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Dr. Frank Fischer

Prof. Dr. Arwen Pearson

Prof. Dr. Nils Huse

Prof. Dr. Daniela Pfannkuche

Prof. Dr. Daniela Pfannkuche

14.08.2020

Prof. Dr. Günter H. W. Sigl

Prof. Dr. Wolfgang Hansen

Prof. Dr. Heinrich Graener

ii





Abstract

The macroscopic behavior of fiber-reinforced materials is determined by the properties

of embedded fibers, especially their orientation. For example, in biological tissue like

skin, aligned collagen fibers are responsible for its anisotropic, non-linear mechanical

behavior. In this thesis, novel methods are introduced to investigate the orientation of

fiber networks in materials.

The adaptive filter method (AF method) was developed to determine the angular ori-

entation distribution without any assumptions on the fiber network. The AF method

showed a significantly increased accuracy in determining the dispersion of the fiber

network compared to a state-of-the art band-pass method. Its applicability to experi-

mental data was demonstrated by the analysis of in-vivo second harmonic generation

(SHG) images of dermal collagen.

Collagen fiber networks are reported to consist of multiple fiber families. The Fiber

Image Network Evaluation (FINE) algorithm was developed to quantify the number

of fiber families and their properties based on the cumulative orientation distribu-

tion. Greyscale images with multiple fiber families were simulated using a Monte-Carlo

method to benchmark the algorithm. The FINE algorithm was found to reliably deter-

mine the number of aligned fiber families and the ratio of anisotropic fibers. Further-

more, morphological changes of the collagen network across skin depth were identified

by applying the FINE algorithm to in-vivo SHG images of dermal collagen.

Various viscoleastic properties of biological tissue such as creep, strain-rate and strain

history-dependence are believed to be related to the collagen fiber network. A multi-

photon microscope stretching device was developed to apply mechanical deformations

to skin samples, while capturing SHG images of the collagen network at the same time.

The FINE algorithm was applied at every state of deformation to track the evolution

of the collagen fiber network due to external forces. Cyclic sequences of stretching

and relaxation revealed permanent as well as periodical variations of the collagen fiber

network of pig skin. A permanent alignment of collagen fibers was associated with

the presence of an isotropic fiber family. Furthermore, large differences across the me-

chanical behavior of samples were successfully related to the initial orientation of their

collagen fiber network prior to deformation.

The electrical line resistance of novel silver-nanowire photopolymer composites strongly

increases with mechanical stretch. To observe changes of the nanowire network dur-

ing stretching, the FINE algorithm was applied to light microscopy images of these

nanowire networks. Nanowires were found to exhibit one isotropic fiber family, that

slightly aligns in the stretching direction in case of a low nanowire concentration. How-

ever, it was found that the increase in line resistance is dominated by breaking nanowire

junctions rather than by their alignment.
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Zusammenfassung

Das makroskopische Verhalten von faserverstärkten Materialien wird maßgeblich durch

die Eigenschaften enthaltener Fasern, insbesondere deren Orientierung, bestimmt. In

biologischen Geweben, wie der Haut, sind ausgerichtete Kollagenfasern ausschlagge-

bend für ein anisotropes, nicht-lineares mechanisches Verhalten. In dieser Arbeit wer-

den Methoden vorgestellt, die die Orientierung von Fasern in Materialien quantifizieren.

Die adaptive Filtermethode (AF method) wurde entwickelt, um die Winkelverteilung

eines Fasernetzwerkes zu bestimmen, ohne dabei Annahmen über das Netzwerk zu

treffen. Die AF-Methode wies im Vergleich zu einer state-of-the-art Methode eine si-

gnifikant erhöhte Genauigkeit bei der Bestimmung der Dispersion des Fasernetzwerks

auf. Die Anwendbarkeit auf experimentelle Daten wurde durch die Analyse von in-vivo

Bildern von dermalen Kollagenfasern, die mittels Frequenzverdopplung (SHG) gemes-

sen wurden, belegt.

Kollagenfasernetzwerke bestehen im Allgemeinen aus mehreren Faserfamilien. Der FINE-

Algorithmus (Fiber Image Network Evaluation algorithm) wurde entwickelt, um die

Anzahl der Faserfamilien und ihre Eigenschaften basierend auf der kumulativen Ori-

entierungsverteilung zu bestimmen. Die Performance des Algorithmus wurde mittels

simulierter Faserbilder gemessen. Der FINE-Algorithmus ist dabei in der Lage sowohl

die Zahl mehrerer ausgerichteter Faserfamilien als auch den anisotropen Anteil des

Fasernetzwerkes präzise zu quantifizieren. Außerdem konnten mit dem FINE-Algorith-

mus detaillierte morphologische Unterschiede des dermalen Kollagennetzwerkes über

die Hauttiefe in-vivo identifiziert werden.

Es wird angenommen, dass verschiedene viskoelastische Eigenschaften von biologischem

Gewebe mit dessen Mikrostruktur zusammenhängen. Ein spezielles Dehnungsgerät für

den Einsatz am Multiphotonenmikroskop wurde entwickelt, um Veränderungen des

Kollagennetzwerkes bei gleichzeitiger Verformung von Haut zu untersuchen. Durch die

Anwendung des FINE Algorithmus zu jedem Zeitpunkt einer zyklischen Verformung

konnten permanente und reversible Veränderungen des Kollagennetzwerkes von Schwei-

nehaut identifiziert werden. Eine permanente, Ausrichtung wurde mit der Existenz ei-

ner isotrop verteilten Faserfamilie assoziiert. Außerdem konnten große Unterschiede in

dem mechanischen Verhalten verschiedener Proben erfolgreich bestimmt und mit der

Orientierung ihres Kollagennetzwerkes vor Verformung korreliert werden.

Der elektrische Linienwiderstand von neuartigen Photopolymer-Verbundwerkstoffen

mit Silber-Nanodrähten nimmt bei mechanischer Dehnung stark zu. Um Veränderungen

des Nanodrahtnetzwerkes bei mechanischer Belastung zu untersuchen, wurde der FINE-

Algorithmus auf lichtmikroskopische Bilder des Materials angewandt. Es wurde festge-

stellt, dass Nanodrähte eine isotrope Faserfamilie ausbilden, die sich bei einer niedrigen

Nanodrahtkonzentration leicht in Richtung der anliegenden Kraft ausrichtet. Allerdings

zeigten Simulationen, dass die Erhöhung des Linienwiderstandes von brechenden Nan-

odrahtverbindungen dominiert wird.
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Chapter 1

Introduction

Fiber-reinforced materials occur in a large variety of fields. For example, fibers are em-

bedded in construction materials, like reinforced concrete [1] and carbon fiber compos-

ites [2], to enhance their mechanical properties. In biological tissue, like skin, collagen

fibers represent the main load bearing constituent and allow for its ability to sustain

large deformations [3]. Besides their mechanical functionality, fibers can also be the key

factor for the electrical properties of materials, like silver-nanowires in photopolymer

composites [4].

An important factor determining the properties of fiber-reinforced materials, is the

orientation of its fiber network [5, 6]. Due to its complex micro-structure and high

anisotropy, the investigation of collagen fibers in biological tissue was extensively stud-

ied in the past [3, 7, 8]. The orientation of collagen in skin was analyzed relative to

the so-called Langer lines in various ex-vivo experiments [9–13]. The Langer lines, also

known as cleavage lines or main tension lines, were discovered in 1861 by Karl Langer

[14]. He observed that circular wounds, that he made in the skin of a cadaver, turned

into an elliptical shape. Based on the long axes of the ellipsoid, he could identify the

main tension lines of skin. Lapeer et al. measured a ratio of 2.21:1 of the skin’s tensile

strength parallel to the Langer lines compared to a perpendicular tension [15] . The

main tension lines were related to a preferred orientation of collagen in ex-vivo exper-

iments using histology [13, 16]. However, some ex-vivo experiments failed to support

this model [11, 17–19]. Used image processing methods to quantify the orientation of

the collagen fiber network are found to rely on assumptions about the material includ-

ing the diameter of fibers and the number of main orientations [20, 21].

In this thesis objective methods for quantifying and classifying the orientation of fibers

in grayscale images are introduced. These methods are applied to collagen fibers of skin

and to silver-nanowires of photopolymer composites to investigate their micro-structure

and its contribution to the macroscopic behavior of the material.

In chapter 3 of this thesis, the adaptive filter method (AF method) is introduced allow-

ing for an objective and reliable quantification of the orientation of the fiber network in

1



CHAPTER 1. INTRODUCTION 2

greyscale images. It is compared to a state-of-the-art method to measure its accuracy.

The AF method is applied to in-vivo images of dermal collagen, that are obtained by

second harmonic generation (SHG) imaging.

In general, collagen fiber networks are reported to consist of multiple fiber families

[8]. Thus, the Fiber Image Network Algorithm (FINE algorithm), which quantifies

the number of families in fiber networks and their properties in greyscale image based

on the AF method, is developed. The FINE algorithm is presented in chapter 4 of

this work. In-vivo SHG imaging in combination with the FINE algorithm is used to

objectively quantify the main orientations of collagen fiber families with respect to the

Langer lines. Various quantities of the FINE algorithm are employed to resolve differ-

ences in the fiber network across different skin layers.

In addition to its high deformation ability, skin exhibits diverse viscoelastic proper-

ties such as creep, stress relaxation, history dependence, and strain-rate dependence,

which are believed to depend on the collagen fiber network [22–27]. However, a clear

micro-structural interpretation is still missing. In chapter 5, a special device is pre-

sented, which allows for controlled deformations of skin samples, while capturing their

collagen fiber network using SHG imaging. By applying the FINE algorithm of chapter

4 to every state of deformation, changes of the collagen fiber network are related to the

macroscopic mechanical behavior of skin.

In chapter 6 the FINE algorithm of chapter 4 is applied to silver-nanowire (Ag:NW)

photopolymer composites. The functional printing of this material was proposed re-

cently [4] and provides tunable optical and electronic properties for various applica-

tions. The electrical line resistance of this material strongly increases upon mechanical

stretch. Similar to chapter 5, the FINE algorithm is used to investigate micro-structural

changes of the fiber network in relation to the macroscopic properties of the material.



Chapter 2

Materials and Methods

Collagen fibers of skin play a central role in this work. Thus, the structure and prop-

erties of collagen are briefly described in this chapter. In addition, the physical back-

ground of the imaging of collagen fibers by second harmonic generation (SHG) is given.

2.1 Collagen Fibers in Skin

Collagen fibers are contained in the dermal skin layer, the dermis, which has a thickness

of about 0.6 mm in the eyelids up to 3 mm in the back [28]. It is located underneath

the epidermal layer, which covers (85± 15)µm of depth [29]. The dermis can be sub-

divided into papillary dermis and reticular dermis [28]. The papillary dermis features

the papillae, which are protrusions into the epidermis and part of the dermal-epidermal

junction (DEJ), as well as thin collagen fibers, blood capillaries, sensory nerve endings,

and cytoplasm. The papillary dermis has a thickness of (65 − 175)µm and can be

distinguished from the reticular dermis by a different organization of collagen fibers,

mainly observed in histology images [30].

In total, collagen amounts to 70 % of the dry weight of the dermis and plays a major

role for the mechanical behavior of skin [10, 12, 31]. Depending on their structure,

different types of collagen are identified [32]. Collagen type I covers 80% of the skins

collagen, while collagen type III accounts for 15%. Type II collagen is mainly located

in cartilage. Type IV collagen is found in the basement membrane, while type V occurs

in, for example, cell surfaces and hair [32]. Collagen type I and III have a hierarchical

structure, schematically represented in figure 2.1. Collagen fibers, shown in figure 2.1

(a), are undulated and consist of bundles of collagen fibrils (figure 2.1 (b)). Collagen

fibrils have a thickness of 50 − 100 nm. They express a cross striation pattern with a

60−70 nm periodicity, which is formed by overlapping 300 nm×1.5 nm triple-superhelix

tropocollagen molecules (figure 2.1(c)).

The reticular dermis contains thick collagen fibers, which are organized in densely

distributed bundles. Its hierarchical substructure, results in a high tensile strength,

especially in the large strain domain [3]. In the small strain region, the load is mainly

3



CHAPTER 2. MATERIALS AND METHODS 4

carried by elastic fibers, which are much more elastic than collagen fibers and have the

ability to fully recover from strains of up to 100 % [33]. Their mechanical entanglement

with the collagen network of the dermis gives the skin its resilience and recoil ability

[34]. Elastic fibers as well as collagen fibers are continuously created by fibroblasts,

which are the most abundant cell linage in the human dermis.

Figure 2.1: Hierarchical structure of collagen type I and III. (a) Collagen
fibers form the dermal collagen network and consist of collagen fibrils. (b) Collagen
fibrils, which in turn consist of periodically overlapping tropocollagen molecules. (c)
Collagen triple helix molecule, also known as tropocollagen. Note that collagen type I
and type III only differ in the molecular composition of the tropocollagen.

A widely used technique for measuring the fiber arrangement in-vivo and ex-vivo is

multiphoton microscopy [24, 35–44]. Since it represents the most important image

modality in this work, its physical fundamentals are briefly described.

2.2 Multiphoton Microscopy

While near physiological conditions can be conserved during imaging, modern confocal

laser scanning microscopes (CLSM) provide the link between micro-structure and the

function of biological systems [45–47]. Confocal microscopy that makes use of non-linear

excitation, called multiphoton microscopy, enables an extensive in-vivo examination of

skin [48]. In this work, a sophisticated multiphoton microscope, DermaInspect, is used

for resolving the structure of the collagen fiber network. This microscope was developed

in-house in collaboration with JenLab GmbH (Jena, Germany) [49] and was used in

diverse skin-related research topics [50–54]. The physical basis of non-linear excitation

as well as the generation of second harmonics produced by collagen fibers is explained

in the following.



5 CHAPTER 2. MATERIALS AND METHODS

2.2.1 Non-Linear Excitation

Light in general has two natures, which are responsible for its diverse properties. Light

is an electromagnetic wave described by the wave equations:

1

c2
0

∂2E

∂t2
−∇2E = 0 (2.1)

1

c2
0

∂2B

∂t2
−∇2B = 0, (2.2)

where E and B describe the electric and the magnetic field, respectively. c0 denotes

the speed of light in vacuum. Equation (2.1) and (2.2) follow from Maxwell’s equations

that form the foundation of electromagnetism [55]:

∇ ·E =
ρ

ε0
, (2.3)

∇ ·B = 0, (2.4)

∇×E =
∂B

∂t
, (2.5)

∇×B = (µ0j + µ0ε0
∂E

∂t
), (2.6)

where E and B describe the electric and the magnetic field, respectively. ρ indicates

the total electrical charge density, while ε0, and µ0, indicate the permittivity and the

permeability of the vacuum, respectively. Both quantities are linked to the speed of

light by:

c0 =
1√
ε0µ0

= 2.99792458 · 108 m

s
. (2.7)

In addition to its wave-like properties, light behaves like a particle. For example, the

Compton effect describes the inelastic scattering of light with a free charged particle.

The observation of this phenomenon at low intensity of light leads to the consideration

that light can also be treated as a steam of particle-like objects. These particles are

called photons, which energy E is proportional to the frequency of light ν:

E =
~c
λ

= ~ω = hν, (2.8)

where h = 6.626 · 10−34 Js is the Planck constant, the quantum of the electromagnetic

action. It is related to the reduced Planck constant ~ by ~ = h
2π . ω = 2πν denotes

the angular frequency. Besides the Compton effect, photons can interact with matter

via the photoelectric effect and the pair production. The effective cross-section of each

of these processes strongly depends on the photon’s energy. While pair production

becomes relevant only for high photon energies, the photoelectric effect is dominant at

lower photon energies, as in the visible light range.

The photo effect includes the excitation and emission of electrons as a consequence of
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photon absorption. The energy that is required to excite electrons within atoms or

molecules to a higher energy level is characteristic for each material. Excited electrons

are able to spontaneously fall back to their ground state. The difference in energy is

compromised by emitting a photon with the respective energy. This process is called

fluorescence. Let E0 denote the energy level of an electron in the ground state, that is

excited due to the absorption of a photon with an energy of Eex = ~ωex. The energy

of the emitted photon Eemit = ~ωemit is given by:

Eemit = ~ωemit = ~ωex − Eloss, (2.9)

where Eloss denotes non-radiative, internal energy losses, leading to the emittance of a

photon, which has a longer wavelength compared to the absorbed photon:

λemit > λex. (2.10)

The respective Jablonski diagram of one-photon fluorescence is shown in figure 2.2 (a).

Fluorescing chemical compound are called fluorophores. As a fluorophore is hit by

a photon with angular frequency ω, the probability of excitation is measured by the

cross-section σ1P = σ1P(ω). The rate at which such a transition is induced, is given by

the intensity I of the incident light:

R1P = σ1P(ω) · I, (2.11)

where the intensity I of light gives the number of photons n in units of photons
m2s

:

I =
nc

2π~ω
|E|2. (2.12)

In general, a transition to an excitation state is not limited by the absorption of a single

photon, but can also be induced by multiphoton absorption. The angular frequency

ω2P of each photon being involved in a two-photon excitation is halved, compared to a

single photon excitation:

ωex,2P =
~ωex

2
. (2.13)

The corresponding Jablonski diagram is shown in figure 2.2 (b). Considering light with

intensity I, the two-photon excitation occurs with an excitation rate of:

R2P = σ2P(ω) · I2. (2.14)

Since the excitation rate (equation (2.14)) of a two-photon process depends on the

squared light intensity, it is called non-linear excitation. Contrary, one-photon excita-

tion, equation (2.11), is related to as linear excitation.[56]
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Figure 2.2: Jablonski diagram for one- and two-photon fluorescence. (a)
Jablonski diagram for one-photon fluorescence. (b) Jablonski diagram for two-photon
fluorescence. Thick lines represent stable states, whereas thin lines are vibrational and
rotational states.

2.2.2 Higher Harmonic Generation

The interactions of light with matter are summarized by the non-linear susceptibility

tensor describing the relationship between the electric field of the light and the induced

polarization P, which is the dipole moment per unit volume. The induced polarization

P of a material as a consequence of an electric field E is generally expressed by:

P(t) = ε0

[
χ(1)E1(t) + χ(2)E2(t) + χ(3)E3(t) + . . .

]
, (2.15)

where χ(n) denotes the n-th order non-linear susceptibility tensor with rank n+1. Each

term of equation (2.15) is associated with different orders of electromagnetic interac-

tions including linear and non-linear effects [56]. χ(1) describes linear excitation like

absorption and reflection, while higher orders cover non-linear effects. The generation

of second harmonics (SHG), sum and difference frequency generation, occurs as a result

of second order effects described by χ(2). χ(3) describes the generation of third har-

monics (THG), multiphoton absorption, and coherent anti-Stokes Raman scattering.

For simplicity, P (t), χ(n), and E(t) are treated as scalar quantities.

The time-varying polarization of non-linear media can act as a source of new compo-

nents of the electromagnetic field. Accelerated, charged particles generate electromag-

netic radiation, which leads to a modification of the wave equation in non-linear optical

media:

∇2E − n2

c2

∂2E

∂t2
=

1

ε0c2

∂2PNL

∂t2
, (2.16)

where the polarization PNL describes the non-linear response. Equation (2.16) can be

understood as an inhomogeneous wave equation, where PNL acts as a driver of the

electric field.[56]

Since the principle of second harmonic generation (SHG) is mainly used in this work,

the second order polarization:

P (2)(t) = ε0χ
(2)E2(t) (2.17)

plays a major role. P (2) can only occur in non-centrosymmetric crystals. This can

be shown by considering a centrosymmetric crystal that displays inversion symmetry,
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which is the case for materials like liquids, gases, or amorphous solids. In these mate-

rials, an inversion of the sign of E must also inverse the sign of the polarization:

− P (2) = ε0χ
(2)(−E)2(t), (2.18)

which only holds for a vanishing second order susceptibility χ(2) = 0. Non-centrosymmetric

crystals, like collagen, do not display inversion symmetry and are therefore able to pro-

duce second harmonics. Considering the electric field of a coherent light source, e.g. a

laser beam:

E(t) = Ee(−iωt) + E∗e(iωt), (2.19)

which incidents upon a crystal with a non-vanishing second order susceptibility χ(2).

The respective second order polarization follows from inserting the wave equation (2.19)

in equation (2.17):

P (2)(t) = ε0χ
(2)
(
Ee(−iωt) + E∗e(iωt)

)2
(2.20)

= 2ε0χ
(2)EE∗ + (ε0χ

(2)E2e−i2ωt︸ ︷︷ ︸
SHG

+ ε0χ
(2)E∗2ei2ωt︸ ︷︷ ︸

complex conjugate

) (2.21)

The first term does not lead to the creation of electromagnetic radiation since its time

derivative vanishes. It is known as optical rectification, which describes the creation of

a static electric field across the non-linear crystal.[56] The second term describes the

generation of electromagnetic radiation at frequency 2ω, the second harmonic frequency

ωSHG:

ωSHG = 2ω (2.22)

virtual state

ground state

Figure 2.3: Second harmonic generation. (a) Process diagram of second harmonic
generation. (b) Energy level diagram of second harmonic generation

The process diagram of the second harmonic generation is shown in figure 2.3 (a),

the corresponding energy level diagram in figure 2.3 (b). Also note that the energy

levels which are involved in the generation of second harmonics (SHG) are virtual.

Contrary to the two photon fluorescence (TPF) (figure 2.2), no energy is deposited in

the medium. As a consequence, the frequency of the SHG signal ωSHG is higher than

the frequency of the two-photon fluorescence ωTPF if both processes are induced by the

same frequency ω:

2ω = ωSHG > ωTPF
λ

2
= λSHG < λTPF. (2.23)
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Since the deposited energy Eloss is continuous, the frequency spectrum of TPF is broad,

whereas the frequency spectrum of SHG has a sharp peak at 2ω. Since both phenomena

occur at a similar excitation frequency, they are often included in the same imaging

modality, such as multiphoton microscopy. In addition, since the SHG wavelength is

shorter than the TPF wavelength, the SHG can be separated from the TPF, allowing

for a simultaneous measurement of both processes.

In the slowly varying envelope approximation (SVEA) the envelope of a forward trav-

eling electromagnetic wave wave is assumed to vary slowly in time and space compared

to its wavelength [57]. This is fulfilled for a narrow-banded spectrum of the source of

the electromagnetic wave. In this approximation the intensity of the SHG signal caused

by an electromagnetic wave with amplitude E(ω) that incidents on a non-linear crystal

with refraction index n reads as:

I2ω(z) ∝ I2
ωz

2

(
sin
(

1
2∆kz

)
1
2∆kz

)2

with Iω =
1

2
n
√
ε0µ0|E|2 (2.24)

where z defines the length of the interaction of the incident wave and the non-linear

crystal. ∆k denotes the phase difference between the incident wave with wave vector

k(ω) and the second harmonic wave with wave vector k(2ω):

∆k = 2kω − k2ω (2.25)

The term sin
(

1
2∆kz

)
/1

2∆kz has a maximum at ∆k = 0. Thus, the intensity of the SHG

is maximized for the phase matching condition 2kω = k2ω [58]. The phase mismatch

∆k is related to a coherence length lc at which the conversion of the signal decreases:

lc =
2π

∆k
(2.26)

Other than TPF, SHG conversion is not emitted isotropically. Since it is a coherent

process, the majority of the SHG signal keeps the direction of the incident light, k.

However, depending on the phase matching condition, it can also be emitted in back-

ward direction, k2ω = −2kω. It was shown that the signal ratio of forward to backward

(F/B) emitted SHG depends on the axial size of the objects [59]. Objects, that exhibit

a size in the order of the second harmonic wavelength λSHG, mainly produce forward

directed SHG. Small objects with a size less than λSHG/10 will equally produce forward

and backward directed SHG [59–61]. As dermal collagen mainly consists of collagen

fibrils with diameters ranging from 40 nm to 100 nm, a substantial amount of the SHG

signal is emitted in backward direction, allowing for the in-vivo measurement of dermal

collagen [62–64].

2.2.3 Multiphoton Microscope DermaInspect

The DermaInspect is a confocal microscope, which allows for the measurement of the

TPF as well as the SHG [65]. Confocal microscopes focus the excitation laser beam on
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a small spot within the x−y−z coordinates of the measurement sample. As SHG and

TPF are emitted from the focal spot, the intensity of the emitted signal is captured by

photo-multiplier tubes. Depending on the intensity of the detected signal, the pixel,

which corresponds to the location of the excited volume, is given a grayvalue.

Scattering processes of the focused laser beam cause a loss of penetration depth and a

broadening of the excitation spot, inducing a decreased spatial resolution. The proba-

bility that a photon with wavelength λ is scattered, depends on the parametrized size

x of a scatterer with radius r:

x =
2πr

λ
(2.27)

In skin, the size of the scattering particles is small compared to the wavelength,

and x� 1. Thus, Rayleigh scattering is the dominant scattering process, which cross

section σs reads as:

σs =
2π5

3

d6

λ4

(
n2 − 1

n2 + 2

)2

, (2.28)

where n denotes the refractive index and d the diameter of the scatterers. Equation

(2.28) indicates that the cross-section of Rayleigh scattering is heavily reduced if the

wavelength of the scattering photon is increased. As non-linear processes like TPF and

SHG both work at roughly half the wavelength of linear excitation, a comparably deep

imaging depth with a high planar spatial resolution (x− y) is achieved.

To simultaneously cover the excitation wavelength of the fluorophores that are con-

tained in skin, as well as the wavelength at which dermal collagen produces second

harmonics, a femtosecond Titanium:Sapphire laser (Mai Tai, Spectra-Physics, Califor-

nia, USA) with a tunable wavelength in the range of 710 nm to 920 nm is used. As the

laser emits short laser pulses, high peak intensities are achieved. High photon intensi-

ties are beneficial for both, TPF as well SHG, since their intensity increases with the

square of the intensity of the incident laser beam. In addition, due to the extremely

short pulse durations, physical processes that occur on the time scale of the pulse du-

ration such as fluorescence lifetime imaging (FLIM) can be resolved [66].

The schematic representation of the DermaInspect is shown in figure 2.4. Laser scan-

ning mirrors enable a scan of the focal spot in the focal plane (x−y). The depth of the

focal plane is set by a piezo stage, which moves the objective lens in the z-direction.

The SHG/TPF signal is directed to the detector by means of a beam splitter. To

separate both signals from each other, different band-pass filters are included in the

filter set of the microscope. According to equation (2.23), the wavelength of the SHG

signal, λSHG amounts to half of the excitation wavelength, which is shorter than the

wavelength of the TPF. As the SHG of collagen is excited at 820 nm, a narrow band-

pass filter at (410 ± 10) nm is used for capturing the SHG signal. Since the spectrum

of the TPF signal is broad and shifted to higher wavelengths, a broad-banded filter at

(548 ± 150) nm is used for an excitation wavelength of 750 nm. The filtered signal is
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Figure 2.4: Schematic setup of the DermaInspect multiphoton microscope.
The filter set contains different band-pass filters to switch between the detection of the
TPF signal and the SHG signal.

amplified and measured by a photomultiplier tube (PMT). The final intensity is then

passed to a personal computer, which collects the signal for each measured volume and

assigns it to the corresponding pixel.[65]

In order to capture the three-dimensional distribution of SHG/TPF planar multiple

x−y slices with a predefined slice spacing in z-direction are measured. The image qual-

ity in terms of the signal-to-noise ratio depends on the defined scan-time and the image

dimension. Potential output image dimensions are 128 × 128 pixels, 256 × 256 pixels,

512×512 pixels, 1024×1024 pixels, and 2048×2048 pixels. The maximum spatial reso-

lution of the DermaInspect microscope is 0.4µm in lateral (x−y), and 1.3µm in vertical

(z) direction [67]. Due to scattering-induced signal loss, the maximum measurement

depth amounts to ∼150µm in skin. The spatial dimension of the measured image slices

is given by the magnification of the objective lens. The spatial dimension using a 40×
magnification objective lens (Zeiss, Oberkochen, Germany) is (220× 220)µm, while it

is doubled using an objective lens with a 20× magnification (XLUMPlanFI, Olympus,

Shinjuku, Tokio, Japan).





Chapter 3

Fiber Orientations in Greyscale

Images

3.1 Monte-Carlo Simulation of Greyscale Fiber Images

To benchmark the method presented in this chapter, artificial fiber images with defined

properties are used. A Monte-Carlo simulation is developed to create images with

a predefined fiber geometry in terms of width and length, as well as a predefined

angular orientation distribution and image quality. Contrary to approaches published

in literature, non-binary images with a continuous greyscale are simulated [20, 21].

Rectangles with a predefined width and length serve as fibers. The orientation of the

fibers is sampled from a π-periodic von-Mises distribution:

Pvm(θ) =
1

πI0(k)
ek·cos(2(θ−θ̄)), (3.1)

where I0(k) is the modified Bessel function of order zero. The von-Mises function has

a maximum at θ = θ̄, while its width is given by the dispersion parameter k. The

dispersion parameter can be understood as a reciprocal standard deviation.

The Monte-Carlo procedure is exemplary shown in figure 3.1. In figure 3.1 (a), the

simulation starts with placing a fiber with predefined orientation, width and length

randomly within the image such that the entire fiber fits into the image boundaries.

This process is repeated in figure 3.1 (b) for a second fiber. If fibers are overlapping

as shown in figure 3.1 (c), grey values are summed to mimic a high signal intensity.

This process is repeated until the number of iterations of the Monte-Carlo simulation,

Nf , is reached (figure 3.1 (d)). In the final step of the procedure, random noise is

added to the image, as shown in figure 3.1 (e). A noise factor is introduced defining

the maximum intensity of added speckle noise. A vanishing noise factor indicates the

absence of speckle noise, while a noise factor of 1 indicates added speckle noise with a

maximum intensity equal to half the maximum image intensity. Note that the geometry

of artificial fibers is alternatively defined by their width and aspect ratio [21, 68].

13
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Figure 3.1: Monte-Carlo simulation of an artificial greyscale fiber image.
(a) First iteration (Nf = 1) of the Monte-Carlo simulation of a greyscale fiber image
with a fiber distribution with mean orientation θ̄ = 45◦ and dispersion k = 1. A
single fiber with a width of 5 pixels and a length of 100 pixels is randomly placed into
a 512 × 512 pixels image. (b) Next iteration of the Monte-Carlo simulation (Nf = 2).
(c) Iteration Nf = 5 of the Monte-Carlo simulation. Note that the maximum intensity
of the image is now given by the overlap of two fibers. (d) Final iteration (Nf = 200)
of the Monte-Carlo simulation. (e) Random speckle noise with a noise factor of 0.375
is added to the image in the final step of the Monte-Carlo procedure.

3.2 Angular Orientation Distribution in the Frequency

Domain

Various methods for quantifying fiber orientations in scientific images have been pub-

lished in the past. In magnetic resonance imaging, fiber tracking methods allow for

the reconstruction of white matter tracts of the central nervous system by exploiting

directional anisotropy, measured by diffusion tensor imaging [69].

Pixel values of microscopy images obtained by histology staining or non-invasive optical

methods, such as SHG or TPF, lack information about the directionality of fibers. In

order to quantify the angular orientation distribution of fibers in these images, different

approaches that are either based on the spatial domain or on the frequency domain

have been introduced.

Spatial domain methods are dominated by fiber tracking algorithms [70–73]. A minor

role is played by ellipsoidal fitting [6]. The major drawback of these methods is the need

for various, parameter-dependent image filters to highlight fibers in greyscale images,

for example in [70]. Frequency domain based methods quantify the entire directional
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information that is present in the image and are therefore more stable against varia-

tions of image quality [74].

The angular information of an image is summarized in the angular orientation distri-

bution, which is denoted by I(θ). The angular orientation distribution quantifies the

contribution of each direction to the image. In this section, the computation of I(θ) in

the frequency domain is derived.

3.2.1 The Fourier Transform

The Fourier transform f̂ = F [f(x)] of an integrable function f : R → C is defined as

[75]:

f̂(ν) =

∫ ∞

−∞
f(x)e−2πiνxdx, (3.2)

where ν has the inverse unit of x. In case of x being the time in seconds, ν is a frequency

measured in 1/s. Analogous to equation (3.2), the inverse Fourier transform F−1[f̂(x)]

reads as:

f(x) =

∫ ∞

−∞
f̂(ν)e2πixνdν. (3.3)

In an experimental setting, a signal is recorded in a finite interval with a sequence of N

values {fn} = f0, f1, . . . , fN−1. In that case, equation (3.2) and (3.3) reduce to finite

sums:

f̂ν =
N−1∑

n=0

fn · e−
2πiνn
N with ν = 0, 1, . . . , N (3.4)

fn =
1

N

N−1∑

ν=0

f̂ν · e
2πiνn
N , (3.5)

which are referred to as discrete Fourier transform (DFT) and inverse DFT. The DFT

f̂n is N -periodic:

f̂ν+N =
N−1∑

n=0

fn · e−
2πiν(n+N)

N =
N−1∑

n=0

fn · e−
2πiνn
N · e− 2πiνN

N︸ ︷︷ ︸
1

= f̂ν . (3.6)

The transformation of an image I : Ω→ R defined on Ω = {0, . . . , X−1}×{0, . . . , Y−1},
to the frequency domain, is achieved from applying a two-dimensional DFT (2D-DFT).

The 2D-DFT I(x, y)→ F [I(x, y)] = Î(u, v) is given by:

Î(u, v) =

Y−1∑

y=0

X−1∑

x=0

I(x, y) · e−2πi( xX u+ y
Y
v), (3.7)

with the respective inverse 2D-DFT:

I(x, y) =

Y−1∑

u=0

X−1∑

v=0

Î(u, v) · e2πi( xX u+ y
Y
v). (3.8)
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Thus, the image I(x, y) can be represented by a linear combination of complex ex-

ponentials e2πi( xX u+ y
Y
v) with complex weights Î(u, v). Complex weights can also be

represented in terms of their real and imaginary parts:

Î(u, v) = Re[Î(u, v)] + i Im[Î(u, v)], (3.9)

with:

Re[Î(u, v)] =
Y−1∑

y=0

X−1∑

x=0

I(x, y) cos
(

2π
( x
X
u+

y

Y
v
))

, (3.10)

and Im[Î(u, v)] = −
Y−1∑

y=0

X−1∑

x=0

I(x, y) sin
(

2π
( x
X
u+

y

Y
v
))

. (3.11)

3.2.2 Angular Orientation Distribution

To derive the angular orientation distribution I(θ) of an image, the relationship between

the orientations of structures in the spatial domain and the 2D-DFT has to be derived.

