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ABSTRACT

In the protoplanetary disks surrounding young stars, micron-sized dust grains grow over more
than ten orders of magnitude in size until they form planets. The streaming instability plays
an important role in this process in two regards: On the one hand, it drives turbulence in the
dust layer around the mid-plane of protoplanetary disks. Turbulence influences the process
of planet formation at all stages. On the other hand, the instability can induce concentration
of millimetre- and centimetre-sized dust aggregates in gravitationally unstable overdensities.
From the collapse of these overdensities, planetesimals with sizes of tens or hundreds of kilo-
metres emerge —a crucial step on the path to ten-thousand-kilometre-sized planets.

Both aspects of the instability are investigated in this thesis. In a first publication, it is
shown that the initial mass function of the planetesimals is better represented by a power law
with an exponential tapering at its high-mass end than by a power law only. In a second public-
ation, the first simulations of protoplanetary disks on global scales are presented that include
the streaming instability as well as Lagrangian particles to model the dust. In this study, the
streaming instability is considered as a source of turbulence and as such compared to another
hydrodynamical instability, the vertical shear instability. In particular, it is shown that the
streaming instability is the dominant source of turbulence in the dust layer if both instabilit-
ies begin to grow simultaneously, while the vertical shear instability remains dominantifit has
already saturated before the streaming instability starts to operate. The streaming instability
causes weaker turbulence and dust diffusion than the vertical shear instability. Nonetheless,
the two instabilities in combination give rise to denser dust accumulations than the streaming
instability alone. This indicates that the vertical shear instability is conducive to planetesimal
formation owing to the streaming instability.



ZUSAMMENFASSUNG

In den protoplanetaren Scheiben um junge Sterne wachsen mikrometergrofle Staubkorner
um mehr als zehn Groflenordnungen, bis sie Planeten bilden. Die Streaming Instability spielt
in diesem Prozess in zweierlei Hinsicht eine wichtige Rolle: Einerseits verursacht sie Turbu-
lenz in der staubreichen Schicht um die Mittelebene protoplanetarer Scheiben. Turbulenz be-
einflusst den Prozess der Planetenentstehung in allen Stadien. Andererseits kann die Instabili-
tit eine Konzentration von millimeter- und zentimetergrofRen Staubaggregaten in gravitativ
instabilen Uberdichten bewirken. Aus dem Kollaps dieser Uberdichten gehen Planetesimale
hervor, die mehrere zehn oder hunderte Kilometer grofd sind - ein entscheidender Schritt auf
dem Weg zu zehntausend Kilometer grofRen Planeten.

Beide Aspekte der Instabilitit werden in dieser Arbeit untersucht. In einer ersten Veroffent-
lichung wird gezeigt, dass die urspriingliche Massenfunktion der Planetesimale besser durch
ein Potenzgesetz beschrieben wird, das fir hohe Massen exponentiell abfillt, als durch ein
reines Potenzgesetz. In einer zweiten Veroffentlichung werden die ersten Simulationen pro-
toplanetarer Scheiben auf globalen Skalen présentiert, die sowohl die Streaming Instability
als auch Lagrange-Teilchen zur Modellierung des Staubs umfassen. In dieser Studie wird die
Streaming Instability als Quelle von Turbulenz betrachtet und als solche mit der Vertical Shear
Instability, einer weiteren hydrodynamischen Instabilitit, verglichen. Insbesondere wird ge-
zeigt, dass die Streaming Instability vorherrschend als Quelle von Turbulenz ist, wenn beide
Instabilititen zeitgleich anfangen zu wachsen. Hingegen bleibt die Vertical Shear Instabili-
ty dominant, falls sie bereits saturiert ist, wenn die Streaming Instability zu agieren beginnt.
Die Streaming Instability verursacht schwichere Turbulenz und Staubdiffusion als die Ver-
tical Shear Instability. Nichtsdestotrotz fithrt eine Kombination der beiden Instabilititen zu
dichteren Staubansammlungen als die Streaming Instability alleine. Dies impliziert, dass die
Vertical Shear Instability forderlich fir die Entstehung von Planetesimalen aufgrund der Strea-
ming Instability ist.
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Introduction

Planets form in the protoplanetary disks around young stars. Stars and disks, in turn, emerge
from the gravitational collapse of the cores of molecular clouds, the densest and coldest re-
gions in the interstellar medium. Collapse ensues when the self-gravity of a molecular cloud
core overcomes the stabilising effects of thermal pressure, magnetic fields, and turbulence
(e.g., Mac Low and Klessen 2004; McKee and Ostriker 2007). Owing to the random turbulent
motions in them, cores possess a non-zero net angular momentum. As a consequence of the
conservation of this angular momentum, the collapse of a core leads to the formation of a ro-
tating protoplanetary disk surrounding the (likewise rotating) star (e.g., Li et al. 2014) — and
perhaps of one or multiple stellar companions since about half of all stellar systems are mul-
tiple systems (Duquennoy and Mayor 1991; Raghavan et al. 2010).

Figure 1.1 shows images of the protoplanetary disks around the stars HL Tauri (left) and
IM Lupi (right). These images are obtained from observations of dust in the disks. Like the
interstellar medium they form in, pristine disks by mass consist of 99% gas and 1% solid dust.
Initially, a young star and the disk surrounding it are embedded in an envelope from which
both accrete (e.g., Li et al. 2014). In this thesis, I investigate disks at a later time when accretion
and outflows have caused this envelope to disperse. The disk also slowly dissolves because of
accretion by the star, magnetically launched jets and disk winds, as well as photoevaporation®
(e.g., Alexander et al. 2014). After a typical lifetime of a few million years (Haisch et al. 2001;
Mamajek 2009), all the gas in the disk has dissipated and only solids and planets remain.

Two scenarios exist for the formation of a planet in a protoplanetary disk: top-down forma-
tion by collapse of a gravitationally unstable region in the disk and bottom-up formation from
dust. In the former scenario, giant planets may form in about 1000 yr, but only in comparably
massive disks with a sufficiently short cooling timescale (e.g., Boss 2002, 2010; Helled et al.
2014; Kratter and Lodato 2016, see also Sect. 4.2). Furthermore, the formation of brown dwarfs
or stellar companions is more likely than that of giant planets, and it is difficult to explain the
formation of terrestrial planets and minor bodies like asteroids and trans-Neptunian objects
which are predominantly solid rather than gaseous.

'Photoevaporation denotes the heating by ionising radiation emitted by the central or nearby stars, and the
resulting escape of the gas from the disk if its sound speed exceeds its orbital speed.
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Figure 1.1: Images of the dust in the protoplanetary disks surrounding the stars HL Tauri (left) and IM Lupi (right). Itis
interesting to note the structure of concentricringsin the formerdisk and the thickness of the latter disk increasing with the
radial distance to the star. Image credits: ALMA (ESO/NAQO]/NRAO) (left); ESO/H. Avenhaus et al./DARTT-S collaboration

(right).

The bottom-up scenario (Safronov 1969) is studied in this thesis. In it, micron-sized dust
grains must grow over 13 orders of magnitude in size — 39 orders of magnitude in mass —
to 10 000 km-sized planets. The time scale of planet formation in this scenario is constrained
by the lifetime of protoplanetary disks as the last step in the formation of a gas giant planet, the
accretion of its gaseous envelope (e.g., Helled et al. 2014; Johansen and Lambrechts 2017), must
occur before the gas in the disks has completely dispersed. The stages of bottom-up planet
formation are illustrated in Fig. 1.2: Initially, dust grains form larger and larger aggregates
owing to coagulation, that is to say they stick under mutual collisions (see Chapter 2). It takes
about 103 to 10% orbital periods for aggregates to grow to sizes of millimetres (Zsom et al. 2010;
Lorek et al. 2018). However, once they have reached these sizes, they are prone to bounce or
even fragment when they collide (see Sect. 2.3). Furthermore, the drag exerted by the gas on the
dust leads to the dust drifting towards the star in the radial direction, which poses a time con-
straint for dust growth (see Sect. 2.4; Whipple 1972; Adachi et al. 1976; Weidenschilling 1977a;
Brauer et al. 2007).

Arguably the most promising mechanism to overcome these barriers is the streaming in-
stability. It can induce the local concentration of centimetre-sized dust aggregates in gravita-
tionally unstable clumps within some tens of orbital periods (see Chapter 3; e.g., Youdin and
Goodman 2005; Youdin and Johansen 2007; Johansen and Youdin 2007; Johansen et al. 2007,
2009; Bai and Stone 2010a,b,c). As we show in S]B20, this dust accumulation is stronger if it is
caused not by the streaming instability alone, but by a combination of the streaming instability
and the vertical shear instability. The collapse of the dust clumps results in the formation of
planetesimals (Goldreich and Ward 1973) — similar to the formation of stars in molecular cloud
cores. Planetesimals are bodies with typical sizes of tens or hundreds of kilometres which are
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Figure 1.2: Size scales of bottom-up planet formation, from micron-sized dust to 10 000 km-sized planets. The dashed
lines indicate the dominant growth processes at different sizes, while the dotted lines represent growth barriers. The im-
ages show, from left to right: an interplanetary dust aggregate from the Solar System, the Kuiper belt object 486958 Ar-
rokoth, and the Earth. Image credits: NASA (left); NASA, Johns Hopkins University APL, Southwest Research Institute, and
Roman Tkachenko (middle); NASA's Earth Observatory (right).

bound by self-gravity rather than material strength and are negligibly affected by the drag exer-
ted by the gas (e.g., Johansen et al. 2014). The initial mass function of the planetesimals forming
via the streaming instability has been subject of a number of numerical studies (Johansen et al.
2015; Simon et al. 2016, 2017; Abod et al. 2019; Li et al. 2019; Gole et al. submitted; SYJ17) as it
crucially influences the following stages of planet formation. In SYJ17, we find that the mass
distribution is represented better by a power law with an exponential tapering than by a power
law only.

The formation of planets proceeds with what is called core accretion (e.g., Helled et al. 2014;
Johansen and Lambrechts 2017). In the early stages, planetesimals grow by collisions. Once
they attain sizes of thousands of kilometres, the accretion of large dust aggregates becomes
the most efficient growth mechanism, a process that is referred to as pebble accretion. When
planetary cores reach the so-called pebble isolation mass of several tens to some hundred Earth
masses, they carve a gap in the gas disk which inhibits further pebble accretion. Consequently,
the gaseous envelope around the core is no longer heated by pebble accretion and contracts.
As soon as the envelope mass is comparable to the core mass, a stage of runaway gas accre-
tion begins, which ends with the dissipation of the protoplanetary disk. The final architec-
ture of a planetary system is shaped by interactions between planets and the gaseous disk (e.g.,
Baruteau et al. 2014) as well as mutually between planets (e.g., Davies et al. 2014).

As of August 2020, over 4300 exoplanets have been found in close to 3200 exoplanetary sys-
tems, of which more than 700 are multiple systems?. Observational bias favours the detection
of large planets close to their host star. In particular, the planets in the Solar System would by

*http://exoplanet.eu/catalog/
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tendency be either too small - the terrestrial planets — or too far away from the star — the giant
planets - to be detected (e.g., Winn 2018). Nonetheless, it is interesting to consider the fre-
quency of those types of planets for which statistics are comparatively complete. Giant planets
with an orbital period of at most a few years are hosted by ~10% of Sun-like stars, and so-called
hot Jupiters with orbital periods of ten days or less by ~1% of them (e.g., Winn 2018). Smal-
ler planets with orbital periods shorter than a hundred days and sizes in the range between
those of Earth and Neptune, which are referred to as super-Earths or sub-Neptunes, are more
common. They can be found around about half of all Sun-like stars.

Turbulence affects all stages of planet formation: from the formation of a dust layer in
the mid-plane of protoplanetary disks whose thickness is determined by the balance between
vertical sedimentation and turbulent diffusion (Dubrulle et al. 1995; Fromang and Papaloizou
2006; Carballido et al. 2006; Youdin and Lithwick 2007); to dust growth by turbulent collisions
(see Chapter 2); to planetesimal formation owing to the streaming instability (see Chapters 3
and 4); to planet-disk interactions (e.g., Baruteau et al. 2014). A number of instabilities have
been theoretically established as sources of turbulence in protoplanetary disks (see Chapter 4),
among which the vertical shear instability is one of the most promising (see Sect. 4.4.1). In
SJB20, we present the first detailed study of the turbulence caused by the streaming instability,
both in isolation as well as in interaction with the vertical shear instability. If both instabilit-
ies start to grow at the same time, we find the streaming instability to drive the turbulence in
the disk mid-plane . On the other hand, the vertical shear instability remains the main source
of turbulence in this plane if it has attained a saturated state before the streaming instability
begins to be operate.

This thesis is structured as follows: In Chapter 2, I present observational and theoretical
constraints on the maximum size to which dust in protoplanetary disks can grow by coagula-
tion. These constraints establish the necessity of a mechanism to cause local dust overdens-
ities that undergo gravitational collapse and form planetesimals. The streaming instability is
introduced as such a mechanism in Chapter 3. Observational evidence for planetesimal form-
ation via the streaming instability and the birth mass distribution of these planetesimals are
also covered in this chapter, as are other mechanisms facilitating planetesimal formation. I
discuss the streaming instability as a source of turbulence in Chapter 4, along with a number
of other instabilities that drive turbulence and dust dynamics in protoplanetary disks. This
chapter further includes a review of the turbulent strengths obtained from disk observations.
In Chapters 5 and 6, the publications SYJ17 and SJB20 are reproduced. The model of the gas
in protoplanetary disks that is employed throughout this thesis, with the exception of SYJ17,
as well as tables containing all symbols used in the thesis can be found in Appendices A and B,
respectively.



Barriers for collisional dust growth

In the first stage of their growth to planetary sizes, dust grains with sizes of up to microns,
as are observed in the interstellar medium (Mathis et al. 1977), form aggregates via coagula-
tion. That is, they stick together when they collide owing to intermolecular forces like the van
der Waals force and hydrogen bonding. The focus of this chapter is to discuss to which max-
imum size aggregates can grow in this manner. On the one hand, the fact that these maximum
sizes are smaller than planetesimal sizes demonstrates the necessity of a mechanism like the
streaming instability to induce planetesimal formation by accumulating dust in gravitationally
unstable overdensities. On the other hand, the strength of dust concentration and turbulence
caused by the streaming instability depend on the dust size. The instability can induce plan-
etesimal formation only if the aggregates are sufficiently large (see Sect. 3.2).

2.1 OBSERVATIONS

Observational estimates of dust sizes in the interior of protoplanetary disks can be obtained
from thermal dust emission at wavelengths of millimetres and centimetres (e.g., Draine 2006;
Testi et al. 2014). The presence of a disk around a young star is reflected in an excess in the
stellar spectral energy distribution at infrared and longer wavelengths which is caused by dust
emission’. The emission is usually assumed to be optically thin at millimetre- to centimetre-
wavelengths for two reasons: Firstly, colder disk regions close to mid-plane are probed at these
wavelengths. This is because, according to Wien’s displacement law, the wavelength at which
the spectrum of a black body peaks is inversely proportional to the temperature. Secondly,
dust can not efficiently absorb radiation with wavelengths much greater than its size. If the

"The product of wavelength and flux density as a function of the wavelength is commonly referred to as the
spectral energy distribution. The shape of the infrared excess in the spectral energy distribution of young stars
gives rise to a categorisation in Classes I to 11, which reflects a chronological order (Lada and Wilking 1984; Adams
et al. 1987; Lada 1987). While Class I young stellar objects (YSOs) are still embedded in an envelope, stars whose
envelope has dissolved are referred to as Class II YSOs or (classical) T Tauri stars. Both Class I and Class II stars
are surrounded by a protoplanetary disk. After this disk has dispersed, a Class III YSOs or weak-line T Tauri star
remains. The transitions between these classes are fluent, though, and an additional Class o (Andre et al. 1993) and
a class with flat spectral energy distributions (Greene et al. 1994) have been identified.
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emission is indeed optically thin, the opacity of the dust can be approximated as k) oc A75,
where ) is the wavelength and the spectral index /5 depends on the maximum dust size. While
for grains in the interstellar medium /5 & 1.7, the spectral index approaches zero for larger
aggregates.

Deriving the maximum dust size from the spectral index of the opacity requires a number of
assumptions, including about the composition and porosity of the dust as well as the dust size
distribution. This distribution is usually assumed to be a power law, dnq/da < a~%, where nq
is the dust number density and a the dust size. The exponent ¢ = 3.5 in a steady-state colli-
sional cascade model, in which mass is transferred from larger to smaller bodies by fragment-
ation (Dohnanyi 1969; Williams and Wetherill 1994), and ranges between 3 and 4 in models
and observations of debris disks? (e.g., Hughes et al. 2018) as well as in the interstellar medium
(Mathis et al. 1977).

From the opacity spectral index, dust sizes of up to centimetres in the inner regions of pro-
toplanetary disks and millimetres in the outer regions are inferred (e.g., Pérez et al. 2012, 2015;
Testi et al. 2014; Tazzari et al. 2016; Macias et al. 2019). However, doubt has recently been cast
on the assumption of optically thin emission because scattering by dust grains might lead to
optically thick disks being mistaken as optically thin (Liu 2019; Zhu et al. 2019). If disks were
indeed optically thick, maximum dust sizes would amount to not more than millimetres. This
would also explain the fact that the observed total dust masses in disks, particularly around
low-mass stars, are insufficient to account for the observed total planet masses in exoplanet-
ary systems (Najita and Kenyon 2014; Mulders et al. 2015; Manara et al. 2018) since dust would
be hidden from observations in the optically thick regions.

Observations with the Atacama Large Millimeter/submillimeter Array (ALMA) reveal a struc-
ture of concentric rings in many protoplanetary disks (see Fig. 1.1). By employing models of
this structure that include scattering and do not presuppose optically thin or thick emission,
Carrasco-Gonzalez et al. (2019) infer dust sizes of a few millimetres in the outer regions and
less than one millimetre in the inner regions of the disk around HL Tauri, while Tapia et al.
(2019) find that the dust has grown as large as a centimetre in the mid-plane of this disk.

Another approach to obtain maximum dust sizes is studying the polarisation of the emission
of dust grains resulting from scattering by other dust grains. The emission is most strongly
polarised if the maximum size is comparable to \/(27) (Kataoka et al. 2015). This approach
yields sizes of at most a few hundred microns in disks observed with ALMA (Kataoka et al.
2017; Bacciotti et al. 2018; Ohashi and Kataoka 2019). On the one hand, these maximum sizes
are consistent with the ones inferred from the opacity spectral index if the dust emission is
optically thick (Lin et al. 2020; Ohashi et al. 2020). On the other hand, Yang and Li (2020) and
Kirchschlager and Bertrang (2020), respectively, propose that the discrepancy arising if the
emission is optically thin can be alleviated when considering the chemical composition and
the shape of the dust grains.

Further indications of how large dust aggregates can grow by coagulation can be found
in the Solar System. Chondrites, stony meteorites that never melted, contain small spherical
grains called chondrules. The sizes of these chondrules amount to up to a few millimetres (e.g.,

*A debris disk is the disk of dust and solid debris that remains after the gas in its progenitor protoplanetary disk
has completely dispersed.
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Figure 2.1: Sketches of the possible outcomes of collisions between two dust aggregates. Of these, only sticking of similarly
sized aggregates and mass transfer from a smaller to a larger aggregate result in growth, while bouncing is neutral in this
respect. In contrast, fragmentation as well as erosion and cratering lead to a reduction in the aggregate masses.

Friedrich et al. 2015), with evidence suggesting that they form centimetre-sized aggregates (Si-
mon et al. 2018a,b). Measurements of the comet 67P/Churyumov-Gerasimenko by the Rosetta
mission indicate that it consists of millimetre-sized aggregates (Blum et al. 2017).

Observations provide insights not only into how large, but also when during the evolution of
protoplanetary disks dust aggregates grow. Observational evidence shows that dust of 100 pm-
or millimetre-sizes is present already at an early stage, when a young star and the disk sur-
rounding it are still embedded in an envelope (Miotello et al. 2014; Harsono et al. 2018; Agurto-
Gangas et al. 2019). Dust having already grown too large to be observable would provide an-
other explanation for the discrepancy between the total mass of the dust in disks observed
after the dissipation of their envelope and the total mass of exoplanetary systems (Najita and
Kenyon 2014; Manara et al. 2018).

2.2 COLLISIONAL OUTCOMES AND RELATIVE VELOCITIES

Whether the collision of two dust aggregates leads to growth depends on a number of para-
meters, including the relative velocity, size, composition, and porosity of the aggregates. The
outcomes of collisions fall into five categories, as depicted in Fig. 2.1 (e.g., Giittler et al. 2010;
Birnstiel et al. 2016; Blum 2018). Three of these categories pertain to collisions between two
aggregates of similar sizes:

« Sticking

« Bouncing: Bouncingleads to neither an increase nor a decrease in the aggregate masses,
but possibly to compaction of porous aggregates.

« Fragmentation: The resulting fragments are less massive than the colliding aggregates.

The other two categories cover outcomes of a smaller projectile hitting a larger target, with
the projectile fragmenting as a result of the collision:
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« Mass transfer: More mass is transferred from the projectile to the target than is lost by
the target during the collision.

« Erosion and cratering: Both erosion by smaller projectiles and cratering by larger ones
cause a mass loss of the target.

This categorisation is not exhaustive. For instance, the electrostatic repulsion of dust with
like charges is not considered, which can inhibit the growth at sizes of microns, but can be
overcome by turbulence (Okuzumi 2009, 2014; Akimkin et al. 2020).

Relative velocities between equally sized aggregates can be caused by Brownian motion or
by gas turbulence. In addition, collisions of aggregates with different sizes can occur because
the radial and azimuthal drift speeds, which result from the mutual drag between gas and
dust (see Sects. 2.4 and 3.1), as well as the vertical settling speed (see Sect. 4.1) vary with the
aggregate size. The random velocities of Brownian motion at a temperature 7" are described
by a Maxwell-Boltzmann distribution, with the mean relative speed of aggregates of the same
size being equal to

16kpT

AvqBm = ; (2.1)
wmq

where kp is the Boltzmann constant, ¢ = 2.33 the mean molecular weight, and mg the dust
mass.

Whether and how strongly dust is stirred by gas turbulence depends on the stopping time of
the dust, the time scale over which the dust attains the same velocity as the gas owing to their
mutual drag®. The dust stopping time is given by

psa 9 . .
y mqAwv Pacs a < 7Ag mfp (Epstein regime) or (2.2)
d,stop — = 4dpea2 9 ) .
Fyrag m a > §Agmfp (Stokes regime),

where Aw is the relative velocity between dust and gas, Fy,,g the drag force, p, the gas density,
and ¢, the sound speed. In Chapter 2, I choose a generic solid density of ps = 1 g cm ™3, which
is comparable to that of water ice (1 gcm ™) and silicates (~3 gcm™3). (The solid density ps,
the mass per volume of dust material, is not to be confused with the dust density pq, the mass
per volume of space.) The gas mean free path length A, ¢, = 1/(0gng), where ng is the gas
number density and o, = 2 x 1075 cm? the molecular collision cross section (Chapman and
Cowling 1970). The dust size being approximately equal to the mean free path length marks the
transition from the Epstein to the Stokes drag regime, in which ¢4 stop < @ and tq stop a?,
respectively.

The dimensionless Stokes number St = ¢4 40p{2Kk gives the ratio of the dust stopping time
to the dynamical time scale in protoplanetary disks, the inverse of the Keplerian orbital fre-
quency Qx = vk /7. Here, vk is the Keplerian orbital speed and r the radial distance to the star.
Dust with a Stokes number much smaller than one adapts to the gas motions on a much shorter
time scale than the dynamical one, that is to say almost instantaneously. Gas and dust are thus

*The gas stopping time can be calculated as tg stop = Pg/Pd td,stop-
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perfectly coupled via drag. On the other hand, if the Stokes number is much larger than one,
gas and dust are effectively decoupled. The Stokes number is a convenient measure of the dust
size when physical processes involving the drag between gas and dust are considered, and used
as such in this thesis.

If the stopping time of a dust aggregate is greater than the turnover time scale of a turbulent
eddy in the gas, the motion of the aggregate is not completely adjusted to the turbulent motion
before the eddy decays. This results in a random velocity of the aggregate. These random ve-
locities differ even for aggregates with the same size. To derive the Stokes number Styy,1, of
the smallest aggregates that are stirred by turbulence, I equate the dust stopping time with the
eddy turnover time scale 7, at the dissipation scale 1 (Markiewicz et al. 1991; Cuzzi and Hogan
2003; Ormel and Cuzzi 2007). I further assume that the turnover time scale 7, at the injection
scale L is equal to the dynamical time scale 1/Qx. Thus,

ﬁ = td,stopQK = St. (2.3)
TL

The left-hand side of this equation can be related to the Reynolds number Re, which ex-
presses the ratio of the turbulent to the molecular viscosity. If this number is greater than
unity the gas is turbulent, and laminar otherwise. The rate at which kinetic energy is injected
at the scale L is equal to the rate at which it is dissipated because of the molecular viscosity of
the gas at the scale 7. Under this condition,

Ug L U; n Vg turb Vg mol Vg turb 7_[2,
= = = & = = Re:’iz—Q, (2.4)
TL Tn T, Tn Vgmol Ty

where v, 1, and v ,, are the gas velocities at the injection and the dissipation scale, respectively.

The molecular viscosity
1
Vg mol = 5)\g,mfpvg,therma (2.5)

where vg therm = 1/8/7 ¢s is the mean thermal speed of the gas.

To calculate the turbulent viscosity vg turb, the so-called a-model devised by Shakura and
Sunyaev (1973) can be used*. They define vy (v, = acsHg, where the dimensionless para-
meter « is a measurement of the turbulent strength and H, is the gas scale height. In the
thin-disk approximation, that is assuming that the radius r is much greater than the height
above or below the mid-plane, the gas scale height H, = ¢,/Qx and thus

ac? 2.6)
14 = —.
g,turb .
Qx
On the other hand,
2 2.2
2 o Ug,turb o Mgcs
Vg turb ™~ Vg turbTL = - (2.7)

Qx Q'

*The a-model was originally developed by Shakura and Sunyaev (1973) to describe the angular momentum trans-
port by turbulence in the accretion disks surrounding black holes. It can be equivalently applied to angular mo-
mentum transport and turbulence in protoplanetary disks.



CHAPTER 2. BARRIERS FOR COLLISIONAL DUST GROWTH

where M, is the Mach number of the gas motions. Comparing Egs. 2.6 and 2.7 yields v ~ Mg
and
Vg turb ™~ Mgcng, (2.8)

which I treat as equalities rather than similarities in the following.

From Egs. 2.3 and 2.4, it follows that the dust stopping time and the eddy turnover time at
the dissipation scale being equal is equivalent to St = Re~ /2. That s, gas turbulence induces
random velocities of dust aggregates if the Stokes number of the aggregates exceeds

_ 14 1 2 A mfp
Steuh = Re™1/2 = /B0 — [, [Z 280mp (2.9)
o Vg turb T MéHg

If the stopping time is not only greater than the turnover time at the dissipation scale, but
also less than the one at the injection scale, the relative velocity of equally sized aggregates
amounts to

Avg turb = V25t Mgcg (2.10)

(Ormel and Cuzzi 2007). Thelatter condition corresponds to the Stokes number being less than
unity since I assume that the turnover time at the injection scale is equal to the dynamical time
scale.

2.3 BOUNCING AND FRAGMENTATION BARRIERS

Dust aggregates can grow by coagulation only to certain sizes. As soon as they reach these sizes,
they start to bounce or fragment rather than sticking under mutual collisions. Growth beyond
these sizes thus requires a mechanism that does not depend on collisions between aggregates.
In what follows, I present estimates of the sizes that mark the transition from sticking to boun-
cing or fragmentation. In doing so, I focus on monodisperse growth. That is, I assume that
all aggregates are of the same size. Therefore, I only take into account sticking, bouncing, and
fragmentation as collisional outcomes. I further treat aggregates as perfectly compact spheres
with a constant solid density of 1 gecm™3. I comment on the dependence of the estimates on
the aggregate porosity below. The model of the gas in protoplanetary disks that is used in this
thesis, with the exception of SYJ17, is detailed in Appendix A. For simplicity, when applying
this model I only consider the disk mid-plane to which the dust sediments.

Employing laboratory experiments, Weidling et al. (2012) show that colliding aggregates
bounce off of one another instead of sticking together if their relative velocity is greater than®

—5/18 —5/6
md ~1 a ~1
A — = 6. . .
Vd,boun (3.3>< 10_3g) cms 6.36 (100pm> cms (2.11)

While Weidling et al. (2012) use silicate aggregates to obtain this threshold value, Gundlach
et al. (2018) and Musiolik and Wurm (2019) find that water ice aggregates are not more prone
to sticking than these.

SThis is a conservative choice of the minimum relative velocity because collisions with this velocity always lead
to bouncing, but bouncing is a possible outcome also for lower velocities (Weidling et al. 2012).

10
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Figure 2.2: Relative velocity of dust aggregates Awvg in the disk mid-plane as a function of the dust size a. Here, | exemplar-
ily choose aradial distance to the star of 10 au and a Mach number of the gas velocity of 0.01, but the following conclusions
are equally valid for a large range of radii and Mach numbers (see main text). The blue lines show the relative velocities
thatare induced by Brownian motion Avqg, Bm (EQ. 2.11; solid line) and by gas turbulence Avq turb (EQ. 2.10; dashed line),
with the latter being much larger than the former. For the dust to be stirred by turbulence, its stopping time must be
equal to or higher than the eddy turnover time at the dissipation scale. This condition yields a threshold Stokes number
of St = Re™ /2 (see Eq. 2.9) and the threshold aggregate size which is depicted as a solid green line. This size marks the
transition from sticking to bouncing of colliding aggregates because turbulent relative velocities exceed the ones that lead
to bouncing Avq,boun (EQ. 2.11; solid orange line) at all aggregate sizes. Fragmentation, on the other hand, requires turbu-
lence to cause relative velocities in excess of Avg frag = 100 cm s~! (dashed orange line). This corresponds to aggregate
sizes that are at least equal to the value marked with a dashed green line. That s, larger relative velocities and sizes of the
dust are necessary for fragmentation than for bouncing.

Relative velocities that lead to the fragmentation of silicates in experiments are typically of
the order of 1 ms™! (e.g., Blum and Wurm 2008; Giittler et al. 2010). Higher relative velocit-
ies are necessary for water ice to fragment in the experiments by, for example, Gundlach and
Blum (2015). However, as noted above, Gundlach et al. (2018) and Musiolik and Wurm (2019)
find no such difference between the sticking properties of silicates and of water ice. The latter
authors conduct experiments at temperatures that are lower and therefore more representat-
ive of the temperatures in protoplanetary disks than the ones in previous experiments, includ-
ing the ones performed by Gundlach and Blum (2015). Therefore, I assume that aggregates
fragment if their relative velocities exceed Avg g = 1 m s~1, regardless of the composition
of the aggregates.

The relative dust velocities that are caused by Brownian motion (Eq. 2.1) and gas turbulence
(Eq. 2.10) as well as the ones that result in bouncing and fragmentation are depicted in Fig. 2.2.
From the figure, it can be seen that Brownian motion can be neglected if the dust is stirred by
turbulence in the gas. This is the case if the dust stopping time exceeds the turnover time scale
of the turbulent eddies at the dissipation scale, or equivalently if the Stokes number of the dust
is at least equal to St (see Eq. 2.9).

11



CHAPTER 2. BARRIERS FOR COLLISIONAL DUST GROWTH

In addition, the figure shows that even the lowest relative velocities induced by turbulence
invariably lead to bouncing. That is, as soon as dust grows to a Stokes number of

1/2 -1
Sthoun (2 = 0) = St (z = 0) = 1.48 x 1074 (ﬁ) (3%?) D)

bouncing prevents further collisional growth. Assuming drag in the Epstein regime®, Stokes
numbers can be converted to dust sizes as

St(z = O)Pg(z =0)cs St r \—1
=0) = =502 [ — ) (— ,
a(z=0) pellic(z = 0) 502\ Gt (1 au) cm (2.13)
(see Eq. 2.2). It follows that aggregates bounce under mutual collisions if their size is at least
r \"Y2 (M, -t
aboun(z = 0) = 743 (m) (001> pm. (214)

I note that at very large radial distances to the star and high Mach numbers, it is possible
that aggregates whose relative velocities are caused by turbulence stick together rather than
bouncing off of each other when they collide. This is the case if the minimum relative velocity
that leads to bouncing of the smallest such aggregates Avg poun (Sturb) (see Eq. 2.11) is greater
than their turbulent relative velocity Avq turh (Stturb ) (see Eq. 2.10). However, for a Mach num-
ber of 0.01, which is a typical value in the mid-plane of protoplanetary disks (see Chapter 4),
this condition is met only at radii larger than 579 au. And even for a Mach number of 0.1, the
threshold radius amounts to 93 au. I therefore neglect the possibility of sticking as a result of
collisions induced by turbulence.

From the figure, it is further evident that fragmentation, like bouncing, is a possible colli-
sional outcome only if turbulence gives rise to the relative velocities between aggregates. Nev-
ertheless, fragmentation requires higher relative velocities than bouncing. Because the relat-
ive velocity induced by turbulence increases with the Stokes number, higher Stokes numbers
are thus necessary. The requirement that the turbulent relative velocity Avg tyrh, = V2StM Cs
is equal to or greater than the one resulting in fragmentation Avg 5 yields a minimum Stokes
number of Stgag = Avifrag/@/\/lécg) or

12 [/ M.\ 2
Stirag(2 = 0) = 5.00 x 10~ (1%11) <00g1> , (2.15)
and a minimum aggregate size of
P12 (M, 2
gz = 0) = 251 (1) (().og1> cm. (2.16)

SThe transition from the Epstein to the Stokes drag regime occurs at a dust size of
9 T \9/4
alz = 0) = {Aumip(z = 0) = 4.388 (ﬁ) cm
(see Eq. 2.2).
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2.3. BOUNCING AND FRAGMENTATION BARRIERS

These simple estimates show that the so-called bouncing barrier —the term is coined by Zsom
etal. (2010) —inhibits growth by coagulation beyond sizes of hundreds of microns or a few mil-
limetres. As noted above, the derivation of the estimates involves the assumption of perfectly
compact aggregates. For a given mass, aggregates are larger, but their Stokes number is smal-
ler if they are not compact. The latter is because St o< aps ~ mq/oq, and the cross section of
the dust o4 increases with its size. Furthermore, bouncing can entail compaction of the col-
liding aggregates (e.g., Blum and Wurm 2008; Weidling et al. 2009; Giittler et al. 2009), which
leads to a decline in size and cross section, but an increase in Stokes number.

Additionally, numerical simulations indicate that porous aggregates of comparable sizes
stick together even if they collide with velocities exceeding 1 ms~! (Wada et al. 2009, 2011;
Seizinger and Kley 2013), i.e. with velocities that I assume to lead to fragmentation. However,
in experiments collisions with such velocities are found to result in bouncing or fragmentation
(Blum and Wurm 2008; Giittler et al. 2010; Weidling et al. 2012; Kothe et al. 2013; Weidling and
Blum 2015).

It is interesting to note that the estimated maximum Stokes number of ~10~* to which ag-
gregates can grow at a radius of 1 au is consistent with the value that Zsom et al. (2010) obtain
using a distinctly more sophisticated model. Rather than assuming monodisperse growth of
compact aggregates, these authors base their model on the experimental results of collisions
between both porous and compact aggregates with either similar or different sizes. In their
model, growth is as well limited by bouncing, not fragmentation or erosion. Yet, the transition
from sticking to bouncing is not associated with the transition from Brownian motion to tur-
bulent relative velocities — even aggregates that are stirred by turbulence can stick together. In
addition, the authors find that the maximum Stokes number to which dust can grow is largely
independent of the gas density and, in contrast to what can be gathered from Eq. 2.12, also of
the turbulent strength.

Several pathways have been proposed for collisional growth to overcome the barriers posed
by bouncing and fragmentation:

« Ifthey are less affected by bouncing and fragmentation than more compact aggregates,
highly porous aggregates with internal densities of orders of magnitude less than unity
may grow to planetesimals (Okuzumi et al. 2012; Kataoka et al. 2013; Krijt et al. 2016b;
Garcia and Gonzalez 2020a,b). They can overcome the radial drift barrier (see Sect. 2.4;
Okuzumi et al. 2012; Garcia and Gonzalez 2020a,b) since for a given mass they are com-
paratively large, and their growth time scale 74 grow < aps ~ mq/oq is thus short. In
addition, porous aggregates reach sizes in excess of the gas mean free path length at
smaller Stokes numbers St o< aps than compact ones. At these sizes, that is to say in the
Stokes drag regime, St(z = 0) oc #~>/4, while in the Epstein regime St(z = 0) o r (see
Eq. 2.2). In the Stokes regime, the inwards radial drift of aggregates with a Stokes num-
ber greater than one therefore results in an incremental increase in their Stokes number
and consequently a slowdown of their drift. Once aggregates have substantially grown
in mass, compaction by the surrounding gas and self-gravity can increase their internal
density to that expected for planetesimals (Kataoka et al. 2013). However, erosion inhib-
its the growth of porous aggregates beyond Stokes numbers of unity (Krijt et al. 2015,
2016b).

13



CHAPTER 2. BARRIERS FOR COLLISIONAL DUST GROWTH

« The relative velocities caused by Brownian motion and turbulence are not always equal
to, but distributed around the values given in Egs. 2.1 and 2.10. Windmark et al. (2012b,c)
and Garaud et al. (2013) therefore propose that “lucky” aggregates that are involved only
in collisions with low relative velocities avoid bouncing and fragmentation and continue
to grow. Their growth is aided by mass transfer in collisions with smaller aggregates
(e.g., Blum and Wurm 2008; Windmark et al. 2012a). Nonetheless, just as there are
“lucky” aggregates, there are “unlucky” ones which bounce or fragment although their
sizes are smaller than the ones estimated above.

« Steinpilz et al. (2019) find in experiments and simulations that millimetre-sized aggreg-
ates with opposite charges stick and form centimetre-sized ones rather than bouncing
off of one another. Collisions between dust grains can cause opposite charges even if the
grains are identical and no external electric field is present (Yoshimatsu et al. 2017).

« Dust growth to centimetre sizes is as well possible outside of ice lines (Ros and Johansen
2013; Ros et al. 2019). As icy aggregates move radially inwards and cross an ice line, for
instance owing to their radial drift (see Sect. 2.4), they sublimate. The forming vapour
diffuses back outwards over the ice line and condensates on the aggregates outside.

2.4 RADIAL DRIFT BARRIER

The drag exerted by the gas on the dust causes a radial dust drift towards the star, which poses
a time constraint and thus constitutes another barrier for the growth from dust to planets
(Whipple 1972; Adachi et al. 1976; Weidenschilling 1977a; Brauer et al. 2007). This is since the
gas density and temperature decrease with increasing radial distance to the star, and the gas
is thus supported against the stellar gravity both by the centrifugal force and by a pressure
gradient. Therefore, its orbital speed is slightly less than Keplerian. The dust, on the other
hand, is not pressure-supported. It would orbit with the Keplerian speed if it were not coupled
to the gas via drag. Because of the drag, however, the dust loses angular momentum to the
slower-rotating gas. This leads to the stellar gravity acting on the dust not being balanced by
the centrifugal force, and the dust thus spiralling towards the star.

The speed of this radial drift of the dust can be derived as follows (Takeuchi and Lin 2002;
Armitage 2010): The equations of motion of the dust in the radial and azimuthal dimension
read

gy Vie vE  var — U,

= - = = S 3nd 2.17
ot T T td stop 217)

9 (rvag) 1 (vdg = Vge) (2.18)
ot tastop

where v is the velocity and ¢ is the time. The subscripts d and g refer to dust and gas, while ¢
denotes the azimuth. The first term on the right-hand side of the former equation represents
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2.4. RADIAL DRIFT BARRIER

the centrifugal force and the second term the stellar gravity, while the last term on the right-
hand side of both equations describes the drag by the gas onto the dust.

The sub-Keplerian orbital velocity of the gas can be expressed as v, 4 = vk — Ilcs. The di-
mensionless parameter IT, which is introduced by Bai and Stone (2010b), indicates the strength
of the radial pressure gradient,

1 9oP

mn=-———. .
2¢4pe Qi Or (2.19)

In the mid-plane of the disk model described in Appendix A, it amounts to
ro\1/4
II(z = 0) = 0.046 (—) . (2.20)
lau
It follows that

v = Ué@ + 2vg ¢llcs + %2 (2.21)

Since the deviation of the orbital gas velocity from the Keplerian velocity is small, I neglect the
last term on the right-hand side and approximate the second term as 2vk I1cg. In addition, vg &

and analogously v2 & can be expanded in a Taylor series around vZ,

ov?
2 2 8¢ 2

Ugp = Vk T D0y (vge — vk) + O |:(Ug,¢ — UK) }

7 (2.22)
~ vk + 21}2#, — 20g UK
< vgd) R 20g yUK — v
Substituting Egs. 2.21 and 2.22 into Eq. 2.17 results in
Oy 20440k — Vg 20540k — VR + 20klles Vg, — Vg,

ot N r - r N ta <

d,stop (2.23)
= —QUKHCS + ZUK (vd’¢ — 'Ug’¢) _ vdv’r - Ugyr
r r td,stop

I assume that the radial dust drift is much faster than the gas drift, vq, > v ,, and that the
drift speed of the dust is constant in time, dvq /0t = 0.
If the dust has sufficiently settled towards the mid-plane, its Keplerian orbital velocity can

be approximated as
GMgr? |G Mg
VK = (TQ N 22 3/2 (224)

where G is the gravitational constant and Mg the stellar mass. Further assuming that the spe-
cific angular momentum of the dust remains close to Keplerian, vq 47 ~ vkr, EqQ. 2.18 yields

0 (rvae) _ 37"8(7”1};() B Ovk\ 1 1
o "ot ar  C Var | +TW = Udr | VK~ 5UK | = SUdrUK and (2.25)
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Figure 2.3: Radial drift velocity vq, in the disk mid-plane as a function of the dust size a. Solid lines of different colours

depict the velocity at different radial distances r from the star. The dashed line marks the transition from the Epstein to
the Stokes drag regime. The maximum drift speed, about 0.01 au yr_l, is reached for dust sizes of decimetres to metres.

1 td,stopvd,rvK

Vd¢ = YVgo = T 2.26
dv(b g7¢ 2 r ( )
By substituting this equation into Eq. 2.23, I obtain
0= _Q’UK*HCS + 2@7K _ltd,stop'ud,rUK _ Vdr
" " 2 r td,stop
2 (2.27)
2ukles ld stopVk 1
= - —Uir 5 =+
" r td,stop
211 cq 211 cq
< Vdr = (2.28)

td,stopQK + (td,stopQK)il N St + Stil '

Dust aggregates with a Stokes number of one, i.e. a stopping time that is equal to the dynam-
ical time scale, drift with the speed vq, = Ilcs. This speed is equal to the difference between
the Keplerian velocity and the orbital velocity of the gas. The drift speed is less by a factor of St
if the Stokes number of the dust St < 1, and by a factor of 1 /St if St > 1. In the former case,
dust and the gas are well coupled and the orbital speed of the dust is close to the sub-Keplerian
speed of the gas. In the latter case, on the other hand, gas and dust are effectively decoupled,
and the dust orbits with the Keplerian speed.

I show the drift velocity as a function of the dust size in Fig. 2.3. It can be seen that, depend-
ing on their radial location, decimetre- to metre-sized aggregates can drift 1 auin as little as a
hundred years, while millimetre-sized aggregates take ten thousand years or more to drift the
same distance.

To estimate a dust size at which the radial drift of the dust constitutes a barrier” for its
growth by coagulation, I compare the radial drift time scale 7q gyify = 7/vq.r, 1.€. the time scale

"Because the radial drift is fastest for dust aggregates with sizes of about metres, the radial drift barrier is also
referred to as metre-size barrier.
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2.4. RADIAL DRIFT BARRIER

over which a dust aggregate drifts into the star, to the growth time scale tq grow = a/a, where
the dot symbolises the time derivative (e.g., Klahr and Bodenheimer 2006; Birnstiel et al. 2012,
2016). If the former time scale is less than the latter, drift is faster than growth.

A simple estimate of the growth rate @ can be obtained by considering monodisperse growth
and perfect sticking of colliding dust aggregates (Kornet et al. 2001). That is, each collision
leads to a doubling in aggregate mass. I further assume spherical aggregates with a constant
solid density. Under these assumptions,

da Omg 1 mq

a= = . 2.2
8md ot 47m2ps Td,coll ( 9)

The collision time scale, that is to say the average time that passes between two collisions,
amounts to 74 coll = 1/(1d0d,collAvd,Bm)- Here, only relative velocities between colliding ag-
gregates that are induced by Brownian motion are taken into account because I — in contrast
to previous authors like Birnstiel et al. (2012, 2016) — neglect sticking as a possible outcome of
collisions that are induced by gas turbulence (see Sect. 2.3). The cross section for the collision
of two aggregates is equal to o4 con = 4ma’.

