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Abstract

In this thesis, we present recent results obtained in the area of integrable mod-

els and focused on two main aspects of the discipline. The first part of the thesis

concerns the geometric construction of specific multi-body integrable deformations

of Calogero-Moser models via reduction methods - and the subsequent quantization.

In particular, we provide a Poisson structure of the Ruijsenaars-Schneider model (i.e.

the relativistic Calogero-Moser model) with hyperbolic potential and spin degrees of

freedom, and we conjecture the trace formulae for the quantization of the spectral

invariants of the Lax operator in the hyperbolic Ruijsenaars-Schneider model. In

the second part of the thesis, we present a study of correlation functions in the fish-

net theories arising as a double-scaling limit of γ-deformed N = 4 SYM theory, via

methods of exact solvability and integrability. In particular, we deal with the exten-

sion of the bi-scalar fishnet theory to any space-time dimensions, the computation of

specific four-point functions at finite-coupling and the extraction from the operator

product expansion of non-perturbative conformal data for the local operators.
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Zusammenfassung

In dieser Arbeit präsentieren wir aktuelle Ergebnisse aus dem Bereich integrier-

barer Modelle, die sich auf zwei Hauptaspekte der Disziplin konzentrieren. Der

erste Teil der Arbeit befasst sich mit der geometrischen Konstruktion spezifischer

integrierbarer Mehrkörperdeformationen von Calogero-Moser-Modellen mittels Re-

duktionsmethoden - und der anschließenden Quantisierung. Insbesondere liefern

wir eine Poisson-Struktur des Ruijsenaars-Schneider-Modells (dh des relativistis-

chen Calogero-Moser-Modells) mit hyperbolischem Potential und Spinfreiheitsgraden

und vermuten die Spurenformeln für die Quantisierung der spektralen Invarianten

des Lax-Operators in das hyperbolische Ruijsenaars-Schneider-Modell. Im zweiten

Teil der Arbeit präsentieren wir eine Untersuchung der Korrelationsfunktionen in

den Fischnetz-Theorien, die sich als doppelte Skalierungsgrenze der γ-deformierten

N = 4 SYM Theorie ergeben, über Methoden der exakten Lösbarkeit und Inte-

grierbarkeit. Insbesondere befassen wir uns mit der Erweiterung der bi-skalaren

Fischnetz-Theorie auf beliebige Raum-Zeit-Dimensionen, der Berechnung spezifis-

cher Vierpunktfunktionen bei endlicher Kopplung und der Extraktion nicht störender

konformer Daten aus dem Operatorprodukt für die lokale Betreiber.
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Chapter 1

Introduction

“Nissuna umana investigazione si

può dimandare vera scienza, s’essa

non passa per le matematiche

dimostrazioni.”

“No human investigation can claim

to be real science, if it doesn’t go

through mathematical proofs.”

Leonardo Da Vinci

Trattato della Pittura, ∼ 1540

The theoretical description of any natural phenomena consist in a mathematical

model that encodes its dynamics, that is the way according to which the state of

things changes in time giving rise to the phenomenon. Any such model (dynamical

system) is defined by a set of numeric variables which give a complete description

of the configuration of the system at a certain time t (degrees of freedom) together

with their dependence in time (evolution rule). Usually the evolution rule is not

explicitly known for a given dynamical system, but we can still define the system

by a set of differential equations in the time variable (equations of motion) whose

solution is the evolution rule. This scheme, first elaborated for classical mechanics,

can be extended to any field of theoretical physics, including quantum mechanics

and quantum field theory. In fact, this thesis concerns various models of classical

mechanics, quantum mechanics, and quantum field theory whose time-evolution is

triggered by the Hamiltonian function of the degrees of freedom, or in other words

by the energy of the system.

The crucial goal in the study of any dynamical system is to collect as much knowl-

edge as possible on its evolution rule. In the most optimistic hypothesis it is possible

to determine it exactly, solving the equations of motion. We refer to this condition

as exact solvability of a model. A systematic way to investigate the features of exact

solvability is given by the notion of integrability of the dynamical system, according

to the theorems of Liouville [1] and its global version by Arnol’d [2] (see also [3, 4] for

an extended treatment of this subject). The general idea of integrability is that if a

Hamiltionian system with N degrees of freedom has N independent conserved quanti-

– 8 –
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ties (integrals of motion) that generate N commuting symmetries of the Hamiltonian

function (involution property), it is always possible to separate the variables by a

canonical transformation so that the equations of motion can be solved by quadra-

ture. In other words an integrable system, after a suitable canonical transformation,

has conserved momenta, i.e. a Hamiltonian independent from the coordinates (free

motion). Along with the notion of integrability in classical mechanics, it is possible

to formulate its extensions to the quantum theory - where Poisson brackets between

functions are quantized into commutators of linear operators - which have several

realizations in terms of the Bethe ansatz, quantum separation of variables, Baxter

equations [5–8].

The theory of integrable models has shown formidable applications to the solution

of highly non-trivial problems in theoretical physics, covering topics ranging from

spin lattices [9, 10], systems of coupled particles on a line [11, 12], to the spectrum

of string theories and QFTs in the AdS/CFT correspondence [13, 14]. In this thesis

we will touch upon many of these aspects, with the goal to to shed more light on

the origin of integrability. The general approach that we will adopt for the systems

of interacting particles and lattice spins under study, is an algebraic analysis of their

Poisson structure aimed at revealing their integrability. Concretely, we will make

use of the Lax pair methods [15] and their quantum counterpart (quantum inverse

scattering method [10, 16]).

The special attention reserved in this thesis to field theories with conformal sym-

metry is due to the wide interest that they attracted in theoretical physics, rang-

ing from critical phenomena to quantum gravity. For the sake of exact-solvability

and integrability, conformal field theories [17] provide an amazing environment for

developing toy models. Indeed, tight constraints imposed by conformal symmetry

allow for significant simplification of correlation functions. For instance, the com-

putation of two-point correlators is reduced to finding the spectrum of a quantum

operator (Dilation), while three-point functions are fixed by symmetry up to a con-

stant. Moreover, computations of Feynman diagrams of the perturbative series for

conformal correlators are greatly helped by the simple power-law behavior of the

propagators.

The thesis is divided into two parts, reflecting the two research areas approached

during the doctoral period. Below we outline the content of the thesis and explain

our main achievements.

The first part of this thesis deals with the study of integrable models of many par-

ticles which mutually interact in one spatial dimension. In particular, we study the

relativistic Calogero-Moser models, also known as Ruijsenaars-Schneider models [18].

The first representative of the class of Calogero-Moser integrable dynamical systems

was studied by F. Calogero in 1969 for N = 3 particles [11], and its Hamiltonian for
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generic N reads

HCM(q, p) =
N∑
i=1

p2
i +

∑
i 6=j

γ

(qi − qj)2
. (1.0.1)

Further on, several deformation of the Calogero-Moser model were introduced and

shown to be integrable and solvable; among these we must mention the deforma-

tion of the rational potential 1/(qi − qj)
2 to a trigonometric/hyperbolic or elliptic

function [12]. Doing so, one gives rise to a hierarchy of integrable models where the

elliptic one stands at the top and the other models can be obtained by sending to

infinity the fundamental periods of the torus on which the elliptic model is defined.

The models of Calogero-Moser hierarchy have been well studied together with their

quantum versions, and have found applications to several problems in theoretical

physics, ranging from the low-energy spectrum of super-symmetric gauge theories

[19] to recent advancements in conformal field theory [20]. Analogues features hold

for the Ruijsenaars-Schneider (RS) models [18, 21]; they form a hierarchy of inte-

grable models, each of them being the relativistic counterpart of a corresponding

model in the Caloger-Moser hierarchy. In this thesis we deal with the hyperbolic

RS model in the perspective of reduction techniques, according to which we aim at

obtaining a non-trivial integrable model starting from a highly symmetric dynamical

system with more degrees of freedom and a simple evolution rule.

In the chapter “Symmetry and reduction” (1) we briefly present the reduction

procedure by the Poisson action of a Poisson-Lie group [22] on the phase space of

a dynamical system, introducing the definitions of momentum map and the Dirac’s

classification of constraints. Furthermore we provide details on a particular symplec-

tic manifold, the Heisenberg double of a Poisson-Lie group, which is the natural start-

ing point for the reduction of Ruijsenaars-Schneider hyperbolic models performed in

the successive chapters of part I.

In the second chapter (2) we give an explicit realization of the reduction for the

hyperbolic model of the RS hierarchy, starting from a trivial dynamics defined on

the Heisenberg double of the Poisson-Lie group GL(N,C). We present an original

result about the quantum model consisting in a remarkably simple conjecture, based

on a guess over reduction procedure, for the quantum traces of powers of the Lax

matrix tr(Lk), a complete family of integrals of motion. These quantities generate the

center of the semi-dynamical reflection equation (see [23]) which defines the algebra

of quantum Lax operators. Furthermore we provide details about the affine quantum

model obtained by introduction of a spectral parameter.

The third and last chapter (3) of the first part deals with the higher-rank real-

ization of the RS hyperbolic model. This dynamical system, better known after the

name of “spin Ruijsenars-Schneider model” has been first formulated by I. Krichever

and A. Zabrodin [24], by stating its equation of motion but without providing its

Poisson structure. Here we present as an original result a Poisson structure for the

spin model. This has been obtained by means of a Poisson reduction of a phase
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space consisting of the Heisenberg double of GL(N,C) enlarged with the degrees of

freedom of higher-rank twisted harmonic oscillators. We provide the explicit solution

to the equations of motion and explain its features of degenerate integrability [25].

The second part of the thesis deals with quantum conformal field theory (CFT)

and with integrability methods applied to field theoretical computations. In the past

two decades there has been an exceptionally fruitful interest in integrability tech-

niques for the computations of correlation functions in the context of the AdS/CFT

correspondence [26]. In particular the most advanced results have been obtained in

the super-symmetric and conformal N = 4 SYM theory [13, 27], which is the natural

background of the second part of this thesis. All the scientific content we present –

apart from statements and formulas with an explicit reference to the literature – are

original contributions contained in the papers [28–31].

The first chapter (1) introduces a special strong deformation limit for the N = 4

SYM theory (double-scaling limit), which leads to the loss of gauge symmetry and

super-symmetry but – at the same time – preserves the conformality of the resulting

theory, which in addition enjoys a much simpler field content (three complex scalars

and three fermions). This limiting procedure, firstly proposed by V. Kazakov and

O. Gurdogan in [32], provides an amazing toy model to explore the properties of

CFTs in space-time dimensions higher than d = 2 and their relation to integrable

spin chains with conformal symmetry SO(1, d + 1). It is worth mentioning that all

the features of such field theories are always discussed within the planar limit. In this

context the integrability methods appear as a tool for computing exact correlators, by

mapping the conformal Feynman integrals to the Hamiltonian of an integrable spin

magnet. This chapter presents the general properties of the doubly-scaled theory,

basing the discussion on the fact that its Feynman diagrams present a simple and

regular topology.

The second chapter (2) presents the definition of the bi-scalar fishnet theory (or

simply “fishnet theory”), a reduction of the double-scaling limit of N = 4 SYM with

only two scalar fields. We generalize the fishnet theory to any space-time dimension

and by an “anisotropic” deformation consisting in different scaling dimensions for the

two scalar fields. Tuning the space-time dimension d and the deformation parameter

ω, one can regard fishnet theory as an interpolation between other known integrable

models. For example, setting d = 2 and ω → 0 the spin chain of fishnet theory

coincides with that of the BFKL (Balitski-Kuraev-Fadin-Lipatov) model [33] for the

scattering of high-energy gluons in quantum chromodynamics.

In the third chapter (3) we perform for the first time an explicit computation

of a specific class of four-point functions for the fishnet theory in two and four

space-time dimensions. The corresponding Feynman integrals admit a determinant

representation in terms of ladder integrals (computed in 4D by [34]) and we express

the integrals as an expansion over the spectrum of quantum separated variables in

the conformal spin magnet with open boundaries. A remarkable aspect of these
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results is the first-principle check of the bootstrap conjectures of [35].

Finally, the last chapter (4) of this thesis aims at extending the results of [36, 37]

about the CFT data of local operators in fishnet theory, to the entire double-scaling

limit of N = 4 SYM theory, definitely richer in matter content due to the inclusion of

fermionic fields with Yukawa interactions. In addition we show how the integrability

of conformal Feynman diagrams in the spin-chain vacuum sector tr[φL1 ] is described

by the same model of the simpler bi-scalar reduction. Finally, we point out the pres-

ence of logarithmic multiplets in the mixing of local operators, previously noticed

for the bi-scalar theory [38, 39], which arise as a consequence of non-hermitian in-

teractions. These results consist in drawing a first step back towards the original -

undeformed - N = 4 SYM theory.

In the end of this thesis we give an appendix containing technical computations

that are required to justify some statements in the main text. An exhaustive bibli-

ography can be consulted at the end of this thesis, collecting references from both

the two parts.



Part I

Geometry of the integrable

multi-body systems
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Chapter 1

Symmetry and reduction

1.1 Introduction

In this chapter we present through some definitions and examples the basic idea

that the Poisson-Lie symmetry of a dynamical system may be exploited to obtain

an integrable model by a reduction of the degrees of freedom. This basic idea will

be applied in the subsequent chapters to models of point-like interacting particles in

one spatial dimension going under the general name of Calogero-Moser systems and

their various deformations.

In order to introduce the basic notions, let us consider a dynamical systems with

N degrees of freedom. The configurations of N particles at a certain time can be

described by N real numbers qi = (q1, . . . , qN) which constitute a point of an N -

dimensional (real) manifold M . The phase space of the system is the cotangent

bundle T ∗M over M , that is the vector bundle of 1-forms on M . The dimension of

the cotangent bundle is then 2N and one can introduce a system of local coordinates

(pi, q
i), where pi are coordinates on fibers. In other words, the 1-form on M defined

by a point (pi, q
i) of the cotangent bundle α(pi, q

i) = pidq
i can be regarded as a 1-

form (canonical) on T ∗M . As a consequence it is always possible to associate to such

a dynamical system a closed (exact) form ω = dα which is indeed non-degenerate:

ω = dα = dpi ∧ dqi . (1.1.1)

The coordinates on M describe the degrees of freedom and are called positions {qi},
while the coordinates on the fiber are the momenta {pi}. In general, the state of

a dynamical system with N degrees of freedom is described by a point on a 2N -

dimensional symplectic manifold P.

A Hamiltonian dynamical system is characterized by the existence of a function of

the phase space H = H(q, p) such that the given differential equations for the time

evolution of an observable f = f(q, p) can be expressed via the following Poisson

bracket
d

dt
f(q, p) = {H, f}(q, p) = Jij(q, p) ∂

iH(q, p) ∂jf(q, p) , (1.1.2)

where the Poisson tensor J is a 2N×2N matrix given by the inverse of the symplectic

form: J = ω−1.

– 14 –
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A Hamiltonian symmetry is a canonical transformation which leaves the Hamil-

tonian H invariant

(q, p) → (Q(q, p), P (q, p)) , H(Q(q, p), P (q, p)) = H(q, p) . (1.1.3)

As such it is a diffeomorphism of the phase space that transforms solutions of the

equations of motion into solutions1. A consequence of a Hamiltonian symmetry is

the existence of conserved quantities - the generators of the infinitesimal symmetry

transformations, that form (a representation of) the Lie algebra g of the symmetry

Lie group G. In this thesis we will deal with the Poisson-Lie symmetry – the gener-

alization of the Hamiltonian symmetry to the Poisson action of a Poisson-Lie group

G on the phase space P of a dynamical system.

Under suitable additional hypothesis on how the group G acts on the phase space

P, the existence of a symmetry allows to reduce the number of degrees of freedom

of the system by means of the so-called Poisson reduction [40, 41], which leads to

the definition of a new Hamiltonian system (reduced) whose dynamics is usually

more-complicated than the non-reduced one. The reduction consists in eliminating a

number of degrees of freedom by setting the conserved generators of the symmetry to

some constant values, then to factor out some further redundant degrees of freedom

by fixing the residual (gauge) symmetry of the level set of such integrals.

The present chapter will deal with the formulation and application of such tech-

niques. The general task is to obtain from a simple dynamical system with many

symmetries on a symplectic manifold P, a reduced system on a symplectic sub-

manifold Pred whose dynamics is much less trivial and which inherits enough invo-

lutive integrals of motion to satisfy Liouville’s integrability.

1.2 Poisson-Lie groups

In order to explain the Poisson reduction techniques, we need the notion of Poisson-

Lie group [22]. A Lie group G endowed with a Poisson structure, is called a Poisson-

Lie group if the group multiplication G × G → G is a Poisson mapping, where the

space G×G is equipped with the product Poisson structure.

Let { , } be a Poisson bracket on G. The Poisson-Lie property requires that, for any

two smooth functions f, h on the group, it holds:

{f, h}(g1g2) = {Rg2f,Rg2h}(g1) + {Lg1f, Lg1h}(g2) , (1.2.1)

where Lhf(g) = f(h · g) = Rgf(h). This definition is equivalent to ask that the

Poisson tensor J(g) satisfies the following equation:

J(g1g2) = J(g2) + Adg−1
2
⊗ Adg−1

2
J(g1) , (1.2.2)

1The symmetry of the system can be of more general type, for example discrete symmetries generated by finite

groups. Here we refer to the continuous, smooth case which allows to define a symmetry according to Noether’s

theorem.
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where J(g) = J ij(g) ei ∧ ej ∈ g ∧ g, {ei} are basis elements of the Lie algebra g and

Ad is the adjoint action of the group2. In particular for g2 = e the former equation

implies J(e) = 0, so the Poisson bracket on G degenerates at the group origin and a

Poisson-Lie group can not be a symplectic manifold.

We will consider a class of Poisson-Lie groups whose Poisson tensor J has the

form

J(g) = Adg−1 ⊗ Adg−1r − r , (1.2.3)

where3

r ≡ rij ei ∧ ej ≡ 1
2
rij(ei ⊗ ej − ej ⊗ ei

)
, (1.2.4)

is a constant element of g∧g. The corresponding Poisson bracket, known as Sklyanin

bracket, takes a simple form between the generators of the coordinate ring of the

group

{g1, g2}G = [r, g1g2] , (1.2.5)

for g1 = g ⊗ 1G and g2 = 1G ⊗ g. Such bracket appears often in the theory of

integrable systems and we will encounter it several times in the next three chapters.

In this context a condition on r, resulting from the imposition of the Jacobi identity,

is:

[r12, r13] + [r13, r23] + [r12, r23] = −c2[ei, ej]⊗ ei ⊗ ej , (1.2.6)

where rij is the r-matrix (1.2.4) acting on the i-th and j-th spaces, and c2 ∈ R is

a constant. Equation (1.2.6) is known as modified classical Yang-Baxter equation

(mCYBE). For c = 0 we say that the r-matrix solves the classical Yang-Baxter

equation (CYBE), while the choices =(c) = 0 and <(c) = 0 are called respectively

“split” and “non-split” solutions.

The Poisson-Lie property (1.2.1) implies that the space g∗ of linear functionals

over the Lie algebra g is itself a Lie algebra (dual Lie algebra) whose commutator

is defined by a co-cycle on g induced by the Poisson tensor J(g). Namely, we can

define the co-cycle δ ∈ g ∧ g as

δ(X) =
d

ds
J(e−sX) | , X ∈ g . (1.2.7)

Then, the commutator of the dual Lie algebra is given, for any two elements `, `′ ∈ g∗,

by

〈[`, `′]g∗ , X〉 = 〈`⊗ `′, δ(X)〉 , (1.2.8)

2Let us think in terms of groups of matrices: the adjoint action of the group element h on a matrix M is the

conjugation hMh−1.
3To render J skew-symmetric, it is enough to require that the symmetric part of r = rijei ⊗ ej is Ad-invariant.

Since this symmetric part decouples from J , we can assume from the beginning that r is an element in g ∧ g.
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where X ∈ g and 〈·, ·〉 is the pairing between g and its dual space g∗. We assume

from now on that the r-matrix (1.2.4) is a split solution of the (1.2.6), with c2 = 1.

Then, we can define a linear operator r : g∗ → g as

` ∈ g∗ 7→ r(`) = rij〈`, ei〉ej , (1.2.9)

and the commutator in the dual Lie algebra, for a Poisson-Lie group with Sklyanin

bracket (1.2.5), is realized as

〈[`, `′]g∗ , X〉 = −〈`, [r(`′), X]〉 . (1.2.10)

As a further consequence of the Poisson-Lie property, one might define a connected

Lie group as “exponentiation” of the dual algebra g∗, which we call dual Lie group

G∗. The group multiplication on G∗ can be defined in the embedding G∗ → G×G.

Indeed, one can first define an embedding of g∗ into two copies of g as

` ∈ g∗ 7→ (`+, `−) =
1

2
(r(`) + `, r(`)− `) ∈ (g, g) , (1.2.11)

then considering to “exponentiate” the map to the dual group, that is to associate

to u ∈ G∗ a pair (u+, u−) ∈ G×G such that if u = 1 + s` + O(s2) then (u+, u−) =

(1 + s`+,1 + s`−) + O(s2). According to this decomposition the multiplication law

of G∗ is just the usual matrix multiplication by components

(u+, u−) · (v+, v−) = (u+v+, u−v−) , (1.2.12)

The group G∗ can be embedded into G by a map σ

σ(u+, u−) = u+u
−1
− = u . (1.2.13)

Conversely, assuming σ is a global diffeomorphism G∗ ' G, for a given u ∈ G

an element (u+, u−) is defined as a unique solution of the factorization problem u =

u+u
−1
− . We remark that according to (1.2.12) the inverse of u is σ(u−1

+ , u−1
− ) = u−1

+ u−,

that is not the matrix inverse of u. In general, the multiplication of two elements in

the embedding is then given by

v ? u = v+u+u
−1
− v

−1
− = v+uv

−1
− . (1.2.14)

The dual group G∗ equipped with the brackets

{u+1, u+2}G∗ = −1
2
[r, u+1u+2] , {u+1, u−2}G∗ = −[r+, u+1u−2] ,

{u−1, u−2}G∗ = −1
2
[r, u−1u−2] , {u−1, u+2}G∗ = −[r−, u−1u+2] ,

(1.2.15)

where r± = r ± C/2 and C = ei ⊗ ei is the split-Casimir of the algebra g, is a

Poisson-Lie group. Further, under the map (1.2.13) the Poisson structure (1.2.15)

induces the following Poisson structure on G

{u1, u2}Ĝ = −1
2
ru1u2 − 1

2
u1u2r + u1r−u2 + u2r+u1 . (1.2.16)
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This structure is Poisson-Lie with respect to the product (1.2.14), i.e.,

{v1 ? u1, v2 ? u2}G∗×Ĝ = {u1, u2}Ĝ(v ? u) ,

where in the right hand side the subscript Ĝ refers to the bracket (1.2.16), while

{ , }G∗×Ĝ in the left hand side refers to the product Poisson structure. In this way

we model the Poisson-Lie group G∗ as the manifold G with the Poisson brackets

(1.2.16) and the composition law (1.2.14). In the context of the Poisson-Lie theory

(1.2.16) and (1.2.15) are known as the Semenov-Tian-Shansky brackets [40].

1.2.1 Momentum map

In this section we summarize the features of a dynamical system which enjoys sym-

metry under the action of a Poisson-Lie group G on the phase space P. Our task is

to explain the procedure of Poisson reduction [40] in the formalism of the momentum

map introduced in [41]. We will require that the action G ×P → P is a Poisson

map between the Poisson manifolds G×P and P:

{fx, hx}G(g) + {fg, hg}P(x) = {f, h}P(g · x) , (1.2.17)

where fx(g) = f(g · x), fg(x) = f(g · x) and the subscripts distinguish the Poisson

bracket on the group and on the phase space. This condition is the requirement of a

“Poisson action”. In the case of the trivial Poisson bracket on G, i.e. {g1, g2}G = 0

this action is called “Hamiltonian” and it takes a simpler form

{fg, hg}P(x) = {f, h}P(g · x) . (1.2.18)

A Poisson action of a Poisson-Lie group G on a symplectic manifold P defines a

map M with values in the dual Lie group G∗

M : P → G∗ , (1.2.19)

which generates the infinitesimal group action on the algebra of functions of the phase

space. Let us call ξX the vector field of the infinitesimal transformation associated

to an element X ∈ g

ξXf(p) =
d

ds
f(e−sX · p) |s=0 (1.2.20)

where e−sX · p ∈P is the result of the action of e−sX ∈ G on the phase space point

p. Then the momentum map M is a generator of the group action in the Poisson

algebra:

ξXf = 〈X, {M, f}P ?M−1〉 . (1.2.21)

Here we emphasize that {M, f}P andM−1 in the right hand side of the last formula

are multiplied by using the composition law of G∗, in the embedding G∗ ↪→ G.
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The momentum map M satisfies some properties. First, it is a Poisson map4

between the Poisson manifolds P and G∗, that is

{M∗f,M∗h}P(p) = {f, h}G∗(M(p)) , (1.2.22)

for any two functions f, h on the dual Lie group G∗. For the components of the

momentum map the last formula specifies to

{M1,M2}P(p) = Φij(M(p))eiM(p)⊗ ejM(p) , (1.2.23)

whereM1 =M⊗1G∗ ,M2 = 1G∗⊗M, and Φij is a Poisson tensor on G∗. It follows

that the infinitesimal action of the group G on P is intertwined with an infinitesimal

action on G∗ defined by

ξiM(p) = Φij(p)e
jM(p) . (1.2.24)

Secondly, the map X → ξX is a homomorphism of the Lie algebra g into the algebra

of vector fields on P, that is

[ξX , ξY ] = ξ[X,Y ] . (1.2.25)

This property can be satisfied in accord with (1.2.24) if we impose that the tensor Φ

endows G∗ with the structure of a Poisson-Lie group, so that

Φ(M ?M′) = Φ(M) + AdM ⊗ AdMΦ(M′) , (1.2.26)

for eachM,M′ ∈ G∗, and it coincides with the Poisson-Lie structure defined by the

bracket (1.2.16). In this case, the action of G on P is intertwined with the coadjoint

action of G on the dual Lie group G∗

M(g · p) = Ad∗gM(p) . (1.2.27)

It follows that a Poisson-Lie orbit of G on P is mapped byM into a coadjoint orbit

on G∗.

Now, let’s assume that the Poisson action of the Poisson-Lie group G on the phase

space P is a symmetry of the dynamical system. This means that the Hamiltonian

H is invariant under the symmetry

ξXH = 〈X, {M,H}P ?M−1〉 = 0 , ∀X ∈ g , (1.2.28)

It follows that the components of the matrix M = M(p) are conserved quantities

along the time evolution of the system, i.e. integrals of the motion. In other words

the existence of a Poisson symmetry means that the evolution of the system in the

phase space, occurs on the level set of the generators of the symmetry

S = {p ∈P |M(p) =M(p0)} , (1.2.29)

4Here we are making some assumptions on the group which are verified in the examples of the next chapters. In

general, this condition should be relaxed by asking a more general Poisson structure on G∗ that includes an extension

by central terms [42].
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where we called p0 the initial condition. Thus the dynamical system is subject to

dim g constraints

Mij =Mij(p0) , (1.2.30)

which can be classified into two classes [43]:

• Constraints of the first class correspond to those components of the momentum

mapMα which Poisson commute with all the others on the constrained surface.

So, on the surface S one has that {Mα,Mα′}P = 0, ∀α′.
• Constraints of the second class are all the others. For every point p ∈P which

lies in a neighborhood of the constrained surface S
det(Ψ)(p) 6= 0 , Ψββ′(p) = {Mβ,Mβ′}P(p) , (1.2.31)

and so the matrix Ψ can be inverted in each point of S.

The geometrical meaning of the two classes of constraints coincides with the splitting

of the group action into two components. The momentum map elements associated

to first class constraints generate the component of the group action tangent to the

constrained surface, while the elements of the second class generate the components

of the action in a (skew-)orthogonal direction.

The restriction of the phase space to S does not conclude the reduction proce-

dure as the first class components generate the isotropy subgroup Giso ⊂ G of the

constrained surface. Its action is well defined on S and defines the “gauge” transfor-

mations. Since the observable quantities are invariant under the action of Giso, such

gauge freedom is redundant and generates unphysical degrees of freedom, so it must

be fixed to complete the reduction. The fully reduced phase space Pred = S/Giso

has now real dimension

dim Pred = dim P − dim g− dim giso , (1.2.32)

and can be endowed with a symplectic structure according to [41]5. This statement

completes the procedure of Poisson reduction, and in the following chapters we will

give some explicit examples.

Once the symplectic form is defined, one needs to write explicitly the Poisson

structure on Pred. In the simplified situation in which all the constraints are of the

first class, the restriction of the original Poisson brackets on P to the reduced phase

space Pred is enough. Otherwise, the presence of second class constraints requires

the definition of the Dirac bracket. The latter is defined for any two functions f and

h on a neighborhood of S as

{f, h}D = {f, h} − {f,Mᾱ}Ψ−1
ᾱβ̄
{Mβ̄, h} . (1.2.33)

With respect to the Dirac bracket, any function on the phase space Poisson commutes

with all the second class constraints, i.e.

{f,Mβ}D = {f,Mβ} − {f,Mγ}Ψ−1
γδ {Mδ,Mβ} = {f,Mβ} − {f,Mβ} = 0 ,

5Under some additional hypothesis on the group action discussed in the paper [41].
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thus, in particular, all the constraints are of the first class.

In order to compute the Poisson bracket of two functions f̂ , ĥ on Pred (physical

observables) one needs to take any Giso-invariant extensions f, h without loss of

generality, compute their Dirac bracket in a neighborhood of the reduced phase

space and then restrict the result to Pred

{f̂ , ĥ}Pred
(x) = {f, h}D(x) , x ∈Pred . (1.2.34)

Symplectic reduction In the simplified situation in which the Poisson structure on

G is trivial, that is the dual group G∗ is abelian, we can write M = exp(µ) where

µ ∈ g∗ is called “momentum map” of the Hamiltonian action. In this case the

definition (1.2.21) reduces to

ξXf = 〈X, {µ, f}P〉 , (1.2.35)

so that for each Lie algebra element there is an associated function

fX(p) = 〈X,µ(p)〉 , (1.2.36)

such that ξXh = {fX , h}. It is possible to require that the Hamiltonian functions fX
satisfy the property

f[X,Y ] = {fX , fY }P . (1.2.37)

The last requirement together with the Poisson property for the map µ fixes com-

pletely the Poisson bracket between components of the moment map to be

{µ1, µ2}P = 〈µ, [ei, ej]〉 ei ∧ ej , (1.2.38)

Obviously, (1.2.38) coincides with the Kirillov-Kostant bracket for the coordinates

µi on g∗ amalgamated into

µ = µie
i . (1.2.39)

A straightforward consequence of (1.2.37) is the equivariance of the momentum map,

namely

ξXfY (p) = 〈µ(p), [X, Y ]〉 = 〈−ad∗Xµ(p), Y 〉 , (1.2.40)

and so ξXµ(p) = −ad∗Xµ(p), which can be integrated as

µ(g · p) = Ad∗gµ(p) . (1.2.41)

In simple words, the momentum map intertwines the Hamiltonian action of G on the

symplectic manifold P with the action of G on the dual Lie algebra g∗ (coadjoint

action). The geometric picture for this statement is that an orbit on P is mapped

by µ into an orbit in g∗ (co-adjoint orbit).

According to Marsden and Weinstein [44], if an Hamiltonian action is proper

and free, the restriction of the symplectic form ω of P to Pred defines a symplectic

structure on the reduced manifold, which is then the phase space of the reduced
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dynamical system. The symplectic reduction follows the same line of the Poisson

reduction previously presented. In the Hamiltonian case the constraints are given

by the components of the momentum map µ(p) ∈ g∗, and are classified into first-

class and second-class following Dirac. The definition of the Dirac bracket on the

constrained surface is given by (1.2.33), where M should be substituted by µ.

1.2.2 Heisenberg double

It is known that the relativistic Calogero-Moser model (also known as Ruijsennars-

Schneider model) of N interacting particles in one dimension is an integrable system

and that it can be obtained via a Hamiltonian reduction of a dynamical system

having as phase space the cotangent bundle of the Lie group G = GL(N,C) (see [3]).

Starting from this result, that will be discussed to some detail in the next sections,

we introduce a deformation of the cotangent bundle of a Lie group to a symplectic

manifold going under the name of Heisenberg double of a Poisson-Lie group G. The

reason for studying such deformation is that the Heisenberg double of G = GL(N,C)

is the initial phase space for the Poisson reduction that leads to the N -particles RS

model with hyperbolic potential.

Given a Lie group G such that its Lie algebra g is factorizable6, the Heisenberg

double D+(G) is a symplectic manifold given by the direct product G×G equipped

with the (non-degenerate) Poisson structure among the coordinates (x, y) ∈ G×G:

{x1, x2} = −
(

1
2
rx1x2 + x1x2

1
2
r
)
,

{y1, y2} = −
(

1
2
ry1y2 + y1y2

1
2
r
)
,

{x1, y2} = −
(
r+x1y2 + x1y2r+

)
,

{y1, x2} = −
(
r−y1x2 + y1x2r−

)
,

(1.2.42)

where the subscript indexes label the corresponding matrix spaces x1 = x ⊗ 1,

x2 = 1⊗ x. The interpretation of D+(G) as a deformation of the cotangent bundle

T ∗G ' G×g requires the introduction of the following factorization, valid for almost

every element7 of D+(G):

(x, y) = (L+,L−)(g−1, g−1) = (L+g
−1,L−g−1) . (1.2.43)

Here (L+,L−) is the representative of an element from G∗ corresponding in the

embeddingG∗ ↪→ G×G, which at the infinitesimal level is given by the decomposition

of the dual Lie algebra element ` into two Lie algebra elements (`+, `−) explained

in (1.2.9). Similarly, (g, g) is an image of g ∈ G under the diagonal embedding

G ↪→ G × G. The matrix elements of L± and g give a new system of generators

of the coordinate ring of the double. They are rational functions of x and y with

singularities at those points where factorization (1.2.43) fails. In terms of this new

6This means that there exist a solution r̂ of the CYBE, such that r̂12 + r̂21 defines a non-degenerate ad-invariant

scalar product on g∗. Concretely we will have r̂ = r+ and r̂12 + r̂21 = C12.
7For our treatment D is assumed to be connected and simply connected. We multiply (L+,L−) by the inverse

(g, g)−1 so that to have the standard definition of the right action of G on a manifold which in the present case is D.
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coordinates system, the Poisson structure of the Heisenberg double is given by the

usual brackets of G∗

{L+1,L+2} = −1
2
[r,L+1L+2] , {L+1,L−2} = −[r+,L+1L−2] ,

{L−1,L−2} = −1
2
[r,L−1L−2] , {L−1,L+2} = −[r−,L−1L+2] ,

(1.2.44)

together with the usual Sklyanin brackets for the Poisson-Lie group G

{g1, g2} = [r, g1g2] ,

and the mixed brackets between elements of G and G∗, which make the structure

non-degenerate:

{L+1, g2} = L+1g2r+ , {L−1, g2} = L−1g2r− . (1.2.45)

The subgroup G∗ ⊂ D+(G), as well as G, is a Poisson-Lie subgroup, its Poisson

structure given by (1.2.44). The Poisson-Lie group G acts on G∗ by dressing trans-

formations [40]. Modeling G∗ over G, these transformations take the form of the

adjoint action8

L → hLh−1 , h ∈ G , (1.2.46)

and they are Poisson maps of the Semenov-Tian-Shansky bracket provided the Poisson-

Lie structure on G is given by (1.2.5). The non-abelian moment map of this action

is L. It is well known that the symplectic leaves of (1.2.44) coincide with the orbits

of (1.2.46).

Adjoint action In order to complete the picture for reduction, we consider that the

Poisson-Lie group G acts on its Heisenberg double with a Poisson action. In order

to write it we introduce a new coordinate system on the double which will be widely

used in the next chapters

A = L = L+L−1
− , B = L+gL−1

− . (1.2.47)

In this paragraph we will deal with the following action of the group G on its Heisen-

berg double

(A,B) −→ (hAh−1, hBh−1) . (1.2.48)

This action is Poisson, and its non-abelian momentum map is given by (M+,M−) :

D+(G)→ G∗

M+ = L+L′+ , M− = L−L′− ,

where we used also the primed factorization

(x, y) = (g′, g′)(L−1
+ ,L′−1

− ) = (L+,L−)(g−1, g−1) . (1.2.49)

8This is in fact the coadjoint action of G on G∗.
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The Poisson brackets between the components of the matrices M+ and M− are

inherited form those of the double, and read

{M+1,M+2} = −1
2
[r,M+1M+2] , {M+1,M−2} = −[r+,M+1M−2] ,

{M−1,M−2} = −1
2
[r,M−1M−2] , {M−1,M+2} = −[r−,M−1M+2] .

(1.2.50)

which are the Semenov-Tian-Shanky brackets. Indeed, in the embedding formalism

M∈ G

M =M+(M−)−1 = L+x
−1yL−1

− , (1.2.51)

such brackets take the Semenov-Tian-Shansky form

{M1,M2} = −r+M1M2 −M1M2r− +M1r−M2 +M2r+M1 . (1.2.52)

Taking X ∈ g, one can compute the infinitesimal actions

ξXL = 〈X, {M,L} ?M−1〉 = −[X,L] , (1.2.53)

and

ξXg = 〈X, {M, g} ?M−1〉 = −[Ad∗L−1X, g] , (1.2.54)

which are indeed the infinitesimal forms of (1.2.48).

Relation to the cotangent bundle Having advanced into the structure of the Heisen-

berg double, we can now explain in which sense this phase space can be viewed as a

deformation of the cotangent bundle T ∗G.

The formula L = L+L−1
− gives an embedding G∗ ↪→ G and, alternatively, having

L ∈ G the components L± are found by solving the factorization problem in G

for which we assume a unique solution. The Poisson structure of D+ in terms of

generators (L, g) is then

1

κ
{L1,L2} = −r+L1L2 − L1L2r− + L1r−L2 + L2r+L1 ,

1

κ
{L1, g2} = g2 L+1C12L−1

−1 , (1.2.55)

1

κ
{g1, g2} = −[r, g1g2] .

Since a re-scaling of the Poisson bracket is always possible, we introduced here the

parameter κ ∈ C, which enters the Poisson brackets as a non-trivial deformation

parameter, if we assume that the coordinate functions also exhibit some non-trivial

scaling with κ. Most importantly, a connection to the Poisson structure of the

cotangent bundle arises in the limit κ → 0 provided we assume the following behavior

of L± in this limit

L± = 1 + κ`± + . . . , `± = r±` ,



CHAPTER 1. SYMMETRY AND REDUCTION 25

while g remains unchanged. In this scaling limit

L = 1 + κ`+ . . . , M = 1− κ g(`g−1 − `) + . . . = 1− κµ+ . . . (1.2.56)

and the Poisson structure (1.2.55) turns into

{g1, g2} = 0

{`1, g2} = C12g2

{`1, `2} =
1

2
[C12, `1 − `2] ,

which define the symplectic structure of T ∗G. Thus, formulae (1.2.55) are deformed

counterparts of the Poisson structure of the cotangent bundle (in the left parametriza-

tion).

The idea of constructing integrable many-body systems via symplectic (Hamil-

tonian) reduction goes back to the Kazhdan-Konstant-Steinberg paper [45], where

the Calogero-Moser models with rational and trigonometric potentials have been

obtained from T ∗g and T ∗G, respectively. In the next two chapters we show the

Poisson reduction techniques applied to the Heisenberg double of a Lie group of ma-

trices G = GL(N,C) in order to obtain the Ruijsenaars-Schneider (RS) model with

hyperbolic potential. Once this system is obtained one can take the degenerate limit

to the RS rational model or to the Calogero-Moser hyperbolic model by tuning in a

suitable way the deformation parameters. In particular we will present results about

the quantization of the system and its higher-rank realization (or “spin model”).

It is important to remark here that in the following we will deal with holomor-

phic integrable systems, defined on a complex algebraic manifold P (the phase space)

with an associated non-degenerate closed holomorphic (2, 0)-form ω (the symplectic

form) and an abelian sub-variety of P, Lagrangian with respect to ω. In this context

the complex canonical variables pi and qi are treated as holomorphic (complex) co-

ordinates on P. Such a setup can simplify crucially the reduction techniques, then

once the reduction is performed and an algebraic integrable system is constructed,

one can impose suitable reality conditions, compatible with natural physical require-

ments, such as positivity of the Hamiltonian, etc.





Chapter 2

Quantum Hyperbolic Ruijsenaars-

Schneider model

2.1 Introduction

The Ruijsenaars-Schneider (RS) models [18, 21] continue to provide an outstanding

theoretical laboratory for the study of various aspects of Liouville integrability, both

at the classical and quantum level, see, for instance, [46–50]. Also, new interesting

applications of these models were recently found in conformal field theories [20].

In this chapter we study some aspects related to the quantum integrability of the

RS model with the hyperbolic potential. The definition of quantum integrability re-

lies on the existence of a quantization map which maps a complete involutive family

of classical integrals of motion into a set of commuting operators on a Hilbert space.

In general, there are different ways to choose a functional basis for this involutive

family which is mirrored by the ring structure of the corresponding commuting op-

erators. In particular, a classical integrable structure, most conveniently encoded

into a Lax pair (L,M), produces a set of canonical integrals which are simply the

eigenvalues of the Lax matrix. Their commutativity relies on the existence of the

classical r-matrix [15]. Provided this matrix exists one can build up different classi-

cal involutive families represented, for instance, by elementary symmetric functions

of the eigenvalues of L or, alternatively, by traces TrLk for k ∈ Z. Concerning the

particular class of the RS hyperbolic models, the quantization of a family of elemen-

tary symmetric functions associated to a properly chosen L is well known and given

by the Macdonald operators [21, 51]. In this chapter we conjecture the quantum

analogues of TrLk built up in terms of the same L-operator that is used to generate

Macdonald operators through the determinant type formulae [52, 53]. In fact there

appear two commuting families I±k that are given by the quantum trace formulae

I±k = Tr12

(
Cτ212L1R̄

τ2
21R

τ2
±12L1 . . . L1R̄

τ2
21R

τ2
±12L1

)
,

as quantization of the classical integrals TrLk. In particular, R and R̄ are two quan-

tum dynamical R-matrices that depend rationally on the variables Qi = eqi , where

qi, i = 1, . . . , N are coordinates, and satisfy a system of equations of Yang-Baxter

– 27 –
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type. Also, R is a parametric solution of the standard quantum Yang-Baxter equa-

tion.1 Departing from I±k and introducing q = e−~, we then find that these integrals

are related to the Macdonald operators Sk through the q-deformed analogues of the

determinant formulae that in the classical case relate the coefficients of characteristic

polynomial of L with invariants constructed out of TrLk. The commutativity of I±k
and their relation to Macdonald operators has been checked by explicit computation

for sufficiently large values of N .

We arrive to this expression for I±k through the following chain of arguments.

It is known that the Calogero-Moser models and their RS generalizations can be

obtained at the classical level through the Hamiltonian or Poisson reduction applied

to a system exhibiting free motion on one of the suitably chosen initial finite- or

infinite-dimensional phase spaces [45–47, 54–56]. For instance, the RS model with

the rational potential is obtained by the Hamiltonian reduction of the cotangent

bundle T ∗G = G × g, where G ia Lie group and g is its Lie algebra. In [57] the

corresponding reduction was developed for the Lie group G = GL(N,C) by employ-

ing a special parametrization for the Lie algebra-valued element ` = TQT−1 ∈ g,

where Q is a diagonal matrix and T is an element of the Frobenius group F ⊂ G.

An analogous parametrization is used for the group element g = UP−1T−1 ∈ G,

where U is Frobenius and P is diagonal. If one writes Qi = qi and Pi = exp pi, then

(pi, qi) is a system of canonical variables with the Poisson bracket {pi, qj} = δij. In

the new variables the Poisson structure of the cotangent bundle is then described

in terms of the triangular dynamical matrix r satisfying the classical Yang-Baxter

equation (CYBE) and of another matrix r̄. The cotangent bundle is easily quan-

tized, in particular, the algebra of quantum T -generators is T1T2 = T2T1R12 and

its consistency is guaranteed by the fact that the matrix R, being a quantization of

r, is triangular, R12R21 = 1, and obeys the quantum Yang-Baxter equation. The

quantum L-operator is then introduced as L = T−1gT and it is an invariant under

the action of F . In [57] the same formula for Ik as given above2 was derived by

eliminating from the commuting operators Trgk = TrTLkT−1 the element T .

To build up the hyperbolic RS model, one can start from the Heisenberg double

associated to a Lie group G. As a manifold, the Heisenberg double is G × G and

it has a well-defined Poisson structure being a deformation of the one on T ∗G [40].

However, an attempt to repeat the same steps of the reduction procedure meets

an obstacle: since the action of G on the Heisenberg double is Poisson, rather than

Hamiltonian, the Poisson bracket of two Frobenius invariants, {L1, L2}, is not closed,

i.e. it is not expressed via L’s alone. Moreover, for the same reason, the Poisson

bracket {pi, pj} does not vanish on the Heisenberg double. On the other hand, a

part of the non-abelian moment map generates second class constraints and to find

the Poisson structure on the reduced manifold one has to resort to the Dirac bracket
1For the definition of other quantities, see the main text.
2In the rational case there is only one family, R±12 → R12.
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construction.3 In this chapter we work out the Dirac brackets for Frobenius invariants

and show in detail how the cancellation of the non-invariant terms happens on the

constraint surface. This leads to the canonical set of brackets for the degrees of

freedom (pi, qi) on the reduced manifold, the physical phase space of the RS model.

However, continuing along the same path as in the rational case [57] does not seem

to yield {T, L} and {T, T} brackets. The variable T is not invariant with respect to

the stability subgroup of the moment map and computation of such brackets requires

fixing a gauge, which makes the whole approach rather obscure. Moreover, the very

simple and elegant bracket {L1, L2} emerging on the reduced phase space looks the

same as in the rational case, with one exception: now the r-matrix r12 entering this

bracket is not skew-symmetric, i.e. r12 6= r21. We then find a quantization of r12:

a simple quantum R-matrix R+ satisfying R+12R−21 = 1, where R−12 is another

solution of the quantum Yang-Baxter equation. In the absence of the triangular

property for R+12, assuming, for instance, the same algebra for T ’s as in the rational

case - that is T1T2 = T2T1R+12 - would be inconsistent. Thus, at this point we simply

conjecture that the integrals of the hyperbolic model have absolutely the same form

as in the rational case, with the exception that the rational R-matrices are replaced

by their hyperbolic analogues, which we explicitly find. That this conjecture yields

integrals of motion can then be verified by tedious but direct computation and indeed

holds true. Working out explicit expressions for these integrals for small numbers N

of particles we find the determinant formulae relating these integrals to the standard

basis of Macdonald operators. The rest of the chapter is devoted to the model

whose formulation includes the spectral parameter. Neither for the rational nor for

the hyperbolic case the spectral parameter is actually needed to demonstrate their

Liouville integrability, but its introduction leads to interesting algebraic structures

and clarifies the origin of the shifted Yang-Baxter equation [58] and its scale-violating

solutions.

The chapter is organized as follows. In the next section we show how to obtain

the hyperbolic RS model by the Poisson reduction of the Heisenberg double. This

includes the derivation of the Poisson algebra of the Lax matrix via the Dirac bracket

construction. We also introduce the spectral parameter and build up the theory

based on spectral parameter-dependent (baxterized) r-matrices. We also describe

a freedom in the definition of r-matrices that does not change the Poisson algebra

of L’s. In section 2.3 we consider the corresponding quantum theory. Finding the

hyperbolic quantum R-matrices R± and R̄, we conjecture our main formula for the

quantum integrals I±k and explain how it is related to the basis of the Macdonald

operators. The rest of the section is devoted to the quantum baxterized R-matrices

and the quantum L-operator algebra. We show that in spite of the fact that the

constant R-matrices satisfy the usual system of quantum Yang-Baxter equations,

their baxterized counterparts instead obey its modification that involves rescalings

3In [58] this problem was avoided by looking at those entries of L only that commute with the second class

constraints.
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of the spectral parameter with the quantum deformation parameter q = e−~. Some

technical details are relegated to two appendices. All considerations are done in the

context of holomorphic integrable systems.

2.2 The classical model from reduction

2.2.1 Moment map and Lax matrix

We start with recalling the construction of the classical Heisenberg double associated

to the group G = GL(N,C). Let the entries of matrices A,B ∈ G generate the

coordinate ring of the algebra of functions on the Heisenberg double. The Heisenberg

double is a Poisson manifold with the following Poisson brackets

{A1, A2} = κ (−r−A1A2 − A1A2 r+ + A1 r−A2 + A2 r+A1) ,

{A1, B2} = κ (−r−A1B2 − A1B2 r− + A1 r−B2 +B2 r+A1) ,

{B1, A2} = κ (−r+ B1A2 −B1A2 r+ +B1 r−A2 + A2 r+B1) ,

{B1, B2} = κ (−r−B1B2 −B1B2 r+ +B1 r−B2 +B2 r+B1) ,

(2.2.1)

where the parameter κ in this chapter will be set to be one. Here and elsewhere

in the chapter we use the standard notation where the indexes 1 and 2 denote the

different matrix spaces. The matrix quantities r± are the following r-matrices

r+ = +
1

2

N∑
i=1

Eii ⊗ Eii +
N∑
i<j

Eij ⊗ Eji ,

r− = −1

2

N∑
i=1

Eii ⊗ Eii −
N∑
i>j

Eij ⊗ Eji ,
(2.2.2)

In the following we also need the split Casimir

C =
N∑

i,j=1

Eij ⊗ Eji , (2.2.3)

whose action on the tensor product CN ⊗ CN is a permutation. In these formulae

Eij stand for the standard matrix units. The r-matrices (2.2.2) satisfy the classical

Yang-Baxter equation (CYBE) and have the following properties: r+ − r− = C and

r±21 = −r∓12. Moreover the matrix r = 1
2
(r++r−), is a skew-symmetric split solution

to the modified classical Yang-Baxter equation.

The variables (A,B) can be interpreted as a pair of monodromies of a flat connec-

tion on a punctured torus around its two fundamental cycles [59]. The monodromies

are not gauge invariants as they undergo an adjoint action of the group of residual

gauge transformations which coincides with G

A→ hAh−1 , B → hBh−1 . (2.2.4)
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If G is a Poisson-Lie group with the Sklyanin bracket

{h1, h2} = −κ[r±, h1h2] , (2.2.5)

then the transformations (2.2.4) are the Poisson maps for the structure (2.2.1). The

non-abelian moment map M of this action is given by

M = BA−1B−1A (2.2.6)

and it generates the following infinitesimal transformations of (A,B)

{M1, A2} = −(r+M1 −M1r−)A2 + A2(r+M1 −M1r−) ,

{M1, B2} = −(r+M1 −M1r−)B2 +B2(r+M1 −M1r−) .
(2.2.7)

The Poisson algebra between the entries ofM is given by the Semenov-Tian-Shansky

bracket

1

κ
{M1,M2} = −r+M1M2 −M1M2r− +M1r−M2 +M2r+M1 . (2.2.8)

In the rest of this chapter we will set κ to one.

