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Abstract

In this thesis, we study the directed transport of an ensemble of classical parti-

cles in periodic potentials driven out of equilibrium by unbiased time-dependent

forces. We consider both one and two dimensional setups and explore their trans-

port properties in the underdamped as well as the Hamiltonian regime.

For the setups operating in the dissipative regime, we investigate the role of

lattice geometry and the physical properties of particles on the directed transport.

We show that the physical properties, for e.g. size and mass, of the particles in a

driven two-dimensional (2D) lattice, strongly influence the behavior of the under-

lying dynamical attractors in the phase space. This allows us to develop a scheme

to induce directed transport of a multi-species particle mixture where the different

species are transported at different angles depending on the mass or size of the

particles. This also provides a simultaneous segregation mechanism of more than

two particle species differing in their physical properties by using driven lattices.

In another study, we demonstrate that a superposition of 2D driven Bravais lat-

tices having arbitrary geometries can break the spatial reflection symmetries and

allow directed transport of particles along specific directions. By controlling the

geometry of the lattice along with the orientation of the driving force, we are able

to control the average velocities of the dynamical attractors in the system’s phase

space. This allows us to transport the particles parallel to the driving axis, per-

pendicular to it as well as in an oblique direction for different lattice geometries.

In the Hamiltonian setups without the presence of any dissipation, we focused

on the time-dependent control of the transport velocity of the particle ensemble.

In one study, we consider two superimposed driven lattices and show that the di-

rected transport can be accelerated, frozen and slowed down by a time-dependent

switching of the potential height and driving phase of one lattice. The parameter

switches allow us to control the structure of the underlying phase space in real-

time, resulting in a time-dependent change of the transport velocity. In two other

works, we demonstrate that such a time-dependent control of directed transport

is also possible without any explicit switching of parameter values. Here, the

transport direction could be reversed dynamically multiple times in 2D driven

lattices simply due to the coupled nature of the underlying potential landscape in

the two dimensions.

Lastly, we demonstrate a mechanism to control the rotational or vortical motion

of neutral particles in driven superlattices. The superlattice consists of a superpo-



sition of individual lattices whose potential depths are driven periodically in time

but with different phases. We show that such a driving scheme breaks the spa-

tial reflection symmetries and allows an ensemble of particles to rotate with a

non-zero average angular velocity. A periodic arrangement of particles in space

rotating with different angular velocities is also realized by controlling the driving

amplitude of the individual lattices.



Zusammenfassung

In dieser Arbeit untersuchen wir den gerichteten Transport eines Ensembles von

klassischen Teilchen in periodischen Potentialen, die durch unvoreingenommene

zeitabhängige Kräfte aus dem Gleichgewicht gebracht werden. Wir betrachten

sowohl ein- als auch zweidimensionale Anordnungen und untersuchen ihre Trans-

porteigenschaften sowohl im unterdämpften als auch im Hamiltonian Regime.

Für die Anordnungen, die im dissipativen Regime arbeiten, haben wir die Rolle

der Gittergeometrie und die physikalischen Eigenschaften der Teilchen auf den

gerichteten Transport untersucht. Wir zeigen, dass die physikalischen Eigen-

schaften, z.B. Größe und Masse, der Teilchen in einem getriebenen zweidimen-

sionalen (2D) Gitter das Verhalten der zugrundeliegenden dynamischen Attrak-

toren im Phasenraum stark beeinflussen. Dies ermöglichte uns die Entwicklung

eines Schemas zur Induktion eines gerichteten Transports einer Multispeziespar-

tikelmischung, bei der die verschiedenen Spezies je nach Masse oder Größe der

Partikel unter verschiedenen Winkeln transportiert werden. Dies ermöglicht auch

einen simultanen Separationsmechanismus von mehr als zwei Partikelspezies,

die sich in ihren physikalischen Eigenschaften unterscheiden, durch Verwendung

getriebener Gitter. In einer weiteren Studie zeigen wir, dass eine Überlagerung

von 2D-getriebenen Bravais-Gittern mit beliebigen Geometrien die räumlichen

Reflexionssymmetrien brechen und einen gerichteten Transport der Partikel ent-

lang bestimmter Richtungen ermöglichen kann. Indem wir die Geometrie des

Gitters zusammen mit der Orientierung der Antriebskraft kontrollierten, konnten

wir die mittleren Geschwindigkeiten der dynamischen Attraktoren im Phasen-

raum des Systems steuern. Dies erlaubte es uns, die Partikel parallel zur Antrieb-

sachse, senkrecht dazu sowie in einer schrägen Richtung für verschiedene Gitter-

geometrien zu transportieren.

In den Hamiltonian-Anordnungen ohne jegliche Dissipation lag der Schwer-

punkt auf der zeitabhängigen Steuerung der Transportgeschwindigkeit des Teilch-

enensembles. In einer Studie betrachten wir zwei überlagerte getriebene Gitter

und zeigen, dass der gerichtete Transport durch ein zeitabhängiges Umschalten

der potentiellen Höhe und der Antriebsphase eines Gitters beschleunigt, einge-

froren und verlangsamt werden kann. Mit den Parameterschaltern können wir

die Struktur des zugrundeliegenden Phasenraums in Echtzeit steuern, was zu

einer zeitabhängigen Änderung der Transportgeschwindigkeit führt. In zwei weit-

eren Arbeiten zeigen wir, dass eine solche zeitabhängige Steuerung des gerichteten



Transports auch ohne explizites Umchalten der Parameterwerte möglich ist. Hier

konnte die Transportrichtung in 2D-getriebenen Gittern einfach aufgrund der Kop-

plung der zugrundeliegenden Potentiallandschaft in den beiden Dimensionen

mehrfach dynamisch umgekehrt werden.

Schließlich demonstrieren wir einen Mechanismus zur Steuerung der Rotations-

oder Wirbelbewegung von neutralen Teilchen in angetriebenen Übergittern. Das

Übergitter besteht aus einer Überlagerung von einzelnen Gittern, deren Poten-

tialtiefen periodisch in der Zeit, aber mit unterschiedlichen Phasen angetrieben

werden. Wir zeigen, dass ein solches Antriebsschema die räumlichen Reflexion-

ssymmetrien bricht und einem Ensemble von Teilchen erlaubt, mit einer von Null

verschiedenen mittleren Winkelgeschwindigkeit zu rotieren. Eine periodische

Anordnung von Teilchen im Raum, die mit unterschiedlichen Winkelgeschwindig-

keiten rotieren, wird auch durch die Steuerung der Antriebsamplitude der einzel-

nen Gitter realisiert.
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Personal contributions to scientific publications:

The numerical simulations of all the manuscripts were performed by me except

for [A4], for which it was jointly performed with T. Xie. I was responsible for the

analysis and explanation of the data along with the writing of all the manuscripts,

which were then discussed with all the remaining authors. Additionally, I had

conceptualized the projects which led to the publications [A2], [A5] and [A6].

Outline of this thesis:

In the Chapter 1, we provide an introduction to the concept of directed transport

and ratchets in non-equilibrium systems. We provide a motivation for research on

this topic, explain the general mathematical framework and discuss the different

types of ratchets along with their applications and experimental realizations. In

Chapter 2, we provide a brief overview of our scientific contributions towards

controlling directed transport in classical driven lattices and relate them to the

existing literature. The actual manuscripts are presented in Chapter 3. Finally

in the Chapter 4, we present our conclusions and provide an outlook for future

research.
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1
Directed transport and ratchets

1.1 Introduction

Can thermal energy be converted into useful mechanical work? Clearly this would

be impossible in a system which is at equilibrium without violating the Second

Law of Thermodynamics. On the other hand, if there are net forces which drive

the system away from equilibrium, such a conversion is definitely possible. How-

ever, would it be possible in a system driven out of equilibrium with any net force

bias? The answer is not obvious anymore. But we know that there exists various

biological processes which operate in such unbiased non-equilibrium environ-

ments to accomplish a variety of chemical and mechanical tasks. The motion of

bacterial flagella powers the movement of the bacteria at low Reynolds number.

The various molecular motors in our bodies perform different tasks like trans-

port of cellular cargo, protein synthesis and separating strands of DNA, all in a

highly non-equilibrium cellular environment dominated by random thermal mo-

tion and high viscosity. Taking cue from these biological examples, there devel-

oped widespread research interest to understand how these molecular machines

worked and whether one could design artificial physical devices or ‘Brownian

motors’ which could replicate their action. Although the idea of using unbiased

thermal fluctuations to realize useful work, also called the ‘ratchet effect’, has

been known since the works by Smoluchowski and Feynman [1, 2], it was in the

early 1990s that the idea of Brownian motors was brought into the limelight due

to several notable theoretical and experimental discoveries in statistical and bio-

logical physics [3–10]. The essential ingredients in order to realize a ratchet effect

with Brownian motors were soon agreed upon: (i) the system should be spatially
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periodic, (ii) the average of all the forces with respect to space, time and statis-

tical ensemble should vanish, (iii) there should be random forces (thermal, non-

thermal or chaotic) present, (iv) the system should be out of equilibrium break-

ing the detailed balance symmetries and (v) some other spatial and/or temporal

symmetries should be necessarily broken. Different types of ratchets were classi-

fied according to how these necessary conditions were realized. In this chapter,

we would give a brief introduction to the mathematical formalism behind such

ratchet transport and discuss the various types of ratchets which have been real-

ized over the years classified on the basis of their regime of operation.

1.2 Setup and mathematical model

The most general model to study the ratchet phenomena in one dimensional (1D)

systems is to consider a Brownian particle of mass m with position x(t) at time t

moving in a potential landscape V(x, t) which can in general be time-dependent,

such that the dynamics is governed by the inertial Langevin equation

mẍ +
∂V(x, t)

∂x
= −γẋ + ξ(t). (1.1)

Here γ is the dissipation coefficient accounting for friction, viscosity etc. and ξ(t)

is a randomly fluctuating force which models the thermal noise present in the sys-

tem. The left hand side of the Eq.(1.1) represents the deterministic component of

the particle dynamics due to the underlying space and time dependent potential

and the right hand side is the stochastic component accounting for the particle’s

interaction with its thermal environment. The potential is considered periodic in

space and time such that V(x, t) = V(x + L, t) = V(x, t + T) = V(x + L, t + T)

with L and T being the spatial and temporal periodicities of the system respec-

tively. The time dependence of the potential can be realized via an external driv-

ing force which keeps the system out of equilibrium. The fluctuating thermal

noise is usually modeled by a Gaussian white noise of zero mean 〈ξ(t)〉 = 0 sat-

isfying the fluctuation-dissipation relation 〈ξ(t)ξ(s)〉 = 2ηkBT δ(t − s) where kB

is the Boltzmann’s constant and T is the temperature. In order to satisfy the re-

quirement that the particle should not experience an average net force bias, one

requires ∫ L

0

∫ T

0
dx dt [g(x, t) + ξ(t)] = 0, g(x, t) = −∂V(x, t)

∂x
(1.2)

4



1.3 BROWNIAN RATCHETS

The key quantity of interest is the time-dependent transport in the system which

is defined in terms of the particle’s velocity as

J(t) = 〈ẋ〉Γ (1.3)

where 〈...〉Γ denotes the average over a statistical ensemble. The asymptotic trans-

port is given by

J = 〈J(t)〉t, 〈...〉t ≡ lim
t→∞

∫ t

0
dt′(...) (1.4)

and if J 6= 0 then the system is said to exhibit directed transport due to the ratchet

phenomena. One of the key ingredients required to obtain a non-zero value of

J has been shown to be some sort of spatial or temporal asymmetry in the sys-

tem incorporated through the potential V(x, t). A standard method to introduce

such an asymmetry is by using a spatially asymmetric potential landscape, typ-

ically referred to as the ‘ratchet potential’. Another method is via an external

time dependent perturbation (either stochastic or deterministic) which is asym-

metric with respect to time. Depending on how this asymmetry is introduced

in the system along with the presence or absence of the stochastic component

in the equation of motion Eq.(1.1), ratchets can be classified into different types.

Originally, the different ratchet models were put forward to explain the work-

ing principle of molecular motors and hence thermal noise and dissipation were

an integral part of these models. Hence they are referred to as Brownian ratch-

ets. Later on, directed transport has been realized in ratchet setups which operate

completely in the deterministic regime and hence were classified as deterministic

ratchets. Later it was also possible to obtain directed transport in deterministic

Hamiltonian systems without any dissipation and these setups were classified as

Hamiltonian ratchets. In the following sections, we provide an overview of how

directed transport is realized in these different classes of ratchets.

1.3 Brownian ratchets

The earliest works on modern ratchet research started with the so called ‘on-off’

ratchets [3, 11, 12] consisting of non-interacting Brownian particles subjected to

a 1D periodic asymmetric potential V(x) switched periodically on and off (see

Fig.(1.1)). The considered systems were all overdamped and the effects of inertia

was negligible, i.e. mẍ ≈ 0 in Eq.(1.1). With this approximation, the dynamics of

5
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❋✐❣✉r❡ ✶✳✶✿ The distribution of particles in an on-off lattice. When the potential is switched on, the
particles are distributed at the central minima of the potential. On switching the potential off, the
particles diffuse symmetrically due to the unbiased white noise. However switching the potential
on again leads to unequal particle distribution in the neighbouring left and right minima, thus
leading to ratchet transport. Reprinted (adapted) with permission from [13]. Copyright 2016 by
the American Chemical Society.

the Brownian particles in these ‘on-off’ ratchet setups could be modeled by

γẋ = − f (t)
∂V(x)

∂x
+ ξ(t) (1.5)

Essentially, this means that the background potential V(x) could be turned ‘on’

and ‘off’ with the time dependent perturbations f (t) = 1 and f (t) = 0 respec-

tively.

The working principle of such an on-off ratchet can be intuitively understood

as follows: Consider an initial symmetric particle distribution located around the

origin (see Fig.(1.1)). When the potential is switched on, the particles settle at

the potential minimum at the origin and so that the distribution is peaked there.

When the potential is switched off, the particles diffuse symmetrically both to-

wards left and right due to the presence of unbiased thermal noise. However, on

switching the potential back on again, the asymmetric shape of V(x) forces more

6



1.4 DETERMINISTIC RATCHETS

number of particles to be trapped in the neighbouring right minimum than the

neighbouring left minimum. As the whole process is repeated periodically over

time, the particles on an average drift towards the right yielding a non-zero di-

rected transport even though there is no average net force on the particles. There

are three crucial ingredients required for the ‘on-off’ ratchet to function: (i) the

left-right asymmetry of the potential V(x), which breaks the symmetry of the

particle distribution at later times, (ii) dissipation, which is responsible for the

particles to relax back into the nearest particle minima during the ‘off’ phase and

(iii) noise, due to which the particles can diffuse during the ‘off’ phase.