The radial drift time scale can be approximated as 7q arify = 7/(211csSt) (see Eq. 2.28) if
aggregates do not grow to a Stokes number of one and thus do not reach the maximum drift
speed. By equating this time scale with the growth time scale 74 grow = aps/(paAvd,Bm) and
assuming drag in the Epstein regime (see Eq. 2.2)%, I derive the threshold dust size for which
further collisional growth is inhibited by the radial drift,

3kBTr262pﬁp§ 17
Adrift = W (2.30)
(see also Eq. 2.1). In the mid-plane of the disk model I present in Appendix A, this corresponds
to
—5/7 2/7
agrifg(z = 0) = 883 (ﬁ) <g:) pm. (2.31)
Using the inverted Eq. 2.13,
o= () (1) |
St(z =0) 99 x 10 Tem) \1aa) (2.32)
this threshold size can be converted to a threshold Stokes number of
27 2/7
Stauire (2 = 0) = 1.76 x 10~ (L) (pd> . (2.33)
lau Pg

Figure 2.4 depicts the estimated maximum sizes and Stokes numbers to which dust aggreg-
ates can grow by coagulation before they bounce (Egs. 2.12 and 2.14) or fragment (Egs. 2.15
and 2.16) if they collide or before their radial drift is faster than their growth (Egs. 2.31and 2.33).
The figure shows that dust sizes are limited to millimetres at small radial distances to the star
owing to bouncing, and to tens or hundreds of microns at large radii because of the drift. Non-
etheless, as discussed in more detail in Sect. 2.3, the depicted estimates are based on the sim-
plifying assumption of monodisperse growth of perfectly compact spherical aggregates.
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Figure 2.4: Dust size a and Stokes number St in the mid-plane asa function of the radial distance to the starr. The blueand
orange lines show the threshold size and Stokes number for bouncing (Egs. 2.12 and 2.14) and for fragmentation (Egs. 2.15
and 2.16), respectively, under mutual dust collisions. The threshold values at which the radial drift of the dust is equally
fast as its collisional growth (Egs. 2.31 and 2.33) are marked with green lines. Here, | assume a Mach number of 0.01 and
a dust-to-gas density ratio of one, which are typical values in the mid-plane of protoplanetary disks (see Chapters 3 and 4).
Itis evident that dust is prevented by bouncing from growing larger than millimetres at small radii, and by the drift from
growing larger than tens or hundreds of microns at large radii.
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Streaming instability

As discussed in the previous chapter, dust aggregates can grow to sizes between hundreds of
microns and centimetres via coagulation, i.e. aggregates sticking together when they collide.
Collisional growth beyond these sizes is prevented by bouncing or fragmentation under mu-
tual collisions (see Sect. 2.3) as well as by the radial drift of the dust towards the star that is
caused by the drag of the gas onto the dust (see Sect. 2.4). A number of mechanisms have
been proposed to overcome theses barriers and induce the formation of planetesimals, the
next stage in the growth from dust to planets (Goldreich and Ward 1973). Planetesimals are
typically tens or hundreds of kilometres in size, large enough to be bound by self-gravity and
to be effectively decoupled from the gas (e.g., Johansen et al. 2014). Thatis, they are not affected
by either bouncing and fragmentation or by radial drift. While I introduce other mechanisms
for planetesimal formation in Sect. 3.5, the focus of this thesis in general and this chapter in
particular lies on the streaming instability as arguably the leading candidate mechanism.

3.1 LINEAR INSTABILITY

The streaming instability was discovered analytically by Youdin and Goodman (2005) as a lin-
earinstability. The numerical studies conducted by Youdin and Johansen (2007), Johansen and
Youdin (2007), and Bai and Stone (2010a) confirmed the presence of the linear instability and
showed that it evolves into a non-linear regime. The instability operates when rotating gas and
dust are mutually coupled via drag and there is a radial gradient in the gas pressure. It taps
into the free energy provided by this pressure gradient. In general, density and temperature
decrease with increasing radial distance to the star in protoplanetary disks, and the instability
is thus active in all disk regions in which dust is present. In the following, I sketch the deriv-
ation of the linear instability as presented by Youdin and Goodman (2005) and Jacquet et al.
(2011).

Linear instabilities arise from linear perturbations to an equilibrium state, that is to say to
solutions of the equation of motions that are constant in time. Youdin and Goodman (2005)
and Jacquet et al. (2011) obtain the equations of motion of the dust by approximating it as a
pressureless fluid. This approximation is valid if the dust adopts the fluid behaviour of the
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CHAPTER 3. STREAMING INSTABILITY

gas because gas and dust are strongly coupled via drag, i.e. the dust stopping time is shorter
than the dynamical time scale 1/Qk and the Stokes number of the dust thus smaller than one
(Youdin and Goodman 2005; Youdin and Johansen 2007; Jacquet et al. 2011). If gas and dust are
only loosely coupled, though, the trajectories of adjacent dust aggregates can not be assumed
to be similar as the ones of gas molecules, but can even cross. In addition, the description of
the dust as a fluid with zero pressure allows for unphysical discontinuities in the dust density.
Artificial dust viscosity can be employed to prevent these discontinuities in numerical simula-
tions, but this in turn alters the dust dynamics, including suppressing dust concentrations.
The equations of motion of gas and dust as a fluid are given by

dpg

ot + V- (pgvg) =0, G
D% | (g V) g = —Qri — v LYY Ly 3.3
ot Pg Pg tdstop
Ovg 2 . Vd— Vg
7+(Ud‘v)vd: —QKrr—i, (3.4)
ot td,stop

where 7 is the unit vector in the radial direction and P the gas pressure. The first term on the
right-hand side of the momentum equations of gas (Eq. 3.3) and dust (Eq. 3.4) reflects the radial
stellar gravity, while the last term gives the acceleration caused by the mutual drag between
gas and dust (see Eq. 2.2). For simplicity, both vertical stellar gravity and self-gravity of gas
and dust are neglected.

To close the system of equations, both Youdin and Goodman (2005) and Jacquet et al. (2011)
assume that the gas is incompressible. That is, the density of every gas parcel is considered
to remain constant in time. This assumption is justified if turbulent velocities in the gas are
slower than the sound speed, i.e. the turbulence is subsonic. Under this condition, thermal
motions transport information about changes in the gas density faster than the changes are
induced by turbulent motions. The turbulence driven by the streaming instability is indeed
subsonic (see Sect. 4.5.1). If it is incompressible, that is to say dp, /0t = Vp, = 0, the continu-
ity equation of the gas (Eq. 3.1) reduces to

V- v, = 0. (3.5)

Nakagawa et al. (1986) obtain solutions to the momentum equations of gas and dust (Egs. 3.3
and 3.4) that are steady in time. The derivation of these equilibrium solutions involves the
assumption of axisymmetry, i.e. independence of the azimuth. If the vertical stellar gravity is
neglected, the solutions can be expressed as

Vg = 72Stfg2fd Ilcs, (3.6)
1+ St ng
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d,é K 1+St2fg2 s (3.9)
Vg,z = Ud,z = 0, (3.10)

where fy = pg/prot and fq = pd/prot are the ratios of gas and dust density, respectively, to the
total density piot = pg + pa. L refer to Sect. 2.4, in which I explain that a gas pressure gradient
directed radially away from the star causes the orbital velocities of gas and dust to be slightly
less than the Keplerian velocity and the dust to drift radially towards the star. The dimension-
less parameter I1, as introduced by (Bai and Stone 2010b), gives the strength of this radial pres-
sure gradient. If they were not coupled via their mutual drag, the dust and the gas would orbit
with the Keplerian velocity vk and the sub-Keplerian velocity vk — Ilcs, respectively.

It is interesting to consider the equilibrium values of the gas and dust velocities in the lim-
its of very low and very high ratios of dust to gas density, corresponding to f; — 1 (fqg — 0)
and fqg — 1 (fg — 0), respectively. The former case reflects that the dust-to-gas density ratio
in the interstellar medium and consequently in protoplanetary disks is generally much less
than one. In this case, the gas does not move radially, while Eq. 3.7 is equivalent to Eq. 2.28 giv-
ing the radial drift velocity of the dust. The radial dust drift is discussed in detail in Sect. 2.4.
Both gas and dust orbit with a velocity that is close to the sub-Keplerian one of the gas because
the drag exerted by the gas on the dust is much stronger than the drag of the dust onto the gas.

With increasing dust-to-gas density ratio, however, the orbital velocity of gas and dust in-
creases towards the Keplerian velocity of the dust. Additionally, the inwards radial drift of
the dust slows down, while the gas begins to drift radially outwards. The latter is since the
centrifugal force acting on the gas and its pressure gradient, which are both directed radially
outwards, are no longer balanced by the inwards-directed stellar gravity. In the layer around
the disk mid-plane to which the dust sediments, the dust density approaches the gas density.
If they are equal, gas and dust drift radially with the same speed. Locally in dust overdensit-
ies, for instance in those caused by the non-linear streaming instability (see Sect. 3.2), the dust
density can even exceed the gas density by orders of magnitude. In the limit of very large dust-
to-gas density ratios, the radial velocities of both gas and dust vanish. This is because the drag
exerted by the dust on the gas dominates over the effect of the gas pressure gradient.

The dependence of the equilibrium gas and dust velocities on the Stokes number of the dust
also merits a brief discussion. Neither the dust nor the gas drift radially if the Stokes number
is either very small or very large. In the former case, the gas and dust are tightly coupled, and
either the dust is dragged along by the gas or vice versa, depending on the dust-to-gas density
ratio. In the latter case, on the other hand, gas and dust are effectively decoupled. Thus, the
gas orbits with the sub-Keplerian velocity, while the orbital velocity of the dust is Keplerian.
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CHAPTER 3. STREAMING INSTABILITY

To examine whether they lead to instability, Youdin and Goodman (2005) and Jacquet et al.
(2011) analyse perturbations to the equilibrium state — the velocities of gas and dust in this
state are given by Egs. 3.6 to 3.10 — whose size scales are much less than the distance to the star.
Therefore, they adopt the shearing box approximation (Goldreich and Lynden-Bell 1965). In
this approximation, a disk region is considered that is small enough compared to the size of
the disk for the disk curvature to be negligible.

Locations can therefore be indicated using a Cartesian coordinate system whose origin is
located at the centre r of the disk region (Goldreich and Lynden-Bell 1965; Youdin and Good-
man 2005). The cylindrical radial coordinate r can be converted to the Cartesian radial coordin-
ate  as

T=r—rg (3.11)

and the cylindrical azimuthal coordinate ¢ to the Cartesian azimuthal coordinate y as
y =rosin(¢ — Qro)t) = ro(¢ — Q(ro)t), (3.12)

where € is the orbital frequency. The vertical coordinate z remains the same. Similar to loc-
ations, velocities are linearised with respect to the orbital velocity at the centre of the region.
In particular, expanding the Keplerian orbital frequency Qi o< 2~3/2 (see also Eq. 2.24) in a
Taylor series around z = 0,

Qx(z) = Qk(z = 0) + () z + O(a?)
ov Lo (3.13)
- o 3 Oxk(2) '
~ QK(m = O) 5 T - Z,
yields the Keplerian orbital velocity
3
vk(z) = vg(x =0) — §QK($ =0)z. (3.14)

The equilibrium gas and dust densities are assumed to be homogeneous within the region,
and the equilibrium gas pressure to decrease linearly with increasing radial coordinate (Youdin
and Goodman 200s5; Jacquet et al. 2011). That is, the pressure gradient is constant. Therefore,
the equilibrium values of the radial velocities of gas (Eq. 3.6) and dust (Eq. 3.7) are also constant,
while the azimuthal gas (Eq. 3.8) and dust velocities (Eq. 3.9) vary only with the Keplerian velo-
city.

The perturbations to the equilibrium state are considered to possess the form of axisym-
metric waves (Youdin and Goodman 2005; Jacquet et al. 2011). That is, they are proportional
to exp[i(kyx + k,z — wt)], where k, and k, are the wave numbers in the radial and vertical
dimension and w is the wave frequency. Each of the gas and dust densities and velocities as
well as the gas pressure are expressed as the sum of the equilibrium value and a perturbation,
with the perturbation being very small compared to the equilibrium value. Substituting these
expressions into the equations of motion (Egs. 3.1 to 3.5), linearising the result with respect
to the perturbations, and solving for the wave frequency yields a polynomial dispersion rela-
tion w(k,, k). Every root of this polynomial represents a mode, a set of coherent oscillations
of the densities and velocities of gas and dust as well as of the gas pressure.
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3.1. LINEAR INSTABILITY

The oscillations of a mode grow and thus cause instability if real values of radial and vertical
wave number exist for which the imaginary part of the wave frequency is positive’. If the ima-
ginary part is negative, the oscillations of the mode are damped. As gas and dust are described
by eight equations of motion, three each for the three velocity components and one each for
the density, the dispersion relation is of degree eight. The assumption of gas incompressibility
reduces its degree to six. Of these six modes, three are strongly damped, while the other three
are either weakly damped or growing (Youdin and Goodman 2005; Jacquet et al. 2011; Jaupart
and Laibe 2020).

The latter three modes can be isolated from the former three by means of the so-called ter-
minal velocity approximation (Youdin and Goodman 2005; Jacquet et al. 2011). This approxim-
ation is based on the assumption that forces resulting from gas pressure gradients are always
balanced by mutual drag forces between gas and dust — the terminal relative velocity of gas and
dust is attained instantaneously. That is,

1 Vg — v Vg — v
~yp=Pi¥dT% (— d g) (3.15)
Pg Pg td,stop td,stop

(see Egs. 3.3 and 3.4). The left-hand side of this equation gives the acceleration of the gas in-
duced by pressure gradients, and the first and second term on the right-hand side the accel-
eration of gas and dust, respectively, owing to drag. The relative velocity of dust and gas can
thus be expressed as
tds
Vg — Vg = MVP. (3.16)
Ptot

The terminal velocity approximation is valid under two conditions (Jacquet et al. 2011): Similar
to the approximation of dust as a pressureless fluid, it requires that f,St is much smaller than
one, that is to say that gas and dust are tightly coupled. In addition, it is necessary that

fg kxttzi,stop aj

< 1. (3.17)
Ptot or

By applying the terminal velocity approximation, the degree of the dispersion relation can
be reduced from six to three. This cubic relation is given by

2 2
3 02 Pd | pg OP 2 k- o Pd — Pg OP kyk:
! Q Le 2 — (k= t stopS? SR
w” + 14 stop <7, Kptot + ngt or a:) w ( K 2 w + td stoptl ngt ) )

(3.18)
where i is the imaginary unit and the wave number k = \/k2 + k2 (Jacquet et al. 2011). I note
that Youdin and Goodman (2005) obtain a slightly different relation in which the first addend
of the term that is quadratic in the wave frequency is greater by a factor of k2 /k2. Jacquet et al.
(2011) attribute this discrepancy to a typographical error in the relation inferred by Youdin and
Goodman (2005).

'Instabilities like the streaming instability that arise from growing oscillations, that is to say from modes with
non-zero real part of the wave frequency, are often referred to as “overstabilities”. This is to distinguish from “in-
stabilities” which are caused not by oscillations, but by modes with a purely imaginary wave frequency.
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Figure 3.1: Figure adopted from Youdin and Goodman (2005, their Fig. 1, reproduced with permission ©AAS). Logarithm of
the growth rate s of the secular mode of the linear streaming instability as a function of the Stokes number of the dust 7
and the ratio of dust pq to gas density pg. The growth rate is given relative to the Keplerian orbital frequency €2 divided
by 2. Itis depicted in grey tones and as contour lines. The growth rate is higher if the Stokes number is closer to one. In
addition, growth is fastest if the dust-to-gas density ratio is nearly equal to one, but suppressed if the densities of dust and
gas are too similar.

Two of the three modes defined by this reduced dispersion relation are damped epicyclic
oscillations. These can grow if the full dispersion relation is considered (Youdin and Goodman
2005; Jaupart and Laibe 2020). Nevertheless, the growth rate of the third secular mode, that is
to say the imaginary part of its wave frequency, is always larger than the ones of the epicyclic
oscillations (Youdin and Goodman 2005). To leading order in the stopping time of the dust,
the real part of the wave frequency of this secular mode is equal to

pd — pg OP
R = —tdstop— 5 = kz .
e(w) dstop— 3~ (3.19)

and the imaginary part to

2 2
pd (pd — pg) < opP kk:E) (3.20)

3
Im(w) - td,stop p?ot Or kz
(Jacquet et al. 2011). As with the dispersion relation, Youdin and Goodman (2005) find a growth
rate that is larger by a factor of k2 /k?.

Figure 3.1 depicts the growth rate of the secular mode as computed from the dispersion rela-
tion of degree six. From the figure and Eq. 3.20, it is evident that the growth rate increases with
the velocity of the radial dust drift (see Egs. 2.28 and 3.7), i.e. with the steepness of the gas pres-
sure gradient as well as the Stokes number of the dust or equivalently its stopping time. Equa-
tion 3.20 indicates that the growth rate nominally depends on the cube of the stopping time.
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3.1. LINEAR INSTABILITY

Nonetheless, Youdin and Goodman (2005) find that growth is fastest when k., td,stopk'g, and
the growth rate therefore proportional to the stopping time (see also Fig. 3.1). When Stokes
numbers exceeding one are considered, the growth rate decreases with increasing Stokes num-
ber. However, neither the fluid approximation of the dust nor the terminal velocity approxim-
ation are applicable for these Stokes numbers.

As can be seen from the figure, the maximum growth rate with respect to the ratio of dust
to gas density is reached when the ratio amounts to a few. The growth rate declines as the
dust-to-gas density ratio approaches values much smaller or much larger than unity. This is
because the effect of the drag by the gas onto the dust is negligible in the former case and by
the dust onto the gas in the latter case. Interestingly, the growth rate is also reduced if the dust-
to-gas density ratio is too close to one. If the densities of gas and dust are equal, the growth
rate given by Eq. 3.20 vanishes. While growth is suppressed, the growth rate is non-zero when
the dispersion relation of degree six is considered (Youdin and Goodman 2005).

The cubic dispersion relation shows that only modes with oscillations both in the radial and
in thevertical dimension are unstable. If k, = 0, Eq.3.18 reduces to alinear dispersion relation,

pg OP ; 2 Pd
w =1 —=—k, — it Qi —. .21
d,stop thOt or T d,stop® K Dot (3.21)

Thatis, only one mode with purely radial oscillations exists, with the oscillations being damped
since the imaginary part of the wave frequency is negative. I note that Raettig et al. (2015),
Schreiber and Klahr (2018), and Klahr and Schreiber (2020) report that they find the (non-
linear) streaming instability, or at least a very similar instability, to operate in simulations of
the radial-azimuthal plane. However, this is in contrast to the linear instability as originally
discovered by Youdin and Goodman (2005) and discussed in this section growing only when
the vertical dimension is taken into account.

In the above derivation of the linear instability, dust is treated as a single species with a uni-
form Stokes number. Krapp et al. (2019) and Zhu and Yang (submitted) find that the growth
rate can significantly decline if multiple dust species with different Stokes numbers are taken
into accountinstead. If and how strongly the growth rate decreases with the number of species
depends on the minimum and maximum Stokes numbers and on the ratio of the dust to the
gas density (Krapp et al. 2019; Zhu and Yang submitted) as well as on the slope of the power-law
distribution of Stokes numbers (Zhu and Yang submitted). While the dependence on the min-
imum Stokes number and the steepness of the Stokes number distribution is comparatively
weak, the growth rate decreases by several orders of magnitude — and does not converge for up
to 2048 (Krapp et al. 2019) or 4096 species (Zhu and Yang submitted) — if both the maximum
Stokes number and the dust-to-gas density ratio are less than unity (Krapp et al. 2019; Zhu and
Yang submitted). I note that the numerical studies of the non-linear instability presented by
Bai and Stone (2010b) and Schaffer et al. (2018) do not indicate such a decline in the growth
if multiple dust species are simulated. This might be because the different species in these
simulations are not well-mixed. Rather, dust with a smaller Stokes number is lifted to greater
heights by the turbulence driven by the instability than dust with a larger Stokes number (see
Sect. 4.5.1).
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Physical interpretations of the linear instability have been devised by Jacquet et al. (2011),
Lin and Youdin (2017), and Squire and Hopkins (2018a,b). Lin and Youdin (2017) show that the
streaming instability, and in fact any instability which is induced by the mutual drag between
gas and dust, arises because changes in gas pressure lag behind changes in dust density when
the stopping time of the dust is finite. If they are tightly coupled, gas and dust can be approxim-
ated as a single fluid. The density of this fluid is equal to the total density of gas and dust, while
only the gas contributes to the pressure of the fluid. A perturbation to its equilibrium pressure
leads to the fluid expanding (contracting) to return to the equilibrium state. However, the fluid
overshoots this state because the dust density still increases (decreases) when the equilibrium
pressure is reached if the dust stopping time is non-zero. To compensate for this, the fluid con-
tracts (expands), but overshoots again. These oscillations around the equilibrium state grow
and instability ensues.

Squire and Hopkins (2018a,b) classify the streaming instability as a resonant drag instabil-
ity (see also Squire and Hopkins 2020). Resonant drag instabilities occur when gas and dust
are coupled via their mutual drag and a systematic motion of the dust is in resonance with a
wave in the gas, for example epicyclic or buoyant oscillations (see also Sects. 4.4.1 and 4.4.2). To
illustrate this, I employ a toy model that was first used by Jacquet et al. (2011) to elucidate the
streaming instability only and later applied by Squire and Hopkins (2018b) to resonant drag
instabilities in general. I consider an oscillation in the gas which entails local maxima in the
gas pressure. Similar to the dust radially drifting towards the star, i.e. towards the global gas
pressure maximum, the dust moves towards local pressure maxima (see Sect. 3.5). The drag by
the dust onto the gas leads to the gas following this motion. This results in an enhancement
of the gas pressure maxima and the amplitude of the wave, and thus instability. I note that
this toy model is only applicable in the terminal velocity approximation, that is when the drag
between gas and dust adjusts instantaneously to gradients in the gas pressure. In addition,
neither rotation nor the global radial pressure gradient are taken into account, though these
are necessary for the streaming instability to operate.

According to the interpretation by Squire and Hopkins (2018a,b), the streaming instability
is actually two different instabilities: One of them occurs for dust-to-gas density ratios less
than unity. This instability is a resonant drag instability which results from the radial drift of
the dust being in resonance with epicyclic oscillations of the gas in the radial-vertical plane.
The other instability, which is active if the dust density is greater than the gas density, is not a
resonant draginstability. This distinction is reflected in the linear growth rate of the streaming
instability being substantially reduced if dust and gas density are too similar.

3.2 NON-LINEAR INSTABILITY, DUST CONCENTRATION, AND PLANETESIMAL FORMATION

The linear streaming instability arises from growing oscillations in the gas and dust velocities
and densities as well as the gas pressure, with the oscillations in the dust density entailing dust
overdensities. However, the amplitude of these oscillations is not relevant for and thus not
constrained by the analysis of the linear instability. Simulations by, for example, Johansen etal.
(2009, 2012, 2015), Bai and Stone (2010b,¢), and Yang and Johansen (2014) show that, after it has
transitioned from its linear to its non-linear regime, the instability induces dust overdensities
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Figure 3.2: Toy model of the non-linear streaming instability. The illustration shows the radial-azimuthal plane. Solid ar-
rows depict the orbital velocities of gas vg,4 and dust v4,4 that are coupled via their mutual drag, while dashed arrows
represent the radial dust velocity v4 . Where no dust aggregates are present, the gas orbits with the sub-Keplerian velo-
city vk — Ilcs, with IT expressing the strength of the radial pressure gradient in the gas (see Sect. 2.4). On the other hand,
the orbital speed of the aggregates in isolation would be equal to the Keplerian speed vk . Owing to their mutual drag, the
orbital velocity of the coupled gas and dust lies in between. In the vicinity of a clump of dust aggregates (left) it is closer
to the Keplerian velocity than near a single aggregate (right) because the local ratio of dust to gas density is higher (see
Egs. 3.8 and 3.9). Therefore, the speed of the radial drift of the clump is less than that of the single aggregate (see Eq. 3.7).
The clump can thus accrete single aggregates that are moving slower azimuthally but faster radially. A feedback loop en-
sues: The accretion of aggregates causes the clump to drift more slowly in the radial direction and to orbit more rapidly,
which in turn leads to it accreting even more aggregates.

that exceed the gas density by up to four orders of magnitude. This is sufficient for the dust
to collapse under its self-gravity, leading to the formation of planetesimals. The simulations
presented by these authors include the vertical stellar gravity, which is neglected in the analysis
of the linear instability. The gravity leads to the dust settling towards the disk mid-plane and
and forming a dense layer around this plane.

How dust is concentrated by the non-linear instability can be elucidated with the aid of
the toy model illustrated in Fig. 3.2 (Johansen and Youdin 2007). I assume that gas and dust
are well-coupled via drag and begin by considering a single dust aggregate (right). The gas
away from this aggregate orbits with the sub-Keplerian velocity vk — Ilcs, where 11 indicates
the steepness of the radial gradient in the gas pressure (see Sect. 2.4). The orbital velocity of
the aggregate would be Keplerian if it were isolated, but is reduced by the drag of the slower-
orbiting gas onto the aggregate. Nevertheless, the aggregate also exerts a drag on the gas.
Therefore, the orbital velocity of the coupled gas and aggregate is marginally greater than the
sub-Keplerian velocity of the gas in isolation.

Compared to the one exerted by a single aggregate, the drag of a clump of dust aggregates
onto the gas is stronger (left). The orbital speed of the coupled gas and clump is therefore
closer to Keplerian than that of gas and single aggregate. Consequently, the radial drift result-
ing from the stellar gravity not being balanced by the centrifugal force when the dust orbits
with a sub-Keplerian speed is more rapid in the case of a single aggregate than in that of the
clump. This follows also from Egs. 3.7 to 3.9: Comparing the clump with a single aggregate cor-
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responds to considering a higher ratio of the dust density to the total density of gas and dust.
For higher f4 and lower f, the radial velocity of the dust vq , is smaller, while the azimuthal
velocities of gas v, 4 and dust vg 4 approach the Keplerian velocity vk.

Thus, a large clump of aggregates can grow by accumulating smaller clumps and single ag-
gregates that drift onto it radially or it drifts onto azimuthally. Growth of the large clump leads
to deceleration of its radial drift and acceleration of its orbital motion, which in turn results in
the clump accreting even more smaller clumps and aggregates. This effect can be likened to
trafficjams (Johansen and Youdin 2007). Itis also related to groups of cyclists or flocks of birds
moving faster and catching up to isolated cyclists or birds, respectively, since the individual
members of group or flock are less affected by air resistance — dust experiences a headwind of
slower-orbiting gas — than the isolated cyclist or bird. Youdin and Johansen (2007) note that
while this toy model illustrates how the instability induces growth of non-linear perturbations
in the dust density, the same effect does not lead to growth of linear perturbations.

Taking into account a number of dust species with different Stokes numbers rather than
only one species, as I implicitly assume in the toy model discussion above, has further implic-
ations for the radial and azimuthal velocities of gas and dust (Bai and Stone 2010b; Schaffer
et al. 2018): The streaming instability arises from the interaction between the gas and the spe-
cies with the greatest Stokes numbers, i.e. the species with the weakest coupling to the gas.
Because of the inwards radial drift of the dust and the conservation of angular momentum,
the gas drifts radially outwards. This can be gathered from considering Eq. 3.6 for a finite
dust-to-gas density ratio, i.e. non-zero f; and f4. While the species with the largest Stokes
numbers drift inwards, the species with smaller Stokes numbers are more tightly coupled to
the gas and drift outwards with it. Nevertheless, the orbital velocity of the gas is closer to the
Keplerian velocity owing to the drag exerted by the smaller species than if these species were
not present. Thus, the inwards radial drift of the largest species and the outwards drift of the
gas are slower than they would be in the absence of the smaller species.

Owing to the effect that I describe employing the toy model, the (non-linear) streaming
instability concentrates dust in radially small but azimuthally elongated filaments (Johansen
etal. 2007, 2009; Bai and Stone 2010b; Kowalik et al. 2013; Yang and Johansen 2014; Li et al. 2018;
Abod et al. 2019; SYJ17). These filaments form within no more than some tens of orbital peri-
ods for dust with a Stokes number of ~0.1 (e.g., Johansen et al. 2007, 2009; Yang and Johansen
2014; Li et al. 2018; Abod et al. 2019), but their formation takes up to ~1000 orbital periods if
Stokes numbers of 0.01 or 0.001 are considered (Yang et al. 2017). The formation time scale
is nonetheless shorter than the radial drift time scale even for the latter Stokes numbers (see
Sect. 2.4 Yang et al. 2017). In the left panel of Figure 3.3, I show the filaments that form in a
simulation presented in SYJ17. The filaments are close to axisymmetric both in shearing box
simulations, that is to say in simulations of disk regions on a local scale (e.g., Yang and Jo-
hansen 2014; Li et al. 2018; Abod et al. 2019; SYJ17), and in simulations of disks on a more global
scale (Kowalik et al. 2013). Yang and Johansen (2014) and Li et al. (2018) obtain similar values of
the average radial distance between these filaments of ~0.2 and ~0.15 gas scale heights. Abod
et al. (2019) find that the radial extent of the filaments increases with the strength of the gas
pressure gradient.
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Figure 3.3: Figure adopted from SYJ17. Logarithm of the dust surface density X, as a function of the radial coordinate
and the azimuthal coordinate y in a local shearing box simulation. The dust surface density is expressed as a fraction of
the gas surface density at the centre of the simulation domain X o, while the radial and azimuthal coordinates are given
in units of gas scale heights H. The streaming instability causes the dust to accumulate in four filaments thatare radially
thin, but largely axisymmetric (left panel). Owing to their self-gravity, particularly dense dust clumps in these filaments
undergo gravitational collapse, which leads to the formation of planetesimals (right panel).

Within these filaments, overdense clumps of dust can collapse under their self-gravity, con-
tract, and form planetesimals (Johansen et al. 2007, 2009, 2011, 2015; Simon et al. 2016, 2017;
SYJ17). The sizes of these planetesimals range from tens to hundreds of kilometres (Johansen
et al. 2009, 2015; Simon et al. 2016; Abod et al. 2019; SYJ17). The planetesimals emerging from
the filaments depicted in the left panel of Fig. 3.3 can be seen in the right panel. The collapse
to 10 km- and 100 km-sized planetesimals, respectively, takes a few hundred years and ~25 yr
ifthe kinetic energy in clumps is dissipated solely via collisions between dust aggregates (Wahl-
berg Jansson and Johansen 2014). On the one hand, taking into account the drag of the dust
onto the gas accelerates the collapse since it facilitates the dissipation of kinetic energy (Wahl-
berg Jansson and Johansen 2017). On the other hand, this drag leads to the collapse being re-
tarded because the gas pressure in a clump increases with decreasing size of the clump (Shar-
iff and Cuzzi 2015). We in SYJ17 and Abod et al. (2019) show that more numerous and more
massive planetesimals emerge in larger filaments. The planetesimals typically migrate in the
radial direction through and thus accrete dust from more than one filament, though (SYJ17).

Adust clump is commonly assumed to collapse when the self-gravity of the clump overcomes
the tidal force of the star that acts to stretch it?, that is when the density of the clump is higher
than its Roche density (Johansen et al. 2011, 2015; Simon et al. 2016; SYJ17). The Roche density
can be derived by considering an individual aggregate within a clump. I assume that the clump
is located in the disk mid-plane and the aggregate on the side of the clump facing the star.
If the radial distance between the aggregate and the centre of mass of the clump is equal to
the so-called Hill radius ry, the gravitational force exerted on the aggregate by the star is in

*The tidal force exerted by the star on a body is the force that results from parts of the body that are closer to
the star being more strongly gravitationally attracted by the star than those that are further away.
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equilibrium with the centrifugal force and the gravitational force by the clump acting on the

aggregate. That s,
GMgmg Gmemg
= maQf (rs —ru) + ——5—, (3.22)
(rs —rn) T
where m. and mq are the masses of clump and aggregate, and rg is the radial distance between
the centre of mass of the clump and the star. If the clump as a whole is orbiting with the Kep-

lerian frequency Qx = (GMs/r3)'/? (see also Eq. 2.24), the above equation yields

Ms ~ Ms(rs —rug) | me
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(rs —7H) TS TH (3.23)
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Since the size of the clump is much less than its radial distance from the star, i.e. rg < rg, this
equation reduces to
3Mgririy = merg (3.24)

&y =g (3.25)
3Mg

If the clump consists only of aggregates that are located within its Hill radius, all of these ag-
gregates are more strongly gravitationally attracted by the clump than by the star. That is, the
self-gravity of the clump is stronger than the tidal force of the star acting on it. Assuming a
spherical clump with a homogeneous density, this condition is equivalent to the density of the
clump being greater than the Roche density

3me 3me 3Msg 9Mg 9(2%:
4ryy 4t rgme  4mrg  AnG

PR

Gerbig et al. (2020) and Klahr and Schreiber (2020) extend this criterion for gravitational
collapse of dust clumps by assuming that the collapse is inhibited not only by the stellar tidal
force, but also by diffusion of the dust induced by gas turbulence. Specifically, Gerbig et al.
(2020) show that turbulent diffusion prevents the collapse of a clump of radius r. if

acs Hy Qi
re < \/747@8% ) (3.27)

where p. is the density of the clump and the parameter « describes the strength of the turbulent
gas Viscosity Vg turh, = ics Hy (see Sect. 2.2; Shakura and Sunyaev 1973). Klahr and Schreiber
(2020), who consider the streaming instability as the source of turbulent diffusion, obtain a
threshold diameter of ~100 km of clumps that are both dense enough to overcome the tidal
force and large enough to not be dispersed by turbulence.

The streaming instability always operates if dust and a radial gradient in the gas pressure
are present. However, the formation of filaments, and planetesimals inside them, occurs only
if the Stokes number of the dust and the ratio of dust to gas surface density — often referred to
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Figure 3.4: Figure adopted from Yang et al. (2017, their Fig. 9, reproduced with permission ©ESO). Ratio of dust to gas
surface density Z and Stokes number of the dust 75 plotted on the ordinate and abscissa, respectively. The green region
encompasses all combinations of Stokes numberand surface density ratio for which the streaming instability concentrates
dust in filaments from which planetesimal emerge. The necessary surface density ratio is lowest if the Stokes number is
equalto 0.1, butstill exceeds the canonical interstellar medium value of 1%. Larger surface density ratios enable filament
and planetesimal formation for Stokes numbers between 10~ and a few.

as metallicity — (Johansen et al. 2009; Bai and Stone 2010b; Drazkowska and Dullemond 2014;
Carrera et al. 2015; Yang et al. 2017) as well as the strength of the pressure gradient (Bai and
Stone 2010c; Drazkowska and Dullemond 2014) exceed interdependent threshold values. The
dependence on the surface density ratio is related to the growth rate of the linear instability
being largest if the dust volume density is higher than the gas volume density (see Sect. 3.1;
Youdin and Goodman 2005): For a given Stokes number and pressure gradient strength, only
ifthe dust-to-gas surface density ratio is high enough does the mean volume density of the dust
layer around the disk mid-plane exceed the gas volume density in this layer (Johansen et al.
2009). And only then does the (non-linear) instability give rise to strong dust concentration
(Johansen and Youdin 2007; Johansen et al. 2009).

Sekiya and Onishi (2018) propose that the ability of the instability to cause dust accumula-
tion in filaments is not dependent on the dust-to-gas surface density ratio Z and on the steep-
ness of the gas pressure gradient — expressed in the parameter II - individually, but on the di-
mensionless parameter (27)'/2 Z /I1. To confirm this, they compare simulations with the same
value of this parameter, but different surface density ratios and pressure gradient strengths.
The instability indeed gives rise to similarly dense dust accumulations in these simulations.

Carreraetal. (2015) and Yang et al. (2017) conduct parameter studies to determine threshold
Stokes numbers and dust-to-gas surface density ratios required for the instability to induce
filament and subsequently planetesimal formation. The results of these studies are depicted
in Fig. 3.4. In the studies, a fixed pressure gradient strength of IT = 0.05 is assumed. Yang
et al. (2017) obtain equations expressing the threshold value Zy},5 of the surface density ratio
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as a function of the Stokes number,

0.3log, (St)* 4 0.59logy, (St) — 1.57 St > 0.1 or

2 (3.28)
0.1log;, (St)” + 0.2log; (St) — 1.76 St < 0.1.

log (ZthreS) = {

Crucially, for all Stokes numbers the threshold ratio of dust to gas surface density exceeds
the canonical value in the interstellar medium, and therefore in pristine protoplanetary disks,
of 1% . At best, the threshold value amounts to 0.015 for a Stokes number of 0.1. Neverthe-
less, for larger surface density ratios strong dust accumulation occurs if the Stokes number
is as small as 1073 or as large as a few. Bai and Stone (2010c), on the other hand, find that if
dust with a distribution of Stokes numbers ranging from 1073 to 1 is taken into account, the
threshold surface density ratio amounts to 2% and 6% if the parameter giving the strength of
the pressure gradient IT = 0.025 and IT = 0.1, respectively. This is contrast to the growth rate
of the linear instability increasing with the pressure gradient strength (see Eq. 3.20).

It is evident that the streaming instability alone can not induce planetesimal formation un-
der conditions typical for protoplanetary disks. Figure 2.4 shows that bouncing under mutual
collisions and radial drift prevent collisional growth of compact dust aggregates beyond sizes
of millimetres in the inner disk regions and tens or hundred of microns in the outer ones. This
is equivalent to Stokes numbers of 104 and of 1073, respectively. For these Stokes numbers,
Yangetal. (2017) find that the dust-to-gas surface density ratio needs to be enhanced by a factor
of four or more compared to the interstellar medium value. Conversely, the threshold surface
density ratio is lowest — but still marginally higher than in the interstellar medium - for dust
with a Stokes number of 0.1, which corresponds to a dust size of 10 cm at a radial distance
to the star of 5 au and to 1 cm at a radius of 50 au if compact aggregates are considered (see
Eq. 2.13).

However, a variety of processes can cause either an enhancement of the dust-to-gas density
ratio that is conducive to the streaming instability or dust growth despite the bouncing and
radial drift barriers. I discuss the former kind of processes in Sect. 3.5, and the latter kind in
Sect. 2.3. Dust aggregates can grow to centimetre-sizes at ice lines (Ros and Johansen 2013;
Ros et al. 2019), if the aggregates are charged (Steinpilz et al. 2019), or if they are “lucky” in
that they are not involved in collisions with high relative velocities (Windmark et al. 2012b,c;
Garaud et al. 2013). Furthermore, Krijt et al. (2015, 2016b) find that porous aggregates with
Stokes numbers between 10~2 and a few are present in large regions of protoplanetary disks.

3.3 PLANETESIMAL INITIAL MASS FUNCTION

Initial mass function denotes a distribution of birth masses, most commonly of stars but here
of the planetesimals that emerge from filaments formed by the streaming instability. The mass
distribution can be expressed in differential form, d/N/dM, or in cumulative form,

M-
max dN
N-(M) = /M dM,dM’, (3.29)

where N is the number of planetesimals, M their mass, and M, their maximum mass. The
number of planetesimals with masses ranging between M and M + dM can be calculated
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Figure 3.5: Figure adopted from Simon et al. (2017, their Fig. 2, reproduced with permission ©AAS). Differential mass dis-
tribution dIN/d M, as a function of the planetesimal mass M. The values plotted on the abscissa and the ordinate are
normalised by the total dust mass Mrota1 and its inverse, respectively. The mass distributions in three simulations with
different combinations of the Stokes number of the dust 7 and the dust-to-gas surface density ratio Z are depicted using
different symbols and colours, with the combinations being given in the legend. Despite the varying Stokes numbers and
surface density ratios, each of the three distributions is described well by a power-law distribution dN/d M, o Mp_l'6
(dashed lines).

as dN/dM dM, while N~ (M) gives the total number with masses greater than M. In other
words, the probability for the mass of a planetesimal to exceed M is equal to Ns (M) /Niot.
Here, Ny is the total number of planetesimals. In this section, I first discuss the shape of the
initial mass function and then the characteristic mass of planetesimals.

All studies of the planetesimal birth mass distribution have been conducted numerically us-
ing the shearing box approximation (see Sect. 3.1; Johansen et al. 2015; Simon et al. 2016, 2017;
Abod et al. 2019; Li et al. 2019; Gole et al. submitted; SYJ17). Consequently, in these studies the
mass distribution does not only depend on physical parameters like the Stokes number of the
dust and the ratio of dust to gas surface density, but also on numerical parameters like the sim-
ulation domain size and resolution. In shearing box simulations, a domain is considered that
is much smaller than the size of protoplanetary disks. That is, local scale-free units can be em-
ployed. In simulations of the streaming instability, these typically are the gas scale height Hy,
the dynamical time scale 1/, and the gas density at the centre of the domain p, ¢ as the
units of length, time, and density. Consequently, arbitrary values of the dimensionless para-
meters 11 (see Eq. 2.19) and

_ AnGpgo  9Ipgo

— = (3.30)
! Q% PR

(see also Eq. 3.26) can be chosen. While II expresses the steepness of the global gas pressure
gradient, -y gives the relative strength of self-gravity — nominally of the gas, but also of the dust
given a dust-to-gas density ratio — and tidal force exerted by the star. I note that, despite the
domain dimensions being much less than those of protoplanetary disks, in all shearing box
simulations of planetesimal formation via the streaming instability the resolution is too low to
resolve the gravitational collapse of dust clumps down to planetesimal sizes.
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The planetesimal initial mass function obtained in a majority of studies is represented well

by a power law

% o M6 (3.31)
(Johansen et al. 2015; Simon et al. 2016, 2017; Abod et al. 2019). I show this mass distribution
in Fig. 3.5. While Li et al. (2019) find a function composed of multiple power laws to yield a
better fit to the differential mass distribution than a single power law, at least one of the fitted
power-law exponents lies in the range between —1.35 and —1.87. The power-law distribution
given in Eq. 3.31is universal in that its exponent is largely independent of the Stokes number of
the dust (see Fig. 3.5; Simon et al. 2017), the simulation resolution (Johansen et al. 2015; Simon
et al. 2016), as well as the parameters I1 (Abod et al. 2019) and ~y (Simon et al. 2016). The mass

distribution can be converted to a size distribution as
dN dM dN
dR  dR dM

where R is the planetesimal size (Johansen et al. 2015; Simon et al. 2016; Abod et al. 2019).

Itisinteresting to compare the planetesimal initial mass function to that of stars. The stellar
mass distribution can be expressed as dN/dM oc M 23 for stars with masses exceeding one
Solar mass (Salpeter 1955; Kroupa 2001; Chabrier 2003). That is to say, it is the steeper than
the mass distribution of planetesimals. The total mass of objects with masses in the interval
between M and M + dM can be computed as M dN/dM dM. In the case of stars, this total
mass per mass interval is proportional to M ~13. Thus, the least massive stars contribute most
mass to the total mass of all stars. In contrast, the planetesimal mass distribution expressed in
Eq. 3.31yields a total mass per mass interval proportional to M ~%-6, That is, the most massive
planetesimals dominate the total planetesimal mass. Abod et al. (2019) find this to be true even
if the formation of the planetesimals is not induced by the streaming instability.

We in SYJ17, Abod et al. (2019) and Johansen et al. (2015) show that the birth mass distri-
bution of planetesimals that form owing to the streaming instability is exponentially tapered
at the high-mass end. In Figure 3.6, the cumulative distribution in a simulation presented in
SYJ17is depicted. Itis evident that a power law with an exponential cutoff exp[— (M /Meyp ) -38]
(red line) fits the distribution better than a power law without cutoff (green line). Our simu-
lations with different domain sizes yield comparable values of the characteristic mass of the
cutoff My, and its exponent, with the latter ranging from 0.3 to 0.4. Similar to us, Abod et al.
(2019) find an exponentially tapered power law, dN/dM oc M 13 exp(—M /Meyp), to repres-
ent the mass distribution better than a simple power law, dN/dM oc M1, This is valid in-
dependent of the strength of the gas pressure gradient. Nevertheless, the exponential cutoff
considered by Abod et al. (2019) is steeper than the one we infer in SYJ17. Johansen et al. (2015)
determine an even higher exponent of the cutoff of 4/3. I note, however, that significantly
fewer planetesimal masses constitute the cutoff in the study by Johansen et al. (2015) than in
the one by Abod et al. (2019) and in ours (compare Fig. 4 of Johansen et al. (2015) with Fig. 6 of
Abod et al. (2019) and Fig. 4 of SYJ17).

In addition to for a cutoff at the high-mass end, evidence exists also for a turnover at the
low-mass end of the initial mass function. The first authors to present such evidence were Li
et al. (2019). They performed the simulation with the highest resolution to date, with higher

1.

x R* (R?) 0 = R28, (3.32)
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Figure 3.6: Figure adopted from SYJ17. Cumulative mass distribution N, relative to the total number of planetesim-
als Niot, as a function of the planetesimal mass M. As can be gathered from a comparison of the power-law distributions
with (red line) and without exponential tapering (green line), the former represents the planetesimal mass distribution
better.

resolutions enabling the formation of smaller, less massive planetesimals (Johansen et al. 2015;
Simon et al. 2016; Li et al. 2019). Li et al. (2019) show that the differential mass distribution in
this simulation, which can be seen in Fig. 3.7, is described well by a broken power law. Gole
et al. (submitted) perform simulations with a lower resolution, but including driven turbu-
lence. They as well find a turnover in the mass distribution, and the distribution therefore to
be well-presented by a broken power law. Planetesimals only form in their simulations if the
turbulence is not too strong (see Sect. 4.5.1). However, if planetesimals emerge, their initial
mass function is largely independent of whether turbulence is present and of the turbulent
strength. I note, though, that the exponent of the power law at the low-mass end that Gole
et al. (submitted) obtain differs from the one determined by Li et al. (2019). Additionally, the
power law that Gole et al. (submitted) fit to the high-mass end of the differential distribution
is considerably steeper than in all previous studies, with the exponent ranging between —2.48
and —2.71.

