graph G has a spanning tree

that is end-faithful for the undominated ends of G.

Carmesin pointed out that his theorem is best possible in that it becomes false

when one replaces ‘is end-faithful for’ with the more specific ‘reflects’ in its

wording: by Theorem 13.1.1 there are connected graphs without rayless spanning

trees all whose rays are dominated. Characterising the graphs that have spanning

trees reflecting their undominated ends has remained an open problem, until

today.

Our aim in this section is threefold. Our first goal is to prove Theorem 13.3

below which characterises the graphs that have spanning trees reflecting their

undominated ends. Thereafter, we will characterise in Theorem 13.5 (i) the

spanning trees of finitely separable graphs that reflect the undominated ends,

and we will establish in Theorem 13.5 (ii) that every connected finitely separable

graph has such a tree. Finally, we will deduce Corollary 13.6 which states that

every connected finitely separable graph G has a spanning tree whose closure in

G̃ contains no topological cycle.

Our characterisation of the graphs that have a spanning tree reflecting their

undominated ends even takes an arbitrary vertex set U into account:

Theorem 13.3. Let G be any graph and let U ⊆ V (G) be any vertex set. Then

the following assertions are equivalent:

(i) There exists a tree T ⊆ G that contains U and reflects the undominated ends

in the closure of U ;

(ii) G has a subgraph H with U ⊆ V (H) normally spanned in H and all whose

undominated ends are included in distinct undominated ends of G.
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Assume for a moment that Theorem 13.3 is already verified. If G is any graph

and U ⊆ V (G) is normally spanned in G, then statement (ii) of the theorem is

satisfied with H = G. Hence the implication (ii)→(i) yields the following theorem:

Theorem 13.2.2. Let G be any graph and let U ⊆ V (G) be normally spanned.

Then there is a tree T ⊆ G that contains U and reflects the undominated ends in

the closure of U .

Conversely, let us see that Theorem 13.3 can be deduced from Theorem 13.2.2.

The implication (i)→(ii) of Theorem 13.3 is immediate because any tree as in (i)

serves as a subgraph H ⊆ G that is sought in (ii).

For the reverse implication let H and U be as in Theorem 13.3 (ii). Then

Theorem 13.2.2 yields a tree T ⊆ H that contains U and reflects the undominated

ends of H in the closure of U in H. Let ΨH be the set of undominated ends of H

in the closure of U in H and let ΨG be the set of undominated ends of G in the

closure of U in G. Furthermore, let φ : ΨH → ΨG be the map satisfying η ⊆ φ(η)

for every end η ∈ ΨH . By (ii) the map is injective and really has ΨG as its target

set. Let us show that it is also onto. Given an undominated end ω of G in the

closure of U it follows from the star-comb lemma and U ⊆ T that T contains a

ray R ∈ ωand that the end of T containing R lies in the closure of U in T . Since

T is a subgraph of H, the end of H containing R lies in the closure of U in H, and

so the map φ sends the undominated end of H that contains R to ω, establishing

that φ is onto. Therefore, φ : ΨH → ΨG is bijective.

Now consider the natural map ϕ : Ω(T ) → Ω(H) that satisfies η ⊆ ϕ(η) for

every end η of T . Note that η ⊆ (φ ◦ ϕ)(η) for every end η of T . Since T reflects

the undominated ends of H in the closure of U and φ is bijective we conclude that

the map φ ◦ϕ witnesses that T reflects the undominated ends of G in the closure

of U , as required by (i).

Hence to prove Theorem 13.3 we may equivalently prove Theorem 13.2.2:

Proof of Theorem 13.3. Employ Theorem 13.2.2 as above.

Furthermore, the case U = V (G) of Theorem 13.2.2 establishes our second main

corollary:

Corollary 13.4. Every graph that has a normal spanning tree does have a span-

ning tree reflecting its undominated ends.

196



Our proof of Theorem 13.2.2 requires some preparation. First, we need the

following strengthening of a structural result by Carmesin. Recall from Chapter 11

that a tree-decomposition (T,V) of a given graph G with finite separators displays

a set Ψ of ends of G if τ restricts to a bijection τ � Ψ: Ψ→ Ω(T ) between Ψ and

the end space of T and maps every end that is not contained in Ψ to some node

of T , where τ : Ω(G)→ Ω(T ) t V (T ) maps every end of G to the end or node of

T which it corresponds to or lives at, respectively.

Theorem 12.2.8. Every connected graph G has a tree-decomposition with pair-

wise disjoint finite connected separators that displays the undominated ends of G.

For our purposes we need to strengthen Carmesin’s result further so as to take

an arbitrary vertex set U into account. Recall that a rooted tree-decomposition

(T,V) of a graph G covers a vertex set U ⊆ V (G) cofinally if the set of nodes of

T whose parts meet U is cofinal in the tree-order of T .

Theorem 13.2.3. Let G be any connected graph and let U ⊆ V (G) be any vertex

set. Then G has a rooted tree-decomposition with pairwise disjoint finite connected

separators that displays the undominated ends of G that lie in the closure of U .

Moreover, the tree-decomposition can be chosen so that it covers U cofinally.

Proof. By Theorem 12.2.8, we find a tree-decomposition (T,V) of G with pairwise

disjoint finite connected separators that displays the undominated ends of G.

Consider T rooted in an arbitrary node. Let U ′ be the set of vertices of T whose

parts meet U and let T ′ be the subtree of T obtained by taking the down-closure

of U ′ in T . Then we let (T, α) be the Sℵ0-tree corresponding to (T,V), so (T ′, α �
→
E(T ′) ) is an Sℵ0-tree that induces the desired tree-decomposition.

Our construction of a tree reflecting the undominated ends in the closure of a

given set of vertices will employ a contraction minor H of the underlying graph G.

The following notation will help us to translate between the endspace ofG and that

of H. Consider a contraction minor H of a graph G with fixed finite branch sets.

Every direction f of G defines a direction [f ] of H by letting [f ](X) := [f(
⋃
X)]

for every finite vertex set X ⊆ V (H). In fact, it its straightforward to check that

every direction of H is defined by a direction of G in this way:
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Lemma 13.2.4. Let H be a contraction minor of a graph G with fixed finite

branch sets. Then the map f 7→ [f ] is a bijection between the directions of G and

the directions of H.

This one-to-one correspondence then combines with the well-known one-to-one

correspondence between the directions and ends of a graph (see Theorem 11.1.7),

giving rise to a bijection ω 7→ [ω] between the ends of G and the ends of H. The

natural one-to-one correspondence between the two end spaces extends to other

aspects of the graphs and their ends:

Lemma 12.2.11. Let H be a contraction minor of a graph G with fixed finite

branch sets, let ω be an end of G and let U ⊆ V (G) be any vertex set. Then ω

lies in the closure of U in G if and only if [ω] lies in the closure of [U ] in H; and

ω is dominated in G if and only if [ω] is dominated in H.

Lemma 13.2.5. Let H be a contraction minor of a graph G with fixed branch

sets and let U ⊆ V (G) be any vertex set. If U is normally spanned in G, then [U ]

is normally spanned in H.

We remark that this is essentially [41, Lemma 7.2 (b)].

Proof. Without loss of generality both graphs G and H are connected. By Theo-

rem 11.2.5, we have that U can be written as a countable union
⋃
n∈N Un with

every Un dispersed in G. Then every vertex set [Un] is dispersed in H, because

every comb attached to [Un] in H would give rise to a comb attached to Un

in G, contradicting that Un is dispersed in G. Hence [U ] =
⋃
n∈N[Un] is normally

spanned in H by Theorem 11.2.5.

We need one more lemma for the proof of Theorem 13.2.2:

Lemma 13.2.6. Let G be any graph and let U ⊆ V (G) be any vertex set. If

(T,V) is a rooted tree-decomposition of G with pairwise disjoint finite connected

separators that displays the undominated ends in ∂ΩU and covers U cofinally, then

∂ΩU = ∂ΩÛ for the superset Û of U that arises from U by adding all the vertices

that lie in the separators of (T,V).

Proof. The inclusion ∂ΩU ⊆ ∂ΩÛ holds because U ⊆ Û . For the backward

inclusion, consider any end ω in the closure of Û , and assume for a contradiction
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that ω does not lie in the closure of U . Then ω lives at a node t ∈ T because

(T,V) displays the ends in the closure of U . Pick a comb in G attached to Û and

with spine in ω. As ω does not lie in the closure of U we may assume that the

comb avoids U . Furthermore, we may assume that every tooth of the comb lies

in a separator of (T,V) associated with an edge of T at and above t. Since the

separators of (T,V) are finite and pairwise disjoint, we may even ensure that no

separator contains more than one tooth. As (T,V) has connected separators and

covers U cofinally, we find infinitely many disjoint paths from the comb to U , one

starting in each tooth. Then the comb together with these paths witnesses that

ω lies in the closure of U , a contradiction.

Proof of Theorem 13.2.2. Let G be any graph and let U ⊆ V (G) be normally

spanned. Without loss of generality, G is connected. By Theorem 13.2.3 we find

a rooted tree-decomposition (Tdec,V) of G with pairwise disjoint finite connected

separators such that (Tdec,V) displays the undominated ends in the closure of U

and covers U cofinally. And by Lemma 13.2.6 we may assume that U contains all

the vertices that are contained in the separators of (Tdec,V).

We construct a tree T ⊆ G displaying the undominated ends in the closure

of U as follows. For every separator X of (Tdec,V) we pick a spanning tree TX

of G[X]. As all X are finite and pairwise disjoint, so are the TX . Next, we choose

for every part Vt of (Tdec,V) a rayless tree Tt in G[Vt] containing Ut := Vt ∩ U
and extending all the trees TX for which X is a separator corresponding to some

edge incident with t, as follows. Given Vt, we first consider the contraction minor

Ht of G[Vt] with fixed branch sets that is obtained from G[Vt] by contracting each

G[X] with X a separator induced by an edge of Tdec at t to a single dummy

vertex named X. As U is normally spanned in G it follows by Lemma 13.2.5

that [U ]H is normally spanned in the contraction minor H obtained from G by

contracting every G[X] for every separator. It follows that the vertex sets [Ut]Ht

are normally spanned in Ht ⊆ H. Furthermore, since (Tdec,V) has disjoint finite

connected separators and displays the undominated ends of G in the closure of U ,

every end of G[Vt] in the closure of Ut in the graph G[Vt] is dominated in G[Vt].

Thus, by Lemma 12.2.11 every end of Ht in the closure of [Ut] is dominated in Ht.

Hence we may apply Theorem 13.1 to Ht and [Ut] to obtain a rayless tree T̃t in Ht

containing [Ut]. Then by expanding each dummy vertex X of T̃t to TX we obtain
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a rayless tree Tt in G[Vt] that contains Ut and extends all these TX .

Let T be spanned by the down-closure of U in the tree
⋃
t∈Tdec Tt with regard to

an arbitrary root. We claim that T contains U and reflects the undominated ends

in the closure of U . Clearly, T is a tree in G that contains U even cofinally. By the

star-comb lemma, every tree in G containing U contains for each undominated

end in the closure of U a ray from that end. In particular, T contains a ray from

every undominated end in the closure of U .

Next, the tree T contains at most one ray starting in the root for every undomi-

nated end in the closure of U : Indeed, if T contains two (say) vertex-disjoint rays

from the same undominated end ω in the closure of U , then these give rise to

a subdivided ladder in T via the trees TX along any ray of Tdec to which ω

corresponds, and the ladder comes with infinitely many cycles, contradicting that

T is a tree.

That T contains only rays from ends in the closure of U is a consequence of

Lemma 11.1.13 and the fact that T contains U cofinally by construction.

Finally, the tree T contains no ray from dominated ends in the closure of U ,

for if T contains a ray from such an end, then the vertex set of that ray intersects

some part Vt of (T,V) infinitely often, and then Lemma 11.1.4 applied in the

rayless tree Tt to that intersection yields infinitely many cycles in the tree T .

Now that we established the proof of Theorem 13.2.2, let us turn to an appli-

cation.

Theorem 13.5. Let G be any graph and let T ⊆ G be any spanning tree.

(i) The fundamental cuts of T are all finite if and only if G is finitely separable

and T reflects the undominated ends of G.

(ii) If G is finitely separable and connected, then it has a spanning tree all whose

fundamental cuts are finite.

Before we prove Theorem 13.5, we show a corollary for the topological space G̃

(see [2] for definitions regarding G̃).

Corollary 13.6. Every connected finitely separable graph G has a spanning tree

whose closure in G̃ contains no topological cycle.
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Proof. By Theorem 13.5 (ii) the graph G has a spanning tree all whose fundamen-

tal cuts are finite. We claim that the closure of T in G̃ contains no topological

cycles. Indeed, suppose for a contradiction that C is a topological cycle in T and

fix an edge e of T that is contained in C as a topological edge. Let Fe be the

fundamental cut of e with respect to T and let us write V1 and V2 for the two

sides of Fe. Then C r e̊ is a topological arc A between V1 and V2 avoiding the

interior of the edges in the finite cut Fe. But then A is a connected subset of

|G| r
⋃
{ f̊ | f ∈ Fe } that is divided into the two closed disjoint sets G[V1] and

G[V2] (contradiction).

Proof of Theorem 13.5. (i) For the forward implication suppose that the funda-

mental cuts of T are all finite. First let us see that G is finitely separable. For

this consider any two distinct vertices v, w ∈ V (G) and let e be an edge on the

unique path between v and w in T . Then the fundamental cut of e with respect

to T is finite and separates v from w in G.

Next, let us show that no ray of T is dominated. For this, consider any ray

R ⊆ T and any vertex v ∈ V (G). Let C be the component of T − v that

contains a tail of R and let e ∈ E(T ) be the unique edge between C and v. As

the fundamental cut of e with respect to T is finite, and as all the paths of any

v-(R − v) fan need to pass through this fundamental cut, the vertex v cannot

dominate R.