The Poisson algebra (2.2.1) has two obvious involutive subalgebras – one is gen-

erated by TrAk and the other by TrBk, where k ∈ Z. There is yet another involutive

family which will play an essential role the next chapter, namely,

Hk = Tr(BA−1)k = Tr(A−1B)k , k ∈ Z . (2.2.9)

The fact that {Hk, Hm} = 0 for any k,m ∈ Z can be verified by direct computation.

A deeper observation is that the map

A→ A , B → BA−1 , (2.2.10)

is a canonical transformation, i.e. under this map the Poisson structure (2.2.1) re-

mains invariant. Note that all the involutive families mentioned above are generated

by invariants of the adjoint action (2.2.4).

To perform the reduction, we fix the moment map to the following value

M = exp(γn) , (2.2.11)

where n is the Lie algebra element

n = e⊗ eτ − 1 , (2.2.12)

where e is an N -dimensional vector with all its entries equal to unity, eτ = (1, . . . , 1),

and γ is a formal parameter which will be eventually interpreted as the coupling

constant. Fixing this value of the moment map is motivated a posteriori by the fact

that the dynamical model arising on the reduced space will have a close connection

to the RS model we are after.
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We are thus led to find all A,B that solve the following matrix equation

BA−1B−1A = e−γ1− e−γ 1− eNγ
N

e⊗ eτ , (2.2.13)

where on the right-hand side we worked out the explicit form of the exponential

exp(γn). In the following we adopt the concise notation

θ = e−γ , β = −e−γ 1− eNγ
N

= − θ

N
(1− θ−N) . (2.2.14)

To solve (2.2.13), we introduce a convenient representation for A and B:

A = TQT−1 , (2.2.15)

B = UP−1T−1 . (2.2.16)

Here Q and P are two diagonal matrices and T, U ∈ G are two Frobenius matrices,

i.e. they satisfy the Frobenius condition

Te = e , Ue = e (2.2.17)

and, therefore, belong to the Frobenius subgroup F of G.

Introducing W = T−1U ∈ F , equation (2.2.13) takes the form

Q−1W−1QW = θ1 + βe⊗ eτU , (2.2.18)

where we used the fact that U ∈ F . Furthermore, we write

Q−1W−1Q − θW−1 = βe⊗ eτUW−1 = βe⊗ eτT .

This equation can be elementary solved for W−1 and we get

W−1 =
N∑

i,j=1

β

Q−1
i − θQ−1

j

cj
Qj

Eij , (2.2.19)

where we introduced cj = (eτT )j. The condition W−1 ∈ F gives a set of equations

to determine the coefficients cj:

N∑
j=1

Vij
cj
Qj

= 1 , ∀i .

Here V is a Cauchy matrix with entries

Vij =
β

Q−1
i − θQ−1

j

.

We apply the inverse of V

V −1
ij =

1

β(Q−1
i − θ−1Q−1

j )

N∏
a=1

(θQ−1
i −Q−1

a )

N∏
a6=i

(Q−1
i −Q−1

a )

N∏
a=1

(θ−1Q−1
j −Q−1

a )

N∏
a6=j

(Q−1
j −Q−1

a )

,
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to obtain the following formula for the coefficients cj

cj = Qj

N∑
j=1

V −1
ij = N

1− θ
1− θN

N∏
a6=j

Qj − θQa

Qj −Qa

. (2.2.20)

Finally, inverting W−1 we find W itself

Wij(Q) =
Qi

ci
(V −1)ij =

N∏
a6=i

(Q−1
j − θQ−1

a )

N∏
a6=j

(Q−1
j −Q−1

a )

. (2.2.21)

It is obvious, that eq.(2.2.13) becomes equivalent to the following two constraints

U = TW (Q) , eτT = cτ , (2.2.22)

where T, U ∈ F , and the quantities W (Q), c(Q) are given by (2.2.21) and (2.2.20),

respectively. Any solution of eτT = cτ can be constructed as T = hT0, where T0

is a particular solution of this equation and h is a Frobenius group element which

satisfies the additional constraint eτh = eτ. In fact, the subgroup of z ⊂ F ⊂ G

determined by the conditions

z = {h ∈ G : he = e, eτh = eτ} , (2.2.23)

constitutes the stability group4 of the moment map determined by the element n.

Note that dimC F = N2 −N and dimC z = (N − 1)2.

Now we can define a family of G-invariant dynamical systems5 taking the com-

bination L = W (Q)P−1 as their Lax matrix. Explicitly,

L =
n∑

i,j=1

(1− θ)Qi

Qi − θQj

N∏
a6=j

θQj −Qa

Qj −Qa

P−1
j Eij . (2.2.24)

After specifying the proper reality conditions, this L becomes nothing else but the

Lax matrix of the RS family with the hyperbolic potential. Note that on the con-

strained surface the A,B-variables take the following form

A(P,Q, h) = hT0QT
−1
0 h−1 , B(P,Q, h) = hT0LT

−1
0 h−1 , h ∈ z.

The reduced phase space can be singled out by fixing the gauge to, for instance,

h = 1. Its dimension over C is 2N2 − (N2 − 1)− dimC z = 2N .

4We do not include in z the one dimensional dilatation subgroup C∗ ' {h ∈ G : h = c1, c 6= 0}, because its

action on the phase space is not faithful.
5The systems whose Hamiltonians are invariant under the action of G.
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2.2.2 Poisson structure on the reduced phase space

Now we turn to the analysis of the Poisson structure of the reduced phase space. We

find from (2.2.1) the following formula

{Qj, B} = B
∑
kl

TljQjT
−1
jk Elk . (2.2.25)

Next, we need to determine the bracket between Qj and Pi. We have

{Qj, Pi} =
δPi
δAmn

{Qj, Amn}+
δPi
δBmn

{Qj, Bmn} .

Here the first bracket on the right-hand side vanishes because all Qj commute with

A.6 To compute the second bracket, we consider the variation of B = UP−1T−1

U−1δB TP = U−1δU − P−1δP .

Note that this formula does not include the variation δT . This is because T is solely

determined by A, so so is its variation. The condition δUe = 0 allows one to find

δPi
δBmn

= −
∑
r

PiU
−1
im (TP )nr .

We thus have

{Qj, Pi} = −
∑
r

PiU
−1
im (TP )nr(BT )mjQjT

−1
jn = −QiPiδij , (2.2.26)

and similarly one can check the bracket {Qi,Qj} = 0. These formulae suggests to

employ the exponential parametrisation for both P and Q, that is, to set

Pi = exp pi , Qi = exp qi ,

where (pi, qi) satisfy the canonical relations {pi, qj} = δij.

An z-invariant extension of the Lax matrix away from the reduced phase space

is naturally given by the following Frobenius invariant

L = T−1BT , (2.2.27)

where T is an element of the Frobenius group entering the factorization (2.2.15).

The Poisson bracket of Qj with components of L is computed in a straightforward

manner

{Qj, Lmn} = {Qj, (T
−1BT )mn} =

∑
p

(T−1B)mp
∑
kl

TljQjT
−1
jk (Elk)psTsn = LmnQnδjn ,

6The spectral invariants of A are central in the Poisson subalgebra of A, the latter is described by the Semenov-

Tian-Shansky bracket [40] given by the first line in (2.2.1).
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which is perfectly compatible with the form (2.2.24) of the Lax matrix on the reduced

space. In matrix form the previous formula reads as

{Q1, L2} = Q1L2C12 , C̄12 =
N∑
j=1

Ejj ⊗ Ejj . (2.2.28)

As to the brackets between the entries of L, this time they cannot be represented

in terms of L alone but also involve T . Ultimately, such a structure is a consequence

of the fact that the action of the Poisson-Lie group G on the phase space is Poisson

rather than Hamiltonian, so that there is an obstruction for the Poisson bracket of

two Frobenius invariants to also be such an invariant. In addition, computing the

Dirac brackets of L one cannot neglect a non-trivial contribution from the second

class constraints and, therefore, the analysis of the Poisson structure for L requires, as

an intermediate step, to understand the nature of the constraints (2.2.13) imposed in

the process of reduction. The same argument holds for the Poisson brackets between

any of the Frobenius invariants W = T−1U and P , showing as a particular case

that Pi’s have a non-vanishing Poisson algebra on the Heisenberg double7. We save

the details of the corresponding analysis for appendix A.2 and present here the final

result for the Poisson bracket between the entries of the Lax matrix on the reduced

phase space

{L1, L2} = r12L1L2 − L1L2r12 + L1r̄21L2 − L2r̄12L1 . (2.2.29)

Clearly, the bracket (2.2.29) has the same form as the corresponding bracket for the

rational RS model [57] albeit with new dynamical r-matrices for which we got the

following explicit expressions 8

r =
N∑
i 6=j

(Qj

Qij

Eii −
Qi

Qij

Eij

)
⊗ (Ejj − Eji) ,

r̄ =
N∑
i 6=j

Qi

Qij

(Eii − Eij)⊗ Ejj ,

r =
N∑
i 6=j

Qi

Qij

(Eij ⊗ Eji − Eii ⊗ Ejj) ,

(2.2.30)

where we introduced the notation Qij = Qi−Qj. This structure can be obtained as

well after the computation of the Dirac brackets of W and P on the reduced phase

space

{W1,W2} = [r12,W1W2] (2.2.31)

7At the level of quantization, this fact prevents one from obtaining the quantum RS model starting from the

algebra of the quantum Heisenberg double. Indeed, doing so one should later restore the canonical commutation

relations of (P,Q) sub-algebra by imposing an analogue of the Dirac constraints at the quantum level.
8The quadratic and linear forms of the r-matrix structure for the RS model have been investigated in [60–64].



CHAPTER 2. QUANTUM HYPERBOLIC RUIJSENAARS-SCHNEIDER MODEL 36

{W1, P2} = [r̄12,W1]P2 (2.2.32)

{P1, P2} = 0 , (2.2.33)

using the decomposition L = WP−1. Remarkably the imposition of Dirac constraints

makes the Poisson subalgebra {Pi} abelian, allowing the interpretation of components

pi = logPi as particle momenta. Concerning the properties of the matrices (2.2.30)

and the Lax matrix, we note the following: first, r is expressed via r and r̄ as

r12 = r12 + r̄21 − r̄12 . (2.2.34)

Second, the matrix r is degenerate, det r = 0, and it obeys the characteristic equation

r2 = −r. Moreover, in contrast to the rational case [57], r is not symmetric, rather

it has the property

r12 + r21 = C12 − 1⊗ 1 . (2.2.35)

Third, it is a matter of straightforward calculation to verify that the Lax matrix

(2.2.24) obeys the Poisson algebra relations (2.2.29), provided the bracket between

the components of Q and P is given by (2.2.26),(2.2.33). Finally, as a consequence

of the Jacobi identities, the matrices (2.2.30) satisfy a system of equations of Yang-

Baxter type. In particular, for r one has just the standard CYBE

[r12, r13] + [r12, r23] + [r13, r23] = 0 . (2.2.36)

In addition, there are two more equations involving r and r̄

[r̄12, r̄13] + {r̄12, p3} − {r̄13, p2} = 0 ,

[r12, r̄13] + [r12, r̄23] + [r̄13, r̄23] + {r12, p3} = 0 .
(2.2.37)

The matrix r satisfies the classical analogue of the Gervais-Neveu-Felder equation

[65, 66]

[r12, r13] + [r12, r23] + [r13, r23] + {r12, p3} − {r13, p2}+ {r23, p1} = 0 . (2.2.38)

It is elementary to verify that the quantities

Ik = TrLk (2.2.39)

are in involution with respect to (2.2.30). This property of Ik is, of course, inherited

from the same property for TrBk on the original phase space (2.2.1). We refer to

(2.2.39) as the classical trace formula.

2.2.3 Introduction of a spectral parameter

Here we introduce a Lax matrix depending on a spectral parameter and discuss

the associated algebraic structures and an alternative way to exhibit commuting

integrals.
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To start with, we point out one important identity satisfied by the Lax matrix

(2.2.24). According to the moment map equation (2.2.18), we have

θQ−1WQ = W
[
1 +

β

θ
e⊗ eτU

]−1

, (2.2.40)

The inverse on the right-hand side of the last expression can be computed with the

help of the well-known Sherman-Morrison formula and we get

θQ−1WQ = W
[
1− 1− θN

N
e⊗ eτU

]
= W − 1− θN

N
e⊗ cτW , (2.2.41)

where we used the fact that W is a Frobenius matrix, so that We = e. Here the

vector c has components (2.2.20) and satisfies the relation eτT = cτ. Multiplying

both sides of (2.2.22) with P−1 we obtain the following identity

θQ−1LQ = L− 1− θN
N

e⊗ cτL , (2.2.42)

for the Lax matrix (2.2.24).

Evidently, we can consider

L′ = θQ−1LQ (2.2.43)

as another Lax matrix since the evolution equation of the latter is of the Lax form

L̇′ = [M ′ , L′] , M ′ = Q−1MQ −Q−1Q̇ , (2.2.44)

where M is defined by the Hamiltonian flow of L. Note that one can add to M ′ any

function of L′ without changing the evolution equation for L′, which defines a class

of equivalent M ′’s. Now, it turns out that due to the special dependence of L on the

momentum, M and M ′ fall in the same equivalence class. To demonstrate this point,

it is enough to consider the simplest Hamiltonian H = Tr L for which the matrix M

is given by

M =
N∑
i 6=j

Qj

Qij

Lij(Eii − Eij) , (2.2.45)

It follows from (2.2.28) that for the flow generated by this Hamiltonian

Q−1Q̇ = Q−1{H,Q} = −
N∑
i=1

LiiEii .

Therefore,

M ′ = Q−1MQ −Q−1Q̇ =
N∑
i 6=j

Qj

Qij

Lij

(
Eii −

Qj

Qi

Eij

)
+

N∑
i=1

LiiEii .
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Taking into account that Qj/(QijQi) = 1/Qij − 1/Qi, we then find

M ′ =
N∑
i 6=j

Qj

Qij

Lij(Eii − Eij) +
N∑
i 6=j

Q−1
i LijQjEij +

N∑
i=1

LiiEii = M + L′ .

Hence, M ′ is in the same equivalence class as M and, therefore, we can take the

dynamical matrix M to be the same for both L and L′.

The above observation motivates us to introduce a Lax matrix depending on a

spectral parameter just as a linear combination of L and L′. Namely, we can define

L(λ) = L− 1

λ
L′ , (2.2.46)

where λ ∈ C is the spectral parameter. The matrix L(λ) has a pole at zero and the

original matrix L is obtained from L(λ) in the limit λ→∞, in particular,

H = lim
λ→∞

TrL(λ) = TrL . (2.2.47)

The evolution equation for L(λ) must, therefore, be of the form

L̇(λ) = {H,L(λ)} = [M,L(λ)] , (2.2.48)

where M is the expression (2.2.45).

The next task is to compute the Poisson brackets between the components of

(2.2.46). We aim at finding a structure similar to (2.2.29), namely,

{L1(λ), L2(µ)} = r12(λ, µ)L1(λ)L2(µ)− L1(λ)L2(µ)r12(λ, µ)

+ L1(λ)r̄21(µ)L2(µ)− L2(µ)r̄12(λ)L1(λ) ,
(2.2.49)

where r(λ, µ), r(λ, µ) and r̄(λ) are some spectral-parameter-dependent r-matrices.

We show how to derive these r-matrices in appendix A.2. Our considerations are

essentially based on the identity (2.2.42). To state the corresponding result, we need

the matrix

σ12 =
N∑
i 6=j

(Eii − Eij)⊗ Ejj . (2.2.50)

The minimal solution9 for the spectral-dependent r-matrices realising the Poisson

algebra (2.2.49) is then found to be

r12(λ, µ) =
λr12 + µr21

λ− µ +
σ12

λ− 1
− σ21

µ− 1
,

r̄12(λ) = r̄12 +
σ12

λ− 1
,

r12(λ, µ) = r12(λ, µ) + r̄21(µ)− r̄12(λ) =
λr12 + µr21

λ− µ .

(2.2.51)

9The explanation of its minimal character will be given later.
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The matrices r and r are skew-symmetric in the sense that

r12(λ, µ) = −r21(µ, λ) , r12(λ, µ) = −r21(µ, λ) . (2.2.52)

Further, one can establish implications of the Jacobi identity satisfied by (2.2.49)

for these r-matrices. Introducing the dilatation operator acting on the spectral pa-

rameter

Dλ = λ
∂

∂λ
,

we find that the r-matrix r(λ, µ) does not satisfy the standard CYBE but rather the

following modification thereof

[r12(λ, µ), r13(λ, τ)] + [r12(λ, µ), r23(µ, τ)] + [r13(λ, τ), r23(µ, τ)] = (2.2.53)

= − (Dλ +Dµ)r12(λ, µ) + (Dλ +Dτ )r13(λ, τ)− (Dτ +Dµ)r23(µ, τ) .

Following [54], we refer to (2.2.53) as the shifted classical Yang-Baxter equation.

This equation can be rewritten in the form of the standard Yang-Baxter equation

[r̂12(λ, µ), r̂13(λ, τ)] + [r̂12(λ, µ), r̂23(µ, τ)] + [r̂13(λ, τ), r̂23(µ, τ)] = 0 .

for the matrix differential operator

r̂(λ, µ) = r(λ, µ)−Dλ +Dµ . (2.2.54)

There are also two more equations involving the matrix r̄

[r12(λ, µ), r̄13(λ) + r̄23(µ)] + [r̄13(λ), r̄23(µ)] + P−1
3 {r12(λ, µ), P3} = (2.2.55)

= −(Dλ +Dµ)r12(λ, µ) + (Dλr̄13(λ)−Dµr̄23(µ))

and

[r̄12(λ), r̄13(λ)] + P−1
3 {r̄12(λ), P3} − P−1

2 {r̄13(λ), P2} =

= −Dλ(r̄12(λ)− r̄13(λ)). (2.2.56)

One can check that relations (2.2.53), (2.2.55) and (2.2.56) guarantee the fulfilment

of the Jacobi identity for the brackets (2.2.28) and (2.2.29). Note that r is scale-

invariant: (Dλ + Dµ)r(λ, µ) = 0, implying that it depends on the ratio λ/µ. This

property does not hold, however, for r and r̄.

The solution we found for the spectral-dependent dynamical r-matrices is minimal

in the sense that there is a freedom to modify these r-matrices without changing the

Poisson bracket (2.2.49). First of all, there is a trivial freedom of shifting r and r as

r12 → r12 + f(λ/µ)1⊗ 1 , r12 → r12 + f(λ/µ)1⊗ 1 , (2.2.57)

where f is an arbitrary function of the ratio of the spectral parameters. This redefi-

nition affects neither the bracket (2.2.29) nor equations (2.2.53), (2.2.55), (2.2.56).
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Second, one can redefine r̄ and r as

r(λ, µ)→ r(λ, µ)− s(λ)⊗ 1 + 1⊗ s(µ)

r̄(λ)→ r̄(λ)− s(λ)⊗ 1 ,
(2.2.58)

where s(λ) is an arbitrary matrix function of the spectral parameter. Owing to the

structure of the bracket (2.2.49) this redefinition of the r-matrices produces no effect

on the latter, as r remains unchanged, while the matrix s decouples from the right-

hand side of the LL bracket (see (2.2.49)). For generic s(λ), redefinition (2.2.58)

affects10, however, equations (2.2.53), (2.2.55), (2.2.56). In particular, there exists

a choice of s(λ) which turns the shifted Yang-Baxter equations for r̄ and r into the

conventional ones, where the derivative terms on the right hand side of (2.2.53),

(2.2.55) and (2.2.56) are absent. One can take, for instance,

s(λ) =
1

N

N∑
i 6=j

Qi

Qij

(Eii − Eij) +
1

λ− 1

1

N

N∑
i 6=j

(Eii − Eij) . (2.2.59)

With the last choice the matrix r̄(λ) becomes

r̄(λ) =
1

λ− 1

∑
i 6=j

λQi −Qj

Qij

(Eii − Eij)⊗
(
Ejj −

1

N
1

)
,

while for r(λ, µ) one finds

r12(λ, µ) =
λrm12 + µrm21

λ− µ +
ρ12

λ− 1
− ρ21

µ− 1
, (2.2.60)

where

ρ12 =
∑
i 6=j

(Eii − Eij)⊗
(
Ejj −

1

N
1

)
and the modified r-matrix is

rm12 =
N∑
i 6=j

(Qj

Qij

Eii −
Qi

Qij

Eij

)
⊗ (Ejj − Eji)

− 1

N

∑
i 6=j

Qi

Qij

(Eii − Eij)⊗ 1 +
1

N

∑
i 6=j

Qi

Qij

1⊗ (Eii − Eij) . (2.2.61)

The modified r-matrix still solves the CYBE and obeys the same relation (2.2.35).

There is no symmetry operating on r-matrices that would allow one to remove

the scale-non-invariant terms from these matrices. Clearly, the r-matrices satisfy-

ing the shifted version of the Yang-Baxter equations have a simpler structure than

their cousins subjected to the standard Yang-Baxter equations. This fact plays an

important role when it comes to quantization of the corresponding model and the

10An example of such a redefinition that does not affect the shifted Yang-Baxter equation corresponds to the choice

s(λ) = f(λ)1, where f is an arbitrary function of λ.
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associated algebraic structures. We also point out that the r-matrices we found here

through considerations in appendix A.2 also follow from the elliptic r-matrices of

[54] upon their hyperbolic degeneration, albeit modulo the shift symmetries (2.2.57)

and (2.2.58).

From (2.2.49) one then finds

{Tr1L1(λ), L2(µ)} = [Tr1L1(λ)(r12(λ, µ) + r̄21(µ)), L2(µ)] ,

which, upon taking the limit λ→∞, yields the Lax equation (2.2.48) with M given

by (2.2.45). The conserved quantities are, therefore, Ik(λ) = TrL(λ)k, k ∈ Z. The

determinant det(L(λ)−ζ1), which generates Ik(λ) in the power series expansion over

the parameter ζ, defines the classical spectral curve

det(L(λ)− ζ1) = 0 , ζ, λ ∈ C . (2.2.62)

2.3 Quantum model

2.3.1 Quantum Heisenberg double

At the classical level we obtained the hyperbolic RS model by means of the Poisson

reduction of the Heisenberg double. It is therefore natural to start with the quantum

analogue of the Heisenberg double. The Poisson algebra (2.2.1) can be straightfor-

wardly quantized in the standard spirit of deformation theory. We thus introduce

an associative unital algebra generated by the entries of matrices A,B modulo the

relations [67]

R−1
− A2R+A1 = A1R−1

− A2R+ ,

R−1
− B2R+A1 = A1R−1

− B2R− ,
R−1

+ A2R+B1 = B1R−1
− A2R+ ,

R−1
− B2R+B1 = B1R−1

− B2R+ ,

(2.3.1)

and they can be regarded as the quantization of the Poisson relations (2.2.1). The

quantum R-matrices here are defined as follows: first, we consider the following

well-known solution of the quantum Yang-Baxter equation

R =
n∑
i 6=j

Eii ⊗ Ejj + e~/2
n∑
i=1

Eii ⊗ Eii + (e~/2 − e−~/2)
n∑
i>j

Eij ⊗ Eji . (2.3.2)

Using this R one can construct two more solutions R± of the quantum Yang-Baxter

equation, namely,

R+12 = R21 , R−12 = R−1
12 . (2.3.3)

These solutions are, therefore, related as

R+21R−12 = 1 , (2.3.4)
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and they also satisfy

R+ −R− = (e~/2 − e−~/2)C , (2.3.5)

where C is the split Casimir. In the limit ~→ 0 the matrices R± expand as

R± = 1 + ~r± +O(~) , (2.3.6)

where r± are the classical r -matrices (2.2.2). Further, we point out that R̂± = CR±
satisfy the Hecke condition

R̂2
± ∓ (e~/2 − e−~/2)R̂± − 1 =

(
R̂± − e±~/21

)(
R̂± + e∓~/21

)
= 0 . (2.3.7)

The first, or alternatively, the last line in (2.3.1) is a set of defining relations for

the corresponding subalgebra that describes a quantization of the Semenov-Tian-

Shansky bracket, the latter has a set of Casimir functions generated by Ck = TrAk.

In the quantum case an analogue TrAk can be defined by means of the quantum

trace formula

Ck = TrqA
k = Tr(DAk) , q = e−~ ,

where D is a diagonal matrix D = diag(q, q2, . . . , qn). The elements Ck are central

in the subalgebra generated by A. Indeed, by successively using the permutation

relations for A, one gets

A2R+A
k
1R−1

+ = R−Ak1R−1
− A2 .

We then multiply both sides of this relation by D1 and take the trace in the first

matrix space

A2Tr1 (D1R+A
k
1R−1

+ ) = Tr1 (D1R−Ak1R−1
− )A2 .

It remains to notice that Tr1 (D1R+A
k
1R−1

+ ) = Tr1 (D1R−Ak1R−1
− ) = TrqA

k · 1, so

that

ATrqA
k = TrqA

k A , (2.3.8)

i.e. TrqA
k is central in the subalgebra generated by A. Analogously, the Ik =

TrqB
k are central in the algebra generated by B and, in particular, the Ik form a

commutative family.

In principle, we can start with (2.3.1) and try to develop a proper parametrization

of the (A,B) generators suitable for reduction. It is an interesting path that should

lead to understanding how to implement the Dirac constraints at the quantum level.

We will find, however, a short cut to the algebra of the quantum L-operator.

2.3.2 Quantum R-matrices and the L-operator

An alternative route to the quantum R-matrices and to the corresponding L-operator

algebra is based on the observation that in the classical theory, the Poisson brackets

between the entries of the Lax matrix have the same structure (2.2.29) for both
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rational and hyperbolic cases. As a consequence, the equations satisfied by the

classical rational and hyperbolic r-matrices are also the same. This should also be

applied to the equations obeyed by the corresponding quantum R-matrices. We thus

assume that the matrices R and R̄ for the hyperbolic RS model satisfy the system

of equations

R12R13R23 = R23R13R12 (2.3.9)

and

R12R̄13R̄23 = R̄23R̄13P3R12P
−1
3 , (2.3.10)

R̄12P2R̄13P
−1
2 = R̄13P3R̄12P

−1
3 . (2.3.11)

and have the standard semi-classical limit where they match the classical r-matrices

(2.2.30). Here and in the following (Qi, Pi) satisfy the quantum algebra

QiQj = QjQi PiPj = PjPi [Pi, Qj] = (e~ − 1)QjPjδij , (2.3.12)

being the standard quantization of the Poisson algebra on the reduced phase space

(2.2.26),(2.2.33). In fact, it is not difficult to guess a proper solution for these R-

matrices based on the analogy with the rational case. For R we can take

R = exp ~r , (2.3.13)

where r is given on the first line of (2.2.30). In the following we adopt the notation

R+ = R. Since the classical r-matrix satisfies the property r2 = −r, the exponential

in (2.3.13) can be easily evaluated and we find

R+ = 1 + (1− q)
N∑
i 6=j

(Qj

Qij

Eii −
Qi

Qij

Eij

)
⊗ (Ejj − Eji) . (2.3.14)

A direct check shows that (2.3.14) is a solution of (2.3.9).

In comparison to the rational model, a new feature is that there exists yet another

solution R− of the Yang-Baxter equation, namely,

R− = 1− (1− q−1)
N∑
i 6=j

(Eii − Eij)⊗
( Qi

Qij

Ejj −
Qj

Qij

Eji

)
. (2.3.15)

These solutions are related as

R+21R−12 = 1 , (2.3.16)

i.e. precisely in the same way as their non-dynamical counterparts, cf. (2.3.4).

Furthermore, the matrices R± satisfy equation

R+ − qR− = (1− q)C . (2.3.17)
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They are also of Hecke type and the matrices R̂± = CR± have the following property(
R̂± − 1

)(
R̂± + q±1

1
)

= 0 . (2.3.18)

Concerning the generalization of equation (2.3.10) to the hyperbolic case, we can

imagine two different versions - one involving R+ and another R−, that is,

R±12R̄13R̄23 = R̄23R̄13P3R±12P
−1
3 , (2.3.19)

It appears that there exists a unique matrix R̄ which satisfies both these equations.

It is given by

R̄ = 1−
N∑
i 6=j

qQi −Qi

qQi −Qj

(Eii − Eij)⊗ Ejj . (2.3.20)

and its inverse is

R̄−1 = 1− (1− q)
N∑
i 6=j

Qi

Qij

(Eii − Eij)⊗ Ejj . (2.3.21)

The matrix (2.3.20) also obeys (2.3.11),

R̄12P2R̄13P
−1
2 = R̄13P3R̄12P

−1
3 . (2.3.22)

Introducing

R12 = R̄−1
12 R12R̄21 , (2.3.23)

we find

R+ = 1 + (1− q)
N∑
i 6=j

Qi

Qij

(Eij ⊗ Eji − Eii ⊗ Ejj) ,

R− = 1− (1− q−1)
N∑
i 6=j

Qj

Qij

(Eij ⊗ Eji − Eii ⊗ Ejj) .
(2.3.24)

These matrices satisfy the Gervais-Neveu-Felder equation

R±12P
−1
2 R±13P2R±23 = P−1

1 R±23P1R±13P
−1
3 R±12P3 . (2.3.25)

and are related to each other as

R+21R−12 = 1 . (2.3.26)

They also have another important property, usually referred to as the zero weight

condition [66],

[P1P2, R±] = 0 . (2.3.27)
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Finally, the quantum L-operator is literally the same as its classical counterpart

(2.2.24), of course with the natural replacement of pi by the corresponding derivative

L =
N∑

i,j=1

Qi − θQi

Qi − θQj

bj>jEij , bj =
N∏
a6=j

θQj −Qa

Qj −Qa

, (2.3.28)

where θ = e−γ and >j is the operator >j = e
−~ ∂

∂qj .11 The operator >i acts on smooth

functions f(Q1, . . . ,QN) as

(>jf)(Q1, . . . ,QN) = f(Q1, . . . , qQj , . . .QN) .

It is a straightforward exercise to check that this L-operator satisfies the algebraic

relations

R+12L2R̄
−1
12 L1 = L1R̄

−1
21 L2R+12 ,

R−12L2R̄
−1
12 L1 = L1R̄

−1
21 L2R−12 .

(2.3.29)

with the R-matrices given by (2.3.14), (2.3.15), (2.3.20) and (2.3.24). The consistency

of these relations follow from (2.3.16) and (2.3.26). One can alternatively derive

equations (2.3.29) by direct quantization of (2.2.31)-(2.2.32), where the classical

matrix is chosen to be r12 or, equivalently, −r21

W1W2R±12 = R±12W2W1 , (2.3.30)

W1R̄12P2 = R̄12P2W1 , (2.3.31)

whose consistency follows from the same R-matrices relations. The algebraic relation

(2.3.30) is also known as the quantum Frobenius group condition [57].

Concerning commuting integrals, the Heisenberg double has a natural commuta-

tive family Ik = TrqB
k. It is not clear, however, how these integrals can be expressed

via L, because we are lacking an analogue of the quantum factorization formula

B = TLT−1, where T and L would be subjected to well-defined algebraic relations.

Instead, what we could do is to conjecture the same formula as was obtained for

quantum integrals in the rational case [57], where now the R-matrices are those of

the hyperbolic model. Interestingly, the existence of two R-matrices, R±, should

give rise to two families of commuting integrals I±k . Borrowing the corresponding

expression from the rational case [57], we conjecture the following quantum trace

formulae

I±k = Tr12

(
Cτ212L1R̄

τ2
21R

τ2
±12L1 . . . L1R̄

τ2
21R

τ2
±12L1

)
, (2.3.32)

as quantization of the classical integrals (2.2.39). In (2.3.32) the number k on the

right-hand side gives a number of L1’s and τ2 stands for the transposition in the

second matrix space. In particular,

Cτ212 =
N∑

i,j=1

Eij ⊗ Eij

11In fact, >j = P−1
j , we use >j to signify that we talk about a particular representation for L.
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is a one-dimensional projector and from (2.3.14), (2.3.15) and (2.3.20) we get

R̄τ221R
τ2
+ 12 =1 + (1− q)

∑
i,j

Qi

Qi − qQj

Eij ⊗ (Eij − Ejj) , (2.3.33)

R̄τ221R
τ2
− 12 =1 + (1− q)

∑
i,j

[ Qj

Qi − qQj

Eij ⊗ (Eij − Ejj) +
1

q
(Eii − Eij)⊗ Ejj

]
.

(2.3.34)

Commutativity of I±k is then verified by tedious but direct computation which we do

not reproduce here, rather our goal is to present a formula which relates I±k with the

commuting family given by Macdonald operators.

We denote by {Sk} a commutative family of Macdonald operators, where

Sk = θ
1
2
k(k−1)

∑
J⊂{1,...,n}
|J |=k

∏
i∈J
j 6∈J

θQi −Qj

Qi −Qj

∏
i∈J

>i . (2.3.35)

The Macdonald operators have the following generating function

: det(L− ζ1) : =
N∑
k=0

(−ζ)N−kSk , S0 = 1 , (2.3.36)

where ζ is a formal parameter, L is the Lax operator (2.3.28). Under the sign : :

of normal ordering the operators pj and qj are considered as commuting and upon

algebraic evaluation of the determinant all >j are brought to the right. In the

classical theory the normal ordering is omitted and the corresponding generating

function yields classical integrals of motion that are nothing else but the spectral

invariants of the Lax matrix.

We found an explicit formula that relates the families {I±k } and Sk. To present

it, we need the notion of a q-number [k]q associated to an integer k

[k]q =
k−1∑
n=0

qn =
1− qk
1− q , (2.3.37)

so that [k]1 = k, which corresponds to the limit ~→ 0. Then Sk is expressed via I+
m

or I−m as

Sk =
1

[k!]q±1

∣∣∣∣∣∣∣∣∣∣∣

I±1 [k − 1]q±1 0 · · · 0

I±2 I±1 [k − 2]q±1 · · · 0
...

... · · · · ...

I±k−1 I±k−2 · · · · [1]q±1

I±k I±k−1 · · · · I±1

∣∣∣∣∣∣∣∣∣∣∣
. (2.3.38)
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These formulae can be inverted to express each integral I±k as the determinant of a

k × k matrix depending on Sj, namely,

I±k =

∣∣∣∣∣∣∣∣∣
S1 1 0 · · · 0

[2]q±1S2 S1 1 0 · · ·
...

... · · · · · · 1

[k]q±1Sk Sk−1 Sk−2 · · · S1

∣∣∣∣∣∣∣∣∣ . (2.3.39)

2.3.3 Spectral parameter and quantum L-operator

The quantum L-operator depending on the spectral parameter is naturally intro-

duced as a normal ordered version of its classical counterpart

L(λ) =
(1− θ)
λ

N∑
i,j=1

λQi − θe−~/2Qj

Qi − θQj

bj>jEij = L− θ e~/2

λ
Q−1LQ , (2.3.40)

where bj are the same as in (2.3.28). This L-operator satisfies the following quadratic

relation

R12(λ, µ)L2(µ)R̄−1
12 (λ)L1(λ) = L1(λ)R̄−1

21 (µ)L2(µ)R12(λ, µ) , (2.3.41)

where

R12(λ, µ) = R̄−1
12 (λ)R12(λ, µ)R̄21(µ) . (2.3.42)

In (2.3.41) the quantum R-matrices are

R(λ, µ) =
λe~/2R+ − µe−~/2R−

λ− µ − e~/2 − e−~/2
e~/2λ− 1

X12 +
e~/2 − e−~/2
e−~/2µ− 1

X21 .

R̄(λ) = R̄− e~ − 1

e~/2λ− 1
X12 .

(2.3.43)

Here R+ and R− are the solutions (2.3.14) and (2.3.15) of the quantum Yang-Baxter

equation, R̄ is (2.3.20) and we have introduced the matrix X ≡ X12,

X =
N∑

i,j=1

Eij ⊗ Ejj . (2.3.44)

This matrix satisfies a number of simple relations with R̄ and R±, which are

R̄X = XR̄ (2.3.45)

and

R−X12 = X12R− , R−X21 −X21R− = (1− q−1)(X12 −X21) ,

R+X21 = X21R+ , R+X12 −X12R+ = −(1− q)(X12 −X21) .
(2.3.46)

We also present the formula for the inverse of R̄(λ)

R̄(λ)−1 = R̄−1 +
e~ − 1

e~/2λ− e~X12 . (2.3.47)
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With the help of this formula and (2.3.43) one can show that (2.3.42) boils down to

R12(λ, µ) =
λe~/2R+ − µe−~/2R−

λ− µ , (2.3.48)

where R± are the same as given by (2.3.24). We note also the relation

R12(λ, µ)R21(µ, λ) = R12(λ, µ)R21(µ, λ) =
(e~/2λ− e−~/2µ)(e−~/2λ− e~/2µ)

(λ− µ)2
1 .

Finally, in addition to (2.3.42) there is one more relation between R(λ, µ) and R(λ, µ),

namely,

R12(λ, µ) = P−1
1 R̄21(µ)P1R12(λ, µ)P−1

2 R̄−1
12 (λ)P2 . (2.3.49)

An interesting observation is that the combination

RYB(λ, µ) =
λe~/2R+ − µe−~/2R−

λ− µ
solves the usual quantum Yang-Baxter equation with the spectral parameter. How-

ever, the full R-matrix in (2.3.43) differs from RYB by the terms that violate scale

invariance. As a result, this matrix obeys the shifted version of the quantum Yang-

Baxter equation, namely,

R12(λ, µ)R13(qλ, qτ)R23(µ, τ) = R23(qµ, qτ)R13(λ, τ)R12(qλ, qµ) . (2.3.50)

In addition, there are two more equations – the one involving both R and R̄, and

the other involving R̄ only,

R12(λ, µ)R̄13(qλ)R̄23(µ) = R̄23(qµ)R̄13(λ)P3R12(qλ, qµ)P−1
3 , (2.3.51)

R̄12(λ)P2R̄13(qλ)P−1
2 = R̄13(λ)P3R̄12(qλ)P−1

3 . (2.3.52)

It is immediately recognisable that equations (2.3.50), (2.3.51) and (2.3.52) are a

quantum analogue (quantization) of the classical equations (2.2.53), (2.2.55) and

(2.2.56), respectively. In the semi-classical expansion

R(λ, µ) = 1 + ~r(λ, µ) + o(~) , R̄(λ) = 1 + ~r(λ) + o(~) (2.3.53)

the matrices (2.3.43) yield

r12(λ, µ) =
λr12 + µr21

λ− µ +
σ12

λ− 1
− σ21

µ− 1

+
(1

2

λ+ µ

λ− µ −
1

λ− 1
+

1

µ− 1

)
1⊗ 1 ,

r̄12(λ) = r̄12 +
σ12

λ− 1
− 1⊗ 1

λ− 1
,
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which is different from the canonical classical r-matrices (2.2.51) by allowed sym-

metry shifts. Thus, (2.3.43) should be regarded as a quantization of the classical

r-matrices satisfying the shifted Yang-Baxter equation. In this respect it is interest-

ing to point out that the corresponding quantization of the r-matrices solving the

usual CYBE remains unknown.

Finally, the algebra (2.3.41) should be completed by the following additional

relations encoding the commutation properties of L with Q

L1Q2 = Q2L1θ12 , Q−1
1 L2 = L2Q−1

1 θ12 , (2.3.54)

where θ12 = 1− (1− q)C̄12.

Now we derive a couple of important consequences of the algebraic relation

(2.3.41). Namely, we establish the quantum Lax representation, similar to the ra-

tional case, and also prove the commutativity of the operators TrL(λ) for different

values of the spectral parameter.

Following considerations of the dynamics in the classical theory, we take H =

lim
λ→∞

TrL(λ) as the Hamiltonian. From (2.3.41) we get

Tr1

[
R21(µ, λ)L1(λ)R̄−1

21 (µ)
]
L2(µ) = L2(µ) Tr1

[
R̄−1

12 (λ)L1(λ)R21(µ, λ)
]
, (2.3.55)

where (2.3.48) was used. A straightforward computation reveals that the traces on

the left and the right-hand side of the last expression are equal and that, for instance,

e~/2Tr1

[
R̄−1

12 (λ)L1(λ)R21(µ, λ)
]

= TrL(λ)1−M(λ, µ) , (2.3.56)

where

M(λ, µ) = (e~ − 1)
λ

λ− µ
µ− e−~/2
λ− e~/2 L(λ)

+
e~ − 1

λ− e~/2
N∑
i 6=j

λe−~Qj − e−~/2Qi

Qi − e−~Qj

Lij(λ)(Eii − Eij) .
(2.3.57)

Thus, equation (2.3.55) turns into

TrL(λ)L(µ)− L(µ)TrL(λ) = [M(λ, µ), L(µ)] . (2.3.58)

From (2.3.57) we, therefore, derive the quantum-mechanical operator M

M = lim
λ→∞

M(λ, µ) = (e~ − 1)
N∑
i 6=j

e−~Qj

Qi − e−~Qj

Lij(Eii − Eij)

= (e~ − 1)
N∑
i 6=j

Lij
Qj

Qij

(Eii − Eij) , (2.3.59)

where in the last expression we commuted the entries of Lij to the left so that

it formally coincides with its classical counterpart (2.2.45). In the limit λ → ∞,
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(2.3.58) becomes the quantum Lax equation. Note that in the derivation of this

equation we did not use any concrete form of L; we only use that it factorises as

L = WP−1, where W is a function of coordinates only.

Taking the trace of (2.3.58), one gets

TrL(λ)TrL(µ)− TrL(µ)TrL(λ) = Tr[M(λ, µ), L(µ)] . (2.3.60)

A priori the trace of the commutator on the right-hand side might not be equal to

zero, because it involves matrices with operator-valued entries. An involved calcula-

tion that uses representation (2.3.40) shows that it nevertheless vanishes12, identically

for λ and µ. Fortunately, there is a simple and transparent way to show the commu-

tativity of traces of the Lax operator, which directly relies on the algebraic relations

(2.3.55), thus bypassing the construction of the quantum Lax pair. Indeed, let us

multiply both sides of (2.3.41) with P−1
2 R̄12(λ)P2R

−1
12 (λ, µ) and take the trace with

respect to both spaces. We get

Tr12

[
P−1

2 R̄12(λ)P2L2(µ)R̄−1
12 (λ)L1(λ)

]
=

Tr12

[
P−1

2 R̄12(λ)P2R
−1
12 (λ, µ)L1(λ)R̄−1

21 (µ)L2(µ)R12(λ, µ)
]
.

From (2.3.49) we have

P−1
2 R̄12(λ)P2R

−1
12 (λ, µ) = R−1

12 (λ, µ)P−1
1 R̄21(µ)P1 ,

so that the right-hand side of the above equation can be transformed as

Tr12

[
P−1

2 R̄12(λ)P2L2(µ)R̄−1
12 (λ)L1(λ)

]
= (2.3.61)

Tr12

[
R−1

12 (λ, µ)P−1
1 R̄21(µ)P1L1(λ)R̄−1

21 (µ)L2(µ)R12(λ, µ)
]
.

Further progress is based on the fact that the matrices R̄12(λ) and R̄−1
12 (λ) are diag-

onal in the second space. We represent it in factorised form

R̄12(λ) =
N∑
j=1

Gj(λ)⊗ Ejj , (2.3.62)

see (2.3.43), (2.3.20) and (2.3.44). Therefore,

P−1
2 R̄12(λ)P2 =

N∑
j=1

P−1
j Gj(λ)Pj ⊗ Ejj . (2.3.63)

Although this expression involves the shift operator, it commutes with any function

of coordinates qj, because when pushed through (2.3.63), this function will undergo

the shifts of qj in opposite directions which compensate each other. Similarly,

R̄−1
12 (λ) =

N∑
j=1

Gj(λ)−1 ⊗ Ejj =
N∑
j=1

(1⊗ Ejj)(Gj(λ)−1 ⊗ 1) .

12For this result to hold, the presence in (2.3.57) of the first term proportional to L(λ) is of crucial importance.
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Consider first the left-hand side of (2.3.61)

Tr12

[ N∑
j=1

N∑
k=1

(P−1
j Gj(λ)Pj ⊗ EjjL(µ)Ekk)(Gk(λ)−1 ⊗ 1)L1(λ)

]
.

Using the cyclic property of the trace in the second space, this expression is equivalent

to

Tr12

[ N∑
j=1

N∑
k=1

(P−1
j Gj(λ)Pj ⊗ L(µ)EjjEkk)(Gk(λ)−1 ⊗ 1)L1(λ)

]
.

Taking into account that L = WP−1 and the commutativity of P−1
j Gj(λ)Pj with

any function of coordinates, we arrive at

Tr12

[ N∑
j=1

(1⊗W (µ))(P−1
j Gj(λ)Pj ⊗ P−1

j Ejj)R̄
−1
12 (λ)L1(λ)

]
= TrL(µ)TrL(λ) .

Now we look at the right-hand side of (2.3.61): using the cyclic property of the trace,

the matrix R12(λ, µ) can be moved to the left where it cancels with its inverse. This

manipulation is allowed because L1(λ) and L2(µ) produce together a factor P−1
1 P−1

2

with which R12(λ, µ) commutes due to the zero weight condition (2.3.27). Also,

the individual entries of R12(λ, µ) are freely moved through P−1
1 R̄21(µ)P1, because

of the diagonal structure of the latter matrix in the first matrix space, analogous

to the similar property of (2.3.63). Then, to eliminate R̄21(µ), one employs the

same procedure as was used for the left-hand side of (2.3.61) and the final result

is TrL(λ)TrL(µ). This proves the commutativity of traces of the Lax matrix for

different values of the spectral parameter.

We finally remark that writing the analogue of (2.3.36) with spectral parameter

dependent Lax operator [52, 53]

: det(L(λ)− ζ1) : =
N∑
k=0

(−ζ)N−kSk(λ) , (2.3.64)

the quantities Sk(λ) are commuting integrals and they are related to Macdonald

operators (2.3.35) by a simple coupling- and spectral parameter-dependent re-scaling

Sk(λ) = λ−k(λ− θk e−~/2)(λ− e−~/2)k−1 Sk . (2.3.65)

2.4 Conclusions

We have discussed the hyperbolic RS model in the context of Poisson reduction of

the Heisenberg double [57]: we derive its Poisson structure and show that only on the

reduced phase space does the Poisson algebra of the Lax matrix close and take a form

very similar to the Lax matrix of the rational RS model [57]. We find a quantization
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of the L-operator algebra governed by new R matrices R±, along with a quantization

of the classical integrals in the form of quantum trace formulae Ik (see (2.3.32)). We

show how these quantum integrals are related to the well-known Macdonald operators

through determinant formulae. Along the way we present a second Lax matrix that

we can use to introduce a spectral parameter in the model. At the classical level this

yields r-matrices that satisfy the shifted Yang-Baxter equation due to scale-violating

terms. We show that this L-operator algebra admits a quantization as well, with

new R matrices satisfying the shifted quantum Yang-Baxter equation.

A particularly interesting observation is that one cannot obtain the quantum L-

operator algebra from the quantum Heisenberg double in the same way as was done

for the quantum cotangent bundle. It would be interesting to pursue the question

whether and how one can impose the Dirac constraints after quantization in order to

reconstruct the quantum L-operator algebra. A first step in that direction could be

finding an analytic proof that the Dirac bracket for L on the reduced phase space is

closed for general N . Another interesting question is to find the relation between our

quantum trace formulae and the commuting traces obtained by the fusion procedure

[23, 68] for the equations (2.3.29). In addition, it would be interesting to extend our

results to the RS models with spin, in particular, to those discussed in [48], as well

as to find an analogue of the formulae (2.3.32) for the model with elliptic potential

or for other series of Lie algebras. Constructing the quantum spin versions of these

models could further aid the understanding of the RS type models that appear in

the study of conformal blocks as in [20].





Chapter 3

Hyperbolic Ruijsenaars-Schneider

model with spins

3.1 Introduction

The Ruijsenaars-Schneider (RS) integrable models [18, 21] continue to deliver rich

mathematical structures that are worth further exploring. One particular aspect

concerns the introduction of spin degrees of freedom. Recall that a spin generalization

of the RS model with the most general elliptic potential was proposed in [24] as a

dynamical system describing the evolution of poles of elliptic solutions of the non-

abelian 2d Toda chain. This is a system of N particles on a line with internal

degrees of freedom represented by two `-dimensional vectors attached to each of the

particles. The proposed spin RS model is given in terms of equations of motion for

the particle coordinates qi, i = 1, . . . , N and the spin variables1 aiα and cαi, where

α = 1, . . . , `. The knowledge of the equations of motion contains but unfortunately

does not immediately yield the Hamiltonian structure behind this dynamical system.

In [69] it was established the underlying Hamiltonian structure for the case of

rational degeneration of the elliptic spin RS model. This was done by relaying

on the observation that goes back to [45] and further developed in [70]-[47] that

the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models can be obtained

by means of the Hamiltonian or Poisson reduction procedure applied to a suitably

chosen initial phase space. In the case of the rational spin RS model the suitable

initial phase space P appears to be the direct product P = T ∗G×Σ, where T ∗G is

the cotangent bundle to a Lie group G with the Lie algebra g and Σ is the symplectic

manifold of N` pairs of canonical variables (oscillators). This phase space is a Poisson

manifold which carries the Hamiltonian action of G. Choosing G = GL(N,C) the

Hamiltonian reduction of P by the action of G yields the desired Poisson structure

of the spin RS model [69]. The Poisson brackets of the invariant spin variables appear

rather involved. Although it was possible to guess a natural generalization of the

Poisson structure for “collective” spin variables fij =
∑

α aiαcαj to the hyperbolic

1We follow the notation of [69].

– 54 –
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spin RS model, the progress of finding the Poisson structure of individual spins in the

hyperbolic case was delayed for years. Quite recently this structure has been found

[48] confirming the conjecture in [69] on the brackets of collective spin variables.

The approach of [48], see also [71, 72], is based on the quasi-Hamiltonian reduction

procedure, where one starts from an initial manifold P supplied with a quasi-Poisson

structure and which carries a free action of a Lie groupG. Although P is not Poisson,

the quotient P/G inherits the well-defined Poisson structure from the quasi-Poisson

structure on P. Picking as P a representation space of a framed Jordan quiver,

it was shown in [48] that the reduction of this by G yields the Poisson structure of

invariant spins that perfectly fits the hyperbolic (trigonometric complex) spin RS

model. The Liouville integrability and superintegrability (degenerate integrability)

of the spin RS model also follow from this approach.