A second class of Brownian ratchets, which is now referred to as the tilting

ratchets, has the general form

γẋ = −∂V(x)

∂x
+ f (t) + ξ(t) (1.6)

where the background potential has V(x) has a spatial asymmetry just like the

on-off ratchet. However, in contrast to the on-off ratchet, the time-dependent per-

turbation f (t) in the tilting ratchet is of additive nature rather than multiplicative.

This unbiased perturbation can either be in the form of an external time-periodic

driving force or a stochastic force of non-thermal origin. Depending on whether

it is of stochastic or deterministic origin, the ratchet can be classified as fluctuating

or rocking ratchet respectively. It has been shown that different types of noise pro-

files f (t), both colored Gaussian or non-Gaussian, can yield a ratchet transport of

particles [14, 15]. The rocking ratchet has also been realized in different physical

setups like asymmetric superconducting quantum interference devices (SQUIDs),

parallel arrays of Josephson junctions and vortex motion in superconductors [16–

20]. One of the main difference of the tilting ratchet compared to the on-off ratchet

is that the thermal noise ξ(t) is not necessarily required to achieve a directed par-

ticle transport. This led to the relaxation of the requirement of stochastic forces in

order to realize directed transport and gave birth to the completely new category

of deterministic ratchets.

1.4 Deterministic ratchets

In the absence of stochastic forces or thermal fluctuations, the rectification mech-

anism of ratchets depends on the combination of non-linearity and symmetry

7



CHAPTER 1 DIRECTED TRANSPORT AND RATCHETS

breaking of the underlying equation of motion. In [21], such a deterministic

ratchet model was discussed for the first time where the inertial contribution was

important. The equation of motion was of the form

mẍ + γẋ = −∂V(x)

∂x
+ f (t) (1.7)

where the driving force was considered to be a unbiased periodic function of

time f (t) = d sin t, with d being the driving amplitude. The asymmetry was

introduced through the asymmetric bi-harmonic ratchet potential V(x) ∝ sin x +

0.25 sin 2x. In the absence of the inertial term, the Eq.(1.7) allows only two types of

particle dynamics: they are either trapped for small driving amplitude d or they

move ballistically either to the left or the right with a fixed average velocity. How-

ever, the inertial term allow the particles additionally to exhibit diffusive chaotic

dynamics. It was shown that by controlling the driving amplitude d and the mass

m, the diffusive motion of the particles could be channelized either towards the

left or the right, thus yielding directed transport. In an intriguing way, the authors

found that the chaotic motion in such deterministic ratchets could play the role of

stochastic component in the Brownian ratchets. Since then, a wide variety of de-

terministic ratchets have been explored [22–31]. It has been also shown that the

necessary asymmetry can also be introduced in different ways. One of the popu-

lar methods is via ‘harmonic mixing’, where the driving force f (t) is considered

to be of bi-harmonic form [32]. Another method, commonly called ‘gating’, refers

to the use of a multiplicative driving force (as in Eq.(1.5)) in conjunction with the

additive driving f (t), both having different frequencies [33–38].

1.5 Hamiltonian ratchets

With the advent of deterministic ratchets, it was clear that noise was not an indis-

pensable requirement to achieve a ratchet like rectification of particle motion. The

idea that chaos played somewhat analogous role of noise in these deterministic

ratchet setups led to the question whether directed transport can also be observed

in purely Hamiltonian setups without any dissipation, aided by the rich chaotic

behavior that these systems exhibit. The answer was provided in the early 2000

by the paper [39], where the authors provided a minimal model of Hamiltonian

8



1.5 HAMILTONIAN RATCHETS

❋✐❣✉r❡ ✶✳✷✿ Poincaré surfaces of section for the Hamiltonian system corresponding to Eq(.1.8)
for (left panel) θ = 0 and (middle panel) θ = π

2 . The right panel shows directed transport for
θ = π

2 whereas no transport is observed for θ = 0. Reprinted (adapted) with permission from
[40]. Copyright 2014 by Elsevier.

ratchets:

mẍ = −∂V(x)

∂x
+ f (t) (1.8)

with the underlying lattice potential V(x) = cos x and the bi-harmonic driving

force f (t) = E1 cos ωt + E2 cos(2ωt + θ). They showed that for non-zero values

of E1 and E2 along with θ 6= 0, π, one could have directed transport of particles.

For the very first time, this work also generalized the necessary symmetries that

needs to be broken in order to expect a ratchet transport in both Hamiltonian and

dissipative setups. We would discuss them in detail in the next section. Apart

from he necessary symmetry breaking, they showed that another crucial require-

ment for directed transport to occur in Hamiltonian setups was the existence of a

‘mixed’ phase space describing the system. This can be explained in detail by con-

structing the Poincaré surfaces of sections (PSOS) of our setup in Eq.(1.8). For this,

one plots the values of the particle coordinate x and momentum p = mẋ of differ-

ent initial conditions stroboscopically at times t = nT where n = 1, 2, ... and T is

the temporal period (see Fig.(1.2)). The PSOS shows the existence of both chaotic

manifold, which describes diffusive motion of particles through the driven lattice

and regular islands embedded in the chaotic manifold, describing either trapped

or ballistic motion of the particles. Due to the existence of both these components,

the system is said to posses a mixed phase space.

The principle behind the existence of directed transport can be explained in

terms of the PSOS. A trajectory initiated in the chaotic layer would visit every

point in the chaotic layer over long timescales due to the ergodic property of the

9



CHAPTER 1 DIRECTED TRANSPORT AND RATCHETS

chaotic manifold. As a result, the asymptotic velocity of this trajectory can be

shown to be equal to the average transport velocity of the chaotic manifold by

a ‘sum rule’ [41, 42]. In presence of spatial parity and time-reversal symmetries

(corresponding to θ = 0, π), the PSOS has a reflection symmetry about p = 0

and this results in vanishing transport velocity of the chaotic manifold, hence no

directed transport is observed (see Fig.(1.2)). On the other hand, for θ 6= 0, π the

symmetries are broken which also breaks reflection symmetry of the PSOS and

this ensures a non-zero transport velocity of particles. The Hamiltonian ratch-

ets have been extensively realized using cold atoms in ac-driven optical lattices

[43, 44]. Here the temperature of the atomic ensembles is in the micro-Kelvin

regime and the classical description of the ratchets have been shown to accurately

describe the transport properties [43, 44]. A more recent realization of Hamil-

tonian ratchets has been achieved by employing spatio-temporally driven lattices

where a lattice of potential barriers can be individually driven with different driv-

ing laws [45, 46]. In addition to exhibiting directed transport, these setups have

been shown to be useful in selective trapping of particles at specific lattice sites

and in generating density wave like patterns [47, 48].

1.6 Symmetry breaking

One of major requirement for observing directed transport in all the different

types of ratchets has been the breaking of certain symmetries of the setup. Al-

though this was well known since the early days of ratchet research, the symme-

tries were strictly formalized only in the early 2000s in [39]. It was shown that

in order to have a non-vanishing value of the average velocity J (see Eq.(1.4)) in

an 1D driven system, one must break all the symmetries which keep the equation

of motion Eq.(1.1) invariant, but change the sign of the particle velocity ẋ. In 1D,

there are only two possible symmetry transformations which can change the sign

of the particle velocity :

Sx : x −→ −x + χ, t −→ t + τ (1.9)

St : x −→ x + χ, t −→ −t + τ (1.10)

where χ and τ are arbitrary spatial and temporal shifts respectively. Sx and St

are the most general form of spatial parity and time reversal symmetries in 1D

10
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respectively. Hence, it was established that the equations of motion must break

these symmetries. All the different methods to introduce asymmetry in the vari-

ous ratchet setups, as discussed in the previous sections, can in fact be described

in terms of these two symmetries alone.

For the Hamiltonian ratchets, the necessity to break these two symmetries can

be intuitively explained as follows. If the system is invariant under at least one of

the Sx and St symmetries, every trajectory can be mapped to another which has

exactly similar dynamics as that of the former one but with opposite velocity. As

a result, the average velocity of an ensemble of particles would always be zero

at any time during the time evolution provided that the ensemble was initialized

with a zero average velocity. Hence, such a system would not exhibit any directed

transport. In terms of the underlying phase space, the existence of any of the two

symmetries implies that the PSOS would be symmetric with respect to p = 0 (see

Fig.(1.2)), resulting in zero transport velocity of the chaotic layer.

The situation is a bit different for the deterministic ratchets in presence of dis-

sipation. Due to the presence of the inertial term in Eq.(1.7), the symmetry St is

broken irrespective of the underlying potential and driving force. The asymptotic

directed transport in these systems is completely determined by the properties of

the dynamical attractors underlying its phase space. Each attractor A is charac-

terized by its average velocity vA and the set of all initial conditions in the phase

space ∑A = {x, ẋ, t} which asymptotically end up in A called the ‘basin of at-

traction’ of A. If the system is invariant under Sx, an attractor is mapped either

onto itself which imply vA = 0 or onto its symmetry related twin A′ such that

vA = vA′ . Since the transformation Sx also maps the basins of attraction of A and

A′ onto each other, any distribution of initial conditions which occupies the same

volume in both the basins will yield zero transport.

A detailed analysis of these symmetries along with different methods by which

these symmetries can be broken in different systems can be found in [40]. It is im-

portant to note that even when these symmetries are broken, there might still be

other specific mechanisms which prohibit a non-zero transport in a setup. Hence,

the breaking of the symmetries is a necessary but not sufficient condition for ob-

serving a ratchet transport.

11
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1.7 Higher dimensional ratchets

The phenomenon of directed transport is not limited to spatially 1D systems only,

they can also occur in 2D and 3D systems. Conceptually, the new ingredient is the

coupling between the spatial dimensions in the underlying potential. This allow

us to realize not only particle motion along any arbitrary direction through the

setup, but also rotational motion giving rise to vorticity. Analogous to their 1D

counterpart, particles in a higher dimensional ratchet setup are modeled by the

Langevin equation

mr̈ +∇∇∇V(r, t) = −γṙ + ξξξ(t) (1.11)

with the generalization of x in Eq.(1.1) to r ≡ (x, y, z). The requirement of zero

net average force means that

∫ L

0

∫ T

0
dr dt [g(r, t) + ξξξ(t)] = 0, g(r, t) = −∇∇∇V(r, t) (1.12)

1.7.1 Translational current

The time-dependent translational current in the system is characterized by the

particle velocity averaged over a statistical ensemble Γ: J(t) = 〈ṙ〉Γ. Hence, the

asymptotic transport is given by

J = 〈J(t)〉t, 〈...〉t ≡ lim
t→∞

∫ t

0
dt′(...) (1.13)

which now is a vector corresponding to transport along different directions x, y

and z. The symmetries that need to be broken to realize directed transport in

2D and 3D systems were first discussed only in 2008 [49]. Analogous to 1D, the

symmetries which keep Eq.(1.11) invariant but changes the sign of the velocity

vector were identified to be

Sr : r −→ −r +χχχ, t −→ t + τ (1.14)

St : r −→ r +χχχ, t −→ −t + τ (1.15)

which are the most general form of the spatial inversion symmetry and time-

reversal symmetry respectively. Note that in a 2D system, the spatial inversion

operation can be further decomposed into Sr ≡ PxPy + Λ + η i.e. consecutive

reflections Px : x −→ −x and Py : y −→ −y along x and y (or any two orthog-

12



1.7 HIGHER DIMENSIONAL RATCHETS

❋✐❣✉r❡ ✶✳✸✿ (left) Dependence of the translational current components, Jx (solid line) and Jy

(dashed line) on θx,y = θ for the system described by Eq.(1.16). The thick (thin) lines correspond to
overdamped (underdamped) dynamics for m = 0, γ = 1 (m = 1, γ = 0.1). The dependence can be
captured by a sinusoidal function of θ, with the phase depending upon γ as shown in the middle
panel. (right) Two typical trajectories in the setup for two different parameter regimes showing
the control of the transport direction. The blue trajectory exhibits directed transport only along
y-direction due to the presence of Px symmetry whereas the red trajectory is transported along
both x and y directions since both Px and Py symmetries are broken. For detailed parameters, refer
to [49]. Reprinted (adapted) with permission from [49]. Copyright 2008 by the American Physical
Society.

onal) axes respectively followed by any arbitrary space and time translations Λ

and η. This offers further control over the directed current J which is not possible

in 1D. For e.g., one can constrain the directed transport to occur only along the

x-direction by designing a setup which breaks the Px symmetry but preserves the

Py symmetry. In [49], a 2D rocking ratchet model was presented which can be

described by the model

mr̈ + γṙ = −∇∇∇V(r) + f(t) + ξξξ(t) (1.16)

with the potential given by V(x, y) = cos x(1 + cos(2y)) and the driving force of

the bi-harmonic form fx,y(t) = E
(1)
x,y sin t + E

(2)
x,y sin(2t + θx,y). The symmetries Sr

and St can be broken for non-zero values of E
(1)
x,y , E

(2)
x,y . By controlling the phase

θx,y of the driving force, one can control the strength and direction of the directed

current (see Fig.(1.3)).

1.7.2 Vortical current

The possibility to realize rotational motion of particles is a completely new phe-

nomenon in higher dimensional ratchet setups. In order to distinguish unbiased
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CHAPTER 1 DIRECTED TRANSPORT AND RATCHETS

❋✐❣✉r❡ ✶✳✹✿ Dependence of the rotational current JΩ on the phase of driving θ for different values
of dissipation strength γ = 0.2 (solid line), γ = 0.05 (dashed line) and γ = 2 (dashed–dotted line).
The trajectory and the corresponding attractor solution are shown in the left and right insets for
γ = 0.2 and θ = π/2. The dependence of JΩ on θ can be captured by a sinusoidal function, with
the phase depending upon γ as shown in the middle panel. For detailed parameters, refer to [49].
Reprinted (adapted) with permission from [49]. Copyright 2008 by the American Physical Society.

diffusive motion of particles from the rotational motion, a slightly different mea-

sure of angular velocity was introduced in [49]:

Ω(t) = [ṙ(t)× r̈(t)] /ṙ2(t) (1.17)

which is equivalent to the definition of curvature of planar curves measuring the

speed of rotation of the velocity vector of a particle about its origin. The average

angular angular velocity is hence given by JΩ = 〈Ω(t)〉t. Just like the transla-

tional currents, one can deduce the necessary conditions which the Eq.(1.11) has

to break in order to allow rotational currents by analyzing the symmetries. For a

2D potential, the symmetries which change the sign of the angular velocity Ω(t)

but keep the equation of motion invariant are

St : t −→ −t + τ, r −→ ±r +χχχ (1.18)

Sp : r −→ R (Pr) +χχχ, t −→ t + τ. (1.19)

St is the time reversal symmetry together with optional an spatial inversion and

arbitrary space-time translations. Whereas, Sp is the most general form of re-

flection P about any plane perpendicular to the xy plane with optional spatial

rotation R in the xy plane. In [49], it was shown that the potential V(x, y) =
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[−3(cos x+ cos y)+ cos x cos y]/2 with an elliptical driving force fx(t) = E
(1)
x cos t,

fy(t) = E
(1)
y cos(t + θ) can break these symmetries and induce vortex motion of

particles (see Fig.(1.4)). Interestingly, this setup does not break the spatial inver-

sion symmetry Sr. Hence, the translational current J = 0. By careful design of

the setup with relevant symmetries, one can thus control both translational and

rotational currents simultaneously in such 2D systems. A detailed discussion of

the symmetry breaking governing these currents can be found in [40].