The tree T contains a ray from every undominated end, because, by the star-

comb lemma, every spanning spanning tree of G does so. It remains to show that

every distinct two ends of T are included in distinct ends of G. For this consider

rays R,R′ ⊆ T that belong to distinct ends of T . Let e be an edge on a tail of R

that does not meet R′. Then the endvertices of the edges in the finite fundamental

cut of e form a finite vertex set that separates a tail of R from a tail of R′ in G.

Hence R and R′ belong to distinct ends of G.

For the backward implication suppose that G is finitely separable and that T

reflects the undominated ends of G. Consider any fundamental cut Fe of an edge

e ∈ E(T ) with respect to T . Write T1 and T2 for the two components of T − e.
Then Fe consists of the T1–T2 edges of G. Suppose for a contradiction that Fe is

infinite. Then Fe has infinitely many endvertices in at least one of T1 and T2. Let

us write Xi for the set of endvertices that Fe has in Ti for i = 1, 2. We consider
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two cases and derive contradictions for both of them.

In the first case, some vertex x ∈ Xi is incident with infinitely many edges of Fe,

say for i = 1. Then, as G is finitely separable, applying the star-comb lemma in

T2 to the infinitely many endvertices that these edges have in T2 must yield a

comb whose spine is then dominated by x in G, contradicting that T reflects the

undominated ends of G.

In the second case, every vertex of G is incident with at most finitely many

edges from Fe. Then Fe contains an infinite matching of an infinite subset of

V (T1) and an infinite subset of V (T2). First, we apply the star-comb lemma in

T1 to the endvertices of this matching. This yields either a star or a comb, and

we write U1 for its attachment set. Then we apply the star-comb lemma in T2 to

those vertices that are matched to U1. Since G is finitely separable, we cannot

get two stars. Like in the first case, we cannot get one star and one comb. So

we must get two combs. But then T contains two rays that are equivalent in G,

contradicting that T reflects some set of ends of G.

(ii) Connected finitely separable graphs are normally spanned due to a result of

Halin [40] which states: all connected graphs that do not contain a subdivided Kℵ0

as a subgraph are normally spanned. But it is also possible to construct a normal

spanning tree in a connected finitely separable graph directly, as follows. Every

2-connected finitely separable graph G is countable, cf. [69] or [2, Lemma 4.4].

Indeed, if G is 2-connected and uncountable, then G contains a vertex v of

uncountable degree and G − v is connected. Hence the strong version of the

star-comb lemma (Lemma 11.1.5) applied to the neighbourhood N(v) of v in G

returns an infinite star attached to N(v) and it follows that G is not finitely

separable. Therefore, the blocks of any connected finitely separable graph G are

all countable. Now to show that any connected finitely separable graph G is

normally spanned, let us root the block graph of G arbitrarily (having in mind

that the block graph is a tree). The block that is the root does have a normal

spanning tree because it is countable (cf. Corollary 11.2.3), and we fix an arbitrary

normal spanning tree. Then we consider the blocks of height one. Each block B

of height one intersects the root block in precisely one vertex x, and we fix any

normal spanning tree of B that is rooted at x (Jung has shown that prescribing

the root x is possible, see Corollary 11.2.3). Proceeding in this fashion we fix

for every block of G a normal spanning tree, and the way we choose their roots
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ensures that the union of all these normal trees forms a normal spanning tree of G.

So G is normally spanned, and hence Theorem 13.2.2 yields a spanning tree that

reflects the undominated ends of G. By the backward implication of (i), all the

fundamental cuts of this spanning tree are finite.

13.3. Duality theorems for undominated combs

In this section we prove our two duality theorems for undominated combs in full

generality. The first theorem is phrased in terms of star-decompositions:

Theorem 13.7. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;

(ii) G has a star-decomposition with finite separators such that U is contained

in the central part and all undominated ends of G live in the leaves’ parts.

Moreover, we may assume that the separators of the tree-decomposition in (ii) are

pairwise disjoint and connected.

Proof. Clearly, at most one of (i) and (ii) can hold.

To establish that at least one of (i) and (ii) holds, we show ¬(i)→(ii). By

Theorem 12.2.8 we find a tree-decomposition (T,V) of G with pairwise disjoint

finite connected separators that displays the undominated ends of G. We let

W ⊆ V (T ) consist of those nodes t ∈ T whose parts Vt meet U . Then we root

T arbitrarily and let T ′ be the subtree dW e of T . Since U does not have any

undominated end of G in its closure, it follows that T ′ must be rayless. We obtain

the star S from T by contracting T ′ and all of the components of T −T ′. Then we

let (T, α) be the Sℵ0-tree corresponding to (T,V), so (S, α �
→
E(S) ) is an Sℵ0-tree

that induces the desired star-decomposition which even satisfies the ‘moreover’

part.

The central part of the star-decomposition in Theorem 13.7 (ii) induces a

subgraph of G that seems to carry the information that there is no undominated

comb attached to U . Our second duality theorem for undominated combs confirms

this suspicion:
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Theorem 13.8. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;

(ii) G has a connected subgraph that contains U and all whose rays are dominated

in it.

Moreover, the subgraph H in (ii) can be chosen so as to reflect the ends in the

closure of H.

Proof. To see that at most one of (i) and (ii) holds, consider any connected

subgraph H ⊆ G containing U such that every ray of H is dominated in H.

We show that H obstructs the existence of an undominated comb in G attached

to U . Assume for a contradiction that such a comb exists. Then the undominated

end ω ∈ Ω(G) of that comb’s spine lies in the closure of U , and so applying

the star-comb lemma in H to the attachment set U ′ ⊆ U of that comb must

yield another comb attached to U ′. But this latter comb is dominated in H by

assumption, and at the same time its spine is equivalent in G to the first comb’s

spine, contradicting that ω is undominated in G.

To establish that at least one of (i) and (ii) holds, we show ¬(i)→(ii). Let (T,V)

be the star-decomposition from Theorem 13.7 (ii) also satisfying the ‘moreover’

part of the theorem. We claim that the graph H = G[Vc] that is induced by the

central part Vc of (T,V) is as desired. Clearly, H contains U . And H is connected

because the separators of (T,V) are connected. Now if R is any ray in H, it is

dominated in G by some vertex v ∈ Vc. This vertex v also dominates R in H

because every infinite v–(R − v) fan in G can be greedily turned into an infinite

v–(R− v) fan in H by employing the connectedness of the finite separators of the

star-decomposition.

Finally, let us prove that H is as in the ‘moreover’ part of the theorem, i.e., let

us show that H reflects ∂ΩH. For this let ϕ : Ω(H) → Ω(G) be the natural map

satisfying η ⊆ ϕ(η). We have to show that ϕ is injective with im(ϕ) = ∂ΩH.

To see that ϕ is injective, consider any distinct two ends η and η′ of H and

let X ⊆ V (H) be a finite vertex set separating them in H. Since the separators

of (T,V) are pairwise disjoint and finite, we may assume that X includes all the

separators that it meets. We claim that X separates ϕ(η) and ϕ(η′) in G. Indeed,
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otherwise some component of G−X, namely C(X,ϕ(η)) = C(X,ϕ(η′)), includes

rays R ∈ η and R′ ∈ η′ together with a path connecting them. As R and R′ are

rays in H, the path has both its endvertices in H. But then this R–R′ path can

be turned into an R–R′ path in H − X by replacing some of its path segments

with paths inside the connected separators that it meets (here we use that every

separator meeting the path must avoid X).

It remains to verify im(ϕ) = ∂ΩH. The forward inclusion is immediate, we

show the backward inclusion. Every ray in any end ω of G in the closure of H

intersects H infinitely because the separators of the star-decomposition (T,V) are

all finite. Again we can employ the pairwise disjoint finite connected separators of

the star-decomposition (T,V) to turn the ray into a ray in H that intersects the

original ray infinitely often. Then the new ray’s end in H is included in ω.
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14. Undominating stars

In Chapter 11 we found structures whose existence is complementary to the

existence of a star or a comb attached to a given set U of vertices, and two types of

these structures turned out to be relevant for both stars and combs: normal trees

and tree-decompositions. A comb is the union of a ray R (the comb’s spine) with

infinitely many disjoint finite paths, possibly trivial, that have precisely their first

vertex on R. The last vertices of those paths are the teeth of this comb. Given a

vertex set U , a comb attached to U is a comb with all its teeth in U , and a star

attached to U is a subdivided infinite star with all its leaves in U . Then the set

of teeth is the attachment set of the comb, and the set of leaves is the attachment

set of the star. Given a graph G, a rooted tree T ⊆ G is normal in G if the

endvertices of every T -path in G are comparable in the tree-order of T , cf. [20].

For the definition of tree-decompositions see [20].

As stars and combs can interact with each other, this is not the end of the story.

For example, a given vertex set U might be connected in a graph G by both a star

and a comb, even with infinitely intersecting sets of leaves and teeth. To formalise

this, let us say that a subdivided star S dominates a comb C if infinitely many

of the leaves of S are also teeth of C. A dominating star in a graph G then is a

subdivided star S ⊆ G that dominates some comb C ⊆ G; and a dominated comb

in G is a comb C ⊆ G that is dominated by some subdivided star S ⊆ G. Thus, a

star S ⊆ G is undominating in G if it is not dominating in G; and a comb C ⊆ G

is undominated in G if it is not dominated in G.

In Chapter 12 we determined structures whose existence is complementary to

the existence of dominating stars or dominated combs. Like for arbitrary stars

and combs, our duality theorems for dominating stars and dominated combs are

phrased in terms of normal trees and tree-decompositions.

In Chapter 13 we determined structures whose existence is complementary to

the existence of undominated combs. Our investigations showed that the types

of complementary structures for undominated combs are quite different compared
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to those for stars, combs, dominating stars and dominated combs. On the one

hand, normal trees are too strong to serve as complementary structures, which is

why we considered more general subgraphs instead. Tree-decompositions on the

other hand are dynamic enough to allow for duality theorems, even in terms of

star-decompositions—which are too strong to serve as complementary structures

for stars, combs, dominating stars or dominated combs.

Among all the combinations of stars and combs, there is only one combination

that we have yet to consider: undominating stars. Here, in this chapter, we

determine structures whose existence is complementary to the existence of undo-

minating stars. The types of complementary structures for undominating stars

differ from those for stars, combs, dominating stars and dominated combs—

surprisingly in the same way the types of complementary structures for undo-

minated combs differ from them.

To begin, normal trees are too strong to serve as complementary structures for

undominating stars: if G is an uncountable complete graph and U = V (G), then

G contains no undominating star attached to U but G has no normal spanning

tree. However, if G contains no undominating star attached to U and U happens

to be contained in a normal tree T ⊆ G, then the down-closure of U in T forms

a locally finite subtree H. In this situation H witnesses that U is tough in G

in that only finitely many components meet U whenever finitely many vertices

are deleted from G. This property gives a candidate for a subgraph that might

serve as a complementary structure, even when U is not contained in a normal

tree. Call a graph G tough if its vertex set is tough in G, i.e., if deleting finitely

many vertices from G always results in only finitely many components. It is well

known that the tough graphs are precisely the graphs that are compactified by

their ends, cf. [24]. Our first duality theorem for undominating stars is formulated

in terms of tough subgraphs:

Theorem 14.1. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains an undominating star attached to U ;

(ii) there is a tough subgraph H ⊆ G that contains U .

As our second duality theorem for undominating stars, we also find star-decom-

positions that are complementary to undominating stars:
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Theorem 14.2. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains an undominating star attached to U ;

(ii) G has a tame star-decomposition such that U is contained in the central part

and every critical vertex set of G lives in a leaf ’s part.

Here, a finite vertex set X ⊆ V (G) is critical if infinitely many of the components

of G−X have their neighbourhood precisely equal to X. Critical vertex sets were

introduced in [48]. As tangle-distinguishing separators, they have a surprising

background involving the Stone-Čech compactification of G, Robertson and Sey-

mour’s tangles from their graph-minor series, and Diestel’s tangle compactifica-

tion, cf. [21,47,63]. For the definitions of ‘tame’ and ‘live’, see Section 14.2. Tame

tree-decompositions have finite adhesion sets.

While the wordings of our two duality theorems for undominating stars are

similar to those of the duality theorems for undominated combs, their proofs

are not. In fact, a whole new strategy is needed to prove these two theorems. The

starting point of our strategy will be a very recent generalisation [31] of Robertson

and Seymour’s tree-of-tangles theorem from their graph-minor series [63].

This chapter is organised as follows. Section 14.1 establishes our duality theo-

rem for undominating stars in terms of end-compactified subgraphs. Section 14.2

proves our duality theorem for undominating stars in terms of star-decomposi-

tions. In Section 14.3 we summarise the duality theorems of the first four chapters

of this part.

We assume familiarity with the tools and terminology described in Chapter 11.

For definitions and basic properties regarding separation systems refer to [22].
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14.1. Tough subgraphs

In this section, we prove our duality theorem for undominating stars in terms of

tough subgraphs:

Theorem 14.1. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains an undominating star attached to U ;

(ii) G has a tough subgraph that contains U .

We remark that the tough graphs are precisely the graphs that are compactified

by their ends, see [24].

We prove that (i) and (ii) are complementary by proving that both ¬(i) and

(ii) are equivalent to the assertion that U is tough in G. That ¬(i) is equivalent

to U being tough in G will be shown in Lemma 14.1.1, and that (ii) is equivalent

to U being tough in G will be shown in Theorem 14.1.2. It will be convenient to

make this detour because U being tough in G is easier to work with than G not

containing an undominating star attached to U .

Lemma 14.1.1. A set U of vertices of a connected graph G is tough in G if and

only if G contains no undominating star attached to U .

Theorem 14.1.2. A set U of vertices of a graph G is tough in G if and only if

G has a tough subgraph that contains U .

Proof of Theorem 14.1. Combine Lemma 14.1.1 and Theorem 14.1.2 above.