While the shape of the initial mass function — specifically of the power-law distribution ex-
pressed in Eq. 3.31 — is more robust in this regard, the number and masses of the planetesim-
als emerging in shearing box simulations vary with both numerical and physical parameters:
Firstly, with increasing resolution the minimum mass of planetesimals decreases. Their mean
mass declines as well since their maximum mass remains roughly constant, while their num-
ber increases (Johansen et al. 2015; Simon et al. 2016; Li et al. 2019). Secondly, fewer and in total
less massive planetesimals emerge if the gas pressure gradient is steeper (Abod et al. 2019). On
the other hand, Abod et al. (2019) find the characteristic mass of the exponential tapering of
the initial mass function to increase linearly with the strength of the pressure gradient. (They
note that they can not exclude that the characteristic mass is independent of the strength.)
This might be a consequence of radially larger filaments forming in simulations with stronger
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Figure 3.7: Figure adopted from Li et al. (2019, their Fig. 4, reproduced with permission ©AAS). Number of plan-
etesimals per mass bin as a function of the planetesimal mass M. The latter is given in units of gravitational
masses Mg = 47T5G223/Q4 ,where ¥4 is the dust surface density (Abod etal. 2019). Itisevident thatthereisa turnover
in the mass distribution. Thus, the distribution is fitted well with a broken power law (orange line).

pressure gradients since the budget of dust mass available for every planetesimal to accrete in-
creases with the filament size. In SYJ17, we indeed obtain an analogous result from comparing
simulations with different domain sizes: the mean planetesimal mass and characteristic mass
of the exponential cutoff increase with the radial filament extent.

Thirdly, the total planetesimal mass increases with the Stokes numbers of the dust, while
minimum and maximum mass remain largely constant (Simon et al. 2017). Furthermore, the
maximum mass is larger if the dust-to-gas surface density ratio Z is higher (Johansen et al.
2015), and both the maximum and total mass are enhanced for greater values of the para-
meter 7 (Simon et al. 2016). This is because the strength of the dust self-gravity increases
with Zv o« GZpg o ~ Gpq (see Eq. 3.30). In other words, if Z o< pq/pr is greater, weaker
dust overdensities exceed the Roche density, can undergo gravitational collapse and form plan-
etesimals. Finally, the number and total mass of planetesimals decreases with the strength of
the gas turbulence (Gole et al. submitted). Nonetheless, the turnover masses of the broken
power laws that Gole et al. (submitted) fit to the mass distributions in simulations with vary-
ing turbulent strengths differ only marginally.

In what follows, I adopt the approach devised by Liu et al. (2020) to derive a characteristic
planetesimal mass My, based on the findings discussed above. Like Liu et al. (2020), I as-
sume the characteristic mass of the exponential cutoff of the initial mass function inferred
in SYJ17 to be the fiducial characteristic mass. This is justified by the most massive planetes-
imals adding more mass per mass interval to the total planetesimal mass than less massive
planetesimals. As the characteristic mass of the cutoff varies between 1.82 x 107° pg70H§
and 1.85 x 10~* pg o H3 in the simulations we present in SYJ17, a value of 5 x 107 pg o H3 is
used in the following. Because p, g and H, are typically used as the units of density and length
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in shearing box simulations of the streaming instability, the unit of mass in these simulations
is [M} =1 pg,OHé))'

In SYJ17, we choose a Stokes number of the dust of 7/10, a ratio of dust to gas surface density
of 2%, and the parameter values v = 1/7 and IT = 0.05. Since neither the minimum nor the
maximum planetesimal mass varies significantly with the Stokes number (Simon et al. 2017),
the characteristic mass is considered to also be independent of the Stokes number. In addition,
it can be seen from the right panel of Fig. 9 of Simon et al. (2016) that the maximum mass
approximately scales with 7%/, I adopt this scaling for the characteristic mass. I further follow
Liu et al. (2020) in assuming the scaling with the dust-to-gas density ratio to be the same as
that with . The justification for this is that Z~ expresses the strength of the dust self-gravity.
Furthermore, Abod et al. (2019) find the characteristic mass of the exponential tapering to be
proportional to IT. Lastly, because the mass at which Gole et al. (submitted) find the initial
mass function to turn over is independent of the strength of turbulence, I assume this to be
true for the characteristic mass as well.

Combining its fiducial value with its dependence on the dust-to-gas surface density ratio as
well as on the parameters IT and y yields the characteristic planetesimal mass

Z N\ vy N3/ T
M =170 x 107 () (L) () pgoti .
char = 1.70 < 10 <o.02) 0.1 <0.05> Pe0He (-33)

To convert the characteristic mass from local to global units, I apply the model of the gas in
protoplanetary disks presented in Appendix A. In the disk mid-plane of this model, the mass
unit [M] = 1 pg o H} is equivalent to

r

. r \—1
[M](z = 0) = 3.48 x 10% (ﬁ> g = 374 (1 —

-1
) MCeres; (3.34)

where Mceres 18 the mass of the dwarf planet Ceres, the most massive object in the asteroid
belt. Similarly, the parameter -y can be converted as

3/4
+(z = 0) = 0.021 (;Tu) (3.35)

and the parameter IT using Eq. 2.20. That is, the characteristic mass can be expressed as

0.02 1au

7 \3/5 , » \=3/10
=229x107% [ — (—) Mceres-
910 <0.02> lau ¢

3/5 ~3/10
Mepar(2 = 0) = 2.47 x 107 <Z> ( - ) g
(3.36)

As an example, assuming a dust-to-gas surface density ratio of 2% — about the lowest value for
which the streaming instability can induce planetesimal formation (see Fig. 3.4 and Eq. 3.28)
— the characteristic mass is equal to 1.75 x 1073 Mcepes at the perihelion of Ceres, which is
located at a radial distance to the Sun of 2.5 au.
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Abod et al. (2019) are the only authors to propose a physical explanation for the value of a
parameter of the planetesimal initial mass function. They find the characteristic mass of its
exponential cutoff to be similar to the gravitational mass

YA SG203 Rl v3
Mg =m () Yq=4m = — (3.37)
2 Y 4 R
(see also Eq. 3.26), where ¥4 is the dust surface density and the wavelength
GX 9%
Ag = 47‘(‘27d = (3.38)

B T

results from an analysis of the linear gravitational instability. At wavelengths less than A\, self-
gravity is stronger than the stellar tidal force. The finding that the characteristic mass of the
cutoff and the gravitational mass are comparable implies that the former does not depend on
whether it is the streaming instability or a different mechanism that enhances the dust density
sufficiently for gravitational collapse to lead to planetesimal formation.

It can be shown that the characteristic mass of the cutoff that we infer in SYJ171s indeed also
of the order of the gravitational mass. As discussed above, this characteristic mass is similar
t0 Mexp = 5 X 1077 pg o H; . The gravitational mass

V2
Mg = 77T9/2Z372 pe0H (3.39)
(Abod et al. 2019). Thus, given that a dust-to-gas surface density ratio Z = 0.02 and a para-
meter 7 = 1/ are chosen in SYJ17, the characteristic mass My, = 0.505 M .

3.4 OBSERVATIONAL EVIDENCE

ALMA observations of protoplanetary disks provide indications of the streaming instability in-
ducing the formation of planetesimals. Dullemond et al. (2018) associate the largely concentric
dust rings in five disks observed as part of the Disk Substructures at High Angular Resolution
Project (DSHARP) with pressure bumps (see Sect. 3.5). These authors find the ratio of dust
to gas surface density in these rings to be potentially high enough for planetesimal formation
owing to the streaming instability. All eight rings in these five disks are marginally optically
thin, with their optical depths lying in the range between 0.2 and 0.5. Based on a model of one
of the rings, Stammler et al. (2019) interpret the fact that the optical depths are not higher as
evidence for the streaming instability. In their model, an optical depth of ~0.5 is equivalent to
the densities of gas and dust being equal. Dust-to-gas density ratios exceeding unity are not
observable because stronger dust overdensities are enhanced by the streaming instability until
they collapse and form planetesimals.

Macias et al. (2019) also measure optical depths of 0.7 or less in the four rings in the disk
surrounding HD 169142. Specifically in the innermost ring, they further infer a dust surface
density that is comparable to the gas surface density obtained by Fedele et al. (2017) and a max-
imum dust size of 5 mm. These are ideal conditions for the streaming instability to lead to
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planetesimal formation. (I note that these authors derive the dust size from the spectral index
of the dust opacity, but do not take the effect of scattering by dust grains on the opacity into
account; see Sect. 2.1.)

Asteroids, Kuiper belt objects, and comets are remnants of the formation and evolution of
planetesimals in the Solar System (e.g., Johansen et al. 2014). Blum et al. (2017) find that the
comet 67P/Churyumov-Gerasimenko, which was investigated by the Rosetta mission, probably
formed from the gravitational collapse of an accumulation of dust aggregates. In particular,
the sizes of the aggregates it is composed of lie in a range for which the streaming instability
causes dust concentration in gravitationally unstable clumps if the dust-to-gas surface dens-
ity ratio is twice the canonical value in the interstellar medium. In addition, the comet is ho-
mogeneous on scales larger than tens to hundreds of meters, consistent with a formation via
gravitational collapse (Kofman et al. 2015; Pitzold et al. 2016).

Observations of binaries in the cold classical Kuiper belt yield compelling evidence for their
progenitor planetesimals forming by gravitational collapse, possibly induced by the stream-
ing instability. The (main) classical Kuiper belt is located between radial distance to the Sun
of 40 au and 48 au, with the eccentricities of the objects in it being low enough for their orbits
not to cross that of Neptune at a radius of 30 au (e.g., Elliot et al. 2005; Delsanti and Jewitt
2006; Gladman et al. 2008). In particular, the cold classical Kuiper belt objects are character-
ised by low eccentricities and inclinations, which indicates that their orbits are largely unper-
turbed - they are “dynamically cold”, analogous to the velocities of Brownian motion being
less at lower temperatures — and are thus relatively pristine. Among these cold classical Kuiper
belt objects, according to estimations at least ~30% are binaries (Noll et al. 2008; Fraser et al.
2017a,b) and 10-25 % contact binaries whose two components are of comparable size (Shep-
pard and Jewitt 2004; Thirouin and Sheppard 2019).

Since the angular momentum of gravitationally unstable dust clumps formed by the stream-
ing instability is typically too high for their self-gravity to overcome their rotation, binaries
rather than single planetesimals emerge from them (Johansen et al. 2015; Nesvorny et al. 2019).
Generally, the binary components are similar in size and their separation comparatively large,
i.e. they are not contact binaries (Nesvorny et al. 2010, 2019; Robinson et al. accepted). In 80%
of cases, gravitational collapse leads to the inclination of the mutual orbit of the components
being prograde with respect to their joint orbit around the star (Nesvorny et al. 2019). In other
words, the majority of binary components rotate counterclockwise both around the star and
around one another. Thisis indeed true also for seven out of ten Kuiper belt binaries studied by
Grundy et al. (2011) and 28 out of 35 observed by Grundy et al. (2019). In contrast, if the binary
components become gravitationally bound during a chance encounter (Goldreich et al. 2002),
their orbital inclinations are either predominantly retrograde or equally often prograde and
retrograde (Schlichting and Sari 2008).

The components of Kuiper belt binaries forming together further naturally explains their
similar composition, which is reflected in their colours in general being indistinguishable (Be-
necchi et al. 2009). In addition, observations of comets (Jutzi and Asphaug 2015) and particu-
larly of the Kuiper belt object 486958 Arrokoth by the New Horizons mission (see Fig. 1.2; Stern
et al. 2019; McKinnon et al. 2020) indicate that their components collided gently, not violently.
Both this and the fact that they are similar in composition and colour (Grundy et al. 2020)
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Figure 3.8: Figure adopted from Delbo’ et al. (2019, their Fig. 6, reproduced with permission ©ESO). Cumulative dia-
meter distribution of primordial asteroids. Filled squares represent the observed distribution. Correcting this distribution
for 10 Gyr of dynamical and collisional evolution of the asteroids yields the distribution depicted as open squares. The
latter distribution is fitted with three power laws, one each for diameters up to 35 km, between 35 km and 100 km, and
more than 100 km. The exponents of the power laws are given in the figure.

suggest that the components of Arrokoth formed from the same dust accumulation and sub-
sequently merged (Stern et al. 2019; McKinnon et al. 2020; Lyra et al. submitted; Robinson et al.
accepted).

It is interesting to compare the birth size distribution of planetesimals that form via the
streaming instability with the size distributions of asteroids and Kuiper belt objects. Bottke
et al. (2005) and Morbidelli et al. (2009) construct models to reproduce the asteroid size dis-
tribution, which features a bump at a diameter of ~100 km. They find that the asteroids lar-
ger than this diameter are primordial, while most smaller asteroids are the result of collisions
between larger bodies. This is consistent with constraints stemming from asteroid families,
groups of asteroids with similar semi-major axes, eccentricities and inclinations that are inter-
preted as remnants of the same parent body (e.g., Nesvorny et al. 2015). The finding is further
corroborated by the fact that not more than a single crater resulting from the impact of a body
with a size of ~35 km or more is observed on the second-most massive asteroid Vesta (Thomas
et al. 1997).

Bottke et al. (2005) fit the differential size distribution of asteroids larger than 120 km with
a power law with an exponent of —4.5. In contrast, the exponent of the power-law size dis-
tribution that arises from planetesimal formation owing to the streaming instability amounts
to —2.8 (see Eq. 3.32). Nevertheless, Johansen et al. (2015) show that the latter size distribution,
which they consider to be exponentially tapered, can evolve into the asteroid size distribution
obtained by Bottke et al. (2005) when the accretion of chondrules — millimetre-sized spherical
dust grains that are found in chondrite meteorites (e.g., Friedrich et al. 2015) — by the planetes-
imals is taken into account.

The cumulative size distribution of primordial asteroids inferred by Delbo’ et al. (2017, 2019)
is shown in Fig. 3.8. This size distribution is well-represented by a broken power law with a
turnover at a diameter of 100 km. It is similar to the planetesimal size distribution result-
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ing from the streaming instability in multiple regards: For diameters larger than 100 km, the
slope of the cumulative distribution measured by Delbo’ et al. (2019) corresponds to an expo-
nent of the differential distribution of —2.65. This exponent is considerably smaller than the
one determined by Bottke et al. (2005), but close to that of the planetesimal size distribution
of —2.8. Additionally, the studies of the streaming instability by Li et al. (2019) and Gole et al.
(submitted) indicate the presence of a turnover as well in the planetesimal initial mass func-
tion. Furthermore, Klahr and Schreiber (2020) calculate a threshold diameter of 100 km of
dust clumps whose self-gravity is stronger than both stellar tidal force and turbulent diffusion
caused by the streaming instability. Nonetheless, I note that the size distribution inferred by
Delbo’ et al. (2017, 2019) is also similar to that of planetesimals forming from dust concentra-
tions in turbulent eddies (see Sect. 3.5; Cuzzi et al. 2010; Chambers 2010; Hartlep and Cuzzi
2020).

Singer et al. (2019) show that a power law with an exponent of —3 yields a good fit to the dif-
ferential size distribution of craters on the dwarf planet Pluto and its moon Charon as observed
by the New Horizons mission. Craters with diameters smaller than ~13 km are comparatively
scarce, though. Since the craters are the result of impacts of other Kuiper belt objects, the size
distribution of craters reflects that of these objects. The power-law size distributions of Kuiper
belt objects and planetesimals forming via the streaming instability are similarly steep. In ad-
dition, a paucity of Kuiper belt objects with diameters less than a few kilometers is implied by
the lack of small craters. This is consistent with the streaming instability leading to the forma-
tion of planetesimals with typical sizes of tens or hundreds of kilometres (Johansen et al. 2009,
2015; Simon et al. 2016; Abod et al. 2019; SYJ17).

3.5 OTHER MECHANISMS FACILITATING DUST CONCENTRATION AND PLANETESIMAL FORMATION

In the following, I review mechanisms that lead to an enhancement in the ratio of dust to gas
density on a local or a global scale in protoplanetary disks. While some of these mechanisms
can induce dust overdensities that are strong enough for direct gravitational collapse and plan-
etesimal formation, most of the mechanisms trigger further dust concentration by the stream-
ing instability.

Dust can be passively concentrated in structures that are caused by gas turbulence: in pres-
sure bumps (Whipple 1972; Haghighipour and Boss 2003), in vortices (Barge and Sommeria
1995; Tanga et al. 1996), and in eddies (Squires and Eaton 1990, 1991; Wang and Maxey 1993).
Furthermore, dust accumulates locally at ice lines and in pile-ups, while photoevaporation en-
hances the global dust-to-gas density ratio. Finally, hydrodynamical instabilities that are sim-
ilar to the streaming instability in that they result from the mutual drag between gas and dust
give rise to dust concentration.

PRESSURE BUMPS Pressure bumps induced by the magnetorotational instability (Johansen
et al. 2006b, 2007, 2011; Dzyurkevich et al. 2010; Dittrich et al. 2013; Béthune et al. 2016; Riols
and Lesur 2018; Riols et al. 2020a) and the vertical shear instability (Stoll and Kley 2016; S]B20)
have been studied as sources of dust pile-ups. How dust accumulates in a pressure bump is
illustrated in Fig. 3.9. The accumulation arises from variations in the orbital velocity of gas
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Figure 3.9: lllustration of dust piling up in a gas pressure bump. Solid arrows depict the orbital velocity of the coupled gas
and dust. Globally in protoplanetary disks, gas and dust orbit with a sub-Keplerian velocity because the gas is supported
by a pressure gradient directed radially away from the star. Locally at a maximum in the gas pressure, the orbital velocity
of gas and dust is Keplerian, though. The radial drift of the dust towards the star, which is a consequence of the dust not
being supported by a global pressure gradient like the gas, slows down as the dust approaches the gas pressure maximum
(dashed arrow). Thus, dust piles up in the maximum. In addition, the orbital velocity is super-Keplerian at the side of
the maximum facing the star since the local gas pressure gradient is directed inwards. Dust therefore drifts towards the
maximum also from this side (dashed arrow).

and dust around the bump that are referred to as zonal flows: At a local maximum in the gas
pressure, both gas and dust orbit with the Keplerian speed. The orbital speed of gas and dust
is sub-Keplerian on the outer side of the maximum with respect to the star — like the global
one, the local gradient in the gas pressure is directed towards larger radii — but in fact super-
Keplerian on its inner side. The latter is because the local pressure gradient is directed towards
smaller radii and the centrifugal force thus balances both stellar gravity and pressure gradient.
The inwards radial drift of the dust slows down as it approaches a pressure maximum. In
addition, dust that is located close to a maximum on its inner side drifts outwards towards the
maximum. Consequently, dust piles up in a pressure maximum.

This dust concentration is found to be sufficiently strong to trigger further enhancement
by the streaming instability, both in the case of the magnetorotational instability (see Sect. 4.3;
Johansen et al. 2007, 2013; Dittrich et al. 2013) and in the case of the vertical shear instability (see
Sect. 4.4.1; S]B20). Particularly in the former case, gravitationally unstable dust clumps form
if dust with a Stokes number of ~0.1 and the canonical ratio of dust to gas surface density in
the interstellar medium of 1% are considered (Johansen et al. 2007, 2011; Dittrich et al. 2013).
This is also true if the drag of the dust onto the gas and thus the streaming instability are not
taken into account (Dittrich et al. 2013). It is interesting to note that in pressure bumps, the
fastest growing mode of the linear streaming instability is not the secular mode (see Sect. 3.1;
Auffinger and Laibe 2018). The mechanism by which the non-linear instability concentrates
dust (see Sect. 3.2) is not associated with pressure bumps, though (Li et al. 2018).

Carrera et al. (submitted) study the formation of planetesimals induced by the streaming
instability in a model of a pressure bump that is based on the dust rings observed in proto-
planetary disks (see Fig. 1.1). In their model, planetesimals do not form because the dust is
concentrated in the pressure bump strongly enough to directly collapse under its self-gravity,
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Figure 3.10: Illustration of dust trapping in an anticyclonic vortex in the gas. The dotted arrows show the orbital velocity of
gas and dust relative to the orbital velocity at the centre of the vortex. Protoplanetary disks rotate counterclockwise, with
the Keplerian orbital velocity decreasing with increasing radial distance to the star (see Eq. 2.24). That s, the formation of
cyclonic gas vortices, which rotate counterclockwise like the disk, is inhibited by the Keplerian shear. In contrast, clockwise-
rotating anticyclonic vortices in the gas, as the one depicted with solid arrows, are reinforced by the shear. Since the disk
rotates counterclockwise, the Coriolis force resulting from the vortical motion is directed towards the centre of the vortex
(dashed arrows). The gas in the vortex is stabilised against this Coriolis force by an outwards-directed pressure gradient.
Dust thatis sufficiently tightly coupled to the gas to follow the vortical motion, on the other hand, drifts towards the centre
of the vortex and is trapped there.

but via the streaming instability. Therefore, planetesimal formation does not require dust to
be trapped in the pressure bump because its radial drift is completed halted. Itis sufficient that
the drift is slowed down, resulting in dust concentration that is enhanced by the streaming in-
stability. Planetesimals emerge when a dust-to-gas surface density ratio of 1% and centimetre-
sized dust are considered, though not when millimetre-sized dustis taken into account instead.
The authors note that the latter might be a result of the limited resolution they employ.

While small dust grains and aggregates pass through the gap which a planet carves into a
protoplanetary disk, large aggregates accumulate in the pressure maximum at the outer edge
of this gap (e.g., Whipple 1972; Paardekooper and Mellema 2006; Pinilla et al. 2012; Zhu et al.
2012; Weber et al. 2018; Haugbglle et al. 2019; Drazkowska et al. 2019; Eriksson et al. 2020).
Eriksson et al. (2020) show that this accumulation results in planetesimal formation via the
streaming instability even for dust aggregates as small as 100 pm or 1 mm and a dust-to-gas
surface density ratio of 1%.

VORTICES Dust can be trapped in anticyclonic vortices in the gas caused by the magnetorota-
tional instability (Béthune et al. 2016), the subcritical baroclinic instability (see Sect. 4.4.2; Raet-
tig et al. 2015), or the Rossby wave instability (Inaba and Barge 2006; Lyra et al. 2008, 2009b;
Meheut et al. 2012; Zhu et al. 2014; Zhu and Stone 2014; Flock et al. 2020)3. I show an illustration

>The Rossby wave instability is a linear instability arising from a bump in the gas surface density or pressure
—induced by, for instance, a planet (Lyra et al. 2009a; Zhu et al. 2014; Zhu and Stone 2014) — and resulting in the

43



CHAPTER 3. STREAMING INSTABILITY

of the mechanism that leads to this trapping in Fig. 3.10. As protoplanetary disks rotate coun-
terclockwise, anticyclonic vortices in them rotate clockwise. Therefore, they amplify the shear
resulting from the Keplerian orbital velocity decreasing with increasing radial distance to the
star (see Eq. 2.24). In contrast, the formation of cyclonic vortices that rotate counterclockwise
is counteracted by the Keplerian shear. Given the orientation of the disk rotation, the rotation
of an anticyclonic vortex entails a Coriolis force that is directed towards its centre. The Coriolis
force on the gas is balanced by a pressure gradient, with the gas pressure being highest at the
centre of the vortex — this state of the gas is called geostrophic.

Dust that is coupled to the gas, on the other hand, is caused by the Coriolis force to spiral
towards the centre of the vortex and accumulate there (Barge and Sommeria 1995; Tanga et al.
1996; Johansen et al. 2004). This dust trapping is strongest if the Stokes number of the dust is
of order unity since more tightly coupled dust with smaller Stokes numbers follows the vortical
motion of the gas, while more loosely coupled dust with larger Stokes numbers is less affected
by the vortical gas motion and thus by the Coriolis force (Barge and Sommeria 1995; Tanga et al.
1996; Johansen et al. 2004; Meheut et al. 2012; Raettig et al. 2015). However, dust concentration
in gasvortices can lead to their dissolution (Johansen et al. 2004; Inaba and Barge 2006; Raettig
et al. 2015): The gas adjusts to the motion of the dust rather than vice versa as soon as the dust
density exceeds the gas density and the drag of the dust onto the gas thus dominates over that
of the gas onto the dust.

Raettig et al. (2015) find that the subcritical baroclinic instability gives rise to vortices in
which the density of dust with a Stokes number of one grows sufficiently high to trigger the
streaming instability even if the dust-to-gas surface density ratio is as low as 10~%. This is
discussed in more detail in Sect. 4.4.2. The vortices induced by the Rossby wave instability
trap dust with Stokes numbers between ~0.01 and ~10, with the surface density ratio in the
vortices exceeding the canonical interstellar medium value by one or two orders of magnitude
(Zhu et al. 2014; Zhu and Stone 2014). Enough mass in centimetre-sized dust can accumulate
in these vortices for the formation of planets as massive as Mars or Earth (Lyra et al. 2008,
2009a,b; Meheut et al. 2012).

EpDIES The studies of dust concentration in turbulent eddies by Cuzzi et al. (2008, 2010)
and Chambers (2010) suggest that they give rise to the formation of planetesimals with sizes
of tens to hundreds of kilometers from dust with a stopping time comparable to the turnover
time scale at the dissipation scale, corresponding to millimetre-sizes. However, these stud-
ies possibly overestimate the efficiency with which such dust is concentrated (Pan et al. 2011;
Hartlep and Cuzzi 2020). Hartlep and Cuzzi (2020) find that centimetre-sized dust is required
for 10 km- to 100 km-sized planetesimals to emerge. The size distribution of these planetes-
imals is unimodal, with a peak at ~100 km (Cuzzi et al. 2010; Chambers 2010; Hartlep and
Cuzzi 2020). This size distribution is comparable to that of primordial asteroids inferred by
Delbo’ et al. (see Sect. 3.4; 2017, 2019). On the other hand, the streaming instability leads to the
formation of planetesimals of similar sizes, but with a different size distribution (see Sect. 3.3).
Nonetheless, dust accumulation in turbulent eddies and by the streaming instability occur on
different scales: Planetesimals form by collapse of dust clumps with sizes of 10* km or less in

formation of vortices (Lovelace et al. 1999; Li et al. 2000, 2001).
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the case of turbulent eddies (Cuzzi et al. 2001, 2008; Hartlep and Cuzzi 2020), and of clumps
inside filaments with sizes of some to some ten percent of the gas scale height in the case of
the streaming instability (see Fig. 3.3). The gas scale height amounts to 0.35 au and 6.25 au at
radial distances to the star of 5 au and 50 au in the disk model presented in Appendix A (see
Eq.A.7).

ICE LINES An ice line, the radial location at which a given molecule — most of the work I dis-
cuss here focuses on water — condensates or evaporates*, is conducive to planetesimal forma-
tion in multiple regards. To begin with, the dust-to-gas density ratio is naturally higher outside
an ice line, where the respective molecule is present in its solid form, than inside the ice line,
where the molecule is gaseous. In particular, the inwards radial motion of the solids is more
rapid than that of the vapour (Cuzzi and Zahnle 2004; Ciesla and Cuzzi 2006; Garaud 2007).
The density ratio outside the ice line is further enhanced by vapour diffusing over the ice line,
from inside to outside, and condensing there (Stevenson and Lunine 1988; Cuzzi and Zahnle
2004; Ciesla and Cuzzi 2006; Garaud 2007; Estrada et al. 2016; Armitage et al. 2016; Schoonen-
berg and Ormel 2017; Drazkowska and Alibert 2017; Schoonenberg et al. 2018). This also gives
rise to larger dust sizes outside the ice line (Ros and Johansen 2013; Ros et al. 2019).

Furthermore, dust piles up inside an ice line because its radial drift is more rapid outside
the ice line (Saito and Sirono 2011; Estrada et al. 2016; Ida and Guillot 2016; Schoonenberg and
Ormel 2017; Drazkowska and Alibert 2017; Schoonenberg et al. 2018). This is since dust with
smaller sizes and thus Stokes numbers drifts more slowly, assuming that the Stokes number
is less than one (see Egs. 2.28 and 3.7). On the one hand, the size of dust is reduced when one
of its components evaporates as the dust crosses the respective ice line (Saito and Sirono 2011;
Ida and Guillot 2016; Schoonenberg and Ormel 2017). On the other hand, Estrada et al. (2016),
Drazkowska and Alibert (2017), and Schoonenberg et al. (2018) find that dust grows to larger
sizes outside the water ice line because the relative velocities required for ice aggregates to
fragment under mutual collisions are greater than for silicates (see Sect. 2.3). I note, however,
that Gundlach et al. (2018) and Musiolik and Wurm (2019) show that water ice is not more
prone to sticking when colliding than silicates.

Owing to the effects described above, the dust-to-gas density ratio at an ice line can be
sufficiently enhanced for the streaming instability to induce planetesimal formation (Estrada
et al. 2016; Armitage et al. 2016; Schoonenberg and Ormel 2017; Drazkowska and Alibert 2017;
Schoonenberg et al. 2018). The enhancementis found to be stronger outside the ice line than in-
side (Estrada et al. 2016; Schoonenberg and Ormel 2017; Drazkowska and Alibert 2017; Schoon-
enberg et al. 2018). Drazkowska and Alibert (2017) and Schoonenberg et al. (2018) determine
the amount of planetesimals forming via the streaming instability in models of the water ice
line including sticking and fragmentation of dust aggregates under mutual collisions. The
former authors find planetesimals to emerge only outside the ice line and only if the global
dust-to-gas surface density ratio amounts to at least 2%, with both the amount of planetesim-
als forming and the width of the region in which they form increasing with the surface density
ratio.

*Ice lines exist not only in the radial, but also in the vertical dimension (Krijt et al. 2016a).
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Figure3.11: Figure adopted from Schoonenbergetal. (2018, their Fig. 11, reproduced with permission ©ESO). Surface dens-
ity of dust X (left ordinate) and mass of planetesimals Mpitsmis (right ordinate) as functions of the radial distance to the
star r, with the planetesimal mass being given in units of Earth masses Mg. The figure represents a model of the water
ice line, sticking and fragmentation of colliding dust aggregates, as well as the streaming instability. The global dust-to-
gas surface density ratio in the model is equal to 2%. The presence of the water ice line is reflected in a bump in the dust
surface density (solid lines). Planetesimals forming outside the ice line and between the ice line and the star are plotted
as blue and brown dots, respectively. The total mass of the former planetesimals is as high as ~100 Earth masses, while
that of latter planetesimals amounts to only a few Earth masses.

While the dependence of the mass in planetesimals on the global surface density ratio is
similar in the models by Schoonenberg et al. (2018), ~10 Earth masses form even if the surface
density ratio is equal to the canonical interstellar medium value. Figure 3.11 depicts the dust
surface density and the planetesimal masses in one of their models in which the dust-to-gas
surface density ratio is twice as high as that in the interstellar medium. The location of the
ice line is evident from a bump in the dust surface density. While planetesimal formation oc-
curs both inside and outside the ice line, the mass in planetesimals is two orders of magnitude
higher on the outer side than on the inner side. With regard to the discrepancies between
the two studies, I note that Drazkowska and Alibert (2017) assume the streaming instability to
give rise to planetesimal formation only if the Stokes number of the dust exceeds 0.01, while
Schoonenberg et al. (2018) employ a minimum Stokes number of 0.001. The latter is consistent
with the results of the parameter study conducted by Yang et al. (2017), as depicted in Fig 3.4 and
given in Eq. 3.28. In the study by Ida and Guillot (2016), enough dust mass can pile up owing to
the slower radial dust drift inside an ice line for direct gravitational collapse and planetesimal
formation.

An additional effect leading to dust concentration at an ice line arises when the magnetoro-
tational instability is assumed to be the dominant source of turbulence and as such to induce in-
wards transport of gas mass at the ice line (Kretke and Lin 2007; Brauer et al. 2008; Drazkowska
et al. 2013). The protoplanetary disk is considered to be in a steady state and the transport rate
of gas mass thus to be equal on the inner and the outer side of the ice line. The magnetorota-
tional instability drives weaker turbulence outside the ice line where the dust density is higher
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Figure 3.12: Figure adapted from Drazkowska et al. (2016, their Fig. 6, reproduced with permission ©ESO). Surface density
of planetesimals X 1¢s (colour-coded) as a function of the radial distance to the central starina model including the mutual
drag between gas and dust as well as sticking and fragmentation of dust aggregates under mutual collisions. Because
radially drifting dust piles up in this region, the streaming instability can induce planetesimal formation at radii ranging
from 0.3 au to 3 au. Itis evident, though, that planetesimals emerge only if the initial ratio of dust to gas surface density
is greater than 1% (upper panel) and the minimum relative velocity resulting in fragmentation of aggregates amounts to
between 8ms~!and15m s~ (lower panel).

(Sano et al. 2000; Ilgner and Nelson 2006). Since the turbulent strength is less, the gas density
must be greater on the outer side for the transport rate to be constant across the ice line. There-
fore, the ice line constitutes a bump in the gas pressure in which dust piles up. Weaker gas tur-
bulence further entails lower relative velocities between colliding dust aggregates, which thus
can grow to larger sizes outside the ice line (Brauer et al. 2008; Drazkowska et al. 2013). How-
ever, I note that a number of hydrodynamical instabilities, including the streaming instabil-
ity, cause turbulence with a strength that is comparable to or higher than that induced by the
magnetorotational instability if the latter is suppressed by non-ideal magnetohydrodynamics
effects (see Chapter 4).

DUST PILE-UPS  Because the speed of its radial drift depends on the radial distance to the star,
dust naturally piles up in protoplanetary disks even if they are considered to be laminar and
the gas and dust surface density and gas pressure profiles in them to be smooth (Stepinski and
Valageas1996; Youdin and Shu 2002; Youdin and Chiang 2004; Birnstiel et al. 2012; Drazkowska
et al. 2016; Gonzalez et al. 2017a,b). This is true even if dust with a uniform size is taken into
account and the drag of the dust on the gas neglected (Stepinski and Valageas 1996; Youdin
and Shu 2002).

Drazkowska et al. (2016) present models including growth and fragmentation of dust ag-
gregates under mutual collisions and the mutual drag between gas and dust. In these models,
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the dust-to-gas surface density ratio in pile-ups of dust can be high enough for the streaming
instability to induce planetesimal formation. I show the surface density of these planetesim-
als in Fig. 3.12. As can be seen, planetesimals can emerge in a region between radii of 0.3 au
and 3 au. Their formation requires the initially uniform dust-to-gas surface density ratio to be
equal to the interstellar medium value of 1% or higher and the minimum relative velocity that
leads to fragmentation of colliding aggregates to lie in the range between 8m st and 15m s 1.
In addition, planetesimal formation occurs only if the radial drift of dust pile-ups slows down
because of the drag of the dust onto the gas. This slow-down, which gives rise to the non-linear
streaming instability, is explained in Sect. 3.2. The mass in planetesimals forming in the mod-
els by Drazkowska et al. (2016) amounts to several tens of Earth masses for a surface density
ratio of 1%, and more for higher surface density ratios.

Gonzalez et al. (2017a) study similar models and describe a mechanism that they dub self-
induced dust traps (see also Gonzalez et al. 2017b): As the dust density approaches the gas
density, the speed of the inward radial drift of the dust decreases, while the gas drifts outwards
with increasing speed (see Egs. 3.6 and 3.7). Thus, a dust overdensity entails the formation of a
bump in the gas pressure because of the outward gas drift in the overdensity. The overdensity
is enhanced by dust being trapped in this pressure bump. Gonzalez et al. (2017a) find that in
these dust traps the dust-to-gas density ratio can increase to order unity as well as that dust
grows to Stokes numbers greater than one. These conditions enable planetesimal formation
via the streaming instability. Self-induced dust traps emerge in all disk models considered by
Gonzalez et al. (2017a), with the initially homogeneous dust-to-gas density ratio in the models
ranging from 1% to 5%. I note that they assume that dust aggregates fragment under mutual
collisions if their relative velocities amount to at least 10 ms~! to 25 ms~!. These threshold
values are comparatively high (see Sect. 2.3). The total dust mass concentrated in the dust traps
ranges from a few to a few tens of Earth masses and increases with both the initial dust-to-
gas density ratio and the minimum relative velocity leading to fragmentation (Gonzalez et al.
2017a).

While self-induced dust traps are related to the mechanism by which the non-linear stream-
ing instability concentrates dust (see Sect. 3.2), there are a few key differences (Gonzalez et al.
2017a). Firstly, self-induced dust traps span tens of astronomical units while the filaments
formed by the streaming instability are smaller than an astronomical unit. Secondly, while
the streaming instability can be active at all radial distances to the star, self-induced dust traps
form at radii of several tens of au. Thirdly, while the streaming instability only requires a global
radial gradient in the gas pressure, gradients in the Stokes number of the dust and the dust-
to-gas density ratio are further necessary for self-induced dust traps to emerge. Finally, self-
induced dust traps develop if only the radial dimension is considered, in contrast to the linear
streaming instability (see Sect. 3.1).

PHOTOEVAPORATION During their evolution, protoplanetary disks loose gas owing to photo-
evaporation. The escaping gas only transports dust with it that is sufficiently tightly coupled to
the gas for the drag exerted by the gas to overcome the stellar gravity acting on the dust, corres-
ponding to sizes of at most microns (Takeuchi et al. 2005; Alexander and Armitage 2007). This
implies that photoevaporation entails an increase in the dust-to-gas density ratio that is condu-
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Figure 3.13: Figure adopted from Carrera et al. (2017, their Fig. 11, reproduced with permission ©AAS). Mass in planetesim-
alsasafunction of the radial distance to the star. The figure represents a model of a protoplanetary disk that evolves owing
tostellaraccretion and photoevaporation, collisions of dust aggregates resulting in sticking, bouncing, and fragmentation,
as well as planetesimal formation owing to the streaming instability. In addition, the water ice line is taken into account.
The spatial distribution of planetesimal mass is shown when the gas component of the disk has dissipated entirely owing
toaccretion and photoevaporation. At this point, eight Earth massesin planetesimals have emerged in the innermost 3 au,
only two Earth masses between 3 au and 100 au, and as much as 73 Earth masses beyond 100 au.

cive to planetesimal formation (Throop and Bally 2005; Alexander and Armitage 2007; Carrera
et al. 2017; Ercolano et al. 2017). However, the models presented by Sellek et al. (2020) sug-
gest that the enhancement in the density ratio is not significant because dust that has grown
too large to be entrained in the escaping gas is instead lost owing to its inwards radial drift.
In particular, since photoevaporation by far-ultraviolet radiation causes a depletion of dust in
the outer disk regions, not enough dust drifts towards the inner regions to compensate for the
dust drifting away from these regions.

Nevertheless, dust accumulates in the pressure bump at the edge of the gap carved into a
protoplanetary disk by photoevaporation (Alexander and Armitage 2007; Carrera et al. 2017;
Ercolano et al. 2017). This gap forms because the stellar accretion rate declines with time until
at some point the rate at which gas is lost via photoevaporation at a given radial location is
greater than the rate at which it is replenished by stellar accretion (e.g., Alexander et al. 2014).
This point is reached earliest at the so-called critical radius, the radial location at which photo-
evaporation is strongest. The gap thus begins to open at this critical radius.

Carrera et al. (2017) study evolution models of protoplanetary disks, the most comprehens-
ive of which includes stellar accretion, photoevaporation by ultraviolet and X-ray radiation, col-
lisional dust growth and the bouncing and fragmentation barriers, the water ice line, as well
as planetesimal formation induced by the streaming instability. In this model, within 2.7 Myr
several tens of Earth masses in planetesimals form owing to a combination of the stream-
ing instability and photoevaporation by far-ultraviolet radiation at radial distances to the star
of 100 au or more. Nevertheless, closer to the star planetesimals formation occurs only af-
terwards, as a consequence of photoevaporation causing a gap to open in the disk. Figure 3.13
shows the spatial distribution of planetesimal mass when accretion and photoevaporation have
lead to the gas in the disk dispersing completely after 4 Myr. In total, eight, two, and 73 Earth
masses have formed at radii less than 3 au, between 3 and 100 au, and greater than 100 au, re-
spectively. Ercolano et al. (2017) conduct a similar study of planetesimal formation induced by
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the streaming instability and photoevaporation. These authors employ a different photoevap-
oration model, though, with the photoevaporation being caused by X-ray radiation. In their
models, in contrast to the ones by Carrera et al. (2017), only a few Earth masses in planetesimals
form in total, and none at radii greater than 100 au.

OTHER INSTABILITIES A non-linear drafting instability occurs when dust sediments through
gas in hydrostatic equilibrium (Lambrechts et al. 2016; Capelo et al. 2019). If the drag of the
dust onto the gas is neglected, the settling velocity of the dust is determined by the strength of
the gravity that causes the settling as well as of the drag by the gas onto the dust which coun-
teracts the settling because gas in hydrostatic equilibrium is at rest (see Sect. 4.1). However,
the drag exerted by the dust on the gas leads to dust overdensities sedimenting faster than the
surrounding dust. The gas in these overdensities is dragged along by the dust and follows its
motion. The ambient gas, on the other hand, moves in the opposite direction as a consequence
of momentum conservation. The drag it exerts on the ambient dust impedes the sedimenta-
tion of this dust. Thus, the faster-settling dust overdensities accumulate dust ahead of them
in the direction of settling, grow in density, and settle even more rapidly. This mechanism res-
ults in instability and enhancements of the dust density by an order of magnitude (Lambrechts
et al. 2016).

While this instability is related to both the streaming instability and the dust settling in-
stability (see below and Sect. 4.5.2) — particularly, the mechanisms by which the drafting and
the non-linear streaming instability (see Sect. 3.2) concentrate dust are very similar — the draft-
ing instability operates in the absence of rotation and thus of the radial dust drift. Like the
dust settling instability but in contrast to the streaming instability, the drafting instability can
concentrate very small dust aggregates since its growth rate is independent of the dust size on
small scales. In fact, the instability grows fastest on small scales, corresponding to hundreds
to millions of kilometres in protoplanetary disks. However, it is active only if the initial dust-
to-gas density ratio amounts to at least 0.1. It can further be suppressed by the viscosity of
the gas. In laboratory experiments including gas and dust grains, Capelo et al. (2019) observe
two effects that are reminiscent of the drafting instability but also of the streaming instability:
Dust grains approach other grains in their vicinity in the direction of their motion. In addi-
tion, grains comprised in dust overdensities move more rapidly through the gas than isolated
grains.

Huang et al. (2020) report a meso-scale instability arising at the edges of the dust rings ob-
served in protoplanetary disks (see Fig. 1.1). They conduct simulations in which rings form
owing to dust piling up in pressure bumps. If the drag of the dust onto the gas is neglected,
the orbital velocity of gas and dust smoothly transitions from super-Keplerian at the inner side
of the pressure bump, i.e. on the side of the bump facing the star, to sub-Keplerian at the outer
side. Because of the drag exerted by the dust, however, the orbital velocity deviates from this
smooth profile in thatitis closer to Keplerian within the dust ring forming around the pressure
bump. The shear between the gas within and outside of the ring gives rise to the instability. It
induces the formation of vortices in which the surface density of 250 pm-sized dust exceeds
the gas surface density. I note that this instability is reminiscent of a Kelvin-Helmholtz in-
stability. Huang et al. (2020) find that the instability operates on greater length scales than the
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streaming instability. Additionally, they simulate the radial-azimuthal plane, while the linear
streaming instability only grows if the vertical dimension is taken into account (see Sect. 3.1).

Other instabilities that result from the mutual drag between gas and dust and cause dust
concentration include the dust settling instability (Squire and Hopkins 2018a,b) and the Kelvin-
Helmbholtz instability induced by the shear between the gas in the dust mid-plane layer and the
gas in the adjacent layers (Weidenschilling 1980; Weidenschilling and Cuzzi 1993). These in-
stabilities are reviewed in detail in Sects. 4.5.2 and 4.5.3. The former instability is active only as
long as dust sediments and therefore does not lead to concentration that is sufficiently strong
for the dust density to exceed the gas density (Krapp et al. 2020). The Kelvin-Helmholtz in-
stability, on the other hand, induces dust overdensities in excess of the Roche density if the
dust-to-gas surface density ratio is greater than the one in the interstellar medium by a factor
of a few or a few ten (Sekiya 1998; Youdin and Shu 2002; Chiang 2008). However, the stream-
ing instability dominates over the Kelvin-Helmholtz instability if dust with a Stokes number
0f 0.01 or greater is present (Bai and Stone 2010b).
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Instabilities and turbulence

In the previous chapter, I detail how the streaming instability arises and how it concentrates
dust in filaments, thus inducing planetesimal formation. In this chapter, more specifically in
Sect. 4.5.1, the streaming instability is considered as a source of turbulence, which is its fun-
damental nature as an instability. In addition to the streaming instability, I discuss a number
of instabilities that drive turbulence in protoplanetary disks and have been studied in connec-
tion with the streaming instability. The strength of the gas turbulence in the disk mid-plane
and the dust scale height that these instabilities induce are summarised in Table 4.1. I begin
by reviewing observational constraints on disk turbulence.