1.8 Experimental setups and applications

Since the inception of ratchet transport in the early 1990s, there has been nu-

merous research on this topic and directed transport has since been realized in

a variety of different physical systems. In this section, we would provide very

brief accounts of two physical systems where the ratchet physics has been exten-

sively studied. Alongside, we would highlight some of the practical applications

of ratchet transport in some other physical systems too.

Colloidal ratchets: Since all the early ratchet models were developed keeping

the Brownian regime in mind, unsurprisingly colloidal systems provided the fore-

most testbed for realization of the ratchet effect. In 1994, the flashing ratchet

was demonstrated for the first time using polystyrene colloidal micro-spheres

in a background potential which was switched on and off with time [11]. Di-

rected transport of these spheres was observed as predicted by the theoretical

model. A similar on-off ratchet transport was also realized using fragments of

DNA in water using a micromachined silicon-chip device [50]. The possibility

to use laser beams to trap and move colloidal particles in optical tweezers pro-

vided a very flexible setup to test the predictions of the Brownian ratchet models.

Some of the first ratchet experiments with colloidal particles using optical tweez-

ers yielded good quantitative agreements with the theoretical models [12, 51]. In

the 2000s, due to the development of holographic optical traps which allowed the

micro-manipulation of colloidal particles of sizes in the orders nanometers to mi-

crons [52–54], there has been considerable experimental thrusts to design colloidal

ratchet devices. The first ratchet experiment using a lattice of holographic optical

traps was successfully conducted using silica based micro-spheres in 2005 [55].

The asymmetry in the setup was realized by a three-step driving protocol. Since
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then, holographic optical tweezers have been used to control directed transport of

colloidal particles in both one and two dimensions with the driving force realized

by the use of piezo-modulators [22, 56].

Cold atom ratchets: Cold atoms in driven optical lattices form an ideal system to

explore ratchet physics. The main advantage over the aforementioned colloidal

system is that the level of dissipation in cold atom ratchets can be flexibly con-

trolled allowing both Hamiltonian and dissipative ratchets to be realized. The

optical lattices are created by the interference of two or more laser fields. Far-

detuned laser fields produces purely conservative potentials which are ideal for

modeling Hamiltonian systems. In contrast, the near-resonant fields with appro-

priate Sisyphus cooling mechanism lead to a dissipative optical lattice. The first

ratchet experiment using cold atoms was performed in 1999 by using an undriven

dark optical lattice [57]. The experiments with driven optical lattices started in

2003 and here the driving mechanism was achieved by phase modulating the

laser beams via acousto-optical modulators (AOM) [58]. In this work, the au-

thors demonstrated a rocking ratchet using 85Rb atoms where the direction of

transport could be controlled by varying the driving phase. The experiment was

performed in the regime of strong damping and small dissipation which allowed

them to well approximate the Hamiltonian regime [59]. Experimental realization

of dissipative ratchets with cold atoms has also been realized [60, 61]. Due to the

flexibility in tuning the optical lattice systems, a host of cold atom ratchet setups

have been studied experimentally [59, 62–68]. A detailed review of these different

cold atom ratchets can be found in [43, 69].

Applications: Over the years, the ratchet effect has found numerous applica-

tions in various other disciplines as well. One of the most frequent application

lies in particle separation based on ‘internal’ particle properties like mass, size

and mobility. The central idea is that the particles having different physical prop-

erties would move in different directions under the ratchet effect, allowing them

to be separated. Based on this, particle filters have been designed to separate

two component mixtures with potential biomedical applications [70–72]. Other

ratchet based segregation schemes include electrophoretic mobility based sort-

ing [73], size-sorting of superparamagnetic particles using periodically switching

magnetic fields [74], sorting active and passive particles in soft matter systems

[75, 76], separating cell mixtures in microfluids [77] and separation of granular
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particles [78]. Ratchet effect in superlattices also allow us to separate ballistic

and diffusive particles from each other and filter them according to their veloci-

ties [47, 48]. Apart from particle separation, the ratchet effect has been shown to

effectively induce voltage rectification in superconducting quantum interference

devices (SQUIDs) [16, 79, 80], transportation of fluxons in Josephson junctions ar-

rays [17, 81], and movement of trapped vortices in superconductors [19, 82–84]

among others.

1.9 Control of directed transport

Due to the many applications of directed transport across disciplines, it is not

surprising that much of the theoretical research has focused on how to control

the strength and direction of the transport. It is important to note that although a

symmetry analysis of the system as described in Sec.(1.6) can predict the existence

of directed transport, it can not provide any information about its strength and di-

rection. In fact, the direction of transport can be completely reversed following an

appropriate change in the system parameter. This phenomenon is called current

reversal and was first discussed in [7–9, 85] in the context of Brownian ratchets in

presence of noise. It was shown that varying the profiles and strength of noise or

by the amplitude of the external driving force, the direction of transport can be

reversed in 1D. Since then, the origin and control of current reversals has become

an important research direction in ratchet physics [22, 63, 67, 79, 86–92]. Most

of the existing mechanisms to generate current reversals focus on changing the

direction of asymptotic particle transport due to a change of system parameter

[24, 82, 93, 94]. This serves as the basic principle behind particle separation based

on different physical properties. Recent research has focused on setups where the

current reversal can occur dynamically in time too [22, 95–97]. Such a dynamical

reversal is caused either due to a time-dependent change of a system parameters

or due to other effects like interaction between the particles, dimensional coupling

in the background potential etc. Different 1D setups exhibiting multiple current

reversals have also been explored [21, 24, 82, 87, 90, 98–102].

Two-dimensional ratchet setups allow richer degree of transport control be-

cause the particles can now be transported in different directions, not necessarily

confined to the left or right. Followed by the identification of the symmetry con-

ditions for the existence of directed transport in 2D [49], cold atom experiments
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using a three-beam dissipative optical lattice demonstrated ratchet transport due

to bi-harmonic driving forces in x and y-directions [66]. Some progress on 2D

ratchets has been achieved in the context of vortex motion of superconductors, al-

though the directed motion here is due to the long range interaction of the vortices

and not a single particle effect [78, 83, 84, 103–107]. A new type of rectification has

been shown in such systems due to which directed transport is achieved by ap-

plying a dc-force perpendicular to the ac-driving force. Very recently, a colloidal

ratchet was realized in 2D holographic optical lattices due to which directed trans-

port could be observed in arbitrary direction [56].

Although the control of ratchet transport has been quite well studied in 1D,

there has not been comparable progress in 2D systems. This is in spite of the fact

that 2D systems offer much richer phenomenology in terms of both translational

and rotational transport of particles. Additionally, most of the 2D setups where

the ratchet phenomena has been studied are overdamped. Although the under-

standing of directed transport in the Hamiltonian and underdamped regime is

crucial for the development of miniature ratchet devices where the effect of noise

and dissipation can be ignored, further research is still required in this domain.

With the advancement of experimental technologies in designing 2D driven lat-

tices, especially due to holographic optical trapping of colloids and cold atoms,

it is a natural next step to explore the diverse phenomena that directed transport

offers in 2D. In the next chapters, we would explain the progress achieved in that

direction in the scope of this thesis.
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2
Overview of scientific contributions

In this chapter, we provide a brief overview of each scientific contribution pre-

sented in this dissertation. More detailed explanations may be found in the actual

manuscripts provided in the next chapter.

2.1 Directed transport of underdamped particles at

arbitrary angles

As already mentioned in the previous chapter, the large body of literature on di-

rected particle transport using externally driven two-dimensional periodic po-

tentials has focused on the demonstration and controllability of transport along

certain specific directions. It has been shown that in presence of a combination

of both ac and dc drives, particle transport can be achieved opposite to the di-

rection of the dc-force (absolute negative mobility) or completely orthogonal to it

(absolute transverse mobility) [104, 108]. In the absence of a dc drive, it has been

also shown that particles can be transported oblique to the axis of the ac driving

force in the overdamped regime [56]. In all of these cases, either one or more

of these three ingredients were necessary for directed transport: (i) overdamped

particles, (ii) presence of a dc bias force, (iii) square lattice geometry. This leads

to some important questions in the context of directed transport of particles in 2D

driven lattices. How to predict the direction of transport in the systems which

are underdamped? Is a dc drive necessary in addition to the ac drive in order

to realize transport? What role does different lattice geometry play in controlling

the transport direction? In this section of the dissertation, we try to address these

questions.
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2.1.1 Simultaneous control of multi-species 2D transport

In this paper [A1] (see Sec.(3.1) for details), we consider an ensemble of under-

damped particles moving in an ‘egg-shell’ 2D potential V(x, y) = V cos kxx(1 +

cos kyy) which is driven via external bi-harmonic driving forces of the form fx,y(t)

= dx,y(cos ωt + 0.25 cos(2ωt + π/2)) acting in both x and y directions. Due to the

bi-harmonic form of the driving law, both the spatial inversion Sr and time re-

versal St symmetries are broken, thus allowing directed transport. The ensemble

consists of a mixture of particles, modeled as spherical particles of radius r, hav-

ing different masses m ∝ r3 and Stokes’ friction coefficient γ ∝ r. We observe

that upon initializing the mixture within a small region of the lattice with very

low velocities, the particles travel at different angles which is characterized by

their radii r. By analyzing the bifurcation diagrams of the particle velocities as

a function of their radii, we show that particles with different radii r move with

velocities corresponding to different ballistic attractors of the system. As a result,

groups of particles having similar radii travels through the lattice along a specific

direction with a specific speed. The direction of transport of particles having a

specific radius can be further controlled by changing any other system parame-

ter, for e.g., the lattice height V. This provides a systematic approach to separate

particles having a specific radius, say r = r0, from a mixture of particles having

different sizes by constructing a ‘two parameter bifurcation diagram’ of the at-

tractor velocities as functions of V and r. From such a diagram, one can choose

a value V = V0 which allows particles with radius r = r0 to travel at an angle

∼ θ0 ballistically and hence can be separated from the remaining particles hav-

ing different radii. In summary, we demonstrated that it is possible to induce a

directed ballistic transport of underdamped particles at any angle relative to the

direction of the ac driving force without the aid of any additional dc bias in a

species-selective way.

2.1.2 Effect of lattice geometry on 2D directed transport

In this work [A2] (see Sec.(3.2) for details), instead of a sinusoidal optical lattice

potential, we consider a lattice formed by 2D Gaussian barriers centered at po-

sitions rmn = (m, n) with m, n ∈ Z and having site-dependent potential heights

Vmn. This yields the potential V(x, y)=∑
+∞
m,n=−∞ Vmne−β(r−rmn)

2
. The set of all the

Gaussian barriers arranged periodically in space with a specific value of barrier
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height Vmn forms a sublattice of our system. Our setup is hence a superlattice

formed by the superposition of all these different sublattices. Additionally, we

choose an oscillating driving force F(t) = d cos t (cos θd, sin θd), where θd denotes

the angle of the driving force with respect to the x-axis. Unlike the often used

bi-harmonic driving law, our driving force being a single-harmonic function of

time can not break the spatial inversion symmetry Sr of the setup. Each sub-

lattice formed by the Gaussian barriers is also inversion symmetric. However,

by superposing at least three such sublattices we could design a potential land-

scape V(x, y) such that it breaks the Sr symmetry. The other major advantage

of constructing the lattice out of individual Gaussian barriers is that it allows us

to design Bravais lattices of arbitrary geometry: square, rectangular, oblique etc.

As a result, we can probe into the role lattice geometry plays in determining the

transport direction. One of the important results is that the geometry of the lattice

along with the orientation θd of the driving force determines the average veloci-

ties of the underlying non-linear dynamical attractors. This allows us to induce

directed transport of underdamped particles along designated directions through

the lattice. The particles exhibit axial, lateral or even oblique transport with re-

spect to the orientation of the oscillating drive for different lattice geometries.

Most importantly, we show that it is possible to direct the transport along one of

the lattice vectors even in setups without any line of reflection symmetry, such

as the oblique lattice. The standard symmetry arguments for directed transport

preclude any prediction of the transport direction a priori for such setups. Yet

we can explain the transport direction in terms of the attractors controlling the

asymptotic dynamics of our non-linear dynamical system.
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2.2 Time-dependent control of directed transport in

Hamiltonian setups

In spite of the significant progress achieved in the control of ratchet based trans-

port in the dissipative systems, similar control over the Hamiltonian systems has

been limited. This is partly due to the structure of the underlying phase space of

the higher dimensional Hamiltonian systems. The phase space of driven Hamil-

tonian systems in one spatial dimension is characterized by a bounded chaotic

manifold, which means that the kinetic energies of the particles in such a setup

is also bounded. However, this is no longer true for driven Hamiltonian setups

in more than one spatial dimensions. Due to the unbounded chaotic sea, parti-

cles can undergo very slow diffusion in the momentum space and this prohibits

the calculation of transport velocities of particles by direct numerical integration

of their equations of motion due to convergence issues. In this section, we try to

address this problem by developing a technique to understand the directed trans-

port of a particle ensemble in terms of the dynamical population of the particles

in the underlying phase space. This allows us to control the transport velocity of

particles in both 1D and 2D Hamiltonian setups in a time-dependent manner.

2.2.1 Real-time control of 1D directed transport

In this work [A3] (see Sec.(3.3) for details), we consider an ensemble of particles in

an 1D periodic potential V(x, t) = VS(x, t) +VC(x, t) created by the superposition

of two driven optical lattices: the ‘substrate lattice’ VS and the ‘carrier lattice’ VC

with

VS(x, t) = VS cos2[k(x + d cos(ωt))] (2.1)

VC(x, t) = VC cos2[k(x + 2d cos(2ωt + φ)) + δ].

