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Chapter 1

Introduction

1.1 Physical background

Two dimensional conformal field theory is a very rich and wide subject where
different branches of physics and mathematics come into play.
Physically it is a two dimensional quantum field theory which is invariant
under conformal transformations. As any quantum field theory, it can be
described by a compatible set of correlation functions 〈φ1(x1)φ2(x2) . . .〉, i.e.
complex numbers depending on fields φi which are inserted in points xi of
the Riemann sphere or some other surface (or respectively some other higher
dimensional manifold). These functions, which in a conformal field theory
have to be covariant under conformal transformations, can be seen as ex-
pectation values over all possible configurations of the fields and depend on
the insertion points xi. One way to compute correlation functions is via the
so-called path integral formalism.
Conformal field theory has various applications in physics: in string theory
where the world sheet theories of closed and open strings are conformal, in
statistical mechanics where critical percolation may be described by logar-
ithmic conformal models [CR13]. The path integral approach can also be
applied to the stochastic dynamics in classical systems with many degrees of
freedom. The study of an example, a classical system modelling molecular
dynamics, was a side project of the PhD and is presented in chapter 3.

A conformal field theory in two dimensions factorises into a chiral and
anti-chiral part which are described by holomorphic and anti-holomorphic
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functions, called chiral and anti-chiral conformal blocks. These are multi-
valued functions. The symmetry algebra of the theory contains an infinite-
dimensional algebra, called Virasoro algebra, generated by the conformal
transformations. There are two copies of the Virasoro algebra Vir and Vir
acting on the conformal field theory corresponding to the chiral and anti-
chiral parts. The chiral and anti-chiral parts of a conformal field theory can
be mathematically axiomatised by two copies V and V of a vertex operator al-
gebra.

A vertex operator algebra (VOA) is an algebraic structure with extra layer
of analysis. Apart from the connection to physics, vertex operator algebras
are furthermore interesting mathematical objects on their own. For example
their representations provide, under some finiteness and semisimplicity con-
ditions, examples of modular tensor categories [Hua08].
Other interesting vertex operator algebras are the so-called chiral logarithmic
conformal field theories. These are vertex operator algebras with finite non-
semisimple representation theory. Physically they correspond to chiral con-
formal field theories where the energy operator fails to be diagonalisable on
the quantum state space and whose chiral conformal blocks may have logar-
ithmic singularities. For a broader introduction to quantum field theory and
vertex operator algebras, see chapter 2.

Chapter 4 contains the main body of this thesis.
We consider the example of the Heisenberg vertex algebra associated to a non-
integral lattice and the corresponding non-local screening operators. Under
certain smallness condition, these screening operators satisfy the relations of
a Nichols algebra, with a diagonal braiding induced by the non-locality of
the screening operators and non-integrality of the lattice.

One of the pursued goals is to take all finite-dimensional diagonal Nichols
algebras, as classified by Heckenberger [Hec05], and find all realisations of
the respective braidings by lattices, that are compatible with reflections.
A second goal is to study the associated algebra of screening operators when
the smallness condition fails. For positive definite lattices, where smallness
holds, we obtain the Nichols algebra, such as the positive part of the quantum
group, and for negative definite lattices, where smallness fails, we obtain an
extension thereof.
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A motivation for this study is that for each Nichols algebra braiding,
realising lattice and associated screening operators, we can conjecturally con-
struct a logarithmic conformal field theory as kernel of the screening operat-
ors. Its representation theory should then be equivalent to the representation
theory of the quantum group associated to the Nichols algebra. It is expec-
ted that the finiteness of the Nichols algebras coincides with the finiteness of
the non-semisimple representation theory of the corresponding logarithmic
conformal field theory. As resulting logarithmic conformal field theories we
would then get p, p′ models, super analogues and other new examples.

1.2 Mathematical tools

In this section we are going to give an overview of the main mathematical
objects and tools that we use in chapter 4 in order to achieve the above-
mentioned goals. These goals are presented in more detail in section 1.3.

1.2.1 Vertex algebras and representations

A Vertex Operator Algebra (VOA) [FBZ04] [Kac98] is a collection of the
following data:
A Z-graded vector space V , a distinguished vector |0〉 ∈ V , a linear operator
∂ : V −→ V , a conformal vector ω ∈ V and a linear operator called
vertex operator

Y : V ⊗C V → V [[z, z−1]] (1.1)

taking values in formal power series with integer exponents and coefficients
in the space V . These data have to fulfil several compatibility axioms.
There is an action on V of the conformal symmetry algebra, the Virasoro
algebra, defined via the conformal element ω.

A module M over a VOA V is a C-graded vector space together with an
operator

YM : V ⊗CM→M[[z, z−1]] (1.2)

fulfilling again compatibility axioms as Y. The map YM takes values in
formal power series with integer exponents and coefficients in M.
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An intertwiner between VOA modules M,N ,L is a map

YM,N ,L : M⊗C N → L{z}[log(z)] (1.3)

where {z} are power series with complex exponents, and [log(z)] denotes the
space of polynomials in variable log(z). The intertwiner YM,N ,L must fulfil
compatibility axioms (see [FHL93]).

In contrast with Y and YM, the intertwiners YM,N ,L are power series corres-
ponding to multivalued functions. Intertwiners define, under some conditions
on the vertex algebra, a tensor product on the modules and a braiding. The
multivaluedness is the reason for getting non-trivial double braiding on the
category of modules over V . We now discuss it in more detail.

A result of [Hua08] and [HLZ14] tells us that under some finiteness conditions
on the VOA V , e.g. V being C2-cofinite, the category Rep(V) of representa-
tions of V is a braided tensor category.
A braided tensor category is an abelian category with tensor product and
braiding.
The tensor product M⊗V N is defined by having an intertwiner

YM⊗N : M⊗C N → (M⊗V N ){z}[log(z)] (1.4)

and being universal with respect to this property [HLZ10VI].
The braiding cM,N :M⊗V N → N ⊗VM is roughly defined by

cM,N ◦ YM⊗N (z) = YN⊗M(−z) (1.5)

where we analytically continue z to −z counter-clockwise.
The double braiding therefore measures, in some sense, the multivaluedness
of the intertwiner YM⊗N : when it takes values in power series with integer
exponents, e.g. when as moduleM we consider the VOA V itself, the double
braiding is in fact trivial; when the exponents are fractional, once analytic-
ally continuing z to −z, the intertwiner catches the monodromies and the
double-braiding is not trivial.

Moreover if Rep(V) is semisimple, then it is even a modular tensor category,
i.e. it has a non-degenerate braiding

cM,N ◦ cN ,M = id ∀N ⇒ M = I⊕ · · · ⊕ I.
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This is conjectured in some form in the non-semisimple case as well.

One of the easiest examples of VOA is the n-dimensional Heisenberg vertex
algebra VnH. It is defined as the space of polynomials VnH := C[∂φλ, ∂

2φλ, · · · ]
in the formal variable ∂mφλ, with m ∈ N, λ ∈ Cn, which is linear in the index
variable a∂mφλ+b∂mφµ = ∂mφaλ+bµ. So it would be enough to consider ∂mφαi
for a basis αi of Cn.
The notation indicates that ∂φλ is a physical field in the corresponding chiral
conformal field theory: the chiral algebra of n free bosons.
We define the following vertex operator on the generating element ∂φλ:

Y(∂φλ)∂φµ = (λ, µ) · z−2 · 1 +
∑
k≥0

zk

k!
∂φµ ∂

1+kφλ (1.6)

where ( , ) is the standard inner product on Cn.
For every a ∈ Cn there is an irreducible module Va := C[∂φλ, ∂

2φλ, · · · ]eφa
with vertex map YVa(∂φλ)e

φa = (λ, a) · z−1 · eφa + · · · .
The tensor product and the braiding follow from having some intertwiners

YVa⊗Vb(e
φa)eφb = zab · eφ(a+b) + · · ·

⇒ Va ⊗ Vb = Va+b, cVa,Vb : Va ⊗ Vb
eiπ(a,b)−→ Vb ⊗ Va.

Notice that the double-braiding is trivial if and only if (a, b) ∈ Z.

1.2.2 Screening operators

Screening operators are well known in vertex algebras and conformal field
theory literature [DF84]. Normally one considers local screening operators,
i.e. screening operators associated to the vacuum module of a vertex al-
gebra V . Such screening operators carry a Lie algebra structure.
In this thesis we are instead going to consider non-local screening operat-
ors associated to V , i.e. screening operators associated to any module M
of V . Non-local screening operators appear in a set of conjectures [Wak86]
[FGST06a] [AM08] [FT10] regarding logarithmic conformal field theories
arising from their kernels in vertex algebras associated to Lie algebra root
lattices, and conjecturally having the same representation theory of quantum
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groups.

Let V be a VOA andM, N modules. Recall that the tensor productM⊗VN
is defined by having an intertwiner

YM⊗N : M⊗C N → (M⊗V N ){z}[log(z)].

Fix m ∈M. For all modules N of V , we get a map

YM⊗N (m, z) : N → (M⊗V N ){z}[log(z)].

Integrating around the lift of the circle around z = 0 in the multivalued
covering, we get a map associated to m ∈M

Zm : N →M⊗V N (1.7)

which takes values in the algebraic closure of the tensor product.
We call the map Zm a (non-local) screening operator.

In what follows, we focus on the screening operators Zvi associated to ele-
ments evi , vi ∈ Cn in the n-dimensional Heisenberg VOA modules Vvi defined
above. In particular we want the vi to form a basis. We consider the non-
integral lattice Λ ⊂ Cn spanned by them.

One of the aim of this thesis is to analyse the algebra generated by the
screening operators Zvi under composition, associated to a fixed lattice Λ.
We saw that non-locality implies the multivaluedness of the intertwiners and
thus a non-trivial double braiding. Therefore while local screening operators
generate Lie algebras, non-local screening operators generate algebras largely
determined by the braiding, such as Nichols algebras and extensions thereof.

1.2.3 Nichols algebras

We now briefly describe the notion of a Nichols algebra, postponing the rig-
orous definition until section 4.1.
Nichols algebras were first introduced in [Nic78].

Let (V, c) be a braided vector space. The Nichols algebra B(V ) is the tensor
algebra T(V ) modulo the kernel of the quantum symmetrizer

Xq,n :=
∑
τ∈Sn

ρn(s(τ)),
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where s(τ) is the preimage of a permutation τ ∈ Sn of shortest length in
the braid group Bn, which has an action ρn on V ⊗n using the initially given
braiding c on V .
Note that s : Sn → Bn is usually just a map of sets. In the case of a symmet-
ric braiding, the composition ρn ◦ s factorises to a group homomorphism.

In particular in what follows we treat the case when (V, c) is a finite-dimensional
vector space with diagonal braiding, i.e. there is a basis {x1, . . . , xn} of V
such that

c : xi ⊗ xj 7−→ qij · xj ⊗ xi qij ∈ C×.

We call the matrix q = (qij)i,j the braiding matrix. The Nichols algebra B(V )
then depends just of the braiding qij, therefore we write B = B(q).

Examples of Nichols algebras are B(V ) = C[x]/x` when V = 〈x〉C is a one
dimensional vector space, and the braiding q11 = q is a `-th root of unity
or B(V ) = S(V ) the symmetric algebra (resp. B(V ) = Λ(V ) the exterior
algebra) when the braiding is qij = 1 ∀i, j (resp. qij = −1 ∀i, j).
Another example which is central in our work is of Nichols algebras associ-
ated to Lie algebras: consider a finite-dimensional complex semisimple Lie
algebra g, with simple roots α1, . . . , αn, root lattice Λ, and inner product ( , ).
Let q ∈ C× be a primitive `-th root of unity and the diagonal braiding
qij = q(αi,αj). Then B(q) = uq(g)+ is the positive part of the small quantum
group uq(g).

Although the definition of Nichols algebras could look technical, they can
be actually thought as a quite natural generalisation of Lie algebras. It was
indeed proven that finite-dimensional Nichols algebras are endowed with gen-
eralised root systems, Cartan matrices and Weyl reflections. This result goes
back to [Hec06b] for diagonal Nichols algebras and to [AHS10] otherwise.
Moreover, [Hec06a] provides a classification of finite-dimensional Nichols al-
gebras with diagonal braiding qij via generalised root systems and q-diagrams
of the form:

· · · · · ·
qii qjjqijqji

The idea is, in the diagonal case, to define a root system by labelling the
basis of the space V by what we call simple roots {xα1 , . . . , xαn}.
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A generalised Cartan matrix aij and a Weyl groupoid generated by reflections
Rk can then be defined by analogy to Lie theory.

1.2.4 Algebra of screenings

Now that we have defined Nichols algebras, we can study under which condi-
tion the algebra of screening operators is in fact a finite-dimensional Nichols
algebra. In particular we use the classification list of [Hec05].

Once again, the setting is: a non-integral lattice Λ generated by elements
v1, . . . , vn ∈ Λ with inner product mij := (vi, vj); associated to them the
elements evi in modules over the Heisenberg vertex algebra VnH with braiding

evi ⊗ evj 7→ qij e
vj ⊗ evi , qij := eiπmij .

A result by [Len17] tells us that if a certain smallness condition on mij (see
theorem 4.2.1) is satisfied, corresponding to the poles of the intertwiners be-
ing not too severe, the screening operators Zv1 , . . . ,Zvn form the diagonal
finite-dimensional Nichols algebra B(q) with braiding qij. If this smallness
condition fails, the screening algebra is an extension of B(q), which we would
like to understand.

An immediate example of that is the one mentioned above:
if Λ is a root lattice of a semisimple finite-dimensional complex Lie algebra
g and the poles of the intertwiners are not too severe, then the screening
algebra is the positive part B(q) = uq(g)+ of the small quantum group uq(g).

1.3 Main goals of the thesis

In this section we are going to outline the main achievements of this work.

Our first goal is to find all lattices realising Nichols algebra braidings.
Let Λ be a lattice of rank n with basis {v1, . . . , vn} and inner product
mij := (vi, vj). We say that (Λ, mij) realise a given braiding qij with
generalised Cartan matrix aij if

eiπmij = qij and 2mij = aijmii or (1− aij)mii = 2 (1.8)
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Moreover all the reflected matrices Rk(mij) must fulfil again the second of
(1.8). This condition expresses that the reflections lift in a suitable sense to
the inner product mij.
This definition goes back to [Sem11], but there (1.8) is required to hold only
for one specific Weyl chamber, while we want it to hold in all Weyl chambers.

As an example, we show (details in 4.3.5) which lattices realise the braiding
of the Nichols algebra B(q) = uq(sl3)+.

The q-diagram of B(q) is given by
q2 q2q−2

where q = eiπr, q2 6= −1.
This braiding is realised by rescaling a Lie algebra root lattice of type A2,
sl3 with positive roots {α1, α2, α12} by a parameter r ∈ Q.

As inner product we get a family of realising solutions: mij =

2r −r

−r 2r

 .
It is interesting to note that if we allow the value q2 = −1, we have an
additional family of realising solutions parametrised by r = p′

2
, where p′ is

an odd integer:

mI
ij =

2r −r

−r 1

 mII
ij =

 1 −1 + r

−1 + r 1

 = R2(mij)

obtained by rescaling a Lie superalgebra root lattice of typeA(1, 0), g = sl(2|1)
by the parameter r = p′

2
.

We find for every finite-dimensional diagonal Nichols algebra as classified
by [Hec05], [Hec06a], families of solutions (Λ, mij) realising the associated
braiding. These solutions are mostly coming from rescaling Lie algebra (sec-
tion 4.4) or Lie superalgebra (section 4.5) lattices by rational parameters. In
the tables of section 4.9 we list all solutions for finite-dimensional diagonal
Nichols algebras of rank 2 and 3.

Our second goal is to investigate when the screening operators form a finite-
dimensional Nichols algebra and when they form a larger algebra, extension
of a Nichols algebra. We start by refining the result of [Len17], namely
weakening the smallness condition:

Theorem 1.3.1. Let Λ be a non-integral lattice with vi ∈ Λ, mij := (vi, vj).
Consider the braiding qij := eiπmij and the screening operators Zvi.
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• The truncation relation (Zvi)
n = 0 holds if:

mii 6∈ −N
2

k
k = 1, . . . , n = ord(qii).

• The Serre relation
[
Zvi ,

[
. . .
[
Zvi ,Zvj

] ]
. . .
]

= 0 holds if:

mii 6∈ −N
2

k
k = 1, . . . , n− 1 = (1− aij)

mij + k
mii

2
6∈ −N k = 0, . . . , n− 2 = (1− aij)− 1

The truncation and Serre relations are typical relations of Nichols algebras.
The theorem, proven by analytic continuation, tells us that these relations al-
ways hold except for a set of values of mij depending on the rational paramet-
ers. For those values where they do not hold, it is interesting to understand
what is the extension of the Nichols algebra that the screening operators form.

We find that when the braiding qij := eiπ(αi,αj)r is realised by a rescaled
Lie algebra root lattice mij = (αi, αj)r then for r ≥ 0 all Nichols algebra
relations hold and the algebra of screening operators is therefore the small
quantum group uq(g)+; whereas for r < 0 all Nichols algebra relations, ex-
cept the truncation relations, hold and the algebra of screening operators
is a larger algebra, conjecturally the positive part of a quantum group with
infinite centre Uq(g)+ (see 4.4.4).
We find an analogous result for braiding realised by rescaling a Lie superal-
gebra root lattice (see 4.5.4).

There are then a finite number of finite-dimensional Nichols algebras whose
braidings qij are realised by lattices neither coming from Lie algebras, nor
from Lie superalgebras root lattices. For those, the smallness condition al-
ways holds and the associated screening operators always form the Nichols
algebras B(q).

1.4 Structure of the thesis

The thesis is divided into three parts: in chapter 2 we give a more detailed
introduction to quantum field theory and vertex algebras, in chapter 3 we
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give an overview of a side project of the work involving the study of a classical
system with the tool of path integrals. Finally in chapter 4 we present the
results of the main project of the work whose goals where introduced in the
previous section.
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Chapter 2

From classical to quantum

In this chapter we want to lead the reader through a more detailed introduc-
tion to quantum field theory and vertex algebras.
We start in section 2.1 by recalling the Hamiltonian and Lagrangian formal-
ism in classical mechanics and classical field theory for the toy examples of
the free particle and the free scalar field.
We then proceed quantising the two systems in sections 2.2 and 2.3 obtaining
the quantum free particle and the quantum free scalar field.
The equivalence between the Hamiltonian and Lagrangian quantisation of
the free particle is shown by comparing the Schroedinger solution and the
path integral amplitude in 2.2.3.
In order to show some evidence of the equivalence between the two quant-
isations of the free scalar field we introduce the notion of vertex operator
algebras and two point functions in sections 2.4 and 2.4.3.
This chapter is based on the following sources: [Ben18], [CM08], [Sch14].
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2.1 Classical setup

2.1.1 Mechanical system

Lagrangian formulation

Let Γ be the phase space of a n-dimensional physical system. Let L be the
Lagrangian of the system, i.e. a regular function L : Γ −→ R depending on
time-dependent coordinates in Γ.
For a particle moving in a manifold M with metric g, we can consider the
phase space to be the tangent bundle of the manifold, Γ = TM.
In what follows we simply considerM = Rn, then Γ = TM = Rn×Rn with
coordinates (q̇, q) ∈ Γ. These coordinates are time-dependent in the sense
that q̇, q : I → Rn with I one-dimensional oriented time manifold.

Definition 2.1.1. Consider the set of C1 time-dependent functions with
fixed boundary values

A := {w ∈ C1([t0, t1],Rn), w(t0) = x0, w(t1) = x1}. (2.1)

The action functional is defined on w ∈ A as

S[w] =

t1∫
t0

L(ẇ(t), w(t))dt. (2.2)

The classical problem in the calculus of variation is to minimise S, namely:

Problem 2.1.2. Find X ∈ A such that S[X] = minw∈AS[w]

Theorem 2.1.3. If X satisfies problem 2.1.2, then X solves the Euler-
Lagrange equation, which is the equation of motion of the system:

− d

dt
Lq̇(Ẋ(t), X(t)) + Lq(Ẋ(t), X(t)) = 0 t0 < t < t1. (2.3)

Hamiltonian formulation

Definition 2.1.4. Let us consider again the phase space Γ = Rn × Rn of
a physical system. Let H be the Hamiltonian of the system, i.e. a regular
function H : Γ −→ R depending on (p, q) ∈ Γ, the time-dependent coordin-
ate q and conjugate momentum p.
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The following system of equations is called Hamiltonian system of Hamilto-
nian H: 

q̇ = ∂H
∂p

ṗ = −∂H
∂q

(2.4)

and describes the motion of the system.

Definition 2.1.5. In an Hamiltonian system it is natural to define an oper-
ation called Poisson bracket between regular functional, called observables,
F,G : Γ −→ R as

{F,G} =
∂F

∂q

∂G

∂p
− ∂F

∂p

∂G

∂q
(2.5)

satisfying some elementary properties.
In particular it holds:

{F,H} = Ḟ . (2.6)

Equivalence of the two formulations

The two formulations are equivalent under some standard hypothesis: we
will now derive the Hamiltonian, starting from the Lagrangian.

Definition 2.1.6. We define, for t0 < t < t1, the generalised momentum

p(q̇, q, t) :=
∂L

∂q̇
. (2.7)

If L is convex in q̇, then it exists ∀q, p ∈ Rn a unique, C1 solution q̇ =: Q̇(p, q)
in Rn which inverts (2.7). The Hamiltonian H associated to the Lagrangian
L is obtained from the Legendre transform:

H(p, q) := p · Q̇(p, q)− L(Q̇(p, q), q). (2.8)

Theorem 2.1.7. Under the same convexity condition, if X is solution of the
Euler-Lagrange equation (2.3) and p is defined as in (2.7), then X, p is the
solution of the Hamilton’s equations:

Ẋ = ∂H
∂p

ṗ = −∂H
∂X

Therefore the Lagrangian and Hamiltonian formulations are equivalent.
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Example: particle subjected to a potential

The system describing the motion on a line of a particle with mass m sub-
jected to a potential V (q) has Lagrangian:

L(q̇, q) =
mq̇2

2
− V (q)

and thus action functional S[q] =
t1∫
t0

(mq̇
2

2
− V (q))dt.

Proposition 2.1.8. The Euler-Lagrange equation is

mq̈ = −∂V
∂q

(2.9)

i.e. the Newton equation with external force F (q) = −∂V
∂q
.

The generalised momentum is p = ∂L
∂q̇

= mq̇ and thus Q̇ = p
m

. Substituting

Q̇ in (2.8) we obtain the Hamiltonian

H(p, q) =
p2

2m
+ V (q).

Lemma 2.1.9. The two formulations coincide.