Having established these nice results, one still may wonder if there would exist

a conventional way of getting the spin hyperbolic RS model by the usual Poisson

reduction but applied to a more complicated initial phase space being the next in

the deformation hierarchy after T ∗G×Σ responsible for the rational model. Indeed,

the spinless hyperbolic RS model follows from the Poisson reduction applied to the

Heisenberg double D+(G) of G, as has been recently discussed in [73]. The Poisson

structure of the Heisenberg double [40] is a deformation of the one of T ∗G. From the

point of view of the deformation theory, it is then natural to replace the moment map

on Σ, taking values into the dual Lie algebra g∗, with a non-abelian moment map

defined on a suitable deformation of Σ and which takes values in the dual Poisson-Lie

group G∗. The main question is how to realize the quadratic Poisson structure of

G∗ in terms of N`-pairs of oscillators that should replace those used to represent

the linear Kirillov-Kostant bracket in the rational case. In this chapter we solve this

problem and reconstruct the spin hyperbolic RS model in the standard framework

of the Poisson reduction.

The main tool in our approach is a Poisson pencil of a constant and quadratic

Poisson structures on an oscillator manifold ΣN,` spanned by 2N` dynamical vari-

ables aiα, bαi. When the coefficient κ in front of the quadratic structure vanishes,

one obtains the standard canonical relations of the N` conjugate pairs. In fact

there are two different quadratic structures, to distinguish between them we label

the corresponding Poisson manifolds as Σ±N,`. These Poisson manifolds carry Poisson

actions of two different Poisson-Lie groups – the particle group GL(N,C) and the

spin group GL(`,C), acting by linear transformations on the oscillator indexes i and

α, respectively. Starting from the initial phase space P = D+(G)×Σ±N,` and reduc-

ing this manifold by the action of the particle group, we obtain the spin RS model

with the Poisson structure inherited from that on P. The equations of motion for

the spins are the same regardless of which manifold Σ±N,` we use, and they coincide

with those that follow from the Poisson structure of spins found in [48] through

the quasi-Hamiltonian reduction. The construction of conserved quantities, both

Poisson commutative and non-commutative, is straightforward and follows the same
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pattern as in the rational case. The spin group continues to act on the reduced phase

space as a Poisson-Lie symmetry and its presence explains the superintegrability of

the model. In fact, there are higher symmetries whose generators are polynomial

in the spin variables and which arise from conjunction of the spin symmetries with

abelian symmetries generated by higher commuting charges. We show that the Pois-

son structure of the currents encoding these symmetries is a quadratic deformation

of the linear bracket of the rational model. This quadratic part appears as an affine

version of the Poisson-Lie structure on G∗.

Concluding the brief discussion of our approach, we point out that it would be

interesting to extend it to account for the most general elliptic spin model. Also,

since we are building on the classical r-matrix formalism, the recognition of various

r-matrix structures might help to pave the way for quantizing the spin model which

currently remains another open problem.

The chapter is organized as follows. In section 3.2 we introduce the oscillator

manifold. In section 3.3 we discuss the Poisson action of a Poisson-Lie group on

the product of two manifolds. In section (3.4) we solve the moment map equation

obtaining the Lax matrix of the spin RS model on the reduced phase space. The

Poisson brackets of G-invariant variables are studied in section 3.5 and section 3.6 is

devoted to the discussion of symmetries of the model responsible for its superinte-

grable status. We conclude this section by showing what superintegrability implies

for solvability of the equations of motion. Some technical details are collected in ap-

pendix. All the considerations in the chapter are done in the context of holomorphic

integrability.

3.2 Oscillator manifold

We introduce a manifold ΣN,` as the product of two linear spaces of all rectangular

N × `-matrices

ΣN,` = MatN,`(C)×Mat`,N(C) , (3.2.1)

where N is the number of particles of the model and ` is the length of spin vectors.

Let (a, b) be two arbitrary N × `- and `×N -matrices. Their entries

aiα ≡ (a)iα , bαj ≡ (b)αj i = 1, . . . , N , α = 1, . . . , ` . (3.2.2)

provide a global coordinate system on ΣN,`. We call aiα and bαj oscillators and refer

to ΣN,` as to an oscillator manifold.

Now we endow ΣN,` with two different ±-structures of a Poisson manifold Σ±N,`
by defining the following Poisson brackets { , }± between oscillators

{a1, a2}± = κ ( r a1a2 ∓ a1a2 ρ) ,

{b1, b2}± = κ ( b1b2 r ∓ ρ b1b2) ,

{a1, b2}± = κ (−b2 r+ a1 ± a1 ρ∓ b2 ) − Crec

12 ,

{b1, a2}± = κ (−b1 r− a2 ± a2 ρ± b1 ) + Crec

21 .

(3.2.3)
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Here we have introduced a “rectangular split Casimir”

Crec

12 =
N∑
i=1

∑̀
α=1

Eiα ⊗ Eαi , (3.2.4)

where (Eiα)jβ = δijδαβ. The matrices ρ± are the following analogues of r± in the

spin space

ρ± = ±1

2

∑̀
α=1

Eαα ⊗ Eαα ±
∑̀
α≶β

Eαβ ⊗ Eβα (3.2.5)

and ρ = 1
2
(ρ+ + ρ−). One also has

ρ+ − ρ− = Cs

12 =
∑̀
α,β=1

Eαβ ⊗ Eβα . (3.2.6)

For κ = 0 the brackets (3.2.3) turn into the standard oscillator algebra formed

by N` pairs of canonically conjugate variables

{aiα, bβj} = −δijδαβ . (3.2.7)

The brackets (3.2.3) satisfy the Jacobi identity for any κ, i.e. the constant and

quadratic structures in (3.2.3) form a Poisson pencil being a one-parametric defor-

mation of the canonical relations (3.2.7). It remains to note that if we define

ω = 1 + κab , (3.2.8)

where ab is an N × N -matrix being a natural product of two rectangular matrices,

then due to (3.2.3), ω will satisfy the Poisson algebra

1

κ
{ω1, ω2} = r+ω1ω2 + ω1ω2r− − ω1r−ω2 − ω2r+ω1 , (3.2.9)

which is different from (1.2.52) by an overall sign only. In particular, the contribu-

tion of the spin matrices ρ, ρ± completely decouples. Thus, formulae (3.2.8) give a

realization of the Semenov-Tian-Shansky bracket in terms of the oscillator algebra

(3.2.3). We also point out the Poisson relations between ω and oscillators

1

κ
{ω1, a2} = (r+ω1 − ω1r−)a2 ,

1

κ
{ω1, b2} = −b2(r+ω1 − ω1r−) . (3.2.10)

In deriving (3.2.9) and (3.2.10) one has to use the relations

a1C
rec

21 = C12a2 , Crec

12 b1 = b2C12 , Cs

12b1b2 = b1b2C12 .

Importantly, one can now verify that if we allow G to act infinitesimally on

oscillators as

δXaiα = (Ad∗ωX a)iα δXbαi = −(bAd∗ωX )αi , X ∈ g , (3.2.11)
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then this action G × Σ±N,` → Σ±N,` is a mapping of Poisson manifolds provided G is

equipped with the Sklyanin bracket (2.2.5). Here Ad∗gX for g ≡ (g+, g−) ∈ G∗ is the

coadjoint (dressing) action of G∗ on the Lie algebra g. If we factorize ω = ω+ω
−1
−

according to (1.2.13), then (ω−1
+ , ω−1

− ) ∈ G∗ is the moment map for the Poisson action

(3.2.11). Under (1.2.13) it defines the following element of G

N = ω−1
+ ω− ∈ G . (3.2.12)

The fact that N generates the action (3.2.11) can be deduced from the Poisson

brackets (3.2.10) together with the fact that ω ?{N , . } = −{ω, . }?N . The Poisson

algebra of N coincides with (1.2.52).

Further, the oscillator manifolds carries an action of the spin Poisson-Lie group

S = GL(`,C)

aiα −→ (ag)iα , bαi −→ (g−1b)αi , g ∈ S . (3.2.13)

This action is Poisson provided the Poisson-Lie structure on S is taken for Σ±N,` to

be

{g1, g2} = ±κ[ρ, g1g2] . (3.2.14)

3.3 Poisson-Lie group action on a product manifold

Let P1 and P2 be two Poisson manifolds with brackets {· , ·}P1 and {· , ·}P2 that

carry the Poisson action of a Poisson-Lie group G. Let Mi : Pi → G∗ be the

corresponding non-abelian moment maps which are assumed to be Poisson. Then,

one can define the Poisson action of G on the product manifold P = P1 ×P2 by

taking the product2 of the moment maps [74]3

M =M1 ?M2 ,

and allowing it to act on functions on P by means of the formula

ξXf = 〈X, {M, f}P ?M−1〉 , f ∈ Fun(P) , (3.3.1)

where ξX is a vector field corresponding to X ∈ g and 〈· , ·〉 is the canonical pairing

between g and g∗. We have

ξXf = 〈X, {M1, f}P1M−1
1 +M1{M2, f}P2M−1

2 M−1
1 〉 . (3.3.2)

Let ξ
(1)
X and ξ

(2)
X be the fundamental vector fields induced by the group action on P1

and P2, respectively. Formula (3.3.2) is equivalent to the statement that at a point

x = (x1, x2) ∈P, where x1 ∈P1 and x2 ∈P2, the vector field ξX is defined as

ξX(x) = ξ
(1)
X (x1) + ξ

(2)
Ad∗
M−1

1 (x1)
X(x2) , (3.3.3)

2The product is naturally taken in G∗.
3We are grateful to László Fehér for drawing our attention to this chapter.
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where Ad∗h, h ∈ G∗ is the coadjoint action of G∗ on G which is also an example of

dressing transformations [40]. One can show that the map X → ξX , where ξX is

defined by (3.3.3), is the Lie algebra homomorphism, so that ξX is the fundamental

vector field of the group action on G [3, 74]. Since G∗ is a Poisson-Lie group,M will

have the same Poisson brackets between its entries as M1 or M2.

To construct the Hamiltonian structure of the spin RS model, we take the product

of symplectic manifolds P1 = D+(G) and P2 = Σ±N,`,

P = D+(G)× Σ±N,` . (3.3.4)

Here the Poisson structure on the Heisenberg double D+(G) is given by (2.2.1) and

that on the oscillator manifold is (3.2.3). We define the Poisson action of G on P
through its moment map

M ?N =M+NM−1
− , (3.3.5)

where N is the moment map (3.2.12) of the action (3.2.11) and M is (2.2.6). Since

M and N are elements of G∗ modeled by G, we multiply them with the star product.

To obtain the RS model on the reduced phase space, we fix the moment map to the

following value

M ?N = θ 1 , (3.3.6)

where 1 is the group identity in G and θ is the coupling constant. Since the right

hand side of (3.3.6) is proportional to the identity, the stability group of the moment

map coincides with the whole group G and, therefore, all the entries of M ? N
are constraints of the first class. Equation (3.3.6) can be written as the following

equation in G

M = θ ω+ω
−1
− = θ ω . (3.3.7)

Some comments are in order. The choice of the initial manifold (3.3.4), as well as

the use of relevant reduction techniques to obtain the spin RS models on the reduced

phase space was already suggested earlier, see e.g. [25, 69]. Also, a similar construc-

tion was developed in [47], where G was taken to be the compact Lie group U(N).

In this case the underlying Lie bialgebra (g, g∗) is not factorizable and the corre-

sponding double D can be identified with the complexification of g = su(N). The

dynamical system one finds on the reduced phase space coincides with the trigono-

metric spin RS model. The point, however, is that working with the collective spin

variable ω alone leaves invisible the evolution of individual spin components of a spin

vector associated to each particle. The aim of our present construction is to further

resolve ω ∈ G∗ in terms of internal spin degrees of freedom and obtain the dynamical

equations for individual spins, as in [24].
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3.4 Reduction

We can now develop the reduction procedure starting from the initial phase space

(3.3.4)

P = D+(G)× Σ±N,` . (3.4.1)

The moment map equation (3.3.7) takes the form

BA−1B−1A = θ(1 + κab) . (3.4.2)

The reduced phase space P is obtained by factoring solutions of (3.4.2) by the action

of the group G

P = {Solutions of (3.4.2)}/G .
Note that for our reduction procedure the parameter κ controlling the Poisson brack-

ets (2.2.1) of the Heisenberg double and the brackets (3.2.3) of the oscillator manifold

is chosen to be the one and the same.

We point out that under the Poisson action on the product manifold (3.4.1) the

transformation of oscillators get simplified over the hypersurface defined by (3.4.2).

Indeed recalling (3.3.3) and (3.2.11), we get

δXaiα = (Ad∗ω?M−1X a)iα δXbαi = −(bAd∗ω?M−1X )αi , X ∈ g , (3.4.3)

and since ω ?M−1 = ω+M−1
+ M−ω

−1
− ≡ θ−1

1 the action of Ad∗ω?M−1 is ineffective

and the oscillators transform as

aiα −→ (h a)iα bαi −→ (b h−1)αi , h = eX ∈ G . (3.4.4)

The most efficient way to factor out solutions by the action of G is to reformulate

and solve the moment map equation (3.4.2) in terms of gauge-invariant variables. To

this end, following [73] we introduce a new coordinate system on the diagonalizable

locus of the Heisenberg double

A = TQT−1 , B = UP−1T−1 , (3.4.5)

where Q and P are diagonal matrices with entries

Qij = δijQj Pij = δijPj . (3.4.6)

The matrices T, U are Frobenius, i.e. they are subjected to the following constraints

N∑
j=1

Tij =
N∑
j=1

Uij = 1 , ∀ i = 1, . . . , N . (3.4.7)

Imposition of these constraints renders decomposition (3.4.5) unique.

Under the transformations (3.2.11) the new variables transform as follows

Q → Q , P → P d−1
T dU , T → hT dT , U → hU dU , (3.4.8)
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where (dX)ij = δij
∑N

k=1(hX)ik for any X ∈ GL(N,C). In particular, Q is invariant

under the G-action.

Substituting (3.4.5) into (3.4.2), we will get

UQ−1U−1TQT−1 = θ(1 + κab) ,

where, in particular, the momentum variable P has completely decoupled. There

are different ways to solve the above equation, we follow the one which relies on the

simplest invariant spin variables. We have

T−1UQ−1 = θ(Q−1T−1U + κ T−1 ab TQ−1T−1U) ,

Following the spinless pattern in [57, 73], we introduce the Frobenius matrix W =

T−1U and reintroduce the momentum P by multiplying from the right both sides of

the equations above by P−1,

WP−1Q−1 − θQ−1WP−1 = θκ T−1 abA−1BT , (3.4.9)

Note that under (3.2.11) the variable WP−1 is not invariant, rather it transforms as

WP−1 → d−1
T (WP−1)dT .

On the other hand, a matrix T−1a transforms as

T−1a → d−1
T T−1h−1ha = d−1

T T−1a ,

where we have taken into account the transformation law (3.2.11) for the spin vari-

ables. This suggests to introduce a diagonal matrix t with entries

tij = δij
∑̀
α=1

(T−1a)iα . (3.4.10)

Multiplying (3.4.9) from the left and from the right by t−1 and t, respectively, projects

the moment map equation of the space of G-invariants

t−1WP−1tQ−1 − θQ−1 t−1WP−1t = θκ t−1T−1abA−1BTt .

Introducing the G-invariant combinations

L = t−1WP−1tQ−1 , a = t−1T−1a , c = bA−1BTt , (3.4.11)

we rewrite the moment map equation in its final invariant form

L− θQ−1LQ = θκ ac . (3.4.12)

The last equation is elementary solved for L

L = θκ
N∑

i,j=1

Qi

Qi − θQj

(ac)ij Eij . (3.4.13)
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The quantity (3.4.13) is the Lax matrix of the hyperbolic spin RS model, as can be

seen by by introducing the following parametrization

θ = e−2γ , Qi = e2qi , qij = qi − qj , (3.4.14)

so that L takes the familiar form

L = κe−2γ

N∑
i,j

eqij+γ

2 sinh(qij + γ)
fij Eij , fij ≡ (ac)ij .

Computing the trace of Lk,

TrLk = Tr(WP−1Q−1)k = Tr(UP−1T−1TQ−1T−1)k = Tr(BA−1)k , (3.4.15)

we recognize that TrLk originate from theG-invariant involutive family (2.2.9). Thus,

TrLk are in involution. We take H = H1 as the Hamiltonian.

3.5 Poisson brackets of G-invariants

As we have found, the reduced phase space P has a natural parametrization in terms

of the following G-invariant variables

aiα , cαi , Qi , i = 1, . . . , N, α = 1, . . . , ` . (3.5.1)

Note that by construction the spin variables aiα are constrained to satisfy

∑̀
α=1

aiα = 1 , (3.5.2)

which can be regarded as the Frobenius condition in the spin space. The Lax matrix

(3.4.13) depends on the collective spin variables fij only, which allows to perform the

GL(`,C)-rotations

aiα →
1

ui
aiβ (g−1)βα , cαi → uigαβ cβi , ui =

∑̀
α,β=1

aiβ (g−1)βα , g ∈ GL(`,C) ,

without changing fij and preserving the Frobenius condition (3.5.2).

Now we are in a position to determine the Poisson brackets between the variables

(3.5.1) constituting the phase space. For that we need the Poisson brackets between

T, U,Q and P variables of the double which have been computed in [73] (see previous

chapter). The brackets between invariant spins and Q are then

{Qi, ajα} = 0 , {Qi, cαj} = δij cαj Qj . (3.5.3)

For the brackets of spins between themselves we find

{a1, a2}± = κ
[
(r• ∓ Y )a1a2 ∓ a1a2ρ∓ a1X21 a2 ± a2X12 a1

]
, (3.5.4)
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{a1, c2}± = κ
[
c2(r∗12 ± Y )a1 ± a1ρ∓c2 ± a1c2X21 ∓X∓12a1c2

]
+K21 a1Z2 − Crec

12 Z2 ,

{c1, a2}± = κ
[
c1(−r∗21 ± Y )a2 ± a2ρ±c1 ∓ a2c1X12 ±X∓21a2c1

]
−K12 a2Z1 + Crec

21 Z1 ,

{c1, c2}± = κ
[
c1c2 (r◦ ∓ Y )∓ ρc1c2 ± c1X

∓
12c2 ∓ c2X

∓
21c1

]
+ c2K12Z1 − c1K21Z2 ,

where we introduced the matrices Z = Q−1LQ and

X12 =
∑
iβσδ

(a1ρ)iβσδ Eii ⊗ Eσδ , X±12 =
∑
iβσδ

(a1ρ
±)iβσδ Eii ⊗ Eσδ ,

K12 =
∑
iσ

Eσi ⊗ Eii , Y12 =
∑
iβkδ

(a1a2ρ)iβkδ Eii ⊗ Ekk .
(3.5.5)

While the matrices r•, r∗, r◦ depend on coordinatesQi and they are defined as follows:

r• =
1

2

N∑
i,j=1

Qi +Qj

Qi −Qj

(Eii − Eij)⊗ (Ejj − Eji) ,

r∗ =
1

2

N∑
i,j=1

Qi +Qj

Qi −Qj

(Eij − Eii)⊗ Ejj , r◦ =
1

2

N∑
i,j=1

Qi +Qj

Qi −Qj

(Eii ⊗ Ejj − Eij ⊗ Eji) .

Writing the brackets (3.5.4) for the choice “−” in components one finds that

for N = 1, 2 and any spin `, either ` = 1, 2 and any number of particles N , it

coincides with the result obtained in [48] by means of a quasi-Hamiltonian reduction.4

There are further immediate consequences of our findings. First, the rational limit of

(3.5.4), which consists in re-scaling qi → κqi, γ → κγ with further sending κ to zero,

reproduces the Poisson structure of invariant spins established in [69]. Second, the

Poisson algebra of collective spin variables fij that follows from (3.5.4) is in general

different from the result conjectured in [69], and their difference written in the matrix

form is

∓ f1f2 Y ∓Y f1f2 ± f1 Y f2 ± f2 Y f1 . (3.5.6)

As a result, the Lax matrix (3.4.13) does not satisfies the same Poisson algebra as in

the spinless case, due to the contributions of Y12. The Poisson bracket between Lax

matrices reads
1

κ
{L1, L2}± =(r12 ∓ Y )L1L2 − L1L2(r12 ± Y )+

+ L1(r̄21 ± Y )L2 − L2(r̄12 ∓ Y )L1 , (3.5.7)

where the dynamical r-matrices are [73]

r =
N∑
i 6=j

(Qj

Qij

Eii −
Qi

Qij

Eij

)
⊗ (Ejj − Eji) ,

r̄ =
N∑
i 6=j

Qi

Qij

(Eii − Eij)⊗ Ejj , r =
N∑
i 6=j

Qi

Qij

(Eij ⊗ Eji − Eii ⊗ Ejj) ,
(3.5.8)

4We thank to Maxime Fairon for pointing out the difference between the Poisson brackets (3.5.4) and those of

[48] for a generic choice of N and `. We provide an explicit comparison in appendix A.3.
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where similarly to the rational case we introduced the notation Qij = Qi −Qj.

The bracket (3.5.7) has the general form of the r-matrix structure compatible

with involutivity of the spectral invariants of L, but the Q-dependent r-matrices of

the spinless case receive now an extra contribution from the spin variables. As to

the Poisson structure of [48], the corresponding LL-algebra is given by (3.5.7) where

Y should be taken to zero.

3.6 Superintegrability

Here we explain how superintegrability of the spin RS model follows from our ap-

proach. Consider the following two families of functions on the Heisenberg double

J+
n = Tr

[
S(BA−1)n

]
, J−n = Tr

[
S(A−1B)n

]
, n ∈ Z ,

where S is an arbitrary N × N -matrix which has a vanishing Poisson bracket with

both A and B. Using (2.2.1), it is elementary to find {Hm, J
±
n } = 0, where Hm =

Tr(BA−1)m constitute a commutative family containing the Hamiltonian H1. Thus,

J±n are integrals of motion. We take as S a matrix Sαβ with entries (Sαβ)ij = aiαbβj.

Thus, on the initial phase space P we have two families of integrals

J+αβ
n = Tr

[
Sαβ(BA−1)n

]
, J−αβn = Tr

[
Sαβ(A−1B)n

]
, ∀ α, β = 1, . . . , ` .(3.6.1)

These integrals are actually functions on the reduced phase space P as they can be

expressed in terms of gauge-invariant variables. Indeed, we have BA−1 = TtL t−1T−1

and A−1B = Tt(Q−1LQ)t−1T−1, so that

BA−1 = A−1B(B−1ABA−1) = A−1BTt(Q−1L−1QL)t−1T−1

and, therefore,

J+αβ
n = Tr

[
SαβQ−1L−1QLn

]
, J−αβn = Tr

[
SαβQ−1Ln−1Q

]
,

where the matrix Sαβ comprises invariant spins (Sαβ)ij = aiαcβj. Clearly, J+αβ
0 =

J−αβ0 = Tr Sαβ. In the rational limit J+
n and J−n collapse to the same conserved

quantities Jαβn introduced in [69].

Because J±αβn are gauge invariants, their Poisson algebra computed on P straight-

forwardly descends on the reduced phase space. To compute the Poisson brackets of

the integrals, we start with

1

κ
{Sαβ1 , Sγδ2 }± =

1

κ
C12

(
δβγSαδ2 − δαδSγβ1

)
+ rSαβ1 Sγδ2 + Sαβ1 Sγδ2 r − Sγδ2 r+Sαβ1 − Sαβ1 r−Sγδ2

±
[
ραµ,γν Sµβ1 Sνδ2 + Sαµ1 Sγν2 ρµβ,νδ − Sγν2 ρ±αµ,νδS

µβ
1 − Sαµ1 ρ∓µβ,γνS

νδ
2

]
, (3.6.2)

where the indexes 1, 2 are associated to the N × N matrix spaces. In deriving the

last formula we used the properties of the spin ρ-matrices ρT = −ρ and ρT± = −ρ∓,

where T means transposition.
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To present further results in a concise manner, we introduce a unifying notation

Jαβn = Tr(SαβW n) , (3.6.3)

where W should be identified with W + = BA−1 or with W − = A−1B. The Poisson

brackets between the entries of W ± is them

1

κ
{W ±

1 ,W ±
2 } = −r∓W ±

1 W ±
2 −W ±

1 W ±
2 r± + W ±

1 r∓W ±
2 + W ±

2 r±W ±
1 .(3.6.4)

By straightforward computation we then find the following result

1

κ
{Jαβn , Jγδm } =

1

κ
(
δβγJαδn+m − δαδJγβn+m

)
±
[
ραµ,γνJ

µβ
n Jνδm + Jαµn Jγνm ρµβ,νδ − Jγνm ρ±αµ,νδJ

µβ
n − Jαµn ρ∓µβ,γνJ

νδ
m

]
±
[
− 1

2

(
Jαδn Jγβm − Jαδm Jγβn

)
+

m∑
p=0

(
Jαδn+m−pJ

γβ
p − Jαδm−pJγβn+p

)]
+

1∓ 1

2

(
Jαδn+mJ

γβ
0 − Jαδ0 Jγβn+m

)
. (3.6.5)

Here the signs “±” in the second line of this formula originate from that of (3.6.2)

and they are associated to the choice of the oscillator manifold Σ±N,`. The different

signs on the third and fourth lines have different origin and they are related to the

choice of W , namely, the upper sign corresponds to W + and the lower one to W −.

The bracket (3.6.5) is not manifestly anti-symmetric, but its anti-symmetry can be

seen from the following identity

m∑
p=0

(
Jαδn+m−pJ

γβ
p − Jαδm−pJγβn+p

)
=

n∑
p=0

(
Jαδn+m−pJ

γβ
p − Jαδn−pJγβm+p

)
+ Jαδn Jγβm − Jαδm Jγβn .

Further, we note that the zero modes Jαβ0 form a Poisson subalgebra

{Jαβ0 , Jγδ0 } = δβγJαδ0 − δαδJγβ0

± κ
[
ραµ,νρJ

µβ
0 Jνδ0 + Jαµ0 Jγν0 ρµβ,νδ − Jγν0 ρ±αµ,νδJ

µβ
0 − Jαµ0 ρ∓µβ,γνJ

νδ
0

]
.

Define for both choices of the sign in the last formula the quantity

$αβ = δαβ + κJαβ0 . (3.6.6)

We then see that the Poisson bracket for the entries of $ is nothing else but the

Semenov-Tian-Shansky bracket in the spin space

{$1,$2}± = ±(ρ$1$2 +$1$2ρ−$2ρ±$1 −$1ρ∓$2). (3.6.7)

We therefore recognize that $ is the non-abelian moment map for the Poisson ac-

tions (3.2.13) of the spin Poisson-Lie group (3.2.14) on Σ±N,`. Thus, Jαβ0 generates in-

finitesimal spin transformations, while the conserved quantities J±αβn generate higher
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symmetries arising from conjunction of spin transformations with abelian symmetries

generated by Hk.

Since on P the passage from J−n to J+
n can be understood as a redefinition of

invariant spin variables, it is enough to consider one of these families. As is clear from

(3.6.5), the Poisson algebra of J+αβ
n is simpler because a distinguished contribution

of zero modes in the last line of (3.6.5) decouples. Introducing a generating function

of the corresponding modes

J(λ) =
∞∑
n=0

J+
n λ
−n−1 , (3.6.8)

we then convert (3.6.5) into the Poisson bracket between the currents. In the matrix

notation this bracket reads as

{J1(λ), J2(µ)}± =
1

λ− µ [Cs

12, J1(λ) + J2(µ)] (3.6.9)

± κ
[
ρ±(λ, µ)J1(λ)J2(µ) + J1(λ)J2(µ)ρ∓(λ, µ)− J2(µ)ρ±J1(λ)− J1(λ)ρ∓J2(µ)

]
.

Here we have introduce two spectral dependent r-matrices in the spin space

ρ±(λ, µ) = ρ± 1

2

λ+ µ

λ− µC
s

12 =
λρ± ∓ µρ∓
λ− µ , (3.6.10)

which are the standard solutions of the trigonometric5 Yang-Baxter equation with

properties

ρ±(µ, λ) = ρ∓(λ, µ) , Pρ±(λ, µ)P = −ρ±(µ, λ) ,

where P = Cs is the permutation in the spin space. Note also that ρ±(λ, 0) = ρ±.

Formula (3.6.9) is the symmetry algebra of non-abelian integrals of the hyperbolic

spin RS model. In the rational limit κ → 0 the bracket linearises and coincides with

the defining relations of the positive-frequency part of the GL(`)-current algebra [69].

The quadratic piece of (3.6.9) is the affine version of the Semenov-Tian-Shansky

bracket that extends the Poisson algebra of zero modes, while the whole bracket is

the Poisson pencil of the linear and quadratic structures. The algebra (3.6.9) has an

abelian subalgebra spanned by TrJ(λ)n, n ∈ Z+, where the trace is taken over the

spin space.

Finally, we note that the superintegrable structure of the model is ultimately

responsible for the possibility to solve the equations of motion for invariant spins.

Indeed, the equations of motion on P triggered by H1 are

Ȧ = −B , Ḃ = −BA−1B , ȧ = 0 = ḃ .

These equations imply that BA−1 = I is an integral of motion and also a = const,

b = const. Thus, equations for A and B are elementary integrated

A(τ) = e−IτA(0) , B(τ) = Ie−IτA(0) . (3.6.11)

5In the difference parametrization.
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We assume that at the initial moment of time τ = 0 the system is represented

by a point on the reduced phase space P. In particular, at this moment of time

coordinates of particles constitute a diagonal matrix A(0) ≡ Q and the variables

aiα(0) ≡ aiα obey the Frobenius condition
∑
aiα = 1 for any i. With this assumption,

it is easy to see that I = L(0), where L is the Lax matrix containing the dependence

on the initial data. Then, the positions of particles at time τ are given by the solution

Q(τ) of the factorization problem e−L(0)τQ = T (τ)Q(τ)T (τ)−1, where T (τ) is the

Frobenius matrix satisfying the initial condition T (0) = 1. Equations of motion for

invariant spins aiα(τ) are then solved with the help of T (τ)

aiα(τ) =
T (τ)−1

ij ajα∑
β

T (τ)−1
ij ajβ

= T (τ)−1
ij ajα .

A similar solution can be given for invariant spins cαi. While oscillators aiα mix

under the time evolution with respect to their “particle” index i, the “spin” index

α remains essentially untouched and the solution above is written for the whole `-

dimensional vector. This situation is, of course, a consequence of the spin symmetry

commuting with the evolution flow.
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Exactly solvable correlators in the
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Chapter 1

The Double-Scaling limit of

γ-deformed N = 4 SYM

1.1 Introduction

Quantum conformal field theories in various space-time dimensions attracted re-

cently a considerable attention, not only due to their phenomenological importance

in physics, for subjects ranging from the description of critical phenomena to the fun-

damental interactions beyond the Standard Model, but also due to their beautiful

mathematical structure allowing to get a deeper insight into the fundamental struc-

tures of Quantum Field Theory and, via AdS/CFT duality, of Quantum Gravity. In

spite of the considerable simplifications in the properties of CFTs in comparison with

the massive QFTs, the non-perturbative structure of strongly interacting CFTs in

d > 2 dimension is very complicated and in general not very well studied analytically.

A considerable progress in this direction has been achieved due to the conformal

bootstrap methods [75, 76] based on the basic properties of CFTs following from

the conformal symmetry, such as crossing symmetry in various channels for the four-

point correlation functions. But this approach stays to a great extent “experimental”,

based on heavy numerical computations rather than on explicit analytic formulation

of the final results.

A great progress in our understanding of analytic structure of CFTs in d > 2

dimensions has been achieved for various superconformal QFTs, often due to the

AdS/CFT correspondence. In a special case – the N = 4 SYM– the analytic study

of the OPE data was greatly advanced due to the planar integrability of the the-

ory [13][27]. In particular, the spectral problem – exact, all-loop calculation of

anomalous dimensions of local operators – found its ultimate formulation in terms

of the Quantum Spectral Curve (QSC) [77, 78] – a system of algebraic relations

on Baxter-type Q-functions, supplied by analyticity properties and Riemann-Hilbert

monodromy conditions (see recent reviews [79, 80]).

The integrability appears to persist - at least in some sectors - for a class of

3-parameter γ-deformations of the R-symmetry of N = 4 SYM [81–83] if one tunes

– 69 –
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φ1 φ2 φ3 ψ1 ψ2 ψ3 ψ4

Q1 +1 0 0 + 1
2 − 1

2 − 1
2 + 1

2

Q2 0 +1 0 − 1
2 + 1

2 − 1
2 + 1

2

Q3 0 0 +1 − 1
2 − 1

2 + 1
2 + 1

2

Table 1.1: Charges of scalar and fermionic fields under the Cartan charges of R-symmetry SU(4). These

charges generate the symmetry group U(1) ⊗ U(1) ⊗ U(1) left over after the breaking of R-

symmetry by twisting. The SU(N) gauge field Aµ has zero R-charges.

the so-called double-trace terms, generated by the RG of the model, to their critical,

in general complex values [36, 84]. This γ-deformation of N = 4 SYM describes

a family of non-sypersymmetric and non-unitary four-dimensional CFTs labeled by

’t Hooft coupling g and three γ-deformation angles γj, j = 1, 2, 3. The Lagrangian

of such theory reads (see e.g.[85])

L = NcTr

[
−1

4
FµνF

µν − 1

2
Dµφ†iDµφ

i + iψ̄α̇ AD
α̇αψAα

]
+ Lint , (1.1.1)

where i = 1, 2, 3 A = 1, 2, 3, 4, Dα̇α = Dµ(σ̄µ)α̇α and

Lint = Ncg Tr
[g
4
{φ†i , φi}{φ†j, φj} − g e−iε

ijkγkφ†iφ
†
jφ

iφj

− e− i
2
γ−j ψ̄jφ

jψ̄4 + e+ i
2
γ−j ψ̄4φ

jψ̄j + iεijke
i
2
εjkmγ

+
mψkφiψj

− e+ i
2
γ−j ψ4φ

†
jψj + e−

i
2
γ−j ψjφ

†
jψ4 + iεijke

i
2
εjkmγ

+
mψ̄kφ

†
i ψ̄j
]
.

(1.1.2)

where the summation is assumed w.r.t. doubly and triply repeating indices, and

we use the standard notations for scalar, fermionic fields, covariant derivative and

Fµν tensor. We suppress the Lorentz indices of fermions, assuming the contractions

ψαi ψj,α and ψ̄i,α̇ψ̄
α̇
j . We also use the notations

γ±1 = −γ3 ± γ2

2
, γ±2 = −γ1 ± γ3

2
, γ±3 = −γ2 ± γ1

2
. (1.1.3)

The parameters of the γ-deformation qj = e−
i
2
γj j = 1, 2, 3 are related to the Cartan

subalgebra u(1)3 ⊂ su(4) ∼= so(6) and the value of such charges for the fields are

represented in Tab.1.1.

As regards the conformal data, for the non-deformed N = 4 SYM several OPE

have been studied in numerous papers, using the integrability properties, as well as

AdS/CFT correspondence for the strong coupling regime g → ∞, or a direct Feyn-

man graph calculus at weak coupling g → 0. Apart from the spectral problem, an

impressive progress has been achieved in a more difficult problem of computation

of structure constants and correlation functions [86–89], as well as of 1/N2
c correc-

tions [90]. However, the efficient all-loop solution of these problems is still hindered

by outstanding technical complexity. We also have to admit that integrability of

N = 4 SYM is still a somewhat mysterious phenomenon, not very well understood,
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especially on the CFT side of this AdS5/ CFT4 duality.

In 2015, Ö. Gürdogan and V. Kazakov proposed a family of non-unitary, non-

supersymmetric CFTs [32], based on a special double scaling limit of γ-deformed

N = 4 SYM combining weak coupling limit of small ’t Hooft coupling, g → 0, and

strong imaginary twist, γj → i∞, with three finite effective couplings ξj = ge−iγj/2.

The gauge field Aµ and the gaugino ψ4 decouple in this limit and one is left with

three complex scalars and three complex fermions with certain chiral structure of

interactions (see the Lagrangian of the theory (1.2.1),(1.2.2)). These CFTs, on the

one hand, helps to shed some light on the origins of integrability in N = 4 SYM, and

on the other hand, the double scaling limit significantly facilitates the computations

of interesting physical properties, such as the OPE data and certain multi-loop Feyn-

man graphs, revealing rich and instructive dynamical properties of the theory. These

dynamical properties were further studied in [91], in particular, by the asymptotic

Bethe ansatz methods. This full three-couplings double scaled version of N = 4

SYM was dubbed in [91] the chiral CFT, or, shortly, χCFT. We will employ this

name in what follows.

In the single coupling reduction, ξ1 = ξ2 = 0, ξ3 6= 0, the theory reduces to

two interacting complex scalar matrix fields (see eq.(1.2.6)). The planar Feynman

graphs for typical physical quantities in such a bi-scalar theory appear to have,

at least in the bulk, the fishnet structure where the massless scalar propagators

form a regular quadratic lattice [32]. This theory will be called in what follows the

bi-scalar, or fishnet CFT. The fishnet graphs of simple topology, such as a torus,

appear to represent an integrable statistical mechanical system [92]. Remarkably,

there exists also an integrable generalization of the Fishnet CFT to any dimension

d [28], presented extensively in the next chapter of this thesis.

Many results recently obtained for the bi-scalar fishnet CFT, would be utterly

difficult to achieve for the analogous quantities in the full γ-deformed N = 4 SYM.

First of them, the anomalous dimensions of the operators Tr [φL1 ] – dominated by

wheel-type fishnet Feynmann diagrams – were computed explicitly, in terms of mul-

tiple zeta values (MZV), at two wrappings (up to 2L loops for any L [32, 93]) and,

iteratively, to any loop order for L = 3. Another remarkable example of exact com-

putations, unique in d > 2 CFTs, are the all-loop four-point correlation functions

of the shortest protected operators [36, 37, 80]. The biscalar fishnet CFT gives a

unique opportunity for the study of single-trace multi-point correlators and of the

related exact planar scalar amplitudes, revealing their Yangian symmetry [94, 95].

One is even able to compute exactly, using the above mentioned exact four-point

correlators, the simplest non-planar (∼ 1/N2
c ) scattering amplitude [96] (see also [97]

for the perturbative study of this amplitude).

All this shows that this integrable theory resulting from the double-scaling limit

of planar γ-deformed N = 4 SYM allows a unique insight into the non-perturbative
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structure of strongly interacting CFTs and a closer look at them could reveal many

general properties of CFTs in d > 2 dimensions. It is also worth mentioning the

existence of 3 dimensional analogues of these CFTs, obtained by a similar limit from

the three-dimensional γ-deformed ABJM model [91] dominated by fishnet graphs

with regular triangular structure, as well as the 6d version of fishnet CFT [98], where

the fishnet graphs have a regular hexagonal structure. The “bulk” integrability of

all three cases of regular fishnet planar graphs was predicted in [92].

In this thesis we attempt to extend the study of some of the questions already

explored in the case of bi-scalar fishnets, to the full double-scaling limit of N = 4

SYM theory. First of all, we will give the complete description of the bulk structure

of Feynman graphs (far from their boundaries defined by the particular underlying

physical quantities). It appears to be much richer than in the fishnet CFT, though

much simpler than in the full N = 4 SYM conserving a certain lattice regularity. A

pictorious way to describe these graphs is to introduce the regular triangular lattice

and then to do all possible Baxter moves of all three types of lines, as shown on

Fig.1.2. These lines should represent sequences of bosonic and fermionic propagators

and the mixed intersections (where both bosonic and fermionic propagators meet)

should be disentangled, in a unique way, into pairs of Yukawa vertices). These

configurations should be summed up, so that the collection of such graphs could

be called the “dynamical fishnet”. The integrability of these graphs, or the sum of

them, remains to be proved, though we demonstrate it in this chapter in a simpler

case of the two-coupling reduction of χCFT (see eq.(1.2.4)), with two bosonic and

one Yukawa coupling.

In the next chapters we will compute exactly the 4-point correlation functions of

certain short, protected scalar operators, similar those obtained in fishnet CFT [36,

37, 80], for its d-dimensional generalization and for the full χCFT4. For that we

identify all the graphs contributing these quantities and sum them up using the

Bethe-Salpeter approach helped by the conformal invariance. In comparison to the

fishnet CFT, the two-coupling dependence of these correlators in the full double-

scaled CFT will reveal a rich phase structure in the coupling space. In the remaining

sections of this chapter we provide details about the theory under study, its reduc-

tions, its conformality and the bulk topology of large Feynmann diagrams in the

planar limit.

1.2 Feynman graphs and correlators of χCFT

In this section, we will study the generic structure of planar Feynman graphs and

discuss their integrability properties, in the full three-coupling chiral CFT (χCFT)

proposed in [32] (see also [91] for more details).

This CFT was obtained as a double scaling limit of γ-twisted N = 4 SYM de-

scribed above. It is defined by the Lagrangian for three complex scalars and three
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complex fermions transforming in the adjoint representation of SU(Nc):

Lφψ = NcTr

(
−1

2
∂µφ†j∂µφ

j + iψ̄α̇j (σ̃µ)αα̇∂µψ
j
α

)
+ Lint , (1.2.1)

where the sum is taken with respect to all doubly repeated indices, including j =

1, 2, 3, and the interaction part is

Lint = Nc Tr
[
ξ2

1 φ
†
2φ
†
3φ

2φ3+ξ2
2 φ
†
3φ
†
1φ

3φ1+ξ2
3 φ
†
1φ
†
2φ

1φ2+i
√
ξ2ξ3(ψ3φ1ψ2 + ψ̄3φ

†
1ψ̄2)

+ i
√
ξ1ξ3(ψ1φ2ψ3 + ψ̄1φ

†
2ψ̄3) + i

√
ξ1ξ2(ψ2φ3ψ1 + ψ̄2φ

†
3ψ̄1)

]
.

(1.2.2)

We suppressed in the last equation the spinorial indices assuming the scalar product

of both fermions in each term. We will refer to this theory as χCFT theory.

The double scaling procedure and the derivation of this action from γ-deformed

N = 4 SYM can be found in papers [85],[91]. In the next sections, we will study the

four-point functions obtained by point splitting of fields in coinciding points, in the

two-point correlation functions of local operators of the type:

Tr[φ2
j(x)] (j = 1, 2, 3) . (1.2.3)

Since the Lagrangian (1.2.2) depends on three arbitrary couplings, one can tune

their values to obtain interesting reductions of this χCFT. For example, in the limit

ξ1 → 0, one fermion decouples and we obtain the following action [91]

Lint = Nc Tr
(
ξ2

3 φ
†
1φ
†
2φ

1φ2 + ξ2
2 φ
†
3φ
†
1φ

3φ1 + i
√
ξ2ξ3(ψ2φ1ψ3 + ψ̄2φ

†
1ψ̄3)

)
. (1.2.4)

We will refer to this theory as χ0CFT theory. Another interesting case of (1.2.2)

occurs when all three couplings are equal ξ1 = ξ2 = ξ3 = ξ and corresponds to

the doubly-scaled β-deformed SYM [99, 100]. It has the following interaction La-

grangian [91]

Lint = ξ2Nc Tr
(
φ†2φ

†
3φ

2φ3 + φ†3φ
†
1φ

3φ1 + φ†1φ
†
2φ

1φ2
)

+ iξNcTr
(
ψ3φ1ψ2 + ψ̄3φ

†
1ψ̄2 + ψ1φ2ψ3 + ψ̄1φ

†
2ψ̄3 + ψ2φ3ψ1 + ψ̄2φ

†
3ψ̄1

)
.

(1.2.5)

In this case, one supersymmetry is left unbroken, as in the original β-deformed

N = 1 SYM.

Most of the papers on this relatively young subject were devoted to the above-

mentioned single coupling reduction of this model: ξ1 = ξ2 = 0, ξ3 ≡ ξ 6= 0, i.e.

the bi-scalar, fishnet CFT defined by the action [32]:

Lφ =
Nc

2
Tr
(
∂µφ†1∂µφ

1 + ∂µφ†2∂µφ
2 + 2ξ2 φ†1φ

†
2φ

1φ2
)
. (1.2.6)

In the following we will describe the general bulk structure of the planar Feynman

diagrams of (1.2.1). Indeed, one interesting feature of those models is the drastic
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Figure 1.1: The chiral vertices of the doubly scaled theory (1.2.2). The graphs of the first line represent the

quartic scalar interactions and the ones in the second line are the Yukawa interactions. Tick

solid lines and dashed lines represent scalar and fermionic propagators respectively. Colors

stand for the various ”flavour” of the particles φi and ψi: black for i = 1, red for i = 2

and green for i = 3. Arrows symbolize the fixed orientation (chirality) of the vertices and,

according to our notation, they point always to the fields with bars or daggers. The second

chirality of Yukawa interactions i.e. the one with ψ̄i → ψi and φ†i → φi with i = 1, 2, 3, can

be represented as the second line of vertices with flipped arrows.

simplification of their weak coupling expansions in terms of Feynman diagrams in

the planar limit. In general, any diagram of χCFT can be built as a collection of

the vertices in Fig.1.1, connected by scalar and fermionic propagators1. The arrows

indicate the fixed orientation (chirality) of the interactions, i.e. in a propagator it is

directed from a field to its hermitian conjugate. An essential feature of (1.2.2) is the

absence of the hermitian conjugate of every interaction vertex. The chirality of this

theory makes it non-unitary and plays a crucial role for the underlying conformality

and integrability in the ’t Hooft limit. In fact, in the absence of the hermitian

conjugate vertices, all the graphs which could renormalize the couplings and the

mass are non-planar. As a consequence, we will see in sec.1.2.2 that the planar

weak coupling expansion of physical quantities w.r.t. interactions (1.2.2) in χCFT is

dominated, at least in the bulk and for high enough perturbative order, by a specific

class of planar diagrams having a kind of a lattice structure, much more rigid than

the structure of graphs in the original N = 4 SYM. This lattice structure is, however,

richer and more “dynamical” than in the bi-scalar theory where the unique regular

square fishnet structure dominates at any order in perturbation theory. In the full

χCFT, due to the presence of Yukawa interactions and quartic scalar vertices, there

are more planar graphs contributing at each perturbative order, but the chirality still

dramatically reduces their number. We can dubb the structure of full χCFT graphs

as “dynamical fishnet”.

1Apart from the double-trace vertices [101, 102] whose role will be discussed below.
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1.2.1 Double-trace interactions and conformal symmetry

The γ-deformed N = 4 SYM theory and its doubly-scaled version are not confor-

mal invariant, not even in the planar limit [85]. Indeed, the renormalization group

calculations show [103] that the new, scalar double-trace interactions are generated

Ldt =(4π)2

3∑
j=1

[
α2

1,jTr[φjφj]Tr[φ†jφ
†
j]+α

2
2,jTr[φjφ

†
j+

]Tr[φ†jφj+ ]+α2
3,jTr[φjφj+ ]Tr[φ†jφ

†
j+

]
]
,

(1.2.7)

where in our notation j+ = j + 1 with the constraint 3+ = 1. The double-trace

couplings αk,j generically flow with the scale. They are needed to renormalise the 2-

point correlators of the local operators Tr[φjφj], Tr[φjφ
†
j+

] and Tr[φjφj+ ] respectively.

For any of these planar correlators only one double-trace term contributes, that is

the β-function of each αk,j depends only on couplings {ξ1, ξ2, ξ3} and αk,j itself. Due

to permutation symmetry of flavour indices j = 1, 2, 3 in the Lagrangian (1.2.1), the

functions βαk,j show the same symmetry in the coupling dependence, namely

βαk,j(αk,j, ξj, ξj+ , ξj−) = βαk,j′ (αk,j′ , ξj′ , ξj′+ , ξj′−) , (1.2.8)

thus will drop in what follows the specification of subscript j in double-trace cou-

plings. The double-trace terms (1.2.7) appear in the theory already at one-loop

renormalization and the β-functions associated to the couplings α2
k are not zero. In

γ-deformed N = 4 SYM the one-loop β-function associated to the double-trace

interaction α2
1 Tr[φjφj]Tr[φ†jφ

†
j] of (1.2.7) is [103]

βαk =
g4

π2
sin2 γ+

k sin2 γ−k + 43π2α4
k +O(g6, α6

k) , (1.2.9)

where γ±k are linear combinations of the deformation parameters γj of the theory

defined in (1.1.3). Let us turn to the theory (1.2.2) with the double-trace terms

(1.2.7). In contrast to the bi-scalar theories, where the invariance under exchange{
φj −→ φj+

φj+ −→ φ†j
(1.2.10)

allows to identify α2 and α3, the presence of Yukawa interactions in χCFT specif-

ically breaks this symmetry, and operators Tr[φjφ
†
j+

] and Tr[φjφj+ ] show different

behaviour. When only one αk coupling is running, the corresponding β-function has

the following form

βαk = a(ξ) + b(ξ)α2
k + c(ξ)α4

k , (1.2.11)

where a, b, c are functions of the couplings ξ = {ξ1, ξ2, ξ3}. This quadratic behavior

of β as a function of α2
k was encounter for the first time in [102] as an example of

non-supersymmetric orbifold theories with double-trace interactions and established

in [104] for a generic deformed theory in the ’t Hooft limit. If the running coupling αk
is associated to the double trace interaction TrOTrO† of length-two scalar operators
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O, the functions a, b and c are related to the normalization coefficient of the two-

point function of O, the contribution of the single-traces to the anomalous dimension

of O and the coefficient of the induced double-trace terms.

To make the theory conformal at the quantum level, one needs to tune the double-

trace couplings to a fixed point. In the original γ-deformed N = 4 SYM , the ’t Hooft

coupling g2 is not running, so the critical (conformal) point for double-trace couplings

can be computed imposing the vanishing of their β-functions. In the case of a single

running coupling, (1.2.9) has the following fixed points

α2
k? = ± ig

2

8π2
sin γ+

k sin γ−k +O(g4) . (1.2.12)

Similarly, the coupling constants ξi of the theory (1.2.2) are not running in the

’t Hooft limit and one can fine-tune the double-trace couplings α2
i to critical values

in terms of their ξi dependence, imposing the vanishing of the underlying β-function

(1.2.11) as follows

βαk
!

= 0 ⇒ (4π)2α2
k? = −b±

√
b2 − 4ac

2c
. (1.2.13)

At the two fixed points (1.2.13), it is possible to write the anomalous dimension γ?
of the operator O in terms of the discriminant of βαk = 0 [104]

4γ2
O? = b2 − 4ac . (1.2.14)

At the fixed points for all double-trace couplings (1.2.7) of γ-deformed N = 4 SYM ,

the theory becomes a genuine non-supersymmetric CFT. This conformal theory ap-

pears also to be integrable [36, 82, 83] and its spectrum of anomalous dimensions can

be treated by such a powerful tool as quantum spectral curve (QSC) [77, 78, 83]. The

same statements hold for the double-scaling limit of the 4D χCFT theory (1.2.2),

to which we have to add the double-trace Lagrangian (1.2.7). Integrability of the

full χCFT is still a conjecture, as it is for the full γ-deformed N = 4 SYM . It

was demonstrated explicitly only for the simplest reduction of χCFT – the bi-scalar

CFT (1.2.6), where the fishnet planar graphs have an iterative regular lattice struc-

ture [32], shown to be integrable long ago by A.Zamolodchikov [92] (see also [39]).

We extended the proof of integrability to a larger, two-coupling sector of χCFT in

Sec.4.1.1, by methods of conformal SU(2, 2) quantum spin chain. In the case of

χCFT we also have good chances to prove full integrability on the level of planar

Feynman graphs since, as we show below, these graphs preserve a certain rigid lattice

structure.

