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Zusammenfassung 
 

In der Röntgenstrukturanalyse von Makromolekülen wird zur Berechnung der 

Elektronendichte an einer bestimmten Position (x, y, z) die Fourier-Transformation der 

Strukturamplituden sowie der Phasenwinkel an dieser Position innerhalb der 

asymmetrischen Einheit des Kristalles benötigt. Strukturamplituden können mithilfe 

der Intensitäten des Beugungsmusters berechnet werden, wohingegen im Experiment 

keine direkten Informationen über die Phasenwinkel gemessen werden. Die fehlende 

Phasenwinkel-Information kann durch zusätzliche Methoden wie experimentelle 

Phasenwinkelbestimmung oder Molekularen Ersatz erhalten werden. Die so 

gewonnenen Anfangsphasen sind nicht immer ausreichend genau, um eine 

interpretierbare Elektronendichtekarte zu erhalten. Dadurch können zusätzliche 

Schritte zur Verbesserung der Phasenwinkel nötig werden, wie etwa Dichte-

Modifikation und/oder Modell-Verbesserung. Berücksichtigt man die Komplexität der 

Suche nach korrekten Phasenwinkeln, weisen heuristische globale 

Optimierungsverfahren basierend auf genetischen Algorithmen (GA) besondere 

Vorteile auf. 

Diese Arbeit befasst sich mit dem Problem der Phasenoptimierung unter Zuhilfenahme 

genetischer Algorithmen. Die folgenden wesentlichen Punkte wurden untersucht: Die 

Optimierungsmethode und Optimierungsparameter sowie die Fitnessfunktion, die 

optimiert werden soll. Die Hauptaufgabe bei der Optimierung eines Algorithmus ist die 

Entwicklung einer Population oder verallgemeinert, der Arten von Mutations-, Cross-

over und Selektionsoperatoren des verwendeten genetischen Algorithmus. Als beste 

Herangehensweise erwies sich die Verwendung des Karten-Korrelationskoeffizienten 

für die Fitnessfunktion. Die besten Resultate wurden durch eine 

Optimierungsstrategie, mit mehreren Rekombinationen und Turnierselektion mit einer 

Turniergröße größer zwei, erzielt. Um eine Fitnessfunktion zu ermitteln, die unter 

Realbedingungen eingesetzt werden kann, wurde eine Reihe von Tests durchgeführt. 

Diese dienten dazu die Möglichkeit der Darstellung von Charakteristika der 

Elektronendichtekarte und der Kartenkonnektivität als Fitnessfunktion zu ermitteln. 

Eine Fitnessfunktion mit einer Kombination von Schiefe und Konnektivität, im Falle 

einer mittleren Auflösung, und Schiefe alleine, in Falle hoher Auflösung, erwiesen sich 

als annehmbar gute Fitnessfunktionen. Die derzeitige Umsetzung ist noch auf die 
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Raumgruppe P212121 beschränkt, aber die Erweiterung des Programmcodes, um auch 

weitere in Kristallen von Bio-Makromolekülen vorkommende Symmetrien 

einzuschließen, sollte kein Problem darstellen. 
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Summary 
 

In macromolecular X-ray crystallography, calculating the electron density at a specific 

position (x,y,z), requires Fourier transformation of the structure factor amplitudes and 

phases at that position within the asymmetric unit of a crystal. Structure factor 

amplitudes can be calculated from the intensities of diffraction spots, while phase 

information is not recorded in the experiment. The lost phases can be recovered using 

either an additional experiment or molecular replacement. The initial phases obtained 

by these methods are not always sufficiently accurate to produce an interpretable 

density map. Additional phase improvement steps using density modification and/or 

model refinement approaches are required. Given the complexity of the phase space 

to be searched, heuristic global optimisation techniques based on genetic algorithms 

(GAs) may have their own advantages. 

In this work the phase optimisation problem is addressed using genetic algorithms. 

The following main issues have been investigated: the optimisation method and 

parameters, and the fitness function to be optimised. For the optimisation of an 

algorithm, the important issue is the development of the population, or, more generally, 

the types of mutation, crossover and selection operators of the genetic algorithm to be 

used. The best design for the problem was identified by using the map correlation 

coefficient as a fitness function. The best results were achieved by optimisation using 

a mixture of multiple crossovers and a tournament selection with size of two. To identify 

a fitness function that can be used in real cases, a series of tests were performed to 

assess the applicability of the characteristics of the density map and map connectivity 

as a fitness function. A fitness function with a combination of skewness and 

connectivity for medium-resolution test cases, and skewness alone for high-resolution 

test cases were found to be reasonable best fitness functions. The current 

implementation is limited to the space group P212121, but there should be no problem 

extending the code to handle other symmetries common for crystals of 

biomacromolecules. 
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Introduction 

 

How to determine the structure of the biological molecules? 

What is X-ray Crystallography? 

What is missing in X-ray data? 

What are methods to recover the missing information in X-ray crystallography? 

 

The quest for insights into the structure of biological materials started nearly 380 years 

ago, when Robert Hooke (Hooke, 1665) and Antoni Van Leuwenhoek (Leeuwenhoek 

& Hoole, 1800; Lane, 2015) first attempted to use microscopes to study organisms 

which cannot be seen by the naked eye. By the late 19th century, light microscopy was 

explored to its theoretical resolution limit by microbiologists (Bracegirdle, 1989). It was 

then clear that light with a higher order wavelength (~500 nm) cannot be used to 

provide structural details at the atomic level, as the interatomic distance (~0.2 nm) is 

several magnitudes lower than that of the wavelength of the light. 

 

The solution to this was found shortly after the discovery of X-rays, which have a 

shorter wavelength of ~0.01 to 10 nm, by Wilhelm Conrad Röntgen in 1895 (Röntgen, 

1896) and based on the Johannes Kepler conjecture on internal hexagonal symmetry 

of crystalline snowflakes (Kepler, 1966; Hoinkes, 1967). As the X-ray wavelength 

range aligns with the interatomic distance range in a crystalline molecule, they can be 

diffracted by electrons in the molecule to obtain a diffraction pattern. This was 

confirmed by the diffraction experiments conducted by Max Von Laue together with 

Paul Knipping and Walter Friedrich at LMU in 1912 on Zinc blende and a ZnS crystal 

(Ewald, 1962). 

 

Based on Laue’s experiments, William Henry Bragg in 1913 together with William 

Lawrence Bragg used X-rays to solve the crystal structure of NaCl and many other 

inorganic molecules (Bragg, 1913). As X-rays are scattered by electrons, the spots in 

the diffraction pattern contain the information on the electronic configuration of the 

molecule. To derive these positions from the diffraction spots, W.L. Bragg developed 
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mathematical foundations (Bragg, 1929) based on the “Fourier Transforms” 

(formulated by Jean Baptiste Joseph Fourier in 1822). 

In the 1930s, many molecular biologists started to use X-rays to study the structure 

and function of the biological molecules (Kay, 1996). A few prominent works such as 

Delbrück’s research on bacteriophages (Delbrück, 1966; Holliday, 2006), Watson and 

Crick’s discovery of the structure of the DNA double helix (Watson & Crick, 1953), 

William Astbury’s work on the structure of Keratin and DNA (Astbury & Street, 1932) 

and Pauling and Corey’s discovery of the structure of alpha helix (Pauling & Corey, 

1951, 1953) have proved that X-rays are a powerful form of radiation that can also be 

used to decipher the structure of biological macromolecules. 

 

Owing to the success of X-ray crystallography (Campbell, 2002; Strandberg et al., 

2009; Schwarzenbach, 2012), this work focuses on solving the phase problem 

currently seen in macromolecular X-ray crystallography and mainly covers protein 

crystallography. Among various biological macromolecules, proteins play a crucial role 

in regulating many body functions and are involved in many disease mechanisms. X-

rays were helpful in elucidating many protein structures. Nearly 160,000 (as of January 

2020) structures of protein molecules are deposited in the PDB (Burley et al., 2019). 

The first diffraction pattern of a protein, pepsin, was obtained by J. D. Bernal and 

Dorothy Crowfoot Hodgkin, in 1934 (Bernal & Crowfoot, 1934) which changed the 

dogma that proteins were “colloids” with random structures (Perutz, 1985). John 

Kendrew solved the first macromolecular structure of myoglobin at 6 Å resolution 

(Kendrew et al., 1958) in 1958, followed by the 5.5 Å structure of haemoglobin solved 

by Perutz in 1959 (Perutz et al., 1960). The first near atomic resolution structure of 

myoglobin to a resolution of 2 Å was solved by Kendrew and others in 1960 (Kendrew 

et al., 1960). A brief review of structure determination methods available and their 

applicability is presented in the following section. 

 

How to Determine the Structure of the Biological 
Molecules? 
An overview on Structure Determination Methods 

 

Over the past few decades, the development of many structure determination methods 

(Figure C.1) has revolutionised the structure solution process (Campbell, 2002). 
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Among these methods, a few prominent ones are discussed here. This description 

does not cover the complete list of methods available, but only includes the most 

popular ones used either in a complementary manner or in rivalry to X-ray 

crystallography. 

 

Diffraction method employs various radiation sources such as X-ray, neutron and 

electron (Figure 1). Among these, the most widely used radiation for the structure 

determination of macromolecules is X-ray, highlighted in Figure 1. 

 

 
Figure 1 Classification of diffraction methods. Macromolecular crystallography, 

which is a focus of this work and its classification is highlighted in teal. Powder and 

fibre diffraction are not covered in this work and hence not classified further. 

 

X-ray Diffraction 
X-ray crystallography is the focus of this thesis work, and is hence described both 

separately in the section “What is X-ray Crystallography?”, and also in the subsequent 

parts of this chapter. 

 

Neutron and Electron Diffraction 
Neutron and electron diffraction methods are analogous to X-ray diffraction. X-ray 

diffraction is based on the interaction of X-ray with the electron cloud of an atom, 

neutron diffraction is based on the interaction of neutrons with atomic nuclei, while 

electron diffraction on the interaction of electrons with the electrostatic field of an atom. 

In 1927, two groups – Davisson and Gremer, Thomson and Reid carried out the first 

successful electron diffraction experiments using low-energy and high-energy 
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electrons respectively (Davisson & Germer, 1927; Thomson & Reid, 1927). It soon 

gained popularity in inorganic crystallography as it can be used on much smaller 

crystals compared to X-ray diffraction. It is also possible to automatically determine the 

3D structure of molecules using this method. Until a decade ago, it was mainly used 

for the structure determination of inorganic molecules as they are less affected by the 

radiation than organic molecules (Warren, 2018). However, in 2013 Tamir Gonen 

developed microED that could be used to determine the structure of biological 

macromolecules (Shi et al., 2013). In 2018, Tim Gruene developed a device using 

transmission electron microscope and a compatible detector for determining the 

structures of small organic molecules using a beam of electrons from the microscope 

(Gruene et al., 2018). 

 

Neutron diffraction method can be used to provide complementary information to X-

ray diffraction such as the position of hydrogen atoms (which cannot be obtained by 

X-ray diffraction) and its protonation states. This information can be useful in 

understanding mechanisms of enzyme catalysis and ligand binding (Liebschner et al., 

2019). 

 

Electron Microscopy and Cryogenic Electron Microscopy (Cryo-EM) 
Electron microscopy uses transmission electron microscopes (TEMs) in electron 

diffraction mode to study the structure of macromolecules at the atomic scale. It also 

allows direct visualisation of molecules, as the reconstructed images of structures can 

be obtained physically (De Rosier & Klug, 1968). The major disadvantage of this 

method is radiation damage of the sample due to high-vacuum conditions and intense 

electron beams, and relatively low-resolution structural details. 

 

To avoid this, samples are cooled to cryogenic temperatures. This method, Cryo-EM, 

is a combination of three methods: electron tomography, electron single-particle 

microscopy and electron crystallography, and was developed in the 1970s (Liebschner 

et al., 2019). With the advances in the past four decades, this has become a powerful 

tool to investigate the structures of large proteins, nuclei acids, and complexes of these 

de novo (Callaway, 2015). In this method, biological samples are frozen directly from 

the solution thus revealing the structural details in close-to-native state. Currently, it is 
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possible to achieve near atomic-resolution (<2Å) with this method (Banerjee et al., 

2016; Bartesaghi et al., 2015; Merk et al., 2016; Mitra, 2019). 

 

Nuclear Magnetic Resonance (NMR) 
Developed in 1946, Edward Purcell from Harvard and Felix Bloch from Stanford, NMR 

uses the nuclei of a sample which are excited using radio waves to produce nuclear 

magnetic resonance (Purcell et al., 1946; Bloch, 1946). This resulting resonance is 

detected on sensitive radio receivers. Each molecule produces a characteristic 

resonance frequency based on its intramolecular composition. Thus, it provides details 

on the electron structure of the molecule and its functional groups. This is another 

powerful structure determination tool and does not require molecules to form crystals 

or require heavy atom derivatives, and there is no need for molecules to be bound to 

the microscopic grid. This can be used to study molecules that have flexible regions 

(Wüthrich, 1998). Molecules can be studied in their solution (a state near to 

physiological environments) to display their natural dynamics (Allerhand et al., 1971) 

but can also be studied in the solid state. 

 

NMR provides information on the composition of functional groups in the molecule, 

adjacent atoms (Spin-Spin coupling constants), and molecular dynamics (Wüthrich & 

Wagner, 1975). It is relatively good at identifying weak interactions between proteins 

and bound small molecules. This is the only method available to study the structures 

of disordered, denatured or partly folded proteins at atomic resolution (Fersht, 2008; 

Baum et al., 1989). However, these studies are generally limited by the protein size; 

determination of structure of macromolecules larger than 50kDa is not possible by 

using NMR (Pervushin et al., 1997). 

 

With the advances in these structure determination methods, the structural information 

of more than 160,000 molecules are available as of January 2020. Among these, 89% 

of structures are solved using X-ray crystallography (Figure 2) and this is the most 

powerful method available to solve protein structures at atomic resolution. 
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Figure 2 PDB statistics on the number of structures solved by various structure 

determination methods (Burley et al., 2019). 

 

What is X-ray Crystallography? 
Principles and Concepts 

 

As described earlier in this chapter, X-rays have a wavelength of the same order of 

magnitude as that of the interatomic distances, in a crystal and so when passed 

through crystalline molecules a diffraction pattern is produced. From the amplitudes 

and the phases of reflections, using Fourier summations (equation 2), the “electron-

density” map of molecules can be computed. From this electron density map, a model 

of the structure can be predicted. The complete process of structure solution using X-

ray crystallography is outlined in Figure 3. 
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Figure 3 Steps in the structure solution process (Liebschner et al., 2019). A crystal 

of lysozyme (PDB ID: 253L), a diffraction pattern, an electron density map and a 

model are shown in the right side. 

 

What is Missing in X-ray Data? 
The phase problem 

 

After the diffraction experiment, the intensity ,(ℎFG) of each reflection or diffraction 

spot	(ℎFG) is calculated and corrected by applying various correction factors such as 

the Lorentz, polarisation and absorption corrections (Drenth, 1999). The structure 

factor amplitude |I(ℎFG)| of a reflection (ℎFG) can then be computed from the intensity 

of the reflection ,(ℎFG) by using the equation (1). 
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 ,(ℎFG) = |I(ℎFG)|7 (1) 

 

This structure factor amplitude, together with the phase angle K(ℎFG) of a reflection 

(ℎFG), are Fourier transformed using equation (2) to produce the electron density at 

coordinates >, M, N of the unit cell. 

 

 
O(>MN) = 	 1QR|I(ℎFG)| exp[−2XY(ℎ> + FM + GN) + YK(ℎFG)]

\]

-./
^]

 (2) 

 

The structure factor amplitude can be computed from the reflection intensity but the 

phase angle information is not recorded in the experiment. Finding the phases is called 

the “phase problem”. It is explained visually in comparison with optical microscopy in 

Figure 4. 

 

 
Figure 4 An illustration of the phase problem. Unlike in optical microscopy, no lenses 

are available to converge diffracted X-rays and produce the enlarged image. The 

diffraction pattern obtained after the diffraction experiment contains the information 

on the amplitudes (highlighted in green) of the diffracted rays, but the phase angle 

(highlighted in red) information is lost in the experiment. This is the so-called “phase 

problem” (xtal.iqfr.csic.es, 2020). 
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How Do We Recover the Missing Phase Values? 
Phasing methods 

 

Although there is no direct relationship between structure factor amplitudes and 

phases, phases can be recovered from some prior knowledge of electron density and 

the structure to be determined. Various phasing methods have been developed 

exploiting this prior knowledge (Table 1) and successfully applied to solving many 

crystallographic structures. 

 

Table 1 Overview of phasing methods (Taylor, 2003). 

Method Prior Knowledge 

Direct methods Atomicity of macromolecules and 

positivity of electron density 

Molecular replacement Homology model 

Isomorphous replacement Substructure of heavy atoms 

Anomalous scattering Substructure of anomalous atom 

 

Patterson Method 
The Patterson method is based on the principle that, although phases are required to 

determine the position of peaks in the electron density which gives atomic positions, 

the structure factor magnitudes alone are sufficient to get the information on the 

relative positions of atoms in the structure. 

 

The Patterson function, equation 3, is used to calculate the Patterson map from 

squared structure factor amplitudes with the phases of all reflections set to zero 

(Patterson, 1934). 

 

 
=(_`D) = 	 1QR|I(ℎFG)|7 cos[2X(ℎ_ + F` + GD)]

\]

-./
^]

 (3) 

where _	`	D are >	M	N coordinates in the Patterson cell. 

 

Each peak in this Patterson map corresponds to the relative position vectors between 

a pair of atoms in the structure. With an increase in the number of atoms a, the number 
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of interatomic vectors a(a − 1) to be solved increases, making this method difficult to 

apply to large molecules with more than 20-50 atoms (Taylor, 2003). This method is 

usually used to solve the structure of small molecules when phases are not available. 

For macromolecules this is used in combination with other methods to derive the 

substructure of a macromolecule. 

 

Direct Method 
The two types of prior knowledge used in this method are non-negativity of the electron 

density map and the atomicity of the macromolecule. Non-negativity or positivity 

indicates that the electron density function in a crystal is positive everywhere. This 

property gives rise to statistical properties such as inequalities in the structure factors 

which can be used to restrict the values of the phases to a few possibilities (Harker & 

Kasper, 1948; Karle & Hauptman, 1950). The property of atomicity indicates that the 

electron density is at maximum on the position of an atom but is lower between the 

atomic positions. 

 

The process of obtaining unknown phases K from the known magnitudes |b| of the 

normalised structure factors (the amplitudes of the point atoms at rest) is based on the 

concepts of positivity and atomicity and involves exploiting the relationships between 

these normalised structure factors and incorporating suitable recipes for origin fixing 

and enantiomorph selection (Hauptman, 1991). Direct methods employ probabilistic 

approaches such as structure invariants and semi-invariants to achieve this. The 

structure invariants (Hauptman, 1991) are the linear combination of phases calculated 

independent of the origin. In other words, 

 

 cd = Ke + Kf + Kg (4) 

 (Hauptman, 1991)  

 

cd, which is a linear combination of Ke,	Kf,	Kg is a structure invariant (triplet), if h +
i + j = 0. 

 

Triplet structure invariance together with the tangent formula, equation 5, which is used 

to refine and extend the phases from starting known or “presumed to be known” 

phases, constitute the combination of the fundamental principle and the 
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neighbourhood principle of the direct methods. Most implementations of the direct 

methods are developed based on this combination (Hauptman, 1991). 

 

 l!mKe = 	
〈bfbe^fsin	(Kf +	Ke^f)〉f
〈bfbe^fcos	(Kf +	Ke^f)〉f

 (5) 

 (Hauptman, 1991)  

 

This method is seriously limited by the resolution of the X-ray data. With a decrease in 

the resolution to worse than 1.2 Å (Morris & Bricogne, 2003), the applicability of this 

method is reduced. While this is often used to phase small molecules up to ~1000 

atoms, for macromolecules it is used in combination with other phasing methods. 