4.1 OBSERVATIONS

It is challenging to observationally obtain the strength of the turbulence in protoplanetary
disks since the turbulent motions are obscured by faster orbital and thermal motions, i.e. the
turbulence is subsonic (Flaherty et al. 2018). Recently, high-resolution observations, especially
with ALMA, have yielded a number of constraints on the turbulent strength. These mostly stem
from either the broadening of molecular emission lines or from the dust scale height.

Line broadening has been studied at (sub-)millimetre-wavelengths in the disks around TW
Hydrae (Hughes et al. 2011; Teague et al. 2016, 2018; Flaherty et al. 2018), HD 163296 (Hughes
et al. 2011; Flaherty et al. 2015, 2017), DM Tauri (Guilloteau et al. 2012; Flaherty et al. 2020),
MW(C 480 (Flaherty et al. 2020), and V4046 Sagittarii (Flaherty et al. 2020). Upper limits of the
Mach number of the turbulent gas motions of 0.1 are observed in the outer regions (at dis-
tances from the star greater than 10 au) of all of these disks with the exception of DM Tauri. In
this disk, Guilloteau et al. (2012) and Flaherty et al. (2020), respectively, infer Mach numbers
0f 0.4-0.5 and 0.25-0.33. Flaherty et al. (2020) find no indications of either gravitational (see
Sect. 4.2) or magnetorotational instability (see Sect. 4.3) being the source of the stronger tur-
bulence in the disk around DM Tauri as it is neither gravitationally unstable nor more strongly
ionised by far-ultraviolet and X-ray radiation than MWC480 and V4046 Sagittarii (see also Si-
mon et al. 2018b). Infrared observations indicate the presence of transonic turbulence in the
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innermost regions (within a fraction of an astronomical unit) of some disks (Carr et al. 2004;
Najita et al. 2009; Doppmann et al. 2011).

The turbulent strength can be derived from the observed vertical dust scale height because
the latter is determined by sedimentation owing to the stellar gravity and turbulent diffusion
attaining a balance. In the following, I derive an estimate of the dust scale height by equating
the settling and the diffusion time scale (e.g., Armitage 2010; Birnstiel et al. 2016)". I consider
only dust with a Stokes number much smaller than unity, i.e. dust that is tightly coupled to the
gas since its stopping time is much less than the dynamical time scale 1/{2k. Thus, it reaches
the terminal velocity with which it settles to the mid-plane instantaneously. I further assume
avertical hydrostatic equilibrium of the gas, that is to say there are no systematic vertical gas
motions. (This does not exclude random turbulent motions.)

Under these conditions, the gravitational acceleration towards the mid-plane, —Q%(z:, and
the deceleration that is induced by the drag exerted by the gas, vq ./t stop, can be equated to
obtain the settling velocity of the dust

Ud,z = —Q%(th@top = —QKStZ. (4.1)

The settling time scale, i.e. the time scale over which dust settles from the height 2 to the mid-

plane, amounts to
z 1

|Ud,z| B QKSt '

Td,sett = (4.2)

The time scale of the turbulent dust diffusion can be expressed as 74 qifr ~ 22/ Vd turb. Assum-
ing this similarity to be an equality and the turbulent viscosity of the dust to be similar to that
of the gas given in Eq. 2.8 yields

2

z

Tidif = —————. 4.3
d diff Mé,zCng (4.3)

Sedimentation and diffusion attain an equilibrium at the height at which these two time
scales are equal. This height, the dust scale height, can thus be estimated as

M2 _c.H, M2
H — g,z g — gvz H .
d QxSt St e (4.4)

where I obtain the second equality by using that H, = ¢,/ in the thin-disk approximation,
i.e. under the assumption that the radial distance to the star is much greater than the height. I
note that the more sophisticated derivations by Dubrulle et al. (1995) and Carballido et al. (2006)
yield the same equation, with the former authors considering tight coupling between gas and
dust as I do, but the latter authors loose coupling. This is despite loosely coupled dust not
attaining its terminal velocity before reaching the mid-plane, and therefore oscillating around
this plane. These oscillations are excited by turbulence and damped by the drag exerted by the
gas. Youdin and Lithwick (2007) propose

Hy= 2y @s)
R T VPR T >

'The ratio of diffusion to settling time scale is referred to as Péclet number.
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to account for the fact that the gas scale height is an upper limit of the dust scale height. The
two scale heights are comparable if St < Mgz. Otherwise, stronger sedimentation leads to
the dust forming a vertically smaller mid-plane layer. From Figure 1.1, it can be seen that the
dust scale height in the disk surrounding IM Lupi increases with the radial distance to the star.

Mulders and Dominik (2012) employ a radiative transfer code including dust settling and
turbulent diffusion to model the spectral energy distributions of samples of Herbig Ae/Be stars,
T Tauri stars®, and brown dwarfs. They obtain a turbulent a-parameter (see Sect. 2.2; Shakura
and Sunyaev 1973) of 10~4, corresponding to a Mach number M, ., = \/a of 0.01, for a typical
dust size distribution ranging from sub-microns to millimetres and the canonical dust-to-gas
density ratio in the interstellar medium of 1%. This turbulent strength does not vary with the
stellar type.

Similar to Mulders and Dominik (2012), Pinte et al. (2016) and Ohashi and Kataoka (2019)
apply radiative transfer modelling to fit spatially resolved ALMA observations of the ring-and-
gap structure in the disks surrounding HL Tauri (see Fig. 1.1) and HD163296, respectively. Pinte
et al. (2016), who presuppose a dust size distribution, infer a scale height of millimetre-sized
dust of ~1 au at a radial distance of 100 au in the former disk, which is equivalent to ~10% of
the gas scale height. This scale height yields an a-value of the turbulent viscosity of 3 x 1074
or Mg . = 0.017.

Ohashi and Kataoka (2019), on the other hand, derive both the dust size and the scale height
from the polarisation of the dust emission. They find a dust scale height of at most one third
and of two thirds, respectively, of the gas scale height inside and outside of the ring located
at a radius of 70 au in the disk around HD163296. Furthermore, they estimate a turbulent a-
value of £1.5 x 1073 (M, . < 0.039) in the gap at 7 = 50 au and a greater value of 0.015-0.3
(Mg . = 0.12-0.55) in the gap at r = 90 au. However, the latter significantly exceeds the up-
per limit of the Mach number of £0.06 at ~ 2 30 au that Flaherty et al. (2015, 2017) obtain from
line broadening observations of this disk.

Assuming that the gaps in the HD163296 disk are caused by planets, Liu et al. (2018) perform
simulations to reproduce ALMA observations of both gas and dust in the disk. Like Ohashi
and Kataoka (2019), they find a radially increasing turbulent viscosity, with a-values ranging
from ~5 x 107° (M 2 0.007) in the gap at a radius of 60 au to ~7.5 x 1073 (Mg ~ 0.09) at
radii greater than 300 au. I note that, while the former turbulent strength is consistent with
the upper limits inferred in the studies by Flaherty et al. (2015, 2017) and Ohashi and Kataoka
(2019), the latter is in contrast with both studies.

To investigate whether the observed rings in these disks are the result of dust concentration
in gas pressure bumps (see Sect. 3.5), Dullemond et al. (2018) compare DSHARP observations
of five disks with simulation data. From the measured width of the rings, they derive lower
limits of the a-value of the radial gas motions between 10~ and 2 x 10~3 (Mach numbers
between 0.01 and 0.045) for a dust size of 200 um, with these lower limits being proportional
to the dust size.

“Herbig Ae/Be stars are pre-main sequence stars of spectral types B and A, while T Tauri stars are those of types
F,G, K, and M.
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4.2 GRAVITATIONAL INSTABILITY

A protoplanetary disk, or more generally any rotating gaseous disk, is gravitationally unstable
if its self-gravity overcomes rotation and thermal pressure that act to stabilise it (Safronov
1960; Toomre 1964). This condition can be expressed in terms of the dimensionless Toomre Q-
parameter, which is given by

Csk

@= e

(4.6)

where 3, is the gas surface density and the epicyclic frequency x = x in a disk with Keplerian
rotation® (e.g., Armitage 2010; Kratter and Lodato 2016). While the sound speed and the epi-
cyclic frequency in the numerator quantify the stabilising effects of thermal pressure and rota-
tion, respectively, the destabilising self-gravity is reflected in G in the denominator. Disks
with Q < 1 are unstable to linear axisymmetric perturbations that cause the formation of
axisymmetric rings. Non-axisymmetric linear instability, which induces spiral arms, can also
occur for () 2 1. More generally, the critical value of ) differs from one but remains of order
unity if, for instance, differentially instead of uniformly rotating disks or disks with a finite
vertical extent rather than razor-thin disks are considered. The instability leads to fragmenta-
tion if the gas cooling time scale is sufficiently short, and otherwise saturates in a non-linear
state of gravitoturbulence* (e.g., Kratter and Lodato 2016).

Gravitational instability requires a disk mass of at least ~10% of the mass of the central
star (Kratter and Lodato 2016). Therefore, a disk is more likely to be unstable at an early stage
when it and the star it surrounds are still accreting from an envelope. Among a sample of more
than a hundred Class II YSOs, which are associated with disks that are no longer embedded in
an envelope as I study in this thesis, Andrews et al. (2013) find that only very few exceed the
threshold disk-to-star mass ratio necessary for instability. Spiral arms have been observed in
a number of disks around Class II stars (Pérez et al. 2016; Huang et al. 2018). However, these
spiral arms can not only be caused by gravitational instability, but also by planetary or stellar
companions.

Riols et al. (2020b) perform simulations of gravitoturbulent gas and dust with Stokes num-
bers ranging from 0.0016 to 0.16. The strength of the gas turbulence in their simulations is
depicted in Fig 4.1. The turbulence is anisotropic: The Mach number of the vertical motions
amounts to ~0.01 in the mid-plane and to ~0.1 at heights of one gas scale height above and be-
low this plane, while the radial Mach number ranges between 0.1 and 1 at all heights (see also
Shi et al. 2016). This turbulence elevates dust with a Stokes number of 0.01 and 0.1 to a scale
height of ~70% and ~30%, respectively, of the gas scale height. However, Riols et al. (2020b)
find both the turbulent strength and the dust scale height to increase with the resolution.

3Generally, the square of the epicyclic frequency is given by

2 2Q d(Q’I‘Q)
K= — .
r dr

(4.7)
In a Keplerian disk, Qx r~3/2 (see also Eq. 2.24) and thus x% = Q.

*It is debated whether gravitoturbulence involves an energy cascade over a range of length scales that is char-
acteristic of turbulence (Kratter and Lodato 2016).
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Figure 4.1: Figure adopted from Riols et al. (2020b, their Fig. 1). Radial (blue line) and vertical (orange line) gas velocity
relative to the sound speed as a function of the height z in units of gas scale heights. The left and right panel show the
velocities in a simulation with a lower and a higher resolution, respectively, with the resolutions being given in the panel
captions. Theradial Mach number ranges between 0.1 and 1 atall heights. In contrast, the vertical Mach number increases
from ~10~ 2 inthe mid-planeto ~10~* one gas scale height away from this plane. The gas motions in both the radial and
the vertical dimension are stronger if the resolution is higher.

Dust is concentrated in pressure bumps and vortices that are caused by gravitoturbulence.
In two-dimensional simulations of razor-thin disks — the streaming instability operates in the
radial-vertical plane and thus not in these simulations - the accumulation of dust with Stokes
numbers between 0.1 and 1 is strong enough to lead to the dust collapsing under its self-gravity
and forming planetesimals, even if the drag of the dust onto the gas is not included (Gibbons
et al. 2014, 2015; Shi et al. 2016). The maximum surface density of the dust is smaller by about
an order of magnitude if its self-gravity is not taken into account, but still reaches values of 103
to 10* times the mean surface density (Gibbons et al. 2012, 2014).

On the other hand, Riols et al. (2020b), who do not consider the self-gravity of the dust, show
that the dust concentration is weaker in three- than in two-dimensional simulations. Even
when considering dust with the largest Stokes number they simulate, St = 0.16, the dust-to-
gas (volume) density ratio exceeds one only occasionally and for not more than a few orbital
periods in a three-dimensional simulation. From this, they conclude that the streaming in-
stability is inhibited by gravitoturbulence. I note, however, that the maximum resolution of
the simulations by Riols et al. (2020b) amounts to 26 grid cells per gas scale height, which
is insufficient to resolve the formation of gravitationally unstable dust clumps owing to the
streaming instability (Yang and Johansen 2014).

4.3 MAGNETOROTATIONAL INSTABILITY

The magnetorotational instability is a linear instability that operates in disks in which the or-
bital velocity declines with increasing distance to the central source of gravity, such as proto-
planetary disks, and which are permeated by a weak magnetic field with a vertical component
(Velikhov 1959; Chandrasekhar 1960; Balbus and Hawley 1991).
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Figure 4.2: Toy model of the magnetorotational instability. The cubes depict two gas parcels, while the zigzag line repres-
ents a field line of a vertical magnetic field coupling the parcels. Initially (left), a linear perturbation leads to the parcels
being radially displaced from the same to adjacent orbits. Thus, the orbital velocity (solid arrows) of the parcel on the in-
ner orbitis higher than that of the parcel on the outer orbit. The orbital motion of the parcels results in the field line being
stretched (right). To counter this stretching, magnetic tension acts to decelerate the parcel on the inner orbit and acceler-
ate thaton the outer orbit (dotted arrows) by transporting angular momentum from the former to the latter. However, this
only causes further stretching of the field line: On the one hand, since the parcel on the inner orbit slows down, the stellar
gravity acting onitis no longer balanced by the centrifugal force. Therefore, the parcel drifts radially inwards. On the other
hand, the centrifugal force on the parcel on the outer orbit exceeds the stellar gravity, and the parcel drifts outwards. The
magnetic tension grows in strength, while the two parcels drift apart more and more. This leads to instability.

The instability can be explained using the toy model depicted in Fig. 4.2 (e.g., Turner et al.
2014): I consider two gas parcels which are located at the same radius in a protoplanetary
disk, i.e. orbiting with the same Keplerian velocity, but at different heights. These parcels are
coupled by a field line of a vertical magnetic field. If they are displaced to different radii by a
linear perturbation, the one at the larger radius orbits more slowly than the one at the smaller
radius since the Keplerian velocity v oc 7~ /2 (see Eq. 2.24). This results in a stretching of the
field line. Magnetic tension counteracts this stretching by transferring angular momentum
from the parcel on the inner orbit to the one on the outer orbit to equalise the orbital velocities
of the two parcels. However, this angular momentum transport leads to the field line being
stretched even more. This is because the orbital velocity of the parcel on the outer orbit is now
super-Keplerian and the centrifugal force, which is no longer balanced by the stellar gravity,
causes it to move outwards. The parcel on the inner orbit, on the other hand, orbits with a
sub-Keplerian velocity and therefore moves inwards. Further stretching of the field line gives
rise to stronger magnetic tension, more angular momentum transfer, the two parcels drift-
ing apart even more, and thus instability. Nevertheless, if the magnetic field is too strong the
magnetic tension can prevent the parcels from separating.

In ideal magnetohydrodynamics, it is assumed that the gas is perfectly coupled to the mag-
netic field — neutral atoms and molecules via collisions with ions and electrons. However, this
assumption is valid only if the gas is sufficiently well-ionised. In protoplanetary disks, this is
the case in the thermally ionised innermost regions, within 0.1-1 au from the star (Gammie
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1996; Latter and Balbus 2012), and at the disk surface which is ionised by stellar far-ultraviolet
radiation (Perez-Becker and Chiang 2011)°.

The bulk of a protoplanetary disk is only weakly ionised, though (e.g., Turner et al. 2014).
Therefore, non-ideal magnetohydrodynamic effects must be taken into account:

« Ambipolar diffusion: Ions and electrons are coupled to the magnetic field, neutrals are
decoupled. The magnetorotational instability is damped by ambipolar diffusion (Blaes
and Balbus 1994; Lesur et al. 2014; Bai 2014, 2015, 2017; Gressel et al. 2015; Simon et al.
2015a).

« Hall effect: Electrons are coupled to the magnetic field, while ions and neutrals are de-
coupled, the latter owing to collisions with the former. If the vertical component of the
magnetic field is aligned with the rotation axis of the disk, the radial and azimuthal field
components are enhanced by the Hall shear instability (Kunz 2008; Lesur et al. 2014).
This instability results from a feedback loop between Keplerian rotation and the Hall ef-
fect: As described above in the context of the toy model, rotation causes an increase in
the strength of the azimuthal component. This leads to the Hall effect amplifying the
radial component, which in turn results in rotation further enhancing the azimuthal
component. As a consequence of the Hall shear instability, gas mass is transported radi-
ally inwards and angular momentum outwards, which is conducive to stellar accretion
(Lesur et al. 2014; Bai 2014, 2015, 2017; Simon et al. 2015b). If, on the other hand, the ver-
tical magnetic field component and the disk rotation axis are anti-aligned, the Hall effect
counteracts the tendency of Keplerian rotation to amplify the azimuthal field compon-
ent and thus the magnetorotational instability (Wardle 1999).

« Ohmic resistivity: Neutrals are decoupled from the magnetic field, collisions with the
neutrals lead to the ions and electrons being decoupled as well. Similar to ambipolar
diffusion, Ohmic resistivity suppresses the magnetorotational instability (Gammie 1996;
Jin 1996; Lesur et al. 2014; Bai 2014, 2017; Gressel et al. 2015; Simon et al. 2015a).

Which effect dominates depends on the magnetic field strength and the gas density. For a
fixed field strength, ambipolar diffusion is most important where the density is low, the Hall ef-
fect at intermediate densities, and Ohmic resistivity in high-density regions (e.g., Turner et al.
2014). Given that the density decreases with increasing radius and height in protoplanetary
disks, this yields a layered disk structure: Ohmic resistivity is dominant in the mid-plane of
the inner disk, the Hall effect at intermediate heights in the inner disk and in the mid-plane at
intermediate radii, and ambipolar diffusion in the upper layers of the inner disk, away from
the mid-plane at intermediate radii and everywhere in the outer disk regions.

Bai (2014, 2015) performs simulations including all three effects to investigate the strength
of the turbulence driven by the magnetorotational instability at various radii and heights. Fig-
ure 4.3 shows the gas velocity at » = 1 au. Both in the radial and the vertical dimension, it

SAtthe surfaces of protoplanetary disks, magnetically launched winds transport angular momentum away from
the disks and thus facilitate stellar accretion (Blandford and Payne 1982; Bai 2014, 2015, 2017; Gressel et al. 2015,
2020; Béthune et al. 2017).

59



CHAPTER 4. INSTABILITIES AND TURBULENCE

No Hall

T T T T T

T
S

-

Velocity

z/H z/H

Figure 4.3: Figure adapted from Bai (2014, their Fig. 2, reproduced with permission ©AAS). Gas velocity, expressed in terms
of a Mach number, as a function of the height z in units of gas scale heights H. The blue, red, and green lines depict the
absolute radial v, azimuthal vy, and vertical v, velocity components. At heights of up to two gas scale heights, all three
components are negligibly small. From about two gas scale heights to the height which marks the transition from disk to
magnetically launched disk wind (dash-dotted line), the radial and vertical Mach numbers increase to ~0.1. The leftand
right panel represent a simulation in which the vertical magnetic field component and the disk rotation axis are aligned
and anti-aligned, respectively, while the middle panel shows the velocities in a simulation in which the Hall effect is neg-
lected. As can be seen, the Hall effect influences the turbulent strength only marginally.

is negligible within two gas scale heights above and below the mid-plane®. From there, the
velocity increases to Mach numbers of ~0.1 at the disk surface. At radii ranging from 5 au
to 60 au, on the other hand, the vertical Mach number amounts to ~0.01 in the mid-plane
and between 0.1 and 1 at the surface (Bai 2015). A comparison of simulations including and
excluding the Hall effect shows that the effect results in a marginally higher and lower tur-
bulent strength if vertical magnetic field component and disk rotation axis are aligned and
anti-aligned, respectively (Lesur et al. 2014; Bai 2015). While the above Mach numbers are de-
termined for a ratio of the thermal to the magnetic pressure of 105, Simon et al. (2018b) find
that at 7 = 100 au values of this ratio greater than 10-~10* and a weak ionisation of the gas
are necessary for the magnetorotational instability to drive turbulence with a strength that is
consistent with ALMA observations (see Sect. 4.1).

In numerical studies of the dust dynamics that are caused by the magnetorotational instabil-
ity, of the three effects only ambipolar diffusion has been taken into account as it is the dom-
inant effect in the outer disk regions. Simulations confirm the theoretical prediction that the
ratio of the dust to the gas scale height is proportional to St ~'/2 (see Eq. 4.4; Xu et al. 2017; Riols
and Lesur 2018; Riols et al. 2020a). For a Stokes number of 0.1 and a thermal-to-magnetic pres-
sure ratio of 10, the dust-to-gas scale height ratios obtained from simulations range from 4%
to 20% (Xu et al. 2017; Riols and Lesur 2018; Yang et al. 2018; Riols et al. 2020a). The scale height
ratio increases with the pressure ratio (Riols and Lesur 2018; Riols et al. 2020a).

The magnetorotational instability — even when considering ambipolar diffusion — induces
a greater dust scale height than the streaming instability in isolation (see Sect. 4.5.1). Non-
etheless, Yang et al. (2018) find that the turbulence driven by the magnetorotational instability

The disk region around the mid-plane in which the magnetorotational instability is strongly suppressed by
non-ideal magnetohydrodynamic effects and therefore causes only weak turbulence, if at all, is commonly referred
to as dead zone (Gammie 1996).
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does not inhibit the formation of filaments by the streaming instability because the magnet-
orotational instability gives rise to stronger vertical than radial dust diffusion. While in their
simulations the Mach number of the turbulent gas velocity is comparable in the radial and ver-
tical dimension, the correlation time is longer in the latter dimension (see also Zhu et al. 2015).
Thatis to say, ata fixed point in space, the vertical gas velocity remains similar for alonger time
than the radial one. Yang et al. (2018) conclude that the ability of the streaming instability to
concentrate dust is not significantly affected by strong vertical diffusion as long as the radial
diffusion is only weak. In simulations of the streaming instability and the magnetorotational
instability under the assumption of ideal magnetohydrodynamics, the magnetorotational in-
stability induces pressure bumps in which dust accumulates (see Sect. 3.5), with the streaming
instability further enhancing these dust concentrations (Johansen et al. 2007, 2011).

4.4 PURELY HYDRODYNAMIC INSTABILITIES

In this section, I review hydrodynamic instabilities that operate in the absence of dust. I do
not discuss the zombie vortex instability because its effect on dust dynamics, and thus on the
streaming instability, has not been investigated (Marcus et al. 2013, 2015, 2016; Lesur and Latter
2016; Umurhan et al. 2016b; Barranco et al. 2018). In contrast to the other three purely hydro-
dynamic instabilities introduced below, this non-linear instability is active if the gas cooling
time scale is long, i.e. the gas is locally adiabatic or close to adiabatic (Lesur and Latter 2016;
Barranco et al. 2018). Because of their different requirements in terms of cooling time, the
four instabilities operate in different regions of protoplanetary disks (Malygin et al. 2017; Pfeil
and Klahr 2019).

4.4.1 VERTICAL SHEAR INSTABILITY

The vertical shear instability” is a linear instability which, as the name indicates, operates if the
orbital velocity varies with height (Urpin and Brandenburg 1998; Urpin 2003; Arlt and Urpin
2004; Nelson et al. 2013). The free energy in the resulting shear between vertically adjacent gas
layers is the source of energy of the instability (Barker and Latter 2015). Furthermore, a suffi-
ciently short cooling time scale is necessary — optimally, the gas is locally isothermal (Nelson
et al. 2013; Lin and Youdin 2015).

Vertical profiles of the orbital velocity are induced by, for example — and somewhat coun-
terintuitively — radial temperature profiles. Such profiles are ubiquitous in protoplanetary
disks (Andrews and Williams 2005). A radial temperature gradient gives rise to a misalign-
ment between pressure and density gradient, a state that is referred to as baroclinic®. The
variation with height of the orbital frequency of a baroclinic gas is a consequence of the Taylor-
Proudman theorem. If the gas is in equilibrium, that is to say it is steady in time and there is

"Thevertical shear instability in differentially rotating protoplanetary disks is related to the Goldreich-Schubert-
Fricke instability in differentially rotating stars (Goldreich and Schubert 1967; Fricke 1968).
¥Gas with a constant temperature and thus aligned density and pressure gradients is called barotropic.
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Figure 4.4: Toy model to determine the linear stability of protoplanetary disks in which the orbital frequency €2 is inde-
pendent of (left) or depends on (right) the height z. While only the radial-vertical plane is shown, the solid lines represent
surfaces on which the orbital frequency, the specific kinetic energy exin, and the specific angular momentum [ are con-
stant. Two gas parcels, represented by cubes, at the locations (7, z) and (r + dr, z 4+ dz) are interchanged under con-
servation of their angular momenta. Their orbital frequencies are adjusted to match the ones at their new locations. If
afterwards their total kinetic energy is greater than before the interchange, instability can occur. If the rotation is Kep-
lerian only, i.e. 92/0z = 0, the disk is stable according to the Rayleigh criterion. In contrast, a height-dependence of the
orbital frequency can resultin instability.

no advection, its equation of motion reads

1
0=Q%¢— —VP+ Vg, (4.8)
Pg
where ®g is the stellar gravitational potential. The first term on the right-hand side of the
equation represents the centrifugal force. Computing the curl of this equation results in
002

- 1
—r¢p=V— x VP (4.9)
0z Pe

since the curl of a gradient and 92/0¢ are zero. Here, ¢ is the unit vector in the azimuthal
direction.

Toy MODEL Toy models of linear instabilities in protoplanetary disks can be constructed us-
ing the following approach (e.g., Barker and Latter 2015; Lyra and Umurhan 2019): Firstly, two
gas parcels are interchanged, conserving their angular momenta; secondly, the orbital velocit-
ies of the parcels are adapted to their new orbits; and, thirdly, the total energy of the parcels
after the interchange is compared to the total energy in the original state. Instability arises if
the total energy in the new state is less, i.e. the new state is energetically preferred. This ap-
proach is illustrated in Fig. 4.4 for a disk with purely Keplerian rotation, 9€2/0z = 0, as well as
for a disk with a height-dependence of the orbital frequency, 92/9z # 0. The figure shows the
radial-vertical plane, with surfaces of constant angular frequency €2, constant specific angular
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momentum | = {272, and constant specific kinetic energy ey, = Q2%r? = [? /r? being marked
as solid lines. Two gas parcels at the locations (r, z) and (r + dr, z + dz) are depicted as cubes.
The total kinetic energy of the two parcels before the interchange can be expressed as

P(r,2z)  P(r+dr,z+dz)
r2 (r+dr)?

(4.10)

€kin,init =

and afterwards as
o 1%(r, 2) N P(r+dr, 2z +dz) a11)
R r? ' +
Expanding the square of the specific angular momentum [?(r + dr, z + dz) in a Taylor series
around (r, z) yields

O12(r, 2) ol3(r, 2)
or dr+ 0z

If terms of second and higher order are neglected, the difference between the total kinetic
energy in the new and in the original state amounts to

o12(r, 2) 012(r, 2) 1 1
€kin — €kin,init = or dr + 92 dZ:| |:702 — (7”_{_8,'”)2] . (4.13)

P(r+dr,z4dz) = 1P(r,2) + dz + O(dr?) + O(d2?).  (4.12)

Instability can occur if this difference is negative. Because the second factor on the right-hand
side is always positive, the criterion for instability is

Ol2(r, 2) ol2(r, z)
or dr+ 0z

In a disk in which the orbital frequency is independent of height, this criterion reduces to
the Rayleigh criterion 91(r)/Or < 0. Keplerian disks are stable with respect to this criterion
because Qi = vk /r o< 7~%/2 (see Eq. 2.24) and thus I oc /2. That is, gas parcels that are
displaced radially inwards or outwards from their equilibrium state, in which the gravitational
and the centrifugal force acting on them are in balance, execute epicyclic oscillations in the
radial-azimuthal plane around this state rather than continuing to move inwards or outwards.

In contrast, if the orbital frequency changes with height and the term 912 (r, ) /9 is negat-
ive (or positive), instability — to be more precise, the vertical shear instability — can arise if the
vertical displacement of the two gas parcels dz is positive (or negative) and large enough com-
pared to the radial displacement dr. Specifically, interchanging the parcels along a surface of
constant angular momentum, as shown in Fig. 4.4, leads to a new state that is neither more nor
less energetically preferable than the original state. This is since [2(r + dr, z 4+ dz) = [%(r, 2)
and therefore eyiy, — exin init = 0.

dz < 0. (4.14)

VERTICAL BUOYANCY This toy model of the vertical shear instability does not involve the sta-
bilising effect of buoyancy and the consequential necessity of a short gas cooling time scale.
To illustrate this, I assume that a vertical density profile ensures that the gas is in hydrostatic
equilibrium while the temperature does not depend on height, as among others in the model of
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the gas in protoplanetary disks that I present in Appendix A. Under these conditions and if the
cooling time is infinitely long, a gas parcel that is displaced upwards adapts to the lower pres-
sure of the gas around it by expanding and cooling. Since this lower ambient pressure results
from a decrease in density, but not in temperature, the parcel is denser than the surround-
ing gas after the displacement. Buoyancy thus causes the parcel to move back downwards. If
cooling occurs infinitely rapid, on the other hand, buoyancy does not stabilise the gas. This is
because the temperature and therefore also the density of the upwards-moving parcel remain
the same as those of the gas surrounding it.

Mathematically, the Schwarzschild criterion® can be applied to determine whether linear
perturbations in the gas are stabilised by buoyancy. According to this criterion, gas is stable
and oscillates around the equilibrium state with the Brunt-Vaisila frequency if this frequency
is real. In contrast, if the frequency is imaginary, buoyancy leads to convection. The square of
the Brunt-Vaisila frequency is given by

1 9P 0 P
2
1 c .
/\/Z YPe 0z 0z . <pg> ’ (4.15)

where v is the adiabatic index. The last derivative on the right-hand side expresses the depend-
ence of the specific entropy s oc In(P/pg) on height. In the case of locally isothermal gas with
a vertically constant temperature, that is to say v = 1 and Op/0z = c29pg /02, it is equal to

0 P 0
—1In <V> = cg— n <pg> =0, (4.16)
0z P 0z P
and the Brunt-Viisild frequency vanishes. If v > 1, on the other hand, the specific entropy in-
creases with height. Since the pressure decreases with height, the square of the Brunt-Vaiisald
frequency is therefore positive.

The vertical shear instability can operate if the cooling time scale is short enough for the
destabilising vertical shear to overcome the stabilising buoyancy, that is locally

~ _ [roQ/o| (417)
g,cool ~ NZQ 4.17

(Lin and Youdin 2015)*°. Under the assumption that the temperature is independent of height,
while its dependence on the radial distance to the star can be expressed as a power law with an
exponent ¢, Lin and Youdin (2015) show that instability globally requires

Hg“]’

—_— . .18
Tg,cool < ('Y — 1)7’QK (4.18)

*The Schwarzschild criterion is part of the more general Solberg-Hgiland criteria for the stability of differen-
tially rotating disks with radial and vertical density and temperature profiles (Tassoul 1978; Rudiger et al. 2002; Lyra
and Umurhan 2019).

°The maximum local cooling time scale for which the vertical instability is active is related to the Richard-
son number Ri = N2 /(rd92/8z)? (Lin and Youdin 2015). This dimensionless number quantifies the ratio of the
strengths of buoyancy and shear.
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In the gas disk model described in Appendix A, ¢ = —1/2 (see Eq. A.1). Since the disk aspect
ratio Hy /7 is generally less than one, a cooling time that is shorter than the dynamical time
scale 1/Qk is thus necessary. I note that the instability operates in the simulations conducted
by Stoll and Kley (2014, 2016) and Flock et al. (2017, 2020) which include a radiative transfer
model of protoplanetary disks.

LINEAR MODES AND NON-LINEAR SATURATED STATE Two classes of linear modes of the ver-
tical shear instability, body modes and surface modes, have been identified numerically and
analytically (Nelson et al. 2013; Barker and Latter 2015; Umurhan et al. 2016a). As predicted by
the toy model above, in which instability requires the ratio of vertical dz to the radial displace-
ment dr to be sufficiently great, both classes are characterised by their vertical wavelengths
being larger than the radial ones. The radial wavelengths of the body modes are longer than
those of the surface modes, though.

Numerically studying the surface modes is problematic in two regards: Firstly, the surface
modes appear at the artificial vertical boundaries of simulation domains (Nelson et al. 2013;
Barker and Latter 2015; Lin and Youdin 2015). Their growth rate increases with the vertical
domain extent because the vertical shear is stronger at greater heights (Lin and Youdin 2015).
Nonetheless, Barker and Latter (2015) find that the surface modes can as well grow at trans-
itions in the vertical structure of realistic disks in which the temperature varies with height.
Secondly, the fastest-growing surface modes are the ones with the shortest wavelengths (Barker
and Latter 2015; Lin and Youdin 2015). That is, in simulations convergence with respect to the
resolution can only be reached if these modes are either damped by viscosity (Barker and Latter
2015) or if the gasis notlocally isothermal. The latter is because reducing the cooling time leads
to incremental damping of the fastest-growing modes, as shown by Lin and Youdin (2015).

The growth rate of the body modes is less than that of the surface modes (Nelson et al. 2013;
Barker and Latter 2015; Umurhan et al. 2016a). Therefore, they appear later in simulations. In
contrast to the surface modes, the body modes occupy the bulk of the disk. They evolve from an
odd symmetry relative to the mid-plane — at a given radius, gas moves upwards (downwards)
above and downwards (upwards) below the mid-plane - to an even symmetry.

The vertical shear instability attains a non-linear saturated state after ~30 orbital periods or
later (Nelson et al. 2013; Stoll and Kley 2014). I show the turbulence that is driven by the instabil-
ity in this state in Fig. 4.5. In the radial-vertical plane, it is characterised by perturbations with
a very small ratio of the radial to the vertical wavelength, by a mirror symmetry with respect
to the mid-plane, and by being bent slightly outwards. This curvature is consistent with that
of the surfaces of constant angular momentum in the toy model depicted in Fig. 4.4. In three-
dimensional simulations, the instability leads to the formation of vortices (Richard et al. 2016;
Latter and Papaloizou 2018; Manger and Klahr 2018; Flock et al. 2020). The turbulence induces
vertical and radial angular momentum transport, the latter of which aids stellar accretion (Arlt
and Urpin 2004; Nelson et al. 2013; Stoll and Kley 2014)". However, this transport also acts to
eliminate the temperature structure unless the gas is locally isothermal. Therefore, if this is

"In studies of the vertical shear instability, the a-parameter is commonly defined as o ~ vg ,vg,¢/c? (e.g. Nel-
son et al. 2013; Stoll and Kley 2014, 2016; Stoll et al. 2017). This definition is more suitable to quantify angular mo-
mentum transfer than the definition I use in this thesis, « = Mé.
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Figure 4.5: Figure adopted from SJB20o. Mach number of the vertical gas motions My, . as a function of the radial dis-
tance r and the height z in a two-dimensional simulation of locally isothermal gas with a radial temperature profile. The
turbulence in the simulation is caused by the vertical shear instability in its saturated state. Itinduces perturbations which
are radially small but vertical elongated, slightly bent outwards, and symmetric with respect to the mid-plane. The Mach
number is equal to ~0.1 at all radii and heights.

not the case, external heating is necessary to maintain the vertical shear and the instability
(Stoll and Kley 2014).

TURBULENT STRENGTH, DUST SCALE HEIGHT, AND INTERACTION WITH STREAMING INSTABILITY
In the three-dimensional radiative transfer simulations of the vertical shear instability per-
formed by Flock et al. (2017), in which the temperature decreases with increasing height, the
Mach number of the vertical gas motions ranges between ~0.01 in the disk mid-plane and ~0.1
at the surface. On the other hand, the Mach number amounts to ~0.1 at all heights in the two-
dimensional simulations of locally isothermal gas with a vertically constant temperature that
we present in SJB20. The instability gives rise to anisotropic turbulence, with the radial velo-
city of the gas being less than its vertical velocity (Stoll and Kley 2016; Stoll et al. 2017; SJB20).
Figure 5 in SJB20 indicates that the radial Mach number ranges between 0.01 and 0.1. Higher
turbulent strengths result from stronger vertical shear caused by steeper radial temperature
profiles (Nelson et al. 2013; Lin 2019).

The scale height to which dust is elevated by the instability depends on the Stokes num-
ber of the dust as well as on the strength of the turbulence and consequently the steepness of
the temperature profile (see Eq. 4.5; Lin 2019). In addition, the scale height decreases with in-
creasing ratio of dust to gas surface density if the drag exerted by the dust on the gas is taken
into account (Lin 2019; SJB20). The reason for this is the tendency of the dust to sediment
towards the mid-plane, which introduces an effective buoyancy in the gas that damps the in-
stability (Lin and Youdin 2017; Lin 2019). To elucidate this, gas and dust can be approximated
as a single fluid — a valid approximation if they are tightly coupled owing to their mutual drag
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(see Sect. 3.1). While the dust adds to the density of this fluid poy = pg + pg, it does not con-
tribute to its pressure. If the gasis locally isothermal, its equation of state is given by P = c;pg.
The one of the fluid can be expressed as P = ¢5(1 — pa/prot) prot, though. That is, in contrast
to the pure gas the fluid is not locally isothermal and thus stabilised by buoyancy.

Lin (2019) finds that this effective buoyancy leads to the dust scale height decreasing from
about the gas scale height to ~5% of it if the dust-to-gas surface density ratio Z increases
from 0.01 to 0.1 and dust with a Stokes number of 0.001 is considered. Similarly, the scale
height of dust with a higher Stokes number of 0.1 amounts to ~10% of the gas scale height in
the simulation with Z = 0.02 thatis presented in SJB20, butis aslow as ~1% in our simulation
with Z = 0.1.

In SJB20, we study the interaction of the vertical shear instability and the streaming instabil-
ity. To this end, we compare simulations in which the dust is introduced either at the begin-
ning or after the vertical shear instability has saturated. In the latter case, the vertical shear
instability remains the main source of turbulence in the dust layer around the disk mid-plane,
although the streaming instability locally drives turbulence. In contrast, the turbulence in the
dust layer is caused by the streaming instability if the dust is initialised at the start of the simu-
lations and both instabilities therefore begin to grow at the same time. The fact that the vertical
shear instability is suppressed can be explained by the effective buoyancy induced by the dust
as well as the streaming instability saturating more rapidly than the vertical shear instabil-
ity. The vertical shear instability is damped by turbulent viscosity with an a-parameter of at
least ~4 x 10~4, corresponding to a Mach number of 0.02 (Nelson et al. 2013). The streaming
instability gives rise to turbulence with such a strength (see Sect. 4.5.1).

In the simulations conducted by Stoll and Kley (2016) in which only the drag of the gas onto
the dust is included, the dust is concentrated radially in short-lived pressure bumps induced
by the vertical shear instability (see Sect. 3.5). Dust overdensities arise which exceed the initial
density by up to an order of magnitude if the Stokes number of the dust is close to one. Fur-
thermore, dust is trapped in vortices formed by the Rossby wave instability, which in turn is
triggered by the vertical shear instability (Flock et al. 2020). A key finding of SJB2o0 is that, if
the drag of the dust onto the gas is taken into account as well, the streaming instability may
enhance dust concentrations in pressure bumps caused by the vertical shear instability. The
interplay of streaming instability and vertical shear instability gives rise to stronger dust over-
densities than the streaming instability in isolation, despite the vertical shear instability in-
ducing larger dust scale heights than the streaming instability (see Sect. 4.5.1). This indicates
thata combination of streaming instability and vertical shear instability mightlead to planetes-
imal formation for dust-to-gas surface density ratios and dust sizes for which the streaming
instability alone does not (see Sect. 3.2).

4.4.2 CONVECTIVE OVERSTABILITY AND SUBCRITICAL BAROCLINIC INSTABILITY

The convective overstability and the subcritical baroclinic instability are related instabilities,
the former a linear one operating in the radial-vertical plane and the latter a non-linear one in
the radial-azimuthal plane (Klahr and Bodenheimer 2003; Klahr 2004; Petersen et al. 2007a,b;
Lesur and Papaloizou 2010; Klahr and Hubbard 2014; Lyra 2014; Latter 2016). While vertical
buoyancy can stabilise the vertical shear instability, these instabilities result from the destabil-
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Figure 4.6: Toy model of the convective overstability. A gas parcel with an initial pressure, temperature, and density of
Pinit, Tinit, and pg init €xecutes epicyclic motions in the radial-azimuthal plane. The temperature T" and density p, of the
ambient gas decline with increasing radius. During the first half of an epicycle, the parcel moves radially outwards through
colder gas. When returning to its initial radial location, it is cooler than initially (" < Tinit). Since its pressure is equal
to the initial value (P = Piyit), it it is thus denser (pg > pg init). Therefore, buoyancy accelerates the radially inwards
motion of the parcel in the second half of the epicycle. During this second half, the parcel is in contact with warmer gas.
After a full epicycle, itis thus hotter (I" > Tinis), but less dense than originally (pg < pg,init). The buoyancy force acting
on the parcel is now directed radially outwards and further amplifies its epicyclic motion. This results in instability.

r

ising effect of radial buoyancy in disks, or regions within disks, in which the entropy decreases
with increasing radial distance to the star. The convective overstability is triggered by epicyclic
oscillations (Klahr and Hubbard 2014; Lyra 2014; Latter 2016), which can be induced by linear
radial perturbations (see Sect. 4.4.1). In contrast, the subcritial baroclinic instability is caused
by vortices, i.e. non-linear perturbations (Petersen et al. 2007a,b; Lesur and Papaloizou 2010).
In three-dimensional simulations, the subcritical baroclinic instability is the saturated state of
the convective overstability as the vortices formed by the latter instability act as seeds for the
former (Lyra 2014).

ToY MODELAND RADIAL BUOYANCY Figure 4.6 depicts a toy model of the convective overstabil-
ity (Latter 2016; Lyra and Umurhan 2019). In this model, it is assumed that the gas temperature
and density decrease with increasing radius as well as that the cooling time scale is finite. The
initial pressure, temperature, and density of a gas parcel are denoted by Pi,it, Tinit, and pg init-
The first half of an epicyclic oscillation displaces the parcel radially outwards into colder gas.
After half an epicycle, it is thus cooler than initially (7" < Tipni¢). Since the parcel is located
at the same radius as initially, its pressure is equal to its initial pressure (P = P;), though.
Therefore, the parcel is denser than originally (pg > pg init). Thus, a buoyancy force that is
directed radially inwards acts on the parcel and amplifies its epicyclic motion. The second
half of this motion brings the parcel into contact with warmer gas. After a full epicycle it re-
turns to its initial radial but not azimuthal location. The pressure of the parcel is the same as
the initial pressure (P = Pjyit), but its temperature is higher (" > Tipi;) and its density thus
lower (pg < pg,init). The buoyancy force acting on it is now directed radially outwards and fur-
ther amplifies the epicyclic oscillation. Instability ensues.
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The toy model illustrates that the convective overstability is active only if the gas cooling
time is finite. Buoyancy would not amplify the epicyclic oscillations if the cooling time were
either infinitely short or infinitely long, that is to say the gas were locally isothermal or locally
adiabatic. In the former case, the gas parcel would be heated or cooled to the temperature of
the surrounding gas instantaneously, while in the latter case it would not be heated or cooled
at all. In either case, the temperature of the parcel would be the same as initially after half an
epicycle or a full one. The fact that the instability operates in the radial-vertical plane, not in
the radial-azimuthal one as in this model, can be explained by the amplified epicyclic motions
being axisymmetric (Lyra and Umurhan 2019). In addition, identical but oppositely directed
motions must be executed in vertically adjacent gas layers because of the conservation of mass.
A similar toy model can be constructed of the subcritical baroclinic instability (Lesur and Pap-
aloizou 2010; Lyra and Umurhan 2019).

The criterion for linear instability of differentially rotating gas with radial density and tem-
perature profiles can be expressed as

N? + k2 < 1. (4.19)

It is part of the more general Solberg-Hgiland criteria which further include vertical density
and temperature profiles (Tassoul 1978; Riidiger et al. 2002; Lyra and Umurhan 2019). Neglect-
ing the second addend on the left-hand side yields the Schwarzschild criterion in the radial
dimension, which is equivalent to the one in the vertical dimension discussed in Sect. 4.4.1.
Buoyancy acts destabilising and amplifies epicyclic motions in the case of the convective over-
stability as well as vortices in the case of the subcritical baroclinic instability if the square of
the Brunt-Viisila frequency

o__Ltoro, (P
N7 = pu O 01 In ] < 0. (4.20)

The second addend on the left-hand side of Eq. 4.19 reflects the stabilising effect of rotation,
with the epicyclic frequency being equal to the Keplerian orbital frequency in Keplerian disks.
In fact, if the gas is locally isothermal and the Brunt-Viisila frequency thus vanishes, Eq. 4.19
reduces to the Rayleigh criterion as introduced in Sect. 4.4.1 since x = 1/r3 di?/dr.

