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Abstract

The properties of the scalar boson that was first found in 2012 by the ATLAS and CMS experi-

ments at the LHC are so far consistent with those of the Higgs boson, predicted by the Standard

Model of particle physics. Further investigations of the boson’s properties with increased accu-

racy are of immediate interest, as any deviation from Standard Model predictions could lead the

way to a more fundamental theory of nature. The comparison of predicted and measured cross

sections, both inclusive and differential, allows important tests of the Standard Model. One of

the decay channels of the Higgs boson that is particularly well suited for measurements of Higgs

boson production cross sections is the decay into a pair of photons, H→ γγ.

Based on proton-proton collision data collected with the ATLAS experiment in the data-

taking periods in 2015 – 2017 at a center-of-mass energy of
√

s = 13TeV, corresponding to an

integrated luminosity of 79.8/fb, inclusive and differential Higgs boson production cross sections

are measured in the H → γγ decay channel in a fiducial phase-space volume. The observed

fiducial inclusive cross section of Higgs production with the Higgs decaying to a pair of photons

corresponds to (60.4 ± 8.6) fb, which is in good agreement with the Standard Model prediction

of (63.5±3.3) fb.

The differential cross section in the Higgs boson transverse momentum, pH
T , is sensitive to the

Yukawa couplings between the Higgs boson and quarks; therefore, limits for these couplings

can be set by performing a fit on the observed pH
T distribution. In this work, limits are set on the

Yukawa couplings between both bottom and charm quarks and the Higgs boson, using ATLAS

pp collision data collected in the years 2015 – 2018, corresponding to an integrated luminosity

of 139.0/fb. The charm quark Yukawa coupling modifier, κc = yc/yS M
c , has been constrained to

κc ∈ [−19, 25] at 95 % CL, while for the bottom quark Yukawa coupling modifier, κb = yb/yS M
b ,

the corresponding confidence interval was determined to be κb ∈ [−6, 16].

The measurement of photon identification efficiencies and a comparison with efficiencies in

simulation are an important input for photon-based analyses of ATLAS data such as the above

mentioned measurement of H→ γγ cross sections. Using the data recorded in the years 2015 –

2017, corresponding to an integrated luminosity of 79.8/fb, photon identification efficiencies are

measured using a method that relies on applying transformations to variables parametrizing the



shape of the electromagnetic showers of electrons and photons. A pure and unbiased sample of

electrons to which these transformations are applied is selected with a tag-and-probe method.

The transformed electrons are photon-like objects and as such can be used to measure photon

identification efficiencies. Depending on the considered region of pseudorapidity and photon

transverse momentum, the uncertainties on these efficiencies range from 0.5 % to 3 %.
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Zusammenfassung

Das skalare Boson, das im Jahr 2012 vom ATLAS- und CMS-Experiment am LHC entdeckt

wurde und dessen Eigenschaften in den Jahren seither mit steigender Präzision vermessen

wurden, entspricht bislang innerhalb der Messgenauigkeiten den Erwartungen für das Higgs-

Boson im Standardmodell der Teilchenphysik. Weiterführende und genauere Untersuchungen

der Eigenschaften des Bosons sind von großem Interesse, da etwaige Abweichungen von den

Vorhersagen des Standardmodells den Weg zu einer fundamentaleren Beschreibung der Natur

weisen könnten. Der Vergleich von vorhergesagten und gemessenen Wirkungsquerschnitten,

sowohl differenziellen als auch inklusiven, erlaubt entsprechende Tests des Standardmodells.

Einer der Zerfallskanäle, die besonders gut für die Messung der Eigenschaften des Higgs-Bosons

geeignet sind, ist der Zerfall des Higgs-Bosons in ein Photonenpaar, H→ γγ.

Basierend auf Proton-Proton-Kollisionsdaten des ATLAS-Experiments aus den Jahren 2015

bis 2017, die einer integrierten Luminosität von 79.8/fb bei einer Schwerpunktsenergie von
√

s = 13TeV entsprechen, wurden inklusive und differentielle Wirkungsquerschnitte für Higgs-

Boson-Produktion mittels des H→ γγ Zerfallskanals in einem Phasenraumvolumen gemessen,

welches in guter Näherung mit der Detektorakzeptanz übereinstimmt. Der gemessene inklusive

Produktions-Wirkungsquerschnitt für Higgs-Bosonen, welche in ein Photonenpaar zerfallen,

beträgt im betrachteten Phasenraumvolumen (60.4 ± 8.6) fb. Dieser Wert stimmt gut mit dem

vom Standardmodell vorhergesagten Wert von (63.5±3.3) fb überein.

Der differentielle Wirkungsquerschnitt im transversalen Impuls des Higgs-Bosons, pH
T , ist

sensitiv auf die Yukawa-Kopplungen zwischen dem Higgs-Boson und den Quarks, weshalb

durch eine Analyse der pH
T -Verteilung Informationen über jene Kopplungen erlangt werden

können. Unter Verwendung der ATLAS-Daten, die in den Jahren 2015 – 2018 gesammelt wurden

und einer integrierten Luminosität von 139.0/fb entsprechen, wurden Konfidenzintervalle für die

Yukawa-Kopplungen zwischen dem Higgs-Boson und dem Bottom-Quark sowie dem Charm-

Quark bestimmt. Das resultierende 95 % CL-Konfidenzintervall für den Kopplungsmodifikator

κc = yc/yS M
c entspricht κc ∈ [−19, 25], wohingegen es im Falle von κb = yb/yS M

b durch das

Intervall κb ∈ [−6, 16] gegeben ist.



Die Messung von Photon-Identifikationseffizienzen und der Vergleich gemessener Werte mit

Effizienzen aus Simulationen sind ein wichtiger Beitrag für photonbasierte Analysen von ATLAS-

Daten, wie beispielsweise oben erwähnten Messungen von H→ γγ - Wirkungsquerschnitten.

Photon-Identifikationseffizienzen wurden gemessenen auf Grundlage von 79.8/fb an Daten,

welche in den Jahren 2015 – 2017 genommen wurden. Die angewandte Methode stützt sich auf

Transformationen von Variablen, welche die Form der elektromagnetischen Schauer von Elektro-

nen und Photonen parametrisieren. Werden solche Transformationen auf Elektronen angewandt,

die in Daten mittels einer Tag-and-Probe-Methode gesammelt wurden, resultieren Objekte,

deren Schauerformen denen von Photonen entsprechen. Auf Grundlage solcher photon-ähnlichen

Objekte können Photon-Identifikationseffizienzen gemessen werden. Die Unsicherheiten für die

gemessenen Effizienzen liegen im Bereich von 0.5 % bis 3 %.
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1. Introduction

Based on observations of nature and the scientific method, it has been discovered that the world

is at its basis governed by several forces and consists of elementary particles, all of which

can be described by mathematical equations. Gravity may be the most obvious example of

a force to us. It became apparent, however, that there exists an electromagnetic force, which

accounts for a wide array of natural phenomena such as light, electricity and magnetism. In

the last century, processes have been studied that can neither be accounted for by gravity or

electromagnetism, in the course of which two more forces have been discovered: the weak

and the strong interaction. In parallel, a multitude of elementary particles have been found.

Our current best understanding of the subatomic world, excluding the realm of gravity, is the

Standard Model of particle physics (SM). In the SM, both matter and forces are described in

terms of quantum fields. While it describes the subatomic world with unmatched precision, is not

consistent with the general theory of relativity, which describes gravity and the cosmos on large

scales successfully. Moreover, from cosmological observations it is assumed that a significant

fraction of the matter of the universe does not consist of SM particles. Therefore, further studies

of the validity of the SM are well motivated.

A central building block of the SM is the Higgs field, which plays the central role in the

generation of masses of elementary particles and is the only elementary scalar field of the SM.

The Higgs boson, the quantized excitation of the Higgs field, has a mass of approximately

125 GeV. It has been discovered in the year 2012 by two experiments [1, 2] located at the

Large Hadron Collider (LHC), a proton-proton collider ring that, in recent years, was operating

at a center-of-mass energy of
√

s = 13TeV. The experiments that led to the discovery of the

Higgs boson, CMS (short for Compact Muon Solenoid) and ATLAS (short for A Toroidal

LHC Apparatus), are large multi-purpose detectors that are able to detect a variety of different

collision-event signatures.

1



Given a measurement of the mass of the Higgs boson, the SM predicts the Higgs boson’s

couplings to all other particles in the SM. By measuring production cross sections and decays of

the Higgs boson, these predictions can be tested.

The analysis of events in which the Higgs boson decays into two photons, one of the several

possible decay channels of the Higgs boson, has proven to be a valuable method for the discovery

and the detailed analysis of its properties. The good energy resolution of the reconstructed

photons in the ATLAS detector enables a robust background subtraction of the sizable background

contributions in a signal-plus-background fit of the diphoton invariant-mass spectrum.

The Higgs boson production cross section can be measured almost model-independently in a

fiducial volume of phase space that closely resembles the acceptance of the ATLAS detector and

the event selection. Predictions that take into account the same fiducial phase-space volume can

be directly compared to the measurements. Both the total cross section in this phase-space region

and the differential cross sections of variables such as the Higgs boson transverse momentum are

important observables for tests of the SM.

Because the distribution of the Higgs boson transverse momentum depends on the coupling

of the Higgs boson to the b- and c-quark, these couplings can be constrained by comparing the

measured distribution with predictions. The effect of the b- and c-quark coupling strength can be

seen predominantly at low transverse momentum of the Higgs boson. However, also the region

of high transverse momentum is interesting as it is sensitive to the presence of heavy particles

that couple to the Higgs, including possible non-SM particles.

Photon candidates that are used in analyses as described above are reconstructed based on

clusters of energy depositions in the ATLAS calorimeter. However, photons are not the only

particles that create such clusters: the most important background results from hadronic particles,

which are produced in large amounts in LHC collision. A photon identification selection is

applied to reconstructed clusters of energy depositions in order to minimize this background and

to select a sample of photon candidates that contains only a relatively small fraction of clusters

that do not result from photons. Knowledge of the photon identification efficiency and the

corresponding uncertainty is an important ingredient for photon-based analyses of ATLAS data.

One of the methods to determine the identification efficiency in the ATLAS experiment is the

electron extrapolation method, which is based on the transformation of variables parametrizing

the shape of electromagnetic showers of electrons. The aim of these transformations is to obtain

2



a sample of photon-like objects, based on which the photon identification efficiency can be

measured. A pure and unbiased sample of electrons to which the transformations are applied can

be collected with a tag-and-probe method from Z-boson decays into electron-positron pairs.

Chapter 2 of this thesis gives an overview of the SM and its limitations, and introduces basic

techniques to predict Higgs boson production cross sections. In Chapter 3, the LHC collider,

the ATLAS detector and the analysis objects that are relevant for this thesis are described. The

measurement of photon identification efficiencies is detailed in Chapter 4. Chapter 5 discusses the

measurement of fiducial Higgs boson production cross sections in the H→ γγ decay channel. An

interpretation of the measured differential cross section of the Higgs boson transverse momentum

with respect to the Yukawa couplings of the c- and b-quark is shown in Chapter 6. The thesis is

summarized in Chapter 7.
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2. Theoretical Foundations

2.1. Introduction

The underlying theory of high energy physics is the Standard Model, which is a quantum field

theory and as such a combination of quantum theory with the special theory of relativity [3]. In-

teractions and kinematics of SM particles are fundamentally described by means of a Lagrangian

density L. The field equations that determine the behavior of fields are derived by extremizing

an action S , which is a functional of the Lagrangian density. This is called the principle of least

action [4]. The SM describes all known interactions between matter, except the gravitational

force, i.e. the strong interaction and the electroweak interaction, where the latter describes both

electromagnetic phenomena and effects of the weak force.

The electromagnetic interaction is a long-range force. Both magnetic and electric fields in the

classical regime are described by the theory of electromagnetism. Light and as its equivalents in

different energy regimes such as X-rays or radio waves are electromagnetic phenomena as well,

corresponding to oscillations of the electric and magnetic field that propagate through space

– electromagnetic waves. The weak interaction is very short-ranged and is responsible for a

certain type of radioactive decays and also plays a crucial role in the fusion process that powers

stars. The strong interaction is the force that confines the constituents of atomic nuclei to a very

small region, overpowering the repulsive effects of same-signed electric charges of the confined

protons (and their constituents) and leading to strongly bound composites of multiple protons

and electrically neutral neutrons. It is also the strong force that results in large energy releases in

processes of nuclear fission and fusion, as found both in artificial reactors and stars. The weak

and strong interactions act on short distances only, which made their discovery more challenging

than that of the electromagnetic force.

Both matter and interactions are described by means of quantum fields that extend over time
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and space: For each point in space-time, a harmonic oscillator for each type of field is defined

and can be excited in interactions with other fields [3]. Quantized excitations of these fields

correspond to what is commonly called particle.

Fermions and Bosons

In general, two types of particles exist in the SM: Fermions and bosons. These two types differ

in spin, an angular momentum that is an intrinsic property of particles. Bosons are particles with

integer spin, while fermions carry half-integer spin. Systems of multiple fermions and systems

of multiple bosons behave each in very distinct ways: not more than one fermion can occupy a

given quantum state, as stated in the Pauli exclusion principle, while any number of bosons can

condensate into one state [5].

Elementary fermions with spin 1/2 constitute matter. Each fermion has a mirrored version

of itself with the opposite charges, which corresponds to antimatter. The group of elementary

fermions can be further divided into two sets of particles called leptons and quarks, depending

on the interactions they participate in. Both fermion types interact electroweakly, but only quarks

interact in addition via the strong interaction.

In Table 2.1 all fermions of the SM are listed. The first two lines contain the leptons, and the

two lower lines contain the quarks. The most common examples of leptons are electrons, which

in combination with the atomic nucleus constitute the atom. In addition to electrically charged

particles like the electron, the category of leptons also contains neutrinos – particles that interact

only via the weak interaction. Accordingly, neutrinos hardly interact with other particles.

Quarks cannot be found in an unbound state; instead, they are confined with other quarks to

composites called hadrons. Protons and neutrons are the most common examples of hadrons,

each consisting of a combination of two different quark types. Two up-quarks and one down-

quark bound together by the strong interaction correspond to a proton, with the fractional charges

as shown in Table 2.1 adding up to the positive equivalent of the electron’s charge. Two down-

quarks and one up-quark correspond to a neutron. However, there are more quarks to be found

than just up- and down-quarks, although it needs higher energies to probe them and to create

such more exotic hadrons.

An important feature of both leptons and quarks is that they come in three generations of
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1st Generation 2nd Generation 3rd Generation Electric charge [e]

Electron e Muon µ Tau τ -1
Electron neutrino νe Muon neutrino νµ Tau neutrino ντ 0

Up-quark u Charm-quark c Top-quark t +2/3
Down-quark d Strange-quark s Bottom-quark b -1/3

Table 2.1. | Fermions of the SM, grouped in three generations, and their electric charge. The first line
contains the electrically charged leptons, and the second line contains the leptons without electric charge.
The two gray-shaded lines contain the up-type quarks and the down-type quarks, with fractional electric
charges [6].

which each generation contains two particle types, also called flavor, as seen in Table 2.1. Each

up-type quark (u, c, t) is paired with a corresponding down-type quark (d, s, b), and similarly

each charged lepton is paired with a corresponding neutrino. Via the weak interaction, a charged

lepton can be transformed to a neutrino, and vice versa, and similarly an up-type quark can

be transformed to a down-type quark, and vice versa. Such transformations between different

fermion types are one of the reasons for radioactive decays of atomic nuclei. The flavor-changing

transformations can not only happen between particles of the same generation, but with a smaller

probability also between particles from different generations. This is because the eigenstates of

mass, which defines the particle, are not the eigenstates of the weak interaction.

The group of elementary SM bosons can be divided into two types: particles with spin 1, and

one instance of a particle with spin 0, a scalar. Those that have unit spin are commonly called

vector bosons or gauge bosons. These fields are the mediators of the SM interactions. While

gauge bosons are all created by the same dynamic principle, called the gauge principle, the scalar

field is stated ad hoc as basic ingredient of the Higgs mechanism, which was added to the SM in

order to allow non-zero masses of elementary particles. In Table 2.2, all elementary bosons of

the SM are listed in combination with their mass and electric charge.
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Name Mass [GeV] Electric charge [e]

Photon γ < 10−27 0
Z-boson 91.188 ± 0.002 0
W±-boson 80.379 ± 0.012 ±1
Gluon g 0 0
Higgs boson H 125.09 ± 0.24 0

Table 2.2. | Bosons of the SM [6][7]. Except for the Higgs boson, all bosons mediate gauge interactions,
as described in Section 2.2.

2.2. Interactions in the Standard Model

Interactions in the SM are based on symmetry principles. By imposing the constraint of

preserving certain symmetries of the Lagrangian that describes naively only non-interacting

matter, vector fields have to be introduced to the theory, which have the effect of mediating a

force. Because these vector fields are products of the constraint of being able to freely choose a

“gauge”, that is, products of a demand for symmetry, they are called gauge bosons. They can

be seen as mediators of SM forces. The kind of symmetry that is considered in this context is

that of Lie symmetry groups acting on internal degrees of freedom of the quantum fields, which

generally contain an infinite number of symmetry transformations [3].

If a theory is symmetric under a transformation identical for all points in space-time, one

speaks of a global symmetry. If a theory is said to be locally invariant under a given symmetry

group, one can apply a different element of the symmetry group for each point in space-time

without changing the Lagrangian [4]. The existence of a local symmetry implies the existence

of a global symmetry of the same type. The Noether theorem states that for each global and

differentiable symmetry a conserved quantity exists, meaning that in corresponding interactions

this quantity does not change. Such a conserved quantity is generally called charge [4].

Depending on the symmetry to be preserved, different dynamics entail. The simplest example

of a gauge theory in the SM is the theory of electromagnetic interactions, which follows from a

local symmetry of type U(1). Transformations of this symmetry group correspond to changes

in the phase of a complex number by multiplication with a complex number eigα(x). In this

simple example, α(x) is a real number that specifies the transformation, and g is the generator of

the symmetry group. The defining property of the set of generators, which in this simple case
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contains only one element, is that with a linear combination of the set elements every element of

the symmetry group can be expressed.

Such a transformation can be generalized to fields with more than one component.

The most general case of a gauge symmetry is to assume a field with n components,

ψ(x) = (ψ1(x),ψ2(x), ...,ψn(x))T, and a symmetry group that acts upon this field [4]. A symmetry

transformation of such a group can be represented by a unitary, complex-valued n×n matrix

with unit determinant. Unitary matrices obey M†M = I. A transformation corresponding to such

a matrix preserves the Euclidean norm of the field on which the transformation acts. A generic

transformation of that type can be written as

ψ(x)→ eigαk(x)T k
ψ(x) , (2.1)

where summation over the index k is implicit. The T k are the generators of the symmetry group,

and the αk(x) are real numbers that act as coefficients for the generators, resulting in a linear

combination of the generators acting on the field ψ(x).

The special case where n = 1 is called Abelian. In this case, the order in which multiple

transformations are applied is irrelevant. In the case n ≥ 2, the order of the application of group

elements is generally of importance; such symmetry groups are called non-Abelian. Whether

a symmetry is Abelian or non-Abelian has significant consequences for the dynamics of the

resulting interaction; if an interaction corresponds to a non-Abelian symmetry group, its gauge

bosons can couple to each other [4].

A Lagrangian typically contains derivatives ∂µ = (∂/∂t, ~∇) of the field ψ(x). In order to

preserve gauge invariance for such terms, these original derivatives ∂µ are substituted by a

covariant derivative Dµ that transform like the fields ψ under gauge transformations. In the

case of a U(1) gauge theory, the covariant derivative is given by Dµ = ∂µ + igAµ(x), which

involves a newly introduced vector field Aµ that compensates for the changes brought by the

U(1) gauge transformation. This gauge field Aµ(x) itself is subject to gauge transformations:

Aµ(x)→ Aµ(x)− 1
g∂µα(x).

In the case of the SM, three gauge symmetries are postulated in order to account for all known
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forces except gravity. The combination of these reads [4]

SU(3)c×SU(2)L×U(1)Y . (2.2)

The first part, SU(3)c, corresponds to the strong force, and the combination of the SU(2)L and

U(1)Y symmetries to the electroweak interaction. The subscript c in SU(3)c indicates that the

so-called color is the conserved quantity of the resulting interaction. In the case of the SU(2)L

symmetry group, the subscript L indicates that this interaction acts only on particles of left-

handed chirality1. The charge of the interaction related to the SU(2)L symmetry is one of the

three components of the weak isospin, usually chosen to be the third, i.e. the z-component. For

the U(1)Y symmetry group, the conserved quantity Y is called weak hypercharge.

In general, the number of gauge fields that result from a gauge symmetry SU(N) is given

by N2 − 1. Hence, there are 8 gauge bosons that mediate the strong force, and four gauge

bosons in the case of the electroweak force. The gauge bosons of the strong force are called

gluons and are massless. The strong interaction is non-Abelian, which implies that gluons carry

color charge themselves and couple to each other. Similarly, there are interactions between

the electroweak gauge bosons. Three of the four gauge bosons corresponding to the SU(2)L×

U(1)Y gauge symmetry are massive (W±, Z), while one of them, the photon, is massless. The

massive electroweak gauge bosons mediate the weak interaction, and the photon mediates the

electromagnetic interaction. A non-zero mass of gauge bosons generally leads to a reduced range

of the corresponding interaction. As can be seen in Table 2.2, the massive electroweak gauge

bosons have masses of the order O(102) GeV, corresponding to a range of about 2.5 ·10−18 m [8].

Despite a mass of zero, the range of the strong interaction is small, which is discussed in

Section 2.5.

2.3. Electroweak Theory and the Higgs Mechanism

The theory of electroweak interactions is strongly linked to the Higgs mechanism, which is

responsible in the SM for generating masses of elementary particles, including those of the gauge

1For massless particles the chirality corresponds to handedness, the projection of the spin on the momentum vector.
The chirality of a system is changed by application of the parity transformation P : (x,y,z)→ (−x,−y,−z).
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bosons of the weak interaction. The Higgs mechanism requires the existence of a scalar field

with a non-vanishing expectation value. Without an ingredient like the Higgs mechanism, neither

masses for gauge bosons nor masses for elementary fermions are possible without explicitly

breaking the gauge symmetry. In case of the gauge bosons, this is because not only fermion

fields but also the gauge fields themselves are subject to gauge transformations. If an explicit

mass term for the gauge boson would be part of the Lagrangian, the combination of it with

the aforementioned gauge transformation would explicitly break gauge invariance. In the case

of fermions, a naive mass term of the form m(ψLψR +ψRψL) would destroy gauge invariance

because the products in this term involve both fields with left-handed and right-handed chirality,

which transform differently under gauge transformations of SU(2)L.

2.3.1. The Electroweak Interaction

The gauge symmetry of the electroweak interaction is SU(2)L ×U(1)Y . Its gauge fields are

denoted by W i
µ, with i ∈ {1, 2, 3}, and Bµ, where the W i

µ result from the SU(2)L symmetry, and

the Bµ from the U(1)Y symmetry. The mass eigenstates of the SU(2)L×U(1)Y gauge bosons are

linear combinations of the fields W i
µ and Bµ. Three of the four mass eigenstates are massive. The

massless photon is denoted by γ or A, the two massive gauge bosons that carry electrical charge

by W±, and the electrically neutral massive gauge boson by Z.

Photons and Z-bosons mediate neutral currents, interactions in which the flavor of the interact-

ing particle does not change. Charged currents correspond to interactions with W± bosons, which

change particle flavor and carry electrical charge. An example for this would be the emission

of a W− boson by an electron, by which the electron is transformed into an electron neutrino.

The gauge bosons of SU(2)L only couple to fermions of left-handed chirality. Right-handed

neutrinos have so far not been observed. Of all other fermions, right-handed versions are known

to exist. These are singlets under SU(2)L transformations, corresponding to zero weak isospin,

while left-handed fermions belong to a doublet of weak isospin. The electric charge is the charge

that the photon couples to; it is given by the sum of the z-component of the weak isospin and on

the weak hypercharge, eQ = e(Tz + Y) [4].

The initial Lagrangian without interactions can be transformed to an electroweakly interacting

theory by replacing the derivatives ∂µ with the covariant derivative of SU(2)L×U(1)Y , which
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contains terms with gauge fields and is given by

Dµ = ∂µ+ i
g
2
σiW i

µ+ ig′
Y
2

Bµ

= ∂µ+
i
2

 gW3
µ + g′Bµ g(W1

µ − iW2
µ)

g(W1
µ + iW2

µ) −gW3
µ + g′Bµ

 . (2.3)

The σi represent the three Pauli matrices. As there are two gauge symmetries involved, two

interaction strengths play a role, g for SU(2)L, and g′ for U(1)Y . Based on Eq. (2.3), the following

definitions of mass eigenstates for the gauge fields can be introduced:

W±µ =
1
√

2
(W1

µ ∓ iW2
µ)

Zµ =
1√

g2 + g′2
(gW3

µ −g′Bµ)

Aµ =
1√

g2 + g′2
(gW3

µ + g′Bµ) . (2.4)

2.3.2. The Higgs Field

If gauge invariance of the Lagrangian is required, the inclusion of simple, ad hoc mass terms is

not permitted. Because fermion masses are generally non-zero, and several of the electroweak

gauge bosons are massive, a way had to be found to allow a dynamical mass generation of these

particles. One solution for this is to assume the existence of a particular scalar field with non-zero

expectation value for its field strength. The coupling of elementary particles to such a scalar field

would create particle masses without explicitly breaking gauge invariance. This scalar field is a

weak-isospin doublet and complex-valued, corresponding to a total of four scalar fields φi:

φ =

φ+

φ0

 =
1
√

2

φ1 + iφ2

φ3 + iφ4

 . (2.5)

As a weak-isospin doublet, it participates in the SU(2)L interaction. Moreover, it carries a weak

hypercharge Y . In order to have a doublet of which one component has zero electrical charge

and accordingly does not couple to photons and provides the possibility of an electrically neutral

ground state of the scalar field, the Higgs field needs to have a value for the weak hypercharge of
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Figure 2.1. | Higgs potential as a function of the field strength. For the sake of the presentation, the Higgs
potential is drawn as a function of only one of the four real-valued Higgs field components. Its potential is
minimal at a field strength of |φ+|2 + |φ0|2 =

µ
√

2λ
, see Eq. (2.6).

Y = 1
2 [4]. The Lagrangian that describes this field is given by

Lfree
H = ∂µφ

†∂µφ−V(φ)

= ∂µφ
†∂µφ+µ2φ†φ−λ(φ†φ)2 , (2.6)

where φ is given by Eq. (2.5) and V(φ) is the term describing the potential of the field. Two

real-valued parameters enter this Lagrangian, µ2 and λ. Both have to be positive under the

requirement of having a stable vacuum state with a non-vanishing vacuum expectation value. In

that case, the potential has a form as shown in Figure 2.1. By computing the field configuration

at which the potential energy is minimal, one obtains the non-vanishing expectation value for the

Higgs field strength.

The vacuum or ground state can be chosen from a degenerate four-dimensional circle that

has a radius of µ/
√

2λ. By assuming one of the field configurations of the ground state, the

initial SU(2)L×U(1)Y symmetry of the system is hidden. Such a situation is called spontaneous

symmetry breaking. As a consequence of such a breaking of a continuous symmetry, massless

scalar bosons arise. The reason that these massless bosons are not seen in experiment is that

the corresponding degrees of freedom are absorbed into the definitions of the W± and Z-bosons,

increasing their number of degrees of freedom from two to three. This additional degree of
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freedom corresponds to a mode with longitudinal polarization, whereas the original two degrees

of freedom described the transversal modes of polarization of a massless vector boson. The

remaining 4−3 = 1 degree of freedom from the introduction of the doublet of scalar fields is

equivalent to the Higgs boson.

Since the global SU(2)L×U(1)Y symmetry exists irrespective of the spontaneous symmetry

breaking, one can gauge the ground state in a way that results in a charged component of the

Higgs field with vanishing expectation value and one electrically neutral component of which

only the real part has a non-vanishing expectation value, see Eq. (2.7). In this ground state, the

Higgs field is given by

φ =

 0
1√
2
(v + H(x))

 , (2.7)

where v/
√

2 corresponds to the expectation value of the Higgs field in its ground state. An

oscillation around this value is represented by H(x) and correspond to the Higgs boson.

2.3.3. Masses of Gauge Boson

To understand the interactions of the Higgs field with the gauge bosons and itself, it is instructive

to further analyze the Lagrangian in Eq. (2.6). First, one replaces the derivative with its covariant

version given by Eq. (2.3) to make it invariant under SU(2)L×U(1)Y gauge transformations. This

leads to

LHiggs = (Dµφ)†(Dµφ) +µ2φ†φ−λ(φ†φ)2

= (∂µφ)†(∂µφ) +µ2φ†φ−λ(φ†φ)2

+
1
4
φ†(gWa

µσ
a + g′Bµ)(gWb

µσ
b + g′Bµ)φ . (2.8)

When evaluating the Pauli matrices and assuming the ground state given by Eq. (2.7), this

Lagrangian becomes

Lvac
Higgs =

1
2

(∂µH)†(∂µH)−µ2H2−λvH3−
1
4
λH4

+
1
8

(v + H)2
[
g2

(
(W1

µ)2 + (W2
µ)2

)
+ (−gW3

µ + g′B)2
]

. (2.9)
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With the definitions of the gauge boson mass eigenstates (2.4) one obtains a Lagrangian from

which the following gauge boson masses can be determined:

mW =
v
2

g

mZ =
v
2

√
g2 + g′2

mγ = 0 . (2.10)

It follows that the masses of the W-bosons and Z-bosons are proportional to the vacuum expecta-

tion value of the Higgs field, which can thus be computed based on the measured masses of the

heavy gauge bosons, e.g. the W-boson: v = 2mW/g = 246GeV [6]. The ratio of the masses of

the W-boson and Z-boson is fixed by the relations (2.10):

mW

mZ
=

g√
g2 + g′2

. (2.11)

Not only do the W± and Z-bosons become massive by the introduction of the Higgs field, there are

also interactions between those massive bosons and the Higgs boson as well as self-interactions

of the Higgs boson:

Lint. = −λvH3−
1
4
λH4

+
g2

4
H2(W±µ )2 +

g2

2
H(W±µ )2 +

g2 + g′2

8
H2(Zµ)2 +

g2 + g′2

4
H(Zµ)2 . (2.12)

2.3.4. Masses of Fermions

Since explicit mass terms of fermions would involve mixing the left-handed and the right-

handed versions of the fermion fields, which behave differently under SU(2)L ×U(1)Y gauge

transformations, such mass terms would break gauge invariance explicitly. The Higgs field can

be used to generate fermion masses without explicitly breaking gauge invariance. This is done by

assuming Yukawa interactions between the Higgs field and elementary fermions. For example, a

mass for the electron can be introduced by adding the following term to the Lagrangian:

Le
Yukawa = -λe

(
ĒLφeR + ēRφ

†EL
)

, (2.13)
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with the left-handed SU(2)L doublet

EL =

νe

e−


L

. (2.14)

The right-handed component eR is a singlet under SU(2)L. The factor λe denotes the Yukawa

coupling strength of the Higgs field to the electron. Assuming the vacuum state given by Eq. (2.7),

the Lagrangian given in Eq. (2.13) becomes

Le
Yuk = -λe

v
√

2
(ēLeR + ēReL) . (2.15)

It follows that by introducing Yukawa couplings between elementary fermions and the Higgs

field gauge-invariant mass terms for these fermions follow. In general, the mass of an elementary

fermion from a Yukawa coupling is given by

m f =
λ f v
√

2
, (2.16)

where λ f is a free parameter of the theory which can be chosen such that the measured fermion

masses are reproduced.

Neutrinos are different from the other fermions because it was originally assumed that they

are massless. However, neutrino mixing has been observed; therefore, they must have non-zero

masses [9]. A way to implement this in the SM is to assume the existence of right-handed

neutrinos that interact neither electromagnetically nor weakly [3].

2.4. The Higgs Boson

2.4.1. Higgs Boson Properties

The Higgs boson’s mass is given by mH =
√

2µ, as follows from the Lagrangian in Eq. (2.9).

Since µ is not known but a free parameter of the theory, it does not predict the mass of the Higgs

boson, making it necessary to measure it by experiment. The Higgs boson has been observed

in 2012 by both the CMS and ATLAS experiment [1, 2]. Its mass has been measured to be

mH = (125.09 ± 0.21(stat.) ± 0.11(syst.)) GeV [7]. The experimental signature of the Higgs
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boson is a resonance, and can be measured in various decay channels, including the decay to

two photons. The fact that the observed boson can decay to a system of two photons implies

that this boson cannot be a spin-1 particle, as a diphoton system cannot be constructed in a way

that leads to a combined spin of 1 [10, 11]. Spin 0 and spin 2 are the remaining options. In

Reference [12] hypotheses about the spin and the behavior under CP-transformations have been

tested. All hypothesis except the one that corresponds to the SM assumption, i.e. a CP-even

boson with spin 0, have been excluded with more than 99.9 % CL.

2.4.2. Higgs Boson Decays

Given the Higgs boson mass of approximately 125 GeV, the Higgs boson is predicted to decay

quickly, with a mean lifetime of τ = (1.60±0.02 ·10−22) s, corresponding to the inverse of the

decay width Γ =
∑

i Γi = (4.10±0.06) MeV, where Γi denotes the partial decay width of decay

channel i [13]. The branching ratios of the various Higgs boson decays are given by [14]

Bi =
Γi

Γ
. (2.17)

In Table 2.3, the predicted branching ratios for a Higgs boson with a mass of 125.09 GeV are

shown. The coupling of the Higgs boson to other particles grows with increasing particle mass.

Therefore, the Higgs boson tends to decay to a pair of particles with the highest possible mass.

Due to the uncertainty principle ∆t ·∆E ≥ 2π, the Higgs boson can not only decay to a pair of

particles with a mass smaller than half of the Higgs boson mass, but also to a pair of heavier

particles [9]. In such a case, at least one of the particles from the Higgs boson decay must violate

the energy-momentum relation E2 = ~p2 + m2. The larger this violation is, the more suppressed

is the process.

As can be seen in Table 2.3, most Higgs bosons decay to a pair of b-quarks. However, it is

challenging to observe this decay due to the large QCD background of the H→ bb̄ signature.

Consequently, this decay mode has only recently been experimentally observed [15, 16]. The

decay channels that were used to discover the Higgs boson were those to pairs of gauge bosons,

in particular H→ γγ, H→ ZZ∗→ 4`, and H→WW∗→ `+ν`−ν̄ [2], where ` denotes either an

electron or muon. The two former channels can be used for the measurement of the Higgs boson

mass, while the latter is limited in this regard because the inability to fully reconstruct neutrino
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Decay Channel Branching ratio Relative uncertainty [%]

bb̄ 0.58 +1.2
−1.3

W+W− 0.22 +1.5
−1.5

gg 0.082 +5.2
−5.1

ττ 0.063 +1.7
−1.6

cc̄ 0.029 +5.6
−2.0

ZZ 0.026 +1.5
−1.5

γγ 0.0023 +2.1
−2.1

µµ 0.00022 +1.7
−1.7

Zγ 0.0015 +5.8
−5.8

Table 2.3. | SM predictions for Higgs boson branching ratios for a Higgs boson mass of 125.09 GeV [13].
Decays with boson pairs in the final state are highlighted in gray. The uncertainties are computed by
quadratically summing the individual theoretical and parametric uncertainties.

four-momenta in the ATLAS detector prevents the reconstruction of the invariant mass of all

decay products.

Of particular relevance for this thesis is the decay of the Higgs boson to a pair of photons.

While the Higgs boson does not directly couple to photons, it does couple indirectly to them

via a loop of W± bosons or a loop of massive, charged fermions, see Figure 2.2. (All Feynman

diagrams in this work have been created using Reference [17].)

H

γ

γ

f

(a)

γ

H

γ

W

(b)

Figure 2.2. | Feynman diagrams for H→ γγ decays. (a) Decay via a loop of electrically charged fermions,
particularly heavy fermions, denoted by f, such as t-quarks. (b) Decay via a loop of W± bosons.
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2.4.3. Higgs Boson Production Processes

In proton-proton collisions at the LHC, Higgs bosons can be produced in various processes with

different cross sections; see Section 2.6 for an introduction to the concept of the cross section and

its computation. In Figures 2.3, 2.4, 2.5 and A.1 (see Appendix A), the leading-order2 Feynman

diagrams for Higgs boson production are shown. These processes will be briefly described

below. For the quoted predicted cross sections a Higgs boson mass of mH = 125.09GeV and a

center-of-mass energy of
√

s = 13TeV has been assumed.

Gluon fusion

Gluon fusion is the dominant Higgs boson production mode for proton-proton collisions at

the LHC. Two gluons lead to a heavy-quark loop which can couple to a Higgs boson, see

Figure 2.3 (a). Because of its relatively large cross section of 48.51+2.72
−3.61 pb [13, 18–36] and the

presence of a loop at leading order that could involve particles beyond the SM, this production

mode is of particular interest. For more details on the computation of the gluon fusion cross

section, see Section 2.6.4.

Vector-boson fusion

In the vector-boson fusion process two incoming quarks each emit massive gauge bosons which

fuse into a Higgs boson, see Figure 2.3 (b). With a cross section of 3.779+0.083
−0.082 pb, this production

mode has the second-largest cross section [13, 18, 37–44].

Associated WH production

In the process of associated WH production, two quarks fuse into a W-boson that has sufficient

high virtuality to emit a Higgs boson, see Figure 2.3 (c). This process has a cross section of

1.369+0.027
−0.028 pb [13, 18, 37, 40, 45].

2For a given process, the leading-order diagram corresponds to the diagram of minimal order in perturbation
theory that leads to a non-zero process cross section.
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Associated ZH production

Associated ZH production corresponds to diagrams in which a pair of quarks fuse into a Z-boson

which emits a Higgs boson, see Figure 2.3 (c); it additionally includes diagrams with a pair

of gluons in the initial state (gg→ ZH). See Figure 2.3 (d) for the leading-order diagrams

representing the gluon-initiated associated ZH production. The combined cross section amounts

to 0.882+0.036
−0.030 pb [13, 18, 37, 40, 45–49].

Higgs boson production in association with a pair of t-quarks

In associated tt̄H production, two gluons split each into a tt̄-pair, leading to four t-quarks, of

which two fuse into a Higgs boson, resulting in a final state with two top quarks and a Higgs

boson. The leading-order diagrams are given in Figure 2.4. This process has a predicted cross

section of 0.507+0.035
−0.050 pb [13, 18, 50–62].

b-quark-initiated Higgs boson production

In b-quark-initiated Higgs boson production, two b-quarks fuse into a Higgs boson, with a

predicted cross section of 0.52+0.05
−0.05 pb [63]. In Figure 2.5 (a), one of the leading-order diagrams

in the 4-flavor-scheme is depicted. Here, b-quarks are not taken into account by the proton

parton distribution functions (PDF), see Section 2.6.2; instead, gluon splittings into pairs of

b-quarks are necessary for the realization of a bb̄H vertex. In the 5-flavor-scheme, the proton

PDF includes the b-quark; the corresponding leading-order diagram is shown in Figure 2.5 (b).

More details on flavor schemes are given in Section 2.6.2.

c-quark-initiated Higgs boson production

Similar to the b-quark-initiated Higgs boson production process, a pair of c-quarks can fuse into

a Higgs boson in the final state, with a predicted cross section of 0.077+0.004
−0.004 pb [13, 64]. See

Figure 2.5 (b). Unlike b-quarks, it is uncommon to not take c-quarks into account via the PDF

set.
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Higgs boson production in association with a single t-quark

The production of Higgs bosons in association with a single t-quark generally involves a W-boson.

One distinguishes between diagrams in which the W-boson has negative virtuality (t-channel),

diagrams in which the W-boson has positive virtuality (s-channel), and diagrams in which the

W-boson has vanishing virtuality, i.e. in which it is on-shell and is produced in association with

the Higgs boson and the t-quark. See Figure A.1 in Appendix A for the leading-order diagrams;

(a) and (b) are the t-channel diagrams, (c) and (d) the s-channel diagrams, and (e), (f) and (g)

correspond to the associated production of an on-shell W-boson. In the t-channel, the cross

section is predicted to be 0.074+0.006
−0.011 pb [13, 18, 65], and in the s-channel, it is predicted to be

2.875+0.094
−0.082 fb [13, 18, 65]. The associated Higgs boson production with a single t-quark and an

additional W± boson is expected to have a cross section of 0.015+0.001
−0.001 pb (assuming a Higgs

boson mass of 125.0 GeV) [18, 66].

g

g

H

Z
H

q

q

W, Z

H

q

q q

q

W, Z

W, Z

g

g

Ht, b, c

(a) (b)

(c) (d)

Figure 2.3. | The leading-order Feynman diagrams for (a) gluon fusion (ggF), (b) vector-boson fusion
(VBF), and (c), (d) associated vector-boson production (VH in general, the latter gg→ ZH).
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Figure 2.4. | The leading-order Feynman diagrams for Higgs boson production in association with tt̄ pairs
(tt̄H).

b

b,

b
b, 

b

b

H H

c

c

(a) (b)

Figure 2.5. | The leading-order Feynman diagrams for b- and c-quark-initiated Higgs boson production
(bb̄→ H, cc̄→ H). b-quark-initiated Higgs boson production can be treated differently by either assuming
the b-quark to be or not to be a constituent of the proton. The former case is referred to as the 5-flavor-
scheme and one of the corresponding leading-order diagrams is shown in (a). The latter case is referred to
as the 4-flavor-scheme. In this case, the structure of the diagram is identical for b- and c-quark-initiated
Higgs boson production, see the diagram (b). See Section 2.6.2 for more details on the two flavor schemes.
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2.5. Quantum Chromodynamics

The strong interaction can be derived from a SU(3)c gauge symmetry. Quarks and gluons are

charged under this interaction. Quarks carry one of three different QCD charges, called color,

conventionally denoted by red, green, and blue. Gluons carry both color and anti-color. As is the

case for all gauge interactions in the SM, the strength of the coupling depends on the momentum-

transfer scale Q of the process. The coupling strength of the strong interaction increases with

decreasing Q, or, equivalently, with increasing distance of the interacting particles. This running

of the QCD coupling strength αs with changing scale is given in the lowest perturbative order by

αs ≈
2π

(11− 2
3 N f ) ln

(
Q

ΛQCD

) , (2.18)

where N f corresponds to the number of quark flavors, and ΛQCD is the scale at which the coupling

strength is divergent. The predicted and measured running of αs with Q is shown in Figure 2.6,

in which the rise of αs towards low values of Q is well visible. At a scale equal to the mass of

the Z-boson, αs is given by 0.1181 ± 0.0011 [6].

Figure 2.6. | Comparison of measured values for the strong coupling αs for different values of the
interaction scale Q with the prediction. Taken from Reference [6].