 

Isomorphous Replacement Method 
This is the phasing method used to obtain the first structures of macromolecules, 

myoglobin and haemoglobin by Kendrew and Perutz respectively (Strandberg et al., 

2009; Kirk, 2014). In this method, the crystals of the macromolecule are soaked in a 

heavy-atom solution to form an isomorphous (same unit cell and orientation) heavy 

atom derivative. As the heavy atom produces measurable intensity changes, the 

difference ∆|I|stu in the structure factor amplitude of the native crystal |Iv| and the 

structure factor amplitude of the derivative crystal |Ive| can be computed using the 

following equation. 

 

 ∆|I|stu = |Ive| − |Iv| (6) 

 (Drenth, 1999; Taylor, 2003)  

 

From this difference, using a system of equations, the approximate position of the 

heavy atoms can be deduced using Patterson and direct methods. After refinement, 

the heavy atom amplitude |Ie| and the phases Ke are computed. Using the cosine 

rule, from equation 7, the phases of the native protein Kv are estimated. 

 

 Kv = Ke +	wxy^z[(I7ve − I7v − I7e) 2IvIe⁄ ] (7) 

 (Taylor, 2003)  
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The errors in the computation of heavy-atom positions, structure factors, and errors 

due to non-isomorphism are some of the limitations of this method. 

 

Anomalous Scattering Method 
The principle of the anomalous scattering is similar to the isomorphous replacement 

except instead of heavy atoms, anomalous scatterers (atoms that scatter X-ray 

anomalously with a change in amplitude and phase at their absorption edges) are 

used. Anomalous scattering of the atoms violates Friedel’s law (intensities of 

reflections ℎFG and ℎ|F|G ̅ are equal if the crystal is centrosymmetric or if no resonant 

scattering is present). This results in the anomalous or Bijvoet difference ∆|I~�u| which 

can be computed using equation 8. This is used to identify the position of the 

anomalous scattering atoms. 

 

 ∆|I~�u| = 	 {|Ive(+)| − |Ive(−)|}
ÇÉ
2Ç" (8) 

 (Taylor, 2003; Drenth, 1999)  

where |Ive(+)| is the amplitude of reflection (ℎFG) and |Ive(−)| is the amplitude of the 

reflection (ℎ|F|G)̅. ℎFG and ℎ|F|G ̅are Bijvoet or Friedel pairs. The Bijvoet difference ∆|I~�u| 
is scaled up with ÇÉ Ç"⁄  where ÇÉ is the dispersion term and Ç" is the absorption term of 

the atomic scattering factor. 

 

This approach overcomes the limitations related to the non-isomorphism of the method 

isomorphous replacement. However, the changes in the amplitudes of the anomalous 

scatterers are generally small. This necessitates the accurate measurement of 

intensities. The radiation damage to the crystals is another limitation of this method. 
 

Molecular Replacement Method 
This method was developed by Michael Rossmann and David Blow (Rossmann & 

Blow, 1962) and can be used when a homologous structure is available for the 

structure to be solved. For this the sequence identity of the homology model ÖÜáàâä 
(known molecule or model), and structure to be determined Öãåçåáéå (unknown 

molecule) should be usually > 25% and the r.m.s. deviation should be < 2.0 Å between 

the èê atoms of the known and the unknown molecule (Taylor, 2003). 
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In molecular replacement, the phasing is performed principally in three steps. In the 

first step, the known molecule is rotated ë in three dimensions. And the orientation in 

which the calculated structure factors of the known molecule gives best agreement 

with the observed structure factors of the unknown molecule is selected. In the next 

step, the model is placed at every position of the unit cell and the model is translated 

í to the position that gives the best agreement between structure factors. In the final 

step, the phases from the model and the weighted structure factors of the unknown 

molecule are used to compute the electron density map of the unknown molecule. The 

complete process, equation 9, is illustrated in Figure 5. 

 

 Öãåçåáéå 	= 	ë	ÖÜáàâä 	+ 	í	 (9) 

 (Taylor, 2003)  

 

 
Figure 5 Molecular Replacement (Taylor, 2003). The model (shown in yellow colour) 

is rotated to get the desired orientation and then translated to the position of the 

unknown molecule (shown in red colour). 

 

The major limitation of this method is error in the phase computation due to model bias. 

Model bias is explained visually in Figure 9. 

 

The initial phases obtained by these methods may not always be accurate due to a 

variety of reasons. These include errors in the computation of structure factors, errors 

in the calculation of atomic positions of heavy atoms or anomalous scatterers, low 
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resolution of the X-ray data due to flexibility of proteins, non-availability of a 

synchrotron, model bias and lack of experienced crystallographers. Therefore, these 

phases are rarely sufficient to interpret the electron-density map accurately, and 

therefore need further improvement and refinement. 

 

How to Improve the Correctness of Phase Values? 
Phase improvement methods 

 

Various phase improvement methods have been developed to improve the initial 

phases. These are mainly sub-divided into two categories: 

1. Density Modification 

2. Automated model building and refinement 

 

Density Modification 
Density modification methods focuses on improving the electron-density map by 

exploiting the prior knowledge available in describing the desired features expected in 

these maps. These methods are further sub-divided into: 

1. Classical density modification 

2. Statistical density modification 

 

Classical Density Modification 

The classical density modification works by iteratively cycling between real and 

reciprocal space. The process starts with the inverse Fourier transformation of an 

electron-density map to obtain improved phases, followed by combining these phases 

with the experimental phases to compute a new map. This procedure (Figure 6) is then 

iterated until reaching convergence (Cowtan, 2010). 

 



Chapter 1. Introduction 
 

 15 

 
Figure 6 The classical density modification cycle.  

 

The three most popularly used methods based on different prior structural knowledge 

used are: 

 
Solvent Flattening Solvent features are modified based on the assumption that the 

variation of electron density of the solvent region is low (Figure 7a). Hence, the phase 

combination that gives more flattened solvent map is considered correct and used in 

the computation of the modified electron density map (Wang, 1985). 

 

Histogram Matching The electron density histogram of a good map has a 

characteristic shape. A map with any deviation from this shape is considered as a badly 

phased map (Figure 7b). This method works by rescaling this badly phased map to 

make it look closer to the histogram of the well phased map (Zhang & Main, 1990). 

 

Non-Crystallographic Symmetry (NCS) Averaging If a crystal contains several 

copies of an identical or nearly identical molecule in the asymmetric unit, the electron 

densities of these molecules are averaged to get better signal-to-noise ratio and to 

improve the phases by imposing better restraints (Rossmann & Blow, 1963) (Figure 

7c). 
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Figure 7 Classical density modification methods (Taylor, 2003). Figure 7a shows 

solvent flattening methods in which the solvent region (black background) is flattened 

(light blue background) after defining the border (shown in red) between the solvent 

and the protein (green ovals). Figure 7b shows a histogram of electron density 

obtained after isomorphous replacement (dotted black curve) overlapping the 

histogram of the well phased map (solid black curve). Figure 7c shows several 

copies of ducks and the NCS operators (equations on right) relating the data of duck 

ì and ê to î. Ducks î, ì and ê are encircled in red in left. 

 

Statistical Density Modification 

The classical density modification methods might introduce some additional errors in 

the phase computation due to the bias introduced by the prior knowledge used. This 

can be overcome by using statistical density modification, which uses additional 

information based on the probability distributions and provides a very weak link 

between this information and the initial phases in order to avoid bias. However, the 

major disadvantage with this method is the heavy computational overhead (Cowtan, 

2010). 

 

Automated Model Building and Refinement 
Due to many computational or experimental errors usually associated with the low-

resolution data, the phases may need further improvement and refinement even after 
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using density modification methods (Figure 8). Therefore, further phase improvement 

is performed as a part of automated model building and refinement. 

 

 
Figure 8 Map improvement after density modification. Figure 8a shows the solvent 

flattened map with less interpretable density which has improved in the intermediate 

map (Figure 8b), showing interpretable backbone density. The final map (Figure 8c) 

shows well defined backbone and side chain density after using automated model 

building and refinement. Maps generated using ARP/wARP software after model 

building and refinement of protein Leishmanolysin (PDB ID:1LML). 

 

The Significance of the Accuracy of Phases 
 

The poorly phased electron-density obtained from low-resolution data, with associated 

errors may not be improved even after using phasing and phase improvement 

methods, which may lead to incorrect interpretation of the model (Figure 9). Further 

phase optimisation may require a robust algorithm that samples possible phase values 

and employs an efficient mathematical machinery to choose correct phases. 
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Figure 9 The effect of phases on the correctness of the structure (Taylor, 2003). 

Combining the amplitudes from the duck (shown in right of Figure 9a) and phases 

from the cat (shown in right of Figure 9b) results in a hybrid diffraction pattern (shown 

in left of Figure 9c) with more features from the cat (shown in right of Figure 9c) after 

inverse Fourier transform. 

 

The Phase Optimisation Problem 
 

The sampling and optimisation of phase space is difficult, as it is highly multimodal 

(with various local minima) and multidimensional (proportional to the number of 

reflections). The use of a random walk for the optimisation of such objective function 

may be convenient but it often converges to different solutions depending on what is 

defined as random, while a gradient-based method may take unacceptably long to 

identify the correct solution (Figure 10). More on the sampling and optimisation methods 

is described in chapter 2. 
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Figure 10 Phase error landscape. The figure showing various local minima (A, B, C 

and D) and global minimum G. Most gradient based methods may get trapped in a 

local minimum while systematic methods are costly in terms of computational time 

required to the global minimum. 

 

Genetic algorithms, a heuristic optimisation technique, have a certain advantage in 

such situations because of its ‘jumpy behaviour’, allowing efficient sampling of the 

entire search space. 

 

Apart from the complexity of the phase space, another factor limiting the efficient 

sampling of the phases in real space is the unavailability of the reliable objective 

function that could relate to the relationship between phase error and characteristics 

of electron density map and provide a useful estimate on the quality of phases. There 

were some studies performed to identify such an objective function and showed that 

the higher order moments, skewness and kurtosis, can be used to monitor the quality 

of the electron density map (Cochran, 1955; Podjarny & Yonath, 1977; Lunin, 1993). 

Further details on these moments are described in the “Fitness function” section of 

chapter 3. 

 

This thesis is an attempt to address these issues: phase improvement given an initially 

high phase error (usually associated with low-resolution data) using genetic algorithms 

with a minor focus on providing insights towards identifying a reliable objective 

function. Therefore, a literature survey on the nature of genetic algorithms, their 

behaviour, implementation, and performance is presented in the next chapter. 
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Introduction to Genetic Algorithm 
 

What are genetic algorithms? 

Why use genetic algorithms? 

When to use genetic algorithms? 

How do genetic algorithms work? 

Can we use genetic algorithms for phase optimisation in crystallography? 

 

In the 1940s, early computer scientists envisioned (Turing, 1950; Neumann, 2017; 

Heims, 1980) developing computer programs that have life-like abilities; programs that 

can self-replicate and have an adaptive capability to understand and control their 

environments. These biologically motivated computing activities developed into fields 

such as neural networks, machine learning and evolutionary computation. Among 

these, evolutionary computations (Bäck et al., 1991; Zitzler & Thiele, 1999) that are 

inspired by genetic variation and selection are far more appealing in solving many 

computational problems for a variety of reasons. 

 

Why use algorithms inspired from evolution? The programs based on evolutionary 

computation are adaptive and innovative in nature; an ability to adjust to a changing 

environment without compromising in performance while producing something new. 

They can also accommodate computational parallelism allowing efficient use of 

modern computing facilities to solve higher order search problems. Many complex 

biological optimisation problems - for example finding a correct conformation of a small 

molecule in drug discovery - need such an intelligent system. 

 

Genetic algorithms (GAs), invented by John Holland in the 1960s (Forrest & Mitchell, 

2016) belong to this class of evolutionary algorithms. Holland, his students, and 

colleagues from the University of Michigan have extensively studied the phenomenon 

of nature’s adaption and provided ways to imbibe this intelligence into computer 

programs. His book “Adaption in Natural and Artificial systems” (Holland, 1975) with 

theoretical foundations on GAs, is a pioneering work in the field of evolutionary 

computation. Over the past few decades, GAs have evolved as an interdisciplinary 

field sharing vague boundaries with other evolution-related approaches such as 
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evolutionary strategies and programming, using overlapping terminology and 

concepts. 

 

Genetic and Evolutionary Terminology 
 

With more than eight decades of research, GAs and evolutionary computations have 

emerged into an independent field acquiring distinct terminology generic to their class 

of computations. These terminologies are extensively used in this work. Hence, it is 

helpful to define them at this point. 

 

GAs are inspired from natural selection and mimic many processes related to biological 

reproduction and propagation. In living organisms, genes are made of DNA - a 

blueprint of an organism. Each gene is responsible for a specific trait, for example, hair 

colour of an individual. Different possibilities of a trait (feature) for a gene are called 

alleles of that specific gene - for example, black and white are possible alleles for the 

trait hair colour. Many genes collectively form a chromosome and the position of a 

gene on this is known as the locus. The complete collection of genetic material - all 

chromosomes together - is a called a genome. A particular set of genes in a genome 

is referred as the genotype. A genotype results in a phenotype – physical and mental 

characteristics of an organism such as height, hair colour and intelligence. 

 

A chromosome in most sexually reproducing organisms, for example humans, are 

arranged in pairs, a state called diploid, while some organisms have unpaired 

chromosomes, a state called haploid. After haploid or diploid reproduction, an offspring 

produced from its parents collectively forms a population together with its parents. The 

fitness of this offspring is defined in terms of its viability (an ability to live and reproduce) 

and/or fertility (the number of offspring it produces). A pictorial depiction of differences 

in DNA, genes, chromosomes are shown in Figure 11. 

 

Most of the biological terms used in GAs have similar or equivalent meaning to their 

original use in biology. GAs do not work at the DNA level i.e., most representations 

only adapt concepts such as genes, chromosomes, and their corresponding 

phenotypic expression. A solution to the problem is called a member or an individual 

at a phenotypic level. All members at any given point collectively form a population. A 
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chromosome in a GA is a genotypic representation of candidate solution for a search 

problem and mostly haploid in nature. Each gene encodes a specific element of the 

solution. Often genes are represented as single bits, where an allele can be either 0 

or 1. Offspring are produced by recombining haploid chromosomes using crossover 

events. Mutations are used to change a specific gene at a selected locus. An intelligent 

strategy, encoded as a mathematical objective function known as the fitness function 

is used to identity the fitness of an individual. GAs usually works at a genotypic level 

and often do not have a notion of phenotypic level. In simpler implantations of GA, the 

fitness of an individual usually refers to its viability while some robust implementations 

of GA consider both fertility and viability of an individual. 

 

 
Figure 11 Diploid and haploid chromosomes, genes and DNA. Cell and nucleus in 

the figure are shown as entities without any genetic typing i.e., neither haploid nor 

diploid. 

 

What Type of Problems is GA Best Suited to Solve? 
Search Spaces and Fitness Landscapes 

 

The suitability of the GA for a specific problem can be defined based on the nature of 

a search space and the fitness landscape of that problem. These concepts and the 

related terminology are described here. 

 

In computer science, the concept of searching has three overlapping meanings: search 

for stored data, search for paths to goals and search for solutions (Mitchell 1998). In 
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GA, the term search often refers to the search for a correct solution in a pool of possible 

solutions (“search space”) for a given problem. A search space contains all candidate 

solutions to a problem with some positional notion in terms of “distance” between them. 

 

Another important concept commonly used in GA is “fitness landscape”, a term derived 

from population genetics which can be defined as a representation of all possible 

genotypes and their fitness values (Wright, 1931). These landscapes, just as any 

physical landscapes with characteristic “hills”, “peaks” and “valleys”, can be visualised 

as a pattern of crests, troughs and flats formed by the collection of genotypes and their 

fitness values. Graphically, this can be imagined as a G + 1 dimensional plot in which 

each genotype is a point in G	dimensions while G + 1th dimension corresponds to the 

fitness value of these genotypes (Mitchell 1998). The process of evolution can be seen 

as a movement of the population along these landscapes while the adaption can be 

seen as a process that drives the population towards a “local peak” (“local optimum”). 

A local optimum is a point in the landscape where any slight deviation from it results in 

reduction of the population fitness. This is not necessarily the highest point (“global 

optimum”). Depending on the context, an adaption can be a process of movement 

towards a local minimum or a trait acquired during the process that helps the organism 

to survive in its environment. If it is not specified as a trait, the word “adaption” in this 

work means a process. 

 

The distribution pattern of the population can be discussed in terms of what is called 

diversity. The diversity of the population at any point is: the distance from the starting 

point and distance between themselves. Diversity from the starting point can be seen 

as the distance travelled by the population in a landscape and shows that the 

population is evolving. Diversity within the members of the population can give an idea 

on how close the population is to convergence (Figure 12a). The population is said to 

have “converged”, if the members are similar to each other genotypically. If they have 

converged to the global optimum, the process is seen as convergence in the right 

direction (Figure 12b). The convergence before reaching the global optimum is called 

“premature convergence” (Figure 12c). Other applied terms are described wherever 

appropriate. 
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a b c 

Figure 12 Schematic representation of the fitness landscape. (a) Initial population 

members (black dots) with high diversity, close to the starting point (red dot) and far 

from convergence. (b) Population converged to a global minimum, G. Members 

(black dots) have much less diversity, far from the starting point (red dot) and 

converged to correct minimum. (c) Premature convergence. Members (black dots) 

have very less diversity, far from the starting point (red dot) but converged to local 

minimum, B. 

 

What type of problems are GAs best suited to solve? GAs are used when the search 

space is very large, not well defined, not smooth and multimodal (with many hills), 

and/or if the fitness function is noisy and in the type of the search problems where the 

information is not stored explicitly but the possible solutions has to be created on the 

fly as the process proceeds. If the space is smooth or unimodal, gradient-based 

methods are much more efficient than GA. If the space is well understood, domain 

specific heuristics can be applied. Most implementations of GA aim at finding good 

enough solutions in a relatively short time (“statisficer”) using optimal computational 

resources, rather than finding the global optimum. 

 

The expectations based on these cannot be considered as check markers to define 

the efficiency of the GAs, as its performance is also largely dependence on the choice 

of different parameters and finding the correct balance in their implementation. The 

best balance of the parameters can be seen as an interplay between “exploration” and 

“exploitation”. The search of new and useful adaptions (traits) is exploration, while use 

and propagation of these adaptions (traits) in a population is exploitation. In the Mitchell 

(1998) formulation of exploration and exploitation balance, the system has to keep 

trying out new possibilities, but it also has to continually incorporate and use past 

experience as a guide for future behaviour. Otherwise it might “overadapt” or become 
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inflexible when facing novelty. Understanding how GAs process intrinsically and 

extrinsically and gaining knowledge on how to achieve the exploration and exploitation 

balance might be helpful in obtaining the desired goal of optimisation (global 

optimisation or satisficer) with GA. 

 

How do GAs Intrinsically Work? 
A Schema Theory 

 

The behaviour of GAs can be very complex. It might be hard to understand in what 

type of problems they perform well. Developing GAs without establishing a way to learn 

how they work intrinsically might lead to a poor design where even a random mutation-

based search can perform better than them (Jong, 1993). Holland (1975) introduced a 

framework and the term schema for describing the behaviour of GAs. 

 

A schema in this theory is a constellation of genes that are responsible for a specific 

adaption (trait). Computationally, any schema is a template that has fixed positions 

and “don’t cares”. For example, in a chromosome with bit values, the schema h	= 1***1 

stands as a template for all 5-bit strings that start and end with 1 and the bits between 

these two bits can be of any value (hence called don’t cares and represented as *’s). 

Goldberg (1989c) called this template h a hyperplane. The strings 10011 and 11001 

that fit to this template h are called instances. The order of any schema is equivalent 

to the number of the fixed (in the example above, number of ones) positions. Any short, 

low-order schemas with a fitness above the average are called building blocks. 