That is, the convective overstability — the stability criterion applies to the linear convective
overstability, but not necessarily to the non-linear subcritical baroclinic instability — both needs
to overcome the stabilising rotation and requires an imaginary Brunt-Vaisila frequency. The
former is possible owing to thermal relaxation (Klahr and Hubbard 2014; Lyra 2014) or thermal
diffusion (Lesur and Latter 2016) if the gas cooling time is finite. The growth rate of the instabil-
ity is largest if the cooling time scale is comparable to the dynamical timescale 1 /Qk (Klahr and
Hubbard 2014; Lyra 2014; Lesur and Latter 2016).

On the other hand, for the Brunt-Viisild frequency given in Eq. 4.20 to be imaginary, both
the pressure and the specific entropy s o< In(P/pg ) must decline with increasing radius. This
is true for the pressure in protoplanetary disks, but not generally for the entropy (see also Lyra
2014; Lyraand Umurhan 2019). To illustrate this, I assume that the radial density and temperat-
ure profiles can be expressed as power laws with the exponents p and ¢, respectively. Under this
assumption, the gradient of the specific entropy s o In(ps T is negative if (1 — )p + q is,
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too. In the model of the gas in protoplanetary disks presented in Appendix A, the exponent of
the temperature profile amounts to —1/2. This exponent is adopted from the minimum mass
solar nebula model devised by Hayashi (1981) and is similar to the mean exponent of —0.56
that Andrews and Williams (2005) obtain from an observational survey of more than a hun-
dred disks. Given this exponent and an adiabatic index of 7/5, i.e. gas that is neither locally
isothermal (y = 1) nor locally adiabatic (y = 5/3), the entropy gradient is negative only if the
exponent of the density profile is either close to zero or positive. In contrast, the global density
gradient in protoplanetary disks is negative. I note that the convective overstability has been
studied only in simulations of regions in disks on a local scale, not of disks on a global scale.

TURBULENT STRENGTH, DUST SCALE HEIGHT, AND INTERACTION WITH STREAMING INSTABILITY
The convective overstability gives rise to gas turbulence with a Mach number of 0.01-0.1 (Klahr
and Hubbard 2014; Lyra 2014). Lyra (2014) shows that this turbulent strength is largely inde-
pendent of the exponent of the radial temperature profile. However, it increases with the do-
main size of their simulations without converging. The turbulence driven by the subcritical
baroclinic instability is stronger, with its Mach number amounting to 0.1-0.4 if the cooling
time scale is comparable to the dynamical time scale (Lyra and Klahr 2011; Raettig et al. 2013).
This Mach number, similar to the one induced by the convective overstability, does not vary
noticeably with the steepness of the radial pressure gradient (Raettig et al. 2013). Nevertheless,
the turbulence is significantly weaker if the cooling time deviates from the dynamical time by
one or two orders of magnitude (Lyra and Klahr 2011; Raettig et al. 2013). I note that, from
the simulations performed by Raettig et al. (2013), it can be gathered that the Mach number
decreases by an order magnitude if the radial extent of the simulation domain is doubled.

Raettig et al. (2015) present simulations of the subcritical baroclinic instability including
dust. In Fig. 4.7, I show the vortices in the gas induced by the instability and the trapping of
dustin these vortices (see Sect. 3.5). In a simulation of dust with a Stokes number of one and an
initial dust-to-gas surface density ratio of 0.01, in which only the drag of the gas onto the dust
is included, ~1% of the dust accumulates in overdensities that exceed the gas surface density.
Raettig et al. (2015) find that a larger amount of dust is concentrated in the vortices if the drag
exerted by the dust on the gas is also taken into account and thus the streaming instability
is active. I note, however, that Raettig et al. (2015) simulate the radial-azimuthal plane, while
the streaming instability as discovered by Youdin and Goodman (2005) operates in the radial-
vertical plane. Nonetheless, overdensities comprise 84% or 56 % of the dust in a simulation
involving the mutual drag between gas and dust with an initial surface density ratio of 102
or 1074, respectively. While the former surface density ratio corresponds to the value in the
interstellar medium, the latter is two orders of magnitude lower. Dust with smaller Stokes
numbers of 0.01 and 0.05 is as well concentrated in vortices, although less strongly than the
dust with St = 1 if the drag of the dust onto the gas is not neglected. Nonetheless, gas vortices
can disperse if the dust (volume) density in them exceeds the gas (volume) density (Johansen
et al. 2004; Inaba and Barge 2006; Raettig et al. 2015). This is since, if the drag exerted by the
dust on the gas is stronger than the one by the gas onto the dust, the gas adjusts to the motion
of the dust instead of the dust following the vortical motion of the gas.
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Figure 4.7: Figure adapted from Raettig et al. (2015, their Fig. 3, reproduced with permission ©AAS). Vertical component
of the gas vorticity w = V X vg, which quantifies the tendency of the gas to rotate (left panel), and dust-to-gas surface
density ratio € (right panel) as functions of the radius x and the azimuth y. A simulation of dust with a Stokes number of
one, with an initial surface density ratio of 0.01, and including the mutual drag between gas and dust is depicted. In the
vortices caused by the subcritical baroclinic instability, the dust is concentrated strongly enough for the surface density
ratio to exceed one.

4.5 HYDRODYNAMIC INSTABILITIES INVOLVING DUST

Here, I discuss hydrodynamic instabilities which result from the mutual drag between gas and
dust in protoplanetary disks.

4.5.1 STREAMING INSTABILITY

The streaming instability is introduced in detail in Chapter 3. In its saturated state, the instabil-
ity gives rise to the gas turbulence depicted in Fig. 4.8. Small-scale perturbations can be seen
in and close to the disk mid-plane and large-scale perturbations away from it (Li et al. 2018,
SJB20). The latter are similar to the ones that the vertical shear instability induces in that their
vertical wavelength is much greater than their radial one.
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Figure 4.8: Figure adopted from S)Bzo. Mach number of the vertical gas velocity My . as a function of the radius r and
the height z in a simulation of the streaming instability. In and around the mid-plane, which is enlarged in the inlay, the
instability induces small-scale perturbations with a Mach number of ~0.01. The weaker large-scale perturbations away
from the mid-plane, like the perturbations caused by the vertical shear instability, are characterised by a large ratio of
vertical to radial wavelength.

In the mid-plane, the turbulence driven by the streaming instability is isotropic (Johansen
and Youdin 2007; S]B20). Like the linear growth rate of the instability (Youdin and Goodman
2005), the strength of the turbulence is higher if the radial dust drift is faster, that is to say if
either the Stokes number of the dust is closer to unity or the radial gradient in the gas pressure
is steeper (see Egs. 2.28 and 3.7; Carrera et al. 2015; SJB20). Nonetheless, the Mach number of
the vertical gas velocity saturates at a value of ~0.01 for a Stokes number of ~0.05 or a dimen-
sionless pressure gradient parameter, as introduced by Bai and Stone (2010b) and defined in
Eq.2.19, of ~0.1 (S]B20). If the Stokes number is reduced from 0.05 to 0.005, the Mach number
declines by an order of magnitude to ~0.001. In SJB20, we show that the turbulent strength
is independent of the dust-to-gas surface density ratio. However, Bai and Stone (2010b) find
that the vertical dust diffusion caused by the instability is strongest for a certain surface dens-
ity ratio which depends on the Stokes number.

Similar to the turbulent strength, the dust scale height induced by the streaming instabil-
ity increases with the strength of the radial pressure gradient and with the Stokes number
approaching one (Carrera et al. 2015; SJB20). Nevertheless, this dependence is comparably
weak. The scale height amounts to ~1% of the gas scale height for a wide range of pressure
gradient strengths and Stokes numbers between 0.001 and 1 (Yang and Johansen 2014; Carrera
et al. 2015; SJB20). If dust with a distribution of Stokes numbers is considered, the instability
is triggered by the dust with the largest Stokes numbers and the turbulent strength thus de-
pends on these Stokes number (Bai and Stone 2010b; Schaffer et al. 2018). Consequently, the
scale height of dust with the smaller Stokes numbers is greater than it would be if the dust with
the largest Stokes numbers were absent. The dust scale height is self-regulating if the stream-
ing instability is the dominant source of turbulence in the dust layer around the mid-plane in
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protoplanetary disks. If the dust settled to a scale height smaller than the equilibrium value,
the higher density of the dust layer would lead to the instability causing stronger turbulence
and vertical diffusion that would lift the dust up to the equilibrium scale height.

Chen and Lin (2020) and Umurhan et al. (2020) analytically investigate the effect of turbu-
lent viscosity and dust diffusion on the streaming instability. Both studies show that turbu-
lence reduces the linear growth rate of the instability, with the latter authors finding that the
growth rate is negligible if the turbulent a-parameter is similar to or greater than St!, or
equivalently M 2 St%75. I note that, since in these analyses turbulence is treated as a source
of viscosity, they can not cover local structures like pressure bumps or vortices that arise from
turbulence driven by a number of the instabilities introduced above. As detailed there and in
Sect. 3.5, dust accumulations in these structures can act as seeds for the streaming instability.
Furthermore, Gole et al. (submitted) show that the dust concentration caused by the stream-
ing instability is not strong enough for planetesimal formation to ensue in a simulation of dust
with a Stokes number of 0.3, a dust-to-gas surface density ratio of 2%, and driven isotropic tur-
bulence with a strength of « = 0.001 or M = 0.032. Nevertheless, in this one as well as studies
by Chen and Lin (2020) and Umurhan et al. (2020) only isotropic turbulence and dust diffusion
is considered. Yet, strong vertical diffusion does not inhibit dust accumulation owing to the
streaming instability if it is accompanied by only weak radial diffusion (Yang et al. 2018).

4.5.2 DUST SETTLING INSTABILITY

The dust settling instability belongs to the class of resonant drag instabilities discovered by
Squire and Hopkins (2018a; 2018b; see Sect. 3.1). While these authors find the instability to op-
erate if epicyclic gas motions in the radial-vertical plane are in resonance with both the vertical
settling of the dust and the radial dust drift, Zhuravlev (2019) show that it is active also in the
absence of radial drift. In contrast to that of the linear streaming instability (Krapp et al. 2019;
Zhu and Yang submitted), the growth rate of the linear dust settling instability depends only
weakly on whether dust with a uniform size or a size distribution is considered (Krapp et al.
2020). However, turbulent viscosity with an a-parameter of 104, corresponding to a Mach
number of 0.01, strongly suppresses the linear instability (Krapp et al. 2020; see also Squire
and Hopkins 2018b; Zhuravlev 2020). I note, though, that the same limitations apply to the
linear analysis of the effect of turbulent viscosity on the dust settling instability as in the case
the streaming instability (see Sect. 4.5.1).

The dust settling instability can only operate as long as dust is sedimenting. Nonetheless,
the growth rate of the linear instability is largely independent of the Stokes number of the
dust and comparable to the Keplerian orbital frequency (Squire and Hopkins 2018b). That is,
if dust with Stokes numbers less than one is considered, the growth rate is greater than the in-
verse of the settling time 1/74 et = {2k St (see Eq. 4.2). In addition, for small Stokes numbers
the dust settling instability grows faster than the streaming instability (Squire and Hopkins
2018b). This indicates that the dust settling instability, though only transiently, might induce
significant turbulence and dust concentration.

Krapp et al. (2020) present a comprehensive analytical and numerical study of the dust set-
tling instability. Since the radial drift of the dust is taken into account, both the dust settling
and the streaming instability are active in their simulations. Nevertheless, the dust concentra-
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tion in the simulations is not strong enough for the maximum dust density to exceed the gas
density noticeably before the dust has settled to the mid-plane. The Mach number of the gas
turbulence driven by the instability amounts to ~0.05 in both the radial and vertical dimen-
sion in simulations with a Stokes number of 0.01 and a dust-to-gas density ratio of 0.1. The
Mach number decreases to ~0.01 if a lower Stokes number of 0.001 but the same density ratio
or if a smaller density ratio of 0.01 but the same Stokes number are considered. Furthermore,
the Mach number is less by a factor of a few in a three-dimensional simulation than in the
corresponding two-dimensional simulation.

4.5.3 KELVIN-HELMHOLTZ INSTABILITY

Kelvin-Helmholtz instabilities are linear instabilities that arise from shear, i.e. a difference in
velocity, between adjacent gas layers. Here, I review the instability which is caused by the or-
bital speed of the gas being closer to Keplerian in the mid-plane of protoplanetary disks than
away from it owing to the presence of dust (Weidenschilling 1980; Weidenschilling and Cuzzi
1993). As explained in Sects. 2.4 and 3.1, if gas and dust were not coupled via drag, the orbital
velocity of the gas would be sub-Keplerian, while the dust would orbit with the Keplerian velo-
city. Generally in protoplanetary disks, and specifically away from the mid-plane, the ratio of
the dust to the gas density is less than one. The coupled gas and dust thus orbit with a speed
close to the sub-Keplerian one of the gas. However, in the layer around the mid-plane to which
the dust has settled the dust-to-gas density ratio is closer to unity. Therefore, the orbital speed
of gas and dust in the dust layer approaches the Keplerian speed. The shear between the gas
in vertically adjacent layers with different dust-to-gas density ratios gives rise to the Kelvin-
Helmholtz instability.

Instability can occur, although does not necessarily, when the dimensionless Richardson
number,

Q%{z Oprot /0%

prot (Ovg,¢/02)%

is less than a threshold value (Chandrasekhar 1961; Chiang 2008). The numerator reflects the
stabilising effect of vertical buoyancy, that is to say of the vertical stellar gravity and vertical
gradients in the gas and dust density, while the denominator expresses the strength of the
destabilising vertical shear. If the forces associated with differential rotation are neglected, the
threshold Richardson number amounts to 1/4 (Chandrasekhar 1961). Analytical and numerical
studies show that the threshold value in protoplanetary disks ranges between 0.1 and a few,
depending on whether the Coriolis force and the radial shear caused by differential rotation
are taken into account as well as on how tightly gas and dust are coupled (Sekiya 1998; Sekiya
and Ishitsu 2000; Gémez and Ostriker 2005; Johansen et al. 2006a; Chiang 2008; Barranco
2009; Gerbig et al. 2020).

The Kelvin-Helmholtz instability and the streaming instability operate under the same con-
ditions, but in different planes — the Kelvin-Helmholtz instability in the azimuthal-vertical
plane, although it is affected by radial shear, the streaming instability in the radial-vertical
plane (Johansen et al. 2006a). Nonetheless, three-dimensional simulations performed by Bai
and Stone (2010b) show that, if dust with a Stokes number of 0.01 or larger is present, the

Ri =

(4.21)
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Figure 4.9: Figure adopted from Johansen et al. (2006a, their Fig. 16, reproduced with permission ©AAS). Vertical gas ve-
locity u, expressed as a Mach number, as a function of the height z in units of gas scale heights H. Lines in different grey
tones represent simulations with varying Stokes numbers of the dust (2o 7¢, with the Stokes numbers being given in the
legend. In the mid-plane, the Mach number amounts to ~0.05, largely independently of the Stokes number. The Mach
number decreases towards the edges of the dust layer, which is located at greater heights if the Stokes number is smaller.

streaming instability dominates over the Kelvin-Helmholtz instability and regulates the dy-
namics in the dust layer. On the other hand, in contrast to the streaming instability, the Kelvin-
Helmholtz instability induces considerable dust concentration even if gas and dust are per-
fectly coupled, i.e. the dust stopping time is negligible and the Stokes number vanishes (Sekiya
1998; Youdin and Shu 2002; Chiang 2008). This concentration is strong enough for the dust
density to exceed the Roche density, that is it can lead to planetesimal formation, if the dust
surface density amounts to a few to a few ten percent of the gas surface density. That is, the
dust-to-gas surface density ratio is required to exceed the interstellar medium value of 1%.

Figure 4.9 shows the Mach number of the vertical gas motions driven by the Kelvin-Helm-
holtz instability in simulations conducted by Johansen et al. (2006a). It can be seen that the
Mach number does not vary significantly with the Stokes number of the dust, but declines
from ~0.05 in the mid-plane to zero at the edge of the dust layer. Asin the case of the streaming
instability, the dust scale height is set by the Kelvin-Helmholtz instability in a self-regulatory
manner. If the dust settled to a thinner layer, the difference in orbital speed between this and
the vertically adjacent layers would be stronger. Thus, the instability would cause stronger tur-
bulence which would elevate the dust to greater heights. As evident from Fig. 4.9 and theoretic-
ally expected (see Eq. 4.5), the scale height increases with decreasing Stokes number (Johansen
et al. 2006a). It amounts to ~0.3% of the gas scale height if dust with a Stokes number of 0.1
and a dust-to-gas surface density ratio of 0.01 are considered. Gerbig et al. (2020) find that the
dust scale height further depends on the surface density ratio. From ~1.5% of the gas scale
height for a surface density ratio of 0.02 and a Stokes number of 0.005, the dust scale height
decreases to ~0.5% in their simulations of either a lower surface density ratio of 2 x 10~ or
alarger ratio of 0.1.
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Table 4.1: Instabilities

Instability Radial gas velocity in mid-plane  Vertical gas velocity in mid-plane  Scale height of dust with St = 0.1

Gravita- Mg, = 0.1-1 (Riols et al. 2020b) M, , ~ 0.01 (Riols etal. 2020b)  Hg ~ 0.3 Hg(Riols et al. 2020b)

tional

Magneto- Mg, =0atr =1au(Bai2014) M,,=0atr =1au(Bai2014), Hgq = 0.04-0.2 H, (Xuetal.2017; Riols

rotational M, . ~0.0latr =5-60au (Bai and Lesur 2018; Yang et al. 2018; Riols
2015) etal. 2020a)

Vertical M, ~ 0.01-0.1 (S]B20) M, . =~ 0.01 (Flock et al. 2017), Hq =~ 0.1 Hg for Z = 0.02,

shear M, . ~ 0.1 (S]B20) Hy =~ 0.01 Hy for Z = 0.1 (S]B20)

Convective Mg, = 0.01-0.1 (Klahr and M, . = 0.01-0.1 (Klahr and -

overstability =~ Hubbard 2014; Lyra 2014) Hubbard 2014; Lyra 2014)

Subcritical Mg = 0.1-0.4 (Lyra and Klahr - -

baroclinic 2011; Raettig et al. 2013)

Streaming Mg, = 0.01 for St = 0.1 Mg . = 0.01for St = 0.1 H4 =~ 0.1 Hy (Yang and Johansen 2014;

Dust settling

Kelvin-
Helmbholtz

(Johansen and Youdin 2007;
S]B20)

Mg, = 0.01 for St = 0.01
(Krapp et al. 2020)

(Johansen and Youdin 2007;
S]B20)

M, . =~ 0.01 for St = 0.01
(Krapp et al. 2020)

M . = 0.05 (Johansen et al.
20063)

Carrera et al. 2015; SJB20)

Hy ~ 0.003 H, for Z = 0.01 (Johansen
et al. 2006a)
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CONTRIBUTION

In this study, we investigate the birth mass distribution of planetesimals that form owing to
the streaming instability, in particular its dependence on the domain size of numerical simu-
lations. To this end, we employed the Pencil Code' (Brandenburg and Dobler 2002) to conduct
local shearing box simulations (see Sect. 3.1) with larger domain sizes than in other studies of
the mass distribution.

To perform the simulations presented in the article, I adopted and modified a simulation
setup that was provided by Chao-Chin Yang. No noteworthy changes to the simulation code it-
self were necessary. Furthermore, I analysed the simulation data, wrote the article and created
the figures that can be found in it. Throughout the study, I was supervised by and consulted
with Chao-Chin Yang and Anders Johansen.

'http://pencil-code.nordita.org
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ABSTRACT

The streaming instability is a mechanism to concentrate solid particles into overdense filaments that undergo gravitational collapse and
form planetesimals. However, it remains unclear how the initial mass function of these planetesimals depends on the box dimensions
of numerical simulations. To resolve this, we perform simulations of planetesimal formation with the largest box dimensions to date,
allowing planetesimals to form simultaneously in multiple filaments that can only emerge within such large simulation boxes. In our
simulations, planetesimals with sizes between 80 km and several hundred kilometers form. We find that a power law with a rather
shallow exponential cutoff at the high-mass end represents the cumulative birth mass function better than an integrated power law. The
steepness of the exponential cutoff is largely independent of box dimensions and resolution, while the exponent of the power law is
not constrained at the resolutions we employ. Moreover, we find that the characteristic mass scale of the exponential cutoff correlates
with the mass budget in each filament. Together with previous studies of high-resolution simulations with small box domains, our
results therefore imply that the cumulative birth mass function of planetesimals is consistent with an exponentially tapered power law
with a power-law exponent of approximately —1.6 and a steepness of the exponential cutoff in the range of 0.3-0.4.

Key words. hydrodynamics — instabilities — methods: numerical — planets and satellites: formation — protoplanetary disks

1. Introduction

One of the greatest problems in the theory of planet formation is
to explain how millimeter- or centimeter-sized solid particles —
in the following referred to as pebbles — grow to kilometer-
sized planetesimals. Micron-sized dust grains can grow to
pebble sizes by coagulation, but larger particles bounce or frag-
ment under mutual collisions (Giittler et al. 2010; Zsom et al.
2010; Birnstiel et al. 2011). Growth might continue despite
this so-called bouncing barrier for very porous ice particles
(Wada et al. 2008, 2009) or by mass transfer in high-speed col-
lisions (Wurm et al. 2005; Windmark et al. 2012).

A fundamental problem of planetesimal formation is the time
constraint inflicted by the radial drift of solid particles, a prob-
lem that persists even under the assumption of perfect sticking.
The orbital velocity of the gas in a protoplanetary disk is sub-
Keplerian because the gas is supported against the gravity of the
central star by a radial pressure gradient. The gas exerts a drag
force on the particles in the disk, whose orbital speed would be
equal to the Keplerian speed if the gas was not present, causing
them to lose angular momentum and drift radially towards the
star. The drift velocity depends on the size of the particles, but is
in general highest for meter-sized particles in the inner regions of
the disk. A particle with a size of 1 m, initially orbiting at a dis-
tance of 1 au from the star, drifts towards the star and sublimates
in less than 100 years (Adachi et al. 1976; Weidenschilling 1977,
Brauer et al. 2007). Hence, there needs to be some mechanism
assisting the growth of pebbles into planetesimals, which are suf-
ficiently large for the effect of the drag force exerted on them by
the gas to be negligible, on a timescale shorter than the radial
drift timescale.

Article published by EDP Sciences

The streaming instability provides a mechanism to con-
centrate solid materials and form planetesimals despite the
poor sticking efficiency of the particles and their radial drift.
It was discovered analytically by Youdin & Goodman (2005)
and confirmed numerically by Youdin & Johansen (2007),
Johansen & Youdin (2007), and Bai & Stone (2010a). The radial
drift speed of solid particles decreases with increasing solid-to-
gas density ratio because of the drag force exerted by the par-
ticles on the gas. A locally enhanced solid-to-gas ratio causes
the local orbital velocity of the gas to be closer to Keplerian,
and thus a reduction of the local drift speed of the particles.
Hence, clusters of particles drift more slowly than isolated par-
ticles, and downstream clusters can accumulate upstream iso-
lated particles, further reducing the drift speed of the clusters.
Owing to this positive feedback loop, particles can be concen-
trated into filaments reaching maximum densities of up to sev-
eral thousand times the local gas density (Bai & Stone 2010a;
Johansen et al. 2012; Yang & Johansen 2014; Johansen et al.
2015), sufficient to undergo gravitational collapse and form
planetesimals (Johansen et al. 2007; Simon et al. 2016). For this
strong clustering of particles to occur, the solid-to-gas column
density ratio needs to exceed a critical value (Johansen et al.
2009b; Bai & Stone 2010b), which depends on the radial pres-
sure gradient supporting the gas (Bai & Stone 2010c) and the
particle size (Carrera et al. 2015; Yang et al. 2016).

Although several studies have shown that the streaming in-
stability can lead to the formation of planetesimals, their birth
mass distribution has not been comprehensively investigated.
However, the initial mass function of planetesimals is essential
for the study of the formation of planetary systems because it
determines the initial conditions for the evolution of the bodies
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that planetesimals evolve into, including planets, asteroids, and
Kuiper belt objects. The asteroids in the asteroid belt provide a
natural sample distribution that can be fitted with a broken power
law. Bottke et al. (2005) argue that the current size distribution
of asteroids larger than 120 km in diameter represents the birth
size distribution of the planetesimals that formed in the asteroid
belt (but have been strongly depleted by resonances with Jupiter,
independent of their sizes), while smaller asteroids are largely
fragments of collisions between the larger ones.

Both Johansen et al. (2015) and Simon et al. (2016) per-
formed numerical simulations of planetesimal formation by the
streaming instability and find that the differential distribution of
the planetesimal birth masses is well-fitted with a power law with
an exponent of about —1.6, albeit with the difference that, while
the former observe an exponential tapering of the power-law dis-
tribution that constitutes the physical upper mass cutoff, the lat-
ter do not include such a tapering in their fits. In this paper, we
compare power-law fits with and without exponential cutoff to
evaluate how well the high-mass end of the initial mass function
is described by an exponential cutoff.

Johansen et al. (2015) find the shape of the initial mass func-
tion to be relatively independent of the resolution of the simu-
lations and the solid particle column density. They show that a
higher resolution leads to the formation of planetesimals with a
wider range of sizes, between 30 km and 120 km in radius in
their simulation with the highest resolution because the size of
the smallest planetesimal declines with increasing resolution. On
the other hand, they observe the size of the largest planetesimal
to mainly depend on the particle column density, with smaller
column densities yielding smaller sizes. Simon et al. (2016) also
studied the dependence of the shape of the birth mass distribution
on the resolution of the simulations and obtain the same result.
They further find the shape of the distribution to be largely in-
dependent of the strength of the self-gravity and the simulation
time at which it is initiated, although the masses of the planetes-
imals are shifted to higher values with the increasing strength
of self-gravity. The planetesimals that formed in their simula-
tions typically range in radius from 50 km to a few hundred
kilometers.

It remains unclear if the planetesimal initial mass func-
tion depends on the dimensions of the simulation box. Both
Johansen et al. (2015) and Simon et al. (2016) employed only
one box size of 0.2 gas scale heights in the radial, azimuthal, and
vertical directions. However, Yang & Johansen (2014) find that,
while in the simulations with this box size, the solid particles are
concentrated by the streaming instability into only one axisym-
metric filament, multiple of these filaments form in simulations
with larger box dimensions. This raises the question of whether
the mass budget of planetesimal formation, and thus the shape
of the initial mass function, is different when not only one fila-
ment is observed. In this paper, we study simulations with three
different box sizes, the smallest of which is equal to that em-
ployed by Johansen et al. (2015) and Simon et al. (2016), while
the others are two and four times larger, respectively, in the radial
and azimuthal directions, which permits investigating planetesi-
mal formation in several filaments. Furthermore, in simulations
with larger box sizes, more planetesimals emerge, yielding bet-
ter statistics in particular for the determination of the initial mass
function.

The paper is structured as follows: in Sect. 2, the simulation
setup, i.e. the initial conditions and the parameters that govern
the evolution of the simulations are described. In Sect. 3, we
present our results regarding the formation of planetesimals by
the streaming instability and their radial migration. Further, we
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Table 1. Simulation specifications.

Name L, [Hy) X L, [Hy] X L, [H,]* Resolution [H;'] N, XN, x N,*
run_0.2_320 0.2x0.2x0.2 320 64 X 64 x 64
run_0.4_320 0.4x%x04x0.2 320 128 x 128 x 64
run_0.8_320 0.8 x0.8x0.2 320 256 x 256 x 64
run_0.2_640 0.2x0.2x0.2 640 128 x 128 x 128
run_0.4_640 0.4x%x0.4x0.2 640 256 x 256 x 128

Notes. “ Box dimensions in the x-, y-, and z-directions, where H, is the
gas scale height. ® Number of grid cells in the x-, y-, and z-directions.

comment on the issue of permitting the mutual accretion of sink
particles, which we use to model planetesimals. In Sect. 4, we
discuss whether the planetesimal birth mass distribution is expo-
nentially tapered and how its shape depends on the dimensions
of the simulation box as well as the resolution. We conclude in
Sect. 5.

2. Simulation setup

We conduct three-dimensional computer simulations with the
Pencil Code'!, a hybrid code for gas, for which the magne-
tohydrodynamic equations are solved on a fixed grid, with
Lagrangian particles representing solid bodies. The code em-
ploys sixth-order finite differences in space and third-order
Runge-Kutta steps in time.

We use the shearing box approximation (Goldreich &
Lynden-Bell 1965), i.e. we assume that the size of the sim-
ulation box is small compared to the distance to the central
star of the protoplanetary disk. Hence, the curvature of the
disk is neglected and the stellar gravity is linearized. The rect-
angular simulation box is aligned such that the x-, y-, and
z-directions correspond to the radial, azimuthal, and vertical di-
rections, respectively, and co-rotates with the Keplerian veloc-
ity at its origin. For both gas and particles, sheared periodic
boundary conditions are employed at the radial and azimuthal
boundaries and periodic boundary conditions at the verti-
cal boundaries (Hawley et al. 1995; Brandenburg et al. 1995;
Youdin & Johansen 2007; Johansen et al. 2009a).

In total, we perform five simulations with three different sim-
ulation box dimensions and two different resolutions, as listed in
Table 1. The two smaller boxes have a size of 0.2 and 0.4 gas
scale heights, respectively, in the radial and azimuthal directions
with a resolution of either 320 or 640 grid cells per scale height,
while the largest box has a radial and azimuthal size of 0.8 scale
heights with a resolution of 320 grid cells per scale height. All
simulation boxes have a vertical size of 0.2 scale heights. The
names of the simulations are composed of the radial and az-
imuthal dimension as the first number and the resolution as the
second number.

2.1. Gas

The simulation box is filled with an isothermal, non-magnetized
gas with an isothermal equation of state p, = cgpg, where p, and
pg are the pressure and density, respectively, and c is the (con-
stant) sound speed. While the gas density is initially constant in
the radial and azimuthal direction, it is stratified in the vertical
direction because we take into consideration the vertical grav-
ity of the central star, which causes both gas and solid particles
to sediment to the mid-plane at z = 0. This background density
stratification is determined by the equilibrium between vertical

' http://pencil-code.nordita.org/
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gravity and vertical pressure gradient, and is given by

22
0g(2) = pgoexp (——) (D

2H?
where H, = ¢;/Qx is the gas scale height, Qg = 27/Px the
Keplerian orbital frequency, and Px the Keplerian orbital period.
Here and in the following, the subscript zero refers to the mid-
plane. As formulated in Yang & Johansen (2014), we subtract
the background density stratification from the equations of the
motion for the gas to numerically balance this equilibrium state
down to machine precision.

Since the gas density is initially radially constant, there is
no radial pressure gradient to support the gas and cause it to
orbit with sub-Keplerian speed. Hence, a background pressure
gradient set by the dimensionless parameter

1 H, 91n
g 9In(Pe0) _ s,

" 2R 0l®)

where R is the orbital distance, is imposed. We refer to this pa-
rameter as IT adopting the notation by Bai & Stone (2010b). The
resulting sub-Keplerian orbital velocity of the gas is given by
vy = vg — Av, where vg = QR is the Keplerian orbital velocity
and Av = Il¢g = 0.05¢,, which is a representative value at orbital
distances of the order of 1 au in a typical protoplanetary disk
(Hayashi 1981; Bai & Stone 2010b; Bitsch et al. 2015).

©))

2.2. Particles

Two types of Lagrangian particles are employed in the sim-
ulations: super-particles and sink particles to model pebbles
and planetesimals, respectively. To achieve a good load bal-
ancing among the processors, we use the particle block do-
main decomposition algorithm implemented by Johansen et al.
(2011). For the calculation of the mutual drag forces between
the gas and the super-particles and the mutual gravitational
forces between the super-particles and the sink particles, we
apply the triangular shaped cloud scheme to map the particle
masses and velocities onto the grid, and similarly interpolate the
back-reaction drag forces and the self-gravitational forces onto
the particles (Hockney & Eastwood 1981; Youdin & Johansen
2007; Johansen et al. 2007).

The gravitational potential of the super-particles as well as
the sink particles is computed by solving Poisson’s equation us-
ing the fast Fourier transform algorithm (Gammie 2001), which
entails gravitational softening. The softening length is of the or-
der of the grid cell edge length. Even though the gravitational
potential of the particles is vertically periodic, the particles are
concentrated in a thin layer around the mid-plane such that their
dynamics are not affected by the periodic potential away from
the mid-plane.

We neglect the contribution of the gas to the gravitational
potential under the assumption that the gas component of the
protoplanetary disk is not in the gravitationally unstable regime.
Indeed, in our simulations the gas density deviates by at most 2%
from the mid-plane density p, o, the gas density perturbations are
thus very small compared to the super-particle densities in the
filaments when planetesimals form, which are of the order of the
Roche density (see below).

The sedimentation of the super-particles to the mid-plane
that is due to the vertical stellar gravity induces turbulence as a
result of either the streaming instability or the Kelvin-Helmholtz
instability, which are both caused by the mutual drag forces be-
tween the gas and the super-particles (Bai & Stone 2010b). This

turbulence stirs up the super-particles, and hence counteracts the
sedimentation. To give sedimentation and turbulence time to at-
tain an equilibrium, in our simulations self-gravity is not intro-
duced until t = 25 Pg. Its strength is then gradually increased
from zero over 10 Pk until it reaches its final value at r = 35 Pk
since initiating self-gravity instantaneously with full strength
could cause significant impulses on the particles. While we initi-
ate self-gravity at a simulation time at which the super-particles
have already formed filaments, Johansen et al. (2015) introduced
self-gravity with full strength at the start of their simulations and
observe qualitatively the same planetesimal birth mass distribu-
tion as we do.

We achieve this gradual initiation of the self-gravity by
substituting

0 t <25 Pk,
=143y (1—cos [ R]) 25 P <1 <35 Py, 3)
Y t>35 PK,
where the dimensionless self-gravity parameter
4rGpgo
= . 4
4 o “

and G is the gravitational constant, into the right-hand side
of Poisson’s equation. We choose G = P]‘(ng}), and thus
v = 1/m = 0.318. We note that Simon et al. (2016) find the shape
of the initial mass function of the planetesimals formed in their
simulations of the streaming instability to be relatively indepen-
dent of both the simulation time at which self-gravity is intro-
duced and the strength of the self-gravity. The Roche density

depends on the self-gravity parameter y and is given by

902 9
= 2K 2P0 983p,.

TGy ©

PR
Each super-particle represents a large number of equally sized
pebbles because it is computationally infeasible to simulate the
pebbles individually. While the mass of a super-particle is equal
to the total mass of the pebbles it models, its friction time is the
same as that of an individual constituent pebble.

The mass of the super-particles is determined by the initial
solid-to-gas column density ratio and their initial number. We set
the solid-to-gas ratio

2 init

7z = >t (6)
2g,inil

where X, i and

Zeinic = V2mHypg0 @)

are the initial column densities of the super-particles and the gas,
respectively, to Z = 0.02. This value corresponds to the criti-
cal solid-to-gas ratio necessary for strong clustering of pebbles
due to the streaming instability to occur (Johansen et al. 2009b;
Bai & Stone 2010b,c; Carrera et al. 2015), and is slightly higher
than the solar metallicity. The initial number of super-particles
is set equal to the total number of grid cells. The super-particles
are randomly distributed among the entire simulation box to seed
the streaming instability.

The Stokes number of the super-particles 7 = Qg#;, where
t¢ 1s the friction time, is set to 7+ = x/10 = 0.314, which,
at an orbital distance of 2.5 au in the Minimum Mass Solar
Nebula (MMSN), corresponds to a size of approximately 25 cm
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(Bai & Stone 2010b; Johansen et al. 2015). While we employ
only one fixed particle size, Bai & Stone (2010b) performed sim-
ulations with particles of a range of sizes. They find that the
particle-gas dynamics are dominated by the most massive par-
ticles, and that the critical solid-to-gas ratio required for strong
particle clustering owing to the streaming instability is deter-
mined by the total mass of all particles.

After self-gravity has attained its full strength at ¢ = 35 Pk,
every super-particle comprised in a cluster whose super-particle
density p, exceeds a threshold value ppes is replaced by a
sink particle. This sink particle creation threshold is set to
Pp.ires = 200 pg 0, i.€. about seven times the Roche density (see
Eq. (5)). We note that Johansen et al. (2015) compared simula-
tions similar to ours with three different threshold values and
find the masses of the sink particles emerging in their simula-
tions to be largely independent of the threshold above a value of
five times the Roche density.

The simulation time at which the formation of sink particles
is introduced is arbitrary since both the gravitationally bound
super-particle clusters that exist beforehand and the sink parti-
cles that emerge from them afterwards represent planetesimals.
Owing to the limited resolution of the gravitational forces the
behavior of many super-particles inside one grid cell is compa-
rable to that of a few sink particles. Nevertheless, the computa-
tional expense of the simulations is lowered substantially by the
introduction of sink particles.

Super-particles within the accretion radius of a sink parti-
cle, which is set equal to one grid cell edge length, are ac-
creted by it, i.e. the super-particle mass and momentum are
added to the sink particle mass and momentum, respectively, and
the super-particle is removed. This accretion, however, might
in parts be artificial because the physical accretion radius, i.e.
the Bondi radius for pebble accretion (Ormel & Klahr 2010;
Lambrechts & Johansen 2012), could be smaller than the sim-
ulated accretion radius, especially in the case of less massive
sink particles. On the other hand, since the mutual gravitational
forces between the super-particles and the sink particles within
one grid cell can only be computed inaccurately, the chosen ac-
cretion radius corresponds to the highest accuracy our numerical
simulations can offer.

We further permit sink particles to accrete one another. This
accretion is handled analogously to the super-particle accretion,
and might as well be partially artificial. Nevertheless, it is re-
quired because in a super-particle cluster exceeding the sink par-
ticle creation threshold, all super-particles are replaced by sink
particles. That is, the gravitational collapse of a super-particle
cluster results in the creation of a cluster of sink particles, of
which only one should persist to represent one new-born plan-
etesimal. See Sect. 3.2 for further discussion of this topic.

2.3. Units and scaling relations

We report our results using the Keplerian orbital period at the
origin of the simulation box Pk, the gas scale height H,, and the
mid-plane gas density p,o as the units of time, length, and den-
sity, respectively. We note that a shearing box freely scales with
these units until self-gravity is initiated at # = 25 Pk. Afterwards,

_ Y% my
4nG ~ GPX

Pg0 ®)

(see Eq. (4)), and hence the unit of mass [M] = ngg,() =
ny G~ HgP]‘(z.
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In the following, relations for the scaling of relevant quanti-
ties and units with the orbital distance R, the temperature 7', and
the mass of the central star Mg are given. A mean atomic weight
of 4 = 2.33 is used and the scaling relations for ps o and [M] are
calculated applying those for Px and H,:

R 3/2 MS -1/2
Py =4,
k=40 (2.5 au) (1M@) . ©)
R -3/2 My 1/2 B
Q=16 (2.5 au) (1 M@) . (10)
T 1/2
cs = 0.80 (m) kms™! (11)
R 3/2 T 1/2 MS -1/2
H, = 0.1 (2.5 au) (180 K) (1 M@) a (12)
R \2( M
= 9.4% 10710 (l)( ) s -3 13
Pe0 = 24X 1) 5an) \Ta5) 8™ (13)
R 3/2 T 3/2
m=a2x10" (L) (350 (550%)
[M] A=) G5 0k
Me \712
x(l 1\; ) g (14)
0]

Hereafter, we use the above scaling relations, the properties of
the asteroid belt, i.e. an orbital distance of R = 2.5 au, a tem-
perature of 7 = 180 K, and a stellar mass of Mg =1 M, and
the chosen strength of the self-gravity y = 1/x to convert simu-
lation units into physical units. For example, the mid-plane gas
density pgo = 9.4 x 1071% g cm™3, which is almost one order of
magnitude greater than the corresponding value in the MMSN,
Pgo = 1.1 X 1071% g cm™ (Hayashi 1981; Bai & Stone 2010b).
The streaming instability has been shown to form planetesi-
mals for pebble column densities similar to that in the MMSN
(Johansen et al. 2015). Nevertheless, we choose this comparably
high gas density and thus high solid density to promote planetes-
imal formation, enabling us to better constrain the initial mass
function of planetesimals.

3. Evolution of the simulations

Apart from the use of self-gravity and sink particles to model
planetesimals, our simulation setup is identical with that applied
by Yang & Johansen (2014). Hence, we find our simulations to
be consistent with their simulations until ¢ = 25 Px, when self-
gravity is introduced (compare the evolution of the pebble den-
sity in the simulation time span 20 Px <t < 25 Px shown in
Fig. 1 with their Fig. 3). We thus only report on the evolution
of our simulations between t = 25 Pk and the end of the simula-
tions, t = 40 Pg.

3.1. Planetesimal formation and migration

If self-gravity is not taken into account the streaming instabil-
ity concentrates pebbles into axisymmetric filaments that are
elongated in the azimuthal direction (Johansen & Youdin 2007,
Johansen et al. 2009b; Bai & Stone 2010b; Yang & Johansen
2014). In Figs. 1 and 2, we show how self-gravity causes these
filaments to fragment into pebble clusters that undergo gravi-
tational collapse and form planetesimals. In the first 5 Px after
self-gravity has been initiated, the filaments begin to disperse be-
cause the pebbles accumulate into clusters owing to their mutual
gravitational attraction (upper panels of Fig. 2). At t = 35 Pk,
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Fig. 1. Pebble column density X, integrated over the vertical dimension
and averaged over the azimuthal dimension of the simulation box, as a
function of radial location x and simulation time ¢ for the simulation
with the largest box size, run_0.8_320. Locations at which sink parti-
cles emerge are indicated with white dots. Though every pebble cluster
forms in one of the filaments, they migrate up to the distance to one of
the adjacent filaments. All sink particles emerge as soon as their forma-
tion is initiated at # = 35 Pk, and they emerge nearly evenly distributed
among the entire radial extent of the box owing to the radial migration
of the pebble clusters.

when the self-gravity reaches its full strength, these clusters con-
tain most pebbles available in the simulation, and the filaments
are no longer observable (lower left panel).

At this point, we commence the formation of sink parti-
cles. Almost all pebble clusters exceed the sink particle creation
threshold, consequently the pebbles in each of these clusters are
replaced by sink particles which merge into one massive sink
particle that represents the gravitationally collapsed cluster. At
t = 35.1 Pk, this sink particle merging process is for the most
part completed (lower right panel). However, a few low-mass
pebble clusters do not turn into sink particles. All sink particles
emerge instantly at ¢t = 35 Pg, as can be seen from Fig. 1, but a
couple of clusters remain at r = 35.1 Px (three such clusters can
be spotted in the lower right panel of Fig. 2). Although they are
not sufficiently dense to exceed the sink particle creation thresh-
old, these clusters probably represent gravitationally bound plan-
etesimals with low masses.

We observe that the planetesimals on average move through
more than half of the radial extent of the simulation boxes.
Figure 1 shows that each pebble cluster forms in one of the fila-
ments, but that they migrate in the radial direction, some of them
only marginally, others the entire distance to one of the adjacent
filaments. As a result, the sink particles emerge almost evenly
distributed among the whole radial dimension of the box. From
Fig. 3, it can be seen that the sink particles continue this radial
migration, they on average pass through over half of, a few of
them even through the whole radial extent of the box. The mean
standard deviation of the radial displacement of the sink parti-
cles from the locations at which they emerge, averaged over and
weighted by the lifetime of every sink particle and then averaged
over all sink particles in a simulation, amounts to between 26%
and 36% of the radial box size in each of the five simulations.
We note that the extent of the migration in the radial direction in-
creases with the box size without converging for the box sizes we
consider. The radial motions result from the mutual gravitational

scattering of sink particles that closely pass by each other. It re-
mains to be investigated whether planetesimals are composed of
not only pebbles from the filament they form in, but also of an
appreciable amount of pebbles from filaments they migrate to.

3.2. Mutual sink particle accretion

For the sink particles to realistically represent new-born plan-
etesimals, only one of them should be allowed to form from ev-
ery pebble cluster that undergoes gravitational collapse. How-
ever, this requires a precise determination of the extent of each
cluster, which entails several issues, for instance the treatment of
overlapping clusters. Therefore, we replace every super-particle
that is part of a cluster that exceeds the sink particle creation
threshold by a sink particle and allow the sink particles to ac-
crete one another until only one of them remains. We observe
that in our five simulations, on average 81% of all accreted sink
particles are accreted within 0.1 Pk after their formation, i.e.
until # = 35.1 Pk, because in all simulations all sink particles
emerge togather at t = 35 Pg. Therefore, the merging process of
sink particles that emerged from the same pebble cluster is prob-
ably largely completed at this point (see the lower right panel of
Fig. 2), and most of the mutual sink particle accretions are a part
of this process.