Proof. We want to show that the equation of motion is in the Hamiltonian
system again 2.9. The Hamilton’s equations (2.4) are

q̇ = p
m

ṗ = −∂V
∂q

which together give the equation (2.9).

Definition 2.1.10. We call the system free particle if V (q) = 0, namely in
absence of external potential.
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2.1.2 Field theory

In section 2.1.1 we introduced two different formalisms to study a mechanical
system which can be analogously applied to the study of classical field theory.

Definition 2.1.11. Let A = {φ(x) : Σ→M} be the set of smooth functions
from a manifold Σ with metric h to a target manifoldM with metric g. The
functions φ(x) are called fields.

Remark 2.1.12. Definition (2.1.11) is a higher dimensional generalisation of
what we defined in (2.1.1): one can indeed obtained the system of a particle
moving in Rn, by considering as source space the one-dimensional oriented
time manifold I and the set of smooth functions A = {φ(x) : I →M = Rn}.

Definition 2.1.13. If M = R (or C) the fields are called scalar fields.

Remark 2.1.14. Other examples of fields φ(x) are vector fields when e.g.
M = TΣ the tangent bundle or spinor fields when M = SpinΣ the spinor
bundle, and φ(x) is a section of M. An example of spinor field is given by
the Dirac field.

Definition 2.1.15. In field theory one uses the notions of Lagrangian and
Hamiltonian densities L and H, functions of the fields and their derivatives,
for which hold the definitions and results of 2.1.1. From L and H one can
obtain the Lagrangian and Hamiltonian L and H by integrating with respect
to the spatial coordinate x:

L =

∫
dx L H =

∫
dx H. (2.10)

Example: the scalar field

We now assume φ(x, t) : Σ → R to be a free massless scalar field and the
source manifold Σ to be R× S1 with Lorentz metric.
The Lagrangian density of a free massless scalar field is

L :=
1

2
∂µφ∂

µφ.

and therefore the action functional:

S :=

∫
dt L =

∫
dtdxL =

∫
dtdx

(
1

2
∂µφ∂

µφ

)
.
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The generalised momentum field is defined via the functional derivative

Π(x, t) :=
δL
δ ∂φ
∂t

=
∂φ

∂t
.

The Hamiltonian density is thus given by

H : = Π · ∂φ
∂t
− L

=

(
∂φ

∂t

)2

− 1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

=
1

2
Π2 +

1

2

(
∂φ

∂x

)2

.

Therefore the Hamiltonian of the system is:

H(φ,Π) =
1

2

∫
dx (Π2 +

(
∂φ

∂x

)2

) (2.11)

2.2 Quantisation of the free particle

We now show the Lagrangian and Hamiltonian quantisation of a mechanical
system, focusing in particular on the example of the free particle.
The quantisation is in both approaches not completely rigorous: in the
Hamiltonian approach one has to provide a Hilbert space and operators with
commutator rules according to the Poisson bracket defined in 2.1.5, and there
is no general recipe to do it; in the Lagrangian approach one has to define a
measure Dx(t) on the space of all functions: this is typically mathematically
not well-defined and therefore the path integral which uses that measure is
not well-defined, yet nevertheless useful.

2.2.1 Lagrangian quantisation

Definition 2.2.1. The Lagrangian quantisation consists of defining on the
space of all the functions A = {x(t)} the complex valued density e

i
~S[x(t)]

where S[x(t)] is the classical action functional.

Once introduced this density, the system is no longer deterministic. We are
then interested in computing the expectation values of the functional, the
observables.
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Definition 2.2.2. The expectation value of an observable F is a path integral,
namely the integral on all the possible configurations of the system

〈F [x(t)]〉 :=
1

Z

∫
{x(t)}

Dx(t) · e
i
~S[x(t)] · F [x(t)]

where the normalization term Z, also called path partition function, is defined
as

Z := 〈1〉 =

∫
{x(t)}

Dx(t) · e
i
~S[x(t)]

Remark 2.2.3. We recall that this integral is not mathematically rigorous.

Remark 2.2.4. In the limit ~→ 0, the path integral is dominated by the path
xmin which minimises the action S, i.e. the path solution of the classical
system

lim
~→0
〈F [x(t)]〉 = F [xmin(t)].

Example 2.2.5. The probability of a free particle to be in x1 at the time t1
if it is in x0 at the time t0 is given by

〈x1, t1 | x0, t0〉 =
1

Z

∫
x(t0)=x0
x(t1)=x1

Dx(t)e
i
~

t1∫
t0

dt ẋ
2
m

.

2.2.2 Hamiltonian quantisation

Definition 2.2.6. The Hamiltonian quantisation consists of replacing

– the classical deterministic state (p, q) by a quantum state ψ(x, t) in a
Hilbert space H.

– the observables F by self-adjoint operators F̂ acting on H such that

[F̂ , Ĝ] = i~{̂F,G} where ~ is the Planck constant.
In particular we replace the variables of the classical system q, p by
operators q̂, p̂ with commutators [q̂, p̂] = i~, since {q, p} = 1.

Example 2.2.7. We now quantise the free particle system.
The classical deterministic state (p, q), describing the position and momentum
of the particle, is substituted by a quantum state ψ(x, t), describing the prob-
ability to find the particle in a certain position x at time t.
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Let H be the space of functions in a variable x, define q̂ := x·, p̂ := −i~∂x.
The functional of the system are then polynomial in the variable x and ∂x.
The quantised Hamiltonian is:

Ĥ(p̂, q̂) =
p̂2

2m
= − ~2

2m
∂2
x (2.12)

and the related Poisson equation: [Ĥ, F̂ ] = i~ ˙̂
F .

The solution of the system will be a wave function ψ(x, t) satisfying the
Poisson equation [

Ĥ, ψ(x, t)
]

= i~∂tψ(x, t)

which yields the Schroedinger equation

− ~2

2m
∂2
xψ(x, t) = i~∂tψ(x, t). (2.13)

2.2.3 Equivalence of the quantised systems

In the previous sections we quantised the free particle system following two
different approaches. In the following we will see that they are equivalent:
the wave function ψ(x, t) with fixed initial data (x0, t0) and final data (x1, t1),
solution of the Schroedinger equation, coincides with the propagator, i.e. the
amplitude of the operator representing the state with those initial and final
data computed through the path integral approach. We recall that, as the
path integral has to be understood in a heuristic sense, so is the equivalence
we are going to show.

Lemma 2.2.8. We have, heuristically, the following equivalence:

〈x1, t1 | x0, t0〉 =

√
m

i~(t1 − t0)2π
e
−m
i~

(x1−x0)
2

2(t1−t0) = ψ(x1, t1) (2.14)

Proof. Lagrangian side:
We want to compute the left side of equation (2.14), i.e. the probability of a
free particle to be in x1 at the time t1 if it is in x0 at the time t0. As we saw
in 2.2.5, this is given by the following path integral:

〈x1, t1 | x0, t0〉 =
1

Z

∫
x(t0)=x0
x(t1)=x1

Dx(t)e
i
~

t1∫
t0

dt ẋ
2
m
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that we discretise in the standard way (see e.g. [PS95]) thinking of the path
as the limit for N →∞ of N little paths.

= lim
N→∞

1

Z

∫
R

dx1/N

∫
R

dx2/N . . .

. . .

∫
R

dx(N−1)/N e

im
~
t1−t0
N

(x1/N−x0
t1−t0
N

)2

1
2

+

(
x2/N−x1/N

t1−t0
N

)2

1
2

+...



Now, calling t := t1 − t0 and defining

z1 := x1/N − x0, z2 := x2/N − x1/N . . . zn := x1 − x(N−1)/N

we can write the limit as:

= lim
N→∞

1

Z

∫
∑
k zk=x1−x0

dz1 . . . dzn
∏
k

e
im
~

z2k
2(t/N)2

t
N

We, thus have a function of the form

f(x, t) = lim
N→∞

1

Z
g(x) ∗ . . . ∗ g(x)

convolution product of N functions g(x) = e
im
~

x2

2t/N , x = x1 − x0 .
The normalization term is defined as:

Z =

∫
Dx(t)e

i
~

t1∫
t0

dt ẋ
2
m

.
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Proceeding as before, we can compute it and obtain something of the form

Z =

∫
R

e−
m
i~

y2

2t/N dy

N

=

(√
2πit~
Nm

)N

.

We now take the Fourier transform F of f(x, t) and use the convolution
theorem

F(f(x, t)) = lim
N→∞

1

Z
F(g(x)) ∗ . . . ∗ F(g(x)) = lim

N→∞

1

Z
(F(g(x)))N .

Hence,

f̂(ξ, t) = lim
N→∞

√ Nm

2πt~i

∫
R

e
im
~

x2

2t/N e−2πixξdx

N

and transforming the exponent in the square of a binomial we get:

= lim
N→∞

√ Nm

2πt~i
e
π2ξ22t~
mNi

∫
R

e−y
2

dy

√
2ti~
Nm

N

= e
π2ξ22t~
mi

where the last equivalence follows from
∫
R
e−y

2
dy =

√
π. Now we take the

inverse of the Fourier transform and use the Fourier transform theorem:

f(x, t) =

∫
R

e
π2ξ22t~
mi e−2πixξdξ

and again treating it as the square of a binomial we obtain as expected:

= e
mix2

2t~

∫
R

e−y
2

dy

√
m

2it~π2
=

√
m

2it~π
e
mix2

2t~ =

√
m

2i(t1 − t0)~π
e
mi(x1−x0)

2

2(t1−t0)~ .

Hamiltonian side:
We want to compute the right side of equation (2.14). We consider the
quantised Hamiltonian described in (2.12) and compute by hand a solution
for fixed initial and final data of the Schroedinger equation (2.13):

− ~2

2m
∂2
xψ(x, t) = i~∂tψ(x, t).
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The solution will have a Gaussian form since it describes a wave package
moving in time

ψ(x, t) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (2.15)

where σ = σ(t) and µ = µ(t) are function of the time.
Computing the derivatives and substituting in (2.13) we obtain

σ =

√
i~
m

(t− t0), µ = x0

and therefore inserting ψ(x, t) in the final state (x1, t1) we obtain the expected
result.

2.3 Quantisation of the free scalar field

We now show the Lagrangian and Hamiltonian quantisation of a field theory,
focusing in particular on the example of the free scalar massless field.

2.3.1 Lagrangian quantisation

The path integral quantisation of a field theory generalises the mechanical
one. The idea is to replace the path of a particle x(t) by a field configura-
tion φ(x).

Definition 2.3.1. The Lagrangian quantisation consists of defining on the

space of all field configurations A = {φ(x)} the density e
iS[φ(x)]

~ .

Definition 2.3.2. The expectation value of an observable F is the path
integral over all possible configurations of the field:

〈F [φ(x)]〉 :=
1

Z

∫
{φ(x)}

Dφ(x)e
iS[φ(x)]

~ F [φ(x)]

where the normalization term Z is defined as

Z := 〈1〉 =

∫
{φ(x)}

Dφ(x)e
iS[φ(x)]

~ .
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In particular the n-point functions depending on a sequence (xi) of points in
the source manifold Σ can be computed as follows:

〈φ(x1) · · ·φ(xn)〉 :=
1

Z

∫
{φ(x)}

Dφ(x)e
iS[φ(x)]

~ φ(x1) · · ·φ(xn).

Example 2.3.3. The two-point function of a free massless scalar field φ
results

〈φ(x1)φ(x2)〉 ∼ ln(x1 − x2)2 + const (2.16)

which taking the derivatives yields

〈∂φ(x1)∂φ(x2)〉 ∼ 1

(x1 − x2)2
. (2.17)

We do not present the details which can be found e.g. in [FMS96].
The same result is obtained by computing the two point function using vertex
operators, which is the ultimate output of the Hamiltonian quantisation, as
we will see in the next sections.

2.3.2 Hamiltonian quantisation

The Hamiltonian canonical quantisation of a field theory consists of a first
quantisation which closely generalises the mechanical one, and a second
quantisation which leads to an algebraic study of the system.

Definition 2.3.4. The Hamiltonian field quantisation consists of replacing
the classical observables F by self-adjoint operators F̂ acting on the Hilbert
space of quantum states.

In particular we replace the quantum variables, the field φ(x, t) and the

canonical momentum Π(x, t), by two self-adjoint operators φ̂(x, t) and Π̂(x, t)
with equal-time commutators given by[

φ̂(x, t), Π̂(y, t)
]

= i~δ(x− y).

Example 2.3.5. The first quantisation ot the free massless scalar field yields
to the Hamiltonian operator

Ĥ =

∫
dx(

1

2
Π̂2 +

1

2

(
∂φ̂

∂x

)2

) (2.18)
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which corresponds to the classical Hamiltonian (2.11) after substituting φ

and Π by φ̂ and Π̂.

Remark 2.3.6. We quantise the free massless scalar field on a space with
Lorentz metric. The example where the space has Euclidean metric is very
similar.

Second quantisation - free massless scalar field

Definition 2.3.7. The second quantisation of the free massless scalar field
theory consists of

• taking the Fourier transform of φ̂(x) and Π̂(x):

φ̂k =

∫
φ̂(x)e−ikxdx Π̂k =

∫
Π̂(x)e−ikxdx

where φ̂−k = φ̂†k and Π̂−k = Π̂†k and [φ̂k, Π̂
†
k] = i~. The Hamiltonian

results

Ĥ =
1

2

∑
k∈Z

[
Π̂kΠ̂

†
k + k2φ̂kφ̂

†
k

]
• defining the creation and annihilation operators:

âk =
1√
2~k

(
kφ̂k + iΠ̂k

)
â†k =

1√
2~k

(
kφ̂†k − iΠ̂

†
k

)
with commutators [

âα, â
†
β

]
= δαβ.

The quantised Hamiltonian 2.18 in terms of the mode operators is

Ĥ =
∑
k∈Z

~kâ†kâk (2.19)

The creation and annihilation operators, or mode operators, âk, â
†
k generate

the algebra of observables of the quantised field theory which we are going
to study in more detail in the next section.
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The Heisenberg algebra

We now focus on the Heisenberg algebra H, the algebra of the mode operators
found through the second quantisation, and on its representation VH.
We rescale the mode operators

an = −i
√
nâ−n a−n = i

√
nâ†−n

Definition 2.3.8. Let H := 〈an〉n∈Z be the Lie algebra spanned by the
creation and annihilation operators with commutation rule [aα, aβ] = αδα,−β.
We call H Heisenberg algebra.

Proposition 2.3.9. The Fock space VH, defined as the space of polynomials
C[a−1, a−2, . . .], is a representation of the Heisenberg algebra with the follow-
ing action of the mode operators:

– ak act by derivation ∂
∂a−k

for k ≥ 0 (annihilating)

– ak act by multiplication ak· for k ≤ 0 (creating)

– a0 acts by 0.

In the next chapter we will give the definition of vertex operator algebra
and see that the representation VH can be enriched with a vertex algebra
structure. We will then call VH the Heisenberg vertex algebra.
This is then, from the mathematical side, the algebra describing the chiral
quantum (conformal) field theory of the free massless scalar field.

In section 2.4.3 we use vertex algebras to compute again (2.17).

2.4 Vertex operator algebras

We now introduce vertex operator algebras and modules, focusing in partic-
ular on the example of the Heisenberg vertex algebra.

2.4.1 First definitions

Definition 2.4.1. A vertex algebra is a collection of data:

• a Z-graded vector space V called space of states
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• a distinguished vector |0〉 ∈ V called vacuum vector

• a linear operator ∂ : V −→ V called translation operator

• a linear operator Y (·, z) called vertex operator defined as

Y (·, z) : V −→ EndV [[z, z−1]]

A 7−→ Y (A, z) =
∑
n∈Z

Anz
−n−1.

taking values in formal power series in z and coefficients in EndV .
These data are subject to the following axioms:

(i) the vacuum axiom:

Y (|0〉 , z) = idV and Y (A, z) |0〉 ∈ A+ zV [[z]]

where the latter implies Y (A, z) |0〉 |z=0 = A.

(ii) the translation axiom

[∂, Y (A, z)] =
∂

∂z
Y (A, z) and ∂ |0〉 = 0

(iii) the locality axiom:

∃N = Na,b ∈ Z≥0 (z − w)N [Y (A, z), Y (B,w)] = 0

which tells us that all the fields are mutually local with each other, in
the sense just meant.

Commutative associative unital algebras with a derivation are examples of
vertex algebras.

Remark 2.4.2. The operator Y (A, z) is a formal power series with coefficients
An ∈ EndV and is also called field, referring to the role it plays in physics.
Therefore the map A 7−→ Y (A, z), together with the vacuum axiom, defines
what in physics is called the state-field correspondence.

Remark 2.4.3. Another way to define the vertex operator is

Y : V ⊗C V −→ V [[z, z−1]] (2.20)

which highlight that Y is a multiplication depending on the point of insertion.
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Vertex algebras describe the chiral and anti-chiral parts of conformal field
theories. Therefore a crucial notion is the one of conformal symmetry algebra
acting on vertex algebras. The symmetry algebra is called Virasoro algebra
and is given by the central extension of the Witt algebra of infinite conformal
transformations.

Definition 2.4.4. The Virasoro algebra is a Lie algebra with generators Ln,
n ∈ Z with commutators

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0

and c called central charge commuting element, [c, Ln] = 0 ∀n.

Definition 2.4.5. A vertex algebra V is said to be a vertex operator algebra
(VOA) of central charge c ∈ C if there is a non-zero element ω ∈ V2, called
conformal vector, such that the coefficients L∨n of the associated field

Y (ω, z) =
∑
n∈Z

L∨nz
−n−2 =: T (z)

satisfy the defining relations of the Virasoro algebra with central charge c.
Moreover we demand L∨−1 = ∂, and L∨0 |Vn = n · IdVn where we denoted by Vn
the n-th grading layer.

Remark 2.4.6. In physics literature T (z) is called energy momentum tensor.

An important example of vertex operator algebra is the one of the Heisenberg
vertex algebra mentioned above.

We change the notation writing 1
(n−1)!

∂nφ instead of a−n

Example 2.4.7. The 1-dimensional Heisenberg VOA is defined as collection
of the data:

• the Fock space VH = C[∂φ, ∂2φ . . .]

• the vacuum vector |0〉 = 1 ∈ C

• the translation operator

∂ : VH −→ VH
∂kφ 7−→ ∂k+1φ
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• one parameter family of conformal vectors ωQ = 1
2
∂φ∂φ+Q∂2φ, Q ∈ C

• the vertex operator Y (∂φ, z) =
∑
n∈N

an z
−n−1, where an are the mode

operators.

Moreover the space is graded deg(∂k1φ . . . ∂knφ) =
n∑
i=1

ki.

This example is the mathematical formalisation of the free scalar field
in physics, with background charge Q. We adopted this notation to suggest
that the variable ∂φ : Σ −→ C is the field of the associated chiral conformal
field theory.

Example 2.4.8. The n-dimensional Heisenberg VOA is given by the space
VnH := C[∂φλ, ∂

2φλ, · · · ], with λ ∈ Cn. Explicitly VnH is the polynomial ring in
the variables ∂φe1 , . . . , ∂φen , ∂

2φe1 , . . . , ∂
2φen , . . . with e1, . . . , en basis of Cn.

2.4.2 Modules over a VOA

Definition 2.4.9. A vertex algebra module over a VOA V is a C-graded
vector space M together with an operator

YM : V −→ EndM[[z, z−1]]

satisfying similar axioms as in definition 2.4.1.

Remark 2.4.10. We can write YM as we did for the vertex operator Y in (2.20):

YM : V ⊗CM−→M[[z, z−1]] (2.21)

which makes clear the module structure of M.

Remark 2.4.11. The Virasoro algebra acts on M automatically via

YM(ω, z) =
∑
n∈Z

LMn z
−n−2

Example 2.4.12. The easiest example of module over a vertex operator
algebra is given by the vertex operator algebra over itself.

Example 2.4.13. The 1-dimensional Heisenberg vertex algebra VH has an
irreducible representation Va = C[∂φ, ∂2φ, . . .]eφa for every complex number
a ∈ C, where eφa is a formal variable.
Analogously the n-dimensional Heisenberg algebra VnH has an irreducible rep-
resentation Va := C[∂φλ, ∂

2φλ, · · · ]eφa for every a ∈ Cn.
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2.4.3 Two point function

We now want to compute the two point function of a free field in the vertex
algebras notation, i.e. 〈0|Y (∂φ, z)Y (∂φ, w) |0〉, and compare it to (2.17).

The vertex operator of the Heisenberg vertex algebra (2.4.7) is defined as
Y (∂φ, z) =

∑
n∈N

an z
−n−1 and therefore applied:

Y (∂φ, z) |0〉 =
∑
k≥0

zk

k!
∂1+kφ

Y (∂φ, z)∂φ = z−2 · 1 +
∑
k≥0

zk

k!
∂1+kφ ∂φ

Y (∂φ, z)∂1+kφ = (−1)k
(
−2

k

)
z−2−k · 1 +

∑
j≥0

zj

j!
∂1+jφ ∂1+kφ.

and thus we have:

〈0|Y (∂φ, z)Y (∂φ, w) |0〉 = 〈0| ∂φ(z)∂φ(w) |0〉 =
∑
k≥0

wk 〈0| ∂φ(z) |∂
1+kφ

k!
〉

=
∑
k≥0

wk 〈0|

(
(−1)k

(
−2

k

)
z−2−k · 1 +

∑
j≥0

zj

j!
∂1+jφ

∂1+kφ

k!

)

=
∑
k≥0

wk(−1)k
(
−2

k

)
z−2−k · 1 〈0|0〉+

∑
k≥0

wk 〈0|
∑
j≥0

zj

j!
∂1+jφ

∂1+kφ

k!

projecting on the vacuum state, the second term vanishes while the first term
gives exactly 1

(z−w)2
as in 2.17.



Chapter 3

Path integral approach to
classical dynamics of molecules

In this chapter we are going to summarise in big lines a side project of the
thesis. This project is based on the collaboration with the physical and
theoretical chemistry group of Prof. Dr. Bettina G. Keller of the Freie
Universitaet Berlin.

The aim is to use the path integral formalism to describe the stochastic dy-
namics of a classical molecular system with many degrees of freedom.
We start by describing the system of a macro-molecule with many degrees
of freedom using the Langevin equation and its over-damped version. This
can be then translated into the stochastic Fokker-Planck equation by con-
sidering the probability density functions of the previous system. In this
way we consider most degrees of freedom as stochastic noise [Zwa01]. The
classical stochastic dynamics of the system turns out to be equivalent to a
path integral and a Schrödinger equation.