 

The schema theory or building block hypothesis states that, during recombination, a 

good genetic algorithm combines good building blocks using crossover to form better 

solutions (Holland, 1975; Goldberg, 1989c; White, 2014). In the selection process, GAs 

calculate the fitness of the population explicitly based on the average fitness of many 

schema calculated implicitly, which are in turn are calculated implicitly based on the 

average fitness of all instances possible to these schemas (Figure 13). This property 

is called “implicit parallelism” by Holland. Implicit calculation of instances and schemas 

takes the same computational time without needing any additional storage, making 

GAs more robust than many other optimization algorithms. The performance of 

selection, crossover and mutation are often described based on this theory. Most of 
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the works on this theory were presented based on the static assumption called “Static 

Building Block Hypothesis (SBHH)” that states: a GA will converge on actual winners 

of each short, low order partition competition but not on the schema with the best 

fitness (Grefenstette, 1993). Assuming this static nature, schema theory is widely 

criticised by many researchers (Peck & Dhawan, 1993; Mason, 1993). However, 

Mitchell et al., (1993) proposed more dynamic approach on schema processing in GA, 

proving the relevance of the schema theorem. More on this is described in the section, 

“What Makes a Problem Hard for a GA?” of this chapter. 

 

In Holland’s view, selection searches for the schemas with estimated above average 

fitness, crossover brings together high fitness building blocks to form a chromosome 

with increased fitness, and mutation works as an “insurance policy” in preventing the 

loss of genetic diversity at any locus (Holland, 1975). 

 

 
Figure 13 Illustration of different levels of processing genetic information in GA. All 

these steps are processed in parallel, a property called implicit parallelism of GA. 

 

What Makes a Problem Hard for a GA? 
A Deceptive Fitness Function and Hitchhiking by Crossover 

 

When using GAs, one might conclude that they do not work, or that other random 

search methods perform better. The following theoretical foundations provides a way 

to understand why most GA implementations fail in achieving what other random 

search methods can do. The primary reason for this could be the use of deceptive 

fitness function. As described earlier in this chapter, a “fitness function” is a 

mathematical function used to calculate the fitness of an individual. According to 

Bethke (1980), GAs cannot find an optimum of fitness function if the low-order 
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partitions have incorrect information about high order partitions. For example, a 

schema is considered a winner when all its defining bits (fixed positions) are ones 

(11….111) except for the schema of length G, where a schema with all zeros (00….000) 

is considered a winner. In this case, GAs cannot find this higher-order partition with all 

zeros as every low order partition picks misleading instances as a winner. Fitness 

functions that propagate such behaviour are termed “deceptive” (Deb & Goldberg, 

1993; Whitley, 1991). Using “Walsh Transforms” (Goldberg, 1989b,a) similar to Fourier 

transforms, Bethke, (1980) presented different designs of fitness functions with varying 

degrees of deceptiveness. 

 

The deceptiveness of fitness functions decides whether GAs can be used as function 

optimisers (finding the global optimum) or as satisficers (finding a good enough 

solution). With a highly deceptive fitness function, it is impossible to reach the global 

optimum. But Grefenstette (1993)’s work proved that the deceptiveness, which is 

based on the SBBH, is not necessarily a culprit that creates trouble for GAs and may 

not be capable of such. More dynamic hypothesis based on the “Royal Road 

Functions” experiment performed by Mitchell et al., (1992, 1993) to study the principle 

of building blocks in an idealised form, showed that difficulty for a GA comes from 

“Hitchhiking” or “spurious correlation” of schemas. “Hitchhikers” are the bits that are 

not part of the desired schema but tag (or propagate) along with the schema by being 

next to it on the string (Schaffer et al., 1991; Schraudolph & Belew, 1992). The types 

of the crossover that propagates hitchhikers are discussed in the section “Parameters 

of GA” of this chapter. 

 

How to Implement a GA? 
Components of a GA 

 

The common implementation of a GA (Figure 14) is as follows: 

1. Map the starting candidate solution to a problem on a chromosome. Randomly 

mutate the chromosome of length G to generate m members. 

2. Compute the fitness Ç(>) of each chromosome > in the population. Select the 

desired number of offspring from the population using fitness function. These 

selected population members are considered parents. 
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3. Randomly select a pair of parents for crossover. Recombine the selected pairs 

of parents with a probability of ïB until the desired number of offspring are 

produced. 

4. Mutate the offspring with a probability ïC and place the mutated chromosomes 

in the population. 

5. Replace the current population with the newly generated population. 

6. Go to step 2. 

7. Stop if the population has a desired fitness (average/max) but otherwise 

continue. 

Each iteration from step 1 to step 5 is called a generation. The complete set of 

generations required to obtain the desired solution is collectively called as a run. 

 

 
Figure 14 The outline of the implementation of Genetic Algorithm. 

 

Parameters of GA 
Genetic Operators 
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In GAs, every step in Figure 14 is achieved by mimicking a specific biological 

phenomenon involved in evolution. The term “operator” in a GA is used to describe 

such a phenomenon. While we have many such operators (phenomena) that can be 

studied, most applications use a few popular ones. The original implementation of a 

GA by Holland used four operators: selection, crossover, mutation, and inversion 

(Holland, 1975). Many recent versions of GAs exclude inversion, as it does not improve 

the performance notably (Goldberg, 1989c). GAs process a large number of schemas 

intrinsically, while how and what type of schemas will gain priority and be allowed to 

propagate is dictated by the genetic operators such as selection, crossover and 

mutation. A brief overview of the different steps of GAs is mentioned in Figure 13 and 

is discussed below. This includes a description on various operators. 

 

Step 1 Initialisation 
This step includes mapping or encoding the starting point of the search problem onto 

a chromosome, and generating a set of chromosomes (population) by mutating few of 

its genes. As mentioned earlier, chromosomes in GAs are usually haploids. The genes 

on these haploid chromosomes can contain any value; real or bits. Different encoding 

methods (Kumar, 2013) that can be used are explained below: 

 

Binary Encoding In binary encoding, each chromosome is a string of bits with value 

either 0 or 1 (Figure 15). 

 

 
Figure 15 A chromosome showing binary encoding with bits or genes having a value 

of either 1 or 0. 

 

This is common and the very first encoding type used in early GA implementations. It 

has limited applications as it can only be used in the problems where a gene value 

represents either presence or absence of a certain parameter. 

 

Permutation Encoding It is commonly used in ordering problems (e.g. Travelling 

salesman problem), where the task is to find the minimum distance given all the cities 
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and distance between them (Figure 16). A gene value in this encoding contains the 

order or a step number information of the problem. 

 

 
Figure 16 A chromosome showing permutation encoding with chromosome 

presenting the order of cities a salesman will visit. 

 

Value Encoding In this encoding, a gene value takes values such as real numbers, 

characters connected to the problem (Figure 17). This encoding is good for special 

problems where alleles of genes cannot be represented as bits, simple ranks or orders. 

 

 
Figure 17 Figure showing three chromosomes with real, character and parameter 

encoding. 

 

Tree Encoding This encoding is used in programs or expressions that are evolving 

during optimisation such as determining a function from a set of given values. Every 

chromosome here is a tree of objects. These objects usually are functions or 

commands in a programming language (Figure 18). A programming language called 

LISP is used for this type of encoding. 

 

 
Figure 18 A chromosome with tree encoding of set of functions. 

The next step after encoding a solution on a chromosome is to generate a set of 

chromosomes by mutating its genes. The initial set of chromosomes generated act as 
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parents for reproduction after succeeding in the selection process. Generating initial 

populations with enough diversity ensure that populations converge to the global 

optimum instead of a local optimum (Hillis, 1990). The effect of diversity in the initial 

population can be understood from the visualization in Figure 19. In Figure 19a, the 

initial populations are very close to each other in space (low diversity) and have a 

higher chance of converging to a local minimum, B, in a relatively short time compared 

to Figure 19b. In Figure 19b, the initial population are well distributed in the search 

space (high diversity). An optimal design of GA with good fitness function might drive 

towards the global minimum (point G in Figure 19a/19b). But convergence in this case 

takes more time compared to Figure 19a. 

 

  
a b 

Figure 19 Visualisation on the effect of diversity of initial population on convergence. 

The colour and the tint of points indicate diversity and spatial distance between them 

respectively. In Figure 19a, points have less diversity within them and crowded near 

local minimum. This initial population might lead to premature convergence. In 

Figure 19b, points are diverse enough with representations from multiple minima. In 

this case, a good algorithm might drive towards the global optimum. 

 

Step 2 Selection 
Selection, based on the Darwin’s theory of evolution, ensures that the fittest individuals 

(survivors) are taken to the next generation and participate in further recombination. In 

the selection process, the population members are scored based on the chosen fitness 

function, and those with better scores have higher probability to survive. Selection 

modifies the current fitness distribution of a population into a new distribution. A very 

strict selection may result in insufficient diversity of the population, which is needed for 
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further evolution. On the contrary, weak selection may reduce the convergence speed 

(Mitchell, 1998). The performance of different selection operators can be evaluated 

(Blickle & Thiele, 1996) in terms of the following: 

A. reproduction rate, the ratio of the members of the population with a certain fitness 

value after and before selection, 

B. loss of diversity, the proportion of members of a population removed during the 

selection phase.  

C. selection intensity, the expected average fitness value of the population when the 

selection method is applied. 

D. selection variance, the normalised expected variance of the population’s fitness 

distribution after selection method is applied. 

 

Different selection operators commonly used are as follows: 

Proportional Selection This is a very first method proposed by Holland (1975). The 

concept of this method is similar to rotating a roulette wheel. The fitness of the 

population is mapped on a scale similar to a roulette wheel. And this wheel is rotated 

a times to get a survivors. This means that the higher the fitness of an individual, the 

greater probability of getting selected (Figure 20). 

 

 
Figure 20 Fitness proportional or roulette wheel selection. A member in the light blue 

zone (33%) has a high probability of getting selected compared to others. This wheel 

is rotated with a fixed selection point for a times to get a survivors. 

A serious disadvantage of this method is its strong dependence on the scaling of the 

fitness function and its non-applicability for population with members having zero 

fitness. This selection has very high bias and too low selection intensity. A bias in terms 
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of selection functions can be defined as a deviation between the expected reproduction 

rate and the algorithmic sampling frequency (Blickle & Thiele, 1996). 

 

Stochastic Universal Sampling (SUS) This method (Baker, 1987) is similar to 

proportional selection except that it spins the wheel once and selects a members at 

an a evenly spaced point from the starting pointer of this spin (Figure 21). 

 

 
Figure 21 SUS showing members mapped on a roulette wheel with percentage 

equivalent to their fitness respectively. The marker in brown is the member at a 

random starting point. After selecting this point, the next points (markers shown in 

green) are selected at an evenly spaced interval. 

 

The problem of the bias with proportionate selection can be overcome by using SUS. 

This selection stated as optimal sampling algorithm (Blickle & Thiele, 1996) also has 

minimal spread of the range of possible fitness values. 

 

Linear Ranking Selection For this selection, the members of the population are sorted 

based on their fitness value. Each member is assigned with a rank between 1 and a 

where 1 indicates worst fitness and a indicated best fitness (Baker, 1985; Grefenstette 

& Baker, 1989; Whitley, 1989). The selection probability is assigned linearly to 

members based on their ranks and no member gets a similar rank having similar 

probability of selection even if they have same fitness value. 

When the fitness function is noisy, incorrect selection might lead to premature 

convergence. Ranking helps to overcome this problem. However, this is not the best 

method for problems where it is important to know that one individual is much fitter 
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than its competing neighbour. When the fitness variance is high, ranking reduces the 

selection pressure by not giving the largest share to a small proportion of fitter 

individuals. When the fitness variance is low, the members Y and Y + 1 have the same 

chance irrespective of their high or low absolute fitness differences. 

 

Exponential Ranking Selection This is similar to linear ranking except that the 

probabilities of the ranks of the members are weighted exponentially (Blickle & Thiele, 

1996). 

 

Truncation Selection In truncation selection (Crow & Kimura, 1970; Mühlenbein & 

Schlierkamp-Voosen, 1993) the fraction of best performing members of a population 

above the threshold T are all selected as having same selection probability and the 

rest are discarded. 

 

Tournament Selection This selection (Blickle & Thiele, 1995; Goldberg & Deb, 1991) 

works (Figure 22) as follows: 

1. Choose l	number of individuals randomly from the population 

2. Copy the best individual from this group of	l	members to survivors 

3. Repeat a times to get a survivors 

This selection method is better than ranking and fitness proportionate selection, as 

these require more computational time than tournament. It has a similar performance 

to rank selection in terms of selection pressure. Another advantage of this method is 

its feasibility in allowing parallel implementation. 

 

 
Figure 22 Visualisation of different steps in a tournament selection operator. 
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Elitism This is often used as complementary to other selection methods. The idea is to 

pass on certain percentage of best individuals at every generation (De Jong, 1975) to 

avoid the loss of these individuals due to selection pressure. 

 

Blickle & Thiele (1996) extensively studied the behaviour of tournament, truncation, 

linear ranking and exponential ranking selections in terms of reproduction rate, loss of 

diversity, selection intensity and selection variance. The loss of diversity was found to 

be very high in truncation, moderate in tournament, but very low in exponential 

selection. Selection variance reported to be very low in truncation compared to 

tournament. Exponential ranking had the highest selection variance. These studies 

also showed complementary performance of a binary tournament compared to a linear 

ranking selection, in having a small fraction of members with worse fitness. 

 

Step 3 Crossover 
A crossover (also called recombination) is the process of combining parental 

chromosomes to produce offspring (or children). A crossover has the ability to combine 

high fitness-low order schemas to form high fitness-higher order schemas, 

“constructive power” (Thierens & Goldberg, 1993; Spears, 1993) as described in the 

Building Block Hypothesis (Goldberg, 1989c). A crossover is also studied for its 

schema “destructive” power (Sastry & Goldberg, 2002; Blickle & Thiele, 1996). These 

studies provided detailed descriptions of different crossover operators and their roles 

as a mixer, schema disruptor and innovator that are analogous to the concepts of 

constructive and destructive power of a crossover. These roles of the crossover are 

important in the selection of the appropriate crossover type. 

 

The performance of a crossover can be further evaluated based on the following 

properties (Eshelman et al., 1989): 

1. positional bias, the dependence of the probability that a set of genes will be 

transmitted together depending on the relative positions of those genes on the 

chromosome. This preferential treatment might prevent some high fitness-low 

order schemas in generating new higher order schemas with high fitness. 
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2. distributional bias, the number of genes transmitted during a crossover and the 

probability that these genes are more likely transmitted than others. The higher 

the distributional bias, the higher the diversity and schema (related genes) 

disruption rate. 

In addition to these, at a genotypic level the nature of crossover can be studied in terms 

of recombinative bias and schema bias (Sastry & Goldberg, 2002; Senaratna, 2005). 

Table 2 Comparison of performance of different crossover operators (Sastry & 

Goldberg, 2002). 

Crossover operator Positional bias Distributional bias 

One point high low 

Two or k- point medium medium 

Uniform low high 

 

Various crossover operators available for different applications are presented below: 

Single-Point Crossover In a single-point crossover, a random locus (crossover point) 

is selected and genes after this locus to the end of the chromosome in the chosen 

direction are exchanged for a crossover between two parents (Figure 23). This 

crossover cannot mix all possible schemas (“positional bias”), e.g., it cannot combine 

11***1 and ***1*1 to give 1**1*1, and treats end points preferentially (“endpoint effect”). 

Moreover, it tends to propagate hitchhikers. 

 

Figure 23 Single-point crossover. Figure showing an exchange of genes between 

two parent chromosomes at crossover point resulting in two offspring with new 

genetic makeup. 
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Two-Point Crossover In a two-point crossover, two loci (crossover points) are selected 

randomly and the genes between these two loci in the parent chromosomes are 

exchanged to form two offspring (Figure 24). This crossover has less disruptive power 

and can mix more schemas than a single-point crossover. 

 

Figure 24 Two-point crossover. Figure showing an exchange of genes located 

between two selected crossover points in parent chromosomes, resulting in two 

offspring with new genetic makeup. 

 

Uniform Crossover In this crossover, each gene is swapped between two parents with 

a certain crossover probability, ïB (Figure 25). This is highly disruptive and prevents 

propagation of co-adapted alleles but it has no positional bias. This is considered 

superior compared to other operators (Spears & Jong, 1991). 

 

Figure 25 Uniform crossover with gene swapping between parents resulting in two 

offspring. 

 
Step 4 Mutation 
Mutation introduces relatively heavy changes, compared to a crossover, at a certain 

locus by changing the value of the corresponding gene randomly or systematically. 
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This allows a leap from one point of the landscape to another point and is thus helpful 

in avoiding ending up at a local minimum. At a genetic level, mutation acts as an 

insurance policy against the fixation of gene value to a certain preferred allele at any 

locus, and thus promotes genetic variation. Different mutation operators are as follows: 

 

Flip Bit Mutation In this mutation, randomly selected genes are flipped i.e., if the gene 

value is 1, it is changed to 0 and vice versa (Figure 26). This is used in GAs that work 

with binary encoded chromosomes. 

 

 
Figure 26 Flip bit mutation in which highlighted gene value is flipped to 0 from 1. 

 

Boundary Mutation A selected gene’s value is mutated to either upper or lower bound 

randomly (Figure 27). This is used in GAs that work with integer or float values. 

 

 
Figure 27 Boundary mutation in which highlighted gene value is changed to upper 

bound of values in the same chromosome. 
 

Swap Mutation In this mutation, two randomly selected gene values are interchanged 

(Figure 28). This is commonly used in GAs that work with permutation-based 

encodings. 

 

 
Figure 28 Swap mutation in which highlighted gene values are interchanged in a 

chromosome. 

 

Scramble Mutation A selected set of genes is shuffled randomly in this mutation (Figure 

29). This mutation is also suited for permutation-based encodings. 
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Figure 29 Scramble mutation in which highlighted genes values are shuffled 

randomly. 

 

Inversion Mutation In this mutation, a selected subset of gene values is inverted (Figure 

30). 

 

 
Figure 30 Inversion mutation in which highlighted gene values are inverted. 

 

Evolutionary strategies work only with mutations and GAs work with both crossover 

and mutation. This sparked the argument that mutation is superior to crossover and 

resulted in “Crossover-Mutation Debate”. However, Senaratna (2005)’s work on this 

debate emphasises that there is no absolute winner between these two. The author 

presented the usefulness of both crossover and mutation based on the mathematical 

frameworks and models established to study the constructive and destructive power 

of these operators. 

Other than selection, crossover and mutation, the fourth element of the GA introduced 

(Holland, 1975; Goldberg, 1989c) is inversion, as mentioned above. Inversion works 

by selecting two loci and reordering the genes between these loci. This operator 

showed some success in GAs applied to the ordering problems (Parsons et al., 1995). 

But this is not used in the recent implementations. 

 

Steady-state and Generational GA 
A Focus on Search Techniques 

 

As discussed in the very beginning of this chapter, GAs belong to the class of 

evolutionary algorithms. GAs can be further sub-categorised as parallel and sequential 

(Figure 31). Parallel GAs are not used in this work, hence not described here. 

Sequential algorithms are further classified as “generational” and “steady-state”. The 

Generational and Steady-state essentially differs in terms of “generation gap” which is 
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the fraction of new individuals at each generation (Jong & Sarma, 1993; Syswerda, 

1991). Most implementations of GAs use a generational approach, where offspring 

produced after crossover and mutation completely replace their parents and form a 

new population at every generation. In steady-state, only a small fraction of parents 

with worse fitness are replaced with offspring produced after crossover and mutation. 

Steady-state GAs are used in systems where continual learning and remembering 

what was learnt is important. This thesis work focuses on generational GAs. 

 

 
Figure 31 Classification of search techniques. Generational GA used in this work 

and its class is highlighted in teal. 