For this purpose, complex weights Î(u, v) are expressed in the polar form using the

amplitude |Î(u, v)| and the phase φ:

Î(u, v) = |Î(u, v)| · eiφ with φ = tan−1
(

Im[Î(u, v)]/Re[Î(u, v)]
)
, (3.12)

The square of the amplitude is also known as the power spectrum P (u, v):

P(u, v) = |F [I(x, y)]|2 = Re[Î]2 + Im[Î]2. (3.13)

Assuming a quadratic image with X = Y , the complex exponential e
2πi
X

(xu+yv) can be

expressed in terms of a scalar product of two vectors ~r = (x, y) and ~v = (u/w, v/w)

with w =
√
u2 + v2:

e
2πi
X

(xu+yv) = e
2πiw
X ( xwu+ y

w
v) = e

2πiw
X

(~r~v). (3.14)

~r is a vector in the direction of (x, y), while ~v is a normalized vector in the direction

of (u, v). Since all points (x, y) on a straight line perpendicular to the direction of ~v

exhibit the same projection ~r~v, the exponential e
2πiw
X

(~r~v) describes a planar sinusoidal

in the x−y plane along the direction:

θ = tan−1
(v
u

)
with frequency w =

√
u2 + v2. (3.15)

As a consequence, the contribution of structures that are aligned in a certain direction

θ′ to the angular orientation distribution is quantified by the summed amplitude of all

weights:

I(θ′) =
∑

u,v

|Î(u, v)|2 =
∑

u,v

P(u, v) with tan−1
(v
u

)
= θ′ + 90◦. (3.16)
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Figure 3.2: Relation between the direction of structures in the spatial and
the frequency domain. (a) Exemplary image with aligned structures in the direction
of ~r, i.e. θ. (b) Amplitude of the 2D-DFT of (a). (c) Coordinate shift (u, v)→ (u′, v′)
such that low frequencies appear in the center.

Note that instead of the amplitude, the squared amplitude (power spectrum, equation

(3.13)) is used for measuring the intensity of each contribution. Figure 3.2 illustrates

the relation between the direction of aligned structures in the images and the weights

of the Fourier transform. In figure 3.2 (a), multiple lines are aligned in the direction of

~r1, i.e. with angle θ′ measured against the negative x-axis. The respective amplitude

of the complex weights is given in figure 3.2 (b). The aligned structure of the image is

represented by the linear combination of multiple planar sinusoidal in the direction of

~v1, perpendicular to ~r1 with weights Î(u, v). A coordinate shift (u, v)→ (u′, v′) is per-

formed, such that low frequencies are appearing the image center, for example shown

in figure 3.2 (c). For now, the coordinate shift is implicitly applied, while coordinates

are indicated using u and v.

Since image pixels have a finite size, an angular width δθ is introduced and the expres-

sion (3.16) reads as:

I(θ) =
∑

u,v

P(u, v) with tan−1
(v
u

)
∈ [θ − δθ, θ + δθ), (3.17)

where θ = θ′+ 90 denotes the angle between the vertical and the horizontal coordinate

in the frequency domain. To ensure a continuous angular orientation spectrum, the

contribution of each pixel is weighted by its areal fraction within the angular interval

[θ− δθ, θ+ δθ) by a factor wint(u, v, θ). The angular orientation distribution follows as:

I(θ) =
∑

u,v

P(u, v) · wint(u, v, θ) with tan−1
(v
u

)
∈ [θ − δθ, θ + δθ). (3.18)

The weighting factors are exemplary shown for θ = 45◦ in figure 3.3. If a pixel is fully

contained in the angular interval [θ− δθ, θ+ δθ), wint(u, v, θ) is equal to one. Note that

the sum over all weighting factors is equal to the number of pixels
∑

u,v,θ wint(u, v, θ) =

X · Y .
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Figure 3.3: Weighting factors of the radial sum for θ = 45◦. Weighting factors
are calculated based on the fraction of area that is enclosed within an angular interval,
which is chosen here as [45◦−0.5◦, 45◦+0.5◦). Note that the evaluated region is always
circular.

3.3 Implicit Periodization Artifact

Analogous to the symmetry condition of equation (3.6) in the one-dimensional case, the

2D-DFT Î(u, v) is [X,Y ] periodic. Thus, the DFT can be interpreted as the continuous

Fourier transform (equation (3.2)) of a periodic distribution [76]. The consideration

of an image to be periodic causes cross-like grey value discontinuities in the Fourier

domain, which are referred to as periodization artifact [76]. As an example, the vertical

borders of the test image Boat, which is shown in figure 3.4 (a), do not express similar

grey values. As a consequence, the corresponding power spectrum exhibits vertical

discontinuities through its center, which are illustrated in figure 3.4(b). These dis-

continuities cause a known artifact in the angular orientation distribution. A popular

approach used within the scope of quantifying the angular orientation distribution is

the application of window functions, that gradually reduce the grey values towards the

image borders [20, 68, 74, 78, 79]. A Hamming window, for example, gradually reduces

the grey values of the image I(x, y) towards the image border using a cosine function:

H [I(x, y)] = I(x, y) · hx(x)hy(y) (3.19)

with:

hx(x) = 0.54− 0.46 · cos

(
2πx

X − 1

)
and (3.20)

hy(y) = 0.54− 0.46 · cos

(
2πy

Y − 1

)
. (3.21)
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Figure 3.4: Grey value discontinuities due to the implicit periodization of
the 2D-DFT. (a) Example image in which opposite grey values at the border are not
similar. This image was obtained from [77]. (b) Power spectrum P(u, v) = |Î(u, v)|2
shown in logarithmic scale for a better visibility. Discontinuities are marked with
arrows. Note that they are appearing in the center due to the coordinate shift (figure
3.2).

Since grey values are reduced to zero at the image border, the grey value discontinuities

are removed. In this work, the periodic plus smooth decomposition of Moisan et al.

[76] is used, since it is reported to have little effects on the image. Consider an image

I ∈ R defined on Ω = {0, . . . , X − 1} × {0, . . . , Y − 1}. The periodic component of the

image in the frequency domain, per
∧

(u, v), is defined as [76]:

∀(x, y) ∈ Ω \ (0, 0), per
∧

(x, y) = Î(x, y)− v̂(x, y)

4− 2 cos
(

2πx
X

)
− 2 cos

(
2πy
Y

) , (3.22)

and per
∧

(0, 0) = û(0, 0), where v = v1 + v2 and:

∀(x, y) ∈ Ω, v1(x, y) =




u(x, y)− u(X − 1− x, y) if x = 0 or x = X − 1,

0 else,
(3.23)

∀(x, y) ∈ Ω, v2(x, y) =




u(x, y)− u(x, Y − 1− y) if y = 0 or y = Y − 1,

0 else.
(3.24)

The periodic component of the image I(x, y) simply follows from an inverse 2D-DFT,

per(x, y) = F−1[per
∧

(u, v)].

The removal of the grey value discontinuities by the periodic component and the Ham-

ming window is shown in figure 3.5 for the example image Boat. Its periodic component

is shown in figure 3.5 (a). The difference between the original image and its periodic

component in figure 3.5 (b) exhibits minor deviations from zero near the image border.

Hence, almost the entire information of the image in the spatial domain is conserved.

The periodization artifacts in the power spectrum of figure 3.4 (b) are missing in figure

3.5 (c). Hence, the corrected artifacts are pronounced in the difference between both

power spectra in figure 3.5 (d). The windowed image image is shown in figure 3.5 (e).

The difference to the original image in figure 3.5 (f) indicates a severe loss of image
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information in the spatial domain. As a consequence, features in the power spectrum of

the windowed image in figure 3.5 (g) are less pronounced, and are therefore appearing

in the difference between both power spectra, shown in figure 3.5 (h).

The periodic decomposition therefore represents an approach to effectively remove the

periodization artifact without loss of image information, neither in the spatial nor in

the frequency domain.

Figure 3.5: Periodization artifcat removal: Hamming window vs. periodic
component. (a) Periodic component of the image boat (figure 3.4 (a)). (b) Difference
between the original image and the periodic component of the image. Highest differ-
ences are marked by a circle. (c) Power spectrum |per

∧

(u, v)|2 of (a). (d) Difference
between the power spectrum of the original image (figure 3.4 (b)) and the power spec-
trum of the periodic component. The periodization artifact is removed as indicated
by black arrows. (e) Hamming window applied on the image Boat. (f) Difference
between the original image and the windowed image. (g) Power spectrum of the win-
dowed image (e) . (h) Difference between the power spectrum of the original image
and the power spectrum of the windowed image. The periodization artifact is removed
as indicated by black arrows. In addition, features of the original power spectrum are
removed, indicated by white arrows.

3.4 Fourier Filtering

3.4.1 Band-Pass Filtering

Equation (3.18) was derived to calculate the angular orientation spectrum of an image

I(x, y) using its power spectrum P(u, v). However, it was found in literature that small

frequencies located around the center of the power spectrum as well as high frequencies

decrease the accuracy of Fourier based methods [21, 78, 80, 81]. Centered Frequencies

have high intensities but provide insufficient information about the directional depen-
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dence of the signal. In contrast, frequencies far from the image center exhibit a high

angular resolution but suffer from a low intensity. Band-pass filtering, for example

used by Morrill et al. [21], aims on radially excluding low and high frequencies by a

band-pass filter:

Îwl,wh(u, v) = Î(u, v) ·mwl,wh(u, v) with mwl,wh =





1 if wl <
√
u2 + v2 < wh,

0 else,

(3.25)

where wl and wh denote the low cut-off frequency and the high cut-off frequency,

respectively.

The frequency νfiber of a fiber with diameter t, that is located in a quadratic image

with dimension X is given by [74]:

νfiber =
X

2t
. (3.26)

Morrill et al. [21] determined an optimum for each cut-off frequency at t = 32 and

t = 2 for images containing collagen fibers. Using equation (3.26), the corresponding

frequencies for a 512 × 512 amount to wl = 8 and wh = 128. Thus, band-pass filter

parameters are defined as a function of the fiber width, which has to be known prior

evaluation.

Figure 3.6: Exemplary application of a band-pass filter. (a) Exemplary 512×
512 Monte-Carlo simulated fiber image with Nf = 300 highly aligned fibers (k = 10).
(b) Power spectrum of (a) with circles whose radii correspond to the cut-off frequencies
wl = 8 and wh = 128, shown in red. (c) Band-pass filtered power spectrum of (a) using
wl = 8 and wh = 128 (equation (3.25)). (d) Inverse 2D-DFT of the band-pass filtered
Fourier transform of I(x, y).

Furthermore, the signal of the power spectrum might exhibit a high anisotropy, like

exemplary shown in figure 3.6 (a). In this case, isotropic band-pass filtering negates

the anisotropic nature of the signal. This is shown in figure 3.6 (b) and figure 3.6 (c).

The inverse 2D-DFT of the band-pass filtered fourier transform, shown in figure 3.6

(d) indicates a loss of sharpness and image contrast.

3.4.2 Adaptive Filtering

To account equally for isotropic and anisotropic fiber distributions, an adaptive filter

is derived. The pixel intensity of each image originating from optical imaging is pro-
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portional to the number of counted photons (see section 2.2.2). Assuming Poissonian

light, the probability of detecting nph photons in each pixel over a fixed time interval

is described by the Poisson distribution:

P (n) =
e−〈n〉 〈n〉n

n!
, (3.27)

where 〈n〉 denotes the average number of counted photons in a single pixel. The

uncertainty of photon counting is defined by the variance of equation (3.27) and follows

as σph =
√
〈n〉. Thus, the pixel-wise uncertainty of an image with intensity I(x, y) can

be assumed as ∆I(x, y) =
√
I(x, y). Note that the Poisson distribution transforms

into a Gaussian for a large number of counted photons. ∆I(x, y) is propagated to the

frequency domain to obtain the uncertainty of the power spectrum ∆P(u, v).

3.4.2.1 Uncertainty propagation

The Taylor series expansion of a function f(a, b) depending on two variables a and b

in the first order is given by:

f(a, b) ≈ f0 +
∂f

∂a
a+

∂f

∂b
b. (3.28)

The uncertainty follows directly:

∆f(a, b)2 ≈
∣∣∣∣
∂f

∂a

∣∣∣∣
2

∆a2 +

∣∣∣∣
∂f

∂b

∣∣∣∣
2

∆b2 + 2
∂f

∂a

∂f

∂b
∆ab, (3.29)

where ∆a and ∆b are the uncertainties of a and b, respectively. ∆a,b denotes the

covariance between a and b. Applying 3.29 to equation (3.13), the uncertainty of the

power spectrum ∆P (u, v) follows as:

∆P ≈ 2

√(
Re[Î]∆ Re[Î]

)2
+
(

Im[Î]∆ Im[Î]
)2

+ 2 Re[Î] Im[Î]∆Î2
Re Im. (3.30)

Similarly, the uncertainties of the real and imaginary parts, ∆ Re[Î] and ∆ Im[Î], re-

spectively, are calculated:

∆ Re[Î(u, v)] =

√√√√
Y−1∑

y=0

X−1∑

x=0

∆I2(x, y) cos2
(

2π
( x
X
u+

y

Y
v
))
, (3.31)

∆ Im[Î(u, v)] =

√√√√
Y−1∑

y=0

X−1∑

x=0

∆I2(x, y) sin2
(

2π
( x
X
u+

y

Y
v
))
. (3.32)

Since ∆ Re[Î] and ∆ Im[Î] both depend on ∆I(x, y), the covariance ∆ÎRe Im needs to

be considered [82, 83]:

∆ÎRe Im(u, v) =

√√√√
Y−1∑

y=0

X−1∑

x=0

∆I2(x, y) sin
(

2π
( x
X
u+

y

Y
v
))

cos
(

2π
( x
X
u+

y

Y
v
))
.

(3.33)
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Note that the uncertainty propagation equations (3.31)-(3.33) represent transforma-

tions that differ from the 2D-DFT (equation (3.7)). An efficient implementation of

each transformation is presented in the appendix B.

Equation (3.30) directly leads to the formulation of a criterion for the maximum relative

error of the power spectrum ∆P(u,v)
P(u,v) to define an adaptive filter mask mδcut :

mδcut(u, v) =





1 if ∆P(u,v)
P(u,v) ≤ δcut,

0 else.
, (3.34)

where δcut defines the maximum relative error. Note that a similar criterion could have

been formulated by using a relative error constraint on another quantity, e.g. ∆ Re[Î].

∆P is chosen since it contains the information of the real and imaginary part of Î(u, v).

In a recent publication a scaling factor was introduced to increase the accuracy of de-

termining the angular orientation distribution [68]. This factor empowers the entire

angular orientation distribution. Here, a factor α is introduced, which takes advantage

of the anisotropic nature of the adaptive filter (equation (3.34)). The angular orienta-

tion distribution including the adaptive filter mδcut of equation (3.34) and the factor α

then reads as:

I(θ) =
n(θ)α

NI

∑

u,v

P(u, v) · wint(u, v, θ) ·mδcut(u, v) with tan−1
(v
u

)
∈ [θ − δθ, θ + δθ)

(3.35)

and n(θ) =
∑

u,v

wint(u, v, θ) ·mδcut(u, v), (3.36)

where NI represents a normalization factor such that I(θ) is normalized over the in-

terval [0◦, 180◦]:
∑180◦

θ′=0◦ I(θ′) = 1. The term
∑

u,v wint(u, v, θ) · mδcut(u, v) can be

understood as the weighted number of pixels within the angular interval [θ−δθ, θ+δθ)

of the filtered power spectrum. The empowerment by α therefore amplifies a potential

signal anisotropy. The uncertainty of the angular orientation directly follows from the

propagation of equation (3.35):

∆I(θ) =

√√√√n(θ)2α

N2
I

∑

u,v

(∆P(u, v) · wint(u, v, θ) ·mδcut(u, v))2 +

(
∆NI

I(θ)

NI

)2

(3.37)

with tan−1
(v
u

)
∈ [θ − δθ, θ + δθ). (3.38)

From now, adaptive filtering in combination with the amplification by the factor α is

referred to as the AF method (equation (3.35) and (3.37)). Prior to estimate the optimal

parameter set (δcut, α), the validity of the error propagation, equation (3.30)-(3.33), is

verified by a Monte-Carlo based noise simulation.
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3.4.2.2 Noise Simulation

Figure 3.7: Principle of the Monte-Carlo noise simulation. (a) Image un-
certainty ∆I(x, y) =

√
I(x, y). (b) Exemplary sampling of uncertainties for the pixel

located at (0, 1). (c) Exemplary sampling of uncertainties for the pixel located at (0, 0).
This figure was adapted from [54].

The number of photons n is assumed to be large, that the fluctuation of the number

of counted photons around its mean value is Gaussian distributed with a standard

deviation of ∆I(x, y). Figure 3.7 (a) illustrates the pixel-wise image uncertainty. In

the noise simulation, a perturbed image I ′(x, y) = I(x, y) + δI(x, y) is computed from

sampling random image noise within each pixel according to its uncertainty. Figure 3.7

(b) and (c) illustrate exemplary Gaussian-shaped distributions of sampled noise values.

The investigated transformation, i.e. P (u, v) = |F [I(x, y)]|2, is then applied to the

image with added random noise, denoted as C[I ′(x, y)]. The transformed, simulated

uncertainty, ∆CMC, follows from the standard deviation of NMC iterations of noise
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sampling:

∆CMC =

√√√√ 1

NMC

NMC−1∑

k=0

(
C[I(x, y)]− C[I ′k(x, y)]

)2
(3.39)

=

√√√√ 1

NMC

NMC−1∑

k=0

(C[I(x, y)]− C[I(x, y) + δIk(x, y)])2. (3.40)

A rejection sampling algorithm is used for the generation of the pixel-wise image noise.

To save computational effort, the interval, where random numbers are sampled from,

is constrained to 5σ = 5∆I. To quantify the averaged error between numerical and

theoretical uncertainty, the relative error ∆MC is evaluated:

∆MC =
1

XY



Y−1∑

y=0

X−1∑

x=0

|∆C(x, y)−∆CMC(x, y)|
∆CMC(x, y)


 . (3.41)

Note that the relative error is averaged over the domain of the transformed image, which

could be either the spatial or the frequency domain. The Monte-Carlo noise simulation

is applied to the periodic decomposition (equation (3.22)) and to the power spectrum

(equation (3.13)). Since the periodic decomposition only has minor effects on the image

(figure 3.5), its numerical uncertainty is compared to the original image error ∆I(x, y).

A high number of iterations NMC is crucial to minimize effects that are induced by

random sampling. In order to investigate the influence of the number of iterations

NMC on the sampling error, a simple noise simulation using the identity transformation

C[I(x, y)] = I(x, y) with a variable number of iterations is performed. For each number

of iterations, the mean relative error (equation (3.40)) with ∆C = ∆I(x, y) =
√
I(x, y)

is calculated. The result is shown in figure 3.8 for the test image Boat. Note that the

image is scaled to 16 bit to ensure high pixel intensities to represent sufficiently high

photon counts. The theoretical image uncertainty of the test image is shown in figure

3.8 (a). At a low number of iterations, the sampled image noise fluctuates strongly, as

shown in figure 3.8 (b) for N = 6. As visualized in figure 3.8 (c) and (d), fluctuations

reduce with an increasing number of iterations. This is also reflected by a reduction

of the mean relative error, ∆MC, as a function of the number of iterations, plotted in

figure 3.8 (d). At NMC = 104, the mean relative error amounts to (0.6±0.4) %, which is

considered as sufficiently low. Hence, NMC = 104 is chosen as the number of iterations

for the noise simulation of the periodic decomposition and the power spectrum.

The results of both simulations, using the test images Goldhill, Barbara, Cameraman,

and Boat, are summarized in table 3.1. All test images were obtained from [77]. As

expected, the periodic decomposition has minor effects on the image error expressed

by a maximum mean relative error of (1.0± 3.0) %. These errors are related to effects

of the periodic decomposition on the image boundary. This is confirmed by a decrease

of the mean relative error to a maximum of (0.7± 0.7) %, if the boundary is excluded

from statistical analysis. Hence, it is reasonable to assume an image uncertainty of
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Figure 3.8: Effect of the number of iterations on the Monte-Carlo sampling
error. (a) theoretical image uncertainty ∆I(x, y) =

√
I(x, y) of the test image Boat.

(b) Numerical uncertainty ∆CMC for N = 6 iterations. (c) Numerical uncertainty
∆CMC forN = 102 iterations. (d) Numerical uncertainty ∆CMC forN = 104 iterations.
(e) Relative error between the theoretical and the numerical uncertainty ∆MC (equation
(3.41)). Both axis are in logarithmic scale.

∆I(x, y) for the periodic component per(x, y).

The noise simulation reveals a non-vanishing relative error between the theoretical

and numerical uncertainty of the power spectrum with a maximum of (5.4 ± 12.9) %.

However, the relative uncertainty of the unfiltered power spectra exhibits enormous

values, as shown in figure 3.9 (a) for the test image Boat. Filtering its power spectrum,

which is shown for different values of δcut in figure 3.9 (b)-(e), effectively removes noisy

pixels. At the same time, the anisotropy of the signal is maintained. The corresponding

inverse Fourier transforms in figure 3.9 (f)-(i) keep the main features of the original

image, although the majority of pixels in the frequency domain are removed due to

δcut. Adaptive filtering dramatically reduces the relative error between theoretical
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and numerical uncertainty to (0.6 ± 0.4) % at δcut = 0.1 for all test images (see table

3.1). This error is similar to the Monte-Carlo sampling error for the number of chosen

iterations (figure 3.8). As a consequence, the theoretical uncertainty of the power

spectrum (equation (3.30)) represents an accurate estimation.

Table 3.1: Result of the Monte-Carlo noise simulation of different test im-
ages. Ωbnd defines the image boundary Ωbnd = {0, X − 1} × {0, Y − 1}. ∆Pδcut(u, v)
denotes the filtered power spectrum (equation (3.34)).

Goldhill Barbara Cameraman Boat

∆MC[%] for ∆per(x, y)∀ (x, y) ∈ Ω 0.8± 2.1 0.8± 2.1 1.0± 3.0 0.8± 2.2

∆MC[%] for ∆per(x, y)∀ (x, y) ∈ Ω\Ωbnd 0.6± 0.5 0.6± 0.6 0.7± 0.7 0.6± 0.8

∆MC[%] for ∆P(u, v) 3.2± 7.2 5.4± 12.9 1.6± 4.3 4.2± 8.8

∆MC[%] for ∆Pδcut=0.1(u, v) 0.6± 0.4 0.6± 0.4 0.6± 0.4 0.6± 0.4
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Figure 3.9: Relative uncertainty of the power spectrum and the effect of
adaptive filtering. (a) Relative uncertainty of the unfiltered power spectrum of the
test image Boat in false colors. (b) Unfiltered power spectrum of the test image Boat,
which is similar to a filtered power spectrum with δcut = ∞. (c)-(e) Filtered power
spectra Pδcut for different values of δcut = {50 %, 10 %, 1 %}. (f)-(i) Corresponding
inverse Fourier transforms of the filtered 2D-DFT F [Îδcut(u, v)]. (j) Error of the noise
simulation, ∆MC, and the percentage of remaining pixel after filtering as a function of
δcut. Note that a similar figure was created in [54], but with the 8 bit version of the
test image.
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3.5 Quantification of the Angular Orientation

Distribution

The angular orientation distribution I(θ) is now used to quantify parameters of the

fiber network. The common approach studied in literature uses the semi-circular von-

Mises distribution (equation (3.1)) to quantify the angular orientation distribution by

means of the mean orientation θ̄ and the dispersion parameter k [16, 20, 21, 68, 74, 84–

86]. This approach is exemplary shown for a Monte-Carlo image (figure 3.10 (a)) in

figure 3.10 (b). Since the method, however, exhibits large errors in the limit of a highly

dispersed fiber network [21], a sigmoidal approach based on the cumulative orientation

distribution C(θ) is introduced here.

The cumulative orientation distribution (COD) follows directly from I(θ):

C(θ) =
θ∑

θ′=0◦

I(θ′) with θ ∈ [0◦, 180◦]. (3.42)

Propagating equation (3.42) gives its uncertainty:

∆C(θ) =

√√√√
θ∑

θ′=0◦

∆I(θ′)2 with θ ∈ [0◦, 180◦]. (3.43)

Since the choice of the starting angle of the summation in equation is arbitrarily chosen

to be at θ′ = 0◦, the uncertainty ∆C(θ) must be independent from θ. Thus, the

maximum of equation (3.43) is considered as uncertainty ∆C:

∆C := max



√√√√

θ∑

θ′=0◦

∆I(θ′)2


 with θ ∈ [0◦, 180◦]. (3.44)

A peak in the angular orientation distribution is represented by a step in the COD.

Thus, a sigmoid function is used to model the COD to obtain the mean orientation θ̄

and the dispersion parameter b:

S(θ; b, θ̄) =
1

1 + e−b·(θ−θ̄)
. (3.45)

The dispersion parameter b indicates the steepness of the step, which is measure for the

anisotropy of the fiber network. The angular orientation is semi-circular, i.e. I(θ) =

I(θ + 180◦) = I(θ − 180◦), which is fulfilled by the von-Mises function (Pvm(θ) =

Pvm(θ + 180◦) = Pvm(θ − 180◦)). A similar condition for the cumulative orientation

distribution reads as:

C(θ) = C(θ + 180◦)− 1 = C(θ − 180◦) + 1 with C(0◦) = 0 and C(180◦) = 1.

(3.46)
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To meet the conditions of 3.46, the sigmoid function is defined as:

∀ θ ∈ [0◦, 180◦] : (3.47)

Scirc(θ) = A [S(θ) + S(θ + 180◦)− S(180◦) + S(θ − 180◦)− S(−180◦) +B] , (3.48)

where the quantities A and B are chosen such that Scirc(0
◦) = 0 and Scirc(180◦) = 1:

0
!

= Scirc(0
◦) = A [S(0◦) +B]⇒ B = −S(0◦) with A 6= 0 (3.49)

and: (3.50)

1
!

= Scirc(180◦) = A [S(360◦)− S(−180◦)]⇒ A =
1

S(360◦)− S(−180◦)
. (3.51)

The sigmoid function of equation (3.48) is exemplary shown in figure 3.10 (c).

Figure 3.10: Von-Mises approach vs. sigmoidal approach. (a) Monte-Carlo
simulated greyscale image with 1000 fibers, a mean orientation of θ̄ = 20◦ and a disper-
sion of k = 1 (b = 0.047). (b) Von-Mises approach: Angular orientation distribution
with the von-Mises fit with parameter θ̄ = (20.0±1.2)◦ and k = 1.3±0.1 shown in red.
The reference von-Mises function, from which fiber angles of (a) are sampled, is plotted
in grey. (c) Sigmoidal approach: Cumulative orientation distribution with sigmoid fit
with parameter θ̄ = (20.1±0.3)◦ and b = 0.054±0.000. Note that the reference sigmoid
function overlaps perfectly with the fitted sigmoid and is therefore not visible.

In order to correlate the dispersion parameter of the von-Mises approach to the disper-

sion parameter of the sigmoidal approach, a numerical transfer function is calculated.
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This is done by sampling values from a von-Mises function with predefined dispersion

k to obtain an angular orientation distribution. The respective COD (equation (3.42))

is then modeled using the sigmoid function of equation (3.48) to obtain the dispersion

parameter b. A total of ten values of the dispersion b are averaged for each value of k.

In total 2 ·104 different values of k are processed. The resulting dataset b(k) is modeled

using the following function:

b(k) =




c1 · kc2 + c3 if k < 2,

c4 · kc5 + c6 if k ≥ 2.
(3.52)

A least square fit yields the coefficients {c1, . . . , c6}:

b(k) =





(0.031± 0) · k0.837±0.006 + (0.016± 0) if k < 2,

(0.068± 0) · k0.477±0.001 − (0.019± 0.001) if k ≥ 2.
(3.53)

Data points, as well as the fitted function of equation (3.52) are shown in figure 3.11.

Figure 3.11: Numerical transfer function b(k). (a) Transfer function and data
points for k < 2. (b) Transfer function and data points for k ≥ 2

3.6 Monte-Carlo Simulations

Monte-Carlo simulated greyscale images (section 3.1) are used to, first, find optimal

values of the evaluation parameter (δcut, α) of the AF method and, second, to compare

the AF method in combination with the sigmoid approach against the state-of-the-art

band-pass filtering method of Morrill et al.[21]. This method was proven to be more

accurate than other methods and was successfully applied to experimental data [86].

3.6.1 Parameter optimization of the AF method

The AF method is parametrized by δcut and α, which define the strength of the filter

as well as the weighting of the anisotropy of the signal. The optimization approach of
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Figure 3.12: Approach to optimize the evaluation parameters of the AF
method. (a) Input parameters defining the distribution of fiber angles. (b) Histogram
of fiber angles that are sampled from a von-Mises described by the input parameters
k and θ̄. The histogram serves as ground truth for optimizing δcut and α. A total
of Nf = 1000 fiber angles are sampled in this example. (c) Monte-Carlo test image
defined by input parameters of (a). (d) Filtered power spectrum (equation (3.34)) using
a specific value for δcut. (e) Angular orientation distribution of (d) using equation (3.35)
for a specific value of α. δcut and α are optimized until the squared difference between
the histogram of sampled angles and the angular orientation distribution calculated by
the AF method (equation (3.54)) reaches a minimum.

δcut and α is shown in figure 3.12. The input parameter set (figure 3.12 (a)) defines

the distribution of fiber angles as well as their width and length. The distribution of

sampled fiber angles (figure 3.12 (b)) serves as reference angular orientation distribution

Iref(θ). The fiber image in figure 3.12 (c) is generated from the input parameter set and

evaluated using the AF method for specific values of δcut and α to obtain the angular

orientation distribution I(θ) (figure 3.12 (d) and (e)). Evaluation parameter δcut and

α are modified until the squared difference between the reference and the calculated

angular orientation distribution reaches a minimum:

SD =
∑

θ

(Iref(θ)− I(θ)) . (3.54)

This two-parameter optimization is realized by using the Nelder-Meat simplex method,

which is implemented in MATLAB (fminsearch) [87]. A difference smaller than 10−3

between the values of δcut and α of consecutive iterations is employed as termination

criterion. Since MATLAB uses the same termination criterion for both parameters,
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α is scaled by a factor of 0.1 to match the magnitude of δcut. This optimization is

repeated for a total of N = 104 Monte-Carlo simulated greyscale images. The input

parameters of the Monte-Carlo simulation are randomly chosen to account for different

fiber angle distributions and fiber geometries. They are summarized in table 3.2.

Table 3.2: Input parameter ranges of the Monte-Carlo simulation of greyscale fiber
images that are used to find optimal parameters of the AF method.

input parameter values

dispersion k [0.01, 20]

mean orientation θ̄ [0◦, 180◦]

fiber width [1, 10]

fiber length [150, 450]

noise factor [0, 1]

3.6.2 Comparison to the Band-pass Method

Table 3.3: Input parameters of the Monte-Carlo simulation for the comparison of the
AF method with the band-pass method.

input parameter values

dispersion k {0.01, 0.025, . . . 5}
mean orientation θ̄ [0◦, 180◦]

fiber width [pixels] {1, 5, 10}
aspect ratio {15, 30, 45}
noise factor {0, 0.5, 1}

The approach to compare the AF method to the band-pass method is illustrated in

figure 3.13. Based on the input parameter of the Monte-Carlo simulation (figure 3.13

(a)), fiber angles are sampled (figure 3.13 (b)) to determine reference parameter bref ,

kref and θ̄ (figure 3.13 (c) and (d)). This approach automatically accounts for sam-

pling errors, which are particularly large for a small number of sampled values (figure

3.8). Simultaneously, sampled fiber angles are used to simulate an artificial fiber image

(figure 3.13 (e)). This image is evaluated using the band-pass method (figure 3.13 (f)

and (g)) as well as the AF method (figure 3.13 (h) and (i)). The band-pass method

is applied using the software FiberFit provided by Morrill et al. [21]. Following [21],

wl = 8 pixels and wh = 128 pixels are chosen as low and high cut-off radius. Parameters

of the AF method, δcut and α, are chosen according to the optimization of the previous

section. Calculated parameters of both methods are then compared to the correspond-

ing reference parameters. To analyze the effects of fiber properties such as fiber width,

length and angle distribution on the accuracy of both methods, Monte-Carlo images

with diverse input parameter are created in a controlled fashion. The input parame-
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ters are shown in table 3.3. The result of 20 Monte-Carlo images is averaged for every

parameter combination, such that a total of NMC = 11340 images are generated.

Figure 3.13: Approach to compare the AF method with the band-pass
method. (a) Input parameters defining the distribution of fiber angles (b) as well
as the fiber geometry of the simulated greyscale image in (e). Here, the following
parameter are used: k = 1, θ̄ = 20◦, fiber width = 5 pixels, fiber length = 100 pixels.
(b) Histogram of fiber angles that are sampled from a von-Mises described by the input
parameter k and θ̄. A total of Nf = 1000 fiber angles are sampled in this example. (c)
Generation of reference parameters (k, θ̄) by fitting the distribution of sampled angles
using a von-Mises function. (d) Generation of reference parameters (b, θ̄) by fitting
the cumulative distribution of sampled angles using the sigmoid function, defined in
equation (3.48). (e) Monte-Carlo simulated greyscale images with parameters defined
in (a). (f) Von-Mises fit of the angular orientation distribution of the band-pass method.
(g) Band-pass filtered power spectrum of (e). Resulting parameter of the band-pass
method are compared to the reference parameters. (h) Sigmoid fit of the cumulative
angular orientation distribution of the AF method. (i) Power spectrum after application
of the adaptive filter. Resulting parameter of the AF method are compared to the
reference parameters.
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3.7 Application to Experimental Data

To demonstrate the applicability of the AF method to experimental data, in-vivo SHG

images showing dermal collagen are evaluated [41]. The images were recorded at the

multiphoton microscope DermaInspect (section 2.2.3) with a scan time of 13 s and

image dimensions of 512×512 pixels. A total of ten images from ten different volunteers

are used. Images were recorded at a depth of 30µm underneath the basal membrane

located at the cheek.