The results of this chapter are not new, but a collection and blend of classical
molecular systems knowledge and path integrals manipulation. As outlook of
further collaboration, we plan to match this study with numerical simulations
of macro-molecules and develop a perturbative model of a peptide bond.
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3.1 Differential equations for molecular pro-

cesses

3.1.1 The Langevin equation

The dynamics of a molecular system can be modelled by Langevin equation.
Consider a system with N particles with mass matrix M and coordinates
x = x(t) ∈ Ω ⊂ R3N , where Ω denotes the configuration space. The corres-
ponding Langevin equation is given by

Mẍ = −∇VL(x)− γẋ +
√

2Dγ2 R(t) (3.1)

where D is the diffusion constant, γ is the friction coefficient, and V (x) the
potential which models the interaction of the particles. R(t) denotes a delta-
correlated stationary Gaussian random force with zero-mean, i.e. satisfying

〈R(t)〉 = 0, 〈R(t)R(t′)〉 = δ (t− t′) . (3.2)

3.1.2 The overdamped Langevin equation

Over-damped Langevin dynamics are a simplified version of Langevin dy-
namics. They correspond to the limit where in equation (3.1) no average
acceleration takes place, i.e. Mẍ � γẋ , either small M (mass-less limit)
or large γ (high-friction limit). The over-damped Langevin equation is then
given as

ẋ = −∇VL(x)

γ
+
√

2DR(t). (3.3)

These dynamics are also called Brownian dynamics with drift VL(x). Dis-
cretising equation (3.3) in time using the Euler-Maruyama method [KP92]
yields the iterative equation

xk+1 = xk −
∇VL(xk)

γ
∆t+

√
2D
√

∆t ηk (3.4)

with iteration time step ∆t, ttot = n · ∆t and random number ηk drawn
from a standard Gaussian distribution ηk ∼ N (0, 1) with zero mean and unit
variance.
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3.2 The Fokker-Planck and the Schroedinger

equations

3.2.1 The Fokker-Planck equation and operator

The Fokker-Planck (FP) equation is a partial differential equation which
describes the time evolution of a probability density function p(x, t) of the
stochastic process modelled by the over-damped Langevin equation (3.3):

∂tp(x, t) =
N∑
i=1

∂xi

(
∂xiVL(x)

γ
p(x, t)

)
+D

N∑
i=1

∂xixip(x, t). (3.5)

As interpretation, imagine an ensemble of infinitely many systems. Each
system can be in a different state x ∈ Ω. The probability density function
p(x, t) represents the distribution of the systems over Ω at time t. Each in-
dividual particle moves according to eq. (3.3), and thus p(x, t) evolves in time.

For the sake of simplicity, we consider from now on a one-dimensional Fokker-
Planck-equation

∂tp(x, t) =

(
∂xxVL
γ

+
∂xVL
γ

∂x +D∂xx

)
p(x, t) = L̂ p(x, t) (3.6)

where we have defined the Fokker-Planck operator

L̂ =
∂xxVL
γ

+
∂xVL
γ

∂x +D∂xx. (3.7)

The following functions formally solve the Fokker-Planck equation

ϕk(x, t) = eλkt · ϕk(x), (3.8)

with (λk, ϕk) eigenvalues and eigenfunctions of the Fokker-Planck operator,
λk ≤ 0. The solutions p(x, t) are appropriate linear combinations of ϕk(x, t).
They are non-negative and normalised, in order to be interpreted as probab-
ility density.

It can be shown, that the smallest eigenvalue is λ0 = 0, and the corresponding
eigenfunction thus gives a stationary solution
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ϕ0(x, t) = e0t · ϕ0 =
1

Z
e−

VL(x)

Dγ (3.9)

where Z is a normalisation constant to ensure
∫

Ω
dx ϕ0(x) = 1, so the ϕ0(x, t)

can be interpreted as a probability density.

3.2.2 Equivalence to the Schroedinger equation

We now show that the eigenvalue problem for the Fokker-Planck operator
L̂ is equivalent to the eigenvalue problem of a corresponding Schroedinger
operator Ĥ of the general form

Ĥ = a ∂xx + VH(x), (3.10)

where different values of a are simple rescaling.
This means that the time-independent Fokker-Planck equation is equivalent
to the time-independent Schroedinger equation [Ris89]:

L̂ ϕk(x) = λk ϕk(x) ⇔ Ĥ ψk(x) = λk ψk(x). (3.11)

Theorem 3.2.1. We have the following similarity transformation on an ap-
propriate space of functions

Ĥ = e
VL(x)

2Dγ L̂e−
VL(x)

2Dγ (3.12)

between the Fokker-Planck operator L̂ and a Schroedinger operator Ĥ for
a = D, where we define the effective potential

VH(x) :=
∂xxVL(x)

2γ
− (∂xVL(x))2

4Dγ2
. (3.13)

In particular, the eigenvalues are the same and the Fokker-Planck eigen-
functions ϕ and Hamiltonian eigenfunctions ψ can be transformed into each
other:

ψ(x) := e
VL(x)

2Dγ ϕ(x). (3.14)

Analytical examples

We now present two examples: in the first one we start with the Fokker-
Planck side and get the Schroedinger one by using theorem 3.2.1, while in
the second we proceed reversely.
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Example 3.2.2 (Free particle). For a system describing the dynamics of a
free particle the potential is zero VL(x) = 0 ∀x. By equation (3.13), fol-
lows VH(x) = 0. Consequently, the Fokker-Planck operator L̂(x) and the
Schroedinger operator Ĥ(x) are identical

L̂(x) = Ĥ(x) = D∂xx. (3.15)

The eigenfunctions are ψ(x) = ϕ(x) = eikx where k = ±
√
λ/D, and λ

eigenvalue.

Example 3.2.3 (Harmonic oscillator). We next consider the operator Ĥ of
to the harmonic oscillator with potential VH(x) = kx2

2
with k > 0.

We have the following eigenfunctions for every n = 0, 1, . . . with eigenvalue
λn = −2

√
ak
(
n+ 1

2

)
:

ψn(x) =
1√

2n n!
·
(mω
π~

)1/4

· e−
mωx2

2~ ·Hn

(√
mω

~
x

)
where we defined the Hermite polynomials

Hn(z) = (−1)n ez
2 dn

dzn

(
e−z

2
)
.

Having now solved the Schroedinger equation, we wish to find a correspond-
ing Fokker-Planck equation and its solutions, by applying theorem 3.2.1.

The Fokker-Planck operator is given by

L̂ = e−
VL(x)

2Dγ Ĥe
VL(x)

2Dγ

where the potential VL(x) can be obtained as

VL(x) = −2Dγ ln(ψ0)− 2Dγ ln(Z)

with ψ0 the (correctly normalised) lowest eigenfunction of the Schroedinger
equation. In this case:

VL(x) = −2Dγ ln(ψ0) (3.16)

= −2Dγ · (−mωx
2

2~
) + 2Dγ · ln

((mω
π~

)1/4
)
. (3.17)
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The eigenfunctions ψn(x) are mapped consistently to

ϕn(x) = e−
VL(x)

2Dγ · 1√
2n n!

·
(mω
π~

)1/4

· e−
mωx2

2~ ·Hn

(√
mω

~
x

)
.

We remark that after substitution with a = − ~2
2m

these are the usual formulae
of quantum mechanics.

3.3 Path integral formalism

We recall from definition (2.2.2) that the expectation value of F [x(t)] in the
path integral approach is given by

〈F [x(t)]〉 :=
1

Z

∫
Dx(t) e−βS[x(t)] F [x(t)], S[x(t)] =

∫ ∞
−∞

dt L(x(t)).

Remark 3.3.1. In this chapter we allow the path integral to be Euclidean
with real β ∈ R+ or Lorentzian with imaginary β ∈ iR. The two versions
can be formally transformed into each other by substituting an imaginary
time (Wick rotation). The Euclidean path integral can be made rigorous
while the Lorentzian, treated in section 2.2.1, is always ill-defined.

In particular, the propagator is

〈x1, t1 | x0, t0〉 :=
1

Z

∫
x(t0)=x0
x(t1)=x1

Dx(t) e−βS[x(t)].

If we fix some x0, t0, or integrate them over some probability function or
probability amplitude function f(x0, t0), then

f(x1, t1) =

∫ ∞
−∞

dx0 〈x1, t1 | x0, t0〉 · f(x0, t0).

Example 3.3.2 (Free particle). The free particle VH(x) = 0 has the associ-
ated Schroedinger equation

D∂xxψ(x) = λψ(x) (3.18)

and, as we saw, it has eigenfunctions eikx, k2 = λ/D for any eigenvalue λ,
where normalisation puts restrictions on λ.
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The propagator is a Gaussian distribution, which means if the particle is
localised at t0 in x0, then at a later time t1 it will be a Gauss probability
density or amplitude with standard deviation proportional to t1 − t0

〈x1, t1 | x0, t0〉 =
1√

2πσ2
e−

(x1−x0)
2

2σ2 , σ2 = β−1m−1(t1 − t0). (3.19)

This can be proven by checking that 〈x1, t1 | x0, t0〉 satisfies the Schroedinger
equation or by explicitly computing the path integral, as we saw in section
2.2.3 for the Lorentzian path integral with β = i/~.

This example can be generalised in the following

Theorem 3.3.3. Given the Lagrangian L(x(t)) = 1
2
mẋ(t)2 − V (x(t)), then

the propagator solves the Schroedinger equation

β−1 ∂

∂t1
〈x1, t1|x0, t0〉 =

(
1

2mβ2

∂2

∂x2
1

+ V (x1)

)
〈x1, t1 | x0, t0〉.

Differently spoken, if ψ(x1, t1) =
∫ +∞
−∞ dt0〈x1, t1 | x0, t0〉ψ(x0, t0) for some

given initial probability density function or amplitude ψ(x0, t0) at time t0,
then ψ(x1, t1) solves the time-dependent Schroedinger equation

β−1 ∂

∂t1
ψ(x1, t1) =

(
1

2mβ2

∂2

∂x2
1

+ V (x1)

)
ψ(x1, t1).

3.4 Ongoing work

This project is still ongoing, with two main aims to be reached. First we
want to study in examples the correspondence between the path integral and
the Schroedinger formulations and compare it to the numerical simulations.
Secondly, we want to develop a toy model of a peptide bond. Every peptide
bond between two amino-acids in a protein has a single degree of freedom,
the angle θi, subjected to some standard potential with two preferred states.
The other degrees of freedom (hydrogen atoms, side chains, etc.), should be
integrated out, or treated stochastically with output a Schrödinger equation
in the variables θi. Long homogeneous chains of peptide bonds, i.e. a con-
tinuous set of angles θi, should be treated as a quantum field theory in the
variable θi. The side chains, large scale geometry of the protein, etc. give
additional terms in the potential. Our goal is to treat this system perturb-
atively, using technology from quantum field theory.
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Chapter 4

Algebra of screenings and
Nichols algebras

This chapter presents the main project of the PhD and it is based on the
preprint [FL19].
We first give a deeper introduction to Nichols algebras following [CL16]. We
then state the smallness condition on mij and prove in theorem 4.2.4 a refined
version of it. In section 4.3 we present the classification problem. We then
classify all realising lattices and study the associated algebra of screening
operators for braidings of Cartan type (section 4.4), Super Lie type (section
4.5) and in general for all other finite-dimensional diagonal Nichols algebras
in rank 2 (section 4.6), rank 3 (section 4.7) and higher rank (section 4.8).
Final tables show all realising Λ, mij for rank 2 and 3.

4.1 Preliminaries on Nichols algebras

4.1.1 Definition and properties

Let V = 〈x1, . . . , xrank〉C be a complex vector space and let (qij)i,j=1,...rank

be an arbitrary matrix with qij ∈ C×. This defines a braiding of diagonal
type on V via:

c : c(xi ⊗ xj) = qijxj ⊗ xi.

Hence we get an action ρn of the braid group Bn on V ⊗n via:

ci,i+1 := id⊗ · · · ⊗ c⊗ · · · ⊗ id.
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Definition 4.1.1. Let (V, c) be a braided vector space. We consider the
canonical projections Bn � Sn sending the braiding ci,i+1 to the transposition
(i, i + 1). There exists the Matsumoto section of sets s : Sn → Bn given
by (i, i + 1) 7→ ci,i+1 which has the property s(xy) = s(x)s(y) whenever
length(xy) = length(x)+length(y). Then we define the quantum symmetrizer
by

Xq,n :=
∑
τ∈Sn

ρn(s(τ)) (4.1)

where ρn is the representation of Bn on V ⊗n induced by the braiding c.
Then the Nichols algebra or quantum shuffle algebra generated by (V, c) is
defined by

B(V ) :=
⊕
n

V ⊗n/ker(Xq,n).

Remark 4.1.2. This characterisation enables one in principle to compute
B(V ) in each degree, but it is very difficult to find generators and relations
for B(V ) since in general the kernel of the map Xq,n is hard to calculate in
explicit terms.
In fact B(V ) is a Hopf algebra in a braided sense and as such it enjoys several
equivalent universal properties.

4.1.2 Examples

Example 4.1.3 (Rank 1). [Nic78] Let V = xC be a 1-dimensional vector
space with braiding given by q11 = q ∈ C×, then

C 3 Xq,n =
∑
τ∈Sn

q
|τ |
11 =

n∏
k=1

1− qk

1− q
=: [n]q!

Because this polynomial has zeros all q 6= 1 of order ≤ n the Nichols algebra
is

B(V ) =

{
C[x]/(x`), q11 primitive `-th root of unity

C[x], else

Example 4.1.4 (Quantum group). [Lus93, AHS10] Let g be a finite-dimensional
complex semisimple Lie algebra of rank n with simple roots α1, . . . , αn and
inner product ( , ). Let q be a primitive `-th root of unity. Consider the
n-dimensional vector space V with diagonal braiding qij := q(αi,αj) Then the
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Nichols algebra B(V ) is isomorphic to the positive part uq(g)+ of the small
quantum group uq(g), which is a deformation of the universal enveloping of
a Lie algebra U(g).

4.1.3 Generalised root systems and Weyl groupoids

Every finite-dimensional Nichols algebra comes with a generalised root sys-
tem, a Weyl groupoid and a PBW-type basis [Kha00], [Hec06b], [HS08],
[AHS10].
The Weyl groupoid plays a similar role as the Weyl group does for ordinary
root systems in Lie algebras, but in the general case not all Weyl chambers
look the same: different braiding matrices, different Cartan matrices and
even different Dynkin diagrams are attached to different Weyl chambers (i.e.
groupoid objects). This behaviour already appears for Lie superalgebras.
The finite Weyl groupoids are classified in [CH09], [CH10]; apart from the
finite Weyl groups there are additional series Dn,m and 74 sporadic examples.

Remark 4.1.5. We remark that the generalised root systems do not provide
a complete classification as they do in the theory of complex semisimple Lie
algebras: there are non-isomorphic Nichols algebras whose corresponding
Weyl groupoids are equivalent and there are Weyl groupoids to which no
finite-dimensional diagonal Nichols algebra corresponds.

We now introduce the notions of Cartan matrix and Weyl reflections for
Nichols algebras. The details can be found e.g. in [Hec06b]. Where not
otherwise stated one treats root systems in analogy to Lie algebra theory.
In particular the notions of simple and positive roots, the correspondence of
Weyl chambers to choices of bases of simple roots and the notation αij =
αi + αj is analogous to Lie algebra theory.

Definition 4.1.6. To every braiding matrix qij we define the associated
Cartan matrix (aij) for all i 6= j by

aii = 2 and aij := −min
{
m ∈ N | q−mii = qijqji or q

(1+m)
ii = 1

}
. (4.2)

Definition 4.1.7. We call a root αi q-Cartan, respectively q-truncation, if
it satisfies:

q
aij
ii = qijqji, respectively q

1−aij
ii = 1. (4.3)
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We observe that a root can be both q-Cartan and q-truncation. In par-
ticular we will call a root only q-Cartan, respectively only q-truncation, if it
is exclusively so.

Definition 4.1.8. The Weyl groupoid is generated by reflections, defined
for every k as:

Rk : Zn −→ Zn

αi 7−→ αi − akiαk
Remark 4.1.9. The braiding matrix entry qij extends uniquely to a bichar-
acter χq : Zn × Zn −→ C× with:

qij = χq(αi, αj).

Then the reflection Rk transforms qij into the bicharacter

Rk(qij) = Rk(χq(αi, αj)) = χq(Rk(αi),Rk(αj)).

As we said, this is a new braiding matrix, possibly different from the original
one and with possibly different associated Cartan matrix. However, the
Nichols algebras have the same dimension and are closely related [HS11,
BLS15].
Analogously the scalar product between rootsmij = (αi, αj) extends uniquely
to a bicharacter χm(αi, αj) and the reflection as the reflected bicharacter
Rk(mij) = χm(Rk(αi),Rk(αj)).

Remark 4.1.10. With Rk we mean the reflection around the k-th simple root
in the respective Weyl chamber, which can be again expressed in coordinates
with respect to the simple roots α1, . . . , αn in some fixed initial Weyl chamber.

Example 4.1.11 (D(2,1;α)). We consider, as an example, the finite-dimensional
diagonal Nichols algebra of rank 3 with the following braiding in an initial
Weyl chamber

qii = −1, qijqji = ζ,

with i 6= j and ζ ∈ R3 a primitive third root of unity. There is a more
general version of this example, including three roots of unity q, r, s of order
greater than three, which corresponds to a different choice of the parameter
α.

Following Heckenberger, we write the braiding as a diagram, where nodes
correspond to the simple roots αi and are decorated by the braiding qii and
each edge is decorated by the double braiding qijqji:
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−1

−1 −1

ζ ζ

ζ

As it turns out, the overall root system has seven positive roots. If
{α1, α2, α3} are the simple roots in the Weyl chamber shown above, then
the positive roots in this basis are:

{α1, α2, α3, α12, α23, α13, α123}

and the Cartan matrix attached to this Weyl chamber, which we label by
the upper index I is:

aIij =

 2 −1 −1
−1 2 −1
−1 −1 2


We now reflect around α2. Then the new simple roots are {α12,−α2, α23}
and the new braiding matrix is:

q12,12 = q23,23 = ζ q22 = −1

q12,2q2,12 = q23,2q2,23 = ζ−1 q12,23q23,12 = 1

which is in diagram notation:

ζ −1 ζζ−1 ζ−1

In this new basis the positive roots are:

{α12, −α2, α23, α1, α3, α123, α13}

and the Cartan matrix attached to this second Weyl chamber II is hence

aIIij =

 2 −1 0
−1 2 −1
0 −1 2


Even though this Cartan matrix is of standard type A3, the root system has
one additional root.
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The following figures show the hyperplane arrangement of the root system
in R3:

and its projection on the plane:

Each of the seven lines corresponds to the hyperplane orthogonal to a root.
Each triangle is a Weyl chamber with the three adjacent hyperplanes corres-
ponding to the three simple roots. Equilateral triangles (white) correspond
to the Cartan matrix I and right triangles (grey) to the Cartan matrix II.
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4.2 Screening operators

As introduced in section 1.2.4, we have the following theorem by [Len17]:

Theorem 4.2.1. Given a non-integral lattice Λ and elements v1, . . . , vn ∈ Λ,
we consider the elements evi in the modules Vvi of the associated Heisenberg
VOA VnH. The braiding between two elements is

evi ⊗ evj 7→ qij e
vj ⊗ evi ,

where qij := eiπmij , mij := (vi, vj).

Consider the diagonal Nichols algebra B(q) for braiding matrix q = (qij)i,j
generated by elements xvi, then any relation in the Nichols algebra, in degree
(d1, . . . , dn) ∈ Nn, holds for the screening operators Zvi, under the additional
assumption of smallness:

∀J ⊆ I, i, j ∈ J
∑
i<j

didjmij +
∑
i

(
di
2

)
mii > 1−

∑
i

di

where I = {1, . . . , n} is the index set.

Example 4.2.2. In the case Λ = 1√
p
Λg, with Λg the root-lattice of a complex

finite-dimensional simple Lie algebra g, and ` = 2p even integer, we obtain
as B(q) the positive part of the small quantum group uq(g)+ where q is a
primitive `-th root of unity and the braiding is

qij = e
iπ( 1√

p
αi,

1√
p
αj) = e

2iπ
`

(αi,αj) = q(αi,αj),

where αi ∈ Λg.

In particular, by theorem 6.1 of [Len17]:

Lemma 4.2.3. If Λ is positive definite and mii = (vi, vi) ≤ 1 for vi in a
fixed basis, then the smallness condition holds.

Theorem 4.2.1 is a general result. We will now present the refined version,
mentioned in 1.3, which will appear in our examples. Roughly, it shows
that for the definition of smallness the assumption not-too-negative can be
replaced by not-a-negative-integer, by analytic continuation. We prove this
only in two special cases.
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We remark that the composition of operators each mapping to an algebraic
closure is convergent under the assumption of smallness and the following
statement is about the analytic continuation of this quantity in the variable
mi and mij.

Theorem 4.2.4 (Continued Smallness). As in the previous theorem, we con-
sider the action of linear combinations of monomials Zv1 · · ·Zvn of n screening
operators on the module Vλ, we will denote mi := (vi, λ) and mij := (vi, vj)
for 1 ≤ i, j ≤ n.

a) If all mi are equal ∀i ∈ I and all mij are equal ∀i, j ∈ I, then a relation
in the Nichols algebra B(q) holds for the screening operators Zvi, under
the weaker assumptions which we call continued smallness

mij 6∈ −N
2

k
k = 1, . . . , n.

b) If there is a distinguished element 1 ∈ I such that all mi are equal
∀i ∈ I, i 6= 1 and all mij are equal ∀i, j ∈ I, i 6= 1, then a relation in
the Nichols algebra B(q) holds for the screening operators Zvi, under
the weaker assumption of continued smallness

mij 6∈ −N
2

k
k = 1, . . . , n− 1

m1j + k
mij

2
6∈ −N k = 0, . . . , n− 2.

Proof. Retaking the steps in the proof of theorem 4.2.1 in [Len17] we consider
the following function (which play roughly the role of structure constants for
multiplying screenings) given by integrating around the multivalued covering
of the circle

F ((mi,mij)ij) =

∫
· · ·
∫

[e0,e2π ]n
dz1 . . . dzn

∏
i

zmii
∏
i<j

(zi − zj)mij

We express this function as quantum symmetrizer of another function:
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F (mi,mij) = X F̃ (mi,mij)

F̃ ((mi;mij)ij) :=
1

(2πi)n

n∑
k=0

(−1)k

(
n∏

i=k+1

e2πi mi

) ∑
η∈Sk,n−k

 ∏
i<j, η(i)>η(j)

eπi mij


· Sel((mη−1(i); 0;mη−1(i)η−1(j))ij)

where Sel indicates the Selberg integral and Sk,n−k denotes a variant of the
(k, n− k) shuffles as in [Len17].