The obvious physical defect of such CFTs is the loss of unitarity. Indeed, as it will

be clear with the explicit example below, the discriminant of the equation βαi = 0

is negative, inducing complex values for the fixed points (1.2.13) and anomalous

dimension (1.2.14). Moreover in the AdS/CFT context, this fact can be interpreted

as the presence of true tachyons in the bulk on the string theory side [104].
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Figure 1.2: General “dynamical” fishnet bulk structure of a planar graph for 3-coupling chiral CFT

(1.2.2). Dotted lines represent scalar or fermionic propagators (the rules for the choice of

propagators will be explained below and demonstrated in Fig.1.3) The colors and directions

of the lines stand for the three “flavours” of the particles i = 1, 2, 3 with the same notation as

we used in Fig.1.1. The intersections correspond to six different effective vertices that can be

written in terms of the usual ones following the map given in Tab.1.2.

The one-loop anomalous dimension of the length-two operator Tr[φjφj] in γ-

deformed N = 4 SYM at the fixed point is [103]

γφjφj? = ∓ ig
2

2π2
sin γ+

j sin γ−j +O(g4). (1.2.15)

Notice that both the fixed points (1.2.12) and the anomalous dimensions (1.2.15)

are complex conjugate, as expected. Those relations are actually valid in the full

γ-deformed N = 4 SYM theory, but in the double-scaling limit under analysis it is

simple to obtain some predictions for the one-loop β, the associated critical points

and the anomalous dimensions. In particular we have

γφjφj?
DS limit

= ∓2i(ξ2
j+
− ξ2

j−) + . . . and α2
1?

DS limit
= ± i

ξ2
j+
− ξ2

j−

2
+ . . . . (1.2.16)

In Sec.4.3.3 we will verify these results computing the exact spectrum of the operator

Tr[φjφj] with the Bethe-Salpeter method, and the first order of the fixed point α2
1?

using Feynman diagrams.

Non-unitary CFTs are usually logarithmic [105], i.e. with an interesting, log-

arithmic behavior of certain correlators. The γ-deformed N = 4 SYM and its

double-scaled version – the χCFT (1.2.2) (and its reductions mentioned above) are

not exceptions: they show the same logaritmic properties due to the non-hermiticity

of their dilatation operators [38, 39].

1.2.2 Bulk structure of large planar graphs

Let us try to describe the general structure of an arbitrarily big Feynman graph

in the bulk, far from the boundaries. The generic picture is illustrated on Fig.1.2.

The theory (1.2.2) contains 3 complex scalars φi and 3 complex fermions ψi labelled

by i = 1, 2, 3. We chose to represent scalar propagators with thick solid lines and
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fermionic propagators with dashed lines (see Fig.1.1), while the label denoting their

U(1)⊗3 flavour (see App.(1.1)) is mapped into colours: (1, 2, 3) ≡ (black, red, green).

In Fig.1.2, coloured dotted2 lines in a particular direction represent a generic prop-

agator, both scalar or fermionic. In this framework, a set of parallel lines represents

any combination of fermionic and scalar propagators of a given flavour.

This system of three dotted lines forms a lattice which combines the features of

both regularity and irregularity. Any such lattice can be obtained from the regular

triangular lattice (or a more general Kagomé lattice) by arbitrary Baxter moves of

all lines: displacements in the direction orthogonal to the line, i.e. conserving its

direction.

The links of the resulting lattice are propagators while nodes are quartic effective

interactions. These interactions are of three kinds, depending on which lines are

crossing and which propagators enter the corresponding crossing (effective vertex).

They can represent a set of φ4 or various Yukawa vertices, according to the rules

listed in Tab.1.2. Indeed in this framework, a quartic vertex involving fermions can

be though of as a couple of Yukawa vertices, or similarly, as a split quartic vertex in

which we have added a propagator in the remaining direction, according to the rules

in Tab.1.2. The quartic interaction can involve four scalars, four fermions or two

of each. Moreover, we chose the directions of the arrows to be consistent with the

Feynman rules in Fig.1.1. Depending on the orientation of the mixed interactions

we will refer to them as crossing or scattering interactions as in Tab.1.2.

Given three sets of parallel lines crossing each other with quartic interactions, the

resulting irregular lattice is formed by a finite set of convex polygons. The smallest

possible n-gon is a triangle and the largest one is a hexagon. Those convex polygons

can be constructed locally by the abovementioned moves of lines in two or three

different directions:

• 2 directions (colors): We can discard the lines in one of the directions. The

local interaction of lines with only two directions (colors) forms a square lattice

as in [32, 92]. Since we are considering three colors, we can have three different

squares depending on their directions.

• 3 directions (colors): In this case there are more possibilities to build convex

polygons. Indeed let’s start with the crossing of three lines with three different

directions. Locally, they form a triangle that can have two different orientations.

Adding another line, parallel to one of the previous three, and cutting the

triangle, we will end up with a square. Since we can add a line of any color

and there are two possible triangle orientations, we can draw 6 different squares.

Iterating this cutting procedure by adding one and two lines we obtain pentagons

and the hexagon.

2The reader should distinguish between dashed lines, representing fermionic propagators, and dotted lines repre-

senting the lattice based on effective vertices.
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√
ξ2ξ3 ξ3

√
ξ1ξ2

Table 1.2: Substitution rules for the effective vertices appearing in the fishnet bulk structure of Fig.1.2 in

terms of the Feynman rules of Fig.1.1. Any effective vertices is associated with a combination

of the coupling constants ξi with i = 1, 2, 3 of order ξ2.

In the following table we recap all the possible n-gons and their multiplicity, that

is the number of different ways (i.e.: not superposable by simple translation and

scaling) the same polygon can appear in the graph.
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Figure 1.3: One of the possible configurations in terms of effective vertices of Tab.1.2 for the bulk topology

represented in Fig.1.2. The diagrams at the two sides of the figure represents the parts of the

graph in the light-blue circles in terms of real vertices of Fig.1.1 according with the rules given

in Tab.1.2. We stress that given a set of effective vertices, the translation in real vertices is

unique.

n-gon M 2 D 7
Multiplicity 2 9 6 1

It follows that for a given set of lines, the resulting lattice can be seen as a tiling of

the plane with 18 different tiles.

The structure of the fishnet bulk is very rich, indeed once the topology of the

lattice is defined as in Fig.1.2, some information is lost, as any quartic effective vertex

can be associated to six different physical vertices, as listed in Tab.1.2. The number

of possible Feynman diagrams Nd which can be associated to a given close n-gon,

defined by n quartic effective vertices, can be computed considering first all possible

combinations of fermionic and scalar propagators for the edges of the polygon and

then cancel out those vertices which does not fit in any configuration. After this

tedious combinatorics we obtain the following table

n-gon M 2 D 7
Nd 28 82 244 730

This result can be written in the following compact formula

Nd(n) = 1 + 3n . (1.2.17)

Now we can estimate the number of Feynman diagrams for a given topology of the

effective fishnet bulk. This number has the sum of all the Nd’s for all the polygons

as an upper bound and we can estimate its order of magnitude. Then the number

of possible Feynman diagrams for the topology of the fishnet bulk given in Fig.1.2

is around 1.5× 104. Moreover, since any vertex is associated with a combination of

the couplings ξi with i = 1, 2, 3 of order 2, we know that the diagram in Fig.1.2 is of

order ξ234. One of those configurations is represented in Fig.1.3.
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Figure 1.4: The result of drawing a disc on the lattice of Fig.1.3 can be interpreted as one planar graph

contributing to an n-point functions of the kind (1.2.18), drawn in terms of effective vertices.

In this example we present Tr [φ1ψ̄3ψ1ψ̄3ψ2φ
†
3ψ̄1ψ2ψ2φ

†
1φ3ψ̄1ψ3ψ̄1φ

†
2ψ3ψ̄2φ1φ

†
2φ1](x1 . . . x20),

and the graph is of order ξ42. As it results from Tab.1.2, each effective vertex can be replaced

in a univocal way in terms of structure made of real vertices.

1.2.3 Single-trace correlation functions

We can realize the above mentioned bulk graphs (with fixed coordinates of external

legs) as a single-trace operator of the form:

K(x1, x2, . . . , xM) = Tr [χ(x1)χ(x2) . . . χ(xM)] , (1.2.18)

χ ∈ {φj, φ†j, ψαj , ψ̄α̇j }, (j = 1, 2, 3; α, α̇ = 1, 2 ), (1.2.19)

i.e. each χ(x) under the trace is one of 18 fields of the χCFT model (1.2.1)-(1.2.2).

Of course (1.2.18) must have zero overall R-charge, to have a non-zero answer. This

implies a condition on the elementary fields under trace, namely if we define nj and

mj as the differences between the number of φj, respectively ψj and the conjugated

fields, the mentioned condition reads

nj + 2mj −
∑
k 6=j

nk = 0 , j = 1, 2, 3 . (1.2.20)

To describe the Feynman graph content of this quantity, let us remind that a similar

single-trace correlator in bi-scalar fishnet CFT [94, 95], consisting only of scalar fields,

was given by a single fishnet graph of the disc topology where the disc was cut out

across the edges of a regular square lattice. The ends of the cut edges represented

external fixed coordinates and the integrals were taken over all vertices inside the

disc. Similarly, for each of the quantities (1.2.18) there exist a collection of graphs

of the disc shape cut out of the lattice of the type drawn on Fig. 1.3. The types of

external legs – the cut edges along the boundary – define the species of fields from the

set χ following in the same order under the trace in (1.2.18). We present an example

in Fig.1.4, where the disc is drawn on the concrete realization of the lattice as given in

Fig.1.3. A big difference w.r.t. the bi-scalar single-trace correlators is that in the full

χCFT such a quantity is defined by the sum of all graphs with the same order of fields

on the boundary (same sequence of external legs) which are related to each other
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Figure 1.5: Other possible planar graphs for the same 20-point function of Fig.1.4 at order ξ48. On the

left, the yellow triangles have different edges w.r.t. Fig.1.4. On the right, one red-dashed line

has been moved down-right, changing the topology w.r.t. Fig.1.4 in the highlighted region.

by the orthogonal moves of three types of parallel lines described in the previous

subsection (as example, see Fig.1.5 (right)). Furthermore, even at fixed topology,

one can change the interaction vertices inside the graph, namely switching some

dashed (fermionic) lines to solid (scalar) lines and vice-versa (Fig.1.5 (left)). This

corresponds to different realizations of a disc segment of the dotted-lattice in Fig.1.2

with boundary conditions fixed by the external legs. The number of possible graphs

can be estimated by considerations of the previous subsection. This single-trace

correlator can be used to define the scattering amplitudes via Lehmann-Symanzik-

Zimmerman procedure, by going to the dual momentum space and taking on-shell

external momenta, in the spirit of the papers [94, 95]. It is worth noticing that not

all the planar single-trace correlators are obtained out of this procedure. Indeed

certain external states can be cut out only drawing a circle on the actual Feynman

graph (see Tab.1.2) where all propagators are explicitly drawn. Moreover, for given

correlation functions, there are lower order graphs in the coupling which cannot be

cut out of the planar lattice, but from two or more sheets of such lattice as explained

in [94].

1.3 Conclusions

We found here the complete description of possible Feynman graphs of χCFT4 in the

“bulk” – i.e. far from the boundaries of the graph defined by a particular physical

quantity. These graphs can be dubbed as “dynamical fishnet”, since, unlike the

usual regular fishnet of the bi-scalar model (1.2.6) they have a certain dynamics

(summation over many of such graphs) preserving at the same time a kind of irregular

fishnet structure shown on Figs. 1.2,1.3. Interestingly, this bulk structure is neatly

realized as Feynman graphs describing arbitrary single-trace correlation functions of

all elementary fields, as shown on Figs. 1.4,1.5. It would be very interesting to find

the realisation of the Yangian symmetry of these correlators, and of the related planar

amplitudes (with disc topology), generalizing the results of [94, 95] for the bi-scalar



CHAPTER 1. THE DOUBLE-SCALING LIMIT OF γ-DEFORMED N = 4 SYM 83

CFT. It would be the neatest demonstration of the integrability of the full model.

In Sec.1.2 we have shown such integrability in the two-coupling reduction of the full

χCFT, having a much simpler fishnet structure (combination of regular “brick wall”

graphs with Yukawa vertices and regular square lattice fishnets). A considerably

more involved analysis of the integrability of the full dynamical fishnet of χCFT, in

particular, via the Yangian symmetry of single-trace correlators, is underway. We

believe that it will be another important step to the understanding of integrability

of the mother theory – the N = 4 SYM. It is worth noticing here that γ-deformation

represents a rather mild, “topological” modification of the planar graphs of original

N = 4 SYM, altering only the boundaries of these graphs, and not the bulk.





Chapter 2

Fishnets in a d-dimensional sea

2.1 Introduction

Conformal field theories (CFT) are ubiquitous in two dimensions [17], and quite a

few super-symmetric CFTs in d = 3, 4, 6 dimensions are known. But well defined

and not super-symmetric CFTs in d > 2, such as 3D Ising or Potts models, or Banks-

Zaks model [106], are rare species, in spite of their rich potential applications ranging

from the theory of phase transitions to fundamental interactions. The CFTs at d > 2

which in addition are integrable, such as 4D N = 4 SYM and Aharony-Bergman-

Jafferis-Maldacena (ABJM) theories in the ’t Hooft limit, are true exceptions [13] 1.

That’s why a new family of planar integrable CFTs obtained in [32] as a special

double scaling limit of γ-deformed N = 4 SYM seems to be an important and

instructive example. This theory can be studied via quantum spectral curve (QSC)

formalism [83, 107, 108] or using the integrability of its dominant Feynman graphs

via the conformal, SU(2, 2) non-compact spin chain. A nice particular case of this

family is the 4D bi-scalar theory, whose planar limit is dominated by“fishnet” type

Feynman graphs [32, 91].

A rather exceptional feature of the fishnet theory is that it can be defined in

any space-time dimension. This provides an interesting laboratory for studying the

properties of higher dimensional CFTs, and its connection to other known conformal

and integrable models. Let us define the d-dimensional generalization of the 4D

bi-scalar theory introduced in [32] as follows

Lφ = Nc tr[φ†1 (−∂µ∂µ)ω φ1 + φ†2 (−∂µ∂µ)
d
2
−ω φ2 + (4π)

d
2 ξ2φ†1φ

†
2φ1φ2] , (2.1.1)

where both scalar fields transform under the adjoint representation of SU(Nc); ξ
2 is

the coupling constant and ω ∈
(
0, d

2

)
is a deformation parameter. The non-local (for

general d, ω) operators in kinetic terms should be understood as an integral kernel

(∂µ∂
µ)βf(x) ≡ (−4)β Γ(d

2
+ β)

π
d
2 Γ(−β)

ˆ
ddy f(y)

|x− y|d+2β
. (2.1.2)

1The integrability of such theories emerges due to their duality to string sigma models on specific cosets, having

an infinite number of quantum conservation lows for their world-sheet dynamics, or due to the analogy between the

planar Feynman diagram technique and integrable (1 + 1) dimensional quantum spin chains [13].

– 85 –



CHAPTER 2. FISHNETS IN A D-DIMENSIONAL SEA 86

The propagator of scalar fields is its functional inverse:

(−∂µ∂µ)βD(x) = δ(d)(x) , D(x− y) =
Γ(d

2
− β)

4β π
d
2 Γ(β) |x− y|d−2β

. (2.1.3)

The typical structure in the bulk of sufficiently big planar Feynman graphs in this

theory is that of the regular square lattice (“fishnet” graphs, proposed in [92] as an

integrable lattice spin model), by the same reasons as in 4D case [32, 91], namely,

due to the presence of the single chiral interaction vertex in the Lagrangian, and

the absence of its hermitian conjugate. For example, the graphs renormalizing local

“vacuum” operator tr(φj)
L are those of the “wheel” type and they can be studied

via the integrable conformal SO(2, d) spin chain 2, as was suggested for 4D case in

[39]. The dimensions of operators of the type tr[φ3
1(φ†2φ2)k] have been also studied in

4D [39] by QSC methods. It is not clear whether this method can be generalized to

our d dimensional model. But the spin chain methods certainly can.

In general, the propagators of the fishnet graphs of the model (2.1.1) are different

for the two different fields: |x − y|−d+2ω for φ1 fields and |x − y|−2ω for φ2 fields.

Let us concentrate here on the “isotropic” case ω = d/4. In order to maintain the

renormalizability we should add to (2.1.1) the following double-trace counter-terms

[85, 103]

Ldt/(4π)
d
2 = α2

1

2∑
i=1

tr(φiφi) tr(φ†iφ
†
i )− α2

2 tr(φ1φ2)tr(φ†2φ
†
1)− α2

2tr(φ1φ
†
2)tr(φ2φ

†
1) ,

(2.1.4)

Notice that the first term disappears in the “non-isotropic” case ω 6= d
4

since the

couplings of two terms in the first line of (2.1.4) would become dimensionful.

As it was suggested in [84] and explicitly shown in [36] for the 4D case, the

“isotropic” bi-scalar theory with Lagrangian Lφ + Ldt has two fixed points. We

generalize here this result to any dimension, up to two loops, computing the corre-

sponding Feynman graphs (Fig.2.1) contributing to the βα1-function. Its two zeroes

are

α2
1(ξ) = ∓i ξ

2

2
− J (d)ξ4 +O(ξ6) (2.1.5)

where the real coefficient J (d) depends on the ε−1 coefficient of the down-left graph

of Fig.2.1 in dimensional regularization. For example: J (4) = 1/2, J (2) = 2 ln 2,

J (1) = π+4 ln 2
2
√
π

3. At this critical coupling α1(ξ) the bi-scalar theory becomes a

genuine non-unitary CFT at any coupling ξ. The operators tr(φ1φ2), and tr(φ1φ
†
2)

are protected in the planar limit as in [36].

2in the rest of the chapter we will use its Euclidean version SO(1, d+ 1) instead of the Minkowskian SO(2, d).
3This term can be computed at any d by means of Integration by Parts and Mellin-Barnes transformation,

according to [109]
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Figure 2.1: Loop expansion of 〈tr(φ2
1)(x)tr(φ2

1)†(0)〉 planar graphs up to 2-loops.

Generalizing the 4D results of [36] to any d, we will compute exactly a particular

four-point function and read off from it the exact scaling dimensions and certain OPE

structure constants of operators of the type tr(φ1∂
S
+φ1(φ†2φ2)k)+permutations. Their

dimensions are encoded in a remarkably simple exact relation

h∆,S ≡
Γ
(

3d
4
− ∆−S

2

)
Γ
(
d
4
− ∆−S

2

) Γ
(
d
4

+ ∆+S
2

)
Γ
(
−d

4
+ ∆+S

2

) = ξ4 , (2.1.6)

which reduces of course at 4D to the result of [36]. For even d it gives d different

solutions ∆(ξ) = ∆0 + γ(ξ). At odd (or non-integer) d there are infinitely many, in

general complex, solutions. At weak coupling the two complex conjugate solutions

at S = 0 4

γ = ±i 2ξ2

Γ
(
d
2

) ± i

6

ξ6

Γ
(
d
2

)3

(
π2 − 6ψ(1)

(
d

2

))
+O(ξ10)

describe anomalous dimensions of the operator tr(φ1φ1) at the two fixed points. In

a similar way, for any S ∈ 2Z the real weak coupling solution

γ =− 2
ξ4Γ(S)

Γ
(
d
2

)
Γ
(
d
2

+ S
)+

+
2 ξ8Γ(S)2

Γ
(
d
2

)2
Γ
(
d
2

+ S
)2

(
ψ(0)

(
d

2

)
− ψ(0)

(
d

2
+ S

)
+ ψ(0)(S) + γE

)
+O(ξ10).

describes the operators of the type tr(φ1∂
S
+φ1), where ∂S+ = (n̂ · ∂)S with n̂ being an

auxiliary light-like vector.

For d = 2m, m ∈ N the l.h.s. of (2.1.6) factorizes into a polynomial of degree 2m

and 2m roots of eq.(2.1.6) describe the scaling dimension of the exchanged operators

in the OPE channel x3 → x4 of (2.3.1) together with their shadows ∆̃ = d−∆. At

ξ = 0 we get for the bare dimensions of physical operators (i.e., excluding “shadow”

operators)

∆0 − S = {m,m+ 2, · · · , 3m− 2},
4Here and in the following we adopt the notation ψ(k−1)(x) = dk

dxk
log Γ(x) for polygamma functions.
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At d = 2 there is a single solution with the dimension ∆ = 1 +
√
S2 − 4ξ4 of the

local twist-2 operators of the type tr(φ1∂
S
+φ1), while at 4D the additional ∆0−S = 4

describes twist-4 operators [36]. As an example, at d = 6 and S = 0 the possible

non-shadow solutions for (2.1.6) are ∆0 = 3, 5, 7. They can be realized as tr(φ2
1)

for ∆0 = 3, linear combinations of tr(φ1∆φ1), tr(∂µφ1∂
µφ1) for ∆0 = 5 and of

tr(φ1∆2φ1), tr(∆φ1∆φ1), tr(∂µφ1∂
µ∆2φ1), tr(∂µ∂νφ1∂

µ∂νφ1) for ∆0 = 7.

Diagonalizing the mixing matrix of these operators at ξ 6= 0 we would obtain op-

erators with non-trivial, ξ-dependent anomalous dimensions, as well as the so called

log-multiplets [38, 39], omnipresent in this non-unitary theory [105, 110], contain-

ing the operators with zero anomalous dimension. Eq.(2.1.6) predicts that all the

exchange operators from this set acquire non-trivial anomalous dimensions, whereas

the operators belonging to log-multiplets never appear among them. This appears

to be true at any even dimension d.

As a general rule, according to the eq.(2.1.6) the operators of the type

{tr(φ1∂
S
+φ1(φ2φ

†
2)k) + permutations} , (2.1.7)

appear in the multiplets only at d/4 ∈ N, k = 1. We will find below from the exact

4-point function the conformal structure constants of these operators with two scalar

fields.

2.2 Integrability of d-dimensional bi-scalar CFT

As it was noticed in [32] and further developed in [36, 39, 91], the 4D case of the

theory (2.1.1), with ω = 1, is integrable in the planar limit. On the one hand, this in-

tegrability is the direct consequence of integrability of γ-twisted planar N = 4 SYM

theory, from which it was obtained in the double scaling limit combining strong

imaginary twist and weak coupling. On the other hand, this integrability was ex-

plicitly related in [32, 39] to the fact that the bi-scalar theory was dominated by the

integrable “fishnet” Feynman graphs [92]5.

Apart from 4D case, for arbitrary d our bi-scalar model (2.1.1) does not have any

integrable SYM origin. But the arguments of equivalence to the integrable conformal

SO(1, d+1) spin chain do work. Namely, let us introduce the d-dimensional analogue

of the 4D “graph-building” operator [32] at general ω-deformation

H LΦ(x1, . . . , xL) =
1

π
dL
2

ˆ
ddx1′ . . . d

dxL′ Φ(x1′ , . . . , xL′)

|x11′ |d−2ω . . . |x
LL′
|d−2ω × |x1′2′|2ω . . . |xL′1′ |2ω

(2.2.1)

5This terminology for the graphs of regular square lattice shape was introduced by B.Sakita and M.Virasoro in

1970.
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x'2
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y 1

. . .
u -ω+ 3D

/ 4- u
 - 

D
/ 4
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D
/ 4
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/ 4

x'1 x'3 x'1x'L

x2 x3 xL

y 2 y 3 y L

Figure 2.2: Graphical representation of the transfer matrix as a convolution of R-kernels according to

formulas (2.2.2)and (2.2.3). Black dots are integration points and the weights of propagators

are written in the second and third R-kernel. The primed points x′i belong to the auxiliary

space.

schematically presented on Fig.2.3. It is easy to see that a power of this operator

HM
L generates a fishnet Feynman graph with topology of a cylinder of length M with

the circumference L. Now, in analogy with the 4D observation of [39], we notice

that this operator can be related to the transfer-matrix of integrable SO(1, d + 1)

conformal Heisenberg spin chain [111] presented on Fig.2.2:

T(u) = Tr0 (R01(u)R02(u) . . . R0L(u)) (2.2.2)

where u is the spectral parameter and the R-matrix acts as an integral operator

[R 12Φ](x1, x2)(u) = c(u, d, ω)

ˆ
ddx1′d

dx2′ Φ(x1′ , x2′)

(x2
12)−u−

d
4 (x2

21′)
d
4

+u+ω(x2
12′)

3d
4

+u−ω(x2
1′2′)

−u+ d
4

,

(2.2.3)

with the normalization constant

c(u, d, ω) =
42u

πd
Γ
(
u+ d

4
+ ω

)
Γ
(
u+ 3d

4
− ω

)
Γ
(
−u− d

4
+ ω

)
Γ
(
−u+ d

4
− ω

) .
Indeed, in analogy with 4D case [39], at a particular value of spectral parameter this

transfer matrix becomes the graph-building operator (2.2.1) at any d

HL = π−
dL
2

[
(4π2)

d
2 Γ

(
d

2

)]L
lim
ε→0

εL T
(
−d

4
+ ε

)
. (2.2.4)

presented on Fig. 2.3. Thus this operator is one of the conserved charges of the

equivalent spin chain: [T(u),T(u′)] = [T(u),HL] = 0.

2.3 Exact 4-points correlation function

In analogy with 4D results of [36], employing the d-dimensional conformal symme-

try of the theory (2.1.1),(2.1.4) we will compute exactly the four-point correlation

function

G = 〈O(x1, x2)Ō(x3, x4)〉 =
G(u, v)

(2π)d(x2
12x

2
34)

d
4

, (2.3.1)
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Figure 2.3: Graphical representation of the kernel of the graph-building operator for generic d and ω. It

is obtained by setting u = − d
4

in the transfer matrix (2.2.2) presented on Fig. 2.2, so that

xjj′+1 –type type propagators disappear while xj′+1 − yj -type propagators are replaced by

δ(d)(xj′+1 − yj) factors. After that, integration over the points yj is equivalent to setting

yj = xj′+1.

where the notation is introduced for the operators O(x, y) = tr[φ1(x)φ1(y)] and

Ō(x, y) = tr[φ†1(x)φ†1(y)].

Here G(u, v) is a finite function of cross-ratios u = x2
12x

2
34/(x

2
13x

2
24) and v =

x2
14x

2
23/(x

2
13x

2
24), invariant under the exchange of points x1 ↔ x2 and x3 ↔ x4. The

OPE expansion leads to the formula

G(u, v) =
∑

∆

∑
S/2∈Z+

C2
∆,S u

(∆−S)/2g∆,S(u, v), (2.3.2)

where the sums run over operators with scaling dimensions ∆ and even Lorentz spin

S. Here C∆,S is the corresponding OPE coefficient (structure constant) and g∆,S(u, v)

is the known d dimensional conformal block (see (2.9) and sections 4,5 in [112]). If

we compute (2.3.1) we will identify the conformal data for the operators emerging in

the OPE of O(x1, x2).

In the planar limit G is given by the set of fishnet Feynman diagrams presented in

Fig. 2.4. Summing up the corresponding perturbation series we encounter a geometric

progression involving the combination of operators α2V+ξ4H2, where α2 = α2
± is the

double-trace coupling at the fixed point, V is the operator inserting the double-trace

vertex

V Φ(x1, x2) =
2

π
d
2

ˆ
ddx1′d

dx2′ δ
(d)(x1′2′) Φ(x1′ , x2′)

|x11′ |d/2|x22′|d/2
,

which is the d-dimensional version of (11) in [36], and the operator H2 defined by

(2.2.1) adds a scalar loop inside the diagram. Hence we obtain the following repre-

sentation

G =
1

(2π)d

ˆ
d4x3′d

4x4′

(x2
33′x

2
44′)

d
4

〈x1, x2|
1

1− α2V − ξ4H2

|x′3, x′4〉+ (x1 ↔ x2). (2.3.3)

where xij ≡ xi − xj.6
6The operators V and H are not well-defined separately, e.g. for an arbitrary Φ(xi) the expressions for α4V2Φ(xi)

and ξ4HΦ(xi) are given by divergent integrals. However, at the fixed point, their sum is finite by virtue of conformal

symmetry.
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Figure 2.4: General fishnet graphs up to α2
1 order in the expansion of four point function (2.3.3).

Remarkably, the operators V and H2 commute with the generators of the confor-

mal group, as in the particular 4D case [36]. This fixes the form of their eigenstates

Φ∆,S,n(x10, x20) =
1

(x2
12)

d
4

(
x2

12

x2
10x

2
20

)(∆−S)/2(
∂0 ln

x2
20

x2
10

)S
, (2.3.4)

where ∆ = d
2

+2iν and ∂0 ≡ (n̂ ·∂x0). The state Φ∆,S,n belongs to the principal series

of the conformal group and can be represented in the form of a conformal three-point

correlation function

C∆,S Φ∆,S,n(x10, x20) = 〈 tr[φ1(x1)φ1(x2)]O∆,S,n(x0) 〉 ,

where the operator O∆,S,n(x0) carries the scaling dimension ∆ and Lorentz spin S,

and C∆,S is the 3-points structure constant. The states (2.3.4) satisfy the orthogo-

nality condition [113, 114]
ˆ
ddx1d

dx2

(x2
12)

d
2

Φ∆′,S′,n′(x10′ , x20′) Φ∆,S,n(x10, x20)

= c1(ν, S)δ(ν − ν ′) δS,S′δ(d)(x00′)(nn
′)S + c2(ν, S)δ(ν + ν ′)δS,S′Y

S(x00′)/(x
2
00′)

d
2
−S−2iν ,

where ∆′ = d
2

+ 2iν ′, Y (x00′)=(n∂x0)(n′∂x0′
) lnx2

00′ , and

c1(ν, S) =
2S+1 S! |Γ(2iν)|2

(
4ν2 + (d

2
+ S − 1)2

)−1

π−(3d/2+1)
∣∣Γ (d

2
− 1 + 2iν

)∣∣2 Γ(d
2

+ S)
, (2.3.5)

c2(ν, S) =
2(−1)S Γ2

(
d
4

+ S
2
− iν

)
π−(d+1) Γ2

(
d
4

+ S
2

+ iν
) Γ(2iν)

Γ(d
2

+ 2iν − 1)
× Γ(d

2
+ S + 2iν − 1)S!

Γ(d
2

+ S − 2iν)Γ(d
2

+ S)
.

Calculating the corresponding eigenvalues of the operators V and H we find

V Φ∆,S,n(x1, x2) = δ(ν)δS,0Φ∆,S,n(x1, x2),

HΦ∆,S,n(x1, x2) = h−1
∆,SΦ∆,S,n(x1, x2), (2.3.6)

where the function h(∆, S) is given by (2.1.6). Applying (2.3.5)–(2.3.6) we can

expand the correlation function (2.3.3) over the basis of states (2.3.4). This yields
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the expansion of G over conformal partial waves defined by the operators O∆,S(x0)

in the OPE channel O(x1, x2)

G(u, v) =
∑

S/2∈Z+

ˆ ∞
−∞

dνµ∆,S
u(∆−S)/2g∆,S(u, v)

h∆,S − ξ4
, (2.3.7)

where ∆ = d
2
+2iν, and µ∆,S = 2πd/c2(ν, S) is related to the norm of the state (2.3.5).

The fact that the dependence on α2 disappears from (2.3.7) can be understood as

follows. Viewed as a function of S, ξ4/h∆,S develops poles at ν = ±iS which pinch

the integration contour in (2.3.7) for S → 0. The contribution of the operator V is

needed to make a perturbative expansion of (2.3.7) well-defined. For finite ξ4, these

poles provide a vanishing contribution to (2.3.7) but generate a branch-cut
√
−ξ4

singularity of G(u, v), as in 4D case [36].

At small u, we close the integration contour in (2.3.7) to the lower half-plane

and pick up residues at the poles located at solutions of (2.1.6) and satisfying the

unitarity bound Re ∆ > S. The resulting expression for G(u, v) takes the expected

form (2.3.2) with the OPE coefficients given by

C2
∆,S =

Γ(d
2

+ S)

S!

Γ(∆− 1)

Γ(∆− d
2
)
Res

(
d∆

h∆,S − ξ4

)
Γ(S −∆ + d) Γ2

(
1
2
(S + ∆)

)
Γ2
(

1
2
(S −∆ + d)

)
Γ(S + ∆− 1)

.

(2.3.8)

where the residue is computed w.r.t. the appropriate solution of (2.1.6) for each

relevant operator. For instance, we can consider tr(φ2
1)†, which is exchanged for any

even d; then the perturbative expansion of (2.3.8) is

C2
trφ2 = 2 +

4iξ2

Γ
(
d
2

) (2ψ(0)

(
d

4

)
− ψ(0)

(
d

2

)
+ γE

)
+O(ξ4) (2.3.9)

The relations (2.1.6) and (2.3.8) define exact conformal data of operators propagating

in the OPE channel x1 → x2.

Finally, we discuss an interesting d → ∞ limit of the theory. We should then

rescale the coupling ξ = ξ∞
√

Γ(d/2), where ξ∞ is fixed. Anomalous dimension γ∞
of tr(φ2

1) has finite limit since for S = 0 in eq.(2.1.6) it is given by

−γ∞ sin
(πγ∞

2

)
= 2πξ4

∞

while γ∞ vanishes for operators with higher spin S 6= 0. As concerns the expansion

(2.3.2), the number of exchanged operators becomes a countable infinity, diverging

linearly in d. Finally, the OPE structure constant (2.3.9) for tr(φ2
1) trivially reduces

to its bare value in this limit.

2.4 Conclusions

We showed that the strongly γ-deformed N = 4 SYM theory proposed in [32] is

just the 4-dimensional representative of a wider, d-dimensional family of theories
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of two complex scalar fields obtained by modifying the propagators of fields in a

d-dependent way. Similarly to the 4D case [36], they turn out to be conformal and

integrable at any d, at least in the planar limit, if we add to the action certain

double-trace terms with specific couplings. The conformality of our theory at finite

Nc remains an open question, though it is quite plausible that the planar conformal

point simply shifts to some other complex values of couplings. There are two such

complex conjugate values of these couplings and we compute them perturbatively up

to two loops. The integrability is explicit due to the domination of sufficiently large

orders of perturbation theory by the “fishnet” Feynman diagrams. The cylindric

fishnet graphs, related to the renormalization of “vacuum” tr(φL1 ) operators, can

be created by multiple application of a “graph-building” operator which appears

to be an integral of motion of the integrable conformal SO(1, d + 1) spin chain.

We also generalize the bi-scalar model to a CFT with different propagators for the

fields φ1 and φ2, leading to “non-isotropic” fishnet Feynman graphs. The underlying

graph building operator has representations with different conformal spins in two

directions on the fishnet graph. In the 2D case the fishnet graphs are described by

the same SL(2,C) chain as used for the dynamics of generalized Lipatov’s reggeized

gluons [115] but with different value of spin, s = 1/4 in isotropic case, instead of

the Balitski-Kuraeev-Fadin-Lipatov reggeized gluon spin s = 0. This spin chain,

extensively studied in the literature [116, 116–121], is restored in the singular limit

ω → 0 of our bi-scalar model (2.1.1). In the spirit of [36], we computed here the exact

four point correlator at any d as an expansion into conformal blocks with explicit

OPE coefficients and dimensions of exchange operators in one of the channels. In

1d case, our results are similar to the scalar version of conformal Sachdev-Ye-Kitaev

fermionic theory [122] at q = 4. For even d we found a finite, d-dependent number of

local exchange operators at a given spin and dimension. It would be very interesting

to compute some of the discussed quantities (dimensions, structure constants) in

the next 1/N2
c approximation, similarly to [97, 123, 124], if the conformality of the

theory holds at any Nc. The explicit form of this operators can be obtained by the

analysis of the mixing matrix for their quantum multiplets [38, 39]. This becomes

more complicated as the dimension grows due to growing rank of the multiplets and

the number of transitions, together with log-CFT effects which arise starting from

4D, due to the chirality.

Although the Lagrangian (2.1.1) of our theory is non-local at general d (apart from

the sequence d ∈ 4N in ”isotropic” case), it does not prevent the existence of standard

OPE data in this theory, which is more important for the physical interpretation of

this CFT. Moreover it would be interesting to generalize to any d the results for

fishnet graphs of the type considered in [125] and to the correlation functions for

operators involving more than two scalars. Finally, an important question remains,

as in 4D, whether these theories have any string dual at any d, according to the

original proposal of G .’t Hooft [126].





Chapter 3

Four-point functions of Basso-Dixon

type

3.1 Introduction

Recently, B. Basso and L. Dixon obtained an elegant explicit expression for a spe-

cific, conformal planar Feynman graph of fishnet type [35], having N rows and L

columns, and thus (N + 1)(L + 1) − 4 loops. This graph is presented on Fig.3.1.

It has four external fixed coordinates and, similarly to the conformal 4-point func-

tions, has a non-trivial dependence on two cross-ratios u, v. This Basso-Dixon (BD)

formula takes the form of an N ×N determinant of explicitly known “ladder” inte-

grals [34, 127]. It is one of very few examples of explicit results for Feynman graphs

with arbitrary many loops.

The BD formula appeared in the context of its application to the previously intro-

duced bi-scalar fishnet theory in 4D which emerged as a specific double scaling limit

of γ-deformed N = 4 SYM theory combining weak coupling and strong imaginary γ-

twists [32, 91]. In particular, in the bi-scalar theory, the BD integral represents indeed

a particular single-trace correlation function (described in the following). In general,

the bulk structure of planar graphs in fishnet CFT is that of the regular square lat-

tice of massless propagators. Such a graph represents an integrable two-dimensional

statistical mechanical system [92] which can be studied via integrable quantum spin

chain with the symmetry of 4D conformal group SU(2, 2) [32, 39, 91, 128].

3.2 Two-dimensional case

In the chapter 2 we introduced the d-dimensional generalization of bi-scalar fishnet

theory [28]. The Basso-Dixon type integral corresponds to the following single-trace

correlation function:

IBDL,N(z0, z1, w0, w1) =
〈

tr
(
φL1 (z0)φN2 (z1)φ†L1 (w0)φ†N2 (w1)

)〉
. (3.2.1)

– 95 –
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Figure 3.1: Basso-Dixon type Feynman diagram for N = 4, L = 3. The propagators have the form

[w − z]−α where α = 1/2± ω for vertical and horizontal lines, respectively.

It is easy to see that, due to the chiral nature of interaction of two scalars, this

correlation function is given in the planar limit by a single, fishnet-type planar graph

of BD-type drawn in Fig.3.1. Explicitly, this Feynman graph is given by expression

IBDL,N(z0, z1, w0, w1) =

ˆ ∏
(l,n)∈LL,N

ddzl,n×

×

 ∏
(l,n)∈LL,N+1

1

|zl,n−1 − zl,n|d/2+2ω

 ∏
(l,n)∈LL+1,N

1

|zl−1,n − zl,n|d/2−2ω

 , (3.2.2)

where we have N ·L integration variables belonging to the L×N lattice of positive

integers LL,N = {1 ≤ L ≤ L, 1 ≤ n ≤ N}, and we take equal coordinates at each

of the four boundaries of this rectangular lattice: {zj,0 = z0, zj,N+1 = w0, z0,k =

z1, zL+1,k = w1} are imposed for j = 1, ..., L and k = 1, ..., N .

This integral was computed explicitly in d = 4, for “isotropic” case ω = 0, in [35].

The derivation is based on certain assumptions, typical for the S-matrix bootstrap

methods inherited from the integrability of planar N = 4 SYM [13]. It would be

important to derive this formula from the first principles, based on the conformal

spin chain interpretation of fishnet graphs, but in four dimensions such a derivation

is so far missing.

In the first part of this chapter we will derive from the first principles the explicit

expression for the two-dimensional analogue, d = 2, of Basso-Dixon formula for the
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Figure 3.2: Basso-Dixon type diagram IBDL,N (z0, z1, w0, w1) (on the left), its reduction GL,N (z|w) (in the

middle) and generalization DL,N (z|w) (on the right) described in sec.3.2.1. We integrate

only the coordinates in the vertices marked by black blobs. Sending w0 → ∞ in the original

Basso-Dixon type diagram, we remove the upper row of propagators and obtain the reduced

diagram (in the middle). Using conformal invariance of the original graph (on the left), we can

always restore it from the graph on the right, by inversion and shift of coordinates w1, z1, z0.

Further on, we generalize the middle diagram by splitting the end point coordinates of left

and right columns of external propagators, to separate coordinates z1 → (z1, z2, . . . , zN ) and

w1 → (w1, w2, . . . , wN ), and then add at the left a column of vertical propagators [zi−zi+1]−γ ,

thus getting the generalized configuration (on the right).

“fishnet” Feynman integral1

IBDL,N(z0, z1, w0, w1) = (3.2.3)

=

ˆ ∏
(l,n)∈LL,N

ddzl,n

 ∏
(l,n)∈LL,N+1

1

[zl,n−1 − zl,n]γ

 ∏
(l,n)∈LL+1,N

1

[zl−1,n − zl,n]1−γ

 ,

where the coordinates (z0, z1, w0, w1) are defined as after the eq.(3.2.2). We took here

propagators transforming in the spinless complementary series of representations

(γ̄ = γ ∈ (0, 1)) under SL(2,C) group action (3.2.10). The propagators for d =

2, ω = γ− 1/2 are [w− z]−1/2∓ω, where ∓ is chosen for vertical and horizontal lines,

i.e. for the fields φ1, φ2, respectively.

Our derivation will be based on integrable SL(2,C) spin chain methods worked

out in [117, 129, 130], using the Sklyanin separation of variables (SoV) method [131–

133]. The result can be presented in explicit form, in terms of N ×N determinant of

a matrix with the elements which are explicitly computed in terms of hypergeometric

functions of cross-ratios2. Our main formula looks as follows:

IBDL,N(z0, z1, w0, w1) =
[z1 − z0](γ−1)N [w1 − w0](γ−1)N

[z0 − w0](γ−1)N+γL
[η]

γ−1
2
NB

(γ)
L,N (η) (3.2.4)

where

B
(γ)
L,N(η,η̄)=(2π)−Nπ−N

2

det
1≤j,k≤N

[
(η∂η)

i−1(η̄∂η̄)
k−1I

(γ)
N+L(η,η̄)

]
, η=

z0−w1

w1−w0

z1−w0

z0−z1

,

(3.2.5)
1Here and in the following we adopt the notation [z − w]α ≡ (z − w)α(z∗ − w∗)ᾱ for propagators, see App.B.1

for details.
2Or alternatively, due to the obvious L↔ N symmetry of the integral, in terms of the (L−1)×(L−1) determinant

of the same matrix elements, which will depend only on L+N combination.
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and

I
(γ)
M (η, η̄) =

2πM+1

(M − 1)! [η]
γ−1

2

ΓM(γ)

ΓM(1− γ)
×

× ∂M−1
ε

∣∣
ε=0

[
ΓM(1− γ − ε)

ΓM(γ + ε)

ΓM(1 + ε)

ΓM(1− ε) [η]−ε
∣∣∣∣M+1FM

(
1− γ − ε · · · 1− γ − ε 1

1− ε · · · 1− ε

∣∣∣∣ η)∣∣∣∣2
]
.

Formula (3.2.5) is also generalized in sections 3.2.2, 3.2.4 to the principal series

representations of SL(2,C), see (3.2.10).

In the next section, we will define the basic building blocks for construction of

the Basso-Dixon configuration in the operatorial way. In section 3.2.2, we will in-

troduce the generalized “graph-building” operator related to the transfer-matrix of

the integrable open SL(2,C) quantum spin chain. We will diagonalize there this

operator by means of the SoV method and describe the full system of its eigen-

functions. In section 3.2.2 the result for 2d Basso-Dixon-like N × L graph will be

presented in terms of an N ×N determinant of the matrix constructed from ladder

graph, that is the 1 ×M case of Basso-Dixon diagram. In section 3.2.4, the ladder

graph will be computed explicitly, in terms of the hypergeometric functions and their

derivatives, thus completing the explicit result for the full two-dimensional Basso-

Dixon-like N ×L graph presented above. The ladder graph is employed to compute

the so-called simple wheel graph in two dimensions. A particular case of N = L = 1

(the two-dimensional “cross” graph) will be explicitly given in terms of the elliptic

functions of the cross ratio.

3.2.1 Transformations of Basso-Dixon type graph and L↔ N duality

In order to apply the powerful methods of SL(2,C) spin chain integrability, such as

the separation of variables (SoV), we will use the conformal symmetry to reduce the

BD graph on Fig.3.1 to a more convenient quantity for our purposes. First of all, we

send w0 →∞ and drop the corresponding propagators containing this variable:

IBDL,N(z0, z1, w0, w1) →
w0→∞

[w0]−γLGL,N(z1, w1|z0)

where GL,N(z1, w1|z0) =

=

ˆ L∏
l=1

N∏
n=1

d2zln

 ∏
1≤l≤L
1≤n≤N

1

[zl,n−1 − zl,n]γ × [zl,n − zl+1,n]1−γ

N−1∏
n=0

1

[z0,n − z1,n]1−γ
,

where we take {zj,0 = z0, z0,k = z1, zL+1,k = w1} for j = 1, ..., L and k = 1, ..., N .

We can always restore the original quantity IBDL,N(z0, z1, w0, w1) from GL,N(z1, w1|z0),

presented on Fig.3.2(middle), using the conformal symmetry of IBDL,N , i.e. by applying

the inversion+shift transformation and thus getting the original quantity (3.2.4) (see

Appendix B.2 for derivation and examples).
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Figure 3.3: The “comb” transfer matrix for an open spin chain of length N (N = 3 on the picture) is

applied L times to itself as an integral kernel. The resulting structure is a fishnet of the type

of fig.3.2(right) with L+ 1 vertical and 3 horizontal lines.

Now we are going to generalize the quantity GL,N(z1, w1|z0), in order to apply

the integrability techniques. Therefore, we introduce a more general quantity drawn

on Fig.3.2(right):

DL,N(z0)(z|w)=

ˆ L∏
l=1

N∏
n=1

d2zln

 ∏
(l,n)∈LL+1,N

1

[zl−1,n−1−zl−1,n]γ×[zl−1,n−zl,n]1−γ

,
(3.2.6)

where all the external legs on the left and on the right of Fig.3.2(left) have different

coordinates: {zj,0 = z0, z0,k = zk, zL+1,k = wk} for j = 0, 1, ..., L and k = 1, ..., N .

We introduced in the r.h.s. of (3.2.6) the vector notations: z = {z1, z2, . . . , zN},w =

{w1, w2, . . . , wN}. Notice that, after point-splitting, we multiplied, for the future

convenience, the middle diagram of Fig.3.2 by the vertical propagators on the left,

without altering the essential part of the quantity, since the coordinates in the left

column are exterior and they are not integrated.

The last expression (3.2.6), representing the diagram on the right of Fig.3.2, is

the most appropriate for the application of integrability methods. Namely, we can

represent it as a consecutive action of a “comb” transfer matrix “building” the graph,

as shown on the Fig.3.3. In the next section, we will define yet a more general transfer

matrix ΛN(x)(z|w) depending on a spectral parameter x and diagonalize it by means

of eigenfunctions using separation of variable (SoV) method of Sklyanin. The lattice

of propagators can be inhomogeneous in L-direction, since each transfer matrix,

corresponding to an open spin chain of length N “building” the BD configuration by

L consecutive applications, as on Fig.3.3, can have its own spectral parameter. Its

particular, homogeneous case will give the explicit formula for 2D BD graph. 3

Now we will comment on the obvious L↔ N duality of the original BD diagram:

IBDL,N(z0, z1, w0, w1; γ) = IBDN,L(z1, w0, z0, w1, 1− γ), (3.2.7)

3Still containing the anisotropy parameter γ.
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where we explicitly introduced among the arguments the anisotropy parameter γ. It

is useful to represent the same quantity in a more explicitly conformally symmetric

way:

IBDL,N(z0, z1, w0, w1; γ) = [w0 − z0]−Lγ[w1 − z1]N(γ−1) [η]N
γ−1

2 [1− η]N(1−γ)B
(γ)
L,N(η).

(3.2.8)

Then the L↔ N duality reads as follows:

B
(1−γ)
N,L (1/η) = [η]

γ
2

(N+L)−N
2 [1− η]−(N+L)γ+N B

(γ)
L,N(η). (3.2.9)

3.2.2 “Graph building” operator

Our main goal in this chapter is the computation of the quantity B
(γ)
L,N(η) directly

related to the BD integral by (3.2.8). To that end, we define a more general transfer

matrix of an open SL(2,C) spin chain, building the generalized BD graph. The

explicit computations will be carried out for values of γ corresponding to the principal

series of representations of SL(2,C). Then the original quantity (3.2.3) is obtained

by analytic continuation to real γ = 1
2

+ ω in the final result.

First of all, we fix our parameters:

• Definition of the conformal spin:

s =
1 + ns

2
+ iνs , s̄ =

1− ns
2

+ iνs (3.2.10)

where ns ∈ Z is the SO(2) spin and νs ∈ R, so that 1 + 2iνs is the scaling

dimension in the principal series of representations [113].

• Definition of the xk-parameters which will play the role of spin chain inhomoge-

nieties in spectral parameter, and then also of Sklyanin separated variables:

xk =
nk
2

+ iνk , x̄k = −nk
2

+ iνk (3.2.11)

where nk ∈ Z and νk ∈ R.

• The spin s and the parameter x (or y) will enter almost everywhere in special

combinations 4, so that for simplicity we shall use the shorthand notations and

define the α , β , γ-parameters

α = 1− s− y , β = 1− s+ y , γ = 2s− 1 (3.2.12)

ᾱ = 1− s̄− ȳ , β̄ = 1− s̄+ ȳ , γ̄ = 2s̄− 1 (3.2.13)

Now let us define the integral operator ΛN(y|z0) by its explicit action on a function

Φ(z1 , . . . , zN) by the formula

[ΛN(y|z0)Φ](z1 , . . . , zN , z0) =
N∏
k=1

[zk − zk+1]−γ× (3.2.14)

4In what follows, we will always use the notation y,yk when the separated variables appear as spectral parameters

of an operator, while x,xk when they label an eigenfunction. Both notations refer to objects of the kind (3.2.11).
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Figure 3.4: The diagrammatic representation for the kernel of ΛN (y|z0). The arrow with index α from z

to w stands for [w − z]−α. The indices are given by the following expressions: α = 1− s− y,

β = 1− s+ y, γ = 2s− 1.

×
ˆ
d2w1 · · · d2wN

N∏
k=1

[wk − zk]−α[wk − zk+1]−β Φ(w1 , . . . , wN , z0) ,

where by definition zN+1 = z0, and we introduced the symbol [z]α ≡ zα(z∗)ᾱ (see

the details for this notation in App. B.1). Note that the operator ΛN(y|z0) maps the

function of N variables to the function of N + 1 variables, but the last variable z0

plays some special role of an external variable. The diagrammatic representation for

the kernel of the integral operator ΛN(y|z0) is shown schematically on the Fig.3.4.