To measure the accuracy of the AF method in this setting, ground truth parameters

(bref , θ̄ref) need to be determined. This is realized by means of a graphical user interface

(GUI), written in MATLAB, to manually trace the fibers with line segments within

each image. The GUI is shown in the appendix C.2. The reference angular orientation

distribution is calculated from the sum of the length of all line segments that are

oriented along a direction θ ∈ [θ − δθ, θ + δθ):

Iman(θ) =
1

∑Nl
i=1

∑180◦

θ′=0◦ li(θ
′)

(
Nl∑

i=1

θ+δθ∑

θ′=θ−δθ
li(θ
′)

)
, (3.55)

where li(θ) denotes the orientation distribution of the i-th line segment and Nl the

total number of line segments. Consider a line segment, which has a length of L and

an orientation in the direction of θ∗. l(θ) is then defined as:

l(θ) =




L if θ = θ∗,

0 else.
(3.56)

To increase the number of line segments, the images are each evaluated five times in

random order. A smooth orientation distribution is achieved by filtering Iman(θ) using

a Gaussian kernel with a standard deviation of 1◦. Reference parameter θ̄ref and bref

are obtained by fitting the corresponding cumulative orientation distribution Cman(θ)

using the sigmoid function of equation (3.48).

3.8 Results

The results of the Monte-Carlo simulations and the application to in-vivo data are

presented and discussed in a paper published in PLOS ONE [54]. The publication is

shown in 3.10. However, a brief summary of the main findings is given here.

Parameter optimization of the AF method. Optimal parameters of the AF

method are successfully identified as δcut = 2.1 % and α. Thereby, termination of the

optimization is achieved in 99.8 % of the processed images. Explicitly evaluating the

deviation to the reference distribution (equation (3.54)) on a defined grid of values

(δcut, α), verifies that the global optimum of evaluation parameters is found.
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Calculations also revealed that the optimum of both parameters is stable against vari-

ations of noise, fiber geometry (width, length) and angular orientation in terms of k

and θ̄.

Comparison to the Band-Pass Method. Overall, both methods are found to

accurately measure the mean orientation θ̄ with a mean error of (2.2±1.8)◦ and (1.8±
1.4)◦ for the band-pass and the AF method, respectively. The accuracy of measuring

θ̄ is found to neither depend on the characteristics of the fiber network nor on the

image quality. In contrast, the error of the calculated dispersion of the fiber network

is significantly reduced with the AF method. While the mean relative error of the

dispersion parameters using the band-pass method is (33.9 ± 26.5) %, it is reduced to

(13.2± 12.7) % using the AF method. Increasing the alignment of the fiber network is

found to increase the dispersion error of the band-pass method, while the dispersion

error of the AF method even decreases to ∼5 %. Moreover, both dispersion errors are

significantly dependent on the fiber geometry. The band-pass method is not capable of

capturing the dispersion of very thin fibers (fiber width = 1 pixel) as errors of >50 % are

measured. In turn, the AF method only fails in case of thin and short fibers. The image

quality, which is controlled by means of a noise factor, increases the dispersion error of

both methods predominantly in aligned fiber networks. However, the quantification of

the dispersion of fiber networks with large fibers (width = 10 pixels, length = 450 pixels)

is not effected by image noise using either method.

Application to Experimental Data. The AF method is applied to ten images of

dermal collagen. The error of the mean orientation θ̄ with respect to the manual tracing

of fibers amounts to (6.0 ± 4.0)◦, whereas the mean relative error of the dispersion

parameter is (9.3± 12.2) %.

3.9 Discussion

In this chapter, the AF method was introduced as a Fourier-based method to measure

the angular orientation distribution of fibers in scientific images. A major advantage of

the AF method over other methods, that measure the angular orientation distribution

is the consideration of measurement uncertainties [20, 21, 31, 40, 70–73, 79, 81].

Best results are achieved if the parameter of the adaptive filter is chosen as δcut = 2.1 %.

This indicates that neither a large number of erroneous data points nor a small number

of accurate data points provide a good estimate of the angular orientation distribution.

In contrast to Polzer et al. [68], which used a similar amplification factor, α of the

AF method is found to be independent from the characteristics of the fiber network.

The generalized character of the AF method by using a relative error constraint al-

lows a reliable application to isotropic and anisotropic fiber networks. In contrast, the

band-pass method uses an isotropic filter neglecting the anisotropic characteristic of
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the signal, particularly pronounced in aligned fiber networks. As a consequence, the

error of the dispersion k of the fiber network using the band-pass method of [21] in-

creases constantly towards a high fiber alignment. In addition, cut-off frequencies of

the band-pass method depend on the fiber geometry, which is generally not constant

within a fiber image.

Remarkably, a significantly lower performance of the band-pass method compared to

the original study of Morrill et al. [21] is observed. This is mainly related to the fact,

that binary Monte-Carlo images were used to benchmark their method. Superimposing

fibers to generate greyscale images might lead to a mismatch between the distribution

of sampled fiber angles and the corresponding intensities in the power spectrum, which

would decrease the performance of both methods.

A good agreement of the AF method with a manual evaluation was found for dermal

collagen fibers in SHG images. The AF method is found to be capable of processing

raw data. Existing Fourier based methods rely on contrast enhancement or even on

binarizing the images [21, 86].

It has to be emphasized, that quantifying the angular orientation distribution or its

cumulative distribution with either a von-Mises function or a sigmoid function, respec-

tively, is reasonable when only a single main orientation is present in the image. In

case of multiple main orientations, or a mixture of isotropic and anisotropic contribu-

tions, both approaches are not suitable. In these cases, multiple von-Mises functions,

or sigmoid functions need to be considered.
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1,2, Sören Jaspers2, Horst Wenck2, Michael Rübhausen1,
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Abstract

Quantification of the angular orientation distribution of fibrous tissue structures in scientific

images benefits from the Fourier image analysis to obtain quantitative information. Mea-

surement uncertainties represent a major challenge and need to be considered by propagat-

ing them in order to determine an adaptive anisotropic Fourier filter. Our adaptive filter

method (AF) is based on the maximum relative uncertainty δcut of the power spectrum as

well as a weighted radial sum with weighting factor α. We use a Monte-Carlo simulation to

obtain realistic greyscale images that include defined variations in fiber thickness, length,

and angular dispersion as well as variations in noise. From this simulation the best agree-

ment between predefined and derived angular orientation distribution is found for evaluation

parameters δcut = 2.1% and α = 1.5. The resulting cumulative orientation distribution was

modeled by a sigmoid function to obtain the mean angle and the fiber dispersion. A compari-

son to a state-of-the-art band-pass method revealed that the AF method is more suitable for

the application on greyscale fiber images, since the error of the fiber dispersion significantly

decreased from (33.9 ± 26.5)% to (13.2 ± 12.7)%. Both methods were found to accurately

quantify the mean fiber orientation with an error of (1.9 ± 1.5)˚ and (2.3 ± 2.1)˚ in case of the

AF and the band-pass method, respectively. We demonstrate that the AF method is able to

accurately quantify the fiber orientation distribution in in vivo second-harmonic generation

images of dermal collagen with a mean fiber orientation error of (6.0 ± 4.0)˚ and a dispersion

error of (9.3 ± 12.1)%.

Introduction

The evaluation of the angular distribution of structures in scientific greyscale images is of

major importance for various applications like in the analysis of soft tissue fibers e.g. in [1–15],

textiles [16, 17], electrospun scaffolds [18–20] or even reinforced concrete [21]. Knowing the

angular distribution in fiber reinforced materials gives meaningful insights into their mechani-

cal functionality [22]. For example, in case of biological tissue, the orientation distribution of

collagen fibers can be directly inserted into biomechanical material models for finite element

simulations [23, 24].
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Fiber images from different image modalities such as scanning electron microscopy [25],

histology [1], and laser scanning microscopy as e.g. in [2, 3, 7, 8, 10, 15, 22, 26–29] provide

diverse image properties in terms of sharpness, contrast and fiber appearance. Thus, a variety

of automated image processing techniques were developed including ellipsoidal fitting in the

spatial domain [30], fiber tracking [31], the structure tensor method [10] and Fourier domain

image processing [7, 9, 12, 32–34].

Looking into the Fourier method in more detail, it can be split into four major steps: image

preprocessing, Fourier transform and filtering, calculation of the angular distribution and its

quantification.

In the Fourier domain it is of key importance to reduce noise as it was shown that rotation-

ally symmetric band-pass filtering significantly improve the accuracy of the method [6, 33, 34].

In mechanical experiments, (e.g. stretching of fiber reinforced material), fiber properties such

as angular distribution and diameter get modified [2, 35]. Accordingly, isotropic as well as

anisotropic signal responses in the Fourier domain has to be accounted for, which requires an

adaptive anisotropic filtering. Quantification of the angular orientation distribution in terms

of mean angle and fiber dispersion is commonly realized by fitting a semi-circular von-Mises

distribution to the angular orientation distribution [6, 10, 12, 22, 30, 34, 36, 37].

Here, we investigate the Fourier method by exploiting objective approaches at any of the four

mentioned steps. To approach the requirement of adaptive anisotropic filtering we introduce an

image filter, which is based on the propagation of measurement uncertainties through the dis-

crete Fourier transform. And finally, in terms of an improved quantification of the angular orien-

tation distribution, we test a sigmoid function to model the cumulative orientation distribution.

To capture the performance of our method, we quantitatively compare it to a band-pass

method, introduced by Morrill et. al [34], which was proven to provide an accurate quantifica-

tion of the angular orientation distribution. Based on realistic Monte-Carlo simulated grey-

scale fiber images we observe the evolution of accuracy with respect to fiber width, fiber aspect

ratio, degree of alignment and image quality.

To validate the applicability of our method on real images, we quantify the mean fiber ori-

entations and dispersions in vivo second-harmonic generation (SHG) images of collagen fibers

of human skin [38].

Material and methods

Any calculations were performed using MATLAB [39]. The Image Processing Toolbox [40] as

well as the Curve Fitting Toolbox [41] were applied.

Note that in the following the term uncertainty is used for statistical measurement errors,

whereas the term error is associated with the deviation of a value to its reference.

Fourier transform and uncertainty propagation

Let I(x, y) be an image with x 2 [0, X] and y 2 [0, Y]. The discrete Fourier transform Iðx; yÞ !
F ½Iðx; yÞ� ¼ Îðu; vÞ is given by:

Îðu; vÞ ¼
XY � 1

y¼0

XX� 1

x¼0

Iðx; yÞ � e� 2pi x
Xuþ

y
Yvð Þ ; ð1Þ

where the real and imaginary parts read as

<½Îðu; vÞ� ¼
XY� 1

y¼0

XX� 1

x¼0

Iðx; yÞ cos 2pi
x
X
uþ

y
Y
v

� �� �

ð2Þ
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I½Îðu; vÞ� ¼ �
XY� 1

y¼0

XX� 1

x¼0

Iðx; yÞ sin 2pi
x
X
uþ

y
Y
v

� �� �

ð3Þ

The intensities of the angular distribution are calculated by evaluating the centered power

spectrum of I(x, y), which is defined as the squared magnitude of Î :

Pðu; vÞ ¼ jF ½Iðx; yÞ�j2 ¼ <½Î �2 þ I½Î �2 ð4Þ

Any intensity image exhibits a specific intensity uncertainty ΔI(x, y), which is at least equal

to the photon counting uncertainty DIðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðx; yÞ

p
assuming Poissonian statistics [42].

The uncertainty of the real and imaginary part, Δ< and ΔI are given by propagating Eqs 2

and 3:

D<½Îðu; vÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XY� 1

y¼0

XX� 1

x¼0

DI2ðx; yÞ cos 2 2pi
x
X
uþ

y
Y
v

� �� �
v
u
u
t ð5Þ

DI½Îðu; vÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XY� 1

y¼0

XX� 1

x¼0

DI2ðx; yÞ sin 2 2pi
x
X
uþ

y
Y
v

� �� �
v
u
u
t ð6Þ

Since D<½Î � and DI½Î � both depend on the image uncertainty ΔI, the covariance DÎ<I has

to be taken into account [43, 44]:

DÎ<Iðu; vÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XY� 1

y¼0

XX� 1

x¼0

DI2ðx; yÞ sin 2pi
x
X
uþ

y
Y
v

� �� �
cos 2pi

x
X
uþ

y
Y
v

� �� �
v
u
u
t ð7Þ

The calculation of DPðu; vÞ is straight forward:

DP ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð<½Î � � D<½Î �Þ2 þ ðI½Î � � DI½Î �Þ2 þ 2 � <½Î �I½Î � � DÎ 2
<I

q
ð8Þ

Noise simulation

To verify the validity of our image transformations and uncertainty calculations, a Monte-

Carlo based noise simulation with different test images was carried out.

The uncertainty of each pixel, DIðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðx; yÞ

p
, is assumed as a normal-distributed

fluctuation of a repeated measurement Ik(x, y) around the measured intensity Iðx; yÞ ¼
1

N

PN
k¼0
Ikðx; yÞ ¼ 1

N

PN
k¼0

Iðx; yÞ þ dIkðx; yÞð Þ with 1

N

PN
k¼0
dIkðx; yÞ ¼ 0. N is the number of

measurements (Fig 1).

The propagation of the image uncertainty ΔI(x, y) through an arbitrary image operation

I(x, y)! C(I(x, y)), ΔI(x, y)! ΔC(I(x, y)) is compared to the standard deviation of the Monte-

Carlo simulated images ΔCMC:

DCMC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

k¼0

½CðIðx; yÞ þ dIðx; yÞÞ � CðIðx; yÞÞ�2
s

ð9Þ
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The result of Eq 9 is then compared to the calculated uncertainty ΔC by computing the rela-

tive deviation as:

DMC ¼ ðDC � DCMCÞ=DCMC ð10Þ

Preprocessing and filtering

Artifact removal. The computation of the discrete Fourier transform (Eq 1) intrinsically

assumes a periodical continuation of the image causing cross-like artifacts to appear in the

Fourier domain mainly along the major axis (Fig 2). The magnitude of these artifacts depends

on the image intensities near the boundary. Weighting functions in the spatial domain such

as the Hamming or Welch window, which gradually reduce the image intensity towards the

boundary, are able to remove these artifacts [6, 12, 16, 32, 36, 45]. However, applying window

functions is a trade-off between reducing the image content and removing the artifacts in the

Fourier domain. To overcome the drawback of weighting functions in the spatial domain, the

Fig 1. Schematic outline of the pixel-wise noise simulation. (A) The photon counting noise results in the standard

deviation of each image pixel. In the pixel-wise uncertainty simulation, normal distributions are used to sample the

intensity deviation δI(x, y) in each pixel, as exemplary shown in (B) and (C) for pixels (1, 2) and (1, 1), respectively.

Thereby, high intensity pixels are associated with a large absolute deviation of potential intensity values (B).

https://doi.org/10.1371/journal.pone.0227534.g001

Noise reduction and quantification of fiber orientations
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linear decomposition of the image I(x, y)! per[I(x, y)] into a smooth component s(x, y) and a

periodic component p(x, y) = per[I(x, y)] with I(x, y) = p(x, y) + s(x, y) as proposed by Moisan

[45] is used here (Fig 2). Since the periodic component per(I) differs only slightly from I (Fig

2), the effect of the periodic mapping on ΔI is believed to be negligible. Verification of the

effect of the periodic mapping on the image uncertainty is carried out by applying the Monte-

Carlo noise simulation and evaluating Eq 9 to three different test images. Classic image pro-

cessing greyscale test images including the Lena, Cameraman and Boat image were chosen

[46]. The Boat image serves as example in several figures. The image uncertainty ΔI is assumed

as DI ¼
ffiffi
I
p

, which is indeed an arbitrary choice but since the focus here is on validation only

the assumption is reasonable.

The overall mean deviation (Eq 10,N = 105 iterations) averaged over all images and the entire

image range amounts for ΔMC = (0.01 ± 2.21)%. The image uncertainty exceeds the Monte-

Fig 2. Effect of spatial domain image filters on the power spectrum. Images in the spatial domain are shown in

greyscale (A-C), whereas the respective power spectra are shown in false colors as well as in logarithmic scale for a

better visibility (D-H). Power spectrum values are shifted, such that low frequencies are located in the center. (A)

shows the original image boat [46]. (B) shows the periodic component of the periodic plus smooth decomposition of

Moisan et. al [45]. Apart from small areas near the image boundary, the entire image information of the original image

is conserved. However, as shown in (C), the Hamming window reduces the image information gradually towards the

image boundary. (D), the discrete Fourier transform of images causes cross-like artifacts (black arrows) to appear in

the power spectrum as the image is assumed to be periodical. (E-F), these artifacts disappear in the power spectra if

firstly either the periodic decomposition or the Hamming window are applied. Note that the artifacts reappear in (G)

and (H) where the absolute difference of the power spectra of the filtered images with respect to the power spectrum of

the original image are shown. (G) also reveals that mostly non-directional information is removed from the power

spectrum of the original image as only cross-like shapes are pronounced. Other than in (F), where the reduction of

image information by the Hamming window also affects the power spectrum, which appears less sharp (white arrows)

compared to (D) and (E).

https://doi.org/10.1371/journal.pone.0227534.g002
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Carlo calculated uncertainty at the boundary by (23 ± 6)%. Thus, the original image uncertainty

is slightly underestimated due to the uncertainty of the remaining pixels by −(0.23 ± 0.61)%.

This deviation is considered as sufficiently low to reasonably assume Δ(per(I)) = ΔI. Detailed

results for every test image are listed in the supplementary (S1 Table).

Power spectrum filtering. The same set of test images is used for validating the calculated

uncertainty of the real and imaginary parts (Eqs 5 and 6). The averaged relative deviation (Eq

10) amounts for (0.00 ± 0.22)% for the real and imaginary parts of all images.

Lastly, the Monte-Carlo method was applied on Eq 8 for the same images and same number

of iterations. Averaging the relative deviation ΔMC over the entire image yields a maximum

deviation of −(59.32 ± 26.48)% (S2 Table). However, ΔMC correlates well with the relative

uncertainty of the power spectrum DP=P (Fig 3), which ranges from minor values up to rela-

tive uncertainties above 800%. Restricting the area of evaluation to pixels which exhibit a maxi-

mum relative uncertainty of 100% increases the accuracy of the uncertainty calculation to

−(8.09 ± 5.46)% at maximum (S2 Table, Fig 4). Excluding values with a high relative uncer-

tainty naturally filters the power spectrum, while leaving the back-transformed image relatively

unaffected.

In order to find the optimal cut-off value δcut, images with known ground truth have to be

used. Since fibrous images are in the scope of this work, Monte-Carlo generated greyscale fiber

images serve as test images for determining the optimal cut-off value.

Monte-Carlo image generation

Besides the Monte-Carlo simulation for noise simulation, another Monte-Carlo routine

was implemented for the generation of images containing fibers with a known angular

distribution.

Fig 3. Relative uncertainty between calculated and simulated uncertainty of the power spectrum. The relative

deviation between the theoretical uncertainty DP and the Monte-Carlo simulated uncertainty DPMC, DMC ¼

ðDP � DPMCÞ=DPMC of the Boat image (Fig 4). Note that the spectrum values are shifted such that low frequencies are

located in the origin and that the original image was used here.

https://doi.org/10.1371/journal.pone.0227534.g003
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A single fiber is defined by its width, length, orientation and location. While several publi-

cations dealt with the generation of binary fiber images [12, 34] we focus on the generation

of random greyscale intensity images including noise knowing that the contrast of the fibers

influence their contribution within the power spectrum [36]. Since our goal here is to find the

Fig 4. Relative uncertainty and filtering of the power spectrum. The relative uncertainty (A) of the power spectrum

increases with distance from the origin to values above 800%. A filter mask for the power spectrum is achieved from

excluding relative uncertainties above δcut. (B-E) show the filtered power spectra for different δcut with the respective

inverse Fourier transformations in (F-I). The number of remaining pixels after filtering as well as the error of the

uncertainty calculation compared to the Monte-Carlo simulation ΔMC is shown in (J). The mean error, its standard

deviation (grey shaded areas) as well as the number of remaining pixels gradually decrease towards a lower threshold

δcut. Note that even if 99.5% of the pixels are excluded, the contours of the major image components are still visible (E).

https://doi.org/10.1371/journal.pone.0227534.g004
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optimal evaluation parameters for a large variety of realistic images similar to the SHG images

of dermal collagen that are used later on, the usage of binary images is not reasonable. In addi-

tion, our approach aims on evaluating images without any preprocessing, thus the test images

should cover different image qualities.

The orientation of the fibers is sampled from a semi-circular π-periodic von-Mises distribu-

tion:

Pðy; �y; kÞ ¼
1

pI0ðkÞ
ek�cosð2ðy� �yÞÞ

ð11Þ

with the dispersion parameters k and �y defining the width and the center of the distribution.

I0(k) is the modified zero order bessel function I0ðkÞ ¼ 0

p

R p
0
cos ðxÞdx. A rejection sampling

algorithm is used to sample fiber angles. The intensity of each sampled fiber with certain width

and aspect ratio is added to the existing image to obtain a greyscale image. The image is then

smoothed using a gaussian kernel with standard deviation of two to slightly dissolve sharp

edges. After that, intensities are scaled such that the maximum intensity is equal to the maxi-

mum intensity of a 16-bit intensity image. Width, aspect ratio and dispersion k of the fibers

affect the accuracy of the image processing algorithm [34]. The minimum fiber width amounts

for one pixel as the maximum fiber width is confined by the image size and the maximum

allowed aspect ratio. As images at 512 × 512 pixels are generated, a maximum aspect ratio of

45 and a maximum fiber width of 10 are chosen to still allow for an effective placement of the

fibers within the image boundaries. A minimum aspect ratio of 10 was proposed by Marquez

et. al [6] to allow for a reasonable evaluation of orientation. As we are generating greyscale

fiber images with overlapping fibers we choose a minimum aspect ratio of 15. Dispersed as

well as aligned fiber networks are achieved by sampling k within [0.01, 5].

To enforce different image qualities, we introduce a noise factor. The noise factor ranges

from a minimum of 0, which corresponds to a completely denoised image up to a maximum

of 1 which corresponds to random speckle noise which can value up to half of the maximum

intensity of the image.

Angular distribution generation

Quantifying the angular orientation of the fibers by means of mean angle and fiber dispersion

requires the calculation of the total intensity of each angle of the filtered power spectrum.

This is realized by using a radial summation. The total intensity of a certain angle is given

by the sum over all pixels of the power spectrum, that are included within the angular range

[−δθ, +δθ]. The contribution of each pixel is weighted by the percentage of area, which is

included in [−δθ, +δθ].

IðyÞ ¼
X

y2½� dy;dy�

X

r

P0ðy; rÞ � wyðy; rÞ with
1

X � Y

X

y

X

r

wyðy; rÞ ¼ 1 ð12Þ

The uncertainty propagates as:

DIðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

y2½� dy;dy�

X

r

ðP0ðy; rÞ � wyðy; rÞÞ
2

r

ð13Þ

The calculated intensity is normalized such that
P

y
IðyÞ ¼ 1. An issue that is faced here

are high intensity pixels close to the center of the power spectrum, which do not provide any

directional information. The intensity of these pixels is several magnitudes higher than the

intensities of interest, which causes artifacts in the angular distribution. A sensitivity analysis
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of a set of test images showed that zeroing pixel with a distance smaller than 3 pixels from the

center is sufficient to remove these artifacts (S1 Fig).

Additionally, a modified intensity is defined, which exploits the anisotropy of the intro-

duced filter. Let NΔθ be the number of non-zero pixels within the angular range Δθ of the fil-

tered power spectrum P0. The modified intensity then reads as:

IðyÞ ¼ Na
Dy
�
X

y2½� dy;dy�

X

r

P0ðy; rÞ � wyðy; rÞ; ð14Þ

with the uncertainty given by:

DIðyÞ ¼ Na
Dy
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

y2½� dy;dy�

X

r

ðP0ðy; rÞ � wyðy; rÞÞ
2

r
; ð15Þ

where α defines the impact of NΔθ. A value of α = −1 corresponds to an averaged intensity,

whereas α> 0 amplifies the number of remaining pixels within the given angular range. The

ideal choice of α strongly depends on the chosen cut-off value δcut for the power spectrum.

For example in case of a low cut-off value, the filtered power spectrum P0 might exhibit a high

anisotropy, where α> 1 might lead to a more accurate result compared to the unweighted

sum. Considering a very high cut-off value, P0 ¼ P holds and the number of summed pixels

should not have any influence. Thus α = −1 might be the value of choice. A somewhat similar

approach was used by Polzer et. al [36], which used a factor to empower the entire intensity

distribution IðyÞ.
To find the optimal parameter set [θcut, α], a two parameters optimization algorithm is

applied on N = 104 Monte-Carlo generated images. For this purpose we use the MATLAB-

implemented Nelder-Mead simplex method (fminsearch) [47]. To account for different types

of images, fiber properties, namely width, aspect ratio and dispersion as well as the noise factor

are randomly sampled from the respective interval specified before. We use the mean squared

difference (MSD) between the calculated orientation distribution IMCðyÞ and the prescribed

orientation distribution IðyÞ as objective function, which is minimized:

MSD ¼
1

N � 1

XN

i¼0

SDi with SDi ¼
X

y

ðI iðyÞ � I i;MCðyÞÞ
2

ð16Þ

Termination was enforced as soon as the difference between consecutive iterations of both

parameters was smaller than 10−3. MATLAB uses the same termination criterion for both

parameters. Therefore, we scaled α by a factor of 0.1 to match the magnitude of δcut. A subset

of 103 images was evaluated prior optimization on a 10 × 10 grid with α 2 [−1, 8] and with

δcut 2 [1, 100]% to ensure that the calculated minimum is global and to get an estimate for the

starting values of each parameter. We estimated that α = 2 and δcut = 2% provide a suitable set

of starting values.

Angular distribution quantification

Conventional approach. The common approach for quantifying the mean orientation

and dispersion is to fit a semi-circular von-Mises function (Eq 11) to the distribution IðyÞ.
This approach provides accurate results in case of aligned fibers but looses accuracy in case of

isotropic distributions [34]. Additionally, the use of an arbitrary averaging range to smooth

the angular orientation distribution prevents a meaningful and objective interpretation of the

data in terms of e.g. the number of dominant fiber directions.
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New fitting approach. To find an objective evaluation procedure which reliably can deal

with unprocessed data, fitting the cumulative distribution function (CDF) CðyÞ is quite appeal-

ing, since the data are naturally smoothed:

CðyÞ ¼
Xy

y0¼� 90
�

Iðy0Þ ð17Þ

The uncertainty of DC is given by a quadratic summation:

DCðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xy

y0¼� 90
�

ðDIðy0ÞÞ2
v
u
u
t ð18Þ

Since the choice of the starting angle of the summation (Eq 17) is arbitrary, the uncertainty

DC must be independent from θ. Thus, the maximum uncertainty of CðyÞ is set as uncertainty

for all angles. A peak in the angular distribution corresponds to a step in the cumulative distri-

bution, which approaches a first order polynomial for isotropic distributions. To model the

cumulative orientation distribution a sigmoid function is chosen:

Sðy; b; �yÞ ¼
1

1þ e� b�ðy� �yÞ
ð19Þ

The advantage of fitting a von-Mises distribution is its semi-circularity, namely PVM(θ) =

PVM(θ + 180˚). Since the cumulative distribution function is monotonically increasing, the

corresponding condition reads as CðyÞ ¼ Cðy � 180
�

Þ þ 1 ¼ Cðyþ 180
�

Þ � 1. In order to

meet this condition, Eq 19 is modified by adding neighboured sigmoid functions accounting

for the added offsets:

Scircðy; b; �yÞ ¼ Sðy; b; �yÞ þ Sðyþ 180
�

; b; �yÞ � Sð180
�

; b; �yÞ þ Sðy � 180
�

; b; �yÞ � Sð� 180
�

; b; �yÞ ð20Þ

Validation

Comparison to band-pass filtering. In the following we refer to our method as AF

method (adaptive filtering method) for convenience. To capture the performance of the imple-

mented procedure we compare the AF method to the state of the band-pass method, which

has been proven to provide more accurate results than other methods [34]. In order to observe

the influence of fiber and image properties on the accuracy of both methods, we created a data-

set, where each property is altered separately using the introduced Monte-Carlo method for

generating greyscale images. The following sets of values were used for creating the image

dataset:

width ¼ f1; 5; 10g; AR ¼ f15; 30; 45g; noise factor ¼ f0; 0:5; 1g ð21Þ

and k ¼ f0:01; 0:25; :::; 5g ð22Þ

In order to enable a reasonable statistical evaluation, 20 images with random mean fiber

orientation �y are created for each category, which adds up to a total of N = 33 � 21 � 20 = 11,

340 images. Each image is evaluated using the AF method using the optimal evaluation param-

eters δcut = 2.1% and α = 1.5 and using the band-pass method of Morrill et. al by applying their

provided software FiberFit. We follow their recommendations of the upper and lower cutoff

Noise reduction and quantification of fiber orientations
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parameter t = 2 and t = 32 yielding a lower cutoff frequency of 8 and an upper cutoff frequency

of 128. The resulting evaluation parameters, mean orientation �y and dispersion coefficients b
and k are compared to the reference parameters. To account for Monte-Carlo sampling errors,

reference mean orientation and distribution parameter k are obtained from fitting the fre-

quency distribution of sampled fiber angles. The reference dispersion parameter b is obtained

from fitting the cumulative frequency distribution of sampled fiber angles using the modified

sigmoid function (Eq 20). Mean orientations �yFF of the FiberFit software were inverted and

shifted to match our coordinate system �y 0FF ¼ 180
�

� �yFF. Additionally, angles exceeding the

interval [0˚, 180˚] were shifted by 180˚. Comparisons to the reference parameters are per-

formed by considering the absolute error of the mean orientation angle angle D�y and the abso-

lute relative error of the dispersion parameters Δbrel and Δkrel. A small fraction of images were

found to exhibit large relative errors Δbrel and Δkrel. Those are classified as outliers if they are

exceeding three times the interquartile range of the respective distribution.

Statistics. A paired t-test is used to calculate the level of significance (p-value) between the

error of both evaluation methods for the same subset of images in terms of width, aspect ratio,

dispersion and noise. If a value is classified as outlier, the corresponding value of the pair is

excluded for p-value calculation. An unpaired t-test is used for p-value calculations among

groups with different noise factor. Significance levels of 0.05, 0.01 and 0.001 are marked as

(�, ��, ���), respectively.

Application on experimental data. Finally, we checked the applicability of the AF

method on in vivo experimental data. We use SHG-images of dermal collagen that were

recorded using a CE-certified multi-photon microscope (DermaInspect) for in vivo applica-

tions, which was developed in collaboration with Jenlab GmbH (Jena, Germany). The SHG

signal was captured using an excitation wavelength of 820 nm together with a specific band-

pass filter (410 ± 10 nm, AQ 410/20m-2P, Chroma Technology Corp., Bellows Falls, VT). A

scan time of 13 s and image dimensions of 512 × 512 pixels with a 220 × 220 μm field of view

were chosen as image acquisition parameters. For a detailed description of the microscope

refer to [48–50]. In total, ten SHG images of dermal collagen were taken from ten different vol-

unteers at a depth of 30 μm under the basal membrane located at the cheek.

This study was conducted according to the recommendations of the current version of the

Declaration of Helsinki and the Guideline of the International Conference on Harmonization

Good Clinical Practice, (ICH GCP). In addition, this study was approved and cleared by the

institutional ethics review board (Beiersdorf AG, Hamburg, Germany). Written informed con-

sent was obtained from each volunteer.

To get the reference angular distribution we manually trace the collagen fibers. Statistical

variance is achieved by tracing each image three times in random order. The angular orienta-

tion distribution is achieved from adding up the length of each fiber being oriented along a

certain angle in 1˚ steps. A smooth distribution is obtained by filtering the data using a Gauss-

ian kernel with a standard deviation of 1˚. Reference parameters �ym and bm are obtained by fit-

ting the modified sigmoid function (Eq 20).

Results

Angular distribution generation

Fig 5 shows the result of the optimization procedure of the evaluation parameters δcut and α.

Apart from a minor fraction of outliers, data points of minimal difference spread within δcut <

4% and 0< α< 3. Since the frequency distributions p(δcut) and p(α) are not normally distrib-

uted, the median value of both parameters is considered as estimation of the overall minimum
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(δcut = 2.1%, α = 1.5). The mean squared difference minimizes for α in [1, 3] and for δcut <

10% indicating that a global minimum is considered. Subsequent calculations using the AF

method are performed with δcut = 2.1% and α = 1.5. Median values of the mean squared differ-

ence as a function of fiber dispersion k, image quality (NF) and fiber geometry (width, aspect

ratio) are provided in the supplement (S2 Fig).

Validation

Comparison to band-pass filtering. The overall error of the mean fiber orientation, D�y

amounts for (2.2 ± 1.8)˚ and (1.8 ± 1.4)˚ (p< 0.001) for the band-pass and the AF method,

respectively (Table 1). Note that for calculating the overall error D�y highly dispersed fiber

Fig 5. Effect of evaluation parameters δcut and α on the error. False colours indicate the mean squared difference

MSD between the computed angular distributions and their reference on a subset ofN = 103 images for a discrete set of

10 × 10 parameter values. Data points represent the optimal parameter set for each image (N = 104) based on the

exploited two parameters Nelder-Mead optimization algorithm which used the squared difference between reference

and calculated orientation distribution as objective function. Histograms show the frequency distribution of parameter

δcut and α. The median values of both distributions(δcut = 2.1%, α = 1.5) were identified as optimal evaluation

parameters. The mean number of iterations, until the termination criterion was met, is 23 ± 9. Only 0.2% of the images

reached the maximum number of iterations, which was set to 100.

https://doi.org/10.1371/journal.pone.0227534.g005

Table 1. Overall error of mean orientation and dispersion determined by the band-pass method and by the AF method. Note that f indicates the percentage of data

points that were classified as outlier.