Sel(mi,m̄i,mij) = Sel((mi; m̄i;mij)i<j)

:=

∫
· · ·
∫

1>z1>...>zn>0

dz1 · · · dzn
∏
i

zmii
∏
i

(1− zi)m̄i
∏
i<j

(zi − zj)mij .

By this result, the Nichols algebra relations are thereby proven to hold if
F̃ is analytic at the parameters mi,mij under consideration.

a) In our special situation with equal mij =: mvv and mi =: mvλ we
find from the factorisation in [Len17] resp. from the Selberg integral
formula:

F̃ (mvλ;mvv) :=
n−1∏
s=0

(
(eπimvv)se2πimvλ − 1

)
· Sel(mvλ; 0;mvv)

Sel(a− 1, b− 1, 2c) =
n−1∏
k=0

Γ(a+ kc)Γ(b+ kc)Γ(1 + (k + 1)c)

Γ(a+ b+ (n+ k − 1)c)Γ(1 + c)

Our goal is to prove that under the assumptions on mvv,mvλ the func-
tion F̃ is analytic.

The Gamma function does not have zeros, and it has poles for negative
integer values of z. Thus the only possible poles are for:

• Poles:
a+ kc ∈ −N0, k = 0, . . . , n− 1.
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These simple poles cancel with the factors ((eπimvv)se2πimvλ−1). So
at these values F̃ is analytic and thus F vanishes according to the
quantum symmetrizer formula and Nichols algebra relations hold.
We remark however, that these exceptionally non-zero values of
F̃ give rise to reflection operators [Len17].

• Poles:

1 + kc ∈ −N0, k = 0, . . . , n− 1

⇐⇒ kc ∈ −N, k = 0, . . . , n− 1

⇐⇒ kc ∈ −N, k = 1, . . . , n− 1

• Poles:

1 + (k + 1)c ∈ −N0, k = 0, . . . , n− 1

⇐⇒ (k + 1)c ∈ −N, k = 0, . . . , n− 1

⇐⇒ kc ∈ −N, k = 1, . . . , n

where in the last step we substituted k + 1 with k.

We thus found that to avoid poles we need to ask the condition

k
mij

2
6∈ −N, k = 1, . . . , n.

b) To prove the second point we proceed in the same way, this time isol-
ating the distinguish element with index equals to 1.

Sel(mi,mij,m1,m1j)

=

∫ 1

0

. . .

∫ 1

0

n∏
i=2

zm1
1 zmii

n∏
j=2

(z1 − zj)m1j

∏
2≤i<j≤n

(zi − zj)mijdz1 · dz2 . . . dzn

=

∫ 1

0

dz1 z
m1+(n−1)+

∑
m1j+

∑
mij+

∑
mi

1

·
∫ 1

0

. . .

∫ 1

0

n∏
i=2

z̃mii

n∏
j=2

(1− z̃j)m1j

∏
2≤i<j≤n

(z̃i − z̃j)mijdz̃2 . . . dz̃n.
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Calling m the power of z1, we have:

Sel(mi,mij,m1,m1j)

=
(e2πim − 1)/2πi

1 +m

∫ 1

0

. . .

∫ 1

0

n∏
i=2

z̃mii

n∏
j=2

(1− z̃j)m1j

·
∏

2≤i<j≤n

(z̃i − z̃j)mijdz̃2 . . . dz̃n

=
(e2πim − 1)/2πi

1 +m

n−2∏
k=0

Γ(a+ kc)Γ(b+ kc)Γ(1 + (k + 1)c)

Γ(a+ b+ (n+ k − 1)c)Γ(1 + c)

A similar calculation as in the previous case disregard the pole at 1 +
m = 0 and a+ kc ∈ −N0.
Then we have poles just for:

• Poles:

b+ kc ∈ −N0, k = 0, . . . , n− 2

⇐⇒ m1j + k
mij

2
6∈ −N k = 0, . . . , n− 2.

• Poles:

1 + (k + 1)c ∈ −N0, k = 0, . . . , n− 2

⇐⇒ kc ∈ −N, k = 1, . . . , n− 1

⇐⇒ k
mij

2
∈ −N k = 1, . . . , n− 1

which are the asserted conditions.
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4.2.1 Central charge

The output of our study are elements v1, . . . vn ∈ Cn, the respective screening
operators of the Heisenberg algebra VnH, and their algebra relations. We also
wish to fix an action of the Virasoro algebra at a certain central charge on VnH.
As discussed in [FL17] it is usually desirable to choose the Virasoro structure
in such a way, that it is compatible with the screening operators associated
to the v1, . . . , vn. In this way the screening operators are Virasoro algebra
homomorphisms and thus preserve the conformal invariance of the system
they are acting on. The compatibility condition gives a unique solution of
Virasoro structure and a characteristic central charge for the situation at
hand, as follows:

Proposition 4.2.5. For the Heisenberg algebra, there is a family of Vira-
soro structures parametrised by the choice of an element Q ∈ Cn, called
background charge [FT10] such that the central charge is

c = rank − 12(Q,Q).

The compatibility condition reads

1

2
(vi, vi)− (vi, Q) = 1 i = 1, . . . , n

i.e. says that the modules Vvi have conformal weight equals to 1.

In particular for rank = 2, if we make the formula above explicit, we get
the following, as in [Sem11]:

c = 2− 3
|v1(m22 − 2)− v2(m11 − 2)|2

m11m22 −m2
12

(4.4)

Remark 4.2.6. In [Sem11], they notice that the central charge (4.4) is invari-
ant under the reflections Rk on the roots. This result was the first evidence
suggesting a tighter connection between Nichols algebras and conformal field
theories.
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4.3 Formulation of the classification problem

We now give the precise definition of lattices realising a given braiding,
concept that we introduced in section 1.3.

Definition 4.3.1. Let Λ be a lattice of rank n, basis {v1, . . . , vn}, bilinear
form ( , ) and let mij := (vi, vj). Given a braiding matrix qij and associated
Cartan matrix aij, we say that the lattice Λ and the matrix mij realise qij iff

• we have: eiπmij = qij

• mij satisfies:

A: 2mij = aijmii or B: (1− aij)mii = 2 (4.5)

• all the reflected matrices Rk(mij) fulfil again (4.5).

We will say with respect to a realisation mij that a root vi is m-Cartan if
mii satisfies (4.5)A, and m-truncation if it satisfies (4.5)B.

[Sem11] asks this condition only for one specific Weyl chamber.

Remark 4.3.2. We observe that condition (4.5) is the logarithmic version
of (4.3).

Remark 4.3.3. Clearly m-Cartan implies q-Cartan and m-truncation implies
q-truncation. The converse is not always true. If a root is both q-Cartan
and q-truncation, then there are two possible solutions in terms of the mij

matrix.
An example is the sl(2|1) superalgebra, presented below in example (4.3.5).

Proposition 4.3.4. Clearly, if vk is m-Cartan, then Rk(mij) = mij.

Our goals are as follows:

• Given a braiding qij from Heckenberger lists in [Hec05], [Hec06a], con-
struct all realising Λ, mij. In sections 4.4, 4.5 and 4.6.1 we construct
the mij while in section 4.6.2 we prove that the constructed mij exhaust
all cases of Heckenberger list in rank 2. In section 4.7 we do the same
for rank 3, and in section 4.8 for higher rank.

• We compute the central charges for each solution in rank 2.
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• We analyse which Nichols algebras relations hold and which don’t, for
the associated screening operators. This may depend on a free para-
meter in the family of solutions.

Example 4.3.5. We now show an example of this procedure. We consider
row 3 of table 1 in [Hec05], described by the braiding matrices:

qI
ij =

 q2 q−1

q−1 −1

 qII
ij =

−1 q

q −1


and corresponding diagrams:

q2 −1q−2 −1 −1q2

I II

with q ∈ C×, q2 6= ±1, simple roots {α1, α2} and {α12, α2} respectively, and
a unique associated Cartan matrix

aI
ij = aII

ij =

 2 −1

−1 2

 .
This is the Lie superalgebra sl(2|1) root system. The set of positive roots
is {α1, α2, α12} where α1 is only q-Cartan and α2, α12 are only q-truncation
(for q2 = −1 this is not true: all roots are both q-Cartan and q-truncation,
which gives more solution, see remark 4.3.7).

Proposition 4.3.6. The following mij matrices are realising solutions of the
given braiding and its reflections:

mI
ij =

2r −r

−r 1

 , mII
ij =

 1 −1 + r

−1 + r 1


for all r = p′

p
∈ Q with (p′, p) = 1 such that eiπr = q.

Proof. We check that condition (4.5)B is satisfied for α2, α12:

m22 =
2

1− a21

= 1

m12,12 =
2

1− a12,2

= 1
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while condition (4.5)A is satisfied for the root α1:

m11 =
2m12

a1,2

= 2r.

The reflection on α1 preserves qij as well as mij, because α1 is m-Cartan.
We check that reflections on α2 and α12, which interchange qIij and qIIij , also
interchange our choices of mI

ij and mII
ij .

Remark 4.3.7. As we will see in section 4.6.2, for q2 6= ±1 this family gives
all solutions.
For q2 = −1, we have more choices for the mij-matrices because the roots be-
come both q-truncation and q-Cartan. Thus we may have solutions fulfilling
either (4.5A) or (4.5B). The new (unique) diagram in this case is:

−1 −1−1

to whom correspond several solutions of mij-matrices; for simple roots α1, α2:
let p′ ∈ Z with (p′, 2) = 1,

• if we assume α1 and α2 m-truncation, the unique family of solutions is
given by

mij =

 1 −p′′

2

−p′′

2
1

 mij =

 1 −p′

2

−p′

2
p′

 mij =

 p′ −p′

2

−p′

2
1

 .
These mij are reflections one of the other by Proposition 4.3.6 with
p′′ = 2− p′. Other combinations bring to the same solution in different
Weyl chambers.

• if we assume α1 and α2 m-Cartan, the unique family of solutions is
given by

mij =

 p′ −p′

2

−p′

2
p′


which can be interpreted as coming from sl3 for p = 2.
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4.4 Cartan type

4.4.1 q diagram

Let g be a simple Lie algebra with simple roots α1, . . . , αn and denote the
Killing form by (αi, αj)g in the standard scaling taking values in {2, 4, 6} for
i = j and {−3,−2,−1, 0} for i 6= j.
Let q ∈ C× be a primitive `-th root of unity with ` ∈ Z and let ord(q2) > d
with d half length of the long roots. Define a braiding matrix by

qij = q(αi,αj)g .

Definition 4.4.1. The finite-dimensional Nichols algebra B(q) is called of
Cartan type.

We have that:

• qij is invariant under reflections Rk,

• the Weyl groupoid is the Weyl group associated to g,

• the set of positive roots is the set of roots associated to g,

• the Cartan matrix aij is exactly the Cartan matrix for g.

4.4.2 Construction of mij

Definition 4.4.2. Given r ∈ Q, such that r
2

= k
`
, with k ∈ Z, (k, `) = 1 we

define
mij := (αi, αj)r.

Differently spoken, the lattice Λ of definition 4.3.1 is, in this case, exactly
the root lattice of g rescaled by r.

Remark 4.4.3. Usually in literature r = p′

p
, e.g. r = 1

p
and ` = 2p, q = e

πi
p .

Lemma 4.4.4. The matrix mij realises the braiding qij for all reflections,
and every simple root is m-Cartan.

Proof. Condition (4.5) asks

2mij = aijmii or (1− aij)mii = 2 (4.6)

2mji = ajimjj or (1− aji)mjj = 2. (4.7)
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But from the last point of enumeration 4.4.1 we have aij =
2(αi,αj)

(αi,αi)
. Hence

mii = (αi, αi)r = 2(αi, αj)r
(αi, αi)

2(αi, αj)
= 2

mij

aij

which is (4.5)A, saying that the roots are m-Cartan.
Since any reflection leaves the mij invariant (not just the qij) because is a
m-Cartan reflection, condition (4.5) holds also after reflections.

Lemma 4.4.5. If `i > 1 − aij for i = 1, . . . , n, with `i := `
gdc(`,2di)

as in

[Lus90], then none of the simple roots are m-truncation.

Proof. Assume the root αi is m-truncation, i.e. (1−aij)mii = 2, this implies:

q
(1−aij)
ii = eiπmii(1−aij) = eiπ·2 = 1. But ord(qii) = ord(q2di) = `i > 1− aij and

we find a contradiction.

Lemma 4.4.6. If all simple roots are just m-Cartan, then the unique solution
for the matrix mij is the one of definition 4.4.2. In particular this is the case
if `i > 1− aij for i = 1, . . . , n.

Proof. If all roots are m-Cartan then if we fix mii for some root αi, the mixed
term mij is fixed by condition 4.5(A) and so is mjj by the same condition
with reversed indices. Moreover the reflections around m-Cartan roots leave
the system invariant, so the mij are fixed ∀i, j. But then, up to a rescaling
there is a unique solution for mij and this is the one defined in 4.4.2.

Example 4.4.7. As a counterexample of the condition of lemma 4.4.5, we
consider sl3. In this case, aij = −1 ∀i, j and for 2`i = ` = 2p = 4, i.e.
qii = −1, the roots can be considered as m-truncation as well. We thus obtain
an additional solution of mij, which will be understood from reinterpreting
sl3, ` = 2p = 4, as the Lie superalgebra sl(2|1), ` = 2p = 4, treated in the
remark of example 4.3.5.

4.4.3 Central charge

Recall {v1, . . . , vn} as basis of Λ with mij = (vi, vj).

Proposition 4.4.8. The central charge of the system is

c = rankg− 12(
1

r
| ρ∨ |2 −2(ρ, ρ∨) + r | ρ |2) (4.8)

where ρ is the sum of all positive roots.
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Proof. The central charge is:

c = rank − 12(Q,Q)

where Q =
∑

j ajvj is the unique combination such that for every i

1

2
(vi, vi)Λ − (vi, Q) = 1

1

2
(vi, vi)Λ −

∑
j

aj(vi, vj)Λ = 1

Rewriting vi = −
√
rαi, with αi root of g, this set of equations bring us to

Q =

√
1

r
ρ∨ −

√
rρ

that on turn gives the central charge as in the statement.

Remark 4.4.9. The central charge matches with the one of the affine Lie
algebra ĝk at level k + h∨ = 1

r
as in [Ara07].

Remark 4.4.10. For rank 2 the central charge is

c = 1− 3
(2p′ − 2p)2

2pp′
= 13− 6

p

p′
− 6

p′

p

which is the central charge of the p, p′ model.

4.4.4 Algebra relations

We now want to determine when the algebra of screenings satisfies Nichols
algebra relations. We will again denote d the half length of the long roots.

With the definition of smallness and the results in [Len17], see theorem
4.2.3, we get for a rescaled root lattice mij = (αi, αj)r:

Corollary 4.4.11. If 1
2d
≥ r > 0, then all Nichols algebra relations hold.

Proof. Since we are rescaling by
√
r a positive definite lattice Λ, the only

condition for the new lattice to be positive definite is r > 0. We ask moreover
mii = 2dr ≤ 1 for all i. This implies r ≤ 1

2d
.
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Now we want to analyse the algebra relations in the screening algebra for
arbitrary values of r. To do so we study relation by relation using theorem
4.2.4.

Definition 4.4.12. A generator xi is said to satisfy the truncation relation
if

x`ii = 0, `i = ord(qii).

A pair of generators xi, xj are said to satisfy the Serre relation if

(adcxi)
1−aijxj = 0, aij = −min

{
m ∈ Z | q−mii = qijqji or q

(1+m)
ii = 1.

}
We denoted the braided commutator by

(adcxi)xj := [xi, xj]c = [xi, xj]q = xixj − qijxjxi.

Theorem 5.25 of [Ang08] states a set of defining relations for each finite-
dimensional Nichols algebra of Cartan type:

Theorem 4.4.13. For finite-dimensional Nichols algebra of Cartan type
uq(g)+, i.e. with diagonal braiding qij = q(αi,αj) associated to the root system
of a Lie algebra g, the defining relations are as follows

1. For each root α the truncation relation and for each pair of simple roots
αi, αj with q

1−aij
ii 6= 1 the Serre relation.

2. For the following subdiagrams the following additional relations:

• For type A3 with q = −1

−1 −1 −1−1 −1

[(adcx2)x1, (adcx2)x3]c = 0

• For type B2 or C2 with q = i

i −1−1

or with q = ζ ∈ R3

ζ ζ−1ζ
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[(adcx1)2x2, (adcx1)x2]c = 0

• For type B3 with q = i

i −1 −1−1 −1

or with q = ζ ∈ R3

ζ ζ−1 ζ−1ζ ζ

[(adcx1)2(adcx2)x3, (adcx1)x2]c = 0

• For type G2 with q = ζ ∈ R6

ζ −1−1

or with q = i

i −ii

[(adcx1)3x2, (adcx1)2x2]c = 0

[x1, [x
2
1x2x1x2]c]c = 0

[[x2
1x2x1x2]c, [x1, x2]c]c = 0

[[x2
1x2]c, [x

2
1x2x1x2]c]c = 0.

We now apply our refined smallness criteria of theorem 4.2.4 to these
explicit set of relations to determine the algebra of screening operators in
comparison to the Nichols algebra.

Example 4.4.14. Let us consider a rank 1 Cartan q-diagram and corres-
ponding m-solution:

q2

2r
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The truncation relation (Z1)n = 0, n = ord(q2) holds, according to 4.2.4, iff
r > 0.

For r < 0 it is further calculated in [Len17] that (Z√rα1
)n = Zn√rα1

which
is a local screening. The algebra of screenings is therefore an extension of
the Nichols algebra by a long screening.

Example 4.4.15. Let us consider a rank 2 Cartan q-diagram and corres-
ponding m-solution:

q2

2r

q2d

2rd

q−2d

−2rd

– By the previous example the simple truncation relations hold for r ≥ 0.

We conjecture that in this case the non-simple truncation ([Z1,Z2]nc
etc.) also hold for r > 0. But this would either require a reflection
theory for algebra of screenings or a generalisation of theorem 4.2.4.

– The long Serre relation [Z2, [Z2,Z1]c]c = 0 holds if 2dr 6∈ −N. Does the
long Serre relation may fail if q22 = −1 and r < 0, which is when the
long root α2 is both q-Cartan and q-truncation and when the truncation
relation fails. But for these cases the Serre relation was in theorem
4.4.13 not required as an independent relation.

– The short Serre relation [Z1, . . . [Z1,Z2]c . . .]c = 0 which involves d + 1
times the first screening, holds if

2r, 3r, . . . , (d+ 1)r 6∈ −N
dr, (d− 1)r, (d− 2)r, . . . , 2r 6∈ N.

In particular:

∗ for d = 1 see the long Serre relations.

∗ for d = 2 holds iff 3r 6∈ −N.

∗ for d = 3 holds iff 2r, 4r 6∈ −N and 2r 6∈ N. But 2r ∈ Z is not
admissible because q 6= −1.
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So again the short Serre relation may fail if the short root α1 is both
q-Cartan and q-truncation and the truncation relation fails.

– Extra relations as listed in point (2) of theorem 4.4.13 apply exactly in
the exceptional cases for the Serre relations above.

Summarizing we have the following possible exceptions:

• for q2 = −1, k ∈ N, k odd, (r < 0, d = 1):

−1

−k
−1

−k
−1

−k
−1

k

−1

k

• for q2 ∈ R2d, k ∈ N, k odd, ∀d (r < 0):

q2

−k
d

−1

−k
−1

k

• for q2 = ζ ∈ R3, k ∈ N, k odd, (r < 0, d = 2):

ζ

−2
3
k

ζ−1

−4
3
k

ζ

4
3
k

• for q2 = i, k ∈ N, k odd, (r < 0, d = 2):

i

−k
2

−1

−k
−1

−k
−1

k

−1

k

• for q2 = ζ ∈ R3, k ∈ N, k odd, (r < 0, d = 2):

ζ

−2
3
k

ζ−1

−4
3
k

ζ−1

−4
3
k

ζ

4
3
k

ζ

4
3
k

• for k ∈ N, k odd, (r < 0, d = 3):
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i

−k
2

−i
−3

2
k

i
3
2
k

Proposition 4.4.16. We consider again a rank 2 Cartan q-diagram

q2

2r

q2d

2rd

q−2d

−2rd

1. If q2d = −1, r < 0 the long Serre relation holds.

2. If ord(q2)= d+ 1, r < 0 the short Serre relation holds.

Proof. 1. The long Serre relation reads

[Z2, [Z2,Z1]−1]+1 = (Z2)2Z1 +Z2Z1Z2−Z2Z1Z2−Z1(Z2)2 = [(Z2)2,Z1]+1.

Since r < 0 this is not automatically zero because (Z2)2 6= 0. Despite
this it was studied in [Len17] that (Z2)2 ∼ Z22. Then standard OPE
calculations give: [(Z2)2,Z1]c = [Z22,Z1]c = 0.

2. This point is a generalisation of the previous. We have:

[Z1, . . . , [Z1,Z2]c . . .]c = (Z1)d+1Z2 − (q−d + q−d+2 + . . .+ qd)(Z1)dZ2Z1 + . . .

=
∑

i+j=d+1

(−1)i(Z1)iZ2(Z1)j
[i+ j]q!

[i]q![j]q!
= [(Z1)d+1,Z2]c

= [Z(d+1)α1 ,Z2]c = 0

where [i]q! := 1(1 + q)(1 + q + q2) · · · (1 + . . .+ qi−1) and where for the
penultimate equality we used again results from [Len17] and for the
last one theorem 4.2.1.

Remark 4.4.17. Alternatively this follows conceptually from the fact that
this holds for generic q. One can argue similarly for the other relations or
proceed as in the previous proposition.

In conclusion:

Corollary 4.4.18. The screening operators algebra is as follows:
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• For r ≥ 0 all Nichols algebra relations hold (conjecturally also the non-
simple truncation relations).

• For r < 0 all Nichols algebra relations hold except the truncation rela-
tions.

Conjecturally, the non-zero result of the truncation relation are, as
above, themselves local screenings and in the centre of the algebra of
screenings. Hence in these cases we get the positive part of the infinite-
dimensional Kac-Procesi-DeConcini quantum group, also called non-
restricted specialisation [CP94].

Remark 4.4.19. We remark that for r < 0 products of screenings can be not
well defined.

4.4.5 Examples in rank 2

Heckenberger row 2

This case of the list is described by the braiding diagram:

q2 q2q−2

with q ∈ C q2 6= 1 and simple roots {α1, α2}. The realising lattice is a
rescaled A2 root lattice i.e. sl3.

The set of positive roots is given by {α1, α2, α12} with unique associate
Cartan matrix:

aij =

 2 −1

−1 2

 .
Proposition 4.4.20. Defining r as in 4.4.2 we find that the following mij-
matrix is a realising solution:

mij =

2r −r

−r 2r

 .
Remark 4.4.21. For q2 = −1, these are all solutions and the roots are both
q-Cartan and q-truncation.
This case is shown in detail in remark 4.3.7 of example 4.3.5.
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Heckenberger row 4

This case of the list is described by the braiding diagram:

q2 q4q−4

with q ∈ C q2 6= ±1 and simple roots {α1, α2}. The realising lattice is a
rescaled B2 root lattice.