Using an expression for αs that includes higher orders in perturbation theory than Eq. (2.18),

one obtains by experiments a value ΛQCD ≈ 0.2 GeV [3], corresponding to a distance of approxi-
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mately 1 fm. The application of perturbation theory is not valid at large values of αs, i.e. if Q is

close to ΛQCD.

Related to the running of αs, it is impossible to create free colored objects such as single

quarks [3]: with increasing distance between color-carrying particles, the interaction strength

increases, with the result that all the particles end up in bound states without net color charge.

This process is called hadronization. Because it involves QCD interactions at a low scale,

perturbative techniques are not sufficient to describe it. Instead, phenomenological models

typically are used to describe such low-Q processes. In the limit of very large Q, the coupling

strength of the strong interaction vanishes, corresponding to what is called asymptotic freedom.

2.6. Computation of Cross Sections

A collision in an experiment such as performed at the LHC experiments at CERN consists in the

scattering of particles at high center-of-mass energies. Different final states that result from such

scattering have different probabilities to occur. These probabilities depend on the properties of

the particles that take part in the scattering. The cross section is a quantity that encapsulates the

probability that a process with a given initial and final state occurs. Typically, the cross section

does not include branching ratios from decays. This factorization of production and decay is

possible due to the narrow decay width of the Higgs boson.

2.6.1. Cross Section and Luminosity

The cross section σ relates the number of events N corresponding to a given process to the

integrated luminosity
∫

Ldt by

N = σ

∫
Ldt , (2.19)

The luminosity L is a measure of the number of particles per unit time and per unit area that

are given the chance to interact with each other. In a collider experiment, the luminosity can be

computed as [67]

L =
nb ·N1 ·N2 · frev

2π ·
√
σ2

1x +σ2
2x ·

√
σ2

1y +σ2
2y

·F ·W . (2.20)
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The denominator corresponds to the cross-sectional area to which the beams are confined. Under

the assumption of a Gaussian beam profile, the beam widths of the two beams in the transverse

plane are given by σix and σ1y, i ∈ {1, 2}. The numerator gives the number of colliding particles

per unit time. The number of particle bunches per beam is given by nb; these revolve with a

frequency frev in the beam pipe. Each bunch of the first and second beam consists of N1 and N2

particles, respectively. While the number of bunches is constant in a collider run, the number of

particles per bunch and beam i, Ni, decreases exponentially over time due to occurring collisions.

The factors F and W quantify the reduction of luminosity due to a non-zero beam crossing angle

and due to a possibly non-zero transverse offset between the beam axes, respectively.

2.6.2. Perturbation Theory and Factorization

Perturbation Theory

In general, a cross section computed in QCD can be written as an expansion in the coupling of

the strong interaction, αs:

σ = σ0 +αsσ1 +α2
sσ2 + · · · , (2.21)

where σi is the coefficient for the ith term in the expansion in αs. The order of the computation in

perturbation theory is given by the number of terms αi
sσi included in the computation. If only the

first nonzero term is included, one speaks of a leading order (LO) computation. If the following

term is included as well, one speaks of next-to-leading order (NLO) computation, and so on.

When αs is sufficiently small, i.e. αs� 1, and there are no large logarithmic factors that could

counteract a small size of αs, it is generally appropriate to truncate this series after few terms

to obtain a fixed-order result for the cross section. If, however, these conditions are not given,

such a truncation becomes inadmissible because of a lack of convergence of the perturbation

series. Large logarithms can arise when the computed quantity is sensitive to soft or collinear

emissions [67]. Another possible reason of large logarithms that can spoil the convergence of the

perturbative series is a restriction of the phase space, which prevents a complete cancellation of

diverging virtual and real-emission contributions. That way, coefficients involving logarithms

L or L2 arise, where L is the logarithm of a ratio of a process-dependent mass scale and the

constrained kinematic variable. If L is sufficiently large it can lead to contributions proportional
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to αsL2� 1, spoiling the convergence of the perturbative expansion. The process of accounting

for dominant logarithmic contributions for all orders in αs is called resummation and can improve

the accuracy of the computation significantly.

Parton Distribution Functions

The results that will be shown in this thesis are based on high-energy collisions of protons.

Protons are composite particles; they consist of quarks and gluons, jointly denoted as partons.

The momentum P of a proton thus is the sum of the momenta of the constituting partons, xi ·P,

where i denotes the considered parton and xi is the fraction of the proton momentum that parton

carries. These momentum fractions are distributed according to parton distribution functions

fi/h(x,µ). Such a PDF can, to leading order, be interpreted as the probability density for finding

a parton of type i with a fraction x of the momentum of the hadron h at the resolution given

by the scale µ [68]. PDFs cannot be computed based on perturbation theory. Instead, they are

determined using fits of data from collider experiments involving scattering of protons with

particles such as electrons, protons or antiprotons [3]. The PDFs encapsulate the non-perturbative

aspects in the calculation of cross sections. In general, the PDFs depend on the momentum

transfer Q of the scattering process. PDFs at different scales are related to each other via the

DGLAP equations [69–72]. Each parton type has its own PDF. As can be seen in Figure 2.7, a

gluon tends to carry a low fraction of the total proton momentum, and u-quarks and d-quarks

tend to carry large fractions of the total proton momentum. Three u- and d-quarks that are, in

a way, the substrate of the proton are called valence quarks. In addition to these three u- and

d-quarks, other quark types can be found in a proton when a gluon splitting g→ qq̄ into a virtual

quark-antiquark pair occurs and the resolution scale is high enough to probe these virtual sea

quarks.

The b-quark content of the proton deserves special consideration. One distinguishes between

two flavor schemes which differ by the treatment of b-quarks in the initial state. In the 5-flavor

scheme (5FS), b-quarks can be generated by a perturbative computation from the gluon- and

light-quark content of the proton above a given energy threshold [68]. The largest contribution

comes from the above mentioned gluon splitting, g→ bb̄, which is taken into account in the

b-quark PDF. Accordingly, b-quarks can be part of the initial state in the 5FS and are treated as
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Figure 2.7. | PDFs for different parton types at a momentum transfer of Q2 = 10GeV2 (a), and at
Q2 = 104 GeV2 (b). Taken from Reference [6].

massless particles in that context. In the 4-flavor-scheme, on the other hand, b-quarks cannot be

a part of the initial state and can only be produced via gluon splitting that needs to be taken into

account in the matrix element of the considered process.

Hard-Scattering Cross Section

By factorizing the perturbative and non-perturbative aspects of the cross section computation,

the scattering cross section of two colliding hadrons can be written as [68, 73, 74]:

σ2→n =
∑
a,b

∫ 1

0
dxadxb fa/h1(xa, µf) · fb/h2(xb, µf) · σ̂ab→n(µf, µr) , (2.22)

The sum runs over all contributing partons in the initial state, a,b ∈ {g, u, d . . . }, and the integral

over the momentum fractions of these initial-state partons. At which momentum scale the PDF is

evaluated is controlled by the factorization scale, denoted by µf [68]. The hard-scattering cross

section at parton level, computed perturbatively, is denoted by σ̂ab→n(µf, µr). This parton-level

cross section depends on both the factorization scale and on the resummation scale µr. The

resummation scale µr is the scale at which the coupling strength is evaluated. Both µf and µr

must be chosen adequately for the process in consideration. For example, in processes involving
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a Higgs boson, the chosen scales typically are of the order mH. These scales are unphysical

in their nature, and yet they are useful variables for the calculation of cross sections. With

increasing perturbative accuracy, the dependence of the cross section on these scales decreases.

The residual dependence of the cross section on these scales is used to estimate the potential size

of contributions from higher-order terms that have not been taken into account.

2.6.3. Monte Carlo Simulation

The calculation of cross sections involves the computation of phase-space integrals. Collision

events typically have numerous particles in the final state, which necessitates the calculation of a

phase-space integral with a large number of degrees of freedom. With n particles in the final state,

the phase-space integral is of dimension 3n−4, where the subtraction of 4 is takes into account

the constraints from the conservation of energy and momentum [75]. Such integrals typically are

not solvable by analytic methods and call for numeric approaches such as Monte Carlo (MC)

simulations. Such simulations allow the numeric computation of high-dimensional integrals,

with a statistical uncertainty on the result that decreases with the number of generated events as

1/
√

N, independent of the number of considered integral dimensions. Therefore, typically many

events are generated in order to perform the integration, using random numbers to sample the

phase space over which the integral is defined. With this procedure not only the cross section can

be determined, but one also obtains a sample of individual events that resemble collision events

and can be analyzed to obtain information about distributions of final-state observables. When

the predicted cross sections are to be compared with measurements, experimental selection cuts

on the phase space need to be considered in the predictions. In MC simulations, it is relatively

simple to compute cross sections within complicated phase-space regions by rejecting those

generated events that fail the selection cuts. For the simulation of LHC collision events, different

simulations for various steps are used:

• a simulation that takes into account the matrix element of the hard interaction,

• a simulation that describes the evolution of an outgoing parton from a high scale to lower

scales by emission of further partons, a process called parton shower,

• a simulation of the transformation of partons to hadrons (hadronization),

• a simulation of the detector response to the simulated particles.
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Ideally, the matrix element would include many real emissions and virtual loops; however, a large

number of loops and emissions in the matrix element complicate its computation considerably.

Moreover, the description of soft emissions involves large values of αs, which has a negative

impact on the convergence of the perturbative series. A parton shower, on the contrary, can

model arbitrarily many emissions due to simplifying assumptions regarding kinematics, helicity

structure and interferences between processes. Emissions of soft particles can be well described

by parton showers; however, they are not the method of choice for the description of hard

emissions or emissions at wide angles since the parton shower approximations are not warranted

in these cases. The Pythia8 program is commonly used to model the parton shower [76, 77].

Once the scale decreases to values as low as approximately 1 GeV, where the strong coupling

αs becomes divergent and the hadronization of partons into hadrons takes place, the showering

process of the parton shower simulation stops and a modeling of non-perturbative effects is

applied. This modeling can be performed by Pythia8 as well by applying an implementation of

the Lund string model [78–80].

The parton shower algorithm applied to the final-state partons from the hard interaction

corresponds to performing a resummation of large logarithmic terms in the expression for the

matrix element. In the case of a cross section determination using MC simulation with diagrams

beyond LO, a matching [75] of radiative corrections to the LO matrix element with parton shower

emissions need to be implemented in order to avoid double-counting of emissions as represented

in the matrix element and in the parton shower.

2.6.4. Gluon-Fusion Production Cross Sections

Using techniques as described above, Higgs boson production cross sections in various phase-

space regions can be computed. Among the various Higgs boson production modes, gluon

fusion stands out because at the LHC it has the largest expected cross section and for that

reason needs to be modeled with particular care. QCD corrections to the LO cross section

prediction are sizable. Large efforts have been made to take these into account, resulting in

achieving next-to-next-to-next-to-leading order (N3LO) accuracy for the inclusive gluon fusion

cross section as of today [19]. Differential gluon fusion cross sections are currently available at

next-to-next-to-leading order (NNLO), as described in Section 2.6.4.
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In Figure 2.3 (a) the leading-order diagram for the gluon fusion process is depicted: a pair of

gluons leads to a loop of a heavy quark, which in turn produces a Higgs boson. The amplitude of

this type of diagram is proportional to the Yukawa coupling of the Higgs boson to the quark in

the loop. Because the top quark is the heaviest quark, the gluon fusion diagram with a t-quark in

the loop gives the dominant contribution to the gluon fusion cross section. However, the gluon

fusion diagrams with a b-quark or c-quark in the loop contribute to the cross section as well, in

particular their interference with the gluon fusion diagram with a t-quark in the loop.

Inclusive Cross Section

In the calculation of the inclusive gluon fusion cross section, terms up to N3LO are included [13,

19]. Results of NLO QCD corrections are described in References [23–25]. NNLO QCD

corrections have been discussed in References [26–32]. References [33–36] present electroweak

corrections to the gluon fusion cross section. Finally, the N3LO QCD corrections are described

in References [20–22].

Ideally, the exact quark masses enter the calculations at each order of perturbation theory. At

low scales, however, the dominant t-quark-loop contribution can be safely treated as a point-

like interaction that effectively couples two gluons to a Higgs boson, i.e. the t-quark loop can

be integrated out by taking mt →∞, which greatly simplifies the cross section computation.

However, progress in the computation of matrix elements has allowed incorporating effects of a

finite t-quark mass up to NNLO. The exact dependence on mt is taken into account up to NLO [24,

25], whereas at NNLO an expansion in 1/mt is used to correct for finite-mt effects [29–32].

Similarly, at LO and NLO, the complexity of the calculation is sufficiently small to include also

the exact effects from other quarks such as b, and c-quarks [24, 25, 81–86]. The contributions

of b-quark or c-quark gluon fusion diagrams beyond NLO, including their interference with

the t-quark loop, are not known. An estimate of the effect on the gluon fusion cross section of

omitting these corrections has been computed in Reference [19] based on NLO results and is of

the order of 1 %.

30



Differential Cross Sections

Differential cross sections are collections of cross sections in different phase-space regions

as defined by a kinematic variable such as the Higgs boson transverse momentum pH
T . See

Section 3.2.2 for an introduction of some basic kinematic variables, including the transverse

momentum. The perturbative expansion for non-inclusive cross sections tends to be less accurate

than in the inclusive case. At the same time, the restriction of the phase space to the boundaries

of the individual exclusive region as defined by the variable in consideration (bin) can make a

resummation in some regions of phase space necessary.

In Chapter 6, an analysis of the pH
T distribution aiming at extracting limits on quark Yukawa

couplings is shown, which makes it worthwhile to discuss predictions for the pH
T distribution in

more detail. State-of-the-art predictions for the differential gluon fusion cross section in Higgs

boson transverse momentum are of perturbative order NNLO in αs and include logarithmic

terms up to next-to-next-to-leading logarithms (NNLL). While the t-quark-loop contribution

to the gluon fusion cross section and its dependence on the t-quark mass is a well understood

problem, the calculation of the contribution of the b-quark loop to the gluon fusion differential

cross sections is more challenging. At transverse momenta below the t-quark mass, the t-quark

loop can be integrated out, which simplifies the computation by removing one loop from the

considered diagram. In this approximation, NNLO accuracy was achieved. A similar approach

for the b-quark loop is not possible except for transverse momenta below the b-quark mass, which

is approximately 4 GeV at the relevant scales [87]. For transverse momenta above the b-quark

mass, such approximation is invalid, and one has to consider the resolved b-quark loop. The

resulting complexity of the calculation currently restricts the accuracy to NLO. Even though the

b-quark Yukawa coupling is considerably smaller than the t-quark Yukawa coupling, the b-quark

contributions to the transverse momentum distribution should not be neglected, as they can be

enhanced by large logarithmic factors of the form ln(m2
H/m

2
b) and ln(p2

T/m
2
b) [87]. Therefore, a

resummation to all orders of these terms could be indicated; however, this has not been achieved

so far. Similarly, a resummation of equivalent terms including the mass of the c-quark would be

advantageous, although less important due to the smaller contribution to the gluon fusion cross

section.

Below, the predictions for distributions in several kinematic variables that are presented in
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comparison with the measured differential cross sections in Chapter 5 are outlined. The different

predictions differ in matters such as resummation procedure and in some cases are specialized

to describe particular distributions well. Several predictions of differential cross sections are

obtained by means of a soft-collinear effective theory (SCET) [88, 89], which is an effective

theory of QCD and can be used to resum logarithmic terms associated with emissions of soft and

collinear gluons.

Powheg NNLOPS

The gluon fusion MC simulation that has been used in the measurement of inclusive and

differential cross sections in Section 5 is Powheg NNLOPS [90], interfaced with the Pythia8

parton showering program [76, 77]. Gluon fusion production cross sections with different jet

multiplicities in the final state are combined using the Minlo merging scheme [91]. Events are

reweighted according to the Higgs boson rapidity such that resulting inclusive distributions are

accurate to NNLO [92, 93]. Afterwards, a comparison of the resulting distribution in pH
T with

a prediction at NNLO accuracy of the pH
T distribution as obtained by HRes [94, 95] is made,

ensuring that both distributions agree within uncertainties. The masses of t- and b-quark are

considered at LO and NLO [96]. The central renormalization and factorization scales have been

chosen to be mH/2.

SCETlib+MCFM8

The MC simulation program MCFM8 [97] enables an NNLO calculation of the differential

cross section in the rapidity of the Higgs boson. In this calculation, a regularization of the

divergences of soft and collinear radiation is necessary. Both virtual loop corrections and

radiative corrections involving soft or collinear partons lead to divergences in the computation if

considered separately. In this prediction, a measure of the soft emission intensity is given by

the observable τ0, which quantifies how much an event appears like an event without jets [98].

Logarithmic terms of the form ln2(−1) = −π2 are introduced to the gluon form factors3[99,

100], which are sufficiently large to impede the convergence of the perturbative expansion. The

coefficients of those logarithmic terms are related to infrared singularities and exist at all orders

in αs. By resumming those logarithmic terms with NNLL′φ accuracy, the resulting cross section

3Form factors are terms that encapsulate the effect of a non-point-like charge distribution in scattering objects at a
given four-momentum transfer.
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is more accurate and the perturbative uncertainties are reduced. The prime in NNLL′φ means that

also some parts of N3LL resummation contributions are taken into account, while the subscript φ

signifies that the resummation is performed in the gluon form factor.

SCETlib(STWZ)

The SCETlib(STWZ) prediction is a NNLO prediction of the differential distribution in the

momentum of the leading jet, p j1
T [101]. The SCET framework is used [100], and the corre-

sponding resummation of logarithms of the form ln(p j1
T /mH) takes into account logarithms up to

next-to-next-to-leading logarithm and some α2
s corrections that are not part of the resummation

(NNLL
′

).

NNLOjet+SCET

The NNLOjet+SCET prediction [102] for the differential cross section in pH
T consists of an

NNLO QCD computation of the gluon fusion process in the limit of an infinite t-quark mass.

The large logarithmic terms log(pH
T /mH) at low transverse momentum of the Higgs boson are

resummed to all orders, using SCET and includes sub-leading logarithmic terms up to the third

level (N3LL) [103].

RadISH

The RadISH (short for Radiation off Initial State Hadrons) gluon fusion prediction [104] for the

differential cross section in pH
T as used in this thesis has NLO accuracy in QCD perturbation

theory. It is obtained through differentiation of the resummed NNLL + NNLO result in the total

phase space. Details on the treatment of quark masses are described in Reference [105].

2.6.5. Quark-Initiated Higgs Boson Production Cross Section

The b-quark-initiated Higgs boson production (c-quark-initiated Higgs boson production) denotes

the production of a Higgs boson via a bb̄H (cc̄H) Yukawa coupling, excluding diagrams that

contain a gluon fusion loop as shown in Figure 2.3 (a). The b-quark-initiated Higgs boson

production cross section can be computed in two different calculation schemes, the 4FS and 5FS,

see also Section 2.6.2. In Figures 2.5 (a) and (b) the LO diagrams are shown for the 4FS and

5FS, respectively. In the 4FS, the b-quark is treated as a massive particle that is not part of the

proton, meaning that it can not appear in the initial state of a matrix element. Instead, b-quarks
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can only appear via the splitting of a gluon into a bb̄ pair. This flavor scheme allows more

precise information about the kinematics of b-quarks in the final state, as final-state b-quarks

are already described at LO, while in the case of the 5FS NLO corrections need to be taken

into account in order to obtain information about final-state b-quarks. Due to collinear gluon

splitting [106] logarithms of the form αk
s lnk(mb/Q) appear at each order of perturbation theory

in the 4FS, where Q is the hard scale of the interaction [107]. At sufficiently large scales, these

logarithmic terms can become sizable and can have a detrimental effect on the convergence of the

perturbative series. It is possible, however, to resum these logarithms to all orders by assuming a

vanishing kinematic b-quark mass and by absorbing these logarithmic terms into a b-quark PDF

that is non-zero above a scale given by the b-quark mass. At the same time, the assumption of a

vanishing kinematic mass does not affect the Yukawa coupling to the Higgs boson. This scheme

corresponds to the 5FS, depicted in Figure 2.5 (b) for b-quark-initiated Higgs boson production.

In this case, the detrimental effect of possibly large logarithmic terms on the perturbation series is

reduced. Moreover, the complexity of the calculation is reduced since fewer final-state particles

need to be described at LO. As a consequence, the computation of the inclusive cross section in

the 5FS has been achieved at NNLO [108], while only at NLO in the 4FS so far [107, 109, 110].

On the downside, simplifying kinematic approximations have to be made in order to resum the

logarithmic terms into a b-quark PDF. Moreover, the accuracy of the description of final-state

b-quarks in the 5FS is worse than in the 4FS. An additional potential disadvantage of the 5FS is

that power-suppressed terms of the form m2
b/Q

2 are not included. These may be relevant at low

values of the scale Q2. Power-suppressed terms (as well as logarithmic terms) arise when two

different scales such as the scale Q of the hard interaction and the b-quark mass mb enter the

calculation of a matrix element [111]. If all orders of the perturbative expansion in αs would

be included in the calculations, the 4FS and 5FS could yield identical results, as they merely

represent different arrangements of the terms of the perturbation series [111]. However, at fixed

order, the results generally differ. Both schemes contain complementary information and are

justified in different kinematic regions. Therefore, a combination of both approaches generally is

advisable. The state-of-the-art prediction [63] includes such a combination.

The picture is more complicated for differential cross sections, as additional energy scales

must be considered. For the simulation of this production mode that is used in the measurement

of differential cross sections as described in Chapter 5, the 4FS has been chosen, using the

34



Powheg-Box framework combined with the Pythia8 parton shower program [112]. With this,

a relatively precise description of final-state b-quarks is possible, which is advantageous since

also a distribution of a b-quark-related variable is measured. For the simulation of b-quark-

initiated Higgs boson production in the context of the measurement of quark Yukawa couplings

in Chapter 6, however, the 5FS has been chosen in order to be on an equal footing with the

prediction of c-quark-initiated Higgs boson production. The c-quark is generally taken into

account in the proton PDF. Within the context of the measurement of the b- and c-quark

Yukawa couplings, the MadGraph5_aMC@NLO software in connection with the Pythia8 parton

shower was used [113] to predict pH
T distributions of b-quark- and c-quark-initiated Higgs boson

production cross sections; the corresponding inclusive cross sections are scaled such they match

the state-of-the-art NNLO predictions [63, 64].

2.7. Limitations of the Standard Model

The SM describes the processes occurring in collider experiments at currently available center-of-

mass energies well. Except for the observation of neutrino oscillations, which require non-zero,

i.e. non-SM neutrino masses, the SM is compatible with all laboratory-based experiments

conducted so far. There are aspects of nature, however, that can not be explained by the SM. Two

major examples of these are outlined below.

2.7.1. Gravity

At scales probed with current particle colliders, gravity is negligible when compared to the

interactions described in the SM [114], and can be safely omitted when performing calculations

for such experiments. However, the fact that the combination of the SM with a theory of gravity

has so far not been achieved should not be forgotten entirely.

While the SM is not able to describe gravity, the general theory of relativity (GTR) [115]

is well capable of that. The GTR, however, cannot be reconciled with the SM. One of the

difficulties in reconciling gravity and the SM is that the concept of time is different in quantum

theory and in the GTR: in the former, time is an external, absolute element, while in the latter,

it is a dynamical object. Therefore, a unification of quantum theory with the GTR would have
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to involve a modification of the concept of time [114]. Another complication in the interplay

of the currently prevailing theories of quantum physics and gravity is called the black hole

information paradox. When combining quantum physics with the GTR by considering quantum

field theory in a curved spacetime in the vicinity of black holes, one obtains the result that

by the radiative decay of black holes in the form of Hawking radiation a general postulate of

quantum theory is violated. This postulate says that the quantum-mechanical state of a system

at a given time allows the determination of the state at any other time. With a black hole’s

complete evaporation by emission of Hawking radiation, whose characteristics are independent

of the elements that became part of the black hole, many initial configurations would point to

only one final configuration. This is in conflict with unitarity [116], a core element of quantum

theory. Another problem, although not a problem of mathematical inconsistency, is the presence

of singularities, for example in the center of black holes. Such singularities could hint at the

existence of a more fundamental theory of gravity [114].

The interactions in the SM are quantized; likewise, it is attempted to quantize the gravitational

interaction, leading to a theory containing spin-2 gravitons as quanta of the gravitational force.

What has been obtained so far is only a non-renormalizable perturbative theory of quantum

gravity [114], breaking down at strong gravitational fields such as in the center of a black

hole. Several theories of quantum gravity that also describe the behavior at large gravitational

fields have been conceived, but experimental tests of those theories are notoriously difficult, as

conditions with sufficiently strong gravitational fields and large energy densities are not easily

created or found in nature, except in black holes, which are presumably inaccessible in the near

future. A particle collider that could provide the necessary energy density would have a size far

larger than Earth itself4.

Some theories of quantum gravity predict deviations at low energy from the predictions of the

classical theory that the GTR is. Such deviations could show up when analyzing the gravitational

interaction within a system of a set of particles in a quantum superposition. As the gravitational

pull in the classical theory of gravitation depends on an exact distance between sources of gravity

and the particles in the quantum states would have a non-pointlike localization, one can expect

to gain information about the quantum properties of gravitation by measuring the gravitational

4With current technology, such a collider would have to be of the size of several thousand light-years in order to be
able to probe scales as high as the Planck mass scale of about 1019 GeV and is out of reach for that reason [114].
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field of a superposition of quantum states [117].

2.7.2. Dark Matter

Observations of galaxies and clusters of galaxies led to the insight that their kinematic properties

are not as one would expect from the visible sources of gravity in these galaxies and galaxy

clusters: velocities of stars in galaxies and velocities of galaxies in galaxy clusters tend to be

higher than one would assume for a system that is exclusively bound by the gravitational force

of these stars and galaxies, respectively [118]. In addition, phenomena such as the angular

substructure of the cosmic microwave background and the structure formation in the early ages

of the Universe give evidence of a cosmos that is not sufficiently described by SM-only matter

which interacts as predicted by the GTR. From this it follows that either there are sources of

gravitational pull that effectively do neither emit nor absorb electromagnetic radiation and hence

do not interact electromagnetically, or that the gravitational force is not described well by the

GTR in all situations, particularly in those of very low gravitational acceleration [118]. Both of

these possibilities present some problems; however, currently the favored option is to assume the

existence of dark matter constituted by non-SM particles such as weakly interacting massive

particles with masses between 10 GeV and several TeV [6] or sterile massive neutrinos, for

which constraints from structure formation of the cosmos require a minimum mass of several

keV [119, 120]. Generally, numerous extensions of the SM have been put forward which give

candidates for dark matter particles. In the absence of a detection of such particles by LHC and

other experiments, the nature of dark matter is not known at this point.

2.8. Summary

The SM is a highly successful quantum field theory of the interaction of fundamental particles. It

has been tested in countless experiments, and thus far, no significant deviation has been observed.

The SM comprises the electroweak and strong interactions. Both are gauge theories and as such

they operate on symmetry principles applied to an internal space of the interacting quantum fields.

The quantum of the Higgs field, which enables elementary particles to have non-zero masses

within the context of the SM, was the last remaining part to be discovered, until 2012. In that
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year, the CMS and ATLAS experiments discovered a scalar resonance at a mass of approximately

125 GeV. Within present uncertainties, this boson appears consistent with being the SM Higgs

boson. One of the discovery channels, and one that can well be used to study the properties of

the Higgs boson in detail, is the Higgs boson decay to two photons.

In order to predict Higgs boson production cross sections in proton-proton collisions and

to compare those to measured cross sections, accurate QCD calculations are necessary. Here,

both inclusive cross sections and differential cross sections are of interest. The prediction of

cross section requires the use of the several computational techniques such as the factorization

of perturbative and non-perturbative aspects, MC simulation, and the resummation of large

logarithms that can spoil the convergence of the perturbative series.

If one attempts to combine the SM with the theory of general relativity, inconsistencies arise,

and so far, attempts at a combination were not successful. The SM does not provide a candidate

for the explanation of the phenomenon of dark matter, which shows its effect in many astronomic

and cosmological observations. These problems hint at the existence of a more fundamental

theory, which can incorporate more of the observed phenomena of nature. From the perspective

of particle physics, it is a well-motivated endeavor to study the properties of the most recently

discovered fundamental particle and only fundamental scalar of the SM, the Higgs boson.
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3. The ATLAS Experiment

3.1. The Large Hadron Collider

3.1.1. Introduction

The Large Hadron Collider (LHC) is a proton accelerator and collider located at CERN (Geneva,

Switzerland). At the present time, it is the world’s largest collider, having a circumference of

26.7 km [121]. This large radius allows a proton energy of currently up to 6.5 TeV, corresponding

to a center-of-mass energy of
√

s = 13TeV. The two proton beams rotate in opposite direction

in two beampipes. At four locations around the ring the beams cross, resulting in proton-proton

collisions. Detector experiments are located at each of the four beam intersection. Besides

proton-proton collisions, the LHC can also be used to study collisions of heavy ions and collisions

of protons with heavy ions. For this thesis, only proton-proton collisions are relevant.

3.1.2. Acceleration and Collision

The LHC is the end of a chain of several accelerators [122] which are used to bring low-energy

protons up to an energy of 6.5 TeV. The initial proton source feeds into the linac, a linear

accelerator that accelerates protons to an energy of 50 MeV. At that point, the protons enter a

circular accelerator called booster. Here, the protons are brought to an energy of 1.4 GeV and

are subsequentially injected into the proton synchrotron, in which protons reach an energy of

25 GeV. The remaining acceleration that brings the protons to an energy of 450 GeV, which is

sufficient for injection into the LHC, is performed by the super proton synchrotron.

The proton beams are divided into bunches. A bunch is a collection of protons that is contained

within one bucket of the radio-frequency field used for acceleration. Each bunch contains about

1011 protons. The number of bunches per beams depends on the data-taking period; in 2015
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and 2016, the beams were constituted by 2232 and 2208 bunches, respectively, while in 2017

and 2018 the number of bunches per beam was 2254. The radio-frequency field is shaped

via superconducting cavities. Superconducting dipole magnets are used to keep the proton

bunches on their trajectory. At the time of injection of protons into the LHC ring, the magnetic

field that is necessary to keep the protons on their path has a magnetic flux density of 0.5 T.

The magnetic field then is gradually ramped up in order to match the increasing energy of the

proton beams. At a proton energy of 7 TeV, the necessary magnetic flux density would amount to

8.3 T [121]; however, since a reduced energy of 6.5 TeV at collision has been chosen, the required

magnetic flux density is reduced by a factor of E/Emax = 6.5/7. In order to obtain focused

beams, quadrupol magnets are used, which confine the beams in both horizontal and vertical

direction. By a system of quadrupole magnets, the beams are confined to a small cross-sectional

area. Before entering the interactions points within the detectors, the beams are squeezed to an

RMS beam size of approximately 17µm [121].

3.1.3. Pileup

The average number of proton-proton interactions in a bunch crossing during normal data-taking

during the years 2015 – 2018 is significantly higher than 1, as can be seen in Figure 3.1, which

gives information about the mean number of proton-proton interactions per bunch crossing for

the different data-taking periods. Averaging over the four years, a typical bunch crossing results

in more than 30 proton-proton interactions.

The proton-proton interaction that triggers the recording of an event is typically the interaction

in which the largest momentum transfer occurs, the hard interaction. When additional proton-

proton interactions occur in the same bunch crossing, one speaks of in-time pileup. Such pileup

interactions result most frequently in emissions of particles with low transverse momentum.

Particles from pileup interactions result in additional signatures in the detector, which can

complicate the reconstruction of particles and the calibration of the measurement of their energy.

Out-of-time pileup occurs due to detector components which are influenced by previous bunch

crossings or due to a readout time of detector information longer than 25 ns [124].
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Figure 3.1. | Distribution of recorded luminosity as a function of the mean number of interactions per
bunch crossing for the data-taking periods from 2015 to 2018. Taken from Reference [123].

3.2. The ATLAS Detector

3.2.1. Introduction

The ATLAS experiment is one of the four large detector experiments located at the LHC. ATLAS

is a general-purpose detector, meaning that it can be used to analyze a broad range of possible

types of physics events, including phenomena such as decays of Higgs bosons or events involving

physics beyond the SM. For this, the detector needs to be able to detect as many particle types

as possible and allow the reconstruction of corresponding physics objects for later analysis. In

order to achieve this, several detector systems need to be combined, which is due to the fact

that different types of particles interact differently with matter. Moreover, different detector

components are used to measure different particle properties, such as trajectories, momentum,

and energy. A good resolution of these measurements is important for many aspects of physics

analyses.

Neutrinos leave the detector without a direct trace, as would some hypothetical non-SM

particles. The conservation of momentum helps to detect such particles: the initial state of the

colliding proton-proton system has effectively no transverse momentum component. Due to

41



conservation of momentum, the final state should have net-zero transverse momentum as well.

By balancing the transverse momenta of all particles from a given proton-proton interaction

against each other, missing transverse momentum resulting from particles such as neutrinos can

be registered. In order to measure the missing transverse momentum as accurately as possible,

the detector needs to be as hermetic as possible. The finite extent of the beam line is a limiting

factor in this regard; particles that are emitted in an angle very close to the beam line cannot be

detected, which is a limiting factor in the resolution of the measurement of missing transverse

momentum.

Besides a large degree of hermeticity, a requirement for the ATLAS detector is the ability to

withstand large amounts of radiation. This requirement is particularly important in the regions

close to the beam pipe since this part of the detector is subject to the highest particle flux.

Concretely, the ATLAS detector consists of three major subdetector systems, each of them

dedicated to another purpose. From the innermost to the outermost detector layer:

• The inner detector is used to detect charged particles and to measure their momentum and

charge sign, making use of a solenoidal magnetic field.

• The calorimeter is used to measure the energy of particles, except the energy of neutrinos

and muons.

• Most of the charged particles that can traverse and leave the calorimeter are muons. Their

momentum is measured with the muon spectrometer using a toroidal magnetic field.

An overview of the ATLAS detector, in which these subdetectors and their components are

depicted, is given in Figure 3.2.

3.2.2. Coordinate System and Kinematic Observables

As protons of both beams carry the same energy, the ATLAS detector is designed in a way that is

symmetric in both beam directions. Moreover, the detector has an azimuthal symmetry since

no transversal direction is in any way distinguished from another one by physical principles.

Correspondingly, the ATLAS detector has a cylindrical shape. The Cartesian coordinate system

that is used to describe the detector is aligned as follows: the z-axis is parallel to the beam

directions. Both x- and y-axes are perpendicular to the z-axis. The x-axis is pointing towards

the middle of the LHC ring, and the y-axis is pointing upwards [126]. An additional and often
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Figure 3.2. | Sketch of the ATLAS detector. Taken from Reference [125].

more useful way of describing the detector structure is a cylindrical coordinate system. In that

case, a location in the detector is fully specified by the radius R, the azimuthal angle φ, and

the z-coordinate along the beam axis. The azimuthal angle is defined by tan(φ) = ∆y/∆x. It is

convenient to define a polar angle tan(θ) =
√

(∆x)2 + (∆y)2/∆z.

The trajectory of particles in the ATLAS detector can be reconstructed based on the coordinates

of the energy depositions the particles leave in the different subdetectors. The momentum then

can be determined by observing the curvature of the trajectory in the magnetic field. Particularly

the transverse momentum, pT =

√
p2

x + p2
y , is a useful quantity when analyzing collisions of

composite particles such as protons. The total momentum of a particle is given by |~p| =
√

p2
T + p2

z ,

where pz denotes the longitudinal component of the particle’s momentum. Because the initial

longitudinal momenta of the incoming partons within the colliding protons are unknown, the

longitudinal momentum of a particle emerging from a proton-proton interaction is of limited

relevance for later analyses. Large transverse momenta on the other hand are indicative of

interactions with a large momentum transfer, which are of particular relevance if processes

involving considerable energy scales such as the Higgs boson mass are considered.
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A variable closely related to the polar angle is the rapidity, given by

y = 0.5ln
(

E + pz

E− pz

)
, (3.1)

where E denotes the energy of the particle. Unlike differences in polar angles, differences in

rapidity are invariant under Lorentz boosts in the longitudinal direction, i.e. along the z-axis.

When the mass of the particle is much smaller than its energy, it is useful to consider the

pseudorapidity instead of the rapidity because it only depends on the polar angle, not on the

particle’s energy, and correspondingly is easier to determine:

η = − ln
(
tan

(
θ

2

))
. (3.2)

The relation between η and θ is illustrated in Figure 3.3.

Figure 3.3. | Pseudorapidity η as function of the polar angle θ.

3.2.3. The Inner Detector

Introduction

The primary function of the inner detector is the tracking of the trajectory of charged particles.

Making use of the curvature of trajectories of charged particle in a solenoidal magnetic field, the

trajectory can be used to determine particle momenta and the sign of their electric charge. The
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curvature of a particle with charge q in a solenoidal magnetic field with flux density B is given

by

Rcurv =
pT

q B
. (3.3)

Accordingly, the more the trajectory of a particle with a given charge is bent by the magnetic field,

the smaller is its transverse momentum. The sign of the electrical charge is determined based on

the direction in which the trajectory is bent. Another important task that can be performed with

tracking information from the inner detector is the reconstruction of proton-proton interaction

vertices and displaced vertices, the latter resulting from decays of relatively long-lived hadrons.

Additionally, secondary vertices from interactions of neutral particles like photons with the

inner-detector material can be reconstructed.

Because dense materials tend to alter the trajectory of particles significantly and consequently

reduce the reliability of the momentum and charge-sign determination, materials with a suffi-

ciently low density must be used in the inner detector. Both silicon semiconductor detectors

and gaseous ionization detectors are employed as tracking detectors in ATLAS. The material

distribution of the components of the inner detector is shown in Figure 3.4 in terms of radiation

lengths X0. The radiation length gives the distance for a given material in which electron energies

decrease due to particle-material interactions by a factor of 1/e. Below a pseudorapidity of about

|η| ≈ 0.6, the cumulative amount of inner-detector material is below 0.5 X0, while it is typically

in the range of 1 X0 to 2 X0 at pseudorapidities between 0.6 and 4.

The magnetic field in the inner detector is generated by a superconducting solenoid that

surrounds the inner detector and has a magnetic flux density of B = 2 T [126]. The solenoidal

field configuration, which consists in a magnetic field that is aligned with the beam direction to a

good approximation in the central region of the detector (barrel region), enables the measurement

of the transverse momentum of a charged particle. At larger radii in the endcap regions of the

inner detector, the spurious radial component of the magnetic field reaches its maximum, which

is about one order of magnitude lower than the longitudinal component [126].

The shape of the inner detector is that of a cylinder with a radius of 1.08 m and a length of

7 m. The acceptance in terms of pseudorapidity is |η| < 2.5. Three subdetectors are part of the

inner detector (from innermost to outermost), see Figure 3.5 and 3.6:

• Pixel detector
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Figure 3.4. |Material distribution of the inner-detector components in terms of the radiation length X0 as a
function of pseudorapidity. Taken from Reference [127].

• Semiconductor Tracker (SCT)

• Transition Radiation Tracker (TRT)

Figure 3.5. | Representative segment of the inner-detector barrel with a particle leaving the interaction
point at R = 0mm and traversing the inner detector. Taken from Reference [128].

Both pixel detector and SCT are based on doped silicon sensors which allow a very accurate
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Figure 3.6. | A sketch of the inner detector. Taken from Reference [129].

determination of the localization of an energy deposition by an energetic particle due to the

fine segmentation of the silicon sensor modules. By connecting the silicon sensors of the pixel

detector and the SCT to high voltage, energetic charged particles traversing these sensors result

in measurable electric signals, based on which the tracks of these particles can be reconstructed.

When traversing charged particles deposit energy in the sensor material, electron-hole pairs are

created. Holes are non-occupied electronic states of the semiconductor which effectively behave

as positively charged particles.

In the case of the SCT, a voltage of 150 V is applied in most modules. Due to radiation

damage, in some segments of the SCT a voltage of 200 V or 250 V is applied in order to retain a

high detection efficiency. The high voltage in the pixel detector is chosen differently for different

parts: in order to compensate radiation damage effects, it has been raised over the course of

data-taking in the years 2015 – 2018 to up to 400 V in the IBL and B-layer, and to 250 V in the

other layers and in the endcaps.

The TRT detector is a gaseous detector. When an energetic charged particle travels through

the gas in the detector, gas molecules or atoms are ionized, leading to free charge carriers. The

application of a high voltage leads then to an electric current, which can be read out. In addition

to serving as a tracking detector like the pixel and SCT detectors, the TRT can also be used to
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discriminate between electrons and hadrons, based on the amount of electromagnetic radiation

that is emitted when a charged particle of a given mass moves between regions of different

refractive index. The amount of this transition radiation depends on the particle mass, and, as a

consequence, on the particle type.

The Pixel Detector

The pixel detector comprises four (barrel) and three (endcaps) silicon pixel layers that are located

close to the beamline. Thanks to the small distance to the interaction point, the pixel detector

is of paramount relevance for the determination of the points from which particles emerge. In

the barrel region, the layer closest to the beam pipe is located at a radial position of 3.3 cm, and

the outermost layer at a radial position of 12.3 cm. In the endcaps, three disk-shaped layers of

pixel sensors are installed; the disk closest to the interaction point is located at z = 49.5cm, the

most distant disk at z = 65.0cm [130]. The small size of pixel sensors results in a very good

spatial resolution of localized energy depositions, called hits, from particles. In both barrel and

endcaps, the intrinsic resolution in R−φ-direction is 10 µm [126][130]. The resolution of the

second coordinate measured by the pixel detector, z in the barrel and R in the endcaps, is of the

order 115 µm [126].

The SCT

The inner-detector component that follows the pixel detector both in radial proximity to the beam

pipes and in spatial resolution of track hits is the SCT. Unlike the pixel detector, the SCT sensors

consist of silicon microstrips and not silicon pixels. Layers of microstrips alone would not

enable measuring two coordinates, which, in combination with information about the location

of the sensor module, would allow the determination of 3-dimensional coordinates of energy

depositions. However, by attaching two microstrip modules on top of each other with a small

stereo-angle of 40 mrad, the readout from both modules can be used to extract information about

the location in which a particle traversed the microstrip modules. In the barrel, there are four

double layers of silicon microstrips, while in the endcaps, nine double-layer disks are installed.

The resolution which is achieved by the SCT in R−φ-direction is 17 µm [126]. In the barrel

region, the z-coordinate is measured as second coordinate, while in the endcaps it is the radial
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coordinate R, in both cases with a resolution of 580 µm.

The TRT

The TRT uses gas as medium, which is contained in proportional drift tubes, called straw tubes,

with a diameter of 4 mm [131]. Their inner surface is coated with an aluminum layer. In the

center of the straw tubes is a thin gold-plated wire anode. High voltage of 2 kV [126] is applied

between the wire and the aluminum coating, such that free charge carriers produced by energetic

particles traversing the gas lead to a measurable current. Although the spatial resolution of

energy depositions in the straw tubes is worse than in the silicon detectors, the TRT provides

important input for the determination of particle trajectories, owing to the large number of straw

tubes.