Δ�θ ½
�

�ðk > 1Þ Δbrel|Δkrel[%] fΔb|Δk[%] R2

band-pass method 2.3 ± 2.1 33.9 ± 26.5 0.73 0.78 ± 0.24

AF method 1.9 ± 1.5 13.2 ± 12.7 0.76 0.99 ± 0.00

p-value < 0.001 < 0.001 < 0.001

https://doi.org/10.1371/journal.pone.0227534.t001
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networks (k< 1) were excluded from statistical analysis since they do not feature a mean

orientation. The overall mean error of the dispersion parameters Δkrel, Δbrel amounts for

(33.9 ± 26.5)% and (13.2 ± 12.7)% (p< 0.001) using the band-pass and the AF method, respec-

tively. It was found that for both methods the error of the mean fiber orientation D�y mainly

depends on the degree of the alignment of the fiber network (Fig 6A) and is rather indepen-

dent from the fiber geometry or image quality (not shown). The error of both methods reduces

towards an increasing degree of fiber alignment.

The error of the dispersion parameters Δbrel and Δkrel is found to strongly depend on

the degree of alignment, fiber geometry and image noise (Figs 6B and 7). With increasing

the degree of alignment, the fiber dispersion error of the AF method, Δbrel, continuously

decreases from a maximum error of 10.9% at k = 0.01 to a plateau of�5% for k> 2.2. The

Fig 6. Error of the band-pass method and the AF method vs. the dispersion k of the fiber network. Fibers with a

width of 5, aspect ratio of 30 and an image noise factor of 1 were considered here. (A) shows the error of the mean fiber

orientation D�y. Inlets show exemplary Monte-Carlo generated greyscale fiber images from respective distributions. (B)

shows the relative error of the fiber dispersion parameters Δkrel, Δbrel. Sample greyscale images, that were simulated by

the implemented Monte-Carlo method are shown for k = 0.01 and k = 5. (�p< 0.05, ��p< 0.01, ���p< 0.001).

https://doi.org/10.1371/journal.pone.0227534.g006
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fiber dispersion error of the band-pass method, Δkrel, exhibits a large error at k = 0.01 Δkrel =

101.4%, which is first reduced to a minimum error of Δkrel� 12% around k� 1 but then is

increased again towards aligned fiber networks to an error of 27.7% at k = 5 (Fig 6B). Except

for k = 1 and k = 1.25 the error of both methods shows a significant (p< 0.05), for most values

of k even highly significant (p< 0.001) difference.

Other than the error of the mean fiber orientation, the error of the dispersion parameter

strongly depends on the fiber geometry, image noise and choice of evaluation method (Fig 7).

An at least significant decrease (p< 0.05) in error was found for every group if the image was

evaluated with the AF method.

A decreased fiber width strongly increases Δkrel for every combination of aspect ratio, dis-

persion and noise. In case Δbrel, the increase in error can be noted for aligned networks only.

Fig 7. Error of the dispersion parameter of the band-pass method and the AF method for different fiber

geometries, dispersions and noise factors. (A) shows the error of the dispersion parameter for fibers with a width of 1

pixel for aspect ratios 15 and 45 as well as noise factors 0 and 1. (B) shows the same as in (A) but for fibers with a width

of 10 pixels. Each error is given for a dispersed (k = 0.01) and an aligned fiber network (k = 5). Inlets show exemplary

Monte-Carlo generated greyscale fiber images from respective distributions. (�p< 0.05, ��p< 0.01, ���p< 0.001).

https://doi.org/10.1371/journal.pone.0227534.g007
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A raised noise factor significantly (p< 0.001) increases Δkrel and Δbrel for aligned networks of

fibers with a width of 1. Additionally, a significant (p< 0.05) decrease and a highly significant

increase (p< 0.001) in Δbrel was found for thick, short fibers (width = 10, AR = 15).

Application on experimental data. Our implemented algorithm was applied on an exem-

plary set of ten in vivo recorded SHG images of dermal collagen. Parameters of the cumulative

angular distribution �y and b were calculated using the AF method and compared to reference

parameters �y and b achieved from manual fiber tracing (Fig 8, S1 Dataset). The absolute

mean error between calculation and manual segmentation for the mean orientation amounts

for D�y ¼ ð6:0� 4:0Þ
�

, whereas the mean relative error of the fiber dispersion is Δbrel =
(9.3 ± 12.1)%. The mean coefficient of determination was R2 = 0.99 ± 0.01.

Fig 8. Evaluation example of an in vivo SHG-image of dermal collagen. Left column ((B),(D),(F)): Evaluation steps

of the implemented image processing algorithm. Right column ((C),(E),(G)): Manual fiber tracing of fibers, which

serves as ground truth. (A) shows the original SHG-image as measured with the multi-photon microscope. (B), the

filtered power spectrum for δcut = 2.1%. (C), manually traced fibers. (D) and (E) show the resulting angular orientation

distributions. For (D), α = 1.5 was used. (F) and (G) show the respective cumulative orientation distributions and the

fit parameters obtained from sigmoid fitting.

https://doi.org/10.1371/journal.pone.0227534.g008
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Value pairs of calculated and reference parameter were fitted using a first order polyno-

mial (Fig 9). High Pearson correlations were found for both parameters, namely R2 = 0.99

and R2 = 0.90 for the mean orientation angle and dispersion, respectively. Calculated Pearson

correlations with respect to an ideal calculation (slope equal to one) amount for R2 = 0.98

and R2 = 0.8.

Discussion

We report on a robust method to quantify the angular distribution of fibers in noisy greyscale

fiber image. The whole image processing procedure covers: the application of the periodic

decomposition to remove cross-like artifacts in the Fourier domain, Fourier filtering by only

permitting values below a certain relative uncertainty δcut, computation of the angular distri-

bution by weighting the number of pixels with Nα and quantification of the mean angle and

dispersion by fitting a modified sigmoid function to the cumulative orientation distribution.

In comparison to conventionally used window functions like in [12, 16, 32, 36], the periodic

decomposition has the advantage of conserving almost the entire image information while

completely removing artifacts in the Fourier domain, as shown in Fig 2. Therefore, we omit a

quantitative analysis. The Monte-Carlo noise simulation revealed that the effect on the uncer-

tainty can be neglected since the periodic mapping only has significant effects on the image

boundary only.

Filtering the power spectrum by excluding values above a predefined relative uncertainty

allows for the definition of an adaptive filter. Optimal evaluation parameters were identified

by applying a two parameter Nelder-Mead optimization, which succeeded for 99.8% of the

images. A maximum cut-off error of δcut = 2.1% and a weighting factor of α = 1.5 was calcu-

lated, while the non-locality of the optimum was ensured. Polzer et. al introduced a similar

weighting factor which raises the entire intensity distribution I(θ) [36]. However, the optimum

value of their weighting factor seems to suffer from large fluctuations, whereas the optimal

value of α is stable throughout the degree of alignment of fiber networks and throughout dif-

ferent fiber properties and image noise (S2 Fig).

Fig 9. Calculated angular distribution parameters vs. reference distribution parameters for the experimental data.

(A) Mean fiber orientation �y vs. mean fiber orientation �ym achieved from manual segmentation. (B) Fiber dispersion b
vs. fiber dispersion bm achieved from manual segmentation. R2 values are given for the fitted curve (solid, orange) as

well as for the ideal curve (dashed, black) with a slope of one. Errorbars represent 95% confidence bounds of fitted

parameters.

https://doi.org/10.1371/journal.pone.0227534.g009
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Previously used filtering methods like the bandpass method [6, 34, 36] work with rotation-

ally symmetric filters, which disregard the anisotropy of the signal. The derivation of optimal

band-pass range is based on the fiber diameter [6]. With the AF method we apply a relative

uncertainty criterion without any assumptions on the underlying fiber properties. The optimal

value of δcut is found to be completely independent from the chosen fiber geometries, fiber dis-

perion and image noise (S2A, S2C, S2E and S2G Fig). As a consequence, the fiber dispersion

can be quantified with a significantly lower error for completely dispersed and highly aligned

fiber networks in comparison to the band-pass method (Fig 6B). Especially the quantification

of highly dispersed fiber networks (k< 1) is much more reliable using the AF method, whereas

the dispersion calculated by the band-pass method suffers from large errors (Δkrel > 100%)

(Figs 6B and 7). This is in accordance with the observations of Morrill et. al [34], who mea-

sured an error of� 30% for k� 0.2 using binary Monte-Carlo images.

If we use the AF method in conjunction with a von-Mises fit of the angular orientation dis-

tribution, large errors of the dispersion coefficient can be noted towards dispersed fiber net-

works (S3 Fig). Contrary to the band-pass method, Δkrel rapidly decreases towards aligned

networks to a level of� 10%. This effect is solely related to the adaptive filter and the weighted

radial summation of the AF method, whereas the sigmoid fit ensures a reliable dispersion

parameter estimation for dispersed networks.

Fibers with a width of 1 somehow represent an exception in comparison to the images con-

taining fibers with width> 1 pixel. Regarding the result of the optimization of α with respect

to different image and fiber properties (S2 Fig), it can be seen that α is quite stable throughout

the dispersion k, noise factor and different fiber geometries. α fluctuates within the interval

[1, 2] except for fibers with a width of 1 pixel, where the median value α amounts for αwidth=1 =

2.4. The application of the gauss-filter to dissolve sharp edges might even reduce the true fiber

dimension down to a size which is near the resolution limit of power spectrum based methods

resulting in large deviations of the dispersion for highly aligned fiber networks.

Using the Monte-Carlo approach to create artificial fibrous images for validation purposes

is a common tool. However, it is rather difficult to draw a comparison to the accuracy of other

methods found in the literature since mostly a low quantity of binary images was investigated

[12, 34]. For example, Morrill et. al measured an overall error of (0.71 ± 0.43)˚ for the mean

orientation and (7.4 ± 3.0)% for the fiber dispersion using binary fiber images, whereas we

measured errors of (2.3 ± 2.1)˚ and (33.9 ± 26.5)% [34]. The use of greyscale images will gener-

ally result in a lower accuracy compared to the evaluation of binary images, since the superim-

position of fibers might generate intensity deviations in the power spectrum.

The AF method was applied to in vivo SHG images of dermal collagen. The multi-photon

images that were used provide a sufficiently high image intensity I(x, y) (16-bit), which comes

along with a sufficiently low relative intensity error DI=I ¼ 1=
ffiffi
I
p

. Therefore, δcut = 2.1% pro-

vides a reasonable filtering value, which results in an accurate quantification of the angular ori-

entation distribution in terms of mean fiber orientation and fiber dispersion.

Conclusion

The proposed adaptive filter method modifies common Fourier methods at different stages,

namely artifact removal in the Fourier domain, filtering of the power spectrum and quantifica-

tion of the angular signal.

The adaptive filter conserves the anisotropy of the angular signal in the Fourier domain,

which ensures a stable error for disordered as well as highly aligned fiber networks. Using the

cumulative distribution naturally averages the data, which spares out any averaging of the

angular distribution. The high mean goodness of the fit R2 = 0.99 which was measured for
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both, Monte-Carlo images and SHG-images, indicates that the modified sigmoid function pro-

vides a perfect model of the cumulative distribution function.

The adaptive filtering method was found to be a reliable and accurate tool for quantifying

the angular orientation distribution in fibrous SHG images of dermal collagen, even for images

suffering from a low image quality. Aside from its benefits concerning accuracy and reliability,

the AF method considers measurement uncertainties, which are of key importance in any

kind of scientific experiment.

Supporting information

S1 Table. Periodic decomposition: Relative deviation of the error propagation simulated

by Monte-Carlo and the basic image error ΔI for N = 105 iterations.

(PDF)

S2 Table. Power spectrum: Relative deviation between calculated and Monte-Carlo simu-

lated uncertainty for N = 105 iterations.

(PDF)

S1 Fig. Sensitivity analysis of the central cut-off radius. (A) Squared difference between

calculated angular orientation distribution and sampled fiber angle distribution on N = 104

images (Monte-Carlo generated). The same dataset was also used for evaluation parameter

optimization. Unfiltered power spectra are used to isolate the effect of the cut-off radius. (B-D)

Evaluation example for cut-off radii (0,3,6). The artifact dramatically reduces from a 0 pixel

cut-off to a radial cut-off of 3 pixels. Cut-off radii above 3 pixels barely influence the angular

distribution. In order to save angular information, we choose a cut-off radius of 3 pixels.

(EPS)

S2 Fig. Optimal evaluation parameters vs. fiber properties and image noise. Plotted are

median values and errorbars represent the interquartile range (25, 75). (A,C,E,G) represent

plots of δcut vs. dispersion k, noise factor NF, aspect ratio (AR) and width. (B,D,F,H) are plots

of the weighting factor α vs. dispersion k, noise factor NF, aspect ratio (AR) and width.

(EPS)

S3 Fig. Error of the dispersion parameter k and b of the von-Mises fit and the sigmoid fit

of the AF method for fibrous Monte-Carlo images (width = 5, AR = 30). The von-Mises fit

was applied to the angular orientation distribution as calculated by the AF method, whereas

the sigmoid fit was applied to the respective cumulative orientation distribution.

(EPS)

S1 Dataset. The .csv file provides the reference parameter as well as the parameter calcu-

lated by the AF method for each image.

(CSV)
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Chapter 4

Classification of Fiber Families

Biological soft tissue, like aorta and skin, is reported to exhibit multiple, so-called fiber

families [6, 88]. In this chapter, a general approach to determine the number of fiber

families and their angular properties is presented.

4.1 Monte-Carlo Simulation of Multiple Fiber Families

Figure 4.1: Example Monte-Carlo simulated fiber images with multiple
fiber families. Arrows indicate the mean orientation θ̄ of each aligned fiber family.
N denotes the number of fiber families in each image. (a) Nf = 200 isotropically dis-
tributed fibers and Nf = 6 aligned fiber famlies (k = 10). (b) Nf = 200 isotropically
distributed fibers and Nf = 50 aligned fiber famlies (k = 10). (c) Nf = 200 isotrop-
ically distributed fibers and Nf = 80 aligned fiber famlies (k = 10). (d) Nf = 200
isotropically distributed fibers and Nf = 100 aligned fiber famlies (k = 10). (e) One
aligned fiber family with Nf = 350 fibers (k = 10). (f) Two aligned fiber families with
Nf = 175 fibers each (k = 10). (g) Three aligned fiber families with Nf = 115 fibers
each (k = 10). (h) Four aligned fiber families with Nf = 90 fibers each (k = 10).

59
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The Monte-Carlo procedure described in section 3.1, is extended for the simulation of

artificial fiber images with multiple fiber families. The angular orientation distribution

of the i-th fiber family is described by the von-Mises function (equation (3.1)) with

corresponding parameters θ̄i and ki. The number of sampled fibers Nf,i for each fiber

families is used to control its amplitude. To simulate an isotropically distributed fiber

family, angles are uniformly sampled from the entire angular range [0◦, 180◦]. The

anisotropic ratio of fibers (ARF) is introduced to quantify the ratio of aligned fibers

with respect to the total number of sampled fibers. In case of one isotropic and one

aligned fiber family with an equal number of sampled fibers, the ARF amounts to

0.5. Figure 4.1 shows exemplary Monte-Carlo images with multiple fiber families. In

figure 4.1 (a-d), an isotropic and an aligned fiber family with a variation of the ARF

are shown. The ARF is controlled by keeping a constant number of isotropic fibers

(Nf = 200), while modifying the number of aligned fibers from Nf = 6 (ARF = 0.03)

to Nf = 200 (ARF = 0.5). Images with a varying number of highly aligned fiber

families are shown in figure 4.1 (e-h). Since only aligned fiber families are created, the

ARF amounts to 1.

4.2 Fiber Image Network Evaluation Algorithm (FINE

Algorithm)

The Fiber Image Network Algorithm (FINE algorithm) is introduced to analyze the an-

gular properties of images considering multiple fiber families. In chapter 3, section 3.5,

the sigmoid function Scirc (equation (3.48)) was introduced to quantify the cumulative

orientation distribution (COD). This approach was found to provide reliable results if

a single fiber family is present in the image. To account for multiple fiber families as

well as their angular properties, equation (3.48) is generalized to N fiber families:

SN (θ) =





Scirc if N = 1,
N∑
i=1

aiScirc,i(θ) if N > 1,
(4.1)

where ai denotes the amplitude of the i-th fiber family. Note that the i-th sigmoid

function Scirc,i contains the mean orientation of each fiber family, θ̄i, and its dispersion

bi.

Within the FINE algorithm, SN (equation (4.1)) is fitted to the COD with an iterative

increase of the number of fiber families. Even though SN accounts for isotropic as well

as anisotropic fiber families, the first step of the FINE algorithm consists of evaluating

the isotropy of the entire cumulative distribution by an isotropy criterion.
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Figure 4.2: Evaluation of the isotropy criterion of the FINE algorithm. (a)
Distribution of R2 of the cumulative orientation distribution of 104 isotropic Monte-
Carlo simulated images with respect to an ideal isotropic distribution. Sampling errors,
as well as random fiber overlaps cause the calculated cumulative orientation distribution
to deviate from an ideally isotropic distribution. (b) Percentage of the images that are
included in the isotropy criterion R2 ≥ R2

iso as a function of the threshold value R2
iso.

Figure 4.3: Schematic illustration of the FINE algorithm. COD denotes the
cumulative orientation distribution C(θ). R2

iso denotes the threshold at which the entire
COD is assumed to be isotropic. After considering the presence of at least one fiber
family, the sigmoid function SN of equation (4.1) is iteratively fitted to the COD. N
denotes the number of fiber families, that is increased at every iteration of the FINE
algorithm. The algorithm terminates, if the difference between COD and fitted model
is smaller than nσ. σ denotes the uncertainty of the COD, ∆C(θ), while n gives
the level of significance. Parameters R2

iso and n are determined numerically by using
Monte-Carlo simulated greyscale images.

A completely isotropic distribution has a cumulative distribution that follows a straight

line with slope 1/180◦. With increasing anisotropy of the fiber network, the deviation
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from the straight line grows [84]. This deviation is quantified using Pearson’s R2 as

measure, where R2 = 1 indicates a completely isotropic distribution. To determine a

suitable threshold R2 ≥ R2
iso at which the COD is classified as isotropic, the Monte-

Carlo procedure is used to simulate 104 images with an isotropic distribution of fibers.

R2 is calculated for each simulated image using the cumulative orientation distribu-

tion (equation (3.42)) of each simulated image. Figure 4.2 (a) shows the distribution

of R2, which has a peak between 0.995 and 1. In figure 4.2 (b), the percentage of

images meeting the isotropy criterion R2 ≥ R2
iso are shown as a function of R2

iso. A

95 % certainty is given for a threshold value of R2
iso = 0.9916. The FINE algorithm is

schematically outlined in figure 4.3. After a fiber network is classified to be anisotropic,

SN=1 (equation (4.1)) is fitted to the COD C(θ). If the difference between fit and data,

C(θ) − S1(θ), is larger than the confidence interval nσ = n∆C, another fiber family is

considered by fitting two fiber families to the cumulative orientation distribution (S2).

This procedure is iteratively repeated until the difference C(θ)− SN (θ) is smaller than

nσ for all angles θ.

The termination criterion, determined by n, defines the sensitivity of the FINE algo-

rithm to find an additional fiber family. At the same time, n controls the robustness

of the algorithm to fluctuations in the COD. To calculate the optimal value of n,

Monte-Carlo simulated fiber images with multiple fiber families are created. Images

are allowed to contain up to three highly aligned fiber families (k = 10, b = 0.18). To

ensure that neighboured fiber families are not overlapping, the following constraint is

applied to their mean orientations:

cos
(
2 · |θ̄i − θ̄j |

)
≤ cos (2 · 30◦) =

1

2
, ∀(i, j) ∈ {1, . . . , N} with i 6= j. (4.2)

If n is chosen too small, the number of fiber families calculated by the FINE algorithm

will exceed the number of defined fiber families. In contrast, a large value of n might

suppress features of the COD, which in general will lead to an underestimation of the

defined number fiber families. Hence, there is an interval n ∈ [nmin, nmax] for each

simulated Monte-Carlo image, to find the correct number of fiber families. Limits

nmin, nmax are determined by the variation of n using a bisection algorithm [89]. Note

that the algorithm is applied separately to both limits. Termination is enforced if the

difference between subsequent iterations is smaller than 10−4. Figure 4.4 shows the

percentage of Monte-Carlo images for which the correct number of fiber families is

found as a function of n. The highest percentage of 99.8 % is found at n = 3.

An application example of the FINE algorithm is shown in figure 4.5 for a Monte-Carlo

simulated fiber image in figure 4.5 (a) with one isotropic fiber family (Nf = 100) and one

aligned fiber family (Nf = 200). Since R2 of the cumulative orientation distribution

with respect to the ideal isotropic distribution is smaller than the isotropy criterion

R2
iso = 0.9916 (figure 4.5 (b)), the first fiber family is fitted to the COD (S1) in figure

4.5 (c). As the difference between fit and COD is larger than 3σ in figure 4.5 (d), an

additional fiber family is considered by fitting S2 to the COD in figure 4.5 (e).
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Figure 4.4: Evaluation of the uncertainty criterion of the FINE algorithm.
The percentage of simulated Monte-Carlo images, for which the FINE algorithm iden-
tified the predefined number of fiber families, is shown as a function of n. n indicates
the confidence interval to identify additional fiber families within the FINE algorithm.

Note that for a good fit convergence, the location of the highest difference between fit

and COD is considered as starting value for the new fiber family (75◦ in this example).

Since the difference between S2 and the COD in figure 4.5 (f) fluctuates around zero

with an amplitude smaller than 3σ, the algorithm is terminated. Thus, the FINE

algorithm identified two fiber families. The fit quality of R2 = 0.999 indicates that

S2 provides an excellent representation of the COD. The dispersion parameters, b1 =

0.027 ± 0.003 and b2 = 0.170 ± 0.006, indicate the presence of an isotropic and an

aligned fiber family. This is in line with the input parameters of the Monte-Carlo

simulation, which include one isotropic fiber family and one aligned fiber family with

a dispersion parameter of b = 0.18. The respective calculated amplitudes amount to

a1 = 0.36± 0.02 and a2 = 0.64± 0.02, which matches the ratio of anisotropic fibers of

ARF = 200/300 = 0.67. The mean orientation of the simulated, aligned fiber family

of θ̄ = 45◦, is accurately calculated by the FINE algorithm as θ̄2 = (46.9± 0.2)◦. The

sigmoid function SN of the FINE algorithm is independent from θ̄ in the isotropic limit

(b → 0). As a consequence, fitting an isotropic fiber family might lead to a high fit

uncertainty of the mean orientation θ̄. In this example, this is expressed by an error of

∆θ̄1 = 3.6◦ of the mean orientation of fiber family 1.
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Figure 4.5: Application example of the FINE algorithm. (a) Monte-Carlo
simulated greyscale image with Nf = 100 isotropically distributed fibers and Nf = 200
aligned fibers (θ̄ = 45◦, b = 0.18). (b) The COD of (a) is checked for isotropy as its
R2 with respect to a straight line is compared to the threshold value R2

iso = 0.9916.
(c) The first fiber family is fitted to the COD using S1. (d) Difference between fit and
COD. Errorbars indicate the levels of significance. The difference at ∼75◦ indicates the
presence of an additional fiber family. (e) Two fiber families are fitted to the COD using
S2(θ). (f) The minor difference between fit and COD terminates the FINE algorithm
with fit parameters: (a1 = 0.36 ± 0.02, a2 = 0.64 ± 0.02, θ̄1 = (131.6 ± 3.6)◦, θ̄2 =
(46.9± 0.2)◦, b1 = 0.027± 0.003, b2 = 0.170± 0.006)

4.3 Derived Quantities

Besides the number of fiber families and their properties, two quantities are defined

that are measures of the overall orientation properties of the fiber network.

The first quantity is called the orientation index (OI) and is commonly used in literature

[12, 90, 91]. It quantifies the alignment of the fiber network with respect to its mean

orientation θ̄:

OI = 2

∑180◦

θ=0◦ I(θ) cos2(θ − θ̄)∑180◦

θ=0◦ I(θ)
− 1. (4.3)
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Note that this quantity is based on the angular orientation distribution I(θ). The

mean orientation θ̄ is determined from fitting S1 the COD. If the fiber network is fully

aligned, the OI is equal to unity. Contrary, it vanishes in case of an isotropic distri-

bution. However, the OI is not able to reasonably quantify the angular orientation

distribution if multiple aligned fiber families are present in the image. For example,

the OI vanishes in case of two highly aligned fiber families, which are perpendicular to

each other.

To account for an arbitrary number of fiber families, the alignment index (AI) is intro-

duced:

AI =
N∑

1

ai · b′i b′i = (bi − bmin)/(bmax − bmin), (4.4)

which represents the weighted sum over the dispersion parameters of each fiber family

identified by the FINE algorithm. The dispersion parameters bi are normalized by

means of bmax and bmin, defining the scale of the AI. bmax defines the upper limit of

the AI and represents a fully aligned fiber family. It is chosen as bmax = 0.26, which is

equal to k = 20. In contrast, bmin = 0.016 (k → 0) is introduced as lower limit of the

AI indicating an isotropic fiber family.

Figure 4.6: Effect of the overlap of two fiber families on the number of fiber
families identified by the FINE algorithm. (a) Number of fiber families identified
by the FINE algorithm as a function of the dispersion and the angular distance of two
fiber families. (b) Example of two isotropic fiber families (yellow) that are overlapping
to a single, isotropic fiber family (red). (c) Example of two aligned fiber families
(yellow) that are overlapping to a single, aligned fiber family (red). (d) Example of
two properly spaced (60◦), highly aligned fiber families.
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For a better understanding of the OI and AI, both quantities are calculated as

a function of the dispersion and angular spacing of two fiber families in Monte-Carlo

simulated images. A total of 104 images are created. The mean number of fiber families

identified by the FINE algorithm is shown in figure 4.6 (a) as a function of dispersion

and angular spacing. If the dispersion parameter of both fiber families is small, as

exemplary shown in figure 4.6 (b), the angular orientation distribution appears as a

single, isotropic fiber family. Similarly, a small angular spacing, like in figure 4.6 (c),

effectively results in a single fiber family. If both fiber families are properly spaced, the

FINE algorithm is able to discriminate both fiber families, like in figure 4.6 (d). The

calculated AI, which is shown in figure 4.7 (a), is generally independent from the angular

spacing between both fiber families. However, if the angular orientation distributions

of both fiber families overlap to a single, broadened distribution, the AI is decreased. In

contrast, the OI in figure 4.7 (b) is highest, if a single, strongly pronounced orientation

is present in the angular orientation distribution.

Figure 4.7: Orientation and alignment index as a function of dispersion
and angular spacing of two fiber families. (a) Orientation index as a function of
dispersion and angular spacing of two fiber families. (b) Alignment index as a function
of dispersion and angular spacing of two fiber families.

4.4 Local Fiber Orientations

In addition to the quantification of the entire fiber network using the FINE algorithm,

local orientations give meaningful insights into the angular properties of a fiber network.

4.4.1 Orientation Space

The orientation space for 2D images was introduced by [92] and is used here for calcu-

lating local orientation quantities such as main orientation and orientation index. The
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orientation space is a discretized space, where the orientation θ ∈ [0, 180◦] is introduced

as third coordinate. The transformation of an image I(x, y) from Cartesian coordinates

to the orientation space Iloc(x, y, θ) is defined as:

Iloc(x, y, θ) = F−1[Î(u, v) · w(u, v, θ)] = F−1[F [I(x, y)] · w(u, v, θ)], (4.5)

where w(u, v, θ) denotes a wedge-shaped filter bank, which is for example represented

by the weighting factors wint, introduced in equation (3.18). Figure 4.8 illustrates the

transformation of a SHG image of dermal collagen in figure 4.8 (a) to the orientation

space using wint as wedge filters. The first step is to transform the image to the Fourier

domain, as shown in figure 4.8 (b). Next, according to equation 4.5, a wedge filter bank

is applied by pixel-wise multiplication, as shown in figure 4.8 (c). The orientation space

Iloc(x, y, θ) is then achieved by applying an inverse discrete Fourier transformation on

each wedge-filtered Fourier transform (figure 4.8).

The local main orientation Iθ̄(x, y) then results from evaluating the angular location of

maximum intensity at each pixel (x, y):

Iθ̄(x, y) = maxθ[Iloc(x, y, θ)]. (4.6)

Figure 4.8: Computation of local orientation spectra. (a) Input in-vivo, prepro-
cessed SHG image I(x, y) of dermal collagen. (b) Fourier transform Î(x, y) = F [I(x, y)].
Note that only the real part of Î(x, y) is shown in logarithmic greyscale for a better vis-
ibility. (c) Wedge filter bank wint(u, v, θ) applied on Î(x, y). (d) Inverse transformation
of every wedge filtered image to achieve local orientation spectra I(x, y, θ).
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4.4.2 Wedge Filter Banks

The shape of the wedge filter bank w(x, y, θ) influences the accuracy of local orientation

spectra. McLean et al. used a wedge filter bank which consists of pixels in the frequency

domain that are included in an angular interval [θ − δθ, θ + δθ] [93]:

ww(u, v, θ) =





1 if tan−1
(
v
u

)
,

0 else.
(4.7)

In addition, McLean et al. [93] used a Gaussian kernel for a convolution in the Fourier

domain to remove sharp edges of the wedge filter bank, which reduces the effect of

Gibbs artifacts:

wg(u, v, θ) = ww(u, v, θ) ∗ g(u, v), (4.8)

where the operator ∗ denotes the convolution. In the following the filter bank wg is

referred to as gaussian-wedge. Exemplary gaussian-wedge filters are shown in figure

4.9 (a). For comparison, the true-intersection filter bank wint with an angular span of

δθ = 0.5◦ is shown in figure 4.9 (b).

Figure 4.9: Directional filter banks w(u, v, θ). (a) Wedge filter bank that was
smoothed using a Gaussian convolution kernel with σ = 0.9 according to [93]. (b)
True intersection wedge filter bank. Note that in (a) and (b) solely orientations θ ∈
[0◦, 45◦, 90◦] are displayed.

In order to quantitatively compare both wedge filter banks, the main local fiber ori-

entation of Monte-Carlo images are simulated using one fiber family. A total of 500

images are generated using the input parameters listed in table 4.1. Here, the noise

factor is set to zero to allow for an accurate pixel-wise calculation of the local main

orientation.
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Table 4.1: Input parameters of the Monte-Carlo simulation for the comparison of
wedge filter banks.

input parameter values

dispersion k [0.01, 10]

mean orientation θ̄ [0◦, 180◦]

fiber width [3, 10]

aspect ratio [20, 45]

noise factor 0

Figure 4.10: Comparison of the local main fiber orientation using different
wedge filters. (a) Reference fiber orientation of the exemplary Monte-Carlo image.
(b) Evaluation mask that is used for excluding areas of overlapping fibers where the lo-
cal main orientation is not unique. (c) Main fiber orientation using the true intersection
wedge filter bank. (d) Absolute difference between reference (a) and computed local
main fiber orientation using true intersection wedges (c). (e) Main fiber orientation
using the gaussian-convoluted wedge filter bank. (f) Absolute difference between refer-
ence (a) and computed local main fiber orientation using gaussian-convoluted wedges
(c).

The respective local main orientation (equation (4.6)) in false colors of an exemplary,

Monte-Carlo generated fiber image is shown in figure 4.10 (a). Since the main ori-

entation at overlaps of crossing fibers is ambiguous, an evaluation mask is created to

exclude overlaps from statistical evaluation. An exemplary evaluation mask is shown

in figure 4.10 (b). White areas are indicating locations where the local main orienta-

tions are compared to the reference. The calculated local main orientation using the

true-intersection wedge filter bank with an angular span of ∆θ = 0.5◦ is shown in figure

4.10 (c).
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Figure 4.11: Error distribution of different wedge filter banks. The local
main orientation error indicates the mean error of each pixel averaged over each image.
N = 1000 images are used in total.

The local absolute angular deviation to the reference in figure 4.10 (d) shows that the

computed local main orientation is most accurate in the center of each fiber. The

error slightly increases to ∼ 3◦ towards the fiber edges. Larger errors are occurring

where the imaginary interpolation of a fiber strongly contributes to the local orientation

spectrum, such that the main orientation is wrongly determined. The corresponding

local main fiber orientation using gaussian-convoluted wedge filter bank in figure 4.10

(e) is more sensitive to surrounding fibers. The local deviation to the reference in

figure 4.10 (f) indicates that in areas of a high fiber density the computation of the

local fiber orientation is unstable. In order to quantitatively compare the usage of true-

intersection wedges to gaussian-convoluted wedges in terms of the local fiber orientation

the local error is averaged for each image. The resulting error distributions of the

Monte-Carlo simulated images are shown in figure 4.11. The error distribution using

gaussian-convoluted wedges is broadened and shifted towards higher averaged errors.

The mean local main orientation error amounts to (2.5 ± 0.5)◦ and (3.4 ± 1.2)◦ using

true-intersection and gaussian-convoluted wedges, respectively.

4.4.3 Local Orientation Index

In addition to the local main orientation of equation (4.6) the local orientation index,

OI(x, y) is introduced as a pixel-wise version of equation (4.3):

OI(x, y) = 2

∑180◦

θ=0◦ Iloc(x, y, θ) cos2(θ − θ̄)∑180◦

θ=0◦ Iloc(x, y, θ)
− 1. (4.9)

Figure 4.8 shows an exemplary SHG image of dermal collagen, for which local quantities

are calculated. Local orientation spectra in figure 4.8 (a)-(d) indicate the presence of

either one main orientation like in figure 4.8 (b) and figure 4.8 (c), or the presence
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of two main orientations at intersections of fibers like in figure 4.8 (d). In the latter

case, the local main orientation in figure 4.8 (e) is ambiguous. Intersecting fibers can

be identified by a vanishing orientation index, which is shown in figure 4.8 (f) in false

colors. Note that for the false color representations of figure 4.8 (e) and figure 4.8 (f),

the local main orientation (equation (4.6)) and the local orientation index (equation

(4.9)), are scaled by the relative intensity I(x, y)/max[I(x, y)] to suppress areas of low

intensity.