While the proof of Theorem 14.1.2 takes the rest of this section, that of Lem-

ma 14.1.1 is easy and we shall provide it straight away. Recall that a finite set X

of vertices of an infinite graph G is critical if the collection

C̆X := {C ∈ CX | N(C) = X }

is infinite, where CX is the collection of all components of G−X. A critical vertex

set X of G lies in the closure of M , where M is either a subgraph of G or a set of

vertices of G, if infinitely many components in C̆X meet M .
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Proof of Lemma 14.1.1. If U is tough in G then no critical vertex set of G lies in

the closure of U . We know by Lemma 11.1.9 that every infinite set of vertices in a

connected graph has an end or a critical vertex set in its closure. Therefore, every

infinite subset U ′ ⊆ U has an end of G in its closure and, in particular, there is

always a comb in G attached to U ′. Thus, every star in G attached to U must be

dominating.

Conversely, if U is not tough in G, then there is a finite vertex set X ⊆ V (G)

such that some infinitely many components of G−X meet U . Then infinitely many

of these components send an edge to the same vertex x ∈ X by the pigeonhole

principle. This allows us to make x the centre of a star S attached to U by taking

x–U paths in G[x + C], one for each of the infinitely many components C that

meet U and have x in their neighbourhood. Now X obstructs the existence of a

comb that has infinitely many teeth that are also leaves of S, and so S must be

undominating.

Before we turn to the proof of Theorem 14.1.2, we summarise a few elementary

properties that are complementary to containing an undominating star attached

to a given vertex set U :

Lemma 14.1.3. Let G be any connected graph, let U ⊆ V (G) be any vertex set

and let (∗) be the statement that G contains an undominating star attached to U .

Then the following assertions are complementary to (∗):

(i) U is tough in G;

(ii) G has no critical vertex set that lies in the closure of U ;

(iii) U is compactified by the ends of G that lie in the closure of U .

If U is normally spanned in G, then the following assertion is complementary to

(∗) as well:

(iv) G contains a locally finite normal tree that contains U cofinally.

Proof. By Lemma 14.1.1 we have that (i) is complementary to (∗). The assertions

(i) and (ii) are equivalent by the pigeonhole principle, and hence (ii) is complemen-

tary to (∗) as well. Property (iii) is in turn equivalent to (ii) because every

graph is compactified by its ends and critical vertex sets in a compactification

|G|Γ = G ∪ Ω(G) ∪ crit(G) (see [48] for definitions): For (ii)→(iii) note that
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the closure U = U ∪ ∂ΩU of U in |G|Γ is the desired compactification, and for

¬(ii)→¬(iii) note that for every critical vertex set X in the closure of U the

infinitely many components of G − X meeting U give rise to an open cover of

U ∪ ∂ΩU in |G|Γ that has no finite subcover. That (iv) is complementary to (∗)
has already been discussed in the introduction.

Now we turn to the proof of Theorem 14.1.2. If a graph G has a tough

subgraph containing some vertex set U , then clearly U is tough in G. The reverse

implication, which states that that for every vertex set U that is tough in G the

graph G contains a tough subgraph containing U , is harder to show and needs

some preparation.

If U is tough in G, then no critical vertex set of G lies in the closure of U ,

that is, for every critical vertex set X of G only finitely many components in C̆X

meet U . The collection C (X) of these finitely many components gives rise to a

separation (C̆X r C (X), X) = (AX , BX) that we think of as pointing towards BX .

As U ⊆ BX for all critical vertex sets X, all the separations (AX , BX) point

towards the tough vertex set U . Hence we have a candidate for a tough subgraph:

the intersection
⋂
{G[BX ] | X ∈ crit(G) }. This candidate contains U because U

is contained in all G[BX ], but it can happen that our candidate is a non-tough

induced Kℵ0 ⊆ G with vertex set U , as the following example shows.

For every n ∈ N let An be some countably infinite set, such that An is disjoint

from every Am with m 6= n and also disjoint from N. Let G be the graph on

N ∪
⋃
n∈NAn where every vertex in An is joined completely to {0, . . . , n}. Then

the critical vertex sets are precisely the vertex sets of the form {0, . . . , n}. For

every critical vertex setX = {0, . . . , n} the collection of components C̆X consists of

the singletons in An and the component of G−X that contains NrX. Therefore,

if we set U = N, then G[BX ] = G − An, and our candidate
⋂
X G[BX ] turns out

to be G[N] = Kℵ0 .

Although our approach in its naive form fails, this is not the end of it. We will

stick to the idea but perform the construction in a more sophisticated way. For

this we shall need the following notation and two structural results from [31] for

critical vertex sets in graphs, Theorems 14.1.6 and 14.1.7 below. Essentially, these

two theorems together will reveal that the separations (AX , BX) with X critical

in G can be slightly modified to form a tree set.
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A tree set is a nested separation system that has neither trivial elements nor

degenerate elements, cf. [23]. When (
→
S,≤, ∗) is a tree set, we also call

→
S and S

tree sets. In our setting, we shall not have to worry about trivial or degenerate

separations too much. Indeed, usually our nested sets of separations will consist of

separations (A,B) of a graph with neither ArB nor BrA empty, and these sets

are known to form regular tree sets: tree sets that do not contain small elements.

Let S be any tree-set consisting of finite-order separations of G. A part of S is

a vertex set of the form
⋂
{B | (A,B) ∈ O } where O is a consistent orientation

of S. Thus, if O is any consistent orientation of S, then it defines a part, which in

turn induces a subgraph of G. The graph obtained from this subgraph by adding

an edge xy whenever x and y are two vertices of the part that lie together in the

separator of some separation in O is called the torso of O (or of the part, if O is

clear from context). Thus, torsos usually will not be subgraphs of G. We need

the following standard lemma:

Lemma 14.1.4 ([31, Corollary 2.11]). Let G be any graph and let W ⊆ V (G) be

any connected vertex set. If B is a part of a tree set of separations of G, then

W ∩B is connected in the torso of B.

Given a collection Y of (in this chapter usually finite) vertex sets of G we say

that a vertex set X of G is Y-principal if X meets for every Y ∈ Y at most

one component of G − Y . And we say that Y is principal if all its elements are

Y-principal.

If X ⊆ V (G) meets precisely one component of G − Y for some Y ⊆ V (G),

then we denote this component by CY (X).

Every critical vertex set of a graph is X -principal: since every two vertices in a

critical vertex set X are linked by infinitely many independent paths (these exist

as C̆X is infinite), no two vertices in X are separated by a finite vertex set.

Definition 14.1.5 ([31, Definition 5.9]). Suppose that Y is a principal collection

of vertex sets of a graph G. A function that assigns to every X ∈ Y a subset

K (X) ⊆ C̆X is called admissable for Y if for every two X, Y ∈ Y that are

incomparable as sets we have either CX(Y ) /∈ K (X) or CY (X) /∈ K (Y ). If

additionally | C̆X r K (X) | ≤ 1 for all X ∈ Y , then K is strongly admissable

for Y .
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Theorem 14.1.6 ([31, Theorem 5.10]). For every principal collection of vertex

sets of a connected graph there is a strongly admissable function.

Theorem 14.1.7 ([31, Theorem 5.11]). Let G be any connected graph, let Y be

any principal collection of vertex sets of G and let K be any admissable function

for Y. Then for every distinct two X, Y ∈ Y, after possibly swapping X and Y ,

either (K (X), X) ≤ (Y,K (Y )) or (K (X), X) ≤ (CY (X), Y ) ≤ (K (Y ), Y ).

In particular, if ∅ ( K (X) ( CX for all X ∈ Y, then the separations {X,K (X)}
form a regular tree set for which the separations (K (X), X) form a consistent

orientation.

Suppose now that Y is a principal collection of vertex sets of a graph G and that

K is an admissable function for Y satisfying ∅ ( K (X) ( CX for all X ∈ Y .

If T is the regular tree set { {X,K (X)} | X ∈ Y } provided by Theorem 14.1.7,

then we call T a principal tree set of G. By a slight abuse of notation, we also

call the triple (T,Y ,K ) a principal tree set. In this context, we write OK for the

consistent orientation { (K (X), X) | X ∈ Y } of T .

Corollary 14.1.8. Let G be any connected graph and let U ⊆ V (G) be any vertex

set. If U is tough in G, then there is a principal tree set (T, crit(G),K ) of G

satisfying the following two conditions:

(i) no element of K (X) meets U for any critical vertex set X;

(ii) K (X) is a cofinite subset of C̆X for every critical vertex set X.

Proof. As U is tough in G, for every critical vertex set X of G only finitely many

components in C̆X meet U ; we write FX for this finite collection. Theorem 14.1.6

yields a strongly admissable function K for the collection crit(G) of all the critical

vertex sets of G. We alter this function by removing FX from K (X) for all X.

Then K is still admissable for crit(G), and K (X) is a cofinite subcollection of

C̆X r FX for all X. Now Theorem 14.1.7 says that the separations {X,K (X)}
with X critical form a tree set, and that the oriented separations (K (X), X) form

a consistent orientation of this tree set.

Proof of Theorem 14.1.2. If H is a tough subgraph of G covering U , then U is

tough in H; in particular, U is tough in G. Conversely, we need to show that for
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every vertex set U ⊆ V (G) that is tough in G there is a tough subgraph of G

containing U . By Corollary 14.1.8 we find a principal tree set (T, crit(G),K ) so

that no element of K (X) meets U for any critical vertex set X. We write B for

the part of T that is defined by OK . Note that U is included in B.

First we claim that the torso of the part B is tough. To see this, consider any

finite vertex set X ⊆ B. Only finitely many components of G−X meet B: indeed,

if infinitely many components of G−X meet B, then by the pigeonhole principle

we deduce that a subset X ′ of X is critical in G with infinitely many components

in C̆X′ meeting B. But then
⋃

K (X ′) must meet B, contradicting that B is the

part of T that is defined by OK = { (K (X), X) | X ∈ crit(G) }. Thus G − X
has only finitely many components meeting B. By Lemma 14.1.4 each of these

components induces a component of the torso minus X, and so deleting X from

the torso results in at most finitely many components.

The tough torso of the part B, however, usually is not a subgraph of G. And

the part B usually will not induce a tough subgraph of G. That is why as our

next step, we construct a subgraph H of G that imitates the torso of B to inherit

its toughness. More precisely, we obtain H from G[B] by adding a subgraph L of

G that has the following three properties:

(L1) Every vertex of L−B has finite degree in L.

(L2) For every finite X ⊆ B only finitely many components of L−X avoid B.

(L3) If x and y are distinct vertices in B that lie together in a critical vertex set

of G, then L contains a B-path between x and y.

Before we begin the construction of L, let us verify that any L satisfying these

three properties really gives rise to a tough subgraph H = G[B] ∪ L. For this,

consider any finite vertex set X ⊆ V (H). By (L1) every vertex of H−B has finite

degree in H, and hence deleting it produces only finitely many new components.

Therefore we may assume that X is included in B entirely. Every component of

H−X avoiding B is a component of L−X avoiding B, and there are only finitely

many such components by (L2). Hence it remains to show that there are only

finitely many components of H−X that meet B. We already know that the torso

of B is tough, so deleting X from it results in at most finitely many components.

Then property (L3) ensures that each of these finitely many components has its
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vertex set included in a component of H−X. And hence there can only be finitely

many components of H −X that meet B.

Finally, we construct a subgraph L ⊆ G satisfying the three properties (L1),

(L2) and (L3). Choose ( {xα, yα} )α<κ to be a transfinite enumeration of the

collection of all unordered pairs {x, y} where x and y are distinct vertices in B

that lie together in a critical vertex set of G. Then we recursively construct L as

a union L =
⋃
α<κ Pα where at step α we choose Pα from among all B-paths P in

G between xα and yα so as to minimize the number |E(P ) rE(
⋃
ξ<α Pξ)| of new

edges. (There is a B-path in G between xα and yα since xα and yα lie together in

some critical vertex set X of G and K (X) ⊆ C̆X is non-empty.)

We verify that our construction yields an L satisfying (L1), (L2) and (L3).

(L1). For this, fix any vertex ` ∈ L − B. It suffices to show that the edges of

L at ` simultaneously extend to an `–B fan in L. To see that this really suffices,

use that ` is not contained in B to find some critical vertex set X of G with

` ∈
⋃

K (X). Then the `–B fan at ` extending the edges of L at ` must have all

its `–B paths pass through the finite X, and so there can be only finitely many

such paths, meaning that ` has finite degree in L.

Now to find the `–B fan we proceed as follows. For every edge e of L at `

we write α(e) for the minimal ordinal α with e ∈ E(Pα). Then we write Pe for

Pα(e), and we write Qe for the `–B subpath of Pe containing e. The paths Qe

form an `–B fan, as we verify now. For this, we show that, if e 6= e′ are two

distinct edges of L at `, then Qe and Qe′ meet precisely in `. Let e and e′ be

given. We abbreviate α(e) = α and α(e′) = α′. If α = α′ then Qe ∪Qe′ = Pα and

we are done. Otherwise α < α′, say. Then we assume for a contradiction that

˚̀Qe′ does meet ˚̀Qe. Without loss of generality we may assume that Qe′ starts in

` and ends in yα′ . We let t be the last vertex of Qe′ in ˚̀Qe. But then the graph

xα′Pe′` ∪ `QetPe′yα′ is connected and meets B precisely in the two vertices xα′

and yα′ . Consequently, it contains a B-path P between xα′ and yα′ . But then P

avoids the edge e′, so the inclusion E(P ) r E(
⋃
ξ<α′ Pξ) ⊆ E(Pe′) r E(

⋃
ξ<α′ Pξ)

must be proper. Therefore, P contradicts the choice of Pα′ as desired.

(L2). For this, fix any finite vertex set X ⊆ B. Let C be the set consisting

of all the components of L−X that avoid B. And let F consist of all the edges

inside components from C and all the edges of L between components from C

and X, i.e., F = E(
⋃

C )∪EL(
⋃

C , X). As every component from C meets some
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edge from F it suffices to show that F is finite, a fact that we verify as follows.

Every edge in F lies on a path Pα, and since Pα is a B-path between xα and

yα we deduce {xα, yα} ∈ [X]2. Thus the finite edge sets of the paths Pα with

{xα, yα} ∈ [X]2 cover F . Since X is finite so is [X]2, and hence there are only

finitely many such paths, meaning that F is finite.