The set of positive roots is given by {α1, α2, α12, α112} with unique asso-
ciate Cartan matrix:

aij =

 2 −2

−1 2

 .
Proposition 4.4.22. If q2 6= ±1, then for every possible r defined as in 4.4.2
the following mij-matrix

mij =

 2r −2r

−2r 4r


is a realising solution for the braiding.

Remark 4.4.23. 1. When q2 ∈ R4, the root α2 is q-Cartan and q-truncation.
There is an additional family of solutions when it is m-truncation:

mI
ij =

 2r −2r

−2r 1

 mII
ij =

−2r + 1 2r − 1

2r − 1 1

 for r =
p′

4
, p′ odd,

with simple roots I: {α1, α2} and II: {α12,−α2}.

This lattice can be interpreted as lattice realising the Lie superalgebra
B(1, 1) described in case Heckenberger row 5, which for this choice of
q2 has the same q-diagram.

2. When q2 ∈ R3, the root α1 is q-Cartan and q-truncation.
There is an additional family of solutions when it is m-truncation:

mI
ij =

 2
3
−2r

−2r 4r

 mII
ij =

 2
3

−4
3

+ 2r

−4
3

+ 2r 8
3
− 4r


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for r = 2+3p′

6
, p′ ∈ Z, with simple roots I: {α1, α2} and II: {−α1, α112}.

This lattice can be interpreted as lattice realising the case Heckenberger
row 6 (a colour Lie algebra), which for this choice of q2 has the same
q-diagram.

Remark 4.4.24. Note that q2 = −1 is excluded. Indeed for that value, the
system degenerates and the short truncation roots form a lattice of type An1
as described in [FL17]. Physically it corresponds to n pair of symplectic
fermions.

Heckenberger row 11

This case of the list is described by the braiding diagram:

q2 q6q−6

with q2 6= ±1, q2 6∈ R3 and simple roots {α1, α2}.
The realising lattice is of type G2.

The set of positive roots is given by {α1, α2, α12, α112, α1112, α11122} with
unique associate Cartan matrix:

aij =

 2 −3

−1 2

 .
Proposition 4.4.25. If q2 6= ±1, q2 6∈ R3, then for every possible r defined
as in 4.4.2 the following mij-matrix

mij =

 2r −3r

−3r 6r


is a realising solution for the braiding.

Remark 4.4.26. When q2 ∈ R4, the root α1 is q-Cartan and q-truncation.
When it is m-truncation we get:

mI
ij =

 1
2
−3r

−3r 6r

 mII
ij =

 1
2

−3
2

+ 3r

−3
2

+ 3r 9
2
− 12r


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with simple roots I: {α1, α2} and II: {−α1, α1112}.

The root α1112 is never m-truncation and it is m-Cartan iff r = 1
4
. But

for this value of r, α1 is also m-Cartan and thus this is not a new solution.

Remark 4.4.27. When q2 ∈ R6, the root α2 is m-Cartan and m-truncation.
When it is m-truncation we get:

mI
ij =

 2r −3r

−3r 1

 mII
ij =

 1− 4r −1 + 3r

−3
2

+ 3r 1


with simple roots I: {α1, α2} and II: {α12,−α2}.

The root α12 is never m-truncation and it is m-Cartan iff r = 1
6
. But for

this value of r, α2 is also m-Cartan and thus this is not a new solution.

4.5 Super Lie type

4.5.1 q diagram

Let g = g0⊕ g1 be a simple Lie superalgebra of classical, basic type [FSS96],
i.e. of type A(m,n), B(m,n), C(n + 1), D(m,n), F (4), G(3), D(2, 1;α). For
these Lie superalgebras a (non degenerate or zero) Killing form ( , )g is
defined.

We now choose a Weyl chamber α1, . . . , αf−1, αf , αf+1, . . . , αn with just
one simple fermionic root αf . We call it the standard chamber according to
[Kac77]. Given α positive root in the standard chamber, we define f(α) the
multiplicity of αf in α.

We can then split g as the direct sum of vector spaces

g = g′ ⊕ g′′ ⊕m,

where g′ and g′′ are two bosonic connected component generated by the
simple roots α1, . . . , αf−1 and αf+1, . . . , αn respectively, while m is the g′⊕g′′-
module spanned by all other roots.

We have that m contains g1 and thus in particular contains the g′ ⊕ g′′-
submodule generated by the fermion αf , i.e. the vector space of fermions γ,



72

with f(γ) = 1. Moreover m may contain bosonic roots δ, with f(δ) positive
even.

Definition 4.5.1. We can write the inner product ( , )g of two arbitrary
simple roots as

(αi, αj)g = (αi, αj)g′ + (αi, αj)g′′ =


(αi, αj)g′ if i ≤ f, j < f

0 if i ≤ f ≤ j

(αi, αj)g′′ if i ≥ f, j > f.

In particular we assume (αf , αf )g = (αf , αf )g′ = (αf , αf )g′′ = 0.

Definition 4.5.2. Let q′, q′′ be primitive roots of unity of the same order.
Then to the above data in the standard chamber we associate the braiding
matrix qij with

qij =


(q′)(αi,αj)g′ if i ≤ f, j < f

(q′′)(αi,αj)g′′ if i ≥ f, j > f

1 if i > f > j

−1 if i = f = j.

Under certain conditions on the qij, this braiding gives a finite-dimensional
Nichols algebra B(qij), which we call of Super Lie type.

The reflections will act on the braiding as follow:

• Reflections Rk around bosonic roots αk leave qij invariant.

• Reflections Rk around fermionic roots αk interchange fermionic and
bosonic roots and may produce a braiding containing −q.

Remark 4.5.3. In the classification of Nichols algebras in [Hec05] and [Hec06a]
we find that the fermion (as in the Lie superalgebra sense of the term) in the
standard chamber αf has qff = −1, i.e. it is q-truncation. This is not true
in general for every fermion as we can see in the following example.

Example 4.5.4. The case Heckenberger row 5 of table 1 in [Hec05] is described
by two diagrams:

−1 q2q−4 −1 −q−2q4
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I II

corresponding to the simple roots:

I : {α1, α2} II : {−α1, α12}.

This is the Lie superalgebra B(1,1) and α12 is a fermion with q12,12 6= −1.
We will describe this example in detail later on in this section.

4.5.2 Construction of mij

Definition 4.5.5. Given p′, p′′ ∈ Z such that (p′, p) = (p′′, p) = 1, we define
r′ := p′

p
, r′′ := p′′

p
and in the standard chamber:

mS
ij =


(αi, αj)g′r

′ if i ≤ f, j < f

(αi, αj)g′′r
′′ if i ≥ f, j > f

0 if i > f > j

1 if i = f = j.

We notice that if we restrict to g′ or g′′, we get exactly the same result
as in the Cartan type section for p′, p respectively p′′, p.

Lemma 4.5.6. If we call q′ = eiπr
′

and q′′ = eiπr
′′
, then qij = eiπmij is the

braiding defined in definition 4.5.2.

Proof. We have mij = 0 if αi and αj are disconnected, so that 1 = eiπ·0 and
mff = 1 for the fermionic root which gives −1 = eiπ·1 as demanded.

Lemma 4.5.7. In an arbitrary chamber Cγ1,...,γrank we have

mij
C = (γi, γj)g′r

′ + (γi, γj)g′′r
′′ + f(γi)f(γj).

Proof. We write γi =
∑

k xikαk and γj =
∑

l xjlαl and we extend for linearity:

mij
C =

∑
k,l

xikxjlmkl
S

=
∑

k,l∈g′∪{f}

xikxjl(αk, αl)g′r
′ +

∑
k,l∈g′′∪{f}

xikxjl(αk, αl)g′′r
′′ + xifxjf =

= (γi, γj)g′r
′ + (γi, γj)g′′r

′′ + f(γi)f(γj)



74

where the last equality follows from the definition of f(γ) as the multiplicity
of αf in γ and the fact that on each component g′ and g′′ the roots are
spanned as in a Lie algebra.

Corollary 4.5.8. A root γ in an arbitrary chamber is

– m-truncation if (γ, γ)g′r
′ + (γ, γ)g′′r

′′ + f(γ)f(γ) = 1

– m-Cartan if, for every simple root βi in the standard chamber,

(γ, βi)g′r
′ + 2(γ, βi)g′′r

′′ + 2f(γ)f(βi)

= aγ,βi((γ, γ)g′r
′ + (γ, γ)g′′r

′′ + f(γ)f(γ)).

Example 4.5.9. We consider as an example the Lie superalgebra A(1,1)
of rank 3. The simple roots in the standard chamber are {α1, α2 = αf , α3}
with inner product:

(αi, αj) =

 2 −1 0
−1 0 −1
0 −1 2


Hence:

mS
ij =

2r′ −r′ 0
−r′ 1 −r′′
0 −r′′ 2r′′

 , qij =

 (q′)2 (q′)−1 1
(q′)−1 −1 (q′′)−1

1 (q′′)−1 (q′′)2

 .
Remark 4.5.10. According to [Kac77] we can write the simple roots as

α1 = ε1 − ε2, α2 = αf = ε2 − δ1, α3 = δ1 − δ2,

with vectors εi generating g′ and δi generating g′′.

What remains to do is to see under which conditions the defined mij are
realising solutions of the given braidings.

Lemma 4.5.11. If γ ∈ g′ i.e. γ =
∑f−1

i=1 aiαi or γ ∈ g′′ i.e. γ =
∑n

i=f+1 aiαi,
then γ is m-Cartan.

Proof. Suppose γ ∈ g′; then

(γ, γ) = (γ, γ)g′ (γ, γ)g′′ = 0

(γ, αi) = (γ, αi)g′ (γ, αi)g′′ = 0
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for every arbitrary simple root αi. Moreover f(γ) = 0. So we have that
(4.5)A:

2(γ, αi)g′r
′ + 2(γ, αi)g′′r

′′ + 2f(γ)f(αi) = aγ,i((γ, γ)g′r
′ + (γ, γ)g′′r

′′ + f(γ)f(γ))

becomes:

2(γ, αi)r
′ = aγ,i((γ, γ)r′).

Since γ ∈ g′, we are restricting to one bosonic sector and thus the latter is
true because of definition of aγ,i in the Lie algebra setting.
By linearity in the simple roots αi it is possible to extend this result to every
arbitrary root α =

∑
biαi.

Lemma 4.5.12. If γ 6= αf is isotropic, i.e. (γ, γ) = (γ, γ)g′ = (γ, γ)g′′ = 0,
and f(γ) = ±1 then γ is m-truncation.

Proof. Condition (4.5)B for a root to be m-truncation reads:

(γ, γ)g′ + (γ, γ)g′′ + f(γ)f(γ) = 1

which is clearly true under these hypothesis.

We summarise these results in the following:

Corollary 4.5.13. The matrix mij defined in 4.5.5 realises the braiding qij
for every root α, with the following possible exceptions:

1. α is a boson in g′ ∪ g′′, i.e. f(α) is a strictly positive even integer.

2. α is an isotropic fermion with f 6= ±1.

3. α is a non-isotropic fermion.

4. α is a fermion strong orthogonal to another fermion γ, i.e. in their
real span 〈α, γ〉R there aren’t roots.

Proof. • If a boson α belongs to only one bosonic side g′ or g′′, then
lemma 4.5.11 tells us it must be m-Cartan. Otherwise, α is like in (1)
and must be spanned by the standard fermion as well, thus f(α) > 0
even. In this case lemma 4.5.11 fails since no Lie algebra Killing form
is a priori holding. We then have to check explicitly for which r′ and
r′′ one of condition (4.5) holds using Corollary 4.5.8.
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• Let now α be a fermion which is never strong orthogonal to other
fermions. If it is isotropic and f(α) = ±1, thanks to lemma 4.5.12, it
satisfies the M-condition truncation. If f 6= ±1 or it is non-isotropic,
we are back to the points (2) and (3) of the lemma and we have to
check explicitly for which r′ and r′′ one of condition (4.5) holds using
Corollary 4.5.8.

• If α and γ are two strong orthogonal fermions, then aαβ = 0. In this
case we have to check for which r′ and r′′

mα,β = (α, β)g′r
′ + (α, β)g′′r

′′ + f(α)f(β) = 0

Remark 4.5.14. In the examples we didn’t find any boson with f > 2 and
any fermion with f > 1. Thus, point (1) concerns then just bosons with
f = 2 and point (2) never happens.

In conclusion we will now have to look, in every example, if one or more
of the situations described by lemma 4.5.13 is happening.

Now as last result we state a classification Lemma:

Lemma 4.5.15. If all the bosonic roots are m-Cartan, then the unique pos-
sible realising solution for the given braiding is the matrix mij of definition
4.5.5. In particular this is the case if `i > 1− aij for ∀i 6= f .

Proof. Condition (4.5) gives a unique solution for the mij in the standard
chamber: the fermionic root ism-truncation and thus fixed tomff = 1, while,
since all other roots are m-Cartan, restricting our study to the two bosonic
sectors separately we end up in the same situation of lemma 4.4.6. Moreover
the compatibility with the reflections fixes the mij in all chambers.

Example 4.5.16. We apply lemma 4.5.13 to example 4.5.9: after reflecting
the standard chamber set of roots around the fermion α2, we find for new
simple roots: {α12,−α2, α23} the matrix:

mC
ij =

 1 −1 + r′ −1 + r′ + r′′

−1 + r′ 1 −1 + r′′

−1 + r′ + r′′ −1 + r′′ 1

 .
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Exception (4) of lemma 4.5.13 appears. We then have to ask m23 = 0, i.e.
r′ + r′′ = 1. In that case mij is a realising solution.
This construction realises the Nichols algebra B(q) described by case row 8
of table 2 in [Hec05] when q 6= ±1.

4.5.3 Central charge

We will compute the central charge of systems associated to Lie superalgebras
g, with non degenerate Killing form ( , ).

Proposition 4.5.17. The central charge of the system is c = rank−12(Q,Q)
with

Q =
ρ∨g′√
r′
− ρg′

√
r′ +

ρ∨g′′√
r′′
− ρg′′

√
r′′ − ρ∨rest

where we denoted by ρg′ the sum of positive roots in g′, ρg′′ the sum of positive
roots in g′′ and ρrest the sum of the remaining positive roots of g.

Proof. The central charge is c = rank−12(Q,Q) if Q is such that ∀αi simple
root of g

1

2
(−
√
riαi,−

√
riαi)− (−

√
riαi, Q) = 1 where ri =


p′

p
if i < f

1 if i = f
p′′

p
if i > f.

Let λ∨j =
λj
dj

be such that (αi, λ
∨
j ) = δij. Since ρg =

n∑
i=1

λi, we have that

ρg′ =
∑
i<f

λi, ρg′′ =
∑
i>f

λi and then ρrest = λf . We can thus rewrite Q as:

Q =
ρ∨g′√
r′
− ρg′

√
r′ +

ρ∨g′′√
r′′
− ρg′′

√
r′′ − ρ∨rest =

∑
i

(
1
√
ri
−
√
ridi

)
λ∨i .

Hence the previous equation becomes:

1

2
(−αi

√
ri,−αi

√
ri)− (−αi

√
ri, Q)

=
1

2
2diri +

∑
j

√
ri(

1
√
rj
−√rjdj)(αi, λ∨j ) = 1
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4.5.4 Algebra relations

We now want to determine when the algebra of screenings satisfies Nichols
algebras relations for braiding qij.
We will denote again d′, d′′ the half length of the long bosonic root in g′, g′′.

Lemma 4.5.18. For mij as above, lemma 4.2.3 holds under the condition

1

2d′
≥ r′ > 0,

1

2d′′
≥ r′′ > 0, det(mij) > 0.

Proof. Lemma 4.2.3 holds for all monomials under the assumptions |αi| ≤ 1,
which means 2d′r′ ≤ 1, 2d′′r′′ ≤ 1, and mij positive definite. By Sylvester’s
criterion, this is equivalent to det(mij) > 0 and to the principal minor being
positive definite. The principal minor is a rescaling of the root lattices g′, g′′,
so it is positive definite for r′, r′′ > 0.

Example 4.5.19. For type A(n,m) these conditions read

1

2
≥ r′ > 0,

1

2
≥ r′′ > 0,

n

n+ 1
r′ +

m

m+ 1
r′′ < 1.

In [Ang15], theorem 3.1, we find a set of defining relations for each finite-
dimensional Nichols algebra of super Lie type. We report them in the fol-
lowing theorem.

Theorem 4.5.20. For finite-dimensional Nichols algebra of super Lie type
with diagonal braiding qij = q(αi,αj)g′,g′′ for bosonic roots and qii = −1 for the
fermionic root in the standard chamber, associated to the root system of a
Lie superalgebra g, the defining relations are as follows

1. For each root α the truncation relation and for each pair of simple roots
αi, αj with q

1−aij
ii 6= 1 the Serre relation.

2. For the following subdiagrams the following additional relations:

• For type A(2, 0), A(1, 1), D(2, 1;α):

q11 −1 q33q12,21 q23,32
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[(adcx2)x1, (adcx2)x3]c = 0

• For type B(1, 1):

q11 −1q12,21

[(adcx1)2x2, (adcx1)x2]c = 0

• For type B(2, 1)

q11 −1 q33q12,21 q23,32

[(adcx1)2(adcx2)x3, (adcx1)x2]c = 0

Example 4.5.21. Let us consider a rank 1 q-diagram and corresponding
m-solution, for a bosonic and fermionic root respectively:

q2

2r

−1

1

The bosonic truncation relation (Zb)
n = 0, n = ord(q2) holds, according to

4.2.4, iff r > 0.
The fermionic truncation relation (Zf )

2 = 0 always holds according to 4.2.4.

Example 4.5.22. Let us consider a rank 2 super Lie q-diagram and corres-
ponding m-solution:

q2

2r

−1

1

q−2d

−2rd

In the examples we will found such a diagram just if d = 1, 2.

– By the previous example the simple truncation relations hold for r ≥ 0.

We conjecture that in this case the non-simple truncation ([Z1,Z2]nc
etc.) also hold for r > 0. But this would either require a reflection
theory for algebra of screenings or a generalisation of theorem 4.2.4.
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– The bosonic Serre relation [Z1, . . . [Z1,Z2]c . . .]c = 0 (already studied in
the Cartan section), involves d+ 1 times the first screening and holds

∗ for d = 1 iff 2r 6∈ −N.

∗ for d = 2 iff 3r 6∈ −N.

So it may fail if the bosonic root α1 is both q-Cartan and q-truncation
and the truncation relation fails.

– The fermionic Serre relation [Z2, [Z2,Z1]c]c = 0 holds

∗ for d = 1 iff −r + 1
2
6∈ −N.

∗ for d = 2 iff 2r,−2r + 1
2
6∈ −N.

But 2r ∈ Z is not admissible because q−2d 6= 1.

Summarising we have the following possible exceptions:

• for k ∈ Z, k odd, d = 1:

−1

k

−1

1

−1

−k

• for q2 = i, k ∈ N, d = 2:

i
1+4k

2

−1

1

−1

−(1 + 4k)

• for q2 = ζ ∈ R3, k ∈ N, k odd, d = 2:

ζ

−2
3
k

−1

1

ζ

4
3
k

In conclusion:

Corollary 4.5.23. Apart from the possible exceptions above, the screening
operators algebra is as follows:



81

• For r′, r′′ ≥ 0 all Nichols algebra relations hold (conjecturally also the
non-simple truncation relations).

• For r′, r′′ < 0 all Nichols algebra relations hold except the bosonic trun-
cation relations.

Conjecturally the algebra of screenings is again the positive part of an
infinite-dimensional Kac-Procesi-DeConcini quantum super group.

• For r′ > 0, r′′ < 0 or r′ < 0, r′′ > 0 the truncation relations on one side
of the Dynkin diagram of the standard chamber fail, and we conjec-
turally get the positive part of an corresponding version of an infinite-
dimensional Kac-Procesi-DeConcini quantum super group.

Regarding the Kac-Procesi-DeConcini version of an arbitrary Nichols al-
gebra, see the concept of a pre-Nichols algebra in [Ang14].

4.5.5 Examples in rank 2

We now present the cases of table 1 in [Hec05] rising from Lie superalgebras
of rank 2. We will check in every case whether the exceptions of corollary
4.5.13 appear.
In rank 2, there is obviously always just one bosonic sector g′.
In the respective remarks we will express the simple roots in the standard
chamber using as in [Kac77] the standard basis εi and δi.

Heckenberger row 3

The case row 3 of table 1 in [Hec05], studied in example 4.3.5, is realised by
the Lie superalgebra lattice A(1,0). This case is described by the diagrams:

q2 −1q−2 −1 −1q2

I II

with q2 6= ±1 and simple roots I : {α1, α2}, II : {α12,−α2}. The set of
positive roots is given by {α1, α2, α12} with unique associate Cartan matrix
and inner products

aij =

 2 −1

−1 2

 , (αi, αj) =

[
2 −1
−1 0

]
.
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Therefore the mij matrix in the standard basis and after reflecting around
α2 are given by:

mI
ij =

[
2r −r
−r 1

]
, mII

ij =

[
1 −1 + r

−1 + r 1

]
.

None of the exceptions of lemma 4.5.13 appears; therefore mij is a realising
solution ∀r. This result matches with example 4.3.5.

Remark 4.5.24. As observed in example 4.3.5, if we allow the value q2 = −1
we obtain row 2 of table 1 in [Hec05].

Remark 4.5.25. The simple roots in the standard chamber of A(1, 0) can be
expressed by

α1 = ε1 − ε2, α2 = αf = ε2 − δ1.

Heckenberger row 5

Row 5 of table 1 in [Hec05] is realised by the Lie superalgebra lattice B(1,1).
This case is described by the diagrams:

q2 −1q−4 −q−2 −1q4

I II

with q2 6= ±1, q2 6∈ R4 and simple roots I : {α1, α2}, II : {α12,−α2}.
The set of positive roots is given by {α1, α2, α12, α112} with unique asso-

ciate Cartan matrix:

aij =

 2 −2

−1 2


and inner product:

(αi, αj) =

[
2 −2
−2 0

]
.