Figure 4.12: Computation of the local main orientation and the local ori-
entation index. (a) Input in-vivo SHG image I(x, y) of dermal collagen. The image
was preprocessed by means of a background subtraction using the function Subtract
Background of the software ImageJ (Fiji)[94] with a rolling ball radius of 50 pixels to
enhance the contrast of fibers. (b) Local orientation spectrum with a main orientation
of 80◦. (c) Local orientation spectrum with a main orientation of 60◦. (d) Local orien-
tation spectrum at an intersection of two collagen fibers. (e) Local main orientations
shown in false colors. (f) Local orientation index shown in false colors. Note that local
orientation spectra that feature a clear main orientation like in (b) and (c) exhibit a
high orientation index. Contrary, the OI vanishes at perpendicular fiber intersections
like in (d).
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4.5 Monte-Carlo Simulations

Similar to section 3.6, Monte-Carlo simulated fiber images are used to compare cal-

culated quantities of the FINE algorithm against their reference values. Here, the

Monte-Carlo procedure described in 4.1 is used to simulate multiple fiber families.

The anisotropic mechanical behavior of fiber-reinforced materials is strongly deter-

mined by the alignment of fibers [10, 86, 95]. To simulate the degree of anisotropy, the

anisotropic ratio of fibers (ARF) is varied in a controlled fashion. This is realized by

the simulation of an isotropic family with Nf = 200 fibers in addition to an anisotropic

family with a variable number of fibers, Nf = [0, 200]. Exemplary images are shown in

figure 4.1 (a-d). The FINE algorithm is then examined for its ability to differentiate

between the isotropic fiber family and the anisotropic fiber family.

The second Monte-Carlo simulation tests the performance of the FINE algorithm to

identify multiple, aligned fiber families. Images are allowed to contain up to five fiber

families with a sufficient angular separation of the mean orientation of adjacent families.

Figure 4.6 (a) reveals that a clear separation of highly aligned fiber families is ensured

for an angular spacing of > 30◦. Monte-Carlo input parameters of both simulations

are given in table 4.2.

Table 4.2: Input parameters of the Monte-Carlo simulations to benchmark the FINE
algorithm. Anisotropic ratio and multiple fiber families denote different simulations.

input parameter anisotropic ratio multiple fiber families

number of fiber families N 1 [1, 5]

ARF [0, 0.5] 1

dispersion k 10 10

mean orientation θ̄ [0◦, 180◦] [0◦, 180◦]

fiber width [3, 10] [3, 10]

aspect ratio [20, 45] [20, 45]

noise factor [0, 1] [0, 1]

4.6 Application to In-Vivo Data

The FINE algorithm is applied to in-vivo SHG images of dermal collagen. By using

a depth-stack of images, differences of the fiber network across the skin depth are

investigated. Images are recorded using the multiphoton microscope DermaInspect

(section 2.2.3) at a constant mean illumination power of 50 mW and a scan time of

7 s. The 40× magnification objective lens images a 220 × 220µm field of view on

512× 512 pixels. The depth relative to the skin surface is achieved by normalizing the

depth of collagen skin layers to the measured depth of the skin surface. The skin surface

is recorded by capturing the TPF signal with a broad band-pass filter of (548±150) nm

at an excitation wavelength of 750 nm.
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4.7 Results and Discussion

The FINE algorithm, the results of the Monte-Carlo simulations, and the application

to in-vivo data are presented and discussed in a paper published in Scientific Reports

[96]. The publication is shown in section 4.8. However, a brief summary of the main

findings is given here.

Monte-Carlo simulations. The FINE algorithm exhibits an accuracy of ≥ 90 % to

distinguish the isotropic fiber family from the anisotropic fiber family for a minimum

ARF of 0.163. The amplitude of the identified, anisotropic fiber family is found to

slightly overestimate the defined ARF. For example, an amplitude of 0.6 is measured

at a maximum ARF of 0.5. This is related to fibers of the isotropic fiber family that

are by chance aligned in the direction of the anisotropic family. The mean orientation

of the anisotropic fiber family is accurately estimated with a mean absolute error of

(2.4± 2.5)◦.

In addition, the FINE algorithm is able to identify up to four fiber families with an

accuracy of ≥ 98.1 %. Calculated amplitudes closely match the expected values, which

are equal to the reciprocal number of defined fiber families. In case of five defined

fiber families, the accuracy to detect five fiber families slightly decreases to 87.0 %.

Simultaneously, the variance of the amplitude of the first fiber family is increased in

this case. This indicates that some networks consisting of five highly aligned fiber

families are considered as a single, isotropic fiber family.

Application to in-vivo data. Parameters of the fiber families and the AI and OI

determined by the FINE algorithm, show an evolution of the angular properties of

the dermal collagen fiber network with increasing dermal depth. Upper layers of the

papillary dermis exhibit one isotropic fiber family in addition to a highly aligned fiber

family. Up to a depth of 85µm the amplitude of the isotropic fiber family dominates

the aligned fiber family. With increasing depth two aligned fiber families emerge with

perpendicular mean orientations around the Langer lines. This is visually validated by

local main orientations. Furthermore, the decrease of the OI with a concurrent increase

of the AI between 85µm and 90µm strongly suggests a transition from the papillary

dermis to the reticular dermis. This is in line with Neerken et al. [97], who measured

the onset of the reticular dermis at a depth of (95± 10)µm at the temple using optical

coherence tomography (OCT).
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General method for classification 
of fiber families in fiber‑reinforced 
materials: application to in‑vivo 
human skin images
Maximilian Witte1,2, Sören Jaspers2, Horst Wenck2, Michael Rübhausen1 & Frank Fischer2*

Fiber structures play a major role for the function of fiber-reinforced materials such as biological 
tissue. An objective classification of the fiber orientations into fiber families is crucial to understand 
its mechanical properties. We introduce the Fiber Image Network Evaluation Algorithm (FINE 
algorithm) to classify and quantify the number of fiber families in scientific images. Each fiber family 
is characterized by an amplitude, a mean orientation, and a dispersion. A new alignment index giving 
the averaged fraction of aligned fibers is defined. The FINE algorithm is validated by realistic grayscale 
Monte-Carlo fiber images. We apply the algorithm to an in-vivo depth scan of second harmonic 
generation images of dermal collagen in human skin. The derived alignment index exhibits a crossover 
at a critical depth where two fiber families with a perpendicular orientation around the main tension 
line arise. This strongly suggests the presence of a transition from the papillary to the reticular dermis. 
Hence, the FINE algorithm provides a valuable tool for a reliable classification and a meaningful 
interpretation of in-vivo collagen fiber networks and general fiber reinforced materials.

Biological tissue such as articular cartilage1, myocardium2, aortic valve3, arterial walls4, and skin5 exhibit a 
stress strain behavior that strongly depends on the collagen fiber distribution. Fiber reinforced materials are 
classified by the underlying fiber network which is characterized by its anisotropy and the fiber orientation6–8. 
Upon stretching, tensile forces are applied to biological specimens and collagen fibers align in the stretching 
direction9–14. The characterization of the collagen network is typically determined by quantities like the orienta-
tion index, mean fiber orientation, and the fiber dispersion. These parameters are obtained from the angular 
orientation distribution which is commonly modeled by a pi-periodic von-Mises function15–21. However, this 
approach assumes that all fibers are part of a single fiber family. Gasser et al. introduced a mechanical model for 
arterial walls which assumes the existence of two opposing collagen fiber families, which are oriented around 
a main direction4. Parameters for this model are achieved by modeling the fiber orientation distribution using 
two pi-periodic von-Mises functions22. Skin is of major relevance as it represents the largest organ of the human 
body. It is subject to diverse environmental stress conditions and also large mechanical strains. Langer lines, also 
known as cleavage lines, are reported to indicate the main orientation of collagen fibers in skin16.

We introduce the Fiber Image Networks Evaluation algorithm (FINE algorithm), which is based on the 
cumulative orientation distribution (COD), to classify and quantify the fiber network by means of fiber fami-
lies. The FINE algorithm uses an iterative approach to identify the number of fiber families and their angular 
properties. The variance of the COD that is obtained by the adaptive Fourier filtering method, proposed in23, 
is used to estimate the significance of each fiber family. To benchmark the FINE algorithm, realistic grayscale 
Monte-Carlo simulated fiber images containing multiple fiber families are used. We derive the minimum fraction 
of anisotropic fibers as well as the maximum number of highly aligned fiber families that the FINE algorithm is 
able to discriminate. In addition to the orientation index (OI), we introduce and validate the alignment index 
(AI) which quantifies the average alignment degree of different fiber families. We apply the FINE algorithm to 
in-vivo, three-dimensional images of collagen fibers in human skin. Indeed, at a depth of 85–90 µm we find an 
increase of the derived alignment index with a concurrent decrease of the orientation index. Furthermore, two 
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intersecting fiber families with a perpendicular orientation around the Langer line arise. This strongly suggests 
the presence of a transition from the papillary to the reticular dermis.

Results and discussion
Fiber image network evaluation algorithm (FINE algorithm).  We develop a general method for 
classification of fiber families in fiber-reinforced materials, Fiber Image Network Evaluation Algorithm (FINE 
algorithm). In order to explain the algorithm, we use an artificial fiber image, shown in Fig. 1(a). Artificial, 
grayscale fiber images are created using a Monte-Carlo procedure that allows us to control the number of fiber 
families, their amplitudes and their fiber distributions.

In the FINE algorithm, the number N, the mean orientations θ̄i , the amplitudes ai and the dispersion bi of 
fiber families, based on the cumulative orientation distribution (COD) of an input fiber image, are identified. 
We obtain the COD by applying the adaptive Fourier filter method (AF method), as proposed by Witte et al.23, 
to a fiber image. Exemplary, this is shown for an artificial, grayscale Monte-Carlo fiber image in Fig. 1(b). The 
proposed AF method provides the variance σ of the COD, which we use in the FINE algorithm as termination 
criterion.

We use the sigmoid function of Eq. (5) to model the COD of one fiber family. This sigmoid function has a step 
at the mean orientation angle θ̄ , a steepness given by the dispersion b of the fibers around its mean orientation 
and a height given by the amplitude a . Furthermore, the analysis of N fiber families in the fiber image is realized 
by modeling the COD as a sum of N sigmoid functions [Eq. (8)]. The number N of fiber families is iteratively 
determined by the FINE algorithm. The FINE algorithm starts with the most trivial assumption of a completely 
isotropic fiber distribution. Such a distribution is described by a straight line with slope 1°/180° in the COD. 
Thus, the first step in the algorithm is to check for an isotropic distribution by evaluating the R2 value of the 
straight line. Exemplary, this is shown in Fig. 1(c) for the artificial Monte Carlo generated fiber image of Fig. 1(a). 
In Fig. 1(c), the ideal isotropic fiber distribution is represented by a red, straight line. In the FINE algorithm, a 
fiber distribution is considered as isotropic for a fit quality better than R2 = 0.9916 . In our example, R2 = 0.92 
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Figure 1.   Schematic representation of the FINE algorithm. (a) Exemplary Monte-Carlo simulated fiber 
image with 300 isotropically distributed fibers and two aligned fiber families, each containing 175 fibers 
(θ̄2 = 40◦ and θ̄2 = 160◦; b2 = b3 = 0.18) . (b) The angular orientation distribution I(θ) is achieved 
according to Witte et al.23. (c) As a first step the cumulative orientation distribution (COD) is checked for 
isotropy as the R2 value of a straight line with slope 1/180◦ is examined. (d) Fit of a single step function to model 
one fiber family ( S1 Eq. (8)) to the COD. (e) Difference between the COD and S1 with subsequent peak finding. 
(f) Fit of two fiber families using a series of two sigmoid functions (S2) . (g) Difference between the signal COD 
and S2 with subsequent peak finding. (h) Final fit of three fiber families using a series of three sigmoid functions 
S3 . (i) Final difference between the COD and S3 . Since no significant residuals are present, the algorithm 
terminates. (j) Summary of the fit parameters of the three fiber family fit S3 . Two highly aligned fiber families in 
addition to one isotropic fiber family are identified.
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indicates the presence of at least one fiber family, and the first sigmoid function (Eq. (8) with N = 1) is fitted to the 
COD. The resulting fit of a single fiber family is shown in Fig. 1(d). The quality of the fit increases to R2 = 0.964 . 
However, the difference between the single sigmoid fit and the COD, shown in Fig. 1(e), is larger than 3σ. For 
the FINE algorithm, this is the criterion to consider an additional fiber family. Now, the angular location of the 
largest deviation between COD and fit is considered as new starting value for the additional fiber family. The 
corresponding fit of a series of two sigmoid functions (N = 2) is shown in Fig. 1(f). Although a better goodness 
of the fit with R2 = 0.996 is reached, the corresponding residual, as shown in Fig. 1(g) indicates the existence 
of another significant amplitude. Again, we employ the location of the highest deviation between fit and COD 
as initial location for a third sigmoid function (N = 3). In our fiber image simulation example the COD and 
the fit are presented in Fig. 1(h). We now obtain R2 = 1 , and the residual between fit and COD is within the 3σ 
criterion (Fig. 1(i)). This terminates the FINE algorithm.

The fit parameters received from the FINE algorithm, shown for our example in Fig. 1(j), are now used to 
evaluate the structure of the fiber network. In our fiber image, a small dispersion coefficient of b1 = 0.04 indicates 
that this fraction of fibers is isotropically distributed. Fiber families 2 and 3 are highly aligned with b2 = 0.15 
and b3 = 0.14 . The amplitudes ai are a measure for the fraction of each fiber family with respect to the whole 
fiber network. The amplitudes show that the aligned fiber families 2 and 3 exhibit a similar fiber fraction within 
the network (a2 = 0.42 and a3 = 0.37). In contrast, the isotropic fiber family 1 contributes less with a1 = 0.21 . 
Since we used a Monte-Carlo generated fiber image as input in our example, the determined parameters found 
by FINE algorithm can be compared to the preset values of the Monte Carlo simulation. For our example, we 
find that the dispersion coefficients of fiber families 2 and 3 calculated by the FINE algorithm underestimate 
the Monte-Carlo input value of b = 0.18 , indicating a broadening of the distribution of aligned fibers. Prede-
fined mean orientations of the highly aligned fiber families with θ̄2 = 40◦ and θ̄3 = 160◦ are reproduced with 
θ̄2 = 37.4◦ and θ̄3 = 159.6◦.

In order to evaluate the FINE algorithm, we generate Monte-Carlo fiber images with systematically modified 
properties and compare preset fiber network parameters with the network parameters calculated by the FINE 
algorithm.

FINE evaluation using Monte‑Carlo images.  Our general expectation to a fiber distribution includes 
isotropic as well as aligned parts. The quantification of both parts is crucial in order to identify an anisotropic 
material behavior. Since the FINE algorithm calculates the dispersion as well as the amplitude of each fiber 
family, we are analyzing its ability to discriminate the aligned part from the isotropic part. In order to control 
the aligned part of our Monte-Carlo images, we define the anisotropic ratio of fibers (ARF) of our Monte-Carlo 
simulated images. The ARF measures the number of fibers contributing to an aligned fiber family relative to the 
total number of sampled fibers.

Anisotropic ratio of fibers.  Monte-Carlo images with two fiber families, one isotropic and one highly 
aligned family are created. In the process, we use a constant number of 200 isotropically distributed fibers, 
together with a variable number of highly aligned fibers as anisotropic part. The maximum number of aligned 
fibers is limited to 200 (ARF = 0.5), whilst zero aligned fibers ensure a pure isotropic distribution (ARF = 0). A 
total of 104 images are generated to guarantee a high statistical accuracy of the result. Exemplary Monte-Carlo 
images with a different ARF are shown in Fig. 2(a). Figure 2(b) shows the calculated local fiber orientation in 
false colors. Color-coded fiber angles visually coincide well with the expected angles.

For quantitative evaluation, we measure different parameters of the FINE algorithm as a function of the 
ARF. The mean number of total fiber families Ntot , the mean number of anisotropic fiber families Nalign and the 
mean number of isotropic fiber families Niso identified by the algorithm are shown in Fig. 2(c). As expected, the 
mean number of isotropic fiber families constantly remains at a mean value of Niso = 1 . Contrary, its standard 
deviation first increases to maximum of 0.25 at a ratio of ARF = 0.12 and then decreases to a constant value of 
∼ 0.05 for a fraction larger than ARF > 0.35 . The mean number of identified aligned fiber families increases 
from near zero at a vanishing anisotropic part to a value of Nalign = 1 for a ratio of ARF ≥ 0.163 . The deter-
mined mean orientation θ̄ of the aligned fiber family exhibits an absolute deviation to the reference angle of 
�θ̄ = (2.4± 2.5)◦ . Next, we determine the probability that the FINE algorithm identifies exactly one isotropic 
and one highly aligned fiber family, which is shown in Fig. 2(d). The accuracy rapidly increases with the num-
ber of aligned fibers. At a ratio of ARF = 0.163 , a 90% accuracy for the identification for one isotropic and one 
aligned fiber family is reached. For ARF ≥ 0.163 , the error of the calculated mean orientation θ̄ of the aligned 
fiber family decreases to �θ̄ = (2.0± 1.9)◦ . The mean amplitude of the aligned fiber family increases from near 
zero at a vanishing ARF to 0.6 at ARF = 0.5 (Supplementary Fig. 1(a)). Remarkably, the calculated amplitudes 
are overestimating the anisotropic ratio. Since grayscale images are created, where fiber intensities are added to 
the image, the overlay of multiple fibers causes an artifact in the angular orientation distribution18. Additionally, 
isotropic fibers that are by chance oriented in the direction of the aligned fiber family might further raise the 
intensity of the aligned fiber family.

Furthermore, the dispersion of the aligned fiber family constantly increases with the ARF but remains under-
neath the predefined value of b = 0.18 (Supplementary Fig. 1(b)). This indicates a broadened angular width of 
the aligned fiber family with respect to its defined value. The deviation to the reference most likely originates 
from the significant angular overlap between both fiber families, such that fibers either contribute to the aniso-
tropic or the isotropic part. A very high mean goodness of the fit of R2 = 0.999± 0.001 indicates a very good 
representation of the COD by the FINE algorithm.
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Multiple aligned fiber families.  Another important evaluation aims to capture the performance of the 
FINE algorithm to identify multiple non-overlapping highly aligned fiber families. To ensure a clear angular sep-
aration of each created fiber family, a minimum angular distance between adjacent families has to be enforced. 
In order to find a good estimate for the minimum angular distance, the ability of the algorithm to separate two 
equally dispersed families from each other is investigated. Supplementary Fig. 2(a) shows the mean number of 
identified fiber families for Monte-Carlo images with two equally dispersed fiber families as a function of their 
alignment and their angular distance. If the angular distributions of both fiber families are exceeding a critical 
angular overlap, as exemplary shown in Supplementary Fig. 2(b) and (c) the FINE algorithm identifies a single 
fiber family. A clear separation of both families can be accomplished by a vanishing angular overlap, which is 
ensured for a minimum angular distance of 30° and a high alignment of b > 0.16 (Supplementary Fig. 2(d)).

We generate Monte-Carlo images containing up to five highly aligned fiber families, that are exemplary 
shown in Fig. 3(a). The number of fibers contributing to one fiber family as well as their dispersion are held 
constant. The calculated local fiber orientations are shown in false colors in Fig. 3(b). The COD is modeled with 
R2 = 0.999± 0.002 . Mean orientation angles of each aligned fiber family are found with a high accuracy as the 
absolute deviation to the reference mean orientations amounts to �θ̄ = (0.7± 0.5)◦ . The ratio of images where 

a

b

c

d

Figure 2.   Result of the FINE algorithm as a function of the anisotropic ratio of fibers (ARF) of Monte-Carlo 
simulated fiber images. (a) Representative Monte-Carlo images with a different ARF. Mean orientations of the 
aligned fiber families are indicated by arrows in the bottom, left corner. (b) Calculated local main orientation 
in false colors. (c) Mean number of fiber families Nalign (aligned), Niso (isotropic) and Ntotal (total) that were 
identified by the algorithm. Error bars represent the standard deviation. (d) Accuracy of the algorithm to 
identify exactly one aligned and one isotropic fiber family.
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the predefined number of fiber families is identified, decreases from 99.7% in case of one and two predefined 
fiber families down to 87.0% in case of five predefined fiber families (Fig. 3(c)). The mean number of identified 
fiber families matches the number of predefined fiber families for Monte-Carlo images with up to four fiber 
families. With an increase of fiber families, the probability to wrongfully identify the network as an isotropic 
network increases, since an infinite number of fiber families yields an isotropic network. The amplitude of each 
identified fiber family as well as expected amplitudes 1, 0.5, 0.33, 0.2 are shown in Fig. 3(d). Mean amplitudes 
are found to closely match the expected values.

Dermal collagen fiber network.  Collagen fibers represent the major load-bearing component of connec-
tive tissue such as the dermal skin layer16,24,25. Contrary to the straight fibers that are sampled in our artificial 
Monte-Carlo images, collagen fibers are wavy and bended17 Compared to the angular orientation distribution of 
a network of straight fibers, the angular orientation distribution of a wavy and bended fiber network is broad-
ened. Since the FINE algorithm processes the entire angular orientation distribution of an image, the waviness of 
fibers does not influence the algorithms accuracy. We capture the second harmonic generation (SHG) signal of 
dermal collagen fibers by using multi-photon microscopy, which is a common tool to visualize collagen fibers of 
human skin in-vivo26,27. We apply the FINE algorithm to an in-vivo depth scan of the SHG signal of dermal colla-
gen in human skin. Depths from 60 µm up to 105 µm relative to the skin surface are measured. Mean orientation 
angles, amplitudes and dispersions of identified fiber families are evaluated. Additionally, derived parameters, 
which quantify the entire orientation distribution are calculated. The orientation index (OI) describes the global 
alignment of the fibers with respect to their main orientation based on the angular orientation distribution28. 
Contrary, we define the alignment index (AI) as a measure of the global alignment of the fibers, independent 

a

b

c d

Figure 3.   Result of the FINE algorithm applied to Monte-Carlo simulated grayscale fiber images containing 
one to five fiber families. (a) Representative images with one to five fiber families. Mean fiber orientations are 
indicated by arrows in the bottom, left corner. (b) Calculated local main orientation in false colors. (c) The mean 
number of fiber families estimated by the algorithm. Error bars represent the standard deviation. The percentage 
of images for which the number of estimated fiber families matches the number of defined fiber families 
is specified at the top. (d) The amplitudes of each identified fiber family. Error bars represent the standard 
deviation. Expected amplitude levels at 1, 0.5, 0.33, 0.2 are marked with dotted lines. Note that amplitudes below 
a value of 0.01 are removed for the sake of clarity.
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from their main orientation. Assume N identified fiber families with amplitudes ai and dispersion parameter bi . 
The AI then reads as:

b′i represents the normalized dispersion coefficient with normalization quantities bmin and bmax . For example, 
a fiber network of two highly aligned fiber families that are arranged perpendicular to each other exhibit an OI of 
zero and an AI of one. We further illustrate the difference between the OI and the AI in the Supplementary Fig. 3.

Figure 4 summarizes the result of the FINE algorithm as well as the corresponding parameters as a func-
tion of dermal depth. In general, two fiber families are identified. The weighted mean orientation of both fiber 
families, shown in Fig. 4(b), fluctuates around 90°, which coincides with the direction of the so called Langer 
lines29. Langer lines are the main tension lines of human skin, that were correlated to a preferred orientation of 
collagen in ex-vivo experiments30–32. At a depth of 60 µm, fiber family 1 dominates the fiber distribution with an 
amplitude that is 3.2 times stronger as compared to fiber family 2, shown in Fig. 4(c). With increasing depth, the 
amplitudes of both fiber families evolve to similar values. The measured dispersions, that are shown in Fig. 4(d), 
reveal a different degree of alignment between both families at 60–80 µm of depth. Note that, at a depth of 60 µm 
and 65 µm, high dispersion values, b2,3 ≥ 0.2 , are measured. This is favored by a low fraction of fibers, a ≤ 0.2 , 
contributing to fiber families 2 and 3. Below a depth of 80 µm, the dispersion of both fiber families is identical. 
The mean alignment of the fiber network, measured by the AI, continuously increases with depth (Fig. 4(e)). 
Contrary, the OI first increases until a depth of 75–80 µm and then decreases to a value of nearly zero at 105 µm. 
This is visually expressed by local fiber orientations covering almost the full angular half space (Fig. 4(e) and 

(1)AI =

N∑

1

ai · b
′
i with b′i =

bi − bmin

bmax − bmin
.

a

b c d e f

g

h

i

Figure 4.   Results of the FINE algorithm of in-vivo multi-photon SHG images as a function of skin depth. 
(a) Location of the measurement and origin of the coordinate system. (b) Mean orientation angles θ̄i of the 
identified fiber families. (c) Amplitudes ai of each identified fiber family. (d) Dispersion parameter bi of each 
identified fiber family. Error bars represent the 95% confidence intervals. (e) Derived parameter AI (alignment 
index) and OI (orientation index) as a function of depth. (f–i) Exemplary SHG images (left) and the local fiber 
orientation shown in false colors (right). The color wheel shows the assignment of each color.
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(f)). Below a depth of 80 µm, the color variety of local orientations reduces (Fig. 4(h)). At a depth of 105 µm, the 
large majority of fibers is visualized in green and blue/purple representing fiber orientations fluctuating around 
mean values of θ̄1 = 44.4◦ and θ̄2 = 142.8◦.

The collagen fiber network of soft tissue is in general not isotropic and expresses a preferred orientation5,33,34. 
In human skin, the preferred orientation is supposed to coincide with the main tension lines of skin, e.g. the 
Langer lines, which was confirmed ex-vivo16,30. However, scanning electron microscopy (SEM) and SHG ex-vivo 
experiments failed to support this model35–38.

Our results show that with the newly introduced FINE algorithm a direct analysis of a collagen network 
in-vivo is possible. The quantification algorithm allows to determine the number of fiber families without any 
previous assumptions about the underlying tissue. With increasing depth, mean fiber family orientations align 
perpendicular to each other such that no main orientation is expressed. The transition of the fiber network from 
overall dispersed fibers to aligned fibers at a depth of 80 µm is expressed by all parameters describing the col-
lagen network. We associate this transition with the crossover from the papillary dermis to the reticular dermis, 
which is in line with Neerken et al., who measured the onset of the reticular dermis at a depth of (95± 10)  µm 
at the temple39. The transition is additionally characterized by loose, thin collagen fibers in the papillary dermis 
that form a resilient network of thicker fibers in the reticular dermis40. The fiber status of the papillary dermis 
has been shown to be of main importance in skin aging27,41.

Furthermore, the FINE algorithm might be suitable for the classification of pathological deficiencies that 
impact the collagen fiber network like the Ehlers–Danlos syndrome42. It should be noted that our presented 
measurement serves as a proof of principle study and does not allow for a general conclusion, which would 
require a higher number of samples.

In conclusion, the FINE algorithm was found to be able to reliably quantify the fiber network by determining 
the number of fiber families, their mean orientations, amplitudes, dispersions as well as the orientation index, 
and the alignment index. The newly derived alignment index captures fiber family dependent information about 
the fiber network independently from the widely used averaged orientation index. Combined with in-vivo SHG 
microscopy of dermal collagen, we demonstrate a fully non-invasive and reliable algorithm to obtain meaningful 
insights into the composition of the dermal collagen fiber network. In general, the presented FINE algorithm is 
not limited to the application of dermal collagen. Potential applications might reach from different soft tissues 
to the quantification of any kind of fiber-reinforced material.

Methods
Image processing, Monte-Carlo image generation and curve fitting was realized by using MATLAB43 in conjunc-
tion with the image processing toolbox and the curve fitting toolbox.

Monte‑Carlo fiber images.  The generation of artificial, grayscale fiber images is described in detail by 
Witte et al.23. The orientation angles of fibers, which contribute to a certain fiber family are sampled from a semi-
circular von-Mises distribution with mean orientation θ̄:

where the dispersion parameter k defines the width of the distribution. A large value of k describes a narrow angu-
lar distribution, which corresponds to a high degree of fiber alignment. The Monte-Carlo sampling is repeated for 
each defined fiber family. To achieve a true isotropic fiber distribution, fiber angles are equally distributed across 
the entire angular range [0◦, 180◦] . In addition, every fiber features a width and an aspect ratio, which defines 
its length. As fibers with a very small width were found to produce large errors23, we choose a minimum fiber 
width of 3 pixels. Similar to20,23 we set the maximum fiber width to 10 pixels. The aspect ratio is constrained to the 
interval20,45. Note that uniform fiber geometries (width, length) are used for each Monte-Carlo image. To account 
for different image qualities, we use a random noise factor which defines the amplitude of added speckle noise.

Angular orientation distribution.  We use a Fourier-based method (AF method), as proposed by Witte et 
al.23, to obtain the angular orientation distribution I(θ) of an image Ip(x, y) . Using the method, the power spec-
trum P(u, v) , which is defined as the square of the absolute value of the 2D discrete Fourier transform, is com-
puted. First, coordinates are shifted such that low frequencies are located in the center of the power spectrum. In 
addition, the adaptive filter, which is based on the relative variance of the signal, is applied to the power spec-
trum. As shown by Witte et al.23, most accurate results are obtained by allowing relative variances smaller than 
2.1%. To extract the angular orientation information, the signal of the filtered power spectrum is radially 
summed and normalized. The variance of the angular orientation distribution, �I(θ) , is obtained by propagating 
the variance of the image �Ip

(

x, y
)

=

√

Ip
(

x, y
)

 to the Fourier domain23.
Similar to Witte et al.23, we employ the cumulative orientation distribution C(θ) (COD):

Note that the angular orientation distribution is normalized with 
∑180◦

θ=0 I(θ) = 1 . The variance of the COD, 
�C(θ) , follows from propagating Eq. (3):

(2)P
(

θ; θ̄ , k
)

=
1

πI0(k)
ek cos(2(θ−θ̄ )),

(3)C(θ) =

θ∑

θ ′=0◦

I(θ ′)
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Since the choice of the starting angle of computing the COD [Eq. (3)] is arbitrary, the variance of the COD, 
�C(θ) , has to be independent from θ . Thus, we employ the variance as σ = max(�C(θ)) . Note that within the 
FINE algorithm, σ is crucial for identifying additional, significant fiber families. For further information on the 
calculation of �C(θ) , please refer to23.

Fit model.  We model the COD by using a sigmoid function:

where θ̄ denotes the mean orientation and b the steepness of the step, which is a measure of the fiber dispersion. 
The added terms take care of the semi-circularity of the angular orientation distribution and its characteristic in 
the cumulative orientation distribution. The factor A is chosen such that the employed sigmoid function [Eq. (5)] 
fulfills Scirc(180◦) = 1 for all parameter θ̄ and b . This is given for:

To account for the contribution of multiple fiber families, a series of sigmoid functions is applied:

where N denotes the number of fiber families. The i-th fiber family which exhibits a dispersion bi and a mean ori-
entation θ̄i contributes with an amplitude of ai . We relate the von-Mises dispersion parameter k to the sigmoidal 
dispersion b using a numerical transfer function b(k) , which is shown in Supplementary Fig. 4. For each value of 
k , we sample 104 values from the respective von-Mises function. After calculating the cumulative distribution, 
we fit the sigmoid [Eq. (5)] to obtain the dispersion parameter b . Each datapoint of Supplementary Fig. 4 is cal-
culated from averaging over 100 values. Best results are obtained by splitting the dataset into k < 2 and k ≥ 2 . 
We fit both datasets using a power function c1 · kc2 + c3 with coefficients c1, c2 and c3.

Note that in Witte et al.23, a sigmoid model was proven to provide a more accurate representation of the mean 
orientation and dispersion of one fiber family compared to the classical von-Mises approach12,22. Especially the 
calculation of the dispersion parameter can be significantly improved using the sigmoidal approach. Further 
details on the comparison of both methods can be found in Witte et al.23.

Isotropy criterion.  In order to classify an unknown cumulative distribution function as isotropic prior to 
fit potential fiber families, a criterion similar to the approach of Schriefl et al.22 is used. Since an ideal cumula-
tive distribution function of an isotropic distribution is a straight line with a slope of 1/180°, the initial fit of the 
FINE algorithm (Fig. 1) is used to evaluate the isotropy of the distribution. R2 is used as parameter to measure 
the goodness of the fit. In total 104 images with an isotropic fiber orientation distribution were created using 
the implemented Monte-Carlo method. 95% of the images were considered as isotropic for a threshold value 
of R2 ≥ 0.9916 . Even if an isotropic distribution fails the initial isotropy criterion, the fitted fiber family can be 
classified as isotropic retrospectively. We emphasize, that the isotropy criterion is not used to evaluate the signifi-
cance of additional fiber families. Instead, the variance σ = �C(θ) of the COD is evaluated and used in terms 
of a 3σ criterion in the FINE algorithm.

Level of significance.  The level of significance is controlled by multiplying the variance of the cumulative 
distribution function, �C(θ) , with a factor n . The right choice of n is crucial in order to not over-interpret small 
fluctuations and still capture significant fiber families of the cumulative distribution. To find the factor which 
maximizes the accuracy to determine the number of identified fiber families, Monte-Carlo images that feature 
multiple fiber families (up to three) as well as images with a single, aligned family together with an isotropic 
family were included. To ensure an unambiguous differentiation of neighbored fiber families in the orientation 
distribution, a von-Mises dispersion of k = 10 (b = 0.18) with a minimum distance of 30◦ between neighbored 
families was chosen. Subsequently, the limits nmin and nmax defining the range of significance, in which the cal-
culated number matches the defined number of fiber families, were determined. Each limit was calculated by 
repeatedly applying the implemented fit procedure on the cumulative distribution function while adapting the 
level of significance using a bisection algorithm. The algorithm was terminated as the difference between subse-
quent iterations was smaller than 10−4 . The maximum accuracy of the algorithm was found at n = 3.

Orientation index.  In order to characterize the entire orientation distribution, we evaluate the orienta-
tion index (OI)28 and the novel alignment index (AI). The orientation index is based on the angular orientation 
distribution I(θ):

(4)�C(θ) =

√

√

√

√

θ
∑
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�I(θ ′)2
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A fully isotropic distribution results in a vanishing orientation index, whereas a full alignment of the fib-
ers yields an OI of one. θ̄mean describes the overall mean orientation, which is determined from fitting a single 
sigmoid ( S1 ) to the COD.

Alignment index.  The alignment index (AI) is defined in Eq. (1). Normalization constants bmin and bmax 
define the scale of the AI. The lower limit of the dispersion parameter is defined as bmin = 0.016, which results 
from the transfer function b(k) for k → 0 . bmax corresponds to the maximum dispersion parameter at which the 
AI has a value of one. We consider a family as fully aligned if its dispersion parameter b is equal to 0.26 (k = 20). 
We therefore choose a value of bmax = 0.26 . The defined scale is found to cover a large majority of the measured 
distributions without a saturation.