Due to the arrangement of the straw tubes, in the barrel region only (R−φ) coordinates are

measured. The only information about the z-coordinate here is given by the fact that the barrel

TRT is divided in the center, at z = 0. The (R−φ) resolution is of the order 100 µm [126]. In the

endcaps, the TRT provides information about the z−φ coordinates of tracks, but not about the

radial position. The TRT has an acceptance of |η| < 2.0.

The TRT can be used to discriminate between electrons and more massive charged particles,

most notably charged pions. For this, the straw tubes are interlaced with polypropylene or

polyethylene. The transition of a charged particle between materials with differing dielectric

constants such as gas-filled straw tubes and plastics leads to the emission of electromagnetic

radiation called transition radiation. The intensity of this radiation is related to the Lorentz

factor of the traversing particle. Typically, transition radiation photons have energies of the order

keV, sufficient to ionize the noble-gas atoms, which are a major component of the gas mixture

in the straw tubes. The additional ionization due to transition radiation enhances the signal,

which allows an estimation of the Lorentz factor of the traversing particle. By combining this

estimate with the measured momentum of the particle, its mass can be estimated, which allows

discriminating between electrons and more massive particles. Two signal thresholds are set for

the TRT operation: a value for the energy deposition above which a hit for tracking is recorded,

and a greater value that is used to discriminate between electrons and more massive particles

based on transition radiation. In Figure 3.7 an event display containing different kinds of hits in
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the inner detector is shown, highlighting hits in TRT that exceed the transition radiation signal

threshold.

The gas mixture in the straw tubes consists mostly of a noble gas, carbon dioxide and

oxygen [126]. At the beginning of LHC operation, a xenon-based gas mixture was used in all

straw tubes. Due to several leaks in the gas distribution system that developed in 2012, it was

decided to operate the TRT with an argon-based gas in the affected parts of the TRT, as argon is

considerably less expensive than xenon [132]. Compared to the xenon-based gas mixture, the

argon-based gas mixture results in a worse electron identification performance due to a smaller

efficiency of absorbing transition radiation.

Figure 3.7. | An event display illustrating hits from particles and reconstructed tracks in the inner detector,
projecting the pseudorapidity region −1 < η < 0 to a plane. Hits in the pixel detector are shown in purple,
SCT hits in green. TRT hits with signals above the tracking threshold are colored blue, those with signals
above the transition radiation threshold are colored red. The black dot in the pixel section corresponds to
a reconstructed photon conversion vertex. Taken from Reference [132].

3.2.4. The Calorimeter

Introduction

The ATLAS calorimeter is an instrument that measures the energy of particles. In order to

perform this measurement, the incoming particle needs to distribute its energy in a cascade of
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interactions with the calorimeter material, producing a detectable electric signal and completely

stopping the primary particle and its secondary particles.

The calorimeter used in the ATLAS detector consists of several sub-calorimeters, all of

which are sampling calorimeters. In a sampling calorimeter the active, i.e. detecting material

is interleaved with passive material whose purpose is to interact with the particles as intensely

as possible, creating a shower of secondary particles. This showering leads to a transfer of

the energy of the incoming particle to electrically detectable energy deposits in the sampling

calorimeter through a multitude of ionization processes. A part of this energy is deposited in the

active calorimeter layers, and the rest in the passive calorimeter layers. Therefore, one needs

to extrapolate from the energy deposited in the active material to the total deposited energy. In

order to achieve a complete absorption of the energy of the initial particle, which is advantageous

for a good energy resolution, the calorimeter must be sufficiently thick. Such an approximate

hermeticity allows assigning imbalances in summed transverse energy reliably to neutrinos or

other tracelessly leaving particles. Moreover, the muon detector that surrounds the calorimeter

relies on the assumption that effectively no charged particle except muons can reach it, which

means that all other charged particles should be stopped in the calorimeter.

Particles that interact via the strong force have other showering properties than electrons and

photons, which disperse their energy exclusively via electromagnetic interactions. In order to

measure the energy of both exclusively electromagnetically interacting particles and strongly

interacting particles as accurately as possible, several types of calorimeters are used in ATLAS.

A particle on its way from the primary interaction point encounters first the electromagnetic

calorimeter (EM calorimeter), and next, if not already absorbed by the EM calorimeter, the

hadronic calorimeter.

Electromagnetic Showers and the Electromagnetic Calorimeter

Once a particle such as an electron or photon enters the electromagnetic calorimeter, a shower

consisting of secondary photons and electrons is initiated. For high-energy electrons, the relevant

scattering process with the detector material is bremsstrahlung,

e±+ X→ e±+γ+ X ,
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where X represents a constituent of the calorimeter material. In case of photons, the relevant

interaction with the detector material is electron-positron pair production,

γ+ X→ e+ + e−+ X .

By subsequent occurrences of these two processes, an electromagnetic shower with a multitude of

constituting secondary particles is created. In each scattering process the energy of the incoming

photon or electron is further divided and is thus dissipated among a larger number of particles.

At some point the energy of the products of these two basic interaction types has decreased to

the point that it is not sufficient to produce further secondary particles, and the showering stops.

What remains of the kinetic energy is then absorbed by the material by Compton scattering or

the photo-electric effect in the case of photons or ionization in the case of electrons [133].

The ability of a material to impede the propagation of an incoming particle by initiating the

development of an electromagnetic shower can be quantified in terms of the radiation length X0,

as introduced in Section 3.2.3. It depends on the atomic number of the material, that is, on the

number of protons in the material’s nuclei, which in turn directly relates to the amount of electric

charge that interacts with the incoming charged particles.

Liquid argon (LAr) is used in the EM calorimeter as active material, and lead, which has

a radiation length of X0 = 5.6mm, as passive material. The mean free path λ of an energetic

photon before undergoing a pair-production interaction is directly proportional to the radiation

length of the material, λ = X0 ·9/7.

The EM calorimeter is located between the inner detector’s solenoid magnet and the Hadronic

Calorimeter. In Figure 3.8, the EM calorimeter is shown in context with the inner detector and

the hadronic calorimeter. It consists of a barrel part and two endcap parts. In order to sample the

particle showers multiple times in depth and in order to have a homogeneous response in the

whole azimuthal range, an accordeon shape of the active and passive layers has been chosen,

see Figure 3.9. The EM calorimeter is encompassed by a cryostat whose purpose is to keep the

argon in a liquid state.

Copper anodes are submerged in the layers of LAr between the lead absorbers. Traversing

energetic particles ionize argon atoms and thereby create free charge carriers, which, in the

presence of a high voltage of 2 kV [126], leads to a detectable current based on which energy
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Figure 3.8. | Sketch of the ATLAS calorimetric systems. The EM calorimeter consists of the LAr
electromagnetic barrel and the LAr electromagnetic endcap. Taken from Reference [126].

Figure 3.9. | Illustration of the sampling structure of the EM calorimeter. Taken from Reference [134].
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depositions can be measured.

Figure 3.10. | Longitudinal and lateral segmentation of the EM calorimeter. Taken from Reference [126].

The EM calorimeter is segmented both laterally and longitudinally, which allows the determi-

nation of the shape of electromagnetic showers. This segmentation is shown schematically in

Figure 3.10. In the region 0 < |η| < 2.5, the EM calorimeter comprises three longitudinal layers,

while it has two layers in the more forward region 2.5 < |η| < 3.2. Each longitudinal layer has a

different lateral segmentation granularity. The material distributions in each of these layers is

shown in Figure 3.11. The cumulative amount of material typically is of the order 30 X0. The

innermost layer, called the strip layer, has a fine segmentation in η-direction in the central region

of about 0.5 cm. This high granularity is essential for the discrimination between collimated pairs

of photons created by the decay of neutral mesons such as π0 and single photons or electrons.

The granularity is significantly reduced in the more forward region |η| > 2.4. Below |η| < 2.5,

the first EM calorimeter layer contributes about 5 X0 of stopping material and correspondingly

absorbs a sizable fraction of the energy of photons and electrons. The second layer has a finer

granularity in φ, but a reduced granularity in η-direction, compared to the strip layer. In both
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lateral directions its cell size is about 4 cm. It is the thickest layer below a pseudorapidity of

|η| < 2.5; therefore, it contributes significantly to the stopping power of the EM calorimeter. In

the region |η| < 2.5, a third layer with reduced granularity in η-direction is installed in order to

capture the outermost part of very energetic showers. In η direction, the cell size is about 10 cm,

whereas in φ-direction it is about 5 cm.

Figure 3.11. |Material distribution of the EM calorimeter in terms of the radiation length X0 as a function
of pseudorapidity. The left plot shows the distribution for the barrel region, while the right plot shows the
distribution for the endcap region. Taken from Reference [126].

An additional detector called presampler is installed between the inner detector and the EM

calorimeter in the range |η| < 1.8. It is used to correct for energy losses of particle due to

showering in the material of the cryostat and the supporting structures.

Hadronic Showers and the Hadronic Calorimeter

Hadrons, which interact via the strong interaction and depending on the type also via the

electromagnetic interaction with the detector material, lead to showers that tend to be more

wide-spread and less regular than purely electromagnetic showers. Due to the frequent emission

of gluons which subsequentially hadronize, hadrons from energetic proton-proton collisions

form more or less collimated sprays of hadronic particles, called jets. The initial composition of

these jets entering the calorimeter has influence on the fraction of energy that is deposited in

the EM calorimeter: neutral mesons such as π0 are abundant in showers of hadronic particles,

and they decay most frequently to a pair of photons, which can be efficiently absorbed in the

material of the EM calorimeter; the fraction of jet energy that is deposited in the hadronic

calorimeter is correspondingly reduced. An additional complication consists in the ability of
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strongly interacting particles to deposit energy in nuclei of the detector material, which is released

sometimes only with significant delay. All this makes the modeling of hadronic showers and

their energy measurement challenging, which is why the energy resolution for hadronic particles

typically is worse than that for electrons or photons.

The two main purposes of the hadronic calorimeter are to measure the energy of jets, and to

discriminate between hadrons and electromagnetic objects, such as photons and electrons, by

determining the fraction of particle energy that is deposited in the hadronic calorimeter.

The granularity of the hadronic calorimeter subdetectors is generally coarser than that of the

EM calorimeter. Three different combinations of active and passive material are used. The tile

calorimeter covers the range |η| < 1.7. Its radial depth amounts to about 7 interaction lengths λ,

defined as the mean distance a hadronic particle travels before it interacts with the material via

the strong interaction. The passive material used in the tile calorimeter is steel, and scintillators

are used as active material. The light emitted by the scintillators that are excited by the shower

particles is shifted from UV light to a wavelength that efficiently activates the photon multiplier

tubes into which the light is fed via readout fibers. The hadronic endcap calorimeter covers

the range 1.5 < |η| < 3.2 and uses LAr as active material. Copper was chosen for the passive

absorber elements. The forward calorimeter spans from |η| = 3.1 to |η| = 4.9. It consists of

three modules, the first of which employs copper as passive material. For reasons of shower

containment, tungsten is used as absorber material in the two following modules. The active

material was chosen to be LAr. The structure of the forward calorimeter modules corresponds to

massive blocks of metal interspersed with thin tunnels containing LAr and electrodes.

In Figure 3.12 the material distribution of the various components of the ATLAS detector,

excluding the muon spectrometer, is shown in terms of the interaction length λ. The hadronic

calorimeter contributes most to the calorimeter’s ability to absorb the energy of hadronic particles.

Typical values for the stopping power are 10λ, which is a relatively small value when compared

to the electromagnetic stopping power of the calorimeter.

3.2.5. The Muon Spectrometer

Muons result in a very distinct signature in the ATLAS detector. Due to their electric charge

they leave tracks in the inner detector. Unlike electrons, however, they are not stopped in the

56



Figure 3.12. |Material distribution of the ATLAS detector excluding the muon spectrometer in terms of
the interaction length λ as a function of pseudorapidity. The ocher-colored distribution corresponds to
the material in front of the EM calorimeter. The distribution that is colored light-blue corresponds to the
material between the hadronic calorimeter and the first sensitive layer of the muon spectrometer. Taken
from Reference [126].

calorimeter. This is due to their relatively large mass which leads to less energy losses via photon

emissions in presence of the detector material. Hence, they traverse the calorimeter relatively

undisturbedly. In order to accurately measure the momentum of muons and to distinguish muons

from other particles such as electrons, a dedicated detector for the reconstruction of muon tracks

was installed, called the muon spectrometer. The muon spectrometer surrounds the hadronic

calorimeter and is immersed in a magnetic field, which allows a momentum measurement through

the curvature of the muon’s path within the muon spectrometer, improving on the momentum

measurement by the inner detector. Below a muon transverse momentum of 30 GeV, the inner

detector provides the most accurate measurement of the transverse momentum, while above that

value the muon spectrometer dominates the measurement [126]. The magnetic field is created

by superconducting toroidal magnets. In order to achieve an optimal momentum resolution, the

segmentation of the muon spectrometer is finest in the direction parallel to the direction into

which the toroidal magnetic field bends the muons.

All muon spectrometers sensors operate on the principle of gaseous ionization detectors [126].
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The muon spectrometer spans a pseudorapidity range of |η| < 2.7. Triggering is performed

using three layers of resistive-plate chambers in the region |η| < 1.05 and three layers of thin-

gap chambers in the region of 1.05 < |η| < 2.4. These two types of subdetectors also provide

information about the η- and φ-components of muon tracks. Two additional types of sensors

are responsible for an accurate measurement of the muons’ tracks in the bending plane. In the

central region, monitored drift tubes are used for this. In order to be able to cope with the high

particle rates in the endcaps, the muon spectrometer is equipped with cathode strip chambers

in the region of 2.0 < |η| < 2.7 in the innermost layer. The two other layers in the endcaps are

equipped with monitored drift tubes.

3.3. Definition of Analysis Objects

3.3.1. Introduction

For the analyses presented in this work, the reconstructed physics objects of central importance

are photons; also electrons, hadronic jets and muons are relevant. All these particles have different

typical signatures in the detector. Based on features such as tracks in the inner detector and muon

spectrometer, as well as clusters of energy depositions in the calorimeter, the reconstruction

of corresponding physics objects is performed. Figure 3.13 schematically shows the ATLAS

detector response to common SM particles. Charged particles, such as electrons, muons, and

charged hadrons create tracks in the inner detector. Hadrons are typically found in jets, more or

less collimated sprays of hadronic particles. Neutral particles do not create tracks in the inner

detector. However, if a photon converts into an electron-positron pair in the presence of the

inner-detector material, photons can result in tracks.

Energetic electrons and photons lead to clusters of energy deposition in the calorimeter,

predominantly in the EM calorimeter. Hadronic jets also result in clusters of energy depositions

in the calorimeters, but those clusters easily reach into the hadronic calorimeter. Based on the

shape of the energy deposition clusters in the calorimeter, it is possible to discriminate photons

and electrons against hadronic jets.

Over a wide energy range of about 1 GeV to several hundred GeV, muons can be approximated

as minimally ionizing particles [133]. For that reason, muons can traverse the calorimeter without
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Figure 3.13. | Illustration of signatures in the ATLAS detector in a cross-sectional view as generated by
different particle types. Taken from Reference [135].

loosing much of their energy. The muon spectrometer, which surrounds the calorimeters, allows

a measurement of their momenta.

In the following sections, the reconstruction and identification of photons, electrons, muons

and jets will be described. This includes an overview of the reconstruction of trajectories of

charged particles in the inner detector, as well as of the reconstruction of primary vertices.

Calorimeter information is condensed into a collection of clusters of energy depositions. Based

on a combination of inner-detector information and such energy clusters, photon and electron

candidates are build. The most common particles emerging from pp collisions at the LHC are

hadrons, which is why most of the photon and electron candidates correspond to hadronic jets.

However, by applying identification algorithms based on the shape of clusters in the calorimeter

and, in the case of electrons, also based on tracking information, the purity of photon and electron

candidate samples can be markedly increased. Additionally, isolation requirements are imposed

that veto objects which are surrounded by relatively large amounts of additional activity, a typical

signature of hadronic particles.
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3.3.2. Tracks and Vertices

Tracks

Energetic charged particles produce a signal in the active detector components of the inner

detector, which can be read out and analyzed. Based on these signals in the highly granular

inner-detector modules, it is possible to reconstruct the trajectories of particles, commonly called

tracks. By determining the curvature of a track in the solenoid magnetic field, the transverse

momentum of the corresponding particle can be measured as described in Section 3.3.3 and

in more detail in Chapter 4. The momentum resolution deteriorates with increasing transverse

momentum as the track in that case approximates more and more a straight line. The inner

detector allows a momentum resolution of σp/p = 5 ·10−4 GeV−1 · pT [126]1.

In Figure 3.14 an event display with a focus on reconstructed tracks and the corresponding

energy depositions is shown. Tracks can be reconstructed within a pseudorapidity range of

Figure 3.14. | Reconstructed tracks in the inner detector. The blobs represent energy deposits in the
tracking devices. As one can see in the bottom right panel, the reconstructed tracks originate in two
distinct vertices. Taken from Reference [137].

|η| < 2.5, corresponding to the acceptance of the inner detector. Space-points, 3-dimensional

coordinates of energy depositions, are constructed based on clusters of energy depositions (hits)

1The determination of this particular resolution value does not include the information from the Insertable B-Layer
(IBL), which has been added only in 2014 [136]. However, this most recently added innermost layer of the
pixel detector does not change the momentum resolution significantly because the length of the track is not
substantially increased by the IBL [130].
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in the silicon detectors. In the barrel region, a charged particle emerging from the pp interaction

region deposits energy in typically all four pixel layers, resulting in an equal number of space

points. In the SCT barrel, four space points per track can be expected: four pairs of microstrip

modules can register eight measurable clusters of energy depositions; however, the information

from both modules of a pair needs to be combined to obtain all three spatial coordinates of the

location of the particle transition through the module pair. A track’s passage through the TRT

results on average in more than 30 hits [132].

Based on the set of reconstructed space points in the pixel detector and the SCT, track seeds

consisting of three space-points are generated [138]. This number corresponds to the minimal

number of points necessary for a first estimate of the particle transverse momentum. Many of

those track seeds are combinatorial artifacts that do not correspond to actual particle trajectories.

In order to reduce the amount of those spurious track seeds, basic requirements on the transverse

momentum and the estimated minimal distance of the trajectory to the interaction point are

applied. At least one additional space-point must be consistent with having resulted from the

same particle. Using a Kalman filter algorithm [139], further space-points from pixel detector

and SCT that are consistent with the estimated trajectory are iteratively added. If in this way

it is not possible to extend a seed with a transverse momentum of at least 1 GeV to a track

with at least 7 space-points, a second attempt is made, allowing up to 30 % energy loss at each

intersection of the trajectory with the detector material. This can recover tracks resulting from

electrons, which have a relatively low mass and accordingly tend to lose considerable amounts

of energy in form of bremsstrahlung. Such modified pattern recognition is also performed for

seeds that are within a region of interest as defined by loosely selected energy clusters in the

calorimeter.

The resulting sample of realistic track candidates contains track candidates which share space-

points with other candidates – an indication that some space-points are wrongly assigned. For

that reason, an ambiguity-solving algorithm is applied. Each track is assigned a score quantifying

its quality. It takes into account the properties of the relevant clusters of energy depositions,

missing space-points in sensor positions in which one would expect hits (holes), as well as

the χ2 of the initial track fit. In order to favor tracks with higher momentum against track

candidates with relatively low momentum, which relatively often correspond to track candidates

that include incorrectly assigned space-points, also the logarithm of the track momentum is taken
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into account. Tracks with an insufficient score are removed. The remaining track candidates are

fitted. Subsequently, they are subject to selection criteria based on the number of hits shared

with other candidates, the number of holes, the number of assigned and shared space-points, and

kinematic properties. Space-points can be removed from a track candidate if it is responsible for

a too large number of shared space-points of either track candidate or an already accepted track

candidate; after that, the pruned track candidate is re-evaluated. Accepted track candidates are

fitted using all available information. Accepted tracks are then extrapolated into the TRT segment

of the inner detector by finding hits in the TRT that are consistent with having resulted from the

same particle as the track in the silicon detectors. A subsequent fit of the track candidates using

all available information allows extracting precise kinematic properties of the tracks [140].

If a track with at least three silicon space-points is loosely matched to a cluster of energy depo-

sitions in the calorimeter, a Gaussian-sum filter (GSF) [141] is applied. This is a generalization

of the Kalman filter algorithm, and it allows a more accurate track parameter estimation when

non-linear effects due to bremsstrahlung energy losses are relevant.

In order to recognize tracks from e.g. electron-positron pair production from photon con-

versions in the material of the inner detector, it may be insufficient to rely on the outward

extension of track seeds found in the silicon layers. Therefore, a pattern recognition based on

TRT hits is performed [138] in regions close to the positions of loosely selected clusters in the

EM calorimeter. More details on photon conversion reconstruction are given in Section 3.3.3.

Primary Vertices

Primary vertices are the points in which colliding protons interact with each other inelastically,

resulting in the emergence of particles corresponding to the products of the proton-proton

interactions. Typically, multiple of such vertices result from proton bunch crossings at the

LHC. In Figure 3.14, an event with a relatively low number of primary vertices is shown. On

average, a proton-proton interaction results in about 15 reconstructed tracks satisfying loose

selection criteria [142]. The positions of the primary vertices are relevant for the determination

of kinematic properties of particles, such as their transverse momentum as well as for associating

particles that emerged from the same proton-proton interaction. Also, the reconstruction of

primary vertices is relevant for the measurement of the amount of pileup on an event-by-event
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basis.

Primary vertices can be determined by extending reconstructed tracks into the region in which

the two proton beams cross each other and by subsequent analysis of the trajectories in the

luminous region. The reconstruction of primary vertices based on these trajectories is an iterative

process that involves the fitting of vertex positions based on tracks and a procedure of assigning

individual tracks to vertices [143]. In order to reconstruct the primary vertices in a given collision

event, the distribution of z-coordinates (ztrack) of all considered tracks at the point of the closest

approach to the beam line is considered. The z-coordinate at which the distribution of ztrack has

its global maximum is taken as seed for the position of the first reconstructed primary vertex.

This seed and the track collection are then used to compute the best-fit vertex position iteratively

by means of a χ2 minimization procedure, reducing the influence of less compatible tracks on

the fit result and a subsequent recomputation of the best-fit vertex position. Once this iterative

process of determining the vertex position is completed, the tracks that are deemed incompatible

with the reconstructed primary vertex in consideration are used to repeat the procedure in order

to find further primary vertices. Incompatibility of a track with a vertex candidate is assumed if

the contribution of the track to the χ2 of the vertex fit exceeds 49. Only primary vertex candidates

with at least two assigned tracks are considered as reconstructed primary vertex.

Determination of the Hard-Interaction Vertex

For the determination of particle four-momentum and, connected to that, for the calibration of

the transverse-energy measurement, it is relevant to know the location of the primary vertex from

which a given particle emerged. In ATLAS physics analyses, the studied processes often involves

large momentum transfers, which is connected with relatively large transverse momenta of

final-state particles. Therefore, it is standard procedure to choose the vertex for which the sum of

transverse energies of its associated particles,
∑

i p2
T, i, is largest to be the hard-interaction vertex.

For energetic photons from Higgs boson decays, however, this approach leads to sub-optimal

results. A large fraction of the energy in these events is carried away by photons, which typically

do not leave tracks that can be used to precisely point at the primary vertex in which they

originated. Since the photons carry away a large fraction of the transverse momentum, the sum

of the transverse momenta of the remaining particles from the interaction tends to be relatively
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small. Accordingly, it can easily occur that another primary vertex, which is not related to the

Higgs boson production but whose associated tracks can nevertheless have a considerable value

for
∑

i p2
T, i, is selected as hard-interaction vertex. In this case, the selected hard-interaction vertex

would be not the true vertex of photon origin, and the calibration of the photon would be less

precise. In addition, the measurement of quantities like the number of associated jets in Higgs

events or the momentum of the leading jet would be less reliable.

In order to improve the selection of the primary vertex for events in which a Higgs boson

decays to two photons, a more sophisticated vertex selection algorithm was created: a neural

network was trained to select the Higgs boson production vertex in H→ γγ events by considering

the following inputs:

• The summed squared and scalar transverse momenta of tracks assigned to the vertex,∑
i p2

T, i and
∑

i pT, i.

• The longitudinal segmentation of the calorimeter allows a pointing of the two photon-

candidate showers back to the primary vertex, yielding an estimate of the z-position of

the Higgs boson production vertex. Additionally, a constraint based on the average pp

collision point location is used. If a conversion vertex, see Section 3.3.3, is reconstructed

and matched to a photon, the conversion vertex enters the estimation of the primary vertex

position as well, provided that the tracks belonging to the conversion vertex have hits in

the silicon detectors.

• Due to conservation of momentum, the difference in azimuthal angle between the vectorial

sum of tracks assigned to the primary vertex and the diphoton system tend to be close to

180◦. This difference in azimuthal angle is used as input for the neural network.

The selection efficiency in H → γγ events for selecting the correct Higgs boson production

vertex, defined as the fraction in which the algorithm determines the vertex position correctly to

within 0.3 mm, depends on the Higgs boson production mode and on the amount of pileup. As

can be seen in Figure 3.15, the efficiency is about 75 % for the dominant Higgs boson production

mode, gluon fusion. In addition to the vertex selection efficiency for gluon fusion H → γγ

events, the efficiency is also shown for Z→ e+e− events in which the tracking information for

the two electrons is removed in order to emulate events with two photons while still having

reliable information about the correct vertex position. On basis of such events, an uncertainty

on the efficiency is estimated by computing the difference between the efficiency in simulation
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and in data. The difference between the efficiency for H → γγ events and Z → e+e− events

is related to the different recoil characteristics in H → γγ and Z → e+e− events. When the

Z→ e+e− events are reweighted such that the pT distribution of the di-electron system is equal

to that of the diphoton system in H→ γγ events, both vertex selection efficiencies are in good

agreement [144].

Figure 3.15. | Fraction of H→ γγ and Z→ e+e− events in which the primary vertex chosen by the neural
network has a distance of less than 0.3 mm to the correct production vertex position. The performance
of this efficiency determination for H → γγ events is cross-checked using Z → e+e− events in which
the electron tracks have been removed before the vertex selection algorithm is applied. Taken from
Reference [145].

3.3.3. Photons and Electrons

Introduction

As photons and electrons lead to quite similar signatures in the detector, the process of their

reconstruction and calibration will be described in parallel. Both photons and electrons lead

to narrow electromagnetic showers in the calorimeter, with most of the energy deposited in

the EM calorimeter. Electrons create tracks in the inner detector due to their electric charge.

Photons can indirectly lead to tracks in the inner detector; this happens by electron-positron pair

production in interaction with the inner-detector material. The charged particles emerging from

that interaction are able to create tracks. Photons which create such a pair of an electron and
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positron are called converted photons. If no such pair production process occurs in the inner

detector, a photon is called correspondingly unconverted. Converted photons and electrons tend

to have wider showers than unconverted photons due to the radiation (bremsstrahlung) from

electrically charged particles in the presence of the material of the inner detector.

Electron and photon showers correspond to clusters of energy depositions in the calorimeter

cells. The reconstruction of these clusters is based on topologically connected calorimeter cells

and is seeded by cells containing significant energy depositions. The resulting objects are called

topo-clusters [146]. In order to improve the resolution of the determination of cluster energies in

cases of interactions of electrons or photons with the inner-detector material that lead to a clear

separation between the products of the interactions, different topo-clusters can be connected,

resulting in super-clusters.

Topo-Cluster Reconstruction

Cluster building relies on the cell signal-to-noise ratio ζcell =
Ecell

σnoise,cell
, where Ecell is the energy

deposited in a given cell of the calorimeter and σnoise,cell is the expected noise in that cell,

including electronic noise and pileup effects. The cluster building is seeded by calorimeter

cells that exceed a threshold of |ζcell| ≥ 4. The proto-cluster is padded in two iterations with

adjacent cells with |ζcell| ≥ 2. Two clusters are merged if they contain the same cell. Finally,

all directly neighboring cells are added to the cluster, irrespective of their energy. The result

of this algorithm is called a topo-cluster, as it consists of a cluster of topologically connected

calorimeter cells. For the determination of the EM energy of photon and electron topo-clusters,

only cells of the EM calorimeter are used in most parts. In the region 1.37 < |η| < 1.63, also the

energy measurements from the presampler and scintillators between the calorimeter cryostats are

taken into account in order to mitigate effects from energy losses in the upstream material. The

fraction of the total topo-cluster energy that is deposited in the EM calorimeter cells is denoted

fEM. A preselection of fEM > 0.5 is used to remove about 60 % of pileup clusters, effectively

without removing clusters created by electrons or photons [147].

Given the energy of an electromagnetic cluster, the corresponding transverse energy commonly

is computed via

ET =
E

coshη2
, (3.4)
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where η2 denotes the pseudorapidity of the cluster barycenter in the second longitudinal layer of

the EM calorimeter.

Matching of Tracks and Conversion Vertices

The tracks that are loosely matched to a cluster in the calorimeter and refitted with the GSF

are extrapolated into the second layer of the EM calorimeter. In order to improve the matching

efficiency of tracks that correspond to electrons with considerable energy losses in the inner-

detector material, the track momentum that is used in this extrapolation can be scaled such that

it matches the energy of the cluster. Matching of tracks and clusters is performed based on the

angular distance, defined by ∆φ and ∆η, between cluster center and extrapolated track. If more

than one track fulfills the matching criteria, a ranking system is used to select the track based

on which the properties of the electron candidate are determined. Tracks with hits in the pixel

detector rank higher than tracks without such hits. Within each of these categories, tracks with

smaller ∆R =
√

∆2η+∆2φ between track and cluster are preferred.

The probability for a photon conversion to occur depends on the material distribution in

the inner detector. At low pseudorapidities, where relatively small amounts of material are

encountered by particles, about 20 % of photons undergo conversion, while at |η| ≈ 2.3 this

fraction is about 65 %. For the reconstruction of photon conversion vertices, both tracks having

silicon hits and tracks with only hits in the TRT are used [147]. The tracks need to be loosely

matched to fixed-size calorimeter clusters and must have been assigned a high probability of

being electron tracks by the TRT. One defines both two-track and single-track conversion vertices.

The former type can be reconstructed based on two opposite-charge tracks that are consistent

with emerging from a pair production process resulting from a massless particle. Single-track

conversion vertices are based on single tracks without hits in the innermost sensitive layers of

the inner detector.

The matching of reconstructed conversion vertices to calorimeter topo-clusters is performed

based on the angular distance between the cluster and the track(s) constituting the conversion

vertices. In case of more than one conversion vertex matching a topo-cluster, vertices with

two tracks containing silicon hits are preferred over vertices with two tracks, which in turn

are preferred over single-track conversion vertices. If more than one vertex exists for a given
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category, the vertex with the smallest conversion radius is preferred.

Super-Clusters

Photons and electrons that originate in energetic pp-collisions can lead to more than one cluster

of energy depositions in the calorimeter. In the case of electrons, considerable amounts of

their energy can be radiated as bremsstrahlung photons, which can result in additional clusters

in the vicinity of the cluster resulting from the electron. Photons, on the other hand, can

convert in the presence of the material of the inner detector into a pair of electrons, which in

turn can result in several distinct clusters. In case these distinct clusters are reconstructed as

individual topo-clusters, it is possible to combine them, based on tracking information, into a

super-cluster. A measurement based on such a supercluster results in a better energy resolution

than a measurement that can take into account only individual topo-clusters. The reconstruction

of super-clusters is performed independently for photon candidates and electron candidates. This

way, energy depositions in the calorimeter can be treated both under the electron and photon

hypothesis, enabling an ambiguity solving at a later stage.

Starting with topo-clusters with the largest transverse energy ET and proceeding in order of

descending ET, topo-clusters are considered as a seed for a super-cluster if their ET surpasses

a given threshold. In the case of electrons this threshold is given by 1.0 GeV, and in the case

of photons by 1.5 GeV. An electron seed cluster candidate must be matched to a track that has

at least four hits in the silicon layers. A topo-cluster cannot be a seed cluster if it is already

associated as a satellite cluster to another seed cluster.

Given a seed cluster, a topo-cluster is added to it if its angular distance ∆η×∆φ to the

barycenter of the seed cluster is smaller than 0.075×0.125. This clustering is more permissive

in φ-direction since this is the direction in which the magnetic field in the inner detector bends

charged particles, resulting in a wider spread of energy depositions in φ-direction. Additionally,

in case of supercluster building under the electron hypothesis, a topo-cluster is added as satellite

cluster if its best-matched track is also the best-matched track of the seed cluster and if the angular

distance ∆η×∆φ is less than 0.125× 0.300. When building photon candidate super-clusters

based on seed clusters that are matched to a conversion vertex with two silicon tracks, the basic

satellite-cluster requirement is extended by adding topo-clusters whose best-matched track is
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part of the conversion vertex. Moreover, a topo-cluster is added as a satellite if the considered

conversion vertex, extrapolated as a neutral particle, matches that cluster. In order to reduce the

impact of pileup on the super-clusters, their maximal width in η is chosen to be 0.075 in the

barrel region and 0.125 in the endcaps. No such restriction is placed in φ-direction.

The energy of super-clusters is computed based on the three layers of the EM calorimeter

and the presampler in front of it. In the transition region between the barrel and endcaps,

1.4 < |η| < 1.6, also the energy measurement based on the scintillators between the cryostats of

the calorimeter is used. Super-clusters are subject to an initial energy calibration and position

correction. They are matched to tracks and conversion vertices, as described in Section 3.3.3,

with the difference that this time super-clusters instead of topo-clusters are used.

As described above, a given seed cluster can be the basis of a photon and electron super-cluster

at the same time. Based on tracking information, it is attempted to resolve this ambiguity and

to classify a given super-cluster as either photon or electron. In Figure 3.16, the corresponding

algorithm, which is based on matching electron tracks and conversion vertices to the super-

cluster, is illustrated. If such classification is not possible with the necessary confidence, the

Figure 3.16. | Description of the algorithm for solving the ambiguity between photon and electron
hypothesis for super-clusters. Taken from Reference [147].

super-cluster is labeled ambiguous. These ambiguous clusters can be dealt with differently by

different analyses. After the stage of ambiguity resolution, an additional calibration of the photon

and electron candidates is performed, taking into account tracks and conversion vertices.
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Energy Calibration

After the super-clusters are built, their energy is calibrated in several steps [147, 148]. The cluster

energy is corrected for energy losses due to upstream material, lateral leakage out of the cluster

region, and leakage into the hadronic calorimeter. These corrections are taken into account by

a multi-variate regression algorithm, derived from simulated events, which yields a combined

correction for each region in η and ET. The correction is derived separately for electrons,

unconverted photons and converted photons, and applied both to cluster energies in simulated

and data events. Before cluster energies in data are computed, several corrections are applied to

the cell energies: cluster cell energies in data events are corrected with an intercalibration of the

first and second layer of the EM calorimeter. This correction is derived from energy depositions

of muons in the calorimeter in simulation and in data, and is computed in bins of η. Cluster

energies in data events are also corrected for out-of-time-related pileup effects resulting from

variations of the per-bunch luminosity and from simplifying assumptions about the bunch-train

structure.

The uniformity of the energy response in data is improved by correcting for non-uniform

energy losses between calorimeter modules in the barrel due to a variation in the gap width

between absorber elements. Moreover, some sectors of the EM calorimeter are supplied with

non-nominal values for the high-voltage; these inhomogeneities are corrected for as well.

Finally, Z→ e+e− events are used to determine the difference in energy scale and resolution

between data and simulated events. This is done by means of di-electron invariant-mass distri-

butions in data and simulation. The differences in energy scale and resolution are extracted by

performing a χ2 fit of the corresponding mass templates. Based on these differences, corrections

are derived and applied in order to improve the agreement between data and simulation. The

resulting corrections on the energy scale are applied to data events. Corrections of the energy

resolution, on the other hand, are applied to simulated events.

The resolution for a sampling calorimeter can be expressed as [149]

∆E
E

=
a
√

E
⊕

b
E
⊕ c . (3.5)

Here, a is the sampling term, which quantifies how large the impact of statistical fluctuations

in the energy depositions in the active layers of the calorimeter on the energy measurement is.
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The noise term b corresponds to influences to the measured shower energy which do not depend

on the energy of the incoming particle; electronic noise has such effect. Lastly, the constant

term c accounts for limitations on the accuracy of the energy measurement that result from a less

than perfect calibration or from inhomogeneities in the detector. The constant term is relevant

particularly at large energies, as its influence on the relative uncertainty does not decrease with

increasing energy, as it is the case for the other terms.

Photon Identification

The collection of photon candidates from the reconstruction of electromagnetic clusters as

described in the previous sections contains many QCD jets, which in the context of collecting

samples of photon candidates can be called fake photons. In order to increase the purity in

photons, selection criteria based on the shower shape in the calorimeter of the photon candidates

are applied. These selection criteria are based on shower shape variables, which parametrize the

shower shape and are designed to have discriminative power against QCD jets. Real photons

have rather narrow showers that are to a good approximation confined to the EM calorimeter.

QCD jets, on the other hand, tend to result in rather broad showers and a non-negligible fraction

of their energy tends to be deposited in the hadronic calorimeter. Accordingly, the width and the

depth of the shower are quantified in several shower shape variables.

A major source of fake photons are decays of energetic neutral mesons such as π0 mesons into

a collimated pair of photons. For this reason, photon identification involves the requirement of a

lack of substantial substructure in lateral direction. The first layer of the EM calorimeter with

its fine segmentation in η-direction is designed to allow the precise determination of the shower

substructure in one lateral direction. In total, there are 11 shower-shape variables that are used

for the photon identification. The selection consists in simple rectangular cuts on each of these

variables. The selection values for each variable are optimized individually for different regions

in photon transverse momentum2 pT and pseudorapidity |η|. Because the shower development

of photons that underwent a conversion in the inner-detector material is different from that

of unconverted photons, selection criteria are optimized for both types of photon signatures

separately. In addition, the identification is optimized in bins of |η| and pT. Converted photons

2For massless particles the transverse momentum is identical to the transverse energy as defined in Eq.(eq:et). For
energetic electrons, the numeric difference between transverse energy and transverse momentum is negligible.
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tend to have wider showers due to interactions of the electrons and positrons with the detector

before entering the calorimeter. The photon identification procedure and the measurement of the

corresponding efficiency is described in more detail in Chapter 4. Generally, the efficiency of the

tight photon identification for photons that pass isolation requirements (see Section 3.3.3)ranges

from about 50 % to 70 % at a photon pT of 10 GeV to more than 90 % above a pT of about

60 GeV.

Electron Identification

The process of electron reconstruction leads to a sample which contains not only electron

candidates from true electrons but also numerous QCD jets. In order to reduce the fraction

of electron-faking QCD jets, an identification procedure is applied. It takes into account the

shower shape in the calorimeter, the track matched to the cluster, and the spatial compatibility

between the track and the cluster [147]. Electron candidates are required to meet basic quality

criteria such as a sufficient number of hits in the silicon layers of the inner detector and to

pass the TRT electron identification. The compatibility of the track with the reconstructed

shower is determined using the differences in pseudorapidity and in azimuthal angle. The

electron identification procedure involves both rectangular selection cuts as in the case of photon

identification on a subset of variables and a likelihood-based method that takes into account

the other variables. For the latter, probability density functions PS , PB for electrons and for

background, respectively, are used. Given an electron candidate, the likelihood LS or LB of the

observed properties under the hypothesis that the electron candidate results from a true electron

or from background is given by

LS ,B(x) =
∏

i

Pi
S ,B(xi) , (3.6)

where the discriminating variables are denoted by xi. The likelihood discriminant used for

the electron identification is given by the logarithm of the ratio of LS and LB. Most of the

shower shape variables, impact parameter variables, the TRT electron identification variable, and

variables related to the matching of track positions with cluster positions are taken into account in

the likelihood discriminant. Simple selection cuts are imposed on the other considered variables,

including the number of track hits in different parts of the inner detector and the ratio of track
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momentum to the cluster energy [150].

The optimization of the electron identification is performed in bins of electron pT and η [150].

The tight identification operating point, which is used in the context of this thesis, has an

efficiency of approximately 80 % for electrons with a pT larger than 30 GeV [147].

Isolation Requirements

Photon and electron candidates resulting from QCD jets tend to be surrounded by rather large

amounts of additional activity, unlike photon or electron candidates from real photons and

electrons, respectively. Therefore, the purity of electron and photon candidate samples can

be improved by vetoing photon and electron candidates that are surrounded by considerable

radiation. The amount of this radiation is quantified by isolation variables. Two types of such

variables are used to discriminate against photon- and electron-faking jets:

• Isolation based on calorimeter information: Eiso
T |∆R<r, is determined by summing the ET

of uncalibrated, positive-energy topo-clusters within a cone with radius r and subtracting

the energy deposited in the EM calorimeter within ∆η×∆φ = 5× 7 cells, in units of

middle-layer cells, around the barycenter of the candidate. See Figure 3.17 for a schematic

illustration of the isolation determination. The cone radius for the loose isolation selection,

which is used in the analyses in this thesis, is r = 0.2. An estimate of the leakage of the

photon or electron energy outside this central region is subtracted. Moreover, a correction

for pileup effects is applied.

• Isolation based on tracking information: piso
T |∆R<r, the summed transverse momenta of

tracks within a cone with radius r. For the loose isolation selection, this radius is chosen

to be r = 0.2. Tracks that are matched to conversion vertices of the photon candidate or the

electron candidate are excluded from the computation of this quantity, as are tracks that

are not associated with the hard-interaction vertex. Further requirements on the considered

tracks are a pT of larger than 1 GeV and a good track quality, assessed based on the number

of hits and number of missing hits in the silicon layers of the inner detector.
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Figure 3.17. | Illustration of the definition of calorimeter isolation. The filled circle around the photon
or electron candidate corresponds to the radius of the cone in which the topo-cluster-based calorimeter
isolation variable is defined. Topo-clusters with a barycenter which lie within the cone radius and therefore
are considered for the computation of the isolation are colored red. The yellow rectangle corresponds to
the area assigned to the photon or electron candidate. Energy depositions in this area are not included in
the calculation of the isolation. The grid represents cells from the second EM calorimeter layer. Taken
from [150].

3.3.4. Jets

When energetic quarks and gluons emerge from the interaction point, they undergo showering

and hadronization, resulting in a spray of hadrons, which can be detected by the inner detector in

the form of tracks and in the calorimeter as clusters of energy depositions. A jet reconstruction

based on these tracks in the inner detector, clusters in the calorimeter or four-momenta of

simulated particles allows the determination of the kinematic properties of the original parton

that emerged from the hard interaction.