Both the lattices have the same spatial period but are driven with different fre-

quencies. This allows us to break the overall Sx and St symmetries of our setup

thus allowing directed transport, even though the individual lattices preserve

these symmetries. It is found that by switching the carrier lattice on and off in

a time dependent manner, one can control the transport in real-time. Specifi-

cally on choosing VC = 0, the transport velocity can be frozen to a constant value

which can then be subsequently accelerated again by choosing a VC 6= 0. Further-
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more, by changing the sign of the driving phase φ, one can even decelerate the

transport. Such a time dependent freezing, accelerating and slowing down of the

transport velocity can be repeated multiple times up to timescales in the order of

105 driving periods. The mechanism behind our transport control protocol hinges

on the structure of the underlying phase space of our non-linear dynamical sys-

tem. The systems has a three dimensional phase space characterized by (x, ẋ, t),

which can be easily viewed in 2D by considering stroboscopic Poincáre surfaces

of sections (PSOS). We analyzed the ensemble transport by superimposing time

resolved snapshots of the ensemble dynamics over the PSOS. The PSOS reveals

that the phase space has a mixed structure, i.e. it has both chaotic and regular

manifolds. Most importantly, there exists a cantori in the chaotic manifold which

controls the diffusion of particles from lower to higher kinetic energies. When

the carrier lattice is switched off, the cantori forms an impenetrable barrier and

prevents the particles from attaining higher speeds, hence the transport is frozen.

On switching it back on, the particles can slowly diffuse through the chaotic sea

into regions of higher kinetic energies and hence the transport can be accelerated

again. On changing the sign of φ, we could show that the PSOS is inverted about

ẋ = 0 which ultimately leads to a deceleration of transport. Our setup thus pro-

vides a flexible protocol to control the directed transport in 1D Hamiltonian sys-

tems in a time dependent manner by controlling the structure of the underlying

phase space.

2.2.2 Dynamical current reversal in 2D induced by dimensional

coupling

As discussed earlier, the special advantage of driven Hamiltonian systems in one

spatial dimensions is that the phase space can be easily visualized in terms of the

2D Poincáre surfaces of sections (PSOS) characterized by the particles’ position

and momentum coordinates. The advantage is lost for 2D driven Hamiltonian

setups since the PSOS, which is four dimensional, can not be visualized so easily.

The aim of this project (see Sec.(3.4) for details) is to explain the particle dynam-

ics in such a 2D driven Hamiltonian setup in terms of their dynamics in a well

understood 1D system. We consider non-interacting classical particles in a 2D lat-

tice of elliptic Gaussian barriers located at positions (m, n) yielding the potential

landscape of the form V(x, y)=∑
+∞
m,n=−∞ Ve−α[(x−m− f (t))2+β(y−n)2] [A4]. The barri-
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ers are laterally driven along the x-direction via an external bi-harmonic driving

force of the form f (t) = dx(sin t+ 0.25 sin(2t+π/2)). In the limit β → 0, we have

a quasi-1D lattice with a periodic potential along the x-direction but without any

potential variation along the perpendicular y-direction. This uncouples the x and

y degrees of freedom in the equation of motion of particles and hence we refer to

the parameter β as the dimensional coupling strength. We showed that our driv-

ing law breaks the symmetries Sx and St and so the quasi-1D lattice (β = 0) shows

a net transport along the negative x-direction. However for a non-zero value of

β, although the particles are initially transported in the negative x-direction, the

direction of transport gets reversed dynamically. The reversal timescale decreases

with an increasing value of the dimensional coupling strength β. We explained the

mechanism behind this current reversal by analyzing the time resolved snapshots

of the ensemble dynamics in the 2D system (β 6= 0) superimposed over the PSOS

of the quasi-1D system (β = 0). Additionally, the reversal timescale is also shown

to depend linearly on the average time τβ required by a particle to cross one lat-

tice unitcell along the y-direction via statistical analysis. As β is increased, the

variation of the potential landscape in the y-direction becomes more pronounced

which decreases the value of τβ and the current reversal timescale. Unlike most of

the existing ratchet setups, our setup provides a method to dynamically control

the ratchet current without any time dependent switch of parameters.

2.2.3 Multiple current reversals using superimposed driven

lattices

In this project (see Sec.(3.5) for details) too, we consider a 2D driven Hamiltonian

system and demonstrate that a spatial potential which is coupled in the x and y

dimensions can lead to current reversals. However, unlike the previous setup in

section 2.2.2, the underlying potential here consists of superimposed 2D lattices

[A5]. One of the lattices forms the ‘background lattice’ represented by a separable

potential in x and y: VB(r) = UB(cos2 πx + cos2 πy). The system is additionally

driven in the x-direction by a bi-harmonic driving force. Due to the separable

nature of the potential, the particle dynamics in the background lattice can be

decoupled in both x and y directions. This means that any transport along the

x-direction can be explained in terms of the 2D PSOS characterized by (x, ẋ). On

top of the lattice VB, we superimpose two lattices VG1 and VG2 consisting of 2D

Gaussian barriers localized in different regions of space. The potential due to the
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2.3 CONTROLLING ROTATIONAL CURRENTS IN 2D DRIVEN SUPERLATTICES

Gaussian barriers is coupled in x and y dimensions and hence is non-separable. In

the absence of the lattices of Gaussian barriers, the background lattice exhibits a

transport in the positive x-direction since the setup breaks the parity and time re-

versal symmetries. However, we show that by superimposing the lattices VG1 and

VG2 at different locations in space, one can flip the direction of transport multiple

times in a time dependent manner. The analysis is carried out by superimposing

the time resolved snapshots of the ensemble dynamics in our 2D setup over the

2D PSOS corresponding to the background lattice. The underlying principle be-

hind the current reversals is identified to be the conversion of particle dynamics

from diffusive to ballistic and vice-versa when they encounter the lattices VG1 and

VG2. By controlling the spatial locations of the lattices VG1 and VG2, one can con-

trol the timescales of such conversion processes and hence control the timescales

of current reversals.

2.3 Controlling rotational currents in 2D driven

superlattices

The unique feature of 2D ratchet setups is that alongside translational currents, it

also allows us to generate an overall rotational current for an ensemble of parti-

cles. This is especially interesting since it provides a way to generate rotational

motion of neutral particles by placing them in a driven periodic potential but

without any explicit rotation of potential landscape being involved. The neces-

sary symmetries one has to break in order to achieve this has been demonstrated

for particles in an optical lattice in presence of an external oscillating driving

field [49]. However, unlike the control of translational currents, there has not

been much progress in controlling the rotational currents. The few existing se-

tups either lead to a diffusive rotational motion over an extended space [49] or

requires specific ingredients such as specially designed potentials [109, 110] and

temporally correlated colored noise [111, 112]. In this work [A6] (see Sec.(3.6) for

details), we demonstrate how the rotational motion of neutral classical particles

can be controlled using driven superlattices. Our setup consists of a lattice of 2D

Gaussian wells centered at positions Rmn = (m, n) with m, n ∈ Z giving rise to a

potential V (r, t)=∑
+∞
m,n=−∞ Umn(t)e−β(r−Rmn)

2
. The depths of the wells are modu-

lated periodically with time by the driving law Umn(t) = Vmn (cos(t + φmn)− 1),

which depends on the spatial location of the wells. The set of all wells arranged
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periodically in space with a specific value of the driving phase φmn and amplitude

Vmn forms a sublattice of our system. Hence our setup can be considered to be a

driven superlattice formed by the superposition of these different sublattices. We

showed that specific spatial arrangements of the wells driven with different driv-

ing phases φmn breaks the reflection symmetries in the setup and allows particle

to rotate with non-zero angular momenta. Through an analysis of the underly-

ing attractors, we could show that the angular momentum of the particles can

be controlled by changing the driving amplitude Vmn. This allowed us to create

spatially periodic patterns of particles rotating with different angular momenta, a

phenomenon which is not possible in the existing 2D ratchet setups.
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We provide a generic scheme to separate the particles of a mixture by their physical properties like mass,
friction, or size. The scheme employs a periodically shaken two-dimensional dissipative lattice and hinges
on a simultaneous transport of particles in species-specific directions. This selective transport is achieved
by controlling the late-time nonlinear particle dynamics, via the attractors embedded in the phase space and
their bifurcations. To illustrate the spectrum of possible applications of the scheme, we exemplarily
demonstrate the separation of polydisperse colloids and mixtures of cold thermal alkali atoms in optical
lattices.

DOI: 10.1103/PhysRevLett.120.218002

Introduction.—The controlled separation, or spatial sort-
ing, of particle mixtures based on their physical properties
like mass, size, shape, or mobility presents major chal-
lenges cutting across disciplines from biomedical problems
such as the separating of malignant circulating tumor cells
from leucocytes in the bloodstream [1] to technological
problems on colloidal and granular scales [2]. Following
these challenges, much effort has been devised to develop
innovative separation schemes complementing traditional
techniques such as the filtration, distillation, or evaporation
of mixtures. For example, to separate heterogeneous
granular particle mixtures in geological and biological
systems, it has been shown that vibrating a substrate [3–
5] allows us to separate two species by size. To separate
particles on colloidal scales which are significantly affected
by Brownian noise, it has been shown that techniques like
vector chromatography [6], deterministic lateral displace-
ment [7], or suitable external forcing may be sufficient to
separate mixtures [2,8–10].
One important class of innovative separation schemes

employs so-called Brownian ratchets, in which thermal
Brownian motion combined with external time-dependent
driving generates directed particle motion [2,11–15]. Based
on an appropriate design of such ratchets, the direction of
the emerging particle current may depend on “internal”
particle properties such as mass, radius, or mobility. This
dependence can be exploited to simultaneously transport
two different particle species in opposite directions, i.e., for
separating them [Fig. 1(a), upper panel]. Based on this idea,
it has been possible to establish a rich set of schemes to
separate two component particle mixtures, including a
massively parallel particle filter [16] serving as an artificial

microsieve with potential biomedical applications [2] and
schemes allowing us to separate mixtures of cellular
membrane associated molecules that differ in electropho-
retic mobility and diffusion coefficient [17]. Further exam-
ples of ratchet-based separation devices allow for the size
sorting of superparamagnetic particles using periodically
switching magnetic fields [18], of active and passive
particles using active ratchet systems [19,20], and of
heterogeneous cell mixtures using microfluidic funnel
ratchets [21]. Finally, we note that ratchets in superlattices
also allow us to separate particles by the type of their
motion (ballistic or chaotic) and allow us to sort (or filter)
them by velocity [22,23].
These examples illustrate the rich versatility of ratchet-

based separation schemes which, in the following respects,
seems to be somewhat advantageous over traditional
techniques like sieving or filtrating: (i) They may operate
on many technologically relevant scales ranging from
granular and colloidal sizes down to the nanoregime [2]
and even to the size of single atoms [24], (ii) the particle
current underlying the particle separation can be controlled
with an external field [25], even in real time [26,27], and
(iii) they allow us to separate particles with respect to all
kinds of physical properties from size and mass to
charge and mobility. However, these advantageous,
ratchet-based schemes seem to have one striking disad-
vantage: Unlike sieves, which can be easily stacked to sort
many-component mixtures by size, most (if not all) ratchet-
based schemes are restricted to the separation of only two
species, based on forward transport of one species and
reverse transport of the other one. Since combinations of
several ratchets, each separating two species, would be
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rather sophisticated to design and produce, it would be
desirable to know a mechanism allowing for a simultaneous
separation of many species.
Here we propose such a mechanism unifying the

above advantages of ratchet-based separation schemes with
the ability to efficiently separate multispecies mixtures
[Fig. 1(a)] based on their physical properties like mass,
friction, or size. To develop this scheme, we use a
periodically shaken two-dimensional dissipative lattice
and demonstrate that it is possible to induce ballistic-
directed transport of individual species simultaneously at
different angles. Here, we exploit the strongly nonlinear
character of driven lattices to control the late-time particle
dynamics species-selectively on the phase space level.
Initializing mixtures of particles, we show that each species
travels in an individual direction through the lattice,
allowing for their collection with an angular detector (or
a reservoir). To illustrate possible applications of this
general scheme, we demonstrate the segregation of a
mixture of polydisperse colloids differing in radius and a
mixture of cold alkali atoms with different masses. The
segregation scheme should apply generally to particles on
atomic and nanoscales up to colloids and granular particles.
In particular, contrasting many other ratchet-based separa-
tion schemes, the present one does not hinge on Brownian
noise (but is robust against it) and should hence apply for
granular particles which are too large to experience a
significant effect from Brownian noise and, in principle,
also for the extreme case of a mixture of cold thermal atoms
with different masses in purely optical setups [24], where a
noise-providing medium is practically absent.
Setup.—We consider a mixture of N noninteracting

classical particles in a two-dimensional lattice defined by
a periodic potential Vðx; yÞ ¼ V cos kxxð1þ cos kyyÞ
which is driven via external biharmonic driving forces
fx;yðtÞ ¼ dx;y½cosωtþ 0.25cosð2ωtþ π=2Þ� acting in both

the x and y directions and breaking parity x → −xþ χ and
time-reversal t → −tþ τ symmetry, with additional con-
stant spatial and temporal shifts, to allow for a directed
particle transport [25,28]. Here, dx and dy denote the
respective driving amplitudes in the two directions, kx
and ky the respective wave numbers, and ω the frequency of
the external driving force. The system thus has spatial and
temporal periodicities of Lx;y ¼ 2π=kx;y and T ¼ 2π=ω.
Such a two-dimensional lattice potential can be created, for
example, in cold atom setups by using two sets of counter-
propagating laser beams of nonorthogonal polarizations
between mirrors, and the driving can be implemented with
standard techniques like acousto-optical modulators and
radio frequency generators, leading to a lateral oscillation
of the mirrors and hence of the lattice [29]. Here, the
damping can be realized using optical molasses [30]. For
colloids, such potential landscapes can be designed by
interfering multiple laser beams [31], creating a 2D
intensity pattern exerting optical forces on the particles
[32,33]. The driving can be implemented using a velocity
modulated piezo stage [33].
Introducing dimensionless variables x0 ¼ kxx, y

0 ¼ kyy,
and t0 ¼ ωt and dropping the primes for simplicity, the
equation of motion for a single particle of massm located at
position x with momentum p in such a setup reads

ẍ ¼ Ux sin xð1þ cos yÞex þ Uy cos x sin yey

þ ½cos tþ 0.25 cosð2tþ π=2Þ�F − Γ _xþ ξðtÞ; ð1Þ

where ex ¼ ð1; 0Þ and ey ¼ ð0; 1Þ. The parameter space of
this model has five essential dimensions with Ux;y ¼
ðVk2x;y=mω2Þ comparing the velocity of a particle in a
static lattice with the velocity of the oscillating lattice, F ¼
½ðkxdx=mω2Þ; ðkydy=mω2Þ� being a reduced driving ampli-
tude, and Γ ¼ ðγ=mωÞ comparing the relaxation time due
to dissipation (in the underlying static lattice) with the
timescale of the lattice oscillation. ξðtÞ ¼ ðξx; ξyÞ denotes