(L3). This property holds by construction.

As (L1), (L2) and (L3) are now verified we conclude that L is as desired, which

completes the proof of our first main result.

14.2. Star-decompositions

In this section we prove our second main result, a duality theorem for undomi-

nating stars in terms of star-decompositions, Theorem 14.2 below.

Before we state the theorem, let us recall the following definitions from the first

chapter of this part, Chapter 11. A finite-order separation {X,C } of a graph G

is tame if for no Y ⊆ X both C and CX rC contain infinitely many components

whose neighbourhoods are precisely equal to Y . The tame separations of G are

precisely the finite-order separations of G that respect the critical vertex sets:

Lemma 14.2.1. 11.2.15 A finite-order separation {A,B} of a graph G is tame

if and only if every critical vertex set X of G together with all but finitely many

components from C̆X is contained in one side of {A,B}.

An Sℵ0-tree (T, α) is tame if all the separations in the image of α are tame. As a

consequence of Lemma 14.2.1, if X is a critical vertex set of G and (T, α) is a tame

Sℵ0-tree, then X induces a consistent orientation of the image of α by orienting

every tame finite-order separation {A,B} towards the side that contains X and all

but finitely many of the components from C̆X . This consistent orientation, via α,

also induces a consistent orientation of
→
E(T ). Then, just like for ends, the critical

vertex set X either lives at a unique node t ∈ T or corresponds to a unique end

of T . As usual, these definitions for Sℵ0-trees carry over to tree-decompositions.
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Theorem 14.2. Let G be any connected graph, and let U ⊆ V (G) be infinite.

Then the following assertions are complementary:

(i) G contains an undominating star attached to U ;

(ii) G has a tame star-decomposition such that U is contained in the central part

and every critical vertex set of G lives in a leaf ’s part.

The proof of this theorem is organised as follows. First, we state without proof

a technical theorem, Theorem 14.2.2 below, and then show how it implies our

main result, Theorem 14.2 above. In a last step we prepare and provide the proof

of the technical theorem.

Note that the part of a star σ of separations of a graph G is
⋂
{B | (A,B) ∈ σ }.

Given two oriented separations ~s1, ~s2 of G we write ~s1 . ~s2 if either ~s1 ≤ ~s2 or there

is a component C ∈ C for (C , X) = ~s1 such that (C r {C}, X) ≤ ~s2. Here is the

technical theorem:

Theorem 14.2.2. Let G be any graph, and let (T,Y ,K ) be any principal tree

set so that OK defines an infinite part. Then G admits a star σ of finite-order

separations such that the following two conditions hold:

(i) the part defined by OK is included in the part of σ;

(ii) for every ~s ∈ OK there is some
→
r ∈ σ with ~s . →

r.

The technical theorem implies our second main result, Theorem 14.2:

Proof of Theorem 14.2. First, we show that at most one of (i) and (ii) holds. By

Lemma 14.1.3 we know that if G contains an undominating star attached to U ,

then G has a critical vertex X that lies in the closure of U . But then X lives in a

leaf’s part of the star-decomposition provided by (ii), and it follows that this part

does contain infinitely many vertices from U , contradicting that U is contained in

the central part and that the separations of the star-decomposition are finite.

Now, to show that at least one of (i) and (ii) holds, we show ¬(i)→(ii). By

Lemma 14.1.3 we know that U is tough in G. Then, by Corollary 14.1.8, we find

a principal tree set (T, crit(G),K ) such that, for every critical vertex set X, no

element of K (X) meets U and the inclusion K (X) ⊆ C̆X is cofinite. We claim

that the star provided by Theorem 14.2.2 gives a star-decomposition of G meeting

the requirements of (ii), a fact that can be verified as follows: First, the separations
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of the form (K (X), X) with X critical and K (X) a cofinite subset of C̆X are

tame and thus our star-decomposition is tame. Next, by Theorem 14.2.2 (i), we

have that U is contained in the central part of the star-decomposition. Finally,

by Theorem 14.2.2 (ii), every critical vertex set of G lives in a leaf’s part.

Next, we prepare the proof of our technical theorem, Theorem 14.2.2. First,

we will need the following theorem by Kneip. A chain C in a given poset is

said to have order-type α for an ordinal α if C with the induced linear order is

order-isomorphic to α. The chain C is then said to be an α-chain.

Theorem 14.2.3 ([44, Theorem 1]). A tree set is isomorphic to the edge tree set

of a tree if and only if it is regular and contains no (ω + 1)-chain.

Besides this theorem, we will need the following concept of a corridor from [31].

Suppose that (
→
T ,≤, ∗) is a tree set, and that O is a consistent orientation of

→
T . A

corridor of O is an equivalence class of separations in O, where two separations

~s1, ~s2 ∈ O are considered equivalent if there is
→
r ∈ O with ~s1, ~s2 ≤ →

r, cf. [31,

Lemma 7.1 and Definition 7.2]. As corridors are consistent partial orientations of

tree sets on the one hand, and directed posets on the other hand, they come with

a number of useful properties.

The supremum supL of a set L of oriented separations of a graph is the oriented

separation (A,B) with A =
⋃
{C | (C,D) ∈ L } and B =

⋂
{D | (C,D) ∈ L }.

Lemma 14.2.4. Let T be any regular tree set of separations of any graph G, let

O be any consistent partial orientation of T and let γ be any corridor of O. Then

the supremum of γ is nested with
→
T .

Proof. Consider any unoriented separation r ∈ T . If there is a separation ~s ∈ γ
such that r has an orientation

→
r with

→
r ≤ ~s, then

→
r ≤ ~s ≤ sup γ as desired. As

T is nested, r has for every separation ~s ∈ γ an orientation
→
r(~s) such that either

→
r(~s) ≤ ~s or ~s ≤ →

r(~s). By our first observation, we may assume that ~s ≤ →
r(~s)

for all ~s ∈ γ. It suffices to show that
→
r(~s1) =

→
r(~s2) for all ~s1, ~s2 ∈ γ, since then

r has one orientation that lies above all elements of γ and, in particular, above

the supremum of γ. Given ~s1, ~s2 ∈ γ consider any ~s3 ∈ γ with ~s1, ~s2 ≤ ~s3. Then

~s1, ~s2 ≤ ~s3 ≤ →
r(~s3). As T is regular,

→
r(~s3) =

→
r(~s1) =

→
r(~s2) follows.
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Lemma 14.2.5. Let T be any tree set of separations of any graph G and let O

be any consistent orientation of T . Then the suprema of the corridors of O form

a star.

Proof. We have to show that for every two distinct corridors γ and δ of O the

supremum (A,B) of γ and the supremum (C,D) of δ satisfy (A,B) ≤ (D,C).

Let us write γ = { (Ai, Bi) | i ∈ I } and δ = { (Cj, Dj) | j ∈ J }. As γ is

distinct from δ we have (Ai, Bi) ≤ (Dj, Cj) for all i ∈ I and j ∈ J . Hence

(A,B) = (
⋃
iAi,

⋂
iBi) ≤ (

⋂
j Dj,

⋃
j Cj) = (D,C).

Lemma 14.2.6. Suppose that T is any tree set of separations of any graph G, that

O is any consistent orientation of T , and that γ is any corridor of O. Then every

finite subset of the separator of the supremum of γ is contained in the separator

of some separation in γ.

In particular, if the order of the separations in γ is bounded by some natural

number n, then the supremum of γ has order at most n.

Proof. Let us write (A,B) for the supremum of γ and let Y be any finite subset

of its separator X := A ∩ B. For every vertex y ∈ Y ⊆ A there is separation

(Cy, Dy) ∈ γ with y ∈ Cy. Since γ is a corridor we find a separation (C,D) ∈ γ
lying above all (Cy, Dy). Then Y ⊆ C as C includes all Cy, and Y ⊆ D because

(C,D) ≤ (A,B) gives Y ⊆ X ⊆ B ⊆ D.

Before we start with the proof of Theorem 14.2.2 we need two final ingredients:

induced separation systems and parliaments. If
→
S = (

→
S,≤, ∗) is a separation

system and O ⊆
→
S is any subset (usually a partial orientation of S), then O

induces a separation system O ∪ O∗ that is a subsystem of
→
S with the partial

ordering and involution induced by ≤ and ∗. We denote this subsystem by
→
S[O].

Next, we define parliaments. Suppose that G is any graph, that
→
T = (

→
T ,≤, ∗) is

any regular tree set of finite-order separations of G, and that O is any consistent

orientation of
→
T . For every number n ∈ N let O≤n be the subset of O formed

by the oriented separations in O whose separators have size at most n. Then, by

Lemma 14.2.6, every corridor of O≤n has a supremum of order at most n, and these

suprema form a star for fixed n (cf. Lemma 14.2.5) which we denote by πn(O).

The parliament of O, denoted by π(O), is the union
⋃
n∈N πn(O). Notably, the

parliament of O is a cofinal subset of O ∪ π(O). The parliament of O induces a
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separation system
→
Sℵ0 [π(O)] that is a subsystem of

→
Sℵ0 whose separations are all

nested with each other. Furthermore,
→
Sℵ0 [π(O)] and

→
T are nested with each other

in
→
Sℵ0 by Lemma 14.2.4. Also, the parliament of O is a consistent orientation of

→
Sℵ0 [π(O)] where it defines the same part as O does for

→
T .

As one might expect, the inverses of corridors of parliaments have no ω-chains:

Lemma 14.2.7. Let G be any graph, let
→
T be any regular tree set of finite-order

separations of G, and let O be any consistent orientation of
→
T . Then the inverse

γ∗ of any corridor γ of
→
T has no ω-chain.

Proof. Suppose for a contradiction that there is a sequence ←s0 < ←s1 < · · ·
of separations ←sn ∈ γ∗. Note that ~s <

→
r with ~s ∈ πm(O) and

→
r ∈ πn(O)

implies m < n. Hence the function g : ω → ω assigning to each n < ω the least

k < ω with ~sn ∈ πk(O) is strictly decreasing in that g(m) > g(n) for all m < n,

contradicting that there are only finitely many natural numbers < g(0).

The corridors of a parliament usually stem from Sℵ0-trees:

Theorem 14.2.8. Let G be any graph, let
→
T be any regular tree set of finite-order

separations of G, and let O be any consistent orientation of
→
T such that

→
Sℵ0 [π(O)]

is regular. Then for every corridor γ of the parliament of O the corresponding

regular tree set
→
Sℵ0 [γ] is isomorphic to the edge tree set of a tree.

Proof. Let γ be any corridor of the parliament of O. By Theorem 14.2.3, it suffices

to show that
→
Sℵ0 [γ] has no (ω + 1)-chain. For this, suppose for a contradiction

that ~s0 < ~s1 < · · · < ~sω is an (ω + 1)-chain in
→
Sℵ0 [γ].

If ~sω lies in γ, then so do all the other ~sn as γ is consistent. Note that ~s <
→
r

with ~s ∈ πm(O) and
→
r ∈ πn(O) implies m < n. Hence the function f : ω + 1→ ω

assigning to each α ≤ ω the least n < ω with ~sα ∈ πn(O) is strictly increasing in

that f(α) < f(β) for all α < β, contradicting f(ω) < ω.

Otherwise ~sω lies in γ∗. If there is an N < ω with ~sn ∈ γ∗ for all n ≥ N , without

loss of generality N = 0, then γ∗ has an ω-chain contradicting Lemma 14.2.7.

Therefore, we may assume that ~sn ∈ γ for infinitely many n < ω. Since γ is

consistent, ~sn ∈ γ for all n < ω follows. Using that γ is a corridor we find a

separation
→
r ∈ γ with ←sω ≤ →

r and ~s0 ≤ →
r. For every n < ω, either ~sn ≤ →

r or

~sn ≤ ←
r or ←sn ≤ →

r or ←sn ≤ ←
r. We cannot have ~sn ≤ ←

r for any n, since this would

imply ~s0 < ~sn ≤ ←
r ≤ ←s0 contradicting that

→
Sℵ0 [π(O)] is regular. We cannot have
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←sn ≤ →
r for any n because γ is consistent. And we cannot have ←sn ≤ ←

r, because

then ←sω ≤ →
r ≤ ~sn < ~sω contradicts that

→
Sℵ0 [π(O)] is regular. Hence ~sn ≤ →

r for

all n. As γ contains no (ω + 1)-chains by the first case, there must be an ` < ω

with ~s̀ =
→
r. But this then contradicts

→
r = ~s̀ < ~s̀ +1 ≤ →

r, completing the proof

that
→
Sℵ0 [γ] has no (ω + 1)-chains.

Finally, we prove our technical theorem:

Proof of Theorem 14.2.2. Let (TK ,Y ,K ) be any principal tree set of a connected

graph G so that OK defines an infinite part. We let O be the parliament of OK .

Then the tree set
→
Sℵ0 [O] is regular: for every n ∈ N and every (A,B) ∈ πn(OK ) ⊆

O we have that A r B contains the non-empty vertex set of the graph
⋃

K (X)

for some X ∈ Y , and B rA contains all but at most |A∩B| ≤ n of the infinitely

many vertices of the infinite part defined by O. Therefore, by Theorem 14.2.8 we

find for every corridor γ of O an Sℵ0-tree (Tγ, αγ) such that αγ is an isomorphism

between the edge tree set
→
E(Tγ) of Tγ and

→
Sℵ0 [γ].

In a first step, we will use the Sℵ0-trees (Tγ, αγ) to define stars σγ, one for every

corridor γ of O, such that their union σ =
⋃
γ σγ is a candidate for the star that we

seek. Then, in a second step, we will verify that σ is indeed as desired, completing

the proof.

First step. We define stars σγ, one for each corridor γ of O, such that their

union σ :=
⋃
γ σγ is a candidate for the star that we seek. For this, consider any

corridor γ of O. Then γ, as it orients the image of αγ consistently, defines either

a node or an end of Tγ (see Chapter 11).