On the other hand, we note that the merging of sink particles
afterwards may be artificial. The accuracy of the calculation of
the gravitational forces between sink particles is limited by the
resolution, hence we cannot determine whether two sink parti-
cles that encounter one another inside a grid cell collide or pass
by each other. Nevertheless, we find the latter to be more prob-
able. Taking into account gravitational focusing, the maximum
impact parameter leading to a collision of two sink particles

2
bmax = \/(rl +r2)2+ G(ml *

where m; are the masses of the two sink particles, r; their
radii, which are calculated from m; using a solid body density
of 3 g cm™, and Av is their relative velocity (see, e.g., Armitage
2007). The mean maximum impact parameter (b, ), averaged
over all mutual sink particle accretions in all five simulations
where the lifetime of the accreted sink particle is greater than
0.1 Pk and weighted by the lifetimes of the accreted sink parti-
cles, amounts to only 3.5% of the grid cell edge length. Mutual
accretions of three or more sink particles at the same simulation
time are not included in this statistic because we cannot infer
their outcome. We note, though, that the sink particle data are not
written out after each simulation time step, but every 0.01 Px.
Thus, we can only imprecisely determine the simulation time at
which a sink particle merging occurs and the maximum impact
parameter for this encounter.

my)(ry +12)
Av? ’

15)

4. Initial mass function
4.1. Best-fitting parameters

We fit the cumulative mass distribution of the sink particles that
emerge in our simulations using two functional forms: an inte-
grated power law and a power law with an exponential cutoff.
We choose to fit the cumulative mass distributions because, in
particular for small numbers of sink particles, they are less af-
fected by noise than the differential mass distributions and can
thus be fitted more accurately.
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Fig. 2. Pebble column density X, integrated over the vertical dimension of the simulation box, as a function of radial location x and azimuthal
location y at four different simulation times ¢ = 25 P (top left panel), t = 30 Px (top right panel), t = 35 Px (bottom left panel), and t = 35.1 P
(bottom right panel) for the simulation with the largest box size, run_0.8_320. In the lower right panel, sink particles are plotted as white dots
and three pebble clusters are indicated using white circles. After self-gravity has been initiated at t = 25 P, the pebbles aggregate into clusters
and the axisymmetric filaments disperse (upper panels). When the self-gravity attains its full strength at = 35 Pk, most pebbles are concentrated
in clusters and the filaments are no longer visible (lower left panel). At this point, we introduce the formation of sink particles, and the pebbles
comprised in all but the three encircled clusters are replaced by sink particles. The sink particles emerging from the same pebble cluster undergo
a merging process until only one of them remains. This process is largely completed at r = 35.1 Px (lower right panel).

The integrated power law can be expressed as

No(M) _ 1 (Mmax)“" (M )‘
Niot l-a Mpow Mpow ’

where N, is the number of sink particles with masses greater
than M, Ny is their total number and M,,,x their maximum mass,
and M, and « are fitting parameters. Since the formation of
planetesimals by the streaming instability is a stochastic process
and the actual My,,x in a simulation might differ significantly
from the M.« of the ensemble-averaged mass distribution of the
sink particles for this model, we treat M, as a fitting parameter.

(16)
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The exponentially tapered power law is given by

N-(M) :( M )" exp[_( M )”}
Ntol Mpow Mexp ’

where M., and g are fitting parameters. The condition
N> (Muin)/Neot = 1, where My, is the minimum sink particle
mass, can be used to eliminate one of the fitting parameters in
Eq. (17). We choose to eliminate the characteristic mass of the
power-law part, My, which is then given by

1 Muin Y
Mpow = Mmin €Xp [E (M_mm) }
exp

a7

(18)
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Fig. 3. Radial locations x of sink particles which are not accreted before
t = 36 Py, color-coded according to the locations at which they emerge,
as functions of the simulation time # for the simulation with the largest
box size, run_0.8_320. On average, the motions of the sink particles
span more than half of the radial extent of the simulation box, a couple
of them even migrate through the entire radial dimension of the box.

Substituting Eq. (18) into (17) yields

) el |
= exp — .
Niot Min Mexp Mexp
We use Eq. (19) to fit the sink particle data because we find
the resulting fits to be better than the ones we obtain applying
Eq. (17). For the same reason as My, in Eq. (16), My, is treated
as a fitting parameter.

To investigate the dependence of the shape of the initial mass
function on the resolution and particularly the dimensions of the
simulation box, we determine an individual initial mass func-
tion for every simulation. At first, we employ the least-squares
method to fit Egs. (16) and (19) to the sink particle data at each
Keplerian orbital period between ¢ = 36 Px and the end of the
simulations, r = 40 Pk. In all five simulations, all sink particles
emerge at once at the simulation time at which their formation is
initiated, t = 35 Pk, but we begin the fitting at t = 36 Px to give
the sink particles that emerge from the same pebble cluster time
to merge into one. Averaged over this period, we then calculate
mean values of the fitting parameters that do not vary signifi-
cantly with time and are thus probably relatively unaffected by
artificial sink particle merging.

In the left panel and the right panel of Fig. 4 we show the sink
particle mass distributions as well as the fitted integrated power
laws and power laws with exponential tapering for the two sim-
ulations with the largest numbers of sink particles, the one with
the largest box size, run_0.8_320, and the one with the middle
box size and the higher resolution, run_0.4_640, respectively, at
t = 40 Pg. In the legends for both fits, the standard deviation o
of the actual N, (M)/Ny for the sink particle masses M from the
fitted N».(M) /Ny is given.

We find that the exponential tapered power laws fit the mass
distributions better than the integrated power laws. The standard
deviations for the power-law fits without exponential cutoff are
larger, not only at = 40 Px as shown in the figure, but also at
other simulation times. We further note that the shallower expo-
nential cutoff represents the high-mass end of the distributions
better than the steeper cutoff of the integrated power law, and that
the exponential tapering better reproduces the smooth change of
the slope of the distributions. Hence, we limit our further analy-
sis to the power-law fits with exponential cutoff.

19)

4.2. Power-law fits with and without exponential tapering

In Fig. 5 the best-fitting parameters Mpin, @, Meyp, and B in
Eq. (19) are shown for t = 36 Px to t = 40 Px for all of our
simulations. In the case of the simulation with the smallest box
dimensions and the lower resolution, run_0.2_320, the small
number of sink particles persisting after # = 36 P does not per-
mit to properly fit a power law and an exponential cutoff. The
parameters @, M.y, and § are approximately constant in time
for all simulations apart from M.y, for the simulation with the
middle box dimensions and the lower resolution, run_0.4_320,
which seems to converge to an upper limit. In Table 2, we list
mean values of these three parameters, averaged over the simu-
lation time span from ¢ = 36 Pg to t = 40 Pk.

Similar to Mex, for run_0.4_320, the fitted minimum mass
My increases with time for the simulation with the largest box
size, run_0.8_320, and the one with the middle box size and the
higher resolution, run_0.4_640, but appears to saturate at an up-
per limit. The increase of My, and M, is likely due to both
pebble accretion by the sink particles — as less and less peb-
bles remain towards the end of the simulations (see Fig. 1), both
masses converge to an upper limit — and possibly artificial merg-
ing of sink particles. In contrast to this, for run_0.4_320 and
the simulation with the smallest box dimensions and the higher
resolution, run_0.2_640, M, is roughly constant. To provide a
comparable value for each simulation despite these differences in
the time dependence, in Table 2 we list the best-fitting values at
t = 40 Py for all simulations (except for run_0.2_320, for which
only the value at r = 36 Py is available). A comparison of these
values shows that My, declines with both increasing box di-
mensions and increasing resolution if the value for run_0.2_320
is disregarded.

The best-fitting values of the exponent of the power-law
component « for all simulations vanish. This is because a lower
limit for the sizes of the pebble clusters, and thus the sink par-
ticle masses, is set by the resolution, which even in the case
of the higher resolution is too large for low-mass sink parti-
cles that would constitute the power-law part to emerge. Both
Johansen et al. (2015) and Simon et al. (2016) fit the differential
mass distribution with a power-law exponent of about —1.6, cor-
responding to @ = 0.6. Since the higher resolution we employ,
640 H, !, is the lowest one that is considered in these papers,
to properly study the power-law distribution higher resolutions
than 640 H, ! seem to be required.

We find the mass scale of the exponential cutoff M, to
correlate with the mass budget in every filament. The param-
eter My, should increase with the distance between the fila-
ments because, if the distance is larger, more pebbles can be ac-
creted by the planetesimals forming in each filament. In Col. 6
of Table 2, the numbers of filaments N; we observe in our simu-
lations are listed. One, three, and four filaments form in the sim-
ulation boxes with radial and azimuthal dimensions of 0.2 H,,
0.4 H,, and 0.8 Hg, respectively. Therefore, the mass reservoir
of pebbles in each filament is similar for the smallest and the
largest box sizes, but smaller for the middle box sizes. We in-
deed see that the mean values of M.y, for run_0.2_320 and
run_0.8_320 are similar, but larger than the one for run_0.4_320.
Likewise, the mean value for run_0.2_640 is greater than that for
run_0.4_640. Even though the mean values for the two simula-
tions with the middle box size differ by more than one standard
deviation, we note that the best-fitting values for run_0.4_320
increase with time with a range enclosing the mean value for
run_0.4_640. Hence, we find M.y, to be largely independent of
the resolution.
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Fig. 4. Cumulative mass distributions of sink particles (black crosses) and fitted integrated power laws (Eq. (16), green lines) and power laws with
exponential cutoff (Eq. (19), red lines) at t = 40 Px for the two simulations with the largest numbers of sink particles: the one with the largest box
dimensions, run_0.8_320, (left panel) and the one with the middle box dimensions and the higher resolution, run_0.4_640 (right panel). Standard
deviations of the actual N. /N, (black crosses) from the fitted N. /N, are given in the legends. The standard deviations for the integrated power
laws are up to twice as large as those for the exponentially tapered power laws. In addition, it can be seen that the shallower exponential cutofts fit
the actual cutoffs more accurately than the steeper cutoffs of the integrated power laws and better replicate the smooth change of the slope of the
mass distributions. We thus find the power laws with exponential tapering to represent the mass distributions better than the integrated power laws.

Table 2. Best-fitting parameters.

Table 3. Sink particle statistics.

Name Muin [G™ HIPP1" (@) (Mexp) [G™' HIPPT ®)" Ni©
run_0.2_320  (1.9+3.8)x 107 0.0002 +0.0097 (1.85+0.32) x 107*  0.324 +0.025 1
run_0.4_320  (1.9+0.3)x 10 0.0057 +£0.0094 (231 £0.14)x 10>  0.284+0.004 3
run_0.8_320  (1.5£0.2)x 107> 0.0045£0.0022 (1.32+0.02) x 107*  0.375+0.003 4
run_0.2_640 (47 +2.8)x 107%  0.0147 £0.0085 (5.05+0.41)x 10™  0.294 + 0.007 1
run_0.4_640  (12£0.1)x10°°  0.0097 £0.0011 (1.82+0.02) x 10 0.352+0.002 3

Notes. Listed errors are standard errors. @ Best-fitting values at
t = 36 Px in the case of run_0.2_320 and at t = 40 P in the case of the
other simulations. ®> Mean values, averaged over 36 Px <t <40 Pg.
© Number of filaments.

With the mean values of the exponent of the exponential
cutoff B ranging from 0.28 to 0.38, the exponential cutoff is
rather smooth. Johansen et al. (2015) fit their data by eye using
B =4/3, which is a significantly steeper cutoff, but this steep
cutoff might be an artefact of the small box size they employed,
in which only a few massive planetesimals formed. The best-
fitting values for the two simulations with the largest num-
ber of sink particles, run_0.8_320 and run_0.4_640, are nearly
equal, but somewhat greater than the values for run_0.4_320 and
run_0.2_640, which are also roughly equal. This indicates that
only in the former two simulations enough sink particles emerge
to completely capture the high-mass end of the mass distribu-
tion. However, the mean values for all simulations lie in a rather
small range of 0.1, hence we find S to be relatively independent
of the box size and the resolution.

Substituting the best-fitting parameters listed in Table 2 into
the cumulative (Eq. (19)) or the differential mass distribution,
dN 1

~ MV M\
i~ M ”‘””(Mexp) (Mpow)
Mminﬁ M s

Xexp - )
(5] (i)

yields an initial mass function for each simulation. The cumu-
lative mass distribution can be converted to a cumulative size

(20)
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Name Not  Muin [GT' HIP?]  Muax [G™' HIPZ] (M) (G HiPP]

run_0.2_320 4 5.9%x 107 1.6x 1073 48x 1074
run_0.4_320 15 7.8% 107 43%x1073 49x 1074
run_0.8_320 42 83x107° 9.3x 1073 6.9x 1074
run_0.2_640 7 1.0x 1072 1.5x 1073 2.6x 1074
run_0.4_640 62 1.9%x 1070 22x1073 12x107*
distribution,
—3a 38 38
N> (R) _( R ) exp (Rmin) ( R ) 21
- P - s
N, tot Rmin Rexp Rexp

where R is the radius of every sink particle and the minimum
radius Ry, and the radius scale of the exponential tapering Rep
can be calculated from My, and Mey,, respectively, using a solid
density of 3 g cm™.

In Table 3, we list the number Ny, minimum mass My,
maximum mass Mpnax, and mean mass (M) of the sink particles
at the end of our five simulations, ¢ = 40 Pk. In the case of the
two simulations with the smallest box dimensions, we observe
less than ten sink particles, and the best-fitting parameters for
these simulations are therefore afflicted with comparably large
errors (see Fig. 5). We find the actual M,;, and (M) to be of the
order of the fitted My, and Meyp, respectively (compare with
Cols. 2 and 4 of Table 2). For run_0.8_320 and run_0.4_640,
the 10% of the sink particles which are most massive contain
66% and 70%, respectively, of the total sink particle mass. That
is, in our simulations the most massive sink particles dominate
the total mass.

As stated above, a higher resolution enables us to observe
the formation of smaller pebble clusters, and thus less massive
sink particles. Hence, Ny increases and both M, and (M) de-
cline with increasing resolution. Like Johansen et al. (2015) and
Simon et al. (2016), we find the maximum mass M, to be rel-
atively independent of the resolution.

We expect the number of planetesimals to increase with the
number of filaments, and thus with the radial box dimension,
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Fig. 5. Best-fitting parameters My, (upper left panel), a (upper right panel), My, (lower left panel), and 8 (lower right panel) of the exponentially
tapered power law (Eq. (19)) at every Keplerian orbital period between # = 36 Pk and t = 40 P for all five simulations. Standard errors are plotted
as error bars. In the case of the simulation with the smallest box size and the lower resolution, run_0.2_320, only parameter values for = 36 Px
are plotted because afterwards only four sink particles persist, which prevents us from properly fitting the mass distributions with a power law and

an exponential tapering.

and with the length of the filaments, i.e. the azimuthal box di-
mension. Analogously to the mass scale of the exponential cut-
off Meyxp, as discussed above, we further expect (M) to increase
with the distance between the filaments. Our findings are con-
sistent with these expectations, with the exception of (M) for
run_0.2_320. One and three filaments form in run_0.2_320 and
run_0.4_320, respectively (see Col. 6 of Table 2), therefore the
value for the former simulation should be greater than the one for
the latter simulation, yet it is slightly smaller. This shows that, at
least at the lower resolution, the smallest boxes, in which only
one filament forms, might be too small to accurately capture the
mass budget of each filament.

Furthermore, My, and M, in general increase with the
box dimensions, but we find M, to considerably decrease if
the box size is increased from 0.2 H, to 0.4 H, in the radial and
azimuthal directions. This also indicates that the smallest box di-
mensions might not capture the sink particle mass distribution as
well as the larger boxes. However, it may also be a stochastic ef-
fect because, especially for a small number of sink particles, the
ensemble-averaged values of My, and M ,,x might differ signif-
icantly from the actual values.

5. Summary and discussion

We have investigated the formation of planetesimals by the
streaming instability in numerical simulations with three differ-
ent box sizes and two different resolutions. In particular, we have

studied the initial mass function of these planetesimals, employ-
ing the largest box dimensions to date with radial and azimuthal
sizes of up to 0.8 gas scale heights. These large box sizes have
enabled us to study planetesimal formation in multiple axisym-
metric filaments formed by the streaming instability and to yield
better statistics because more planetesimals emerge in simula-
tions with larger box sizes.

In the absence of self-gravity, the streaming instability con-
centrates pebbles into axisymmetric filaments. After self-gravity
has been introduced, these filaments disperse within about ten
Keplerian orbital periods because the pebbles accumulate into
clusters that undergo gravitational collapse and form planetesi-
mals. We have observed that, after their formation, the planetes-
imals on average migrate through more than half of the radial
dimension of the simulation box owing to mutual gravitational
scattering. The extent of the radial migration does not converge
for the box sizes we have taken into consideration. Further stud-
ies could provide insights regarding the implications of the mi-
gration through multiple filaments for the dependence of the
composition of planetesimals on the orbital distance.

The radii of the planetesimals formed in our simulations,
which depend on the strength of the self-gravity and thus on
the solid particle column density, range from 80 km to 620 km.
We have compared power-law fits to their cumulative mass dis-
tribution with and without exponential tapering and have found
that a rather shallow exponential cutoff fits the distribution better
than the steeper cutoff of an integrated power law. Johansen et al.

A69, page 9 of 10



A&A 597, A69 (2017)

(2015) also find the initial mass function to be represented best
by an exponentially tapered power law, although they studied
planetesimals that are smaller than the ones formed in our simu-
lations. In their simulation with the highest resolution, the plan-
etesimal radii amount to between 30 km and 120 km. In contrast
to this, Simon et al. (2016) find that a power law without ex-
ponential tapering is suitable to fit the birth mass distribution
of planetesimals with radii between 50 km and a few hundred
kilometers.

We have found a value of the exponent of the exponen-
tial cutoff of about 0.3 to 0.4, which is largely invariant un-
der changes in the box size and the resolution, but considerably
smaller than the value of 4/3 that Johansen et al. (2015) deter-
mine, which is based on a much smaller number of massive plan-
etesimals that formed in a small simulation domain. However,
the resolutions we have considered are insufficient to constrain
the shape of the power-law part and to investigate its dependence
on the box dimensions because the planetesimals that formed in
our simulations are too large to constitute a power-law distribu-
tion at the low-mass end of the initial mass function.

Both the characteristic mass of the exponential cutoff and
the mean mass of the planetesimals correlate with the pebble
mass budget in every filament. In this regard, we have found
indications that a simulation box with a size of 0.2 gas scale
heights in the radial, azimuthal, and vertical directions, in which
only one filament emerges, may be too small to properly cap-
ture the mass reservoir. This is consistent with the observation
by Yang & Johansen (2014) that box dimensions of 0.2 scale
heights in the radial and azimuthal directions are too small to
capture all scales relevant for the streaming instability, and is fur-
ther supported by Li et al. (in prep.) finding that the density dis-
tribution function of solid particles is consistent only for boxes
with radial and azimuthal sizes of at least 0.4 scale heights.

The current size distribution of the asteroids in the aster-
oid belt with diameters between 120 km and several hundred
kilometers, corresponding to the sizes of the planetesimals that
emerge in our simulations, is well-fitted with a power law. This
power law, which Bottke et al. (2005) argue represents the pri-
mordial asteroid size distribution, is in contrast to the exponen-
tial cutoff we (and Johansen et al. 2015) find. Subsequent pebble
accretion therefore appears to be necessary to convert the expo-
nential tapering of the birth size distribution into the power law
observed in the asteroid belt (Johansen et al. 2015).

It is interesting to compare the initial mass function of plan-
etesimals to the classical concept of an initial mass function of
stars. The formation of stars is comparable to the formation of
planetesimals by the streaming instability insofar as both stars
and planetesimals form by gravitational collapse, the former
from molecular cloud cores, and the latter from pebble clusters.
The differential mass distribution of stars with masses greater
than about 1 Mg, is given by a power law with an exponent of ap-
proximately —2.3 (Salpeter 1955; Massey 1998; Chabrier 2003).
That is, the total stellar mass is dominated by the least massive
stars, in contrast to the total mass of the planetesimals we have
observed in our simulations, which is dominated by the most
massive ones. It has been argued that there is a physical upper
mass cutoff of the stellar initial mass function, but massive stars
are rare and short-lived, and their mass distribution is therefore
difficult to observe (Zinnecker & Yorke 2007).

Johansen et al. (2015) and Simon et al. (2016) investigated
the dependence of the shape of the planetesimal initial mass
function on the resolution, the pebble column density, the
strength of the self-gravity, and the simulation at which self-
gravity is initiated. We have complemented these parameter
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studies with an analysis of the box-size dependence, but how, for
instance, the solid-to-gas ratio, the friction time of the pebbles,
the radial gas pressure gradient, and the vertical box size affect
the shape of the birth mass distribution remains to be investi-
gated. Finally, the streaming instability has been shown to oper-
ate in protoplanetary disks with turbulence driven by the mag-
netorotational instability (Johansen et al. 2007). It remains to be
seen how turbulence and magnetic fields influence the shape of
the initial mass function.
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the vertical shear instability in protoplanetary
disks

CONTRIBUTION

This study began with the notion of employing the FLASH Code® (Fryxell et al. 2000) to con-
duct the first-ever two-dimensional global simulations of the streaming instability with Lag-
rangian particles representing the dust. Previous numerical studies of the instability almost
exclusively used the local shearing box approximation. Only Kowalik et al. (2013) conducted
two- and three-dimensional global simulations of the streaming instability, but modelled the
dust as a fluid on a Eulerian grid. Our global simulations were computationally feasible be-
cause of the capability of the FLASH Code to perform adaptive mesh refinement (AMR). This
allowed us to locally increase the resolution where particles are concentrated and the stream-
ing instability is active. In contrast, in previous studies of the instability simulation codes with
a uniform grid had been employed.

For the purpose of conducting these simulations, I implemented and tested a number of
extensions and modifications in the FLASH Code, including

« aunit® to simulate the mutual drag between gas and dust, which is based on the cloud-in-
cell algorithm included in the code for mapping between grid and particles that model
gas and dust, respectively (see Appendix B of the article),

« an adaptation for cylindrical geometries of the Leapfrog algorithm for the time integra-
tion of particles (see Appendix A of the article; Boris 1970),

« a unit to model a temperature distribution in connection with an isothermal equation
of state,

'http://flash.uchicago.edu/site/flashcode/
*The FLASH Code is organised in units. Each unit consists of one or several routines that jointly control an
aspect of the simulations conducted with the code.
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« amodification of the polytropic equation of state unit that permits the treatment of the
polytropic constant as a local rather than a global constant,

« aroutine to handle particles that move into obstacle blocks, i.e. blocks of grid cells that
are excluded from the simulation domain,

« an AMR criterion to enhance the local resolution if a threshold number of particles per
cell is exceeded,

 modifications to the simulation boundary conditions to account for the differences in
temperature and orbital velocity between guard and non-guard cells?,

« and a simulation setup to perform the simulations presented in the article.

The presence of the vertical shear instability in test simulations of these implementations
lead us to study the interaction of the streaming instability and the vertical shear instability,
which had not been investigated before. While in previous studies the streaming instability
has been considered predominantly as a mechanism for planetesimal formation, we focus on
the instability as a source of turbulence. Under supervision and in collaboration with Anders
Johansen and Robi Banerjee, I conducted, analysed, and visualised the simulations and wrote
the article.

*The domains of FLASH Code simulations are divided into blocks. Every block consists of several non-guard
cells that are surrounded by a layer of guard cells. While the data in the non-guard cells are computed locally, the
data in the guard cells are either received from adjacent blocks or calculated based on the simulation boundary
conditions.
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ABSTRACT

The streaming instability is a leading candidate mechanism to explain the formation of planetesimals. However, the role of this insta-
bility in the driving of turbulence in protoplanetary disks, given its fundamental nature as a linear hydrodynamical instability, has so
far not been investigated in detail. We study the turbulence that is induced by the streaming instability as well as its interaction with
the vertical shear instability. For this purpose, we employ the FLASH Code to conduct two-dimensional axisymmetric global disk
simulations spanning radii from 1 to 100 au, including the mutual drag between gas and dust as well as the radial and vertical stellar
gravity. If the streaming instability and the vertical shear instability start their growth at the same time, we find the turbulence in the
dust midplane layer to be primarily driven by the streaming instability. The streaming instability gives rise to vertical gas motions with
a Mach number of up to ~1072. The dust scale height is set in a self-regulatory manner to about 1% of the gas scale height. In contrast,
if the vertical shear instability is allowed to saturate before the dust is introduced into our simulations, then it continues to be the main
source of the turbulence in the dust layer. The vertical shear instability induces turbulence with a Mach number of ~10~! and thus
impedes dust sedimentation. Nonetheless, we find the vertical shear instability and the streaming instability in combination to lead to
radial dust concentration in long-lived accumulations that are significantly denser than those formed by the streaming instability alone.
Therefore, the vertical shear instability may promote planetesimal formation by creating weak overdensities that act as seeds for the

streaming instability.

Key words. instabilities — turbulence — methods: numerical — planets and satellites: formation — protoplanetary disks —

hydrodynamics

1. Introduction

Turbulence crucially influences various stages of the formation
of planets: such as (1) the vertical settling of dust grains to a mid-
plane layer whose thickness is determined by the equilibrium
between sedimentation and turbulent diffusion (Dubrulle et al.
1995; Johansen & Klahr 2005; Fromang & Papaloizou 2006;
Youdin & Lithwick 2007); (2) collisional grain growth (Ormel
& Cuzzi 2007; Birnstiel et al. 2010); (3) planetesimal formation
owing to passive concentration of grains (Barge & Sommeria
1995; Johansen et al. 2007; Cuzzi et al. 2008); and (4) planetary
migration (Nelson & Papaloizou 2004; Oishi et al. 2007; Yang
et al. 2009, 2012; Baruteau et al. 2011).

However, it is challenging to observationally constrain the
strength of the turbulence in the gas and the dust in protoplan-
etary disks, whose motions are coupled via drag. This is par-
ticularly because these turbulent motions are weaker than both
the thermal gas motions and the orbital motions of gas and dust
(Flaherty et al. 2018).

Recently, high-resolution ALMA observations of protoplan-
etary disks permitted a number of authors to assess the turbulent
strength in these disks: Flaherty et al. (2015, 2017, 2018) derive
upper limits of the strength of the turbulent vertical gas motions
in the disks surrounding HD 163296 and TW Hya from the non-
thermal broadening of molecular emission lines. These upper
limits correspond to Mach numbers of the order of 0.01'.

I Here and in the following, we report turbulent strength in terms of
Mach numbers rather than turbulent @-parameters (Shakura & Sunyaev

Article published by EDP Sciences

Pinte et al. (2016) employ a model of micron- to millimeter-
sized grains in the disk around HL Tau to estimate the strength
of their vertical turbulent diffusion from the observed dust scale
height, which is equal to ~10% of the gas scale height. These lat-
ter authors also find a Mach number of ~0.01. Similarly, Ohashi
& Kataoka (2019) constrain the dust grain sizes and dust scale
height in the disk around HD 163296 using polarization mea-
surements of the dust emission. From a grain size of ~100 um
and a scale height of less than one-third of the gas scale height
inside the ring that is located at an orbital radius of 70 au in this
disk, these latter authors infer an upper limit of the Mach number
of the vertical gas velocity of ~0.01. On the other hand, from the
dust-to-gas scale height ratio of two-thirds outside of the ring the
authors estimate a Mach number of the order of 0.1.

Furthermore, Dullemond et al. (2018) obtain a lower limit
on the strength of the radial turbulent motions from the width
of the dust rings that characterize the majority of the observed
disks. This limit also amounts to a Mach number of about 0.01
for grains of 0.2 mm in size, but is proportional to the
grain size.

1973). This is to avoid confusion with the a-parameter associated with
angular momentum transport. Based on a mixing length approach and
assuming that the eddy turn-over timescale is similar to the inverse of
the orbital frequency — a valid assumption for the instabilities that we
investigate in this paper, the streaming instability (Youdin & Goodman
2005) and the vertical shear instability (Nelson et al. 2013) — the tur-
bulent a-parameter can be approximated as the square of the Mach
number.
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In addition to the uncertainties in the observational deter-
mination of the turbulent strength, the physical processes that
are the dominant sources of protoplanetary disk turbulence
remain to be theoretically established. In large fractions of disks,
particularly in the midplane, magnetohydrodynamic (MHD) tur-
bulence is suppressed because of nonideal MHD effects (Gressel
et al. 2015; Bai 2017). Turbulence in these regions must there-
fore be driven either from the MHD turbulent disk surface
(Oishi & Mac Low 2009; Bai 2015) or by purely hydrodynamic
instabilities.

One of the most promising among the hydrodynamical insta-
bilities is the vertical shear instability (Arlt & Urpin 2004;
Nelson et al. 2013), which is similar to the Goldreich-Schubert-
Fricke instability in differentially rotating stars (Goldreich &
Schubert 1967; Fricke 1968). It arises when the disk rotation
profile depends on the height. This can, for instance, be due to
baroclinity, which is a misalignment between the density and
the pressure gradient, resulting from a radial temperature pro-
file. The source of energy of the instability is the free energy
associated with the vertical shear (Barker & Latter 2015).

The vertical shear instability can overcome both the radial
angular momentum gradient, as its modes are characterized by a
large radial-to-vertical wavenumber ratio, and the vertical buoy-
ancy if the gas cooling timescale is sufficiently short (Nelson
et al. 2013; Lin & Youdin 2015). Analytical and numerical analy-
ses of the linear growth of the instability have found two classes
of modes: short-wavelength surface modes with higher growth
rates and vertically global body modes with lower growth rates.
The former appear at the artificial vertical simulation domain
boundary, where the vertical shear is strongest — although natural
transitions in the density can also give rise to these modes. Their
growth rate increases with the vertical shear at the boundary,
and thus with vertical domain size (Nelson et al. 2013; Barker &
Latter 2015; Lin & Youdin 2015).

In nonlinear simulations, the vertical shear instability grows
over at least approximately 30 orbital periods until it attains a
saturated state (Stoll & Kley 2014; Flock et al. 2017). The Mach
numbers of the turbulent vertical motions in this state are of the
order of 1072 to 107! (Flock et al. 2017). This turbulent strength
is higher if the radial temperature gradient is steeper (Nelson
et al. 2013; Lin 2019). Perturbations associated with the surface
modes appear first and grow towards the disk midplane. The
later emerging body modes are characterized by perturbations
that evolve from an odd symmetry with respect to the midplane
into an even symmetry, and therefore the instability saturates last
in this plane (Nelson et al. 2013; Stoll & Kley 2014).

The turbulence that is induced by the vertical shear insta-
bility entails angular momentum being transported radially out-
wards and vertically away from the midplane. Since the latter
eliminates the vertical shear, external heating (of locally non-
isothermal disks) is necessary to sustain the instability (Stoll &
Kley 2014). In numerical models including dust and the drag
exerted on it by the gas, the turbulence further gives rise to verti-
cal dust motions, and radial motions leading to accumulation in
overdensities of up to five times the initial dust density (Stoll &
Kley 2016; Flock et al. 2017).

However, Lin & Youdin (2017) and Lin (2019) show that,
if the drag back-reaction of the dust onto the gas is taken into
account as well, the dust, which sediments to the midplane, intro-
duces an effective vertical buoyancy — it “weighs down” the gas —
that can quench the vertical shear instability. If they are tightly
coupled, gas and dust can be described as a single fluid, with
a density equal to the sum of the gas and the dust density, but
a pressure that is solely due to the gas. We assume that the pure
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gas is locally isothermal, that is, its cooling timescale is infinitely
short. Under this assumption, the equation of state of the mix-
ture is given by P = cfpg = cg(l — Pd/Prot)Prot, Where P is the
gas pressure, ¢ the sound speed, and p,, p4, and py are the gas,
dust, and total density, respectively. In other words, the gas-dust
mixture is not locally isothermal, and its cooling timescale is
finite. As noted above, the instability is suppressed by vertical
buoyancy if the cooling timescale is too long.

The streaming instability (Youdin & Goodman 2005; Youdin
& Johansen 2007; Johansen & Youdin 2007) results from the
inwards radial drift of dust, which is caused by the difference
in orbital velocity between the gas and the dust as well as their
mutual coupling via drag. In contrast to the dust, the gas orbits
with a sub-Keplerian velocity because it is supported against
the radial stellar gravity by a pressure gradient. This pressure
gradient constitutes a source of free energy that is tapped by
the streaming instability (Youdin & Johansen 2007). The linear
growth rate of the instability is highest if the dust drift is fastest,
that is when the dust stopping time is comparable to the inverse
of the orbital frequency (Weidenschilling 1977), and if the
dust-to-gas density ratio is slightly greater than one (Youdin &
Goodman 2005). Physical interpretations of the instability have
been devised by Lin & Youdin (2017) and Squire & Hopkins
(2018).

The turbulence that the streaming instability gives rise to in
its nonlinear regime can result in dust concentration in axisym-
metric filaments. In these filaments, the dust accumulates in
clumps that are sufficiently dense to collapse under their self-
gravity and form planetesimals (Johansen et al. 2007; Bai &
Stone 2010b; Yang & Johansen 2014; Simon et al. 2016; Schifer
et al. 2017). However, whether the streaming instability causes
dust accumulation that is strong enough for planetesimal forma-
tion depends on the dust-to-gas surface density ratio and the size
of the dust (Johansen et al. 2009; Bai & Stone 2010b; Carrera
et al. 2015; Yang et al. 2017, 2018), as well as the strength of
the radial pressure gradient (Bai & Stone 2010c). The required
surface density ratio is higher than 1% — the canonical value in
the interstellar medium — for all dust sizes. It can be enhanced
sufficiently to reach the critical value globally by photoevapo-
ration (Carrera et al. 2017; Ercolano et al. 2017), and locally in
radial dust pile-ups (Drazkowska et al. 2016) or at ice lines (Ida &
Guillot 2016; Schoonenberg & Ormel 2017; Schoonenberg et al.
2018; Drazkowska & Alibert 2017).

Observations of binaries among the Trans-Neptunian objects
provide evidence for planetesimal formation owing to the stream-
ing instability: their observed orbital inclinations relative to their
heliocentric orbit as well as the ones that are found in simulations
of binary formation by gravitational collapse are predominantly
prograde (Grundy et al. 2019; Nesvorny et al. 2010, 2019).
In contrast, dynamical binary capture leads to either mostly
retrograde inclinations or a similar number of prograde and ret-
rograde ones, depending on the capture mechanism (Schlichting
& Sari 2008).

While it is considered to be and is studied as one of the
most promising mechanisms to induce planetesimal formation,
the streaming instability has received comparably little attention
as a process to drive turbulence, although this is its fundamen-
tal effect. Moreover, the streaming instability has been studied
numerically almost exclusively in local shearing box simula-
tions. Only Kowalik et al. (2013) present global two- and three-
dimensional simulations, which reproduce the dust accumulation
in dense axisymmetric filaments.

In this paper, we study the streaming instability as a source
of turbulence, employing axisymmetric global simulations with
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considerably larger domains than the ones that were simulated by
Kowalik et al. (2013). In contrast to these authors, we model the
dust as Lagrangian particles rather than as a pressureless fluid,
and take into account the vertical stellar gravity, which leads to
the dust sedimenting to the midplane. We further apply adaptive
mesh refinement to enhance the resolution of the dust midplane
layer.

The paper is structured as follows: in Sect. 2, the simulations,
their initial conditions, and the parameters that govern their evo-
lution are described. In Sects. 3-5, respectively, we present our
study of the turbulence in models of the vertical shear instabil-
ity only, both the vertical shear and the streaming instability,
and the streaming instability only. Implications and limitations
of the study are discussed in Sect. 6. We summarize our results
in Sect. 7.

2. Numerical model

We perform two-dimensional numerical simulations of the gas
and the dust components of protoplanetary disks, including
the mutual drag between the two components as well as the
radial and the vertical stellar gravity. Magnetic fields, the self-
gravity of the gas and the dust, and (nonnumerical) viscosity are
neglected. We employ version 4.5 of the adaptive-mesh refine-
ment (AMR) finite volume code FLASH Code? (Fryxell et al.
2000).

2.1. Domains, boundary conditions, and resolutions

The cylindrical, axisymmetric simulation domains extend from
either 1 to 10 au or from 10 to 100 au in the radial dimension
and 1 or 2 gas scale heights above and below the midplane in
the vertical dimension. Since in our model the gas scale height
increases nonlinearly with the radius (see Eq. (9)), the domains
are shaped like isosceles trapezoids with curved rather than
straight legs. To model this shape as accurately as possible with
respect to the initial resolution, we initially create rectangular
domains with a vertical size of two or four gas scale heights at
the outer radial boundary. From these domains, we then exclude
all blocks of 10 x 10 grid cells whose distance to the midplane is
greater than one or two local gas scale heights. For this purpose,
we apply the obstacle block implementation that is included in
the FLASH Code?.

Diode conditions are applied at both the radial and the ver-
tical boundaries, that is, the boundaries are permeable to gas
and dust moving out of the domain, but reflect gas and dust that
would move into it. At the vertical boundaries, the pressure in the
guard cells is quadratically interpolated to maintain hydrostatic
equilibrium. The temperature in the guard cells at all boundaries
is reset to the initial value because we find this to be conducive
to the stability of our simulations. In addition, the orbital veloc-
ity is corrected to account for the difference in temperature and
stellar gravity between the guard and the nonguard cells>.

The FLASH Code employs the PARAMESH package
(MacNeice et al. 2000) to perform block-structured AMR. In
other words, the domain is subdivided into blocks of 10 x 10 grid
cells, which as a whole are refined or derefined if a refinement
or derefinement criterion is fulfilled in any cell inside them.

2 http://flash.uchicago.edu/site/flashcode/

3 Please address code requests regarding the modifications to the
FLASH Code that we have implemented to conduct the simulations pre-
sented in this paper to urs.schaefer@hs.uni-hamburg.de. We note
that we are not permitted to re-distribute the FLASH Code or any of its
parts.

To resolve the gas and dust dynamics that are induced by the
streaming instability in the disk midplane, we apply a (de-)
refinement criterion which is based on the spatial dust distribu-
tion: the resolution is doubled if more than ten particles, which
we use to model the dust, are located in one cell. On the other
hand, the resolution is halved if no particles remain in a cell®. In
addition, we initially increase the resolution of the midplane den-
sity at the inner radial domain boundary by a factor of two or of
four where the ratio of the gas density to the midplane density at
the inner radial domain boundary exceeds 1 or 10%, respectively.

In the domains with a radial size of 9 au, the fiducial initial
and maximum resolution amount to 160 and 5120 cells per astro-
nomical unit, respectively, while in the domains with an extent
of 90 au they are equal to 10 and 320 cells per astronomical
unit, respectively. At the maximum resolution, this corresponds
to more than 200 cells per gas scale height at all radii, which has
been shown to be sufficient to resolve the formation of gravita-
tionally unstable dust clumps owing to the streaming instability
in local shearing box simulations (Yang & Johansen 2014). To
investigate whether or not our findings are dependent on reso-
lution, we also conduct simulations with a doubled initial and
maximum resolution.

The simulation names and parameters are compiled in
Table 1. Sets of simulations which are analyzed in different sec-
tions are separated by a double horizontal line. All names are
composed of (1) the gas equation of state (isothermal or adia-
batic); (2) the dust-to-gas surface density ratio (this is omitted if
dust is not included in a simulation); and (3) the radial simulation
domain size. Where applicable, the names further indicate that
(4) the vertical domain extent amounts to four gas scale heights;
(5) the resolution is twice the fiducial resolution; (6) the dust par-
ticles are introduced after 50 kyr rather than at the beginning of
the simulation; (7) the initial dust-to-gas scale height ratio is set
to 1 or 100%, with the fiducial value being 10%; and (8) the dust
particle size deviates from the fiducial size of a = 3 cm.

2.2. Gas

The equations of motion of the gas can be expressed as

Opg

- +V - (pg;) = 0 and (1)
%+(v V)0 L yp vy Pt )
ot ¢ ¢ Pg S Pg  Istop ’

where v is the velocity, and the subscripts g and d refer to the
gas and the dust, respectively. The stellar gravitational potential
is given by ®g = —GMs/ Vr? + 72, where G is the gravitational
constant, Mg = 1 My, is the stellar mass, and r and z, respectively,
are the radial distance to the star and the height above or below
the disk midplane. The last term on the right-hand side of Eq. (2)
results from the drag exerted by the dust on the gas, with #yp
being the stopping time (see Sect. 2.3).

To close the system of equations, we consider either an
isothermal or an adiabatic equation of state. In the former case,
the pressure is calculated as

P=—p, 3)

where R is the ideal gas constant, 7 the temperature,
and p =2.33 the mean molecular weight3. In this case, the
adiabatic index y = 1. To model the latter case, we employ a
polytropic equation of state that is given by

P = Kpl, 4)
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Table 1. Simulation parameters.

Simulation name Equation Z[%]® Dustpar L [Ho]©@ L, [au] @  Axipi [au] @  Axpin [au] P teng [kyr] @
of state ticle size )
iso_Lr=90au ™ Isothermal - - 2 90 0.1 3.125x 1073 70
iso_Lr=90au_Lz=4Hg " Isothermal - - 4 90 0.1 3.125x 1073 70
iso_Lr=90au_Lz=4Hg_dou_res ™ Isothermal - - 4 90 0.05 1.56 x 1073 70
iso_Z=0.02_Lr=90au_Lz=4Hg Isothermal 2 a=3cm 4 90 0.1 3.125x 1073 30
iso_Z=0.02_Lr=90au_Lz=4Hg_tdinit=50kyr Isothermal 2 a=3cm 4 90 0.1 3.125x 1073 55
iso_Z=0.02_Lr=90au_Lz=4Hg_tdinit=50kyr_Hdinit=0.01Hginit “  Isothermal 2 a=3cm 4 90 0.1 3.125x 1073 55
iso_Z=0.04_Lr=90au_Lz=4Hg_tdinit=50kyr © Isothermal 4 a=3cm 4 90 0.1 3.125x 1073 55
iso_Z=0.1_Lr=90au_Lz=4Hg_tdinit=50kyr ¥ Isothermal 10 a=3cm 4 90 0.1 3.125x 1073 55
adi_Lr=9au " Adiabatic - - 2 9 6.25x 107 1.95x107* 0.3
adi_Z=0.02_Lr=9au Adiabatic 2 a=3cm 2 9 625%x107%  1.95x10™ 0.3
adi_Z=0.02_Lr=90au Adiabatic 2 a=3cm 2 90 0.1 3.125x 1073 2.5
adi_Z=0.02_Lr=9au_Hdinit=Hginit ® Adiabatic 2 a=3cm 2 9 625x 107 1.95x107* 0.4
adi_Z=0.02_Lr=90au_Hdinit=Hginit ® Adiabatic 2 a=3cm 2 90 0.1 3.125%x 1073 2.5
adi_Z=0.01_Lr=9au Adiabatic 1 a=3cm 2 9 625%x107%  1.95x 107 0.3
adi_7=0.01_Lr=90au Adiabatic 1 a=3cm 2 90 0.1 3.125x 1073 2.5
adi_7Z=0.02_Lr=9au_dou_res Adiabatic 2 a=3cm 2 9 3.125x 107 9.76 x 107 0.3
adi_7Z=0.02_Lr=90au_dou_res Adiabatic 2 a=3cm 2 90 0.05 1.56 x 1073 2.5
adi_7=0.02_Lr=90au_a=3mm Adiabatic 2 a=3mm 2 9 625%x107%  1.95x 10 6
adi_7=0.02_Lr=90au_taustop=0.1 Adiabatic 2 Tgiop = 0.1 2 90 0.05 1.56 x 1073 3.5

Notes. “Dust-to-gas surface density ratio. ®’Given either as a size a or as a dimensionless stopping time Typ. ’ Vertical domain extent, where H,
is the gas scale height. (Approximate value, see text.) PRadial domain size. Initial grid cell edge length. " Minimum grid cell edge length (at
maximum resolution). @Time after which simulation ends. ®No dust particles included. ©Dust particles initialized after 73, = 50 kyr. PInitial
dust scale height equal to 1% of gas scale height. ®Initial dust scale height equal to gas scale height.

where K = RTpé_y /u is the polytropic constant and the adiabatic
index y = 5/3%. While it is a local constant in time, the polytropic
constant depends on the global temperature and density distribu-
tions (see Eqgs. (5)—(7)). If the gas is locally adiabatic, the vertical
shear instability is stabilized by vertical buoyancy.

The initial temperature is adopted from the minimum mass
solar nebula (MMSN) model (Hayashi 1981),

;12
1au) '

The steepness of this profile is in agreement with that of
power-law fits to observed temperature distributions (Andrews
& Williams 2005). The radial temperature gradient gives rise to
a variation of the orbital speed with height. This vertical shear in
turn is the source of energy of the vertical shear instability.

The gas initially orbits with a sub-Keplerian velocity, which
is determined by the balance between stellar gravity, centrifugal
force, and pressure gradient. It is furthermore in vertical hydro-
static equilibrium. As it is vertically isothermal, the vertical
pg = pg(z = 0)exp [— 5

density profile is thus given by
( : : )
¢ \r V2iZ2)l

where ¢; = (YRT /u)'/? o r1/* (see Eq. (5)) is the sound speed.
We set the initial midplane density to

)—9/4

Numerically integrating over Eq. (6) yields the surface
density
)71

| H,
zng
-1 H,

g

T:280K( 5)

YGMs

(6)

r

1 au

pez=0) = 107 gem™ ( %

3 2 (_F
pg dz =107 gcm (l_au
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where

H, = \/cgr3(2)/GMs —cr)

(cir — yGMs)? ®
is the gas scale height. This surface density profile is shallower
than the one in the MMSN model (Hayashi 1981), but is consis-
tent with that of observed young, massive protoplanetary disks
(Andrews et al. 2009, 2010).