FIG. 1. (a) Upper panel: Cartoon of a standard particle segregation scheme based on 1D ratchets allowing for the separation of a
mixture of particles (left) with different mass, mobility, or radius (color) into two components (right). Lower panel: The present scheme
allows for a controlled angular-specific transport of many species which can be applied to sort multispecies mixtures. (b) Snapshot of
particle positions (in radial R and angular θ coordinates) in a mixture of particles with different radii r (shown in the color bar) at
t ¼ 5 × 104 T. Particles in at least four different radii (r) intervals can be separated at different angles (θ; position of the detector) using
this setup: The pairs of the radii intervals and angles are (0.32≲ r≲ 0.33, θ ≈ 45°; 225°), (0.38≲ r ≲ 0.40, θ ≈ 30°, 210°),
(0.26≲ r ≲ 0.27, θ ≈ 120°), and (0.29≲ r≲ 0.30, θ ≈ 270°). The remaining parameters are V ¼ 0.17, η ¼ 0.01, dx ¼ dy ¼ 1,
ω ¼ 1, and 2kx ¼ ky ¼ 2. The other particles remain confined near the origin, and one can repeat the process with a different value of V
in order to segregate them (discussed later).
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thermal fluctuations modeled by Gaussian white noise of
zero mean with the property hξαðtÞξβðt

0Þi ¼ 2Dδαβδðt − t0Þ,
where α, β ∈ x, y and D is the dimensionless noise
strength. Here we focus on the underdamped regime where
dissipation is weak but important and neglect Brownian
noise corresponding to low temperatures (cold atoms) or
large masses (granular particles). Our main results are
robust against typical noise, as discussed later.
Simultaneous control of directed transport and particle

segregation.—We now illustrate the scheme for a poly-
disperse mixture of N ¼ 2 × 104 underdamped colloids
with uniformly distributed radii r ∈ ½0.2; 0.5�. Here, we
account for the impact of the radius on the colloidal mass
(m ¼ 4

3
πρr3) and the dissipation coefficient (γ ¼ 6πηr) but

treat colloids as pointlike regarding their interactions with
the lattice potential (for a CO2 laser, Lx;y ∼ 10r–103r).
We initialize the particles randomly within a square

region Lx × Ly of the lattice and give them small random
velocities. To mimic potential experimental scenarios, we
first allow the colloids to equilibrate in a static lattice for a
time 1000T [Fig. 1(a), lower panel, left]. Now switching on
the driving and waiting until ∼5 × 104T, we observe
ballistic particle jets (“rays”), radially moving away from
their initial positions at different angles [Fig. 1(b)].
Strikingly, most of these rays have an almost uniform
color [Fig. 1(b)], meaning that they involve only colloids
with very similar radii and separate them from the rest of
the mixture. The figure shows the simultaneous separation
of four “species” by radius, while the rays at 0° and 180°, as
well as the particle cloud around the origin, still contain a
mixture of particles with different radii which may be
considered as “losses.” When analyzing the general work-
ing principle of our scheme below, it will become clear that
the presented segregation is not at all limited to the four
specific radii intervals separated so far but that it is tunable
and can be applied to separate particles with a desired set of
radii from the mixtures.
Discussion.—Wenow analyze themechanism underlying

the particle separation on the level of the five-dimensional
phase space (x, y, px, py, t) of the system. We analyze the
attractors determining the asymptotic t → ∞ dynamics of all
particles, which can be periodic (limit cycle attractors) or
chaotic (chaotic attractors) and basins of attraction.
The idea is to tune the set of attractors via system

parameters such that the late-time dynamics of particles
with different properties is governed by species-dependent
limit cycles which transport particles to species-specific
directions. The limit cycle attractors represent trajectories
which are synchronized with the lattice motion. As a result,
they transport particles in well-defined directions with
characteristic (quasi)periodic average velocity v̄≡ðv̄x;v̄yÞ¼
½ðnxLx=mxTÞ;ðnyLy=myTÞ�, where nx, mx, ny, my are
attractor-specific integers [34]. Hence, at a large distance
from the center of the square region Lx × Ly, where the
particleswere initialized (whichwe henceforth refer to as the

“origin”), particles following the dynamics of a limit cycle
attractor can be collected by placing a suitable collector
(detector or reservoir) at an angle θ ¼ tan−1ðv̄y=v̄xÞ ¼
tan−1ðmxnyLy=mynxLxÞ. Thus, if we manage to tune the
limit cycle attractors and their basins of attraction in the
phase space such that particles with, e.g., different radii end
up in different limit cycle attractors, they will be automati-
cally separated [Fig. 1(b)]. The size of the detectors would
depend on the angular spreading △θ of the particle “jets,”
which for this setup [Fig. 1(b)] was found to be of the order
of 0.01°. Hence, if one places the detectors at a radial
distance of R ¼ 105 from the origin, their required sizes
would be determined by the arc length R△θ ∼ 4Lx. Such a
detection and tracking of colloidal particles are routinely
done using high-resolution optical tracking and holographic
microscopy [35,36]. The chaotic particles, owing to their
diffusive nature, staymuch closer to the origin and as a result
do not interfere with the segregation process.
In order to predict whether a particle would end up in a

chaotic attractor or a limit cycle, we compute the “bifurca-
tion diagram” [Figs. 2(a) and 2(b)] associated with the

FIG. 2. (a), (b) Radius-dependent bifurcation diagram of the
particle velocity (initialized at the potential minima x ¼ y ¼ π

with v ¼ 0). Regions with broad velocity fluctuations (e.g.,
0.41≲ r ≲ 0.45) represent chaotic attractors; single velocity
values (see r ¼ 0.25) denote period 1 limit cycles; others
represent multiperiodic limit cycles (e.g., r ¼ 0.39). (c) Asymp-
totic dynamics (in the vx-vy plane) and the mean velocities v̄r of
four exemplary particles having radii r ¼ 0.25, 0.28, 0.31, and
0.39 (in magenta, green, red, and blue, respectively). The
particles with r ¼ 0.25, 0.31, and 0.39 belong to limit cycle
attractors, whereas the one with r ¼ 0.28 is attracted to a chaotic
attractor. (d) Spatial trajectories of the four particles in polar
coordinates between t ¼ 0 and t ¼ 105T. The particle with r ¼
0.25 is trapped near the origin due to its vanishing mean velocity,
whereas the one with r ¼ 0.28 exhibits diffusive behavior (upper
panel). The particles with radii r ¼ 0.31 and 0.39 move ballis-
tically through the lattice at angles governed by their mean
velocities (lower panel). Note the difference in spatial length
scales between the upper and lower panels. Remaining param-
eters: see Fig. 1(b).
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particle velocity as a function of its radius by initializing
particles of different radii and stroboscopically monitoring
their late-time velocity (at multiples of T). This determines
the attractors (chaotic, period one, or multiperiodic limit
cycle) to which a particle of a given radius would be
attracted and the resulting angles of transport [Figs. 2(c)
and 2(d)]. For a detailed illustration of the dynamical
processes underlying the segregation mechanism, see
Supplemental Material [37].
To make the segregation scheme more flexible and

separate particles of a varying range of sizes, we use the
lattice potential height V as a control parameter. Using a
similar concept as above, one can construct a two-param-
eter bifurcation diagram of the particle velocity vθ ¼
tan−1ðvy=vxÞ (in the angular coordinates) showing whether
a particle of radius r ends up in a limit cycle attractor
or a chaotic attractor for a given lattice potential height V
[Fig. 3(a)]. For our segregation scheme, we choose those
values of V and r for which the particle dynamics is
asymptotically governed by the limit cycle attractors.
Depending on the average velocity v̄ of these limit cycles,
particles of a given radius might be trapped (v̄ ¼ 0) in the
lattice or fly out ballistically at certain angles (v̄ ≠ 0). The

asymptotic direction of flight θ ¼ tan−1ðv̄y=v̄xÞ for these
ballistic particles as a function of V and r [Fig. 3(b)]
predicts a priori at which angle a particle of a given radius
would travel for a chosen lattice height V. At this stage, the
segregation protocol becomes very simple: Given a set of
particles with different radii, the task is to simply choose a
value of V from Fig. 3(b) for which the different species
travel ballistically at different angles. One can, in principle,
repeat this process with a different value of V in order to
also separate the cloud of “lost” particles, which, owing to
their diffusive motion, remain close to the origin.
The segregation scheme mentioned here works not just

for colloidal particles with a continuous size distribution
but, for example, also for a mixture of particles differing
only in mass. We now demonstrate this using a mixture of
three cold thermal alkali atoms which can be treated
classically in the regime of microkelvin temperatures
[24,38]. Such a scheme can be tested, of course, also with
two species only and also applies to isotopic mixtures of the
same atom (see [39,40] for details on simultaneous trap-
ping). In Fig. 4, we show how our scheme can be adapted to
simultaneously separate three species of commonly used
alkali atoms of different masses from a mixture. It shows
that, after t ¼ 5 × 104T, particle rays containing mostly one
species emerge at different angles. A detector positioned,
e.g., at θ ≈ 320° would collect only Na atoms, whereas a
detector at θ ≈ 270° would see mostly Cs atoms. Such a
scheme may be realized using state of the art cold atom
experimental setups with optical lattices driven by phase
modulation of the laser beams using acousto-optical
modulators and radio frequency generators [24,41–43].
Contrary to most ratchet-based segregation schemes, the

present one does not depend on noise, allowing its
application also, e.g., to heavy and underdamped granular
particles. For a noise strength of D≲ 10−3 typical for cold

FIG. 3. (a) Bifurcation diagram of vθ (color) as a function of
lattice potential height V and particle radius r. The yellow,
green, red, and black regions represent limit cycles with
periodicities 1, 2, 3, and higher, respectively. (b) Asymptotic
flight direction θ (angular coordinates) of ballistic particles
with average velocity v̄ ≠ 0 for different V (radial coordinates)
and r (color bar). Thus, a lattice of, e.g., V ¼ 0.6 separates
particles with radii in the intervals 0.26≲ r ≲ 0.3 to θ ≈ 90°
and analogously 0.12≲ r ≲ 0.16 to θ ≈ 27° and 0.36≲ r≲
0.33 to θ ≈ 227°, 333°. The remaining parameters are η ¼ 0.05,
dx ¼ dy ¼ 1, ω ¼ 1, and 2kx ¼ ky ¼ 2.

FIG. 4. Snapshot of particle positions at t ¼ 5 × 104T (in radial
R and angular θ coordinates) showing the segregation of three
different masses 0.23 (red), 0.87 (green), and 1.33 (blue)
corresponding to atoms Na, Rb, and Cs with masses 23, 87,
and 133 a.m.u., respectively. The remaining parameters are
γ ¼ 0.01, dx ¼ dy ¼ 3, ω ¼ 1, 2kx ¼ ky ¼ 2, and V ¼ 0.1679.
Since the dimensionless parameters depend on ðV=mÞ, ðdx;y=mÞ,
and ðγ=mÞ, the parameters V, dx;y, and γ can be scaled according
to the atomic mass to correspond to relevant experimental setups.
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atoms and underdamped colloids [2,44], we observe only
minor fluctuations around the average velocity of the limit
cycle attractor, which does not affect the functionality of
the segregation mechanism. Weak long-range interactions,
in turn, should mainly induce chaotic-to-ballistic transitions
[26], possibly improving the segregation efficiency.
Conclusions.—We have presented a scheme allowing us

to separate particles from a mixture based on different
selection criteria like radius-dependent frictional forces or
particle mass. This scheme exploits the strong nonlinearity
of driven lattices to control the late-time particle dynamics
species selectively on the phase space level. This contrasts
standard segregation schemes based on overdamped ratchet
setups and allows us to overcome their key limitation of
segregating more than two species. Owing to its determin-
istic character, our new control mechanism can be applied
to particle mixtures on an unusually broad range of scales
from atoms to granular particles. The segregation scheme
can be tested, for example, using polydisperse colloids or
mixtures of cold thermal alkali atoms using ac-driven
optical lattices. As a perspective, further studies may
account for localized perturbations of the ideal periodic
potential employed, which may allow us to transfer the
scheme to overdamped or even to the pure Hamiltonian
regime based on, e.g., a mass-selective accumulation of
particles in the regular structures of the Hamiltonian phase
space [45]. Interaction effects may add to the species-
selective directed transport [46,47].
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SUPPLEMENTAL MATERIAL

Here we discuss the trajectories associated with dif-
ferent regions of the bifurcation diagram in detail.
We consider four different particles having radii r =
0.25, 0.28, 0.31 and 0.39 respectively in the same setup
underlying the Figure 2 of the main text and illustrate
their asymptotic dynamics in Fig. 1 below. The bifurca-
tion diagrams in Fig. 1a and 1b show the radii intervals
and types of attractors these four particles belong to, the
Fig. 1c depicts the asymptotic velocities of these four par-
ticles for a time duration of 103T and the Fig. 1d shows
their spatial trajectories during t = 0 and t = 105T .

The particle with radius r = 0.25 (magenta) is at-
tracted to a limit cycle attractor of period 1 (Fig. 1a
and 1b) and hence exhibits regular dynamics character-
ized by a periodic orbit (Fig. 1c, magenta-colored orbit).
But since it has a vanishing mean velocity v̄(r=0.25) = 0,
it is trapped near the origin (Fig. 1d). The particles
with radii r = 0.31 and 0.39 (red and blue) are also at-
tracted to limit cycle attractors (but with higher period-
icity) and hence have regular orbits (Fig. 1c, in red and
blue respectively). But since they have non-zero mean
velocities v̄(r=0.31) = (1, 0) and v̄(r=0.39) = (−1,−0.5),

they travel ballistically at angles θ = tan−1( 01 ) = 0◦ and
θ = tan−1(−0.5

−1.0 ) ≃ 206◦ respectively through the two
dimensional lattice (Fig. 1d). In contrast, the particle
with radius r = 0.28 belongs to a chaotic attractor and

hence exhibits a diffusive behaviour characterized by a
broad (but bounded) velocity distribution (Fig. 1c, in
green). Since it has a non-zero mean velocity v̄(r=0.28) =
(0.01,−0.04), it moves diffusively and irregularly through
the lattice at an angle θ = tan−1(−0.04

0.01 ) ≃ 284◦ (Fig. 1d).

Hence the particles with radii r = 0.31 and 0.39 can be
separated from a mixture of particles with these four radii
by placing two detectors at angles θ ≃ 0◦ and θ ≃ 206◦

respectively at a radial distance of, for e.g., R = 4× 105.
The particles with radius r = 0.28, owing to their dif-
fusive dynamics, are much slower and stay closer to the
origin (note the difference in spatial length scales between
the upper and lower panels of Fig. 1d); hence they do not
affect the segregation process. Note that the four specific
radii have been exemplarily chosen such that they repre-
sent complete intervals of radii corresponding to different
chaotic and limit cycle attractors in the bifurcation di-
agram. Hence the dynamics of these particles embodies
the dynamics of all the particles with radii belonging to
these radii intervals.
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Figure 1. (a) and (b) Radius dependent bifurcation diagram of the particle velocity. (c) Asymptotic dynamics and mean
velocity v̄r of particles having different radii r in the vx − vy plane. (d) Spatial trajectories of particles having different radii
in polar coordinates.
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We demonstrate the directed transport of underdamped particles in two-dimensional lattices of arbitrary

geometry driven by an unbiased AC driving force. The direction of transport can be controlled via the lattice

geometry as well as the strength and orientation of the oscillating drive. The breaking of the spatial inversion

symmetry, which is necessary for the emergence of directed transport, is achieved solely due to the structure

and geometry of the lattice. The most important criterion determining the transport direction is shown to be

the ballistic attractors underlying the phase space of our weakly dissipative nonlinear dynamical system. This

allows the prediction of transport direction even for setups like driven oblique lattices where the standard

symmetry arguments of transport control fail. Our results can be experimentally realized using holographic

optical-lattice-based setups with colloids or cold atoms.