Local fiber orientation.  The local fiber orientation is achieved similarly to the fan-filter method proposed 
by McLean et al.44. In each pixel the angular distribution contributes to an orientation spectrum. The contribu-
tion of one specific angle θ ′ results from applying the inverse Fourier transform to the fan-filtered discrete Fou-
rier transform of the image. The fan-filter is a wedge-shaped filter, that covers θ ∈ [θ ′ − δθ , θ ′ + δθ] . Contrary 
to McLean et al., we define the fan-filter by computing the fraction of each pixel in the Fourier domain that is 
covered by the angle interval. Hence, we do not need to apply a Gaussian convolution to remove sharp filter 
edges that induce Gibbs artifacts. We use the fan-filter in the frequency domain with a subsequent inverse Fou-
rier transformation for every angle θ ∈ [0◦, 180◦] in 1◦ steps with δθ = 0.5◦ to obtain local orientation spectra 
I(x, y, θ) . Spectra are smoothed using a moving average filter with an angular span of 7◦ . We assign a color to 
each pixel based on the angle at maximum spectral intensity. In agreement with McLean et al.44, in non-fibrous 
areas of the image the amplitude of the RGB color is reduced using the relative intensity of the background-
subtracted pixel. For background subtraction, the Fiji (ImageJ) build-in function subtract background with a 
rolling ball radius of 40 pixels is used45.

Multi‑photon microscopy.  For collagen measurements we use a multi-photon microscope which was 
developed in collaboration with Jenlab GmbH (Jena, Germany)46. To measure the collagen-specific second-
harmonic generation (SHG) signal, a femtosecond ti:sapphire laser (Mai Tai, Spectra-Physics, California, USA) 
adjusted to a wavelength of 820 nm is used in combination with a 410 nm band-pass filter (AQ 410/20 m-2P, 
Chroma Technology Corp., Bellows Falls, VT). The microscope was used at a scan time of 7 s, a constant mean 
illumination power of 50 mW, and a field of view that covers a 220 × 220 µm area at an image dimension of 
512 × 512 pixels.

In order to measure the three-dimensional distribution of collagen, a 3D-stack of in total 10 SHG images 
is recorded at the forehead of a 53 years old male Caucasian. An image slice spacing of 5 µm was chosen. The 
initial depth of the stack resulted from the onset of visible collagen fibers which was at a depth of 60 µm. The 
maximum depth of 105 µm was limited by the decreasing image quality. Depth is measured relative to the skin 
surface which was recorded by measuring the two-photon autofluorescence signal of the uppermost skin layer 
using an excitation wavelength of 750 nm with a (548± 150) nm band pass filter (HQ 548/305 m-2P, Schott AG, 
Mainz, Germany).

This study was conducted according to the recommendations of the current version of the Declaration of 
Helsinki and the Guideline of the International Conference on Harmonization Good Clinical Practice, (ICH 
GCP). In addition, this study was approved and cleared by the institutional ethics review board (Beiersdorf AG, 
Hamburg, Germany). Written informed consent was obtained from the volunteer.
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Chapter 5

Behavior of the Collagen

Network under Load

Biological tissue like skin exhibits a complex material behavior, which is believed to

be related to the collagen network [6, 98, 99]. However, a clear micro-structural inter-

pretation of mechanical properties such as strain-history-dependence, stress-relaxation

and creep is still missing [27, 98]. In this section, methods for analyzing the mechanical

behavior of skin in relation to changes of the collagen fiber network are introduced and

applied to pig skin.

5.1 Stretching Device

To deform skin in a controlled fashion, a custom stretching device is developed. The

stretching device, which is shown schematically in figure 5.1, is designed for use at the

DermaInspect multiphoton microscope. The entire stretching unit is mounted onto a

lifting stage allowing for a precise adjustment of the setup under the objective of the

microscope. A minimum working distance between objective and sample of 2 mm is

ensured by means of a 3D-printed, cylindrical spacer (Form 2, standard black resin,

Formlabs, Somerville, USA), which is mounted to the microscope. At the same time,

the spacer keeps a constant level of water between sample and objective ensuring its

immersion. The sample is clamped between two opposing linear rigs (RK Compact 30,

RK Rose+Krieger GmbH, Minden, Germany) that are controlled by two stepper mo-

tors (ST4209S1006-B, Nanotec Electronic GmbH & Co. KG, Feldkirchen, Germany) to

enable a controlled, bidirectional stretching. To prevent the sample from slippage, the

gripping strength of each clamp is reinforced with two screws. Encoders (WEDS5541-

A14, Nanotec Electronic GmbH & Co. KG, Feldkirchen, Germany) mounted to the

stepper motors are used to establish a feedback loop for the position of the stepper mo-

tors. This ensures that the exact number of predefined steps is executed by the stepper

motors. In addition, any variations of the motor position are monitored. Encoders and
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stepper motors are controlled by two motor control units (C5-E, Nanotec Electronic

GmbH & Co. KG, Feldkirchen, Germany). Force is measured using two independent

force sensors (SML-45N, Interfaceforce e.K., Tegernsee, Germany) in combination with

a 4-channel amplifier (IFFDM4, Interfaceforce e.K., Germany).

Figure 5.1: Schematic setup of the stretching device at the multiphoton
microscope. The multiphoton microscope is represented by the objective lens, which
is enclosed by a 3D printed spacer.

In order to control the stretching setup, a graphical user interface (GUI) was written

in visual basic using the .NET framework. The GUI is shown in appendix figure C.3

and allows the user to perform diverse displacement-controlled mechanical tests such as

simple stress-strain, cyclic stress-strain, stress-relaxation and creep tests. The commu-

nication of the computer with the stepper motors is separated from the communication

with the force amplifier, as shown in figure 5.2. A CANopen protocol is used for com-

municating with the motor control units (C5-E, Nanotec Electronic GmbH & Co. KG,

Feldkirchen, Germany) [100]. A CAN-interface (Ixxat, USB-to-CAN v2, HMS Indus-

trial Networks, Halmstad, Sweden) is used together with an application programming

interface (CANopen Master API, HMS Industrial Networks, Halmstad, Sweden).

Figure 5.2: Communication of the user interface with the stretching device.
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5.1.1 Stretching of Skin

Skin samples used in this work, were punched from a back skin of a female pig acquired

from a local commercial butcher. Figure 5.3 shows an example of the force measured

during stretching of a rectangular 80 mm × 6 mm sample of pig skin. It expresses the

classic non-linear behavior of soft tissue, which was studied extensively in the past

[6, 27, 101]. This mechanical behavior is called hyperelasticity. Several studies, e.g.

including Small Angle X-ray Scattering (SAXS) [10, 102, 103] and SHG imaging [12, 31]

investigated the change of the collagen fiber network due to stretching. Upon stretching,

collagen fibers were found to straighten, then align in the direction of stretching and,

at high strains, slide against each other. However, there is a discussion about the

onset of fiber alignment [12]. Diverse hyperelastic material models to simulate soft

biological tissue like skin using the finite element method (FEM) have been developed

in the past [3, 34]. The orientation of the collagen fiber network for predicting the

material behavior of soft tissue was incorporated into so-called structural models [8,

104] (see appendix A). Besides its hyperelastic properties, however, biological tissue

exhibits additional, viscoelastic properties, for which there is neither a micro-structural

interpretation nor a material model considering the collagen fiber network [3].

Figure 5.3: Measured force acting on skin due to stretching. The sample was
stretched with a strain rate of 60µm/s using the stretching device of figure 5.1.

5.1.2 Cyclic Deformation of Skin

Cyclic sequences of stretching and relaxation of biological samples reveal its history-

dependent mechanical behavior. Using the stretching device, a sample of skin is pe-

riodically deformed according to the protocol shown in figure 5.4 (a). The measured

force as a function of stretched distance is shown in figure 5.4 (b). The force expresses

a hysteretic behavior. This is accompanied by a reduction of the measured force with

every deformation cycle, which is referred to as preconditioning effect [27, 105].
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Figure 5.4: Cyclic stretching and relaxation of a pig skin sample. (a) De-
formation protocol consisting of four repeated cycles of stretching and relaxation at a
deformation rate of 60µm/s. (b) Measured force of each deformation cycle acting onto
the sample. Curves are plotted in false colors according to their deformation cycle.

5.2 Stretching of Skin with Simultaneous Imaging of

Collagen Fibers

In order to relate the micro-structural changes of the collagen network to the macro-

scopic mechanical behavior of skin, stretching experiments are combined with the Der-

maInspect multiphoton microscope. Tensile, strain-controlled, mechanical tests with

four consecutive cycles of repeated stretch and relaxation are performed according to

the protocol in figure 5.3 (a). Images at a resolution of 512 × 512 pixels are recorded

with a mean scan-time of (2.63±0.06) s every 3 s to ensure a reliable sequence of consec-

utive image acquisition and data storage. The water-immersion objective with a 20×
magnification (XLUMPlanFl 20x/0.95, Olympus, Tokio, Japan) is used to capture a

440 × 440µm field of view. Due to scanning-mirror induced artifacts, 100 pixels are

excluded from the left boundary of the image. To keep the image quadratic, the upper

100 pixels are excluded as well, resulting in a 354× 354µm field of view. During mea-

surement, the piezo element of the microscope is used to adjust residual displacements

in the direction of the optical axis. Distorted images are omitted from quantitative

analysis.

As reported in literature, collagen fibers orient in the direction force [10, 12]. To mea-

sure the fraction of fibers that are oriented along the direction of force, the OI (equation

(4.3)) is redefined by replacing the mean orientation Ī(θ) with the direction of force
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(90◦):

OI = 2

∑180◦

θ=0◦ I(θ) cos2(θ − 90◦)∑180◦

θ=0◦ I(θ)
− 1. (5.1)

5.3 Results and Discussion

The results are presented and discussed in detail in a paper submitted to Scientific Re-

ports. The submitted version is shown in section 5.4. The main findings of the paper

are briefly summarized here.

A maximum alignment of collagen fibers is observed at 16− 18 % sample stretch indi-

cated by the AI (equation (4.4)). This is consistent with the literature, where collagen

fibers are reported to straighten first before they start to bear load [3]. However,

Bancelin et al. [12] observed a concurrent increase of the OI with the force uptake.

This is verified by an OI (equation (5.1)), which constantly increases with force. Thus,

the FINE algorithm is able to separate the fibers alignment within their fiber families

from their orientation into the direction of force. The maximum orientation of the

collagen network is found to be determined by the largest strain, and does not increase

with additional stretching cycles.

Repeated deformation reveals a different behavior of an isotropic and an anisotropic

skin sample. The isotropic and the anisotropic sample are identified due to their initial

collagen fiber network prior the first stretching cycle. The alignment of the collagen

network of the isotropic sample increases continuously in the relaxed state with each

deformation cycle. After two deformation cycles, its AI and OI fluctuate around values

of 0.3 and 0.5, respectively. In contrast, the collagen network of the anisotropic sample

has an AI fluctuating around the value of 0.3 throughout the entire deformation pro-

cedure. The approximation of the AI between both samples is found to be correlated

with the relative force reduction at maximum stretches between consecutive deforma-

tion cycles.

In conclusion, the permanent orientation of the collagen fiber network is related to the

presence of an isotropic fiber family. Once fibers of the isotropic sample are aligned af-

ter two deformation cycles, both samples exhibit a similar microscopic and macroscopic

behavior. This proof of principle study reveals that the multiphoton stretching device

in combination with the FINE algorithm allows for a detailed micro-structural inter-

pretation of the mechanical properties of biological tissue or any kind of fiber-reinforced

material.
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ABSTRACT

Complex tissue morphologies as found in dermal collagen were studied by second harmonic generation imaging and by
applying the Fiber Image Network Evaluation (FINE) algorithm to characterize the tissue fiber network. The change of the
dermal collagen fiber orientation in skin due to cyclic stretching and relaxation sequences was investigated with a dedicated
multiphoton stretching device. We find that the alignment index maximizes at 16−18% sample stretch. Families of collagen
fibers are found to form a partially aligned collagen network under strain. We find that the relative force uptake is accomplished
in two steps. Firstly, fibers align within their fiber families and, secondly, fiber families orient in the direction of force. The
maximum alignment of the collagen fiber network is found to be determined by the largest strain. Repeated deformation of
skin reveals a different micro-structural behavior of isotropic and anisotropic samples leading to similar force uptakes after two
stretching cycles. Our method enables the possibility to study the correlation between mechanical properties and morphologies
in collagen fiber networks.

Introduction
Skin is the largest organ of the human body and it is responsible for the bodys protection towards external factors. In our daily
life skin is able to undergo large strains of up to 30%1. Collagen fibers are known to determine the mechanical properties of
skin and are also one of its main constituents2–5. Upon stretching of skin, fibers straighten, align in the direction of force and, at
high strains, slide against each other6, 7. There is a discussion about the onset of fiber alignment in the literature3. It is assumed
that the unstressed orientation distribution of the dermal collagen fiber network defines the anisotropic mechanical behavior of
skin8, 9. Furthermore, diverse viscoelastic properties such as creep, stress relaxation, strain history-dependence, and strain-rate
dependence are believed to depend on the collagen fiber network10–15. Indeed previous second harmonic generation (SHG)
imaging16 at different stretching states has shown that the fibers orient along the force direction3, 7. However, a microstructural
interpretation of the observed changes of collagen networks requires a suitable approach to measure and characterize complex
fiber reinforced materials.
In order to understand the properties of the dermal collagen fiber network under cyclic loads, we use a dedicated multiphoton
stretching device and determine the network properties by the Fiber Image Network Evaluation (FINE) algorithm. The FINE
algorithm evaluates the number of fiber families, their angular properties, and the alignment index. It is based on the cumulative
orientation distribution17 and was successfully applied to a stack of in-vivo SHG images of human dermal collagen18. Here,
we present a method allowing for SHG imaging, while simultaneously deforming the sample. On each image representing a
specific strain state, the FINE algorithm is applied to obtain detailed information about the orientation of the collagen fiber
network18.

Results and Discussion

Sample Stretching and Imaging
Two rectangular samples originating from the same dorsal pig skin are investigated. The multiphoton stretching device that
is used for deforming the skin, while simultaneously capturing the collagen fiber network, is visualized in Fig. 1 (a) and
Supplementary Fig. 1. The deformation protocol is shown as an example in Fig. 1 (b). Four consecutive cycles of repeated
stretching and relaxation with maximum stretches of 25% are applied. This range of strain is reported to represent the
physiological situation1. To ensure a reliable sequence of image acquisition and storage, images are recorded every 3s with a
mean scan time of (2.63±0.04)s. By using a rather low strain rate of 0.075%/s, compared to other studies5, 15, the variation of



strain during image acquisition is assumed to be negligible.

Figure 1. Experimental set-up and deformation protocol. (a) Schematic illustration of the multiphoton microscope
stretching device. (b) Deformation protocol consisting of four repeated cycles with successive stretching and relaxation.

The collagen fiber network at minimum and maximum strain is shown for an exemplary sample in Fig. 2 (a)-(i) as a function of
the deformation cycle number. The measured averaged force acting onto the sample is shown in Fig. 2 (j). SHG images in Fig.
2 (a)-(i) are processed to visualize the local orientation of collagen fibers in false colors.
As shown in Fig. 2 (a), the orientation of the collagen fibers initially occupies the entire angular range from 0◦ to 180◦. At
maximum stretch of the first cycle, the fibers in Fig. 2 (b) orient along the direction of force (90◦) with a variation of ±45◦.
After complete relaxation of the sample, the thick fiber bundle originally oriented along the 110◦ direction have disappeared
(Fig. 2 (c)). Compared to the initial state in Fig. 2 (a), the fraction of fibers that are aligned along the force direction has
strongly increased as visible by the enhanced amount of blue colors. At maximum stretch of the second deformation cycle (Fig.
2 (d)), the fraction of oriented fibers is further increased compared to Fig. 2 (b). The fraction of oriented fibers further increases
after the second deformation cycle in Fig. 2 (e), compared to Fig. 2 (c). This trend continues after the third and the fourth
deformation cycle in Fig. 2 (g) and (i), respectively. Repeated stretching of the sample seems to have little effect on the local
fiber orientation at maximum stretch, as seen in Fig. 2 (f) and (h).

Adaptation of the FINE algorithm to stretching
We use the FINE algorithm to obtain detailed, quantitative information about the collagen fiber network at each state of the
deformation protocol.
The FINE algorithm determines the number of fiber families N and their angular properties in terms of their mean orientations
θ̄i, their amplitudes ai and their dispersion parameters bi. The dispersion parameter b describes the spread of fiber angles
around their main orientation and increases with fiber alignment. To measure the overall alignment of the fiber network, we
evaluate the alignment index (AI)18:

AI =
N

∑
1

ai ·b′i b′i = (bi−bmin)/(bmax−bmin), (1)

where bmin = 0.016 and bmax = 0.26 define the scale of the AI18. In addition, we make use of the orientation index (OI) to
quantify the fraction of fibers that is oriented along the force direction of 90◦:

OI = 2
∑180◦

θ=0◦ I(θ)cos2(θ −90◦)

∑180◦
θ=0◦ I(θ)

−1, (2)

where I(θ) denotes the angular orientation distribution, which is achieved by a Fourier-based method17. Note that the common
definition of the OI uses the main orientation Ī(θ) of the fiber network19. We are analyzing two different samples of skin. In
the process, we compare FINE parameters of an isotropic collagen fiber network to which refer as isotropic sample and a skin
sample exhibiting an aligned fiber network to which we refer as the anisotropic sample. With this labelling we describe the
initial collagen fiber network prior to the first stretching cycle. Note that Fig. 2 shows the isotropic skin sample.
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Figure 2. Evolution of the local collagen fiber orientation of a skin sample due to repeated stretching and relaxation.
(a) Local fiber orientation prior deformation of the sample shown in false colors. The sample is stretched in the 90◦ direction as
indicated by the arrow. (b) Local fiber orientation at maximum stretch of the first deformation cycle. (c) Local fiber orientation
at maximum relaxation of the first deformation cycle. (d) Local fiber orientation at maximum stretch of the second deformation
cycle. (e) Local fiber orientation at maximum relaxation of the second deformation cycle. (f) Local fiber orientation at
maximum stretch of the third deformation cycle. (g) Local fiber orientation at maximum relaxation of the third deformation
cycle. (h) Local fiber orientation at maximum stretch of the fourth deformation cycle. (i) Local fiber orientation at maximum
relaxation of the fourth deformation cycle. (j) Averaged force acting on the sample, measured by the force sensors as a function
of the deformation cycle.

Collagen Fiber Network upon Stretching
The OI and the AI of the isotropic sample are shown in Fig. 3 (a) as a function of the deformation cycle number. The measured
force is displayed in Fig. 3 (b). The isotropic sample is characterized by an initial OI of 0.05 and an AI of 0.16. This indicates
an isotropic fiber network, where a negligible fraction of fibers is oriented along the direction of force. Upon stretching, both
quantities increase until the OI reaches a maximum value of 0.50 at maximum sample stretch. This agrees with the local fiber
orientation of Fig. 2 (b), where aligned fibers still express a considerable angular range. The AI reaches its highest value of
0.32 at 16% of maximum stretch. Compared to their initial values, the OI and the AI are significantly increased after relaxation
as they amount to 0.31 and 0.15, respectively. This trend continues throughout the additional deformation cycles until the OI
and the AI fluctuate permanently around values of 0.48 and 0.30, respectively. This is visually in line with the local collagen
fiber orientation of Fig. 2 (e)-(i), which hardly differ from each other after two deformation cycles. This suggests that collagen
fibers of the isotropic sample are not relaxing to their initial orientation.
The OI and the AI of the anisotropic sample are shown in Fig. 3 (c) as a function of the deformation number. The corresponding
measured force is displayed in Fig. 3 (d). The aligned network is characterized by an OI of 0.31 and an AI of 0.32 in the initial
state. This OI additionally indicates that a non-vanishing fraction of fibers aligned along the direction of force before the initial
stretching cycle. Stretching the anisotropic sample increases the AI to a local maximum of 0.44 at 18% sample stretch. The OI
first decreases, but then maximizes locally to 0.40 at maximum stretch. Similar to the isotropic sample, the collagen fibers first
align themselves and then orient into the direction of stretch during the first deformation cycle.
This is in line with the literature, where collagen fibers are reported to first orient themselves into the direction of stretch and
then start to bear load20, 21. The observations of Bancelin et al., who measured a simultaneous increase of the OI with sample
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Figure 3. Derived parameters of the FINE algorithm applied to the collagen fiber network of the isotropic and the
anisotropic sample under repeated stretching and relaxation. (a) Orientation index (OI) and alignment index (AI) of the
collagen network of the isotropic sample as a function of the deformation cycle number. Data points with error bars indicating
the 95% confidence intervals are shown in grey. Solid lines represent smoothed data points. (b) Averaged force acting on the
isotropic sample measured by the force sensors as a function of the deformation cycle number. (c) OI and AI of the collagen
network of the anisotropic sample as a function of the deformation cycle number. (d) Averaged force acting on the anisotropic
sample measured by the force sensors as a function of the deformation cycle number.

stretch, are also verified3. Repeated stretching and relaxation is found to decrease the ability of the collagen network to orient
along the direction of force. This is indicated by a continuously decreasing amplitude of the OI for both samples.

To analyze the micro-structural differences between both samples in detail, we track the amplitudes and dispersions of fiber
families which are identified by the FINE algorithm. These are shown for both samples in Fig. 4.
The measured force of the isotropic sample is shown in Fig. 4 (a). Amplitudes and dispersion parameters of the identified
fiber families are plotted in 4 (b) and 4 (c), respectively. Throughout the entire deformation protocol, the isotropic sample is
characterized by two collagen fiber families. The dispersion parameter of fiber family 1 falls below the threshold of an isotropic
distribution except for a few data points located at maximum relaxation of the first deformation cycle. Fiber family 2, however,
strongly fluctuates within the domain of a high alignment up to dispersion parameter values of 0.3. In the initial, unstressed
state, 70% of the fibers are contained in the isotropic fiber family 1. The corresponding measured force of the anisotropic
sample is shown in 4 (d). Amplitudes and dispersion parameters of the identified fiber families are plotted in 4 (e) and 4 (f),
respectively. The collagen network of the anisotropic sample is characterized by two aligned fiber families. In the initial state
before the first stretching cycle both fiber families have equal amplitudes and equal dispersion parameter values of 0.10 and
0.09. Upon stretching, we find a similar behavior for both samples. Fibers migrate from fiber family 1 to fiber family 2 with an
periodically oscillating amplitude maximizing to ∼ 60%. One fiber family is oriented along the force direction as indicated by
the OI of Fig.s 3 (a) and (c) increasing upon stretching. Furthermore, the dispersion parameter of fiber family 2 of the isotropic
sample increases continuously in the relaxed state being responsible for its permanently increased AI.

Morphological Changes and Mechanical behavior upon Stretching
The AI of both skin samples is related to their respective mechanical behaviors in Fig. 5. The AI of both samples is shown
in Fig. 5 (a). As pointed out before, the AI of the anisotropic sample constantly fluctuates around a value of 0.3, while the
collagen network of the isotropic sample approaches this value after two deformation cycles. As shown in Fig. 5 (b) and
in Supplementary Fig. 2, the force at maximum stretches decreases for samples with each deformation cycle, which is in
line with stress strain curves measured in literature4, 5, 15. This altered mechanical response of soft tissue due to repeated
deformation cycles is referred to as preconditioning effect22. In capsular ligaments Quinn et al.23 correlated this effect with
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a permanent alignment of collagen fibers along the direction of force. Here, we note that for both samples, the degree of
maximum orientation of the collagen network is only determined by the maximum stretch, since the maximum of the OI of
the first deformation cycle is not exceeded by performing additional deformation cycles. A permanent increase of the OI and
the AI of collagen fibers in the relaxed state can be observed in case of the isotropic sample. The alignment of the collagen
networks of both samples becomes identical after two deformation cycles. This is microscopically reflected by the relative
change of the maximum force between each deformation cycle, shown in Fig. 5 (c). The large relative difference of −12%
between maximum forces of the first two cycles of the isotropic sample correlates with the permanent alignment of fibers.
Once fibers align to an AI of 0.3, the relative difference of maximum forces between consecutive deformation cycles becomes
identical for both samples.
In conclusion, we are able to resolve different micro-structural variations of the collagen fiber network of skin, that are related

Figure 4. FINE algorithm parameters of the collagen fiber families of the isotropic and the anisotropic sample under
repeated stretching and relaxation. (a) Averaged force acting on the isotropic sample, measured by the force sensors as a
function of the deformation cycle number. (b) Dispersion parameter b of each fiber family identified by the FINE algorithm in
the isotropic sample as a function of the deformation cycle number. Data points with error bars indicating the 95% confidence
intervals are shown in grey. Solid lines represent smoothed data points. Note that, a third fiber family is identified in a
negligible fraction of images (≤ 1%). For the sake of clarity, parameters of this fiber family are not shown. The line at
b = 0.05 indicates the threshold value below which a fiber family is considered as isotropic. (c) Amplitude of each fiber family
identified by the FINE algorithm in the isotropic sample as a function of the deformation cycle number. (d) Averaged force
acting on the anisotropic sample, measured by the force sensors as a function of the deformation cycle number. (e) Dispersion
parameter b of each fiber family identified by the FINE algorithm in the anisotropic sample as a function of the deformation
cycle number. (f) Amplitude of each fiber family identified by the FINE algorithm in the anisotropic sample as a function of the
deformation cycle number.
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Figure 5. Relation between measured force and orientation of the collagen fiber network. (a) Alignment index of the
isotropic sample and the anisotropic sample as a function of the deformation cycle number. (b) Relative maximum force
applied to the isotropic and the anisotropic sample as a function of the deformation cycle number. (c) Relative difference of the
maximum force of each deformation cycle of the isotropic and the anisotropic sample.

to the interplay of its fiber families. Permanent as well as periodic processes of the collagen fiber network due to cyclic
deformations are identified. Furthermore, differences across the samples in terms of their mechanical response are successfully
correlated with their individual collagen fiber networks and thus to skin morphologies. Our proof of principle study opens a
new avenue to investigate biological fiber-reinforced tissue upon mechanical strain. The FINE algorithm in combination with
the multiphoton stretching device represents a sophisticated method to relate micro-structural properties to the macroscopic
mechanical behavior.

Methods

Sample Preparation
A back skin of a female pig was acquired from a local, commercial butcher. Rectangular skin samples were punched with an
orientation parallel to the spine and stored in the freezer at −24◦ until usage. Directly before the experiment, the subcutaneous
fat is cautiously removed using a surgical blade. The skin samples were still frozen to avoid any pre-stress of the collagen
fibers. Additionally, samples are cut to dimensions of (80×6)mm2. Thawed sample were placed between the two clamps with
the dermis pointing towards the multiphoton microscope to image deep dermal layers. Constant hydration of the skin sample
during the experiment was ensured by constantly moistening the samples with water.

Multiphoton Microscope Stretching Device
Multiphoton Microscopy
For second harmonic generation (SHG) measurements we used a multiphoton microscope (DermaInspect) which was developed
in collaboration with Jenlab GmbH (Jena, Germany)24. To measure the collagen-specific second-harmonic generation (SHG)
signal, a femtosecond titanium:sapphire laser (Mai Tai, Spectra-Physics, California, USA) at a wavelength of 820nm was
used together with a 410±10nm band-pass filter (AQ 410/20m-2P, Chroma Technology Corp., Bellows Falls, VT). A water-
immersion objective with a 20x magnification (XLUMPlanFl 20x/0.95, Olympus) captured a 440×440 µm field of view with
a resolution of (512×512)pixels. Images were cropped by 100pixels since the left border was found to suffer from motion
artefacts induced by the scanning mirrors of the microscope.
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Stretching Device
As shown in Fig. 1 (a), samples were clamped into a custom made traction device, which consists of two opposing linear
guide units (RK Compact 30, RK Rose+Krieger GmbH, Minden, Germany) with equipped stepper motors and 45N load
cells (SML-45, Interfaceforce e.K., Germany). The stepper motors (ST4209S1006-B, Nanotec Electronic GmbH & Co. KG,
Feldkirchen, Germany) with encoder (WEDS5541-A14, Nanotec Electronic GmbH & Co. KG, Feldkirchen, Germany) allow
for a minimum step size of 1 µm. The whole set-up was mounted onto a lifting stage to allow for a precise placement under
the object lens of the microscope. To minimize displacements of the imaging plane, the skin samples were constrained in
both directions along the optical axis. The minimum distance to the objective was ensured by a 3D-printed cylindrical spacer
(Form 2, standard black resin, Formlabs, Somerville, USA) that was mounted to the microscope. The spacer further guaranteed
a constant immersion of the objective, since a certain level of water between objective, spacer and the sample was kept. To
avoid a potential sagging of the sample, a 3D-printed supporter was attached to the mounting plate underneath the sample. The
stretching device was checked for sample slippage in preliminary tests.

Tensile Tests with Simultaneous Imaging
We performed tensile, strain-controlled, mechanical tests with four consecutive cycles of repeated stretch and relaxation. For
a simultaneous deformation and imaging of the sample, tensile tests were performed at low strain rate of 0.075%/s. Images
were recorded with a mean scan-time of (2.63±0.06)s every 3s to ensure reliable sequences of consecutive image acquisition
and data storage. Prior deformation, samples were slightly pre-stretched to a force of 0.2N to ensure a uniform starting point.
Although stretching and relaxation were performed bidirectional, a shift of the field of view in the tensile direction could
ultimately not be prevented. We took advantage of the piezo element to adjust residual displacements in the direction of the
optical axis. Distorted images were omitted from quantitative analysis. However, a sufficient number of images was captured at
every point of the deformation curve ensuring a continuous tracking of the dermal collagen fiber network throughout the entire
measurement.

Image Processing
Angular Orientation Distribution
We used a Fourier-based method17 to obtain the angular orientation distribution I(θ) of the unprocessed SHG images. Fourier-
based methods make use of the power spectrum, defined as the absolute square of the Fourier transform of the image, to
calculate I(θ) by means of a radial sum. Within the method, Poissonian photonic noise of the measured SHG image is
assumed17. Measurement uncertainties are then propagated to the Fourier domain. These uncertainties are used to define a filter
by means of a relative error constrain on the power spectrum. In addition, the uncertainty of the angular orientation spectrum,
∆I(θ) is achieved. I(θ) is used for the computation of the orientation index (OI) (equation 2). Since the FINE algorithm18 is
based on the cumulative orientation distribution C(θ) and its uncertainty, ∆C(θ), both quantities were calculated and passed to
the algorithm.

FINE algorithm
The FINE algorithm18 determines the number of fiber families N, their mean orientations θi, amplitudes ai and dispersion
parameters bi. The dispersion parameter b quantifies the spread of angles around their mean orientation. It can be understood
as reciprocal standard deviation, meaning that a large value of b indicates a small spread of angles, i.e. an aligned fiber
family, and vice versa. Within the FINE algorithm, a single fiber family is modelled with a sigmoid function that respects
the semi-circularity of the angular orientation distribution. Fiber families are iteratively added until the deviation between
cumulative orientation distribution, C(θ), and the fitted model is smaller than 3σ = 3∆C(θ)18.

Local fiber orientation
The local fiber orientation was calculated as described previously18. First, the local angular orientation spectra of an image
Ip(x,y) were calculated, denoted as Ip(x,y,θ). Local orientation spectra were achieved from applying the inverse Fourier
transformation to the wedge-filtered Fourier transform of the image. The main local orientation in each pixel indicates the
angle at which the local orientation spectrum reaches its maximum intensity. The color-coded local main orientation was scaled
by the relative intensity of each pixel. To enhance the contrast of fibers, the background signal was removed from the image by
using the function Subtract Background of the open-source platform Fiji25 with a rolling ball radius of 50pixels.
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Chapter 6

Fiber Orientations in Ag:NW

Composites

The AF method and the FINE algorithm were introduced to provide an accurate quan-

tification of the angular orientation distribution of fibrous images without any assump-

tions on the underlying material. Thus, the method is suitable for the application to

any type of scientific image, where the orientation distribution of fibers is of special

interest.

The functional printing of conductive silver-nanowire (Ag-NW) photopolymer com-

posites was introduced recently [4]. Such composites are advantageous in comparison

to other 3D printed composites aiming for electrical conductivity since a high optical

transmittance is ensured. Spherical nanoparticles, for example, which are embedded in

a polymer matrix suffer from agglomeration together with a strong photon absorption

[106, 107]. Spray-coated Ag-NW layers were found to circumvent these problems as

sheet resistances between 10 Ω/sq and 30 Ω/sq at transparencies of around 90 % were

measured [108, 109].

The functional printing of Ag-NW covers a large field of potential applications in elec-

tronics such as a top contact for solar cells or a flexible capacitor [4]. Imaging Ag-NW

with light microscopy reveals a fibrous network containing fibers with a high aspect

ratio of AR = 1000.

The electrical line resistance of Ag-NW composites increases by several orders of mag-

nitude upon mechanical stretching of the material. A relation to its micro-structure is

investigated by using the FINE algorithm of chapter 4 to resolve the properties of the

nanowire network.
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6.1 Stretching of Ag:NW Photopolymer Composites

6.1.1 Image Pre-Processing

Light microscopy is applied to capture the nanowire network. The source images are

pre-processed to allow for a reasonable and reproducible evaluation using the FINE

algorithm. As shown in figure 6.1 (a) source images suffer from a fluctuating intensity

of the present fibers as well as fluctuations of the background signal. Fourier-based

methods are sensitive to the intensity contrast of fibers with respect to the surrounding

background signal [68]. In a first step, microscopy images are converted to greyscale

and cropped to quadratic dimensions. To account for local variations of the background

signal, the local background correction of the Fiji (ImageJ) build-in function subtract

background with a rolling ball radius of 50 pixels is used [94]. The completely pre-

processed image is shown in figure 6.1 (b). The corresponding orientation distribution

as calculated by the AF method (chapter 3) is shown in figure 6.1 (c). The FINE

algorithm identified one isotropic fiber family with a dispersion parameter of b = 0.029±
0.001, shown in figure 6.1 (d).