The operators ΛN(y|z0) form a commutative family and the proof of the commutation

relation

ΛN(y1|z0) ΛN(y2|z0) = ΛN(y2|z0) ΛN(y1|z0) (3.2.15)

is equivalent to the proof of the corresponding relation for the kernels which is demon-

strated on the Fig.3.5. The proof is presented there diagrammatically, with the help

of cross relation (B.1.7). In this way, we proved the integrability of our open spin

chain since both operators on each side of the last relation contain different spectral

parameter, y1 or y2. We shall use the similar notations Λk(y) for k = 2 , . . . , N − 1

for operators whose action on a function Φ(z1 , . . . , zk) is defined in a similar way

[zi − zi+1]−γ × (3.2.16)

×
ˆ
d2w1 · · · d2wk

k∏
i=1

[wi − zi]−α[wi − zi+1]−β Φ(w1 , . . . , wk) ,

The variable zk+1 plays here a special role and the diagrammatic representation for

the kernel of Λk(y) is the same as for ΛN(y|z0) with the evident substitutions N → k

and z0 → zk+1.

Eigenfunctions of the operator ΛN (y|z0)

The eigenfunctions of the operator ΛN(y|z0) are constructed explicitly and they admit

the following representation

Ψ(x|z) = Λ̃N−1 (x1) Λ̃N−2 (x2) · · · Λ̃1 (xN−1) [z1 − z0]−s+xN (3.2.17)
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Figure 3.5: The proof of commutation relation (3.2.15) for two operators ΛN (y|z0): (1) The diagram for

the kernel of Λ3(y|z0). (2) The diagram for Λ3(y1|z0) Λ3(y2|z0): α1 = 1−s−y1, α2 = 1−s−y2,

β1 = 1− s+ y1, β2 = 1− s+ y2, γ = 2s− 1. (3) Triangle-star transformations inside the right

column of triangles, leading to Λ3(y2) (4) Movement of the line with index β2 − β1 upstairs

using cross relations. (5) Star-triangle transformations back to Λ3(y2|z0) Λ3(y1|z0).

where the operators Λ̃N−k (xk) differ from the operators ΛN−k (xk) by a simple factor

Λ̃N−k (xk) = [zN−k − z0]−s+xk rN−k(xk, x̄k) ΛN−k (xk) , (3.2.18)

with rN−k defined according to

rk(x, x̄) =

(
Γ(1− s̄+ x̄)Γ(1− s+ x)

Γ(s+ x)Γ(s̄− x̄)

)k−1

. (3.2.19)

and where we introduce a shorthand vector notation for the whole set of variables

x = {x1, . . . ,xN}, xk =
(
xk =

nk
2

+ iνk , x̄k = −nk
2

+ iνk

)
z = {z1, . . . , zN}, zk ∈ C (3.2.20)

The presence of the pre-factor (3.2.19) in the definition of Λ̃N−k(x) operators (3.2.18)

is crucial to prove the exchange relation

Λ̃n(x1) Λ̃n−1(x2) = Λ̃n(x2) Λ̃n−1(x1) , (3.2.21)

from which follows that Ψ(x|z) are symmetric functions of the x-variables

Ψ(x|z) = Ψ(x1, . . . xk, . . . xh, . . . , xN |z) = Ψ(x1, . . . xh, . . . xk, . . . , xN |z) .

(3.2.22)

The vector of variables x is used as quantum numbers (separated variables) to label

the eigenfunction and z is the set of complex coordinates in our initial representation.

We will prove that

ΛN(y|z0) Ψ(x|z) = λ(y, x1) · · ·λ(y, xN) Ψ(x|z) , (3.2.23)
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where

λ(y, xk) = π a(1− s− y, s+ xk, 1 + y − xk) (−1)[y+xk] . (3.2.24)

and the function a(α, β, γ) is defined in App. B.1. We should note that functions

Ψ(x|z) are generalized eigenfunctions of the operator A+ z0B where A,B are stan-

dard matrix elements of the monodromy matrix [6, 133].

Note that the detailed notation for the eigenfunction should be ΨN(x|z) but we

shall skip N almost everywhere for sake of brevity.

In the simplest case N = 1 we have

Ψ(x1|z1) = [z1 − z0]−s+x1 ,

Λ1(y|z0) [z1 − z0]−s+x1 = λ(y, x1)[z1 − z0]−s+x1 . (3.2.25)

The relation (3.2.25) can be derived by using the chain integration rule (B.1.4). The

general proof of the relations (3.2.23)-(3.2.24) is based on the exchange relation

ΛN(y|z0) Λ̃N−1(x1) = λ(y, x1) Λ̃N−1(x1) ΛN−1(y|z0) (3.2.26)

The proof of the relation (3.2.26) for N = 3 is shown in Fig.3.6 and the generalization

is obvious. Notice that after exchange, the operator defining the eigenfunction enters

with the reduced length N of the effective spin chain. Using the exchange relation

step by step it is easy to derive the formula

ΛN(y|z0)Λ̃N−1 (x1) Λ̃N−2 (x2) · · · Λ̃1 (xN−1) =

λ(y, x1)λ(y, x2) · · ·λ(y, xN−1) Λ̃N−1 (x1) Λ̃N−2 (x2) · · · Λ̃1 (xN−1) Λ1(y|z0) . (3.2.27)

Then the proof that Ψ(x|z) from (3.2.17) is eigenfunction of the operator ΛN(x|z0)

with the eigenvalues given by (3.2.23) is reduced to the relation (3.2.25) in the form5

Λ1(y|z0) [z1 − z0]−s+xN = λ(y, xN)[z1 − z0]−s+xN .

We will see that these eigenfunctions form the complete orthonormal basis. Using

them, as well as the explicit eigenvalues of ΛN(y|z0) give above, we will compute the

Basso-Dixon type two-dimensional integral.

Orthogonality and completeness

The functions Ψ(x|z) form a complete orthonormal basis in the Hilbert space HN .

Any function Φ ∈ HN can be expanded w.r.t. this basis as follows

Φ(z) =

ˆ
DNxµ(x)C(x) Ψ(x|z) . (3.2.28)

The symbol DNx stands for the measure in the principal series representation of

SL(2,C) group

DNx =
N∏
k=1

(
∞∑

nk=−∞

ˆ ∞
−∞

dνk

)
. (3.2.29)

5This computation, based on uniqueness relation, can also be checked at nk = 0, 1 conwith the software [134].



CHAPTER 3. FOUR-POINT FUNCTIONS OF BASSO-DIXON TYPE 104

Figure 3.6: The proof of diagonalization procedure for the operator ΛN (y|z0) for N = 3, pushing the

operator through the first row of the eigenfunction: (1) The diagram for Λ3(y|z0) Λ̃2(x1):

α = 1− s− y, α1 = 1− s− x1, β = 1− s+ y, β1 = 1− s+ x1, γ = 2s− 1. (2) Star-triangle

transformations inside Λ̃2(x1) and two lines β and 1−β1 ending at z0 joint to the one line (3)

Movement of the line with index β1−β upstairs using cross relations leads to Λ̃2(x1) Λ2(y|z0),

(4).

Depending on the value of spin in the quantum space, ns = s − s̄, the sum over nk
goes over all integers (integer ns) or half-integers (half-integer ns). The coefficient

function C(x) is given by the scalar product

C(x) =

ˆ
d2NzΨ(x|z) Φ(z) . (3.2.30)

The weight function µ(x)

µ(x) =
(2π)−Nπ−N

2

N !

∏
k<j

[xk − xj] (3.2.31)

is the so-called Sklyanin measure [131, 132]. It is related to the scalar product of the

eigenfunctions ˆ
d2NzΨ(x′|z) Ψ(x|z) = µ−1(x) δN(x− x′) . (3.2.32)

Here the delta function δN(x− x′) is defined as follows:

δN(x− x′) =
1

N !

∑
s∈SN

δ(x1 − x′s(1)) . . . δ(xN − x′s(N)) , (3.2.33)

where summation goes over all permutations of N elements and we define

δ(x− x′) ≡ δnn′δ(ν − ν ′) . (3.2.34)

These formulae were obtained in [117, 130] and the corresponding diagrammatic

calculations are discussed at length in these papers. The completeness condition for
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the functions Ψ(x|z) has the following form

(2π)−Nπ−N
2

N !

ˆ
DNx

∏
k<j

[xk − xj] Ψ(x|z) Ψ(x|z′) =
N∏
k=1

δ2(~zk − ~z′k) . (3.2.35)

A similar formula was proven in the case of SL(2,R) Toda spin chain by [135], in

the case of modular XXZ magnet in [136] and for b-Whittaker functions in [137]. It

is commonly believed to work for our SL(2,C) spin chain as well, though the proof

is still missing.

SoV representation of generalized Basso-Dixon diagrams

We have now the necessary instruments to reduce the Basso-Dixon type Feynman

integrals to the SoV form. First we present the most general, inhomogeneous gener-

alization of our construction and then reduce it to homogeneous anisotropic, or even

isotropic case. The last one will be the 2D analogue of the standard fishnet graph

considered in d = 4 dimensions in [35]. We will suggest for it an explicit determinant

representation.

3.2.3 SoV representation for general inhomogeneous lattice

Using the completeness (3.2.35) and the relation (3.2.23) we can represent the most

general “graph-generating” kernel, operator

B̂(y1, y2, · · · , yL, yL+1; z0) = ΛN(y1|z0) ΛN(y2|z0) · · ·ΛN(yL+1|z0), (3.2.36)

which “builds” a lattice formed by a repeated action of the operator (3.2.14). The

integral kernel of the operator (3.2.36) in coordinate representation looks as follows

B̂(y1, y2, · · · , yL, yL+1; z0)(z|w) =

=
(2π)−Nπ−N

2

N !

ˆ
DNx

∏
k<j

[xk − xj]
N∏
k=1

L+1∏
l=1

λ(yl, xk) Ψ(x|z) Ψ(x|w) (3.2.37)

The graphical representation for the left hand side (3.2.37) for this general case is

given in the left picture on Fig.3.7. This operator is represented there in the form of

a lattice with inhomogeneities defined by spectral parameters y1, y2, . . . , yL+1. Later

in this section we will perform the reduction of this formula to the homogeneous

lattice of propagators as in the Basso-Dixon integral (3.2.2) by taking equal spectral

parameters in each column: y1 = y2 = · · · = yL+1 = y, or even a more particular

case of homogeneous but anisotropic lattice of propagators (different powers in two

directions), putting y = s−1. But so far we consider the most general configuration.

The diagram in Fig.3.7 (right) can be reduced to a generalized Basso-Dixon di-

agram. First, we have to perform amputation of the most left vertical lines, then

the reduction of all zk → z1 in the function Ψ(x|z) and finally the reduction of all

wk → w1 in the function Ψ(x|w) in the right hand side of (3.2.37). We will see
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Figure 3.7: (1) The diagram for Λ3(y1|z0)Λ3(y2|z0)Λ3(y3|z0)Λ3(y4|z0): αk = 1− s− yk, βk = 1− s+ yk,

γ = 2s− 1. (2) Reduction of the diagram for yk → s− 1, or βk → 0.

that such a reduction leads to a significant simplification of the eq. (3.2.37), allowing

to perform at the end all the integrations and summations over separated variables

explicitly.

Let us start from the function ΨN(x1 , x2 . . . xN |z). All the needed steps are

illustrated in the Fig. 3.8 for N = 3. Before the reduction zk → z1 we have to

perform the amputation of the factors

[z0 − z1]−γ [z1 − z2]−γ · · · [zN−1 − zN ]−γ .

After amputation and reduction zk → z1 we obtain the diagram for the action of

the operator ΛN(x) for x = s − 1 on the function Ψ(N−1)(x2 , x3 . . . xN |z). It is an

eigenfunction for this operator, with the eigenvalue λ(y1, x2)λ(y1, x3) · · ·λ(y1, xN) .

The next step is similar but for a reduced chain N → N − 1 and we obtain the next

eigenvalue which is λ(y2, x3)λ(y2, x4) · · ·λ(y2, xN) , etc.

After all these manipulations we obtain the following formula for the reduction

of the amputated eigenfunction

N−1∏
k=0

[zk − zk+1]γ Ψ(x|z)→[z0 − z1]−α1−...−αN
N∏
k=1

rN−k+1(xk, x̄k)λ(xk)
k−1 ,

(3.2.38)

where we introduced

λ(xk) = πa(2− 2s, s+ xk, s− xk) (−1)[s+xk] , (3.2.39)

and used the factor rn(xk, x̄k) defined in (3.2.19).

The reduction zk → z1 for the eigenfunction Ψ(x|z) without amputations of

the lines is shown step by step in the Fig.3.9. First of all we use the star-triangle
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Figure 3.8: Amputation of propagators from the eigenfunction Ψ(x1, x2, x3|z1, z2, z3) and then reduction

in the limit zk → z1 to the simple power [z0 − z1]−α1−α2−α3 . We perform amputation of

[z1 − z2] and [z2 − z3] lines in (1), then (2) we reduce the first row z2, z3 → z1 leading to (3).

We can open the triangle in (3) to a star, so that integrations in upper-left, and then lower-left

vertex are performed using chain relation and star-triangle relation. At the next step (4) we

join propagators with coinciding coordinates on the left, and performing the last integration

(5) via chain relation, the eigenfunction is reduced to a simple line (6).

Figure 3.9: Reduction of the eigenfunction Ψ(x1, x2, x3|z1, z2, z3) in the limit zk → z1 to simple power

[z0 − z1]β1+β2+β3−3. Dashed lines stand for δ(2)(z), see also (B.1.5). We reduce z3, z2 → z1

in (1). By applying triangle-star relations to the first row of triangles (1) we obtain δ function

kernels. We integrate out δ functions (2) and we open the triangle in (3) to a a star and

put together the points z1 obtaining (4). The δ function is integrated (4), leading to the full

reduction of the eigenfunction to a simple line (5).

relation and reduce the triangle to the corresponding delta-function. This elementary

reduction

[z2 − z1]−γ [w − z1]−α [w − z2]−β → − π
2

γγ̄

1

λ(x)
δ2(z1 − w)

is shown on the right in Fig.3.2. Using this elementary reduction it is possible to

reduce the first layer of the diagram for the general eigenfunction Ψ(x|z) to the

product of the corresponding delta-functions and [z0 − z1]β1−1 with the coefficient(
−π2

γγ̄
1

λ(x1)

)N−1

. After integrations in the corresponding vertices in the second layer

all delta-functions disappear so that it is possible to repeat the same procedure. After

all iterations one obtains the following expression for the reduced eigenfunction

Ψ(x|z)→
N∏
k=1

(
rN−k+1(xk)

(
− π

2

γγ̄

1

λ(xk)

)N−k)
[z0 − z1]β1+...+βN−N .
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Note that we have to perform such reduction also in the function Ψ(x|w) so that it

remains to perform the complex conjugation and evident substitution z → w. Using

the rules of the complex conjugation

s∗ = 1− s̄ , (xk)∗ = −x̄k ; α∗ = 1− ᾱ , β∗ = 1− β̄ , γ∗ = −γ̄ (3.2.40)

rk(xh)
∗ = rk(xh)

−1 ;
(
[z]β
)∗

= [z]1−β ; , λ∗(x) = − π
2

γγ̄

1

λ(x)
(3.2.41)

and substituting z → w we obtain

Ψ(x|w)→
N∏
k=1

(
λN−k(xk) / rN−k+1(xk)

)
[z0 − w1]−β1−...−βN . (3.2.42)

Finally, as a result of amputation-reduction on Ψ(x|z) and reduction of Ψ(x|w), by

the use of (3.2.38) and (3.2.42) the projector Ψ(x|z)Ψ(x|w) is transformed into

N∏
k=1

λN−1(xk) [z0 − z1]−α1−...−αN [z0 − w1]−β1−...−βN . (3.2.43)

We point out that the way we reduce the N coordinates z = {zk} to a single point

in the functions Ψ(x|z) and Ψ(x|z) can be alternatively obtained by inserting the

complete basis (3.2.35) between two Λ-kernels in (3.2.36), and repeating their diago-

nalization after the reduction of the last kernel ΛN(yL+1|z0) and the amputation and

reduction of the first ΛN(y1|z0).

From formula (3.2.43) we obtain the following representation for the two-dimensional

analogue of generalized Basso-Dixon diagram:

GyN,L(z1 , w1 , z0) =
(2π)−Nπ−N

2

N !

ˆ
DNx

∏
k<j

[xk − xj]× (3.2.44)

×
N∏
k=1

(
λN−1(xk)

L+1∏
l=1

λ(yl, xk)

)
[z0 − z1]−α1−...−αN [z0 − w1]−β1−...−βN .

We recall that αk = 1− s−xk , βk = 1− s+xk and xk = nk
2

+ iνk , x̄k = −nk
2

+ iνk.

Introducing the amputated cross ratio

η|w0→∞ =
z0 − w1

z0 − z1

(3.2.45)

we rewrite the last expression for inhomogeneous and anisotropic 2D Basso-Dixon

type integral in a concise form

GyL,N(z1 , w1 , z0) = ([z0 − z1] [z0 − w1])N(s−1) ByL,N(η) (3.2.46)

where

ByL,N(η) =
(2π)−Nπ−N

2

N !

ˆ
DNx

N∏
k=1

(
[η]−xkλN−1(xk)

L+1∏
l=1

λ(yl, xk)

) ∏
k<j

[xk − xj] .

and by superscript y we mean the vector of inhomogeneity parameters y = (y1, y2, . . . , yN).
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Determinant representation

We notice that in (3.2.47) we deal with the multiple integral of a special type which

can be transformed, similarly to the eigenvalue reduction of the hermitian one-matrix

integral [138, 139], to the determinant form

ByL,N(η) =
(2π)−Nπ−N

2

N !

ˆ
DNx

∏
k<j

[xk − xj]
N∏
k=1

f{y}(xk) = N ! det M (3.2.47)

where we introduced the momenta

Mij =

ˆ
Dx xi−1x̄j−1f{y}(x) ; i, j = 1 , . . . , N (3.2.48)

with the weight function given in our case by the expression

f{y}(x) = [η]−xλN−1(x)
L+1∏
l=1

λ(yl, x) = η−xη̄−x̄λN−1(x)
L+1∏
l=1

λ(yl, x) (3.2.49)

where λ(x) and λ(y, x) are defined in eqs.(3.2.39),(3.2.24). So for any pair of integers

L,N the problem is reduced to the computation of momenta (3.2.48), which we will

do explicitly in the section 3.2.4 after the reduction to Basso-Dixon configuration of

the general formula (3.2.46).

Reductions

In particular case, leading to the homogenous Basso-Dixon lattice configuration, we

put y1 = y2 = · · · = yL = y and obtain for the reduced quantity

By(z0)(z|w) |y1=y2=···=yL=y ≡ B(y; z0)(z|w) = ΛL(y|z0)(z|w) (3.2.50)

the following SoV representation:

B(y; z0)(z|w) =
(2π)−Nπ−N

2

N !

ˆ
DNx

∏
k<j

[xk − xj]
N∏
k=1

λL(y, xk) Ψ(x|z) Ψ(x|w) .

The further reduction of this expression, βk → 0, or yk = y → s− 1, will lead to

anisotropic Basso-Dixon type d = 2 integral (3.2.3) with parameters γ = 2s− 1, γ̄ =

2s̄−1. After this reduction we obtain the second diagram in Fig.3.7, with the different

propagators [z − z′]1−2s and [z − z′]2s−2 in vertical and horizontal directions of the

lattice. In this case, we have to substitute into the formula (3.2.37) representing this

diagram the reduced eigenvalues

λ(y, xk) = πa(1− s− y, s+ xk, 1 + y − xk) (−1)[y+xk] y=s−1−→
−→ λ(xk) = πa(2− 2s, s+ xk, s− xk) (−1)[s+xk] . (3.2.51)

This leads, after the identification of external coordinates: zk → z1, wk → w1,

described above, to the following representation for the two-dimensional analog of
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(anisotropic) Basso-Dixon diagram BL ,N(η) in terms of the multiple integral over N

separated variables

BL,N(η) =
(2π)−Nπ−N

2

N !

ˆ
DNx

N∏
k=1

[η]−xkλN+L(xk)
∏
k<j

[xk − xj] . (3.2.52)

Notice that the parameters of the representation (s, s) can be chosen in the prin-

cipal series (3.2.10), or even in the imaginary strip ν(s) ∈ (−i/2 , 0) by analytic con-

tinuation. With the choice of parameters ns = 0 and ν(s) = −i/4± i ω/2 in (3.2.10)

we describe the 2D Basso-Dixon type integral with real propagators |z − z′|−1∓ω,

where ± signs corresponds to two different axis of the square lattice shaped Feyn-

man graph, according to the bi-scalar Lagrangian (2.1.3). The isotropy of the lattice

is restored at s = s̄ = 3/4, that is ω = 0.

The determinant formula (3.2.47) reads for this reduction as follows

B
(γ,γ̄)
L,N (η) = (2π)−Nπ−N

2

det
1≤j,k≤N

mjk , (3.2.53)

where

mij =

ˆ
Dx xi−1x̄j−1f(x) ; i, j = 1 , . . . , N (3.2.54)

and

f(x) = [η]−xλN+L(x) = η−xη̄−x̄λN+L(x) (3.2.55)

where λ(x) is defined in eqs.(3.2.39).

3.2.4 Explicit computation of ladder integral

In this section, we will explicitly compute the momenta mij given by (3.2.54) in terms

of hypergeometric functions, which leads to explicit expressions of Basso-Dixon type

integrals via the determinant representation (3.2.53). Some details of the derivation

can be found in Appendix B.3. In particular this leads to the computation of the

class of ladder integrals in 2D, that are defined as the Basso-Dixon diagram for

N = 1 and generic L (or viceversa).

Noticing that

mij = (η∂η)
i−1(η̄∂η̄)

j−1IN+L , where IM =

ˆ
Dx η−xη̄−x̄λM(x) (3.2.56)
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we are led to compute the following sum and integral6:

IM =

ˆ
Dx η−xη̄−x̄λM(x) =

= πMaM(2− 2s)(−1)M [s]

ˆ
Dx aM(s+ x, s− x) (−1)M [x]η−xη̄−x̄ =

= πMaM(2− 2s)×

×
∑
n∈Z

ˆ +∞

−∞
dν

ΓM(1− s̄− n
2

+ iν)ΓM(1− s̄+ n
2
− iν)

ΓM(s− n
2
− iν)ΓM(s+ n

2
+ iν)

(−1)M(n+ns)η−
n
2
−iν η̄

n
2
−iν ,

(3.2.57)

where in the last line we substituted explicit parameters. We will compute the

integral over ν by residues. The structure of the poles and zeroes is shown in the

Fig. 3.10. We can close the integration contour on the upper/lower half-plane under

the condition |η| < 1, respectively |η| > 1, ensuring the exponential suppression

of the integrand at ±i∞. Consider first the case |η| < 1. In the upper half-plane

there is one infinite sequence of poles of the order M . After the change of variables

n→ −n+ns+1 in the sum over n and ν → ν+νs in the integral over ν, the integral

(3.2.57) reads

IM =
πMaM(2− 2s)(−1)M

ηsη̄s̄−1
×

×
∑
n∈Z

ˆ +∞

−∞
dν

ΓM(2− 2s̄− n
2
− iν)ΓM(n

2
+ iν)

ΓM(2s− n
2

+ iν)ΓM(n
2
− iν)

(−1)Mnη
n
2
−iν η̄−

n
2
−iν

We close the contour in the upper half-plane and calculate the ν-integral as the sum

of residues. Due to the mechanism illustrated in fig.3.10, this is equivalent to take

residues at the points ν = in
2

+ ik , k = 0 , 1 , 2 , . . ., i.e. the series of the poles created

by the function ΓM(n
2

+ iν). The residue at the point ν = in
2

+ ik can be represented

in the following form

Resν= in
2

+ik = − i

(M − 1)!
∂M−1
ε

∣∣
ε=0

[
ΓM(1 + ε)ΓM(1− ε)

ΓM(2s+ ε)ΓM(1− 2s− ε) [η]−ε×

×ΓM(1− 2s+ n+ k − ε)
ΓM(n+ k − ε)

ΓM(2− 2s̄+ k − ε)
ΓM(1 + k − ε) ηn+k η̄k

]
.

Using this formula one obtains the following relation∑
n∈Z

ˆ +∞

−∞
dν

ΓM(2− 2s̄− n
2
− iν)ΓM(n

2
+ iν)

ΓM(2s− n
2

+ iν)ΓM(n
2
− iν)

(−1)Mnη
n
2
−iν η̄−

n
2
−iν =

=
2π

(M − 1)!
∂M−1
ε

∣∣
ε=0

[
ΓM(1 + ε)ΓM(1− ε)

ΓM(2s+ ε)ΓM(1− 2s− ε) [η]−ε ×

6We use here and in the following the notation (−1)[α], see (B.1.2).
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Figure 3.10: Structure of poles and zeroes of the integrand in (3.2.57), at different values of the discrete

variable n, for ns = 0. Superposition of zeroes and poles occurs in such a way that there is

only one semi-infinite series of poles (and zeroes) in upper- and lower- half-planes.

×
∑
n∈Z

+∞∑
k=0

ΓM(1− 2s+ n+ k − ε)
ΓM(n+ k − ε)

ΓM(2− 2s̄+ k − ε)
ΓM(1 + k − ε) ηn+k η̄k

]
.

Remarkably enough, since we take derivative at ε = 0 the last double sum can be

equivalently rewritten in a factorized form, setting p = n+ k − 1

η
+∞∑
p=0

ΓM(2− 2s+ p− ε)
ΓM(1 + p− ε) ηp

+∞∑
k=0

ΓM(2− 2s̄+ k − ε)
ΓM(1 + k − ε) η̄k ,
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and we obtain the following expression for the ladder integral
ˆ
DxλM(x)[η]−x =

2πM+1aM(1− γ)(−1)M

(M − 1)! [η]
γ−1

2

× (3.2.58)

× ∂M−1
ε

∣∣
ε=0

ΓM(1 + ε)ΓM(1− ε)
ΓM(γ + 1 + ε)ΓM(−γ − ε) [η]−ε FM(1− γ , ε|η)FM(1− γ̄ , ε|η̄) ,

where γ = 2s− 1 and the function FM(λ , ε|η) is given by the hypergeometric series

FM(λ , ε|η) =
∞∑
k=0

ΓM(λ+ k − ε)
ΓM(1 + k − ε) η

k =
Γ(λ− ε)M
Γ(1− ε)M × (3.2.59)

× M+1FM(1, λ− ε, . . . , λ− ε︸ ︷︷ ︸
M

; 1− ε, . . . , 1− ε︸ ︷︷ ︸
M

; η) .

Therefore we can write in a more compact notation, for |η| < 1:

IM =
2πM+1aM(1− γ)

(M − 1)! [η]
γ−1

2

∂M−1
ε

∣∣
ε=0

aM(γ + ε)ΓM(1 + ε)

ΓM(1− ε) [η]−εFγ,γ̄M (η, η̄|ε),

where

Fγ,γ̄M (η, η̄|ε) =

= M+1FM

(
1− γ − ε · · · 1− γ − ε 1

1− ε · · · 1− ε

∣∣∣∣ η)M+1FM

(
1− γ̄ − ε · · · 1− γ̄ − ε 1

1− ε · · · 1− ε

∣∣∣∣ η̄) .
(3.2.60)

In the opposite case of |η| > 1 the same kind of computation can be repeated picking

residues in the lower half plane. After redefinition n→ −n+2ns+2, this is equivalent

to pick the series of poles ν = 2is+ in
2
− ik , k = 0 , 1 , 2 , . . ., and the residues are

Resν=2is+ in
2
−ik =

i

(M − 1)!
η2sη̄2s̄−2 ∂M−1

ε

∣∣
ε=0

ΓM(1 + ε)ΓM(1− ε)
ΓM(2s+ ε)ΓM(1− 2s− ε) [η]ε ×

×ΓM(1− 2s+ n+ k − ε)
ΓM(n+ k − ε)

ΓM(2− 2s̄+ k − ε)
ΓM(1 + k − ε) η−n−k η̄−k .

It follows from (3.2.61) that the final expression of the ladder for |η| > 1 is the same

as (3.2.60) after replacing η with 1/η. For a generic cross-ratio |η| ≶ 1 the M -ladder

is, respectively

IM =
2πM+1aM(1− γ)

(M − 1)! [η]±( γ−1
2

)
∂M−1
ε

∣∣
ε=0

aM(γ + ε)ΓM(1 + ε)

ΓM(1− ε) [η]∓εFγ,γ̄M (η±1, η̄±1|ε) ,

(3.2.61)

and it shows explicitly the invariance under exchange z1 ↔ w1; in fact

IM(η) = IM

(
1

η

)
. (3.2.62)
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The result (3.2.61), obtained under the assumption of (s, s̄) in the principal series

of SL(2,C), can be remarkably extended by analytic continuation to s = s̄ ∈ (1/2 , 1),

that is setting γ = γ̄ ∈ (0, 1) in (3.2.61). The direct computation of ladder integrals

is more involved in this last case, since analytic continuation leads to the failure of

the cancellation of poles by zeros presented on Fig.3.10, and integration in (3.2.57)

must be carried out under an appropriate contour deformation prescription. The

explicit result for the particular choice of weights γ = γ̄ = 1/2, corresponding to the

isotropic fishnet theory (the case considered by Basso and Dixon in [35] for d = 4)

reads:

IM =
2πM+1

(M − 1)! |η|± 1
2

∂M−1
ε

∣∣
ε=0

aM
(

1
2

+ ε
)

ΓM(1 + ε)

ΓM(1− ε) [η]∓εF
1
2
, 1
2

M (η±1, η̄±1|ε),

(3.2.63)

F
1
2
, 1
2

M (η, η̄|ε) = M+1FM

(
1
2
− ε · · · 1

2
− ε 1

1− ε · · · 1− ε

∣∣∣∣ η) M+1FM

(
1
2
− ε · · · 1

2
− ε 1

1− ε · · · 1− ε

∣∣∣∣ η̄) .
Moreover in the isotropic case γ = 1 − γ, and for the simple “cross” N = 1, L = 1

diagram (computed below in terms of elliptic functions), the duality (3.2.9) is a mere

consequence of (3.2.62)

B
(1/2)
1,1 (η) = I

(1/2)
2 (η) = I

(1/2)
2

(
1

η

)
= B

(1/2)
1,1

(
1

η

)
.

For the sake of duality in the more involved anisotropic case we will need also the

relation between ladders with exchange of γ ↔ 1 − γ. This relation can be easily

checked and looks as follows

I
(1−γ)
2

(
1

η

)
= [η]γ−

1
2 [1− η]1−2γ I

(γ)
2 (η) ,

and due to B
(γ)
1,1 = I

(γ)
2 the duality (3.2.9) is also proved.

In the simplest particular case M = 1 we can simply put ε = 0 everywhere and then

reduce to the simple power

F1(λ , 0|η) =
∞∑
k=0

Γ(λ+ k)

k!
ηk =

Γ(λ)

(1− η)λ
,

so that

GL=0,N=1(z1 , w1 , z0) = (2π2)−1 ([z0 − z1] [z0 − w1])
γ−1

2 B
(γ,γ̄)
0,1 (η) =

= ([z0 − z1] [z0 − w1])
γ−1

2
a(1− γ, γ)

[η]
γ−1

2 [1− η]1−γ
=

1

[w1 − z1]1−γ
, (3.2.64)

which is precisely the single propagator in the trivial case of the Basso-Dixon type

formula, with no integrations.
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In order to get a better feeling of the structure of our result (3.2.60) at generic

N + L, it is instructive to compute the first non-trivial graph GL=1,N=1(z1, w1, z0) -

the two-dimensional “cross” integral. In four dimensions, the cross integral can be

computed in terms of the Bloch-Wigner function (di-logarithm function) [34]. We

will see that in our two-dimensional case the answer for the cross integral can be

expressed through elliptic functions. Since it involves only N = 1 separated variable,

it is simply related to the ladder I2:

GL=1,N=1(z1, w1, z0) = (2π2)−1([z0 − z1][z0 − w1])
γ−1

2 I2(η). (3.2.65)

For M = 2 the ladder integral (3.2.60) reads:

2π3a2(1− γ)

[η]
γ−1
2

×

× ∂ε|ε=0 a
2(γ + ε)

Γ2(1 + ε)

Γ2(1− ε) [η]−ε3 F2

(
1− γ − ε 1− γ − ε 1

1− ε 1− ε

∣∣∣∣ η) 3F2

(
1− γ − ε 1− γ − ε 1

1− ε 1− ε

∣∣∣∣ η̄) .

Choosing the conformal weights for isotropic fishnets γ = γ̄ = 1/2, the ladder sim-
plifies to

2π3 ∂ε|ε=0

Γ2(1 + ε)Γ2(1/2− ε)
Γ2(1− ε)Γ2(1/2 + ε)

[η]
1
4−ε
2 F1

(
1

2
− ε, 1

2
− ε; 1− 2ε

∣∣∣∣ η)
2

F1

(
1

2
− ε, 1

2
− ε; 1− 2ε

∣∣∣∣ η̄) .

(3.2.66)

We can recall the expression of the 2D conformal cross integral [140] (e.g. see the

formula (1.7) of [141]); after amputation of one line by sending w0 to infinity, we get

G̃h,h̄=

ˆ
d2ρ

[w1−ρ]h[z0−ρ]h[z1−ρ]1−h
=

2F1(h,h;2h|η)2F1(h̄,h̄;2h̄|η̄)[η]h

[w1−z0]hB(1−h)
+(h↔1−h);

(3.2.67)

B(h) =
2−2iσ(−2iσ)

π

Γ
(

1
2

+ iσ
)

Γ (−iσ)

Γ
(

1
2
− iσ

)
Γ (iσ)

; h =
1

2
+ iσ. (3.2.68)

In order to compare with (3.2.65) we should set h = 1/2, that is σ = 0. Due to the

vanishing of B(1/2), this expression is an ill-defined sum of two divergent terms. The

issue is solved by taking the limit σ → 0 in (3.2.67), which gives the well defined

function

π

2 |w1 − z0|
lim
σ→0

[
Γ
(

1
2

+ iσ
)2

Γ (1− iσ)2

Γ
(

1
2
− iσ

)2
Γ (1 + iσ)2

[η]iσ F (σ|η) F (σ|η̄) + (σ ↔ −σ)

]
,

where F (σ|x) = 2F1

(
1

2
+ iσ,

1

2
+ iσ; 1 + 2iσ

∣∣∣∣x)
and reproduces the result of plugging (3.2.66) into (3.2.65). The problem reduces

to computing F (σ|η) and ∂σ|σ=0F (σ|η) which reduce to elliptic integrals. Then the

cross integral can be presented in explicit form:

IBD1,1 (z0, z1, w0, w1) ≡
ˆ

d2ρ

|z0 − ρ||w0 − ρ||z1 − ρ||w1 − ρ|
=
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=
4 |1− η|

|w1 − z1||w0 − z0|
[K(η)K(1− η̄) + K(η̄)K(1− η)] , |η| < 1 (3.2.69)

where here:

η =
z0 − w1

w1 − w0

z1 − w0

z0 − z1

and K(x) is the elliptic integral of the first kind:

K(x) =

ˆ 1

0

dt√
(1− t2)(1− x t2)

.

This result for the cross integral suggests that even for any L,N the formula

for two-dimensional Basso-Dixon integral can be presented in terms of elliptic poly-

logarithms encountered in various Feynman graph calculations [142].

3.2.5 Ladders and the wheel integrals

The computation of 2-dimensional ladders carried out in the previous sections has

other interesting applications in the context of the theory (2.1.3). The simplest

observables in this theory are single trace operators tr(φl1)(z), tr(φl2)(z). As explained

in [28, 32], the perturbative expansions of their correlators

〈trφl1(z)tr(φ†1)l(w)〉 〈trφl2(z)tr(φ†2)l(w)〉 (3.2.70)

consist, for l > 2, of only of the “globe”-shaped fishnet Feynman integrals:

Fl,N(x,y)=

ˆ l∏
j=1

1

|z0,j−zj,1|1+2ω|zj,N−zj,N+1|1+2ω

N∏
k=1

d2zj,k
|zj,k−zj,k+1|1+2ω|zj,k−zj+1,k|1−2ω

,

(3.2.71)

where we set zj,0 ≡ z, zj,N+1 ≡ w, and the expansion itself reads:

Gl(z − w) =
∞∑
N=0

ξ2Nl Fl,N(z, w) , (3.2.72)

where Gl is one of the correlation functions (3.2.70). For any value of the coupling

ξ2 the correlators (3.2.70) are conformal, thus it is possible to define the scaling

dimension of the fields X and Z as:

∆(ξ2) = − lim
|z−w|→∞

log(Gl(z − w))

log(z − w)2
=

l

2
+ γ(ξ2) (3.2.73)

where the anomalous dimension γ is an expansion in the log-divergence of Fl,N graphs,

i.e. its coefficient of 1
ε

in dimensional regularization. Since this divergence is the

same for the corresponding wheel graph, obtained after amputation of |zj,N − zj,N+1|
propagators:

Wl,N(z) =

ˆ l∏
j=1

1

|z0,j − zj,1|1+2ω

N∏
k=1

d2zj,k
|zj,k − zj,k+1|1+2ω|zj,k − zj+1,k|1−2ω

, (3.2.74)
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Figure 3.11: Simple wheel at l = 6. The black blobs are integrated over, while the gray blob in the center

of the figure is the external point of Fl,N (z, w) left over after amputation.

we can write

−γ(ξ2) =
∞∑
N=1

ξ2NlW
(1)
l,N

where W
(1)
l,N stands for the 1/ε-divergence coefficient in the expansion of the (l, N)

wheel in dimensional regularization.7 The simple case N = 1 can be worked out ex-

plicitly, since the integral (3.2.74) can be regarded as a ladder with periodic boundary

conditions and L = l−1, see Fig.3.11. In the formalism of integral operators (3.2.14)

we can write:

Wl,1(z) =

ˆ l∏
j=1

d2zj
[z0 − zj]2s−1[zj − zj+1]2−2s

= Tr
[
Λl

1(x|z0)
]
, (3.2.75)

where x = s − 1, s = s̄ = 3/2 − ω. We can insert inside the trace in (3.2.75) a

complete basis (3.2.32) in order to get an integral over one separated variable:

1

2π2

∞∑
n=−∞

ˆ +∞

−∞
dν Tr

[
Λl

1(x|z0)Ψ(x|z)Ψ(x|z′)
]

=

=
1

2π2

(
∞∑

n=−∞

ˆ +∞

−∞
dν λl1(x)

) ˆ
d2zΨ(x|z)Ψ(x|z). (3.2.76)

The integration over z is the scalar product of two eigenfunctions with the same

weights x, thus carrying the log-divergence of (3.2.75), or the 1
ε

divergence which is

the leading one at N = 1 in the ε-regularization. We can easily extract it:ˆ
UV

d2+εzΨ(x|z)Ψ(x|z) = 2π

ˆ 1

0

dr

r1−ε =
2π

ε
,

and the resulting W
(1)
l,1 reads:

W
(1)
l,1 =

1

2π2

∞∑
n=−∞

ˆ +∞

−∞
dν λl1(x) =

1

π
Il(η)|η=1

7In general, the following wheel integral has 1
εN

divergence, so one has to extract the sub-leading 1
ε

term.
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The L-ladder at η = 1 is a finite quantity only for L = l−1 > 1, and it isn’t otherwise

possible to close the integration contour in (3.2.57). Indeed the asymptotic expansion

of λ1 in ν is

λL+1
1 (n, ν) = (−iν)−L−1 +O(ν−L) .

The divergence of the wheel diagram at l = L + 1 = 2 is in agreement with our

expectations: in order to renormalize correlators (3.2.70) at l = 2 the specific double-

trace counter-terms are needed [28, 36, 37, 84, 85, 103]. More explicitly, fixing the

propagators along the frames and spokes to be the same (ω = 0), we get:

W
(1)
l,1 =

2πl

(l − 1)!

dl−1

dεl−1

∣∣∣∣
ε=0

Γl(1 + ε)Γl(1− ε)
Γl(3/2 + ε)Γl(−1/2− ε)

(
∞∑
k=0

Γl(1/2 + k − ε)
Γl(1 + k − ε)

)2

(3.2.77)

The quantity (3.2.77) can be computed numerically and, hopefully, expressed in

terms of Elliptic Multiple Zeta Values.

3.2.6 Conclusions

In the first part of this chapter we derived an explicit formula for the two-dimensional

analogue of Basso-Dixon integral given by conformal fishnet Feynman graph repre-

sented by regular square lattice of rectangular L × N shape, presented on Fig.3.1

and Fig.3.2 (left). The definition of this integral and the result are presented at the

end of Introduction (sec.3.2). Our result represents a slightly more general quantity

then Basso-Dixon graph: it concerns the anisotropic fishnet, i.e. with different pow-

ers for vertical and horizontal propagators, corresponding to arbitrary spins s, s̄ of

principal series representation of SL(2,C) group, or for the analytic continuation to

s = s̄ belonging to the real interval
(

1
2
, 1
)
. The particular case of isotropic fishnet,

a-la Basso-Dixon, corresponds to the case s = s̄ = 3/4. In two-dimensional case the

fishnet graph is built from propagators 1
|z1−z2| . Such graph is a particular case of

single-trace correlators introduced in [94, 95] for the study of planar scalar scattering

amplitudes in the bi-scalar fishnet CFT [28, 32]. In the simplest case N = L = 1

(cross integral) we managed to present the result in terms of elliptic functions. It

seems plausible that even for general L,N the result can be expressed in terms of

elliptic functions. A probable full basis of such functions, in terms of which our

quantity could be presented, are the so-called multiple elliptic poly-logarithmic func-

tions (see [143] and references therein). It would be interesting to obtain it for a few

smallest N,L.

Interestingly, in the case s→ 1/2 (or, alternatively, s→ 1, which is an equivalent

SL(2,C) representation for the graph’s propagators) this fishnet corresponds to one

of the conservation laws of Lipatov integrable (open) spin chain hamiltonian [144,

145] describing the system of reggeized gluons for the Regge (BFKL) limit of QCD
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[115, 117, 118, 146]. It would be interesting to understand what kind of BFKL

physics it can describe.

The Basso-Dixon type configuration represents only one set of possible physical

quantities which can be, in principle, analyzed and computed in the planar bi-scalar

fishnet CFT due to integrability. To fix the OPE rules in such a theory, we have to

compute the spectrum of anomalous dimensions and the structure constants of all

local operators. Some of them have been analyzed and even computed in the liter-

ature. In particular, the so-called wheel graphs, corresponding to operators trXL,

have been computed in d = 4 dimensions in [32, 93] up to two wrappings at any

L. In [39] they have been computed in particular cases of L = 2, 3 (L = 4 case

is to appear [147]) to any reasonable loop order (for any wrapping there exists an

iterative analytic procedure) or numerically with a great precision, by means of the

Quantum Spectral Curve method [77–79, 148]. We think that, to give a more general

result for any L in rather explicit form, we have to employ a powerful technique of

separated variables, similarly to the one we employed here in two dimensions for

Basso-Dixon type graphs. The first step would be to compute the wheel graphs in

two dimensions using the techniques of this chapter. An interesting task would be to

advance to d > 2 dimensions by integrable spin chain methods. This is done in the

rest of the chapter for the remarkable case of d = 4 fishnet theory. It would be also

good to generalize our techniques, at least in two dimensions, to the computation of

multi-magnon operators related to “multi-spiral” Feynman graphs [91].

The computation of structure constants is an even more complicated task. Cer-

tain explicit results for OPE of short protected operators have been obtained for

fishnet CFT in [28, 36, 37] (see also [120, 121] in BFKL limit) using solely the

conformal symmetry. The calculation of more complicated structure constant is a

difficult task demanding the most sophisticated techniques, such as SoV method.

Since for the 2D case the SoV formalism is well developed it would be interesting

to apply the methods of this chapter to computations of more complicated structure

constants at least in two dimensions.

Finally, it would be good to understand the role of separated variables in the

non-perturbative structure of the bi-scalar fishnet CFT. A good beginning would be

to understand in terms of SoV the strong coupling limit for long operators of the

theory and to relate it to the classical limit of the dual non-compact sigma model

which will probably arise in two-dimensional case similarly to the one which was

observed in four-dimensional bi-scalar fishnet CFT in [149].

3.3 Four-dimensional case

The exactly solvable spin magnets [5, 9] constitute a class of condensed matter models

of wide interest throughout theoretical and mathematical physics. In particular, the

integrable chains of nearest-neighbors interacting spins [150, 151] serve as a tool to
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encode the symmetries of local or non-local operators in quantum field theory, provid-

ing a rich amount of non-perturbative results ranging from the scattering spectrum

of high-energy gluons in QCD [115, 152, 153] to the conformal data of the super-

symmetric N = 4 SYM and N = 6 ABJM theories [13]. The archetype model of this

class is the SU(2) Heisenberg magnet of spin 1
2
, which for open boundary conditions

is described by the Hamiltonian

HSU(2) =
N−1∑
a=1

~σa · ~σa+1 , (3.3.1)

being ~σa the vector of Pauli matrices acting on the space Va = C2. Generalizations

of (3.3.1) to other symmetry groups are known, including the non-compact SO(1, 5)

spin chain 8. The latter model is relevant for the study of covariant quantities in a

four-dimensional conformal field theory (CFT) [17]. We consider the homogeneous

model in the irreducible unitary representation defined by the scaling dimension

∆ = 2− iλ, λ ∈ R, and the SO(4) spins ` = ˙̀ = 0 [154]. The Hamiltonian operator

acts on the Hilbert spaces Va = L2(xa, d
4xa) as

H =
N−1∑
a=1

[
2 lnx2

aa+1 + (x2
aa+1)−iλ ln(p̂2

ap̂
2
a+1)(x2

aa+1)iλ
]

+

+ 2 lnx2
N0 + ln(p̂2

1) + (x2
N0)−iλ ln(p2

N)(x2
N0)iλ , (3.3.2)

where xaa+1 = xa − xa+1, p̂2
a = −∂a · ∂a and xN+1 = x0. The point x0 is effectively a

parameter for the model, and we will always omit it from the set of coordinates. The

spin chain (3.3.2) is the four-dimensional version of the open SL(2,C) Heisenberg

magnet which describes the scattering amplitudes of high energy gluons in the Regge

limit of QCD [115, 155]. In the rest of this chapter we will indeed try to translate

the methods of the first part of the chapter - based on the SL(2,C) spin chain -

to the four dimensional situation. The integrability of (3.3.2) is realized by the

commutative family of normal operators9

QN(u) = Q12(u) ·Q23(u) · · ·QN0(u) , (3.3.3)

labeled by the spectral parameter u ∈ R and where

Qij(u) = (x2
ij)
−iλ(p̂2

i )
u(x2

ij)
u+iλ .

By the introduction of the operator

Q̂N(u) = [QN(u− iλ)]†QN(−iλ) ,

the Hamiltonian H is recovered from the expansion

QN(u) + Q̂N(u) = 2 · 1 + uH + o(u) . (3.3.4)

8We consider an Euclidean space-time in the chapter, without loss of generality respect to the Minkowskian case.
9We recall that a linear operator of an Hilbert space is called normal if it commutes with its hermitian conjugate.
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It follows from (3.3.4) and from the commutation relation [QN(u),QN(v)] = 0 at

generic u and v, that the eigenfunctions of QN diagonalize the Hamiltonian (3.3.2)

as well. The spectra of these operators are labeled by the quantum numbers

Ya = 1 +
na
2

+ iνa, Y ∗a = 1 +
na
2
− iνa, νa ∈R , na ∈N , (3.3.5)

for a = 1, . . . , N , and we use to write Y = (Y1, . . . , YN). The spectral equation for

the operator (3.3.3) reads

QN(u) ·Ψαβ(x|Y) = τN(u,Y) Ψαβ(x|Y) ,

where we denote x = (x1, . . . , xN) and α,β stand for 2N auxiliary complex spinors

|α1〉, . . . , |αN〉 and |β1〉, . . . , |βN〉 ∈ C2.

The eigenfunctions form an orthogonal set respect to the quantum numbers (Y,α,β),

and the eigenvalue is factorized respect to the labels (3.3.5) into equal contributions

τN(u,Y) =
N∏
a=1

τ1(u, Ya) , (3.3.6)

τ1(u, Ya) = 4u
Γ
(
Ya − i

2
λ
)

Γ
(
Y ∗a + u+ i

2
λ
)

Γ
(
Y ∗a + i

2
λ
)

Γ
(
Ya − u− i

2
λ
) .

As a consequence of (3.3.4) and (3.3.6) we obtained the spectrum of the Hamiltonian

H as a sum of N independent terms

ηN(Y)=
N∑
a=1

[
ψ

(
Ya−

i

2
λ

)
+ψ

(
Ya+

i

2
λ

)
+ln4

]
+ c.c. (3.3.7)

Formulas (3.3.6),(3.3.7) show that the N -body system defined in (3.3.2) gets sepa-

rated into N one-particle systems over the quantum numbers (3.3.5). In other words,

the quantities (Ya, |αa〉, |βa〉) are the separated variables of the system in the sense of

[7, 132, 156? ], and the spectrum of (3.3.2) and (3.3.3) is degenerate in the spinors

due to rotation invariance.

The representation over the separated variables (Y,α,β) is defined for a generic

function φ(x) = φ(x1, . . . , xN) by the linear transform

φ̃(Y,α,β) =

ˆ
dx Ψαβ(x|Y)∗ φ(x) . (3.3.8)

The inverse transform of (3.3.8) provides the expansion of φ(x) over the basis of

eigenfunctions

φ(x)=
∑
n

ˆ
dν µ(Y)

ˆ
DαDβ Ψαβ(x|Y) φ̃(Y,α,β) , (3.3.9)
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Figure 3.12: On the left the graph-building kernel B3(x|x′), where the lines are propagators 1/x2
ij , grey

dots are external points and the black ones are integrated. On the right the portion of fishnet

(B3)4 with two fixed points x0 (down) and ∞ (up).

where the sum runs over the non-negative integers n = (n1, . . . , nN), the integrations

dν = dν1 · · · dνN are on the real line and the integration in the space of spinors

Dα = Dα1 · · ·DαN is defined asˆ
Dα =

ˆ
C2

dα e−〈α|α〉 , 〈α|α〉 = |α(1)|2 + |α(2)|2 .

The spectral measure in (3.3.9) can be extracted from the scalar product of eigen-

functions and it is given by

µ(Y) =
1

N !

N∏
a=1

(na + 1)
N∏
b 6=a

[
ν2
ab +

n2
ab

4

] [
ν2
ab +

(na + nb + 2)2

4

]
, (3.3.10)

in the notation νab = νa − νb and nab = na − nb.