We note that Eq. (8) gives the surface density as the density
integrated over two gas scale heights, not integrated from —co
to oo as in the commonly used definition. Consequently, the total
mass Mg, in each of our domains depends not only on the
radial, but also on the vertical domain extent:

x0T Mg (3) L.~2Hgor (10)
FUT8.0x 107 My (5%) Lo~ 4 H,

where L, and L, are the radial and vertical domain size, respec-
tively.
The orbital speed can be expressed as v, 4 = vk — Ilcg, where

GMs

2)3/2r

_ WS »
(r2+z

)

VK =

is the Keplerian speed. We adopt the dimensionless parame-
ter I1, which is introduced by Bai & Stone (2010b) to indicate
the strength of the radial pressure gradient

_ 1 dpP
2¢,psQx dr ’

where Qg = vk /r is the Keplerian orbital frequency. In the
midplane, the parameter is equal to

)"

(12)

r

1
Mz=0)=46x1072—
1 au

VY
(see Egs. (5) and (7)).

13)
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2.3. Dust

We model the dust as Lagrangian particles using the massive
active particle implementation that is included in the FLASH
Code. We adopt an approach that is commonly used in local
shearing box studies of the streaming instability (Youdin &
Johansen 2007; Bai & Stone 2010a): the mass and momentum of
every simulated particle are equal to the total mass and momen-
tum of a large number of dust pebbles, while the drag coupling
to the gas is the same as that of a single pebble.

The dust is initially uniformly distributed in the radial dimen-
sion. The mass of the dust particles is determined by their total
number N, = 10°, the dust-to- gas surface density ratio Z, and the
gas surface density. It can be expressed as

1 Z
mg=— f 2nrig dr = — f 2nrZ, dr.
Na Ji, Na Ji,

Because the gas surface density is inversely proportional to the
radius (see Eq. (8)), the mass of all particles in a simulation is
given by

Z\/ L
_ » (£ r
ma = 1.27x 107 ¢ (0.01)(9 au)

Z\( L,
= .14M res A B
0 Ceres (0.01)(9 au)

where Mceres = 9.3 X 10?3 g is the mass of Ceres. The sim-
ulated dust-to-gas surface density ratios range from Z = 0.01
to Z = 0.1, with Z = 0.02 being the fiducial value. We verified
that our results are converged with respect to the total num-
ber of particles by comparing simulations with Ny = 5 x 10°
and Ny = 10°.

The initial vertical positions are randomly sampled from a
Gaussian distribution with a scale height of 10% of the gas scale
height. This scale height is in agreement with the thickness of the
dust midplane layer observed by Pinte et al. (2016). To investigate
the dependence of our findings on the initial scale height, we
additionally perform simulations with a dust-to-gas scale height
ratio of 0.01 and of 1. The noise in the vertical distribution serves
as a seed for the streaming instability. A comparison of simula-
tions with two different vertical distributions has shown that our
results do not noticeably depend on the random seed.

We simulate dust with a fixed size of a=3cm or of
a = 3 mm, or with a fixed dimensionless stopping time, which is
equivalent to the Stokes number, of 740, = 0.1. Evenifa = 3 cm,
the dust is smaller than the gas mean free path length at all den-
sities in our model. Under this condition, that is to say in the
Epstein regime, the dimensionless stopping time in the midplane
is given by

(14)

(15)

apy
W z=0
cpalc=0) KE=0

1 a r
=610 5 ) (1)
610 Ay \3mm/\1 au

where p, = 1 gem™ is the dust material density (see also
Eq. (7).

We note that the collisional growth to sizes greater than
millimeters is prevented by dust grains bouncing or fragment-
ing under mutual collisions (Giittler et al. 2010; Zsom et al.
2010; Birnstiel et al. 2011), except for in the innermost regions
of protoplanetary disks (Birnstiel et al. 2012) and at ice lines
(Ros & Johansen 2013; Ros et al. 2019). However, simulating
centimeter-sized grains allows us to probe dimensionless stop-
ping times of the order of 7y, = 0.1. These are pertinent to a

Tstop(Z =0) = tstop(Z =0)Qk(z=0) =

(16)

study of the turbulence that is driven by the streaming instabil-
ity since the linear growth rate of the instability is highest if the
dimensionless stopping time is close to one (Youdin & Goodman
2005).

The dust particles initially orbit with the Keplerian speed
(see Eq. (11)). They are initialized either at the beginning of
the simulations or after 50 kyr. The latter is to give the verti-
cal shear instability time to attain a saturated state before the
introduction of the dust. To advance the particles in time, we
use the Leapfrog algorithm, which was adapted for cylindrical
geometries by Boris (1970), as detailed in Appendix A°.

The implementation of the mutual drag between the gas and
the dust is based on the cloud-in-cell mapping between the grid
and the particles that is included in the FLASH Code. The algo-
rithm can be described as follows: firstly, the gas properties are
mapped to the particles. Secondly, for each particle, the stop-
ping time (see Eq. (16)) and the change in velocity due to the
drag exerted by the gas is computed. The corresponding change
in particle momentum is then mapped to the grid. Finally, the
change of the gas velocity in every grid cell is calculated from
the particle momentum change. A more detailed description of
the implementation can be found in Appendix B3.

3. Vertical shear instability

In this section, we verify that our model can reproduce the
findings of previous studies of the vertical shear instability, in
particular the turbulent strength in its saturated state, despite
the comparably small vertical domain sizes we consider. For
this purpose, we analyze our model of locally isothermal gas in
which dust is not included.

In Fig. 1, the vertical gas motions in the model are depicted.
The characteristic perturbations that the vertical shear instability
gives rise to are reproduced. The perturbations are bent out-
wards, their radial wavelength is much less than their vertical
wavelength, and they are symmetric with respect to the mid-
plane in the saturated state of the instability (compare with, e.g.,
Figs. 2 and 3 of Nelson et al. 2013 and Fig. 2 of Stoll & Kley
2014).

We find that the strength of the turbulence induced by the
vertical shear instability depends on the extent of the vertical
domain. This can be seen from Fig. 2, in which we depict the
vertical gas velocity in our models with a vertical domain size of
two and of four gas scale heights. Throughout the simulations,
the turbulence is considerably weaker in the vertically smaller
domain than in the vertically larger one. The reason for this is
likely that the vertical shear at the vertical domain boundaries
is less in smaller domains, which entails a decline of the linear
growth rate of the surface modes of the instability (Lin &
Youdin 2015).

In the vertically larger domain, the vertical shear instabil-
ity saturates at a Mach number of the vertical gas velocity
of My, = 0.1. This value does not depend significantly on the
resolution and is consistent with the Mach number which Flock
et al. (2017) find. This is regardless of the fact that these authors
simulate a domain with an aspect ratio of z/r = 0.35, while our
domain extends to between z/r = 0.17 at r = 10 au and z/r = 0.3
at r = 100 au. Furthermore, Flock et al. (2017) employ a radia-
tive transfer model rather than assuming the gas to be locally
isothermal as we do. Therefore, in the following we investigate
the vertical shear instability and its coexistence with the stream-
ing instability using our model with a vertical domain size of two
gas scale heights above and below the midplane.
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Fig. 1. Mach number of the vertical gas velocity M, as a function of
radius r and height z in a simulation including a locally isothermal gas,
but no particles (iso_Lr=90au_Lz=4Hg). The simulation domain spans
four gas scale heights in the vertical dimension. Black lines mark one
gas scale height above and below the midplane. After 30 kyr, the vertical
shear instability has saturated at all radii and heights; it gives rise to
perturbations which are characterized by a radial-to-vertical wavelength
ratio much smaller than unity, by being bent outwards, and by a mirror
symmetry relative to the midplane.
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Fig. 2. Root mean square of M, as a function of time ¢. The root
mean square is computed using the mass-weighted average over the
vertical domain size and over 1 au extending from » =50 to 51 au.
In the domain with a vertical dimension of four gas scale heights
(blue and orange lines), the Mach number saturates at M, ;s = 107"
This value is consistent with the one which Flock et al. (2017) find
in their numerical study of the vertical shear instability. The turbu-
lent strength is similar in the simulation with the fiducial resolution
(iso_Lr=90au_Lz=4Hg; blue line) and the one with the doubled resolu-
tion (iso_Lr=90au_Lz=4Hg_dou_res; orange line); however, it remains
lower until the simulations end in the domain with a vertical size of two
gas scale heights (simulation iso_Lr=90au; green line).

4. Coexistence of vertical shear instability and
streaming instability

Using our model with dust and an isothermal gas equation of
state, we investigate how the vertical shear instability and the
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streaming instability interact. We consider two scenarios: in the
scenario that we refer to as SIwhileVSI, the streaming instability
grows simultaneously with the vertical shear instability. In the
scenario referred to here as SlafterVSI, on the other hand, the
streaming instability is not active before the vertical shear insta-
bility has saturated. We model the latter scenario by introducing
the dust into the simulations after 50 kyr. At this point, the verti-
cal shear instability has reached a saturated state at all radii (see
Fig. 1).

4.1. Source of turbulence

Figure 3 shows the Mach number of the vertical gas motions
in SIwhileVSI (left panel) and SlafterVSI (right panel). In
both scenarios, away from the midplane the vertical shear
instability is the primary source of turbulence and induces the
characteristic large-scale perturbations (compare with Fig. 1).
However, in the midplane, small-scale perturbations can be seen
at all radii in the former scenario. Similar perturbations exist
in the latter scenario, although only at certain radii and not as
limited in vertical extent. These small-scale perturbations are
not present in our model of the vertical shear instability only.
They resemble the perturbations that Li et al. (2018) observe
in the midplane of their local shearing box simulations of the
streaming instability (see their Fig. 2).

In Fig. 4, we compare the time-dependence of the Mach
number in the two scenarios. The mass-weighted vertical average
of the Mach number is depicted, that is, the turbulent strength in
the midplane is weighted more heavily than the strength away
from it. In SlafterVSI, we find that the initialization of the dust
does not cause the Mach number to deviate significantly from
the value of M, . ~ 0.1 induced by the vertical shear instability
after it has saturated (compare with Fig. 2).

In contrast, in the SIwhileVSI scenario the Mach number
saturates at a lower value of M, ~ 0.01. In the local shear-
ing box simulations without vertical stellar gravity presented
by Johansen & Youdin (2007), the streaming instability drives
turbulence with a similar strength. After saturation, the Mach
number does not vary significantly until, owing to its radial drift,
locally no dust is left. Subsequently, it increases to approximately
the value the vertical shear instability in its saturated state gives
rise to in SlafterVSI.

Figure 5 shows the ratio of the radial to the vertical Mach
number in both scenarios. The turbulent velocity in the radial
direction is significantly less than the one in the vertical direc-
tion in SlafterVSI. This is consistent with Stoll & Kley (2016)
and Stoll et al. (2017) showing that the vertical shear instability
drives anisotropic turbulence. On the other hand, in SIwhileVSI
the radial and the vertical Mach number are comparable near and
in the midplane. Johansen & Youdin (2007) find the streaming
instability to cause isotropic turbulence.

From the fact that the turbulence is comparably weak and
isotropic as well as from the presence of small-scale perturba-
tions that are not observable in our model of the vertical shear
instability only, we conclude that the streaming instability is the
primary source of turbulence in the dust midplane layer if it
starts to operate at the same time as the vertical shear instability.
One possible explanation for this is that the streaming instability
grows faster in turbulent strength than the vertical shear insta-
bility. This is evident when comparing the time taken for the
vertical shear instability (see Fig. 2) and the streaming instability
(see the right panel of Fig. 4) to saturate.

However, the turbulence is mainly driven by the vertical
shear instability if it has attained a saturated state before the
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Fig. 3. Mach number M, as a function of r and z in two simulations with dust and an isothermal gas equation of state. As in the dust-free
equivalent (compare with Fig. 1), the vertical shear instability induces large-scale perturbations away from the midplane. In the simulation
iso_Z=0.02_Lr=90au_Lz=4Hg (left panel), in which we initialize the dust at the beginning, small-scale perturbations can be seen at all radii
in the midplane. These perturbations are also observable in the simulation iso_Z=0.02_Lr=90au_Lz=4Hg_tdinit=50kyr (right panel), in which the
dust is introduced after 50 kyr, although not at all radii and extending to greater heights. The inlays with a vertical extent of 0.6 gas scale heights
show the enlarged perturbations. However, such small-scale perturbations do not exist in the corresponding simulation without dust.
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Fig. 4. Root mean square of M, averaged over the vertical domain extent and the radii given in the legend, as a function of # after the initialization
of the dust at #4;ni. The mean is weighted by mass, i.e., more weight is assigned to the Mach number in the midplane than to the one away from it.
In the simulation iso_Z=0.02_Lr=90au_Lz=4Hg_tdinit=50kyr (left panel), the vertical shear instability has saturated before the dust is introduced.
The Mach number remains approximately constant at a value M, ms ~ 107! after the dust initialization (compare with Fig. 2). That is, in this simu-
lation the vertical shear instability is the primary source of turbulence in the midplane. In contrast, in the simulation iso_Z=0.02_Lr=90au_Lz=4Hg
(right panel), in which the vertical shear instability and the streaming instability begin to grow at the same time, the Mach number saturates at
a lower value of M, ms = 1072. After no dust remains at a radius because of its radial drift (this point is marked with a dashed line), the Mach
number increases until it is approximately equal to the value at the same radius in the simulation iso_Z=0.02_Lr=90au_Lz=4Hg_tdinit=50kyr. We
find that, as long as dust is present, the streaming instability drives the turbulence in the midplane in the simulation iso_Z=0.02_Lr=90au_Lz=4Hg.

streaming instability can begin to grow. In this state, we find it
to give rise to turbulence with a higher Mach number than the
streaming instability in SIwhileVSI. Nevertheless, we note that
the small-scale perturbations, which we find to be induced by the
streaming instability at all radii in SIwhileVSI, are also observ-
able locally in the SlafterVSI scenario (see the right panel of
Fig. 3).

The vertical shear instability would likely be the main source
of turbulence in SIwhileVSI as well if the dust grains were too
small to settle and trigger the streaming instability before the
vertical shear instability had saturated. Equating a saturation
timescale of 30 orbital periods (Stoll & Kley 2014) with the set-
tling timescale as given by Eq. (10) of Chiang & Youdin (2010)
yields a critical dimensionless dust stopping time of ~0.005.
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Fig. 5. Ratio of the root mean square Mach number of the radial
gas velocity Mo, to the root mean square of M,. as a function
of z in units of gas scale heights. The abscissa is scaled linearly
between —0.1 and 0.1 gas scale heights and logarithmically otherwise.
To compute the root mean square, we take the mass-weighted average
over r = 50 to 51 au and the average over 1 kyr through ¢ = 55 kyr in
the case of the simulation iso_Z=0.02_Lr=90au_Lz=4Hg_tdinit=50kyr
(blue line) and through 7= 10kyr in the case of the simulation
iso_Z=0.02_Lr=90au_Lz=4Hg (orange line). Away from the mid-
plane, the radial-to-vertical Mach number ratio is less than unity in both
simulations. While this anisotropy extends over all heights if the dust
is introduced after 50 kyr, the Mach number ratio is close to one in the
midplane if the dust is initialized at the start. This is indicative of the ver-
tical shear instability being the primary source of turbulence in the mid-
plane in the former case, but the streaming instability in the latter case.

However, since simulating such small dust grains as particles is
computationally very expensive, we do not explore this scenario.

4.2. Dependence of turbulent strength on dust density

As explained in Sect. 1, settling dust introduces an effective
vertical gas buoyancy that can suppress the vertical shear insta-
bility. This is a second possible reason — besides the more rapid
growth in turbulent strength of the streaming instability — why
the streaming instability is the source of turbulence in the dust
layer in the scenario SIwhileVSI.

Lin (2019) performs simulations of the vertical shear
instability which include dust from the beginning, as in the
SIwhileVSI scenario. This latter author shows that the dust-
induced buoyancy leads to a decrease in the Mach number in the
midplane from M, ~ 107" to My, ~ 1072 if the dust-to-gas
surface density or the stopping time of the dust exceed a thresh-
old value. These threshold values are correlated: for a surface
density ratio of 1%, the critical dimensionless stopping time
of the dust is equal to 0.005 (see their Fig. 5). For a stopping
time of 0.001, the critical surface density ratio amounts to 3%
(see their Fig. 9). This is consistent with the Mach number
of My, = 1072 we find in SIwhileVSI, in which the surface
density ratio is equal to 2%* and the stopping time of the dust
ranges from 0.046 to 0.46.

4 The loss of gas mass through the domain boundaries of our simula-
tions leads to an increase of the dust-to-gas surface density ratio with
time. This effect is negligible if we simulate the dust over a time-span
of 5 kyr or less (see Table 1). It is significant, however, in the simulation
iso_Z=0.02_Lr=90au_Lz=4Hg, which ends after 30 kyr. At this point,
the surface density ratio has increased to 2.6%.

A190, page 8 of 18

10724

Mg z,rms

1 = Z=0.02, tgint=0yr

i Z=0.02, td,init =50 kyr
—_— 7 =0.,04, td,init =50 kyr

| — Z=0.1, ty ime =50 kyr

LR o L | T
10° 10! 102

Pd/Pg

Fig. 6. Root mean square of M, ; as a function of the dust-to-gas density
ratio pg/p,. The orange, green, and purple lines represent the turbulent
strength in simulations in which we initialize the dust after the vertical
shear instability has saturated. The strength at low to intermediate val-
ues of the volume density ratio in the three simulations is marginally
smaller if the dust-to-gas surface density ratio is greater. Nevertheless,
the Mach number is higher in all of these simulations than in the sim-
ulation in which we introduce the dust at the start (blue line). We find
that the stronger turbulence in the former simulations is driven by the
vertical shear instability, while the weaker turbulence in the latter one
is caused by the streaming instability. Independent of the source of the
turbulence, its strength decreases at dust densities larger than the gas
density in all four simulations.

67 T

However, while Lin (2019) associates the turbulence in the
midplane of their simulations with the vertical shear instability,
we find it to be driven by the streaming instability if both instabil-
ities begin to operate at the same time. Lin (2019) notes that they
apply a diffusive numerical scheme which probably suppresses
the growth of the streaming instability. In addition, they model
tightly coupled dust and gas employing a one-fluid approach.

To investigate whether the vertical shear instability is
quenched by the dust-induced buoyancy in the SlafterVSI sce-
nario, we analyze how the turbulent strength depends on the dust
density. We note that this analysis does not involve information
about the spatial distribution of the dust. In other words, the
strength at a certain dust density is the sum of the bulk motions
of regions with this density and the internal turbulence in these
regions.

In Fig. 6, the Mach number is shown as a function of the
dust-to-gas density ratio in both scenarios. Overall, the Mach
number is higher in SlafterVSI (orange, green, and purple lines)
than in SIwhileVSI (blue line). This is consistent with stronger
turbulence in the dust layer being induced by the vertical shear
instability in the former scenario, and weaker turbulence by the
streaming instability in the latter scenario.

In the SlafterVSI scenario, at low to intermediate dust-to-gas
volume density ratios the Mach number decreases with increas-
ing dust-to-gas surface density ratio, although only slightly. This
can be explained by the vertical shear instability being sup-
pressed if the surface density ratio, that is, the total dust mass,
is greater, which leads to the vertical bulk motions of regions
with these volume density ratios being weaker.

Furthermore, the vertical shear instability is gradually
quenched if the dust density increases to values greater than
the gas density. The Mach number is as low as M, ~ 0.01 for
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Fig. 7. Ratio of the dust scale height to the gas scale height H, (left panel) and maximum of the dust-to-gas density ratio pa/p, (right panel) as
functions of ¢ after the dust is introduced at #4;,;. We compute the dust scale height as the root mean square of the vertical particle positions zg4,
and average the scale height ratio over 1 au spanning from r = 20 to 21 au. For a dust-to-gas surface density ratio of Z = 2%, the dust scale height
amounts to ~1% of the gas scale height if the streaming instability induces the vertical diffusion of the dust (blue line). On the other hand, it is equal
to ~10% for the same surface density ratio if the diffusion is caused by the vertical shear instability (orange line). The scale height which is induced
by the vertical shear instability decreases with increasing surface density ratio (green and purple line). However, it is higher than the value that
the streaming instability gives rise to for all surface density ratios that we consider. In contrast, the maximum dust volume density is significantly
smaller if the streaming instability drives the turbulence in the dust layer than if the turbulence is caused by the vertical shear instability. In the
former case, the dust-to-gas volume density ratio amounts to a few hundred for a surface density ratio of 2%. In the latter case, on the other hand,
it exceeds 10* for the same surface density ratio, and 10* for a surface density ratio of 10%. In all cases, the maximum dust density is greater than
the Roche density pg in the midplane at the inner radial boundary of the simulation domains, i.e., the maximum Roche density in the simulations.
The ratio of this Roche density to the gas density is marked as a black line.

the highest density ratios. This turbulent strength is similar to
that caused by the streaming instability throughout the dust layer
in the SIwhileVSI scenario. However, we note that even in the
regions with the highest density ratios in SlafterVSI, the Mach
number is greater than in the regions with the same density
ratios in SIwhileVSI. This is because the vertical shear insta-
bility gives rise to stronger bulk motions of these regions in
the former scenario than the streaming instability in the latter
scenario.

The turbulent strength that the streaming instability induces
in the scenario SIwhileVSI is also lower if the density ratio
exceeds a few. This is in agreement with Johansen et al. (2009)
who find that the collision speeds of dust grains in the fila-
ments forming in their simulations of the streaming instability
are smaller if the dust density is higher.

4.3. Vertical and radial dust concentration

The dust-to-gas scale height ratio in SIwhileVSI (blue line) and
SlafterVSI (orange, green, and purple lines) is shown in the left
panel of Fig. 7. In the former scenario, the streaming instability
is the source of turbulence in the dust layer. The dust sedimenta-
tion and the vertical diffusion of the dust which it causes reach
a balance at a dust-to-gas scale height ratio of ~1% (see also
Sect. 5).

Since the vertical shear instability drives stronger turbulence
than the streaming instability, we find the equilibrium dust scale
height to be greater in the SlafterVSI scenario. On the other
hand, it decreases with increasing dust-to-gas surface density
ratio in this latter scenario: for a ratio of 2%, the dust scale height
amounts to ~10% of the gas scale height. In comparison, if the
ratio is equal to 10% the scale height is close to the value in

SIwhileVSI. We show in Sect. 5 that the scale height which is
induced by the streaming instability is largely independent of the
surface density ratio.

The dust settling to smaller scale heights for higher surface
density ratios is most probably a consequence of the vertical
shear instability being more suppressed by the dust-induced
buoyancy. Lin (2019) finds the instability to diffuse dust with
a dimensionless stopping time of 0.001 to a scale height that
is similar to the gas scale height if the surface density ratio
amounts to 1%, but that the dust scale height is an order of
magnitude smaller if the ratio is equal to 5% (see their Fig. 9).
These scale heights are significantly greater than the ones in
the SlafterVSI scenario. This is likely because we simulate dust
with stopping times of between 0.046 and 0.46, which is more
weakly coupled to the gas and is therefore less elevated by the
vertical gas motions.

To investigate whether or not in the SlafterVSI scenario the
vertical shear instability can be quenched if the dust is initialized
with a smaller scale height and thus a higher midplane density,
we conducted a simulation with an initial surface density ratio
of 2% and an initial dust scale height of 1% of the gas scale
height rather than the fiducial value of 10%. Despite this scale
height being comparable to the one which is induced by the
streaming instability in the SIwhileVSI scenario and the initial
midplane dust-to-gas density ratio being of order unity, we find
that the vertical shear instability is not noticeably affected. The
dust is elevated to a dust-to-scale height ratio of ~10% in less
than an orbital period in this simulation.

In the right panel of Fig. 7, we depict the maximum dust-
to-gas density ratio in the two scenarios. We note that this max-
imum is stochastic and dependent on the resolution (Johansen
& Youdin 2007; Bai & Stone 2010c). Nonetheless, we find the
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Fig. 8. Dust-to-gas volume density ratio pg/p, as a function of r and z (upper panels) as well as dust-to-gas surface density ratio /X, as functions
of r and t (lower panels). The upper panels show the spatial dust distribution 5 kyr after the dust initialization. We compare a simulation in which
the turbulence in the dust layer is driven by the streaming instability (left panels) and two simulations in which the vertical shear instability is the
main source of turbulence (middle and right panels). For the same dust-to-gas surface density ratio of Z = 0.02, the dust scale height is smaller, but
the radial dust concentration is weaker in the former case. (The values of Z are specified in the titles.) In the latter case, more dust is accumulated
in overdensities if the surface density ratio is higher. Some of the accumulations are sufficiently dense for their radial drift to cease almost entirely.

maximum dust density to exceed the maximum Roche density,

90k (r = 10 au, z = 0)
4nG ’

in both scenarios. In other words, if the dust self-gravity were
included in our model, local dust overdensities could undergo
gravitational collapse and form planetesimals. This is in line with
expectations for the SIwhileVSI scenario since the surface den-
sity ratio of 2% in this scenario exceeds the critical value for
the dust concentration by the streaming instability to be strong
enough to lead to planetesimal formation (Carrera et al. 2015;
Yang et al. 2017).

If the radial concentration of the dust were comparable in
both scenarios, the maximum dust density would by tendency be
greater in SIwhileVSI because the dust scale height is smaller in
this scenario. On the contrary, we find the maximum dust density
to be considerably higher in SlafterVSI. The maximum of the
density ratio amounts to a few hundred in SIwhileVSI, but to a
few thousand for the same surface density ratio in SlafterVSI, and
to more than 10* for higher surface density ratios. We investigate
the radial dust concentration in the following.

In the upper panels of Fig. 8, we show the spatial dust dis-
tribution 5 kyr after the dust is introduced in SIwhileVSI (left
panel) and in SlafterVSI (middle and right panels). In agreement
with what can be seen from Fig. 7, the oscillating dust midplane
layer extends to greater heights in the latter scenario than in the
former. In addition, the dust is more uniformly distributed in the
radial dimension in the former scenario. Interestingly, the region
between r = 15 and 30 au is depleted of dust in both simula-
tions of the SlafterVSI scenario that are presented in Fig. 8. The
reason for this depletion is unclear.

The time- and radius-dependence of the dust-to-gas sur-
face density ratio in SIwhileVSI is depicted in the lower-left
panel of Fig. 8. The streaming instability causes the dust to

pR,max -
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radially accumulate in overdensities. Comparable, azimuthally
elongated filaments are found in three-dimensional simulations
of the instability (Johansen et al. 2007; Bai & Stone 2010b;
Kowalik et al. 2013). As noted above, the dust concentration in
this scenario is sufficiently strong for the streaming instability to
induce planetesimal formation.

From the lower-middle and lower-right panels, it can be seen
that similar, but significantly denser dust concentrations form in
SlafterVSI. If the surface density ratio is higher, that is to say the
total dust mass is greater, more dust is contained in overdensities.
The radial drift of overdensities is reduced in both scenarios.
However, it is only in the SlafterVSI scenario that some of the
accumulations are dense enough for their radial drift to be nearly
completely halted.

Stoll & Kley (2016) perform simulations of the vertical shear
instability in which dust and the drag exerted on it by the gas
are included. These latter authors find that pressure fluctuations
which are induced by the vertical shear instability lead to a radial
concentration of the dust. This concentration is strongest if the
dimensionless stopping time of the dust is close to unity. Nev-
ertheless, because they do not take the drag back-reaction of
the dust on the gas into account, the radial drift speed does not
depend on the dust density in their simulations.

In the vicinity of the dust overdensities in the SlafterVSI sce-
nario, we find the streaming instability to contribute to the driv-
ing of turbulence. At the end of the simulation of the SlafterVSI
scenario with a surface density ratio of 2% — 55 kyr after the
beginning of the simulation and 5 kyr after the initialization of
the dust — several overdensities can be found between = 30 au
and 40 au, and around 60 au (see the lower-middle panel of
Fig. 8). From the right panel of Fig. 3, it is evident that at
this time and these radii small-scale perturbations are present.
We associate these perturbations with the streaming instability
because they are not observable in our model of the vertical shear
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Fig. 9. Mach number of the vertical gas velocity as a function of r and z in simulations of dust and a locally adiabatic gas. The Mach number at radii
of less than ~3 au is similarly high in the simulation without (adi_Lr=9au; left panel) or with dust (adi_Z=0.02_Lr=9au; right panel). This is in
spite of the streaming instability operating in the latter simulation, but not in the former one. At larger radii in the simulation that includes dust, the
streaming instability induces large-scale perturbations with M, ~ 10~ away from the midplane. These perturbations are similar in shape to the
ones caused by the vertical shear instability, but they are weaker, are bent inwards rather than outwards, and are not symmetric with respect to
the midplane (compare with Fig. 1). In the inlay, which extends to 0.1 gas scale heights H, above and below the midplane, small-scale perturbations

with My, ~ 1072 in the midplane can be seen.

instability only. Therefore, it is most probably a combination of
the vertical shear instability and the streaming instability that
induces the dust accumulation in this scenario. We speculate that
the vertical shear instability first concentrates the dust in weak
overdensities, as shown by Stoll & Kley (2016). Subsequently,
the streaming instability causes the growth of these seeds to the
dense accumulations that we find in our simulations.

The fact that the dust is radially more concentrated in
SlafterVSI despite its vertical diffusion being stronger in this
scenario is consistent with the results of the numerical study by
Yang et al. (2018). These latter authors show that the radial dust
concentration owing to the streaming instability is not signifi-
cantly affected by the vertical dust diffusion that is induced by
nonideal MHD turbulence.

5. Global simulations of the streaming instability

To study the vertical and radial gas motions induced by the
streaming instability, as well as the dust scale height, we employ
our model including dust and locally adiabatic gas. Because the
gas is locally adiabatic, the vertical shear instability is quenched
by vertical buoyancy.

The Mach number of the vertical motions in this model as
well as its dust-free equivalent are shown in Fig. 9. Since in the
latter model (left panel) the streaming instability is not active, the
turbulence in this model is most probably a numerical artifact
caused by vertical shear that results from imperfect boundary
conditions. At radii greater than ~3 au, this artificial turbulence
is negligibly weak compared to the turbulence driven by the
streaming instability in the model with dust (right panel). How-
ever, at smaller radii, we cannot distinguish between artificial
turbulence and turbulence caused by the streaming instability.
We therefore exclude these radii from the following analysis.

In the model including dust, the streaming instability
induces small-scale perturbations with a turbulent strength
of My, = 0.01 in the dust midplane layer (see the inlay in
the right panel) and somewhat weaker large-scale perturbations
away from it. The small-scale perturbations are similar to the
ones caused by streaming instability in the model in which both

this latter instability and the vertical shear instability operate (see
Fig. 3). We find both kinds of perturbations to be largely isotropic
(see also Fig. 5).

The large-scale perturbations resemble the perturbations
caused by the vertical shear instability in that their radial-to-
vertical wavelength ratio is much less than one (see Fig. 1). In
contrast to these, their symmetry is odd with respect to the
midplane and they are bent inwards. This bending of the per-
turbations can be explained by gas moving both vertically away
from the midplane and radially outwards, the latter being caused
by the inward radial drift of the dust and the conservation of
angular momentum.

In the local shearing box simulations presented by Li et al.
(2018), the streaming instability gives rise to the same two kinds
of perturbations with a similar turbulent strength (compare with
their Fig. 2). However, the large-scale perturbations observed by
these latter authors are bent outwards rather than inwards. Never-
theless, these perturbations are likely suppressed by the stronger
ones caused by the vertical shear instability under more realistic
conditions, that is, in simulations including heating and cooling
by radiation rather than an adiabatic equation of state (Stoll &
Kley 2014; Flock et al. 2017).

5.1. Veertical gas velocity and dust scale height

In Fig. 10, we show the dust-to-gas scale height ratio as well as
the Mach number of the vertical gas velocity in the midplane
after dust settling and vertical diffusion have reached an equi-
librium. We find both the dust scale height and the turbulent
strength to be similar in the model with a dust-to-gas surface
density ratio of 2% and the model with a ratio of 1%. The
equilibrium scale height and the Mach number do not depend
significantly on the initial dust scale height either, regardless of
the increase in time taken for the dust to sediment to the mid-
plane if the scale height is greater. Furthermore, our results are
converged with respect to resolution.

Bai & Stone (2010b) study local shearing box simulations
of the streaming instability with surface density ratios of 1, 2,
or 3%. These latter authors derive the strength of the vertical
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Fig. 10. Ratio of the dust scale height, as the root mean square of z4, to the gas scale height H, (left panel) as well as mass-weighted root mean square
of M, . in the midplane (right panel). Both quantities are depicted as functions of r. To compute the root mean square, we average over 50 or 500 yr
after the dust scale height has reached an equilibrium value in the simulation domains spanning 1 au < < 10 au or 10 au < r < 100 au, respec-
tively. The dashed line marks the boundary between these domains. The model with an initial dust-to-gas scale height ratio of (Hy/H,)inie = 0.1, a
dust-to-gas surface density ratio of Z = 2%, and the fiducial resolution (blue line) is shown together with the models that deviate from this fiducial
one in that (Hyq/Hy)ini = 1, that Z = 1% (green line), or that the initial and maximum resolution are doubled (purple line). While both the dust
scale height and the Mach number depend on the radius, they are largely independent of the initial dust scale height, the surface density ratio, and

the resolution.

diffusion as well as the scale height of the dust from fitting a
Gaussian distribution to the vertical dust density profile. In con-
trast to us, they find the vertical diffusion to be stronger and the
scale height to increase with the dust-to-gas surface density ratio
if the ratio is less than a threshold value. Above this threshold
value, which depends on the particle size, the turbulent strength
decreases again, and the dust settles to smaller scale heights.

The dust scale height is equal to ~1% of the gas scale height
at all radii in our model. The streaming instability gives rise to a
similar dust scale height in our model in which both this lat-
ter instability and the vertical shear instability are active and
begin to grow at the same time (see the left panel of Fig. 7).
Comparable dust scale heights are further found in local shear-
ing box simulations, for example, the ones that were conducted
by Yang & Johansen (2014) and Carrera et al. (2015). For these
scale heights and the dust-to-gas surface density ratios of the
order of 1% which we simulate, the ratio of the dust to the gas
density in the midplane is of order unity, and the linear growth
rate of the instability is largest (Youdin & Goodman 2005).

The thickness of the dust layer is set in a self-regulatory
manner if the turbulent diffusion of the dust is caused by the
streaming instability (Bai & Stone 2010b): if the dust scale height
is greater than the equilibrium value, the instability induces
weaker turbulence, which does not balance the dust settling
towards the midplane. On the other hand, if the scale height
is less than the equilibrium value, the instability drives overly
strong turbulence, which lifts the dust away from the midplane.

At radii r 210 au, the Mach number is consistent with the
observed values of the order of 1072 (Flaherty et al. 2015, 2017,
2018; Pinte et al. 2016; Ohashi & Kataoka 2019). The turbulent
strength is comparable in our model in which both the vertical
shear instability and the streaming instability operate, but the
latter drives the turbulence in the dust layer. Pinte et al. (2016)
and Ohashi & Kataoka (2019) derive the turbulent strength from
the dust scale height, which is regulated by the streaming insta-
bility if it is the main source of turbulence in the dust layer of
protoplanetary disks. We note that these latter authors observe a
dust-to-gas scale height ratio of 10% and one-third, respectively,
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which is an order of magnitude larger than the ratio we find. This
can be explained by the fact that these latter authors consider
micron- and millimeter-sized dust grains, which are elevated to
greater heights than the centimeter-sized ones in the simulations
that we present in Fig. 10.

5.2. Dependence of turbulent strength on dust stopping time
and radial gas pressure gradient

We find that the strength of the turbulence that is driven by the
streaming instability, like the linear growth rate of the instabil-
ity (Youdin & Goodman 2005), increases with the speed of the
radial dust drift. The drift is faster if the dimensionless stopping
time of the dust is closer to one and the radial gas pressure gra-
dient is stronger. Both quantities increase with the radius in our
model of dust with a fixed size (see Egs. (13) and (16)). From
Fig. 10, it is evident that both the Mach number and the dust
scale height are also consequently greater at larger radii.

To analyze the extent to which the turbulent strength depends
on the stopping time and the magnitude of the pressure gradient
individually, we compare three simulations with different dimen-
sionless stopping times: in one, it is fixed at 0.1, while in the
other two it ranges from 0.0046 to 0.046 and from 0.046 to 0.46,
respectively. The Mach number in each of these simulations is
depicted in Fig. 11 as a function of the radius and the pressure
gradient strength. We find an equivalent radius-dependence of
the dust scale height in the three simulations.

The turbulent strength increases with both the dimension-
less pressure gradient parameter and the dimensionless stopping
time until it saturates for respective values of Il ~ 0.1 and
of 74op = 0.05. This is consistent with Bai & Stone (2010a,b)
finding the scale height of the dust and its vertical diffusion to
increase with the strength of the pressure gradient and the stop-
ping time. The dependence on the pressure gradient strength
is evident when considering only the simulation with a fixed
stopping time (blue line in the figure).

At all radii in the simulation with a dimensionless stop-
ping time of 0.1 and the simulation with stopping times greater
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Fig. 11. Root mean square of M, in the midplane as a function of r
(lower abscissa) and the dimensionless gas pressure gradient param-
eter I1 in the midplane (upper abscissa). The root mean square is
calculated using the mass-weighted mean over 500 yr after an equi-
librium value of the dust scale height is reached. In the simulation
adi_Z=0.02_Lr=90au_taustop=0.1 (blue line), in which the dimension-
less dust stopping time 7, is fixed at 0.1, the Mach number increases
with the pressure gradient parameter if I1 < 0.09, but is approxi-
mately constant if the pressure gradient is stronger. The Mach number
in this one and the simulation adi_Z=0.02_Lr=90au (green line), in
which the stopping time increases from 0.046 to 0.46, is comparable at
all radii. That is, the turbulent strength does not depend significantly
on the stopping time in this stopping time regime. The Mach num-
ber is lower overall, but depends more strongly on the radius in the
simulation adi_7Z=0.02_Lr=90au_a=3mm (orange line) in which the
stopping time ranges from 0.0046 to 0.046. In this regime, the turbu-
lent strength increases with both the strength of the pressure gradient
and the stopping time.

than 0.046 (green line), the turbulent strength is about the same,
and therefore it is largely independent of the stopping time
if Tyop 2 0.05. In contrast, in the simulation with stopping times
of less than 0.046 (orange line) the turbulence is overall weaker,
but its strength increases more strongly with the radius than in
the other two simulations. That is, if 740, < 0.05 the strength
depends not only on the pressure gradient magnitude, but also
on the stopping time.

5.3. Radial gas velocity

In Fig. 12, we show the radial velocity of the gas. The gas moves
outward on average as a consequence of the inward radial drift
of the dust and, as the total angular momentum is conserved, the
transfer of angular momentum from the dust to the gas. Yet, the
turbulent motions that are induced by the streaming instability
lead to the variance in the gas velocity being greater than the
speed of this mean outward motion. That is, the streaming insta-
bility does not cause a sustained inward transport of gas mass
(and outward transport of angular momentum) that contributes
to the observed stellar accretion (Alcala et al. 2017).

6. Discussion

6.1. Implications for turbulence and planetesimal formation in
protoplanetary disks

We have studied the interaction of two instabilities, the vertical
shear instability and the streaming instability. Both instabilities
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Fig. 12. Radial gas velocity (solid line) as a function of r in the sim-
ulations adi_Z=0.02_Lr=9au and adi_Z=0.02_Lr=90au. (The dashed
lines marks the boundary between the domains of the two simulations.)
The velocity is computed as the mass-weighted average over the ver-
tical domain extent and a time-span of 50 and 500 yr, respectively,
after an equilibrium dust scale height has been attained in each simula-
tion. The average radial velocity at » > 3 au is plotted as a dotted line
and amounts to 0.035 ms~'. This outward motion is caused by the dust
drifting radially inwards and its angular momentum being transferred to
the gas. However, it is evident that the mean of the velocity is less than
its standard deviation, which is equal to 0.16 ms™'. This is a result of
the turbulent motions caused by the streaming instability.

appear to be robust: operation of the vertical shear instability
requires a vertical rotation profile and a sufficiently short gas
cooling timescale. Lin & Youdin (2015) show that in the MMSN
model, the instability can grow between r ~ 5 and 50 au. On
the other hand, only dust and a radial gas pressure gradient are
necessary for the streaming instability to be active.

We considered two scenarios: in the first scenario, the verti-
cal shear instability and the streaming instability start to grow at
the same time. In this scenario, the turbulence in the dust layer is
driven by the streaming instability. If the vertical shear instabil-
ity has already saturated beforehand, as is the case in the second
scenario, it remains the main source of turbulence even while the
streaming instability is active.

It is unclear which of these scenarios is more realis-
tic: Monte-Carlo simulations of dust coagulation show that
(sub-)micron-sized grains grow to millimeter- or centimeter-
sized aggregates within 10° to 10* orbital periods (Zsom et al.
2010; Lorek et al. 2018). However, the point at which dust growth
commences during the formation of a protoplanetary disk is
unclear, as is the point at which the conditions in a disk become
conducive to the growth of the vertical shear instability and the
streaming instability.

The vertical shear instability gives rise to stronger turbu-
lence, and thus a stronger vertical dust diffusion, than the
streaming instability. Nonetheless, we find this instability, in
combination with the streaming instability, to cause the dust to
be substantially more concentrated in the radial dimension than
the streaming instability alone. We note that previous studies
show the dust accumulation owing to the streaming instability to
be sufficient to lead to planetesimal formation for the dust-to-gas
surface density ratios we consider.

In other words, for a given dust size, the critical surface
density ratio that is required for planetesimal formation may
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be significantly lower if not only the streaming instability, but
both the vertical shear instability and the streaming instabil-
ity together induce the dust concentration. The critical surface
density ratio exceeds 1% for all dust sizes in the former case
(Carrera et al. 2015; Yang et al. 2017), but might be lower than
this canonical interstellar medium value in the latter case.

6.2. Limitations of our numerical study

Both the linear vertical shear instability (Nelson et al. 2013;
Barker & Latter 2015) and the linear streaming instability
(Youdin & Goodman 2005) are axisymmetric in nature.
Nonetheless, slight deviations from this symmetry are found in
simulations of the nonlinear regime of both the former instabil-
ity (Nelson et al. 2013; Stoll & Kley 2014) and the latter one
(Kowalik et al. 2013). These deviations are not captured by our
two-dimensional simulations.

Umurhan et al. (2019) and Chen & Lin (2020) analytically
examined the linear streaming instability in connection with the
a-model for protoplanetary disk turbulence (Shakura & Sunyaev
1973). These latter authors find that turbulence reduces the
growth rate of the instability compared to the purely laminar
case. However, this analysis is not applicable if the streaming
instability itself is the dominant source of turbulence.

Similarly, Gole et al. (2020) study planetesimal formation
owing to the streaming instability in local shearing box simula-
tions with driven Kolmogorov-like turbulence that is not affected
by the presence of the dust. In the simulations of these latter
authors, planetesimals formation is hampered by turbulence and
quenched if the turbulent Mach number is greater than ~1072.

We studied only models with a single dust size (or a single
dimensionless dust stopping time). Krapp et al. (2019) show that
the linear growth rate of the streaming instability can decrease
if multiple dust species with a distribution of sizes rather than
a single species are simulated. Nevertheless, simulations of the
nonlinear streaming instability including dust size distributions
do not seem to show indications of this effect (Bai & Stone
2010b; Schaffer et al. 2018).

Furthermore, we did not take into account other hydrody-
namic instabilities like the convective overstability (Klahr &
Hubbard 2014; Lyra 2014), the subcritical baroclinic instability
(Klahr & Bodenheimer 2003; Klahr 2004; Lyra 2014), or the
zombie vortex instability (Marcus et al. 2015, 2016; Lesur &
Latter 2016). These instabilities do not operate in our model
because the former two require finite gas cooling timescales —
we simulate either a locally adiabatic or a locally isothermal gas
— while the latter is three-dimensional.

In addition, our simulations do not include magnetic fields.
Cui & Bai (2020) study the vertical shear instability in nonideal
MHD simulations. These latter authors find that magnetized disk
winds and the vertical shear instability can coexist. Under con-
ditions that are typical of protoplanetary disks, the instability
induces a comparable turbulent strength in their simulations and
in purely hydrodynamical ones like ours. Nonetheless, if the
magnetization is enhanced or the gas is more strongly coupled
to the magnetic field, the instability causes weaker turbulence.

7. Summary

We present two-dimensional axisymmetric global numerical
simulations of protoplanetary disks spanning orbital radii
between 1 and 100 au. The simulations include Lagrangian par-
ticles to model the dust, the mutual drag between dust and gas,
and the radial and vertical stellar gravity. We used the FLASH
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Code to conduct these simulations, which allowed us to apply
adaptive mesh refinement to increase the resolution locally in
and close to the dust layer in the midplane of the disks.

Employing these simulations, we investigated the turbulence
driven by the vertical shear instability and that driven by the
streaming instability individually, as well as the interaction of
the two instabilities. The results of our study can be summarized
as follows:

— We conducted simulations of the vertical shear instability
only, with vertical domain extents of one or two gas scale
heights above and below the midplane. Only the latter verti-
cal size is sufficient to reproduce the turbulent strength found
by previous numerical studies of vertically larger domains.
The Mach number of the vertical gas motions is of the order
of 107! in the saturated state of the instability (Flock et al.
2017).