 

What are the Best Parameter Settings in GA? 
On-line and off-line Performance 

 

The parameters such as crossover, mutation, and selection types and rates, are 

usually dependent. This makes the optimisation of a single parameter sequentially 

ineffective. A great deal of research was conducted to find the optimal parameters and 

was reported effective in the literature on the selected data set. Few such studies are 

discussed here. In these studies, the parameter’s combinations are evaluated in terms 

of on-line and off-line performance of the GA. The “on-line” performance at generation 

l	is the average fitness of all members that have been evaluated over l	generations. 
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The “off-line” performance at generation l	is the average value, over l	generations, of 

the best fitness observed at each generation (Blickle & Thiele, 1996). Some of the 

“best” parameter settings that either improve on-line or off-line performance of GA, 

reported by different research groups after conducting various experiments are 

discussed here. 

 

De Jong (1975) study on a set of test functions to improve on-line and off-line 

performance of GAs presented the best parameters as: a population size of 50-100 

individuals, single point crossover with a crossover rate of ~0.6 per pair of parents and 

a mutation rate of 0.001 per gene. These settings were widely used in the GA 

community (Blickle & Thiele, 1996). A group of researchers (Bramlette, 1991; 

Grefenstette, 1986) used GA (“meta-level GA”) to optimise the parameters of another 

GA with De Jong’s test set. Each individual in this meta-level GA encodes the 

parameters: population size, generation gap, crossover rate, mutation rate, a scaling 

window, and an elitist or non-elitist selection strategy. The function of on-line or off-line 

performance of an individual based these encoded parameters was taken as the 

fitness of that individual. From on-line performance, the fittest individual’s encoded 

parameters are: population size 30, crossover rate 0.95, and mutation rate 0.01. 

However, this meta-level GA did not find a parameter set that gives better off-line 

performance than De Jong’s parameters. Schaffer et al., (1989) did similar 

experiments on a small set of numerical optimisation problems. The best parameters 

according to this study are: population size 20 - 30, crossover rate 0.75 - 0.95 and 

mutation rate 0.005 - 0.01. It is clear from these studies that a small population size is 

better than a large population size in terms of on-line performance, contradicting 

studies that voted for large population size (Goldberg, 1989d; Alvarez, 2002). In view 

of variety of problems types in different applications, it is unlikely these parameters 

produce similar performance and hence cannot be taken as global recommendations. 

Based on a popular school of thought, the promising results can be expected when 

parameters adapt in real-time during search process (“self-adaption”). Davis (1989) 

study on self-adaption of operator rates provides useful insights on this approach. 

 

Can We Use GAs for Phase Optimisation in 
Crystallography? 
Applications of GAs in Crystallography 
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GAs have been used for solving many biological optimisation problems - for example 

finding a correct conformation of a small molecule in drug discovery - in the past few 

years. They have been used to solve many search problems related to crystallography 

as well. Most successful applications were found in powder diffraction studies (Harris 

et al., 1998; Hanson et al., 2005; Yakimov et al., 2008, 2009). As a global optimisation 

method, GA was sometimes used in combination with local search methods to reach 

a global optimum. Some prominent examples are discussed below. 

In the work of Nishibori et al., (2008), a combination of GAs and Maximum Entropy 

method were used for ab initio structure determination of prednisolone succinate from 

powder diffraction data. GA was used together with Monte Carlo methods for 

performing structural analysis of crystalline materials in Immirzi et al., (2008)’s work. 

This approach proved to be successful in yielding correct solutions when applied to 

four know molecular structures. Other notable examples include phase retrieval of 

coherent diffractive images using a GA, iterative phase retrieval algorithms by Truong 

et al., (2017), automatic on-line beamline optimisation using GA and differential 

evolution by Xi et al., (2017), refining structure of multidomain proteins and complexes 

against SAXS with NMR-derived restraints (encoded in a program called DADIMODO) 

using GA and simulated annealing by Evrard et al., (2011). 

A GA was also used in macromolecular crystallography to solve problems ranging from 

merging synchrotron crystallographic data to the identification of conformationally 

invariant regions in macromolecules. A few examples are presented in Table 3. 

Table 3 Examples of application of GA in macromolecular crystallography. 

Application  Elitism Crossover 
operator 

Selection 
operator 

Mutation 

Automatic beamline optimisation, 

(Xi et al., 2015) 

Yes Single-

point (rate 

= 0.8) 

Roulette 

wheel 

Insertion 

(rate = 

0.05) 

Grouping SAD datasets, (Foos & 

Nanao, 2019) 

No Single- & 

Two point 

(rate = 0.6) 

Random Insertion 

(rate = 

0.5) 
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Low-resolution ab initio phasing – 

gamification, (Jorda et al., 2016) 

No Single-

point (rate 

= 0.3) 

Tournament 

(Size 12) by 

human 

players 

Insertion 

(rate = 

0.2) 

Merging of synchrotron serial 

crystallographic data, (Zander et 

al., 2016) 

No Uniform 

(rate = 

0.05) 

Tournament 

(Size 3) 

Uniform 

(rate = 

0.05) 

Identification of conformationally 

invariant regions in protein 

molecules, (Schneider, 2002) 

Yes n/a Truncation 

(70%) 

 

 
Challenges and Demands 
 

The use of GAs for phase optimisation has not been very well established. Some 

studies reported success when phase space is limited by the factors such as 

availability of prior information as in MR (Kissinger et al., 1999; Chang & Lewis, 1997) 

or by the considerations of symmetry (Miller et al., 1996) when applied to small 

molecule structures (Kariuki et al., 1997; Nishibori et al., 2008) or searching for a small 

subset of phase-determining heavy atoms (Chang & Lewis, 1994). Zhou & Su, (2004) 

reported that GAs are more efficient than simulated annealing for phase optimisation 

by minimising the least-square residual of Sayre’s equation (Sayre, 1952) in 

centrosymmetric structures. Jorda & Michael, (2014) and Jorda et al., (2016) 

developed an online game called CrowdPhase for ab initio phase retrieval in 

macromolecular crystallography based on a human-powered GA where players select 

better looking electron density maps (phenotypic expression of phases) manually. It 

was shown that the players were able to choose phase sets with a phase error of less 

than 30°. 

 

Uervirojnangkoorn et al., (2013) used a GA to optimise the phases for the 4% of 

strongest reflections using skewness of the density distribution as a fitness function at 

a resolution range from 2.6 Å to 3.5 Å. The electron density map with the optimized 

phases showed improvement in map quality, with increased map correlation from 0.56 

to 0.70 in one of the test cases, after the density modification. 
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In view of these studies, efficient implementation of GAs for phasing in macromolecular 

crystallography starting from more or less random phases is seen as a challenging 

task, and is attempted in this work. Based on these earlier works, it is evident that a 

focus on understanding the behaviour of the algorithm and its parameters is what is 

lacking and is crucial for its optimal implementation. Moreover, Uervirojnangkoorn et 

al., (2013) emphasised the importance of fitness function for phase optimisation using 

GA in macromolecular crystallography. 
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Scope of This Thesis 
 

Inspired from the success of GAs in simple phase optimisation problems, I intend to 

study the nature of GAs and their parameters. In contrast to any other applications of 

GAs in macromolecular crystallography, this work was an attempt to identify a practical 

set of GA parameters and steps for phase optimisation, rather than an actual 

application. The major focus of this work is to provide a guiding light in designing the 

best GA scheme for phase optimisation. 

Various designs of GA using different combination of operators and their parameters 

were tested for their efficiency in phase optimisation and the results are presented 

here. This work also has a minor emphasis on identifying the best fitness function for 

a GA which could drive this work towards an actual application. 

Following Uervirojnangkoorn et al., (2013) work on map moments, skewness and 

kurtosis were used as a cost function initially. To improve the performance of these 

atomicity related functions, a 3-dimensional parameter, map connectivity was 

introduced in the later experiments. Is it beneficial to use these parameters individually 

or do they perform better in combination? If they need to be combined, what is the best 

combination? To investigate these questions, various studies were performed to 

identify the relative performance of these parameters individually and in combination. 
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Methodology and Materials 
 

The problem of optimising and obtaining crystallographic phases is highly 

multidimensional, with parameters nearly equivalent to the number of reflections times 

the number of phase possibilities. For example, we can consider a molecule having 

approximately 150 residues in an asymmetric unit with nearly 10000 reflections. 

Assuming each reflection has four phase possibilities, sampling these possibilities for 

10,000 reflections would require a computational time of 27ññññ seconds, which is 

equivalent to around 10óñññ seconds, while the estimated age of the universe is 

4.32	 × 	10zús. If this takes more time than the age of universe, sampling 10,000 

reflections and considering a phase value of anywhere between 0° to 360° would be a 

combinatorial explosion. To minimise this computational complexity, the phases of 

every reflection is rounded to one of four possibilities: 45°/135°/225°/315°. These 

represent each quadrant in a circle signifying the possibility of a phase value in the 

range of 0° to 360° (Figure 32). This is called “phase discretisation” in this work. 

 

 
Figure 32 Phase discretisation. Phases are discretised to 45°/135°/225°/315° 

representing each quadrant of the phase space. 

 

GAs are then used to sample this discretised phase space. The idea is to take 

advantage of the GA’s jumpy behaviour to sample this restricted phase space within a 

realistic computational time. The first step in designing an efficient algorithm is to select 

an appropriate set of test cases with a desired degree of phase error that can provide 

room for improvement. Two test cases selected for this purpose and their selection 

criteria are discussed below. 
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Test cases 
 

Throughout the study, two macromolecular test cases taken from the PDB were used. 

Most of the studies presented in this report were carried out with the X-ray data of 

these two proteins truncated to a resolution of 2.5 Å. At 2.5 Å resolution and worse, 

angle-bonded atoms are no longer resolved and the corresponding density map no 

longer contains any traces of “atomicity” (Figure 33). 

 

 
Figure 33 Electron density map at different resolutions. In the map at 1 Å the tyrosine 

residue of ribonuclease from Streptomyces aureofaciens (PDB ID: 1LNI) was well 

resolved showing atomic details. After 2.5 to 3 Å resolution, the map is more blobby 

and misleading. These maps are generated using Coot (Emsley & Cowtan, 2004). 

 

Case I: Saicar Synthase from Saccharomyces cerevisia 
The structure of saicar synthase (Levdikov et al., 1998) was solved using experimental 

phases and refined using anisotropic atomic displacement parameters at 1.9 Å with an 
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Rfactor of 0.16 (Figure 34). The crystals belong to space group P212121 and there is 

one molecule per asymmetric unit. The X-ray data, with experimental isomorphous 

replacement phases after density modification using solvent flattening (11859 

reflections), was extended to 2.5 Å resolution. The experimental phases to 2.5 Å 

resolution were taken without their figures of merit (a measure of phase error). This 

reduced the map correlation coefficient (more on this parameter is discussed in the 

section “Fitness function” of this chapter) from 0.7867 to 0.7557. To further limit the 

variation of the phases for acentric reflections to only four possible values, they were 

rounded to the nearest value of 45°/135°/225°/315°. 

 

 
Figure 34 Structure of saicar synthase solved at resolution 1.9Å (PDB ID: 1A48). 

Figure taken from the PDB (Burley et al., 2019). 
 

The rounded phases were taken as the initial phase set for the development of the 

method. As we were starting with discretised phases, it would be difficult to reach the 

“actual solution”, a final map with a phase possibility between 0° to 360°. To create a 

reference for this discretised phase scenario, the phases of a density map at 1.9 Å 

were rounded to 45°/135°/225°/315°, resulting in a map correlation coefficient (MCC) 

of 0.9088 to the final map (map at 1.9 Å). This map is considered the “final point” to 

reach using a GA when starting with discretised phases. The MCC to the final map, 

the overall phase error and the MCC of the final point of the GA are shown in Table 4. 
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Case II: Ribonuclease from Streptomyces aureofaciens (RNase SA) 
The structure of RNase SA (Sevick et al., 2002) was refined using atomic displacement 

parameters at 1.0 Å to an Rfactor of 0.161 (Figure 35). The crystals belong to space 

group P212121 and contain two molecules per asymmetric unit. The X-ray dataset was 

truncated to 2.5 Å resolution to represent the resolution range similar to that of test 

case I. The Wilson B factor was upweighted by 36 Å7 accordingly. The model was 

refined using Refmac (Murshudov et al., 1997) against this 2.5 Å data (in order to 

reduce the high-resolution model bias) that was giving an Rfactor of 0.092. There are 

6,866 unique reflections in this data to the selected resolution limit. The phases from 

the model refined against the 2.5 Å data were subject to an additional uniformly 

distributed phase error of 50°, as described in the next paragraph. 

 

 
Figure 35 Structure of RNaseSA solved at resolution 1.0Å (PDB ID: 1LNI). Figure 

taken from the PDB (Burley et al., 2019). 
 

The phases for centric reflections were changed to +180° in 50/180 cases at random, 

resulting in a mean cosine of the phase error of 0.44. The phases for acentric 

reflections were changed with an addition of a phase error uniformly distributed within 

the range +/-100°, resulting in a mean cosine of the phase error of 0.56. These phases 

of acentric reflections were then rounded to the nearest value of 45°/135°/225°/315 

degrees introducing an additional but small phase error of about 3°. 

 

The rounded phases were taken as the initial phase set for the development of the 

method. The final point to be reached here is a map at 2.5 Å with phases rounded to 
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45°/135°/225°/315° while having an MCC of 0.8898 to the final map (map at 2.5 Å 

without artificially introduced phase error). The MCC of the final map, the overall phase 

error and the MCC of the final point for the GA were as shown in Table 4. 

 

Table 4 The characteristics of the initial density maps and their corresponding phases. 

Test case Resolution 
(Å) 

Acentric/ 
centric 
reflections 

MCC Phase 
error 
(degrees) 

Mean 
cosine 
of the 
phase 
error 

MCC of 
the 
final 
point 

Saicar 

synthase 
2.46 10261/1598 0.6873 51.27 0.518 0.9088 

RNase SA 2.50 5700/1166 0.4944 52.76 0.505 0.8898 

 

The general formulation of the phase optimisation problem is shown in Figure 36. The 

task is to start the map with discretised noisy phases (Figure 36b) and reach a map 

with discretised final phases or correct phases (Figure 36c) using GA. 

 

Starting point GA starting point  GA final point  Actual solution 

    
a b c d 

Figure 36 Formulation of the phase optimisation task. The noisy electron density 

map (Figure 36a) is the starting point whereas the noisy rounded map (Figure 36b) 

is the starting point for GA. The improved map after phase optimisation using GA is 

expected to have density features similar to the GA final point (Figure 36c) which is 

closely resembles the actual solution (Figure 36d). Electron density maps are 

generated using RNase SA data in ArpNavigator (Langer et al., 2013). 

 



Chapter 3. Materials and Methods 

 52 

The assumption is that as the discretised final map has well defined density with 

features very much similar to the final map with correct phases, this is good enough to 

interpret the density accurately. 

 

Implementation of GA 
 

Initialisation of the Population 
The noisy discretised phase set was mapped on to a “chromosome”, which was 

represented as a string of integers. Each “gene” in the chromosome has four allele 

possibilities: 45°/135°/225°/315˚ for acentric reflections and one of the two values for 

centric reflections (0°/180˚ or 90°/270˚). This initial chromosome is hereafter called the 

first parent (Figure 37). 

 

 
Figure 37 Haploid chromosome representation of noisy discretised phase set, the 

first parent. 

 

As the phases of crystallographic reflections are independent from each other, the 

reflections for the first parent have been sorted in an arbitrary order. The order of the 

reflections was kept fixed for all members of the population throughout the GA. 

 

Generation of First Parents 
The phase variability 

Approximately 2000 second parents were generated from the first parent. The 

difference between the first parent and the second parents is hereafter called phase 

variability. The five different values of phase variability investigated in this work were: 

0.5°, 1°, 2°, 4° and 8°. The variability was achieved by introducing an average phase 

error equivalent to these values of the phase variability between the first parent and 

each of the second parents. For example, to obtain second parents with 1° phase 

variability, a phase for each centric reflection was changed from its value in the first 

parent by an addition of +180° with a probability of 1/180. Similarly, a phase for each 

acentric reflection was changed with an addition of either +90°, +180° or +270° with a 
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probability of 1/360. The average acentric reflections having changed phases 

compared to the phases of the first parent (simply called “distance to the first parent” 

hereafter, and this definition covers phase changes of both centric and acentric 

reflections) can be computed by using the following equation (10). For example, this 

average for different phase variabilities when the number of reflections equal to 6000 

is given in Table B.1. 

 

 
î`ùû!üù	ïℎ!yù	wℎ!müùy =

∑ a°¢£/
360• 	(3¶)�

sßz
m  (10) 

where, m is population size, a°¢£/ is the number of reflections and ¶ is the phase 

variability. 

 

Population and Generation 

Each generation starts by recombining parents using crossover. The population size 

expanded from ~2000 to 20,000 after crossover. This population was then subjected 

to selection based on the fitness function. The surviving population were passed as 

parents to the next generation. 

 

Crossover 

For recombining the phase sets, the one-point crossover and the uniform crossover 

operators were used. 

 

Parameter Selection Rationale 

As the structure factor amplitudes and phases of the X-ray reflections are almost 

independent from each other, both one-point crossover (with high positional bias) and 

uniform crossover (with high distributional bias) can be used. 

 

One-point Crossover For a selected pair of parents, a crossover point (the reflection 

number) was taken at random. The phases from each of the two parents before the 

crossover point were passed over to the two children. The phases after the crossover 



Chapter 3. Materials and Methods 

 54 

point were swapped so that the phases from one parent were passed over to the 

second child while the phases from another parent were passed to the first child. 

 

Two variants of the one-point crossover were used in this work. In the first variant, for 

each randomly selected pair of parents, four crossover points are generated using a 

random number generator. Each crossover resulted in two children, giving 8 children 

in total by crossing over at 4 points (Figure 38a). In the second variant, for each 

randomly selected parent, four partners were selected at random. Each pair of parents 

generated two children, giving 8 children in total after recombining with four different 

partners (Figure 38b). 

 

Uniform Crossover For a selected pair of parents, the phases which were the same in 

both parents were passed over to the two children. When the phases in the parents 

differed, they were swapped with a probability of 0.5 and then passed over to the 

children. 

 

Two variants of the uniform crossover were developed: In the first approach, the 

randomly selected parent was crossed over with four partners selected at random. 

Each pair of parents produces two children, totalling 8 children. In the second 

approach, eight partners were chosen for every randomly selected parent. Each pair 

produces two children. The first child was retained and the second child was discarded. 

After crossover, the generated children together with their parents (passed as elite 

members) expands the population size to 19440. 
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Figure 38 Two variants of the one-point crossover. Figure 38a showing parent1 

being crossed over at four different points with parent 2. Figure 38b showing parent1 

being crossed over with four different parents (Parent 2, 3, 4 and 5). 

 

Selection 

The SUS and the tournament selection operators were used in this work. 

 

Parameter selection rationale 

In the studies performed by Blicke and Thiele, tournament, linear and exponential 

ranking selections were given as the best selection methods. As we planned to 

investigate different sizes of tournament including binary, we skipped linear ranking 

which was shown to have identical performance (Blickle & Thiele, 1996). When 

deciding between tournament and exponential, tournament was selected as it allows 
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parallelisation which can be helpful in working with computationally complex problems 

like phase optimisation. 

SUS, which has less selection bias, was also tested for its performance in the phase 

optimisation. 

 

Stochastic Universal Sampling 

In the first step, the phase sets in the population are sorted according to their fitness 

value. These sorted phase sets were mapped on to a chromosome. Here, each gene 

encodes a phase set and its fitness value. Starting at a random point on this 

chromosome, = pointers were generated at regular intervals (Figure 39). The distance 

between the pointers or the width of the interval was I/a where a is the number of 

offspring to be generated and I is the total fitness of the population. 

 

 

Figure 39 Implementation of SUS. Genes A to G correspond to the phase sets and 

their fitness values after sorting in decreasing order based on their fitness value. 

Genes are selected at the regular intervals (Black diamond shaped markers) from 

the random starting point (Brown diamond shaped marker). 