Jet Definition

Jets are reconstructed following an algorithm which groups nearby entities such as tracks,

calorimeter clusters, and particle four-momenta, leading to a set of reconstructed jets. Generally,

such an algorithm must be infrared-safe and collinear-safe. An infrared-safe jet reconstruction

algorithm is not sensitive on the emission of a soft parton, and a collinear-safe algorithm is not

sensitive to a collinear splitting of a parton.

In the context of this thesis, the anti-kt jet-reconstruction algorithm is used [151]. It takes a
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collection of entities defined by rapidity yi, azimuthal angle φi, and transverse momentum kti, as

input and returns a collection of jets. Jets are built by comparing distances between these entities,

using the following distance measures:

di j = min(k−2
ti ,k

−2
t j ) ·

∆2
i j

R2 ,

diB = k−2
ti , (3.7)

where ∆i j is defined as ∆i j =

√
(yi− y j)2 + (φi−φ j)2. The radius parameter R, which controls the

lateral size of the reconstructed jets, is commonly chosen to be 0.4 in the ATLAS collaboration.

The quantity di j is a measure of how big the separation between two entities is relative to the

chosen jet radius, with a modifying factor that takes into account the larger of the two considered

transverse momenta.

The jet reconstruction algorithm consists in the repeated application of the following steps:

The smallest of all distances di j, diB is determined, where i ∈ {1, . . . ,Nelements} and

j ∈ {1, . . . ,Nelements, excluding i}.

• If this smallest distance is a member of the di j set, entities i and j are combined and the

resulting combination of four-momenta enters the collection of entities. The distances di j,

diB are recomputed based on the updated collection.

• If the smallest distance is of the type diB, the corresponding entity with index i is declared

a jet and removed from the set of distances.

This iteration stops as soon as no further entities remain in the set. In this way, all initial entities

are either declared as a jet directly, or first combined with other entities and then as combined

entity declared as a jet.

The distance measure between an entity with large kt and an entity with low kt is fully

determined by the transverse momentum of the former and the angular distance between them.

Such a particle with large kt will be combined with all soft particles within a radius R if no other

hard particle lies within a distance of 2R. If another entity with large kt is present within a range

R < ∆i j < 2R, two hard jets will be constructed as a result. If the distance ∆i j between the two

entities with large kt is smaller than R, they will be combined to a single jet. In the case that both

of the considered entities have low kt and a similar angular separation as the large-kt and low-kt
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entities in the previous example, the distance measure will be much larger, rendering it unlikely

that two soft entities are combined.

Jet Energy Calibration

Jets that are build using a clustering algorithm as described above initially have a cluster energy

at the EM scale. Several consecutive steps are performed in order to calibrate jets [152, 153].

Some of these steps rely on MC simulation, while others are in-situ methods. The latter result in

corrections that are exclusively applied to events in data. The calibration is aimed at bringing

the measured energy at reconstruction level to the jet energy at truth level. Correcting the jet

origin to the actual primary vertex position constitutes the first step; this has effect on the η of

the jet, while the jet energy is unchanged. The next step corrects for pileup influences. One part

of this correction consists in subtracting a jet-area-based estimate of the pileup contribution from

the jet pT. The area A of the jet is determined by a method called ghost association [154]. The

energy density ρ of the event corresponds to the median of the pT distribution of a collection

of jets as reconstructed using a kt jet clustering algorithm [155]. Residual dependencies on the

number of reconstructed vertices, quantified by the parameter α, and on the average number of

pp interactions µ, quantified by the parameter β, are taken into account as well. The corrected

pT of a jet is then given by

pcorr
T = preco

T −ρ ·A−α · (NPV−1)−β ·µ. (3.8)

Next, the absolute jet energy scale and η calibration is performed, with the purpose to match the

energy of jets with the particle-level energy. The calibration is derived from jets in simulated

events, and is based on the jet energy response given by the ratio of the energy of jets at

reconstruction and at truth level.

The jet response is not identical for gluon- and quark-initiated jets, which is why a residual

dependency on variables that are correlated to the jet type is corrected for in the global sequential

calibration [156]. This is performed based on five variables that quantify the lateral and

longitudinal features of jets and which are related to the particle composition of the jet.

Finally, in situ calibrations methods are applied to data events, in order to correct for residual

differences between data and simulation using well-calibrated objects such as photons or electron-
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positron pairs from Z-boson decays to determine the jet energy response in data and in simulation.

Such differences result from an imperfect modeling of the detector material distribution, the

detector response, pileup effects, and of interactions of particles with detector material.

3.3.5. Muons

The signature of a muon traversing the ATLAS detector consists in a track in the inner detector,

only modest energy depositions in the calorimeter consistent with resulting from a minimally-

ionizing particle, and a track in the muon spectrometer. Muons are reconstructed using primarily

information from the muon spectrometer and the inner detector [157]. Four types of muon

reconstructions are available, differing in what detector information is used for the reconstruction.

Combined muons are based on tracks that have been reconstructed independently in the inner

detector and in the muon spectrometer and in a later step combined to a single muon track,

performing a re-fit using hits both in the inner detector and the muon spectrometer. Segment-

tagged muons result from tracks in the inner detector which, if extrapolated to the muon

spectrometer, match a track segment in either monitored drift tubes or cathode strip chambers.

This way, muons can be recovered which did not leave sufficient hits in the muon spectrometer

due to limited acceptance or due to an insufficient transverse momentum. Calorimeter-tagged

muons do not incorporate tracking information from the muon spectrometer; instead, they

correspond to tracks from the inner detector which are matched to energy depositions in the

calorimeter that are consistent with resulting from a minimally-ionizing particle. This definition

allows the recovery of muons in the detector region at |η| ≈ 0, in which the muon spectrometer

has a limited functionality in order to allow for the deployment of services for other detector

components. Extrapolated muons are based solely on track segments from the muon spectrometer

which are consistent with originating in the interaction point. This reconstruction method is

helpful to recover muons in the region 2.5 < |η| < 2.7, where the muon spectrometer has tracking

ability but the inner detector has not.

The sample of muons for physics analyses is based on a combination of the muon candidates

from these four reconstruction methods. For this combination, overlaps between candidates need

to be removed: if two reconstructed muons from two different methods are associated with the

same track in the inner detector, combined muons are prioritized over segment-tagged muons,
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which in turn are prioritized over calorimeter-tagged muons. The overlap of extrapolated muons

with other types is resolved by selecting the track based on the goodness of fit and the number of

hits.

The muon momentum is determined based on the curvature of the reconstructed track and is

corrected for the energy loss in the calorimeter. In order to ensure the robustness of the muon

momentum determination, track quality requirements regarding the number of hits in the inner

detector and muon spectrometer are imposed. Decays of hadrons to a final state containing a

muon are considered background. In such events, there are often missing hits in the innermost

layers in the case of electrically neutral hadrons, or there can be a kink in the reconstructed track

in the case of charged hadrons. In order to reduce the contribution of such events to the muon

collection, the consistency of the individual momentum measurements in the inner detector and

muon spectrometer and the fit quality is used as a discriminant.

3.4. The Trigger

With current technology, it is not possible to write and fully reconstruct all the proton-proton

collision events that occur during LHC operation. However, for the physics goals of the ATLAS

experiment this is also not necessary: most of the occurring collisions only involve QCD

interactions with small momentum transfers, and these are not the focus of the ATLAS physics

program. Instead, rarer processes with larger momentum transfers are of greater value for most

ATLAS physics analyses.

Proton-proton collisions are occurring at the LHC with a frequency of up to 40 MHz. At

the same time, events can be written with a frequency of 1 kHz [158]. This means that only

one in 40.000 events can be written to disk and accordingly be subject to detailed analysis.

The trigger is the system that decides whether a given collision event is worth being written to

disk and fully reconstructed. In order to be able to make quick decisions, the trigger algorithm

is based on less than fully detailed event representations. These include calorimeter regions

with large transverse energy, information about missing transverse energy, hits in the muon

spectrometer, and inner-detector information. The trigger algorithm has two stages. While the

first is a hardware-based trigger (L1), the second is software-based and is called high-level trigger

(HLT). If an event passes the requirements of the L1 trigger, it is forwarded to the HLT, where a
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trigger decision based on more detailed event information is made. Only information from the

calorimeter and the muon spectrometer is considered for the L1 decision. The L1 trigger defines

regions of interest, which are taken into consideration by the HLT. The HLT, which deals with a

significantly reduced frequency of event processing compared to the L1 trigger, has access to

more detailed event information, including calorimeter information with finer granularity and

information from the inner detector. If both trigger stages are passed by the event, the event is

written to disk. Due to the limited readout capacity of the ATLAS detector, the maximum trigger

rate for the L1 system is constrained to a rate of 100 kHz. The output rate of the HLT is about

1 kHz.

3.5. Luminosity Measurement

The measurement of cross sections directly depends on the accurate knowledge of the integrated

luminosity via Eq. (2.19). The luminosity is measured as laid out in Reference [159]. Besides a

dedicated luminometer called LUCID [126] also the inner detector and calorimeter of ATLAS

are used to measure the luminosity. Having multiple detectors and measurement algorithms

to measure the luminosity results in a more robust measurement and assessment of systematic

uncertainties. LUCID is used to determine the central value of the measured integrated luminosity

and correspondingly is of central importance. It is a detector based on Cherenkov-radiation-

sensors and is sensitive to the number of proton-proton interactions per bunch crossing. Its

location is close to the beampipe in a distance of ±17m to the interaction point. Alternative

ways of determining the bunch-by-bunch luminosity include the counting of tracks from charged

particles in the inner detector.

The instantaneous bunch luminosity Lb, which is related to the overall instantaneous luminosity

via L = nbLb, can be expressed as

Lb =
fr ·µ
σinel

, (3.9)

Here, nb denotes the number of proton bunches per beam, fr the rotation frequency of the bunches,

µ the average number of inelastic proton-proton interactions per bunch crossing, and σinel the

cross section for inelastic proton-proton interactions. Considering the limited acceptance of the
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detectors responsible for the bunch-by-bunch luminosity measurement, this translates into

Lb =
fr ·µvis

σvis
, (3.10)

where µvis denotes the observed number of inelastic proton-proton interactions, and σvis denotes

the corresponding cross section. The quantity µvis can be measured for a given bunch crossing

by the counting of primary vertices. Thus, in order to be able to calculate the bunch luminosity

Lb with a given measurement method based on µvis, one needs to determine σvis, which acts

as a calibration constant. The determination of σvis is achieved using a special LHC running

condition, called van-der-Meer scan. In such a scan, the two proton beams are intersected with

different overlap by lateral shifts in x- and y-direction. As a result, one obtains the convolved

beam sizes [160] in horizontal and vertical scan direction, Σx and Σy, respectively, using following

relation:

Σx (y) =
1
√

2

∫
Rx (y)(δ)dδ

Rx (y)(0)
, (3.11)

where R(δ) denotes the measured luminosity in arbitrary units as a function of the beam separation

δ. Then the bunch luminosity in the van-der-Meer scan LvdM
b can be determined as follows:

LvdM
b =

frn1n2

2πΣxΣy
. (3.12)

Applying Eq. (3.10), the calibration constant σvis can be extracted from the van-der-Meer scan

by relating the luminosity from Eq. 3.12 to the simultaneously measured visible interaction rate,

µvis:

σvis = µmax
vis

2πΣxΣy

n1n2
, (3.13)

where µmax
vis is the maximal visible interaction rate in the scan. The measurement of the visible

interaction rate is performed using a variety of different detector systems and with different

algorithms.

Van-der-Meer scans have been performed once per year under beam conditions with low beam

intensities, corresponding to an average number of proton-proton interactions of approximately

0.5. The calibration constant σvis can be used in runs with larger luminosities in combination

with the determination of the corresponding µvis to measure the instantaneous luminosity.
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The LUCID detector suffers to some degree from a non-linear response to µvis. An alternative,

tracking-based method of measuring the luminosity, however, has an approximately linear

response; therefore, it can be used to correct for the non-linearity in the LUCID measurement.

The uncertainty on this correction, assessed by a further method of luminosity measurement that

is based on the tile calorimeter, which has also an approximately linear response, is propagated

to the corrected LUCID measurement. This calibration-transfer uncertainty is the dominant

uncertainty on the measured integrated luminosity in most data-taking periods, ranging from

1.3 % to 1.6 %. The relative uncertainty on the measured integrated luminosity of the 2015 to

2017 dataset is 2.03 %.

Instantaneous luminosities are averaged over time periods called luminosity blocks, which

typically amount to 60 s. For each luminosity block, an entry in a database is created in which

the instantaneous luminosity, its duration and other detector quality information are written. The

integrated luminosity is obtained by adding up the products of the duration of the luminosity

block with the corresponding averaged instantaneous luminosity for all blocks that are used in a

given analysis.

3.6. Summary

The LHC was built and equipped with four major detector experiments at each of the beam

crossing points in order to study fundamental interactions using proton-proton collisions at a

high center-of-mass energy. One of the four detectors is the ATLAS detector. Being a multi-

purpose detector, it can be used to record and analyze proton-proton interaction events with many

different signatures. The ATLAS detector consists of three major subdetectors: the inner detector,

which tracks the trajectories of charged particles; the calorimeter, which enables the accurate

measurement of the energy of both charged and neutral particles; the muon spectrometer, which

is used to detect muons and determine their momenta.

The detector readout results in event representations that consist of information about localized

energy depositions in the various detector components. Based on these energy depositions,

candidates for various particles can be constructed, including photons, electrons, hadronic jets,

and muons. Events can be selected based on the presence and kinematic properties of such

particles. Identification algorithms are used to enhance the purity of the corresponding samples.
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A fast, two-staged trigger system makes an efficient filtering of the large number of occurring

proton-proton collision events feasible, with the aim of selecting only events that are of interest for

ATLAS physics analyses. The measurement of the integrated luminosity is performed by means

of a dedicated luminometer LUCID, which is close to the beamline, and ATLAS components

such as the inner detector and calorimeter, which are sensitive to the visible interaction rate. The

integrated luminosity is known with an accuracy of approximately 2 %.
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4. Measurement of the Photon

Identification Efficiency Using the

Electron-Extrapolation Method

4.1. Introduction

Photons, the quanta of the electromagnetic interaction, can be produced in collisions at the

LHC in various ways. Since quarks are electrically charged, they can couple to photons. As a

consequence, the detection of photons emitted in hard QCD interactions can be used to study the

dynamics of the strong interaction. Photons can also be produced in decays of the Higgs boson

via an intermediate loop of charged, massive particles. Besides SM processes as described above,

photons possibly could be produced in non-SM interactions, in which case photons would be a

window to physics beyond the SM. Typical examples for this would be additional resonances

decaying to a pair of photons or the relaxation of excited quarks, in which the excitation energy

is carried away by a photon. Thus, the photon is an important tool for studying SM processes

and searches for new phenomena.

Given an ATLAS physics analysis in which final-state photons are relevant, events are selected

based on reconstructed and identified photon candidates. The reconstruction of photon candidates

from clusters of energy depositions in the EM calorimeter and from inner-detector information

has been described in Chapter 3. Jets from hadrons are by far the most common particle signatures

in LHC collisions and constitute the majority of photon candidates from photon reconstruction.

Decays of hadrons within a jet often result in photons. However, such jets containing photons

produced in hadron decays are considered to be background as well, since the corresponding
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photons do not contain information about photons that emerged in the proton-proton interaction.

In order to increase the purity in the sample of photon candidates, i.e. to veto QCD jets from

being considered as photons in analyses, selection criteria are imposed on the photon candidates:

criteria regarding the isolation of photon candidates, see Section 3.3.3, and criteria regarding

their shower shape in the calorimeter. The latter selection is called photon identification and has

been briefly introduced in Section 3.3.3.

Many ATLAS analyses require an efficient identification of photons and a good rejection of

jets faking photons, also known as fake photons. One of those analyses is the measurement

of Higgs boson production cross sections in the H→ γγ decay channel, which is presented in

Chapter 5. For that measurement, the efficiency of the photon identification should be high in

order to keep as many diphoton signal events as possible. At the same time, the background

from fake photons to the signal events should be as small as possible in order to maximize the

significance S/
√

B of the measurement, where S and B correspond to the number of signal and

background events. The photon identification efficiency is in this context defined as the fraction

of true, isolated photons that pass the photon identification selection:

εID =
Nγ

passID, isol.

Nγ
isol.

. (4.1)

Here, Nγ
isol. denotes the number of photons that pass the isolation selection, and Nγ

passID, isol.

denotes the number of photons that pass both isolation and identification selections. The isolation

requirement that is imposed for this definition is based on reconstruction-level information. The

combined requirements of isolation and identification lead to a significant reduction of fake

photons in the sample of photon candidates. Photon candidates that are used in the analyses of this

thesis are required to have Eiso
T |∆R<0.2 < 0.065×ET, and piso

T |∆R<0.2 < 0.05×ET, corresponding

to the isolation working point called FixedCutLoose.

Photon identification in ATLAS is performed using the application of simple rectangular selec-

tion criteria, called cuts, on the shower-shape variables of photon candidates, which parametrize

the shape of the showers in the detector. The shower-shape variables that are used to perform the

photon identification are briefly described in Table 4.1.

Candidates which have a large shower width or depth are rejected, as such signatures are

typical of QCD jets. Showers of photons typically are narrow. For electromagnetic showers
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one defines the Molière radius RM = X0/Ec ·21MeV, where Ec is the critical energy, at which

the ionization loss of an electron equals the electron’s energy given in units of MeV [133]. On

average, only 10 % of the energy of an electromagnetic shower is deposited outside the Molière

radius. For lead, which is used in the EM calorimeter as absorber material, the Molière radius

is given by 16 mm [149]. The shower width is quantified with the following variables: Rη, Rφ,

wη2 , ws3, ws tot, and Fside. Because Photons (and electrons) tend to deposit only small fractions

of their energy in the hadronic calorimeter, it is possible to discriminate between photons and

jets using the hadronic leakage, which corresponds to the fraction of shower energy that is

deposited in the hadronic calorimeter. Depending on the considered pseudorapidity region, either

Rhad1 or Rhad is used. In addition to the shower width and depth, the substructure of the energy

depositions in the finely segmented first layer of the EM calorimeter is analyzed. A single photon

is unlikely to produce a substructure in lateral direction consisting of more than one distinct local

maximum. If such a substructure is found, it is likely that it resulted from more than one particle.

In particular, collimated pairs of photons from decays of energetic neutral mesons such as the

π0 meson can cause a lateral substructure. The fine segmentation of the first layer of the EM

calorimeter was designed for the purpose of rejecting such collimated pairs of photons from

meson decays. Both ∆Es and Eratio quantify the presence of additional local maxima in lateral

direction. The ratio of the cluster energy that is deposited in the first calorimeter layer, f1, is

commonly used to ensure that in the course of the shower development a sufficient amount of

energy has been deposited in the first layer, which is required for a reliable computation of the

first-layer variables.

The identification criteria for converted and unconverted photons, see Section 3.3.3, are not

identical. The reason for this is that converted photons tend to have wider showers. One reason

for this is that electrons and positrons from photon conversions tend to radiate when scattering in

the upstream material and correspondingly tend to start showering at lower radii. Moreover, the

magnetic field bends the trajectories of electrons and positrons in opposite azimuthal directions,

which increases the shower width in φ-direction.

The selection criteria are optimized for different regions of photon pT and |η|, as the shower

development in different kinematic regions can differ considerably. The amount of upstream

material in front of the calorimeter depends on the pseudorapidity. More upstream material

leads to an earlier start of the shower development, resulting in more wide-spread showers in the
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Category Description Shower-shape variable

Hadronic leakage Ratio of ET in the first sampling of the hadronic calorimeter to ET
of the EM cluster (used over the ranges |η| < 0.8 and |η| > 1.37)

Rhad1

Ratio of ET in the hadronic calorimeter to ET of the EM cluster
(used over the range 0.8 < |η| < 1.37)

Rhad

EM middle layer Ratio of the energy in 3×7 η×φ cells over the energy in 7×7 cells
centered around the photon cluster position

Rη

Lateral shower width,
√

(
∑

Eiη
2
i )/(

∑
Ei)− ((

∑
Eiηi)/(

∑
Ei))2,

where Ei is the energy and ηi is the pseudorapidity of cell i and
the sum is calculated within a window of 3×5 cells

wη2

Ratio of the energy in 3×3 η×φ cells over the energy in 3×7 cells
centered around the photon cluster position

Rφ

EM Strip layer Lateral shower width, (Ei(i− imax)2)/(
∑

Ei), where i runs over all
strips in a window of 3×2 η×φ strips, and imax is the index of the
highest-energy strip calculated from three strips around the strip
with maximum energy deposit

ws3

Lateral shower width, (Ei(i− imax)2)/(
∑

Ei), where i runs over all
strips in a window of 20×2 η×φ strips, and imax is the index of
the highest-energy strip calculated from three strips around the
strip with maximum energy deposit

ws tot

Energy outside the core of the three central strips but within seven
strips divided by energy within the three central strips

Fside

Difference between the energy associated with the second maxi-
mum in the strip layer and the energy reconstructed in the strip
with the minimum value found between the first and second max-
ima

∆Es

Ratio of the energy difference between the maximum energy de-
posit and the energy deposit in the secondary maximum in the
cluster to the sum of these energies

Eratio

Ratio of the energy in the first layer to the total energy of the EM
cluster

f1

Table 4.1. | Discriminating variables used for the tight photon identification. ES 2 denotes energy deposited
in the second layer of the calorimeter. ET denotes the transverse energy of the photon candidate. In general,
the shower-shape variables can be divided into three categories: the variables Rφ, Rη, wη2 , ws3, ws tot, and
Fside quantify the lateral width of the shower. Rhad1 and Rhad are used to measure the hadronic leakage, i.e.
the longitudinal extent of the shower. The variables Eratio and ∆Es can be used to put constraints on the
substructure of showers. Adapted from Table 1 in Reference [161].
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first calorimeter layers relative to regions in which only a small amount of upstream material

is encountered. The distribution of energy depositions in the calorimeter material also depends

on the energy of the incident particle, which means that the lateral shower widths in different

depths depends to some degree on the energy. In addition, backgrounds from photon-faking

QCD jets are not identical for different photon energies. The values for the selection criteria used

in this study of the photon identification efficiency correspond to what is called the tight photon

identification, which is used by most physics analyses for their photon selection.

The binning, i.e. the set of separately considered kinematic regions for the measurement of the

photon identification measurement, is shown for pT and |η| in Tables 4.2 and 4.3, respectively.

For the method of measuring the photon identification efficiency described in this thesis, the

pT range from 25 GeV to 250 GeV is considered. Pseudorapidities of up to 2.37 are taken into

account, excluding the barrel-to-endcap transition region 1.37 < |η| < 1.52, in which the first EM

calorimeter layer has too coarse a granularity to allow a reliable photon identification and in

which a relatively large amount of upstream material in front of the calorimeter is encountered

by particles.

Bin limits [GeV]: 25 – 30 – 35 – 40 – 45 – 50 – 60 – 80 – 100 – 125 – 150 – 175 – 250

Table 4.2. | The boundaries of the 12 pT bins in which the photon identification efficiency is measured.

|η| bin number 1 2 3 4

Lower boundary 0 0.6 1.52 1.81
Upper boundary 0.6 1.37 1.81 2.37

Table 4.3. | The upper and lower boundaries of the four |η| bins in which the photon identification efficiency
is measured.

The shower development and the resulting signal in the detector generally is not identical in

simulated events and events from data-taking. Mismodeling of the shower, and correspondingly

also the distributions of shower-shape variables, in simulation has several causes. A less than

perfect description of the detector material in simulation and a mismodeling of particle interac-

tions with that material will result in shower differences between data and simulation. Another
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source of data-simulation differences is the modeling of the detector readout in simulation: in

the readout of calorimeter information, capacitive cross-talk effects play a role. In particular, the

finely-segmented first layer of the electromagnetic calorimeter, which the photon identification

relies on heavily for photon identification, is subject to cross-talk effects. The simulation of the

detector readout characteristics is not necessarily identical to those in the actual detector. In order

to mitigate the effects of these types of mismodeling, the shower-shape variables are corrected

using additive corrections on the majority of the distributions listed in Table 4.1, depending

on the pT and |η| of the photon. Similarly, electron shower-shape distributions are corrected in

simulation within the context of the measurement described in this chapter. The corrections

result in a better agreement in the bulk region of the shower-shape variable distributions between

data and simulation; however, residual differences persist due to differences in the shapes of

distributions, particularly in tail regions of the distributions. See Figure 4.1 for an illustration of

the mitigation of disagreement between a shower-shape variable distribution in simulation and

data. So while the disagreement of identification efficiencies in simulation and data is reduced

Figure 4.1. | Illustration of the correction of data-simulation differences in shower-shape variable distri-
butions. A comparison of the distributions in simulation and in data is shown. The original distribution
in simulation (dashed orange line) has a different mean than the distribution in data (blue line). This
disagreement can be alleviated by applying a simple shift to the distribution in simulation, resulting in a
distribution (solid orange line), whose mean now is in good agreement with the distribution in data, but
may still have residual differences due to differing distribution shapes.

by applying corrections on shower-shape variable distributions, a residual difference persists.

This difference in identification efficiency can be captured by a scale factor

cSF =
εdata

ID

εMC
ID

, (4.2)
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which can be applied as additional weight on simulated photons, leading to an improved agree-

ment between simulated events and events in data in terms of identification efficiency. The

measurement of the photon identification efficiency in data events is thus important in order to

render simulated event samples comparable with data event samples by means of scale factors.

There are currently three methods in use for the measurement of this efficiency and corresponding

scale factors, which are combined before being used in physics analyses.

4.2. The Electron-Extrapolation Method

In this work, photon identification efficiencies have been measured using the electron-extrapolation

method. It makes use of the similarity of shower shapes of electrons and photons. One can

derive transformations that transform the shower shape of electrons such that the resulting

objects have distributions of shower-shape variables that resemble closely those of photons.

These shower-shape transformations are based on Smirnov transformations [162]. By applying

the shower-shape transformations to electrons in data, which can be selected from Z → e+e−

events using a tag-and-probe method as described in Section 4.5.2, one obtains a sample of

pseudo-photons, which can be used to determine the photon identification efficiency in data.

It is possible to collect a pure and unbiased sample of photons from Z→ `+`−γ events, using

a method that is briefly described in Section 4.3. Therefore, it is warranted to ask why such a

detour over electrons and shower-shape transformations should be made. The answer is that

the method of collecting photons from Z→ `+`−γ events results in a sample of photons with

relatively low pT, as these photons correspond to emissions from one of the leptons from the

Z-boson decay. Electrons in Z→ e+e− events, on the other hand, tend to have comparatively

large pT. Therefore, by transforming these electrons to pseudo-photons, one obtains a collection

of photon-like objects with higher pT than is the case in the method based on Z→ `+`−γ events.

The statistical uncertainty of the measured photon identification efficiency is therefore lower

at intermediate to high pT in the electron-extrapolation method than in the method based on

Z→ `+`−γ events.

The transformations used to transform electrons to photon-like objects are based on samples of

simulated Z→ e+e− events electrons and on samples of inclusive-photon events, see Section 4.4.2.

For each of the considered shower-shape variables and for converted and unconverted photons
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separately, the transformations are derived in 7 |η| bins × 12 pT bins, see Tables 4.4 and 4.2,

respectively. The relatively fine binning in |η| is used because shower-shape variable distributions

can vary significantly in different regions of |η|. The principle of the shower-shape transformations

|η| bin number 1 2 3 4 5 6 7

lower boundary 0 0.6 0.80 1.15 1.52 1.81 2.01
upper boundary 0.6 0.8 1.15 1.37 1.81 2.01 2.37

Table 4.4. | The upper and lower boundaries of the seven |η| bins for which the electron transformations
are derived.

is illustrated in Figure 4.2. An example based on simulation is shown in Figure 4.3. A description
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Figure 4.2. | Illustration of the electron-extrapolation method. In (a), the distribution of a shower-shape
variable is shown for both photons and electrons. In (b), the corresponding c.d.f.s are shown. The orange
arrow illustrates the transformation procedure based on the c.d.f.s. The corresponding mapping from
electron values for the shower-shape variable to the corresponding values for photons, (Fγ)−1(Fe(xe)), is
shown in (c).

of the principle is given below for a shower-shape variable denoted by x and for a pT bin i and a

|η| bin j:

1. Based on simulated samples of electrons and photons, normalized shower-shape variable

distributions, i.e. probability density functions (p.d.f.s),

• fe ( x | pT bin i; |η| bin j )

• f(un)conv
γ ( x | pT bin i; |η| bin j )

are determined for electrons and converted (unconverted) photons. See Figure 4.2 (a).
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Figure 4.3. | Example of the derivation and application of a shower-shape transformation. The shower-
shape variable in this example is chosen to be Fside. The red and black markers correspond to distributions
of photons and electrons in simulation, respectively. In the top-left plot, the p.d.f.s, and in the top-right
plot, the corresponding c.d.f.s are shown. The mapping from electron values for the Fside variable to
corresponding pseudo-photon values is shown in the bottom-left plot. The result of the application of this
transformation on a sample of electrons and a comparison with the original photon p.d.f. is shown in the
bottom-right plot.
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2. These distributions are the basis for the computation of cumulative distribution functions

(c.d.f.s) of the shower-shape variable distributions [163], see Figure 4.2 (b). A c.d.f. is

defined as

Fe ( x | pT bin i; |η| bin j ) =

∫ x

−∞

fe ( x′ | pT bin i; |η| bin j )dx′ (4.3)

for electrons and similarly for converted (unconverted) photons:

F(un)conv
γ ( x | pT bin i; |η| bin j ) =

∫ x

−∞

f(un)conv
γ ( x′ | pT bin i; |η| bin j )dx′ . (4.4)

Given the electron and photon c.d.f.s for the shower-shape variable, a given electron can now

be transformed to a pseudo-photon by applying the following operations, summarized also in

Figure 4.2 (b) and (c) in form of an arrow:

1. For a given electron, the value xmeas of the shower-shape variable x is determined.

2. In order to obtain the shower-shape variable value of the to-be-created pseudo-photon,

the inverted photon c.d.f. is evaluated at the value of the electron c.d.f. at the measured

shower-shape variable value xmeas:

x(un)conv
γ = (F(un)conv

γ )−1 (Fe(xmeas) ) , (4.5)

where the dependence of the c.d.f.s on the pT and |η| of the electron is implicit.

While the transformations reproduce the one-dimensional photon shower-shape distributions,

the transformations preserve the electron-like correlations between shower-shape variables. A

correction for this bias is applied to the measured efficiency.

The transformation procedure is applied to electrons from Z → e+e− events collected with

a tag-and-probe method in data, see Section 4.5.2. Given an electron to be transformed, the

transformations for the various shower-shape variables are selected based on the pT and |η| of

that electrons. The photon identification efficiency measurement is based on the invariant-mass

spectrum of the tagged electron and transformed electron-candidate probe. Based on this mass

spectrum, a signal-plus-background fit is performed in order to extract signal yields for both

probe selections relevant for the efficiency determination, following Eq. (4.1). The efficiency
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then is given by the ratio of the signal yield when applying the photon identification selection

to the probe pseudo-photons and the signal yield when no identification selection is applied.

Since the efficiency measurement is performed for isolated photons, the isolation criteria are part

of both numerator and denominator selections applied to the probe pseudo-photon. Separate

invariant-mass distributions are defined for N pT
bins×N |η|bins = 12×4 kinematic regions of the probe.

The electron-extrapolation method relies on electrons from Z decays in sufficient numbers;

therefore, it is currently constrained to values of transverse momentum below about 250 GeV.

There is, however, no fundamental reason against expanding this upper limit once more data is

taken. A lower pT boundary of 25 GeV is used since the level of background events increases

towards low pT.

In Appendix C, the distributions of the various shower-shape variables for photons and

electrons are shown for a representative selection of kinematic regions. Additionally, the effect

of the shower-shape transformation is shown in terms of the difference between the variable

value after and before the transformation was applied.

4.3. Complementary Methods of Efficiency Measurement

Besides the electron-extrapolation method, there are presently two additional and complementary

methods used to measure the photon identification efficiency:

• Radiative Z Decays, in the pT range of 10 GeV to 100 GeV

• Matrix method, in the pT range of 25 GeV to 1500 GeV

While the measurement described in this work is performed using the electron-extrapolation

method, the two other methods will be briefly explained as well in order to give a more complete

picture of the determination of photon identification efficiencies. The final efficiency scale factors

that are used in photon-based physics analyses are determined using a combined fit of all three

methods, the result of which is shown in Section 4.8.

4.3.1. Radiative Z-Boson Decays

As mentioned in Section 4.2, it is possible to collect a photon sample from Z→ `+`−γ events

with lepton-antilepton pairs from a Z-boson decay in association with a photon [161], where the
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lepton flavor can be either electron or muon. This selection method is similar to the tag-and-probe

method for the selection of electron-positron pairs from Z→ e+e− events which is described in

Section 4.5.2. Since electrons and muons are electrically charged, they have the chance to emit

photons. The event selection for this method consists in requiring an e+e− or µ+µ− candidate

pair in combination with a photon candidate. If the photon candidate in consideration indeed

corresponds to final-state radiation from one of the two leptons from a Z-boson decay, the

invariant mass of the three-body system `+`−γ is close to the Z-boson mass. If, however, the

photon candidate corresponds to initial-state radiation or to a QCD jet, the invariant mass of the

two leptons will be closer to the Z-boson mass than the three-body `+`−γ mass. By constraining

the event selection such that predominantly events with final-state radiation are selected, i.e.

events with photons emitted from one of the two leptons from a Z-boson decay, the purity of the

photon sample can be greatly increased. This is achieved by a kinematic selection based on the

invariant mass of the `+`−γ and of the `+`− system. While lepton identification cuts are applied

to the two leptons in the process of event selection, the photon candidate is not subject to any

identification cuts within the context of event selection, leading to an unbiased sample of photons.

After performing a background subtraction that reduces the influence of event signatures such

as Z + jets, which can have a very similar detector signature as Z→ `+`−γ events, the photon

identification efficiency can be determined based on the photon candidate sample.

Due to the low probability of final-state radiation with large transverse momentum, this method

is at the time of this measurement used in the region of pT < 100GeV. This method is one of

the cleanest ways of measuring the photon identification efficiency, as it involves only small

backgrounds and relies on only few basic assumptions.

4.3.2. Matrix Method

The matrix method is based on the analysis of an inclusive-photon sample collected with single-

photon triggers, and relies on a track isolation variable (see Section 3.3.3) as an auxiliary

discriminating variable. Because even at large pT many photon candidates can be collected

using single-photon triggers, this method provides a measurement of the photon identification

efficiency up to transverse momenta of the order TeV.

Based on the track isolation efficiencies for real photons and for photon-faking jets, the purity
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of real photons in a sample of photon candidates that pass the identification, PpassID, can be

determined, as well as the purity of real photons in an inclusive sample of photon candidates,

Pincl [161]. In combination with the number of photon candidates that pass identification, NpassID,

and the number of photon candidates in the inclusive sample, Nincl, the identification efficiency

can be computed:

εID =
PpassID ·NpassID

Pincl ·Nincl (4.6)

The required purities can be determined based on efficiencies of a track-based isolation selection.

This efficiency must be known for photon-faking jets, for true photons, as well as for the

inclusive sample containing both fake photons and true photons. The efficiency for true photons

is estimated based on a simulated photon sample. For photon-faking jets, efficiencies are

determined based on data: by inverting selection cuts on all or some of the shower-shape

variables, exploiting the fact that some shower-shape variables are approximately uncorrelated to

the track isolation, track isolation efficiencies are estimated.

4.4. Data Samples and Simulation

4.4.1. Dataset and Single-Electron Trigger

The dataset used in the electron-extrapolation method consists of data collected in the years 2015

to 2017, corresponding to an integrated luminosity of 79.8/fb. In order to obtain an unbiased

sample of electrons to which shower-shape transformations can be applied, a single-electron

trigger is used. For this tag-and-probe method, it is important to not use di-electron triggers,

since the requirement that two electrons pass the trigger selection would prevent the selection of

an unbiased sample of electrons. Table 4.5 gives an overview over the single-electron triggers

that were used in the various data-taking periods.

The triggers given in Table 4.5 fire if an electron candidate satisfies certain requirements,

which will be detailed below. Generally, a single-electron trigger requires the transverse energy of

a candidate to surpass a given threshold in the context of the high-level trigger (“HLT”). In some

cases, high-level triggers need to be seeded by a sufficiently large transverse energy at level-1

(“L1”). If “V” is part of the L1 trigger name, the threshold changes with pseudorapidity in order

to account for varying energy losses in the upstream material. If a “H” is added, an additional

95



2015 2016 2017

HLT_e24_lhmedium_L1EM18VH X

HLT_e24_lhmedium_L1EM20VH X

HLT_e26_lhtight_nod0_ivarloose X X

HLT_e60_lhmedium X

HLT_e60_medium X X

HLT_e120_lhloose X

HLT_e140_lhloose_nod0 X X

HLT_e300_etcut X X

Table 4.5. | A summary of the single-electron triggers used in the electron-extrapolation measurement for
different data-taking periods.

isolation requirement is used that is based on information from the hadronic calorimeter. In order

to reduce the trigger rate and background contamination, an electron identification selection can

be applied to the candidate. The identification selection can be adjusted in its restrictivity. The

strictness of the electron identification is indicated by the “lhloose”, “medium”, “lhmedium”,

and “lhtight” keywords. Triggers that have the keyword “etcut” in their name do not apply any

identification selection. By applying an isolation selection, the trigger rate can be further reduced.

The keyword “ivarloose” indicates the use of an isolation selection based on a variable-sized

cone around the candidate. Some trigger names contain the keyword “nod0”, which means that

in these trigger selections no restrictions on the transverse impact parameter of the candidate are

imposed.

4.4.2. Simulation

Simulated samples of single-photon and Z→ e+e− events are used to extract the shower-shape

transformations that are applied to electrons collected in data events. The simulated photon

samples contain two types of 2→ 2 scattering processes.

• Events, in which the photon production is described by the hard-scattering matrix element,

corresponding to the processes qg→ qγ and qq̄→ gγ.

• Events, in which photons are generated in the fragmentation process of the final state

partons. Such photons are called fragmentation photons; the relevant scattering processes
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at matrix-element level are gg→ qq̄, qg→ qg, qq→ qq, and qq̄→ qq̄.

The MC simulations that have been used are listed in Table 4.6. Both events with fragmentation

MCID Process σ pT Filter Events Generator
slice efficiency in sample

[fb] [GeV]

423100 Incl. γ 1.67e+13 17 to 35 2.9e−05 2.23e+06 Pythia8
423101 Incl. γ 1.40e+12 35 to 50 2.5e−05 2.25e+06 Pythia8
423102 Incl. γ 3.80e+11 50 to 70 2.3e−05 3.00e+06 Pythia8
423103 Incl. γ 1.06e+11 70 to 140 3.9e−05 2.89e+06 Pythia8
423104 Incl. γ 6.70e+9 140 to 280 5.0e−05 0.34e+06 Pythia8
361106 Z→ e+e− 1.90e+6 n.a. 1.0 79.94e+06 Powheg-Box+Pythia8

Table 4.6. | A summary of the MC samples used in the electron-extrapolation measurement.

photons and events with photons from the hard interaction are generated using Pythia8 [77].

The matrix element is computed at leading order in perturbation series, and the Pythia8-internal

showering is used to describe the QCD emissions beyond the considered order in the matrix

element as well as to describe non-perturbative effects. Simulated Z→ e+e− events are generated

at NLO with Powheg-Box [164] interfaced to Pythia8.

The weight for a given simulated event is a product of several factors, namely the initial event

weight from the generator wevt, a pileup weight wpileup, a cross section σ, a filter efficiency εfilter,

and a vertex weight wvtx:

w = wevt ·wpileup ·wvtx ·εfilter ·σ ·
1∑
i wi

. (4.7)

The pileup weight is chosen such that the simulated sample has a distribution of the number

of pileup interaction closely resembling that in data. A vertex-position-based reweighting is

performed in order to match the distribution of vertex z-coordinates as observed in data. The

inclusive cross section σ of the process, i.e. inclusive photon production in a given range in

photon pT or pp→ Z→ e+e−, is relevant when events from different samples are combined as

in the case of photon events. In order to account for the application of a generator-level filter that

is used obtain a sample of events containing events with at least one photon with |η| < 2.5 and a

transverse momentum within a specified range, the corresponding efficiency εfilter needs to be

included. The inverse of the sum of weights of all simulated events, running over all events of
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the event sample of which the event in question is part of, serves as normalization.

4.5. Event Selection

4.5.1. Photon Selection

The selection criteria for simulated photons that are used for the derivation of the shower-shape

transformations and for the determination of photon identification efficiencies in simulation

include cuts on the photon kinematics as well as an isolation-based selection. If more than one

photon in an event passes the following requirements, the photon with the highest pT is selected.

• The photon candidate must have a pT > 25GeV and fall within the pseudorapidity range

0 < |η| < 2.37, excluding the region 1.37 < |η| < 1.52.

• The photon must pass loose selections on the calorimeter- and track-based isolation

variables, corresponding to Eiso
T |∆R<0.2 < 0.065 · ET and piso

T |∆R<0.2 < 0.05 · ET. See Sec-

tion 3.3.3 for details on the isolation variables.

• The reconstructed photon must be matched to a truth-level photon, accessing truth-level

simulation information in simulation. This prevents non-photon signatures such as particles

from hadron decays to be taken into account in the creation of transformations and in the

determination of identification efficiencies.

These selection criteria are applied before the identification efficiency is determined. An ad-

ditional requirement is imposed for photons that are used in the context of the derivation of

shower-shape transformations: a minimal fraction of the photon cluster energy must be deposited

in the first layer of the EM calorimeter, f1 > 0.005. This pre-selection on the basis of f1 is

applied in order to ensure a robust determination of the shower-shape variables in the first EM

calorimeter layer. By imposing this pre-selection, the other shower-shape variable distributions

are slightly biased, which is also reflected in the resulting transformations and consequently

in the measured efficiencies from data. By multiplying the measured efficiency with the ratio

εID,MC/ε
f1−pre−sel.applied
ID,MC as obtained in simulation and corresponding to the efficiency of the f1

selection, the bias is corrected; εID,MC denotes the nominal photon identification efficiency in

simulation, and εf1−pre−sel.applied
ID,MC corresponds to the photon identification efficiency of a sample
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of photons that pass the pre-selection for f1. The corrected efficiency is then given by:

εID,data = εuncorr.
ID,data ·

εID,MC

ε
f1−pre−sel.applied
ID,MC

, (4.8)

where εID,data (εuncorr.
ID,data) corresponds to the corrected (uncorrected) measured efficiency. In

Figure 4.4 the correction is shown for converted and unconverted photons as a function of pT

and in four different |η| regions. In the case of converted photons, the f1 selection efficiency is

very close to 100 %, while for unconverted photons it can be as low as 98 % at large values of |η|.