All considerations done so far can be extended by an accurate analytic continu-

ation of the parameter λ to the imaginary strip (−2i,+2i). In particular, at λ = −i
each site of the chain carries the representation ∆ = 1, ` = ˙̀ = 0 of a bare scalar

field in four dimensions. In this case at the point u = −1 the operator QN(u) be-

comes proportional to the graph-building integral operator for a Feynman diagram

of square lattice topology

BN φ(x) =
1

(2π)4N

ˆ
dx′φ(x′)

N∏
a=1

1

x2
aa+1 x

2
aa′

, (3.3.11)

with x = (x1, . . . , xN), x′ = (x′1, . . . , x
′
N). Throughout the rest of the chapter we

denote xab′ = xa− x′b. According to (3.3.6) the representation of the operator (BN)L

over the separated variables factorizes completely a portion of size N × L of the

planar fishnet diagram [92] in Fig.3.12, extending to a 4D space-time the analogue

result in two-dimensions of [29].

As a direct application of our results, we computed a specific set of four-point

functions of fishnet CFT [32], providing a direct check to formula (14) of [125], ob-
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tained via arguments of AdS/CFT correspondence [157–159].

In the next two sections we present the explicit construction of the eigenfunctions

of the model (3.3.2) by means of newly found integral identities.

3.3.1 Generalized Star-triangle identity

Our construction of a basis of eigenfunctions for QN(u) follows the logic outlined in

[160] for the two-dimensional model, and requires the formulation of certain confor-

mal integral identities in 4D.

First we consider a positive integer M ≤ N and set xµ0 = 0 without loss of

generality. We will denote x = (x1, . . . , xM), x′ = (x′1, . . . , x
′
M−1). Let us introduce

the tensors

Cαβ
µ1µ1′µ2...µM

= 〈α|σ̄µ1σµ′1σ̄µ2 · · · σ̄µM |β〉 , (3.3.12)

where the symbols σ and σ̄ are defined in terms of Pauli matrices

σ0 = σ̄0 = 1, σk = −σ̄k = iσk, k = 1, 2, 3 .

The tensors (3.3.12) satisfy the light-cone condition

tµ1...µa tν1...νa Cαβ
µ1...µa ρ...µM

Cαβ
ν1...νa

ρ
...νM = 0 ,

where tµ1...µa are arbitrary tensors and a = 1, 1′, . . . ,M . This property allows to

define a family of degree-n homogeneous harmonic polynomials

Cαβ
M (x|x′)n = 〈α|x̄11′x1′2x̄22′ . . . x̄M0|β〉n , (3.3.13)

where xij = σµx
µ
ij/|xij| and x̄ij = σ̄µx

µ
ij/|xij|. Under a coordinate inversion xµ →

xµ/x2 such harmonic polynomials transform covariantly and it follows that using

(3.3.13) it is possible to generalize the uniqueness - “star-triangle” - relation for a

conformal invariant vertex of three scalar propagators [161] (see also [162, 163] and

references therein) to any symmetric traceless representation.

The core of the generalized identity we are going to derive is the mixing operator

acting on a pair of symmetric spinors |α, α′〉 = |α〉⊗n⊗ |α′〉⊗n′ of degrees n and n′ as

〈α, α′|Rn,n′ (z) |β, β′〉 =

=
Γ(z + n−n′

2
)Γ(z + n′−n

2
)

Γ2(z + n+n′

2
)

∂ns ∂
n′

t (1 + s〈α|β〉+ t〈α′|β′〉+ st〈α|β′〉〈α′|β〉)z+n+n′
2 ,

(3.3.14)

where upon differentiation we set s = t = 0. The operator defined by (3.3.14) is

a unitary solution of the Yang-Baxter equation and can be obtained via the fusion

procedure [164] applied to the Yangian R-matrix R1,1(z).
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Under the uniqueness constraint a+ b+ c = 4 and for any n, n′ ∈ N the following

identity holds

ˆ
d4x4

〈α|x̄14x43|β〉n〈α′|x̄34x42|β′〉n′

(x2
14)a (x2

24)b (x2
34)c

=

= π2 (−1)nAn,n′(a, b, c)

(x2
12)(2−c)(x2

13)(2−b)(x2
23)(2−a)

〈α x̄12x23, α
′|Rn,n′ (c− 2) |β, x̄31x12 β

′〉(
c− 1 + n+n′

2

) (
2− c+ n′−n

2

) . (3.3.15)

with the coefficient

An,n′(a, b, c) =
Γ
(
2− a+ n

2

)
Γ
(
2− b+ n′

2

)
Γ
(
3− c+ n′−n

2

)
Γ
(
a+ n

2

)
Γ
(
b+ n′

2

)
Γ
(
c− 1 + n′−n

2

) .

Setting n′ = 0, the identity (3.3.15) is equivalent to (A.11) of [111], and setting

further n = 0 it degenerates to the scalar identity [161].

We point out that (3.3.15) is the four-dimensional versions of the 2D star-triangle

relation which underlies the solution of the SL(2,C) Heisenberg magnet as in [117,

160].

3.3.2 Eigenfunctions construction

The eigenfunctions of the open conformal chain (3.3.2) can be obtained by a recursive

procedure in the number of sites of the system. First of all we introduce the integral

operators Λ̂αβ
M,Ya

= 〈α|Λ̂M,Ya |β〉

Λ̂αβ
M,Ya
· φ(x) =

ˆ
dx′ Λαβ

M,Ya
(x|x′)φ(x′) , (3.3.16)

through its kernel Λαβ
M,Ya

(x|x′) = 〈α|ΛM,Ya(x|x′)|β〉 =

=
Cαβ
M (x|x′)na

(x2
M0)1+iνa+iλ/2

M−1∏
a=1

(x2
a′a+1)−1+iνa+iλ/2

(x2
aa′)

1+iνa−iλ/2(x2
aa+1)iλ

,

which at M = 1 reduces to a conformal propagator of scaling dimension ∆ = 1 +

iλ/2 + iνa and tensor rank na

Λαβ
1,Ya

(x1) =
〈α|x̄1|β〉na

(x2
1)1+iνa+iλ/2

.

Making use of (3.3.15) at n = na, n
′ = 0 we verify that

QM(u) Λ̂αβ
M,Ya

= τ1(u, Ya) Λ̂αβ
M,Ya

QM−1(u) , (3.3.17)

for any M > 1, moreover

Q1(u) Λαβ
1,Ya

(x1) = τ1(u, Ya) Λαβ
1,Ya

(x1) . (3.3.18)
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x1

x2

x3

α1

α2

α3

x0

x1

x2

x3

α

β

x'1

x'2

x0

β1

x0

β2

x0

β3

Figure 3.13: Graphic representation of the integral kernel Λα,β3,Y (x1, x2, x3|x′1, x′2) (left) and of the eigen-

function Ψαβ(Y|x1, x2, x3) (right). Solid lines denote (x2
ij)
−iλ, while the dashed ones stand

for the polynomials (3.3.13) together with the denominators of type (x2
i,i′) and (x2

i′,i+1) car-

rying the variables ν in the power. The external arrows indicate symmetric spinors and the

grey blobs are integrated points.

The iterative application of (3.3.17) for the length M going from N to 2, together

with the initial condition (3.3.18), provides a recursive definition of the eigenfunctions

of the model with N sites

Ψαβ(Y|x) = Λ̂αNβN
N,YN

· · · Λ̂α2β2

2,Y2
· Λα1β1

1,Y1

N∏
a=1

r(Ya)
a−1

√
2π2N+1

, (3.3.19)

where the last factor is a suitable normalization and

r(Y ) =
Γ
(
Y − iλ

2

)
Γ
(
Y ∗ − iλ

2

)
Γ
(
Y + iλ

2

)
Γ
(
Y ∗ + iλ

2

) .
Such a function has a simple behavior in the permutation of two separated variables

(Y, α, β), (Y ′, α′, β′), encoded by the exchange property

Λ̂α′β′

M,Y ′ · Λ̂αβ
M−1,Y = 〈α′, α|Λ̂M,Y ′ · Λ̂M−1,Y |β′, β〉 =

=
r(Y )

r(Y ′)
〈α, α′|R(z)† Λ̂M,Y · Λ̂M−1,Y ′R(z)|β, β′〉 , (3.3.20)

where z = i(ν ′ − ν) and R = Rn,n′ . Any permutation of the separated variables

in (3.3.19) can be decomposed into elementary steps of type (3.3.20), defining a

representation of the symmetric group generators

sk Y = (Y1, . . . , Yk+1, Yk, . . . YN) ,

on the space of symmetric spinors

sk|α〉 = Rnk,nk+1
(i νk+1,k) |α1, . . . , αk+1, αk, . . . , αN〉 ,
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and allowing to state the exchange symmetry

Ψαβ(Y|x) = Ψsk(α,β)(skY|x) . (3.3.21)

The scalar product of two eigenfunctions can be written according to (3.3.19) in

operatorial form, so that it can be reduced to N factorized single-site contributions

of the type

(Λα′β′

1,Y ′)
† · Λαβ

1,Y =
2π3

n+ 1
δn,n′δ(ν − ν ′)〈α|α′〉n〈β|β′〉n ,

by the iterative application of the property

(Λ̂α′β′

M,Y ′)
† · Λ̂αβ

M,Y = 〈β′, α|Λ̂†M,Y ′ · Λ̂M,Y |α′, β〉 =
r(Y ′)

r(Y )
×

× π4
Trn′ [〈α|R(z)|α′〉 Λ̂M−1,Y 〈β′|R†(z)|β〉 Λ̂†M−1,Y ′ ](

(ν − ν ′)2 + (n−n′)2

4

)(
(ν − ν ′)2 + (n+n′+2)2

4

) ,

valid under the assumption Y 6= Y ′ and where the trace means the cyclic contraction

of indexes in the space of primed spinors. As result the scalar product of two functions

(3.3.19) takes the form of an orthogonality relation

µ(Y)−1

N !

∑
π∈SN

δ(Y − π(Y′))〈α|π|α′〉〈β′|π|β〉 , (3.3.22)

where SN are the permutations of N objects and we introduced the compact notation

δ(Y −Y′) =
N∏
a=1

δna,n′a δ(νa − ν ′a) .

3.3.3 Conformal fishnet Integrals

In analogy with the 2D results of [29], employing the results of the previous sections

we will compute exactly the four-point correlation function

GN,L = 〈Tr[φN1 (x1)φL2 (x2)φ†N1 (x3)φ†L2 (x4)]〉 , (3.3.23)

for any N and L, where φ1(x) , φ2(x) are the two complex scalar Nc×Nc fields which

appear in the Lagrangian of the conformal fishnet theory [32] in four dimensions. In

the planar limit [126] Nc →∞ the only Feynman diagram which contributes to the

perturbative expansion in the coupling ξ2 of GN,L is given by the integral

ˆ
dz

(4π2)NL

(
N∏
a=0

1

(za,b − za+1,b)2

)(
L∏
b=0

1

(za,b − za,b+1)2

)
, (3.3.24)

where the integration measure is dz =
∏N,L

a,b=1 d
4za,b and we set z0b = x1, zN+1b =

x3, za0 = x4, zaL+1 = x2. Such a square-lattice integral can be expressed via the
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x3

x1 x2

Y YZ Z

U U

Figure 3.14: A Feynman diagram contributing to the planar limit of 〈Tr(φ2
1)(x1)Tr(φ2

1)(x2)Tr(φ† 4
1 )(x3)〉

at order ξ28 and its decomposition into hexagons. Here M1 = 1, M2 = 2, M3 = 2. Each color

of a cut corresponds to the insertion of a different set of separated variables, as indicated on

the hexagons.

graph-building operator (3.3.11). Indeed, starting from the fishnet diagram

FN,L =

(
N∏
a=1

z2
aa+1

)
(BN)L+1

(
N∏
a=1

δ(4)(z′a − za)
)
, (3.3.25)

one can transform it to (3.3.24) by the reductions of external points za → x1, z′a → x3

followed by a conformal transformation. Therefore, as a functions GN,L(u, v) of the

cross-ratios u = x2
12x

2
34/(x

2
13x

2
24) and v = x2

14x
2
23/(x

2
13x

2
24), the planar limit of (3.3.23)

is equal to FN,L with reduced external points. According to (3.3.6) the integral kernel

of (BN)L in the space of separated variables is factorized as

B̃LN(Y1, . . . , YN) =
1

π2NL

N∏
a=1

[
1

4ν2
a + (1 + na)2

]L
. (3.3.26)

In order to restore the (u, v)-dependence of (3.3.24) one has first to expand the r.h.s.

of (3.3.25) over the eigenfunctions via the inverse transform (3.3.9). Then, by the

appropriate reduction of the external points and upon integration of spinors and

normalization by the bare correlator, we get

GN,L(u, v) =
∑
n∈Z

ˆ
dν µ(Y)

N∏
k=1

|x|−2iνk(x̄/x)(nk+1)/2

(ν2
k + (nk + 1)2/4)L+N

,

where u/v = xx̄, v = 1/
√

(1− x)(1− x̄). After the redefinition nk → ak − 1,

νk → uk, x→ z it coincides with the result of [125].

We shall conjecture further applications of the separated variables transform

(3.3.9) to the computation of planar fishnet integrals. An interesting example in

this sense is provided by the three-point function of “vacuum” operators

〈Tr(φN1 )(x1)Tr(φL1 )(x2)Tr(φ†N+L
1 )(x3)〉 . (3.3.27)
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In the planar limit the perturbative expansion of (3.3.27) in the coupling con-

stant consist of regular square lattice diagrams drawn on a three-punctured sphere

S2\{x1, x2, x3} as explained in [165] and exemplified in Fig.3.14. In the same spirit

of “hexagonalisation” techniques [158, 159, 165, 166] we perform three cuts on the

diagram connecting the punctures, and insert along each cut a sum over the basis

(3.3.19), labeled by the separated variables

(Y,α,β) , (Z,λ,χ) , (U,κ,ω),

where Ya = [νa, na], Za = [µa,ma], Ua = [τa, ta]. Let Mi be the number of φ2φ
†
2

wrappings around the puncture xi (see Fig.3.14). The representation of the two

hexagons over the separated variables reads

|H|2 ∼ |A|2
M1+M3∏
a=1

[
1

ν2
a + (na+1)2

4

]N M2+M3∏
b=1

[
1

µ2
b + (mb+1)2

4

]L
,

and the form factor A is given by the overlapping of three eigenfunctions of type

(3.3.19) at different values of x0

A =

ˆ
dz dz′ dz′′ Ψαβ

Y (z, z′) Ψλχ
Z (z, z′′) Ψκω

U (z′, z′′) , (3.3.28)

for z = (z1, . . . , zM3), z′ = (z′1, . . . , z
′
M1

), and z′′ = (z′′1 , . . . , z
′′
M2

). Finally, the Feyn-

man integral is recovered by gluing the two hexagons via completeness sums

∼
∑
n,m,t

ˆ
dν dµ dτ µ(Y)µ(Z)µ(U)

ˆ
Dα · · ·Dω |H|2 .

An interesting reduction of the correlator (3.3.27) is obtained setting L = 0 and

degenerating it to the two-point function 〈Tr(φN1 )(x1)Tr(φ†N1 )(x3)〉, for which the

planar fishnet lies on a cylinder and it is conformally equivalent to a “wheel” diagram

[32, 39, 167, 168].

As a general fact the diagrams describing the planar limit of (3.3.27) develop

UV divergences, which in our representation should be contained in the form factor

(3.3.28). The elaboration of a regularization technique at this level is an intriguing

task as it would enable the direct computation of several conformal data in the fishnet

CFT at finite order in the coupling.

3.3.4 Conclusions

In this second part of the chapter we formulated and solved the spin chain of SO(1, 5)

conformal spins for any number of sites N and for open boundary conditions, in the

principal series representation of zero spin [154]. Its integrability is realized by a

commuting family of spectral parameter-dependent operators QN(u) which generate

the conserved charges of the model. The spectrum of the model is separated into N

symmetric contributions, each depending on quantum numbers which for this reason
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we call separated variables. We explained how to construct the eigenfunctions and

prove their orthogonality, extending the logic of [160] to a four dimensional space-

time by means of new integral indentities which generalize the star-triangle relation

[161] to symmetric traceless tensors.

Our results can be analytically continued from the representation of the principal

series to real scaling dimensions, recovering the graph-building operator - introduced

in 2D by the authors and V. Kazakov [29] - for the Feynman diagrams of fishnet

CFT [32, 91]. The variant of this graph-builder with periodic boundary was first

introduced in [32] and coincides with the B̂-operator of the fishchain holographic

model [169–171]. Following the same steps as [29], we computed the planar limit of

the fishnet correlator studied by B. Basso and L. Dixon providing a direct check of

the formula (14) of [125].

The separation of variables (SoV) for non-compact spin magnets is a topic which

recently attracted great attention [172–177], and SoV features appear in remarkable

results of AdS/CFT integrability, for instance [178, 179]. It has not escaped our

notice that the properties of the proposed eigenfunctions immediately suggest their

role in the SoV of the periodic SO(1, 5) spin chain [111], in full analogy with [117].

Moreover it would be interesting to apply our methods to the computation of other

classes of Feynman integrals, for example introducing fermions as in [31, 180], or con-

sidering any space-time dimension and extending our results to the theory proposed

in [28]. In the latter context, the functions (3.3.19) for N = 2 sites have been derived

in a somewhat different form and applied to the formulation of the Thermodynamic

Bethe Ansatz equations [181].

Finally we have conjectured how, by means of a cutting-and-gluing procedure

inspired by [165], certain planar two- and three-point functions of the fishnet CFT

at finite coupling get factorized into simple contributions over the separated variables.

This observation puts as a compelling future task the regularization of such formulas,

in order to compare the results based on the AdS/CFT correspondence to a direct

computation.





Chapter 4

Four-point functions in Chiral CFT4

4.1 Introduction

Whereas a big progress already in the study of the bi-scalar fishnet CFT has been

done, little is known about the most general version of the double-scaled γ-deformed

N = 4 SYM. Until very recently, apart from the original formulation [32] and the

study, in [91], of asymptotic Bethe Ansatz equations for anomalous dimensions in

certain sectors of this theory, as well as the computations of related unwrapped and

single-wrapped Feynman graphs, no serious attempts had been undertaken to un-

derstand the physical properties and the Feynman graph structure of the full χCFT.

It is worth noticing that, unlike the bi-scalar fishnet CFT, the reasons for the (hy-

pothetical) integrability of this model remains quite mysterious.

The non-unitarity of the χCFT represents an obvious drawback from the point of

view of the physical interpretation: the presence of complex OPE data violates ba-

sic quantum-mechanical axioms and standard analyticity constraints. On the other

hand, non-unitary theories are curious objects by themselves, having interesting OPE

properties, such as a logarithmic behavior of certain correlators (χCFT is an exam-

ple of logarithmic CFTs). In addition, they share many basic common features with

unitary CFTs and help to understand their general features.

4.1.1 Integrability of Wheel graphs in χCFT

A statement of integrability, milder than the lattice integrability of the bulk of large

planar graphs, can be made for the scaling dimension of Tr [φLj ] operators at any L.

These operators, protected in the original N = 4 SYM due to super-symmetry, are

described in the planar limit of bi-scalar theory by a perturbative expansion in globe-

like fishnet graphs [32] with an integrable square-lattice bulk [92]. These graphs can

be built up by the action of an integral “graph-building” kernel Ĥ(L)
B

[Ĥ(L)
B Φ](x1, · · · , xL) =

1

π2L

ˆ L∏
k=1

d4yk
(xk − yk)2(yk − yk+1)2

Φ(y1, · · · , yL), yL+1 ≡ y1 .

(4.1.1)

– 131 –
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y1

y2

y3

x1

x2x3

Figure 4.1: An example of bulk of a planar diagram appearing in the perturbative expansion of

〈Tr [φ3
j ](x)Tr [φ3

j ]
†(y)〉. It mixes together a square lattice structure of quartic scalar in-

teractions and the “brick-wall” domain made by Yukawa interactions. This case corresponds

to the operatorial expression Ĥ(3)
B (Ĥ(3)

F )2H(3)
B (x1, x2, x3|y1, y2, y3).

It represents one of the conserved charges generated by the transfer matrix of the

integrable quantum SU(2, 2) spin chain of L sites in the scalar (∆, J1, J2) = (1, 0, 0)

representation [39]. Similarly, in the two-coupling version (1.2.4) of χCFT the per-

turbative expansion can be described by graphs which, in spite of more complicated

structure (see Fig.4.1), can be still built by integrals of motion of the conformal spin

chain. Namely, every planar graph in the ξj expansion is a certain permutation of

multiple action of operators Ĥ(L)
B and Ĥ(L)

F , where the latter operator is responsible

for fermionic loops contribution. As we will see, the order in the permutation doesn’t

matter, since any fermionic loop can be moved through scalar wrappings, due to their

commutativity, and this fact lays at the basis of integrability of these graphs. The

action of Ĥ(L)
F reads

[Ĥ(L)
F Φ](x1, · · · , xL) =

ˆ L∏
k=1

d4yk d
4zk H(L)

F (x1 · · ·xL|y1 · · · yL)Φ(y1, · · · , yL) ,

H(L)
F (x1 · · ·xL|y1 · · · yL) =

tr[σµ1σ̄ν1 · · ·σµLσ̄νL ]

(4π3)2L
× (4.1.2)

×
ˆ L∏
k=1

d4zk
(xk − zk)2

(zk − yk)µk(yk − zk+1)νk

|zk − yk|4|zk+1 − yk|4
,

and it builds up an integrable “brick-wall” domain [95]. Its commutation with Ĥ(L)
B

can be proven directly by star-triangle relation (3.3.15), as shown in Fig.4.2. In

order to show that Ĥ(L)
F is a conserved charge of the conformal scalar spin chain, we

should prove its commutation with the transfer matrix at any value of the spectral
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x1 x2 x3

y1 y2 y3

x1 x2 x3

y1 y2 y3 y1 y2 y3

x1 x2 x3

Figure 4.2: Proof of the commutation relation [Ĥ(L)
B , Ĥ(L)

F ] = 0 at L = 3. Gray blobs are external

coordinates, black dots are integration points and we denoted lines which coincide due to

periodic b.c. with blue. Left: Ĥ(L)
B H

(L)
F (x1, x2, x3|y1, y2, y3). In the middle: the result of

integration over Yukawa vertices. Right: Ĥ(L)
F H

(L)
B (x1, x2, x3|y1, y2, y3) as result of opening

triangles with single yj vertex in the middle figure.

parameter u,

[Ĥ(L)
F ,T(L)(u)] = 0 . (4.1.3)

For this purpose, we rewrite the kernel integrating out zk variables

H(L)
F (x1 · · · xL|y1 · · · yL) =

tr[σµ1σ̄ν1 · · · σ̄νL ]

(2π)4L

L∏
k=1

(yk − xk)µk(xk − yk+1)νk

(xk − yk)2(xk − yk+1)2(yk − yk+1)2
,

and we recall the definition of T(L)(u)

T(L)(u) = Tr 0[R10(u)R20(u) · · ·RL0(u)], Rj0(u) ∈ End(L2(xj)⊗ L2(x0))

(4.1.4)

[Rij(u)Φ](xi, xj) =
42u

π4

Γ (u+ 2)2

Γ (−u− 1) Γ (−u+ 1)

ˆ
d4xi′d

4xj′Φ(xi′ , xj′)

(x2
ij)
−u−1(x2

ji′)
1+u(x2

ij′)
3+u(x2

i′j′)
−u+1

,

where Rij(u) is the R-operator of the scalar conformal chain. It satisfies the Yang-

Baxter equation [182]

Rij(u)Rik(v)Rjk(v − u) = Rjk(v − u)Rik(v)Rij(u) .

Then operator (4.1.1) coincides with 4−2LT(L) in the limit u → −1, as pointed out

in [39], since the first propagator under the integral in (4.1.4) disappears and the last

one effectively becomes a δ-function.

Now we introduce the transfer matrix for the brick-wall domain1

T(L)
F (u) = Tr 0[R̃10(u)R̃20(u) · · · R̃L0(u)], R̃j0(u) ∈ End(L2(xj)⊗ L2(x0)⊗ C2)

(4.1.5)

[(R̃ij)
α
β(u)Φ](xi, xj) =

42u

π4

Γ (u+ 2)2

Γ (−u) Γ (−u+ 1)
× (4.1.6)

×
ˆ
d4xi′d

4xj′
(σµ)αα̇(σ̄ν)α̇β x

µ
ij′ x

ν
i′j Φ(x′i, x

′
j)

(x2
ij)
−u(x2

ji′)
1+u(x2

ij′)
3+u(x2

i′j′)
−u+1

,

1Here we implicitly mean the trace over spinorial indices of the fermionic loop.
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Figure 4.3: Graphical representation of relation (4.1.8) of Yang-Baxter type. The squares represent the

kernels of R(v − u)23 (solid lines) and (R̃12)αβ (u), (R̃13)βγ (v) (solid and dashed lines). Black

dots are integration points, while gray blobs are external coordinates. Figures on the left and

on the right are respectively the L.H.S. and R.H.S. of (4.1.8). Both sides can be transformed

in the hexagonal object in the middle. First the triangle is opened into a star integral using the

star-triangle relation. Doing so, each of the three black dots will become the end of only three

lines. Then integration can be performed again by star-triangle and leads to the hexagon.

and we check, similarly to the above scalar case, that limu→−1 T(L)
F (u) = Ĥ(L)

F . The

final step to prove (4.1.3) is to show that

[T(L)(u),T(L)
F (v)] = 0 ∀u, v , (4.1.7)

which will be done by means of a Yang-Baxter type relation

R̃α
ij β(u)R̃β

ik γ(v)Rjk(v − u) = Rjk(v − u)R̃α
ik β(v)R̃β

ij γ(u) . (4.1.8)

graphically represented in Fig.4.3. Indeed (4.1.7) follows immediately from (4.1.8).

First of all we can introduce the monodromy operators

Ω̃
(L) α
0 β (u) =

[
R̃01(u) · · · R̃0L(u)

]α
β

and Ω
(L)
0 (u) = R01(u) · · ·R0L(u) , (4.1.9)

then iterating (4.1.8) we can write[
R̃00′(u)Ω̃

(L)
0 (v)

]α
β

Ω
(L)
0′ (u− v) = Ω

(L)
0′ (u− v)

[
Ω̃

(L)
0 (v)R̃00′(u)

]α
β
, (4.1.10)

and we finally trace over space L2(x0)⊗ L2(x0′) and over spinorial indices getting

Tr 0,0′

(
Ω̃

(L)
0 (v)Ω

(L)
0′ (v − u)

)
= Tr 0,0′

(
R̃00′(u)−1Ω

(L)
0′ (v − u)Ω̃

(L)
0 (v)R̃00′(u)

)
Tr 0

(
Ω̃

(L)
0 (v)

)
Tr 0′

(
Ω

(L)
0′ (v − u)

)
= Tr 0′

(
Ω

(L)
0′ (v − u)

)
Tr 0

(
Ω̃

(L)
0 (v)

)
, (4.1.11)

which is equivalent to (4.1.7). Our derivation straightforwardly shows that from the

point of view of integrability the regular square lattice and the brick-wall lattice built

by Yukawa vertices can be combined into the same integrable structure and form a

mixed lattice. This concludes the demonstration of integrability of the two-coupling

model (1.2.4). The proof of integrability of the full χCFT (1.2.2) is a more tricky

exercise and we leave it for the future.
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4.2 Bethe-Salpeter equation correlators and conformal data

In this and the next sections of this paper, we will exploit conformal symmetry and

the Bethe-Salpeter method to obtain the exact 4-point correlation function of the

type

GO1O2(x1, x2|x3, x4) = 〈Tr[O1(x1)O2(x2)]Tr[O†1(x3)O†2(x4)]〉 , (4.2.1)

where the operators Oi are protected operators in the planar limit of χCFT. Then we

will extract from it the OPE data (anomalous dimensions and structure constants)

for length-2 unprotected operators exchanged in the s-channel of (4.2.1). In the

current section, we present the generalities of conformal Bethe-Salpeter approach,

generalizing the one applied in [28, 36, 37] to the bi-scalar fishnet CFT, to sum up

the Feynman graphs for these quantities in χCFT.

At the fixed point (1.2.13) and in the planar limit, the correlation function (4.2.1)

is a finite function of the couplings ξi with i = 1, 2, 3. The correlation functions can

be written as a geometric sum of primitive divergences in the perturbative expansion.

For this reason, we will study those diagrams with the help of the Bethe-Salpeter

equation. In the following we will review the Bethe-Salpeter method pointing out

how to extract the spectrum and the OPE data from a four-point function (4.2.1).

In Sec.1.2.2, we presented the bulk fishnet structure of large planar diagrams in

the general double-scaled γ deformed N = 4 SYM theory. In this section we will

focus on the correlation functions defined by (4.2.1) for matrix (untraced) operators

with bare dimensions ∆O1 and ∆O2 . In order to preserve renormalizability of the

theory we have to add double-trace counter-terms (1.2.7), so that the diagrams in

the perturbative expansion of (4.2.1) will take the following chain structure

BB

F F

where the black dots are insertions of the double-trace operator2 and the links of

the chain are periodically repeating configurations of propagators (a special case of

the topologies presented in Sec.1.2.2) generated by kernels of integral operators. We

will refer to this set of operators as Hamiltonians or graph-building operators Ĥi.

In the family of theories we are considering, Ĥi can be of three different kind: the

double trace operator V̂ , the bosonic operator ĤB and the fermionic operator ĤF .

The operators V̂ , ĤB and ĤF separately produce divergent integrals. However, at

the fixed point, their combination is finite due to conformal symmetry (see Sec.4.4).

These integral operators commute among themselves and they are diagonalized by

the same basis of conformal triangles – the 3-point correlators of the two protected

operators with one unprotected operator described below.
2Such insertions should always split a graphs, and its color structure, into two disconnected pieces.
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In general, the correlation function (4.2.1) can be written in general as a geometric

series of a linear combination of the Hamiltonian graph-building operators as follows

ĜO1O2 =

(
cB
x2

34

)∆O1
+∆O2

−d ∞∑
`=0

ĤB(χV V̂ + χBĤB + χF ĤF )`

=

(
cB
x2

34

)∆O1
+∆O2

−d ĤB

1− χV V̂ − χBĤB − χF ĤF

,

(4.2.2)

where cB = 1/(4π2) is the normalization factor of the free scalar propagator, χV ,

χB an χF are combinations of the couplings αi and ξi with i = 1, 2, 3, which will be

introduced later (see Sec.4.3). The space-time dimension d in this paper is always

taken to be d = 4. 3 The correlation function (4.2.1) can be obtained from the

operator ĜO1O2 as follows

GO1O2(x1, x2|x3, x4) = 〈x1, x2|ĜO1O2|x3, x4〉 , (4.2.3)

where the Hamiltonian operators are represented by the corresponding integration

kernels such that

〈x1, x2|Ĥn
i |x3, x4〉=

ˆ 2n∏
k=1

d4ykHi(x1, x2|y1, y2)Hi(y1, y2|y3, y4)...Hi(y2n−1, y2n|x3, x4) .

(4.2.4)

In order to compute the correlators GO1O2 , given the set of Hamiltonian graph-

building operators Ĥi, we need to compute their eigenvalues and decompose ĜO1O2

over a complete basis of their eigenfunctions.

To compute the eigenvalues of Ĥi, we can use the fact that these integral operators

transform covariantly with respect to the (1, 0, 0) ⊗ (1, 0, 0) conformal spin chain

generators.4 This property completely fixes their eigenstates to be the conformal

triangle Φ∆,S,x0(x1, x2), the three-point function of two (scalar) operators in x1 and

x2 with an operator O∆,S(x0) with scaling dimension ∆, spin S at the position x0

Φ∆,S,x0(x1, x2) = 〈Tr [O1(x1)O2(x2)]O∆,S(x0)〉

=(x2
12)p−

∆O1
+∆O2

2 (x2
10)

∆O2
−∆O1

2
−p(x2

20)
∆O1

−∆O2

2
−p
(

2(nx02)

x2
02

− 2(nx01)

x2
01

)S
,

(4.2.5)

where p = ∆−S
2

and nµ an auxiliary light-cone vector. In the case S = 0, the confor-

mal triangle is composed by simply three scalar propagators that we can graphically

3It is possible to generalize the bi-scalar fishnet theory to any integer dimension d, as in [28], at the cost of losing

locality. It is not evident that such a generalization is possible for the full χCFT.
4In particular, defining the inversion I[xµi ] = xµi /x

2
i , we have, for a conformal triangle Φx0 (x1, x2)in the repre-

sentation (1, 0, 0) ⊗ (1, 0, 0), I[Φx0 (x1, x2)] = Φx0 (x1/x2
1, x2/x2

2) = UΦx0 (x1/x2
1, x2/x2

2), and U = x2
1x

2
2x

∆−S
0 . We

can check that for every integral operator: I[Ĥi] = UĤiU−1.
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represents as follows

Φ∆,0,x0(x1, x2) ≡

x

1x

2

x021

2 1

1 2

. (4.2.6)

Finally, given the eigenstate (4.2.5), we can compute the spectrum of the Hamiltonian

operators Ĥi as followsˆ
d4y1d

4y2Hi(x1, x2|y1, y2) Φ∆,S,x0(y1, y2) = hi∆,S Φ∆,S,x0(x1, x2), (4.2.7)

where hi∆,S is the eigenvalue. More specifically, given the Hamiltonians operators

defined in (4.2.2), we have[
V̂ Φ∆,S,x0

]
(x1, x2) = hV∆,S Φ∆,S,x0(x1, x2), (4.2.8)[

ĤB Φ∆,S,x0

]
(x1, x2) = hB∆,S Φ∆,S,x0(x1, x2), (4.2.9)[

ĤF Φ∆,S,x0

]
(x1, x2) = hF∆,S Φ∆,S,x0(x1, x2). (4.2.10)

In Sec.4.3, we will verify that (4.2.5) diagonalizes these Hamiltonians and perform a

direct computation of the eigenvalues. The scaling dimension appearing in (4.2.5) is

defined as [183]

∆ = 2 + 2iν , (4.2.11)

with ν a non-negative real number. For such values of ∆, the state Φ∆,S,x0 belongs

to the principal series of type-I irreducible representations (∆, S, 0) of the conformal

group labeled by ν and the discrete spin S and satisfies the orthogonality condition

[183, 184]

ˆ
d4x1d

4x2Φ∆′,S′,x0′
(x1, x2)Φ∆,S,x0(x1, x2)

(x2
12)4−∆O1

−∆O2
=

= (−1)Sc1(ν, S)δ(ν − ν ′) δS,S′δ(4)(x00′)(nn
′)S

+ (−1)Sc2(ν, S)δ(ν + ν ′)δS,S′((n∂x0)(n′∂x0′
) lnx2

00′)
S/(x2

00′)
2−2iν−S,

(4.2.12)

where the 4-dimensional coefficients c1 and c2 are given by

c1 =
2S−1 π7

(S + 1)ν2 (4ν2 + (S + 1)2)
,

c2 = −
iπ5(−1)SΓ

(
S+∆O1

−∆O2

2
− iν + 1

)
Γ
(
S−∆O1

+∆O2

2
− iν + 1

)
Γ(S + 2iν + 1)

ν(S + 1)Γ
(
S+∆O1

−∆O2

2
+ iν + 1

)
Γ
(
S−∆O1

+∆O2

2
+ iν + 1

)
Γ(S − 2iν + 1)

.

(4.2.13)
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The eigenfunctions Φ∆,S,x0 forms an orthonormal basis for ν ≥ 0 implying the fol-

lowing representation for the identity

δ(4)(x13)δ(4)(x24)=
∞∑
S=0

(−1)S

(x2
34)4−∆O1

−∆O2

ˆ ∞
0

dν

c1(ν,S)

ˆ
d4x0Φ∆,S,x0(x1,x2)Φ∆,S,x0(x3,x4),

(4.2.14)

that, together with the definition (4.2.7), leads to the diagonalized representation

Hi(x1,x2|x3,x4)=
∞∑
S=0

(−1)S

(x2
34)4−∆O1

−∆O2

ˆ ∞
0

dνhi∆,S
c1(ν,S)

ˆ
d4x0Φ∆,S,x0(x1,x2)Φ∆,S,x0(x3,x4),

(4.2.15)

where Hi stands for the set of Hamiltonians {V ,HB,HF} and hi∆,S for the set of

eigenvalues {hV∆,S, hB∆,S, hF∆,S} respectively.

Plugging the representation (4.2.15) for the graph-building operators Hi into

(4.2.2), we obtain the representation of the 4-point function in terms of their eigen-

values hi∆,S

GO1O2(x1, x2|x3, x4) =
∞∑
S=0

(−1)S

(x2
34)4−∆O1

−∆O2

ˆ ∞
0

dν

c1(ν, S)
×

× hB∆,S

1− χVhV∆,S − χBhB∆,S − χFhF∆,S

ˆ
d4x0Φ∆,S,x0(x1, x2)Φ∆,S,x0(x3, x4).

(4.2.16)

The integral over the auxiliary point x0 can be expressed in terms of the four-

dimensional conformal blocks g∆,S [183, 185, 186]ˆ
d4x0Φ∆,S,x0(x1, x2)Φ∆,S,x0(x3, x4)

=

(
1

x2
12x

2
34

)∆O1
+∆O2
2
(
x2

24

x2
13

)∆O1
−∆O2
2
(
c1(ν, S)

c2(ν, S)
g∆,S(u, v) +

c1(−ν, S)

c2(−ν, S)
g4−∆,S(u, v)

)
,

(4.2.17)

where the cross-ratios are u = zz̄ = x2
12x

2
34/(x

2
13x

2
24) and v = (1 − z)(1 − z̄) =

x2
14x

2
23/(x

2
13x

2
24) and we recall from [185] that

g∆,S = (−1)S
zz̄

z − z̄ [k(∆ + S, z)k(∆− S − 2, z̄)− k(∆ + S, z̄)k(∆− S − 2, z)] ,

where k(β,x) = xβ/2 2F1

(
β − (∆1 −∆2)

2
,
β + (∆3 −∆4)

2
, β, x

)
.

(4.2.18)

Inserting (4.2.17) into (4.2.16), we obtain

GO1O2(x1, x2|x3, x4) =

(
c2
B

x2
12x

2
34

)∆O1
+∆O2
2

(
x2

24

x2
13

)∆O1
−∆O2
2

GO1O2(u, v) , (4.2.19)
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where we defined

GO1O2(u, v) =
1

c4
B

∞∑
S=0

(−1)Ŝ
∞

−∞

dν

c2(ν, S)

hB∆,S g∆,S(u, v)

1− χVhV∆,S − χBhB∆,S − χFhF∆,S

.

(4.2.20)

Notice that we extended the integral over ν on the full real axis with the change of

variable ν → −ν in the second term of (4.2.17). This is allowed by the symmetry of

eigenvalues appearing in the spectral equation

hi 4−∆,S = hi∆,S , (4.2.21)

and can be interpreted as the fact that, for a given spin S, states with dimension ∆

and 4−∆ belong to unitary-equivalent representations of the conformal group. This

symmetry is indeed satisfied for every studied case, (4.3.14) and (4.3.25).

Before studying the integral in (4.2.20), we want to focus on the role of the

double-trace Hamiltonian and its eigenvalues in the perturbative and Bethe-Salpeter

approaches. To find the correlation function (4.2.1), we have to sum up diagrams

of the kind shown at the beginning of this section. These diagrams contain scalar

and fermionic loops generated by the operators ĤB and ĤF interspersed with the

contributions of the double-trace vertices introduced in (1.2.7). Since in general

the integrals over the positions of the single-trace vertices develop ultraviolet (UV)

divergences at short distances, one needs the double-trace interactions to produce

other UV divergent contributions which cancels against them. Therefore, the weak

coupling expansion of the four-point correlation function remains UV finite at any

order as expected for protected O1 and O2.

In the context of the Bethe-Salpeter equation the story is slightly different. Indeed

consider the Hamiltonian operator V̂ associated to the double-trace kernel defined

as follows[
V̂ Φ

]
(x1, x2) = 2c2

B

ˆ
d4y1d

4y2

(x1 − y1)2(x2 − y2)2
δ(4)(y12) Φ(y1, y2) , (4.2.22)

where Φ(y1, y2) is a test function. We have to compute its spectrum by means of

(4.2.8) that, when applied to (4.2.5), reads[
V̂ Φ∆,S,x0

]
(x1, x2) =

δ(4)(ν)δS,0
(4π)2

Φ∆,S,x0(x1, x2) ⇒ hV∆,S =
δ(4)(ν)δS,0

(4π)2
.

(4.2.23)

First of all, due to the form of the eigenvalue, the double-trace term can affect only

the contribution to the sum in (4.2.20) with spin S = 0. Then we expect that the

contribution to (4.2.20) given by the Hamiltonian operators ĤB and ĤF are well-

defined for S 6= 0 but in principle we have to take into account the double-trace term

for S = 0.

Since we want to write GO1O2 in the standard OPE form, we will consider the

limit in which two of the external points are approaching, i.e. |x12| → 0 (or u → 0
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and v → 1). Since the conformal block scales as up(1 − v)S decaying exponentially

for Re(iν) → ∞, one can close the contour in the integral over ν in the lower-half

plane and then compute it by residues. At short distances, the eigenstate (4.2.5)

scales as Φ∆,S,x0(x1, x2) ∼ (x2
12)

∆−∆O1
−∆O2

2 and thus it vanishes in the lower-half

plane (which is true in our case, since ∆O1 = ∆O2 = 1 and <(∆) > 2). In this case,

the bosonic and fermionic operators do not develop UV divergences (one can verify

it in the two special cases that we study in detail in Sec.4.3). Moreover, given the

definition (4.2.22) and the formula (4.2.23), the double-trace operator V̂ annihilates

Φ∆,S,x0 with Im(ν) < 0 for any S and therefore, it does not contribute. With this

argument, we are able to neglect the double-trace contributions when we compute

the four-point function GO1O2 with the Bethe-Salpeter method. Then we can rewrite

(4.2.20) as follows

GO1O2(u, v) =
1

c4
B

∞∑
S=0

(−1)S
˛
C−

dν

c2(ν, S)

hB∆,S

1− χBhB∆,S − χFhF∆,S

g∆,S(u, v) ,

(4.2.24)

where C− is the close path in the lower-half plane.

In order to compute the integral over ν in (4.2.24) with residues, we have to

identify the poles of the integrand. The physical poles are given by the zeros of

denominator of the integrand, i.e. by solutions of the equation

hB∆,S
−1 − χF hF∆,S hB∆,S

−1 = χB . (4.2.25)

We will refer to (4.2.25) as spectral equation: indeed given the eigenvalues hi∆,S
and the constants χi, solving the equation we will obtain the scaling dimensions ∆

as functions of the couplings ξi with i = 1, 2, 3 and the spin S. In the integrand

of (4.2.24), two series of spurious poles are generated by the measure c2 and the

conformal block g∆,S. In App.C.2 we will prove that the contribution of those poles

cancel under the condition

hi 3+S+k,S − hi 3+S,S+k = 0 k = 0, 2, 4 . . . , (4.2.26)

which happens to be satisfied.

Finally GO1O2 is given by the sum of only the residues at the physical pole (4.2.25).

Then we can rewrite the correlation function in the standard form of a conformal

partial wave expansion as follows

GO1O2 =
∑

∆,S≥0

C∆,S g∆,S(u, v) , (4.2.27)

with the OPE coefficients C∆,S defined as

C∆,S =
(−1)S

c4
B

4πRes∆

(
1

c2(ν, S)

hB∆,S

1− χBhB∆,S − χFhF∆,S

)
. (4.2.28)
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The sum over ∆ in (4.2.27) runs over the solutions of the spectral equation for scaling

dimensions of exchanges operators with Re(∆) > 2 5.

In the following sections, we will focus on the computation of the point-split

four-point correlation functions of the operators introduced in (1.2.3), establishing

the Hamiltonian operators Ĥi and the constants χi appearing in (4.2.1) from their

Feynman diagram expansion. We closely follow in our analysis the logic of [37], but

in contrast to this paper which treats the bi-scalar fishnet CFT, we have to introduce

new types of diagrams into the Bethe-Salpeter procedure, reflecting a richer structure

of the full three-coupling χCFT. To write the correlation function (4.2.1) in the

standard OPE representation requires, as the only dynamical input, the knowledge of

eigenvalues hi∆,S of the Hamiltonian operators. We will diagonalize Ĥi to extract the

conformal data, i.e. the scaling dimensions of the exchanged operators and the OPE

coefficients. In what follows we consider only single scalar fields as protected external

operators and then we should set ∆O1 = ∆O2 = 1. In the following sections we will

concentrate with the sector φ1φ1 of the theory, and study its four-point correlator

pointing out the richer OPE data which appear respect to the same correlator in the

bi-scalar fishnet CFT.

4.3 Exact four-point correlation function Gφ1φ1

In this section we consider the four-point correlators associated to the first operator of

(1.2.3), namely when O1(x) = O2(x) = φj(x) with j = 1, 2, 3. Since the computation

of the correlators is the same for any j, we will consider the case j = 1 and then the

four-point function we want to study takes the following form

Gφ1φ1(x1, x2|x3, x4) = 〈Tr[φ1(x1)φ1(x2)]Tr[φ†1(x3)φ†1(x4)]〉 . (4.3.1)

This correlation function was extensively studied in [36] in the simplest case of the

family of theories we are inspecting, i.e. the bi-scalar theory (1.2.6).

In the planar limit Nc → ∞, once chosen j = 1, the weak coupling expansion

of (4.3.1) in terms of Feynman diagrams is given by a combination of the following

bosonic vertices

(4π)2ξ2
3Tr[φ†1φ

†
2φ2φ2](x) , (4π)2ξ2

2Tr[φ†3φ
†
1φ3φ1](x) ,

(4π)2α2
1 Tr[φ1φ1](x) Tr[φ1φ1]†(x) ,

(4.3.2)

and the following Yukawa vertices

4πi
√
ξ2ξ3 Tr[ψ3φ

†
1 ψ2](x) , 4πi

√
ξ2ξ3 Tr[ψ3φ1 ψ2](x) . (4.3.3)

In the following we will study the correlation function (4.3.1) with the Bethe-Salpeter

method.
5This condition in the OPE is equivalent to the restriction Re(iν) > 0 in the contour integral in (4.2.24).
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Figure 4.4: A Feynman diagram contributing to the perturbative expansion G
(`)
φ1φ1

. The black dots

stand for double-trace vertices and tick and dashed lines correspond to bosonic and fermionic

propagators respectively. The colors represent different flavors j of the particles φj and ψj : in

particular black for j = 1, red for j = 2 and green for j = 3. The propagators are not crossing

and are curved to stress the fact that they have a cylindrical topology.

4.3.1 Bethe-Salpeter method

The perturbative expansion of (4.3.1) can be written in the following form

Gφ1φ1(x1, x2|x3, x4) =
∞∑
`=0

(4π)4`G
(`)
φ1φ1

(x1, x2|x3, x4) , (4.3.4)

where G
(`)
φ1φ1

at any perturbative order ` contains contributions from the bosonic and

fermionic integrals with different coupling dependencies. In Fig.4.4, we present an

example of an arbitrary Feynman diagram contributing to G
(`)
φ1φ1

. The black dots

represents insertions of the double-trace vertex in the last line of (4.3.2) that in the

Bethe-Salpeter picture are associated with the operator V̂ defined in (4.2.22). Then

it is straightforward to fix the normalization of its coupling constant in (4.2.2) as

follows

χV = (4π)2 α2
1 . (4.3.5)

In Sec.4.2, we discussed the role of the double-trace terms in the computation of

the four-point function, discovering that they are not contributing to the spectral

equation. Then, similarly to observations of [36, 37], as far as we consider the

perturbative expansion (4.3.4) in the point-splitting x1 6= x2 and x3 6= x4, we need

only to sum over the single trace contributions, namely the diagrams inside the chain

link of Fig.4.4. In Sec.4.4 we will present in detail how the relation between single-

and double-trace terms is crucial for the setting of the fixed point (1.2.13).

The first two orders of the perturbative expansion are given by the diagrams

represented in Fig.4.5 and they can be written as follows

G
(0)
φ1φ1

=
c2
B

x2
13x

2
24

,

G
(1)
φ1φ1

= c6
B(ξ4

2 + ξ4
3)

ˆ
d4y1d

4y2

(x1 − y1)2(x2 − y2)2(y2
12)2(y1 − x3)2(y2 − x4)2

− c4
Bc

4
F ξ

2
2ξ

2
3

ˆ ∏2
i=1d

4yid
4yi′ Tr [σµσρσησν ] y

µ
22′y

ρ
2′1y

η
11′y

ν
1′2

(x1 − y1′)2(x2 − y2′)2y4
22′y

4
2′1y

4
11′y

4
1′2(y1 − x3)2(y2 − x4)2

,

(4.3.6)
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Figure 4.5: First contribution to the four-point functions Gφ1φ1 .

3

42

1

(a) HB(x1, x2|x3, x4)

4

3

2

1
3

4

’

’

(b) HF (x1, x2|x3, x4)

Figure 4.6: The kernels associated to the Hamiltonian graph-building operators ĤB and ĤF involved

in the computation of the four-point function Gφ1φ1 with j = 1, 2, 3. White dots represent

external points and black dots integration over the full space R4.

where each scalar propagator brings in the factor cB/x
2
ij and each fermionic propaga-

tor the factor cF /xij/x
4
ij, where /x can be σµx

µ or σ̄µx
µ. Since the fermionic propagator

can also be written as cB /∂xi1/x
2
ij we conclude that cF = −2cB = −1/(2π2). These

functions can be expressed in terms of a combination of the Hamiltonian graph-

building operators Ĥi. Indeed defining the following kernels

HB(x1, x2|x3, x4) =
c4
B

x2
13x

2
24x

4
34

,

HF (x1, x2|x3, x4) =− c2
B c

4
F

ˆ
d4x3′d

4x4′ Tr [σµσρσησν ] x
µ
44′x

ρ
4′3x

σ
33′x

ν
3′4

x2
13′x

2
24′x

4
44′x

4
4′3x

4
33′x

4
3′4

,

(4.3.7)

represented in Fig.4.6, we can rewrite (4.3.6) as follows

G
(0)
φ1φ1

=
x4

34

c2
B

HB(x1, x2|x3, x4) ,

G
(1)
φ1φ1

=
x4

34

c2
B

ˆ
d4y1d

4y2

[
(ξ4

2 + ξ4
3) HB(x1, x2|y1, y2) HB(y1, y2|x3, x4)

+ ξ2
2ξ

2
3 HF (x1, x2|y1, y2) HB(y1, y2|x3, x4)

]
.

(4.3.8)

The kernels (4.3.7) transform covariantly under conformal transformations6, then the

corresponding Hamiltonian integral operators commute with the generators of the

conformal group.