 

Tournament Selection 

Tournament selection was also used in this work. The sizes of the tournament operator 

(t) studied ranged from 2 to 9. The tournament sizes of 2 and 9 were extensively 

studied in GA protocols called “designs” in this work. The effect of tournament size on 

the diversity of the population can be described in simple statistical terms. If the 

population members are sorted by their fitness value and ranked at an interval between 
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0 and 1, with 0 being the member with the best and 1 being the member with the worst 

fitness value, the probability of selecting a point > within this interval using different 

tournament sizes l	can be expressed as follows: 

 

 ï(>) = l(1 − >)©^z (11) 

 

The probability of selecting a point > for tournament size 9 is a parabola of the eighth 

order starting from 9 at > = 0 and dropping to 0 at > = 1. The probability distribution 

for tournament size 2 is triangular, with a straight line starting from 2 at > = 0 and falling 

to 0 at > = 1 (Figure 40). 

 

 

Figure 40 The selection intensity for the tournament of size 9 (shown in brown), 5 

(shown in yellow) and 2 (shown in blue). In this X-axis, 0 represents best fitness 

while 1 represents worst fitness. 

 

In this selection, for example, a/2 of the population members (where a is the size of 

the population) were selected using a size 2 tournament operator. The remaining a/2 

of the population members were ignored. The survivors selected in the current work 
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have two different functional roles: to participate in the reproduction for producing next 

generation children and to move on to the next generation as elite members (Table 5). 

 

Table 5 The survivors, children, and elite fractions for tournament size 2 and 9. 

Tournament size Survivors Elite Children 

9 a/9 1/9 8/9 

2 a/2 1/4 3/4 

 

Mutation 

In this work, a concept similar to the flip bit is applied for the integer-based genes. Two 

variants of this concept were designed: non-targeted and targeted. In the non-targeted, 

the genes for mutation were randomly selected while in the targeted, the genes for 

mutation were selected based on the degeneracy statistics (explained in the “Directed 

mutations” section of this chapter). The phase values of these selected genes were 

then changed uniformly to either to 45˚/135˚/225˚/315˚ for acentric reflections and to 

90˚/270˚ or 0˚/180˚ for centric reflections. The number of genes selected was defined 

by the mutation rate. 

 

Design Rationale 

A major concern in using the non-targeted random mutations is the possibility of a large 

jump in the search space. The jump depth and length were determined by mutation 

rate and number of generations exposed to mutations respectively. To understand this 

effect, relatively high mutation rates of 1, 2, 4, 8, 100, 200, 300 were introduced into 

every generation. The drastic drop in the MCC showed that introducing mutations into 

every generation with high mutation rates can be detrimental (Figure C.2). This might 

drive the system to jump to an incorrect region of the phase space. To avoid this, 

mutations were only introduced in some selected generations. These were the 

generations in later developmental stages where growth became stagnant (identified 

by non-linear growth in the fitness value). The mutation rate used was three times 

lower that the distance of the population to the first parent at these generations. 
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Two types of non-targeted mutations were designed: static and dynamic. The common 

step for these mutations was to start with identifying the generation at which a nonlinear 

growth in the MCC was first observed. For simplicity this is called “non-linear growth 

generation”. 

 

Static Mutations From the non-linear growth generation, mutations with a constant 

mutation rate were applied for ~20-30 generations and then turned off completely for 

the subsequent generations. 

 

Dynamic Mutations At the non-linear growth generation, mutations with a decreasing 

mutation rate (decrement of 0.01 per generation) were applied until it reached zero. 

No mutations were introduced in the subsequent generations. 

 

Directed Mutations Directed mutations are performed based on what is called in this 

work the statistics of “reflection degeneracy”: 

• If a reflection has the occurrence of all the four possible phase values 

(45˚/135˚/225˚/315˚) at least once in a population at a given generation, this 

reflection is considered a “non-degenerate” reflection at that generation. 

• If a reflection has the occurrence of three of the four possible phase values at 

least once per population in a given generation, this reflection is considered a 

“slightly degenerate” reflection at that generation. 

• If a reflection has the occurrence of two of the four possible phase values at 

least once per population in a given generation, this reflection is considered a 

“moderately degenerate “reflection at that generation. 

• If a reflection’s phase value is the same throughout the population in a given 

generation, this reflection is considered a “completely degenerate” reflection in 

that generation. 

 

The four scenarios described above can be seen as four schemas that were monitored 

to understand the behaviour of GAs in phase optimisation. Direct mutations are 

introduced in expectation that it is more beneficial to mutate a completely degenerate 

reflection than to mutate a non-degenerate reflection to prevent the loss of diversity. 
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Fitness function 
The fitness functions used in this work were: MCC, moment of the density histogram 

(skewness and kurtosis), and map connectivity. 

 

Map Correlation Coefficient 

The MCC is a linear correlation coefficient between the map in question and the map 

with phases from the refined model. The MCC was computed in reciprocal space 

following (Lunin & Woolfson, 1993) as implemented in the ARP/wARP module ph_rms. 

Although the MCC cannot be used as a realistic fitness function, it was employed in 

this work to benchmark the various designs of the GA that were studied. 

 

Moments of Density Distribution 

The studies performed by Cochran (1955), Podjarny & Yonath (1977) and Lunin (1993) 

indicated that certain properties of the electron density map can be expressed as 

statistical moments of density distribution. Furthermore, Podjarny & Yonath proposed 

that skewness, which is related to the third moment of the histogram, can be used to 

identify the quality of the electron density map. Petersen performed an extensive study 

on eleven 3D moment invariants and one higher-order chiral invariant of local regions 

of electron density map, (Peterson 2013). This study further proved the usefulness of 

the skewness and kurtosis in analysing the quality of electron density distribution. 

Skewness was also used as a fitness function for the optimisation of experimental 

phases using a genetic algorithm by Uervirojnangkoorn et al., (2013). 

 

Based on these studies, in this work we evaluated the use of skewness (measure of 

symmetry) and kurtosis (measure of peakedness) related to the third and the fourth 

moment of the histogram respectively. The moments were used both individually and 

in combination. The first two moments of the histogram, mean/median/mode (measure 

of location) and standard deviation (measure of spread), do not use phases in their 

computation, equations 12 and 13. Therefore these moments cannot be used to 

evaluate the phase quality. The skewness and kurtosis which have phase components 

in their calculations can be computed using the equations 14 and 15 respectively. 

 

 ¨z =
Iñññ
QB¢//

 (12) 
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	¨7 =

∑ It7t
(QB¢//)7

 (13) 

 
¨d =

∑ It≠ItÆItØexp	[Y∞Kt≠ + KtÆ + KtØ±]t≠\tÆ\tØßñ
(QB¢//)d

 (14) 

 
¨≤ =

∑ It≠ItÆItØIt≥exp	[Y∞Kt≠ + KtÆ + KtØ + Kt≥±]t≠\tÆ\tØ\t≥ßñ
(QB¢//)≤

 (15) 

 (Lunin, 1993)  

where ¨z, ¨7, ¨dand ¨≤ are mean, standard deviation, skewness and kurtosis 

respectively, It is structure factor amplitude Kt is the phase of a reflection y, QB¢//  is 

volume of the cell, Iñññ is the structure factor amplitude of the reflection 000. 

 

The equations 12 to 15 can be used to compute the moments in reciprocal space. 

However, in this work the moments are computed in real space (from the electron 

density map) using the equation 16. 

 

 ¨. = (1 QB¢//) ∫ O(û).	
µ⁄ ∂Q°,			F = 0, 1, … . (16) 

 (Lunin, 1993)  

where ¨.is the moment of order F, QB¢// is volume of the cell O(û) is electron density 

at position û. These are implemented in the ARP/wARP module Histogram. 

 

Map Connectivity 

The higher order one-dimensional moments of the density histogram, which are 

dependent on the resolution of the data, may not be an effective metric. Hence, the 

use of 3-dimensional information such as map connectivity obtained by generating 

skeletons from the electron density map was also included as a component of the 

fitness function. The computation of connectivity is discussed in the section 

“Connectivity” of chapter 5. 

 

Parameters for Monitoring the Performance 
The overall performance of the entire GA design was monitored by three parameters: 

• improvement in the MCC values of the population. 

• the increment in the distance of the phase set expressed as the average 

number of reflections with changed phases compared to the first parent. 
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• the divergence of the phase set expressed as the average number reflections 

with changed phases compared to the other members of the population. 

• number of residues built by ARP/wARP, an automated model building software. 

 

Termination criteria 
The algorithm was designed to terminate at a generation where the MCC of the 

population was approximately equal to the MCC of the final point. 

 

Designs of GA 
 

The first parent (with noisy spared phases) was taken as the starting point. From the 

first parent, using five different protocols with phase variabilities of 0.5°, 1°, 2°, 4° and 

8°, five sets of first-generation parents were produced. Three different designs were 

developed using different parameters to execute the subsequent steps in a GA (Figure 

41). 

 

Figure 41 The overview of a GA design. 
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GA Design 1 
In the first generation, each parent was subjected to crossover with the first parent 

using a one-point crossover (first variant described in the section “one-point crossover” 

of this chapter) to produce children. The second and subsequent generations use 

either the first or second variant (discussed in the section “one-point crossover” of this 

chapter) of the one-point crossover to produce children. The selection was performed 

using either SUS or tournament selection. The size of the tournament was set to 9. 

The survivors after selection participated in a crossover to produce children for the next 

generation and were included as elite members in the population together with their 

children. No mutations were applied. This process was continued until convergence 

(average MCC of the population ≅ MCC of the GA final point) was achieved (Table 6). 

 

Table 6 Parameters used in GA design 1. 

Parameter 
Design 1 

1a 1b 
Crossover One-point V1* One-point V2** 

Selection Tournament with size 9 / 

SUS 

Tournament with size 9 

Mutation None None 

Population composition 1/9 elite (All parents) 

8/9 children 

1/9 elite (All parents) 

8/9 children 

* First variant of one-point crossover **second variant of one-point crossover 

(discussed in the section “one-point crossover” of this chapter) 

 

GA Design 2 
The first generation was created similarly to the first GA design. The second and 

subsequent generations use uniform crossover variant 1 (refer to section “Crossover” 

in this chapter for further details) to produce children. The tournament operator was 

used to select survivors. The size of the tournament was set to 9 and 2 in design 2a 

and 2b respectively. The population from the second generation in the design 2a was 

composed of 1/9 survivors that became elite members and 8/9 children. The 

population from the second generation in the design 2b was composed of 1/4	survivors 

that became elite members and 3/4 children. No mutations were applied (Table 7). 
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Table 7 Parameters used in GA design 2. 

Parameter 
Design 2 

2a 2b 
Crossover One-point V2** for the first 

generation and uniform for other 

generations 

One-point V2** for the first 

generation and uniform for other 

generations 

Selection Tournament with size 9 Tournament with size 2 

Mutation None 

Population 
composition 

1/9 elite (All parents) 

8/9 children 

1/4 elite (All parents) 

3/4 children 

**Second variant of one-point crossover (discussed in the section “one-point 

crossover” of this chapter) 

 

GA Design 3 

In this design, the first generation was obtained similarly to that of GA design 1 and 2 

with the exception that uniform crossover was used for producing children by mating 

the second parents with the first parent. The population was then subjected to selection 

using a tournament of size 2. 

 

Table 8 Parameters used in GA design 3. 

Parameter 
Design 3 

3a 3b 3c 3d 

Crossover Uniform 

crossover for 

all generations 

Uniform 

crossover for 

all generations 

Uniform 

crossover for 

all generations 

Uniform 

crossover for 

all generations 

Selection Tournament 

with size 2 

Tournament 

with size 2 

Tournament 

with size 2 

Tournament 

with size 2 

Mutation None Static  Dynamic Directed 

Population 
composition 

1/10 elite 

(best parents) 

9/10 children 

1/10 elite 

(best parents) 

9/10 children 

1/10 elite 

(best parents) 

9/10 children 

1/10 elite 

(best parents) 

9/10 children 

 
The first pair of survivors (parents of the next generation) selected were recombined 

using uniform crossover to produce two children. Among these two children, only the 
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first child passed to the next generation. This selection of a pair of parents and passing 

of a child to the next generation was continued until 90% of the desired population size 

(0.9	 × 	a) was generated. The remaining 10% of the next generation was then filled 

with the best performing parents, selected based on their fitness value (Table 8). 

 
Computational Resources 
 

The algorithm was developed in three different programming languages: Fortran 77 for 

mathematical computations, shell scripting for integrating Fortran programs and other 

executables, with python 2.7 scripts used to analyse various performance parameters 

of the GA. This developed package can run on Mac and Unix, or Unix-like operating 

systems. 

 

The package uses some of the CCP4 (Winn et al., 2011; Ten Eyck, 1973; Read & 

Schierbeek, 1988) and ARP/wARP libraries (Lamzin & Wilson, 1993) for tasks such as 

computation of electron density map (module “fft” of CCP4), skewness and kurtosis of 

the density distribution (module “histogram” of ARP/wARP), MCC and mean cosine of 

the phase error (module “ph_rms” of ARP/wARP). 

 

The computations of GA were parallelised using EMBL’s cluster computing facilities, 

“sistina” and “hyde”. Each generation took 90 to 120 minutes of computational time of 

which ~30% was used for ASCII to binary file conversions (~20000 files per generation) 

and ~20% for computing electron density maps from reflection data. 
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Optimisation of GA for Phase Improvement 
 

To identify a combination of GA parameters that are ideal for phase optimisation 

problem, an artificial fitness function, MCC, was used. This chapter presents the 

comparative performance of all three designs of GA using this fitness function. To 

enable comparison, the scale of all plots in this chapter are kept same. 

 

Premature Convergence 
 

 
Figure 42 GA design 1 with MCC as a fitness function in the test case II. The growth 

of MCC (Figure 42a), phase distance (Figure 42b) and phase divergence (Figure 

42c) for all phase variabilities are plotted as a function of generation. * colour legend 

for Figure 42a ** colour legend for Figures 42b, 42c. 

*  
**  

 

 

The distribution of the population produced by GA design 1 showed premature 

convergence (refer to section “What Type of Problems is GA Best Suited to Solve?” of 
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chapter 2). The MCC reached a steady-state well below the maximum MCC in test 

case II (Figure 42a). The evolution of the system stagnated (Figure 42b) with no 

diversity among population, as can be seen from the “phase divergence” plot (Figure 

42c). 
 

A noticeable dependence on the phase variability can be seen from Figure 42b. The 

higher the phase variability, the longer distance the population travelled from the first 

parent. However, populations with initial phase variability greater than 1° have 

converged faster and showed comparatively smaller improvement in the MCC. 

 

The premature convergence may be due the insufficient diversity among the 

population produced by the crossover or due to the high selection intensity imposed 

by the selection operator. To investigate this, different crossover and selection sizes 

were studied. 

 

Crossover 
 

To amplify the diversity among the population, the one-point crossover was replaced 

with uniform-crossover in GA design 2. Swapping nearly every gene produced a 

population with very high variance. This population converged slower (Figure 43c) and 

showed nearly three-fold (45.2%) improvement in the MCC compared to the one-point 

crossover (15.2%) in the test case II with 1° phase variability at generation 400 (Figure 

43a). 

 

To further improve the diversity needed to reach the final point, selection intensity was 

reduced by using tournament size 2, and uniform crossover variant 1 was replaced 

with variant 2. The effect of tournament size is discussed in the section “Selection” of 

this chapter. With uniform crossover variant 2, only two children per pair of parents 

were produced and the second child was discarded to prevent the accumulation of 

closely related members in terms of their genetic information.  This was useful in 

avoiding the movement of the population to an incorrect local minimum (Figure 43b) in 

the early stages due to accumulation of similar genetic copies in the population (Figure 

43c). Thus approximately 77.3% improvement in MCC was achieved by using GA 

design 3 in the test case II with 1° phase variability at generation 300 (Figure 43a). 
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The improvement in the MCC, the distance travelled in the phase space away from the 

GA starting point (distance to the first parent) and the growth of the diversity among 

the population using three different designs (GA design 1, GA design 2a, GA design 

3a) with different crossover operators are presented in Figure 43. This comparative 

illustration clearly depicts the effect of loss of diversity on premature convergence and 

the critical role of crossover operator type in maintaining diversity. 

 

 
Figure 43 Comparison of GA design 1, GA design 2a and GA design 3a to show the 

effect of crossover. The growth of MCC (Figure 43a), phase distance (Figure 43b) 

and phase divergence (Figure 43c) for phase variability of 1° in the test case II are 

plotted as a function of generation. * colour legend for Figure 43a ** colour legend 

for Figures 43b, 43c. 

*  

**  
 

 

Selection 
 

The importance of the selection intensity and the role of tournament size in controlling 

the selection intensity and thereby controlling the diversity are shown in Figure 44. The 
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improvement of MCC using GA design 2a and 2b are shown in Figure 44a. With 

tournament size 9 having a parabolic probability distribution (refer to section 

“Tournament Selection” of chapter 3) that selected far worse individuals (Figure 40), 

the diversity in the population (Figure 44c) decreased earlier resulting in premature 

convergence (Figure 44a and 44b). 

 

 
Figure 44 Comparison of GA design 2a and GA design 2b to show the effect of 

tournament size. The improvement of MCC (Figure 44a), phase distance (Figure 

44b) and phase divergence (Figure 44c) for phase variability of 1° in the test case II 

are plotted as a function of generation. * colour legend for Figure 44a ** colour legend 

for Figures 44b, 44c. 

*  
**  

 

 

With the size 2 tournament having triangular probability distribution (refer to section 

“Tournament Selection” of chapter 3), a comparatively higher percentage of poorly 

performing members with a variety of genetic composition were retained. This allowed 

enrichment of genetic information for further evolution (Figure 44b). With the fitness 

function, MCC, driving towards the correct minimum in phase space, the improvement 
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in the MCC increased from 45.2% using GA design 2a to 72.3% using GA design 2b. 

This was achieved in the test case II with 1° phase variability at generation 400 (Figure 

44a). 

 
Mutation 
 

To further improve the map quality, different types of static, dynamic and directed 

mutations were introduced in the best design identified: GA design 3. A characteristic 

(decrease in MCC when mutations were applied, a period of no change in MCC after 

mutations were turned off, followed by recovery period showing improvement in MCC, 

Zoomed-out in Figure 45a) deviation in the improvement of MCC due to mutations can 

be seen between generation 150 to 200. However, the pattern of this characteristic 

deviation in the MCC was found be different in static and dynamic mutations. 

 

In static mutations, the longer jump length (the number of generations in which the 

deviation from the linear growth in MCC was observed, shown as a horizontal black 

line in Figure 45a) was observed due to a constant rate of mutations introduced over 

selected number of generations (Table B.2) compared to dynamic mutations. This 

resulted in a slower recovery time for static mutations than dynamic mutations (Figure 

45a). The jump depth (the amount of change in MCC, shown as vertical black line in 

Figure 45a) was almost similar with static and dynamic mutations (Figure 45) as the 

same mutation rate was introduced in both the cases (Table B.2). In test case II using 

GA design 3, the improvement in MCC from 0.4944 to 0.8293 (84.7%) with static 

mutations and to 0.8326 (85.5%) with dynamic mutations respectively was observed 

at generation 400 for the population with 1° phase variability (Figure 45a). A 

comparatively higher improvement in MCC with dynamic mutations reflects the positive 

effect of a smaller mutation rate at late developmental stages. This can be seen as 

more beneficial than no mutations or mutations with high mutation rate (Figure 45). A 

heavy mutation rate in the early developmental stages was found be detrimental for 

the improvement of optimisation problem (Figure C.2). However, a smaller mutation 

load at the early developmental stages needs to be investigated. 
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Figure 45 Comparison of GA design 3a, GA design 3b and GA design 3c to show 

the effect of mutations. The growth of MCC (Figure 45a), phase distance (Figure 

45b) and phase divergence (Figure 45c) for phase variability of 1° in the test case II 

are plotted as a function of generation. The jump depth (vertical black line) and jump 

length (horizontal black line) in the improvement of MCC due to mutations are 

highlighted in Figure 45a. * colour legend for Figure 45a ** colour legend for Figures 

45b, 45c. 