Figure 6.1: Pre-processing of microscopy images of silver-nanowires com-
posites. (a) Source image of silver-nanowire composites. (b) Pre-processed image that
is used as input for the FINE algorithm. (d) Orientation distribution calculated by the
AF method. (e) Cumulative orientation distribution with the corresponding FINE fit.
One isotropic fiber family is found with a dispersion of b = 0.015± 0.001.
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6.1.2 Stretching Experiments

Ag-NW composites with nanowire concentrations of 40µg/cm2, 80µg/cm2 and 120µg/cm2

are stretched up to 23 %. A total of eight light microscopy images are recorded for each

sample representing stretch states from 3 % to 23 %. The FINE algorithm is applied to

each pre-processed nanowire image to investigate changes of the nanowire network.

6.2 Results and Discussion

The results are presented and discussed in detail in a paper submitted to Small. The

submitted version is shown in section 6.3. The main findings of the submission are

briefly summarized here.

The FINE algorithm identifies one fiber family in each Ag-NW image. Dispersion

parameters indicate that the nanowires are isotropically distributed at any stretch

state for any concentration. At a concentration of 40µg/cm2, fibers slightly align in

the direction of stretch, increasing the OI by a factor of 4.5 at a maximum stretch

of 23 %. In contrast, samples with high concentrations (80µg/cm2 and 120µg/cm2)

keep a constant OI upon stretching. The line resistance, however, strongly increases

upon stretching by factors of 2000, 1000, and 225 at 23 % elongation of the 40µg/cm2,

80µg/cm2 and 120µg/cm2, respectively. Thus, the drastic change of line resistance is

not explained by an alignment of nanowires. Instead, Monte-Carlo simulations reveal

that the line resistance is very sensitive to a decreasing number of nanowire junctions,

which break upon exceeding critical forces.
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Flexible and conductive silver nanowire photopolymer composites are fabricated and studied 

under mechanical strain. The initial resistances of the unstretched flexible composites are 

between 0.27 Ω mm-1 and 1.2 Ω mm-1 for silver-nanowire concentrations between 120 µg cm-

2 and 40 µg cm-2. Stretching of the samples leads to an increased resistance by a factor of 

between 225 for 120 µg cm-2 and 2000 for 40 µg cm-2 at elongations of 23 %. In order to 

correlate network morphology and electrical properties, micrographs are recorded during 

stretching. On these images the Fiber Image Network Evaluation (FINE) algorithm is 

employed to determine morphological properties of the silver nanowire networks under 

stretching. For unstretched and stretched samples, an isotropic nanowire network is found 

with only small changes in fiber orientation upon stretching. Monte-Carlo simulations on 2D 

percolation networks of 1D conductive wires and the corresponding network resistance 

confirm that the elastic polymer matrix under strain exhibit forces acting on the nanowire 

junctions in agreement with Hooke's law. By variation of a critical force distribution the 

experimental data are accurately reproduced. This results in a model explaining the electrical 



  

2 

 

behavior and sensitivity of nanowire-composites with different filler concentrations under 

mechanical strain.  

 

1. Introduction 

 

Functional polymer composites have caught the attention of materials science and industry 

due to their enormous versatility for applications in e.g. medicine, electronics, and functional 

printing.[1–3] Conductive films are of great interest because of their various electronic and 

optical applications in solar cells and OLEDs.[4–6] Silver-nanowire-polymer composites are a 

promising alternative to indium tin oxide. They offer a scalable process for large scale, 

flexible, conductive materials, as used in integrated photovoltaics, touch screens, and flexible 

electronics.[7–11] Furthermore, the embedding of metal nanoparticles in a printable polymer 

matrix enables a fabrication process with a high design flexibility and allows rapid 

prototyping. Additive manufacturing of components has developed over the last 25 years to 

be an important and innovative part of the industrial process.[12–14] As a matrix material, 

photopolymers have tunable viscosities, are curable by illumination with UV-light, and are 

well suited to create three dimensional structures via layer by layer additive manufacturing. 

For example, a flexible silver nanowire composite capacitor was built and demonstrated 

recently.[15] Due to the fact, that the matrix material of the composite is exchangeable and 

tunable in e.g. color, optical, and mechanical properties, the composites can easily be tailored 

to their respective application.[15] Bending and stretching of silver nanowire composite 

electrodes have been investigated from many different perspectives.[16–22] Flexible electrodes 

as used in foldable touch displays are some of the most demanding applications of these 

materials. 

 

We have investigated flexible electrodes, which are based on silver nanowires embedded in a 

flexible and photocurable polymer matrix. In order to test their deformation and durability, we 
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performed mechanical strain tests, in situ conductivity, and light microscopy measurements. 

The conductivity measurements monitor the functionality of the films. By light microscopy, 

the nanowire network morphology was observed. In order to obtain quantitative information 

on the network structure change upon stretching, the Fiber Image Network Evaluation (FINE) 

algorithm was employed.[23,24] Based on the micrographs, the FINE algorithm determines the 

number of fiber families, their amplitudes, mean orientation and dispersion, based on the 

cumulative angular orientation distribution. Monte-Carlo simulations on the nanowire 

networks and the corresponding network resistance confirm that the elastic polymer matrix 

under strain exhibit forces acting on the nanowire junctions in agreement with Hooke's law. 

The experimental data were reproduced by variation of a critical force distribution leading to 

a model explaining the electrical behavior of nanowire-composites with different 

concentrations under mechanical strain.  

 

2. Results and Discussion 

 

Figure 1(a) shows the experiment. Flexible silver-nanowire (Ag-NW) composite films were 

clamped in a stretching setup, which is based on two linear translation stages motorized with 

two stepper motors. Two isolating polyether ether ketone (PEEK) base plates were mounted 

on top of the linear translation stages. The composite samples, behaving like thin rubber like 

foils, are placed on the PEEK plates and clamped on each site with a small polyimide plate, 

which contains two gold electrodes. By doing so, the electrical conductivity of the samples 

can be measured in a four-point geometry. More details on the setup are given in the 

experimental section. 

The samples consist of Ag-NW networks, which were embedded in a flexible photopolymer 

matrix as described in the experimental section. The samples have a size of 12 mm x 12 mm 

and a total thickness of 150 µm. The embedded nanowires extend up to 1 µm into the polymer 
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matrix, resulting in a conductive composite layer at the top site of the sample, which is shown 

in Figure 1(b). In Figure 1(c) a SEM image of Ag NWs drop-casted on a bare silicon wafer is 

shown. One can see how the nanowire networks are formed and how the thinner wires are 

flexibly above and below other wires. Nanoparticles (spheres, triangles and plates) arise as 

marginal side products during the synthesis. The Ag NWs were synthesized by a polyol route 

and have a pentagonal cross section as discussed in detail in [15]. The Ag-NW networks are 

produced by drop-casting of a Ag-NW suspension on a clean and smooth substrate like silicon 

or glass. Homogeneous networks of randomly orientated nanowires are formed, which show 

high conductivities even at small amounts of silver.[15] This is a consequence of a percolative 

process, which is determined by the high aspect ratio of the used wires. Compared to 

composites of spherical fillers, anisotropic sticklike fillers reach the percolation threshold at a 

lower amount of the filler material, decreasing with increasing aspect ratio 

(length/diameter).[25–28] Furthermore, by using one-dimensional (1D) structures, conductive 

pathways with a minimum number of terminations can be obtained, which minimizes the 

influence of the tunneling resistance on the total resistance of the system. Therefore, 1D nano-

structures with high aspect ratio are highly desirable for the formation of conductive 2D films. 

In addition, the small amount of necessary conductive filler material facilitates the fabrication 

of transparent and conductive composites.[15] In order to fabricate the composites, the drop-

casted networks were coated with a photocurable resin. After curing the polymer layer with 

UV-light, the composite film can be detached from the substrate and subsequently 

investigated in our stretching setup. Figure 1(d) shows three micrographs of a Ag-NW 

composite film during stretching at different elongations. The stretching direction is 

horizontal and the width of the images corresponds to the relative lengthening of the film 

during stretching. 
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In Figure 2(a) the line resistance of three samples with nanowire concentrations of 40 µg cm-

2, 80 µg cm-2, and 120 µg cm-2 are shown. The line resistance was measured along the 

stretching direction and the measured values were divided by the length of the sample, 

respectively. The initial resistances of the unstretched flexible composites are (0.269 ± 

0.002) Ω mm-1 for the 120 µg cm-2 sample, (0.387 ± 0.001) Ω mm-1 for the 80 µg cm-2 

sample, and (1.193 ± 0.002) Ω mm-1 for the 40 µg cm-2 sample. The samples were stretched 

stepwise. Each stretching step corresponds to a relative elongation of 3.3 %. One can observe 

an increase in line resistance for samples with lower Ag-NW concentrations. The increase in 

resistance during stretching follows a sigmoidal shape with a higher relative increase for 

lower nanowire concentrations. All curves are saturated after 20 % stretching. For the 

120 µg cm-2 sample, an increase by a factor of 225 after stretching by 23 % elongation was 

observed. A sample with a Ag-NW concentration of 80 µg cm-2 shows an increase by a factor 

of 1000 and the resistance of the 40 µg cm-2 sample was increased by a factor of 2000. Since 

optical measurements require flat sample surfaces, pre-stretching of the samples by 3.3 % 

elongation was necessary. In the following, we, therefore, analyze all our data normalized to 

the pre-stretched value at 3.3 % elongation. The line resistance upon stretching for the 

samples shown in Figure 2(a) normalized to the resistance value at 3.3 % are shown in Figure 

2(b). 

For each stretching step, a light microscopy image was recorded as shown in Figure 1(d)-(f). 

These images were analyzed using an algorithm that determines the number of fiber families, 

their amplitudes, mean orientation and dispersion, based on the cumulative angular orientation 

distribution, the FINE algorithm.[23] The analysis clearly shows that the nanowire networks 

consist of one isotropic fiber family (see Supporting Information SI 1 for details). Upon 

stretching, changes in the overall network morphology are observed by the orientation index 

as shown in Figure 2(c).[29] The orientation index represents the degree of fiber orientation in 

the angular distribution function. A completely isotropic distribution leads to a vanishing 
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orientation index, while a full alignment of the fibers yields an orientation index of one.[23,29] 

Samples with high concentrations (80 µg cm-2 and 120 µg cm-2) show no remarkable changes 

in orientation, whereas for the 40 µg cm-2 sample a change in orientation index by a factor of 

4.5 was observed. However, no emerging anisotropic fiber family could be found by the FINE 

algorithm (see Supporting Information). The lower the concentration, the greater the impact 

of individual changes and alignments within the network. Overall, the orientation indices for 

all samples and all stretching conditions are small (≤ 0.1) and in the isotropic region. From 

these results, it becomes clear that changes in network morphology and mean fiber orientation 

are not the primary effect leading to the observed drastic resistance changes of several orders 

of magnitude depending on the Ag-NW concentration. 

 

When considering a percolation of randomly orientated 1D wires, the position of the wires, 

their length, number and orientation, as well as their length distribution are critical 

parameters. The behavior of a percolation network during stretching conditions can be 

calculated by a Monte-Carlo simulation on the resistor network formed by overlapping wires 

in a 2D network. In Figure 3(a), a sample (350 µm x 350 µm) with a typical length 

distribution corresponding to the synthesized nanowires and a concentration of 10 µg cm-2 is 

shown. The orientation of the wires was chosen randomly between -90° ≤ θi ≤ 90°, which 

results in an isotropic sample. Intersections of the wires were found by using two criteria: If 

the distance between the centers of two wires i and j is larger than the sum of half the length 

of wire i and wire j (Equation (1)), an intersection can be excluded. If Equation (1) is fulfilled, 

the distances Ai and Aj were calculated (see Equation (2) and Figure 3(b)).[25,26] If Ai ≤ Li/2 and 

Aj ≤ Lj/2, an intersection is found. 
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𝑑𝑖𝑗 = [(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
]1/2 

(1) 
𝑑𝑖𝑗 < 

𝐿𝑖

2
+

𝐿𝑗

2
 

𝐴𝑖 = 𝑑𝑖𝑗|cos(𝜃𝑗 + 𝛾)/sin(𝜃𝑗 − 𝜃𝑖)| 

(2) 𝐴𝑗 = 𝑑𝑖𝑗|cos(𝜃𝑖 + 𝛾)/sin(𝜃𝑗 − 𝜃𝑖)| 

𝛾 = arctan [(𝑦𝑖 − 𝑦𝑗)/(𝑥𝑖 − 𝑥𝑗)] 

 

Due to the fact, that the Ag NW itself is an excellent conductor, the junctions between the 

wires determine the total resistance of the network. A sample consisting of N wires (see 

Figure 3(c)) can be considered as a resistor network with N nodes and the tunneling resistance 

rij of the resistor connecting nodes i and j (see Figure 3(d)).[30–33] For the simulation all 

tunneling resistances rij of intersecting wires were assumed to be equal to 1, resulting in a 

conductance of cij = rij
-1 = 1. The resistance between wires, which are not intersecting, is 

infinity resulting in a conductance of 0. With Vi being the electric potential at the i-th node 

and Ii being the current flowing in the system at the i-th node, Kirchhoff’s Law can be written 

as 

𝑳𝑉⃗ = 𝐼  (3) 

where L is the Laplace matrix as given in Equation (4)[30] 

𝑳 = (

𝑐1

−𝑐21

−𝑐12

𝑐2

⋯ −𝑐1𝑁

⋯ −𝑐2𝑁

⋮ ⋮ ⋱ ⋮
−𝑐𝑁1 −𝑐𝑁2 … −𝑐𝑁

) . (4) 

According to the method presented by Wu et al.[30] the resistance of a resistor network 

between two nodes can be calculated by Equation (5), where ψi are the eigenvectors and λi are 

the eigenvalues of L.[30] 

109 CHAPTER 6. FIBER ORIENTATIONS IN AG:NW COMPOSITES



  

8 

 

𝑅𝛼𝛽 = ∑
1

𝜆𝑖
|𝜓𝑖𝛼 − 𝜓𝑖𝛽|

2
𝑁

𝑖=1

  (5) 

 

Wires representing the contacts at the left and the right side of the sample were assumed 

spanning the whole length of the simulated width. Figure 3(e) shows the resistance as a 

function of Ag-NW concentration. The concentration was determined by calculating the silver 

mass per square centimeter using a mean wire diameter of 200 nm and a silver density of 

10.49 g cm-3. The resistance shows an exponential dependence on the concentration, as 

discussed in previous simulations and experimental studies.[15,16,34] The red solid line depicts 

an exponential curve as guide to the eye. For an experimental realization of a Ag-NW 

network, Ag-NW concentrations of 40 µg cm-2 – 120 µg cm-2 were used. These experimental 

concentrations are by a factor of about 4 higher than the corresponding effective 

concentrations used for the simulation. We have benchmarked the nominal concentration 

against the silver nanowire concentration observed in the experimental micrographs. The 

effective concentration of silver that contributes to a conductive percolation network of 

nanowires is lower due to side products (particles and rods, see Figure 1(c)) in the Ag-NW 

suspension used for the experiments and its effective distribution in the composite. 

 

In order to simulate the fiber morphology during stretching of a composite material, one has 

to consider that the distances between the filler particles in the stretching direction become 

larger, based on the assumption that the particles follow the matrix. This aspect was simulated 

by changing the positions of the wires according to the respective elongation. Thus, an 

increase in resistance by a factor of between 2 and 2.5 was reproducibly observed at an 

elongation of 23 %, see Figure 3(f) for an exemplary sample with an effective concentration 

of 20 µg cm-2. In a second step, the impact of wire alignment during stretching was 

investigated. For this purpose, the x-component dx of the vector that describes a wire was 
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adapted in accordance with the respective elongation to d𝑥̃ = d𝑥 ∗ (1 + 𝐸[%]/100). The 

orientation angle of the wire θi was then adapted by cos(𝜃𝑖) = d𝑥̃/𝐿𝑖, where Li is the fixed 

length of a wire i. With these assumptions, the simulation results, in contrast to the 

experiment, in the formation of an anisotropic fiber family upon stretching as analyzed by the 

FINE algorithm (see Supporting Information SI 2). The initial, unstretched samples consist of 

a single isotropic fiber family and have an orientation index of smaller than 0.05. After 

stretching, an anisotropic fiber family with orientation in stretching direction is formed, 

resulting in an orientation index of around 0.5. Both, the isotropic and the anisotropic fiber 

families co-exist with equal amplitudes. The red curve in Figure 3(f) represents a sample for 

which the stretching conditions were simulated by the described changes in terms of position 

and alignment. We can conclude, that an alignment of the wires in stretching direction does 

not lead to the drastic resistance changes observed in the experiment. Furthermore, the 

findings obtained from the microscopy images clearly show, that the simulated alignments are 

much higher than the observed alignments in the experiment. 

 

The force F used to stretch an elastic polymer matrix can be described by Hooke's law 𝐹 = 𝑘 ∙

Δ𝑥, where k is a constant factor characteristic for the elastic polymer matrix and Δx is the 

elongation. This force acts on the nanowire junctions. In order to explain the drastic increase 

in resistance during stretching observed in the experiments, a critical force at which the 

individual junctions break and disconnect was introduced. Considering two wires with the x-

positions (x is stretching direction) xi
0 and xj

0 before stretching and the positions after 

stretching xi
1 and xj

1, the acting force F is proportional to the relative movement of the wires, 

or rather the distance change 𝐹 ∝ Δ𝑥𝑖𝑗 = |𝑥𝑖
1 − 𝑥𝑗

1| − |𝑥𝑖
0 − 𝑥𝑗

0|. The critical force for each 

nanowire junction should depend on the embedding polymer matrix of the two intersecting 

nanowires. The top nanowires at the surface of the sample are not completely covered with 
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polymer resulting in a weaker connection to the matrix and the wires embedded in it. The 

simulated results together with the experimental data for different concentrations are shown in 

Figure 3(g). For the simulation shown in Figure 3 (g), a critical distance Δxij from four 

junction classes A, B, C, and D with the frequencies pA, pB, pC, and pD was assigned to each 

wire-wire junction. They represent the critical forces required to break the respective junction. 

The qualitative behavior of the experimental data such as the increase in resistance and the 

shape of the curves was successfully simulated with Δxij(A) = 0.2 µm, Δxij(B) = 0.3 µm, 

Δxij(C) = 0.7 µm, Δxij(D) = 50 µm, and pA = 75 %, pB = 14 %, pC = 4 %, and pD = 7 % (see 

Figure 3(g)). We can not only describe the shape of the resistance curves upon stretching but 

also its change upon concentration and stretching. The simulated networks consist of a total 

number of wires between 4400 wires for the lowest concentration and 7350 wires for the 

highest concentration, resulting in an effective concentration between 18 µg cm-2 and 

30 µg cm-2 and a number of junctions of the wires between 21700 and 60500. The number of 

undamaged junctions as well as the normalized number of completely disconnected wires 

(wires that no longer have undamaged connections to other wires) for the simulations in 

Figure 3(g) are shown in Figure 3(h). The number of junctions was fitted by 𝑦 = 𝑦0 + 𝐴𝑥−1.3 

with the same decay constant of -1.3 for all nanowire concentrations. The variable x is the 

elongation. The lower the nanowire concentration, the lower is the number of junctions in the 

network resulting in a respective change in offset y0 and amplitude A. The number of detached 

wires was fitted by 𝑦 = 𝑦0 + 𝐵exp(−𝛼𝑥), where y0 is a constant background of 0.5 and x is 

the elongation. The amplitude B changes gradually from -0.6 for the lowest concentration to -

0.55 for the highest concentration. The decay constant α is also changing from 0.055 for the 

lowest concentration to 0.025 for the highest concentration.  

These results demonstrate and explain the strong concentration dependence and sensitivity of 

the investigated nanocomposite material under stretching conditions. The decrease of the 

number of junctions in the network results in an enhanced sensitivity towards mechanical 
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strain. Even small changes in the number of connections at high elongations lead to large 

changes in resistance. The observed saturation in the resistance curves can be explained by the 

existence of a class of junctions with a high critical force (Δxij(D) = 50 µm), representing 

wire-wire connections, which are well embedded in the polymer matrix and highly durable. 

The lower the concentration, the lower is the number of junctions of an individual wire to 

other wires, which is a measure for the connectivity of the network. By looking at the relative 

number of wires without undamaged junctions to the nanowire network after 23 % stretching, 

we found a linear decrease of this number with increasing concentration. This linear decrease 

in connectivity leads to drastic changes in the resistivity as shown in Figure 3(g) and (e). 

 

3. Conclusion 

 

In Conclusion, we have shown that the electrical behavior of Ag-NW networks in flexible 

polymer composites can be controlled by the Ag-NW concentration and lead to resistance 

changes of up to three orders of magnitude upon stretching. The samples were investigated by 

an integrated light microscopy setup, that allows to image the Ag-NW composite during 

stretching. Furthermore, we were able to model the composite conductance as a function of 

concentration and stretching by a Monte-Carlo simulation that considers a resistor network 

consisting of the tunneling resistances between the wires. Moreover, we model and 

quantitively reproduce the experimentally observed resistance changes upon stretching by 

means of the interaction between the nanowire network and the polymer matrix by means of 

Hooke’s Law and a critical force distribution of the nanowire junctions within the composite. 
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4. Experimental Part 

 

4.1 Sample Preparation 

Ag NWs were synthesized as described in [15]. After the synthesis, the Ag-NW suspension 

was washed successively twice with isopropanol, twice with acetone and twice with 

isopropanol. After each washing step, the suspension was centrifuged at 2000 rpm for 10 min. 

The supernatant was removed and replaced with fresh solvent. The resulting Ag-NW 

isopropanol suspension was drop-casted on a solvent-cleaned glass substrate using a 3 cm2 

template. The dried Ag-NW networks were coated with the liquid polymer resin Flexible 

(Formlabs, USA) by using a doctor blade, which was moved over the sample in a defined 

distance to the glass substrate. The polymer layer with a thickness of around 150 µm was 

cross-linked with a laser driven UV light source EQ-99X (Energetiq, USA) for 100 s. 

Remaining resin was removed after the curing process with isopropanol and acetone. Finally, 

the samples were removed from the substrate. 

 

4.2 Characterization and Stretching 

For scanning electron microscopy measurements, a commercial field emission scanning 

electron microscope (FE-SEM Zeiss, Germany) was used. For conductivity measurements a 

DC voltage/current source GS200 (Yokogawa, Japan) and the 34401A 6 ½ Digit Multimeter 

(Keysight, USA) were used. A constant current of 0.6 mA was applied to the nanowire 

composite samples and the voltage drop across the sample in stretching direction was 

measured. This measurement mode allows the measurement of line- and sheet resistances 

without the influence of the contact resistance. The resistance measurements were carried out 

after each stretching step (3.3 % relative elongation). The time between each stretching step 

was 10 min. Light microscopy was carried out using a custom-made microscope with a 

magnification of 50X consisting of the infinity corrected 50X objective Plan Apo NA = 0.55 
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(Mitutoyo, Japan) in combination with the MT-40 accessory tube lens (Mitutoyo, Japan), a 

color industrial camera DFK 37AUX264 (The Imaging Source, Germany), and a LED lamp 

QTH10/M (Thorlabs, USA). The stretching-setup consists of an aluminum base plate on 

which two single-axis translation stages PT1/M (Thorlabs, USA) are mounted. Both have a 

travel range of 25 mm with a translation of 0.5 mm per revolution. Each stage is driven by a 

stepping motor 0.9-NEMA 17 (Nanotec, Germany). The stepping motors are controlled by a 

closed-loop-stepping motor-controller SMCI33-2 (Nanotec, Germany) with an encoder 

controlled guaranteed resolution of 2 µm. 
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Figure 1. (a) Representation of the experimental setup. The sample is fixed and contacted with 

two circuit boards and stretched by two motorized linear translation stages. A custom-made 

light microscope is installed above the sample. The inset shows the clamped sample in 

stretching mode. Of the 12 mm x 12 mm samples, an area of 3 mm x 12 mm is stretched. (b) 

Ag NWs, which are embedded in the polymer matrix. (c) SEM image of drop-casted Ag NWs 

on a silicon wafer without polymer matrix. (d)-(f) Excerpts from light microscopy images of a 

Ag-NW composite with a Ag-NW concentration of 120 µg cm-2 for 3 exemplary stretching 

steps at 3 %, 13 %, and 23 % elongation, respectively. The elongation is given in relative units 

(distance of the translation stages after stretching divided by initial distance). The stretching 

direction is depicted as white arrows. 

 

 

 

Figure 2. (a) Line resistance in stretching direction as function of elongation of three samples 

with a Ag-NW concentration of 40 µg cm-2 (red), 80 µg cm-2 (blue) and 120 µg cm-2 (green). 

The resistance measurements were carried out after each stretching step (3.3 % relative 

elongation). The dashed line is a sigmoidal guide to the eye. (b) Same experimental data shown 

in (a) normalized to the value of the pre-stretched sample at 3.3 % elongation. (c) Orientation 

index of the same samples shown in (a). The data was normalized to the value of the pre-

stretched sample at 3.3 % stretching. 
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Figure 2. (a) Exemplary two-dimensional nanowire network with a size of 350 µm x 350 µm 

and a concentration of 10 µg cm-2. The wires have random angles and positions. The lengths of 

the wires follow the length distributions that was determined by the analysis of SEM images of 

real samples. (b) Geometrical quantities, which were used in Equation (1) and (2) to check 

whether two wires i and j are intersecting. (c) Network of 14 wires and 2 contact wires. The 

resistance will be calculated between the contact wires 1 and 16. (d) Resistor network 

corresponding to the network shown in (b). Every node (numbered) represent a wire and every 

resistor (black squares) depict a wire-to-wire junction with the tunneling resistance rij. (e) 

Simulated resistance as a function of nanowire concentration. Each datapoint is the average of 

16 simulated samples with a size of 200 µm x 200 µm. (f) Resistance change during simulated 

stretching conditions based on morphological changes, for elongations between 0 and 23 % and 

a nanowire concentration of 20 µg cm-2. The wire positions were changed according to the 

changed sample dimensions during stretching. For the red curve, an alignment of the wires was 

considered. (g) Simulation of the experimental data together with the experimental data. The 

curves were normalized to the resistance of the pre-stretched sample at 3.3 % elongation. The 

simulation parameters for the critical distance distribution were Δxij(A) = 0.2 µm, Δxij(B) = 

0.3 µm, Δxij(C) = 0.7 µm, Δxij(D) = 50 µm, and pA = 75 %, pB = 14 %, pC = 4 %, and pD = 7 %. 

The simulated effective concentrations are 18 µg cm-2, 20 µg cm-2, 22 µg cm-2 and 30 µg cm-2. 

The blue arrow depicts the direction of increasing concentration. (h) Number of junctions and 

amount of detached wires (wires without undamaged junctions to other wires) for the 

simulations shown in (g). The curves were fitted by 𝑦 = 𝑦0 + 𝐴𝑥−1.3 (number of junctions) and 

𝑦 = 𝑦0 + 𝐵exp(−𝛼𝑥) (disconnected wires). 
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measured and simulated by a Monte-Carlo method. This work provides a model explaining 

the electrical behavior of nanowire composites depending on the nano-filler concentration 

under mechanical strain. 
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Chapter 7

Summary and Outlook

In this thesis, novel methods have been introduced for characterizing fiber networks in

scientific images. These methods were applied to collagen fibers of skin and to silver-

nanowires in photopolymer composites to analyze their micro-structure and their con-

tribution to their macroscopic behavior.

The AF method was introduced to obtain the angular orientation distribution. The

method is based on an adaptive Fourier filter, which is defined on a relative error

constraint. Thus, the method does not require assumptions on the fiber network. Op-

timal evaluation parameters δcut = 2.1 % and α = 1.5 were identified by using realistic,

Monte-Carlo simulated greyscale fiber images. In combination with a sigmoid model of

the cumulative orientation distribution, the method provides an accurate assessment

of mean orientation and dispersion of fiber networks in in-vivo SHG images of dermal

collagen. Since the AF method does not require assumptions about the fiber geometry

it is suitable for application to any type of fiber-reinforced material.

The FINE algorithm was developed to objectively determine the number of fiber fami-

lies and their properties in terms of amplitude, mean orientation and dispersion in fiber

images. The FINE algorithm is able to differentiate between up to four aligned fiber

families with an accuracy of 98.1 %. By applying the algorithm to an in-vivo depth-

stack of dermal collagen, the transition from the papillary to the reticular dermis could

quantitatively be determined by a crossover of the alignment and the orientation index

at a skin depth of 85− 90µm. Furthermore, the assumption of collagen fibers aligning

around the main tension lines of skin, the Langer lines, was verified.

A stretching device was developed to analyze the collagen fiber network of skin by

SHG imaging during mechanical deformation. Stepper motors with attached force sen-

sors allow for controlled deformations, while measuring the applied force. A lifting

stage ensures a precise placement of the sample under the DermaInspect multiphoton

microscope. 3D-printed components minimize displacements of the field of view due to

121



CHAPTER 7. SUMMARY AND OUTLOOK 122

stretching and relaxation.

The FINE algorithm was applied to SHG images of collagen fibers of pig skin during

cyclic deformation. Upon stretching, collagen fibers were found to first align within

their fiber families and then orient in the direction of force. In addition, the maximum

alignment of fibers was found to be determined by the maximum strain and does not

increase with additional deformation cycles. Furthermore, the macroscopic mechanical

behavior was associated with the alignment of collagen fibers. Differences across the

samples were identified and related to the initial orientation of collagen fibers. This

proof of principle study revealed that the multiphoton stretching device in combination

with the FINE algorithm is a sophisticated method to relate changes of the macroscopic

material behavior to the micro-structure of fiber-reinforced materials like soft biological

tissue.

Silver-nanowire photopolymer composites exhibit a drastic increase in electrical line

resistance upon stretching. To investigate changes in the orientation of the silver-

nanowire network, light microscopy images were analyzed at every state of stretch

using the FINE algorithm. Nanowires were found to be isotropically distributed and,

at low concentrations, slightly align along the direction of force. It could be concluded

that the alignment of nanowires is not the main factor for the drastic increase of line

resistance with material elongation.

In the future, further experiments using the multiphoton stretching device will com-

plete the micro-structural interpretation of different mechanical processes of biological

tissue, like creep and strain-rate dependence. Additional in-vivo measurements on the

orientation of dermal collagen fibers by the FINE algorithm will reveal its global distri-

bution to identify main tension lines in human skin. By studying different age groups

and various locations of the body, a correlation between the alignment of the colla-

gen fiber network and continuous physiological skin deformations could be established.

Output parameters of the FINE algorithm can additionally be used as input for finite

element models to simulate skin or other soft tissue (see appendix A).



Appendices

A Mechanical Simulation of Skin

The finite element method (FEM) enables the prediction of various physical quantities

such as mechanical deformation and stress of materials due to external factors such as

mechanical forces [110]. The mechanical investigation of biological tissue is relevant for

diverse medical and cosmetic topics such as stent design [111] and wrinkle formation

[112]. As a consequence of its complex structure and high deformation capacity, the

mechanical description of soft tissue such as skin is a large field of research [3].

A.1 Skin from a Mechanical Point of View

Skin exhibits a hierarchical structure as it is composed of three main layers: the epi-

dermis, the dermis and the subcutis.

A.1.1 The Epidermis

The epidermis has a total thickness of about 200µm and consists of four sublayers,

which are namely, from the top to the bottom, the stratum corneum, stratum granu-

losum, stratum spinosum and stratum basale. Due to their rather homogeneous com-

position, the latter three layers are usually combined into a single layer, the viable

epidermis [113].

The stratum corneum is the most outer surface of the skin and forms the main barrier

against external mechanical, thermal, chemical, biological and electromagnetic influ-

ences. It consists in average of six to 47 layers of corneozytes [114] which are mainly

joined by protein links called corneodesmosomes forming a very stiff layer. The Young’s

modulus of the stratum corneum, which is a measure for stiffness, can exceed the mod-

ulus of the underlying dermis by up to six orders of magnitude (see table A.1). Despite

its small thickness of only (8− 20)µm [115] (except for palms and soles), the stratum

corneum plays a major role in the overall mechanics of the skin [113, 116]. The viable

epidermis is joined to the underlying dermis through the so-called dermal-epidermal

junction (DEJ), which is a 3D finger-like interface [117]. Disregarding its morphology,

the viable epidermis is commonly treated as a single isotropic layer with a Young’s

modulus, which is an order of magnitude lower than the dermis’ modulus (table A.1).
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A.1.2 The Dermis

The dermis is 15-40 times as thick as the epidermis [28] and is the main load bearing

structural component of the skin [34]. In contrast to the stratum corneum and viable

epidermis, the dermis contains aligned load bearing fibers, including collagen and elas-

tic fibers, resulting in an anisotropic material behavior. Skin shows a stiffer tensile

response, if the direction of tension is parallel to the Langer lines [10, 16]. Lapeer et

al. measured a ratio of 2.21:1 for the Young’s modulus parallel to the Langer lines

compared with a perpendicular tension. However, Jacquet et al. [118] measured the

highest tensile strength with 45◦ with respect to the Langer lines. In mechanical mod-

eling of skin, it is generally claimed that collagen fibers form two wavy families in

biological tissue which are oriented symmetrically around the langer lines [8]. The high

contribution of collagen fibers (approximately 70%) to the dry weight of the dermis

[119], together with its hierarchical substructure, results in a high tensile strength in

the large strain domain (see section 2.1). In the small strain region, the load is mainly

carried by elastic fibers, which are much more elastic than collagen fibers and have the

ability to fully recover from strains of up to 100% [33].

A.1.3 The Subcutis

The hypodermis (or subscutis) is the intermediate layer between the dermis and un-

derlying muscles or bones. The subcutis contains two physiologically and anatomically

different components; the interstitial tissue and the adipose tissue. The interstitial

tissue is a fiber-reinforced tissue which resembles the dermis in terms of collagen and

elastin fibers. The main difference to upper skin layers is the increased looseness which

allows the skin to be moved laterally and axially without excessive distension [62].

Subcutaneous fat, the second component, is found over the entire body except for

eyelids, nose, the ear pinna and male genitalia. Its thickness can range from a few

millimeters up to several centimeters [62].