— If both the vertical shear instability and the streaming insta-
bility start to grow simultaneously, we find the turbulence in
the dust midplane layer to be mainly driven by the streaming
instability. This is most likely the result of a combination
of two effects: in the midplane, the streaming instability
grows faster in turbulent strength than the vertical shear
instability. Furthermore, the weight of the dust induces an
effective buoyancy in the gas that quenches the vertical shear
instability (Lin & Youdin 2017; Lin 2019).

— The vertical dust settling and the turbulent diffusion that is
induced by the streaming instability attain an equilibrium if
the dust-to-gas scale height ratio is equal to ~1%. The dust
scale height is set in a self-regulatory way if the streaming
instability gives rise to the diffusion of the dust (Bai & Stone
2010b): if the scale height is less than the equilibrium value,
then the turbulent strength is greater than the equilibrium
strength, and the dust is lifted away from the midplane.

— We show that the streaming instability drives isotropic tur-
bulence with a Mach number of up to ~1072. This is in
agreement with observed values in protoplanetary disks
(Flaherty et al. 2015, 2017, 2018; Pinte et al. 2016; Ohashi &
Kataoka 2019). In particular, Pinte et al. (2016) and Ohashi
& Kataoka (2019) obtain this Mach number from the scale
height of the dust disks surrounding HL Tau and HD 163296,
respectively; that is, they would probe the turbulent strength
induced by the streaming instability if this instability were
the primary source of turbulence in the dust layer of
protoplanetary disks.

— Both the equilibrium dust scale height and the Mach number
that are induced by the streaming instability are largely inde-
pendent of the dust-to-gas surface density ratio and the initial
dust scale height. The turbulent strength, and with it the
scale height, increases with the speed of the radial dust drift.
In other words, the turbulence is stronger if the dust stop-
ping time or the radial gas pressure gradient is greater. The
strength saturates for dimensionless stopping times of ~0.05
and dimensionless pressure gradient parameters, as defined
by Bai & Stone (2010b), of ~0.1.

— In contrast, if the vertical shear instability has attained a satu-
rated state before we introduce the dust into our simulations,
then this instability remains the primary source of turbulence
in the dust layer; it gives rise to stronger turbulence than
the streaming instability, which elevates the dust to greater
scale heights. For a dust-to-gas surface density ratio of 2%,
the instability induces a Mach number of ~10~! and a dust
scale height of ~10% of the gas scale height. Nevertheless,
if the surface density ratio is higher, the instability is more
strongly quenched by the dust-induced buoyancy.
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— We find that a combination of the vertical shear instability
and the streaming instability leads to a considerably stronger
radial concentration of the dust than the streaming instabil-
ity only. The dust accumulations are dense enough for their
radial drift to be halted almost completely. This is despite the
vertical shear instability inducing stronger vertical diffusion
than the streaming instability. We speculate that the vertical
shear instability induces the formation of weak overdensities
that seed the streaming instability. The streaming instabil-
ity in turn causes strong dust concentration that would likely
lead to planetesimal formation in simulations including the
self-gravity of the dust.

Acknowledgements. We thank the anonymous referee and Chao-Chin Yang for
their constructive feedback that helped to improve this paper. To analyze and
visualize the simulations, the Python packages yt (http://yt-project.org)
(Turk et al. 2011), Matplotlib (https://matplotlib.org) (Hunter 2007), and
NumPy (https://numpy.org) (Oliphant 2006) have been used. The FLASH
Code has in part been developed by the DOE NNSA-ASC OASCR Flash Center
at the University of Chicago. Computational resources employed to conduct the
simulations presented in this paper were provided by the Regionales Rechenzen-
trum at the University of Hamburg, by the Norddeutscher Verbund fiir Hoch-
und Hochstleistungsrechnen (HLRN), and by the Swedish Infrastructure for
Computing (SNIC) at LUNARC at Lund University. US thanks the Univer-
sity of Hamburg for granting him a scholarship to fund his doctoral studies.
A.J. is thankful for research support by the European Research Council (ERC
Consolidator Grant 724687-PLANETESYS), the Knut and Alice Wallenberg
Foundation (Wallenberg Academy Fellow Grant 2017.0287), and the Swedish
Research Council (Project Grant 2018-04867). US and R.B. gratefully acknowl-
edge financial support by the Deutsche Forschungsgemeinschaft (DFG), grant
BA 3706/18-1. R.B. is thankful for support by the Excellence Cluster 2121
“Quantum Universe” which is funded by the DFG.

References

Alcala, J. M., Manara, C. F., Natta, A, et al. 2017, A&A, 600, A20

Andrews, S. M., & Williams, J. P. 2005, ApJ, 631, 1134

Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. 2009,
ApJ, 700, 1502

Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. 2010,
AplJ, 723, 1241

Arlt, R., & Urpin, V. 2004, A&A, 426, 755

Bai, X.-N. 2015, ApJ, 798, 84

Bai, X.-N. 2017, ApJ, 845,75

Bai, X.-N., & Stone, J. M. 2010a, ApJS, 190, 297

Bai, X.-N., & Stone, J. M. 2010b, ApJ, 722, 1437

Bai, X.-N., & Stone, J. M. 2010c, ApJ, 722, L.220

Barge, P., & Sommeria, J. 1995, A&A, 295, L1

Barker, A. J., & Latter, H. N. 2015, MNRAS, 450, 21

Baruteau, C., Fromang, S., Nelson, R. P., & Masset, F. 2011, A&A, 533,
A84

Birnstiel, T., Dullemond, C. P., & Brauer, F. 2010, A&A, 513, A79

Birnstiel, T., Ormel, C. W., & Dullemond, C. P. 2011, A&A, 525, A1l

Birnstiel, T., Klahr, H., & Ercolano, B. 2012, A&A, 539, A148

Boris, J. P. 1970, Proceedings of the Fourth Conference on the Numerical
Simulation of Plasmas, 3

Carrera, D., Johansen, A., & Davies, M. B. 2015, A&A, 579, A43

Carrera, D., Gorti, U., Johansen, A., & Davies, M. B. 2017, ApJ, 839, 16

Chapman, S., & Cowling, T. G. 1970, The mathematical theory of non-uniform
gases. An account of the kinetic theory of viscosity, thermal conduction and
diffusion in gases, 3rd edn. (Cambridge: Cambridge University Press)

Chen, K., & Lin, M.-K. 2020, ApJ, 891, 132

Chiang, E., & Youdin, A. N. 2010, Ann. Rev. Earth Planet. Sci., 38, 493

Cui, C., & Bai, X.-N. 2020, ApJ, 891, 30

Cuzzi, J. N., Hogan, R. C., & Shariff, K. 2008, ApJ, 687, 1432

Delzanno, G. L., & Camporeale, E. 2013, J. Comput. Phys., 253, 259

Drazkowska, J., & Alibert, Y. 2017, A&A, 608, A92

Drazkowska, J., Alibert, Y., & Moore, B. 2016, A&A, 594, A105

Dubrulle, B., Morfill, G., & Sterzik, M. 1995, Icarus, 114, 237

Dullemond, C. P., Birnstiel, T., Huang, J., et al. 2018, ApJ, 869, L46

Ercolano, B., Jennings, J., Rosotti, G., & Birnstiel, T. 2017, MNRAS, 472,
4117

Flaherty, K. M., Hughes, A. M., Rosenfeld, K. A., et al. 2015, ApJ, 813, 99

Flaherty, K. M., Hughes, A. M., Rose, S. C., et al. 2017, ApJ, 843, 150

Flaherty, K. M., Hughes, A. M., Teague, R., et al. 2018, Ap], 856, 117

Flock, M., Nelson, R. P., Turner, N. J., et al. 2017, ApJ, 850, 131

Fricke, K. 1968, ZAp, 68, 317

Fromang, S., & Papaloizou, J. 2006, A&A, 452, 751

Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273

Goldreich, P., & Schubert, G. 1967, ApJ, 150, 571

Gole, D. A., Simon, J. B, Li, R, Youdin, A. N., & Armitage, P. J. 2020, ApJ,
submitted [arXiv:2001.10000]

Gressel, O., Turner, N. J., Nelson, R. P., & McNally, C. P. 2015, ApJ, 801, 84

Grundy, W., Noll, K., Roe, H., et al. 2019, Icarus, in press

Giittler, C., Blum, J., Zsom, A., Ormel, C. W., & Dullemond, C. P. 2010, A&A,
513, A56

Hayashi, C. 1981, Prog. Theor. Phys. Suppl., 70, 35

Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90

Ida, S., & Guillot, T. 2016, A&A, 596, L3

Johansen, A., & Klahr, H. 2005, ApJ, 634, 1353

Johansen, A., & Youdin, A. 2007, ApJ, 662, 627

Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. 2007, Nature, 448, 1022

Johansen, A., Youdin, A., & Mac Low M.-M. 2009, ApJ, 704, L75

Klahr, H. 2004, ApJ, 606, 1070

Klahr, H. H., & Bodenheimer, P. 2003, ApJ, 582, 869

Klahr, H., & Hubbard, A. 2014, Ap]J, 788, 21

Kowalik, K., Hanasz, M., Wéltanski, D., & Gawryszczak, A. 2013, MNRAS,
434, 1460

Krapp, L., Benitez-Llambay, P., Gressel, O., & Pessah, M. E. 2019, ApJ, 878,
L30

Laibe, G., & Price, D. J. 2011, MNRAS, 418, 1491

Lesur, G. R. J., & Latter, H. 2016, MNRAS, 462, 4549

Li, R, Youdin, A. N., & Simon, J. B. 2018, ApJ, 862, 14

Lin, M.-K. 2019, MNRAS, 485, 5221

Lin, M.-K., & Youdin, A. N. 2015, ApJ, 811, 17

Lin, M.-K., & Youdin, A. N. 2017, ApJ, 849, 129

Lorek, S., Lacerda, P., & Blum, J. 2018, A&A, 611, A18

Lyra, W. 2014, ApJ, 789, 77

MacNeice, P., Olson, K. P., Mobarry, C., de Fainchtein, R., & Packer, C. 2000,
Comput. Phys. Commun., 126, 330

Marcus, P. S., Pei, S., Jiang, C.-H., et al. 2015, ApJ, 808, 87

Marcus, P. S., Pei, S., Jiang, C.-H., & Barranco, J. A. 2016, ApJ, 833, 148

Mignone, A., Flock, M., & Vaidya, B. 2019, ApJS, 244, 38

Nelson, R. P., & Papaloizou, J. C. B. 2004, MNRAS, 350, 849

Nelson, R. P, Gressel, O., & Umurhan, O. M. 2013, MNRAS, 435, 2610

Nesvorny, D., Youdin, A. N., & Richardson, D. C. 2010, AJ, 140, 785

Nesvorny, D., Li, R., Youdin, A. N., Simon, J. B., & Grundy, W. M. 2019, Nat.
Astron., 364

Ohashi, S., & Kataoka, A. 2019, ApJ, 886, 103

Oishi, J. S., & Mac Low M.-M. 2009, ApJ, 704, 1239

Oishi, J. S., Mac Low, M.-M., & Menou, K. 2007, ApJ, 670, 805

Oliphant, T. E. 2006, A guide to NumPy (USA: Trelgol Publishing)

Ormel, C. W., & Cuzzi, J. N. 2007, A&A, 466, 413

Pinte, C., Dent, W. R. F., Ménard, F., et al. 2016, ApJ, 816, 25

Ros, K., & Johansen, A. 2013, A&A, 552, A137

Ros, K., Johansen, A., Riipinen, 1., & Schlesinger, D. 2019, A&A, 629, A65

Schifer, U., Yang, C.-C., & Johansen, A. 2017, A&A, 597, A69

Schaffer, N., Yang, C.-C., & Johansen, A. 2018, A&A, 618, A75

Schlichting, H. E., & Sari, R. 2008, ApJ, 686, 741

Schoonenberg, D., & Ormel, C. W. 2017, A&A, 602, A21

Schoonenberg, D., Ormel, C. W., & Krijt, S. 2018, A&A, 620, A134

Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337

Simon, J. B., Armitage, P. J., Li, R., & Youdin, A. N. 2016, ApJ, 822, 55

Squire, J., & Hopkins, P. F. 2018, MNRAS, 477, 5011

Stoll, M. H. R., & Kley, W. 2014, A&A, 572, A77

Stoll, M. H. R., & Kley, W. 2016, A&A, 594, AS57

Stoll, M. H. R., Kley, W., & Picogna, G. 2017, A&A, 599, L6

Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS, 192, 9

Umurhan, O. M., Estrada, P. R., & Cuzzi, J. N. 2019, ApJ, submitted
[arXiv:1906.05371]

Weidenschilling, S. J. 1977, MNRAS, 180, 57

Yang, C.-C., & Johansen, A. 2014, ApJ, 792, 86

Yang, C.-C., & Johansen, A. 2016, ApJS, 224, 39

Yang, C.-C., Mac Low, M.-M., & Menou, K. 2009, ApJ, 707, 1233

Yang, C.-C., Mac Low, M.-M., & Menou, K. 2012, Ap]J, 748, 79

Yang, C.-C., Johansen, A., & Carrera, D. 2017, A&A, 606, A80

Yang, C.-C., Mac Low, M.-M., & Johansen, A. 2018, ApJ, 868, 27

Youdin, A. N., & Goodman, J. 2005, ApJ, 620, 459

Youdin, A., & Johansen, A. 2007, ApJ, 662, 613

Youdin, A. N., & Lithwick, Y. 2007, Icarus, 192, 588

Zsom, A., Ormel, C. W, Giittler, C., Blum, J., & Dullemond, C. P. 2010, A&A,
513, A57

A190, page 15 of 18



A&A 635, A190 (2020)

Appendix A: Leapfrog algorithm for cylindrical
geometries

A.1. Implementation

We implement a second-order-accurate, explicit Leapfrog algo-
rithm for the time integration of particles in cylindrical geome-
tries. The algorithm is based on the one developed by Boris
(1970) for charged particles in simulations including electric and
magnetic fields. It has been described as well by, for example,
Delzanno & Camporeale (2013).

For the update of the vertical components of the parti-
cle velocity and position, we adopt the Leapfrog algorithm for
Cartesian geometries that is part of the FLASH Code:

1
172 ;+ —a’ AL,

o = ol + sl (A1)
o112 = ’;,”2 +Aydl; + By, and (A2)
gt =+ A (A.3)

where 77, v;'i, and a . are the vertical position, velocity, and

accelerat1on of the lth partlcle at the nth time-step Ar”, respec-
tively. The acceleration is computed employing cloud-in-cell
mapping between the grid and the particles; in our simulations,
it is due to the stellar gravity only. We explain in Appendix B
how we take account of the acceleration caused by the drag of
the gas onto the particles. The coefficients A, and B, are given
by

1 1 1

A, = =Af"+ AP 4 = d A4
> + 3 + 6 an (A4)
1 A"
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The radial and azimuthal velocity and position compo-
nents are advanced as in Cartesian coordinates, followed by a
transformation from these to cylindrical coordinates:

1. The velocity is calculated as in a Cartesian geometry, i.e.,
inertial forces are disregarded:

’ 1
/27 _ 0
Orgri = Vrgri 5 af, 5 A1 and (A.6)
pH12 12
Uirahi = Yiroti T A a[r¢]z + Bna ,¢} i (A.7)

where the subscript {r, ¢} denotes the radial or azimuthal
component.

2. The position is updated in Cartesian geometry and then
transformed from Cartesian to cylindrical geometry:

e A (A8)
Yl = U;;I/Z’Atn’ (A.9)
A= ey and (A.10)
¢n+1 = g +an+1 (A.11)

where r! and ¢! are the radial and azimuthal position,
respectlvely, and the angle a”” can be computed as

)7n+1 n+1
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a; = arccos = arcsin .
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(A.12)
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Fig. A.1. Error of the radial coordinate r., that is computed by our
implementation of the Leapfrog algorithm for cylindrical geometries
relative to the coordinate rc, = /x% + y? that is calculated by the
already implemented algorithm for Cartesian geometries. We conduct
two equivalent simulations of a particle in a point mass gravitational
potential, one applying the former and one the latter algorithm. Both
simulations end after ten Keplerian orbital periods at the initial position
of the particle Px . As can be seen, the relative error, while varying, is
at most 2 x 1073,

3. The velocity is corrected to reflect the transformation from
Cartesian to cylindrical geometry, which entails the consid-
eration of inertial forces:

n+1/2'

02?1/2 = cos( ””)v:';l/z/ + sm( ”“) vy; '~ and (A.13)
n+1/2 n+1 n+1/2' n+1 n+1/2'
Vg sm( ) U, + cos ( ) Vgi - (A.14)

The velocity at a full time-step can be computed from the
one at a half time step as follows:
n n—1/2

v; =0,

1 -
+5 (A,,af‘ + B,a 1). (A.15)
We note that this full-step velocity is second-order accurate,
while the error in the half-step velocity is proportional to the
time-step.

A.2. Test

We test our implementation using the Leapfrog algorithm for
Cartesian geometries that is already included in the FLASH
Code as a benchmark: we conduct two analogous simulations of
a particle in the gravitational potential of a point mass, one with
a two-dimensional cylindrical and one with a three-dimensional
Cartesian geometry.

The initial position of the particle, relative to the position
of the point mass, can be expressed as (r,z) = (3 au, —1 au)
in cylindrical and by (x,y,z) = (3 au,0 au, —1 au) in Cartesian
coordinates. To establish an initial balance between the centrifu-
gal and the radial gravitational force which are exerted on the
particle, we set its velocity to

Vg = (ﬂfz%rz (cylindrical geometry) or

M .
vy = \/ (X2+yG2—+Z7)3,2 (x2 +y?) (Cartesian geometry),

(A.16)
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where M =1 M, is the point mass. Cloud-in-cell mapping is
applied to calculate the gravitational acceleration of the particle.
The grid cell edge length is fixed at 0.025 au.

In Fig. A.l, we show the relative error of the cylin-
drical radial coordinate r. with respect to the coordinate

rear = VX% + y? in Cartesian geometry. As is evident, the error
does not exceed 2 x 1073 throughout the simulations.

Appendix B: Drag
B.1. Implementation

For our implementation of the drag exerted by the gas on the dust
and vice versa, we take advantage of the first-order cloud-in-cell
mapping between the grid and the particles that is part of the
FLASH Code.
For each of the radial, azimuthal, and vertical velocity
components, we execute the following steps:
1. The gas density, pressure, and velocity component are
mapped to the particles.
2. For every particle:
(a) The full-step dust velocity component is calculated from
the stored half-step component according to Eq. (A.15).
(b) The dust stopping time #4p i computed as

% a < 9/4 Ag mep (Epstein regime) or
lastop =4 dpoa?

9peCs Agmip

a > 9/4 Ag mip (Stokes regime),
(B.1)

where  Agmfp = 1/(0gng) = pmp/(ogpe) is the gas
mean free path length, n, the gas number density,
0y =2 %107 cm? the molecular collision cross sec-
tion (Chapman & Cowling 1970), and ¢, = yP/p, the
sound speed.

(c) To the stored dust half-step velocity component, the drag
source term —Avgdmg = —(Vg — Ug)/tasop At is added,
where vy and v, are the (full-step) dust and gas velocity
components, respectively, and Az is the current time-
step.

3. The change in dust momentum Apgdrmg = MaAbgdrag 18
mapped to the grid.
4. The drag source term Avggrae = Apgdrag/(PgV) is added to
the gas velocity in each grid cell, where V is the cell volume.
We employ the global minimum of the particle stopping time and
the gas stopping time #g0p = Pg/0d a,stop 8 an upper limit of the
simulation time-step.

B.2. Test

To evaluate our algorithm, we adopt the test problem introduced
by Laibe & Price (2011) and applied by Bai & Stone (2010a),
Mignone et al. (2019) as well as Yang & Johansen (2016), who
refer to it as DUSTYBOX, particle-gas deceleration, and uniform
streaming test, respectively. This problem provides an opportu-
nity to simultaneously test the drag that is exerted by the gas on
the dust and the drag back-reaction of the dust onto the gas. In
addition, it allows us to compare the numeric solution computed
by our algorithm to an analytic one.

We conduct simulations with a two-dimensional cylindrical
geometry, as this is the geometry of the simulations we present
in the main text. Dust and gas initially move in the radial direc-
tion with vy rinit = ¢5 and vg init = —Cs, respectively. The dust and

gas density as well as the gas temperature are constant. The
equations of motion of the dust and the gas reduce to

dv )
dr % and (B.2)
dt td,stop

dogr _ Var=ver ®.3)
dr td,stop ’

where € is the solid-to-gas density ratio. The dust and the gas
velocity can be solved for analytically, yielding

t
vd,r(£) = v rinic €xp | —(1 + 6)t
d,stop
(B.4)
t
+ Ucom.rinit [ 1 —exp [—(1 + E)t and
d,stop
t
Ug,r([) = Ug,r,init €XP -1+ f)t
d,stop
(B.5)
t
+ Ucom, r,init (1 — exp [_(1 + E)l ]) 5
d,stop
where
Vg rinit + €Vp.yini
g, r,init p.r.init
Ucom,r,init = — (B.6)

1+e€

is the initial velocity of the center of mass of dust and gas.
The displacement of every dust particle relative to its initial
position is given by

Arg(#) = ra(?) — 7dnit
_ (Vd,r,init = Veom,init) 1d stop
1+e

t
(1—exp —(1+¢€) D
td,stop

(B.7)

+ Ucom,rinit -

Initially, one particle is positioned at the center of every cell.

It is natural to choose the dust stopping time #yop and the
sound speed ¢y as the units of time and velocity, respectively.
The unit of length is therefore ¢, 74 s10p. The domains of our sim-
ulations span 100 ¢ #4p in the radial dimension. The domain
boundaries are periodic, which is necessary to maintain a con-
stant dust and gas density and to conserve the total momentum
of dust and gas. The simulations end after 3 74 op-

We employ two quantities to measure the accuracy of our
implementation: the absolute error of the total momentum with
respect to the initial value and the absolute error of the particle
displacement relative to the analytic solution (see Eq. (B.7)). In
upper and lower panels of Fig. B.1, respectively, we show the
momentum and the displacement error at the end of simulations
with varying time-steps At (left panels), grid cell edge lengths Ax
(middle panels), and solid-to-gas density ratios € (right panels).

First and foremost, we note that our drag algorithm should
not be used in combination with the periodic boundary imple-
mentation that is part of the FLASH Code’. In the figure, we
mark with red crosses the errors in simulations in which parti-
cles cross the domain boundaries. The absolute error of the total
momentum, while generally of the order of 10~'° or 10~ other-
wise, can be larger than unity in these simulations (see the upper
panels).

5 This issue does not affect the simulations that are presented in the
main text since we apply diode conditions at the boundaries of their
domains.
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Fig. B.1. Absolute error of the total momentum py, of dust and gas relative to the initial total momentum piinit (Upper panels) and mean absolute
error of the simulated particle displacement Argy, with respect to the analytic solution Ar,,, (see Eq. (B.7); lower panels). In the latter case, the
mean is calculated by averaging over all particles, with the standard deviations plotted as error bars. (With one exception, the standard deviations
are too small for the error bars to be visible, though.) Both the momentum and the displacement errors are computed after 3 4 op. We show the
errors as functions of the time-step At (left panels), of the grid cell edge length Ax (middle panels), and of the dust-to-gas density ratio € (right
panels). In the title of every column of panels, the fixed values of the other two quantities are given. Simulations in which particles cross the
domain boundaries are marked with red crosses. The error in the total momentum can exceed one in these simulations, but is in general of the order
of 1071° to 10~ otherwise. The error in the displacement increases linearly with the time-step since our drag algorithm is first-order accurate. On
the other hand, it is independent of the cell size for sizes of at least 1 ¢ 74 0p. At these resolutions, the particles are displaced by less than half a cell
within 3 #40p and therefore do not transverse the boundaries. The error for the fiducial dust-to-gas density ratio of € = 0.9 amounts to 1072; while
for a ratio of € = 0.01 it is greater by a factor of a few, it is as small as ~107° if the ratio is equal to € = 100. This is despite a number of particles

crossing the boundaries if the density ratio is much less or much greater than the fiducial value.

We choose € = 0.9 as the fiducial dust-to-gas density ratio
and Ax = 1 ¢, tg40p as the fiducial resolution. This is to reduce
the influence of the boundary conditions on our examina-
tion of the drag implementation as much as possible. For the
fiducial density ratio, the analytic displacement remains less
than 0.436 ¢ tqs0p, that is, less than half a cell edge length at
the fiducial resolution, within 3 #4 sp. Indeed, no particle crosses
the boundaries in our simulations with this density ratio and the
fiducial or a lower resolution.

From the lower-left panel of the figure, it can be seen that our
implementation is first-order accurate in time. For the fiducial
time-step of At = 1072, the absolute error of the displacement
amounts to 1%. If the time-step is ten or a hundred times
smaller, the error is less by one order or two orders of magnitude,
respectively.

Reducing the resolution by a factor of ten or a hundred with
respect to the fiducial resolution does not lead to an increase
in the displacement error (see the lower-middle panel). This is
despite the displacement within 3 74 p not being resolved even
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at the fiducial resolution. Nonetheless, the momentum error is
greater at lower resolutions; it is of the order of 1077 in the
simulation with a resolution of a hundredth of the fiducial res-
olution, in which only one particle is present. On the other hand,
if the resolution is higher than the fiducial one, the error in both
the displacement and the total momentum is considerable. This
is because a large number of particles transverse the domain
boundaries.

Compared to the error for the fiducial dust-to-gas density
ratio, the displacement error increases by a factor of a few for
low density ratios, but decreases by orders of magnitude for
high ratios. This is evident from the lower-right panel, in which
the errors in simulations with the fiducial density ratio as well
as € = 0.01, e = 1, and € = 100 are shown. A number of parti-
cles cross the boundaries in both the simulation with the highest
density ratio and the one with the lowest ratio. Thus, the error
in the total momentum, though not the error in the displace-
ment, is significantly greater for these ratios than for the fiducial
one.



Outlook

The streaming instability affects the bottom-up growth from dust to planets in two regards.
On the one hand, it drives turbulence in the dust layer around the mid-plane of protoplanetary
disks. On the other hand, it induces dust concentration in gravitationally unstable clumps
that collapse and form planetesimals. Both of these aspects are studied in this thesis. In SYJ17,
we employ three-dimensional local shearing box simulations to investigate the initial mass
distribution of the planetesimals and particularly its high-mass end. In SJB20, we conduct two-
dimensional global simulations to study the instability as a source of turbulence, including how
this turbulence interacts with that caused by the vertical shear instability.

The simulations presented in S]B20 are the first multi-dimensional global simulations of the
streaming instability including Lagrangian particles to model the dust, and the second ever in
general (after Kowalik et al. 2013). Future global simulations of the instability could provide
answers to a variety of questions which, if at all, have only been touched on so far:

« How does the streaming instability interact with other instabilities? Do these interac-
tions promote dust concentration and thus facilitate planetesimal formation? Apart
from the vertical shear instability in SJB20, among the purely (magneto-)hydrodynamic
instabilities only the magnetorotational and the subcritical baroclinic instability have
been studied in connection with the streaming instability, and only in local shearing
box simulations (Johansen et al. 2007, 2011; Balsara et al. 2009; Tilley et al. 2010; Raettig
etal. 2015; Yang et al. 2018). These simulations show that dust accumulations in pressure
bumps and vortices induced by the magnetorotational, the subcritical baroclinic, and the
vertical shear instability are enhanced by the streaming instability (Johansen et al. 2007,
2011; Raettig et al. 2015; SJB20).

« What is the extent and the separation of the filaments in which dust is concentrated by
the streaming instability, in which planetesimals form and from which they accrete? In
shearing box simulations, Yang and Johansen (2014) and Li et al. (2018) find a typical sep-
aration of 0.15 — 0.2 gas scale heights, while Abod et al. (2019) show that the radial width
varies with the strength of the radial gas pressure gradient. While planetesimals emer-
ging form radially larger filaments are more numerous and more massive (Abod et al.
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2019; SYJ17), planetesimals typically accrete dust from more than one filament owing to
migration in the radial direction (SYJ17).

« With what efficiency is dust mass converted to planetesimal mass? How is the mass
in planetesimals distributed in protoplanetary disks? What are the implications of this
mass distribution for the subsequent stages of planet formation? One-dimensional glob-
al models show the formation of tens or hundreds of Earth masses in planetesimals loc-
ally in dust pile-ups in the inner disk regions (Drazkowska et al. 2016), at the water ice
line (Drazkowska and Alibert 2017; Schoonenberg et al. 2018), and at the outer edges of
the gaps carved in disks by planets (Eriksson et al. 2020). A comparable total mass in
planetesimals emerges globally in the one-dimensional disk evolution models including
accretion and photoevaporation by Carrera et al. (2017) — in their most comprehensive
models the water ice line is taken into account as well — but at most a few Earth masses
in similar models by Ercolano et al. (2017).

The two-dimensional global simulations in SJB20 can be improved upon by considering
more realistic models of gas and dust in protoplanetary disks. This includes dust size distri-
butions (Bai and Stone 2010b; Schaffer et al. 2018; Krapp et al. 2019; Zhu and Yang submitted)
which are informed by the barriers to collisional growth constituted by bouncing, fragmenta-
tion, and radial drift (Drazkowska et al. 2016, 2019) rather than a single dust size; disk evolution
owing to stellar accretion, jets and disk winds, as well as photoevaporation (Carrera et al. 2017;
Ercolano et al. 2017); ice lines (Schoonenberg and Ormel 2017; Drazkowska and Alibert 2017;
Schoonenberg et al. 2018); and planets (Eriksson et al. 2020). Even more potential lies in three-
dimensional simulations with self-gravity because only in these the gravitational collapse of
dust clumps and the formation of planetesimals can be investigated.
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Gas disk model

Here, I describe the model of the gas in protoplanetary disks that is used in Chapters 2,3, and 4
as well as in SJB2o.

The temperature profile is adopted from the minimum mass solar nebula model (Hayashi
1981). It is based on the assumption that the disk acts as a black body with no internal or ex-
ternal heating mechanisms other than the irradiation from the central star, the Sun. Under
these conditions, the luminosity absorbed by the disk, Laps = 772, Fro, is equal to the lumin-
osity emitted by it, Lemi = 47720 T*. Here, F, = L /(47r?) is the Solar flux density, Lg,
the Solar luminosity, r the radial distance to the Sun, 7oyuter the radial distance between outer
disk edge and Sun, o the Stefan-Boltzmann constant, and 7" the temperature. Thus, the tem-

perature is given by

L@ 174 r —1/2
T = <16ﬂar2> = 280K (1) - A

The steepness of this temperature profile is consistent with observations (Andrews and Willi-
ams 2005). The temperature does not vary with height. The equation of state is assumed to be
isothermal, P = cgpg, where P is the pressure, ¢cs = \/RT' /1 r~1/4 the sound speed, R the
ideal gas constant, = 2.33 the mean molecular weight, and p, the density.

The density in the disk mid-plane can be expressed as

r)””, A.2)

-9 -3
pg(z=0)=10""gem (m

where z is the height above or below the mid-plane. The gas is in vertical hydrostatic equilib-
rium. That is, the stellar gravitational potential

G Mg
V2422

where GG is the gravitational constantand Mg = 1 M, the stellar mass, is balanced by a density

Py = — (A.3)
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profile. This profile can be calculated by considering the vertical component of the momentum
equation,

Lop _ o
pg 0z 0z

o GO GMs
Pe Oz (7“2 —|—Z2)3/2 (A.4)

pg(2) 1 GMS z P
And VR dpl = - / dZ/7
/pg<z=o> P " & Jo (r2 4 22)?

which results in

GMg (1 1
pg = pg(z = 0)exp [_cg <7“ - m)] . (A.5)
The surface density can be computed by numerically integrating the above equation,
Z—00 3 _9 r —1
o= | pedz=126x10°gem (ﬁ> . (A.6)

Observed surface density profiles are comparably steep (Andrews et al. 2009, 2010), while the
minimum mass solar nebula profile is shallower. The latter is constructed by augmenting the
amount of hydrogen and helium in the Solar System planets until their composition matches
the Solar composition and then spreading the enhanced mass of every planet uniformly over
an annulus centred on its orbit (Weidenschilling 1977b; Hayashi 1981).

The gas scale height H, is defined by p,(z = 0)/e = ps(z = Hg), which yields

c2r3(2G Mg — ¢2r) r \5/4
H, = 5 52 =0.04 e . .
& \/ (c2r — GMg)? 0.047 au (1 au) (A7)
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Symbols

In the tables below, the symbols, sub- and superscripts, and constants used in this thesis are

listed and explained:

Table B.1: Symbols

Symbol Meaning Definition
a (Chapter 2, dust size Chapter 2, Eq. 2.13; S]B20,
SJB20) Table 1
a (SJB20, see also  acceleration
Table B.2)
a dust growth rate Chapter 2, Eq. 2.29
Aboun threshold dust size for bouncing  Chapter 2, Eq. 2.14
Adrift threshold dust size for radial Chapter 2, Egs. 2.30, 2.31
drift
Qfrag threshold dust size for Chapter 2, Eq. 2.16
fragmentation
A, coefficient for calculation of SJB20, Eq. A4
acceleration in Leapfrog
algorithm
« (Chapters 2,3,4) dimensionless parameter
quantifying turbulence and
angular momentum transport
(Shakura and Sunyaev 1973)
« (SYJ17) exponent of power-law part of Table 2
planetesimal initial mass
function
« (S]B20) angle for calculation of position  Eq.A.12

and velocity in Leapfrog
algorithm
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Symbol Meaning Definition
bmax maximum impact parameter for  SYJ17, Eq. 15
sink particle collisions
B, coefficient for calculation of SJB20, Eq.A.5
acceleration in Leapfrog
algorithm
B (Chapter 2) dust opacity spectral index
B (SYJ17) exponent of exponential cutoff ~ Table 2
of planetesimal initial mass
function
Cs sound speed ¢s = \/RT/u; SYJ17, Eq. 11
exin (see also specific kinetic energy exin = 2202 = 12/r?
Table B.2)
n dissipation scale
fab o ratio of dust, gas density tototal  fq = pa/prot, fo = Pg/Prot
density of gas and dust
Firog drag force
Fy Solar flux density Fo = Lo/ (4nr?)
v, I (Chapter 3, dimensionless self-gravity Chapter 3, Egs. 3.30, 3.35; SYJ17:
SYJ17) parameter ~v=1/m,Eqs.3,4

~ (Chapter 4,
SJB20)

Hq

Hyg

(Hd/Hg)init

7

k (kz, k=)

K

K

K\

l

L (Chapter 2)

L (SYJ17, S]B20;

see also Table B.2)

Labs; Lemi

A

)‘g,mfp

adiabatic index

dust scale height
gas scale height

initial dust-to-gas scale height
ratio

imaginary unit

wave number (in radial, vertical
dimension)

polytropic constant

epicyclic frequency

dust opacity

specific angular momentum
injection scale

simulation domain size

absorbed, emitted luminosity of
protoplanetary disk
wavelength

gas mean free path length

Chapter 4, Egs. 4.4, 4.5

SYN17: Hy = ¢/, Eq. 125
SJB20, Eq. 9; Appendix A, Eq. A.7
SJB20, Table 1

NGER:

K = RTp; "/

Chapter 4, Eq. 4.7, k = Qk
Ky o< AP

1= Q%

SYJ17, Table 1; SJB20, Table 1

_ 2
Lavs = 71-’router};‘@)

_ 2 4
Lemi = 4m7r% 1er0 L

Agmip = 1/(0gng)

= pmu/(0gpg)
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Symbol Meaning Definition

Ac threshold wavelength for linear ~ Chapter 3, Eq. 3.38
gravitational instability

m, M (Chapter3,  planetesimal / sink particle mass [M] = pg,OHg’ =7y Hg’P*Q;

SYJ17; see also Chapter 3, Eq. 3.34; SYJ17, Eq. 14,

Table B.2) Table 3

Me dust clump mass

mq dust (particle) mass SJB20, Egs. 14, 15

M (S]B20) point mass M =1 Mg

(M) mean planetesimal / sink SYJ17, Table 3
particle mass

M epar characteristic planetesimal Chapter 3, Egs. 3.33, 3.36
mass

My ot total gas mass SJB20o, Eq. 10

Mg gravitational mass (Abod et al. Chapter 3, Egs. 3.37, 3.39
2019)

Min, Mmax minimum, maximum SYJ17, Table 3
planetesimal / sink particle mass

s Wz characteristic mass of SYJ17, Eq. 18, Table 2
power-law part, exponential
cutoff of planetesimal initial
mass function

Mg stellar mass SJB20, Appendix A: Mg = 1 M,

M (see also Mach number

Table B.2)

L mean molecular weight w=2.33

n (see also number density dng/da oc a4

Table B.2)

N planetesimal / sink particle Chapter 3, Egs. 3.31, 3.32; SYJ17,
number Eq.20

Ny dust particle number

N filament number SYJ17, Table 2

Niot total number of planetesimals /  SYJ17, Table 3
sink particles

Ny, Ny, N, number of grid cells in the SYJ17, Table 1
X-,y-,z-dimension

N- (M), Ns(R) number of planetesimals / sink  Chapter 3, Eq. 3.29; SYJ17,
particles with masses, radii Egs. 16, 17, 19, 21
greater than M, R

N, N, Brunt-Viisila frequency of Chapter 4, Egs. 4.15, 4.20

oscillations caused by buoyancy
in the radial, vertical dimension

141



APPENDIX B. SYMBOLS

Symbol Meaning Definition
Vg mol molecular gas viscosity Chapter 2, Eq. 2.5
Viurh (See also turbulent viscosity Chapter 2, Egs. 2.6, 2.7, 2.8
Table B.2)
w wave frequency
Q orbital frequency
Qk Keplerian orbital frequency Qg = 27/ Px = vk /r; SYJ17,
Eq.10
D power-law exponent of radial
density profile
D gas pressure Pg = C2pg
Dtot total momentum of gas and dust
APd drag change in dust momentum APd drag = MJVd drag
owing to drag exerted by gas
P (seealso gas pressure SJB20, Eqgs. 3, 4; Appendix A:
Table B.2) P =c2p,
Pk Keplerian orbital period SYJ17, Eq.9
Pxo Keplerian orbital period at
initial position of particle
II dimensionless pressure Chapter 2, Egs. 2.19, 2.20; SYJ17,
gradient parameter (Bai and Eq. 2; SJB20, Egs. 12, 13
Stone 2010b)
10) azimuthal coordinate
ng unit vector in azimuthal
direction
Pg stellar gravitational potential Oy = —GMs/Vr? + 22
q (Chapter 2) power-law exponent of dust size
distribution
q (Chapter 4) power-law exponent of radial
temperature profile
Q dimensionless Toomre Chapter 4, Eq. 4.6

parameter for gravitational
instability (Toomre 1964)
r (Chapters 2, 3,4, radial coordinate

S]B20o,

Appendix A; see

also Table B.2)

r, R (Chapter 3, planetesimal / sink particle

SYJ17; see also radius

Table B.2)

7 unit vector in radial direction

Te dust clump radius Chapter 3, Eq. 3.27
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Symbol

Meaning

Definition

Tcyl, TCar
s

H

Touter

To

ATd (Arsim;
BN

R (SYJ17)
Rexp

Re
Ri
p (see also
Table B.2)

Pc
Pp,thres

PR (see also
Table B.2)

Ps
Ptot
s

St
Stboun

Starift

Stfrag

radial coordinate in cylindrical,

Cartesian geometry

radial distance between dust
clump and star

Hill radius

radial distance between outer
protoplanetary disk edge and
star

radial distance between centre

of protoplanetary disk region
and star in shearing box
approximation

(simulated, analytic) radial
displacement of dust particle
relative to initial position
orbital distance

radius scale of exponential
cutoff of planetesimal initial
mass function

Reynolds number
Richardson number

density

dust clump density
threshold density for sink
particle creation

Roche density

solid density

total density of gas and dust
specific gas entropy

Stokes number

threshold Stokes number for
bouncing

threshold Stokes number for
radial drift

threshold Stokes number for
fragmentation

Chapter 3, Eq. 3.25

SJB2o, Eq. B.7

Chapter 2, Eq. 2.4

Chapter 4, Eq. 4.21

SYJ17, Eqgs. 1, 8, 13; S]B20,

Egs. 6, 7; Appendix A, Eqs. A.2,
As

Pp,thres = 200 Pg,0

Chapter 3, Eq. 3.26; SYJ17, Eq. 5;
SJB2o, Eq. 17

ps=1gem™3

Ptot = Pg T Pd

s oc In(P/p3) o« n(Tp} ")

St = Tytop = QK stop; Chapter 2,
Eq.2.32

Chapter 2, Eq. 2.12

Chapter 2, Eq. 2.33

Stirag = Av?rag/@/\/lgcg);
Chapter 2, Eq. 2.15
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Symbol Meaning Definition
Stiurh threshold Stokes number for Chapter 2, Eq. 2.9

dust being stirred by gas

turbulence
oq dust cross section
0d,coll dust collision cross section o4 = 4ma?
Oy molecular collision cross section gz = 2 x 1071% cm? (Chapman

and Cowling 1970)
Y (see also surface density SYJ17, Eq. 7; SJB20, Eq. 8;
Table B.2) Appendix A, Eq. A.6
t time
td init time of dust initialisation S]B20, Table 1
tend time of simulation end SJB20, Table 1
te friction/stopping time
tstop (see also stopping/friction time Chapter 2, Eq. 2.2; SJB20:
Table B.2) tiom = Hl stiaras 12k Bk
tg,stop = pg/pd 75d,stop

T (see also temperature SJB20, Eq. 5; Appendix A, Eq. A.1
Table B.2)
Td,coll dust collision time scale Td,coll = 1/(N40d coll AV4 Bm)
Td, diff time scale of vertical dust Chapter 4, Eq. 4.3

diffusion
Td,drift time scale of radial dust drift Td,drife = 7/Vd,r
Td grow dust growth time scale Td,grow = a/a
Tl et dust settling time scale Chapter 4, Eq. 4.2
T eddy turnover time scale at

dissipation scale
i dimensionless friction/stopping  7r = Qkt = 7/10

time
g cool gas cooling time scale Chapter 4, Egs. 4.17, 4.18
I eddy turnover time scale at

injection scale
Tstop dimensionless stopping/friction  Tygtop = St = Qktstop; SIB20,

At (see also
Table B.2)
v (see also
Table B.2)

Ucom,r,init

Vg,n
Ug,L

time
time step

velocity

radial velocity of center of mass
of gas and dust

gas velocity at dissipation scale
gas velocity at injection scale

Table1, Eq. 16

S]B2o, Eq. B.6
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Symbol Meaning Definition
Vg therm mean thermal gas velocity Bl iz = \/ 8/ cs
UK Keplerian orbital speed Chapter 2, Eq. 2.24; SYJ17:

Ur init, (see also
Table B.2)

Awv (Chapter 2)
Av (SY]17)
Avgrag (see also
Table B.2)

1%

Avd,boun
Avq Bm
AUd,frag
AUd,turb

x (Chapter 3,
SYJ17)

z (S]B20; see also
Table B.2)

Ax

y (Chapter 3,
SYJ17)

y (SJB20; see also
Table B.2)

z (see also

Table B.2)

VA

Z thres

initial radial velocity

relative velocity of dust and gas
relative sink particle velocity
change in velocity caused by
drag

cell volume

relative dust velocity leading to
bouncing

mean relative dust velocity
owing to Brownian motion
relative dust velocity leading to
fragmentation

relative dust velocity owing to
gas turbulence

radial coordinate

z-coordinate

grid cell size
azimuthal coordinate

y-coordinate
vertical coordinate

dust-/solid-to-gas surface
density ratio

threshold dust-to-gas surface
density ratio for filament and
planetesimal formation owing
to streaming instability

vk = Qk R; SJB20, Eq. 11

Ud,r,init = —VUg,r,init = Cs

A'Ud,drag = (Ud - Ug)/td7stop At;
A'Ug,drag = App,drag/(pg‘/)

Chapter 2, Eq. 2.11
Chapter 2, Eq. 2.1
1

Avg frag = 100 cm s~

Chapter 2, Eq. 2.10

SJB20, Table 1

Chapters 3, 4, S]B20:

Z = 3q4/%g; S]B20, Table 1;
SY17: Z = %,/

Chapter 3, Eq. 3.28
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Table B.2: Sub- and superscripts

Sub-/superscript Meaning

d dust

g gas

i particle index
init initial

max maximum

min minimum

n time step index

p particle

1) azimuthal

r radial

RMS root mean square
x radial

y (SYJ17) azimuthal

y (SJB20) in y-direction

z vertical

0 (subscript) protoplanetary disk

0, 1/2 (superscript)

mid-plane at z = 0
index of zeroth, first
half time step

Table B.3: Constants

Constant Meaning Value

G gravitational constant 6.674 x 107 g~tem3s—2
kB Boltzmann constant 1.381 x 10710 ergk—!
Lo Solar luminosity 3.839 x 1033 ergs™!

my hydrogen mass 1.674 x 10724 g

Mceres mass of Ceres 9.3 x10%g

Mg mass of Earth 5.972 x 10*" g

Mg Solar mass 1.989 x 1033 g

R ideal gas constant 8.314 x 107 ergg ' K~!
o Stefan-Boltzmann constant  5.670 x 10° erg cm? s! K*
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