DOI: 10.1103/PhysRevResearch.2.013290

I. INTRODUCTION

The interplay between nonlinearity and symmetry breaking

in an unbiased nonequilibrium environment has been shown

to rectify random particle motion into unidirectional particle

transport, a phenomenon usually referred to as the ratchet ef-

fect [1–8]. It was initially conceived as a working principle to

describe the performance of various biological motors [9,10].

However, today the ratchet effect attracts widespread interest

and has found applications across various disciplines such

as biological, atomic, and condensed matter physics [4,11–

14]. Different schemes based on this mechanism have been

implemented to, for example, control the topological soliton

dynamics in ionic crystals [15], design electron transport in

organic semiconductors [16] and organic bulk heterojunc-

tions [17], control diffusion of driven magnetic nanoparti-

cle [18], realize unidirectional motion of active matter [14,19],

rectify voltage in superconducting quantum interference de-

vices [20,21], and induce transport of fluxons in Joseph-

son junction arrays [22,23] or vortices in conformal crystal

arrays [24,25].

Due to such a widespread applicability of ratchet-based

transport, unsurprisingly, a vast body of literature has been

devoted to controlling the strength and direction of the

ratchet current. While the ratchet setups in one spatial di-

mensional address only forward or backward transport of

particles [3,4,26–32], two-dimensional (2D) setups allow for

transport at arbitrary angles. It has been shown that particles
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driven via external time periodic forces on a spatially periodic

2D lattice allow directed transport not only parallel to the

drive but also at an angle relative to the driving law [33,34] or

even completely orthogonal to it [35]. Although there has been

major technical advancement in experimental realization of

such 2D ratchets involving different systems like cold atoms

and colloids, there are certain common drawbacks in most of

them. First, most of these ratchet-based setups in two dimen-

sions operate in the overdamped regime where the inertial

effects can be neglected. However, there exists a large class

of systems which do not operate in this overdamped regime,

such as self-propelled vibrated particles [36], underdamped

colloids and tracer particles [37,38], gold and polystyrene

nanoparticles in optical systems [39], and granular particles.

Although the control of directed transport would certainly be

desirable in these systems, an understanding of the ratchet

phenomenon in such underdamped 2D setups is lacking.

Second, a majority of these setups usually require an external

static force as a bias in order to realize directed transport of

particles. There are very few setups in two dimensions where

the transport is achieved solely due to an unbiased AC driving

force [33,34]. Finally, almost all of these setups have focused

on directed transport in driven square lattices. Only recently

has it been shown that lattices with other geometries, espe-

cially oblique lattices, also allow directed transport, although

in the overdamped regime [33].

In this work we address the above three key limitations of

the traditional 2D ratchet setups. Specifically, we show that

it is possible to realize directed transport of underdamped

particles along designated directions by externally driving

2D Bravais lattices of different geometries with an unbiased

time-dependent driving force. The necessary breaking of the

spatial inversion symmetry in our setup is achieved solely due

to the lattice geometry. Any residual reflection symmetry can

be optionally broken by a suitable orientation of the driving

force. We show that the resulting direction of transport can

be controlled and explained in terms of the ballistic attractors

2643-1564/2020/2(1)/013290(8) 013290-1 Published by the American Physical Society



ARITRA K. MUKHOPADHYAY AND PETER SCHMELCHER PHYSICAL REVIEW RESEARCH 2, 013290 (2020)

underlying the phase space of our dissipative nonlinear dy-

namical system. It is important to stress that generally such a

setup does not allow the prediction of the transport direction

a priori due to the absence of any line of reflection symmetry.

However, we show that it is possible to realize directed

transport of particles along specific directions irrespective of

the lattice geometry and orientation of the oscillating drive.

II. SETUP

We consider N noninteracting classical particles

in a 2D dissipative potential landscape V (x, y) =∑+∞

m,n=−∞ Vmne−β(r−rmn )2

formed by a lattice of 2D

Gaussian barriers centered at positions rmn = (mL, nL),

m, n ∈ Z, having site-dependent potential heights Vmn.

The lattice is driven by an external harmonic driving force

f (t ) = a cos ωt (cos θd , sin θd ). Here a and ω are the amplitude

and the frequency of the driving, respectively, and θd denotes

the angle of the driving force with respect to the x axis.

Introducing dimensionless variables x′ = x
L

, y′ =
y

L
, and

t ′ = ωt and dropping the primes for simplicity, the equation

of motion for a single particle at position r = (x, y) with

velocity ṙ = (ẋ, ẏ) reads

r̈ = −γ ṙ + F(t ) + ξ(t )

+

+∞∑

m,n=−∞

Umn(r − Rmn)e−α(r−Rmn )2

, (1)

where F(t ) = d cos t (cos θd , sin θd ) is the effective site-

dependent driving law and Rmn = (m, n) denotes the posi-

tions of the maxima of the Gaussian barriers. The different

scaled parameters governing the system are the effective

barrier heights Umn =
2Vmnβ

mω2 , an effective driving amplitude

d = a
mω2L

, an effective dissipation coefficient γ =
γ̃

mω
, and

the parameter α = βL2. In addition, ξ(t ) = (ξx, ξy) denotes

thermal fluctuations modeled by Gaussian white noise of zero

mean with the property 〈ξi(t )ξ j (t
′)〉 = 2Dδi jδ(t − t ′), where

i, j ∈ x, y and D =
γ̃ kBT
mω2L2 is the dimensionless noise strength,

with T and kB denoting the temperature and Boltzmann con-

stant, respectively. The set of all Gaussian barriers arranged

periodically in space with a specific value of barrier height

Umn forms a sublattice of our system. Our setup is hence a

driven superlattice formed by the superposition of different

sublattices, each consisting of barriers possessing distinct

heights Umn. The necessary condition for any setup to exhibit

directed transport is to break both the generalized spatial

inversion symmetry Sr: r → −r + δ and t → t + τ , and the

generalized time-reversal symmetry St : t → −t + τ and r →

r + δ (for any arbitrary constant translations δ and τ of space

and time, respectively) [4,40]. In our setup, each sublattice

is individually symmetric with respect to the symmetry Sr

and this symmetry can be broken by a superposition of at

least three sublattices consisting of barriers with different

heights (see Appendix A). Since our setup is dissipative, the

symmetry St is also broken.

The setup can be experimentally realized, e.g., by using

monodisperse colloidal particles in a 2D lattice obtained by

reflecting a linearly polarized laser beam onto a spatial light

modulator displaying a computer-generated hologram which

can then be driven using a piezomodulator [33]. A second

highly controllable setup could be driven lattices based on

holographic trapping of atoms [41–44] in the regime of mi-

crokelvin temperatures where a classical description of cold-

atom ratchets is appropriate [12].

In order to explore the particle transport in our lattice

characterized by the average velocity of the particle ensemble,

we initialize N = 104 particles within a square region x, y ∈

[−10, 10] with small random velocities vx, vy ∈ [−0.1, 0.1]

such that their initial kinetic energies are small compared to

the potential height of the Gaussian barriers. Subsequently,

we time evolve our ensemble up to time t f = 2 × 104 by nu-

merical integration of Eq. (1). For all our setups, we consider

noise strength D > 0 and the resulting asymptotic transport

velocity is independent of the specific initial conditions of

each particles. We demonstrate that it is possible to realize

particle transport parallel to the driving force axis (axial

transport), orthogonal to it (lateral transport), or even in an

oblique direction for different lattice geometries using our

setup.

III. RESULTS AND DISCUSSION

A. Axial transport in a rectangular lattice

In our first setup [Figs. 1(a) and 1(b)], we consider a

rectangular superlattice constructed by superposing three rect-

angular lattices with lattice vectors a = (3, 0) and b = (0, 1).

FIG. 1. Mean position of the particle ensemble (in radial R and

angular θ coordinates) as a function of time t (in the colorbar)

for the (a) rectangular lattice driven along θd = 0◦ with d = 0.3

and (c) square lattice driven along θd = 90◦ with d = 0.5. (b) and

(d) Snapshots of the ensemble velocity distribution at t = t f for the

setups in (a) and (c), respectively. The insets in (b) and (d) depict

schematic representations of the two corresponding lattices along

with the lattice vectors a and b, with each colored circle denoting

the position of an individual Gaussian barrier. The different colors

denote different barrier heights Umn = 0.5 (blue), 1.0 (red), and 1.5

(green) [inset in (b)] and Umn = 0.3 (blue), 0.6 (red), 0.9 (green), and

1.2 (black) [inset in (d)]. The driving axis is denoted by the pink

double arrowed lines. The other parameters are γ = 10−2, α = 5,

and D = 1.5 × 10−4.
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Although the setup breaks inversion symmetry Sr, it is invari-

ant under Py : y → −y, rendering any line parallel to the x axis

as the line of reflection symmetry modulo a spatial translation

along the y direction. The lattice is driven along this symmetry

axis by choosing θd = 0◦. As expected from the symmetry ar-

gument, the particles exhibit no transport along the y direction

and a net directed transport is observed along the positive x

direction [Fig. 1(a)]. The direction of transport can be better

understood by analyzing the asymptotic velocity distribution

of the particles at the end of the simulation time, i.e., t f , which

shows that most particles travel along the x axis with a veloc-

ity of either v ≈ (3, 0) or (−3, 0) [Fig. 1(b)]. For the chosen

parameter regime, these velocities correspond to the average

velocities of the two ballistic attractors denoting synchronized

motion of particles through the oscillating lattice traveling

one unit cell per unit time either parallel or antiparallel to

the lattice vector a in the deterministic limit D → 0. Even

for D > 0, the attractors are not completely destroyed and at

longer timescales the particles move approximately with the

same velocities as the average velocities of these attractors.

Thus, these ballistic attractors correspond to almost straight

distinct channels through the lattice corresponding to regular

motion of the particles towards left and right with opposite

velocities. The average transport velocity of the ensemble is

simply the sum of the velocities of all the particles in both

these channels. Due to the broken Px : x → −x symmetry,

the velocity distribution is asymmetric and significantly more

particles travel to the right than to the left, resulting in an axial

transport along the positive x direction.

B. Lateral transport in a square lattice

Lattices possessing a line of reflection symmetry can also

exhibit directed transport along a direction orthogonal to the

driving force. To illustrate this, we consider a square lattice

formed by the superposition of four square lattices with lattice

vectors a = (2, 2) and b = (−2, 2) [Figs. 1(c) and 1(d)]. This

lattice too breaks both Sr and Px symmetries but preserves

the Py symmetry. Upon driving the lattice along the y axis,

which is orthogonal to the symmetry axis, a lateral current

is observed along the positive x direction in accordance with

the symmetry argument [Fig. 1(c)]. From the peaks of the

asymptotic velocity distribution of the particles [Fig. 1(d)], it

is evident that the underlying particle dynamics is governed

mainly by the four ballistic attractors with average velocities

(2,2), (2,−2), (−2, 2), and (−2,−2). These correspond to

particles exhibiting regular motion, moving one unit cell per

unit time along directions parallel and antiparallel to the two

lattice vectors a and b. The Py symmetry is clearly reflected

in the asymptotic velocity distribution due to which almost

equal numbers of particles possess vy > 0 and vy < 0, thus

prohibiting any average transport in the y direction [Fig. 1(d)].

However, due to the Px symmetry breaking, the number of

particles moving along the positive x direction is much higher

and hence directed transport occurs along this direction.

C. Driving-induced breaking of the reflection symmetry

The residual reflection symmetry Py in our rectangular

or square lattice setups can be broken by driving the lattice

FIG. 2. Mean position of the particle ensemble (in radial R and

angular θ coordinates) as a function of time t (in the colorbar) for the

same square lattice setup as in Figs. 1(c) and 1(d) driven along θd =

135◦ (pink double arrowed lines) with (a) d = 0.6 and (c) d = 1.0.

(b) and (d) Snapshots of the ensemble velocity distribution at t = t f

for the setups in (a) and (c), respectively; the insets depict schematic

representations of the corresponding lattice. The other parameters are

the same as in Figs. 1(c) and 1(d).

oblique to the line of reflection symmetry. Since Py transforms

θd → −θd , F(t ) → F̃(t ) = d cos t (cos θd ,− sin θd ), which

cannot be transformed back to F(t ) by any additional time

shift operation for θd 
= 0◦, 90◦, 180◦, or 270◦. To illustrate

this, we consider the same square lattice as in Figs. 1(c)

and 1(d) but now driven along the lattice vector b by choosing

θd = 135◦ (Fig. 2). Although the broken Sr symmetry ensures

the existence of directed transport, the direction of transport

can no longer be predicted from symmetry considerations

alone. However, we show that it is possible to control the un-

derlying ballistic attractors and hence the transport direction

by varying the amplitude of the driving force d . For d = 0.6,

the ensemble is transported along θ ≈ 140◦, almost parallel

to the driving force along the lattice vector b [Fig. 2(a)].

The peak at v ≈ (−2, 2) in the asymptotic particle velocity

distribution shows that the asymptotic dynamics of the ensem-

ble is governed primarily by a single ballistic attractor with

average velocity (−2, 2) [Fig. 2(b)] denoting synchronized

particle motion parallel to b. Therefore, directed transport

appears along this direction. Upon driving the lattice along

the same axis, but with a higher driving amplitude d = 1.0,

the direction of transport can be rotated to an almost per-

pendicular direction θ ≈ 250◦ [Fig. 2(c)]. The change in the

driving strength changes the dominant attractor governing the

transport, which now has an average velocity (−2,−2), pro-

pelling a majority of the particles to move with this velocity

in a direction antiparallel to the lattice vector a [Fig. 2(d)],

hence explaining the transport. We note that for a broad

range of value of d , the particle dynamics is governed by the

four ballistic attractors with average velocities (2,2), (2,−2),

(−2, 2), and (−2,−2) (see Appendix B). The transport direc-

tion is determined by the attractor with the highest asymptotic

particle occupancy. Hence, for different values of d , directed
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FIG. 3. Mean position of the particle ensemble (in radial R and

angular θ coordinates) as a function of time t (in colorbar) for the

two oblique lattices: (a) O1 driven along θd ≈ 63◦ with d = 0.75 and

(c) O2 driven along θd ≈ 116◦ with d = 0.6. (b) and (d) Snapshots of

the ensemble velocity distribution at t = t f for the setups in (a) and

(c), respectively. The insets in (b) and (d) depict schematic repre-

sentations of the two corresponding lattices with different colored

circles denoting different barrier heights: Umn = 0.3 (blue), 0.6 (red),

0.9 (green), and 1.2 (black). The driving axis is denoted by the pink

double arrowed lines. The other parameters are γ = 10−2, α = 5,

and D = 2 × 10−4.

transport occurs, to a good approximation, along one of these

four directions.