Values for the elastic modulus are rarely found in literature. Alkhouli et al. subdivided

the non-linear stress strain curve of subcutaneous tissue in two regions of a linear stress

strain behavior determining an initial Young’s modulus of 1.6± 0.8 kPa (means ± SD)

and a final of 2.9 ± 1.5 kPa [120]. Compared to the dermis, the subcutaneous tissue

is up to three orders of magnitude softer (table A.1). The mechanically important

constituents of the skin have been discussed in the previous section; (i) the very thin,

but stiff and isotopic stratum corneum (uppermost layer), (ii) the isotropic and rather

soft viable epidermis and the mechanically crucial, fibrous and anisotropic dermis.

A.2 Stress-Strain Curves

The principle of a finite element simulation is the numerical computation of differential

equations defining the material behavior. The finite element method can be used for
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Table A.1: Linear elastic skin parameter for the stratum corneum (SC),
viable epidermis (VE), and dermis (D). The table was adopted from [113]. The
ratio of the stiffness of the stratum corneum devided by the stiffness of the dermis
(ESC/ED) ranges from 0.08 up to 105, E = Young’s modulus, ν = Poisson’s ratio

Layer Linear elastic Test Reference
E[MPa] ν

SC 0.6 0.3 Human skin, ex vivo indentation [121]
1.2 0.3 Human skin, ex vivo indentation [121]

6 0.5 FE model [122]
8.87 0.3 Murine skin, tensile test [123]

10 0.3 FE model [124]
12 0.5 FE model [122]
13 0.3 Human skin, in vivo [123]

13.5 0.3 Human skin, ex vivo out of plane test [125]
57.8 0.3 Human skin, in vivo sonic propagation [123]
100 0.3 Human skin, in vivo indentation [123]

175.3 0.3 Human skin, in plane tensile test [125]
240 0.48 Porcine skin, rheological test [126]

1000 0.3 Human skin, in vivo indentation [123]

VE 0 0.3 Human skin, in vivo suction test [127]
0.05 0.3 FE model [124]
0.05 0.3 FE model [122]
0.6 0.3 Human skin, ex vivo indentation [121]
7.8 0.3 Human skin, in vivo indentation [123]

D 0.01 0.3 Human skin, in vivo indentation [123]
0.6 0.3 FE model [124]
0.6 0.5 FE model [122]
0.8 0.3 Human skin, in vivo suction test [127]

1 0.5 FE model [122]
1.6 0.3 Human skin, in vivo indentation [123]

simulating thermal transfer, fluid dynamics, mass transport, electromagnetic potential

or, most commonly for structural analysis [110]. Depending on the physical interaction,

different material models have to be considered. Modeling the physical deformation

due to external forces, like in the case of skin mechanics, requires the definition of a

stress-strain σ(ε) relationship. This function describes the force, which is needed to

achieve a certain relative change in length ε = ∆L
L . Typically, these curves are recorded

in a tension experiment by varying the tension force (see chapter 5).

A.3 Linear elasticity

Linear elasticity is the simplest material law and describes a linear correlation between

stress and strain:

σlin = E · ε (A.1)

whereas E is the Young’s modulus, which describes the stiffness of the material. Ma-

terials like rubber and soft biological tissue, which undergo large deformations are

described as hyperelastic materials.
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A.4 Hyperelasticity

The correlation between stress and strain of hyperelastic materials is derived from a

strain-energy function ψ, which measures the amount of stored energy as the material

undergoes a certain strain. Strain energy functions are defined using variables which

are independent from rotations of the coordinate system. These are called invariants

and derived from the Cauchy-Green deformation tensor. A detailed description can

be found in [128]. Invariants I1, I2 and I3 are used for describing isotropic materials,

whereas higher invariants, such as I4 are contained in anisotropic constitutive equations.

However, the mechanical description of anisotropic materials will be part of future

quarterly reports. The strain energy is commonly split into a deviatoric part ψdev

and a volumetric ψvol(J =
√
I3) part, which covers the compressibility behavior of

hyperelastic materials:

ψ = ψdev + ψvol (A.2)

In literature, basically two different volumetric strain energy formulations are used.

A.4.1 The Volumetric Part

The volumetric part ψ(J) of hyperelastic strain energy materials describes the com-

pressibility of the material and depends only on J . A general formulation of ψ(J) is

provided by [129]:

ψ(J) =
1

2
K(ln(J))2, (A.3)

with K being the bulk modulus. For a fully incompressible solid J = 1 holds. For a

nearly incompressible solid, ψ(J) is given by a Tylor expansion of (A.3) around J = 1:

ψ(J) ≈ 1

2
K(ln(1))2 +K(ln(1))(J − 1) +

1

2

(
K

12
− K ln(1)

12

)
(J − 1)2 +O

(
J3
)

≈ =
1

2
K (J − 1)2 =

1

D1
(J − 1)2 , (A.4)

where the latter representation (including D1 as coefficient) matches the formula-

tion which is used by the finite element software Abaqus (Dassault Systèmes, Vélizy-

Villacoublay, France) [130]. An alternative approach of ψ(J) was introduced in [131]:

ψ(J) = L2(J − 1− 1

2
ln
(
J2
)
), (A.5)

where L2 = (3µ/(1 + µ))K is the second Lamé constant with ν and K being the shear

and the bulk modulus.[132]

A.4.2 Neo-Hookean Solids

The deviatoric part of the energy function of a neo-Hookean solid [133] is the simplest

hyperelastic constitutive equation:

ψdev,NH = c10(I1 − 3). (A.6)
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The nearly incompressible formulation, derivation is given in appendix, using the cor-

responding invariant Ī1 reads as:

ψ̄dev,NH = c10(Ī1 − 3). (A.7)

Equation A.4 and A.7 are used by Abaqus for describing a neo-Hookean solid. Although

anisotropic material models are more appropriate for modeling skin, the neo-Hookean

solid is a good approximation for studying the compression of skin, since the volumetric

part is the same for both formulations. This will be presented in future reports. In

addition, numerous values of linear elastic parameters (Young’s modulus E and Pois-

son’s ratio ν) of the skin were published (table A.1) and can easily be translated to the

neo-Hookean coefficients c10 and D1 using:

c10 =
E

4(1 + ν)
D1 =

2(1− 2ν)

E
. (A.8)

A.4.3 Holzapfel Model

The most popular structural material model for soft tissue is the Holzapfel model [7],

which later was extended for rotationally symmetric distributed fibers [8] and even for

non-symmetric distributed fibers [134]. The strain energy function ψHAreads as:

ψHA(H) = ψg +
∑

i=1,2

ψfi(H), (A.9)

where ψg denotes the strain energy function of the isotropic ground matrix, which is

modeled as neo-Hookean material. ψfi(H) denotes the strain energy function of the i-th

fiber family. ψfi(H) is a function of the so-called structure tensor H, which depends

on fiber orientation and dispersion:

H = κI + (1− 3κ)a0,i ⊗ a0,i, (A.10)

where I is the identity tensor. κ is a dispersion parameter, which is a measure for the

degree of anisotropy. Within this model, fiber families are assumed to exhibit a similar

dispersion. a0,i is a vector which points into the mean referential direction of the fiber

family. For example, a0,i can be determined by the mean orientation θ̄i of fiber families

determined by the FINE algorithm (chapter 4).

The dispersion parameter κ is determined from the fiber orientation distribution P (θ):

κ =
1

4

∫ π

0
P (θ) sin3(θ)dθ, (A.11)

which is modelled by the semi-circular von-Mises distribution P (θ) = Pvm(θ):

Pvm(θ) = 4

√
k

2π

1

erfi(
√

2k)
exp [k(cos 2θ + 1)] , (A.12)

where erfi(x) denotes the imaginary error function erfi(x) = −i erf(x). Note that this

definition of the von-Mises function differs from equation (3.1) in the form of their
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normalization factor. The relationship between both definitions is given in [8]. So

far, three different quantities have been introduced describing the dispersion of the

collagen fiber network. These are namely, the von-Mises dispersion parameter k, the

sigmoidal dispersion b and the dispersion parameter κ. k and b are related by the

transfer function of equation (3.53). In order to derive the relation between κ and k,

the integral of equation (A.11) is solved.

First, Pvm(θ) is expressed as:

Pvm(θ) = 4

√
k

2π

1

erfi(
√

2k)︸ ︷︷ ︸
≡A

exp [k(cos 2θ + 1)] . (A.13)

Using cos 2θ = cos2 θ + sin2 θ = 2 cos2 θ − 1 equation (A.13) follows as:

ρ(θ) = A · exp
[
2k(cos2 θ)

]
. (A.14)

the integral (A.11) then reads as:

κ =
A

4

∫ π

0
exp

[
2k(cos2 θ)

]
· sin θ sin2 θ︸ ︷︷ ︸

=1−cos2 θ

dθ (A.15)

Substituting cos θ = x, cos2 θ = x2 and dθ = − dx
sin θ yields:

κ =
A

4

∫ 1

−1

(
1− x2

)
exp

[
2kx2

]
dx =

A

4




∫ 1

−1
exp

[
2kx2

]
dx

︸ ︷︷ ︸
I

−
∫ 1

−1
x2 exp

[
2kx2

]
dx

︸ ︷︷ ︸
II




(A.16)

Integral I reads as:
∫ 1

−1
exp

[
2kx2

]
dx =

√
π

2k
· erfi(

√
2k), (A.17)

while Integral II follows as:
∫ 1

−1
x︸︷︷︸
u

·x exp
[
2kx2

]
︸ ︷︷ ︸

v′

dx =
x

4k
exp

[
2kx2

] ∣∣∣∣
1

−1

− 1

4k

∫ 1

−1
exp

[
2kx2

]
dx (A.18)

=
1

4k
·
(

2 exp [2k]−
√

π

2k
erfi(
√

2k)

)
. (A.19)

Inserting integrals I and II in equation (A.16) yields:

κ =
A

4
·
[√

π

2k
erfi(
√

2k)(1 +
1

4k
)− 2

4k
exp [2k]

]
(A.20)

=
1

2
+

1

8k
− 1

2k

√
k

2π

exp [2k]

erfi(
√

2k)
. (A.21)

Using equation (A.21), the dispersion of fiber families together with their mean orien-

tations, determined by the FINE algorithm, can be inserted in the Holzapfel model of

equation (A.9) to simulate soft biological tissue like skin.
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B Matrix implementation

The performance of code written in MATLAB benefits from using matrices instead of

for -loops [135]. Thus, the matrix representation of the discrete Fourier transform and

its uncertainty propagation is used for an efficient implementation.

B.1 Discrete Fourier Transform

Starting from the discrete Fourier transform I(x, y)→ F [I(x, y)] = Î(u, v) of an image

I(x, y) with x ∈ [0, X − 1] and y ∈ [0, Y − 1]:

Î(u, v) =
Y−1∑

y=0

X−1∑

x=0

I(x, y) · e−2πi( xX u+ y
Y
v) , (B.22)

The respective matrix representation of the X × Y image I then reads as:

Î = W (wx, X) · I ·W (wy, Y ) with wx = e−2πi/X , wy = e−2πi/Y (B.23)

and where

W (w,X) =




1 1 1 . . . 1

1 w1 w2 . . . w(X−1)

1 w2 w4 . . . w2(X−1)

...
...

...
. . .

...

1 w(X−1) w2(X−1) . . . w(X−1)(X−1)




(B.24)

is a X ·X Fourier transform matrix.

B.2 Uncertainty of the Discrete Fourier Transform

The equations of the uncertainty of the discrete Fourier transform were derived in

section 3.4.2.1 of chapter 3:

∆ Re[Î(u, v)] =

√√√√
Y−1∑

y=0

X−1∑

x=0

∆I2(x, y) cos2
(

2π
( x
X
u+

y

Y
v
))
, (B.25)

∆ Im[Î(u, v)] =

√√√√
Y−1∑

y=0

X−1∑

x=0

∆I2(x, y) sin2
(

2π
( x
X
u+

y

Y
v
))
. (B.26)

∆ÎRe Im(u, v) =

√√√√
Y−1∑

y=0

X−1∑

x=0

∆I2(x, y) sin
(

2π
( x
X
u+

y

Y
v
))

cos
(

2π
( x
X
u+

y

Y
v
))
.

(B.27)

In order to express equations (B.25 - B.27) as a multiplication of matrices similar to

equation (B.23), the summations over both dimensions need to be separated. Hence, the
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relations cos(A+B) = cos(A) cos(B)−sin(A) sin(B) and sin(A+B) = sin(A) cos(B)+

cos(A) sin(B) are employed:

∆ Re[Î(u, v)]2 =

Y−1∑

y=0

X−1∑

x=0

∆I2(x, y) [cxcy − sxsy]2 (B.28)

=

Y−1∑

y=0

X−1∑

x=0

∆I2(x, y)
[
c2
xc

2
y − 2cxcysxsy + s2

xs
2
y

]
(B.29)

∆ Im[Î(u, v)]2 =
Y−1∑

y=0

X−1∑

x=0

∆I2(x, y) [sxcy + sycx]2 (B.30)

=
Y−1∑

y=0

X−1∑

x=0

∆I2(x, y)
[
s2
xc

2
y + 2sxcysycx + s2

yc
2
x

]
(B.31)

∆ÎRe Im(u, v)2 =
Y−1∑

y=0

X−1∑

x=0

∆I2(x, y) [cxcy − sxsy] · [sxcy + sycx] (B.32)

=

Y−1∑

y=0

X−1∑

x=0

∆I2(x, y)
[
c2
ycxsx + c2

xcysy − s2
xsycy − s2

ysxcx
]

(B.33)

with sx = sin(2π · ux/X), sy = sin(2π · vy/Y ), cx = cos(2π · ux/X) and cy = cos(2π · vy/Y ).

The respective matrix representations follow as:

∆ Re[Î]2 = W 2
c (Y )∆I2W 2

c (X)− 2(Wc(Y )Ws(Y ))∆I2(Wc(X)Ws(X)) (B.34)

+W 2
s (Y )∆I2W 2

s (X)

∆ Im[Î]2 = W 2
c (Y )∆I2W 2

s (X) + 2(Wc(Y )�Ws(Y ))∆I2(Wc(X)�Ws(X))

(B.35)

+W 2
s (Y )∆I2W 2

c (X)

∆ÎRe Im(u, v)2 = (Wc(Y )�Ws(Y ))∆I2(W 2
c (X)−W 2

s (X)) (B.36)

+ (W 2
s (Y )−W 2

c (Y ))∆I2(Ws(X)�Wc(X)),

where the operator � denotes the elementwise multiplication. The corresponding ma-

trices are defined as:

Wc(X) =




1 1 1 . . . 1

1 cos(2π/X) cos(4π/X) . . . cos(2(X − 1)π/X)

1 cos(4π/X) cos(8π/X) . . . cos(4(X − 1)π/X)
...

...
...

. . .
...

1 cos(2(X − 1)π/X) cos(4(X − 1)π/X) . . . cos(2(X − 1)(X − 1)π/X)



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and

Ws(X) =




1 1 1 . . . 1

1 sin(2π/X) sin(4π/X) . . . sin(2(X − 1)π/X)

1 sin(4π/X) sin(8π/X) . . . sin(4(X − 1)π/X)
...

...
...

. . .
...

1 sin(2(X − 1)π/X) sin(4(X − 1)π/X) . . . sin(2(X − 1)(X − 1)π/X)




C Programming

C.1 Fiber Orientation Framework

Figure C.1: Screenshot of the graphical user interface of the image process-
ing framework in the field of fiber orientations.

The entire image processing framework is written in MATLAB [136] using the image

processing toolbox [137] and the curve fitting toolbox [138]. Methods of chapters 3 and

4 are incorporated in a graphical user interface (GUI), shown in figure C.1. It allows the

user to perform multiple tasks in the field of image orientations. The GUI is sectioned

into two ListBoxes for data handling, an image preview window, where the currently

selected image is shown and the main part which covers diverse responsibilities which

are organized in different tabs:

1. Image Data: Images can be either imported by a manual selection or by an

automatic recursive through the specified folder and sub-folders. In order to

ensure that datasets are still distinguishable after data import, datasets are sorted

depending on their parent folder.
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2. Evaluation: The evaluation tab covers the settings for different approaches to

quantify the angular orientation distribution in terms of angular spacing, image

cropping, windowing functions and method-related settings. The methods of

Schriefl et al. [84], Nı́ Annaidh et al. [6], Morrill et al. [21] and Witte et al. [54]

are implemented. Evaluation images and plots like filtered power spectra, the

related inverse Fourier transforms as well as the angular orientation spectra give

insights into the results and properties of each method.

3. Fit and compare: The fit and compare tab allows for a quantification of

the angular orientation distribution and the respective cumulative distribution.

The angular orientation can be quantified using a von-Mises function like in

[6, 21, 84, 139]. In addition different fit methods based on the cumulative ori-

entation distribution are covered including the fit of a single sigmoid function as

proposed in [54] and the FINE algorithm. In addition, derived parameter like

the orientation index (OI) and the alignment index (AI) are calculated. Multiple

fit results can be combined to a dataset in order to visualize the evolution of

parameters, e.g. as a function of measurement depth or material stretch.

4. Monte-Carlo Simulation: The Monte-Carlo Simulation tab covers a section to

create artificial fiber images using the Monte-Carlo approach of section 4.1. The

user can specify the number of fiber families, the number of contributing fibers,

their mean orientation, dispersion as well as the fiber width and length.

5. Evaluate Curves: The evaluate curves tab is implemented for handling the

parameters that have been combined to a dataset. Datasets can be visualized,

saved and reloaded. Additionally, datasets can be linked to stress strain curves.

6. Miscellaneous: The miscellaneous tab includes other functions like plotting

stress-strain curves.

The entire state of the GUI can be saved by Save Evaluation and loaded by Load

Evaluation. Data points that have been combined to a curve can be exported to a

comma separated text file by OI AI Export as .csv (OI and AI export) and FF Export

as .csv (detailed export of fiber families).

C.2 Fiber Tracing App

A screenshot of the fiber tracing app, written in MATLAB [136], is shown in figure

C.2. The purpose of this application is the manual tracing of fibers in greyscale images.

After loading an image, the user can trace single fibers by means of multiple straight

line segments. The application was used in chapter 3 to compare the AF method

against a manual segmentation.
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Figure C.2: Screenshot of the graphical user interface for the manual tracing
of fibers in images.

C.3 Stretching Device GUI

Figure C.3 shows a screenshot of the GUI to control the stretching device. It is used

to perform the stretching experiments of chapter 5. Its main functionalities can be

summarized into the following segments:

Figure C.3: Screenshot of the user interface of the stretching device.
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1. Set up devices: Section to specify the COM port of the force amplifier to

initialize it. In addition, the communication to the CANopen network of the two

motor control units is established. The heartbeat interval time specifies the time

spacing of messages from each node signaling their existence.

2. Measurement protocol: Section to define the type of protocol including move

(to a position), stress-strain, cyclic stress-strain, custom protocol. Within the

panel, the user can specify the minimum and maximum turning points of the

measurement protocol, each either as position of measured force.

3. Force sensor setup: The force sensor setup sections allows for calibrating the

force sensors as well as zeroing the measured force. Once the amplifier is initial-

ized, force values are displayed according to the specified update frequency. Up

to four force sensors are supported.

4. Motor status: The motor status section gives information about the current

status and the mode of the motors. Current velocity and motor position are

displayed as well. A home button allows for a reference drive.

5. Logging section: The logging section keeps track of the events, which are oc-

curring. Such events can either for example represent a status change of the

motors or the start of a measurement. Logged events are automatically saved in

the defined directory upon closing the GUI.

6. Graphical display: In this section, the measured force is displayed live. The

time interval where values are updated can be specified.
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54. M. Witte, S. Jaspers, H. Wenck, M. Rübhausen, and F. Fischer. Noise reduction

and quantification of fiber orientations in greyscale images. PLoS One, pages

1–21, 2020. doi: 10.1371/journal.pone.0227534.

55. J. C. Maxwell. A dynamical theory of the electromagnetic field. Philos. Trans. R.

Soc. London, 119(2986):125–127, 1865. ISSN 00280836. doi: 10.1038/119125a0.

56. R. W. Boyd. Nonlinear Optics, volume 53. 2007. ISBN 9788578110796. doi:

10.1017/CBO9781107415324.004.

57. R. Bonifacio. Theory of Optical Maser Amplifiers. IEEE J. Quantum Electron.,

QE-1(4):169–178, 1965. ISSN 15581713. doi: 10.1109/JQE.1965.1072212.

58. R. LaComb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola. Phase match-

ing considerations in second harmonic generation from tissues: Effects on emission

directionality, conversion efficiency and observed morphology. Opt. Commun., 281

(7):1823–1832, 2008. ISSN 00304018. doi: 10.1016/j.optcom.2007.10.040.

59. J. Mertz and L. Moreaux. Second-harmonic generation by focused excitation of

inhomogeneously distributed scatterers. Opt. Commun., 196(1-6):325–330, 2001.

ISSN 00304018. doi: 10.1016/S0030-4018(01)01403-1.

http://biomedicaloptics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JBO.17.3.036005
http://biomedicaloptics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JBO.17.3.036005


141 BIBLIOGRAPHY

60. L. Moreaux, O. Sandre, and J. Mertz. Membrane imaging by second-harmonic

generation microscopy. J. Opt. Soc. Am. B, 2000. ISSN 0740-3224. doi: 10.1364/

josab.17.001685.

61. R. M. Williams, W. R. Zipfel, and W. W. Webb. Interpreting second-harmonic

generation images of collagen I fibrils. Biophys. J., 88(2):1377–1386, 2005. ISSN

00063495. doi: 10.1529/biophysj.104.047308. URL http://dx.doi.org/10.

1529/biophysj.104.047308.

62. P. Humbert, H. Maibach, F. Fanian, and P. Agache. Measuring the Skin, vol-

ume 49. 2004. ISBN 3540017712. doi: 10.1007/978-3-319-26594-0 40-1.

63. S. P. Tai, T. H. Tsai, W. J. Lee, et al. Optical biopsy of human skin with

backward-collected optical harmonics signals. Opt. InfoBase Conf. Pap., 13(20):

946–952, 2005. ISSN 21622701.

64. M. J. Koehler, K. König, P. Elsner, R. Bückle, and M. Kaatz. In vivo assessment

of human skin aging by multiphoton laser scanning tomography. Opt. Lett., 31

(19):2879, 2006. ISSN 0146-9592. doi: 10.1364/ol.31.002879.

65. R. Bückle, K. König, I. Riemann, et al. 5D-intravital tomography as a novel tool

for non-invasive in-vivo analysis of human skin. In Adv. Biomed. Clin. Diagnostic

Syst. VIII, 2010. doi: 10.1117/12.841861.

66. N. P. Galletly, J. McGinty, C. Dunsby, et al. Fluorescence lifetime imaging distin-

guishes basal cell carcinoma from surrounding uninvolved skin. Br. J. Dermatol.,

2008. ISSN 00070963. doi: 10.1111/j.1365-2133.2008.08577.x.

67. F. Fischer, K. Konig, S. Puschmann, et al. Characterization of multiphoton laser

scanning device optical parameters for image restoration. Femtosecond Laser

Appl. Biol., 5463(September):140, 2004. ISSN 16057422. doi: 10.1117/12.545604.

68. S. Polzer, T. C. Gasser, C. Forsell, et al. Automatic identification and validation

of planar collagen organization in the aorta wall with application to abdominal

aortic aneurysm. Microsc. Microanal., 19(6):1395–1404, 2013. ISSN 14319276.

doi: 10.1017/S1431927613013251.

69. S. Mori and P. C. Van Zijl. Fiber tracking: Principles and strategies - A technical

review. NMR Biomed., 15(7-8):468–480, 2002. ISSN 09523480. doi: 10.1002/nbm.

781.

70. J. S. Bredfeldt, Y. Liu, C. A. Pehlke, et al. Computational segmentation of

collagen fibers from second-harmonic generation images of breast cancer. J.

Biomed. Opt., 19(1):016007, 2014. ISSN 1083-3668. doi: 10.1117/1.JBO.19.1.

016007. URL http://biomedicaloptics.spiedigitallibrary.org/article.

aspx?doi=10.1117/1.JBO.19.1.016007.

http://dx.doi.org/10.1529/biophysj.104.047308
http://dx.doi.org/10.1529/biophysj.104.047308
http://biomedicaloptics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JBO.19.1.016007
http://biomedicaloptics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JBO.19.1.016007


BIBLIOGRAPHY 142

71. J. Wu, B. Rajwa, D. L. Filmer, et al. Analysis of Orientations of Collagen Fibers

by Novel Fiber-Tracking Software. Microsc. Microanal., 9(6):574–580, 2003. ISSN

14319276. doi: 10.1017/S1431927603030277.

72. I. Usov and R. Mezzenga. FiberApp: An open-source software for tracking and

analyzing polymers, filaments, biomacromolecules, and fibrous objects. Macro-

molecules, 48(5):1269–1280, 2015. ISSN 15205835. doi: 10.1021/ma502264c.

73. F. Christidi, E. Karavasilis, K. Samiotis, S. Bisdas, and N. Papanikolaou. Fiber

tracking: A qualitative and quantitative comparison between four different soft-

ware tools on the reconstruction of major white matter tracts. Eur. J. Radiol.

Open, 3:153–161, 2016. ISSN 23520477. doi: 10.1016/j.ejro.2016.06.002. URL

http://dx.doi.org/10.1016/j.ejro.2016.06.002.

74. J. P. Marquez. Fourier analysis and automated measurement of cell and fiber

angular orientation distributions. Int. J. Solids Struct., 43(21):6413–6423, 2006.

ISSN 00207683. doi: 10.1016/j.ijsolstr.2005.11.003.

75. R. Bracewell. The Fourier Transform and its Applications., volume 73. 1986.

76. L. Moisan. Periodic plus smooth image decomposition. J. Math. Imaging Vis.,

39(2):161–179, 2011. ISSN 09249907. doi: 10.1007/s10851-010-0227-1.

77. University of Wisconsin. Public-Domain Test Images for Homeworks and Projects.

URL https://homepages.cae.wisc.edu/$\sim$ece533/images/.

78. B. Pourdeyhimi, R. Dent, and H. Davis. Measuring Fiber Orientation in Non-

wovens Part III: Fourier Transform. Text. Res. J., 67(2):143–151, 1997. ISSN

0040-5175. doi: 10.1177/004051759706700211. URL http://journals.sagepub.

com/doi/10.1177/004051759706700211.

79. A. Kim, N. Lakshman, and W. M. Petroll. Quantitative assessment of local

collagen matrix remodeling in 3-D Culture: The role of Rho kinase. Exp. Cell

Res., 2006. ISSN 00144827. doi: 10.1016/j.yexcr.2006.08.009.

80. S. Chaudhuri, H. Nguyen, R. M. Rangayyan, S. Walsh, and C. B. Frank. A

Fourier Domain Directional Filtering Method for Analysis of Collagen Alignment

in Ligaments. IEEE Trans. Biomed. Eng., 1987. ISSN 15582531. doi: 10.1109/

TBME.1987.325980.

81. E. A. Sander and V. H. Barocas. Comparison of 2D fiber network orientation

measurement methods. J. Biomed. Mater. Res. - Part A, 88(2):322–331, 2009.

ISSN 15493296. doi: 10.1002/jbm.a.31847.

82. R. Becker and N. Morrison. The errors in FFT estimation. IEEE Trans. Signal

Process., 44(8):133–135, 2002. doi: 10.1109/eeis.1996.566911.

http://dx.doi.org/10.1016/j.ejro.2016.06.002
https://homepages.cae.wisc.edu/$\sim $ece533/images/
http://journals.sagepub.com/doi/10.1177/004051759706700211
http://journals.sagepub.com/doi/10.1177/004051759706700211


143 BIBLIOGRAPHY

83. W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott. Uncertainty in

terahertz time-domain spectroscopy measurement. J. Opt. Soc. Am. B, 25(6):

1059, 2008. ISSN 0740-3224. doi: 10.1364/josab.25.001059.

84. A. J. Schriefl, H. Wolinski, P. Regitnig, S. D. Kohlwein, and G. A. Holzapfel. An

automated approach for three-dimensional quantification of fibrillar structures in

optically cleared soft biological tissues. J. R. Soc. Interface, 2012. ISSN 1742-5689.

doi: 10.1098/rsif.2012.0760.

85. R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, et al. Experimental investi-

gation of collagen waviness and orientation in the arterial adventitia using confocal

laser scanning microscopy. Biomech. Model. Mechanobiol., 11(3-4):461–473, 2012.

ISSN 16177959. doi: 10.1007/s10237-011-0325-z.

86. C. J. Stender, E. Rust, P. T. Martin, et al. Modeling the effect of collagen

fibril alignment on ligament mechanical behavior. Biomech. Model. Mechanobiol.,

17(2):543–557, 2018. ISSN 16177940. doi: 10.1007/s10237-017-0977-4. URL

https://doi.org/10.1007/s10237-017-0977-4.

87. J. Lagarias C., J. Reeds A., M. Wright H., and P. Wright E. Convergence Prop-

erties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim.,

9(1):112–147, 1998. URL http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.120.6062.

88. A. J. Schriefl, G. Zeindlinger, D. M. Pierce, P. Regitnig, and G. A. Holzapfel.

Determination of the layer-specific distributed collagen fibre orientations in human

thoracic and abdominal aortas and common iliac arteries. J. R. Soc. Interface,

2012. ISSN 1742-5689. doi: 10.1098/rsif.2011.0727.

89. H. Kung. The Complexity of Obtaining Starting Points for Solving Opera-

tor Equations by Newton’s Method. In Anal. Comput. Complex., pages 35–

57. Elsevier, 1976. doi: 10.1016/B978-0-12-697560-4.50008-3. URL https:

//linkinghub.elsevier.com/retrieve/pii/B9780126975604500083.

90. M. W. Petroll, D. H. Cavanagh, P. Barry, P. Andrews, and J. V. Jester. Quanti-

tative Analysis of Stress Fiber Orientation During Corneal Wound Contraction.

J. Cell Sci., 104:353–63, 1993. ISSN 0021-9533. doi: 10.1016/S0261-5614(03)

00031-1.

91. C. Bayan, J. M. Levitt, E. Miller, D. Kaplan, and I. Georgakoudi. Fully auto-

mated, quantitative, noninvasive assessment of collagen fiber content and organi-

zation in thick collagen gels. J. Appl. Phys., 105(10):1–11, 2009. ISSN 00218979.

doi: 10.1063/1.3116626.

https://doi.org/10.1007/s10237-017-0977-4
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.6062
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.6062
https://linkinghub.elsevier.com/retrieve/pii/B9780126975604500083
https://linkinghub.elsevier.com/retrieve/pii/B9780126975604500083


BIBLIOGRAPHY 144

92. M. van Ginkel. Image analysis using orientation space based on steerable filters.

Number october. 2002. ISBN 9075691092.

93. J. P. McLean, Y. Gan, T. H. Lye, et al. High-speed collagen fiber modeling

and orientation quantification for optical coherence tomography imaging. Opt.

Express, 27(10):14457, 2019. ISSN 1094-4087. doi: 10.1364/oe.27.014457.

94. J. Schindelin, I. Arganda-Carreras, E. Frise, et al. Fiji: An open-source platform

for biological-image analysis, 2012. ISSN 15487091.

95. X. Qian, X. Zhou, B. Mu, and Z. Li. Fiber alignment and property direction

dependency of FRC extrudate. Cem. Concr. Res., 2003. ISSN 00088846. doi:

10.1016/S0008-8846(03)00108-X.

96. M. Witte, S. Jaspers, H. Wenck, M. Rübhausen, and F. Fischer. General
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116. J. L. Lévêque and B. Audoly. Influence of Stratum Corneum on the entire skin

mechanical properties, as predicted by a computational skin model. Ski. Res.

Technol., 19(1):42–46, 2013. ISSN 0909752X. doi: 10.1111/j.1600-0846.2012.

00664.x.

117. R. A. Briggaman and C. E. Wheeler. The epidermal-dermal junction. J. Invest.

Dermatol., 65(1):71–84, jul 1975. ISSN 0022-202X. URL http://www.ncbi.nlm.

nih.gov/pubmed/1097542.

118. E. Jacquet, J. Chambert, J. Pauchot, and P. Sandoz. Intra- and inter-individual

variability in the mechanical properties of the human skin from in vivo measure-

ments on 20 volunteers. Ski. Res. Technol., 00:1–9, 2017. doi: 10.1111/srt.12361.

119. M. D. Ridge and V. Wright. A Bio-Engineering Study of the Mechanical Properties

of Human Skin in Relation to Its Structure. Br. J. Dermatol., 77(12):639–649,

dec 1965. ISSN 0007-0963. doi: 10.1111/j.1365-2133.1965.tb14595.x. URL http:

//doi.wiley.com/10.1111/j.1365-2133.1965.tb14595.x.

120. N. Alkhouli, J. Mansfield, E. Green, et al. The mechanical properties of human

adipose tissues and their relationships to the structure and composition of the

extracellular matrix. Am. J. Physiol. Endocrinol. Metab., 305(12):E1427–35, dec

2013. ISSN 1522-1555. doi: 10.1152/ajpendo.00111.2013. URL http://www.

ncbi.nlm.nih.gov/pubmed/24105412.

121. M. Geerligs, C. Oomens, P. Ackermans, F. Baaijens, and G. Peters. Linear

shear response of the upper skin layers. Biorheology, 48(3-4):229–45, 2011. ISSN

1878-5034. doi: 10.3233/BIR-2011-0590. URL http://www.ncbi.nlm.nih.gov/

pubmed/22156036.

http://dx.doi.org/10.1016/j.jmbbm.2015.05.010
http://dx.doi.org/10.1016/j.jmbbm.2015.05.010
http://www.ncbi.nlm.nih.gov/pubmed/10552214
http://www.ncbi.nlm.nih.gov/pubmed/4820685
http://www.ncbi.nlm.nih.gov/pubmed/4820685
http://www.ncbi.nlm.nih.gov/pubmed/1097542
http://www.ncbi.nlm.nih.gov/pubmed/1097542
http://doi.wiley.com/10.1111/j.1365-2133.1965.tb14595.x
http://doi.wiley.com/10.1111/j.1365-2133.1965.tb14595.x
http://www.ncbi.nlm.nih.gov/pubmed/24105412
http://www.ncbi.nlm.nih.gov/pubmed/24105412
http://www.ncbi.nlm.nih.gov/pubmed/22156036
http://www.ncbi.nlm.nih.gov/pubmed/22156036


147 BIBLIOGRAPHY

122. N. Magnenat-Thalmann, P. Kalra, J. L. Lévêque, et al. A computational skin
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