*  
**  

 

 
Nextgen: Directed Mutation 
 

In GAs, various factors influence the permutation probability of genes. Certain 

reflections are more permuted than other reflections. This can be due to selective 

preference exerted by the fitness function towards certain gene values. For example, 

the possibility of a higher preference to the reflection’s phase value of “0” when 

skewness is used as a fitness function. This can also be due to the use of non-uniformly 

distributed random numbers for implementing various parameters. In this work, a 

uniform randomiser was used and no selective preference to a specific phase value 
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due to fitness function (e.g. skewness) was observed (Table B.3). Yet, the non-uniform 

permutation frequency of different reflections was observed in the population 

generated from test case II using GA design 3 (Figure 46). 

 

 
Figure 46 Reflections statistics for the test case II using GA design 3. The growth of 

“completely degenerate” (Figure 46a), “moderately degenerate” (Figure 46b), 

“slightly degenerate” (Figure 46c), and “non-degenerate” (Figure 46d), all phase 

variabilities are plotted as a function of generation. 

  

 

This behaviour can be described as a process of convergence. When a system finds 

the best value for a gene/reflection, an ideal system would promote that value over 

generations without a change until it finds a better one. However, this can also happen 

in the presence of hitchhikers: an adjacent gene that has reached convergence and 

stayed constant could cause the hitchhiker gene to also stay constant without reaching 

convergence as it is promoted along with the adjacent gene. This can also lead to 

premature convergence. 

 

To understand this behaviour, the individual reflections were categorised as 

“completely degenerate”, “moderately degenerate”, “slightly degenerate”, and “non-
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degenerate” (for definitions refer to section “Directed mutations” of chapter 3) and their 

occurrences over 300 generations were computed for test case II in GA design 3 

(Figure 46). In this analysis, a constant increase in the “completely degenerate” 

reflections over 300 generations (Figure 46a) while a drastic decrease in the “non-

degenerate reflections” in less than 100 generations (Figure 46d) was observed. 

 

To prevent this early decrease in the frequency of different types of reflections studied, 

these reflections were mutated by applying high mutation rate to “completely 

degenerate” reflections and low or no mutation rate to other reflections. The 

expectation was to shift/delay the peak in Figures 46b and 46c and fall-off time in 

Figure 46d for few further generations. 

 

 
Figure 47 Reflections statistics for the test case II using GA design 3d. The growth 

of “completely degenerate” (Figure 47a), “moderately degenerate” (Figure 47b), 

“slightly degenerate” (Figure 47c), and “non-degenerate” (Figure 47d) for all phase 

variabilities are plotted as a function of generation. 

  

 

This was achieved by implementing a decremented (mutation rate was decremented 

by 0.01 per generation until it reaches zero) directed mutations. The mutation rate of 
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0.015 (1/3 of the phase divergence of the population with a 4° phase variability (Table 

B.2) was applied non-uniformly to four different types of reflections. A non-linear growth 

of the completely degenerate reflections (Figure 47a), delay in the peak formation for 

moderately and slightly degenerate reflections (Figure 47b and 47c) and delay in the 

fall-off time for non-degenerated reflections was observed (Figure 47d). 

 

 
Figure 48 The effect of directed mutations. The growth of MCC (Figure 48a), phase 

distance (Figure 48b) and phase divergence (Figure 48c) for all phase variabilities in 

the test case II using GA design 3d are plotted as a function of generation. * colour 

legend for Figure 48a ** colour legend for Figures 48b, 48c. 

*  
**  

 

 

However, this introduced a very high diversity within the population. The increase in 

the cluster size (phase divergence, Figure 48c) and shift in the cluster locus (phase 

distance, Figure 48b) compared to GA design 3a (Figure 48d and Figure 48d 

respectively) was observed. The improvement in the MCC, for all phase variabilities 

was found to be less than the first parent (Figure 48a). This could be due to the use of 

a high mutation rate (mutation rate of 0.015). 
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To identify the appropriate mutation rate that introduces the required diversity without 

spreading out the population too much in the phase space, different mutation rates of 

0.0005, 0.001, 0.002, 0.004 were tested. These mutations rates were kept as low as 

possible. The goal was to first identify the mutation rate that does not disturb the 

system too much, and then arrive at the best mutation rate by adding small increments. 

 

 
Figure 49 The study of base mutation rate. The growth of MCC (Figure 49a), phase 

distance (Figure 49b) and phase divergence (Figure 49c) for phase variability of 1° 

in the test case II using GA design 3d are plotted as a function of generation. * colour 

legend for Figure 49a ** colour legend for Figures 49b, 49c. 

*  
**  

 

 

Therefore, the four mutation rates identified were tested in the test case II using GA 

design 3d with 1° phase variability. The growth pattern of MCC, phase distance, and 

phase divergence was similar to the GA run using GA design 3a without mutations 

(Figure 49). The reflection distribution pattern was also found to be similar (Figure 50). 

Using 0.004 as the base, different mutations rates needs to be identified by adding 
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small increments to it. The further fine tuning of the parameters should be pursued in 

the future. 

 

 
Figure 50 Reflections statistics for the test case II using GA design 3d. The growth 

of “completely degenerate” (Figure 50a), “moderately degenerate” (Figure 50b), 

“slightly degenerate” (Figure 50c), and “non-degenerate” (Figure 50d), for phase 

variability 1° are plotted as a function of generation. 

  

 

Diversity in Starting Population 
 

The features in the growth pattern of all phase variabilities in all GA designs were found 

to be related (Figures 51, 52 and 53). For example, these features in the MCC growth 

curves can be characterised as: a stem with nearly straight line showing overlapping 

growth pattern and diversification of the growth after inflection point that can be seen 

as branches. This is called “trajectory deflection” in this work. This pattern was found 

to be triggered by the drop in diversity (Figure 53).  In designs 1 and 2a, due to 

comparatively low diversity this trajectory deflection started in less than 50 generations 

(Figure 51a and 51b respectively). While in designs 2b, 3a, 3b and 3c, the trajectory 

deflection started after 100 - 150 generations (Figure 51c, 51d, 51e and 51f 
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respectively). Among the five different phase variabilities, the phase variability of 1° 

showed greatest improvement in the MCC in GA design 1 and 2a. For GA designs 2b 

and 3 (a, b and c), the phase variability of 8° and 4° proved to be good starting points 

(Figure 51). The sudden jumps in the Figures 51e, 52e, 53e, and 51f, 52f, 53f are due 

static and dynamic mutations respectively. 
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Figure 51 The growth of MCC in GA design 1 (Figure 51a), GA design 2a (Figure 

51b), GA design 2b (Figure 51c), GA design 3a (Figure 51d), GA design 3b (Figure 

51e), GA design 3c (Figure 51f) for all the phase variabilities in the test case II. 
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Figure 52 The growth of phase distance in GA design 1 (Figure 52a), GA design 2a 

(Figure 52b), GA design 2b (Figure 52c), GA design 3a (Figure 52d), GA design 3b 

(Figure 52e), GA design 3c (Figure 52f) for all the phase variabilities in the test case 

II. 

  

0

500

1000

1500

0 100 200 300 400
Generation

Ph
as

e 
di

st
an

ce

0

500

1000

1500

0 100 200 300 400
Generation

Ph
as

e 
di

st
an

ce

0

500

1000

1500

0 100 200 300 400
Generation

Ph
as

e 
di

st
an

ce

0

500

1000

1500

0 100 200 300 400
Generation

Ph
as

e 
di

st
an

ce

0

500

1000

1500

0 100 200 300 400
Generation

Ph
as

e 
di

st
an

ce

0

500

1000

1500

0 100 200 300 400
Generation

Ph
as

e 
di

st
an

ce

page 1 of 1

a b 

c d 

e f 



Chapter 4. Optimisation of GA for Phase Improvement 

 81 

 
Figure 53 The growth of phase divergence in GA design 1 (Figure 53a), GA design 

2a (Figure 53b), GA design 2b (Figure 53c), GA design 3a (Figure 53d), GA design 

3b (Figure 53e), GA design 3c (Figure 53f) for all the phase variabilities in the test 

case II. 
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In test case I, the stem and trajectory deflection pattern of growth in MCC was found 

to be less noticeable than test case II. Here in design 1, the trajectory deflection 

observed in less than 25 generations (Figure 54b). The trajectory deflection for design 

2a, 2b and 3 was observed in less than 50, 120 and 150 generations (Figure 54b, 54c 

and 54d, respectively). In this test case, GA design 3a is referred to as GA design 3 

for simplicity. 

 

 
Figure 54 The growth of MCC in GA design 1 (Figure 54a), GA design 2a (Figure 

54b), GA design 2b (Figure 54c), GA design 3 (Figure 54d) for all the phase 

variabilities in the test case I. 

  

 

Similar to test case II, in this test case I, phase variabilities: 0.5° and 1° showed the 

best performance in GA design 1 and 2a while phase variabilities: 8° and 4° in GA 

designs 2b and 3 (Figure 54). 
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Figure 55 The growth of phase distance in GA design 1 (Figure 55a), GA design 2a 

(Figure 55b), GA design 2b (Figure 55c), GA design 3 (Figure 55d) for all the phase 

variabilities in the test case I. 

  

 

The relatable features in the growth patterns of the phase distance (Figure 55) and the 

phase divergence curves (Figure 56) were found in test case I as well. This confirms 

the dependence of phase variability on the diversity of the population. 

0

500

1000

1500

0 50 100 150 200
Generation

Ph
as

e 
di

st
an

ce

0

500

1000

1500

0 50 100 150 200
Generation

Ph
as

e 
di

st
an

ce

0

500

1000

1500

0 50 100 150 200
Generation

Ph
as

e 
di

st
an

ce

0

500

1000

1500

0 50 100 150 200
Generation

Ph
as

e 
di

st
an

ce

page 1 of 1

a b 

c d 



Chapter 4. Optimisation of GA for Phase Improvement 

 84 

 
Figure 56 The growth of phase divergence in GA design 1 (Figure 56a), GA design 

2a (Figure 56b), GA design 2b (Figure 56c), GA design 3 (Figure 56d) for all the 

phase variabilities in the test case I. 

  

 

Improvement in MCC  
 

The convergence for design 1, 2a 2b, 3 was observed at approximately 20, 50, 150, 

180 generations respectively. From design 1 to design 3, the convergence was 

delayed by nearly 200 generations, allowing the population to develop in the right 

direction. GA design 2b did not show reasonably improvement in the MCC, although it 

is much better than GA design 1. 

 

Considerable improvement in the MCC from 0.4944 to 0.8117 (80.2%) for GA design 

2b at generation 400 and to 0.8369 (86.6%) for GA design 3 at generation 300, was 

observed, for phase variability of 4° in test case II (Figure 57a). Using static mutations, 

this improvement in the final MCC was pushed to 0.8474 (89.2%) and with dynamic 

mutations to 0.8540 (90.9%) at generation 400. In this test case, the MCC of final GA 

population was very near to the final point of GA which is 0.8898 to the final map. The 
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phase error decreased from 52.76° to 38.30° in GA design 3c at generated 400 (Figure 

57d). 

 

 
Figure 57 The comparative performance of different designs of GA in the test case 

II. The growth of MCC (Figure 57a), phase distance (Figure 57b), phase divergence 

(Figure 57c), phase error (Figure 57d), in all designs of GA for phase variability of 

4°. * colour legend for Figure 57a ** colour legend for Figures 57b, 57c, 57d. 

*  
**  

 

 

For test case I, the improvement in MCC from 0.6873 to 0.7839 (43%) for GA design 

2b at generation 400 and to 0.8226 (61%) for GA design 3 at generation 300 was 

observed, for phase variability of 4° (Figure 58a). The final point of GA in this test case 

is having an MCC of 0.9088 to the final map. The rate of improvement in MCC was 

noticeably faster in GA design 3 than GA design 2b (Figure 58a). 

 

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400
Generation

M
C

C

0

200

400

600

800

0 100 200 300 400
Generation

Ph
as

e 
di

ve
rg

en
ce

0

500

1000

1500

0 100 200 300 400
Generation

Ph
as

e 
di

st
an

ce

0

20

40

60

0 100 200 300 400
Generation

Ph
as

e 
er

ro
r

page 1 of 1

a b 

c d 



Chapter 4. Optimisation of GA for Phase Improvement 

 86 

 
Figure 58 The comparative performance of different designs of GA in the test case 

I. The growth of MCC (Figure 58a), phase distance (Figure 58b), phase divergence 

(Figure 58c), phase error (Figure 58d), in all designs of GA for a phase variability of 

4°. * colour legend for Figure 58a ** colour legend for Figures 58b, 58c, 58d. 

*  
**  

 

 

Improvement in Model Quality 
 

The improvement in the number of residues built by ARP/wARP during model building 

from initial to final solution in all designs of GA using all phase variabilities for test case 

II are shown in Figure 59. The number of residues built for test case II was increased 

from 50 residues in GA design 1 to more than 185 residues in GA designs 3a, 3b and 

3c (Figure 59). The model improved from complete random fragments to full structure 

(Figure 60). The final structure built from the map generated by GA design 3c aligned 

perfectly with the structure deposited in the PDB (Figure 61). The alignment of the GA 

map with density modified structure of the GA map and the PDB structure shows little 

or no need for further density modification (Figure 62). 
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Figure 59 Improvement in the number of residues built. The growth of number of 

residues built by ARP/wARP from the final map generated by GA design 1 (Figure 

59a), GA design 2a (Figure 59b), GA design 2b (Figure 59c), GA design 3a (Figure 

59d), GA design 3b (Figure 59e), GA design 3c (Figure 59f) for all phase variabilities 

in the test case II. 
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Figure 60 Improvement in the model quality. Figure 60a shows the model built from 

the GA starting point for the test case II. Figure 60b show the model built from the 

map generated by GA design 3c at generation 400 for the test case II. 

 

 
Figure 61 Alignment of model built from the map generated by GA design 3c at 

generation 400 (green cyan) with PDB structure (salmon red) of the test case II. 

 

 
Figure 62 Alignment of model generated from the GA* map (green cyan) with PDB 

structure (salmon red) and model generated from the GA* map after density 

modification (gold) of the test case II.  

* GA map generated by using the GA design 3c at generation 400. 
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Map Characteristics as a Fitness Function 
 

Map Moments – Skewness and Kurtosis 
 

A study performed on ribonuclease from Streptomyces aureofaciens to investigate the 

relationship between map moments and the phase error provided an important insight 

for the current study (Lamzin 2013). The correlation between skewness and kurtosis 

of the electron density map with the phase error was monitored for test case II. For this 

study, the X-ray data were truncated to 2.0 Å  and 2.5 Å and phases were taken without 

phase discretisation. Starting with these initial phases having 0° phase error, a uniform 

phase error of 0.09° was introduced incrementally until an average phase error of 90° 

was achieved. The skewness and kurtosis were computed at each increment of the 

phase error. These results indicate that the poorer the phases, the lower the skewness 

and kurtosis of the density map is (Figure 63). 

 

 
Figure 63 The correlation (In test case II) of skewness (cyan) and kurtosis (red) to 

the phase error at resolution of 2.0 Å (Figure 63a) and 2.5 Å (Figure 63b). 
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As skewness and kurtosis correlate with the phase error inversely, these two 

parameters and their combinations were studied in this work for their applicability as a 

fitness function in the phase optimisation with GA. The skewness and kurtosis were 

combined using the following equation: 

 wz = 	Düz + (1 − D)ü7 (17) 

where üz is skewness, ü7 is kurtosis and D is 0.8. The weighting factor of 0.8 was 

decided based on a study performed to estimate the effectiveness of different 

weighting factors: 0, 0.1, 0.2…0.8, 0.9, 1. The performance of these weights was 

tested on a dataset having 10 groups of phase sets with an overall phase error of 0° 

to 90°. Each group of phase sets differed by a sub-range of phase error. For example, 

group 1 had phase sets with a phase error in the range of 0° to 9° and group 10 in the 

range of 82° to 90°. After evaluating the quality of these phase sets by using equation 

(17) with all weighting factors from 0 to 1, the maximum fitness value was identified for 

each group (highlighted in red in Table 9). The maximum fitness value in most of these 

groups was observed when the weighting factor of 0.8 was used (Table 9). Therefore, 

0.8 was selected as a weighting factor. 

 

Table 9 The performance of different weighting factors in different phase error groups. 

Weight Group
1 

Group
2 

Group
3 

Group
4 

Group
5 

Group
6 

Group
7 

Group
8 

Group
9 

Group
10 

0.0 0.292 0.461 0.309 0.380 0.371 0.278 0.429 0.441 0.274 0.371 

0.1 0.332 0.510 0.349 0.413 0.415 0.316 0.461 0.488 0.316 0.412 

0.2 0.373 0.558 0.390 0.445 0.459 0.356 0.492 0.536 0.359 0.451 

0.3 0.412 0.604 0.430 0.475 0.502 0.395 0.520 0.580 0.401 0.489 

0.4 0.449 0.645 0.466 0.500 0.540 0.430 0.544 0.620 0.439 0.523 

0.5 0.480 0.677 0.496 0.520 0.573 0.459 0.561 0.652 0.472 0.550 

0.6 0.504 0.700 0.518 0.533 0.598 0.481 0.573 0.676 0.498 0.569 

0.7 0.520 0.713 0.532 0.539 0.615 0.495 0.577 0.689 0.514 0.580 

0.8 0.529 0.716 0.538 0.539 0.624 0.501 0.576 0.694 0.523 0.582 

0.9 0.531 0.711 0.538 0.533 0.626 0.500 0.569 0.690 0.524 0.579 

1.0 0.528 0.700 0.532 0.523 0.622 0.494 0.558 0.681 0.521 0.570 
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These three parameters: skewness, kurtosis and combination of skewness and 

kurtosis were evaluated for their relative performance in selecting best phase sets. 

This was achieved in three steps. In the first step, a certain fraction (1/2 to 1/9) of phase 

sets having high MCC were marked before selection. In the second step, selection was 

performed using skewness, kurtosis and a combination of skewness and kurtosis. In 

the last step, the percentage of solutions (or phase sets) picked up by these fitness 

functions that were marked as having high MCC was identified. This efficiency 

(percentage of good solutions picked up by the fitness function) was then plotted as a 

function of the fraction of phase sets marked before selection, Figure 10. In this study, 

skewness performed much better than kurtosis (Figure 64). The performance of 

skewness alone was almost identical to that of the combination of skewness and 

kurtosis (Figure 64). Hence, skewness alone was used as a fitness function in the 

subsequent GA studies. 

 

 
Figure 64 The efficiency of skewness (blue), kurtosis (red) and a combination of 

skewness and kurtosis (green) in identifying the quality of the phase set.  

 

Premature Convergence 
The skewness as a fitness function was initially implemented in GA design 1 with one-

point crossover variant 2. The phase variabilities tested were: 0.5°, 0.6°, 1° and 5°. A 

very small improvement in the MCC was observed with a phase variability of 0.6° 

(Figure 65a). The skewness curve tapered off in less than 20 generations for the phase 

variability of 5° (Figure 65b). A non-linear growth in the skewness was observed for 

other phase variabilities (Figure 65b). The phase error was higher than the first parent 

for all phase variabilities used (Figure 65c). This early convergence was consistent 
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with the premature convergence observed with GA design 1 with MCC as a fitness 

function (Figure 42). 

 

 
Figure 65 GA design 1 with skewness as a fitness function in the test case II. The 

growth of MCC (Figure 65a), skewness (Figure 65b) and phase error (Figure 65c) 

for the phase variabilities: 0.5°, 0.6°, 1° and 5 are plotted as a function of generation. 

* colour legend for Figure 65a ** colour legend for Figures 65b, 65c. 