When carrying on the perturbative expansion, it becomes clear that an arbitrary

6The easiest way to prove it is to apply the inversion operator to (4.3.7). For the fermionic Hamiltonian it is

convenient to use its representation after the two integrations will be performed later in (4.3.16).
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diagram at order ` is given by

Ĝ
(`)
φ1φ1

=
x4

34

c2
B

ĤB

[
(ξ4

2 + ξ4
3)ĤB + ξ2

2ξ
2
3ĤF

]`
. (4.3.9)

Then the correlator (4.3.4) can be presented in the following operatorial form

Ĝφ1φ1 =
∞∑
`=0

(4π)4`Ĝ
(`)
φ1φ1

=
x4

34

c2
B

ĤB

1− (4π)4(ξ4
2 + ξ4

3)ĤB − (4π)4ξ2
2ξ

2
3ĤF

. (4.3.10)

Comparing it with the definition (4.2.2) we fix the values of the constants χi (in this

case V̂ is not contributing)

χB = (4π)4(ξ4
2 + ξ4

3) , χF = (4π)4ξ2
2ξ

2
3 . (4.3.11)

4.3.2 Eigenvalues of the graph-building operators

Writing the four-point correlation function in the standard OPE form, as presented

in detail in Sec.4.2, involves the computation of the spectrum of the graph-building

operators (4.3.7). The eigenstate that diagonalize the Hamiltonians is defined in

(4.2.5) for ∆O1 = ∆O2 = 1 and the eigenvalues are defined by means of equations

(4.2.9) and (4.2.10). Substituting in the latter the kernels (4.3.7) and using the

definition (4.2.7), we will end up with a set of integrals that can be computed with

the help of the star-triangle relations (3.3.15). The fact that all the integrals that

we have to compute can be computed by means of the star-triangle relations is a

consequence of the underlying conformal symmetry.

Bosonic eigenvalue: The bosonic eigenvalue hB∆,S is defined in (4.2.9). Using the

bosonic Hamiltonian (4.3.7), this relation can be written in the following integral

form

c4
B

ˆ
d4y1d

4y2

(x1 − y1)2(x2 − y2)2y4
12

Φ∆,S,x0(y1, y2) = hB∆,SΦ∆,S,x0(x1, x2) . (4.3.12)

In the case of S = 0, the function Φ∆,S,x0 reduces to (4.2.6) and the computation is

straightforward. Indeed, one needs to apply the star-triangle relations two times as

follows7

��������

STR
=⇒ ��������

STR
=⇒ �������� .

to obtain

hB∆,0 =
16π4c4

B

∆(∆− 2)2(∆− 4)
. (4.3.13)

The eigenvalue at S 6= 0 can be computed in the same way, using the generalization

of star-triangle relation to any-spin case (3.3.15). The computation can be otherwise

7It is convenient to perform this and other similar computations, together with the pictures, with the STR package

[134, 187].
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done in a more tedious and explicit way as presented in detail in [37]. The result

reads [36]

hB∆,S =
16π4c4

B

(∆ + S)(∆ + S − 2)(∆− S − 2)(∆− S − 4)
. (4.3.14)

The eigenvalue is invariant under ∆→ 4−∆, as expected from (4.2.21).

Fermionic eigenvalue The fermionic eigenvalue hF∆,S is defined in (4.2.10). This is

a new object, absent in the similar correlator of bi-scalar model treated in [36]. First

of all we can simplify the fermionic Hamiltonian in (4.3.7) integrating the primed

variables by means of the Yukawa star-triangle identity (3.3.15) as follows (red lines

are spin-1/2 fermionic propagators)

��������

STR
=⇒ ��������

STR
=⇒ ��������

where the computation and figures are made with the STR package (see footnote 7).

We obtain the following kernel

HF (x1, x2|x3, x4) = −π4c2
B c

4
F

Tr [σµσρσησν ] x
µ
42x

ρ
23x

η
31x

ν
14

x2
42x

2
23x

2
31x

2
14x

4
34

. (4.3.15)

Using the formula for the trace of four σ-matrices (C.1.11) and simplifying the scalar

products by means of (C.1.4), we can rewrite the fermionic Hamiltonian in the fol-

lowing form

HF (x1, x2|x3, x4) = π4c2
B c

4
F H̃F (x1, x2|x3, x4)− 2HB(x1, x2|x3, x4) . (4.3.16)

where we used the symmetry HB(x1, x2|x3, x4) = HB(x2, x1|x3, x4) of the bosonic

Hamiltonian studied in the previous paragraph, and H̃F is defined by

H̃F (x1, x2|x3, x4) ≡ x2
12

x2
42x

2
23x

2
31x

2
14x

2
34

. (4.3.17)

Then the fermionic eigenvalue hF∆,S consists of the bosonic eigenvalue (4.3.14) and

the eigenvalue of H̃F defined as follows[
ˆ̃HF Φ∆,S,x0

]
(x1, x2) = h̃F∆,S Φ∆,S,x0(x1, x2) , (4.3.18)

such that

hF∆,S = π4c2
B c

4
F h̃F∆,S − 2hB∆,S . (4.3.19)

Let’s focus on the relation (4.3.18). It can be written in the following integral form
ˆ

d4y1d
4y2 x

2
12

(y2−x2)2(x2−y1)2(y1−x1)2(x1−y2)2y2
12

Φ∆,S,x0(y1, y2) = h̃F∆,SΦ∆,S,x0(x1, x2).

(4.3.20)
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In order to simplify the computation, we consider the limit in which x0 → ∞ on

both sides of (4.3.20). In this limit the eigenvalue h̃F∆,S is given by the following

integral

h̃F∆,S =

ˆ
d4y1d

4y2 (n y12)S

(y2−x2)2(x2−y1)2(y1−x1)2(x1−y2)2(y2
12)2−p , (4.3.21)

where p = ∆−S
2

and we put x2
12 = (nx12) = 1 for convenience. Notice that the

integrand is anti-symmetric in the exchange y1 ↔ y2 for odd S, then the eigenvalue

h̃F∆,S is non-zero only for even S.

In the S = 0 case, the integral (4.3.21) is known as a massless two-loop self-energy

Feynman integral, or kite. Its value is known for any power of the propagator 1/y2
12

in terms of an hypergeometric function [188], then

h̃F∆,0 =−2π4Γ(∆
2
−1)Γ(1−∆

2
)

[
3F2(1, 2, ∆

2
; ∆

2
+ 1, ∆

2
+ 1|1)

∆/2 Γ(∆
2

+ 1)Γ(2− ∆
2

)
+ π cot π(4−∆

2
)

]
,

(4.3.22)

where ∆ = 2 + 2iν. Expanding (4.3.22) around ν = 0, one can notice that the

cotangent cancels all the odd terms of the hypergeometric functions. The analytic

properties of (4.3.22) are more clear when writing it in the following equivalent form

h̃F∆,0 = π4ψ
(1)
(

∆
4

)
− ψ(1)

(
∆
4
− 1

2

)
2−∆

+ (∆→ 4−∆) , (4.3.23)

where ψ(1)(x) = dψ(x)/dx and ψ(x) is the digamma function.

When S 6= 0, we can appeal to a similar computation made in [37]. In fact,

the same integral of (4.3.21) appears in the study of the spectrum of the graph-

building operator associated to the 2-magnon correlation function. The 2-magnon

Hamiltonian is H2-magnon = x2
34/x

2
12H̃F but, when applied to the eigenstate Φ∆,S,x0 ,

that has in this case ∆O1 = ∆O2 = 2, it leads to an eigenvalue with the same integral

representation as (4.3.21). The strategy to compute the eigenvalue is to write the

following recursion relation for the integrals

h̃F∆,S =
1− S
1 + S

h̃F∆,S−2 +
64π4S

(S + 1)[S2 − (∆− 2)2]2
. (4.3.24)

Solving the recurrence with the eigenvalue h̃F∆,S=0, given by (4.3.23), as initial con-

dition, we obtain

h̃F∆,S = π4ψ
(1)
(

∆+S
4

)
− ψ(1)

(
∆+S

4
+ 1

2

)
(2−∆)(S + 1)

+ (∆→ 4−∆) . (4.3.25)

We can conclude that the eigenvalue (4.3.19) is manifestly invariant under ∆→ 4−∆,

as expected from (4.2.21).
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4.3.3 Spectrum of exchanged operators

In this section we will use the eigenvalues (4.3.14) and (4.3.19) to compute the

scaling dimensions of the operators contributing to the correlation function (4.2.27)

for O1 = O2 = φ1. The spectrum of the exchanged operators is defined by the

solutions of the equation for the physical poles (4.2.25). Substituting in (4.2.25) the

definition of bosonic and fermionic eigenvalues (4.3.14) and (4.3.19) and the constants

χi computed in (4.3.11), we can rearrange the spectral equation in the following form

hB∆,S
−1 − (4π2)4 c2

B c
4
F κ

4 h̃F∆,S hB∆,S
−1 = (4π)4 ω4 , (4.3.26)

where we defined the new couplings

κ4 = ξ2
2ξ

2
3 , and ω4 = (ξ2

2 − ξ2
3)2 . (4.3.27)

Plugging (4.3.14) and (4.3.25) into (4.3.26), we obtain the following spectral equation(
S2

4
+ν2

)(
(2+S)2

4
+ν2

)[
1+

iκ4

2ν(S + 1)

(
ψ(1)

(
1

2

(
1 + S

2
− iν

))
−ψ(1)

(
1

2

(
2 + S

2
− iν

))
+

+ ψ(1)

(
1

2

(
2 + S

2
+ iν

))
− ψ(1)

(
1

2

(
1 + S

2
+ iν

)))]
= ω4,

(4.3.28)

with the additional constraint Im ν < 0. This equation can be studied perturba-

tively, for each individual anomalous dimension, expanding in ν around the value ν0

corresponding to a bare dimension ∆0 = 2 + 2iν0 at weak coupling, and in 1/ν at

strong coupling.

Weak coupling expansion: The small coupling limit suggests that the equation has

solutions with bare dimensions 2+S and 4+S, in analogy with the same quantity in

the bi-scalar theory [36, 37]. There are six such solutions, but only half satisfies the

physical requirement Re ∆ ≥ 2: one of them corresponds to the scaling dimensions

of exchanged operator with bare dimension ∆0 = 2 + S and two – to the scaling

dimensions of operators with bare dimensions ∆0 = 4 + S. The remaining three

solutions are related to the first ones b the transformation ∆→ 4−∆ and describe

shadow operators, with Re ∆ < 2. In addition to that, there is an infinite series of

physical solutions around the bare dimensions ∆0 = t + S with t = 6, 8, ... , due

to the non algebraic eigenvalue hF∆,S, similarly to the two-magnon case studied in

[37]. For each value of the twist t there are two solutions; they describe the exchange

of an infinite tower of local primary operators in the OPE of (4.3.5). Writing ν

as a function of the two couplings (4.3.27) and expanding around the physical pole

ν = −iS/2 at weak coupling κ, ω → 0, we obtain the following expansion for the

twist-two operator

∆(2) = 2+S− 2ω4

S(S + 1)
+

2ω4

3S3(S+1)3

[
3(S(S−1)−1)ω4−6S(S+1)κ4[2H

(2)
S −H

(2)
S/2]

]
+ . . .

(4.3.29)
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and, around the physical pole ν = −i(S + 2)/2, the twist-four operators.

∆(4) = 4 + S +
4κ2√

(S + 1)(S + 2)
+

(S + 2)ω4 − 8κ4

(S + 1)(S + 2)2
+

+
3ω

8

κ2 − 48 (6+S(S+6))
(S+1)(S+2)

κ2ω4 − 96κ6
[
2H

(2)
S+2−H

(2)
S/2− 12

(S+2)2

]
24(S + 1)3/2(S + 2)3/2

+ . . .

∆(4′) = 4 + S − 4κ2√
(S + 1)(S + 2)

+
(S + 2)ω4 − 8κ4

(S + 1)(S + 2)2
+

−
3ω

8

κ2 − 48 (6+S(S+6))
(S+1)(S+2)

κ2ω4 − 96κ6
[
2H

(2)
S+2−H

(2)
S/2− 12

(S+2)2

]
24(S + 1)3/2(S + 2)3/2

+ . . .

(4.3.30)

where H
(2)
k are Harmonic numbers of order 2. Remarkably, the expressions in square

brackets in (4.3.29), (4.3.30) are in fact rational numbers. In both cases, we present

only the first few terms since the following ones are cumbersome. We notice that the

weak coupling expansions of ∆(4), ∆(4′) are divergent but, as it will be pointed out

later in the analysis of Sec.4.3.5, the sum of the two corresponding OPE contributions

has a well defined expansion8. Similar considerations can be made for the solutions

at higher twist t = ∆0 − S = 6, 8, . . .

∆
(t)
± = t+ S ± 4i

t
2κ2√

(S + 1)(S + t− 2)
− (−1)

t
2 8κ4

(S + 1)(S + t− 2)2
+ . . . . (4.3.31)

The twist-2 solution corresponds to the operator

Tr [φ1 ∂
Sφ1] + permutations , (4.3.32)

namely the traceless symmetric S-tensor obtained by insertion of light cone deriva-

tives ∂ = nµ∂
µ, n2 = 0 into the operator Tr [φ2

1]. At twist-4 the matter content of the

theory allows to find several S-tensor operators satisfying the condition ∆0 − S = 4

and having the right U(1)⊗3 quantum numbers (e.g. for i = 1, j = 2: (2, 0, 0)).

Twist-4 operators start mixing with each other. We perform an introductory anal-

ysis of this phenomenon for the simple scalar case S = 0 in Appendix C.3. At this

stage the log-CFT effects [105] due to chiral interaction vertices in (1.2.2) show up.

The analysis suggests the presence at twist-4 of only two non-protected physical op-

erators, which should be identified with the two solutions ∆(4) and ∆(4′) at S = 0,

in contrast to the bi-scalar fishnet CFT where only one type of twist-4 operators

appears [36].Similar considerations apply to the higher twist operators ∆
(t)
± . Indeed

also for value of twist t > 4 it is possible to find several S-tensor primary operators

with the correct set of Cartan’s charges. The detailed study of these operators and

their mixing would be an interesting insight in the structure of operator algebra of

8 We are grateful to G. Korchemsky for the enlighting discussion about this point.
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χCFT. We will restrict from here on most of our analysis to solution of twist two and

four, whose contribution to the OPE expansion appears to be enough for complete

description of the first non-trivial order of the weak coupling expansion, confirmed

by direct computations in terms of Feynman diagrams.

Recalling the definition (4.3.27), the weak coupling expansion (4.3.29) for the

twist-two operator goes in powers of ξ4 of the original couplings which is exactly the

expected behavior considering that the perturbative expansion in Fig.4.5 alternates

bosonic and fermionic wheels attached to the diagrams with two quartic or four

Yukawa single-trace vertices. On the contrary, the weak coupling expansions (4.3.30)

for the twist-four operators go in power of ξ2 of the original coupling. This fact can

be understood looking at the expansion of (4.3.28) around the physical pole located

at ν = −i(S + 2)/2. Indeed this expansion starts from κ4/(ν + i(S + 2)/2)2 and

as a consequence the four-point correlation function (4.3.10) is convergent when

ν → −i(S + 2)/2 if κ is finite while it produces a divergence when we consider the

weak coupling limit κ, ω → 0 such that Gφ1φ1 ∼ ±κ2.

The zero-spin case presents some peculiar behaviors. Indeed, expanding (4.3.28)

for S = 0 around the physical poles ν = 0,−i at weak coupling, we obtain the

following expansions for the solutions of (4.3.26)

∆(2)
∣∣
S=0

= 2− 2iω + iω2[ω4− 6κ4ζ3] +
i

4
ω2[7ω8 − 12ω4κ4(3ζ3 + 5ζ5) + 108κ8ζ2

3 ] + . . .

∆(4)
∣∣
S=0

= 4 + 2
√

2κ2 +
1

2
[ω4 − 4κ4] +

16κ6 − 48κ2ω4 + ω8

κ2

16
√

2
+ . . . (4.3.33)

∆(4′)
∣∣
S=0

= 4− 2
√

2κ2 +
1

2
[ω4 − 4κ4]− 16κ6 − 48κ2ω4 + ω8

κ2

16
√

2
+ . . . (4.3.34)

∆
(t)
±
∣∣
S=0

= t± 4i
t
2κ2√

(t− 2)
− (−1)

t
2 8κ4

(t− 2)2
+ . . . t = 6, 4, 8 . . . . (4.3.35)

where the one-loop order of the scaling dimension ∆(2)
∣∣
S=0

is in agreement with the

prediction (1.2.16). This twist-2 solution is the scaling dimension of the operator

Tr [φ1φ
†
2], while the two solutions of twist-4 arise from the operatorial mixing in a

similar way as to S = 0 case analyzed in Appendix C.3.

Notice that the weak-coupling expansion of the twist-two operator is drastically

different as compared to the S 6= 0 case, indeed it goes in powers of ξ2. The same

behavior was noticed in [37] and the reason is similar to the one explained above.

We observe that, expanding around the physical pole ν = 0, the spectral equation

(4.3.28) goes as ω4/ν2. Then, when ν → 0, the correlation function (4.3.10) is

convergent if µ is finite, but it produces a square-root divergence when we expand at

weak coupling, as in the previous case. The fact that the weak-coupling and S → 0

limits are not commutative is related to this divergence.

The divergence in the expansion of the scaling dimension of the twist-two operator

is not a surprise. In fact, as noticed also in some different contexts in [36], in order
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to write the correlation function in the OPE form as in (4.2.27), we assumed that in

the integral (4.2.24) no physical poles are located on the real ν-axes. However the

poles that at weak coupling and when S 6= 0 are situated at ν = ∓iS/2 pinch the

integration contour at the origin when S = 0, thus producing a divergence. Hence,

the contribution of the double-traces is needed in this case to produce a non-vanishing

term that cancels this divergence at weak coupling. Again, we stress that at finite

couplings the solutions of (4.3.28) are well-defined even at zero spin.

Strong coupling expansion: At strong coupling, κ , ω → ∞, we consider the four

solutions of eq.(4.3.28) of lowest twist. The solutions are related to the physical

poles of the spectral equation located at ν = eiπ
k
2

4
√
ω4 + 2κ4 + . . . with k = 0, 1, 2, 3

but only two of them satisfy the condition Im ν < 0, the remaining solutions being

associated to the shadow operators. However we stress that we are neglecting all the

infinite non-algebraic solutions of higher twist, purely generated by hF∆,S. Then we

have

∆∞ = 2eiπ
k
2

4
√
ω4 + 2κ4 + 2 +

[S(S + 2) + 2]ω4 + 2[S(S + 2)− 2]κ4

4eiπ
k
2
[

4
√
ω4 + 2κ4

]5 + . . . (4.3.36)

Notice that, if all couplings scale as ξj ∼ ξ � 1, the strong coupling expansion

(4.3.36) is growing linearly with ξ. This becomes clear if one expands the eigenvalues

appearing in (4.3.26). Indeed both of them decay at large ν as hB∆,S , h̃F∆,S ∼ 1/ν4

then, since in the spectral equation the couplings appear in power of ξ4, it is evident

that the expansion will contain terms linear in ξ. The S → 0 limit is not singular at

strong coupling and one can compute ∆∞
∣∣
S=0

directly from (4.3.36).

The spectrum of exchanged operators in reductions of χCFT In Sec.1.2.2, we pre-

sented the γ-deformed N = 4 SYM theory in the double-scaling limit as a family of

theories. In fact, playing with the three couplings ξj with j = 1, 2, 3 it is possible to

describe different Lagrangians with different matter contents and symmetries. Thus

we want to obtain the spectrum of exchanged operators for each theory of this family

simply taking the limit on the couplings in the spectral equation (4.3.28) of the most

general doubly-scaled theory. First of all, we recall the well-known result for the

spectrum for the simplified Lagrangian (1.2.6) also known as 4D bi-scalar fishnet

CFT. In this theory the only non-trivial four-point correlation function is Gφ1φ1 , and

it can be written in the same OPE form as the one we are considering as (4.2.27). By

the Bethe-Salpeter method it is possible to compute the correlator at all-loops, since

its perturbative expansion is generated only by a bosonic graph-building operator

HB of (4.3.7), then we can extract the non-perturbative scaling dimension of the

exchanged operators in the OPE s-channel. The corresponding spectral equation is

the same of (4.3.28) with ω4 = ξ4 and κ4 = 0 (indeed the bi-scalar theory has only

one coupling ξ2) and it has two solutions corresponding to the twist-two and -four
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limit ∆(2) ∆(4) ∆(4′) ∆
(t)
±

χ0CFT
ξ1 → 0 ∆(2)(κ, ω) ∆(4)(κ, ω) ∆(4′)(κ, ω) ∆

(t)
± (κ, ω)

ξ2 ∨ ξ3 → 0 ∆
(2)
bi (ξ4

3 ∨ ξ4
2) ∆

(4)
bi (ξ4

3 ∨ ξ4
2) t+ S

bi-scalar
ξ1 ∧ (ξ2 ∨ ξ3)→ 0 ∆

(2)
bi (ξ4

3 ∨ ξ4
2) ∆

(4)
bi (ξ4

3 ∨ ξ4
2) t+ S

ξ2 ∧ ξ3 → 0 2+S 4+S t+ S

β-deformed ξ1 =ξ2 =ξ3 =ξ 2+S ∆(4)(ξ4, 0) ∆(4′)(ξ4, 0) ∆
(t)
± (ξ4, 0)

Table 4.1: In this table we summarize the operator and dimension content of exchange operators in three

reductions of χCFT.

operators with the following scaling dimensions

∆
(2)
bi (ξ4) = 2 +

√
(S + 1)2 + 1− 2

√
(S + 1)2 + 4ξ4 ,

∆
(4)
bi (ξ4) = 2 +

√
(S + 1)2 + 1 + 2

√
(S + 1)2 + 4ξ4 ,

(4.3.37)

together with two shadow solutions with ∆ = 4 − ∆ for Re ∆ < 2. The analytic

properties of those solution and their weak- and strong- coupling expansions have

been studied in detail in [37].

The scaling dimensions of the exchanged operators in the correlation function

Gφ1φ1 for theories defined as a reduction of χCFT as in Sec.1.2.2, can be computed

as solutions of the spectral equation (4.3.28) in which we are applying some limits

on the couplings, or even directly on the weak- and strong-coupling expansions. In

the Tab.4.1 we present the summary of our results.

• χ0CFT: since the spectrum of the exchanged operators for the four-point func-

tion Gφ1φ1 doesn’t depend on ξ1, the limit in which one of the couplings of the

full χCFT is going to zero (reducing the theory to the χ0CFT) is not unique.

Indeed if we set ξ1 = 0, the scaling dimensions of the exchanged operators in

the χ0CFT are the same of the full χCFT. On the contrary, if we set ξ2 or ξ3 to

zero, the spectrum reduces to that of the bi-scalar theory (4.3.37) depending on

a single coupling. Notice that in this case the number of solution of twist-four

operators reduces to a single one, while the higher-twist operators get protected.

• bi-scalar theory: the reduction to bi-scalar theory corresponds to the limit in

which two couplings of χCFT vanish. If one of the vanishing couplings is ξ1, the

spectrum is the usual one of the bi-scalar theory (4.3.37) while if ξ2 = ξ3 = 0

the operators are protected because the only remaining interaction vertex is not

contributing.

• β-deformed theory: when all the couplings are equal we reduce the full theory

to its β-deformation. In this case, due of the restoration of one super-symmetry,
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the operator of twist-two is protected as pointed out in [91] and confirmed by our

computation (this reduction in terms of the new couplings κ and ω corresponds

to κ→ ξ and ω → 0). The symmetry doesn’t constrain the operators of twist-

four to be protected, as well as for higher twist t > 4. Indeed, their spectrum

can be easily read applying the limit, for example at weak coupling, to the

expansions (4.3.30),(4.3.31).

4.3.4 Structure constants of the exchanged operators

Once the spectrum of the exchanged operators is computed, in order to obtain the

full set of conformal data for the four point function Gφ1φ1 , one has to compute the

OPE coefficients. From their definition (4.2.27), we get

C∆,S =
π

c4
B

(−1)S+1

c2(ν, S)R∆,S

, (4.3.38)

where

R∆,S =
d

d∆

(
hB∆,S

−1 − κ4

π4
h̃F∆,S hB∆,S

−1

)
. (4.3.39)

Here c2 is given in (4.2.13) and one puts ∆O1 = ∆O2 = 1. The eigenvalues hB∆,S

and h̃F∆,S are presented in (4.3.14) and (4.3.25), and the constants cF = −2cB =

−1/(2π2). Plugging these eigenvalues into (4.3.39) and performing the derivative,

we obtain a rather cumbersome result that we will present in the next paragraph.

Weak coupling expansion Performing the derivative in (4.3.39) and substituting

the weak coupling expansions of the scaling dimensions computed in (4.3.29) and

(4.3.30), we obtain the following expansions for the structure constants associated to

the exchanged operators for S 6= 0

C∆(2),S=
S!2

(2S)!

(
1+

2κ4[2H
(2)
S −H

(2)
S/2]−2ω4[ 1

S(S+1) +HS−1−H2S−2]

S(S + 1)
+. . .

)

C∆(4),S=
(S + 1)!2√

(S+1)(S+2)(2S+2)!

(
−κ

2

2
−
ω4− 8κ4[ 9+S(11+3S)

2(S+1)(S+2) +H2S+2−HS+1]

4
√

(S + 1)(S + 2)
+. . .

)

C∆(4′),S=
(S + 1)!2√

(S+1)(S+2)(2S+2)!

(
κ2

2
−
ω4− 8κ4[ 9+S(11+3S)

2(S+1)(S+2) +H2S+2−HS+1]

4
√

(S + 1)(S + 2)
+. . .

)

C
∆

(t)
± ,S

=
π it 2−2(t−4+S)Γ

(
t
2 − 2

)
Γ
(
t
2 − 1 + S

)
(t− 2)(t+ 2S) Γ

(
t−3

2

)
Γ
(
t−1

2 + S
) κ4 + . . . ,

(4.3.40)

where t = 6, 8, 10, . . . and Hk, H
(2)
k are harmonic numbers. Again, the expressions

in square brackets are in fact rational numbers. Similarly to the expansion of the

scaling dimension, the OPE coefficient of the twist-two operator is singular for S = 0.

Indeed, as discussed in Sec.4.3.3, due to the singularity arising at zero spin, the weak

coupling and S → 0 limits don’t commute. In order to obtain the correct weak

coupling expansion for the twist-two operator, one has to set S = 0 in (4.3.38) and



CHAPTER 4. FOUR-POINT FUNCTIONS IN CHIRAL CFT4 153

then expand it in the coupling. The expansion the OPE coefficients of exchanged

operators with spin S = 0 reads

C∆(2),0 =1 + 2iω2 − 2[ω4− 3κ4ζ3] + iω2[ω4(4ζ3 − 5) + 18κ4ζ3] + . . .

C∆(4),0 =− κ2

4
√

2
+

22κ4 − ω4

16
− 3[ω

8

κ2 − 120κ2ω4+ 912κ6]

256
√

2
+ . . .

C∆(4′),0 =
κ2

4
√

2
+

22κ4 − ω4

16
+

3[ω
8

κ2 − 120κ2ω4+ 912κ6]

256
√

2
+ . . .

C
∆

(t)
± ,0

=
π it 2(8−2t)Γ

(
t
2
− 2
)

Γ
(
t
2
− 1
)

(t− 2)tΓ
(
t−3

2

)
Γ
(
t−1

2

) κ4 + . . . t = 6, 8, 10, . . . .

(4.3.41)

In analogy with the spectrum analysis, the power counting shows that the twist-two

operator goes in power of ξ4 as expected if S 6= 0. In the S = 0 case it is going in

powers of ξ2, suggesting that the weak coupling expansion is sensitive to the double

trace counterterms. Moreover in both cases (4.3.40) and (4.3.41), the twist-four OPE

coefficients are suppressed by a factor of order ξ2 as compared to those of the twist-2.

Strong coupling expansion Since we know from the expansion at strong coupling

of the scaling dimension (4.3.36) that the scaling dimension becomes large, we can

expand (4.3.38) in the limit ∆→∞ and obtain

C∆,S=
25−2∆ (S+1)

∆
tan

(
π

∆−S
2

)[
1+

3

2∆
+

4(S+1)2+25

8∆2
+

36(S+1)2+133

16∆3
+O
(

1

∆4

)]
, (4.3.42)

where we have to substitute ∆ from the strong coupling spectrum ∆∞ computed

in (4.3.36) for low-twist operators. Naively, the expansion (4.3.42) looks the same

as the one of the structure constant of the bi-scalar model [37], but actually it is

not. Indeed, one can notice from the definition (4.3.38) that the OPE coefficient

in our model depends explicitly on the coupling. Then in the expansion (4.3.42)

some coefficients at higher order will start to depend on κ4. The first contribution

different from the bi-scalar expansion appear as κ4/∆6 which, after the substitution

∆∞, contributes at order O(1/ξ2) in the inverse coupling expansion. Hence, it is

convenient to write (4.3.42) as follows

C∆∞,S =25 S+1

22∆∞∆∞
tan

(
π

∆∞−S
2

)[
1 +

3

4eiπk/2(ω4 + 2κ4)1/4
+

+

(
4(S + 1)2 + 1

32eiπk(ω4 + 2κ4)1/2
− 2(S + 5)(2S + 5)κ4

eiπk(S + 1)(ω4 + 2κ4)3/2

)
+ . . .

]
,

(4.3.43)

where k = 0, 1, 2, 3 labels the four solutions of the spectral equation (4.3.28) and

dots stand for higher orders in 1/κ and 1/ω. Thus, given the scaling dimension

∆∞ (4.3.36), the OPE coefficient is exponentially small at strong coupling due to

the factor 1
22∆∞ . The S → 0 limit is not singular at strong coupling and one can

compute C∆∞,0 directly from (4.3.43).



CHAPTER 4. FOUR-POINT FUNCTIONS IN CHIRAL CFT4 154

4.3.5 Four-point correlation function

Once the conformal data in Secc.4.3.3 and 4.3.4 is computed, one can determine the

four-point function (4.3.1) by means of (4.2.19). In the case O1 = O2 = φ1 we obtain

Gφ1φ1(x1, x2|x3, x4) =
c2
B

x2
12x

2
34

Gφ1φ1(u, v) , (4.3.44)

with the cross-ratios defined as u = x2
12x

2
34/(x

2
13x

2
24) and v = x2

14x
2
23/(x

2
13x

2
24) and

∆φ1 = 1. The function Gφ1φ1(u, v) can be written in terms of the OPE representa-

tion (4.2.27) as a sum over the non-negative integer Lorentz spin S and the states

with scaling dimensions ∆. From the study of the spectrum of exchanged operators

in Sec.4.3.3 it turns out that infinitely many operators are exchanged in the OPE

channel. Then we have

Gφ1φ1(u, v) =
∞∑
S=0

[
C∆(2),S g∆(2),S + C∆(4),S g∆(4),S + C∆(4′),S g∆(4′),S

]
+

+
∑

t=6,8,...

∞∑
S=0

[
C

∆
(t)
+ ,S

g
∆

(t)
+ ,S

+ C
∆

(t)
− ,S

g
∆

(t)
− ,S

]
,

(4.3.45)

where the scaling dimensions ∆(i) are defined by the spectral equation (4.3.28) and

computed at weak coupling in (4.3.29), (4.3.30) and(4.3.31), and for low twist t = 2, 4

at strong coupling in (4.3.36). The structure constants C∆(i),S associated to the

exchanged operators are defined by (4.3.38) are computed at weak coupling in (4.3.40)

and for low twist and strong coupling in (4.3.43). The four-dimensional conformal

blocks g∆,S are defined in (4.2.18).

The proper definition of the four-point correlation function Gφ1φ1 takes into ac-

count the symmetrization x3 ↔ x4. Under this symmetry, the cross-ratios trans-

form as u → u/v and v → 1/v. Correspondingly, from the definition (4.2.18) the

conformal blocks obey the symmetry g∆,S(u/v, 1/v) = (−1)Sg∆,S(u, v). Combining

together this relation with (4.3.45), it is easy to see that, imposing the symmetry

x3 ↔ x4, the terms in (4.3.45) with odd S cancel out whereas those with even S get

doubled.

Despite of the presence of singularities in the weak-coupling expansions of scaling

dimensions and OPE coefficients, their combination in (4.3.45) is well defined. In-

deed, plugging the conformal data into (4.3.45), we obtain an expansion in powers of

the couplings that is compatible with the interpretation of the correlation function

as a sum of Feynman diagrams in perturbation theory (see Sec.4.4 for an explicit

example). In particular, since the first non-trivial order is fixed by the S = 0 con-

formal data, it is easy to write the very first contributions to Gφ1φ1 in terms of the

known functions, as follows

Gφ1φ1(u, v) = u− iκ2 uΦ(1)(u, v) + . . . . (4.3.46)



CHAPTER 4. FOUR-POINT FUNCTIONS IN CHIRAL CFT4 155

where Φ(L) is the ladder three-point function [189] that in the case L = 1 is given by

the Bloch-Wigner dilogarithm function

Φ(1)(u, v) =
1

θ

[
2(Li2(−ρu) + Li2(−ρv)) + log

v

u
log

1 + ρv

1 + ρu
+ log ρu log ρv +

π2

3

]
,

(4.3.47)

with

θ(u, v) ≡
√

(1− u− v)2 − 4uv and ρ(u, v) ≡ 2

1− u− v + θ
. (4.3.48)

4.4 Correlation functions at weak coupling from Feynman diagrams

In Sec.4.3 we have analyzed a four-point correlator computing the conformal data by

means of the Bethe-Salpeter method. With this procedure we were able to diagonalize

the graph-building operators and write exact equations for the spectrum of exchanged

operators even though we ignored on the way the contribution of the double-trace

interactions (1.2.7). The double-trace counterterms are necessary in the action to

have a consistent description of the double-scaled theory (1.2.2) in the perturbative

regime and in particular for the restoration of conformal symmetry.

In this section, we will study the weak coupling expansions of the four-point

functions related to the operators (1.2.3) and clarify the role of the double-trace terms

for this expansion. As we already mentioned, bosonic and fermionic wrappings in

the related Feynman graphs develop UV divergences at short distances. Adding the

double-trace vertices in the perturbative expansion we will be able to determine the

conformal fixed points (1.2.13) canceling divergences generated by the single trace

terms. However, they will not affect the finite coupling solutions computed in the

section above.

The double-trace counterterms are given by the Lagrangian (1.2.7). In general,

this action contains 9 terms but, due of the cylindric topology of Feynman diagrams

for the observables we are computing. For any four-point function only one double-

trace term is contributing generating a new local four-scalar vertex (see for instance

Fig.4.4). This fact is crucial to ensure that conformal symmetry is restored. Indeed,

in this case we know that the β-function can be written as (1.2.11) and it admits

two fixed points α2
j? as in (1.2.13).

If we focus on the Feynman diagram expansion of the four point-functions we

have to deal with divergent integrals. Then we have to introduce dimensional reg-

ularization setting d = 4 − 2ε. One important observation is that the diagrams

containing fermionic contributions produce the same divergence as the bosonic ones.

In other words the fermionic kernels contains the divergent part of the bosonic one

plus a remainder function that is finite in d = 4 which therefore does not require
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Figure 4.7: First two contributions of the double trace vertex Tr[φ1φ1]Tr[φ†1φ
†
1] to the four-point functions

Gφ1φ1 .

regularization. Then the divergent operator can be written as[
V̂ Φ

]
(x1, x2) =2c2

B

ˆ
d4−2εy1d

4−2εy2

[(x1 − y1)2(x2 − y2)2]1−ε
δ(4−2ε)(y12) Φ(y1, y2)[

ĤB Φ
]
(x1, x2) =c4

B

ˆ
d4−2εy1d

4−2εy2

[(x1 − y1)2(x2 − y2)2y4
12]1−ε

Φ(y1, y2) ,

(4.4.1)

where Φ(x1, x2) is a test function.

Given the Hamiltonians (4.4.1) and the definition (4.2.2), the four-point correla-

tion function is defined as follows

G(x1, x2|x3, x4) = lim
ε→0

(
cB
x2

34

)∆O1
+∆O2

−d

〈x1, x2|
ĤB

1− χ?V V̂ − χBĤB − χF ĤF

|x3, x4〉 ,

(4.4.2)

where the effective coupling χ?V = χV |α2
j=α

2
j?

, i.e. it is taken at the fixed point α2
j =

α2
j?. It is clear that for ε 6= 0 conformal symmetry is broken. However, expanding

(4.4.2) at weak-coupling in terms of Feynman diagrams, one can demonstrate order-

by-order how conformal symmetry is restored. In the following sections, we present

some examples of this mechanism for the four-point correlation functions associated

to the operators (1.2.3).

In Sec.4.3 we studied the contribution to the four-point functionGφ1φ1 of diagrams

generated by the bosonic and fermionic Hamiltonians ĤB and ĤF but ignored the

double-trace vertices, which works well for finite couplings. Since any diagram in

Fig.4.5 (except for the trivial leading order diagram) is UV divergent, we will re-

introduce in this section the double-trace counterterms in the perturbative expansion

in order to make the weak-coupling expansion UV finite and to restore conformal

symmetry.

Let us compute the first few orders of the weak coupling expansion of Gφ1φ1 . In

terms of Feynman diagrams, we have to compute the graphs given in Figg.4.5 and

4.7. Defining a function G
(a,b,c)
φ1φ1

where a counts the number of double-trace vertices, b

the number of bosonic vertices (4.3.2) and c the number of fermionic vertices (4.3.3),

we have

Gφ1φ1=G
(0,0,0)
φ1φ1

+ (4π)2α2
1G

(1,0,0)
φ1φ1

+ (4π)4[α4
1G

(2,0,0)
φ1φ1

+ (ξ4
2+ ξ4

3)G
(0,2,0)
φ1φ1

+ ξ2
2ξ

2
3G

(0,0,4)
φ1φ1

]+ . . . .

(4.4.3)
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The leading order G
(0,0,0)
φ1φ1

is already defined in (4.3.6), thus G
(0,0,0)
φ1φ1

= G
(0)
φ1φ1

. The

first correction is given by the diagram in Fig.4.7(a). This contribution is finite and

it can be written as follows

G
(1,0,0)
φ1φ1

=
2π2c4

B

x2
12x

2
34

uΦ(1)(u, v) , (4.4.4)

where Φ(L) is the ladder three-point function [189] that in the case L = 1 is given by

the Bloch-Wigner dilogarithm function

Φ(1)(u, v) =
1

θ

[
2(Li2(−ρu) + Li2(−ρv)) + log

v

u
log

1 + ρv

1 + ρu
+ log ρu log ρv +

π2

3

]
,

(4.4.5)

with

θ(u, v) ≡
√

(1− u− v)2 − 4uv and ρ(u, v) ≡ 2

1− u− v + θ
. (4.4.6)

The cross-ratios are u = x2
12x

2
34/(x

2
13x

2
24) and v = x2

14x
2
23/(x

2
13x

2
24) and the constant

cB = 1/(4π2).

The bosonic part of the two-loop correction given by G
(2,0,0)
φ1φ1

and G
(0,2,0)
φ1φ1

comes

from the diagrams in Figg.4.7(b), 4.5(b) and 4.5(c). The corresponding integrals are

divergent and they need dimensional regularization, then we have

G
(2,0,0)
φ1φ1

= 4c6
BI(x1, x2|x3, x4) , and G

(0,2,0)
φ1φ1

= c6
BI(x1, x3|x2, x4) , (4.4.7)

where we defined the short-hand notation

I(x1, x2|x3, x4) =

ˆ
d4−2εy1d

4−2εy2

[(x1 − y1)2(x2 − y1)2y4
12(y2 − x3)2(y2 − x4)2]1−ε

. (4.4.8)

This integral is UV divergent at short distances y2
12 → 0. By making use of the

identity 1/(y2
12)2−2ε = π2δ4−2ε(y12)/ε + O(ε0), one can compute the divergent part

of the integral (4.4.8) that is proportional to the same one-loop function found in

(4.4.4), as follows

α4
1G

(2,0,0)
φ1φ1

+ (ξ4
2+ ξ4

3)G
(0,2,0)
φ1φ1

=
π4c6

B

x2
12x

2
34

(
4α4

1 + ξ4
2+ ξ4

3

ε

)
uΦ(1)(u, v) + finite , (4.4.9)

where for the purpose of this section we are not interested in the finite part.

Let us finally consider the fermionic contribution G
(0,0,4)
φ1φ1

. This term corresponds

to the Feynman diagram in Fig.4.5(d) and its integral representation in four di-

mensions is given in the last line of (4.3.6). Since we are only interested in the

computation of the UV divergent part of the diagram, we can avoid computing the

whole integral (4.3.6) in dimensional regularization and proceed in a more naive way.

Indeed, representing the integral as in the last line of (4.3.8) and considering that

the fermionic Hamiltonian can be written as a combination of the bosonic one and
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some finite reminder function as in (4.3.16), we know that all the UV divergence is

arising from HB. Then we can write

G
(0,0,4)
φ1φ1

= − 2π4c6
B

x2
12x

2
34

1

ε
uΦ(1)(u, v) + finite . (4.4.10)

Combining this result with (4.4.9) and (4.4.4), we obtain that the expansion (4.4.3)

takes the expected form (4.2.19) with the function Gφ1φ1(u, v) given by

Gφ1φ1(u, v) = u+ 2α2
1 uΦ(1)(u, v) +

4α4
1 + ω4

ε
uΦ(1)(u, v) + finite(κ4, ω4) + . . . ,

(4.4.11)

where the new couplings κ and ω are defined in (4.3.27) and finite(κ4, ω4) stands

for the finite part of Gφ1φ1 at two-loop. Finally, imposing the UV finiteness of the

correlation function we obtain the first order of the fixed point as follows

α2
1? = ± i ω

2

2
+ . . . , (4.4.12)

and notice that it matches exactly the prediction given in (1.2.16). Replacing the

double-trace coupling in (4.4.11) with its value9 α2
1? = − i ω2

2
we obtain the one-loop

expansion of the correlation function as follows

Gφ1φ1(u, v) = u− iω2 uΦ(1)(u, v) + . . . . (4.4.13)

This perfectly matches the same quantity computed via OPE, with conformal data

fixed by the Bethe-Salpeter method (4.3.46).

4.5 Conclusions

This chapter represents an attempt of a deeper understanding of physical prop-

erties and analytic structure of the four-dimensional, three-coupling chiral CFT –

the χCFT10 – proposed in [32] as a double scaling limit of γ-deformed N = 4

SYM theory, combining the weak coupling with the strong imaginary γ-twist. We

study here two aspects of this χCFT with three effective couplings, given by the

Lagrangian (1.2.2): i) the explicit description of the Feynman graph content of the

perturbative expansion, partially uncovering their integrability properties; ii) the ex-

act computation, via conformal symmetry, of a four-point correlation functions of

shortest protected scalar operators of the theory.

We managed to compute the four-point correlation functions of elementary fields

φ1 of the full three coupling χCFT, generalizing the bi-scalar fishnet CFT results

of [36, 37]. As in these papers, we employed the Bethe-Salpeter method and the

conformal symmetry to do the computations, but the procedure is more complicated

9This choice is coherent with the sign convention used in Sec.4.3.3.
10The name χCFT was suggested in [91].
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and the corresponding analytic structures, both in coordinate and in the coupling

spaces, are considerably richer, due to a more “dynamical” nature of the involved

Feynman graphs. A new phenomenon presented in the correlators of the full theory

is the non-perturbative behavior of certain individual OPE data – anomalous dimen-

sions and structure constants of exchange operators, in the weak coupling limit. But

the perturbative behavior of the four point correlator is restored in the sum over all

OPE terms. The equations on the anomalous dimensions, obtained from the pole

structure of integrands in spectral decomposition of these correlators, appear to have

a few interesting singularities in the coupling space, whose physical significance for

the theory is left to understand. We also demonstrate the relevance of the double-

trace terms for the correct Feynman graph interpretation of our results obtained via

Bethe-Salpeter conformally symmetric procedure.

To get a further insight to these interacting chiral CFTs, we have to compute

more complicated correlation functions, involving the exchanged operators of higher

R-charges, such as trφL1 , or even more complicated multi-magnon operators. For the

moment, only the exact anomalous dimensions of L = 3 case of such operators and

of some related operators with the same R-charge have been computed for bi-scalar

fishnet CFT in [39]11 via the double-scaling limit of the QSC equations. Similar

results on L = 4, 5 and magnon operators will be reported in [147]. Not much is yet

done in this direction for the full χCFT, apart from the Asymptotic Bethe Ansatz

approach of [91] to long operators L� 1 and the one-loop study of [190], as well as

the results of the current paper on the shortest exchange operators. As concerns the

study of the structure constants, the first all-loop results for multi-magnon operators

in bi-scalar fishnet CFT have been obtained in the very recent paper [191]. The

generalization to four-point functions and to more complicated operators, and to the

full χCFT, will necessitate a considerable new insight into integrability properties of

these models.

The generalization of bi-scalar fishnet CFT to any dimension d [28] poses a nat-

ural question whether the D-dimensional generalization of the full 3-coupling χCFT

exists. A related question: can we generalize the Basso-Dixon type fishnet integrals

– the four-point single-trace correlators of scalar fields in bi-scalar CFT – explicitly

computed in d = 4 [35] and d = 2 [29], to the case of dynamical fishnets of χCFT?

It would be also interesting to understand the behavior of large Feynman graphs in

the full χCFT, in-line with the early results of [92] and the recent observations of [149]

for the fishnet reduction of the χCFT. In particular, if the σ-model interpretation of

the latter paper can be generalized to the full χCFT, it could be a big step in the

explicit construction of the AdS dual of this chiral CFT, if such one exists at all after

the double scaling limit of γ-deformed N = 4 SYM theory.

As a final comment: it would be interesting to find a realization of these non-

unitary theories in physical systems, if not in the fundamental quantum field theory

11In the sense that the exact Baxter equation, together with its quantization condition was obtained and studied

perturbatively, to many loops, and numerically, to an arbitrary precision.
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(at least as an effective theory) then maybe for certain non-equilibrium statistical-

mechanical and condensed matter models. The beautiful mathematical structures

behind the χCFT promises more of such applications in the future.
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Appendix A

Details on the Ruijsenaars-Schneider

model

A.1 Derivation of the Poisson structure

A.1.1 Lax matrix and its Poisson structure

Consider the following matrix function on the Heisenberg double

L = T−1BT , (A.1.1)

where T is the Frobenius solution of the factorisation problem (2.2.15). On the

reduced space L turns into the Lax matrix of the hyperbolic RS model. For this

reason we continue to call (A.1.1) the Lax matrix and below we compute the Poisson

brackets between the entries of L considered as functions on the Heisenberg double.

This will constitute the first step towards evaluation of the corresponding Dirac

bracket.

The standard manipulations give

{L1, L2} = T12L1L2 − L1T12L2 − L2T12L1 + L1L2T12 (A.1.2)

+ T−1
1 T−1

2 {B1B2}T1T2 + B21L2 − L2B21 − B12L1 + L1B12 ,

where we defined the following quantities

T12 = T−1
1 T−1

2 {T1, T2} ,
B12 = T−1

1 T−1
2 {T1, B2}T2 .

By using (2.2.1), we get

T−1
1 T−1

2 {B1, B2}T1T2 = −ř− L1L2 − L1L2ř+ + L1ř−L2 + L2ř+L1 .

Here we introduced the dressed r -matrices

ř± = T−1
1 T−1

2 r±T1T2 , (A.1.3)

– 163 –



APPENDIX A. DETAILS ON THE RUIJSENAARS-SCHNEIDER MODEL 164

which have proved themselves to be a useful tool for the present calculation. The

dressed r -matrices have essentially the same properties as their undressed counter-

parts, most importantly,

ř+ − ř− = C12 , (A.1.4)

because C12 is an invariant element. Thus, for (A.1.2) we get

{L1, L2} = (T12 − ř−)L1L2 + L1L2(T12 − ř+) + L1(ř− − T12)L2 + L2(ř+ − T12)L1

+ B21L2 − L2B21 − B12L1 + L1B12 . (A.1.5)

Now we proceed with evaluation of T. Taking onto account that T satisfies

(2.2.17), in components we have

Tij,kl = T−1
ip T

−1
kq

δTpj
δAmn

δTql
δArs

{Amn, Ars} (A.1.6)

=
∑
a6=j

∑
b 6=l

1

QjaQ lb

(δiaTnjT
−1
am + δijTnaT

−1
jm )(δkbTslT

−1
br + δklTsbT

−1
lr ){Amn, Ars}

=
∑
a6=j

∑
b 6=l

1

QjaQ lb

(δiaδkb ζaj,bl + δijδkb ζja,bl + δiaδkl ζaj,lb + δijδkl ζja,lb) .

Here Qij = Qi −Qj and we introduced the concise notation

ζ12 = T−1
1 T−1

2 {A1, A2}T1T2 .

Using (2.2.1) and the fact that A = TQT−1, we find that

ζ12 = −ř−Q1Q2 −Q1Q2 ř+ +Q1 ř−Q2 +Q2 ř+Q1 .

With the help of (A.1.4) we find in components

ζij,kl = −Qij(ř−ij,klQkl + Cij,klQk) ,

where Cij,kl = δjkδil are the entries of C12. Substitution of this tensor into (A.1.6)

yields the following expression

Tij,kl =
∑
a6=j

∑
b6=l

(
− δiaδkbř−aj,bl + δijδkbř−ja,bl + δiaδklř−aj,lb − δijδklř−ja,lb

)
+
∑
a6=j

∑
b6=l

1

Q lb

(
δiaδkbCaj,blQb − δijδkbCja,blQb + δiaδklCaj,lbQ l − δijδklCja,lbQ l

)
.

In the first line the summation can be extended to all values of a and b, because the

expression which is summed vanishes for a = j and independently for b = l. For the

same reason, we have extended the summation over a in the second line, where we

also substitute the explicit value for Cij,kl = δjkδil. In this way we find

Tij,kl =
∑
ab

(
− δiaδkbř−aj,bl + δijδkbř−ja,bl + δiaδklř−aj,lb − δijδklř−ja,lb

)
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+
∑
a

∑
b 6=l

1

Q lb

(
δiaδkbδalδjbQb − δijδjlδkbδabQb + δiaδklδabδjlQ l − δijδklδalδjbQ l

)
.

This further yields the following expression

Tij,kl = −ř−ij,kl + δij
∑
a

ř−ia,kl + δkl
∑
a

ř−ij,ka − δijδkl
∑
ab

ř−ia,kb

+
∑
b6=l

1

Q lb

(
δkbδilδjbQb − δijδjlδkbQb + δklδibδjlQ l − δijδklδjbQ l

)
.

Here the second line can be written in the concise form as the matrix element rQij,kl
of the following matrix

rQ =
∑
a6=b

Qb

Qab

(Eaa − Eab)⊗ (Ebb − Eba) (A.1.7)

Therefore,

Tij,kl = rQij,kl − ř−ij,kl + δij
∑
a

ř−ia,kl + δkl
∑
a

ř−ij,ka − δijδkl
∑
ab

ř−ia,kb .

Hence,

T12 = rQ12 − ř−12 + a12 + b12 − c12 . (A.1.8)

where we introduced three r-matrices, a, b and c with entries

aij,kl = δij
∑
a

ř−ia,kl , bij,kl = δkl
∑
a

ř−ij,ka , cij,kl = δijδkl
∑
ab

ř−ia,kb . (A.1.9)

Needless to say, the bracket thus obtained is compatible with the Frobenius condition

(2.2.17), which means that∑
a

Tia,kl = 0 ,
∑
a

Tij,ka = 0 ,

for any values of the free indices.