D. Oblique lattice

In contrast to square and rectangular lattices, a 2D oblique

lattice does not possess any lines of reflection symmetry and

therefore has no obvious symmetry direction along which

directed transport should occur. Even for such a setup we

can realize directed transport of particles along a particular

direction, specifically along the shortest lattice vector, by

controlling the underlying ballistic attractors determining the

transport. We illustrate this by considering an oblique lattice

O1 composed of three superimposed oblique lattices with

lattice vectors a = (3, 0) and b = (1, 2) (|a| > |b|) with an

angle of approximately 63◦ between them. Upon driving the

lattice along b, an axial directed transport of particles is

observed along θ ≈ 63◦ parallel to b [Fig. 3(a)]. Most of the

particles move asymptotically with v ≈ (1, 2) or (−1,−2),

which denote the average velocities of the ballistic attractors

corresponding to particles moving one unit cell per unit

time parallel or antiparallel to the shortest lattice vector b

[Fig. 3(b)]. The spatial asymmetry due to the breaking of

Sr symmetry is responsible for a higher number of particles

moving parallel to b, resulting in the transport along this

direction.

Next we demonstrate that it is possible to direct the particle

transport either parallel or antiparallel to the shortest lattice

vector of an oblique lattice irrespective of the direction of

the driving force. To illustrate this, we consider a second

oblique lattice setup O2 constructed by the superposition of

FIG. 4. Mean position of the particle ensemble (in radial R and

angular θ coordinates) as a function of time t (in the colorbar) for the

oblique lattice O2 [see Figs. 3(c) and 3(d)] driven along (pink double

arrowed lines) (a) θd ≈ 26◦ with d = 1.0 and (c) θd = 90◦ with

d = 1.6. (b) and (d) Snapshots of the ensemble velocity distribution

at t = t f for the setups in (a) and (c), respectively. The insets depict

schematic representations of the corresponding lattices. The other

parameters are the same as in Figs. 3(c) and 3(d).

four oblique lattices having lattice vectors a = (3, 2) and b =

(−1, 2) (hence |a| > |b|) such that the angle between them

is approximately 83◦. When the lattice is driven along the

lattice vector b with d = 0.6, an axial directed transport is

observed at θ ≈ 300◦ antiparallel to b [Fig. 3(c)]. However,

upon driving the lattice along an axis perpendicular to b with

d = 1, a reversal of transport occurs and the ensemble moves

along θ ≈ 120◦, almost parallel to b, thereby exhibiting lateral

transport [Fig. 4(a)]. A directed transport along θ ≈ 120◦ is

also observed when the external drive is along the y axis and

d = 1.6, thus allowing us to realize oblique transport with

respect to the driving force [Fig. 4(c)]. The transport in all

these three scenarios is governed by the two ballistic attrac-

tors having average velocities (−1, 2) and (1,−2) around

which the asymptotic velocity distribution of the particles is

localized [Figs. 3(d), 4(b), and 4(d)]. Similar to the setup

O1, these velocities corresponds to synchronized motion of

particles moving either parallel or antiparallel to the shortest

lattice vector b and the transport direction is determined by the

relative asymmetry in the number of particles moving along

these two directions. Since the dominant ballistic attractors

for both setups O1 and O2 remain the same as those in Figs. 3

and 4 upon varying d , the direction of transport also does not

change considerably (see Appendix B).

IV. CONCLUSION

We have demonstrated the control of directed transport of

underdamped particles along specific directions in different

types of 2D Bravais lattices driven by unbiased external

forces. Most importantly, we have shown that it is possible

to direct the transport along one of the lattice vectors in

setups without any line of reflection symmetry irrespective of

the driving axis. These setups preclude any prediction of the
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transport direction a priori based on the standard symmetry

arguments. However, we have shown that the direction of

transport can be well understood in terms of the attractors

controlling the asymptotic dynamics of our nonlinear dy-

namical system. The observed directions of transport per-

sists for noise strengths up to D � 10−3, typical for cold

atoms or underdamped colloids. The fact that different lattice

geometries can be realized simply by varying the potential

heights of the Gaussian barriers constituting the sublattices

should also allow for time-dependent control of the transport

direction using dynamic holographic optical tweezers [45]

or dynamical digital hologram generation techniques [46,47].

Future perspectives include the investigation of the impact of

the lattice geometry on the chaotic transport in very weakly

dissipative and pure Hamiltonian regime and relevant tech-

nological applications such as the development of miniature

devices helpful for colloidal sorting or targeted drug delivery.
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APPENDIX A: SYMMETRY ANALYSIS

In order to observe directed transport of a particle ensemble

in any driven lattice setup, the necessary condition is to

break both the generalized spatial inversion symmetry Sr:

r → −r + δ and t → t + τ , and the generalized time-reversal

symmetry St : t → −t + τ and r → r + δ (for any arbitrary

constant translations δ and τ of space and time, respectively)

of the setup [4,40]. In a 2D system, the spatial inversion opera-

tion can be further decomposed into Sr ≡ PxPy + � + η, i.e.,

consecutive reflections Px : x → −x and Py : y → −y along

x and y (or any two orthogonal) axes, respectively, followed

by any optional arbitrary space and time translations � and η.

Since our setup is dissipative, St is always broken. The driving

force F(t ) being a single harmonic function of time does not

break the Sr symmetry, in contrast to a biharmonic driving

force [4,48]. Since any single Bravais lattice is symmetric with

respect to spatial inversion operation, the sublattices in our

setups are symmetric with respect to the symmetry operation

Sr. However, superposition of more than one sublattice breaks

the Sr symmetry (Fig. 5) and leads to directed transport as

discussed in the paper.

APPENDIX B: ROLE OF DRIVING STRENGTH

IN DIRECTED TRANSPORT

Here we discuss the behavior of the attractors underlying

the phase space of the different lattices described in the

main text for different driving amplitudes d . As mentioned

in the main text, the deterministic D → 0 dynamics of our

driven lattice setup is governed by the asymptotic attractors

in the system, which can be either chaotic, denoting diffusive

particle motion through the lattice, or ballistic, representing

regular periodic motion of the particles. The attractors are

characterized by their average velocities v̄, which for the

ballistic attractors can be expressed as v̄ = 1
T

( ma

na
a + mb

nb
b),

FIG. 5. Schematic diagram showing the breaking of the Sr sym-

metry in our rectangular lattice setup with lattice vectors a and b.

Each closed colored circles represent Gaussian barriers with different

heights Umn = 0.5 (blue), 1.0 (red), and 1.5 (green). The Px transfor-

mation about the horizontal dotted line leaves the lattice invariant.

However, the subsequent Py transformation about the vertical dotted

axis interchanges the positions of the green and red lattice points

which cannot be restored and optional spatial translations or time

shifts. The numbers 1, 2, and 3 below correspond to the blue, red, and

green lattice points, respectively, and have been provided to allow a

better visualization of the breaking of symmetry.

with ma, na, mb, nb ∈ Z, a and b being the two lattice vectors

and T the temporal driving period, which for our case is unity.

The ballistic attractors correspond to almost straight distinct

channels through the lattice yielding regular motion of the

particles synchronized with the external driving force. The

average transport velocity of our particle ensemble is simply

the vector sum of the velocities of the particles in all these

channels.

Although all our setups are characterized by both the

chaotic and ballistic attractors, we have focused on the di-

rected transport governed solely by the ballistic attractors. In

the following, we discuss the ballistic attractors correspond-

ing to each of our setups for different values of the driv-

ing strength d . For this, we numerically propagate N = 104

particles within a square region x, y ∈ [−10, 10] with small

random velocities vx, vy ∈ [−0.1, 0.1] for different values of

d up to t = 2 × 104. The asymptotic average velocities of

each of these trajectories correspond to the average velocity

v̄ of the different attractors underlying the setup. When v̄

is expressed in polar coordinates, the angular component θ̄

denotes the average direction of an attractor and the modulus

|v̄| denotes its average speed.

1. Rectangular lattice

First, we consider the rectangular lattice with spatial period

(3,1) and lattice vectors a = (3, 0) and b = (0, 1) driven

along the x axis [Fig. 6(a)] as described in the main text.

For different values of the driving strength d , we note that

the majority of the attractors are located along either θ̄ = 0◦

or θ̄ = 180◦ [Fig. 6(b)], with some isolated ones along θ =

30◦, 90◦, 210◦, 270◦. Therefore, for almost any value of d , we

would expect most of the particles in our setup to move along

either the positive or negative x direction. The breaking of

the spatial inversion symmetry induces an asymmetry in the

number of particles moving in the two directions; therefore,

directed transport emerges along any one of them as discussed

in the main text. The reflection symmetry in the y direction

forbids any transport along the y direction.
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FIG. 6. (a) Schematic representation of our rectangular lattice

setup with lattice vectors a and b. Each closed colored circles

represent Gaussian barriers with different heights Umn = 0.5 (blue),

1.0 (red), and 1.5 (green). The dotted line parallel to the x axis

denotes the line of reflection symmetry. (b) Average direction of

the attractors θ̄ (in angular coordinates) as a function of driving

amplitude d (in radial coordinates) with the colorbar denoting their

average speed |v̄|. The driving axis is denoted by the pink double

arrowed lines in both the figures. The other parameters are γ = 10−2,

θd = 0◦, α = 5, and D = 1.5 × 10−4.

2. Square lattice

For our square lattice setup with lattice vectors a =

(2, 2) and b = (−2, 2) [Figs. 7(a) and 7(b)], there exist

FIG. 7. Schematic representation of our square lattice setup with

lattice vectors a and b driven along (a) the y axis with θd = 90◦

and (b) θd = 135◦. Closed colored circles represent Gaussian barriers

with different heights Umn = 0.3 (blue), 0.6 (red), 0.9 (green), and 1.2

(black). The dotted line in (a) denotes the line of reflection symmetry.

(c) and (d) Average direction of the attractors θ̄ (in angular coordi-

nates) as a function of driving amplitude d (in radial coordinates)

with the colorbar denoting their average speed |v̄| corresponding to

(a) and (b), respectively. The blue colored smaller dots denote the

chaotic attractors, whereas the larger closed circles of other colors

denote the ballistic attractors. The driving axis is denoted by the

pink double arrowed lines in all the figures. The other parameters

are γ = 10−2, α = 5, and D = 1.5 × 10−4.

FIG. 8. (a) Schematic representation of our oblique lattice setup

O1 with lattice vectors a and b driven parallel to b. Closed colored

circles represent Gaussian barriers with different heights Umn = 0.3

(blue), 0.6 (red), and 0.9 (green). (b) Average direction of the attrac-

tors θ̄ (in angular coordinates) as a function of driving amplitude

d (in radial coordinates) with the colorbar denoting their average

speed |v̄|. The blue colored smaller dots denote the chaotic attractors,

whereas the larger closed circles of other colors denote the ballistic

attractors. The driving axis is denoted by the pink double arrowed

lines in both the figures. The other parameters are γ = 10−2, θd ≈

63◦, α = 5, and D = 2 × 10−4.

roughly six different directions corresponding to the bal-

listic attractors irrespective of the driving axis and driving

strength. These are along 45◦, 90◦, 135◦, 225◦, 270◦, and

315◦ [Figs. 7(c) and 7(d)]. However, in the presence of

noise, the breaking of the spatial inversion symmetry induces

asymmetric jumps of trajectories between different attractors

such that only one or two ballistic attractors govern the

particle dynamics asymptotically (see Figs. 1 and 2 in the

main text).

When the lattice is driven along the y axis [Fig. 7(a)],

the reflection symmetry about the x axis ensures that equal

numbers of particles asymptotically end up in attractors with

0◦ < θ̄ < 180◦ and 180◦ < θ̄ < 360◦, thus prohibiting trans-

port in the y direction. However, the spatial inversion sym-

metry ensures an imbalance between the number of particles

whose dynamics is governed by the ballistic attractors with

θ̄ = 45◦, 315◦ and those with θ̄ = 135◦, 225◦. This ensures

a net transport along the positive or negative x direction as

discussed in the main text.

For any other choice of the driving axis, e.g., as in

Fig. 7(b), there exists no line of symmetry and usually only

one of the six ballistic attractors controls the asymptotic

particle dynamics. Hence, for different values of the driving

strength d , directed transport is observed along one of these

directions. In the main text we showed two such examples,

where the transport is governed by the attractors with θ̄ =

135◦ and 225◦, respectively, for the same orientation of the

driving axis as in Fig. 7(b) but for two different driving

strengths d .

3. Oblique lattice

For our oblique lattice setups (O1 and O2) with lattice

vectors a and b (|a| > |b|), we find that there are always

two ballistic attractors oriented parallel and antiparallel to

the smallest lattice vector b irrespective of the orientation
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FIG. 9. Schematic representation of our oblique lattice setup O2 with lattice vectors a and b driven along (a) θd ≈ 116◦, (b) θd ≈ 26◦,

and (c) θd = 90◦. Closed colored circles represent Gaussian barriers with different heights Umn = 0.3 (blue), 0.6 (red), 0.9 (green), and 1.2

(black). (d)–(f) Average direction of the attractors θ̄ (in angular coordinates) as a function of driving amplitude d (in radial coordinates) with

the colorbar denoting their average speed |v̄| corresponding to (a)–(c), respectively. The blue colored smaller dots denote chaotic attractors,

whereas the larger closed circles of other colors denote the ballistic attractors. The driving axis is denoted by the pink double arrowed lines in

all the figures. The other parameters are γ = 10−2, α = 5, and D = 2 × 10−4.

and strength of the driving force (see Figs. 8 and 9). As a

result, for most values of driving strength d and orientation

θd , it is possible to realize directed transport of particles

along any one of these directions, as we have discussed in

the main text.

Hence, for all our setups, the underlying ballistic attractors

are quite robust with respect to slight variations of the driving

strength d . The particular values of d in the main text have

been chosen in order to exemplify the directed transport at

specific angles in each of these setups.
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We provide a generic scheme offering real-time control of directed particle transport using superimposed

driven lattices. This scheme allows one to accelerate, slow, and freeze the transport on demand by switching one

of the lattices subsequently on and off. The underlying physical mechanism hinges on a systematic opening and

closing of channels between transporting and nontransporting phase space structures upon switching and exploits

cantori structures which generate memory effects in the population of these structures. Our results should allow

for real-time control of cold thermal atomic ensembles in optical lattices but might also be useful as a design

principle for targeted delivery of molecules or colloids in optical devices.