Therefore the mij matrix in the standard basis and after reflecting around
α1 are given by:

mI
ij =

 2r −2r

−2r 1

 mII
ij =

−2r + 1 2r − 1

2r − 1 1

 .
None of the exceptions of lemma 4.5.13 appears; therefore mij is a realising
solution ∀r.
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Remark 4.5.26. When q2 ∈ R3, the root α1 is q-Cartan and q-truncation.
When it is m-truncation we get:

mI
ij =

 2
3
−2r

−2r 1

 mII
ij =

5
3
− 4r 2r − 1

2r − 1 1

 mIII
ij =

 2
3

2r − 4
3

2r − 4
3

11
3
− 8r


where III: {−α1, α112} comes after reflecting around α1. The root α112 is
never m-Cartan and it is m-truncation iff r = 1

3
. But for this value of r, α1

is also m-Cartan and thus this is not a new solution.

Remark 4.5.27. If we allow q = i the system is the one described in row 4 in
section 4.4. Also in this case it corresponds to the Lie superalgebra B(1, 1).

Remark 4.5.28. The roots can be expressed by

α1 = ε1, α2 = αf = δ1 − ε1.

4.5.6 Arbitrary rank

We generalise our study to arbitrary rank cases. In every case we will see
under which assumptions the constructed mij matrices are realising solutions.

A(m,n)

q2 q2q−2

· · · −1 · · ·
q−2 q2 q−2

The simple roots in the standard chamber are:

α1, . . . , αf = αm+1, . . . , αm+n+1

with inner product matrix

(αi, αj) =



2 −1

−1
. . . . . .
. . . . . . . . .

. . . 0
. . .

. . . . . . −1
−1 2


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We list all positive roots. We denote by ∆0 the set of bosons and by ∆1 the
set of fermions according to the literature [Kac77].

∆0 = {αl + . . .+ αk, with l, k < f or l, k > f}
∆1 = {αl + . . .+ αk, with l ≤ f ≤ k, l 6= k}

We now apply the lemmas of the previous section to determine possible
conditions on r′ and r′′ such that the mij matrix defined as in 4.5.5 is a
realising solution.

• All the bosons are either in g′ or g′′. Then, thanks to lemma 4.5.11, we
know they are always m-Cartan.

• All the fermions are isotropic and have f = ±1. Thanks to lemma
4.5.12 we know that if they are not strong orthogonal to any other root
they are m-truncation.

• We now focus on the case of strong orthogonal fermions. Let us consider
two fermions:

γ1 = αl1 + . . .+ αk1 with l1 ≤ f ≤ k1,

γ2 = αl2 + . . .+ αk2 with l2 ≤ f ≤ k2.

They are strong orthogonal if l1 6= l2, k1 6= k2. In this case we have to
check that m12 = (γ1, γ2)g′r

′ + (γ1, γ2)g′′r
′′ + f(γ1)f(γ2) = 0.

We thus compute the inner products in the two bosonic sides. We
assume l1 < l2 and k1 < k2, because every other combination works
analogously and gives the same result.
Wlog we can assume l2 = l1 + 1 and k2 = k1 + 1 and thus

(γ1, γ2) =(αl1 , γ2) + (αl1+1, γ2) + . . .+ (αf , γ2) + . . .+ (γk1 , γ2)

=(αl1 , αl1+1)g′

+(αl1+1, αl1+1)g′ + (αl1+1, αl1+2)g′

+ . . .

+(αf , αf−1)g′ + (αf , αf ) + (αf , αf+1)g′′

+ . . .

+(αk1 , αk1 − 1)g′′ + (αk1 , αk1)g′′ + (αk1 , αk1+1)g′′
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The only term that contributes is (αf , αf−1)g′ + (αf , αf ) + (αf , αf+1)g′′
since the previous terms sum up to zero in g′, and the following terms
sum up to zero in g′′. Hence we have (γ1, γ2) = −1g′ − 1g′′ . Asking m12

to be zero, means to ask

−1 · r′ − 1 · r′′ + 1 = 0 ⇒ r′ + r′′ = 1

To conclude, the only condition needed for the mij matrix to be a realising
solution is r′ + r′′ = 1.

Remark 4.5.29. This condition matches with the formulation of A(m,n) in
terms of Nichols algebra diagram ([Hec06a], Table C, row 2), where qg′ = q
and qg′′ = q−1. Indeed, if r′ + r′′ = 1 then

qg′qg′′ = eiπ(αi,αi)r
′
eiπ(αj ,αj)r

′′
= eiπ2r′eiπ2r′′ = eiπ2(r′+r′′) = 1,

calling αi a root in g′ and αj a root in g′′.

Remark 4.5.30. We can write the simple roots in the standard chamber using
as in [Kac77] the standard basis ε1, . . . , εm+1, δ1, . . . , δn+1:

{α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αm+1 = εm+1 − δ1,

αm+2 = δ1 − δ2, . . . , αm+n+1 = δn − δn+1}

B(m,n)

q−4 q−4q4

· · · −1 · · ·
q4 q−4 q2

The simple roots in the standard chamber are:

α1, . . . , αf = αn, . . . , αm+n

with inner product matrix

(αi, αj) =



4 −2

−2
. . . . . .
. . . . . . . . .

. . . 0
. . .

. . . . . . −2
−2 2


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All the positive roots are:

∆0 = {αl + . . .+ αk, with l, k < f

αl + . . .+ αk, with l, k > f, k 6= m+ n

αl + . . .+ αm+n, with l > f

αl + . . .+ 2αk + . . .+ 2αm+n, with l < f, k ≤ f

αl + . . .+ 2αk + . . .+ 2αm+n, with l, k > f}

∆1 = {αl + . . .+ αm+n, with l ≤ f

αl + . . .+ 2αk + . . .+ 2αm+n, with l < f < k

αl + . . .+ αk, with l < f < k, k 6= m+ n}

We now apply the lemmas of the previous section to determine possible
conditions on r′ and r′′ such that the mij matrix defined as in 4.5.5 is a
realising solution.

• All the bosons which are not of the type γlk := αl + . . . + 2αk + . . . +
2αm+n, with l < f, k ≤ f , are either in g′ or g′′. Then, thanks to
lemma 4.5.11, we know they are always m-Cartan.

• For γlk, we need to explicitly ask condition (4.5).
The inner product is (γlk, γlk) = −2g′ − 4g′′ .

– γlk is m-truncation if 2r′ + 4r′′ = 3.

– γlk is m-Cartan if r′ + r′′ = 1.

• All the fermions which are not of the type γl := αl + . . . + αm+n, are
isotropic and have f = ±1. Thanks to lemma 4.5.12 we then know
that if they are not strong orthogonal to any other root they are m-
truncation.

• For γl, we need to explicitly ask condition (4.5).
The inner product is (γl, γl) = −1g′′ .

– γl is m-truncation holds if r′′ = 0.

– γl is m-Cartan holds if r′ + r′′ = 1.
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• We now focus on the case of strong orthogonal fermions. Let us consider
the fermions:

{γ1 := αl1 + . . .+ αm+n

γ2 := αl2 + . . .+ 2αk2 + . . .+ 2αm+n

γ3 := αl3 + . . .+ αk3}

The fermions γ1 and γ2 are strong orthogonal iff l1 6= l2;
The fermions γ2 and γ3 are strong orthogonal iff l2 6= l3 or k2 6= k3 + 1;
The fermions γ1 and γ3 are strong orthogonal iff l1 6= l3;
Two fermions of type γ2 are strong orthogonal iff have different l2 and
k2;
Two fermions of type γ3 are strong orthogonal iff have different l3 and
k3; Asking the condition mij = 0 for those cases, we find again the
condition r′ + r′′ = 1.

In conclusion, the only condition needed for the mij matrix to be a realising
solution is r′ + r′′ = 1. If this condition is satisfied the bosons with f = 2
as well as the non isotropic fermions are m-Cartan. If moreover r′ = r′′ = 1

2

then the bosons with f = 2 are also m-truncation.

Remark 4.5.31. As in the case of the Lie superalgebras of type A(m,n), the
condition r′ + r′′ = 1 matches with the formulation of B(m,n) in terms
of Nichols algebra diagram ([Hec06a], Table C, row 4), where qg′ = q and
qg′′ = q−1.

Remark 4.5.32. We can write the simple roots in the standard chamber using
as in [Kac77] the standard basis ε1, . . . , εm, δ1, . . . , δn:

{α1 = δ1 − δ2, α2 = δ2 − δ3, . . . , αn = δn − ε1,
αn+1 = ε1 − ε2, . . . , αm+n = εm.}

The bosons with f = 2 will be of the form δi + δj, while the non isotropic
fermions will be δi.

C(n)

−1 q2q−2

· · ·
q2 q2q−2 q−4 q4
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The simple roots in the standard chamber are:

αf = α1, . . . , αn

with inner product matrix

(αi, αj) =



0 −1

−1 2
. . .

. . . . . . . . .
. . . . . . −1
−1 2 −2

−2 4


.

All the positive roots are:

∆0 = {αl + . . .+ αk, with l 6= 1 k 6= n

αl + . . .+ 2αk + . . .+ 2αn−1 + αn, with l 6= 1 k 6= n

αl + . . .+ αn, with l 6= 1

2αl + . . .+ 2αn−1 + αn, with l 6= 1}

∆1 = {α1 + . . .+ αn

α1 + . . .+ αk, with k 6= 1

α1 + . . .+ 2αk + . . .+ 2αn−1 + αn, with k 6= n}

We now apply the lemmas of the previous section to determine possible
conditions on r′ such that the mij matrix defined as in 4.5.5 is a realising
solution.

• Since there is just one bosonic side it is obvious that all the bosons are
m-Cartan.

• All the fermions are isotropic, non strong orthogonal to each other,
and have f = ±1. Thanks to lemma 4.5.12 we then know that they
are m-truncation.

To conclude, the mij matrix is always a realising solution.
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Remark 4.5.33. We can write the simple roots in the standard chamber using
as in [Kac77] the standard basis ε1, δ1 . . . , δn−1:

{α1 = ε1 − δ1, α2 = δ1 − δ2, . . . , αn−1 = δn−2 − δn−1, αn = 2δn−1}

D(m,n)

q−2 q−2q2

· · · −1 · · ·
q2 q−2 q2

q2

q−2

q2

q−2

The simple roots in the standard chamber are:

α1, . . . , αn = αf , . . . , αn+m

with inner product matrix

(αi, αj) =



2 −1

−1
. . . . . .
. . . 0

. . .
. . . 2 −1 −1
−1 2 0
−1 0 2


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All the positive roots are:

∆0 = {αl + . . .+ αk, with l, k < f

αl + . . .+ αk, with l, k > f

αl + . . .+ αm+n−2 + αm+n, with l > f

αl + . . .+ 2αk + . . .+ 2αm+n−2 + αm+n−1 + αm+n, with l < f, k ≤ f

αl + . . .+ 2αk + . . .+ 2αm+n−2 + αm+n−1 + αm+n, with l, k > f

2αl + . . .+ 2αk + . . .+ 2αm+n−2 + αm+n−1 + αm+n, with l < f, k ≤ f}

∆1 = {αl + . . .+ αk, with l ≤ f ≤ k

αl + . . .+ αn+m−2 + αn+m, with l ≤ f

αl + . . .+ 2αk + . . .+ 2αm+n−2 + αn+m−1 + αn+m, with l < f < k}

We now apply the lemmas of the previous section to determine possible
conditions on r′ and r′′ such that the mij matrix defined as in 4.5.5 is a
realising solution.

• All bosons except the IV or VI type in the list, are either in g′ or g′′.
Then, thanks to lemma 4.5.11, we know they are always m-Cartan.

• The bosons of type IV have inner product −2g′ − 4g′′ .

– it is m-truncation if 2r′ + 4r′′ = 3.

– it is m-Cartan if r′ + r′′ = 1.

The bosons of type VI have inner product −4g′′ .

– it is m-truncation if 4r′′ = 3.

– it is m-Cartan if r′ + r′′ = 1.

• All fermions are isotropic and have f = ±1. Thanks to lemma 4.5.12
we then know that if they are not strong orthogonal to any other root
they are m-truncation.

• There are many possibility for two fermions to be strong orthogonal.
Asking the condition mij = 0 for those cases, we find again the condi-
tion r′ + r′′ = 1.
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In conclusion, the only condition needed for the mij matrix to be a realising
solution is r′ + r′′ = 1. If this condition is satisfied the bosons with f = 2
are m-Cartan. If moreover r′ = r′′ = 1

2
then the boson of type IV are also

m-truncation. Instead if r′ = 1
4
, r′′ = 3

4
then the boson of type VI are also

m-truncation.

Remark 4.5.34. As in the previous cases the condition r′ + r′′ = 1 matches
with the formulation ofD(m,n) in terms of Nichols algebra diagram ([Hec06a],
Table C, row 10), where qg′ = q and qg′′ = q−1.

Remark 4.5.35. We can write the simple roots in the standard chamber using
as in [Kac77] the standard basis ε1, . . . , εm, δ1, . . . , δn:

{α1 = δ1 − δ2, . . . , αn = δn − ε1, αn+1 = ε1 − ε2, . . .
. . . αm+n−1 = εm−1 − εm, αm+n = εm−1 + εm}.

The bosons of type IV will be of the form δi + δj, while the one of type VI
will be of the form 2δi.

Sporadic cases

G(3)

−1 q2 q6q−2 q−6

The simple roots in the standard chamber are {α1 = αf , α2, α3} with inner
product

(αi, αj) =

 0 −1 0
−1 2 −3
0 −3 6

 .
There is only one bosonic part g′ and the positive roots are:

{α1, α2, α3, α12, α23, α223, α123, α1223,

α12223, α2223, α22233, α1222233, α122233.}

The mij matrix is given by

mI
ij =

 1 −r 0
−r 2r −3r
0 −3r 6r

 .
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• Since there is just one bosonic side it is obvious that all the bosons
satisfy are m-Cartan.

• All the fermions, except for α1223, are isotropic and have f = ±1.
Thanks to lemma 4.5.12 we then know that they are m-truncation.

• The fermion α1223 is m-Cartan without further assumptions.

• There are no couples of strong orthogonal fermions.

To conclude the mij matrix is a realising solution ∀r.
This construction realise the Nichols algebra B(q) described row 7 of table 2
in [Hec05] when q 6= ±1, q 6∈ R3.

For this lower rank case we can also show explicitly all the reflections of
the mij matrix: reflecting mI

ij around α1 we find the following

mII
ij =

 1 −1 + r 0
−1 + r 1 −3r

0 −3r 6r

 .
Reflecting it around α12 we find the following

mIII
ij =

 2r −r −2r
−r 1 −1 + 3r
−2r −1 + 3r 1

 .
Reflecting it around α123 we find the following

mIV
ij =

 6r −3r 0
−3r 1 −1 + 2r

0 −1 + 2r 1− 2r.


Remark 4.5.36. If q2 ∈ R6, α3 is both q-Cartan and q-truncation. When it
is m-truncation we find

−1

1

ζ

2r

−1

1

ζ−2

−2r

−1

−6r

with ζ ∈ R6. This is a solution iff r = 1
6
. But for this value of r, α3 is also

m-Cartan and thus this is not a new solution.

Remark 4.5.37. The roots can be expressed by

α1 = αf = δ + ε1, α2 = ε2 α3 = ε3 − ε2
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F(4)

q4 q4 q2 −1q−4 q−4 q−2

The simple roots in the standard chamber are {α1, α2, α3, α4 = αf} with
inner product

(αi, αj) =


4 −2
−2 4 −2

−2 2 −1
−1 0

 .
There is only one bosonic part g′ and the rest of the positive roots are:

{α12, α23, α34, α233, α123, α234, α1233, α2334,

α1234, α12233, α12334, α1223334, α122334, α12233344.}

• All bosons except α12233344 are completely in the bosonic sector and
thus are m-Cartan.

• The boson α12233344 is m-Cartan without further assumptions.

• All fermions are isotropic and have f = ±1. Thanks to lemma 4.5.12
we then know they are m-truncation.

• We have two couples of strong orthogonal fermions:

{α34, α122334} {α234, α12334}

which give the condition r = 1
3
.

To conclude, the condition for the mij matrix to be a realising solution is
r = 1

3
.

D(2,1; α)

−1

−1 −1

q′ q′′

q′′′

1

1 1

r′ − 2 r′′ − 2

r′′′ − 2
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The simple roots in the standard chamber are {α1, α2 = αf , α3} with
inner product:

(αi, αj) =

 2 −2 0
−2 0 −2
0 −2 2


The positive roots are:

{α1, α2, α3, α12, α23, α123, α1223.}

Reflecting the diagram around one of the root (the system is completely
symmetric in the three roots), we obtain:

q′

r′
−1

1

q′′′

r′′′

(q′)−1

−r′
(q′′′)−1

−r′′′

Exception (4) of lemma 4.5.13 appears. Imposing that the first and the
third roots are not connected we find the condition r′ + r′′ + r′′′ = 2. In this
case these mij matrices are realising solution.
This corresponds to the condition q′ · q′′ · q′′′ = 1 of case 9 (as well as 10 and
11), rank 3, in table 2 of [Hec05].

4.6 Rank 2

4.6.1 Other cases in rank 2: construction

In this section we are going to present the examples of rank = 2 Nichols
algebra which don’t belong to the Cartan and super Lie study of the previous
two sections.

Heckenberger row 6

This case of table 1 in [Hec05] is described by two diagrams:

ζ q2q−2 ζ ζq−2ζ−1q2

I II
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where ζ ∈ R3 and q2 6= 1, ζ, ζ2 and with respectively simple roots:

I : {α1, α2} II : {−α1, α112}.

There is just one associate Cartan matrix:

aij =

 2 −2

−1 2

 .
The set of positive roots is {α1, α2, α12, α112} where α2 and α112 are only
q-Cartan while the others are only q-truncation.

Proposition 4.6.1. The following mij matrices are realising solutions of the
given braiding and its reflections:

mI
ij =

 2
3
−r

−r 2r

 mII
ij =

 2
3

−4
3

+ r

−4
3

+ r 8
3
− 2r

 .
Proof. First we check that condition (4.5)B is satisfied for α1:

m11 =
2

1− a12

=
2

3

and condition (4.5)A is satisfied for α22 and α112:

m22,22 =
2m12

a21

= 2r

m112,112 =
2m112,−1

a112,1

=
8

3
− 2r.

We then check that the reflection around α1 send one mij-matrix to the other
as follows:

mII
ij =

 2
3

−4
3

+ r

−4
3

+ r 8
3
− 2r

 =

−1 2

0 1

T  2
3
−r

−r 2r

−1 2

0 1

 = R1(mI
ij)
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Remark 4.6.2. When q2 ∈ R2, the root α2 is q-Cartan and q-truncation.
When it is m-truncation we get:

mI
ij =

 2
3
−r

−r 1

 mII
ij =

 2
3

−4
3

+ r

−4
3

+ r 11
3
− 4r

 mIII
ij =

5
3
− 2r r − 1

r − 1 1

 .
with III: {α12,−α2}.
The root α112 is never m-truncation and it is m-Cartan iff r = 1

2
. But for

this value of r, α2 is also m-Cartan and thus this is not a new solution.

As we can see in [Hel10] truncation and Serre relations are the only de-
fining relations. We have the following:

Proposition 4.6.3. The truncation relations hold for every r ≥ 0, while the
Serre relations hold for 2r 6∈ −N and r 6= 1+3k

3
, 2+3k

3
.

Remark 4.6.4. We could call this case of colour type. It indeed behaves as
a super Lie case except for the fact that mff = 2

3
, and not 1. In particular

lemma 4.5.15 trivially extends to this case as a classification lemma, with the
appropriate changes.

Heckenberger row 9

This case of table 1 in [Hec05] is described by three diagrams:

−ζ2 −ζ2ζ −ζ2 −1ζ3 −ζ−1 −1−ζ3

I II III

where ζ ∈ R12 and with respectively simple roots:

I : {α1, α2} II : {−α1, α112} III : {α12,−α122}.

The associate Cartan matrices are:

aI
ij =

 2 −2

−2 2

 aII
ij =

 2 −2

−1 2

 aIII
ij =

 2 −3

−1 2

 .
The set of positive roots is {α1, α2, α12, α112, α122} where α12 is only q-Cartan
while the others are only q-truncation.



97

Proposition 4.6.5. The following mij matrices are realising solutions of the
given braiding and its reflections:

mI
ij =

 2
3
− 7

12

− 7
12

2
3

 mII
ij =

 2
3
−3

4

−3
4

1

 mIII
ij =

 1
6
−1

4

−1
4

1


Proof. First we check that condition (4.5)B is satisfied for all the roots:

m11 =
2

1− a12

=
2

3

m22 =
2

1− a21

=
2

3

m112,112 =
2

1− a112,1

= 1

m122,122 =
2

1− a122,12

= 1

and condition (4.5)A is satisfied for the root α12:

m12,12 =
2m−122,12

a12,112

=
1

6
.

We then check that the reflections send onemij-matrix to the other as follows:

mII
ij =

 2
3
−3

4

−3
4

1

 =

−1 2

0 1

T  2
3
− 7

12

− 7
12

2
3

−1 2

0 1

 = R1(mI
ij)

mIII
ij =

 1
6
−1

4

−1
4

1

 =

1 0

1 −1

T  2
3
−3

4

−3
4

1

1 0

1 −1

 = R122 ◦ R2(mI
ij)

Corollary 4.6.6. By formula (4.4) for rank 2, we have that the central
charge of the system is c = −126.
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Proposition 4.6.7. Truncation and Serre relations always hold, by lemma
4.2.3.

We conclude this case with a picture illustrating how the set of simple
roots behave under reflections. We write I, II, III, to indicate to which
diagram do the simple roots in each case belong.

{α1,α2}I

{−α1,α112}II {α122,−α2}II

{α12,−α112}III {−α122,α12}III

{α112,−α12}III

R1 R2

R112 R122

sign swap R12

(4.9)

Heckenberger row 10

This case of table 1 in [Hec05] is described by three diagrams:

−ζ ζ3ζ−2 ζ3 −1ζ−1 −ζ2 −1ζ

I II III

where ζ ∈ R9 and with respectively simple roots:

I : {α1, α2} II : {−α2, α122} III : {α12,−α122}.

The associate Cartan matrices are:

aI
ij =

 2 −2

−2 2

 aII
ij =

 2 −2

−1 2

 aIII
ij =

 2 −4

−1 2

 .
The set of positive roots is {α1, α2, α12, α112, α122, α11122} where α1 and α12

are only q-Cartan while the others are only q-truncation.
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Proposition 4.6.8. The following mij matrices are realising solutions of the
given braiding and its reflections:

mI
ij =

 5
9
−5

9

−5
9

2
3

 mII
ij =

 2
3
−7

9

−7
9

1

 mIII
ij =

 1
9
−2

9

−2
9

1


Proof. We check that the roots {α2, α112, α122, α11122} satisfy condition (4.5)B,
while the root α1 and α12 satisfy condition (4.5)A.
We check that the reflections send one mij-matrix to the other.

Corollary 4.6.9. By formula (4.4) for rank 2, we have that the central
charge of the system is −1088

5
.