*  
**  

 

 

Crossover 
With the skewness as a fitness function, the two variants of the one-point crossover 

were tested for their relative performance. We ran 20 generations with the first 

crossover variant and 40 generations with the second variant in test case II. The 

skewness growth curve showed the signs of curve flattening in both variants (Figure 

66b). The MCC started to improve and became better than the first parent, but the 

growth rate was negligible (Figure 66a). However, design 1b (one-point crossover with 

variant 2) showed a higher improvement in skewness compared to design 1a (one-

point crossover with variant 1) (Figure 66b). The design 1b also showed a lower phase 

error than design 1a at generation 20 (Figure 66c). 
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Figure 66 Comparative performance of GA design 1a (one-point crossover with 

variant 1) and GA design 1b (one-point crossover with variant 2) in test case II using 

skewness as a fitness function. The growth of MCC (Figure 66a), skewness (Figure 

66b) and phase error (Figure 66c) for the phase variability of 0.5° in test case II was 

plotted as a function of generation. * colour legend for Figure 66a ** colour legend 

for Figures 66b, 66c. 

*  
**  

 

 

Selection 
With this fitness function, two different selection operators were studied: tournament 

of size 9 and SUS. Further, these two operators were additionally studied by slightly 

modifying the population before selection. This modification involved discarding 30% 

of the population with the lowest fitness value (lowest skewness) before selection. The 

remaining members were then subjected to selection by using tournament (called 

“tournament biased” in this work) and SUS (called “SUS biased” in this work). These 

four selection approaches were tested in test case II using GA design I for four 

generations. 
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SUS did not show any improvement in skewness and phase error. SUS-biased 

selection showed a greater improvement in MCC and phase error (Figure 67a and 67c 

respectively) but the skewness was much lower than the tournament and the 

tournament biased selection operators (Figure 67b). Tournament-biased selection 

showed better improvement in MCC and phase error than a simple tournament. 

However, the improvement of the skewness was much higher for tournament than 

tournament biased. 

 

 
Figure 67 Comparative performance of four different selection approaches. The 

growth of MCC (Figure 67a), skewness (Figure 67b) and phase error (Figure 67c) in 

GA design 1a using skewness as a fitness function with the phase variability of 0.5° 

in the test case II. 

  

 
The removal of the worst performing members of the population led to a loss of 

diversity, Figure 40, and did not provide any evidence of considerable improvement in 

the MCC in other studies (Study S.2). As this approach did not show considerable 

improvement in all parameters in this study, it was not implemented in GA. Between 

tournament and SUS, SUS showed peculiar growth behaviour with no change in the 
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growth of skewness and phase error for four generations and a small increment in 

MCC after no change in the growth for three generations. This may indicate the 

insensitivity of the selection operator to the fitness function (skewness) or vice versa. 

Among four selection approaches, a simple (without discarding the 30% worst 

members) tournament selection operator was used in all GA designs. 

 

In tournament selection, the tournament of size 2 showed greater improvement in MCC 

when the MCC was used as a fitness function (Figure 68). Therefore, the performances 

of the tournament selection with size 9 (GA design 2a) and size 2 (GA design 2b) were 

tested in test case II using skewness as a fitness function. The results were illustrated 

in Figure 68. The trajectory deflection in the growth of MCC and skewness was more 

prominent in GA design 2a than GA design 2b (Figures 68a, 68b, 68c and 68d). The 

MCC growth curves showed steady improvement in the opposite direction i.e., 

improvement lower that the MCC of the first parent (Figure 68a). The MCC using 

design 2b also showed improvement in the opposite direction but the rate of 

improvement was comparatively smaller than GA design 2a (Figure 68b). The 

improvement in the skewness was much higher and the growth trajectory was more 

deflected for GA design 2a than GA design 2b (Figure 68c and 68d). However, a 

constant growth in skewness with no signs of curve flattening was observed in GA 

design 2b compared to GA design 2a (Figure 68c and 68d). The phase error was also 

much lower for all phase variabilities in GA design 2b than GA design 2a (Figure 68e 

and 68f). Overall, the performance of the GA design 2b was much better than GA 

design 2a when the skewness was used as a fitness function in the test case II (Figure 

68). These results were also consistent with the results obtained by using MCC as a 

fitness function in the same test case, Figure 44. 
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Figure 68 Comparative performance of GA design 2a and GA design 2b when 

skewness was used as a fitness function in test case II. Figure 68a and 68b shows 

the comparison of MCC in design 2a and 2b respectively. Figure 68c and 68d shows 

the comparison of skewness in design 2a and 2b respectively. Figure 68e and 68f 
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shows the comparison of phase error in design 2a and 2b respectively. * colour 

legend for Figures 68a and 86b **colour legend for Figures 68c, 68d, 68e and 68f. 

*  
**  

 

 

Intrinsic Processing of Phase Sets by Skewness 
The population generated from test case II by using GA design 2a (with tournament 

size of 9) and skewness as a fitness function produced an abnormal high-density peak, 

resembling the so-called uranium solution at fractional coordinates: 0.5189 0.8050 

0.1165 in survivors at generation 80 (Figure 69a). However, it was observed that the 

density histogram of the map computed from GA phases shifted or evolved gradually 

towards the histogram of the map computed with the phases from the refined model 

(Figure 69b). The distribution of centric and acentric reflections was even found to be 

without any preference for a specific phase value (Table B.3). 

 

  

Figure 69 The test case II using GA design 2a. (a) The overlap of three maps is 

shown: map 1 at 1.5 sigma above the mean (in cyan), map 2 at 2.0 sigma (in green), 

map 3 at 5.0 sigma (in red). The uranium-like solution with a peak height of 11 

height/rms in the map computed with phases generated by GA at generation 80 is 

highlighted in red circle (b) The histograms of density maps showing the shift of map 

generated with GA (blue) towards the map with correct phases (red). The histogram 

of the first parent is shown in green. 

 

 

a 
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Skewness at 1 Å 
As skewness was found to ineffective as a fitness function at a resolution of 2.5 Å and 

when all reflections were permuted, its effectiveness was tested at a resolution of 1 Å 

in test case II using GA design 3a for the phase variability of 1°. At this resolution, the 

skewness and MCC was higher than the first parent and was steadily increasing over 

150 generations (Figure 70a and 70b). The phase error was considerably lower than 

the first parent after 100 generations (Figure 70c). This proved that the skewness can 

be employed as a fitness function at a higher resolution of 1 Å and its applicability 

drops with the decrease in resolution. However, further investigation needed to be 

performed to observe its behaviour in other lower resolution ranges and in other 

successful designs. 

 

 
Figure 70 The performance of skewness at a resolution of 1 Å. The growth of MCC 

(Figure 70a, MCC in red, first parent in blue, final point in green), skewness (Figure 

70b, skewness in red, first parent in cyan), and phase error (Figure 70c, phase error 

in red, first parent in cyan) in test case II using GA design 3a for the phase variability 

of 1°. 
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Map Connectivity 
 

In the current study we evaluated the use of skewness and kurtosis both individually 

and in combination. Kurtosis found to be less effective than skewness and skewness 

found to less effective at lower resolutions. Therefore, at the resolution of 2.5 Å, the 

skewness was supplemented with a 3-dimensional parameter: map connectivity as a 

fitness function. 

The rationale behind the use of the map connectivity information in fitness function was 

based on the fact that the better the map, the better the connectivity of the map 

skeleton with less free points and more connected fragments as shown in the Table 

10. 

 

Table 10 Table showing number of map points and fragments in the first parent (bad 

map) and the final point (good map) of test case II at various density levels. 

Map type / 
Density level 

Good 
map / 
0.8σ 

Bad 
map / 
0.8 σ 

Good 
map / 
1.0 σ 

Bad 
map / 
1.0 σ 

Good 
map / 
1.5 σ 

Bad 
map / 
1.5 σ 

Good 
map / 
2.0 σ 

Bad 
map / 
2.0 σ 

Points above 
density level 

52733 59722 43072 45190 26695 19648 15988 7280 

Points in final 
skeleton 

7001 8999 6181 7550 4445 4640 3798 2505 

Total 
fragments 

476 164 623 384 411 909 285 791 

Longest 
fragment 

2258 8327 1132 3371 346 68 213 13 

 

To develop map connectivity formula, a set of almost random electron density maps 

were generated with a phase error between 85° to 90° for test case II. A Greer’s 

skeletonising method (Greer, 1974)  was applied using Mapread module in 

ARP/wARP. From 1000 generated skeletons, the logarithm of the occurrence of each 

fragment length showed a linear dependence on its fragment length (Figure 71). 
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Figure 71 The dependence of occurrence of fragment length on fragment length. 

 

From this, the number of observations of fragment length, G found at random can be 

described as 

 ln∞m£°~∏± = !G + π (18) 

where ! is the slope and π is the intercept. This can be written as 

 m£°~∏ = wù~/ (19) 

where ! = -0.61 and w = 1060 (the fraction of map points represented as a skeleton by 

Mapread). The expected number of fragments of length G to appear at random 

(expected noise) follows a Poisson distribution: 

 ï(∫; º) = ºΩù^æ
∫!  (20) 

where, º = 	m£°~∏	and ∫ = 1. Given the noisy data, the probability of observing a single 

fragment of fragment length G with ∫ = 0 is considered as a signal event.  

The fraction of the signal can then be computed as follows: 

 
R ¨ï(0; º)

¨ï(0; º) + ¨ï(1; º)

.

/ßñ
	

 

(21) 

where m is the total obervations of fragment length	G,	and F	is the total number of 

different fragment lengths observed. Using this function, the aim is to maximise the 

number of connected atoms. To make it human-interpretable, it was encoded in terms 

of probability.  
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We defined this fraction as a connectivity function. To observe the dependence of this 

function on the phase error, a map with correct phases was rounded and noise added 

by introducing small phase error increments up to the total phase error of 90°. With the 

increase in the phase error the map connectivity value decreased along with the 

decrease in MCC (Figure 72). 

 

 
Figure 72 The correlation of connectivity to the phase error and MCC in test case II. 

 

The applicability of connectivity as a fitness function together with skewness was 

tested using the following equation with different weighting fractions D: 0.25, 0.50 and 

1. 

 	w7 = Düz +	(1 − D)ü7 (22) 

 

where üz is skewness and ü7 is map connectivity. 

 
Combination of Skewness and Connectivity 
 

The combination of skewness and connectivity was tested with D	 = 	0.5 in test case II 

using GA design 2a and 2b with all phase variabilities. The use of skewness combined 

with connectivity with a D = 	0.5 in test case II using GA design 2a showed less 

deterioration in MCC compared to skewness alone (Figure 73a and 68a). The 

improvement in the skewness was less compared to skewness alone (Figure 73b and 
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68c). The growth in the phase error was also found be less than skewness alone 

(Figure 11d and 68e). The connectivity showed the signs of curve flattening before 

convergence to the correct minimum, Figure 73c. 

 

 
Figure 73 The growth of MCC (Figure 73a), skewness (Figure 73b), connectivity 

(Figure 73c) and phase error (Figure 73d) in the test case II using GA design 2a for 

all phase variabilities with a combination of skewness and connectivity as a fitness 

function. The weighting factor used was 0.50. * colour legend for Figure 73a ** colour 

legend for Figures 73b, 73c and 73d. 

*  
**  

 

 

For a combination of skewness and connectivity in test case II using GA design 2b, the 

decrement in the MCC was much less compared to skewness alone (Figure 74a and 

68b). It was also less than GA design 2a ran using a combination of skewness and 

connectivity in test case II with D	 = 0.50 (Figure 74a and 73a). The skewness 

improved linearly (Figure 74b) and the connectivity did not show any signs of the curve 

flattening until generation 200 (Figure 74c). The phase error was less than 55.5° which 

was much lesser than the phase error in GA design 2a with the same parameters 

(Figure 74d and 73d). 

0.4

0.6

0.8

0 25 50 75 100
Generation

M
CC

0

1000

2000

3000

0 25 50 75 100
Generation

Co
nn

ec
tiv

ity

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Generation

Sk
ew

ne
ss

50.0

52.5

55.0

57.5

60.0

0 25 50 75 100
Generation

Ph
as

e 
er

ro
r

page 1 of 1

a b 

c d 



Chapter 5. Map Characteristics as a Fitness Function 

 103 

 

 
Figure 74 The growth of MCC (Figure 74a), skewness (Figure 74b), connectivity 

(Figure74c) and phase error (Figure 74d) in test case II using GA design 2b for all 

phase variabilities with a combination of skewness and connectivity as a fitness 

function. The weighting factor used was 0.50. * colour legend for Figure 74a ** colour 

legend for Figures 74b, 74c and 74d. 

*  
**  

 

 

The combination of skewness and connectivity with D	 = 	0.25 did not show 

comparatively better improvement in MCC and phase error than D	 = 	0.50 (Figure 76). 

The growth of MCC, skewness, connectivity and phase error for all phase variabilities 

with skewness and connectivity as a fitness function using D	 = 	0.25 is illustrated in 

Figure 75. The growth of all these parameters was worsened by a small amount 

compared to D	 = 	0.50 (Figure 75 and Figure 74). 
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Figure 75 The growth of MCC (Figure 75a), skewness (Figure 75b), connectivity 

(Figure 75c) and phase error (Figure 75d) in test case II using GA design 2b for all 

phase variabilities with a combination of skewness and connectivity as a fitness 

function. The weighting factor used was 0.25. * colour legend for Figure 75a ** colour 

legend for Figures 75b, 75c and 75d. 

*  
**  

 

 

  
Figure 76 The comparative performance of skewness alone, skewness together with 

connectivity with D	 = 	0.50 and skewness together with connectivity with D = 0.25	. 
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Figure 76a shows the growth of MCC and Figure 76b showing the growth of phase 

error for these three parameters. * colour legend for Figure 76a ** colour legend for 

Figure 76b. 

*  
**  

 

 

The use of skewness and connectivity in combination with D	 = 	0.50 in test case I and 

GA design 2b showed an improvement in the MCC. The MCC of the population was 

higher than the MCC of the first parent after 30 generations (Figure 77a). The 

skewness and connectivity also increased steadily (Figure 77b and 77c). The phase 

error was steadily decreasing and became nearly equivalent to the phase error of the 

first parent in 100 generations (Figure 77d). This fitness function showed positive 

results in this test case with experimental phase error. 

 

 
Figure 77 The growth of MCC (Figure 77a), skewness (Figure 77b), connectivity 

(Figure 77c) and phase error (Figure 77d) in test case I using GA design 2b for all 

phase variabilities with a combination of skewness and connectivity as a fitness 

0.6

0.7

0.8

0.9

0 25 50 75 100
Generation

M
C

C

0

1000

2000

3000

0 25 50 75 100
Generation

C
on

ne
ct

iv
ity

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Generation

Sk
ew

ne
ss

50.0

52.5

55.0

57.5

60.0

0 25 50 75 100
Generation

Ph
as

e 
er

ro
r

page 1 of 1

a b 

c d 



Chapter 5. Map Characteristics as a Fitness Function 

 106 

function. The weighting factor used was 0.50. * colour legend for Figure 77a ** colour 

legend for Figures 77b, 77c and 77d. 

*  
**  

 

 

Concluding Remarks 
 
Using skewness, the results obtained with GA design 1, GA design 2a and GA design 

2b showed similar relative performance of GA designs to the results obtained by using 

MCC as a fitness function. Among these three designs, GA design 2b produced the 

best results. 

 

Among various map characteristics tested in test case II, skewness alone found to 

better performing that kurtosis alone or a combination of skewness and kurtosis. 

However, the skewness found to ineffective measure as a fitness function at a lower 

resolution of 2.5 Å. At a higher resolution of 1 Å, skewness produced promising results 

in test case II using GA design 3 with a phase variability of 1°. Its applicability should 

be tested further in other resolution ranges. 

 

The combination of skewness and connectivity found to be a better fitness function 

compared to the use of skewness alone. In particular, the skewness and connectivity 

combined with a weight factor, D	 = 0.50 proved more effective that other weighting 

factors. This parameter combination showed comparatively less negative improvement 

in MCC than using skewness alone as a fitness function in a test case II using GA 

design 2a and 2b. In the test case I, this combination showed positive results. The 

combination further needs to be tested in the most successful design, GA design 3. 
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Conclusion and Outlook 
 
This thesis work focused on two different aspects of development of GAs: optimisation 

of parameters of GAs for the phase improvement and identification of fitness function 

that best represents the quality of the electron density map. The major focus was to 

optimise a GA for phase improvement. To achieve this, different GA parameters were 

evaluated and the best performing parameters were identified. 

 

In crossover, the uniform crossover showed better performance than one-point 

crossover (Figure 43). The variant of uniform crossover that produces two children per 

a pair of parents and discards the second child proved to enrich the diversity of the 

population more than the other variant that keeps both children (Figure 43). Further, 

the crossing of parent with only one selected partner many times resulted in early loss 

in diversity. Crossing a parent with different partners proved to be more advantageous 

in enhancing the diversity (Figure 66). 

 

The two selection methods SUS and tournament were tested. The tournament showed 

better performance than SUS (Figure 67). In tournament selection, the size of the 

tournament was found to be an extremely important parameter for controlling selection 

intensity and the diversity of the population. The tournament size of 9 was shown to 

produce a population that has little or no representation from the far-worst performing 

individuals. This resulted in early loss of diversity leading to premature convergence. 

Whereas a tournament size of 2 retained a good number of individuals from different 

performance ranges. This allowed population to grow towards the global optimum 

without convergence (Figure 44). 

 

Mutations with a rate higher than 2 were proved to be detrimental for the improvement 

of the method (Figure C.2). Three different types of mutations were studied: static, 

dynamic and directed using a mutation rate lower than 0.5. Both static and dynamic 

mutations proved to be beneficial when introduced in the late developmental stages 

(Figure 45). Next-generation mutations called “directed mutations” that target genes 

with little or no change in their gene value over few generations was developed. Initial 

results presented promising changes in gene value combinations (Figures 47 and 50). 

This work should be pursued in the future. 
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The diversity in the initial population was also proved to influence the performance of 

the population. In a better performing GA designs, phase variability higher than 4° 

produced better results compared to other phase variabilities (Figure 51). 

 

In the second part of this thesis work, map characteristics (skewness, kurtosis) and 

map connectivity were studied for their use as a fitness function. Skewness alone 

performed better than kurtosis and a combination of skewness and kurtosis (Figure 

64). Skewness was found be a better map quality indication at resolution of 1 Å (Figure 

70) and proved to be ineffective at a resolution of 2.5 Å or lower (Figure 68). Further 

studies need to be performed at different resolution ranges to assess its usefulness as 

a fitness function. The use of skewness together with connectivity showed 

comparatively better results that the use of skewness alone as fitness function at a 

resolution of 2.5 Å (Figure 76). 

 

GAs in this work were developed as a proof of concept, and is far from ideal 

implementation. The computations for each generation take 90 to 120 minutes. Nearly 

30% of this time is taken by file conversions (ASCII to binary). This can be reduced by 

working directly with mtz files. Further reduction in the computational time is feasible 

by introducing a few modifications in the program for file handling and processing. 

 

GAs optimised in this work were tested in test cases with a phase error of 53°. Further 

improvement and optimisation of the algorithm can be useful in extending its 

application for ab inito phasing. The study of map quality indicators identified for phase 

improvement in this work can be applied to other stages of the structure solution 

process such as model building and refinement that are dependent of the quality of 

electron density maps. 

 

The phase improvement problem is generally a local optimisation problem. GAs are 

ideally used for global optimisation problems. An incorrect selection of parameters 

based on its global optimisation property might lead a big failure. Therefore, this work 

presents a successfully customization of parameters of GA for phase optimisation 

which is a local optimisation problem. 
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Supplementary Studies 
 

Study S.1: Case III: Infestin 4 (PDB ID:2ERW) 
The structure of Infestin 4 (Campos et al., 2012) was solved using molecular 

replacement and refined at 1.4 Å to a Rfactor of 0.19, Figure A.1. The crystals belong 

to space group P212121 and there is one molecule per asymmetric unit. The X-ray 

dataset with molecular replacement was truncated to 2.0 Å resolution. The Wilson B 

factor was upweighted by 23 Å7 accordingly. There are 4784 unique reflections in this 

data at the selected resolution. The phases from the model refined against the 2.5 Å 

data were subject to an additional uniformly distributed phase error of 50°, as described 

in section “Test cases” of the chapter 2. These phases of acentric reflections were then 

rounded to the nearest value of 45°/135°/225°/315°, introducing an additional but small 

phase error of about 3°. This reduced the MCC from 0.5583 to 0.5106. These rounded 

phases were used as the starting point for GA. The “final point” to be reached here is 

a map at 2.0 Å with phases rounded to 45°/135°/225°/315° having an MCC of 0.8912 

to the final map (map at 1.4 Å without any artificially introduced phase error). 