This difference is due to the fact that unconverted photons tend to initiate shower development at

larger radii, which leads to a slight reduction of the average of the energy deposited in the first

calorimeter layer.

4.5.2. Electron Selection with a Tag-and-Probe Method

In order to obtain a sample of pseudo-photons, i.e. of transformed electrons, that can be used

to measure the photon identification efficiency, it is necessary to have a pure and unbiased

electron sample to which the shower-shape transformations can be applied. Such a sample can

be obtained by selecting electrons from Z-boson decays using a tag-and-probe method. In this

method, events are selected which fire at least one of the single-electron triggers mentioned in

Section 4.4 and which contain at least one electron and one positron candidate. For the sake of

simplicity, both electrons and positrons will be called electrons henceforth.

For all possible combinations of two electron candidates with opposite charge in a given event,

it is checked whether one of them satisfies the following requirements:

• The electron candidate has a pT larger than 25 GeV and lies in a detector region allowing

a reliable electron identification, that is, |η| < 2.47 and excluding 1.37 < |η| < 1.52.

• The electron candidate matches to the object that fired the trigger, i.e. its angular distance

∆R to the fired trigger is sufficiently small. In this analysis, the threshold is chosen to be

∆R < 0.1.

• The electron candidate passes tight electron identification criteria, see Section 3.3.3.

If the considered electron candidate fulfills these requirements, and the invariant mass of the

system of the two electron candidates is close to the Z-boson mass of 91.2 GeV [6], it is likely
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Figure 4.4. | Efficiency corrections for a bias due to a pre-selection based on f1. The correction is shown
for converted and unconverted photons as a function of pT and in four different |η| regions.
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that the electron candidate is indeed one of the two electrons from a Z → e+e− decay. As a

consequence, this electron can be used as a tag for the other electron candidate, which is called

the probe. Since all selection criteria so far have been applied to the tag electron candidate, the

corresponding selection of probe electron candidates remains unbiased. Therefore, the probes

can be used to determine identification efficiencies. An electron candidate that is used as a probe

in a given pairing of electron candidates can also be used as a tag itself in the same pairing if it

passes the corresponding tag selection criteria. Generally, all possible combinations of electron

candidates are considered.

To a large degree, the electron-extrapolation method of measuring photon identification

efficiencies follows that of the electron identification efficiency measurement [150], which is

outlined below. The major difference is that the selected probe electrons are transformed to

pseudo-photons, which allows measuring the efficiency of the photon identification algorithm.

The measurement of the electron identification efficiency is based on invariant-mass distribu-

tions for two different probe selections, corresponding to the numerator (identification selection

applied) and denominator (no identification selection applied) of the efficiency. After subtracting

the background in the invariant-mass spectrum, stemming predominantly from W± + jets events

with a leptonically decaying W± boson and from multi-jet events, the ratio of the integrals of the

numerator and the denominator distributions around the Z-boson mass peak corresponds to the

electron identification efficiency, as illustrated in Figure 4.5.

The background subtraction is performed in a simple signal-plus-background fit, considering

electron-candidate pairs with an invariant mass mee within 65GeV ≤ mee ≤ 250GeV. The shape

of the Z→ e+e− signal mass distribution is based on simulation. A template for the background

shape is taken from data, using inverted isolation and identification criteria in order to obtain

a sample enriched in background events. Basic track quality selection criteria are applied to

all candidates. In order to contribute to the background sample, a candidate must fail at least

two rectangular selection requirements on shower and track properties. Additionally, if the

candidate’s transverse energy is below 30 GeV, the calorimeter-based isolation variable defined

in a cone of radius 0.3, topo-Econe30
T , must exceed 2 % of the candidate’s transverse momentum.

The background template is sketched in Figure 4.5 as gray area. The numerator and denominator

in the efficiency measurement are computed in a mass region close to the Z-boson mass in order

to be less sensitive to mismodeling of the background template and because only a small fraction
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(a) (b)

Figure 4.5. | Sketch of the determination of the identification efficiency with a tag-and-probe method.
Shown are two invariant-mass distributions of di-electron candidates. In each of these, the Z→ e+e− signal,
colored blue (dark and light), is stacked on the background, colored gray. The black line corresponds to
the sum of both distributions. No identification selection is applied in the right distribution (b), while in
the invariant-mass distribution in (a), the probe must pass the identification selection. In order to be less
sensitive to background effects, the efficiency is determined in a small mass range around the Z-boson
mass peak. The signal that is used for the numerator and denominator computation (Nnum, Nden) is colored
dark-blue, while the signal that is disregarded for the efficiency determination is colored light-blue. The
ratio of the dark-blue areas of the right and left plot correspondingly corresponds to the efficiency.

of electron-positron pairs from Z→ e+e− events have a mass that differs considerably from mZ .

Nominally, the mass range for the computation of the numerator and denominator signal yield is

70GeV ≤ mee ≤ 110GeV.

This description of the determination of electron identification efficiencies translates easily

to the determination of photon identification efficiencies, with the difference that the photon

identification selection is applied to pseudo-photons which correspond to transformed probe

electrons. Transformations have been derived for several kinematic regions of the probe electron.

Another modification with respect to the measurement of electron identification efficiencies as

described above is that an isolation requirement is imposed on both the denominator and the

numerator level in the case of the determination of photon identification efficiencies, i.e. the

probe pseudo-photons must be isolated.

In Figures 4.6 and 4.7, examples of measured invariant-mass distributions for the numerator

and denominator probe selection are shown. As explained in Section 4.2, sets of electron shower-

shape transformations are derived to map electron shower shapes to those of converted and

unconverted photons individually. For Figures 4.6 and 4.7, the mappings to shower shapes of un-
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converted photons are applied to probe electrons, allowing the measurement of the identification

efficiency for unconverted photons.
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Figure 4.6. | Examples of mee distributions for unconverted pseudo-photon probes with 35GeV < pT <

40GeV and |η| < 0.6. In (a) the denominator selection consisting of an isolation requirement is applied,
while in the numerator selection in (b) also the photon identification requirement is applied. The ratio in
the lower panel shows the agreement between the distribution observed in data with the fitted signal-plus-
background distribution.

In the low-pT region, e.g. 25GeV < pprobe
T < 30GeV (see Figure 4.6) the only distinct

accumulation of events is the peak at mZ . An additional feature of the distribution occurs at

larger pT, e.g. 100GeV < pprobe
T < 125GeV (see Figure 4.7): At a mass of roughly mee = 2pprobe

T

a second, smaller and broader maximum is visible, resulting from non-resonant Drell-Yan events,

i.e. qq̄→ γ∗/Z∗→ e+e−. While in the case of resonant production with mee ≈ mZ , the invariant

mass of the final-state electrons for generic Drell-Yan di-electron production is given by

m2
ee = 2 ptag

T pprobe
T

[
cosh(ηtag−ηprobe)− cos(φtag−φprobe)

]
, (4.9)

where pi
T, ηi, and φi correspond to the transverse momentum, the pseudorapidity and the

azimuthal angle of the tag and the probe electrons. The mean value of the difference (ηtag−ηprobe)

is zero, while for (φtag − φprobe) it is 180o. Hence, the mean value for the invariant mass of

electron-positron pairs from non-resonant Drell-Yan production amounts to about mee ≈ 2 pprobe
T

in the case of unboosted di-electron systems, i.e. pT(e+e−) ≈ 0. As can be seen in Figure 4.7,
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Figure 4.7. | Examples of mee distributions for unconverted pseudo-photon probes with 80GeV < pT <

100GeV and 1.81 < |η| < 2.37. In (a)the denominator selection consisting of an isolation requirement is
applied, while in the numerator selection in (b) also the photon identification requirement is applied. The
ratio in the lower panel shows the agreement between the distribution observed in data with the fitted
signal-plus-background distribution.

this corresponds to the mass value at which the second peak is centered.
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4.6. Uncertainties

The uncertainty of the photon identification efficiency as measured with the electron-extrapolation

method has both a systematic and statistical component. Thanks to the large number of

pp → Z → e+e− events in LHC collisions, the statistical uncertainty is small. The clearly

dominant systematic component of the uncertainty is consists of a number of different uncer-

tainty contributions which are added in quadrature. Broadly speaking, the systematic uncertainty

contributions can be divided into the following types, which will be described in more detail in

the following sections:

• Intrinsic bias of the method due to the procedure of transforming shower-shape variables,

corresponding to a non-closure of the method.

• Background subtraction uncertainty.

• Uncertainty due to mismodeling in MC simulations.

• Uncertainty due to a limited number of simulated events.

4.6.1. Non-Closure of the Electron-Extrapolation Method

The electron-extrapolation method does not account for differences in shower-shape variable

correlations between electrons and photons. The individual application of one-dimensional

transformations for each shower-shape variable does not change the correlations between the

various shower-shape variables. This leads to objects whose shower-shape variable distributions

individually are very similar to those of photons, but whose inter-variable correlations are those

of the original electrons. Because the photon identification is to some extent sensitive to these

correlations, deviating correlations have an influence on the identification efficiency.

The resulting bias can be estimated using the simulated photon and electron samples. The

transformations are applied to the electrons of the simulated Z→ e+e− sample from which these

transformations were derived in the first place. If the correlations between the shower-shape

variables of photons and electrons would be identical, the photon identification efficiencies of

those pseudo-photons from simulation would be the same as the efficiencies of the simulated

photons. Generally, however, that difference in efficiency is non-zero, as can be seen in Figure 4.8,

where the relative difference in efficiency is given in bins of pT and in four separate |η| regions.

The non-closure is largest for unconverted photons, for which the relative difference ranges from
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−1 % to almost 4 %. In the case of converted photons, the relative difference is typically in the

range from −1 % to 1 %. Such smaller differences can be expected, since the shower development

of converted photons is more similar to that of electrons than the shower development of

unconverted photons is.

The values ∆ε/ε for the intrinsic non-closure of the method as shown in Figure 4.8 are used to

correct the central value of the measured photon identification efficiency εdata,

εcorr.
data = εdata ·

(
1 +

∆ε

ε

)
. (4.10)

While the transformations are derived and applied in 7 bins of |η|, the identification efficiency

is measured in 4 |η| bins. Correspondingly, non-closure corrections to the efficiency must

be provided in 4 bins of |η|. In addition to the correction of measured efficiencies, 100 % of

the absolute value of the estimated non-closure is added as an uncertainty in order to have a

conservative estimate of the identification efficiency uncertainty.

4.6.2. Background Contamination

A part of the selected electron candidate sample originates in background events rather than in

Z→ e+e− decays, as described in Section 4.5.2. In order to compute identification efficiencies,

these events need to be subtracted from the invariant-mass distributions before the denominator

and numerator of the efficiency calculation are determined. After that subtraction, a mass region

around the Z-boson mass of 70 GeV to 110 GeV is used to compute signal yields of pseudo-

photons passing the denominator and numerator selection. The accuracy of the background

subtraction is not perfect; in order to assess the uncertainty due to imperfections in the background

subtraction, the mass range from which the numerator and denominator are computed is varied

to 80 GeV to 100 GeV. The difference between the nominal identification efficiency and the

efficiency determined using the smaller mass range serves as an estimate of the background

subtraction uncertainty; see Figure 4.9 for the result. At low pT, the uncertainty is highest, with

up to about 1 %. In most other kinematic regions, however, the uncertainty is well below this.

106



50 100 150 200 250
 [GeV]

T
p

2−

1−

0

1

2

3

4

 [%
] 

γ
ps

eu
do

-
ε

) 
/ 

γ
ps

eu
do

-
ε

 -
 

γε( Converted

Unconverted

 = 13 TeVs
-1 = 80 fbintL

Simulation
|<0.60η0.00<|

50 100 150 200 250
 [GeV]

T
p

2−

1−

0

1

2

3

4

 [%
] 

γ
ps

eu
do

-
ε

) 
/ 

γ
ps

eu
do

-
ε

 -
 

γε( Converted

Unconverted

 = 13 TeVs
-1 = 80 fbintL

Simulation
|<1.37η0.60<|

50 100 150 200 250
 [GeV]

T
p

2−

1−

0

1

2

3

4

 [%
] 

γ
ps

eu
do

-
ε

) 
/ 

γ
ps

eu
do

-
ε

 -
 

γε( Converted

Unconverted

 = 13 TeVs
-1 = 80 fbintL

Simulation
|<1.81η1.52<|

50 100 150 200 250
 [GeV]

T
p

2−

1−

0

1

2

3

4

 [%
] 

γ
ps

eu
do

-
ε

) 
/ 

γ
ps

eu
do

-
ε

 -
 

γε( Converted

Unconverted

 = 13 TeVs
-1 = 80 fbintL

Simulation
|<2.37η1.81<|

Figure 4.8. | Non-closure corrections as applied to measured photon identification efficiencies, with
εcorr.

data = εdata ·
(
1 + ∆ε

ε

)
. Values are given as a function of pT and in four separate regions of absolute

pseudorapidity |η|.
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Figure 4.9. | Uncertainty contribution from the background subtraction procedure as a function of pT for
converted and unconverted photons, relative to the measured efficiencies. Each plot represents a different
|η| region.
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4.6.3. Photon Conversion Misreconstruction

As described in Section 4.2, shower-shape transformations are derived separately for converted

and unconverted photons, where the distinction between converted and unconverted photons is

made at reconstruction level. The classification of photons into the converted and unconverted

categories is not perfect, resulting in a certain fraction of actually converted photons that are

reconstructed as unconverted photons and vice versa1. The figure of merit is the purity of photons

within a given conversion category, e.g. in the sample of converted photons it is the fraction of

photons that are indeed converted at truth level. Based on the nomenclature as given in Table 4.7,

the purities for converted and unconverted photons are defined as follows:

f truthconv
recoconv =

Ntruthconv
recoconv

Ntruthconv
recoconv + Ntruthunconv

recoconv

f truthunconv
recounconv =

Ntruthunconv
recounconv

Ntruthunconv
recounconv + Ntruthconv

recounconv
, (4.11)

Given a photon that is reconstructed to be converted or unconverted, the identification efficiency

Reconstructed: converted Reconstructed: unconverted

Truth: converted Ntruth−conv
reco−conv Ntruth−conv

reco−unconv

Truth: unconverted Ntruth−unconv
reco−conv Ntruth−unconv

reco−unconv

Table 4.7. | Possible cases of conversion reconstruction of photons that are either converted or unconverted
at truth level.

of it depends on whether it is converted or unconverted at truth level. The identification efficien-

cies for photons that are reconstructed as converted and unconverted, respectively, are given by

the following equations:

εID, recoconv = f truthconv
recoconv ε

truthconv
recoconv + (1− f truthconv

recoconv )εtruthunconv
recoconv

= εtruthconv
recoconv −∆εrecoconv

ID · (1− f truthconv
recoconv )

εID, recounconv = f truthunconv
recounconv ε

truthunconv
recounconv + (1− f truthunconv

recounconv )εtruthconv
recounconv

= εtruthunconv
recounconv −∆εrecounconv

ID · (1− f truthunconv
recounconv ) , (4.12)

1If not otherwise specified, the phrases converted photons and unconverted photons refer to photons that are
reconstructed as converted and unconverted, respectively.
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where with ∆εrecoconv
ID = εtruthconv

recoconv − ε
truthunconv
recoconv and ∆εrecounconv

ID = εtruthunconv
recounconv − ε

truthconv
recounconv. As

one can see, the identification efficiencies for photons that are reconstructed as converted

(unconverted) depend on the purities f truthconv
recoconv ( f truthunconv

recounconv ). These purities are modeled in MC

simulation with limited accuracy. In order to assess the systematic uncertainty that results

from the mismodeling of the conversion reconstruction, the purities are varied and the resulting

shower-shape transformations are used to compute alternative photon identification efficiencies.

The purities are varied by increasing and decreasing the fraction of truly converted photons

among the photon sample. This is done by weighting events in which the considered photon

is truly converted up and down by a factor 1.1 and 0.9, respectively. The relative difference

between the efficiencies from the up- and down-variations of the conversion fractions at truth

level, divided by 2, is shown in Figures 4.10. This systematic uncertainty is relatively small,

being less than 0.3 % in all kinematic regions.

For unconverted photons, the uncertainty tends to be largest at low pT, except in the pseudo-

rapidity region of 1.81 < |η| < 2.37. In order to understand this, it is helpful to consider again

Eq. (4.12). The identification efficiency of photons that are reconstructed as unconverted depends

on the purity f truthunconv
recounconv as well as on the difference in efficiency ∆εrecounconv

ID = εtruthunconv
recounconv −

εtruthconv
recounconv of the identification selection for unconverted photons between photons that are

unconverted at truth level and photons that are converted at truth level. These efficiencies as well

as the purity are shown in Figure 4.11. The purity is approximately constant over the considered

pT range. Except for the |η| region above 1.81, where the purity is about 70 %, the purity is of

the order 90 %. The difference in efficiency, which determines how large the effect of purity

variations is, is largest for low pT and considerable for high pT. At intermediate pT values,

the two efficiency curves intersect; differences between the two efficiencies are small. As a

consequence, purity variations for unconverted photons tend to have the largest effects at low pT,

small effects at intermediate pT, and sizable effects at high pT.

In most kinematic regions, the uncertainty is smaller for converted photons than for uncon-

verted photons. In Figure 4.12, the relevant efficiencies and purities are shown. The difference in

efficiency between truth-converted and truth-unconverted photons that have been reconstructed as

converted is relatively small, except in the |η| region above 1.81, where the efficiency difference

is large in most pT bins. However, the purity tends to be close to 100 %, with a minimum value

of about 80 % at low |η| and low pT. Therefore, changes in weights depending on the truth-
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Figure 4.10. | Uncertainty contribution from the modeling of conversion reconstruction as a function of
pT for converted and unconverted photons, relative to the measured efficiencies. Each plot represents a
different |η| region.
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Figure 4.11. | Identification efficiencies for photons that are reconstructed as unconverted, based on
MC simulation. Efficiencies are computed for photons that are unconverted at truth level as well as for
photons that are converted at truth level. Moreover, the nominal efficiency is shown, based on the nominal
sample of photons that are reconstructed as unconverted, consisting predominantly of photons that are
unconverted at truth level. The fraction of truly unconverted photons that are reconstructed as unconverted
corresponds to the purity, f truthunconv

recounconv , and is shown in the lower panels.
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Figure 4.12. | Identification efficiencies for photons that are reconstructed as converted, based on MC
simulation. Efficiencies are computed for photons that are converted at truth level as well as for photons
that are converted at truth level. Moreover, the nominal efficiency is shown, based on the nominal sample
of photons that are reconstructed as converted, consisting predominantly of photons that are converted at
truth level. The fraction of truly converted photons that are reconstructed as converted corresponds to the
purity, f truthconv

recoconv , and is shown in the lower panel.
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conversion information have little effects on the purity, leading to relatively low uncertainties

from mismodeling of photon conversion reconstruction.

4.6.4. Fragmentation Photons

The sample of simulated photon events contains on the one hand events in which the photon

is created in the hard-scattering process; see Section 4.4. On the other hand, the sample also

includes events in which photons are emitted by final-state quarks, i.e. fragmentation photons.

These different types of photon events cannot be expected to have identical kinematic and

isolation-related properties. Photons from fragmentation processes tend to be less isolated than

photons from the hard scattering. Therefore, the photon identification efficiency of these two

kinds of photons can differ. The relative contributions of these two types of photon events to the

photon sample used to extract electron-extrapolation efficiencies not necessarily corresponds to

those in data event samples. In the simulated samples of photons that have been used for this

measurement, the fraction of fragmentation photons in simulation is about 60 % at low pT, while

at transverse momenta above 100 GeV, it is about 45 %. This fraction to some extent depends on

the specifications of a given physics analysis. Therefore, it is necessary to estimate the effect

of variations in the composition of photon samples on the photon identification efficiency. The

difference between efficiencies based on correspondingly varied photon samples is taken into

account in the determination of the systematic uncertainty on the measured photon identification

efficiencies.

In Figures 4.13 and 4.13 the efficiencies of the two types of photons are shown in combination

with their relative contributions in the simulated photon samples. As one can see, the difference

in efficiency tends to be largest at high pT. The composition of the simulated photon sample is

varied by an up- and down-variation of weights by factors of 1.5 and 0.5, respectively, of events

in which the photon is produced in the hard scattering process. Corresponding varied sets of

shower-shape transformations are derived, which in turn are applied to electrons in data. The

difference between the resulting identification efficiencies, divided by 2, serves as uncertainty

related to the imperfect knowledge of the relative fraction of fragmentation photons in data

events.

The resulting uncertainties for unconverted and converted photons are shown in Figure 4.15.
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Figure 4.13. | Comparison of identification efficiencies for unconverted photons produced either in the hard
interaction or in parton fragmentation. Additionally, the efficiency resulting from the nominal mixture of
these two types in the simulated sample is shown. The fraction of photons that are fragmentation photons,
defined as f frag

recounconv, is shown in the lower panel of each plot.
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Figure 4.14. | Comparison of identification efficiencies for converted photons produced either in the hard
interaction or in parton fragmentation. Additionally, the efficiency resulting from the nominal mixture of
these two types in the simulated sample is shown. The fraction of photons that are fragmentation photons,
defined as f frag

recounconv, is shown in the lower panel of each plot.
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For unconverted and converted photons, this uncertainty is typically of the order 0.25 % and

0.5 %, respectively. While for the shown results, a reweighting of photons from the hard
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Figure 4.15. | Uncertainty contribution from the modeling of fraction of fragmentation photons as a
function of pT for converted and unconverted photons, relative to the measured efficiencies. Each plot
represents a different |η| region.

interaction was performed in order to extract related uncertainties, for future measurements it is

planned to reweight fragmentation-photon events instead. That way, a more conservative estimate

of the uncertainty can be achieved: If the fraction of fragmentation photons in simulation is

lower than 50 %, the impact of a reweighting of fragmentation-photon events on the efficiency is

larger than that of a reweighting of photons from the hard interaction. As can be seen in Figures

4.13 and 4.13, the fragmentation-photon fraction in most kinematic regions is below 50 %.
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4.6.5. Shower-Shape Mismodeling

The shower-shape variable distributions of photons in data and simulation do not agree perfectly;

the same is true for electrons. In order to mitigate the disagreement, corrections are applied to

the simulation; see Section 4.1. These corrections consist of simple shifts (fudge factors) on

most of the shower-shape variables. As a consequence, the mean values of the shower-shape

variable distributions in data and simulation can be brought to good agreement. However, this

simple correction cannot account for differences in the shape of the distributions, leading to

residual differences between shower-shape variable distributions in data and simulation, see

Figure 4.1. Since shower-shape variable distributions of photons and electrons in simulation are

the basic ingredients of the shower-shape transformations, a mismodeling of these distributions

directly affects the reliability of the method. Accordingly, the effect of such mismodeling must

be assessed and included as uncertainty.

The corrections for shower-shape variable distributions are computed using comparisons

of shower-shape variable distributions in data and in simulation based on minimizing a χ2

statistic. In the nominal case, the whole range of the shower-shape variable distribution is

considered. The fit result is dominated by the region in which the distribution peaks; the tails

of the distribution have relatively little impact on the resulting correction. However, especially

the tail on the side of the distribution in which the selection cut is applied tends to be subject to

mismodeling in simulation. This results in a shape difference that cannot be resolved by applying

a simple shift of the shower-shape variable distribution. In order to assess the impact of this

mismodeling on the identification efficiency, an alternative set of shower-shape corrections is

derived in which only the tail region is considered in the corresponding χ2 fit. This procedure of

deriving alternative corrections is performed both for photons and for electrons. Based on these

alternative corrections, alternative sets of shower-shape transformations are created and applied

to electrons in data. The uncertainty on the efficiency is then determined by comparing the

resulting identification efficiencies to the nominal efficiencies, which are based on the application

of nominal corrections to the shower-shape variable distributions.

Correlations between the various shower-shape variables should be taken into account in

this procedure. Because some variables are correlated with each other, one should neither vary

shifts on each shower-shape variable at a time and then add the resulting differences from the
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nominal efficiency in quadrature, nor should one vary all shower-shape variables at once. Instead,

a more sensible approach is to group the shower-shape variables according to their degree of

correlation and perform variations of the shower-shape corrections for each of the resulting

sets of shower-shape variables individually. For this measurement, the following grouping of

variables was chosen:

• Variables sensitive to leakage into the hadronic calorimeter: Rhad

• Variables sensitive to width in φ-direction in the second layer of the EM calorimeter: Rφ

• Variables sensitive to width in η-direction in the second layer of the EM calorimeter: Rη

and wη2

• Variables sensitive to width in η-direction in the first layer of the EM calorimeter: ws3,

Fside and ws tot

The variables ∆E or Eratio are not considered since the shape differences of the corresponding

distribution in data and simulation are small.

As a result, one obtains four differences εID(nominal corrections)−εID(variationi) which are

added in quadrature. The resulting uncertainty, relative to the nominal efficiencies, is shown in

Figure 4.16. For both converted and unconverted photons, this uncertainty is typically of the

order 1 % to 3 %, and tends to be largest at low pT.

4.6.6. Size of the Simulation Samples

The precise knowledge of the shower-shape transformations is limited by the finite number

of simulated events in the samples of photons and electrons that are used to derive these

transformations. The larger the simulated samples are, the smoother are the shower-shape

variable distributions and the closer the resulting transformations will be to their “true” shape.

The influence of statistical fluctuations in the shower-shape variable distributions in simulation

is assessed by a pseudo-experiment-based method, referred to as the bootstrap method [165]:

for each shower-shape variable, a set of pseudo-experiments is created, based on the original

simulated samples of photons or electrons by multiplying each event weight with an additional

weight drawn from a Poisson distribution with mean one. A set of transformations is extracted

from each of the resulting pseudo-experiment distributions of shower-shape variables. Each

of these sets is then applied to electrons in data, leading to individual photon identification

119



50 100 150 200 250
 [GeV]

T
p

0

0.5

1

1.5

2

2.5

3 [%
] 

ε
 / ε

∆ Converted

Unconverted

 -1 = 13 TeV,  80 fbs
|<0.60η0.00<|

50 100 150 200 250
 [GeV]

T
p

0

0.5

1

1.5

2

2.5

3 [%
] 

ε
 / ε

∆ Converted

Unconverted

 -1 = 13 TeV,  80 fbs
|<1.37η0.60<|

50 100 150 200 250
 [GeV]

T
p

0

0.5

1

1.5

2

2.5

3 [%
] 

ε
 / ε

∆ Converted

Unconverted

 -1 = 13 TeV,  80 fbs
|<1.81η1.52<|

50 100 150 200 250
 [GeV]

T
p

0

0.5

1

1.5

2

2.5

3 [%
] 

ε
 / ε

∆ Converted

Unconverted

 -1 = 13 TeV,  80 fbs
|<2.37η1.81<|

Figure 4.16. | Relative efficiency uncertainty converted and unconverted photons from residual differences
in shower-shape variable distributions between MC simulation and data as a function of pT. Each plot
represents a different |η| region.
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efficiencies for each pseudo-experiment. The standard deviation of this distribution of efficiencies,

defined as

σεID =

√√√
1
N

N∑
1

(εID, i−εID,mean)2 , (4.13)

is used as the uncertainty on the photon identification efficiency due to the statistical limitation

of the simulated samples. This contribution can be seen in Figure 4.17, for which 150 pseudo-

experiments have been used. It is typically less than 0.5 %, and tends to be lowest at intermediate

pT. This is related to the fact that most electrons from Z → e+e− decays have a pT of the

order mZ/2 ≈ 45GeV; additionally, the number of simulated photon events is lower for high-pT

samples, as can be seen in Table 4.6.
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Figure 4.17. | Uncertainty contribution from the limited size of MC simulation samples as a function of
pT for converted and unconverted photons, relative to the measured efficiencies. Each plot represents a
different |η| region.
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4.6.7. Statistical Uncertainty

The statistical uncertainty due to a limited data sample is evaluated based on the signal-plus-

background fit as follows [166]:

∆ε =
1

Nden
·

√
(1−2ε) ·∆N2

num +ε2 ·∆N2
den , (4.14)

where Nden and Nnum denote the extracted number of Z→ e+e− signal events for the denominator

and numerator probe selection. The identification efficiency is given by ε = Nnum/Nden. The

uncertainties ∆Nnum and ∆Nnum on the extracted number of signal events for the two probe

selections is evaluated using the equation

∆Nnum =

√(
∆ f signal

num ·Ntotal
num

)2
+

(
f signal
num ·

√
Ntotal

num

)2

∆Nden =

√(
∆ f signal

den ·Ntotal
den

)2
+

(
f signal
den ·

√
Ntotal

den

)2
, (4.15)

where f signal
num ( f signal

den ) is the fraction of signal events as extracted in the fit of the mass spectrum

resulting from the numerator (denominator) probe selection; Ntotal
num (Ntotal

den ) corresponds to the total

number of events in the considered range of the mass spectrum for the numerator (denominator)

probe selection.

In Figure 4.18 the statistical uncertainties on the measured photon identification efficiencies

are shown for both converted and unconverted photons. This uncertainty generally is very small.

It is largest at high pT, as electrons from Z-boson decays tend to have transverse momenta of the

order mZ/2.
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Figure 4.18. | Uncertainty contribution due to a limited number of events in the data sample as a function
of pT for converted and unconverted photons, relative to the measured efficiencies. Each plot represents a
different |η| region.
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4.7. Results

The measured photon identification efficiencies and the uncertainties are shown in Figures 4.19

and 4.20 for unconverted and converted photons, respectively. Additionally, the identification

efficiencies in MC simulation are shown. The result of the efficiency measurement is also detailed

in Tables B.2 and B.1 in Appendix B.

At low photon pT the efficiency is generally lower than at higher pT, reaching a plateau at

about 70 GeV and 90 GeV for unconverted and converted photons, respectively. Depending on

the region in pseudorapidity, the plateau value for the efficiency lies between 95 % and 100 %

for converted photons, and between 90 % and 95 % for unconverted photons. At a pT of roughly

25 GeV, the identification efficiency is about 80 % to 85 % for both converted and unconverted

photons. The agreement between data and simulation after applying corrections to shower-shape

variables is good, resulting in scale factors εID,data/εID,MC close to 1. The scale factors and their

uncertainty are shown in Figures 4.21 and 4.22 as a function of pT and in the four distinct regions

of pseudorapidity for unconverted and converted photons, respectively.

A summary of the relative uncertainties that have been evaluated for the measurement of the

photon identification efficiencies using the electron-extrapolation method is shown in Figures

4.23 and 4.24 for unconverted and converted photons, respectively. Typical ranges of values for

the various uncertainty contributions are given in Table 4.8. In general, combined uncertainties

for both unconverted and converted photons typically are in the range 1 % to 3 %. The uncertainty

for unconverted photons tends to be largest at high pT, while for converted photons uncertainties

are largest in the low-pT region. Uncertainties due to shower mismodeling and the uncertainty

due to non-closure are the dominant contributions for both converted and unconverted photons.

For unconverted photons, non-closure uncertainties are particularly important in the region

of high pT and |η| < 1.37; for converted photons, on the other hand, the shower-modeling

uncertainty is clearly dominant at low pT for all |η| regions. In the high-pT region, the uncertainty

due to possible mismodeling of the fragmentation-fraction photons can be relevant for converted

photons. The background-subtraction uncertainty is relatively small in most kinematic regions,

except in the low-pT region within 1.52 < |η| < 1.81, where it is one of the dominant uncertainty

contributions. In the more forward region |η| > 1.52 and at high pT, the uncertainty due to

a limited amount of simulated photon- and electron events can be relevant. The conversion-
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Figure 4.19. | Comparison of photon identification efficiencies for unconverted photons in simulation and
data, including uncertainties. Each plot represents a different |η| region.
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Figure 4.20. | Comparison of photon identification efficiencies for converted photons in simulation and
data, including uncertainties. Each plot represents a different |η| region.
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Figure 4.21. | Scale factors εID,data/εID,MC with uncertainties for unconverted photons as a function of pT.
Each plot represents a different |η| region.
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Figure 4.22. | Scale factors εID,data/εID,MC with uncertainties for converted photons as a function of pT.
Each plot represents a different |η| region.
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reconstructed-related uncertainty and the statistical uncertainty are generally small.
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Figure 4.23. | Comparison of contributions to the relative uncertainties for unconverted photons. Shown
are the various uncertainty contributions and total uncertainty on the photon-identification efficiency scale
factor for unconverted photons as a function of pT. Each plot represents a different |η| region.
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Figure 4.24. | Comparison of contributions to the relative uncertainties for converted photons. Shown are
the various uncertainty contributions and total uncertainty on the photon-identification efficiency scale
factor for unconverted photons as a function of pT. Each plot represents a different |η| region.

Type of uncertainty Converted photons Unconverted photons

Closure 1.4 % 3.4 %
Background 1.4 % 1.3 %
Conversion reconstruction 0.1 % 0.3 %
Fragmentation-photon fraction 0.6 % 0.4 %
Shower-shape mismodeling 3.2 % 2.7 %
MC sample size 0.5 % 0.7 %
Statistical < 0.1% < 0.1%

Table 4.8. | Summary of maximal values for all considered uncertainties, relative to the measured
efficiencies.
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4.8. Combination of Scale Factors

The results from the three methods of measuring the photon identification efficiency, as described

in Sections 4.3 and 4.2, can be combined in order to obtain a set of scale factors for a wider range

of transverse momentum and higher accuracy than a single method could provide. The three

methods use events with different event topologies with possibly different photon identification

efficiencies. A combination of these efficiencies and a subsequent computation of a combined

set of scale factors would therefore be problematic. A combination of scale factors from the

individual methods alleviates this problem, because the dependency on the event topology can

be assumed to be present in both data and simulation. As a consequence, the computation of

scale factors for each measurement method by the division of εID,data and εID,MC reduces the

impact of different event topologies on the result. The combination of scale factors from different

measurement methods is described in Reference [147] and is based on the BLUE method [167,

168]; the coefficients of the linear combination depend on the respective statistical and systematic

uncertainty. Both statistical and systematic uncertainties are treated as uncorrelated.

The efficiencies from the three different measurement methods, and the corresponding scale

factors are shown in Figures 4.25 and 4.26 for unconverted photons and converted photons,

respectively. Additionally, the scale factors based on a combination of the three individual scale

factor measurements are shown.

The results of the electron-extrapolation method as shown in Figures 4.25 and 4.26 reflect an

earlier analysis of the data. In that earlier analysis, the identification efficiencies for simulated

unconverted photons were by mistake based on a pileup profile exclusively taken into account

2017 LHC running conditions, in which larger levels of pileup were present than in 2015

and 2016. However, this effective mismodeling of pileup affects both the numerator and the

denominator of the scale factor determination. The numerator is proportional to the non-closure

correction of the measured efficiency, which in turn is proportional to the photon identification

efficiency in simulation after a pre-selection based on f1, the fraction of EM cluster energy in

the first EM-calorimeter layer. The denominator, on the other hand, corresponds to the nominal

photon identification efficiency in simulation. Therefore, the effect of this partial mismodeling

of the pileup distribution on the scale factor for unconverted photons is reduced considerably

by a cancellation of corresponding biases in efficiencies in simulation. As a result, the scale
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factors as shown in Section 4.7 are similar to those used in the combination of scale factors; the

differences between them range from 1 ·10−5 to 0.004. Since the non-closure of the method,

which relies on the photon identification efficiency in simulation, is also taken into account as an

uncertainty, the overall uncertainty in the earlier measurement was biased as well. Concretely,

non-closure-related uncertainties were overestimated at low-pT by up to 1.5 %; in few bins, an

under-estimation of up to 0.5 % occurred. In the measurement described in this chapter, these

biases were corrected. The present measurement includes another, unrelated change: in the

earlier measurement, the uncertainties due to potential mismodeling of the fragmentation-photon

fraction and of conversion reconstruction have been computed by taking the full difference

between the efficiency resulting from the up- and down-variation of corresponding event weights.

In the uncertainty estimated shown in Sections 4.6.3 and 4.6.4, this difference has been divided

by a factor of 2, in order to avoid a double-counting of uncertainties.

The qualitative message, however, of the combination is not changed by these differences: the

results from all three methods agree well within the overlapping ranges in pT, and the uncertainty

on the scale factor can be reduced substantially by taking into account the information from each

of the three methods.
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(a) (b)

(c) (d)

Figure 4.25. | Photon identification efficiencies for unconverted photons as measured by the three different
methods in the upper panel and the combination of the corresponding scale factors in the lower panel.
The gray band corresponds to the total uncertainty on the combined scale factors. The efficiencies and
scale factors are measured in four different regions of |η| and as a function of photon ET. Taken from
Reference [147].
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(a) (b)

(c) (d)

Figure 4.26. | Photon identification efficiencies for converted photons as measured by the three different
methods in the upper panel and the combination of the corresponding scale factors in the lower panel.
The efficiencies and scale factors are measured in four different regions of |η| and as a function of photon
ET. Taken from Reference [147].
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4.9. Summary

A good understanding of photons and their identification in the ATLAS experiment is crucial

for photon-based physics analyses. Photon identification relies on simple cuts on shower-shape

variables, which parametrize the shape of energy clusters in the calorimeter. The measurement of

photon identification efficiencies is possible with currently three methods. One of these methods,

the electron-extrapolation method, has been applied within the scope of this thesis. In addition

to its application, efforts have been made to make the method more robust by improving the

uncertainty estimation and by correcting for effects of a non-closure of the method on measured

efficiencies.

The electron-extrapolation method is based on the transformation of a pure and unbiased

electron sample from a tag-and-probe method into a sample of pseudo-photons, which have

shower-shape variable distributions very similar to those of photons, and therefore can be used

to measure the photon identification efficiency. This is done by means of fits to invariant-mass

distributions for pairs of electrons, of which one (the probe) has been transformed to a pseudo-

photon. The efficiency is measured in several bins of transverse momentum and pseudorapidity,

and for converted and unconverted photons separately.

Above transverse momenta larger than approximately 50 GeV, the photon identification

efficiencies have values between 90 % and 100 %, while at lower transverse momentum of

about 25 GeV they typically are in the range of 80 % to 90 %. The statistical uncertainty on the

measured efficiencies is negligible. There are several systematic uncertainty contributions that

result in a combined uncertainty on the measured efficiency that lies typically within 1 % to 3 %.

The measured identification efficiencies are used in combination with identification efficiencies

from Monte-Carlo simulation to determine efficiency scale factors. The resulting set of scale

factors can be combined with scale factors from the other two methods of measuring the photon

identification efficiency. These combined scale factors can be applied to simulated events

containing photons in order to correct simulated events for differences in photon identification

efficiency between data and simulation. In this way, the combined scale factors and their

uncertainties find application in photon-based ATLAS physics analyses.
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5. Measurement of Fiducial Inclusive

and Differential Cross Sections for

Higgs Boson Production in the

Diphoton Decay Channel

5.1. Introduction

Given the mass of the Higgs boson, which has been measured by the CMS and ATLAS experi-

ments to be (125.09 ± 0.24) GeV [7], the SM can be used to predict the inclusive Higgs boson

production cross section. Furthermore, predictions are available for differential cross sections in

various observables related to the kinematics of the Higgs events. The comparison of measured

Higgs boson production cross sections with SM predictions is an important test of the SM. The

diphoton decay channel H→ γγ is well suited to measure the Higgs boson production cross

section, as the good mass resolution enables a robust subtraction of the background, which

consists of non-resonant events with a diphoton, photon-jet or jet-jet final state. The diphoton

event selection includes criteria such as photon identification, photon isolation and criteria based

on the photon kinematics. Therefore, the measured cross section can not directly be compared to

predictions in the full phase space. In order to allow such a comparison, the predictions to which

the measured cross sections are compared can be provided in a fiducial region of phase space

that is similar to the ATLAS detector acceptance and the event selection criteria, minimizing the

model dependence: if the cross section as measured in the limited detector acceptance would

have to be extrapolated to the full phase space in order to perform a comparison, the result would
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rely to a large degree on the prediction used for the extrapolation. At the level of measured cross

sections, inefficiencies and migrations between different considered regions of phase space, i.e.

bins, due to a limited detector resolution need to be corrected for in order to enable a comparison

with predictions. This process is called unfolding. The measured and corrected fiducial Higgs

boson production cross sections in the H→ γγ decay channel, both inclusive and differential,

are compared to predicted values for σSM
H ·BSM(H→ γγ) and (∆σSM

H /∆x) ·BSM(H→ γγ), re-

spectively, where x represents the variable in which the differential cross section in measured

and BSM(H→ γγ) denotes the H→ γγ branching ratio of 0.0023 as predicted by the SM.

The differential cross sections contain information about the Higgs boson that is not available

in the inclusive cross section. In this measurement, differential cross sections in four variables

are measured, each of which is sensitive to a different set of aspects of the underlying theory:

• The transverse momentum of the Higgs boson, pH
T (also denoted by pγγT in this context),

distribution is sensitive to the QCD aspects of the Higgs boson production. Moreover, the

Higgs boson coupling to quarks has an impact of the pH
T distribution. It is also sensitive to

the treatment of the t-quark mass in the calculation. See Figure 5.1 for an illustration of

the corresponding impacts on the pH
T spectrum: at low pH

T , the spectrum is sensitive to the

Yukawa coupling of quarks such as the c- or b-quarks to the Higgs boson. The high-pH
T

tail, on the other hand, is sensitive to t-quark-related effects and potential heavy non-SM

particles in the gluon fusion loop. The comparison of predicted and measured differential

cross sections in pH
T can be used to set limits on the Yukawa couplings between quarks

such as the b- or c-quark and the Higgs boson, as described in Chapter 6.

• The transverse momentum of the leading jet, p j1
T , is correlated with pH

T due to momentum

conservation. Thus, the corresponding distribution is sensitive to the same features as the

pH
T distribution. Additionally, the p j1

T distribution depends on the relative contributions

from the different Higgs boson production mechanisms. The pT of jets from vector-boson-

fusion Higgs boson production, for example, tend to be larger than the pT of jets from

gluon fusion Higgs boson production.

• The rapidity of the Higgs boson, yH (also denoted by yγγ in this context), distribution is

sensitive to the proton PDFs.

• The measurement of the distribution of the number of b-jets, Nb−jets, can be used to obtain

an estimate for the corresponding background contribution for measurements involving
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Influence of top quark 
in ggF loop

Influence of light quarks

Figure 5.1. | Illustration of the differential cross section in Higgs boson transverse momentum and its
sensitivity to Higgs boson couplings to particles of different masses.

pp→ tt̄H and pp→ H(→ γγ) H(→ bb̄) processes.