Proposition 4.6.10. Truncation and Serre relations always hold, by lemma
4.2.3.

Heckenberger row 12

This case of table 1 in [Hec05] is described by three diagrams:

ζ2 ζ−1ζ ζ2 −1−ζ−1 ζ −1−ζ

I II III

where ζ ∈ R8 and with respectively simple roots:

I : {α1, α2} II : {−α1, α1112} III : {α112,−α1112}.

There is just one associate Cartan matrix:

aij =

 2 −3

−1 2

 .
The set of positive roots is {α1, α2, α12, α112, α1112, α11122} where α2 and α112

are only q-Cartan while the others are only q-truncation.

Proposition 4.6.11. The following mij matrices are realising solutions of
the given braiding and its reflections:

mI
ij =

 1
2
−7

8

−7
8

7
4

 mII
ij =

 1
2
−5

8

−5
8

1

 mIII
ij =

 1
4
−3

8

−3
8

1


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Proof. We check that the roots {α1, α12, α1112, α11122} satisfy condition (4.5)B,
while the root α2 and α112 satisfy condition (4.5)A.
We check that the reflections send one mij-matrix to the other.

Corollary 4.6.12. By formula (4.4) for rank 2, we have that the central
charge of the system is −874

7
.

Proposition 4.6.13. Truncation and Serre relations always hold, by lemma
4.2.3.

Heckenberger row 13

This case of table 1 in [Hec05] is described by four diagrams:

ζ6 −ζ−4−ζ−1 ζ6 ζ−1ζ −ζ−4 −1ζ5 ζ −1ζ−5

I II III IV

where ζ ∈ R24 and with respectively simple roots:

I : {α1, α2} II : {−α1, α1112} III : {−α2, α122} IV : {α12,−α122}..

The associate Cartan matrices are:

aI
ij =

 2 −3

−2 2

 aII
ij =

 2 −3

−1 2

 aIII
ij =

 2 −2

−1 2

 aIV
ij =

 2 −5

−1 2

 .
The set of positive roots is {α1, α2, α12, α112, α122, α1112, α11122, α1111222} where
α12 and α1112 are the only q-Cartan roots while the others are only q-
truncation.

Proposition 4.6.14. The following mij matrices are realising solutions of
the given braiding and its reflections:

mI
ij =

 1
2
−13

24

−13
24

2
3

 mII
ij =

 1
2
−23

24

−23
24

23
12



mIII
ij =

 1 −19
24

−19
24

2
3

 mIV
ij =

 1 − 5
24

− 5
24

1
12


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Proof. We check that the roots α12 and α1112 satisfy condition (4.5)A, while
the rest condition (4.5)B.
We check that the reflections send one mij-matrix to the other.

Corollary 4.6.15. By formula (4.4) for rank 2, we have that the central
charge of the system is −7826

23
.

Proposition 4.6.16. Truncation and Serre relations always hold, by lemma
4.2.3.

Heckenberger row 14

This case of table 1 in [Hec05] is described by two diagrams:

ζ −1ζ2 −ζ−2 −1ζ−2

I II

where ζ ∈ R5 and with respectively simple roots:

I : {α1, α2} II : {α12,−α2}.

The associate Cartan matrices are:

aI
ij =

 2 −3

−1 2

 aII
ij =

 2 −4

−1 2

 .
The set of positive roots is {α1, α2, α12, α112, α1112, α1111222, α11122, α11111222}
where α1, α12, α112 and α11122 are only q-Cartan while the others are only
q-truncation.

Proposition 4.6.17. The following mij matrices are realising solutions of
the given braiding and its reflections:

mI
ij =

 2
5
−3

5

−3
5

1

 mII
ij =

 1
5
−2

5

−2
5

1

 .
Proof. We check that the roots α1, α12, α112 and α11122 satisfy condition
(4.5)A, while the others satisfy condition (4.5)B.
We check that the reflections send one mij-matrix to the other.
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Corollary 4.6.18. By formula (4.4) for rank 2, we have that the central
charge of the system is −364.

Proposition 4.6.19. Truncation and Serre relations always hold, by lemma
4.2.3.

Heckenberger row 17

This case of table 1 in [Hec05] is described by two diagrams:

−ζ −1−ζ−3 −ζ−2 −1−ζ3

I II

where ζ ∈ R7 and with respectively simple roots:

I : {α1, α2} II : {α12,−α2}.
The associate Cartan matrices are:

aI
ij =

 2 −3

−1 2

 aII
ij =

 2 −5

−1 2

 .
The set of positive roots is

{α1, α2, α12, α112, α1112, α11122, α1111222, α111112222, α111111122222,

α11111222, α1111111122222, α11111112222}
where {α1, α12, α112, α11122, α1111222, α11111222} are only q-Cartan while the
others are only q-truncation.

Proposition 4.6.20. The following mij matrices are realising solutions of
the given braiding and its reflections:

mI
ij =

 6
14

− 9
14

− 9
14

1

 mII
ij =

 2
14

− 5
14

− 5
14

1

 .
Proof. We check that the roots {α1, α12, α112, α11122, α1111222, α11111222} satisfy
condition (4.5)A, while the others satisfy condition (4.5)B.
We check that the reflections send one mij-matrix to the other.

Corollary 4.6.21. By formula (4.4) for rank 2, we have that the central
charge of the system is −962.

Proposition 4.6.22. Truncation and Serre relations always hold, by lemma
4.2.3.
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4.6.2 Classification: rank 2

In this section we are going to prove the following

Theorem 4.6.23. For all finite-dimensional diagonal Nichols algebras of
rank = 2, all mij matrices which are realising solutions of the given braiding
are the ones constructed in sections 4.4, 4.5 or 4.6.1.

In order to prove it, we are going to go through table 1 in [Hec05], see
which roots are q-truncation, q-Cartan and compute for every diagram the
corresponding mij. We will see that for every case, the mij match with one of
the constructed in the previous sections, and that there are no other possible
solutions.

To prove this result we will need the following tools:

Proposition 4.6.24. We consider a diagram

qii qjjqijqji

where we assume that both {αi, αj} are q-truncation, and apply a reflection
Ri around the root αi

Ri : αi 7−→ −αi
αj 7−→ α

arriving to a new diagram with simple roots {−αi, α := αj − aijαi}.
We have:

1. if β is m-truncation then

mij =
aij

1− aij
− 1

aij(1− aβ,−i)
+

1

aij(1− aji)
(4.10)

2. if β is m-Cartan then

mij =
aij

1− aij
+

(
1

1−aji −
aij

(1−aij)aβi

)
(− 1

aβi
+ aij)

(4.11)
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Proof. Since {αi, αj} are only q-truncation, thus m-truncation, we have the
relations

mii =
2

1− aij
mjj =

2

1− aji
.

1. If β is m-truncation then mββ = 2
1−aβ,−i

. But for definition of β we

have:
mββ = mjj − 2aijmij + a2

ijmii.

Gathering all the information together we get:

2

1− aβ,−i
=

2

1− aji
− 2aijmij + a2

ij

2

1− aij

and from this the final result.

2. This case is completely analogous, with the only difference that β is
m-Cartan and thus mββ =

2mβ,−i
aβi

we will then have:

mββ =
2mβ,−i

aβi
= −2

mij

aβi
+

2aij(
2

1−aij )

aβi

mββ =
2

1− aji
− 2aijmij + a2

ij

2

1− aij
.

The two equations together give the thesis.

Analogously:

Proposition 4.6.25. We consider a diagram

qii qjjqijqji

where we assume that {αi, αj} are the first q-Cartan and the latter q-truncation.
We apply a reflection around the q-truncation root αj,

Rj : αj 7−→ −αj
αi 7−→ β

arriving to a new diagram associated to the roots: {β := αi − ajiαj, −αj}.
We have:
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1. if β is m-truncation then

mij =
aij

1− aijaji

(
1

1− aβ,−j
−

a2
ji

1− aji

)
(4.12)

2. if β is m-Cartan then

mij =
aijaji

1− aji
· ajiaβ,−j − 2

ajiaijaβ,−j − aβ,−j − aij
(4.13)

Heckenberger row 2

We have d = 1 and then `1 = `2 = `
gdc(`,2)

. Therefore ` 6= 2 and since aij = −1
we have the following:
If ` > 4 or ` = 3 then by classification lemma 4.4.6 we get a unique solution,
presented in section 4.4 Heckenberger row 2.
If ` = 4 then qii = q2 = −1 and the roots are both q-Cartan and q-truncation:

• If both are m-Cartan, we find a unique solution, by lemma 4.4.6 presen-
ted in section 4.4 Heckenberger row 2, in the limit case q2 = −1.

• If one of the two is m-truncation, we find a unique solution, presented
in section 4.5, Heckenberger row 3, in the limit case q2 = −1. This
result is a consequence of lemma 4.5.15.

• If both are only m-truncation we recognise the matrix

 1 −p′

2

−p′

2
1


which is the other Weyl chamber in example 4.3.5.

Heckenberger row 3

We have d = 1 and then `1 = `2 = `
gdc(`,2)

. Therefore ` 6= 2 and since
a12 = −1 we have the following:
If ` > 4 or ` = 3 then by classification lemma 4.5.15 we get a unique solution,
presented in section 4.5 case Heckenberger row 3.
If ` = 4, α1 is both q-Cartan and q-truncation.

• If it is m-Cartan, we find again the unique solution presented in section
4.5 Heckenberger row 3, in the limit case q2 = −1. This result is a
consequence of lemma 4.5.15.
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• If it is m-truncation we recognise again the matrix

 1 −p′

2

−p′

2
1

 which

is the other Weyl chamber in example 4.3.5.

Heckenberger row 4

We have d = d2 = 2 and then `1 = `
gdc(`,2)

, `2 = `
gdc(`,4)

. Moreover ` 6= 2, 4,

because q2 6= ±1, and since a12 = −2, a21 = −1 we have the following:
If ` > 8 or ` = 5, 7 then by classification lemma 4.4.6 we get a unique solution,
presented in section 4.4 Heckenberger row 4.
If ` = 8 then the long root α2 is both q-Cartan and q-truncation, while α1 is
only q-Cartan.

• If α2 is m-Cartan, we find again the unique solution presented in section
4.4, Heckenberger row 4, by lemma 4.4.6.

• If α2 is m-truncation, we find the unique solution presented in section
4.5, Heckenberger row 5, in the limit case q2 = i, by lemma 4.5.15.

If ` = 3, 6 then the short root α1 is both q-Cartan and q-truncation, while
α2 is only q-Cartan.

• If α1 is m-Cartan, we find a unique solution, presented in section 4.4
Heckenberger row 4, again thanks to lemma 4.4.6.

• If α1 is m-truncation, we find a family of solutions, presented in section
4.6.1, Heckenberger row 6, up to rescaling. The uniqueness follows from
lemma 4.5.15, as observed in remark 4.6.4.

Heckenberger row 5

We have d = 1 and then `1 = `
gdc(`,2)

. Moreover ` 6= 2, 4, because q2 6= ±1,
and since a12 = −2 we have the following:
If ` > 6 or ` = 5 then by classification lemma 4.5.15 we get a unique solution,
presented in section 4.5 Heckenberger row 5.
If ` = 3, 6 then the bosonic root α1 is both q-Cartan and q-truncation.

• If α1 is m-Cartan, we find again the unique solution presented in section
4.5 Heckenberger row 5, by lemma 4.5.15.



107

• If α1 is m-truncation, we recognise the matrix

 2
3
−2r

−2r 1

 of remark

4.5.26 which is a solution only for r = 1
3
.

Heckenberger row 6

We have d = 1 and then `2 = `
gdc(`,2)

. Moreover ` 6= 2, 3, 6, because q2 6=
1, ζ, ζ2, with ζ ∈ R3. Since a12 = −1 we have the following:
If ` > 6 or ` = 5 then by classification lemma 4.5.15 we get a unique solution,
presented in section 4.6.1 Heckenberger row 6 (see remark 4.6.4).
If ` = 4 then the root α2 is both q-Cartan and q-truncation.

• If α2 is m-Cartan, we find again the unique solution presented in section
4.6.1 Heckenberger row 6, by lemma 4.5.15.

• If α2 is m-truncation, we recognise the matrix

 2
3
−r

−r 1

 of remark

4.6.2 which is a solution only for r = 1
2
.

Heckenberger row 7

We apply formula (4.10) to the reflection R1 and R2, since the simple roots
α1 and α2 as well as the ones after reflections are only q-truncation and thus
m-truncation. From the first reflection we obtain m12 = −2

3
, while from the

latter m12 = −1
2
. Since these results don’t match, it means that there is

no possible formulation of the Nichols Algebra braiding in terms of the mij

matrix.

Remark 4.6.26. We have q-truncation roots αi, αj, with qii = ζ, qjj = ζ−1,
both third roots of unity and it is not possible to realise both of them with
mii = mjj = 2

3
. This is another way to see that this case is not realisable.

Heckenberger row 8

We apply formula (4.10) to the reflections R1 and R2, since the simple roots
α1 and α2 as well as the ones after reflections are only q-truncation and thus
m-truncation. From the first reflection we obtain m12 = −3

4
, while from the

latter m12 = − 7
12

. Since these results don’t match, it means that there is



108

no possible formulation of the Nichols Algebra braiding in terms of the mij

matrix.

Heckenberger row 9

We apply formula (4.10) to the reflection R1 or R2, since the simple roots
α1 and α2 as well as the ones after reflections are only q-truncation and thus
m-truncation. The resulting m12 shows that this is the mij appearing in
section 4.6.1. This is thus the only possible solution.

Heckenberger row 10

We apply formula (4.12) to the reflection R2, since the simple root α1 is only
q-Cartan and thus m-Cartan, while α2 as well as the ones after reflections are
only q-truncation and thus m-truncation. The resulting m12 shows that this
is the mij appearing in section 4.6.1. This is thus the only possible solution.

Heckenberger row 11

We have d = d2 = 3 and then `1 = `
gdc(`,2)

, `2 = `
gdc(`,6)

. Moreover ` 6= 2, 3, 4, 6

because q2 6= ±1, q2 6∈ R3. Since a12 = −3 and a21 = −1 we have the
following:
If ` > 12 or ` = 5, 7, 9, 10, 11 then by classification lemma 4.4.6 we get a
unique solution, presented in section 4.4 Heckenberger row 11.
If ` = 12 then the root α2 is both q-Cartan and q-truncation, while the root
α1 is only q-Cartan.

• If α2 is m-Cartan, we find again the unique solution presented in section
4.4 Heckenberger row 11, by lemma 4.4.6.

• If α2 is m-truncation, we recognise the matrix

 2r −3r

−3r 1

 of remark

4.4.26 which is a solution only for r = 1
6
.

If ` = 8 then the root α1 is both q-Cartan and q-truncation, while the root
α2 is only q-Cartan.

• If α1 is m-Cartan, we find again the unique solution presented in section
4.4 Heckenberger row 11, by lemma 4.4.6.
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• If α1 is m-truncation, we recognise the matrix

 1
2
−3r

−3r 6r

 of remark

4.4.27 which is a solution only for r = 1
4
.

Heckenberger row 12

We apply formula (4.12) to the reflections R1, since the simple roots α1 as
well as the ones after reflections are only q-truncation and thus m-truncation,
while α2 is only q-Cartan, and thus m-Cartan. The result is m12 = −7

8
, which

matches with the one of section 4.6.1.

Heckenberger row 13

We apply formula (4.10) to the reflection R1 or R2, since the simple roots
α1 and α2 as well as the ones after reflections are only q-truncation and thus
m-truncation. The resulting m12 shows that this is the mij appearing in
section 4.6.1. This is thus the only possible solution.

Heckenberger row 14

We apply formula (4.13) to the reflections R2, since the simple roots α1 as
well as the ones after reflections are only q-Cartan and thus m-Cartan, while
α2 is only q-truncation, and thus m-truncation. The result is m12 = −3

5
,

which matches with the one of section 4.6.1.

Heckenberger row 15

We apply formula (4.10) to the reflections R1 and (4.11) to R2 since the
simple roots α1 and α2 as well as the ones after R1 are only q-truncation
and thus m-truncation, while the ones after R2 are only q-Cartan, and thus
m-Cartan. From the first reflection we obtain m12 = −4

5
, while from the

latter m12 = −11
20

. Since these results don’t match, it means that there is
no possible formulation of the Nichols Algebra braiding in terms of the mij

matrix.
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Heckenberger row 16

The root α1 is q-Cartan so we can’t start with the system of simple roots
α1, α2 if we want to compare the results of the reflections around them. We
then start with the simple roots α122 and −α2 which are only q-truncation
and thus m-truncation. After reflection R122 we obtain a only q-Cartan, and
thus m-Cartan, simple root. While after reflection R2 we obtain a only q-
truncation, and thus m-truncation, simple root. We then apply (4.11) toR122

and (4.10) to R2 obtaining to different results. Hence there is no possible
formulation of the Nichols Algebra braiding in terms of the mij matrix.

Heckenberger row 17

We apply formula (4.12) to the reflections R2, since the simple roots α2 as
well as the ones after reflections are only q-truncation and thus m-truncation,
while α1 is only q-Cartan, and thus m-Cartan. The result is m12 = − 5

14
,

which matches with the one of section 4.6.1.

4.7 Rank 3

We now rise the rank by one and construct all mij-matrices which realise
finite-dimensional diagonal Nichols algebras of rank 3, listed in table 2 of
[Hec05].

For Cartan type we will refer to the study of section 4.4. For super Lie
type we will explicitly compute the realising solutions.
For the other cases, we will see that the mij matrices are completely fixed
by the lower rank: this will imply uniqueness of the solution and make it not
just a construction result but also a classification one.

In particular for these latter cases we will proceed as follows:

• Given a q-diagram in rank 3, we will consider it as two rank 2 q-
diagrams joined in the middle node. We will then associate to both
sides the mij-matrices realising them, found in the rank 2 study. For
these mij-matrices to be compatible, some restriction on the parameter
of which they depend will possibly appear.
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• We will then reflect the q-diagram on its q-truncation roots and pro-
ceed again as in the first point for the new diagram.
We reflect until we arrive not just to an already found q-diagram, but
also when the mij realisation is repeated (the mij matrix can be differ-
ent also if associated to the same q-diagram).

• We will then have to make sure that all the conditions found on the
parameters are compatible and acceptable, in order for the rank 3 mij-
matrices to be realising solutions.

The q-diagrams and the associated realising solutions are listed in table
4.2 of the Appendix.

Heckenberger row 1

This case belongs to the Cartan section. In particular it corresponds to the
Lie algebras A3 and it is described by the following q-diagram with corres-
ponding mij solution:

q2

2r

q2

2r

q2

2r

q−2

−2r

q−2

−2r

Remark 4.7.1. When q2 ∈ R2 the roots are both q-Cartan and q-truncation
and the q-diagram reads

−1 −1 −1−1 −1

We have the following extra solutions:

– When α1 is m-truncation and α2, α3 are m-Cartan we find

−1

1

−1

2r

−1

2r

−1

−2r

−1

−2r

which is one chamber of the Lie superalgebra A(2, 0) described in Heck-
enberger row 4.

– When α1, α2 are m-truncation and α3 is m-Cartan we find
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−1

1

−1

1

−1

2r

−1

r′
−1

−2r

which is a m-solution just for r = 1
2

and r′ = −1. But for these values
of r, r′ the roots α1, α2 are also m-Cartan and thus this is not a new
solution.

– When α2 is m-truncation and α1, α3 are m-Cartan we find

−1

2r′
−1

1

−1

2r′′
−1

−2r′
−1

−2r′′

This is a solution either for r′ = 1
2

for which we end up again in the
previous point, or for r′ = 1 − r′′, which gives us one chamber of the
Lie superalgebra A(1, 1) described in Heckenberger row 8.

– When α1, α3 are m-truncation and α2 is m-Cartan we find

−1

1

−1

2r

−1

1

−1

−2r

−1

−2r

which is another chamber of the Lie superalgebra A(1, 1) described in
Heckenberger row 8.

– When the roots are all m-truncation we find

−1

1

−1

1

−1

1

−1

r′
−1

r′′

This is a solution either for r′ = −r′′ − 2 which is again a chamber of
the Lie superalgebra A(1, 1), or for r′ = r′′ = −1 for which the roots
are also m-Cartan and thus does not give a new solution.
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Heckenberger row 2

This case belongs to the Cartan section. In particular it corresponds to the
Lie algebras B3 and it is described by the following q-diagram with corres-
ponding mij solution:

q4

4r

q4

4r

q2

2r

q−4

−4r

q−4

−4r

Remark 4.7.2. When q2 ∈ R4 the roots α1, α2 are both q-Cartan and q-
truncation and the q-diagram reads

−1 −1 i−1 −1

For all the possible combinations of m-truncation and m-Cartan roots, no
new solution is found. In some cases we find the Lie superalgebra B(2, 1)
described in Heckenberger row 5.

Remark 4.7.3. When q2 ∈ R3 the root α3 is both q-Cartan and q-truncation
and the q-diagram reads

ζ2 ζ2 ζζ−2 ζ−2

with ζ ∈ R3. The case when it is m-truncation is a solution only for r = 1
3

for which the root is also m-Cartan and thus does not give a new solution.

Heckenberger row 3

This case belongs to the Cartan section. In particular it corresponds to the
Lie algebras C3 and it is described by the following q-diagram with corres-
ponding mij solution:

q2

2r

q2

2r

q4

4r

q−2

−2r

q−4

−4r

Remark 4.7.4. If q2 ∈ R4, α3 is both q-Cartan and q-truncation and the
q-diagram reads
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i

2r

i

2r

−1

1

−i
−2r

−1

−4r

The case when it is m-truncation is a solution iff r = 1
4

for which it is actually
also m-Cartan. So this is not a new solution.

Heckenberger row 4

Row 4 of table 2 in [Hec05] corresponds to the Lie superalgebra A(2, 0).
The simple roots in the standard chamber are {α1 = αf , α2, α3}. We then
have just a bosonic part g′. The inner products is given by:

(αi, αj) =

 0 −1 0
−1 2 −1
0 −1 2


and therefore:

−1

1

q2

2r

q2

2r

q−2

−2r

q−2

−2r

Reflecting around α1 we find the following

−1

1

−1 q2

2r

q2

−2 + 2r

q−2

−2r1

Reflecting around the second root we find a symmetric result.
The roots satisfy condition (4.5) ∀r and therefore this mij is a realising
solution.