 

 
Figure A.1 Structure of Infestin 4 solved at resolution 1.4 Å (PDB ID: 2ERW). Figure 

taken from the PDB, (Burley et al., 2019). 

 

In the population generated by the test case III using GA design 1, no improvement in 

the MCC was observed. The MCC for phase variabilities: 0.5° and 1° was lower than 

the MCC of the first parent, Figure A.2a. Skewness improved for a few generations 

(approximately up to 30 generations) and reached steady-state in the subsequent 
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generations, Figure A.2b. Phase error in 80 generations was higher than the phase 

error of the first parent, Figure A.2c. This indicates that the success of the design is 

independent of the size of the test case. 

  

 
Figure A.2 Testing GA design in a smaller test case. The growth of MCC, skewness 

and phase error in test case III using GA design 1 with phase variabilities 0.5° and 

1°. * colour legend for Figure A.2a ** colour legend of Figures A.2b and A.2c. 

*  
**  

 

 

Study S.2: GA with No Redundant Representations 

In this study, the population was generated from the test case III using GA design 1 

with phase variabilities: 0.3°, 0.5°, 1° and 2°. Each member’s (or phase set’s) 

fingerprint was generated using the md5 hashing method to identify duplicates. These 

duplicate or redundant members were then removed from the population. Only unique 

members were allowed to propagate. In this approach, the skewness reached steady 

state in less than 30 generations and no improvement in the MCC with little 

improvement in the phase error was observed. However, the skewness was higher (for 

phase variabilities 0.5° and 1°), Figure A.3b, compared to the same GA parameters 

and data set (population generated from test case III using GA design 1) ran without 
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removing redundant members, Figure A.2b. Overall, no improvement was observed 

by removing redundant members, so this removal was not implemented in successive 

GA designs. 

 

 
Figure A.3 GA without duplicate population. The growth of MCC, skewness and 

phase error in test case III using GA design 1 with phase varibilities 0.3°, 0.5°, 1° 

and 2°. * colour legend for Figure A.3a ** colour legend for Figures A.3b and A.3c. 

*  
**  

 

 

Study S.3: Significance of Precision Level (Number of Decimal 
Places Passed by Scoring Function) 
 

In this study, the first parent generated from the test case I was taken. In this phase 

set, 50 genes or reflections were selected randomly and mutated to other possible 

phase values 45°/135°/225°/315°. For example, if a reflection’s phase value was 45°, 

it was then mutated to 135°, 225° and 315° and thus three different variants of this 

reflection were generated. In other words, each variant differs only in single reflection’s 

phase value compared to the first parent. By mutating 50 randomly selected 
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reflections, 150 variants were produced in total. The skewness and MCC were 

computed for these 150 variants with different precisions: 4, 5, 6, 7 and 8. The number 

of variants reflecting their changed phase value by giving different MCC and skewness 

values were identified for these precision levels, Figure A.4. A precision level higher 

than 8 for MCC and equal to 7 for skewness was required to record a change in the 

single reflection’s phase value, Figure A.4. Therefore, a precision level of 8 was used 

for the computation of MCC and skewness in subsequent designs. 

 

 
Figure A.4 Precision level required to record a change in single reflection’s phase 

value for MCC (red) and skewness (cyan). 
 

In the population generated from test case I using GA design 1 and with precision level 

of 4 and 8, the difference plots in the growth of MCC, skewness and phase error shows 

the importance of identifying the correct precision level, Figure A.5a. A better 

improvement in MCC (noticeably for 1°), Figure A.5a and A.5b, skewness (0.5° and 

1°), Figure A.5c and A.5d, and phase error (0.5°, 2° and 4°), Figure A.5e and A.5f, was 

observed when precision level of 8 was used. However, the lack of reproducibility of 

this growth pattern in all phase variabilities is debatable. In this work, we stayed with 

the use of 8 decimal places based on the results of the variant analysis, Figure A.4. 
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Figure A.5 The growth of MCC, skewness and phase error in test case I using GA 

design 1 with phase variabilities: 0.5°, 1°, 2° and 4°. Figure A.5a and A.5b shows the 

comparison of MCC with precision level of 4 and 8 respectively. Figure A.5c and 

A.5d shows the comparison of skewness with precision level of 4 and 8 respectively. 

Figure A.5e and A.5f shows the comparison of phase error with precision level of 4 
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and 8 respectively. * colour legend for Figures A.5a and A.5b **colour legend for 

Figures A.5c, A.5d, A.5e and A.5f. 

*  
**  

 

 

Study S.4: Dependence of MCC and Phase Error on Resolution 
In this study, the module “ph_rms” of ARP/wARP (Lamzin & Wilson, 1993) was used 

to compute the average MCC and phase error of all reflections in test case II at different 

resolution ranges given in Table A.1 for the first parent, second parents, children and 

survivors. These were computed on the population generated using GA design 1 at 

generation 1. From these studies, no evidence of interpretable dependence on 

resolution was observed. Therefore, all reflections from all resolution ranges were used 

in GA designs, Figure A.6. 

 

Figure A.6 Dependence of MCC (Figure A.6a) and phase error (Figure A.6b) on the 

resolution. X-axis showing resolution in 1 Å7⁄  (Table A.1). 

  

 
 

0.48

0.50

0.52

0.54

0.00 0.05 0.10 0.15 0.20 0.25
Resolution

M
C

C

52

53

54

55

56

0.00 0.05 0.10 0.15 0.20 0.25
Resolution

Ph
as

e 
er

ro
r

page 1 of 1

a b 



Appendix A. Supplementary Studies 

 
 

123 

Table A.1 Resolution ranges used for the study S.4. 
Å 1/Å2 

10.00 -  7.07 0.01 

7.07 -  5.00 0.03 

5.00 -  4.08 0.05 

4.08 -  3.54 0.07 

3.54 -  3.16 0.09 

3.16 -  2.89 0.11 

2.89 -  2.67 0.13 

2.67 -  2.50 0.15 

2.50 -  2.36 0.17 

2.36 -  2.24 0.19 

2.24 -  2.13 0.21 

2.13 -  2.04 0.23 

2.04 -  2.00 0.25 

 
Study S.5: Dependence of MCC, Skewness, Phase Error on Structure 
Factor and Normalised Structure Factor 
 
Uervirojnangkoorn et al., (2013) modified the phases for a subset of reflections with 

the strongest normalised structure factor amplitudes. Notably, among their three 

testsets, the highest phase improvement was reported when a fixed number, 100, of 

the reflections with strongest E-values were modified, regardless of the number of 

reflections in the X-ray data. In our design, the phases all reflections were subjected 

to change. 

 

We carried out an additional investigation to study the effect of the percentage of strong 

reflections on skewness and MCC of the electron density map. We used the test case 

II at 2.0 Å, the actual solution (Figure 36d) and the one with 50° phase error without 

rounding phase values to 45°/135°/225°/315° (Figure 36a). Then we changed phases 

for a subset of reflections to their correct values. 
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Figure A.7 The dependence of skewness (red square) and MCC (blue triangle) on 

structure factor amplitudes (Figure A.7a) and normalised structure factor amplitudes 

(Figure A.7b). 

 

 
Figure A.8 The dependence of skewness (red square) and phase error (blue 

triangle) on structure factor amplitudes (Figure A.8a) and normalised structure factor 

amplitudes (Figure A.8b). 
 
Figure A.7a presents the improvement of skewness and MCC when 0, 5, 10, etc, 

percent of strongest structure factors having an errored phase values were changed 

to the correct values. These results indicate that, to achieve an improvement of MCC 

a b 

a b 
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from 0.2 to 0.8, only 10% of phases of the strongest structure factors had to be 

changed to the correct values. Figure A.7b shows improvement of skewness and MCC 

when a subset (0%, 5%, 10% etc.) of strongest normalised structure factors having 

phase values with errors were changed to the correct values. In case of normalised 

structure factors, to achieve the same amount of improvement in MCC, 20 percent of 

phases of the strongest normalised structure factors had to be changed to the correct 

values. However, there was no significant difference observed in the dependence of 

phase error on structure factor amplitudes and normalised structure factor amplitudes, 

Figure A.8. 

 

It is evident from the Lunin’s formula on calculation of skewness in reciprocal space 

(Equation 14), that skewness is a function of the triple product of structure factor 

amplitudes, and not of E-values. Our simulation with strong reflections confirms this 

and indicates that a use of structure factor amplitudes should potentially be more 

efficient than the use of E-values. Hence, throughout this work structure factors 

amplitudes were used. 
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Supplementary Result Tables 
 

Table B.1 The average number of acentric reflections with changed phases for 

different phase variabilities, if the number of reflections in a structure equals to 6000. 
Phase Variability 0.5° 1° 2° 4° 8° 

Average reflections with 
changed phases compared to 
the first parent (if ¬√âƒä = 6000) 

25 50 100 200 400 

 
Table B.2 Implementation parameters of static and dynamic mutations in GA design 
3 for test case II 
Phase variability 0.5° 1° 2° 4° 8° 
Non-linear growth (in MCC) point (in 
generation number) 133 147 162 193 211 

State of the system at non-linear growth generation 
Phase divergence at the non-linear 
growth generation 96 120 138 170 229 

Phase divergence as a mutation rate* 0.014 0.017 0.02 0.025 0.033 
Mutation rate to be applied** 0.005 0.007 0.01 0.015 0.023 
Number of non-degenerated reflections 
at the non-linear growth generation 0 3 6 9 10 

Number of completely degenerate 
reflections at the non-linear growth 
generation 

90 135 183 224 288 

Changes applied to the system 

Generation at which mutations were 
introduced 130 150 160 170 190 

Generation up to static mutations 
applied 150 170 190 200 220 

Generation up to dynamic mutations 
applied 135 157 170 185 213 

Response of the system 

Recovery cycle for GA with static 
mutations 180 220 >300 >300 >300 

Recovery cycle for GA with dynamic 
mutations 160 190 220 230 250 

*Phase divergence / number of centric reflections 
**Approximately 1/3 of phase divergence expressed as a mutation rate 
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Table B.3 The average distribution of centric and centric reflections in survivors over 

80 generations. The data was generated from test case II with GA design 2a using 

skewness as a fitness function. The first row provides reference to the distribution in 

the first parent. 
Generation Ph_0 Ph_180 Ph_90 Ph_270 Ph_45 Ph_135 Ph_225 Ph_315 
First parent 288.00 294.00 300.00 284.00 1386.00 1400.00 1424.00 1490.00 

1 287.10 294.91 300.43 283.58 1386.55 1403.05 1422.22 1488.20 
2 288.05 293.96 299.86 284.15 1386.31 1399.63 1424.04 1490.03 
3 288.14 293.87 299.75 284.26 1386.26 1399.60 1423.88 1490.27 
4 288.15 293.86 299.61 284.40 1386.17 1399.73 1423.71 1490.40 
5 288.13 293.88 299.41 284.60 1386.30 1399.78 1423.59 1490.35 
6 288.10 293.91 299.33 284.68 1386.32 1399.92 1423.59 1490.20 
7 288.09 293.92 299.24 284.77 1386.38 1400.15 1423.49 1490.01 
8 288.05 293.95 299.18 284.83 1386.41 1400.66 1423.37 1489.58 
9 288.03 293.98 299.16 284.85 1386.21 1401.11 1423.23 1489.47 
10 287.96 294.05 299.20 284.81 1386.14 1401.38 1423.25 1489.25 
11 287.92 294.09 299.23 284.78 1386.21 1401.59 1423.10 1489.13 
12 287.90 294.11 299.35 284.66 1386.10 1401.81 1422.87 1489.24 
13 287.88 294.13 299.47 284.54 1386.05 1401.90 1422.74 1489.34 
14 287.79 294.22 299.53 284.48 1386.10 1402.04 1422.77 1489.11 
15 287.68 294.33 299.63 284.38 1386.10 1402.08 1422.67 1489.17 
16 287.60 294.41 299.74 284.27 1386.04 1402.38 1422.62 1488.98 
17 287.49 294.52 299.92 284.09 1386.23 1402.61 1422.50 1488.68 
18 287.37 294.64 300.06 283.95 1386.26 1402.72 1422.56 1488.48 
19 287.23 294.78 300.20 283.81 1386.40 1402.77 1422.34 1488.52 
20 287.18 294.83 300.37 283.64 1386.48 1402.89 1422.28 1488.36 
21 287.10 294.91 300.43 283.58 1386.55 1403.05 1422.22 1488.20 
22 287.12 294.89 300.50 283.51 1386.67 1403.18 1422.24 1487.93 
23 287.10 294.91 300.52 283.49 1386.68 1402.99 1422.17 1488.18 
24 287.18 294.83 300.56 283.45 1386.89 1402.62 1422.35 1488.16 
25 287.21 294.8 300.57 283.44 1386.91 1402.71 1422.21 1488.19 
26 287.33 294.68 300.61 283.40 1386.92 1402.62 1422.15 1488.33 
27 287.44 294.57 300.66 283.35 1387.01 1402.49 1422.02 1488.50 
28 287.55 294.46 300.72 283.29 1387.35 1402.21 1421.91 1488.55 
29 287.67 294.34 300.64 283.37 1387.57 1402.03 1421.77 1488.65 
30 287.77 294.24 300.58 283.43 1387.9 1401.76 1421.50 1488.87 
31 287.97 294.04 300.51 283.50 1388.31 1401.48 1421.52 1488.71 
32 288.09 293.92 300.56 283.45 1388.51 1401.15 1421.48 1488.88 
33 288.31 293.70 300.47 283.54 1388.75 1400.90 1421.40 1488.97 
34 288.55 293.46 300.53 283.48 1389.01 1400.70 1421.39 1488.92 
35 288.75 293.26 300.43 283.58 1389.32 1400.61 1421.40 1488.68 
36 288.95 293.06 300.44 283.57 1389.86 1400.13 1421.36 1488.68 
37 289.11 292.90 300.43 283.58 1390.11 1399.76 1421.34 1488.81 
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38 289.20 292.80 300.36 283.65 1390.20 1399.30 1421.49 1489.03 
39 289.23 292.78 300.29 283.72 1390.73 1398.96 1421.58 1488.76 
40 289.38 292.63 300.32 283.69 1390.93 1398.80 1421.36 1488.92 
41 289.44 292.57 300.30 283.71 1390.93 1398.75 1421.04 1489.30 
42 289.53 292.48 300.32 283.69 1390.82 1398.51 1421.19 1489.50 
43 289.59 292.42 300.41 283.60 1390.85 1398.67 1421.06 1489.44 
44 289.66 292.35 300.40 283.61 1390.74 1398.65 1421.07 1489.56 
45 289.69 292.32 300.40 283.61 1390.42 1398.53 1421.20 1489.88 
46 289.69 292.32 300.41 283.60 1390.31 1398.47 1421.19 1490.05 
47 289.79 292.22 300.45 283.56 1390.44 1398.38 1421.13 1490.07 
48 289.83 292.18 300.50 283.51 1390.30 1398.29 1421.05 1490.39 
49 289.93 292.08 300.50 283.51 1389.90 1398.47 1421.05 1490.60 
50 289.98 292.03 300.50 283.51 1389.74 1398.45 1421.07 1490.77 
51 290.05 291.96 300.51 283.50 1389.43 1398.24 1421.37 1490.97 
52 290.06 291.95 300.43 283.58 1389.21 1398.30 1421.18 1491.33 
53 290.04 291.97 300.42 283.59 1388.75 1397.96 1421.85 1491.47 
54 290.16 291.85 300.41 283.60 1388.35 1397.63 1422.45 1491.59 
55 290.16 291.85 300.35 283.66 1387.63 1397.34 1423.37 1491.68 
56 290.15 291.86 300.34 283.67 1386.98 1397.22 1424.05 1491.77 
57 290.21 291.80 300.27 283.74 1386.41 1396.84 1424.61 1492.17 
58 290.36 291.65 300.19 283.82 1385.70 1396.56 1425.43 1492.33 
59 290.42 291.59 300.11 283.90 1385.26 1396.42 1425.95 1492.40 
60 290.50 291.51 300.11 283.90 1384.37 1396.07 1426.91 1492.66 
61 290.61 291.40 300.12 283.89 1383.48 1395.74 1427.66 1493.15 
62 290.76 291.25 300.18 283.83 1383.21 1395.05 1428.06 1493.69 
63 290.88 291.13 300.13 283.88 1382.58 1394.38 1428.90 1494.16 
64 291.03 290.98 300.23 283.78 1382.25 1393.94 1429.57 1494.25 
65 291.15 290.86 300.22 283.79 1381.38 1393.50 1430.44 1494.70 
66 291.26 290.75 300.27 283.74 1380.70 1393.07 1431.45 1494.79 
67 291.43 290.58 300.34 283.67 1380.34 1392.55 1432.18 1494.94 
68 291.55 290.46 300.24 283.77 1380.18 1392.17 1432.70 1494.97 
69 291.73 290.28 300.15 283.86 1380.05 1391.60 1433.30 1495.06 
70 291.87 290.14 300.19 283.82 1380.03 1391.04 1433.84 1495.12 
71 292.00 290.01 300.17 283.84 1380.01 1390.51 1434.24 1495.26 
72 292.10 289.91 300.18 283.83 1379.71 1390.13 1434.72 1495.46 
73 292.15 289.86 300.31 283.70 1379.84 1389.82 1434.99 1495.36 
74 292.24 289.77 300.43 283.58 1379.83 1389.50 1435.16 1495.52 
75 292.32 289.69 300.49 283.52 1379.85 1389.16 1435.24 1495.77 
76 292.37 289.64 300.57 283.44 1379.95 1388.71 1435.16 1496.20 
77 292.35 289.66 300.59 283.42 1380.10 1388.4 1435.28 1496.24 
78 292.37 289.64 300.58 283.43 1380.18 1387.93 1435.55 1496.35 
79 292.29 289.72 300.67 283.34 1380.34 1387.51 1435.83 1496.35 
80 292.15 289.86 300.71 283.30 1380.62 1387.25 1436.05 1496.09 

 



Appendix B. Supplementary Result Tables 

 130 

  



Appendix C 

 
 131 

Supplementary Result Figures 
 

 
Figure C.1 Overview of different levels of structure determination methods 

commonly used at different stages of structure solution process. AFM: atomic force 

microscopy; Cryo-ET: cryo-electron tomography; EM: electron microscopy; FRET; 

fluorescence resonance energy-transfer; NMR: nuclear magnetic resonance; SAXS; 

small-angle X-ray scattering; SPR: surface plasmon resonance (Sharon, 2010). 

 

 
Figure C.2 Effect of mutations on the phase improvement. Mutation rate higher than 

2 (shown in green colour) resulted in drastic decrement in the MCC. This plot was 

generated using test case I data. The GA protocol ran for 60 generations using 

design 1 parameters. Selection was performed using tournament with size 9. The 

second variant of the one-point crossover was used for generating children. Different 

mutation rates (1, 2, 4, 8, 100, 200, 300) were applied. These were compared with 
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the GA that ran without mutations. MCC was used as a fitness function. The growth 

in the MCC over generations was monitored to observe the improvement in phases. 
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List of Hazardous Substances 
 
 

 

 

 

 

The presented work is purely theoretical. Therefore, no laboratory experiments were 

carried out and no hazardous, carcinogenic, mutagenic or toxic substances according 

to GHS were used. 
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