5.2. Dataset and MC Simulations

5.2.1. Data

The dataset used for the measurement of Higgs boson production cross sections as described in

this thesis contains the data from the 2015 – 2017 data-taking periods, corresponding to 79.8/fb

of integrated luminosity at a center-of-mass energy of
√

s = 13TeV. Details on the diphoton

trigger that is used to collect H→ γγ events are given in Section 5.3.1

5.2.2. MC Simulation

MC simulations are used for several purposes in particle physics, among them the prediction of

cross sections, the modeling of parton showers, and the modeling of the detector response to

energetic particles. As a consequence, they can also be used to model the shape of the invariant-

mass distribution of H→ γγ and QCD background events with two photon candidates in the

final state, which is crucial for the signal-plus-background fit of the invariant-mass spectrum of

diphoton candidates. In the case of background events, the detector response is parametrized, the
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parametrization being derived from detailed simulations of the interactions of energetic particles

with the ATLAS detector [169]. Simulations can also be used to provide predictions for cross

sections to which the measured spectrum can be compared. At the same time, the comparison

of simulated H→ γγ events before and after their reconstruction in the detector and selection

allows to correct the measured inclusive and differential cross sections for detector effects and

thus to obtain particle-level cross sections.

The effect of pileup on the hard-interaction signature in the detector is modeled by adding a

number of minimum-bias interactions, generated by Pythia8 with the A3 parameter set [170],

to the hard-interaction event. The number of pileup interactions is drawn event-by-event from

a Poisson distribution with mean µ− 1, where µ is the expected number of proton-proton

interactions per bunch crossing. Eq. 3.10 in Section 3.5 can be used to compute µ:

µ = Lb ·σinel/ fr . (5.1)

Here, σinel denotes the inelastic proton-proton scattering cross section, fr the rotation frequency

of the proton bunches, and Lb the per-bunch luminosity. The LHC running conditions, including

the amount of pileup, are not uniform over time. Therefore, a range of different pileup conditions

need to be considered for the event simulation. This is done by generating events for a sufficiently

wide range of mean values µ−1 for the Poisson distribution from which the number of interaction

is drawn on an event-by-event basis. The knowledge of the luminosity conditions of the

considered dataset allows a reweighting of the simulated events such that the resulting pileup

distribution resembles the distribution in data.

Process Generator Showering σ[pb] Order of σ calculation Order on generator level

ggF Powheg NNLOPS Pythia8 48.52 N3LO(QCD)+NLO(EW) NNLL + effect. NNLO
VBF Powheg-Box Pythia8 3.78 approx. NNLO(QCD)+NLO(EW) NLO
WH Powheg-Box Pythia8 1.37 NNLO(QCD)+NLO(EW) NLO
qq̄→ ZH Powheg-Box Pythia8 0.76 NNLO(QCD)+NLO(EW) NLO
gg→ ZH Powheg-Box Pythia8 0.12 NLO(QCD) LO
tt̄H Powheg-Box Pythia8 0.51 NLO(QCD) + NLO(EW) NLO
bb̄H Powheg-Box Pythia8 0.49 5FS: NNLO(QCD)+NLO(EW), 4FS: NLO(QCD)

4FS: NLO(QCD), NLO(EW)
tHq MadGraph5_aMC@NLO Pythia8 0.07 5FS: NLO LO
tHW MadGraph5_aMC@NLO Herwig++ 0.02 5FS: NLO LO

Table 5.1. | MC simulations that are used for the various considered Higgs production modes. Based
on material in Reference [171]. See Section 2.4.3 for references on cross section computations for the
individual production modes.
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Generally, Higgs boson events are produced by MC simulations for each Higgs boson produc-

tion mode separately. See Section 2.4.3 for an overview of the various Higgs boson production

modes. Gluon fusion events are simulated using Powheg NNLOPS; see Section 2.6.4 for more

details. The VBF, VH, tt̄H and bb̄H Higgs boson production modes are simulated using Powheg-

Box [112, 172–174]. At generator level, the predictions for VBF [175], WH, qq̄→ ZH [176],

tt̄H [177], bb̄H [112] are accurate to NNLO in QCD and include electroweak corrections to

NLO. The gg→ ZH is generated at LO in QCD [178]. In the case of associated single-t-quark

and Higgs boson production, events are generated with LO precision in QCD using Mad-

Graph5_aMC@NLO [113]. In Table 5.1, an overview of the MC simulation of each considered

production mode is given.

Except for the simulation of the tHW production mode, for which Herwig++ [179, 180]

is used, all simulations employ Pythia8 [77] as parton shower simulation; see Section 2.6.3.

Pythia8 is run in most cases with the AZNLO parameter set [181], except for tHW, in which

the A14 parameter set has been used [182]. For all processes except tHq and tHW, in which

the CT10 PDF set was used [183], the simulated samples are reweighted such that the results

correspond to the PDF4LHC15 PDF set [184].

The inclusive gluon fusion cross section to which the simulated sample is normalized is com-

puted at N3LO accuracy in QCD, with NLO electroweak corrections included; see Section 2.6.4.

For these production modes, the inclusive cross sections are accurate to NNLO in QCD and

include NLO electroweak corrections, except for gg→ ZH, whose cross section includes only

QCD corrections up to NLO.

The sample of non-Higgs diphoton events has been generated with Sherpa 2.2.4 [185, 186]

and the CT10 PDF set. The parton shower simulation is also implemented in Sherpa 2.2.4 [187].

In order to be able to directly compare simulated events with data events, it is necessary to

model the detector response to the particles in simulation. For the H → γγ samples, this is

done using GEANT4 [188–190]; for QCD diphoton background events a parametrization of the

ATLAS response has been used in order to reduce the computational effort [169].
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5.3. Event Selection

Events in which a Higgs boson decays to a pair of photons are marked by the presence of two

photons with an invariant mass close to the Higgs boson mass mH and with transverse momenta

of the order mH/2. Correspondingly, the presence of at least two photons or photon candidates is

a central selection criterion for the H→ γγ event selection at particle and reconstruction level,

respectively. If more than two photon candidates are present, the two candidates with the largest

pγT are considered. The selection criteria at particle level, i.e. the fiducial phase-space definition,

are designed to be similar to those at reconstruction level in order to reduce model dependence.

5.3.1. Reconstruction Level

The event selection at reconstruction level is applied to data and simulated events likewise. The

baseline selection is constituted by a trigger selection, selections based on the kinematics of

the photon candidates, as well as on identification and isolation requirements on the photon

candidates. In addition, a selection based on the invariant mass of the system of the two photon

candidates, mγγ, is performed.

Trigger Requirements

For an event to be recorded, it must pass a trigger selection. For this analysis, a diphoton trigger is

used, with pγT thresholds for the (sub-)leading photon candidate of 35 GeV (25 GeV). In addition

to kinematic selection criteria, the trigger requirements involve identification algorithms: in the

data-taking periods of 2015 and 2016, a loose identification selection was applied to the photon

candidates, which takes into account the fraction of cluster energy deposited in the hadronic

calorimeter and shower shape variables defined in the second, relatively coarse layer of the EM

calorimeter. In 2017, the identification selection of the trigger algorithm has been tightened in

order cope with an increase of the trigger rate due to the increased instantaneous luminosity. This

tighter identification procedure takes into account also information from the finely-segmented

first layer of the EM calorimeter. The diphoton trigger efficiency for H→ γγ events is close to
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100 %. It can be determined using following equation:

ε
trig
γγ =

"
dplead

T dpsublead
T ε

trig
γ,35(plead

T ) ·εtrig
γ,25(psublead

T ) · f (plead
T , psublead

T ) . (5.2)

Here, f (plead
T , psublead

T ) denotes the two-dimensional p.d.f. of the pT for the leading and sub-

leading photon candidates. The trigger efficiency of the single-photon trigger leg of the diphoton

trigger with a pT threshold of 35 GeV (25 GeV) is denoted by εtrig
γ,35(25). These single-photon

trigger efficiencies, defined relative to isolated photon candidates which pass offline identification

requirements, were measured using Z → `+`−γ events [191], similar to the method outlined

in Section 4.3.1. The systematic efficiency uncertainty is given by the difference between the

measured trigger efficiency and the trigger efficiency as estimated in simulation, and is propagated

to the diphoton efficiency determination following Eq. (5.2). The relative systematic diphoton

trigger efficiency uncertainty amounts to 0.7 %.

Object-Level Selection

Both photons are required to have a pγT of larger than 25 GeV. The pγT of the leading (sub-

leading) photon candidate must also be larger than 35 % (25 %) of mγγ. Photon candidates are

disregarded if they are located within the barrel-endcap transition region, 1.37 < |η| < 1.52. In

order to ensure that the two considered photon candidates correspond to the objects that fired

the diphoton trigger, a matching based on the angular distance between photon candidates and

trigger-firing objects is performed. The photon candidates must pass the tight identification

selection, consisting of selection criteria regarding variables that parametrize the shape of the

shower in the calorimeter; see Chapter 4 for details on the identification procedure. In addition,

requirements on the isolation of the photon candidates are imposed; see Section 3.3.3.

Event-Level Selection

At least one primary vertex must be reconstructed, and all ATLAS detector components at

the time of the event recording must have been functional. The invariant mass of the diphoton

candidate must lie within 105GeV<mγγ < 160GeV. Choosing a range that is significantly larger

than the typical range of mγγ from H→ γγ events enables a robust subtraction of non-Higgs

background.
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Selection of Jets and Leptons

Some of the measured differential cross sections describe jet-related properties of Higgs events.

In the measurements of differential cross sections for jet-related variables, jets are required to

have a pT > 30GeV and an absolute rapidity of |y j| < 4.4. In the region |y j| < 2.4, pT < 60GeV

an additional selection based on a multivariant discriminant called jet vertex tag is applied to jets,

reducing the number of jets from pileup interactions [192, 193].

As described in Section 3.3.3, a given shower in the calorimeter can be reconstructed as

both photon and electron candidate simultaneously if the inner-detector information does not

allow a unique categorization. This ambiguity is resolved at the stage of the H→ γγ analysis

by removing electron candidates that are close to a photon candidate: if an electron candidate

has a distance ∆R =
√

∆φ2 +∆y2 to a photon candidate of less than 0.4, the electron candidate

is disregarded. Similarly, if a jet overlaps with either one of the selected photon candidates

(∆R < 0.4) or a remaining electron candidate (∆R < 0.2), it is removed. The reason for this is that

electron candidates and photon candidates are also reconstructed as a jet by the jet reconstruction

algorithm. By removing the corresponding jets, this ambiguity is resolved. Remaining electrons

that are too close to a remaining jet (∆R < 0.4) are removed for reasons of consistency with

the electron isolation efficiency measurement, and because it removes electrons from decays of

heavy-flavor hadrons. Muons overlapping with either selected photons or jets (∆R < 0.4) are

removed in the last step of the overlap removal.

Considered electrons must have a pT of larger than 10 GeV and a pseudorapidity within the

range of 0 < |η| < 1.37 or 1.52 < |η| < 2.47. Selected muons must satisfy |η| < 2.7, corresponding

to the acceptance of the muon spectrometer, and pµT > 10GeV. In addition, they must be isolated

and identified [157].

A b-jet is a jet originating in a hadron that contains a b-quark. In order to classify jets as b-jets

at reconstruction level, a b-tagging algorithm with an efficiency of 70 % is used [194]. To qualify

as a b-jet in this analysis, a jet also must be central, i.e. the rapidity of that jet has to satisfy

|y j| < 2.5.
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5.3.2. Particle Level

The fiducial particle-level selection is based on final-state particles with a lifetime larger than

10 ps, called stable, and which do not result from the GEANT4 simulation of particle-detector

interactions. Moreover, photons, electrons and muons are disregarded if they result from a hadron

decay.

To a large extent, the particle-level selection mirrors the selection at reconstruction level.

Photons must satisfy pγT > 25GeV. Moreover, the pγT of the leading (sub-leading) photon must

exceed 35 % (25 %) of the invariant mass of the leading and sub-leading photons mγγ. The

diphoton invariant-mass is required to be within the range 105GeV < mγγ < 160GeV. The

pseudorapidity of selected photons must lie within 0 < |η| < 1.37 or 1.52 < |η| < 2.37. A particle-

level isolation selection is applied to photons; it is defined as the transverse energy of the

summed four-momenta of all charged particles within a cone of radius ∆R < 0.2 around the

photon, considering only particles with a pT of at least 1 GeV. If this quantity is larger than 5 %

of a photon’s transverse momentum, the photon is disregarded.

The four-momenta of electrons and muons include those of stable photons within a cone with

radius ∆R < 0.1 in order to recover the lepton energy lost by bremsstrahlung processes. Electrons

with a pseudorapidity within 1.37 < |η| < 1.52 or a pT lower than 10 GeV are disregarded. Muons

are required to have a pseudorapidity within |η| < 2.7 and a pT larger than 10 GeV. The overlap

between photons and electrons is removed by disregarding electrons that are closer than ∆R < 0.4

to one of the two leading photons.

Jets at particle-level are reconstructed based on stable particles, excluding neutrinos and

muons, because those do not deposit sizable amounts of energy in the calorimeter, and therefore

are effectively not accounted for by reconstruction-level jets. The absolute rapidity of jets is

required to be within |y j| < 4.4, and their pT to be larger than 30 GeV. In order to remove the

overlap of jets with photons, a jet is removed if it is closer than ∆R < 0.4 to a photon with a pT

of at least 25 GeV. Similarly, if the distance between a jet and an electron with a pT of at least

10 GeV is smaller than ∆R < 0.2, the jet is disregarded.

A jet that satisfies the requirements above and which contains a b-hadron with a pT larger

than 5 GeV and an angular distance to the jet direction smaller than ∆R < 0.4 is considered to

be a b-jet. Additionally, in order for a b-jet to be considered in the analyses, it must lie within
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|y j| < 2.5.

5.3.3. Dalitz Events

Not all photons from H→ γγ decays are stable; some photons from Higgs boson decays have

high virtuality, i.e. they do not obey the energy-momentum relation, resulting in a quick decay to

a pair of charged particles. The occurrence of such H→ γ∗γ→ f f̄γ events, called Dalitz events,

needs to be considered in order to properly correct the extracted number of signal events for

a comparison with H→ γγ predictions. About 6 % of the simulated events are Dalitz events.

These events are not considered in the computation of the H→ γγ branching ratio. As they do

not result in a stable diphoton final state, they are not part of the fiducial selection at particle level.

The remaining 94 % are reweighted such that the predicted H→ γγ production cross section is

matched again.

Because H→ γ∗γ→ f f̄γ events have a low efficiency of passing the diphoton selection as

described in Section 5.3.1, Dalitz events constitute only about 0.4 % of the selected diphoton

events at reconstruction level according to simulation; these selected Dalitz events are not

removed. Therefore, the unfolding of the measured cross sections to particle level removes the

expected impact of Dalitz events on the cross section.

5.4. Signal Extraction

5.4.1. Introduction

The measured number of H→ γγ events, called the signal yield, is extracted using an unbinned

signal-plus-background fit of the invariant-mass spectrum of the selected diphoton candidate

events using a maximum profile-likelihood method. The likelihood function is maximized by

adjusting its parameters, namely the signal yield, background yield and a number of nuisance

parameters. The combination of parameters for which the observation of the measured invariant-

mass spectrum is most likely corresponds to the fit result. Nuisance parameters are parameters

that are not of central interest in the fit, and which are known with limited accuracy or can be

unconstrained. Within the fitting procedure, they are profiled out; this is explained in some detail

in Section 6.3.1 of the next chapter. The set of nuisance parameters includes the parameters
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that describe the shape of the background-modeling function, parameters that take into account

uncertainties in the photon energy scale and resolution, as well as a parameter that allows a

slight shift in the Higgs peak position in the mass spectrum. In the case of background-modeling

parameters, no constraints on the nuisance parameters are imposed. For the other nuisance

parameters, however, p.d.f.s are included into the likelihood fit that penalize deviations from the

nominal parameter values.

In this way, signal yields can be determined in various phase-space regions, each of which

corresponds to an individual invariant-mass distribution based on events that satisfy given phase-

space requirements. The basic event selection as described in Section 5.3.1 is applied for each.

Figure 5.2 shows the resulting invariant-mass spectrum and the best-fit signal-plus-background

model. In addition to this basic selection, further phase-space specifications in terms of various

Figure 5.2. | Diphoton invariant-mass spectrum for the inclusive fiducial selection. While the maximum-
likelihood fit is performed in an unbinned way, a binning has been used in this plot in order to enable a
visualization of the spectrum. The measured number of events per mγγ bin are shown as black markers,
and the corresponding best-fit signal-plus-background function is shown in red. Shown in the lower panel
is the difference between the spectrum and the fitted background function. Taken from Reference [171].

kinematic variables such as pH
T can be imposed, resulting in invariant-mass spectra that can be
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used to determine differential distributions. When extracting the signal yields for the differential

cross section in a given kinematic variable, all bins are taken into account simultaneously by

maximizing the product of the likelihood functions corresponding to each bin. This entails that

the energy scale and resolution nuisance parameters are aligned over all bins.

The binning in the considered kinematic variables is given in Table 5.2. In the case of p j1
T ,

the first bin, ranging from 0 GeV to 30 GeV, contains the events lacking any reconstructed jet

satisfying the jet selection criteria as described in Section 5.3.1. In the case of the differential

distribution in Nb−jets, an additional pre-selection is applied for all bins, requiring at least one

central jet (|y j| < 2.5) and an absence of electrons and muons. The first bin of the Nb−jets

distribution then contains events passing these selection criteria which do not contain a b-jet.

Variable Binning Nbins

pH
T [GeV] 0 – 5 – 10 – 15 – 20 – 25 – 30 – 35 – 45 – 60 – 80 – 100 – 120 – 140 – 170 – 200 – 250 – 350 17

p j1
T [GeV] 0 – 30 – 55 – 75 – 120 – 350 5
|yH | 0.00 – 0.15 – 0.30 – 0.45 – 0.60 – 0.75 – 0.90 – 1.20 – 1.60 – 2.40 9
Nb−jets 0 – 1 – 2 –∞ 3

Table 5.2. | The binning for the differential cross section measurement in the four considered kinematic
variables. The first p j1

T bin, from 0 GeV to 30 GeV contains events without at least one jet passing the
selection. In the case of Nb−jets, a pre-selection consisting of the requirements that at last one central jet
and neither electron nor muon is present.

5.4.2. Modeling of the Invariant-Mass Spectrum

In order to perform a signal-plus-background fit to the diphoton invariant-mass spectrum, p.d.f.s

for both signal and background needs to be provided. The Higgs signal consists of a peak

centered at the Higgs boson mass, and the background corresponds to a smoothly falling function.

In the two following sections it is discussed how appropriate p.d.f.s for signal and background

are obtained.

Modeling of the Signal Peak

The H → γγ diphoton invariant-mass spectrum at particle level is given by a narrow and

symmetric Breit-Wigner curve, centered at the Higgs boson mass of 125.09 GeV and having
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a width of 4 MeV [7, 13]. Due to the limited detector resolution, however, the peak width at

reconstruction level is considerably larger than the intrinsic width of 4 MeV, and the shape is in

general not perfectly symmetric around the peak. The signal distribution in reconstructed events

can be well described by a double-sided Crystal-Ball function, which consists of a Gaussian core

and power-law tails, each component normalized such that the transition from one part to the

adjacent parts is continuous [195, 196]. The expression for the corresponding p.d.f. is given by

SCB(m) = N ·


e−

t2
2 if −αlow < t < αhigh( nlow
|αlow|

)nlow e−
|α2

low |
2 ·

( nlow
|αlow|
− |αlow| − t

)−nlow if t < −αlow(
nhigh
|αhigh|

)nhigh
e−
|α2

high |

2 ·

(
nhigh
|αhigh|

− |αhigh| − t
)−nhigh

if t > αhigh


, (5.3)

where t =
mγγ−mγγ

σ , in which mγγ denotes the mass at which the distribution has its peak. The

width of the Gaussian core is denoted by σ. Transition points between the Gaussian core and the

power-law functions describing the lower and upper tails are given by αlow and αhigh, respectively.

The exponents of the power-law functions are denoted by nlow, nhigh, and N is a normalization

factor.

Figure 5.3. | Simulated mγγ distributions of the Higgs resonance at reconstruction level for two regions of
pH

T (open and filled markers). The fitted Crystal-Ball functions for both distributions are shown as solid
lines. Taken from Reference [145].
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The best-fit parameters of this p.d.f. for each considered phase-space region individually

are extracted based on MC simulation before the signal-plus-background fit is performed. In

Figure 5.3, examples of fitted simulated mγγ distributions at reconstruction level are shown for

two different phase-space regions. As one can see, the width of the Crystal-Ball function can

differ considerably between different phase-space regions. Since in the simulation a Higgs boson

mass of 125.00 GeV is assumed, which is 90 MeV lower than the measured value, the fitted

mean values of the Crystal-Ball functions in the various considered kinematic regions are shifted

by that amount.

Modeling of the Background

The non-Higgs background dominates the mγγ spectrum, as can be seen in Figure 5.2, and its

parametrization is one of the largest sources of systematic uncertainty. There is no a-priori

functional form that would follow from theoretical predictions, which is partly due to the

influence of photon-jet and jet-jet events that pass the diphoton selection. Such events have an

influence on the shape of the mass spectrum that is difficult to predict. Therefore, the function

that is used to parametrize the background to the Higgs signal is chosen from a set of several

smoothly falling functions, based on how well they can describe the background in a given

kinematic region. Possible functions, not including normalization factors, for the background

description are:

• Bernstein polynomials of third, fourth, or fifth degree. A Bernstein polynomial of degree n

is defined as
n∑
ν=0

β
bkg
ν

(
n
ν

)
mν
γγ(1−mγγ)n−ν ,//FIXED (5.4)

where βbkg
ν is the Bernstein coefficient for the basis polynomial with index ν. The values

of βbkg
ν determine the shape of the polynomial.

• Exponentials of first-, second-, or third-degree polynomials. The definition for a polyno-

mial of degree n is given by

exp

− n∑
ν=1

mν
γγ

α
bkg
ν

 , (5.5)

where αν are the coefficients that determine the shape of the spectrum.

Exponentials of second degree polynomials often are well-suited for the description of the
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background mass spectrum. The parameters of the background-modeling functions are treated

as unconstrained nuisance parameters in the signal-plus-background fit.

In order to decide which background function is best suited for the signal-plus-background fit

of the invariant-mass spectrum, studies are performed on mass spectra derived by a combination

of simulation and data-based information. The background to the Higgs signal can be categorized

into reducible and irreducible backgrounds. Reducible background consists of events with two

reconstructed and identified photon candidates in which at least one of those photon candidates

results from a photon-faking jet, denoted by γ j or j j. Because it is possible to effectively dis-

criminate between photons and jets from QCD, these events belong to the reducible background.

If, on the other hand, two actual photons result from a pp collision that does not involve a Higgs

boson decaying to a pair of photons, there is no effective way of discriminating between these

and photons from Higgs boson decays. Hence, this type of background is called irreducible.

In order to model the invariant-mass spectrum of non-Higgs diphoton candidates, it is necessary

to derive a template for each of the mentioned background categories (γγ, γ j, j j) and sum them,

weighted according to their relative contribution. Of the three background components, only

the γγ background is simulated in sufficient number as to provide reliable shape information

in all considered regions of phase space. In order to obtain a template for the mass distribution

including all types of background, it is therefore necessary to estimate both the mass spectrum

templates and the relative contribution for each of the types of background. Templates for the

γ j and j j background correspond to γγ mass spectra that are reweighted to match mass spectra

for events which are enriched in γ j and j j events as obtained by a data-driven 2×2D sideband

method [197, 198] that involves the reversion of identification and isolation selection criteria.

This method is also used to estimate the relative contributions of the various background types to

the mass spectrum in the signal region. Thanks to the efficient rejection of photon-faking jets,

the irreducible background is considerably larger than the reducible background. In the mγγ

region from 105 GeV to 160 GeV in the inclusive fiducial phase space, the fraction of irreducible-

background events is 75.6+3.1
−4.8 %. The uncertainty is dominated by systematic uncertainties in

the definition of the control region.

Given an estimate for the expected invariant-mass distribution in each considered phase-space

region, it is important to select a function that is able to model this distribution well. This choice

is made for each bin of the differential distributions individually. Since it cannot be expected

151



that a simple analytic function as given above describes the background perfectly, a bias in the

extraction of the signal and background yields has to be assumed and estimated. If the chosen

background function underestimates the amount of background in the signal region close to the

Higgs boson mass, the extracted H→ γγ signal yield correspondingly will be too high, and vice

versa. The amount of over- or underestimation is quantified in terms of the spurious signal, which

is used to perform the choice of background functions. The spurious signal is defined as the

maximum value of the absolute extracted signal yield in a sequence of signal-plus-background

fits of the background-only invariant-mass spectrum for a range of assumed Higgs boson mass

values of 121 GeV to 129 GeV. The function describing the background is selected such that

the function with the fewest degrees of freedom is chosen which satisfies at least one of the

following requirements:

• The spurious signal is smaller than 10 % of the expected signal yield.

• The spurious signal is smaller than 20 % of the expected uncertainty on the signal yield.

• At least one of the two previous requirements are met by the spurious signal minus 2σ,

where σ is the statistical uncertainty on the estimated spurious signal.

It is possible that the background template as chosen based on the spurious signal is considerably

different from the mγγ spectrum in collision data. In order to avoid a possible use of such an

unfit background function in the signal-plus-background fit, an additional F-test is performed in

order to assess the need of a higher-degree version of the initially selected background function:

the data sideband, excluding the signal mass region 120GeV < mγγ < 130GeV, is fitted with the

background function as chosen based on the spurious signal, as well as with a function from the

same category, i.e. exponential or Bernstein functions, but with one additional degree of freedom.

The resulting χ2 values of the fits are denoted with χ2
1 and χ2

2, respectively. If the additional

degree of freedom does not improve the modeling of the background distribution more than can

be statistically expected from the use of an additional degree of freedom, the statistic

F =

χ2
1−χ

2
2

p2−p1

χ2
2

n−p2

. (5.6)

follows the Fisher distribution [199]. Here, p1 denotes the number of degrees of freedom of

the function chosen by the spurious-signal method, and p2 denotes the number of degrees of
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freedom of the function with an incremented number of degrees of freedoms. The number of

mass bins used in the F-test fits is denoted by n. Based on the Fisher distribution, the probability

for observing a value for F as large or larger than the observed value can be determined. If the

observed probability is smaller than 5 %, the alternative background function with an additional

degree of freedom is chosen.

5.4.3. The Likelihood Function

The signal yield of the signal-plus-background fit is estimated using a maximum-likelihood

method. The model parameters resulting in the largest likelihood of observing the measured data

correspond to the best-fit values for the parameters. Fitted parameters of the model are the signal

yield νsig, the background yield νbkg, and the various nuisance parameters θk.

For each bin of a given distribution of the measurement, including the inclusive cross section,

which corresponds to the case of a single bin, the following likelihood function is constructed:

L(mγγ, ν
sig, νbkg, θk) =

e−(νsig+νbkg)

n!

n∏
j

[
νsigS(m j

γγ;θk) + νbkgB(m j
γγ;θk)

]
, (5.7)

where the selected events are labeled with index j, and n corresponds to the number of selected

events. The p.d.f.s of the signal and background mass distributions are denoted by S and B. The

factor e−(νsig+νbkg)/n! results from the fact that the number of events that enter the fit is a random

variable itself that follows a Poisson distribution. A likelihood function as it is shown in Eq. (5.7)

is called extended likelihood function [163].

The extended likelihood functions for the individual bins in a given considered kinematic

variable are multiplied. In addition, the product of the constraints on the nuisance parameters∏
k Gk(θk ; 0, 1) is multiplied to the product of extended likelihood functions. That way, the

nuisance parameters are correlated over all bins of a kinematic variable.

The nuisance parameter constraints are either Gaussian or log-normal constraints, depending

on whether the nuisance parameter should be able to take both positive and negative values.

Besides uncertainties on the energy measurement of the photon candidates, uncertainties on

the Higgs boson mass and the parameters of the background model are included as nuisance

parameters. The nuisance parameters that represent the background shape are not shared between
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different bins.

5.5. Correction for Detector Effects

The cross sections given by the ratio of the extracted signal yields and the integrated luminosity

cannot be directly compared to predictions or results from other experiments. In order to

enable such comparisons, the signal yields must first be corrected for detector effects, that is,

inefficiencies and the limited resolution in the determination of event properties. The process

of correcting for detector effects is called unfolding and usually relies on information from

MC simulation. In simulated events, one has access not only to information about events at

reconstruction level, but also to information at particle level. Combining information from both

reconstruction and particle level allows the creation of a mapping of event and particle properties

from reconstruction to particle level, which is the basis of the unfolding process. Several methods

of unfolding exist [163], and they can be broadly divided into two types of approaches. First,

there are methods of unfolding that rely on a detector response matrix, defined via

nreco
i =

M∑
j=1

R̂i j ·n
ptcl
j , (5.8)

where nreco
i is the i-th element of the array that contains the measured signal yields, and nptcl

j

is the j-th element of the array containing the numbers of events in the various bins at particle

level. The sum runs up to the number of bins in the particle-level distribution, M. The matrix R̂i j

then maps the numbers of events in the various bins at particle level to the measured distribution

of signal yields, representing the detector response. As such, it contains information about

inefficiencies and migrations between bins due to the finite detector resolution. If an inversion

of the response matrix R̂ is possible, its application on a spectrum at reconstruction level yields

an unfolded spectrum at particle level. This simple approach has zero bias [163], but has the

disadvantage that statistical fluctuations as seen in data, i.e. deviations from the expected signal

yields, are enhanced by off-diagonal elements of the response matrix, leading to a strongly

fluctuating unfolded spectrum and large statistical uncertainties on the unfolded distribution.

Several techniques exist to dampen these effects, at the cost of introducing a certain amount of
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bias [163].

In this work, another type of unfolding is used; it is based on simple correction factors [163]

to account for detector effects, and is called bin-by-bin unfolding. Here, the signal yields at

reconstruction and particle level in MC simulation, nreco
i and nptcl

i , respectively, in each considered

phase-space region are compared with each other, leading to a correction factor for each bin,

given by

Ci =
nreco

i

nptcl
i

. (5.9)

In order to determine the unfolded cross section for a given bin, the extracted signal yield νsig
i

is divided by the corresponding correction factor and the integrated luminosity Lint of the used

dataset:

σi =
ν

sig
i

Ci ·Lint
. (5.10)

The correction factor generally depends on what the relative contributions from the various Higgs

boson production modes in a given phase-space region are. Accordingly, the overall correction

factor corresponds to

Ci =

npm∑
s=1

σSM
s

Ns
·nreco

fid,s

npm∑
s=1

σSM
s

Ns
·nptcl

fid,s

, (5.11)

where s is a label for the npm Higgs boson production modes. The individual expected cross

section for a given production mode s is given by σSM
s . The number of events in the considered

phase space at reconstruction and particle level needs to be normalized by the number of all

produced events in a given production mode, Ns. By designing the fiducial phase-space volume

to include only isolated photons at both reconstruction and particle level, the dependence of

the correction factor on the production mode is significantly reduced, which in turn reduces

sensitivity to assumptions about the relative contributions from different Higgs boson production

modes. Different production modes lead to different amounts of additional radiation. Particularly

photons in tt̄H events tend to be less isolated than events corresponding to other production

modes due to the relatively large number of jets. If the isolation requirement would only be

applied at reconstruction level, the correction factor would have to fully account for isolation

inefficiencies.
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In general, the bin-by-bin unfolding method leads to a biased unfolding result unless simulation

and nature agree in a certain aspect: applying the correction factor as calculated by Eq. (5.9) to

the observed signal yield, denoted by nreco,data
i , the estimator for the unfolded signal yield in bin

i is

nptcl,data
i =

nreco,data
i

Ci
=

nptcl
i

nreco
i
·nreco,data

i . (5.12)

If one assumes that the actual true number of signal events at particle level is not nptcl
i as predicted

by simulation but n̂ptcl
i , and the corresponding expectation value for the true number of signal

event at reconstruction level is n̂reco
i , the resulting bias of the estimator nptcl,data

i is given by

b = 〈nptcl,data
i − n̂ptcl

i 〉 = 〈
nptcl

i

nreco
i
·nreco,data

i − n̂ptcl
i 〉

=
nptcl

i

nreco
i
· 〈nreco,data

i 〉− n̂ptcl
i =

nptcl
i

nreco
i
· n̂reco

i − n̂ptcl
i

=

 nptcl
i

nreco
i
−

n̂ptcl
i

n̂reco
i

 · n̂reco
i . (5.13)

This means that the bin-by-bin unfolding method in general leads to biased results if the ratio of

the expected numbers of events at particle and reconstruction level is different from the ratio of

the true expectation values for the numbers of events at particle and reconstruction level.

The use of this simple method is warranted if the cross section measurement is statistically

limited and if migrations between bins are small. For the latter, either a good resolution must

be achieved, or the binning must be chosen sufficiently coarse. The bias introduced by this

unfolding method has been studied, and was shown to be small in relation to the expected

statistical uncertainties. Moreover, uncertainties on the correction factors from mismodeling of

the particle-level cross sections are taken into account in the measurement, as will be described

in Section 5.6.2.

5.6. Uncertainties

The uncertainties relevant for the inclusive and differential measurements of the fiducial cross sec-

tion are discussed in the following sections. In addition to statistical uncertainties from the signal
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yield extraction in the mass spectrum fit, systematic uncertainties have to be included: systematic

uncertainties in the signal yield extraction, systematic uncertainties in the determination of the

correction factors, and the uncertainty on the integrated luminosity of the considered dataset.

The uncertainty on the integrated luminosity of the combined 2015–2017 dataset is 2.0 % [200];

see Section 3.5 for information on the luminosity measurement. The diphoton trigger efficiency,

which is taken into account by the correction factors, is known with an uncertainty of 0.45 %.

5.6.1. Signal Extraction

The large background from QCD events results in a sizable statistical uncertainty in the signal

extraction. There are, however, also systematic uncertainties to be taken into account, which are

described below.

Spurious Signal

Among the systematic uncertainties from the signal extraction, the dominant uncertainty is

related to the choice of the background modeling function. If the chosen function under- or

overestimates the amount of background events in the region close to the Higgs boson mass, the

fitted signal yield will be over- or underestimated, respectively. This bias has been studied by

performing signal-plus-background fits on a background-only mass spectrum, see Section 5.4.2.

The ratio of the spurious signal to the expected signal yield is taken as uncertainty.

Photon Energy Scale and Resolution

The photon energy scale and resolution have influence on the shape of the mγγ spectrum and

consequently on the extracted signal yield; both are known only with limited accuracy. Several

sources of uncertainties exist; these are taken into account by including corresponding nuisance

parameters in the signal-plus-background fit. In the case of the energy resolution uncertainties,

9 nuisance parameters are used, which are constrained by log-normal functions. In order

to implement uncertainties on the energy scale, 69 nuisance parameters are used; these are

constrained by Gaussian functions. The nuisance parameters that encapsulate the resolution

uncertainties are generally less constrained than those for the scale uncertainties. Among the

largest contributions to the resolution uncertainty are the uncertainty regarding the material
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distribution in the inner detector, the limited knowledge of the constant term of the energy

resolution as introduced in Section 3.3.3, and the uncertainty in the modeling of pileup effects.

The largest contributions to the energy scale uncertainty are the uncertainty due to the relative

calibration of different gain settings in the cell energy measurement and the intercalibration of

the first and second layers of the EM calorimeter. For details on the determination of energy

scale and resolution uncertainties, see Reference [148].

By comparing extracted signal yields from a fit in which all nuisance parameters are floating

and a fit in which the considered nuisance parameter θk is fixed to a value θk ±∆θk, where ∆θk

denotes the uncertainty on the nuisance parameter, the impact of that nuisance parameter on the

best-fit signal yield can be determined. For some resolution-related uncertainties, it can be as

large as 2 %, while the impact of energy-scale-related uncertainties is generally less than 0.5 %.

In addition to nuisance parameters regarding the photon energy scale and resolution, the

signal-plus-background fit is also sensitive to the assumed mass of the Higgs boson. Since that

mass is known with only limited precision, it is treated as a nuisance parameter in the fit. The

central value of that parameter is 125.09 GeV, corresponding to the measured value [7]. The

uncertainty of that measurement is 0.24 GeV, which is reflected in the Gaussian constraint of the

nuisance parameter.

5.6.2. Correction Factors

The correction factors used in the unfolding process are based on MC simulation and therefore

reflect eventual biases in the SM predictions; such biases need to be estimated and propagated to

the correction factors. In addition, experimental uncertainties that affect the cross sections at

reconstruction level need to be propagated to the correction factors.

Pileup Reweighting

As described in Section 5.2.2, simulated events are reweighted such that the distribution of the

number of pileup interactions per event matches that in the dataset. A mismodeling in the pileup

reweighting can lead to biases in the correction factors.

In order to compute the mean value µ−1 of the Poisson distribution from which the number

of pileup interactions is drawn, Eq. (5.1) is used. Thus, the number of pileup interactions that
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are added to the hard-interaction event depends on the value of the inelastic cross section σinel.

The modeling of proton-proton interactions in the event generator that is used to simulate pileup

interactions, Pythia8, leads to an inelastic cross section that is slightly higher than the measured

inelastic cross section [201]. A scale factor relating σdata
inel and σMC

inel is used in order to take this

mismatch into account before pileup reweighting is performed. The scale factor is determined

based on the observed number of primary vertices as a function of µ in data and in simulation.

The uncertainty on the scale factor of 3 % is propagated to the bin-by-bin correction factors by

applying pileup weights based on varied scale factors in the computation of the correction factors

and by comparing the resulting correction factors to the nominal values.

Vertex Selection

As described in Section 3.3.2, a multivariate algorithm is used to determine the Higgs boson

production vertex. In approximately 75 % of simulated gluon fusion Higgs events, the correct

vertex is chosen, defined by the selected reconstructed vertex being in a distance to the true

vertex of less than 0.3 mm. The absolute uncertainty on this fraction was estimated to be 5 % by

comparing the corresponding values in data and simulation using Z→ e+e− events in which the

tracks of the electrons from the Z decay are disregarded, see also Figure 3.15.

The assumed location of the Higgs boson production vertex has impact on the reconstructed

photon candidate four-momentum because it influences the pseudorapidity assigned to the photon

candidate. Via the relation ET = E/cosh(η) as introduced in Section 3.3.3, this has an effect

on the transverse energy of the photon candidates. Moreover, the selection of the Higgs boson

production vertex has influence on the track-based isolation variable, for which exclusively the

tracks assigned to the hard-interaction vertex are considered. Therefore, the uncertainty of the

fraction f of H→ γγ events in which the correct vertex has been chosen needs to be propagated

to the measured cross section. This requires the determination of the efficiency ε of the diphoton

event selection as a function of f ,

ε( f ) = f ·εcorr + (1− f ) ·εwrong . (5.14)

In this equation, εcorr and εwrong are the diphoton event selection efficiencies in the case of a

correct selection of the Higgs boson production vertex, and in the case of an incorrect selection,
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respectively. The uncertainty on f is propagated to the selection efficiency ε( f ), and by extension

to the correction factors, by comparing ε( f ) for values of f that correspond to its up- and

down-variations within the uncertainty ∆ f , ε( f ±∆ f ).

Jets from Pileup Interactions

For an accurate determination of differential cross sections in jet-related variables, it is important

to understand the impact of jets from pileup interactions: some jets that pass the selection criteria

do not originate in the Higgs boson production vertex but result from pileup interactions. In

simulation, particle-level information is exclusively stored for the hard interaction, and not for

pileup interactions. Consequently, a jet is considered to be a pileup jet in simulation if it cannot

be matched to any particle-level jet from the Higgs boson production vertex with a transverse

momentum larger than 10 GeV within ∆R < 0.4. The fraction of selected jets stemming from

pileup interactions in simulation is 6 % according to this definition. The efficiency with which

pileup jets pass the jet selection cannot be expected to be identical in data and simulation. In

order to estimate the effect of this potential difference on the bin-by-bin correction factors for jet-

related distributions, 20 % of the selected pileup jets in simulation are randomly removed. This

percentage corresponds to an estimate for the relative difference in efficiencies of pileup jets to

pass the jet-vertex-tag requirement in data and simulation. The uncertainty from the contribution

of pileup jets on the correction factors is assessed by comparing the nominal correction factors

with those resulting from events with such modified sets of jets.

Photon Selection

The efficiency of the photon identification and isolation selection in simulation and in data are

generally not identical. In order to correct for these differences between events in simulation

and in data, scale factors are multiplied as additional factors to the weights of the simulated

events. See Chapter 4 for details on the photon identification efficiencies and the corresponding

scale factors, given by the ratio of identification efficiencies in data and in simulation. Both

identification and isolation efficiency scale factors are known only with limited accuracy. The

uncertainties on the identification and isolation efficiency scale factors are of the order 1 % in the

relevant photon pT region [147]. In Figures 4.25 and 4.26, the scale factors and uncertainties are
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shown for identification efficiencies. In order to propagate uncertainties in the identification and

isolation scale factors to the cross section measurement, the scale factors are varied within their

uncertainties and the resulting correction factors are compared to the nominal correction factors.

Photon Energy Scale and Resolution

The uncertainty on the photon energy scale and resolution is not only relevant in the signal yield

extraction as described in Section 5.6.1, but also in the determination of the correction factors.

Systematic variations of the photon energy scale and resolution lead to migrations in and out

of the fiducial region and between bins of the pH
T and |yH | distributions. The uncertainty on the

energy scale and resolution is propagated to the correction factor uncertainties by computing the

difference between the nominal correction factors and the correction factors based on the up-

and down-variations of energy scale and resolution.

Jet Calibration and Flavor Tagging

When considering differential distributions in p j1
T or Nb−jets, the systematic uncertainties of the jet

energy determination and jet modeling need to be propagated. The calibration of jet energies is

outlined in Section 3.3.4. The relevant uncertainties include, but are not limited to, uncertainties

within the in situ calibration procedure, uncertainties that account for potential mismodeling

of the pileup effects, as well as uncertainties in the jet composition. In the case of Nb−jets, also

uncertainties related to a potential mismodeling of the b-tagging efficiency need to be propagated

to the correction factors for the Nb−jets distribution. The uncertainty on the correction factors

is determined by quadratically adding differences between the nominal correction factors and

correction factors resulting from variations of the relevant jet-related parameters.

Theoretical Uncertainties

The correction factors are sensitive to the modeling of the underlying physics. Several modeling

aspects are taken into account in order to estimate the theoretical uncertainty on the correction

factors.

Because correction factors for the various Higgs boson production modes differ to some extent,

the corrections factors are sensitive to the relative contributions, as can be seen in Eq. (5.11).
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The cross sections for the individual production modes that enter this equation are based on SM

predictions. By computing the differences between the nominal correction factors and correction

factors that are based on varied contributions from different production modes, the uncertainty on

the production mode contributions are propagated to the correction factors. In Table 5.3 the up-

and down-variations applied to the cross section of six of the production modes independently

are shown. These variations are based on References [202–204]. When scaling the cross section

of a particular production mode up or down, the cross sections of all other production modes are

kept at their SM value. The production modes with the smallest cross sections are not listed in

Table 5.3 and are not considered in the variation scheme, that is, their contributions are assumed

to be correctly described by the SM. This is justified by their small cross section; variations of

these cross sections would result in negligible effects on the correction factors.