If γ defines a node t of Tγ, then t has precisely one neighbour in Tγ. Indeed,

γ is the down-closure in
→
Sℵ0 [γ] of the star αγ(

→
Ft) where

→
Ft = { (e, s, t) ∈

→
E(Tγ) | e = st ∈ Tγ }.

Note that all separations in αγ(
→
Ft) are maximal in γ. Hence, if t has two distinct

neighbours k1 and k2 in Tγ, then γ contains a separation
→
r that lies above both

αγ(k1, t) and αγ(k2, t), contradicting the maximality in the corridor γ of at least

one of these two separations (here we also use that αγ(k1, t) and αγ(k2, t) are

distinct for distinct neighbours k1 and k2 of t because αγ is injective). Therefore,

t is a leaf of Tγ. Call its neighbour k. Then αγ(k, t) is the maximal element of the

corridor γ, and we let σγ := {αγ(k, t) }.
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Otherwise γ defines an end of Tγ from which we pick a ray Rγ = v0
γv

1
γ . . . all

whose edges are oriented forward by γ in that ~snγ := αγ(v
n
γ , v

n+1
γ ) lies in γ for

all n ∈ N. Then we let

σγ := {~s0
γ } ∪ {~snγ ∧

←s
n−1
γ : n ≥ 1 }. (14.2.1)

(See Figure 14.2.1.)

~s0
γ ~sn−1

γ ~snγ

Rγ

v0
γ v1

γ vn−1
γ vnγ vn+1

γ

Figure 14.2.1.: The light grey area depicts B r A, the grey area depicts A r B

and the dark grey area depicts A ∩ B of the separation (A,B) :=

~snγ ∧
←s
n−1
γ from the proof of Theorem 14.2.2.

Let us check that σγ really is a star. On the one hand, it follows from ~s0
γ ≤ ~sn−1

γ

that ~s0
γ ≤

←s
n
γ ∨ ~sn−1

γ = (~snγ ∧
←s
n−1
γ )∗ for all n ≥ 1. And on the other hand, for

1 ≤ n < m, we infer from ~sn−1
γ ≤ ~snγ ≤ ~sm−1

γ ≤ ~smγ that

~smγ ∧
←s
m−1
γ ≤ ←s

m−1
γ ≤ ←s

n
γ ≤

←s
n
γ ∨ ~sn−1

γ = (~snγ ∧
←s
n−1
γ )∗.

Since all ~snγ have finite order, so do the infima of which σγ is composed. This

technique of turning a ray into a star of separations has been introduced by

Carmesin [15] in his ‘Proof that Lemma 6.8 implies Lemma 6.7’.

Second step. We prove that σ is as desired. First, we show condition (i),

which states that the part defined by OK is included in the part of σ. For every

separation ~s ∈ σ there is some separation
→
r ∈ O satisfying ~s ≤ →

r. Hence the part
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of σ includes the part of O, which in turn includes the part of OK because O is

the parliament of OK .

It remains to verify condition (ii), which states that for every (K (X), X) ∈ OK

there is some ~s ∈ σ with (K (X), X) . ~s. For this, let any vertex set X ∈ Y be

given. As O is cofinal in OK ∪O, there is a separation ~sX ∈ O above (K (X), X).

Let γ be the corridor of O containing ~sX . We check the following two cases.

In the first case, σγ is a singleton, formed by the maximal element ~s of γ, giving

(K (X), X) ≤ ~sX ≤ ~s ∈ σ.

In the second case, σγ is of the form (14.2.1). Then, as O is nested with TK ,

the separation (K (X), X) induces a consistent orientation of the image of αγ,

as follows. The orientation consists of all
→
r ∈

→
Sℵ0 [γ] that satisfy either

→
r ≤

(K (X), X) or (K (X), X) <
←
r. Now this consistent orientation defines either a

node or an end of Tγ. Since ~sX ∈ γ lies above (K (X), X) and since γ∗ contains

no ω-chains by Lemma 14.2.7, it must be a node t of Tγ. Let P = t0 . . . tk be the

t–Rγ path in Tγ and let n ∈ N be the number with vnγ = tk, see Figure 14.2.2 (the

ray Rγ = v0
γv

1
γ . . . was defined right above (14.2.1)).

→
rP

tk = vnγ

vn−1
γ

vn+1
γ

P

t = t0 t1 tk−1

(K (X), X)

Figure 14.2.2.: The orientation of the image
→
Sℵ0 [γ] of αγ and the path P in the

second step of the proof of Theorem 14.2.2.

We claim that we may assume n 6= 0. For this, it suffices to show that we

may assume that ~s0
γ lies in the orientation that defines t. So let us consider the
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case that ←s
0
γ instead of ~s0

γ lies in the orientation that defines t. In this case we

have either ←s
0
γ ≤ (K (X), X) or (K (X), X) < ~s0

γ . But actually, we cannot have
←s

0
γ ≤ (K (X), X) because otherwise (K (X), X) ≤ ~sX would imply that ←s

0
γ ≤ ~sX

meaning that ←s
0
γ and ~sX violate the consistency of γ. Therefore, we must have

(K (X), X) < ~s0
γ , and then we are done because ~s0

γ is an element of σγ. Thus, we

may assume n > 0.

If the path P is non-trivial, i.e., if t0 = t is distinct from tk = vnγ , then we

consider the separation
→
rP = αγ(tk−1, tk) ∈ γ associated with the last edge tk−1tk

of P . By the definition of P , the separation
←
rP satisfies either

←
rP ≤ (K (X), X)

or (K (X), X) <
→
rP . The former inequality would violate the consistency of γ as

←
rP ≤ (K (X), X) ≤ ~sX would follow (here we use that

→
Sℵ0 [γ] ⊆

→
Sℵ0 [O] is regular

to ensure
→
rP 6= ~sX). Hence (K (X), X) <

→
rP . As tk−1 is distinct from vn−1

γ , and

both vertices have vnγ as a neighbour in Tγ, we obtain the inequalities
→
rP ≤ ~snγ

and
→
rP ≤ ←s

n−1
γ . Thus,

(K (X), X) ≤ →
rP ≤ ~snγ ∧

←s
n−1
γ ∈ σ.

Otherwise the path P is trivial, i.e., t0 = tk where t0 = t and tk = vnγ . By the

definition of t we have either ~sn−1
γ ≤ (K (X), X) or (K (X), X) < ←s

n−1
γ , and we

have either ←s
n
γ ≤ (K (X), X) or (K (X), X) < ~snγ . The case ←s

n
γ ≤ (K (X), X)

is impossible since otherwise (K (X), X) ≤ ~sX ∈ γ would imply that ←s
n
γ ≤ ~sX

meaning that ~snγ and ~sX violate the consistency of γ. Therefore, we have either

(K (X), X) ≤ ~snγ ∧
←s
n−1
γ ∈ σ as desired, or we have ~sn−1

γ ≤ (K (X), X) < ~snγ . For

this latter case, we show that there is a component C ∈ K (X) such that ~sn−1
γ ≤

(C,X) holds. This suffices to complete the proof, because then the inequalities

(K (X) r {C}, X) ≤ (X,C) ≤ ←s
n−1
γ and (K (X) r {C}, X) ≤ (K (X), X) < ~snγ

give

(K (X) r {C}, X) ≤ ~snγ ∧
←s
n−1
γ ∈ σ.

The separation ~sn−1
γ ∈ O is, by definition, the supremum of some corridor δ of

{ (A,B) ∈ OK : |A ∩ B| ≤ ` } for some number ` ∈ N. Then every separation

(K (Y ), Y ) ∈ δ satisfies (K (Y ), Y ) ≤ ~sn−1
γ ≤ (K (X), X). In particular, as the

principal tree set TK satisfies the conclusions of Theorem 14.1.7, every separation

(K (Y ), Y ) ∈ δ satisfies (K (Y ), Y ) ≤ (CX(Y ), X). Hence in order to show

that ~sn−1
γ ≤ (C,X) for some component C ∈ K (X), it suffices to show that
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CX(Y ) = CX(Y ′) for every two separations (K (Y ), Y ) and (K (Y ′), Y ′) in δ.

Given (K (Y ), Y ) and (K (Y ′), Y ′), consider any separation (K (Z), Z) ∈ δ above

the two. Then (K (Z), Z) ≤ (CX(Z), X) implies that both CX(Y ) and CX(Y ′)

are contained in CX(Z), giving CX(Y ) = CX(Y ′) as desired.

14.3. Overview of all duality results

In this section we summarise all duality theorems of this part. A very brief

overview of the complementary structures is given by the following table:

normal tree tree-decomposition other

combs 3 3 3

stars 3 3

dominated combs 3 3

dominating stars 3 3

undominated comb 7 3 3

undominating star 7 3 3

Here, a check mark means, for example, that we proved a duality theorem for

combs in terms of normal trees, whereas the two crosses mean that normal trees

cannot serve as complementary structures for undominated combs or undomi-

nating stars.

Finally, we summarise our duality theorem for combs, stars and combinations

of the two explicitly in five theorems:
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Theorem (Combs). Let G be any connected graph and let U ⊆ V (G) be any

vertex set. Then the following assertions are equivalent:

(i) G does not contain a comb attached to U ;

(ii) there is a rayless normal tree T ⊆ G that contains U (moreover, T can be

chosen such that it contains U cofinally);

(iii) G has a rayless tree-decomposition into parts each containing at most finitely

many vertices from U and whose parts at non-leaves of the decomposition

tree are all finite (moreover, the tree-decomposition displays ∂ΩU and may

be chosen with connected separators);

(iv) for every infinite U ′ ⊆ U there is a critical vertex set X ⊆ V (G) such that

infinitely many of the components in C̆X meet U ′;

(v) G has a U-rank;

(vi) G has a rooted tame tree-decomposition (T,V) that covers U cofinally and

satisfies the following four assertions:

– (T,V) is the squeezed expansion of a normal tree of G that contains the

vertex set U cofinally;

– every part of (T,V) meets U finitely and parts at non-leaves are finite;

– (T,V) displays ∂ΓU ⊆ crit(G);

– the rank of T is equal to the U-rank of G.

Theorem (Stars). Let G be any connected graph and let U ⊆ V (G) be any vertex

set. Then the following assertions are equivalent:

(i) G does not contain a star attached to U ;

(ii) there is a locally finite normal tree T ⊆ G that contains U and all whose

rays are undominated in G (moreover, T can be chosen such that it contains

U cofinally and every component of G− T has finite neighbourhood);

(iii) G has a locally finite tree-decomposition with finite and pairwise disjoint

separators such that each part contains at most finitely many vertices of U

(moreover, the tree-decomposition can be chosen with connected separators

and such that it displays ∂ΓU ⊆ Ω(G));
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Theorem (Dominating stars and dominated comb). Let G be any connected graph

and let U ⊆ V (G) be any vertex set. Then the following assertions are equivalent:

(i) G does not contain a dominating star attached to U ;

(ii) G does not contain a dominated comb attached to U ;

(iii) there is a normal tree T ⊆ G that contains U and all whose rays are

undominated in G (moreover, the normal tree T can be chosen such that it

contains U cofinally and every component of G−T has finite neighbourhood);

(iv) G has a tree-decomposition (T,V) such that

– each part contains at most finitely many vertices from U ;

– all parts at non-leaves of T are finite;

– (T,V) has essentially disjoint connected separators;

– (T,V) displays ∂ΩU .

Theorem (Undominated combs). Let G be any connected graph and let U ⊆ V (G)

be any vertex set. Then the following assertions are equivalent:

(i) G does not contain an undominated comb attached to U ;

(ii) G has a star-decomposition with finite separators such that U is contained

in the central part and all undominated ends of G live in the leaves’ parts

(moreover, the star-decomposition can be chosen with pairwise disjoint and

connected separators);

(iii) G has a connected subgraph that contains U and all whose rays are dominated

in it (moreover, the subgraph can be chosen so as to reflect the ends in its

closure).

Moreover, if U is normally spanned in G, we may add

(iv) there is a rayless tree T ⊆ G that contains U .
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Theorem (Undominating stars). Let G be any connected graph and let U ⊆ V (G)

be any vertex set. Then the following assertions are equivalent:

(i) G does not contain an undominating star attached to U ;

(ii) there is a tough subgraph H ⊆ G that contains U ;

(iii) G has a tame star-decomposition such that U is contained in the central part

and every critical vertex set of G lives in a leaf ’s part.

Moreover, if U is normally spanned, we may add

(iv) there is a locally finite normal tree T ⊆ G that contains U .
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15. End-faithful spanning trees

Schmidt [20, 64] characterised the class of rayless graphs by an ordinal rank

function, which makes it possible to prove statements about rayless graphs by

transfinite induction. For example, Bruhn, Diestel, Georgakopoulos and Sprüs-

sel [3,20] proved the unfriendly partition conjecture for the class of rayless graphs

in this way.

At the turn of the millennium, Halin [41] asked in his legacy collection of

problems whether Schmidt’s rank can be generalised to characterise other impor-

tant classes of graphs besides the class of rayless graphs. In this chapter we

answer Halin’s question in the affirmative: we characterise two important classes

of graphs by an ordinal rank function.

As our first main result, we characterise for every uncountable cardinal κ the

class of graphs without a Tκ minor by an ordinal rank function that we call the

κ-rank (recall that Tκ denotes the κ-branching tree):

Theorem 15.1. For every graph G and every uncountable cardinal κ the following

assertions are equivalent:

(i) G contains no Tκ minor;

(ii) G has a κ-rank.

This extends Seymour and Thomas’ characterisations [66]. We remark that, for

regular uncountable cardinals κ, they also showed that a graph contains a Tκ

minor if and only if it contains a subdivision of Tκ.

Our second main result addresses another largely open problem raised by Halin.

Call a spanning tree T of a graph G end-faithful if the map ϕ : Ω(T )→ Ω(G)

satisfying ω ⊆ ϕ(ω) is bijective. Here, Ω(T ) and Ω(G) denote the set of ends of

T and of G, respectively. Halin [37] conjectured that every connected graph

has an end-faithful spanning tree. However, Seymour and Thomas [65] and

Thomassen [70] constructed uncountable counterexamples; for instance, there
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exists a connected graph that has precisely one end but all whose spanning trees

must contain a subdivision of Tℵ1 . Ever since, it has been an open problem to

characterise the class of graphs that admit an end-faithful spanning tree.