Heckenberger row 5

Row 5 of table 2 in [Hec05] corresponds to the Lie superalgebra B(2, 1).
The simple roots in the standard chamber are {α1 = αf , α2, α3}. We then
have just a bosonic part g′. The inner products is given by:

(αi, αj) =

 0 −2 0
−2 4 −2
0 −2 2


and therefore:
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−1

1

q4

4r

q2

2r

q−4

−4r

q−4

−4r

Reflecting around α1 we find the following

−1

1

−1 q2

2r

q4

−2 + 4r

q−4

−4r1

and after another reflection around the second root we find the following

q4

4r

−1

1

−q−2q−4

−4r

q4

−2 + 4r1− 2r

The roots satisfy condition (4.5) ∀r and therefore this mij is a realising
solution.

Remark 4.7.5. If q2 ∈ R4 then the root α2 is both q-Cartan and q-truncation.
This case has been already studied in details in Heckenberger row 2 remark
4.7.2.

Remark 4.7.6. If q2 ∈ R3 then the root α3 is both q-Cartan and q-truncation.
When it is m-truncation we get:

−1

1

ζ2

4r

ζ

2
3

ζ−2

−4r

ζ−2

−4r

This is a solution iff r = 1
3
. But for this value of r, α3 is also m-Cartan

and thus this is not a new solution.

Heckenberger row 6

Row 6 of table 2 in [Hec05] corresponds to the Lie superalgebra C(3).
The simple roots in the standard chamber are {α1 = αf , α2, α3}. We then
have just a bosonic part g′. The inner products is given by:

(αi, αj) = −

 0 −1 0
−1 2 −2
0 −2 4


and therefore:
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−1

1

q2

2r

q4

4r

q−2

−2r

q−4

−4r

Reflecting around α1 we find the following

−1

1

−1

1

q4

4r

q2

−2 + 2r

q−4

−4r

Reflecting around α12 we find the following

−1

q2 −1

q−2 q4

q−2

1

2r 1

−2r −2 + 4r

−2r

The roots satisfy condition (4.5) ∀r and therefore this mij is a realising
solution.

Remark 4.7.7. If q2 ∈ R4, α3 is both q-Cartan and q-truncation. When it is
m-truncation we find

−1

1

i

2r

−1

1

−i
−2r

−1

−4r

This is a solution iff r = 1
4
. But for this value of r, α3 is also m-Cartan and

thus this is not a new solution.

Remark 4.7.8. The simple roots in the standard chamber can be expressed
according to [Kac77] by

α1 = αf = ε1 − δ1, α2 = δ1 − δ2 α3 = 2δ2.

Heckenberger row 7

Row 7 of table 2 in [Hec05] corresponds to the Lie superalgebra G(3) and
it has been already explicitly treated as sporadic case of super Lie type in
section 4.5.6.



117

Heckenberger row 8

Row 8 of table 2 in [Hec05] corresponds to the Lie superalgebra A(1, 1).
The simple roots in the standard chamber are {α1, α2 = αf , α3}. We then
have two bosonic parts g′ and g′′. The inner products is given by:

(αi, αj) =

 2 −1 0
−1 0 −1
0 −1 2


and therefore:

q2

2r′
−1

1

q−2

2r′′
q−2

−2r′
q2

−2r′′

Reflecting around α2 we find the following

−1 −1 −1q2 q−2

1 1 1−2 + 2r′ −2 + 2r′′

Other reflections give different mij matrices as shown in table 4.2. How-
ever, exception (4) of lemma 4.5.13, already appears. Indeed to the latter
diagram is associated the following:

mC
ij =

 1 −1 + r′ −1 + r′ + r′′

−1 + r′ 1 −1 + r′′

−1 + r′ + r′′ −1 + r′′ 1

 .
We then have to ask mC

13 = 0, i.e. r′+r′′ = 1. In this case these mij matrices
are realising solution.

Remark 4.7.9. The simple roots in the standard chamber can be expressed
according to [Kac77] by

α1 = ε1 − ε2, α2 = αf = ε2 − δ1, α3 = δ1 − δ2,

with vectors εi generating g′ and δi generating g′′.

Heckenberger row 9-10-11

Rows 9,10,11 of table 2 in [Hec05] correspond to the Lie superalgebraD(2, 1;α)
and it has been already explicitly treated as sporadic case of super Lie type
in section 4.5.6.
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Heckenberger row 12

The first diagram is a composition of the diagrams of rank 2: #2 with
q = −ζ−1 and #6 with q = −ζ−1, with ζ ∈ R3.

−ζ−1

2r′
−ζ−1

2r′
ζ−ζ

−2r′
−ζ

2r′′ −2r′′ 2
3

For them to be joint in the middle circle we find r′ = r′′ =: r.
The only q-truncation root is the third. Reflecting on it we find the same
diagram and as matching condition 2r = 8

3
− 2r, i.e. r = 2

3
. But q = eiπr ∈

R6.
So this case is not realisable.

Heckenberger row 13

This case has two sub cases: ζ ∈ R3 and ζ ∈ R6 and diagram:

ζ

2r′
ζ

2r′
−1ζ−1

−2r′
ζ−2

2r′′ −4r′′ 1

1. Suppose ζ ∈ R3. The first diagram is a composition of the diagrams of
rank 2: #2 with q = ζ and #5 with q = ζ. For them to be joint in the
middle circle we find r′ = r′′ =: r.
The only q-truncation root is the third. Reflecting on it we find a
diagram composition of #4 with q = −ζ−1 and #5 with q = ζ. As
matching condition we find r = −2r + 1, i.e. r = 1

3
which is an

acceptable condition.
This case is thus realisable by the unique solution with parameter r = 1

3
.

2. Suppose ζ ∈ R6. We proceed analogously, but after reflecting around
the third root we find a diagram which is composition of #6 with q = ζ
and #5 with q = ζ. The condition now is r = 1

6
which is an acceptable

condition.
This case is thus realisable by the unique solution with parameter r = 1

6
.
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Heckenberger row 14

This case is not realisable, since one of the diagrams contains diagram #7 of
rank 2 which is on turn not realisable.

Heckenberger row 15

The first diagram is a composition of the diagrams of rank 2: #3 with q = ζ
and #5 with q = ζ, where ζ ∈ R3.

−1

1

ζ

2r′
−1ζ−1

−2r′
ζ

2r′′ −4r′′ 1

For them to be joint in the middle circle we find r′ = r′′ =: r.
After the reflections around R12 ◦ R1 we find the condition r = 1

3
which is

acceptable and gives a unique realisable solution.

Heckenberger row 16

The first diagram is a composition of the diagrams of rank 2: #3 with q = ζ
and #6 with q = −ζ, where ζ ∈ R3.

−1

1

ζ

2r′
−ζζ−1

−2r′
−ζ−1

2
3
−2r′′ 2r′′

For them to be joint in the middle circle we find r′ = 1
3
.

After reflecting on the second root we find the condition r′′ = 5
6
.

This case is thus realisable by the unique solution with parameters r′ = 1
3

and r′′ = 5
6
.

Heckenberger row 17

This case is not realisable, since one of the diagrams contains diagram #7 of
rank 2 which is on turn not realisable.



Heckenberger row 18

The first diagram is a composition of the diagrams of rank 2: #2 with q = ζ
and #6 with q = ζ, with ζ ∈ R9.

ζ

2r′
ζ

2r′
ζ−3ζ−1

−2r′
ζ−1

2r′′ −2r′′ 2
3

For them to be joint in the middle circle we find r′ = r′′ =: r.
The only q-truncation root is the third. Reflecting on it we find the same
diagram and as matching condition r = −8

3
+ 2r, i.e. r = 8

9
.

This case is thus realisable by the unique solution with parameter r = 8
9
.

4.8 Rank ≥ 4

The construction of all mij-matrices, which realise finite-dimensional diag-
onal Nichols algebras of rank ≥ 4 can be obtained directly from rank 3.
Namely, for a given q-diagram of [Hec06a] one has to combine in a coherent
way the mij for some overlapping subdiagrams. It is indeed enough to know
rank 3 because the effect of a reflection Rk on a pair of roots αi, αj and qij,
mij only depends on the rank 3 subdiagram αi, αj, αk.

4.9 Tables: realising lattices of Nichols algeb-

ras in rank 2 and 3

We now list from [Hec05] all finite-dimensional diagonal Nichols algebras
in rank 2 and 3 in terms of their q-diagrams, and below each of them we
display the corresponding realising lattice in terms of mij-diagrams, such
that qij = eiπmij and the reflection compatibility 4.5 holds.
The numbers of the rows are Heckenberger’s numbering, but sometimes we
subdivide the cases, e.g. 2′, 2′′. Note that we display the Nichols algebras
associated to quantum groups as Heckenberger, in contrast to the notation
used for quantum groups and used in section 4.4, 4.5, which means that there
is an additional 2 factor in the q-exponent missing.



Table 4.1: Realisation of finite-dimensional diagonal Nichols algebras of
rank 2.

row Braiding Conditions

2′

−1 −1−1

−rr r One solution according to A2 (see 2′′).

−1 −1−1

−rr 1

−1 −1−1

−2 + r1 1 One solution according to A(1, 0) (see 3).

2′′

q qq−1

−rr r q 6= ±1 Cartan, A2

3

q −1q−1

−rr 1

−1 −1q

−2 + r1 1 q 6= ±1 Super Lie, A(1, 0)

4′

i −1−1

−2rr 2r
i ∈ R4

One solution according to B2 (see 4′′′).

i −1−1

−2rr 1

i −1−1

−2 + 2r−r + 1 1 One solution according to B(1, 1) (see 5).

4′′

ζ ζ−1ζ

−2rr 2r
ζ ∈ R3

One solution according to B2 (see 4′′′).

ζ ζ−1ζ

−2r2
3

2r

ζ ζ−1ζ

−8
3

+ 2r2
3

8
3
− 2r

One solution according to 6.

4′′′

q q2

2r

q−2

−2rr
q 6= ±1, q 6∈ R3,R4 Cartan, B2

5

q −1q−2

−2rr 1

−q−1

1− r
−1q2

−2 + 2r 1 q 6= ±1, q 6∈ R4 Super Lie, B(1, 1)

6

ζ

2
3

qq−1

−r r

ζ

2
3

ζq−1ζ−1q

−8
3

+ r 8
3
− r

ζ 6∈ R3, q 6= 1, ζ, ζ2

7
ζ −1−ζ ζ−1 −1−ζ−1

ζ ∈ R3 No solution

8

−ζ−2 −ζ2−ζ3 −ζ−2 −1ζ−1 −ζ2 −1−ζ

−ζ3 −1ζ −ζ3 −1−ζ−1

ζ ∈ R12 No solution



9

−ζ2

2
3

−ζ2

2
3

ζ

−7
6

−ζ2

2
3

−1ζ3

−3
2

1

−ζ−1

1
6

−1−ζ3

−1
2

1
ζ ∈ R12

10

−ζ
5
9

ζ3

2
3

ζ−2

−10
9

ζ3

2
3

−1ζ−1

−14
9

−ζ2

1
9

−1ζ

−4
9

1 1
ζ ∈ R9

11

q q3

3r

q−3

−3rr q 6∈ R3, q 6= ±1 Cartan, G2

12

ζ2

1
2

ζ−1

7
4

ζ

−7
4

ζ2

1
2

−1−ζ−1

−5
4

ζ

1
4

−1−ζ
−3

4
1 1

ζ ∈ R8

13

ζ6

1
2

−ζ−4

2
3

−ζ−1

−13
12

ζ6

1
2

ζ−1

23
12

ζ

−23
12

−ζ−4

2
3

−1ζ5

−19
12

ζ

1
12

−1ζ−5

− 5
12

11
ζ ∈ R24

14

ζ

2
5

−1ζ2

−6
5

−ζ−2

1
5

−1ζ−2

−4
5

11
ζ ∈ R5

15

ζ −1ζ−3 −ζ −1−ζ−3

−ζ−2 −1ζ3 −ζ−2 −1−ζ−3

ζ ∈ R20 No solution

16

−ζ ζ5−ζ−3 ζ3 −ζ−4−ζ4

ζ5 −1−ζ−2 ζ3 −1−ζ2

ζ ∈ R15 No solution

17

−ζ
6
14

−1−ζ−3

−9
7

−ζ−2

2
14

−1−ζ3

−5
7

11
ζ ∈ R7



Table 4.2: Realisation of finite-dimensional diagonal Nichols algebras of
rank 3.

row Braiding Conditions

1′

−1
r

−1
r

−1
r

−1

−r
−1

−r One solution according to A3 (see 1′′).

−1

1

−1
r

−1
r

−1

−r
−1

−r
−1 −1 −1−1 −1

1 1 r−2 + r −r
One solution according to A(2, 0) (see 4).

−1
r

−1

1

−1−1

−r
−1

−2 + r2− r
−1 −1 −1−1 −1

−1 −1 −1−1 −1 −1 −1 −1−1 −1

1 1 1r − 2 −r

1 r 1−r −r 1 2− r 1−2 + r −2 + r One solution according to A(1, 1) (see 8).

1′′

q

r

q

r

q

r

q−1

−r
q−1

−r q 6= ±1 Cartan, A3

2′

−1

2r

−1

2r

i
r

−1

−2r

−1

−2r
i ∈ R4

One solution according to B3 (see 2′′).

−1

1

−1

2r

i
r

−1

−2r

−1

−2r

−1 −1 i−1 −1

−1 −1 i−1 −1

1 1 r−2 + 2r −2r

2r 1 −r + 1−2r −2 + 2r One solution according to B(2, 1) (see 5).

2′′

q2

2r

q2

2r

q

r

q−2

−2r

q−2

−2r q 6= ±1,
q 6∈ R4

Cartan, B3

3

q

r

q

r

q2

2r

q−1

−r
q−2

−2r q 6= ±1 Cartan, C3

4

−1 q qq−1 q−1 −1 −1 qq q−1

1 r r−r −r 1 1 r−2 + r −r
q 6= ±1 Super Lie, A(2,0)

5

−1 q2 qq−2 q−2 −1 −1 qq2 q−2

q2 −1 −q−1q−2 q2

1 2r r−2r −2r 1 1 r−2 + 2r −2r

2r 1 −r + 1−2r −2 + 2r q 6= ±1,
q 6∈ R4

Super Lie, B(2,1)

6

−1 q q2q−1 q−2

−1

q −1

q−1 q2

q−1

1

r 1

−r 2r − 2

−r

−1 −1 q2q q−2

1 r 2r−r −2r

1 1 2r−2 + r −2r

q 6= ±1 Super Lie, C(3)



7

−1 q q3q−1 q−3

−1

q −1

q−1 q3

q−2

1

r 1

−r 3r − 2

−2r

−1 −1 q3q q−3

q3 −1 −q−1q−3 q2

1 r 3r−r −3r

1 1 3r−2 + r −3r

3r 1 1− r−3r −2 + 2r q 6= ±1,
q 6∈ R3

Super Lie, G(3)

8

q −1 q−1q−1 q −1 −1 −1q q−1

−1 q −1q−1 q−1 −1 q−1 −1q q

r 1 2− r−r −2 + r 1 1 1r − 2 −r

1 r 1−r −r 1 2− r 1−2 + r −2 + r q 6= ±1 Super Lie, A(1, 1)

9, 10, 11

q′ −1 q′′(q′)−1 (q′′)−1

−1

−1 −1

q′ q′′

q′′′

1

1 1

r′ − 2 r′′ − 2

r′′′ − 2

q′ −1 q′′′(q′)−1 (q′′′)−1

q′′ −1 q′′′(q′′)−1 (q′′′)−1

r′ 1 r′′−r′ −r′′

r′ 1 r′′′−r′ −r′′′

r′′ 1 r′′′−r′′ −r′′′ q′, q′′, q′′′ 6= 1,

q′ · q′′ · q′′′ = 1
Super Lie, D(2, 1;α ), r′ + r′′ + r′′′ = 2

12
−ζ−1 −ζ−1 ζ−ζ −ζ

ζ ∈ R3 No solution.

13′

ζ

2
3

ζ

2
3

−1

1

ζ−1

−2
3

ζ−2

−4
3

ζ

2
3

−ζ−1

1
3

−1

1

ζ−1

−2
3

ζ2

−2
3 ζ ∈ R3 r = 1

3

13′′

ζ

2
6

ζ

2
6

−1

1

ζ−1

−2
6

ζ−2

−4
6

ζ

2
6

−ζ−1

2
3

−1

1

ζ−1

−2
6

ζ2

−4
3

ζ

7
3

−ζ−1

2
3

−1

1

ζ−1

−7
3

ζ2

−4
3 ζ ∈ R6 r = 1

6

14

−1 −ζ−1 ζ−ζ −ζ −1 −1 ζ−ζ−1 −ζ

−ζ−1 −1 ζ−1−ζ −ζ−1

ζ ∈ R3 No solution.



15

−1

1

ζ

2
3

−1

1

ζ−1

−2
3

ζ

−4
3 −1

ζ ζ

ζ−1 ζ−1

ζ−1

1

2
3

2
3

−2
3

−2
3

−2
3

−1

1

−1

1

−1

1

ζ

−4
3

ζ

−4
3

−1

1

−ζ−1

1
3

−1

1

ζ−1

−2
3

ζ−1

−2
3 ζ ∈ R3 r = 1

3

16

−1

1

ζ

2
3

−ζ
5
3

ζ−1

−2
3

−ζ−1

−5
3 −1

ζ −1

−1 −ζ
ζ−1

1

2
3 1

−1 −1
3

−2
3

−1

1

−1

1

−ζ
5
3

ζ

−4
3

−ζ−1

−5
3

ζ

2
3

−1

1

−ζ
5
3

−1

−1

−ζ−1

−5
3

ζ

2
3

−ζ
5
3

−ζ
5
3

−ζ−1

−5
3

−ζ−1

−5
3 ζ ∈ R3 r = 5

6

17

−1 −1 −1−1 ζ

ζ

−ζ −1

−ζ−1 ζ−1

−ζ−1
−1 ζ −1−1 ζ−1

−1 −1 −1ζ −ζ −1 −ζ −1ζ −ζ−1

−1 ζ−1 −1ζ−1 −ζ−1

−1

−1 ζ

−1 ζ−1

−ζ
−1 ζ −1ζ−1 −ζ

−1 −1 ζ−1−1 −ζ−1

ζ ∈ R3 No solution.

18

ζ

16
9

ζ

16
9

ζ−3

2
3

ζ−1

−16
9

ζ−1

−16
9

ζ

16
9

ζ−4

8
9

ζ−3

2
3

ζ−1

−16
9

ζ4

−8
9 ζ ∈ R9 r = 8

9
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Summary

The first part of the thesis focuses on the introduction to its two main topics:
path integrals and vertex algebras.
Starting with the toy examples of the classical free particle and the classical
free scalar field, we show how to quantise them following two formulations:
the Lagrangian which makes use of path integrals and the Hamiltonian which
in the mechanical example yields the Schroedinger equation of a free particle,
whereas in the field theory example yields the Heisenberg algebra. In order
to describe the latter we introduce vertex algebras.
In a ongoing work with a theoretical chemistry group at the Freie Universit-
aet Berlin, we apply the path integral formulation to the study of stochastic
dynamics in a classical system with many degrees of freedom. We consider
the Fokker-Planck equation, a partial differential equation which stochastic-
ally describes the dynamics of a molecular system and discuss its equivalence
to the Schroedinger equation. This in turn is equivalent to the path integral
formalism which can therefore be applied to find solutions of the original
system. The outlook is to further develop this study in specific examples.

In the second and main part of the thesis we proceed with a construction
and classification study. For every finite-dimensional Nichols algebra with
diagonal braiding qij, we find all lattices Λ with Gram matrix mij = (vi, vj)
which realise the braiding, i.e. such that qij = eπimij and the Weyl reflections
on qij lift to reflections on mij in a suitable sense.
For every Nichols algebra braiding qij and realising lattice Λ we then consider
the Heisenberg vertex algebra and the corresponding non-local screening op-
erators associated to Λ. Under certain smallness condition, these screening
operators satisfy the relations of the Nichols algebra.
We then study for every finite-dimensional diagonal Nichols algebra the al-
gebra of screening operators by analysing the smallness condition which does
not always hold. When it fails the algebra of screenings is an extension of
the Nichols algebra depending on the free parameters in the realisation.
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Zusammenfassung

Der erste Teil meiner Doktorarbeit befasst sich mit der Einführung in ihre
Hauptthemen, Pfadintegrale und Vertexalgebren.
Beginnend mit den Toy-Beispielen vom klassischen mechanischen Teilchen
und dem klassischen freien skalaren Feld, zeigen wir, wie man die klassis-
chen Beispiele quantisieren kann. Wir betrachten dazu zwei verschiedene
Formulierungen, die Lagrangesche Formulierung, die Pfadintegrale benutzt,
und die Hamiltonsche Formulierung, die in dem mechanischen Beispiel zur
Schrödingergleichung von einem freien Teilchen und in dem Beispiel der
Feldtheorie zur Heisenbergalgebra führt. Um die Heisenbergalgebra zu bes-
chreiben, führen wir Vertexalgebren ein.
In einer laufenden Zusammenarbeit mit der Arbeitsgruppe für theoretische
Chemie der Freien Universität Berlin, wenden wir die Pfadintegralformu-
lierung auf das Studium der stochastischen Dynamik in einem klassischen
System mit vielen Freiheitsgraden an. Wir betrachten die Fokker-Planck-
Gleichung, eine Partielle Differentialgleichung, die die Dynamiken eines Moleku-
larsystems stochastisch beschreibt, und wir zeigen, dass sie zur Schrödinger-
gleichung äquivalent ist. Die Schrödingergleichung ist wiederum zur Pfad-
integralformulierung äquivalent, die deswegen verwendet werden kann, um
Lösungen des ursprünglichen Systems zu finden. Wir entwickeln dieses Stu-
dium in Beispielen weiter.

Im zweiten und Hauptteil der Arbeit fahren wir mit einem Studium von
Konstruktion und Klassifikation fort. Für jede endlichdimensionale Nich-
olsalgebra mit diagonaler Verzopfung qij, finden wir alle Gitter Λ mit Gram-
schen Matrizen mij = (vi, vj), die die Verzopfung so realisieren, dass die
qij = eπimij und die Weylreflexionen von qij sich zu den Reflexionen von mij

geeignet hochheben.
Für jede Verzopfung qij einer Nicholsalgebra und realisierende Gitter Λ be-
trachten wir dann die Heisenbergsche Vertexalgebra und die zu dem Git-
ter zugehörigen nicht lokalen Screeningoperatoren. Unter den sogenannten
smallness Bedingung, erfüllen diese Screeningoperatoren die Beziehungen der
Nicholsalgebra.
Für jede endlichdimensionale diagonale Nicholsalgebra, studieren wir dann
die Algebra der Screeningoperatoren indem wir die smallness Bedingung ana-
lysieren, die nicht immer erfüllt ist. Wenn sie nicht erfüllt ist, ist die Algebra
der Screeningoperatoren eine Erweiterung der Nicholsalgebra, die von den
freien Parametern in der Realisierung abhängt.
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