σpm±∆σpm
σpm

ggF VBF WH ZH tt̄H bb̄H

Up 1.145 1.203 1.433 1.468 1.500 1.220
Down 0.855 0.797 0.567 0.532 0.700 0.780

Table 5.3. | Orthogonal variations (scaling factors, SM corresponds to 1) of the cross section contributions
of individual Higgs boson production modes that are used to determine the modeling uncertainty on the
correction factors due to a limited knowledge about the relative contributions from different production
modes. Each production mode contribution is varied independently. Values for all production mode
variations except tt̄H and bb̄H are based on Reference [202]. The tt̄H and bb̄H variations are based on
References [203] and [204], respectively.

Another source of theoretical uncertainty is the sensitivity of the correction factors to the differ-

ential distributions in simulation. In order to directly assess the impact of potential mismodeling

of the predicted distributions on the unfolded results, alternative sets of correction factors are

derived based on distributions from simulated events in which event weights are modified such

that the resulting pH
T and |yH | distributions at reconstruction level correspond to the observed

distributions. The reweighting factors are derived from a fit of an appropriate function to the

observed spectrum and correspond to the ratio of the fitted function to the SM expectation. The

resulting reweighting factors, which are smoothed before application, are shown in Figures 5.4a

and 5.4b for pH
T and |yH |, respectively. Three varied sets of correction factors are produced: one

in which only the pH
T distribution is modified, one in which only the |yH | distribution is modified,

and one in which both pH
T and |yH | distributions are modified. The maximal deviation of the
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three resulting varied correction factors from the nominal correction factor is taken to be the

corresponding uncertainty on the correction factor.
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Figure 5.4. | Factors for an event reweighting based on (a) pH
T and (b) |yH | in simulated H→ γγ events.

By comparing correction factors based on reweighted samples to correction factors from the nominal
SM prediction, the impact of a potential mismodeling of differential distributions in simulation on the
correction factors is estimated.

Furthermore, an uncertainty due to a potential mismodeling of the underlying event and the

parton shower has been taken into account. This uncertainty has been estimated by comparing

the nominal correction factors, which are based on the use of Pythia8, with those for which

Herwig++ was used as parton shower simulation. For the estimation of this uncertainty, only

the effect on the dominant Higgs boson production mode, gluon fusion, was considered. Other

production modes, having considerably smaller cross sections, have been omitted here due to

the large computational effort that would be necessary for the evaluation of an uncertainty that

generally has a small impact on the total uncertainty on the correction factors. Due to a relatively

low number of simulated events with Herwig++ as parton shower simulation and resulting

statistical fluctuations in some phase-space regions, the uncertainty per bin are estimated based

on a linear fit to the distribution of differences between correction factors based on Pythia8 and

Herwig++.

The three theoretical uncertainties on the correction factors as described above are combined

by taking the envelope of these. A further theoretical uncertainty, an uncertainty related to the
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limited knowledge of the Dalitz-events fraction among selected events, is taken into account

separately. The sensitivity of the correction factors on the assumed value for the fraction of

Dalitz events is estimated by comparing the nominal correction factors to correction factors

which are based exclusively on non-Dalitz events.

5.7. Results

5.7.1. Inclusive Cross Section

The measured inclusive Higgs boson production cross section in the diphoton decay channel is

σfid =
(
60.4 ± 6.1(stat.) ± 6.0(exp.) +0.3

−0.4 (theo.)
)

fb ,

in the fiducial phase-space volume, which is in good agreement with the SM prediction,

σSM
fid = (63.5 ± 3.3)fb .

The relative statistical and systematic uncertainties of the measurement are approximately 10 %

each. Thus, in this particular case of a relatively large phase-space region, the statistical uncer-

tainty is similarly small as the combined systematic uncertainties. The systematic uncertainties

in the signal yield extraction and the uncertainty on the photon isolation efficiency are the largest

systematic contributions to the uncertainty. The uncertainty on the luminosity, being 2 %, is a

minor contribution. Theoretical uncertainties on the correction factors are a minor uncertainty

contribution, amounting to a relative uncertainty of less than 1 %, which highlights the low model

dependence of the measurement. A detailed decomposition of the uncertainty into its various

contributions is given in Table 5.4.

5.7.2. Differential Cross Sections

In the following sections, the measured differential cross sections are shown and compared

to SM predictions. See Section 2.6.4 for descriptions of the presented predictions. Statistical

uncertainties dominate in the differential cross sections, and combined uncertainties generally
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Contribution Relative uncertainty [%]

Fit, statistical uncertainty 10.1
Fit, systematic uncertainty 4.0
Spurious signal 7.3
Dalitz events 0.4
Luminosity 2.0
Trigger efficiency 0.7
Pileup jets & Vertex Selection 0.1
Pileup reweighting 1.9
Photon energy scale & resolution 0.1
Photon isolation efficiency 4.6
Photon identification efficiency 1.3
Theoretical uncertainty +0.3

−0.4
Total uncertainty +14.2

−14.2

Table 5.4. | Uncertainty contributions in the measurement of the inclusive H→ γγ cross section in the
fiducial phase-space volume.

are larger than 20 % in all considered phase-space regions. The systematic uncertainties from

signal yield extraction are typically the second-largest uncertainty contribution, followed by the

correction factor uncertainties, and, finally, by the uncertainty on the integrated luminosity.

The agreement between the measured spectra and the SM predictions can be quantified using

the p-value, which is a measure of how probable is to observe deviations from the SM as large

or larger than seen in the measured spectrum; see Section 6.3.1 for more information. The

covariance matrix that is used for the determination of the p-value includes the statistical and

systematic components of the measurement uncertainties as well as the theoretical uncertainties

on the SM prediction.

Transverse Momentum of the Higgs Boson

The comparison of the observed differential cross sections in pH
T with predictions is shown in

Figure 5.5a. The measured spectrum agrees well with the predictions within uncertainties. The

compatibility of the measured spectrum with the SM prediction corresponds to a p-value of

31 %. In Figure 5.5b, the relative uncertainty contributions are shown as a function of pH
T . The

statistical uncertainty is the dominant uncertainty contribution in all bins, ranging from 20 %
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to 90 %, followed by signal extraction uncertainties. Uncertainties from unfolding amount to

approximately 5 %, shown in Figure 5.5c. The uncertainty on the photon isolation efficiency is

the largest contribution to the correction factor uncertainty.

(a)

(b) (c)

Figure 5.5. | (a) Comparison of observed and predicted differential H→ γγ cross sections in pH
T . (b) Sum-

mary of uncertainties. (c) Breakdown of the correction factor uncertainty. Taken from Reference [171].

Transverse Momentum of the Leading Jet

The observed and predicted differential cross sections in p j1
T are shown in Figure 5.6a. The

agreement between predictions and measurement is good, with a p-value of 88 %. In Figures
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5.6b and 5.6c, a summary of the uncertainty contributions is given. Combined uncertainties

range from 20 % to 50 %. Among the correction factor uncertainties, which are typically smaller

than 10 %, the jet energy scale and resolution uncertainties as well as the uncertainty on the

photon isolation efficiency are the dominant contributions.

(a)

(b) (c)

Figure 5.6. | (a) Comparison of observed and predicted differential H→ γγ cross sections in p j1
T . (b) Sum-

mary of uncertainties. (c) Breakdown of the correction factor uncertainty. Taken from Reference [171].
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Higgs Boson Rapidity

The measured differential cross section in the absolute value of the Higgs boson rapidity, |yH |,

is shown in Figure 5.7a in comparison with predictions; both distributions are well compatible

within the uncertainties, corresponding to a p-value of 56 %. In Figure 5.7b, a summary of the

relative uncertainties is shown, while in Figure 5.7c the contributions to the relative uncertainty

on the correction factors are presented. The combined uncertainties range from 25 % to 75 %.

Being in the range of 20 % to 60 %, the statistical uncertainty is the dominant contribution,

followed by signal extraction uncertainties, i.e. the spurious signal and uncertainties on photon

energy scale and resolution. Among the correction factor uncertainties, the uncertainty on the

photon isolation efficiency is largest.

Number of b-jets

The differential cross section in the number of b-jets is shown in Figure 5.8a, explicitly also

showing the expected contribution from tt̄H, which is substantial at higher b-jet multiplicities. In

the region of at least two b-jets, tt̄H is expected to contribute more than 50 % of events, despite

its overall small production cross section. There is a good agreement between predicted and

measured distributions, corresponding to a p-value of 84 %.

In Figures 5.8b and 5.8c, a summary of the uncertainties on the measured cross sections

is shown. The combined uncertainty ranges from about 30 % to 200 %, with the statistical

uncertainty being the dominant contribution, particularly so in the bin with at least two recon-

structed b-jets. Among the correction factor uncertainties, the uncertainty on the photon isolation

efficiency dominates.
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(a)

(b) (c)

Figure 5.7. | (a) Comparison of observed and predicted differential H→ γγ cross sections in |yH |. (b) Sum-
mary of uncertainties. (c) Breakdown of the correction factor uncertainty. Taken from Reference [171].
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(a)

(b) (c)

Figure 5.8. | (a) Comparison of observed and predicted differential H → γγ cross sections in Nb−jets.
(b) Summary of uncertainties. (c) Breakdown of the correction factor uncertainty. Taken from Refer-
ence [171].

5.8. Summary

Using pp collision data corresponding to an integrated luminosity of 79.8/fb collected at a center-

of-mass energy
√

s = 13TeV, inclusive and differential Higgs boson production cross sections

have been measured in the H→ γγ decay channel. The considered fiducial phase-space volume

is designed to be similar to the detector acceptance, resulting in only a small model dependence

of the measurement. Using the bin-by-bin unfolding method, a correction for detector effects of
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signal yields from the maximum-likelihood signal-plus-background fit has been performed. The

work done within the context of this thesis was focused on the unfolding procedure.

The inclusive cross section for the production of Higgs boson decaying to a pair of photons

has been measured to be

σfid =
(
60.4 ± 6.1(stat.) ± 6.0(exp.) ± 0.3(theo.)

)
fb ,

agreeing well with the SM prediction ofσSM
fid = (63.5 ± 3.3)fb. Similarly, the observed differential

cross sections in the variables pH
T , p j1

T , |yH |, and Nb−jets are also in good agreement with the

corresponding SM predictions. For all differential cross sections, the statistical uncertainty is the

dominant uncertainty contribution. In the inclusive cross section measurement, the systematic

uncertainty is of similar size as the statistical uncertainty. Among systematic uncertainties,

signal-extraction-related uncertainties typically largest. In all considered kinematic regions, the

uncertainties from the unfolding procedure are relatively small.
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6. Measurement of Heavy-Flavor Quark

Yukawa Couplings

6.1. Introduction

Because differential cross sections are sensitive to certain model parameters, they can be used to

set limits on these parameters. The distribution of the Higgs boson transverse momentum (pH
T ) is

sensitive to the Yukawa couplings between the Higgs boson and quarks; therefore, it is possible to

constrain those couplings by a fit to the measured pH
T spectrum. This approach can be contrasted

with more direct methods of coupling measurements in which events containing final-state quarks

resulting from Higgs boson decays or from Higgs boson production in association with quarks

are analyzed.

The Higgs boson is predicted to couple to quarks via a Yukawa interaction with a coupling

proportional to the mass mq of the quark flavor in consideration, ySM
q = mq/v, where v denotes

the vacuum expectation value of the Higgs field, see Section 2.3.2. Correspondingly, the Yukawa

couplings of the quark types with the largest mass, i.e. the t- and b-quark have been measured

most accurately.

6.1.1. Review of Recent Measurements of Quark Yukawa Couplings

The results of the most recent measurements of the t-quark’s and the b-quark’s coupling to the

Higgs boson are well compatible with the SM predictions. In Reference [205], in which data

corresponding to an integrated luminosity of 80/fb have been analyzed, the modifier for the

t-quark Yukawa coupling,

κt = yt/ySM
t , (6.1)
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has been measured to be 1.02+0.11
−0.10, assuming no beyond-SM decay channels of the Higgs boson.

The b-quark Yukawa-coupling modifier

κb = yb/ySM
b (6.2)

has been determined to be 1.06+0.19
−0.18 in the same publication. In a more recent measurement [206]

based on a dataset corresponding to an integrated luminosity of 139/fb using events in which

the Higgs boson was produced in association with a W± or Z boson and decayed to a pair of

b-quarks, the following signal strength was measured:

µ =
σ(pp→ VH)×B(H→ bb̄)

σSM(pp→ VH)×BSM(H→ bb̄)
= 1.02+0.18

−0.17 ,

where V corresponds to either the W± or the Z boson. Assuming SM couplings between the

Higgs boson and the weak gauge bosons, W± and Z, this translates to κb = 1.02+0.22
−0.21. In summary,

both κt and κb are already well constrained by the Higgs boson couplings measurement and

within uncertainties consistent with SM predictions.

The c-quark is a second-generation fermion, a class of particles whose Yukawa couplings are

of particular interest after the measured Yukawa couplings of third-generation fermions such as

t- and b-quarks as well as the τ lepton are so far consistent with SM predictions [205, 207, 208].

The precise measurement of the Yukawa coupling between fermions with a relatively low mass

such as the c-quark and accordingly with a small expected coupling to the Higgs boson is more

challenging than in the case of the b- or the t-quark. While the c-quark content in the proton is

larger than the b-quark content due to the c-quark’s lower mass, the c-quark Yukawa coupling is

about mb/mc = 3GeV/0.65GeV times smaller than the b-quark Yukawa coupling. Moreover,

the tagging of c-jets, i.e. jets resulting from a final-state c-quark, is less efficient than the tagging

of b-jets [194].

In References [209] and [210], measurements by the ATLAS and CMS collaboration, respec-

tively, are described that constrain the c-quark Yukawa coupling using events containing pairs

of reconstructed c-jets which are consistent with resulting from H → cc̄ decays. In the case

of the ATLAS analysis, using a dataset corresponding to an integrated luminosity of 36/fb at
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√
s = 13TeV, the observed upper limit on the signal strength is

µ =
σ(pp→ ZH)×B(H→ cc̄)

σSM(pp→ ZH)×BSM(H→ cc̄)
< 110

at 95 % confidence level. The CMS analysis yields an observed upper limit on

µ =
σ(pp→ VH)×B(H→ cc̄)

σSM(pp→ VH)×BSM(H→ cc̄)
< 70 ,

using 36/fb of data collected at
√

s = 13TeV. These limits cannot be translated into limits on

the c-quark Yukawa-coupling modifier,

κc = yc/ySM
c , (6.3)

due to their weakness1. By analyzing larger datasets, this situation could be improved. However,

it is possible to explore alternative ways of measuring the c-quark Yukawa coupling in parallel.

A fit of the observed pH
T spectrum in order to set limits on κc is such an alternative method. It

appears natural to not limit such an alternative method of measuring quark Yukawa couplings to

the c-quark. Its application to the Yukawa coupling of b-quarks, which has similar properties as

the c-quark, accordingly is also part of this work.

6.1.2. Prediction Model

A measurement of κc and κb can be performed by comparing the observed pH
T spectrum to

predictions for a range of values of κc and κb. In order to obtain the necessary set of predictions,

it is helpful to single out the Higgs boson production modes whose cross section is sensitive to

the value of κc and κb. Only the pH
T spectrum of gluon fusion and c- and b-quark-initiated Higgs

boson production (cc̄→ H, bb̄→ H) depend on these couplings; for all other production modes,

SM predictions can be used.

The observed pH
T spectrum used for the fit is based on the combined 2015 – 2018 dataset in

the H→ γγ decay channel [145]. Its measurement corresponds to an update of the measurement

of the differential and inclusive cross sections as presented in Chapter 5 with a larger dataset

1In order to set an upper limit on κc, the corresponding upper limit on µ has to be smaller than 1/B(H→ cc̄) = 34.6.
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and slight modifications in the method. The measured cross sections correspond to Higgs boson

production cross section multiplied with the H → γγ branching ratio, σ× Bγγ. The H → γγ

branching ratio is sensitive to the specific couplings of the Higgs boson to many other particles.

As one can deduce from Eq. (2.17), the H → γγ branching ratio is sensitive to the H → γγ

decay width as well as to the sum of the decay widths of all other decay channels. This entails a

sensitivity to a large number of model parameters; this sensitivity can be reduced by disregarding

normalization information and taking into account exclusively information about the shape of

the distribution in the fit. In order to achieve this, predictions for the pH
T spectrum are normalized

to the integrated cross section of the observed spectrum before fitting. Because the H → γγ

branching ratio is sensitive to κb and κc, the inclusion of normalization information would help

to constrain these parameters, at the cost of a larger model dependence.

The normalized predicted cross section in a pH
T bin with index i is given by

σi
pred(κc, κb) = [σi

ggF(κc, κb) · cggF
np, i + σi

bb̄→H(κb) · cbb̄→H
np, i + σi

cc̄→H(κc) · ccc̄→H
np, i

+σi
VBF + σi

VH + σi
tt̄H] · cnorm · cnorm

np , (6.4)

where the factors cpm
np, i take the nuisance parameter influence on the predicted spectrum for a

given production mode into account; they correspond to

cnp, i =
∏

j

(1 +λ
j
np ·∆

j
np, i) . (6.5)

Here, λ j
np denotes the floating nuisance parameter with index j, which are constrained by

Gaussian p.d.f.s. The parameters ∆
j
np, i denote the relative shift of the cross section in bin i that

results from the variation of nuisance parameter j by one standard deviation from its mean value.

The overall normalization factor, which is included for reasons of reduction of model dependence

as explained above, is given by

cnorm =

∑
bin i

σi
meas

/∑
bin i

σi
pred,unnorm . (6.6)

The application of this factor results in the integrated cross section of the predicted pH
T spectrum

being equal to the observed spectrum, before an additional, freely floating normalization factor
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cnorm
np is included as a factor. The inclusion of the factor cnorm

np improves the quality of the fit in

the general case where the shape of the predicted spectrum is not identical with the shape of the

observed spectrum.

The dependence of the gluon fusion cross section σggF on κc and κb includes both linear and

quadratic terms in these parameters. Quadratic terms result from the squaring of the gluon

fusion amplitude, which contains the Yukawa coupling for the quark in the gluon fusion loop,

in the cross section calculation. Linear terms result from interferences between gluon fusion

processes in which different quark types are running in the gluon fusion loop. In the case

of the cc̄→ H and bb̄→ H cross sections, no interference terms exist, resulting in a purely

quadratic dependence on κc and κb, respectively. Combining the gluon fusion contributions, the

quark-initiated contributions and all Higgs boson production contributions that are not sensitive

to the values of κc an κb (σother), while assuming SM t-quark Yukawa coupling (κt = 1), one

obtains an expression of the form

σpp→H(κc, κb) = σggF +σbb̄→H +σcc̄→H +σother

= ctt
ggF + ctb

ggF · κb + ctc
ggF · κc + cbc

ggF · κbκc

+ (cbb
ggF + cbb̄→H) · κ2

b + (ccc
ggF + ccc̄→H) · κ2

c +σother . (6.7)

The coefficients cqq
ggF, cqq′

ggF correspond to the SM cross section contributions from gluon fusion,

and the coefficients cqq̄→H to the SM cross section contributions from quark-initiated Higgs

boson production.

If one varies either κc or κb individually and calculates the difference to the SM prediction in

which κc = κb = 1, one obtains

∆σ = σ(κ)−σSM = a ·
(
κ+

b
2a

)2

−

(
a + b +

b2

4a

)
, (6.8)

with a = cqq
ggF + cqq̄→H and b = ctq

ggF + cbc
ggF. Accordingly, the difference in cross section relative to

the SM prediction for a given bin corresponds to a quadratic function of the Yukawa-coupling

modifier κ.
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6.1.3. Treatment of Uncertainties

The fit of the pH
T spectrum based on which limits are set on κc and κb is performed using the profile

likelihood method as described in Section 6.3.1. Uncertainties are incorporated in two different

approaches. The statistical and systematic uncertainties on the fitted pH
T spectrum as well as

theoretical uncertainties on the VH and tt̄H Higgs boson production contributions are taken into

account by means of a covariance matrix. All uncertainties on the cross section contributions

of gluon fusion and quark-initiated Higgs boson production are taken into account by nuisance

parameters. These nuisance parameters are constrained by standard normal distributions, i.e.

they are centered at 0 and have a standard deviation of 1. Details on the determination of the

corresponding uncertainties are given in Section 6.2.

6.1.4. Fit Range

The low pH
T region of the differential cross section is most sensitive to the value of κc and κb. It

has been studied how the inclusion of higher bins of the pH
T spectrum affects the sensitivity of the

κc and κb fit; the result is shown in Figure 6.11 in Section 6.4.1. The benefits of including bins

at higher pH
T are relatively small, although not negligible. The computational effort to produce

reliable spectrum templates and uncertainties grows with increasing pH
T range as considerable

larger numbers of events need to be simulated. As a result, it was decided to limit the fit to the

pH
T range from 0 GeV to 140 GeV for the present. For future studies, it is planned to take into

account the full range in pH
T .

6.2. Predictions

For the procedure of setting limits on κc and κb, it is necessary to be able to predict the pH
T

spectra for arbitrary values of κc and κb. In this section, the methods to predict such spectra

and determine related theoretical uncertainties for gluon fusion and quark-initiated Higgs boson

production are detailed.
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6.2.1. Gluon Fusion

Gluon fusion predictions for the Higgs boson pT spectrum have been provided by theorists [104,

105] for all combinations of the κc and κb values given in Table 6.1. These predictions can be

κc: -10 -5 0 1 5 10
κb: -2 -1 0 1 2

Table 6.1. | Values for κc and κb for which gluon fusion predictions have been provided.

used to determine the coefficients cqq
ggF and cqq′

ggF, q, q′ ∈ {t, b, c}, introduced in Eq. (6.7): the

predictions allow to construct an overconstrained set of equations of the form

σggF = ctt
ggF · κ

2
t + ctb

ggF · κtκb + ctc
ggF · κtκc + cbc

ggF · κbκc

+ cbb
ggF · κ

2
b + ccc

ggF · κ
2
c (6.9)

for each bin of the differential pH
T distribution. These sets of equations were solved using a

method of least squares, resulting in the above-mentioned coefficients. The coefficients cqq
ggF,

which correspond to the cross section contributions from gluon fusion processes with a quark of

type q in the gluon fusion loop, are generally positive. The interference terms cqq′

ggF, on the other

hand, can give both positive and negative contributions to the cross section. Numerical values

for these coefficients are shown in Figure 6.1. Because the t-quark gluon fusion contribution is

much larger than all other contributions, all contributions are scaled up for this plot such that the

visibility of their features is improved. In all pH
T bins, the dominant contribution to the ggF cross

section results from the t-quark loop, i.e. the coefficient ctt
ggF. The interferences of the t-quark

gluon fusion loop with the b- and c-quark loop, denoted by ctb
ggF and ctc

ggF, are comparatively

small, but not negligible. They are negative at pH
T values below 80 GeV. The coefficients cbb

ggF,

ccc
ggF, and cbc

ggF, are very small.

The gluon fusion predictions for the individual combinations of κc and κb are computed using

RadISH; see Section 2.6.4. For the renormalization, factorization and resummation scale, a cen-

tral value of mH/2 is assumed. The PDF set used for these predictions is PDF4LHC15_nnlo_mc.

In order to improve the accuracy of the predictions for the pH
T spectra, they are multiplied with
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Figure 6.1. | Coefficients for gluon fusion contributions from different quark types in the gluon fusion
loop in Eq. 6.9. Additionally, cross section contributions from the cc̄→ H and bb̄→ H Higgs boson
production modes, described in Section 6.2.2, are shown. Coefficients with relatively small values are
scaled up in order to facilitate a comparison.

a scaling factor

σN3LO/σRadISH(κb = 1, κc = 1) = 1.165 ,

where σRadISH(κb = 1, κc = 1) denotes the total cross section of the RadISH prediction at SM

parameter values, and σN3LO to the inclusive cross section of the state-of-the-art gluon fusion

prediction with N3LO accuracy for the inclusive cross section, see Section 2.6.4.

The predictions are given for inclusive Higgs boson production in the gluon fusion production

mode, its decay was not taken into account at that stage. Therefore, the SM H→ γγ branching

ratio has been multiplied to the predicted cross sections. In order to achieve comparability

with the observed pH
T spectrum, which was measured in a fiducial phase-space defined by the

kinematics and isolation of the photons (see Section 5.3.2), the inclusive gluon fusion predictions

need to be corrected for the difference in considered phase-space volume. For this, it is assumed

that the correction does not depend on the value of κc and κb. Ideally, one would derive such

acceptance corrections as a function of κc and κb, but the calculations necessary for this are

lacking. The acceptance corrections are determined using the nominal NNLOPS ggF simulation,
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see Section 2.6.4, and are shown as a function of pH
T in Figure 6.2.
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Figure 6.2. | Phase-space corrections to be applied to RadISH predictions as derived from the NNLOPS
gluon fusion simulation. The fiducial selection includes requirements on the photon transverse momentum,
photon pseudorapidity, and photon isolation. The shown error bars correspond to a combination of PDF
uncertainties and uncertainties due to missing higher orders of QCD calculation.

The upper and lower limits of the provided prediction for the pH
T spectrum are 0.5 GeV

and 245 GeV, respectively. Based on the nominal NNLOPS ggH simulation, this has been

extrapolated to 0 GeV and 250 GeV, respectively, in order to be consistent with bin boundaries

in the measured pH
T distribution.

Uncertainties

The gluon fusion predictions have uncertainties due to the imperfect knowledge of the proton PDF

as well as due to missing higher-orders of the QCD calculation. The phase-space corrections for

the gluon fusion prediction are subject to these types of uncertainties as well. Correlation between

the uncertainties on the phase-space corrections and the cross section predictions in an inclusive

phase-space volume are not known; they are treated as uncorrelated in this measurement.

Perturbative uncertainties for the gluon fusion prediction are estimated through variations of

the renormalization scale µr, the factorization scale µf, and the resummation scale Q around

the central value of mH/2. The correlation scheme between the three scale variations has been

chosen such that the resulting uncertainty is maximal, corresponding to a simultaneous variation

of the renormalization and factorization scales. The resummation scale is varied independently
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of the other two scales. In Figure 6.3a the relative effects of corresponding scale variations by

factors of 1/2 and 2 are shown. For each value of κb and κc, the scale variations lead to slightly

different relative differences between the nominal cross sections and the cross sections based

on varied scales. Among those different values for the relative differences from scale variations

at different κb and κc values, the maximal value is chosen in order to obtain a conservative

uncertainty estimate.

The PDF-related uncertainty of the RadISH gluon fusion prediction is estimated using the

NNLOPS ggF simulation, which is warranted because the same PDF set is used in both predic-

tions. Uncertainties on the proton PDF are encapsulated in 30 eigenvectors of the covariance

matrix of the parameters that describe the PDFs [184, 211]. By repeating the PDF fit on the input

data with varied parameters according to the direction in parameter space of these orthogonal

eigenvectors, variations of the best-fit PDF set are derived and are accessible in the NNLOPS

ggF sample. The relative differences between the differential cross section as computed with the

nominal PDF set and the differential cross sections as computed with the varied PDF set serve as

input to the overall PDF uncertainty on the measurement of κc and κb. Not all of these variations,

however, lead to significant changes in the differential cross section. The three PDF eigenvectors

resulting in the largest deviations from the nominal prediction enter the analysis; see Figure 6.3b

for the corresponding relative differences which are used as uncertainties in the κc and κb fit.

The correction factors that are used to render the ggF predictions comparable to the measured

differential cross section, which are given in a fiducial phase-space volume, are derived from

the nominal NNLOPS gluon fusion simulation. They are subject to theoretical uncertainties

related to missing higher orders of the QCD calculation and to PDF uncertainties. The combined

uncertainties are shown as error bars in Figure 6.2.

Bringing the three considered uncertainty contributions to the gluon fusion differential cross

section in a fiducial volume into relation to each other, the QCD-scale-related uncertainties

dominate, having relative uncertainties of approximately 20 % at larger values of pH
T and approx-

imately 10 % at low pH
T . The PDF uncertainties on the differential cross section in an inclusive

phase-space volume and the combined uncertainties on the phase-space corrections are of the

order O(1%).
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Figure 6.3. | (a) QCD-scale-related uncertainty contributions to the gluon fusion differential cross section.
The renormalization and factorization scales µr and µf are varied simultaneously, while the resummation
scale Q is varied independently. (b) PDF-related uncertainty contributions to the gluon fusion differential
cross section.

6.2.2. Quark-Initiated Higgs Boson Production

The dependence of the cc̄→ H and bb̄→ H differential cross sections on the Yukawa couplings

between the Higgs boson and the c- and b-quark, respectively, is less complicated than in the

case of gluon fusion. The cc̄→ H and bb̄→ H cross sections simply scale with κ2
c and κ2

b,

respectively. In Section 2.6.5 some aspects of the cross section calculation for the quark-initiated

Higgs boson production are discussed. Because the SM cross section prediction for the cc̄→ H

process is small, this process was not included in the central ATLAS simulation production.

Therefore, c-quark-initiated Higgs boson production had to be simulated in a separate setup. For

reasons of consistency, the b-quark-initiated Higgs boson production was simulated in the same,

separate setup. The event generator was chosen to be MadGraph5_aMC@NLO [113], which

was interfaced to the Pythia8 parton shower simulation, which also was used to simulate the

decay of the Higgs boson to a pair of photons. Processes of LO and NLO in QCD are accounted

for by the event generator; see Figures 6.4a and 6.4b for the contributing diagrams at LO and

NLO, respectively. The PDF set used for the cc̄→ H and bb̄→ H cross section computation is a

variant of the PDF4LHC15_nnlo_mc PDF set with an improved description of the b-quark PDF,

and was obtained from Reference [212]. The central values for the renormalization scale and
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the factorization scale have been chosen to be mH/2 and mH/4, respectively. In order to obtain

predictions for differential cross sections in a fiducial volume, the generated and showered events

are input to a Rivet routine [213], in which the fiducial selection criteria as given in Section 5.3.2

are applied at event level and in which the binning in pH
T is defined.

b,c

b, c

H

(a)

b, c H

gb, c

b, c

g

H

b, c

b, c

b, c

g

H

b, c

b, c
b, c

(b)

Figure 6.4. | b- and c-quark-initiated Higgs boson production diagrams in the 5FS at LO (a), and NLO (b).

The result for the inclusive cross section of c-quark-initiated Higgs boson production from

this simulation setup is (0.0813±0.0002) pb, assuming κc = 1 and not taking into account the

H→ γγ branching ratio. In an inclusive state-of-the-art computation at NNLO [64], the cross

section is predicted to be

σcc̄→H = 1.64 ·
m2

c

m2
b

±4.9%(perturbative) ±2.4%(PDF)pb.

The quark masses that were set as parameters in the MadGraph5_aMC@NLO simulation are

mb = 3.0GeV and mc = 0.65GeV. These values correspond to the 3-loop running quark masses

at a scale of mH/2 in the MS renormalization scheme [214–216], with mb(mb) = 4.18GeV

and mc(3GeV) = 0.65GeV. Evaluating Eq. (6.2.2) with these values leads to a predicted cross

section of (0.077±0.004) pb. In order to improve the accuracy of the MadGraph5_aMC@NLO

prediction, which is at NLO, the cross section from the simulation is scaled with a factor

σNNLO/σNLO = 0.077pb/0.0813pb such that the integrated cross section matches the NNLO
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state-of-the-art prediction, which is only available inclusively.

The bb̄→ H differential cross section from MadGraph5_aMC@NLO, which corresponds to

an inclusive cross section of 0.55 pb, is normalized to the state-of-the-art prediction [63]

σbb̄→H = 0.529±9.7%(perturbative) +2.2%
−3.0%(parametric)pb.

The resulting differential cross sections in pH
T for the cc̄→ H and bb̄→ H production modes

are shown in Figure 6.1 in comparison with the gluon fusion contributions. As one can see,

quark-initiated Higgs boson production cross sections are significantly smaller than the gluon

fusion cross section at SM parameter values. Due to the quadratic dependence on κc and κb,

however, the relative size can change considerably when values of κc or κb very different from

κSM = 1 are considered. In Figure 6.13 in Section 6.4.2, a comparison of spectra at different

values of κc and κb is shown.

Uncertainties

The predicted cross sections for the cc̄→ H and bb̄→ H processes are subject to uncertainties

due to missing higher orders of the perturbative expansion in αs, PDF-related uncertainties, as

well as an uncertainty related to the parton shower simulation.

In order to assess the uncertainty related to missing higher orders of the QCD calculation,

variations of the renormalization and factorization scales around their central values by factors

of 1/2 and 2 are performed. As in the case of gluon fusion, both scales are varied simultaneously

up and down. The differences between the differential cross section at the nominal scale choice

and the differential cross section at the varied scales are used as uncertainty. The result can be

seen in Figure 6.5a for the cc̄→ H prediction and in Figure 6.5b for the bb̄→ H prediction.

Typically, these uncertainties are in the range from 5 % to 20 %. Effects of statistical fluctuations

on the uncertainties at higher pH
T values are apparent, related to the fact that Higgs bosons in

cc̄→ H and bb̄→ H events tend to have low transverse momenta. For future measurements it is

planned to extend the sample size of simulated bb̄→ H and cc̄→ H events, which would result

in reduced statistical uncertainties on the estimate of the theoretical uncertainties.

The PDF-related uncertainty for the cc̄ → H prediction is assessed using 100 variations

included in the PDF set. These 100 variations are derived from 100 artificial datasets that have

been generated using a Monte Carlo method from the input data for the PDF determination [184,
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Figure 6.5. | Uncertainties due to missing higher orders in αs on the differential cross section of c-quark-
initiated Higgs boson production (a) and b-quark-initiated Higgs boson production (b). Error bars show
the statistical uncertainty due to a limited size of the simulated event sample.

217–219]. The uncertainty for a pH
T bin i is given by the standard deviation of the cross sections

that result from the application of the N = 100 PDF variations:

∆σi =

√√√√
1

N −1

100∑
j=1

(σ j
i −〈σi〉)2 , (6.10)

where σ j
i is the cross section resulting from the PDF variation j, and 〈σi〉 is the mean of the cross

section σi considering all PDF variations. An uncertainty related to the effect of the value of

αs on the PDFs is determined by computing the relative difference in differential cross sections

between the cases in which the lower bound on αs(mZ) of 0.1165 is used and in which the upper

bound of 0.1195 is used, divided by 2. The uncertainties from the PDF variations and from the

αs variations are added in quadrature. The result, amounting typically to about 3 %, is shown

in Figure 6.6a, in which the statistical uncertainty on the estimated PDF-related uncertainty is

indicated by error bars and is considerable at high pT.

In the case of the bb̄→ H predictions, the major contribution to the uncertainty of the b-quark

PDF is not captured reliably by the PDF variations as used for the c-quark PDF uncertainty.

Therefore, an alternative method of uncertainty estimation has been used for the bb̄ → H
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prediction: the b-quark PDF is a quantity that is computed perturbatively, and the corresponding

calculation involves the mass of the b-quark, mb, as well as the energy scale above which the

b-quark PDF is assumed to be non-vanishing, µb. The central value for these two parameters is

assumed to be 4.58 GeV. Both mb and µb are known only with limited precision, and the impact

of this uncertainty on the cross section is propagated by explicit variations of mb and µb in the

PDF set. The scale µb is varied by factors of 1/2 and 2. In the case of mb, the variation consists

in the addition and subtraction of 4 MeV, corresponding to the uncertainty on the b-quark mass.

In Figure 6.6b, the envelopes of the relative differences to the nominal bb̄→ H cross section

are shown for both variation types. Both uncertainties are of the order of several percent. The

uncertainty based on the variation of µb tends to be larger than that from the variation of mb. The

impact of statistical fluctuations is considerable, particularly at high pH
T .
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Figure 6.6. | (a) PDF-related uncertainty on the differential cross section of c-quark-initiated Higgs boson
production. The uncertainties from the PDF variations and from the αs variation are added quadratically.
(b) PDF-related uncertainty on the differential cross section of b-quark-initiated Higgs boson production.
These uncertainties are determined by comparing the nominal predicted pH

T spectrum with a prediction in
which mb or µb in the PDF computation are varied. The relative uncertainties correspond to the envelopes
of the up- and down-variations. Error bars indicate the statistical uncertainty due to a limited size of the
simulated sample.

Additionally, an uncertainty related to the modeling of the parton shower is considered. The

parton shower simulation involves the use of a variety of parameters that encapsulate perturbative

and non-perturbative aspects of the showering. A number of observables are used to estimate
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appropriate values for these parameters. Examples for these observables are the Z-boson pT

spectrum, the distribution of the azimuthal angle between the leading and sub-leading jets, and

the fraction of tt̄ events in which no jet above a given pT threshold is present in a given rapidity

region. The choice for the Pythia8 parameter set (tune) in this work is called A14. For this tune,

five systematic variations are available [182], two of which lead to considerable differences in

the differential cross section relative to the nominal tune in the bb̄→ H and cc̄→ H predictions,

denoted by 3b and 3c. These two eigentunes contain varied values for the strong coupling

constant αs as well as for parameters used in the showering of initial- and final-state partons.

The 3b variation contains, besides varied values for the strong coupling constant in both initial-

and final-state shower, parameters that modify the matching of emissions described by the matrix

element and those that are generated in the parton shower. Variation 3c consists of a variation in

the strong coupling constant used in the initial-state showering.

The resulting uncertainties, corresponding to the difference in differential cross section between

the predictions based on the nominal and varied parameter sets, are shown in Figure 6.7a for

cc̄→ H and in Figure 6.7b for bb̄→ H predictions. Particularly at low pT the corresponding

uncertainty is sizable, being close to 20 % in the case of the 3c variation.

0 20 40 60 80 100 120 140
 [GeV]

T
p

0.1−

0.05−

0

0.05

0.1

0.15

0.2

0.25σσ∆

Variation 3b

Variation 3c

(a)

0 20 40 60 80 100 120 140
 [GeV]

T
p

0.1−

0.05−

0

0.05

0.1

0.15

0.2

0.25σσ∆

Variation 3b

Variation 3c

(b)

Figure 6.7. | Parton-shower-related uncertainty on the differential cross section of c-quark-initiated Higgs
boson production (a) and b-quark-initiated Higgs boson production (b). This uncertainty is estimated
by comparing the prediction resulting from the nominal Pythia8 parameter set with predicted spectra
resulting from systematically varied parameter sets. Error bars indicate the statistical uncertainty due to a
limited size of the simulated sample.
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6.3. Limit Setting Procedure

Given a way of predicting the fiducial differential Higgs boson production cross section for

arbitrary values of κc and κb, a scan over a range of κc or κb can be performed, comparing the

corresponding predictions with the observed differential cross section. Using a profile likelihood

method, exclusion intervals can be determined based on the level of agreement between prediction

and measurement [220, 221].

6.3.1. The Profile Likelihood Method

In the following explanation of the basic principle of the profile likelihood method, µ and θ

denote the collections of parameters of interest and nuisance parameters, respectively. The

likelihood of observing a differential cross section consisting of n observed cross sections σi in

pH
T bins indexed with i is given by:

L(~σ |µ,θ) =

n∑
i=1

log fi(σi |µ,θ) , (6.11)

The p.d.f. according to which the random variable σi is distributed is denoted by fi(σi |µ,θ) and

depends on the model parameters µ and θ. It contains the prediction model, which in this context

is given by Eq. (6.4). The width of the p.d.f. depends on the statistical and systematic uncertainties

of the measured differential cross section and the theoretical uncertainties encapsulated by the

nuisance parameters.

A commonly used approach to determine best-fit values and confidence intervals for parameters

of interest is to profile out the nuisance parameters. The best-fit value for the parameter of interest

µ is then given by:

µ̂ = argmax
µ

{
max
θ
{L(~σ |µ,θ)}

}
. (6.12)

This corresponds to the profile likelihood method, which is used in this measurement. An

illustration of the principle is shown in Figure 6.8. For each scanned value of the parameter

of interest µ, a separate likelihood scan over the nuisance parameter θ is performed, and the

maximum likelihood from this separate scan over θ corresponds to the likelihood value for the

considered value of µ. The value µ̂ at which this profiled likelihood is maximal is considered to
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be the best-fit value for µ.

Figure 6.8. | Illustration of the parameter estimation in the profile likelihood method. The nuisance
parameter is labeled θ, and the parameter of interest is labeled µ. The likelihood L is a function of θ and µ.
The blue curve, which is the basis for the estimation of the best-fit value of µ, corresponds to the mapping
of the term maxθ{L(~σ |µ, θ)} in Eq. 6.12.

Because likelihoods as defined in Eq. (6.11) tend to have very small values, which can lead to

accuracy problems in floating-point number arithmetic performed by computers, it is useful to

perform the fit using the negative logarithm of the likelihood:

χ2(~σ |µ,θ)B −2lnL(~σ |µ, θ) . (6.13)

In the process of setting confidence intervals on the fitted parameters, it is helpful to consider the

following quantity as the figure of merit, called the log-likelihood ratio:

∆χ2(~σ |µ, θ)B χ2(~σ |µ, ˆ̂θ(µ))−χ2(~σ |µ̂, θ̂)

= −2
[
lnL(~σ |µ, ˆ̂θ(µ))− lnL(~σ | µ̂, θ̂)

]
= −2ln

L(~σ |µ, ˆ̂θ(µ))
L(~σ | µ̂, θ̂)

, (6.14)

where L(~σ |µ, ˆ̂θ) denotes the likelihood of observing the data ~σ assuming that the tested value of

µ and the best-fit value of θ at that value of µ are the true parameter values. L(~σ | µ̂, θ̂) corresponds

to the likelihood of observing the data ~σ assuming that the best-fit values of the parameters
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µ and θ are the true values, which corresponds to the maximally possible likelihood in the fit.

Therefore, the quantity ∆χ2(~σ |µ, θ) is a measure of how much less likely an observation is

when assuming a value of µ instead of the best-fit value µ̂. Having determined the value of

∆χ2(~σ |µ, θ) for a given value of µ (and θ) and observations ~σ, it can be decided whether these

parameters can be excluded with a certain level of confidence. Often, a 95 % confidence level

(CL) is chosen; this standard is adapted also in this measurement. In order to decide whether a

given value of ∆χ2(~σ |µ, θ) can be excluded at 95 % CL, the expected distribution of ∆χ2(~σ |µ, θ)

at the considered value for µ is needed, denoted g(∆χ2(~σ |µ, θ)). Based on this distribution it can

be determined how probable it is that, assuming the probed value of µ is the true parameter value,

a ∆χ2(~σ |µ, θ) equal or larger than the observed value ∆χ2(~σ |µ, θ)obs occurs in a measurement.