Normal spanning trees are important examples of end-faithful spanning trees.

Given a graph G, a rooted tree T ⊆ G is normal in G if the endvertices of every

T -path in G are comparable in the tree-order of T , cf. [20]. Call a set U of vertices

of a graph G normally spanned in G if U is contained in a tree T ⊆ G that is

normal in G. The graph G is normally spanned if V (G) is normally spanned in G,

i.e., if G has a normal spanning tree. Thus, every normally spanned graph has an

end-faithful spanning tree.

A second existence result for end-faithful spanning trees is due to Polat [60]

and directly addresses the counterexamples by Seymour and Thomas and by

Thomassen: every connected graph that does not contain a subdivision of Tℵ1

has an end-faithful spanning tree.

As our second main result, we determine a new subclass of the class of graphs

with an end-faithful spanning tree. Call a connected graph G normally traceable

if it has a rayless tree-decomposition into parts that are normally spanned in G.

For the definition of tree-decompositions see [20].

Theorem 15.2. Every normally traceable graph has an end-faithful spanning tree.

Our theorem easily extends the two known existence results for end-faithful span-

ning trees: On the one hand, every normally spanned graph has a trivial tree-

decomposition into one normally spanned part. On the other hand, every connec-

ted graph without a subdivision of Tℵ1 has a rayless tree-decomposition into count-

able parts by the characterisation of Seymour and Thomas [66], and countable

vertex sets are normally spanned.

In both cases, the extension is proper: The ℵ1-branching trees with tops are

the graphs obtained from the rooted Tℵ1 by selecting uncountably many rooted

rays and adding for every selected ray R a new vertex, its top, and joining it to

infinitely many vertices of R [29]. Every Tℵ1 with tops has a star-decomposition

into normally spanned parts where Tℵ1 forms the central part and each top plus

its neighbours forms a leaf’s part. However, not every Tℵ1 with tops has a normal

spanning tree [29, 54], and every Tℵ1 with tops contains Tℵ1 as a subgraph.

Carmesin [15] has amended Halin’s conjecture about end-faithful spanning trees:
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He showed that every connected graph G has a spanning tree T that is end-faithful

for its undominated ends in that every undominated end ω of G is uniquely

represented by an end η of T with η ⊆ ω. Recall that a vertex v of a graph G

dominates a ray R ⊆ G if there is an infinite v–R fan in G. Rays not dominated

by any vertex are undominated. An end of G is dominated or undominated if one

(equivalently: each) of its rays is dominated or undominated, respectively, see [20].

Carmesin pointed out that his result becomes false when one replaces ‘is end-

faithful for’ with ‘reflects’ in its wording. Here, a spanning tree T of a graph G

reflects the undominated ends of G if it is end-faithful for the undominated ends

of G and every end η of T represents an undominated end ω of G with η ⊆ ω.

In Chapter 13, we proved that normally spanned graphs have spanning trees

reflecting their undominated ends. As our third main result, we extend this to

the class of normally traceable graphs:

Theorem 15.3. Every normally traceable graph has a spanning tree that reflects

its undominated ends.

Our theorem extends two existence results on rayless spanning trees. For a

connected graph G, having a rayless spanning tree is equivalent to all the ends

of G being dominated if G is normally spanned [7] or if G does not contain a

subdivision of Tℵ1 [60]. The following corollary extends these results, and any Tℵ1

with all tops witnesses that this extension is proper.

Corollary 15.4. For every normally traceable graph G, having a rayless spanning

tree is equivalent to all the ends of G being dominated.

Finally, as our fifth main result we characterise the class of normally traceable

graphs by an ordinal rank function that we call the normal rank:

Theorem 15.5. For every graph G the following assertions are equivalent:

(i) G is normally traceable;

(ii) G has a normal rank.

We use this in the proofs of all our results on normally traceable graphs.

This chapter is organised as follows. In Section 15.1 we introduce the κ-rank

and prove Theorem 15.1. Then, in Section 15.2 we introduce the normal rank

and prove Theorem 15.5. We prove Theorem 15.2 in Section 15.3 and we prove

Theorem 15.3 in Section 15.4.
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15.1. Ranking Tκ-free graphs

In this section we characterise for every uncountable cardinal κ the class of graphs

without a Tκ minor by an ordinal rank function that we call the κ-rank.

Suppose that κ is any infinite cardinal. Let us assign κ-rank 0 to all the graphs

of order less than κ. Given an ordinal α > 0, we assign κ-rank α to every graph

G that does not already have a κ-rank < α and which has a set X of less than κ

many vertices such that every component of G −X has some κ-rank < α. Note

that the ℵ0-rank is Schmidt’s rank [20,64].

The κ-rank behaves quite similar to Schmidt’s rank [20, p. 243]: When disjoint

graphs Gi have κ-ranks ξi < α, their union clearly has a κ-rank of at most α; if

the union is finite, it has κ-rank maxi ξi. Induction on α shows that subgraphs of

graphs of κ-rank α also have a κ-rank of at most α. Conversely, joining less than

κ many new vertices to a graph, no matter how, will not change its κ-rank.

Not every graph has a κ-rank. Indeed, an inflated κ-branching tree cannot have

a κ-rank, since deleting less than κ many of its vertices always leaves a component

that contains another inflated κ-branching tree. As subgraphs of graphs with a

κ-rank also have a κ-rank, this means that only graphs without a Tκ minor can

have a κ-rank. But all these do:

Theorem 15.1. For every graph G and every uncountable cardinal κ the following

assertions are equivalent:

(i) G contains no Tκ minor;

(ii) G has a κ-rank.

Hence the κ-rank characterises the class of graphs without a Tκ minor.

Our proof relies upon a theorem by Seymour and Thomas [66] that we recall

here. For every set M we denote by [M ]<κ the set of all subsets of M of

cardinality < κ. Now, given a graph G, we write CX for the set of components of

G−X for every set X ⊆ V (G) of vertices. An escape of order κ in G is a function

σ which assigns to each X ∈ [V (G)]<κ the vertex set V [C ] :=
⋃
{V (C) | C ∈ C }

of a subset C ⊆ CX in such a way that:
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(i) if X ⊆ Y , then σ(Y ) ⊆ σ(X),

(ii) if X ⊆ Y , then for σ(X) = V [C ] every component C ∈ C intersects σ(Y ),

and

(iii) σ(∅) 6= ∅.

We speak of (i), (ii) and (iii) as the first, second and third escape axioms. We

remark that Seymour and Thomas’ escapes can in fact be seen as more general

predecessors of directions which describe the ends of a graph by a theorem of

Diestel and Kühn [27].

Theorem 15.1.1 ([66, Theorem 1.3]). For every graph G and every uncountable

cardinal κ the following assertions are equivalent:

(i) G contains a Tκ minor;

(ii) G has an escape of order κ.

We are now ready to prove Theorem 15.1:

Proof of Theorem 15.1. We show the equivalence ¬(i)↔¬(ii). The forward impli-

cation has already been pointed out above. For the backward implication suppose

that G has no κ-rank; we show that G must contain a Tκ minor. By Theo-

rem 15.1.1 it suffices to find an escape of order κ in G. We define a candidate

σ for such an escape as follows. Given any vertex set X ∈ [V (G)]<κ we call a

component C of G − X bad if it has no κ-rank, and we let σ(X) := V [C ] for

the collection C of all the bad components of G−X. It remains to show that σ

satisfies all three escape axioms.

Having no κ-rank is closed under taking supergraphs, so the first axiom holds.

For the second axiom, let any two vertex sets X ⊆ Y ∈ [V (G)]<κ be given,

and consider any component C ∈ C for σ(X) = V [C ]. Then C − Y must have a

component that has no κ-rank, and this component then is bad as desired. Finally,

the third axiom holds because the graph G must have a bad component.
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15.2. Normally traceable graphs

In this section we characterise the class of normally traceable graphs by an ordinal

rank function that we call the normal rank.

Let G be any connected graph. A connected subgraph H ⊆ G has normal

rank 0 in G if the vertex set of H is normally spanned in G. Given an ordinal

α > 0, a connected subgraph H ⊆ G has normal rank α in G if it does not

already have a normal rank < α in G and if there is a vertex set X ⊆ V (H) that

is normally spanned in G such that every component of H −X has some normal

rank < α in G.

The graph G has normal rank α for an ordinal α if G has normal rank α in G.

Theorem 15.5. For every connected graph G the following assertions are equiva-

lent:

(i) G is normally traceable;

(ii) G has a normal rank.

Moreover, if G has a tree-decomposition witnessing that G is normally traceable,

then G has normal rank at most the rank of the decomposition tree. Conversely,

if G has a normal rank, then G is normally traceable and this is witnessed by a

tree-decomposition whose decomposition tree has as rank the normal rank of G.

Before we prove this theorem, we point out a few properties of the normal rank.

Lemma 15.2.1. Let G be any connected graph.

(i) If G has ℵ1-rank α, then G has some normal rank ≤ α.

(ii) There are graphs that have a normal rank but that have neither an ℵ1-rank

nor a normal spanning tree.

Proof. (i) We show that every connected subgraph H ⊆ G of ℵ1-rank α has normal

rank ≤ α in G, by induction on α; for H = G this establishes (i). Any connected

countable subgraph of G is normally spanned in G by Jung’s Theorem 11.2.5,

so the base case holds. For the induction step suppose that α > 0. We find a

countable vertex set X ⊆ V (H) so that every component of H −X has some ℵ1-

rank < α. As X is countable it is also normally spanned in G. By the induction
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hypothesis every component of H − X has normal rank < α in G. Hence X

witnesses that H has normal rank ≤ α in G.

(ii) Let G be any Tℵ1 with tops. Then G has normal rank 1 because G − Tℵ1
consists only of isolated vertices. However, G has no ℵ1-rank by Theorem 15.1,

and G has no normal spanning tree as pointed out by Diestel and Leader [29].

Lemma 15.2.2. Let H ⊆ H ′ ⊆ G be any three connected graphs.

(i) If H ′ has normal rank α in G, then H has normal rank ≤ α in G.

(ii) If H has normal rank α in G, then H has normal rank ≤ α in H ′.

In particular, if H has normal rank α in G, then H has normal rank ≤ α.

Proof. (i) Induction on α. If α = 0, then the vertex set of H ′ is normally spanned

in G; in particular, the vertex set of H ⊆ H ′ is normally spanned in G.

Otherwise α > 0. Then there exists a vertex set X ⊆ V (H ′) that is normally

spanned in G such that every component of H ′ −X has normal rank < α in G.

Every component of H − X is contained in a component of H ′ − X and hence

has normal rank < α in G by the induction hypothesis. Thus, H has normal rank

≤ α in G.

(ii) Induction on α. If α = 0, then the vertex set of H is normally spanned

in G. In particular, by Jung’s Theorem 11.2.5, the vertex set of H is normally

spanned in H ′ ⊆ G, so H has normal rank 0 in H ′ as desired.

Otherwise α > 0. Then there exists a vertex set X ⊆ V (H) that is normally

spanned in G such that every component of H − X has normal rank < α in G.

Note that X is also normally spanned in H ′ ⊆ G by Jung’s Theorem 11.2.5. By

the induction hypothesis, every component of H −X has normal rank < α in H ′.

Thus, H has normal rank ≤ α in H ′.

Proof of Theorem 15.5. Let G be any connected graph. To show the equivalence

(i)↔(ii) together with the ‘moreover’ part of the theorem, it suffices to show the

following two assertions:

(1) If G has a tree-decomposition witnessing that G is normally traceable, then

G has a normal rank which is at most the rank of the decomposition tree.

(2) If G has a normal rank, then G is normally traceable and this is witnessed by

a tree-decomposition whose decomposition tree has rank at most the normal

rank of G.
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(1) We show that every connected subgraph H ⊆ G that has a rayless tree-

decomposition (T,V) into parts that are normally spanned in G does have normal

rank ≤ α in G for α the rank of T . We prove this by induction on α; for H = G

and α equal to the rank of the decomposition tree of some tree-decomposition of

G witnessing that G is normally traceable we obtain (1). If H and (T,V) are such

that α = 0, then T is finite, and hence the union of all the parts in V is normally

spanned in G by Jung’s Theorem 11.2.5; in particular, V (H) is normally spanned

in G and hence has normal rank 0 in G.

Otherwise H and (T,V) are such that α > 0. Let W ⊆ V (T ) be any finite

vertex set such that every component of T −W has rank < α. Then the vertex

set X :=
⋃
t∈W Vt ⊆ V (H) is normally spanned in G by Jung’s Theorem 11.2.5.

Every component of H −X is contained in
⋃
t∈T ′ G[Vt] for some component T ′ of

T −W , so by the induction hypothesis every component of H − X has normal

rank < α in G. Thus, H has normal rank ≤ α in G.

(2) Suppose that G is any connected graph that has a normal rank. We show

that every connected subgraph H ⊆ G of normal rank α in G has a rayless

tree-decomposition (T,V) into parts that are normally spanned in G such that T

has rank ≤ α, by induction on the normal rank α of H in G; for H = G this

establishes (2). If α = 0, then V (H) is normally spanned in G and the trivial

tree-decomposition of H into the single part V (H) is as desired.

Otherwise α > 0. Then there exists a vertex set X ⊆ V (H) that is normally

spanned in G such that every component of H − X has normal rank < α in G.

By the induction hypothesis, every component C of H − X has a rayless tree-

decomposition (TC ,VC) with VC = (V t
C | t ∈ TC ) such that every part is normally

spanned in G and the rank of TC is < α. Without loss of generality the trees TC

are pairwise disjoint. We choose from every tree TC an arbitrary node tC ∈ TC .