Now we turn our attention to B12, which in components reads as

Bij,kl =
∑
a6=j

1

Qja

(δiaηaj,kl + δijηja,kl) ,

where we introduced the notation

η12 = T−1
1 T−1

2 {A1, B2}T1T2 .

With the help of (2.2.1) we get

η12 = −ř−Q1L2 −Q1L2 ř− +Q1 ř−L2 + L2 ř+Q1 ,
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and by using (A.1.4) obtain for components the following expression

ηaj,kl = Qja(Lksř−aj,sl − ř−aj,ksLsl) + LksCaj,slQj .

With this expression at hand, we get

Bij,kl =
∑
a6=j

(
δia(Lksř−aj,sl − ř−aj,ksLsl)− δij(Lksř−ja,sl − ř−ja,ksLsl)

)
+ Lks

∑
a6=j

1

Qja

(
δiaδalδjsQj + δijδjlδasQa

)
.

Here the summation in the first line can be extended to include the term with a = j

because the latter vanishes. The second line can be conveniently written as a matrix

element of some r-matrix. Namely,

Bij,kl = Lks

(
ř−ij,sl − δij

∑
a

ř−ja,sl

)
−
(
ř−ij,ks − δij

∑
a

ř−ja,ks

)
Lsl

+ Lks
∑
a6=b

Qb

Qab

(Eaa − Eab)ij ⊗ (Eba)sl .

In matrix form

B12 = L2(ř−12 − a12)− (ř−12 − a12)L2 + L2d12 , (A.1.10)

where a12 is the same matrix as in (A.1.8) and we introduced

d12 =
∑
a6=b

Qb

Qab

(Eaa − Eab)⊗ Eba . (A.1.11)

We also need

B21 = L1(ř−21 − a21)− (ř−21 − a21)L1 + L1d21 ,

Since ř−21 = −ř+12, we have

B21 = −L1(ř+12 + a21) + (ř+12 + a21)L1 + L1d21 . (A.1.12)

Now everything is ready to obtain the bracket (A.1.5). Substituting in (A.1.5) ex-

pressions (A.1.8), (A.1.10) and (A.1.12), we conclude that (A.1.5) has the structure

{L1, L2} = k+
12L1L2 + L1L2k

−
12 + L1s

−
12L2 + L2s

+
12L1 , (A.1.13)

where the coefficients are

k+
12 = rQ 12 + C12 + (a21 + b12 − c12) ,

k−12 = rQ 12 + d12 − d21 + (a21 + b12 − c12) ,

s+
12 = −rQ 12 − d12 − (a21 + b12 − c12) ,

s−12 = −rQ 12 − C12 + d21 − (a21 + b12 − c12) .

(A.1.14)



APPENDIX A. DETAILS ON THE RUIJSENAARS-SCHNEIDER MODEL 167

First, we note that these coefficients satisfy

k+ + k− + s+ + s− = 0 , (A.1.15)

which guarantees that spectral invariants of L are in involution on the Heisenberg

double. Second, in (A.1.14) the apparent dependence on the variable T occurs in the

single combination a21 + b12 − c12. To make further progress, consider

a21 = C12a12C12 ,

as C12 acts as the permutation. We have, written in components,

(a21)ij,kl = Cim,kn(a12)mr,nsCrj,sl = δmkδin

(
δmr

∑
a

ř−ma,ns

)
δjsδrl

= δkl
∑
a

ř−ka,ij = −δkl
∑
a

ř+ij,ka .

Therefore,

(a21 + b12)ij,kl = −δkl
∑
a

ř+ij,ka + δkl
∑
a

ř−ij,ka = −δkl
∑
a

Cij,ka

= −
∑
a

δklδjkδia = −
∑
ab

(Eab)ij ⊗ (Ebb)kl .

The dependence on T disappears and we find a simple answer

a21 + b12 = −
∑
ab

Eab ⊗ Ebb . (A.1.16)

The only T -dependence is in the coefficient c12. This coefficient cannot be simplified

or cancelled, so we leave it in the present form. Substituting in (A.1.14) the matrices

(A.1.7), (A.1.11) and (A.1.16) and, performing necessary simplifications, we obtain

our final result for the coefficients of the bracket (A.1.13)

k+
12 =

∑
a6=b

( Qb

Qab

Eaa −
Qa

Qab

Eab

)
⊗ (Ebb − Eba)− c12 ,

k−12 =
∑
a6=b

Qa

Qab

Eaa ⊗ Ebb −
∑
a6=b

Qa

Qab

Eab ⊗ Eba − 1⊗ 1− c12 ,

s+
12 = −

∑
a6=b

Qa

Qab

(Eaa − Eab)⊗ Ebb + 1⊗ 1 + c12 ,

s−12 = −
∑
a6=b

Qb

Qab

Eaa ⊗ (Ebb − Eba) + c12 .

(A.1.17)

In fact, the identity matrix 1⊗1 appearing in k− and s+ can be omitted as it cancels

out in the expression (A.1.13). As was already mentioned, the only T -dependence

left over is in the term c12, namely,

(c12)ij,kl = δijδkl
∑
ab

ř−ia,kb = δijδklT
−1
im T

−1
kn

∑
ab

r−ma,nb . (A.1.18)
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It is this term which violates the invariance of the bracket (A.1.13) under transfor-

mations from the Frobenius group.

To complete our discussion, we consider

(c21)ij,kl = δijδkl
∑
ab

ř−ka,ib = −δijδkl
∑
ab

ř+ia,kb .

This gives

(c21 + c12)ij,kl = −δijδkl
∑
ab

Cia,kb = −δijδkl
∑
ab

δibδka = −δijδkl = −(1⊗ 1)ij,kl ,

or in other words,

c21 + c12 = −1⊗ 1 . (A.1.19)

Equation (A.1.19) leads to the following relations between the coefficients

k+
12 + k+

21 = C12 − 2 (1⊗ 1) , k−12 + k−21 = −C12 , s−12 = −s+
21 . (A.1.20)

Notice that the fact that the right-hand side of the first two expressions is an invariant

tensor. Relations (A.1.20) guarantee that the bracket (A.1.13) is skew-symmetric.

Following similar steps, we can derive the Poisson brackets involving other Frobe-

nius invariants on the Heisenberg double, namely Wij and Pi coordinates. Introduc-

ing the notations

rhg± = h−1
1 g−1

2 r±h1g2 , (chg12)ijkl = δijδkl
∑
α,β

(rhg− )iαkβ ,

which, for Frobenius elements g, h satisfies

chg21 + cgh12 = −1⊗ 1 ,

we can write

{W1,W2} = [r12,W1W2] +W1 c
UT
12 W2 +W2 c

TU
12 W1 −W1W2 c

UU
12 − cTT12 W1W2

{W1, P2} =P2[r̄12,W1] + P2W1(cUT12 − cUU12 ) + P2(cTU12 − cTT12 )W1

{P1, P2} =P1P2 (cUT12 + cTU12 − cTT12 − cUU12 ) ,

(A.1.21)

where matrices r12 and r̄12 are defined in (2.2.30). The chg-like terms in the brackets

(A.1.21) are not Frobenius invariants, despite the arguments of the brackets are so,

as it happens for (A.1.13). These terms disappear after imposing Dirac constraints

in the reduced phase space, as it will explicitly shown for the LL-bracket in A.1.2.

A.1.2 Dirac bracket

Here we outline the construction of the Dirac bracket between the entries of the

Lax matrix (A.1.1). We argue that the contribution to the Dirac bracket coming

from the second class constraints has the same matrix structure as (A.1.13) and
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that this contribution precisely cancels all the terms c12 in (A.1.17), so that the

resulting coefficients describing the Dirac bracket on the constraint surface are given

by expressions (2.2.30) in the main text.

We start with the Poisson algebra of the non-abelian moment map

{M1,M2} = −r+M1M2 −M1M2r− +M1r−M2 +M2r+M1 . (A.1.22)

This is the Semenov-Tian-Shansky type bracket; it has N Casimir functions Tr(Mk)

with k = 1, . . . , N . On the constraint surface S the moment map is fixed to the

following value

M = ω1 + βe⊗ eτ , (A.1.23)

see (2.2.13). Substituting this expression into the right-hand side of (A.1.22) yields

the following answer

Mij,kl ≡ {Mij,Mkl}
∣∣∣
S

= β
[(
ω1−N − β(i− 1

2
)
)
δil − β

2
δjl + βΘ(l − j) (A.1.24)

−
(
ω1−N − β(j − 1

2
)
)
δjk + β

2
δik − βΘ(k − i)

]
,

where Θ is the Heaviside step function

Θ(j) =

{
1, j ≥ 0 ,

0, j < 0
. (A.1.25)

For any X ∈ Mat(N,C) introduce the following quantities

t(0)(X)ij = Xij −
1

N

∑
a

Xaj −
1

N

∑
a

Xia +
1

N2

∑
ab

Xab , i, j = 2, . . . , N,

t(1)(X)j =
1

N2

∑
ab

Xab −
1

N

∑
a

Xaj , j = 2, . . . , N ,

t(2)(X)j =
1

N2

∑
ab

Xab −
1

N

∑
a

Xja , j = 2, . . . , N ,

t(3)(X) =
1

N2

∑
ab

Xab .

(A.1.26)

From these quantities we construct the projectors π(i) that have the following action

on X

π(0)(X) =
N∑

i,j=2

(E11 − Ei1 − E1j + Eij) t
(0)(X)ij , π(1)(X) =

N∑
j=2

aj t
(1)(X)j ,

π(2)(X) =
N∑
j=2

bj t
(2)(X)j , π(3)(X) =

N∑
i,j=1

Eij t
(3)(X) .

(A.1.27)
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where

aj =
N∑
i=1

(Ei1 − Eij) , j = 2, . . . , N ,

bj =
N∑
i=1

(E1i − Eji) , j = 2, . . . , N .

In particular, π(0) projects on the Lie algebra of z and π(3) – on the one-dimensional

dilatation subalgebra C∗. The completeness condition is

X =
3∑

k=0

π(k)(X) .

From (A.1.24) it is readily seen that

{t(3)(M),Mkl} =
1

N2

∑
ab

{Mab,Mkl} = 0 .

Analogously, we find

{t(0)(M)ij,Mkl} = {Mij − 1
N

∑
aMaj − 1

N

∑
aMia,Mkl} = 0 , i, j = 2, . . . , N .

Thus, projections π(0)(M) and π(3)(M) constitute (N − 1)2 + 1 = N2 − 2N + 2

constraints of the first class. Projections π(1) and π(2) yield a non-degenerate matrix

of Poisson brackets and, therefore, represent 2(N − 1) constraints of the second

class. This matrix should be inverted and used to define the corresponding Dirac

bracket. Even simpler, the matrix (A.1.24) has rank 2(N − 1) and we can use any

non-degenerate submatrix of this rank to define the corresponding Dirac bracket.

Now we derive the Poisson relations between the moment map M and the Lax

matrix given by (A.1.1). First, we compute

{Mij, Tkl} =
δTkl
δArs

{Mij, Ars} = (A.1.28)

= −((r+M1 −M1r−)T2)ij,kl + Tkl
∑
a

(T−1
2 (r+M1 −M1r−))ij,la .

Deriving this formula, we have used (2.2.7), as well as the fact that T ∈ F . Next,

we obtain

{Mij, Lkl} = Lkl
∑
sp

(T−1
ls − T−1

ks )(r+M1 −M1r−)ij,sp . (A.1.29)

It is clear that the diagonal entries from this expression of L commute with all the

constraints: {Mij, Lkk} = 0, even without restricting to the constrained surface.

On the constrained surface where M is given by (A.1.23), we have

{Mij, Lkl}
∣∣∣
S

= ω1−NLkl(T
−1
lj − T−1

kj ) + βLkl
∑
sp

(T−1
ls − T−1

ks )Ωijs .
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Here

Ωijs ≡
∑
p

[r+, (e⊗ et)1]ij,sp = −1
2
δis − (j − 1

2
)δjs + Θ(s− i) . (A.1.30)

From the explicit expression (A.1.30) and the fact that T is an element of the Frobe-

nius group, we further deduce that

{t(0)(M)ij, Lkl}
∣∣∣
S

= 0 , {t(3)(M)ij, Lkl}
∣∣∣
S

= 0 .

In other words, L commutes on the constraint surface with all constraints of the first

class, independently on the value of T .

With the help of (A.1.30) we obtain

{Mij, Lkl}
∣∣∣
S

= Lkl

[
(ω1−N − β(j − 1

2
))(T−1

lj − T−1
kj )

+β
2
(T−1

li − T−1
ki ) + β

∑
s>i

(T−1
ls − T−1

ks )
]
.

Taking into account that

N∑
s>i

(T−1
ls − T−1

ks ) +
N∑
s<i

(T−1
ls − T−1

ks ) + (T−1
li − T−1

ki ) = 0 ,

we can write

{Mij, Lkl}
∣∣∣
S

= Lkl

[
(ω1−N − β(j − 1

2
))(T−1

lj − T−1
kj )

+β
2

( N∑
s>i

(T−1
ls − T−1

ks )−
N∑
s<i

(T−1
ls − T−1

ks )
)]
.

Now we come to the Dirac bracket construction. By picking a non-degenerate subma-

trix Ψ of the matrix Mij,kl, we invert it and define the corresponding Dirac bracket

{L1, L2}D = {L1, L2} −
2N−2∑
I,J=1

{L1,MI}Ψ−1
IJ {MJ , L2} . (A.1.31)

Here I = (ij) is a generalised index which we use to label matrix elements of Mij,kl

that comprise the non-degenerate matrix ΨIJ . To give an example, for N = 3 we

can take as Ψ the following matrix

Ψ =


M11,11 M11,12 M11,13 M11,21

M12,11 M12,12 M12,13 M12,21

M13,11 M12,12 M13,13 M13,21

M21,11 M21,12 M21,13 M21,21

 = β


0 −ω − 2β −ω − 2β −ω − 2β

ω + 2β 0 β
2

0

ω + 2β −β
2

0 ω + 3
2
β

ω + 2β 0 −ω − 3
2
β 0

 .

In particular det Ψ = β4(ω + β)2(ω + 2β)2. Inverting Ψ, we find that

2N−2∑
I,J=1

{L1,MI}Ψ−1
IJ {MJ , L2} = k+

D12L1L2 + L1L2k
−
D12 + L1s

−
D12L2 + L2s

+
D12L1 ,
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that is, the contribution of the second class constraints has precisely the same struc-

ture as (A.1.13). Moreover, the corresponding coefficients are

k+
D12 = −c12 , k−D12 = −c12 , s+

D12 = c12 , s−D12 = c12 , (A.1.32)

where c12 is given by (A.1.18). Thus, in (A.1.31) all the terms c12 cancel out. We

have also performed a similar computation for N = 4, 5, 6, 7 with the same result.

An analytic derivation for arbitrary N is still missing, although our findings leave

little doubt that it holds true.

In summary, on the reduced phase space the Dirac bracket between the compo-

nents of the Lax matrix has the form (A.1.13) with the following coefficients

k+
12 =

∑
a6=b

( Qb

Qab

Eaa −
Qa

Qab

Eab

)
⊗ (Ebb − Eba) ,

k−12 =
∑
a6=b

Qa

Qab

Eaa ⊗ Ebb −
∑
a6=b

Qa

Qab

Eab ⊗ Eba ,

s+
12 = −

∑
a6=b

Qa

Qab

(Eaa − Eab)⊗ Ebb ,

s−12 = −
∑
a6=b

Qb

Qab

Eaa ⊗ (Ebb − Eba) .

(A.1.33)

The coefficients have the following properties

k±12 + k±21 = ±(C12 − 1⊗ 1) , s−12 = −s+
21 , (A.1.34)

which guarantee, in particular, skew-symmetry of (A.1.13). In addition, they satisfy

the relation (A.1.15). In the main text we present the formula (A.1.13) in the r-

matrix form (2.2.29) with the following identifications

k+ = r , s+ = −r̄ , k− = −r .

A.2 Derivation of the spectral-dependent r-matrices

To determine the r-matrices governing the structure (2.2.49), we start with comput-
ing the Poisson brackets between the components of L(λ) given by (2.2.46). Applying
the Poisson brackets (2.2.28) and (2.2.29), we obtain

{L1(λ), L2(µ)} = r12L1L2 − L1L2r12 + L1r̄21L2 − L2r̄12L1

− 1

λ

[
Q−1

1 r12Q1L
′
1L2 − L′1L2(Q−1

1 r12Q1 − C12) + L′1Q−1
1 r̄21Q1L2 − L2(Q−1

1 r̄12Q1 + C12)L′1

]
− 1

µ

[
Q−1

2 r12Q2L1L
′
2 − L1L

′
2(Q−1

2 r12Q2 + C12) + L1(Q−1
2 r̄21Q2 + C12)L′2 − L′2Q−1

2 r̄12Q2L1

]
+

1

λµ

[
Q−1

1 Q−1
2 r12Q1Q2L

′
1L
′
2 − L′1L′2Q−1

1 Q−1
2 r12Q1Q2 (A.2.1)

+L′1(Q−1
1 Q−1

2 r̄21Q1Q2 + C12)L′2 − L′2(Q−1
1 Q−1

2 r̄12Q1Q2 + C12)L′1

]
.
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Further developments are based on the following observation about the properties of

the r-matrices rotated by Q’s. First, we find that

Q−1
1 r12Q1 = r12 − σ12 − C12 + 1⊗ 1 ,

Q−1
2 r12Q2 = r12 + σ21 + V12 − 1⊗ 1 ,

Q−1
1 Q−1

2 r12Q1Q2 = r12 + σ21 − σ12 ,

(A.2.2)

where σ12 is given by (2.2.50) and we introduced

V12 =
N∑

i,j=1

Qi

Qj

Eij ⊗ Eji .

Second,

Q−1
1 r12Q1 − C12 = r12 − C12 ,

Q−1
2 r12Q2 + C12 = r12 + V12 ,

Q−1
1 Q−1

2 r12Q1Q2 = r12 .

(A.2.3)

Finally,

Q−1
1 r̄12Q1 + C12 = r̄12 − σ12 + 1⊗ 1 ,

Q−1
2 r̄12Q2 = r̄12 ,

Q−1
1 Q−1

2 r̄12Q1Q2 + C12 = r̄12 − σ12 + 1⊗ 1 .

(A.2.4)

With the help of (A.2.2), (A.2.3) and (A.2.4) the bracket (A.2.1) turns into

{L1(λ), L2(µ)} = r12L1L2 − L1L2r12 + L1r̄21L2 − L2r̄12L1

− 1

λ

[
(r12 − σ12 − C12)L′1L2 − L′1L2(r12 − C12) + L′1r̄21L2 − L2(r̄12 − σ12)L′1

]
− 1

µ

[
(r12 + σ21)L1L

′
2 − L1L

′
2r12 + L1(r̄21 − σ21)L′2 − L′2r̄12L1

]
+

1

λµ

[
(r12 − σ12 + σ21)L′1L

′
2 − L′1L′2r12 (A.2.5)

+L′1(r̄21 − σ21)L′2 − L′2(r̄12 − σ12)L′1

]
.

Notice that the element V12 totally decouples from from the right-hand side of (A.2.5),

as it satisfies an identity

V12L1L
′
2 = L1L

′
2V12 ,

which can be straightforwardly verified by computing its matrix elements,

(V12L1L
′
2)mn,kl = ωLmlLknQ lQ−1

k = (L1L
′
2V12)mn,kl .

The next progress relies on the identity (2.2.42), i.e.,

L′ = L− 1− ωN
N

e⊗ ctL , (A.2.6)



APPENDIX A. DETAILS ON THE RUIJSENAARS-SCHNEIDER MODEL 174

and the special (Frobenius) structure of the r-matrices. Indeed, from (A.2.6) it

follows that

(Eii − Eij)L′ = (Eii − Eij)L , ∀ i, j = 1 , . . . , N .

This observation immediately shows that

r̄12L
′
1 = r̄12L1 , r̄21L

′
2 = r̄21L2 ,

σ12L
′
1 = σ12L1 , σ21L

′
2 = σ21L2 .

(A.2.7)

Analogously,

r12L
′
2 = r12L2 , r21L

′
1 = r21L1 . (A.2.8)

Owing to the identity (2.2.35), we then have

r12(L′1 − L1) = (−r21 + C12 − 1⊗ 1)(L′1 − L1) = (C12 − 1⊗ 1)(L′1 − L1) ,

or, in other words,

r12L
′
1 = (C12 − 1⊗ 1)L′1 + (r12 − C12 + 1⊗ 1)L1 . (A.2.9)

Thus, to obtain an irreducible expression for the bracket (A.2.5), whenever its is

possible we will use the reduction formulae (A.2.7), (A.2.8) and (A.2.9) to replace

L′ with L on the right-hand side of (A.2.5). This replacement leads to the following

result

{L1(λ), L2(µ)} =

=
(
r12−

1

λ
(r12− σ12 − C12+ 1⊗ 1)− 1

µ
(r12+ σ21)+

1

λµ
(r12− C12+ 1⊗ 1)

)
L1L2

− L1L2r12 +
1

λ
L′1L2r12 +

1

µ
L1L

′
2r12 −

1

λµ
L′1L

′
2r12

+ L1

(
r̄21 −

1

µ
(r̄21 − σ21)

)
L2 − L2

(
r̄12 −

1

λ
(r̄12 − σ12)

)
L1

− 1

λ
L′1

(
r̄21 −

1

µ
(r̄21 − σ21)

)
L2 +

1

µ
L′2

(
r̄12 −

1

λ
(r̄12 − σ12)

)
L1

+
1

λ

(
1⊗ 1 +

1

µ
(C12 + σ21 − 1⊗ 1)

)
L′1L2 −

1

λ

(
C12 +

1

µ
σ12

)
L1L

′
2 . (A.2.10)

We will now search for the spectral dependent r-matrices rs that allow one to present

the bracket above in the form

{L1(λ), L2(µ)} = rs12L1(λ)L2(µ)− L1(λ)L2(µ)rs12

+ L1(λ)r̄s21L2(µ)− L2(µ)r̄s12L1(λ) . (A.2.11)

An examination of this expression shows that it involves the following matrices r12,

r̄12, r̄21, σ12, σ21 and C12. There is also the identity matrix 1 ⊗ 1 but we ignore its
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presence for the moment. Thus, the structure of (A.2.10) motivates to try for the

spectral-dependent r-matrices the following minimal ansatz

rs12 = r12 + ασ12 + βσ21 + δC12

r̄s12 = r̄12 + δ12σ12 ,

r̄s21 = r̄21 + δ21σ21 ,

rs12 = r12 + δC12 .

This ansatz depends on five undermined parameters: α, β, δ, δ12 and δ21, which should

eventually be expressed via λ and µ. We then plug this ansatz together with the

expression (2.2.46) for the spectral-dependent Lax matrix into (A.2.11) and, by using

the reduction formulae (A.2.7), (A.2.8) and (A.2.9), bring the resulting expression

to the following irreducible form

{L1(λ), L2(µ)} =

=
[
r12 + ασ12 + βσ21 −

1

λ
(r12 − C12 + 1⊗ 1 + ασ12)

− 1

µ
(r12 + βσ21) +

1

λµ
(r12 − C12 + 1⊗ 1)

]
L1L2

−L1L2r12 +
1

λ
L′1L2r12 +

1

µ
L1L

′
2r12 −

1

λµ
L′1L

′
2r12

+L1

[
(r̄21 + δ21σ21)− 1

µ
(r̄21 + δ21σ21)

]
L2 − L2

[
(r̄12 + δ12σ12)− 1

λ
(r̄12 + δ12σ12)

]
L1

−1

λ
L′1

[
(r̄21+ δ21σ21)− 1

µ
(r̄21 + δ21σ21)

]
L2+

1

µ
L′2

[
(r̄12 + δ12σ12)− 1

λ
(r̄12+ δ12σ12)

]
L1

+
[
− 1

λ
(C12 − 1⊗ 1 + βσ21 + δC12) +

1

µ
δC12 +

1

λµ
(C12 + βσ21 − 1⊗ 1)

]
L′1L2

+
[1

λ
δC12 −

1

µ
(ασ12 + δC12) +

1

λµ
ασ12

]
L1L

′
2 . (A.2.12)

Comparison of the first lines of (A.2.10) and (A.2.12) yields a unique solution for α

and β,

α =
1

λ− 1
, β = − 1

µ− 1
.

Comparison of third lines yields

δ12 =
1

λ− 1
, δ21 =

1

µ− 1
,

which automatically makes the fourth lines of (A.2.10) and (A.2.12) equal. Finally,

with α and β already determined, comparison of the terms in front of L′1L2 or L1L
′
2

gives an unambiguous solution for δ,

δ =
µ

λ− µ .
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Thus, we end up with the following expressions for the spectral-dependent r-matrices

realising the Poisson algebra (A.2.11)

r12(λ, µ) =
λr12 + µr21

λ− µ +
σ12

λ− 1
− σ21

µ− 1
+

µ

λ− µ1⊗ 1 ,

r̄12(λ) = r̄12 +
σ12

λ− 1
,

r12(λ, µ) = r12(λ, µ) + r̄21(µ)− r̄12(λ) =
λr12 + µr21

λ− µ +
µ

λ− µ1⊗ 1 ,

(A.2.13)

where we used the relation (2.2.35) to bring the result to a more symmetric form.

Finally, using the shift symmetry (2.2.57), we can omit in (A.2.13) the terms pro-

portional to the identity matrix, obtaining a slightly simpler solution (2.2.51).

A.3 Poisson structures for the spin hyperbolic RS model

The Ruijsenaars-Schneider model with spins and hyperbolic potential has been re-

alized as an Hamiltonian system for the first time by O.Chalykh and M.Fairon [48]

providing an explicit Poisson bracket for the invariant spin variables. According to

these Poisson brackets the GL(`,C)-invariant combinations of spins fij = aiαc
α
j (also

called collective spins) satisfy the conjecture of [69]

{fij, fkl} =

(Qi +Qk

Qi −Qk

+
Qj +Q l

Qj −Q l

+
Qk +Qj

Qk −Qj

+
Q l +Qi

Q l −Qi

)
fijfkl

+

(Qi +Qk

Qi −Qk

+
Qj +Q l

Qj −Q l

+
Qk + ωQj

Qk − ωQj

− Qi + ωQ l

Qi − ωQ l

)
filfkj

+

(Qk +Qi

Qk −Qi

+
Qi + ωQ l

Qi − ωQ l

)
fijfil +

(Qj +Qk

Qj −Qk

− Qj + ωQ l

Qj − ωQ l

)
fijfjl

+

(Qk +Qi

Qk −Qi

− Qk + ωQj

Qk − ωQj

)
fkjfkl +

(Qi +Q l

Qi −Q l

+
Q l + ωQj

Q l − ωQj

)
fljfkl .

(A.3.1)

The Poisson brackets between invariant spins which realize (A.3.1) is given in com-
ponents in [48] as

{aiα,ajβ} =
1

2
δi 6=j
Qi +Qj
Qi −Qj

(aiαajβ + ajαaiβ − aiαaiβ − ajαajβ) +
1

2
ε(β, α)(aiαajβ + ajαaiβ)

+
1

2
ajβ

∑̀
γ=1

ε(α, γ)(ajαaiγ + aiαajγ)− 1

2
aiα

∑̀
γ=1

ε(β, γ)(aiβajγ + ajβaiγ) ,

{aiα, cβj} = aiαZij − δαβZij −
1

2
δi 6=j
Qi +Qj
Qi −Qj

(aiα − ajα)cβj + aiα

β−1∑
γ=1

aiγ(cγj − cβj)+

− δαβ
β−1∑
γ=1

aiγcγj −
1

2
cβj

∑̀
γ=1

ε(α, γ)(aiγajα + ajγaiα) + δα<βaiαcβj ,

{cαi, cβj} =
1

2
δi 6=j
Qi +Qj
Qi −Qj

(cαicβj + cαjcβi)− cαiZij + cβjZji +
1

2
ε(β, α)(cαicβj − cαjcβi)
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− cαi

β−1∑
γ=1

aiγ(cγj − aiγcβj) + cβj

α−1∑
γ=1

ajγ(cγi − cαi) , (A.3.2)

where ε(α, β) = ±1 if α ≶ β, and ε(α, α) = 0. Here we recall that the Poisson
structures of invariant spins that we found by Poisson reduction [192] and presented
in (3.5.4) in matrix form, realize a different bracket for the variables {fij}. Despite
that, the difference is given by the terms (3.5.6) which do not affect the equations
of motion, showing that it is possible to define various Poisson structures for the
hyperbolic spin RS model which differ in a non-trivial way. For the sake of comparison
with (A.3.2), we express the brackets (3.5.4) with “-” in components:

{aiα,ajβ} =
1

2
δi6=j
Qi +Qj
Qi −Qj

(aiαajβ + ajαaiβ − aiαaiβ − ajαajβ) +
1

2
ε(β, α)ajαaiβ

+
1

2
ajαajβ

∑̀
γ=1

ε(α, γ)aiγ −
1

2
aiαaiβ

∑̀
γ=1

ε(β, γ)ajγ +
1

2
aiαajβ

∑̀
γ=1

ε(γ, δ)aiγajδ ,

{aiα, cβj} = aiαZij − δαβZij −
1

2
δi6=j
Qi +Qj
Qi −Qj

(aiα − ajα)cβj + aiα

β−1∑
γ=1

aiγcγj − δαβ
β−1∑
γ=1

aiγcγj

− 1

2
ajαcβj

∑̀
γ=1

ε(α, γ)aiγ −
1

2
aiαcβj

∑̀
γ,δ=1

ε(γ, δ)aiγajδ +
1

2
aiαaiβcβj −

1

2
δαβaiαcβj ,

{cαi, cβj} =
1

2
δi 6=j
Qi +Qj
Qi −Qj

(cαicβj + cαjcβi)− cαiZij + cβjZji −
1

2
ε(β, α)cαjcβi

− cαi

β−1∑
γ=1

aiγcγj + cβj

α−1∑
γ=1

ajγcγi +
1

2
cαicβj

∑̀
γ,δ=1

ε(γ, δ)aiγajδ +
1

2
(ajα − aiβ)cαicβj .

(A.3.3)

We draw the attention of the reader on the fact that the brackets (A.3.3) include

terms of order four in the invariant spins, while (A.3.2) contain terms up to order

three.



Appendix B

Details on Basso-Dixon integrals

B.1 Diagram technique

The functions and kernels of integral operators considered in the main body of the

paper are represented in the form of two-dimensional Feynman diagrams. The prop-

agator which is shown by the arrow directed from w to z and index α attached to it

is given by the following expression

1

[z − w]α
≡ 1

(z − w)α(z∗ − w∗)ᾱ =
(z∗ − w∗)α−ᾱ
|z − w|2α , (B.1.1)

where the difference α− ᾱ is integer: α− ᾱ ∈ Z.1 The flip of the arrow in propagator

gives an additional sign factor (−1)α−ᾱ for which we shall use the shorthand notation

(−1)[α] = (−1)α−ᾱ (B.1.2)

so that
1

[z − w]α
=

(−1)α−ᾱ

[w − z]α
=

(−1)[α]

[w − z]α
. (B.1.3)

The evaluation of Feynman diagrams is based on their transformation with the help

of the certain rules, namely:

• Chain relation:ˆ
d2w

1

[z1 − w]α[w − z2]β
= (−1)[γ]a(α, β, γ)

1

[z1 − z2]α+β−1
, (B.1.4)

where γ = 2− α− β, γ̄ = 2− ᾱ− β̄.

• Special case of the chain relation

ˆ
d2w

1

[z1 − w]1−α[w − z2]1+α
= −π2 (−1)[α]

αᾱ
δ2(z1 − z2) , (B.1.5)

1Note that the star ∗ is used for the usual complex conjugation whether as the meaning of the bar is explained in

eq.(3.2.10),(3.2.11).
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= π(−1)γ−γ̄a(α, β, γ)
α β

= π a(α, β, γ)

α + β − 1

α

βγ

1− α

1− β 1− γ

Figure B.1: The chain and star– triangle relations, α+ β + γ = 2.

=

α

1− α′

β

1− β ′

α
′ −

α

1− α

α′ β ′

1− β

β
−
β
′

a(α, β̄)a(α′, β̄′)

Figure B.2: The cross relation, α+ β = α′ + β′.

• Star– triangle relation:ˆ
d2w

1

[z1 − w]α[z2 − w]β[z3 − w]γ
=

πa(α, β, γ)

[z2 − z1]1−γ[z1 − z3]1−β[z3 − z2]1−α
, (B.1.6)

where α + β + γ = 2 and ᾱ + β̄ + γ̄ = 2.

• Cross relation:

1

[z1 − z2]α′−α

ˆ
d2w

a(α′, β̄′)

[w − z1]α[w − z2]1−α′ [w − z3]β[w − z4]1−β′
=

=
1

[z3 − z4]β′−β

ˆ
d2ζ

a(α, β̄)

[w − z1]α′ [w − z2]1−α[w − z3]β′ [w − z4]1−β
, (B.1.7)

where α + β = α′ + β′.

These relations are shown in diagrammatic form in Figs. B.1, B.2. Here the

notation a(α, β, γ, . . .) = a(α)a(β)a(γ) . . . is introduced for the product of special

function a(α) for different values of arguments. The definition of the function a(α)

is the following

a(α) =
Γ(1− ᾱ)

Γ(α)
. (B.1.8)

Note that this function depends on two parameters α and ᾱ, where the difference

α − ᾱ should be integer, but for the sake of simplicity we shall use the shorthand
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notation a(α). There are some useful relations for this function

a(1+α) = −a(α)

αᾱ
, a(α)a(1−α) = (−1)[α] , a(1+α)a(1−α) = −(−1)[α]

αᾱ
(B.1.9)

B.2 Reduction and duality

We start from the simplest example N = 1 , L = 1, make the reduction by sending

w0 → ∞ and drop the corresponding propagator. We want to reduce the original

quantity

IBD1,1 (z0, z1, w0, w1) =

ˆ
d2w

1

[w − z1]1−γ[w1 − w]1−γ[w − w0]γ[z0 − w]γ
→

→ G1,1(z1, w1|z0) =

ˆ
d2w

1

[w − z1]1−γ[w1 − w]1−γ[z0 − w]γ

We can always restore the original quantity IBD1,1 (z0, z1, w0, w1) from G1,1(z1, w1|z0)

using its conformal symmetry, i.e. by applying the shift+inversion transformation:

G1,1

(
1

z1

,
1

w1

∣∣∣∣ 1

z0

)
=

ˆ
d2w

[w]2
1

[1/w − 1/z1]1−γ[1/w1 − 1/w]1−γ[1/z0 − 1/w]γ
=

= [z1]1−γ[w1]1−γ[z0]γ
ˆ

d2w

[w]γ[z1 − w]1−γ[w − w1]1−γ[w − z0]γ

= [z1]1−γ[w1]1−γ[z0]γ IBD1,1 (z0, z1, 0, w1)

= [z1]1−γ[w1]1−γ[z0]γ IBD1,1 (z0 + w0, z1 + w0, w0, w1 + w0)

or

IBD1,1 (z0, z1, w0, w1) = [z1 − w0]γ−1[w1 − w0]γ−1[z0 − w0]−γG1,1

(
1

z1 − w0
,

1

w1 − w0

∣∣∣∣ 1

z0 − w0

)
.

Analogously, the formula for the general N,L looks as follows:

IBDL,N(z0, z1, w0, w1) = [z1 − w0]N(γ−1)[w1 − w0]N(γ−1)[z0 − w0]−Lγ × (B.2.1)

× GL,N

(
1

z1 − w0

,
1

w1 − w0

∣∣∣∣ 1

z0 − w0

)
, (B.2.2)

where

IBD
L,N (z0, z1, w0, w1) =

ˆ L∏
l=1

N∏
n=1

d2zln

 ∏
(l,n)∈LL,N

1

|zl,n − zl,n+1|1+2ω |zl,n − zl+1,n|1−2ω

 .(B.2.3)

Taking into account (3.2.46) and (3.2.52) and setting:

z′1 = (z1 − w0)−1, z′0 = (z0 − w0)−1, w′1 = (w1 − w0)−1, and η′ =
w′1 − z′0
z′1 − z′0

,

we can give an explicit expression for the last factor in (B.2.2) in terms of function

BL,N(η):

GL,N(z′1, w
′
1|z′0) = ([z′0 − z′1][z′0 − w′1])N

γ−1
2 BL,N (η′)
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=

(
[z0 − z1]

[z0 − w0][z1 − w0]

)(γ−1)N

[η]
γ−1

2
NBL,N (η) ,

where η is the anharmonic ratio of the graph IBDL,N :

η =
(w1 − z0)(z1 − w0)

(z1 − z0)(w1 − w0)
. (B.2.4)

By definition (3.2.2) our graphs should have a duality symmetry, namely:

IBDL,N(z0, z1, w0, w1) = IBDN,L(z1, w0, w1, z0) . (B.2.5)

Namely we can rotate the whole diagram anti-clockwise by an angle π
2

and repeat

our computation by eigenfunction expansion step by step with some changes:

• L� N

• γ � 1− γ, so that now horizontal lines have index γ and vertical 1− γ

and we derive a different representation for the same quantity

IBDN,L(z0, z1, w0, w1) =
[w0 − z1]−γL[z0 − w1]−γL

[z1 − w1]−γL+(1−γ)N
[η]

γ
2
L B

(1−γ)
N,L

(
1

η

)
(B.2.6)

B.3 Details of the derivation of the formula (3.2.58)

The derivation of the formula (3.2.58) contains three steps:

• calculate integrand at ν = in
2

+ ik − iε

(−1)Mn ΓM(2− 2s̄+ k − ε)ΓM(−k + ε)

ΓM(2s− n− k + ε)ΓM(n+ k − ε) η
n+k−εη̄k−ε (B.3.1)

• use twice the Euler reflection formula

Γ(−k + ε) =
1

ε

(−1)k Γ(1 + ε)Γ(1− ε)
Γ(1 + k − ε) ,

1

Γ(2s− n− k + ε)
=

(−1)n+kΓ(2s+ ε)Γ(1− 2s− ε)
Γ(1− 2s+ n+ k − ε) ,

to transform (B.3.1) to the form

1

εM
ΓM (1 + ε)ΓM (1− ε)

ΓM (2s+ ε)ΓM (1− 2s− ε)
ΓM (1− 2s+ n+ k − ε)

ΓM (n+ k − ε)
ΓM (2− 2s̄+ k − ε)

ΓM (1 + k − ε) ηn+k−εη̄k−ε

• extract the coefficient in front of 1
ε

and multiply it by (−i).



Appendix C

Details on chiral CFT4

C.1 Notation and conventions

As a convention, the metric tensor of the four dimensional Euclidean space is taken

to be

gµν = δµν = diag( 1, 1, 1, 1 ) , (C.1.1)

where µ, ν = 0, 1, 2, 3 are spacetime vector indices. The massless scalar propagators

are defined in configuration and momentum space as follows

1

(x2
12)α

=
1

4απD/2
Γ (2− α)

Γ (α)

ˆ
dDk

eik·x12

(k2)D/2−α
, (C.1.2)

and the same for the fermionic propagators

/x12

(x2
12)α+1/2

=
−i

4απD/2
Γ
(

5
2
− α

)
Γ
(

1
2

+ α
) ˆ dDk

eik·x12/k

(k2)D/2−α+1/2
, (C.1.3)

where /x stands for the position x contracted with the spin structure matrix, and the

same for /k. The positions satisfies the following identity

xij · xkl =
1

2
(x2

il + x2
jk − x2

ik − x2
jl) . (C.1.4)

We can represent the four-dimensional gamma-matrices to have the off-block

diagonal form

γµ =

(
0 (σµ)αβ̇

(σ̄µ)α̇β 0

)
, (C.1.5)

by introducing the 2× 2 Euclidean σ matrices

σµ = (−i~σ, I2×2) and σ̄µ = (i~σ, I2×2) , (C.1.6)

where ~σ are the Pauli matrices. We use the standard convention for raising/lowering

of two-component spinor indices α, α̇

ψα = εαβψ
β, ψα = εαβψβ, ψ̄α̇ = εα̇β̇ψ̄

β̇, ψ̄α̇ = εα̇β̇ψ̄β̇ , (C.1.7)

– 182 –
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where we introduced the tensors ε as

εαβ = εα̇β̇ = iσ2 , εαβ = εα̇β̇ = −iσ2 , (C.1.8)

and the following relations hold

(σ̄µ)α̇α = εα̇β̇εαβσµ
β̇β
, εα̇β̇εβ̇γ̇ = δα̇γ̇ εαβεβγ = δαγ . (C.1.9)

The σ matrices satisfy

σ̄µσν + σ̄νσµ = 2δµνI2×2 and σµσ̄ν + σν σ̄µ = 2δµνI2×2 , (C.1.10)

and the trace identities are

tr(odd number of σ’s) = 0,

tr(σµσ̄ν) = tr(σ̄µσν) = 2δµν ,

tr (σµσρσησν) = 2 (δµρδην − δµηδρν + δµνδρη − εµρηη) ,
tr (σµσρσησν) = 2 (δµρδην − δµηδρν + δµνδρη + εµρηη) .

(C.1.11)

C.2 Cancellation of the spurious poles

In order to confirm the validity of equation (4.2.27) we should show that the physical

poles given by the zeroes of the spectral equation (4.2.25) are the only contributions

to the four-point correlators under study. This fact, well known for the bi-scalar

reduction of our theory (see Appendix B in [37]), needs a proof for the full χCFT.

It appears that additional possible contributions could come from the extra poles in

g∆,S(u, v) and the measure factor 1/c2(∆, S). In this appendix we will show that

these contributions cancel each other thanks to a symmetry relation fulfilled by the

eigenvalues hi∆,S of the Bethe-Salpeter kernels.

The conformal block g∆,S(u, v) has simple poles at ∆S−n = S + 3 − n (with

n = 1, 2, . . . , S), namely 2iνn = S + 1− n. Its residue at the pole ν = νn is given by

rn gS+3,S−n(u, v) where (see for example Appendix B in [193]):

rn = (−1)n
inΓ2

(
1
2

(n−∆1 + ∆2 + 1)
)

2Γ(n+ 1)2Γ2
(

1
2

(−n−∆1 + ∆2 + 1)
) . (C.2.1)

This results in the following extra contribution to (4.2.27):

RgS,m =

(
rm

c2(∆S−m, S)

hB∆S−m,S

1− χBhB∆S−m,S − χFhF ∆S−m,S

)
gS+3,S−m(u, v) , 1 ≤ n ≤ S <∞ .

(C.2.2)

In addition to that, the measure factor 1/c2(∆, S) develops poles at ∆ = S+3+k, k =
0, 1, 2, . . . . The corresponding contribution can be expressed as

Rc2S,k = −
(

rk
c2(∆S , S + k)

hB∆S+k,S

1− χBhB∆S+k,S − χFhF ∆S+k,S

)
gS+3+k,S(u, v) , 0 ≤ S, k <∞ .

(C.2.3)
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The overall contribution of these terms is the sum over all non-negative integers S, k
of the generic term

Rc2S,k +RgS+k,k = −
(

rk
c2(∆S , S + k)

gS+3+k,S(u, v)

)
× (C.2.4)

×
[

hB∆S+k,S

1− χBhB∆S+k,S − χFhF ∆S+k,S
− hB∆S ,S+k

1− χBhB∆S ,S+k − χFhF ∆S ,S+k

]
.

A possible vanishing condition for the full contribution is then

rk[hb∆S+k,S(1− χbhB∆S+k,S − χFhF ∆S+k,S)− hB∆S+k,S(1− χBhB∆S+k,S − χFhF ∆S+k,S)] = 0 ,

(C.2.5)

for any k ∈ N. We can actually verify in both sectors under study that the following

set of stronger conditions is fulfilled

rk(hB 3+S+k,S − hB 3+S,S+k) = 0 , k = 0, 1, 2, . . . (C.2.6)

rk(hF 3+S+k,S − hF 3+S,S+k) = 0 , k = 0, 1, 2, . . . . (C.2.7)

It is easy to check that plugging (C.2.6) into (C.2.5), one is left with the condition

(C.2.7), which means that (C.2.6) together with (C.2.7) are a sufficient condition for

(C.2.5). To prove these equations hold, we notice first of all that at ∆1 = ∆2 = 1

(C.2.1) vanishes at odd n, so it would be sufficient to prove (C.2.6), (C.2.7) at even

k ∈ 2N. Moreover, equation (C.2.6) has been checked in [37], where it was enough

to state the cancelation of spurious poles in Tr [φ2
1] sector. Let us verify the second

condition (C.2.7) at even integer k. Starting from the sector Tr [φ2
1] it is equivalent

to

h̃F 3+S+k,S − h̃F 3+S,S+k = 0 , (C.2.8)

where we recalled the definition of h̃F ∆,S (4.3.25). Equation (C.2.8) actually coincides

with the vanishing condition for spurious contribution in the “one-magnon” Tr [φ2
1φ2]

sector of bi-scalar theory, and is verified in [37].

C.3 Operator mixing and logarithmic multiplet

The sector Tr [φ2
1] of our theory the exchanged physical operators in the OPE s-

channel of the 4-point correlators under analysis present mixing. Namely, due to

the wide matter content of the theory, the renormalized operators are not just

rescaled and normal-ordered monomials of elementary fields and derivatives, but

linear coupling-dependant combination of several such terms which share the same

symmetries. Concretely, in our theory we deal with single trace primary operators

as

O1(x) = tr[χi1χi2 · · ·χiL ](x) , (C.3.1)

made up of elementary fields of the theory χik(x) eventually dressed by tensor struc-

tures and derivatives. Given the quantum numbers of such a term O1, that is Car-

tan’s U(1)⊗3 charge, twist and tensor rank S, it is usually possible to write a few
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other conformal primaries with the same numbers, say {O2, O3 . . . }. This allows in

general some of the two-point functions 〈Oi(x)Oj(0)†〉 to not vanish at i 6= j, that is

to have transitions Oi → Oj. We define the anomalous dimension matrix γij as

−µ d

dµ
ZOi = γij ZOj , (C.3.2)

being ZOi the renormalization of operator Oi and µ the scale. In absence of transi-

tions, namely γij = δijγi, mixing does not happen and each operator Oi has anoma-

lous dimension γi. Otherwise, one has to bring the mixing matrix γij into diagonal

form via a rotation over the basis of local primaries {O1, O2 . . . }. The operators of

the new basis are linear combinations of the kind

O′i(x) = c1,i(ξ)O1 + c2,i(ξ)O2 + . . . (C.3.3)

and they do not mix among each other. The anomalous dimension of O′i(x) is

the corresponding eigenvalue of the matrix, namely γ′i. The existence of a basis of

eigenvectors for γij-matrix is ensured by its hermiticity in unitary theories. The

absence of invariance under hermitian conjugation of (1.2.2) prevent to come to

similar conclusions for χCFT theory. In particular, performing the planar limit can

lead to “one-way” transitions

〈Oi(x)Oj(0)†〉 6= 0 〈Oi(x)Oj(0)†〉 = 0 , (C.3.4)

and the correspondent mixing matrix can be only brought into Jordan canonical

form, e.g. for the mixing of four primaries:

γij −→ (SγS−1)ij =


0 1 0 0

0 0 0 0

0 0 γ′3 0

0 0 0 γ′4

 . (C.3.5)

The matrix (C.3.5) contains a 2× 2 Jordan block, together with two diagonal terms

γ′3 and γ′4, corresponding to two renormalized operators with such anomalous di-

mensions. The physical interpretation of Jordan blocks leads to the formulation of

logarithmic CFT (see [105],[110]). In the example (C.3.5) the block corresponds to

a rank-2 logarithmic multiplet. This means that the corresponding operators of the

new basis, O′1,O′2 show 2-point functions of the kind

〈O′1(x)O′†1 (0)〉 =
k ln(µ2x2)

(x)2∆0
〈O′1(x)O2

′†(0)〉 =
k

(x)2∆0
(C.3.6)

〈O′2(x)O′†1 (0)〉 =
k

(x)2∆0
〈O′2(x)O′†2 (0)〉 = 0 , (C.3.7)

where ∆0 is the bare dimension of Oi operators, and µ the energy scale. This phe-

nomenon, the presence of log-multiplets in χCFT has first be noticed by J.Caetano
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[38] for its bi-scalar reduction (2.1.3) and some examples of its occurance in the con-

text of fishnet CFT have been presented in [39]. Despite such logarithmic operators

appear in our theory, we are mostly interested in selecting the non-logarithmic ones:

indeed these are the only exchanged in the OPE of the correlators under study, as

the solutions of spectral equations (4.3.26) correspond to non-protected operators

∆(ξ) 6= ∆0.

tr[φ2
1] sector This first sector is characterized by the Cartan R-charge of two φ1

fields (2, 0, 0). The equation (4.3.26) shows physical solutions for every even twist.

In particular there is only one solution at twist-2 (4.3.29), and two at twist-4 (4.3.30)

and higher (4.3.31) both for spin S = 0 and S > 0. The twist-2 solution is easily

interpreted as the scaling dimension of

tr[φ1(n · ∂)Sφ1] + permutations S = 0, 2, . . . , (C.3.8)

indeed for any S there is no other twist-2 conformal primary with charge (2, 0, 0).

On the other hand for ∆0 − S = t ≥ 4 we can list several primaries with the right

set of Cartan’s charges. Let us concentrate on the scalar case S = 0 of twist four;

we find 9 scalar conformal primaries which have the right set of charges

O1 = tr[φ3
1φ
†
1] Oj = tr[φ2

1φjφ
†
j] O2+j = tr[φ2

1φ
†
jφj] O4+j = tr[φ1φjφ1φ

†
j]

O8 = tr[ψ̄2ψ̄3φ1] O9 = tr[ψ̄3ψ̄2φ1], j = 2, 3.

As also the structure of (4.3.1) shows, this sector is fully described in terms of the

χ0CFT, thus the mixing transitions are realized by the vertices of (1.2.4). At any

coupling O1 shows no planar transitions, and we deal with a set of 8 conformal

primaries which at non-zero couplings ξ2, ξ3 mix among themselves. This fact is ap-

parently in contrast with the presence of only two twist-4 exchanged operators in the

OPE expansion of Sec.(4.3.5), and can be explained with the arising of logarithmic

multiplets of operators with ∆ = ∆0 = 4, not being solutions of (4.3.26). Indeed,

for instance, the following planar transitions

O4+j −→ O2,O5 O8 −→ O4,O3, (C.3.9)

can happen respectively starting from order ξ2 and ξ3, while they lack the hermi-

tian conjugate due to chirality of (1.2.4). One can actually check that there is no

conjugate transition to (C.3.9) at any order. This suggest that matrix γij won’t

be diagonalizable and presents Jordan blocks in its canonical form, i.e. logarithmic

operators.
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Bureau des Longitudes le 29 juin 1853.”, Journal de Mathématiques Pures et Appliquées , 137 (1855).
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