This is called the p-value, and can be computed using the following equation:

p−value =

∫ ∞

∆χ2
obs

g(∆χ2) d(∆χ2) . (6.15)

If for a probed value of µ this probability is below 1−CL = 1−0.95 = 0.05, that value is said to

be excluded at 95 % CL.

The outcome of the profile likelihood method depends to some extent on how the distri-

bution g(∆χ2) is estimated. In this work, the profile likelihood method is applied using two

different choices of g(∆χ2). The GammaCombo framework, which is used (version 1.0) for the

measurement of κc and κb, provides an implementation for both choices [222, 223].

6.3.2. Distribution of the Log-Likelihood Ratio

One method to estimate the distribution g(∆χ2(~σ |µ, θ)) of the log-likelihood ratio is based on the

asymptotic approximation, where the log-likelihood ratio ∆χ2(~σ |µ, θ) as defined in Eq. (6.14) is

assumed to be distributed according to a χ2 distribution with a number of degrees of freedom

equal to the number of fitted parameters of interest [224]. This simplifying assumption is

warranted in the large sample limit and if the tested parameter values are not close to possible

boundaries of the model. By assuming that ∆χ2(~σ |µ, θ) follows a nominal χ2 distribution, the

process of estimating confidence intervals is greatly simplified: in this case, one can rely on the

easily accessible cumulative density function of the nominal χ2 distribution for the computation
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of the p-value.

However, the actual distribution of the log-likelihood ratio may deviate significantly from

the nominal χ2 distribution. Therefore, it is advantageous to estimate the actual distribution

g(∆χ2(~σ |µ, θ)) for a given parameter value by creating numerous pseudo-experiments, also

called toys. Each of these pseudo-experiments is created by drawing random numbers according

to the p.d.f. in Eq. (6.11), where the parameter of interest is set to the considered value for µ.

The mean values of the nuisance parameters in the pseudo-experiments are set to the best-fit

value for the considered value of µ based on the observed data, i.e. the profile likelihood point.

As it is illustrated in Figure 6.8, for a fixed value of µ, the profile likelihood point ˆ̂θ corresponds

to the θ-value at which the likelihood is maximal, i.e.

ˆ̂θ(µ) = argmax
θ

L(~x |µ,θ) . (6.16)

For each of the pseudo-experiments, the log-likelihood ratio for the observation of the result of

the pseudo-experiment is determined. It is given by the difference between the log-likelihood

of observing the toy result when a) assuming that the tested value of µ is the true value, and b)

assuming that the best-fit value for µ for the pseudo-experiment, µ̂toy, is the true value:

∆χ2
toy(µ) = χ2(~xtoy |µ,

ˆ̂θtoy)−χ2(~xtoy | µ̂toy, θ̂toy) . (6.17)

By computing this quantity for many pseudo-experiments, the distribution g
(
∆χ2(~σ |µ, θ)

)
can

be estimated.

While the pseudo-experiment-based method is computationally more demanding than the

method based on the asymptotic approximation, it has better coverage properties. The coverage

probability is defined as the probability that the estimated confidence interval contains the true

parameter value [163]. This means that if the experiment and the analysis would be repeated many

times, in a fraction of experiments equal to the coverage probability the estimated confidence

intervals would contain the true value for µ. The nominal probability for the estimated confidence

interval containing the true value is equal to the confidence level, e.g. 95 %. However, the actual

coverage probability of the used method may deviate from this value. The smaller the difference

between the nominal coverage probability and the actual coverage probability, the better the
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coverage of the method. Because in the pseudo-experiment-based method less simplifying

assumptions are made than in the method of asymptotic approximation, the coverage of the

former is better than that of the latter. It should be mentioned, however, that also the pseudo-

experiment-based method has not necessarily perfect coverage properties, because the nuisance

parameter values in the pseudo-experiments are generated based on p.d.f.s that are centered at

the profile likelihood point.

6.4. Results

Based on the prediction model and the limit-setting procedure as laid out in the previous sections,

a fit of κc and κb was performed based on the pH
T spectrum as measured with the 2015 - 2018

dataset; that measurement is detailed in Reference [145] and corresponds to an updated version of

what has been presented in Chapter 5. In addition to one-dimensional fits in κc and κb individually,

in which κb and κc were fixed to 1, respectively, a two-dimensional fit in κc and κb has been

performed. First, the expected results based on an Asimov dataset [225] derived from the SM

predictions are shown, followed by the results based on the observed pH
T spectrum. The results

from the two different methods of estimating the ∆χ2 distribution as described in Section 6.3.2

are compared. Fits that have been performed using pseudo-experiments for that estimation were

based on 1000 generated pseudo-experiments. Confidence intervals are given at 95 % CL. In the

case of one-dimensional fits of either κc or κb, the corresponding 95 % CL quantile corresponds

to ∆χ2 = 3.84. For two-dimensional fits in κc and κb, the exclusion contours are defined by the

corresponding 95 % CL quantile ∆χ2 = 5.99 [163].

As can be seen in Figures 6.3a and 6.5, the uncertainties from up- and down-variations of

QCD scales, which are used to estimate uncertainties due to missing higher orders in αs, are not

exactly anti-symmetric relative to each other, i.e. ∆σ(µ up) , −∆σ(µ down), where µ represents

the varied QCD scales. Therefore, uncertainties from both up- and down-variations are included,

each associated with its own nuisance parameter. In order to avoid double-counting these

uncertainties, they are scaled by a factor of 1/
√

2.
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6.4.1. Expected Results

In order to obtain the expected limits on κc and κb, an Asimov dataset has been constructed

from the SM prediction, using uncertainties based on a previous measurement of the differential

cross section in pH
T using the 2015 – 2017 dataset [171]. In order to make this Asimov dataset

comparable to the observed distribution, which is based on an increased amount of collected

data, the statistical uncertainties of the Asimov dataset are scaled by a factor of

√
Lint,2015−2017

Lint,2015−2018
=

√
79.8/fb
139.0/fb

. (6.18)

Based on the expected differential cross section, the expected 95 % CL limits on κc and κb have

been determined; they are listed in Table 6.2 for both methods of estimating the ∆χ2 distribution.

The limits from both methods are in good agreement. Generally, the expected constraints on κb

κc κb

Asymptotic approximation [ -15.1 , 19.1 ] [ -4.6 , 10.2 ]
Pseudo-experiments [ -15.1 , 19.0 ] [ -4.6 , 10.8 ]

Table 6.2. | Expected confidence intervals at 95 % CL for κc and κb based on different fit methods.

are stronger than those on κc. There is certain asymmetry between the distance from the best-fit

value of κc = κb = 1 to the upper and lower limits, particularly so in the κb fit. The reason for

this are the linear terms in κc and κb in Eq. (6.7). At low to intermediate pH
T values, the linear

contributions, i.e. those proportional to κc or κb, to the differential cross section are negative, as

can be seen in Figure 6.1. The quadratic contributions, i.e. those proportional to κ2
b or κ2

c , are

always positive. Therefore, at positive values for κc and κb there is a certain cancellation of linear

and quadratic contributions to the predicted cross section. The combined effect of the linear and

quadratic modifications as a function of κc and κb for each bin in pH
T can be seen in Appendix D

in terms of σ(κc)−σ(κc = 1) and σ(κb)−σ(κb = 1), respectively.

Comparisons of the expected pH
T spectrum with the predicted spectra at values of κc and κb

equal to the expected 95 % CL limits are shown in Figures 6.13a and 6.13b, respectively. As in

the fit, the predicted spectra are normalized to the integrated cross section of the expected pH
T

spectrum.
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Figure 6.9. | Asimov dataset compared with non-SM predictions for κ values corresponding to the expected
95 % CL exclusion limits, see Table 6.2. In (a), κc is varied and κb is fixed to 1, while in (b) κb is varied
and κc is fixed to 1. The red uncertainty bands in the lower plots of (a) and (b) correspond to the theoretical
uncertainty on the SM prediction.
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In Figure 6.10a, the distribution of p-values based on the Asimov dataset is shown for the κc

fit, and in Figure 6.10b for the κb fit. As expected from an Asimov fit, the best-fit value of the

coupling modifiers κc and κb is the SM value of 1. A comparison of the p-values based on the

asymptotic approximation with those based on the pseudo-experiment-based method shows that

slight systematic differences are visible at low absolute values of κc and κb. To a larger extent,

these are also present in the fit result based on observed data; an explanation for these differences

is given in Section 6.4.3.
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Figure 6.10. | Distributions of p-values as a function of κc in (a) and κb in (b), based on the Asimov dataset.
The p-values resulting from the application of the asymptotic approximation are shown as blue-filled
curve, while those from the pseudo-experiment-based method are shown as black markers with error bars
indicating the statistical uncertainty on the p-values. Lines representing the 95 % CL limit are drawn.

The dependency of the expected confidence intervals on the fitted pH
T range is shown in

Figure 6.11. The simulation setup that was used to determine the production cross sections for

quark-initiated Higgs boson production and the corresponding uncertainties is most reliable

at low to intermediate pH
T . Moreover, with the current size of the sample of simulated events,

the statistical fluctuations of the theoretical uncertainties for qq̄→ H predictions are sizable

at large pH
T . At the same time, the inclusion of the large pH

T region provides relatively small

improvements in sensitivity, which is why the fit range has been chosen to be 0 GeV to 140 GeV

for this measurement. If, in addition, also the pH
T bins between 140 GeV and 250 GeV would

be included, the uncertainty would be reduced by 10 % to 15 %. For future measurements it is
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planned to include also the high-pH
T region.
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Figure 6.11. | Expected 95 % CL intervals for κb and κc based on the Asimov dataset as a function of
the included pH

T range, where in each case 0 GeV is the lower boundary of the fitted range. Due to a
considerable decrease of sensitivity below values for the upper boundary of about 60 GeV, corresponding
intervals are not shown in this plot.

The expected 95 % CL exclusion contours from a two-dimensional fit to set limits on κc and

κb simultaneously is shown in Figure 6.12. Both fit methods result in exclusion contours that are

in good agreement. No strong correlation between the two parameters is seen. Larger deviations

of κb from the SM value of κb = 1 lead to a stronger constraint on κc, and vice versa, resulting in

approximately elliptic exclusion contours.
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Figure 6.12. | 95 % CL contours for κb and κc corresponding to ∆χ2 = 5.99, based on the expected
differential cross section in pH

T . Both results from the pseudo-experiment-based method and the asymptotic-
approximation method are shown.

6.4.2. Observed Results

The 95 % CL exclusion intervals for κc and κb based on the observed pH
T spectrum from 2015 –

2018 data-taking are given in Table 6.3. The limits based on the asymptotic approximation and

those from the pseudo-experiments-based fitting method agree well with each other. Compared to

the expected limits, given in Table 6.2, the observed limits are somewhat weaker. In Figure 6.13

κc κb

Asymptotic approximation [ -18.7 , 24.1 ] [ -6.0 , 14.8 ]
Pseudo-experiments [ -19.2 , 24.9 ] [ -6.3 , 15.5 ]

Table 6.3. | Observed confidence intervals at 95 % CL for κc and κb based on different fit methods.

(a) and (b), a comparison of the observed spectrum, the SM prediction and the predictions

for κc and κb values corresponding to the exclusion limits is shown, respectively. The p-value

distributions are shown in Figures 6.14a and 6.14b for κc and κb, respectively. The results of

a simultaneous fit of κc and κb is shown in Figure 6.15. Both methods of estimating the ∆χ2

distribution lead to similar excluded regions in κc and κb.

While the excluded parameter regions from both fit methods are in good agreement, the same
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Figure 6.13. | Observed pH
T spectrum compared with the SM prediction as well as non-SM predictions for

κ values corresponding to the expected 95 % CL exclusion limits, see Table 6.3. In (a), κc is varied and κb

is fixed to 1, while in (b), κb is varied and κc is fixed to 1. The red uncertainty bands in the lower plots of
(a) and (b) correspond to the theoretical uncertainty on the SM prediction.

199



30− 20− 10− 0 10 20 30

cκ

0

0.2

0.4

0.6

0.8

1

1.2

-v
a

lu
e

p

Asymptotic Approximation

Pseudo-Experiments

(a)

20− 10− 0 10 20

bκ

0

0.2

0.4

0.6

0.8

1

1.2

-v
a

lu
e

p

Asymptotic Approximation

Pseudo-Experiments

(b)

Figure 6.14. | Distributions of p-values as a function of κc in (a) and κb in (b) based on the observed
differential cross section in pH

T . The p-values resulting from the application of the asymptotic approxima-
tion are shown as blue-filled curve, while those from the pseudo-experiment-based method are shown as
black markers with error bars indicating the statistical uncertainty on the p-values. Lines representing the
95 % CL limit are drawn.
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Figure 6.15. | 95 % CL contours for κb and κc corresponding to ∆χ2 = 5.99, based on the observed
differential cross section in pH

T . Both results from the pseudo-experiment-based method and the asymptotic-
approximation method are shown.
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is not generally true for the p-value distributions within the confidence intervals. As one can

see particularly well in Figure 6.14a, the p-values from the pseudo-experiment-based method

at small absolute values of κc are considerably lower than those from the application of the

asymptotic approximation. The reason for this will be discussed in some detail in the following

section.

6.4.3. Log-Likelihood-Ratio Distributions and the Prediction Model

The disagreement seen in Figure 6.14a between the p-values from the application of the asymp-

totic approximation and the pseudo-experiment-based method can be explained by differing

distributions of the log-likelihood ratio ∆χ2. At low absolute values of κc, this disagreement is

largest, coinciding with the κc region in which the predicted cross section per bin tends to be

minimal: the prediction model as given in Eq. (6.7) corresponds to a quadratic function in κc and

κb, with a global minimum that is determined by the interplay between different contributions to

the gluon fusion cross section and the cross sections for the cc̄→ H and bb̄→ H processes. In

Figure 6.16, the values of κ are shown for which the predicted cross sections in the individual

pH
T bins are minimal (κmin), i.e. σ(κmin) = σmin. The values for κmin range from about 2 at low

pH
T to about −1 in the highest considered pH

T bin. In Appendix D, the difference in predicted

cross section relative to the SM prediction as a function of κc and κb is shown for each pH
T bin.

It can be shown that the presence of a global minimum in the quadratic prediction model can

have a considerable impact on the log-likelihood-ratio distribution as estimated by the gener-

ation of pseudo-experiments. Because p-values are determined based on these distributions,

this can result in differences between p-values from the asymptotic approximation and the

pseudo-experiment-based method.

As described in Section 6.3.2, the pseudo-experiment-based method involves the generation of

many pseudo-experiments for each considered value of κ according to the p.d.f. of the observed

quantity, i.e. the cross sections per pH
T bin for that value of κ. For each of the generated toys, the

log-likelihood ratio ∆χ2 is computed. In Figure 6.17 an illustration of this process is shown for a

single bin and for two different κ values: one of the κ values (κmin) results in a cross section that

is very close to the smallest cross section the model is able to accommodate (σmin). The other κ

value results in a predicted cross section that is larger than σmin. Because the pseudo-experiments
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Figure 6.16. | Values of κb and κc for which the predicted cross section are minimal as a function of pH
T .

are generated according to a p.d.f. with a non-zero width, in the former case about half of the

generated pseudo-experiments will have a cross section that is lower than the lowest cross

section that can be accommodated by the prediction model. In the latter case, effectively no

pseudo-experiments will be generated with a cross section lower than σmin, under the condition

that the width of the p.d.f. is sufficiently small. For each generated pseudo-experiment, the

corresponding ∆χ2 is determined, i.e. the difference between the log-likelihood of observing the

toy result in the case of assuming that the probed value κ is the true parameter value, and in the

case of assuming that the best-fit value κ̂toy for the considered toy is the true parameter value,

see Eq. (6.17). In the case of κ = κmin, the best-fit value for κ will be κmin in about 50 % of the

pseudo-experiments. Accordingly, the ∆χ2 for this fraction of toys will be very close to zero. In

the case that the predicted cross section is sufficiently much larger than the minimal cross section

of the model, the resulting ∆χ2 distribution is able to approximate the nominal χ2 distribution,

which is used in the asymptotic approximation. As a result, the p-values from the asymptotic

approximation and from the pseudo-experiment-based method can deviate significantly from

each other when κ ≈ κmin. To be more precise, the p-value is expected to be lower for the

pseudo-experiment-based method in that parameter region.

The resulting difference depends on the extent of the deviation between prediction and
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Figure 6.17. | Illustration of the reason for differences between p-values from the application of the
asymptotic approximation and the pseudo-experiment-based method. For this illustration, a single pH

T
bin is assumed for reasons of simplicity. Figure (a) schematically shows the quadratic dependency of
the predicted cross section on the Yukawa-coupling modifier κ. The corresponding function has a global
minimum σmin at κmin. In the pseudo-experiment-based method of determining the ∆χ2 distribution,
for a given scanned value of κ, numerous pseudo-experiments are generated. The result of this pseudo-
experiment generation is shown in (b) for the two cases κ ≈ κmin and κ � κmin. In the course of the
calculation of the per-toy ∆χ2, the best-fit κ value for each toy is determined. In the third figure, the
distributions of the cross sections that correspond to the best-fit κ values for the two cases are shown.
While the in the case κ� κmin the best-fit cross sections are distributed similarly as the toy cross sections
in (b), the situation is different when κ ≈ κmin: The toys corresponding to the hatched area in (b) are best-fit
with the κ value κmin, as it leads to the minimally possible cross section the model can account for. In (d),
the resulting distribution of ∆χ2 for the two discussed cases is shown, in comparison with a schematic
version of the nominal χ2 distribution with a single degree of freedom. The ∆χ2 of a toy quantifies the
difference in likelihood of observing the outcome of the pseudo-experiment under the assumption that the
scanned value of κ is the underlying true parameter value and under the assumption that the best-fit value
of κ is the true parameter value. In the case of κ ≈ κmin, roughly half of the pseudo-experiments have a
best-fit κ value very close to the scanned κ value, which leads to very small differences in the likelihood
and correspondingly to vanishing values for ∆χ2.
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observation. If prediction for a given value of κ and observation (or the Asimov dataset) agree

well, the value for ∆χ2
obs in Eq (6.15) is small. The sensitivity of the integral in Eq (6.15) to the

normalized distribution of ∆χ2 vanishes as the lower integration limit ∆χ2
obs approaches zero.

Therefore, the disagreement between the p-value distribution from the asymptotic approximation

and from the pseudo-experiment-based method is small in the case of the Asimov dataset where

in the region κ ≈ κmin ≈ κSM the predicted spectrum and the reference spectrum agree well. When

instead of the Asimov dataset the observed spectrum is used as reference spectrum, relatively

large values for ∆χ2
obs result, even at κ ≈ κmin ≈ κSM, allowing the above-described effect of

differing ∆χ2 distributions to become well visible.

This discussion assumed that only a single bin of the differential cross section was taken into

account. By considering multiple bins, the effect of the generation of cross sections with lower

values than the minimal cross section of the prediction model is diluted. Even in the case of an

identical κmin for each bin, which is not given as can be seen in Figure 6.16, the independent

generation of per-bin cross sections of the differential distribution would reduce the fraction of

generated toys in which the best-fit value is very close to κmin. An additional reduction of the

effect size can be expected from differing values for κmin for different pH
T bins, which, as can be

seen in Figure 6.16, is given for both κc and κb. As a consequence, for any given scanned value

for κc or κb, the effect of the above described phenomenon is further reduced. The variance in

κmin for κb is larger than for κc, which can be expected to result in a better agreement between

the p-values from the asymptotic approximation and from the pseudo-experiment-based method.

In fact, this difference is relatively small, as can be seen in Figure 6.14b.

In Figure 6.18, four representative examples of ∆χ2 distributions from pseudo-experiments

are shown in comparison with the nominal χ2 distribution. In Figure 6.18a and Figure 6.18b,

comparisons are given for the cases in which κc is close to κc,min ≈ 1, and in which κc is much

larger than κc,min, respectively. As one can see, the pseudo-experiment-based distribution of

∆χ2 agrees well with the nominal χ2 distribution in the latter case, while in the former case the

pseudo-experiment-based distribution is relatively strongly peaked at low values of ∆χ2. This

feature is less pronounced in the case of κb, as can be seen in Figures 6.18c and 6.18d.
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(a) (b)

(c) (d)

Figure 6.18. | Comparisons of normalized ∆χ2 distributions resulting from pseudo-experiments and the
nominal χ2 distribution, which is used in the asymptotic approximation. In (a) and (b), the comparison is
given for different values of κc and κb = 1, and in (c) and (d) for different values in κb and κc = 1. In (a)
and (c), the κ values are close to the value at which the predicted cross sections are close to the lowest
cross section the prediction model can account for.
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6.4.4. Impact of Uncertainties

As described in Section 6.1.3, there are several sources of uncertainty, which are incorporated

into the fit either via a covariance matrix or via nuisance parameters constrained by Gaussian

p.d.f.s. In order to determine the major limiting factors to the measurement, it is of interest

to estimate the impact of the various uncertainties on the confidence interval. Because the

confidence intervals from the asymptotic approximation generally agree well with those from

the pseudo-experiment-based method, it is warranted to perform the following study using the

computationally less demanding asymptotic approximation.

The statistical uncertainty contribution is estimated by performing the fit with all uncertainties

except the statistical uncertainty set to zero. For all other, i.e. non-statistical uncertainties, the

contribution from the considered uncertainty is estimated by computing the quadratic difference

between the length of the nominal confidence interval (∆κc,b) and the length of the confidence

interval excluding said uncertainty contribution from the fit, (∆κc,b)
′

:

∆κcontr.
c,b =

√
(∆κc,b)2− (∆κc,b)′2 . (6.19)

In the case of the experimental systematic uncertainty as well as the VBF-, VH- and tt̄H-related

theory uncertainties, the uncertainty contribution is excluded by setting the corresponding entries

of the covariance matrix to zero. In the case of the other theory uncertainties for gluon fusion

and quark-initiated Higgs boson production, the corresponding nuisance parameters are fixed to

their best-fit values from the nominal fit.

The contributions to the size of the confidence interval for κc and κb from the one-dimensional

fits are given in Table 6.4 for the expected spectrum, and in Table 6.5 for the observed spectrum.

In all fits, the statistical uncertainty on the measured pH
T spectrum is the dominant uncertainty

contribution. Systematic experimental uncertainties and uncertainties due to missing higher

orders in the perturbation expansion for the gluon fusion prediction are clearly smaller than the

statistical uncertainty, but still sizable. The uncertainties due to missing higher orders in the

perturbation expansion in the bb̄→ H and cc̄→ H predictions are small in comparison. The

PDF uncertainties are minor contributions. For the measurement of κb, the PDF uncertainty for

the c-quark is practically irrelevant, and vice versa.

Another interesting quantity is the impact of individual nuisance parameters on the best-fit
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Contribution ∆κcontr.
c ∆κcontr.

b

Total 34.2 14.7
Statistical 27.1 11.6
Systematic 10.0 4.8
QCD Scale (ggF) 16.5 6.7
QCD Scale (qq̄→ H) 3.2 3.1
PDF (ggF) 1.2 0.7
PDF (c-quark) 1.0 0.0
PDF (b-quark) 0.0 1.2
Parton Shower Modeling (qq̄→ H) 6.3 0.6
VBF, VH, tt̄H 0.7 0.4
Acceptance correction (ggF) 0.4 0.2

Table 6.4. | Contributions to the uncertainty corresponding to the 95 % CL confidence intervals from the
κc and κb fits based on the expected differential cross section.

Contribution ∆κcontr.
c ∆κcontr.

b

Total 42.8 20.8
Statistical 34.2 17.2
Systematic 6.7 4.5
QCD perturbative (ggF) 20.2 9.3
QCD perturbative (qq̄→ H) 4.8 4.2
PDF (ggF) 1.5 0.8
PDF (c-quark) 1.2 0.0
PDF (b-quark) 0.0 1.6
Parton Shower Modeling (qq̄→ H) 16.3 4.0
VBF, VH, tt̄H 0.5 0.5
Acceptance correction (ggF) 0.4 0.5

Table 6.5. | Contributions to the uncertainty corresponding to 95 % CL confidence intervals from the κc

and κb fits based on the observed differential cross section.
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value for κc and κb. The post-fit impact for a nuisance parameter θi is defined as

∆κb,c = κ̂b,c(θi = θ̂i±∆θi)− κ̂b,c(θi = θ̂i) , (6.20)

where κ̂b,c denotes the best-fit value for κb and κc. θ̂i is the best-fit value for θi, and ∆θi the post-fit

uncertainty on that parameter. In the fits that are conducted to determine the impact of a given

nuisance parameter, all other nuisance parameters are left floating. In Figures 6.19 and 6.20, the

impacts of the individual nuisance parameters on the best-fit value for κc and κb, respectively, are

shown. Additionally, the pulls on the nuisance parameters are shown, defined as

(θ̂i− θi,0)/∆θi , (6.21)

where θi,0 is the initially chosen value for the nuisance parameter, which corresponds to zero for

the nuisance parameters considered here. Deviations of θ̂i from θi,0 indicate an absorption of

features of the fitted spectrum into the nuisance parameter θi. The post-fit uncertainties on the

nuisance parameters are plotted as error bars to the pull values. The nuisance parameters are not

expected to be constrained by the fit; therefore, the expected value for the post-fit uncertainties is

1.
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Figure 6.19. | Post-fit impacts of the various nuisance parameters on the best-fit value for κc, as well as the
nuisance parameter pulls, based on the observed pH

T spectrum. The dark-blue bars represent the impact of
the down-variation of a given nuisance parameter, while the light-blue bars represent the impact of the
up-variation. Pulls on the nuisance parameters, as defined in Equation (6.21), are plotted as black markers
in combination with the post-fit uncertainty on θi as error bars.
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Figure 6.20. | Post-fit impacts of the various nuisance parameters on the best-fit value for κb, as well as the
nuisance parameter pulls, based on the observed pH

T spectrum. The dark-blue bars represent the impact of
the down-variation of a given nuisance parameter, while the light-blue bars represent the impact of the
up-variation. Pulls on the nuisance parameters, as defined in Equation (6.21), are plotted as black markers
in combination with the post-fit uncertainty on θi as error bars.
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6.5. Summary

The differential cross section in pH
T is sensitive to the Yukawa couplings of the Higgs boson

to quarks. As a consequence, the measured differential cross section can be used to extract

information about these couplings. In this work, limits on the Yukawa couplings of the Higgs

boson to the c- and the b-quark were determined. For this, the pH
T spectrum as measured in the

H→ γγ decay channel with the ATLAS dataset collected in the years 2015 – 2018, corresponding

to an integrated luminosity of 139.0/fb, was used. The normalization of the pH
T spectrum in the

diphoton Higgs decay channel, which includes the H→ γγ branching ratio, is sensitive to many

theory parameters. In order be less model-dependent, only shape information was considered in

the fit.

Predictions of the ggF, bb̄→ H and cc̄→ H contributions to the differential cross section

needed to be provided for arbitrary values of κc and κb in order to set limits on the Yukawa-

coupling modifiers for the c- and b-quark. For the contributions from other Higgs boson

production modes, which are not sensitive to κc and κb, SM predictions were used. In the case

of gluon fusion, a set of resummed NLO predictions for an array of κc and κb values was used

to extract coefficients that allow the prediction of the gluon fusion pH
T spectrum for arbitrary

values of κb and κc. The resulting prediction was normalized such that the integrated SM gluon

fusion prediction matched the cross section of the state-of-the-art N3LO prediction. Moreover,

in order for the predictions to be comparable to the measured cross sections in a fiducial phase-

space volume, fiducial corrections based on the NNLOPS gluon fusion simulation were applied.

NNLOPS predictions were not available for varied values of κc or κb, and it was assumed that

the fiducial corrections are not sensitive to these parameters. Predictions for the quark-initiated

Higgs boson production were produced using MadGraph5_aMC@NLO with Pythia8 as parton

shower simulation. Theoretical uncertainties related to PDFs, missing higher orders in QCD

perturbation theory and the parton shower simulation were taken into account.

The fit of the observed pH
T spectrum was performed using a profile likelihood method. The

distribution of the log-likelihood ratio was determined by pseudo-experiments. In addition,

results based on the asymptotic approximation, i.e. the assumption that the log-likelihood ratio

can be approximated by the nominal χ2 distribution, were shown. Both methods resulted in

limits that are in good agreement. The expected values for κc and κb excluded at 95 % CL
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correspond to (κc < −15.1, κc > 19.0) and (κb < −4.6, κb > 10.8), respectively. The exclusion

intervals for κc and κb based on the observed pH
T spectrum are given by (κc < −19.2, κc > 24.9)

and (κb < −6.3, κb > 15.5), respectively.

These limits on κb can be compared to results from analyses using pp→ VH(→ bb̄) events.

Using a dataset corresponding to an integrated luminosity of 139/fb, the 95 % CL confidence

interval in Reference [205] is given by 0.7 < κb < 1.6. Therefore, it can be concluded that the

more direct method based on VH(→ bb̄) events allows setting tighter constraints on κb than the

method described in this chapter. In the case of the c-quark Yukawa coupling, such a comparison

is not yet possible; results based on data corresponding to an integrated luminosity of about 36/fb

did not allow setting limits on κc [209, 210].

The accuracy of the κc and κb measurement is at this point clearly limited by the statistical

uncertainties from the measurement of the differential cross section in pH
T . However, the

uncertainties due to missing higher orders of QCD calculation and the experimental systematic

uncertainties are not negligible. With an integrated luminosity of approximately 250/fb, the

statistical uncertainty can be expected to be of the same size as the current combined systematic

and theoretical uncertainties. At that point, advances in the accuracy of theoretical predictions

by including higher-order terms of QCD calculations, particularly in differential gluon fusion

cross section predictions, and a reduction of experimental uncertainties in the cross section

measurement could significantly benefit the precision of this method.
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7. Conclusion

One of the central topics of this thesis is the identification of photons in the ATLAS experiment,

in particular the efficiency of the identification. A good understanding of photons and their

identification is important for photon-based analyses of ATLAS data; accordingly, an accurate

measurement of photon identification efficiencies is essential. The identification of photons

is performed based on shower-shape variables, which parametrize the shape of the shower in

the calorimeter. The method of measuring the photon identification efficiencies that has been

applied in this work is called the electron-extrapolation method. It is based on transformations

of the shower-shape variables that, if applied to a sample of electrons, results in a sample of

pseudo-photons, which has to a good approximation the same distributions of shower-shape

variables as a photon sample. By applying such transformations on a pure and unbiased electron

sample obtained from data events by a tag-and-probe method applied, the resulting objects

can be used to determine the photon identification efficiency in data events. The efficiencies,

which have been measured in the transverse momentum region from 25 GeV to 250 GeV, range

from approximately 80 % to 100 %, depending on the considered pseudorapidity and transverse

momentum. The uncertainties on the measured efficiencies are in the range from about 0.5 % to

3 %. The ratios of the measured efficiencies and those in simulation correspond to efficiency scale

factors. These can be used in photon-based analyses to correct weights of events in simulation

such that the photon identification efficiency in data and simulation is in good agreement – which

is important for the comparability of simulated event samples and event samples from data-taking.

The scale factors as determined with the electron-extrapolation method are well compatible

with scale factors from the other two methods that are used to measure the photon identification

efficiency.

Another central topic of this thesis is the measurement of the properties of the Higgs boson

using its decay to a pair of photons. The diphoton decay channel has a clean signature and allows
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a robust background subtraction despite its low branching ratio. Accordingly, the H→ γγ decay

channel has been crucial in the discovery of the Higgs boson, and furthermore allows a precise

measurement of Higgs-boson-related observables such as inclusive and differential Higgs boson

production cross sections. Based on invariant-mass spectra of events with two reconstructed

and identified photon candidates, the numbers of H→ γγ events in various phase-space regions

can be determined in a signal-plus-background fit. By relating these numbers to the integrated

luminosity of the dataset, inclusive and differential cross sections have been measured. In order

to make these cross sections comparable to a wider set of theoretical predictions, corrections for

detector effects such as inefficiencies and a finite resolution have been applied. Cross sections

are measured in a fiducial volume of phase space that closely resembles the detector acceptance,

which reduces the model dependence. The inclusive and differential cross sections that were

obtained in this way have been compared to SM predictions. The measured value for the inclusive

Higgs boson production cross section in the diphoton decay channel is

σfid =
(
60.4 ± 6.1(stat.) ± 6.0(exp.) +0.3

−0.4 (theo.)
)

fb .

This result agrees well with SM prediction of (63.5±3.3) fb. The differential cross sections have

been measured in the variables pH
T , |yH |, p j1

T , and Nb−jets and are, within uncertainties, in good

agreement with SM predictions.

The differential cross section in Higgs boson transverse momentum can be used to set limits on

Yukawa coupling between the Higgs boson and quarks. In the SM, these couplings are expected

to be proportional to the quark masses. The t-quark and b-quark Yukawa couplings are already

known relatively precisely, with relative uncertainties of the order of 10 % and 20 %, respectively.

In the case of the quark with the third-largest mass, the c-quark, direct measurements using

decays of Higgs bosons into a c-quark pair are considerably more challenging. Corresponding

limits on this coupling from direct measurements are not yet available. Therefore, it is reasonable

to consider alternative paths to the goal of measuring the c-quark Yukawa coupling that can be

followed in parallel. Because the spectrum of the Higgs boson transverse momentum is sensitive

to the quark Yukawa couplings, including the c-quark Yukawa coupling, a fit of the observed

pH
T spectrum allows extracting information about the c-quark Yukawa coupling. In addition to

a fit with respect to the c-quark Yukawa coupling, the same method has been applied in order
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to set limits on the b-quark Yukawa coupling. For the fit, it was necessary to create a method

of predicting pH
T spectra for arbitrary values of κc and κb. By taking only the shape of the pH

T

distribution into account in the fit, the dependence on other theory parameters is reduced. By

determining the degree of compatibility of predicted spectra with the observed spectrum for a

range of values of the c- and b-quark Yukawa coupling, confidence intervals could be established.

For these fits, the dataset collected in the years 2015 – 2018, corresponding to an integrated

luminosity of 139/fb, was used. Besides a simultaneous fit of κc and κb, one-dimensional fits of

κc and κb have been performed, with κb and κc fixed to their SM value of 1, respectively. For the

c-quark Yukawa-coupling modifier κc = yc/ySM
c , a 95 % CL confidence interval of κc ∈ [−19, 25]

was determined. In the case of the b-quark Yukawa-coupling modifier κb = yb/ySM
b , the resulting

confidence interval corresponds to κb ∈ [−6, 16].
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A. Feynman Diagrams for Associated

Higgs Boson and Single-Top-Quark

Production

Figure A.1. | The leading-order Feynman diagrams in the 5-flavor-scheme (see Section 2.6.2) for Higgs
boson production in association with a single t-quark. All of these diagrams involve a W boson. In the
first row the t-channel diagrams are shown, in the second row the s-channel diagrams, and in the last row
the diagrams with an on-shell W boson are shown.
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B. Photon Identification Efficiencies
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Pseudorapidity Transverse momentum [GeV] Measured efficiency Total uncertainty

0.0 < |η| < 0.6 25 < pT < 30 0.827 0.019
30 < pT < 35 0.869 0.027
35 < pT < 40 0.898 0.022
40 < pT < 45 0.904 0.026
45 < pT < 50 0.920 0.029
50 < pT < 60 0.929 0.031
60 < pT < 80 0.948 0.020

80 < pT < 100 0.958 0.010
100 < pT < 125 0.967 0.013
125 < pT < 150 0.971 0.008
150 < pT < 175 0.971 0.009
175 < pT < 250 0.981 0.008

0.6 < |η| < 1.37 25 < pT < 30 0.827 0.022
30 < pT < 35 0.861 0.025
35 < pT < 40 0.893 0.022
40 < pT < 45 0.918 0.019
45 < pT < 50 0.935 0.016
50 < pT < 60 0.946 0.015
60 < pT < 80 0.962 0.010

80 < pT < 100 0.965 0.012
100 < pT < 125 0.979 0.005
125 < pT < 150 0.983 0.005
150 < pT < 175 0.981 0.005
175 < pT < 250 0.983 0.005

1.52 < |η| < 1.81 25 < pT < 30 0.823 0.018
30 < pT < 35 0.843 0.021
35 < pT < 40 0.879 0.017
40 < pT < 45 0.895 0.018
45 < pT < 50 0.919 0.015
50 < pT < 60 0.937 0.012
60 < pT < 80 0.946 0.013

80 < pT < 100 0.961 0.010
100 < pT < 125 0.967 0.010
125 < pT < 150 0.972 0.009
150 < pT < 175 0.981 0.010
175 < pT < 250 0.970 0.005

1.81 < |η| < 2.37 25 < pT < 30 0.824 0.025
30 < pT < 35 0.870 0.021
35 < pT < 40 0.897 0.019
40 < pT < 45 0.907 0.017
45 < pT < 50 0.929 0.013
50 < pT < 60 0.937 0.013
60 < pT < 80 0.948 0.009

80 < pT < 100 0.962 0.005
100 < pT < 125 0.966 0.007
125 < pT < 150 0.973 0.009
150 < pT < 175 0.975 0.009
175 < pT < 250 0.964 0.007

Table B.1. | Photon identication efficiencies and absolute uncertainties for converted photons as measured
by the electron-extrapolation method, based on the data collected in 2015 – 2017.
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Pseudorapidity Transverse momentum [GeV] Measured efficiency Uncertainty

0.0 < |η| < 0.6 25 < pT < 30 0.858 0.018
30 < pT < 35 0.865 0.024
35 < pT < 40 0.886 0.020
40 < pT < 45 0.896 0.016
45 < pT < 50 0.911 0.013
50 < pT < 60 0.918 0.013
60 < pT < 80 0.927 0.012

80 < pT < 100 0.928 0.013
100 < pT < 125 0.932 0.018
125 < pT < 150 0.931 0.021
150 < pT < 175 0.924 0.024
175 < pT < 250 0.928 0.032

0.6 < |η| < 1.37 25 < pT < 30 0.839 0.015
30 < pT < 35 0.857 0.018
35 < pT < 40 0.876 0.018
40 < pT < 45 0.888 0.016
45 < pT < 50 0.899 0.016
50 < pT < 60 0.911 0.014
60 < pT < 80 0.921 0.014

80 < pT < 100 0.925 0.013
100 < pT < 125 0.931 0.020
125 < pT < 150 0.935 0.023
150 < pT < 175 0.934 0.023
175 < pT < 250 0.920 0.022

1.52 < |η| < 1.81 25 < pT < 30 0.850 0.016
30 < pT < 35 0.863 0.013
35 < pT < 40 0.889 0.008
40 < pT < 45 0.893 0.011
45 < pT < 50 0.912 0.008
50 < pT < 60 0.926 0.008
60 < pT < 80 0.933 0.006

80 < pT < 100 0.933 0.007
100 < pT < 125 0.937 0.006
125 < pT < 150 0.940 0.006
150 < pT < 175 0.945 0.006
175 < pT < 250 0.947 0.006

1.81 < |η| < 2.37 25 < pT < 30 0.849 0.015
30 < pT < 35 0.859 0.012
35 < pT < 40 0.879 0.010
40 < pT < 45 0.879 0.007
45 < pT < 50 0.886 0.007
50 < pT < 60 0.895 0.003
60 < pT < 80 0.900 0.005

80 < pT < 100 0.906 0.006
100 < pT < 125 0.902 0.011
125 < pT < 150 0.912 0.017
150 < pT < 175 0.908 0.013
175 < pT < 250 0.893 0.019

Table B.2. | Photon identication efficiencies and absolute uncertainties for unconverted photons as
measured by the electron-extrapolation method, based on the data collected in 2015 – 2017.
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C. Shower-Shape Distributions

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.1. | Distribution of the shower-shape variable ws tot for different kinematic regions. The
distributions are shown for electrons, converted and unconverted photons. In addition, the effective shift
corresponding to the shower-shape variable transformations is shown, xpseudo−γ − xe.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.2. | Distribution of the shower-shape variable wη2 for different kinematic regions. The dis-
tributions are shown for electrons, converted and unconverted photons. In addition, the effective shift
corresponding to the shower-shape variable transformations is shown, xpseudo−γ − xe.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.3. | Distribution of the shower-shape variable ws3 for different kinematic regions. The dis-
tributions are shown for electrons, converted and unconverted photons. In addition, the effective shift
corresponding to the shower-shape variable transformations is shown, xpseudo−γ − xe.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.4. | Distribution of the shower-shape variable Rhad1 for different kinematic regions. The
distributions are shown for electrons, converted and unconverted photons. In addition, the effective shift
corresponding to the shower-shape variable transformations is shown, xpseudo−γ − xe.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.5. | Distribution of the shower-shape variable Rhad for different kinematic regions. The dis-
tributions are shown for electrons, converted and unconverted photons. In addition, the effective shift
corresponding to the shower-shape variable transformations is shown, xpseudo−γ − xe.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.6. |Distribution of the shower-shape variable Rφ for different kinematic regions. The distributions
are shown for electrons, converted and unconverted photons. In addition, the effective shift corresponding
to the shower-shape variable transformations is shown, xpseudo−γ − xe.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.7. | Distribution of the shower-shape variable Rη for different kinematic regions. The distributions
are shown for electrons, converted and unconverted photons. In addition, the effective shift corresponding
to the shower-shape variable transformations is shown, xpseudo−γ − xe.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.8. | Distribution of the shower-shape variable Fside for different kinematic regions. The
distributions are shown for electrons, converted and unconverted photons. In addition, the effective shift
corresponding to the shower-shape variable transformations is shown, xpseudo−γ − xe.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.9. | Distribution of the shower-shape variable Eratio for different kinematic regions. The
distributions are shown for electrons, converted and unconverted photons. In addition, the effective shift
corresponding to the shower-shape variable transformations is shown, xpseudo−γ − xe.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.10. | Distribution of the shower-shape variable ∆Es for different kinematic regions. The
distributions are shown for electrons, converted and unconverted photons. In addition, the effective shift
corresponding to the shower-shape variable transformations is shown, xpseudo−γ − xe.
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D. The pH
T Distribution as a Function of

κc and κb
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Figure D.1. | Difference of the predicted cross section to the SM cross section prediction for individual
bins in pH

T as a function of κb and κc.
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Figure D.2. | Difference of the predicted cross section to the SM cross section prediction for individual
bins in pH

T as a function of κb and κc.

256



30 20 10 0 10 20 30

b,c

0.0

0.1

0.2

0.3

0.4

0.5

∆
σ

80 GeV to 100 GeV

b
c

(a)

30 20 10 0 10 20 30

b,c

0.00

0.05

0.10

0.15

0.20

0.25

∆
σ

100 GeV to 120 GeV

b
c

(b)

30 20 10 0 10 20 30

b,c

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

∆
σ

120 GeV to 140 GeV

b
c

(c)

Figure D.3. | Difference of the predicted cross section to the SM cross section prediction for individual
bins in pH

T as a function of κb and κc.
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