Then we let the tree T be obtained from the disjoint union
⋃
C TC by adding

a new vertex t∗ that we join to all the chosen nodes tC . We define the family

V = (V t | t ∈ T ) by letting V t := V t
C ∪X for all t ∈ TC ⊆ T and V t∗ := X. Then

(T,V) is a rayless tree-decomposition of H into parts that are normally spanned in

G by Jung’s Theorem 11.2.5, and the rank of T is ≤ α because every component

of T − t∗ has rank < α.
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15.3. End-faithful spanning trees

In this section we prove that every normally traceable graph has an end-faithful

spanning tree. Our proof requires some preparation.

Suppose that H is any subgraph of G and ϕ : Ω(H) → Ω(G) is the natural

map satisfying η ⊆ ϕ(η) for every end η of H. Furthermore, suppose that a set

Ψ ⊆ Ω(G) of ends of G is given. We say that H is end-faithful for Ψ if ϕ � ϕ−1(Ψ)

is injective and im(ϕ) ⊇ Ψ. And H reflects Ψ if ϕ is injective with im(ϕ) = Ψ. A

spanning tree of G that is end-faithful for all the ends of G is end-faithful. The

following lemma is a reformulation of Lemma 11.1.11

Lemma 15.3.1. If G is any graph and T ⊆ G is any normal tree, then T reflects

the ends of G in the closure of T .

Lemma 15.3.2. Let G be any graph and let Ψ ⊆ Ω(G) be any set of ends of G.

If H ⊆ G is a spanning forest that reflects Ψ and T is a component of H such

that every other component of H has a neighbour in T , then G has a spanning

tree that reflects Ψ.

Proof. Fix for every component T ′ 6= T of H an edge eT ′ between T ′ and T . It is

straightforward to check that the spanning tree consisting of H plus all the edges

eT ′ reflects the ends in Ψ.

Lemma 15.3.3. Let G be any graph with a spanning tree T ⊆ G that reflects a

set Ψ ⊆ Ω(G) and let R ⊆ G be a ray from some end in Ψ. Then there exists a

spanning tree T ′ ⊆ G that reflects Ψ and contains R.

Moreover, T ′ can be chosen such that no end other than the end of R lies in the

closure of the symmetric difference E(T )4E(T ′) (viewed as a subgraph of G).

The ‘moreover’ part of the lemma says that T and T ′ differ only locally. Note

that there may also be no end in the closure of E(T )4E(T ′).

Proof. Given T ⊆ G, Ψ and R, we root T arbitrarily and write ω for the end of R

in G. Furthermore, we write RT for the unique rooted ray in T that is equivalent

to R, and we pick a sequence P0, P1, . . . of pairwise disjoint R–RT paths in G. We

write C for the comb C := R ∪
⋃
n Pn consisting of R and all the paths Pn, and

we write U for the vertex set of the subtree dCeT of T . Note that RT ⊆ dCeT
because the paths P0, P1, . . . meet RT infinitely often. By standard arguments we
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have ∂ΩC = {ω}, and so ∂ΩU = {ω} follows by Lemma 11.1.13. Since T reflects

Ψ and dCeT contains only rays from ω, we deduce that dCeT is either rayless or

one-ended. As dCeT contains the ray RT , it is one-ended.

Next, we define an edge set F ⊆ E(dCeT ), as follows. If R has a tail in RT ,

then we set F = ∅. Otherwise R has no tail in RT . Then we select infinitely

many pairwise edge-disjoint C-paths Q0, Q1, . . . in the ray RT (these exist because

R has no tail in RT ). We choose one edge of every path Qn and we let F consist

of all the chosen edges, completing the definition of F .

The graph (dCeT ∪C)−F is a connected subgraph of G and inside it, we extend

C arbitrarily to a spanning tree TR. Then TR has vertex set U , and TR reflects {ω}:
Every ray R′ in TR that is disjoint from R meets at most one component of C−R
because C and R′ are contained in the tree TR, and hence R′ must have a tail in

dCeT −C. But dCeT contains just one rooted ray, namely the ray RT , and either

RT contains a tail of R or F consists of infinitely many edges of RT , contradicting

the existence of R′ in TR ⊆ (dCeT ∪C)−F . It remains to extend TR to a spanning

tree of G reflecting Ψ. For this, we consider the collection {Ti | i ∈ I } of all the

components of T − U . By the choice of U , every end ω′ of G other than ω is still

represented by an end of one of the trees Ti: Indeed, if ω′ is an end of G other

than ω, then it does not lie in the closure of U , and hence every ray in ω′ has a

tail that avoids U . In particular, every ray in T that lies in ω′ has some tail that

avoids U . Therefore, the union of TR and all the trees Ti is a spanning forest of

G reflecting Ψ.

We extend this spanning forest to a spanning tree T ′ by adding all the Ti–TR

edges of T for every i ∈ I (note that T contains precisely one Ti–TR edge for

every i ∈ I as T ∩ G[U ] = dCeT is connected). Then T ′ reflects Ψ again by

Lemma 15.3.2. To see ∂Ω(E(T )4E(T ′)) ⊆ {ω} recall ∂ΩG[U ] = {ω} and note

that the symmetric difference is contained in G[U ] entirely.

Lemma 15.3.4. Let G be any graph and let X ⊆ V (G) be any vertex set.

(i) Every end of G is contained in the closure of X in G or in the closure of

some component of G−X in G.

(ii) Every end of G that is contained in the closure of two distinct components

of G−X in G is also contained in the closure of X in G.
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Proof. (i) Let ω be any end of G and let R ∈ ω be any ray. Then either the

vertex set of R intersects X infinitely, or R has a tail that is contained in some

component C of G−X. In the first case, ω is contained in the closure of X, and

in the second case it is contained in the closure of C in G.

(ii) Let C and C ′ be two distinct components of G−X and suppose that ω is

any end of G that is contained in the closure of both C and C ′ in G. If S ⊆ V (G)

is any finite vertex set, then the component C(S, ω) meets both C and C ′. As X

separates C and C ′ in G it follows that C(S, ω) meets X as well. We conclude

that ω is contained in the closure of X in G.

Lemma 15.3.5. Let G be any connected graph, let X ⊆ V (G) be normally

spanned in G and let C be any component of G−X so that G[C∪X] is connected.

If C has normal rank ξ in G, then G[C ∪X] has normal rank ≤ ξ.

Proof. Suppose that C is a component of G − X that has normal rank ξ in G.

If ξ = 0, then V (C) is normally spanned in G and C has a normal spanning tree

by Jung’s Theorem 11.2.5, so C has normal rank 0 as desired. Otherwise there

is a vertex set Y ⊆ V (C) that is normally spanned in G and satisfies that every

component of C − Y has normal rank < ξ in G. Note that X ∪ Y is normally

spanned in G by Jung’s Theorem 11.2.5. Therefore X∪Y witnesses that G[C∪X]

has normal rank ≤ ξ in G. Finally, Lemma 15.2.2 (ii) implies that G[C ∪X] has

normal rank ≤ ξ.

Theorem 15.2. Every normally traceable graph has an end-faithful spanning tree.

Proof. By Theorem 15.5 we may prove the statement via induction on the normal

rank of G. If G has normal rank 0, then it has a normal spanning tree, and

normal spanning trees are end-faithful. For the induction step suppose that G

has normal rank α > 0, and let X ⊆ V (G) be any vertex set that is normally

spanned in G and satisfies that every component of G−X has normal rank < α

in G. By replacing X with the vertex set of any normal tree in G that contains X,

we may assume that X is the vertex set of a normal tree Tnt ⊆ G; indeed, every

component of G −X still has normal rank < α in G by Lemma 15.2.2 (i). Note

that, by Lemma 15.3.1, the tree Tnt reflects the ends of G in the closure of X.

By Lemma 15.3.4 (i), every end of G is contained in the closure of X in G or in

the closure of some component of G − X. And by Lemma 15.3.4 (ii), every end
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of G that is contained in the closure of two distinct components of G−X in G is

also contained in the closure of X in G. Thus, by Lemma 15.3.2 it suffices to find

in each component C of G−X a spanning forest HC so that every component of

HC sends an edge in G to Tnt and so that HC reflects ∂ΩC r ∂ΩX.

For this, consider any component C of G−X. Let P be the (possibly one-way

infinite) path in Tnt that is formed by the down-closure of N(C) in Tnt. Then by

Lemma 15.3.5 the graph G[C∪P ] has normal rank < α, and therefore satisfies the

induction hypothesis. Hence we find an end-faithful spanning tree TC of G[C∪P ].

By Lemma 15.3.3 we may assume that the path P is a subgraph of TC if this path

is a ray. It is straightforward to check that HC := TC −X is as desired.

15.4. Trees reflecting the undominated ends

In this section we prove that every normally traceable graph has a spanning tree

that reflects its undominated ends. Our proof requires the following theorem:

Theorem 15.4.1 ([7, Theorem 3.2]). Let G be any graph and let U ⊆ V (G) be

normally spanned in G. Then there is a tree T ⊆ G that contains U and reflects

the undominated ends in the closure of U .

Theorem 15.3. Every normally traceable graph has a spanning tree that reflects

its undominated ends.

Proof. By Theorem 15.5 we may prove the statement via induction on the normal

rank of G. If G has normal rank 0, then it is normally spanned. Thus, by

Theorem 15.4.1, the graph G has a spanning tree that reflects its undominated

ends. For the induction step suppose that G has normal rank α > 0, and let

X ⊆ V (G) be any vertex set that is normally spanned in G and satisfies that

every component of G−X has normal rank < α in G. By replacing X with any

normal tree in G that contains X, we may assume that X is the vertex set of a

normal tree Tnt ⊆ G; indeed, every component of G − X still has normal rank

< α in G by Lemma 15.2.2 (i).

We claim that it suffices to find in every component C of G − Tnt a spanning

forest HC such that every component of HC sends an edge in G to Tnt and HC

reflects the undominated ends of G in ∂ΩC r ∂ΩTnt. This can be seen as follows.

Suppose that we find such a spanning forest HC in every component C of G−X.
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By Theorem 15.4.1 we find a tree Tud ⊆ G that contains X = V (Tnt) and reflects

the undominated ends of G in the closure of Tnt. Then we set H ′D := HC ∩ D
for every component D of G− Tud and the component C of G−X containing it.

Now consider the spanning forest H of G that is the union of all forests H ′D with

the tree Tud. We show that H reflects the undominated ends of G.

On the one hand, all the rays in H belong to undominated ends of G, and H

contains no two disjoint rays from the same undominated end of G. On the other

hand, let ω be any undominated end of G. If ω lies in the closure of Tnt, then

Tud ⊆ H contains a ray from ω. Otherwise ω does not lie in the closure of Tnt.

Then ω lies in the closure of a component C of G − Tnt by Lemma 15.3.4 (i),

so HC contains a ray R from ω. Furthermore, ω does not lie in the closure of

Tud because by the star-comb lemma every tree in G contains a ray from every

undominated end in its closure, and Tud reflects only the undominated ends of G

in the closure of Tnt; in particular, R has a tail R′ ⊆ R that avoids Tud. Then

R′ ⊆ H ′D ⊆ H for the component D of G− Tud that contains R′, completing the

proof that H reflects the undominated ends of G. It remains to show that G has

a spanning tree that reflects the undominated ends of G; such a tree arises from

H by Lemma 15.3.2.

To complete the proof, we show that every component C of G − Tnt has a

spanning forest HC such that every component of HC sends an edge in G to Tnt

and HC reflects the undominated ends of G in ∂ΩC r ∂ΩTnt. So let C be any

component of G−X and let P be the (possibly one-way infinite) path in Tnt that

is formed by the down-closure of N(C) in Tnt. Then by Lemma 15.3.5 the graph

G[C ∪ P ] satisfies the induction hypothesis. Hence we find a spanning tree TC of

G[C ∪P ] reflecting the undominated ends of G[C ∪P ]. By Lemma 15.3.3 we may

assume that the path P is a subgraph of TC if this path is an undominated ray in

G[C ∪ P ]. It is straightforward to check that HC := TC −X is as desired.
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English summary

In the following we give a brief summary of the results that we provide in the

three parts of this dissertation.

I. Monochromatic generalised paths

Answering a conjecture of Soukup in the affirmative, we prove that every r-edge-

coloured complete bipartite graph with bipartition classes of the same infinite

cardinality admits a partition of its vertex set into 2r− 1 monochromatic genera-

lised paths (Theorem 2.2). This bound is best possible in the sense that for

every κ ≥ ℵ0 there are r-edge-colourings of Kκ,κ for which the graph cannot be

partitioned into 2r − 2 monochromatic paths.

Furthermore, our discussion leads to a conceptually simpler closing argument

for Soukup’s Theorem 2.1, stating that the vertex set of every k-edge-coloured

complete graph of infinite cardinality can be partitioned into monochromatic

generalised paths of different colours.

The key idea for our proofs is to combine Soukup’s techniques from his original

paper with our notion and construction method of X-robust paths.

II. Ends of digraphs

In this part we develop an end space theory for directed graphs. As for undirected

graphs, the ends of a digraph are points at infinity to which its rays converge.

Unlike for undirected graphs, some ends are joined by limit edges; these are crucial

for obtaining the end space of a digraph as a natural (inverse) limit of its finite

contraction minors.

As our main result in Chapter 8, we show that the notion of directions of an

undirected graph, a tangle-like description of its ends, extends to digraphs: there

is a one-to-one correspondence between the directions of a digraph and its ends

and limit edges (Theorem 8.2 and Theorem 8.3).
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In the course of this we develop a number of fundamental tools and techniques

for the study of ends of digraphs, such as the necklace lemma and the directed

star-comb lemma.

In Chapter 9, we introduce the topological space |D| formed by a digraph D

together with its ends and limit edges. We then show that the digraphs that are

compactified by |D| are precisely the solid ones (Theorem 9.1). Furthermore, we

show that if |D| is compact, it is the inverse limit of finite contraction minors of D

(Theorem 9.2).

To illustrate the use of this, we extend to the space |D| two statements about

finite digraphs that do not generalise verbatim to infinite digraphs. The first

statement is the characterisation of finite Eulerian digraphs by the condition that

the in-degree of every vertex equals its out-degree (see Theorem 9.3). The second

statement is the characterisation of strongly connected finite digraphs by the

existence of a closed Hamilton walk (see Theorem 9.4).

In Chapter 10 we introduce a concept of depth-first search trees in infinite

digraphs, which we call normal spanning arborescences.

We show that normal spanning arborescences are end-faithful: every end of a

digraph is represented by exactly one ray in the normal spanning arborescence that

starts from the root (Theorem 10.1). We further show that every normal spanning

arborescence of a solid digraph reflects its horizon (Theorem 10.2). Finally, we

prove a Jung-type criterion for the existence of normal spanning arborescences:

Every digraph with a vertex that can reach all the other vertices and whose vertex

set can be written as a countable union of dispersed set has a normal spanning

arborescence (Theorem 10.3).

III. Stars and combs

In the first four chapters of this part we determine structures whose existence

is complementary to the existence of two substructures that are particularly

fundamental to the study of connectedness in infinite graphs: stars and combs.

In Chapter 11 we determine structures whose existence is complementary to

the existence of arbitrary stars and combs. We offer several duality theorems:

in terms of normal trees (Theorem 11.1 and Theorem 11.6), tree-decompositions

(Theorem 11.2 and Theorem 11.7), critical vertex sets (Theorem 11.3) and the
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U -rank (Theorem 11.4).

In Chapter 12 we determine structures whose existence is complementary to the

existence of dominating stars and dominated combs. As dominating stars exist if

and only if dominated combs do, the structures complementary to them coincide.

Like for arbitrary stars and combs, our duality theorems for dominated combs

(and dominating stars) are phrased in terms of normal trees (Theorem 12.1) or

tree-decompositions (Theorem 12.2).

The complementary structures we provide for dominated combs unify those for

stars and combs and allow us to derive our duality theorems for stars and combs

from those for dominated combs. This is surprising given that our complementary

structures for stars and combs are quite different: those for stars are locally finite

whereas those for combs are rayless.

In Chapter 13 we determine structures whose existence is complementary to the

existence of undominated combs. We describe their complementary structures in

terms of rayless trees (Theorem 13.1) and of star-decompositions (Theorem 13.7).

Applications include a complete characterisation, in terms of normal spanning

trees, of the graphs whose rays are dominated but which have no rayless spanning

tree (Corollary 13.1.3). Only two such graphs had so far been constructed, by

Seymour and Thomas [65] and by Thomassen [70]. As a corollary, we show that

graphs with a normal spanning tree have a rayless spanning tree if and only if all

their rays are dominated (Corollary 13.2).

Another application settles a problem left unsolved by Carmesin [15]: The

graphs whose undominated ends are reflected by a suitable spanning tree can be

characterised in terms of normal spanning trees (Theorem 13.3). In particular,

we show that every graph that has a normal spanning tree does have a spanning

tree reflecting its undominated ends.

In Chapter 14 we determine structures whose existence is complementary to

the existence of undominating stars. This completes our solution to the problem

of finding complementary structures for stars, combs, and their combinations.

Our duality theorems are phrased in terms of end-compactified subgraphs (Theo-

rem 14.1) and tree-decompositions (Theorem 14.2).

The last chapter of this part, Chapter 15, can be seen as a spin-off of its previous

chapters: there we consider two problems raised by Halin and provide further

applications of our duality theorems and the tools that we provide in their proofs.
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Schmidt [64] characterised the class of rayless graphs by an ordinal rank funct-

ion, which makes it possible to prove statements about rayless graphs by trans-

finite induction. Halin [41] asked in his legacy collection of problems whether

Schmidt’s rank function can be generalised to characterise other important classes

of graphs. We answer Halin’s question in the affirmative: we characterise two

important classes of graphs by an ordinal rank function.

Seymour and Thomas have characterised for every uncountable cardinal κ the

class of graphs without a Tκ minor. We extend their characterisations by an

ordinal rank function, one for every uncountable cardinal κ (Theorem 15.1).

Another largely open problem raised by Halin asks for a characterisation of

the class of graphs with an end-faithful spanning tree. A well-studied subclass is

formed by the graphs with a normal spanning tree. We determine a larger subclass,

the class of normally traceable graphs, which consists of the connected graphs

with a rayless tree-decomposition into normally spanned parts (Theorem 15.2).

Investigating the class of normally traceable graphs further, we prove that all its

graphs have spanning trees reflecting their undominated ends (Theorem 15.3).

Our proofs rely on a characterisation of the class of normally traceable graphs by

an ordinal rank function that we provide (Theorem 15.5).
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Deutsche Zusammenfassung

Im Folgenden fassen wir die Resultate dieser Dissertation zusammen.

I. Monochromatische verallgemeinerte Wege

Wir bestätigen Soukups Vermutung, dass es zu jeder Färbung der Kanten eines

balancierten vollständig bipartiten Graphen mit r Farben eine Partition der Eck-

enmenge in 2r−1 monochromatische verallgemeinerte Wege gibt (Satz 2.2). Diese

Schranke ist bestmöglich in dem Sinne, dass es für alle κ ≥ ℵ0 Färbungen der

Kanten von Kκ,κ mit r Farben gibt, sodass es keine Partition der Eckenmenge in

2r − 2 monochromatische verallgemeinerte Wege gibt.

Unsere Techniken liefern zudem ein konzeptuell simpleres Schlussargument für

Soukups Beweis von Satz 2.1.

Die Schlüsselidee für unsere Beweise besteht darin, Soukups Techniken mit un-

seren X-robusten Wegen zu verstärken.

II. Enden von Digraphen

In diesem Teil der Dissertation entwickeln wir eine Endenraumtheorie für Digra-

phen. Genau wie bei Enden von ungerichteten Graphen sind auch Enden von

Digraphen Punkte im Unendlichen, gegen die ihre Strahlen konvergieren. Anders

als bei Enden von ungerichteten Graphen sind manche Enden durch Limes Kanten

verbunden; diese sind essenziell, um den Endenraum eines Digraphen als (inver-

sen) Limes von endlichen Kontraktionsminoren zu erhalten.

Im Hauptresultat von Kapitel 8 zeigen wir, dass sich Richtungen von ungerichte-

ten Graphen, knäuelartige Beschreibungen ihrer Enden, auf Digraphen übertragen

lassen: Die Richtungen eines jeden Digraphen korrespondieren bijektiv zu seinen

Enden und Limes Kanten (Satz 8.2 und Satz 8.3).

Im Zuge dessen entwickeln wir einige fundamentale Werkzeuge und Techniken

für die Untersuchung von Enden in Graphen, wie etwa das Halskettenlemma oder
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das gerichtete Stern-Kamm Lemma.

In Kapitel 9 führen wir den topologischen Raum |D| ein, welcher aus D und

den Enden und Limeskanten von D geformt wird. Danach charakterisieren wir

die Digraphen, welche durch diesen Raum kompaktifiziert werden (Satz 9.1). Des

Weiteren zeigen wir, dass der Raum |D|, sobald er kompakt ist, der inverse Limes

von endlichen Kontraktionsminoren von D ist (Satz 9.2).

Um den typischen Nutzen hiervon zu illustrieren, erweitern wir zwei Aussagen

über endliche Digraphen, die nicht wörtlich auf unendliche Digraphen erweitert

werden können, auf den Raum |D|. Die erste Aussage ist die Charakterisierung

von Eulerschen Digraphen durch die Bedingung, dass der in-Grad einer jeden Ecke

ihrem aus-Grad entspricht (Satz 9.3). Die zweite Aussage ist die Charakterisierung

von stark zusammenhängenden endlichen Digraphen durch die Existenz eines

geschlossenen Hamilton Kantenzugs (Satz 9.4).

In Kapitel 10 führen wir ein Konzept von Tiefensuchbäumen in unendlichen

Digraphen ein. Die entsprechenden Bäume nennen wir normale Spannarboreszen-

zen.

Wir zeigen, dass normale Spannarboreszenzen endentreu sind: jedes Ende wird

durch genau einen in der Wurzel beginnenden Strahl der normalen Spannarbores-

zenz repräsentiert (Satz 10.1). Weiter zeigen wir, dass sich die hierdurch ergebende

Bijektion auf einen Homöomorphismus zwischen dem Horizont eines Digraphen

und dem Horizont einer jeden normalen Spannarboreszenz des Digraphen erwei-

tern lässt (Satz 10.2). Zu guter Letzt beweisen wir ein Jung-ähnliches Kriterium

für die Existenz von normalen Spannarboreszenzen (Satz 10.3).

III. Sterne und Kämme

In den ersten vier Kapiteln dieses Teils der Dissertation ermitteln wir Strukturen,

deren Existenz komplementär zu der Existenz von zwei Teilstrukturen ist, die

besonders fundamental für die Untersuchung vom Zusammenhang unendlicher

Graphen sind: Sterne und Kämme.

In Kapitel 11 ermitteln wir Strukturen, deren Existenz komplementär zur Exi-

stenz von beliebigen Sternen und Kämmen ist. Wir liefern zahlreiche Dualitäts-

resultate: in Hinsicht auf normale Spannbäume (Satz 11.1 und Satz 11.6), Baum-

zerlegungen (Satz 11.2 und Satz 11.7), kritische Eckenmengen (Satz 11.3) und
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dem U -Rang (Satz 11.4).

In Kapitel 12 ermitteln wir Strukturen, deren Existenz komplementär zur Exis-

tenz von dominierenden Sternen und dominierten Kämmen ist. Da dominierende

Sterne genau dann existieren, wenn dominierte Kämme existieren, stimmen ihre

komplementären Strukturen überein. Wie bei beliebigen Sternen und Kämmen,

sind unsere Dualitätssätze für dominierte Kämme (und dominierende Sterne)

hinsichtlich normaler Bäumen (Satz 12.1) und Baumzerlegungen (Satz 12.2.5)

formuliert.

Die komplementären Strukturen, die wir für dominierte Kämme bereitstellen,

vereinen jene für Sterne und Kämme und erlauben uns die Dualitätssätze für

Sterne und Kämme von jenen für dominierte Kämme abzuleiten. Das ist über-

raschend, da unsere Strukturen für Sterne und Kämme recht unterschiedlich sind:

jene für Sterne sind lokal endlich, während jene für Kämme strahlenlos sind.

In Kapitel 13 ermitteln wir Strukturen, deren Existenz komplementär zur Ex-

istenz von undominierten Kämmen ist. Wir beschreiben ihre komplementären

Strukturen hinsichtlich strahlenloser Bäumen (Satz 13.1) und Baumzerlegungen

(Satz 13.7).

Anwendungen umfassen eine vollständige Charakterisierung (hinsichtlich nor-

maler Spannbäume) der Graphen, deren Strahlen dominiert sind, aber die keinen

strahlenlosen Spannbaum haben (Korollar 13.1.3). Nur zwei solche Graphen

wurden bisher konstruiert (von Seymour und Thomas [65] und Thomassen [70]).

Als Korollar zeigen wir, dass Graphen mit normalem Spannbaum genau dann

einen strahlenlosen Spannbaum haben, wenn alle ihre Strahlen dominiert sind

(Korollar 13.2).

Eine weitere Anwendung löst ein Problem, das Carmesin [15] offen ließ: Die

Graphen, deren undominierte Enden durch einen geeigneten Spannbaum reflek-

tiert werden, können hinsichtlich normaler Spannbäume charakterisiert werden

(Theorem 13.3). Insbesondere zeigen wir, dass jeder Graph, der einen normalen

Spannbaum hat, auch einen Spannbaum hat, der die undominierten Enden reflek-

tiert.

In Kapitel 14 ermitteln wir Strukturen, deren Existenz dual zu der Existenz

von undominierenden Sternen ist. Das schließt unsere Lösung des Problems

komplementäre Strukturen von Sternen, Kämmen und deren Kombinationen zu

finden ab. Unsere Sätze sind hinsichtlich Enden-kompaktifizierender Teilgraphen
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(Satz 14.1) und Baumzerlegungen (Satz 14.2) formuliert.

Das letzte Kapitel dieses Teils, Kapitel 15, kann als Spinn-off der vorherigen

Kapitel angesehen werden: wir betrachten zwei Probleme, die Halin stellte, und

stellen weitere Anwendungen unserer Dualitätssätze und der Werkzeuge, die wir

für diese entwickelt haben, vor.

Schmidt charakterisierte die Klasse der strahlenlosen Graphen durch eine ordi-

nale Rangfunktion, welche es ermöglicht, Aussagen über strahlenlose Graphen mit

transfiniter Induktion zu beweisen. Halin fragte, ob sich Schmidts Rangfunktion

so verallgemeinern lässt, dass weitere wichtige Graphenklassen charakterisiert

werden können. Wir beantworten Halins Frage positiv: wir charakterisieren zwei

wichtige Graphenklassen durch eine ordinale Rangfunktion.

Seymour und Thomas charakterisierten für jede überabzählbare Kardinalität

κ die Klasse der Graphen ohne einen Tκ Minor. Wir erweitern ihr Resultat um

eine Charakterisierung hinsichtlich einer ordinalen Rangfunktion (eine für jede

überabzählbare Kardinalität κ, Satz 15.1).

Ein weiteres, weitestgehend offenes, Problem von Halin fragt nach einer Charak-

terisierung der Graphen mit endentreuem Spannbaum. Eine gut untersuchte

Teilklasse ist die Klasse der normal aufgespannten Graphen. Wir bestimmen

eine größere Teilklasse, die Klasse der normal verfolgbaren Graphen, welche aus

den zusammenhängenden Graphen besteht, die eine strahlenlose Baumzerlegung

in normal aufgespannte Teile haben. Die Klasse der normal verfolgbaren Graphen

untersuchen wir noch weiter und beweisen, dass alle ihre Graphen einen Spann-

baum haben der die undomierten Enden reflektiert (Satz 15.2). Unsere Beweise

basieren auf einer Charakterisierung der Klasse der normal verfolgbaren Graphen

durch eine ordinale Rangfunktion, die wir bereitstellen (Satz 15.5).
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