DOI: 10.1103/PhysRevE.93.052219

I. INTRODUCTION

Temporally driven lattice potentials have attracted consid-

erable attention in recent years [1–8] as their experimental con-

trollability allows for an insightful approach into the complex

world of nonequilibrium physics. A phenomenon of particular

interest in these systems is the ratchet effect. Here, the breaking

of certain spatiotemporal symmetries of the system allows one

to convert unbiased fluctuations into directed particle motion

even in the absence of mean forces [9–12]. This can be seen

as a working principle of a motor operating on smallest scales

relevant to phenomena ranging from intracellular transport

problems [13] and cancer cell metastasis [14] to the transport

of colloidal particles [15,16] in optical lattices or vortices in

Josephson junction arrays [17]. Novel ratchet experiments

using atomic ensembles in ac-driven optical lattices [18,19]

allow for an admirable controllability both in the ultra-

cold quantum regime [1] and at microkelvin temperatures

where a classical dynamics approach successfully describes

experiments [3,20]. Naturally, in view of their widespread

applications, the controllability of directed particle currents

has been a focal point of research since the early days of ratchet

physics. Here, owing to the absence of an obvious force bias,

even the transport direction is sometimes difficult to predict

and numerous cases of “current reversals” have been reported

where the direction of the transport in the asymptotic time limit

could be reversed by changing a control parameter even though

the symmetries of the system remain unaffected [21–29]. A

limitation of most of these schemes is that only the asymptotic

transport direction can be controlled rather than allowing for

real-time control of the current which would be certainly

desirable in order to apply ratchets as nanomotors [6] and to

problems like targeted drug delivery [30]. A recent exception is

Ref. [22], which requires, however, dissipation and is restricted

to “flipping” the directed current at fixed strength.

*aritra.mukhopadhyay@physnet.uni-hamburg.de
†benno.liebchen@ed.ac.uk
‡thomas.wulf@physnet.uni-hamburg.de
§peter.schmelcher@physnet.uni-hamburg.de

Here, we exemplify a generic route towards the real-time

control of directed currents. This allows us not only to dynam-

ically control both direction and strength of the transport, up

to unusually high efficiencies, but also to freeze the transport

velocity on demand. Using one nontransporting and symmetric

oscillating lattice as a “substrate” for particles (Fig. 1, top), we

subsequently switch a second oscillating lattice, called the

“carrier” lattice, on and off. In particular, switching the carrier

lattice on breaks the parity and time-reversal symmetries of

our setup and induces a directed particle current (Fig. 1,

middle) accelerating the transport in a direction which can

be controlled by the phase difference between the carrier and

the substrate lattice. Switching the carrier lattice off does not

lead to a decay of the transport towards zero but “freezes”

it at constant velocity (Fig. 1, bottom). This can be repeated

many times and allows one to design transport in real time. As

the underlying mechanism, we identify a systematic opening

and closing of cantorus structures, acting as barriers between

transporting and nontransporting phase space structures upon

switching. Thereby, the time scale on which the current can

be manipulated is set by the flux through the cantorus and

we show that manipulations are, in fact, possible for up

to ∼1×105 driving periods. Our scheme does not require

noise, but is robust to it, and is designed for straightforward

implementation with cold thermal atoms in superimposed

driven optical lattices where state of the art technologies allow

one to avoid interference terms between the two lattices. Here,

our scheme can be applied to guide atomic ensembles through

optical lattices on paths which can be designed in real time.

The underlying working principle should be of more general

relevance, for example, as a design principle for real-time

controlled targeted delivery of molecules or colloids in optical

lattices or, possibly, also on other vibrated substrates.

II. SETUP

We consider noninteracting classical particles of mass m

located at position x and having momentum p, described

by a single-particle Hamiltonian H (x,p,t) =
p2

2m
+ V (x,t),

in a periodic potential V (x,t) = VS(x,t) + VC(x,t). Here, VS

2470-0045/2016/93(5)/052219(5) 052219-1 ©2016 American Physical Society
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FIG. 1. Schematic diagram of the setup and real-time control of

directed transport. Top: Nontransporting state in the oscillating sub-

strate lattice. Middle: Directed transport after switching on the carrier

lattice. Bottom: Persistent transport after switching off the carrier

lattice. Red particles perform diffusive motion whereas the blue ones

are ballistic. The length and direction of the arrow indicate the speed

and direction of the particle, respectively.

represents the substrate lattice and VC the carrier lattice with

VS(x,t) = VS cos2{k[x + d cos(ωt)]}

VC(x,t) = VC cos2{k[x + 2d cos(2ωt + φ)] + δ}. (1)

Both lattices have identical wave number k, but the oscillation

amplitude d and frequency ω of the carrier lattice are twice

as large as those for the substrate, which leads to spatial

and temporal periodicities of L = 2π/k and T = 2π/ω

of H . Clearly, after averaging over time and space, this

system is force free and hence unbiased. Our Hamiltonian

may describe, for example, cold atoms in the classical

regime of microkelvin temperatures [3,20] exposed to two

counterpropagating laser beams of perpendicular polarization,

preventing the occurrence of interference terms in Eq. (1). The

lateral oscillation of both lattices can be achieved by phase

modulating both laser beams using standard techniques like

acousto-optical modulators and radio frequency generators

(see, e.g., Refs. [18,31]).

To identify the relevant control parameters we introduce

dimensionless variables x ′ = 2kx and t ′ = ωt . Using µ =
mω2

2VSk2 , ν = 2kd, and γV = VC

VS
, we get the equation of motion

µẍ = sin(x + ν cos t) + γV sin[x + 2ν cos(2t + φ) + δ],

(2)

where we omitted the primes on t ′ and x ′.

III. RATCHET TRANSPORT AND LATTICE SWITCHES

In order to explore the transport properties of our setup,

we propagate N = 2×104 particles up to ttot = 4×105T

by numerical integration of Eq. (2) using a Runge-Kutta

Dormand-Prince integrator [32]. The initial velocities of the

particles are chosen randomly within the low velocity regime

such that their initial kinetic energies are small compared to

the potential height of both the lattices. In this section, we

present the main results and we discuss the underlying physical

mechanisms in the following sections.

FIG. 2. Mean transport velocity v̄ of a particle ensemble as a

function of time for four different cases. Case I: in presence of only

substrate lattice (γV = 0). Case II: in presence of both substrate

and superimposed carrier lattice γV = 1. Case III: in presence of

both lattices but carrier lattice switched off at t = 0.11ttot (blue dot)

(γV = 1). Case IV: subsequent switches of the carrier lattice; blue

dots show times (t = 0.10ttot and t = 0.25ttot) where the carrier

lattice is switched off, and green dots when it is switched on

(t = 0.025ttot, t = 0.175ttot, and t = 0.30ttot). At the final switch (red

dot, t = 0.35ttot), we switched also the relative driving phase φ from

φ = π/2 to φ = −π/2. Remaining parameters: µ = 1.2665, ν = π ,

δ = π/2, and φ = π/2.

In the case of only the substrate lattice being present, we

do not observe directed transport (case I in Fig. 2). This

is to be expected, because the corresponding equation of

motion [Eq. (2) with γV = 0] is invariant under time reversal,

t → −t , thus preventing directed particle motion in unbiased

systems [11]. Applying the carrier lattice additionally [γV = 1

in Eq. (2)] and choosing appropriate “phase shifts” to the

substrate (φ �= 0,π and δ �= 0,π ) allows one to break both time

reversal and parity symmetry which leads indeed to directed

transport (case II in Fig. 2). This transport slowly accelerates

and finally saturates at v̄II ≃ −1.25 which is comparable to

the spread of the velocity distribution of the particles. This

constitutes an unusually high efficiency for a Hamiltonian

ratchet, where the mean drift velocity is typically one or

two orders of magnitude less than the standard deviation of

the particle velocity distribution. We now consider the same

situation, but switch off the carrier lattice, instantaneously,

at t = 0.11ttot (blue dot; case III in Fig. 2). Interestingly,

after switching off the carrier lattice the transport persists.

Rather than decaying back towards zero, as one might expect

for a symmetric setup, it does not decay but is frozen at its

value at the time of the switch. That is, our atomic ensemble

travels with constant average speed through the symmetrically

oscillating lattice. Remarkably, this allows for an intriguingly

simple real-time control of the transport velocity: Once the

desired transport is achieved, one simply needs to switch off

the carrier lattice.

We now consider a similar case, but switch the carrier lattice

subsequently on and off (case IV in Fig. 2). Once the transport

has been frozen for a while we can accelerate it by switching
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on the carrier lattice again (second green dot on case IV curve).

Switching it off, for a second time (second blue dot), freezes

also this enhanced transport at a constant strength. Clearly, to

achieve a highly flexible real-time control of the transport it

would be desirable to be able to slow it down. This can in fact be

achieved by switching on the carrier lattice again, but this time

with a phase difference of φ = −π/2 to the substrate (red dot).

We see in Fig. 2 that this indeed slows the transport system-

atically down. Overall, we demonstrated a remarkably simple

protocol allowing one to enhance, freeze, or slow the transport

of atomic ensembles in two optical lattices on demand.

IV. DISCUSSIONS

A. Phase space analysis

It turns out that the physical mechanism underlying the

real-time control of directed currents we just demonstrated

crucially hinges on the mixed phase space structure of our two

lattice system. Hence, to understand it we perform a systematic

analysis of its microscopic composition and analyze its

dynamical occupation by the considered particle ensemble.

First, to understand the structure of the phase space itself, we

take “stroboscopic” snapshots of particles with different initial

conditions leading to Poincaré surfaces of sections (PSOS)

which provide a representative overview of the structure of

the complete three-dimensional (3D) phase space [33]. We

also exploit the spatial periodicity of our setup and project the

particle position back to the first unit cell x ∈ [0,L) of the

lattice. The PSOS of the substrate lattice (henceforth referred

to as P1) is symmetric about v = 0 [Fig. 3(a), black dots] and

contains a large central “chaotic sea” C1
C between v ≃ ±1.6.

On top of the PSOS, we show the snapshot of the particle coor-

dinates, at a given time, used to determine v̄ in case I of Fig. 2

[green dots in Fig. 3(a)], illustrating the uniform symmetric

chaotic diffusion of particles through the lattice resulting in

no transport. The chaotic sea is bounded by the first invariant

spanning curves [FISCs; red lines in Fig. 3(a)], which prevents

acceleration of our low velocity initial conditions beyond |v| >

1.6. Contrarily, a particle with initial condition on one of the

regular invariant curves at |v| � 1.6 [black lines in Fig. 3(a)]

shows ballistic unidirectional motion through the lattice.

Let us now explore how the phase space structure changes

in the presence of the carrier lattice. Most prominently, the

two-lattice PSOS [black dots in Fig. 3(b)], henceforth referred

to as P2, is not mirror symmetric about the v = 0 axis. Besides

the chaotic sea C2
C at small velocities, it exhibits two additional

chaotic layers at higher velocities: the upper layer C2
U at

v � 2.2 and the lower layer C2
L at v � −2.2. The crucial point

now is that the choice of an appropriate value for γV allows

one to connect C2
C, asymmetrically, only with C2

L through a

“cantorus” structure [red dashed line in Fig. 3(b)], which is a

hierarchical chain of stable and unstable fixed points, while it

remains separated from C2
U by a regular invariant curve [red

solid line in Fig. 3(b)]. This allows particles to enter C2
L but

not C2
U. This can be easily seen from the fixed time snapshot

of the particle distribution onto P2 corresponding to case III

denoted by the green dots in Fig. 3(b). These particles in C2
L

still move irregularly but now only in one direction through

the lattice, which is the origin of the transport we observed

in Fig. 2. The fact that the transport velocity does not quickly

FIG. 3. The position (mod L) and velocity of all the N particles

(green) at (a) t = 0.04ttot in case I superposed on the PSOS P1

(black dots and lines) of the substrate lattice, (b) t = 0.42ttot in case

III superposed on the PSOS P2 (black dots) corresponding to both

the substrate and the carrier lattices, and (c) t = 0.95ttot in case IV

superposed on the PSOS P3 (black dots) corresponding to both lattices

but with φ = − π

2
. Red solid lines denote the position of the FISCs

whereas the red dashed lines indicate the location of the cantorus (see

text). Ci
U,C,L, i = 1,2,3, denotes the upper, central, and lower chaotic

layer of P1, P2, and P3, respectively. (d) A zoom into the typical

trajectory of a particle initiated at low velocity in the central chaotic

sea of the PSOS P2 in (b), showing the particle’s stickiness to the

cantorus.

converge to a constant velocity, but accelerates very slowly, on

time scales of 1×105 driving periods towards its asymptotic

value (case II in Fig. 2) is owed to the cantorus linking C2
C and

C2
L, which effectively acts as a semipermeable barrier to the

particles approaching it and slows down the uniform filling of

the accessible parts of the phase space.

B. Conversion between diffusive and ballistic motion

To understand how switching the carrier lattice subse-

quently on and off allows one to freeze, accelerate, and revert

the directed transport, we now analyze the impact of lattice

switches on the population of phase space structures [green

dots in Figs. 3(a)–3(c)].

In Fig. 2, case III, when we froze the directed transport

by switching off the carrier lattice, the phase space changed

suddenly from P2 to P1. The crucial observation is now that

particles located in C2
L and some regions of C2

C of P2 at the

instant of the lattice switch [green dots below v ∼ −1.6 in

Fig. 3(b)] are located in the regular domain of spanning curves

in P1 [see Fig. 3(a)] after the switch. As usual, particles which

are located on regular spanning curves after the switch [black

lines in Fig. 3(a)] are confined to these structures and travel

with almost constant velocity through the lattice. Hence, also

the ensemble averaged velocity, i.e., the directed transport,

remains approximately constant or “frozen,” which explains

our observation in Fig. 2, case III (the particles in the chaotic

sea C1
C of P1 do not contribute to the transport as P1 is

symmetric around v = 0). In conclusion, the instantaneous
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switch of the dynamical system has caused a conversion

from diffusive to regular motion for some particles, which is

reminiscent of the conversion processes between regular and

ballistic dynamics observed in driven superlattices [34,35].

It is now straightforward to see how switching the carrier

lattice for a second time (case IV in Fig. 2) accelerates the

transport again. This switch suddenly changes the underlying

phase space from P1 to P2 and connects, again, C2
C with C2

L.

Hence, since the particle density in C2
C is (still) higher than

the density in C2
L [Fig. 3(b)], particles continue penetrating

through the cantorus into C2
L which stops only for a uniform

particle distribution over the entire chaotic sea. Furthermore,

there is now a natural way to slow down the transport.

Choosing an inverse phase difference of φ = −π/2 (instead of

+π/2) mirrors P2 around v = 0 and the particles now slowly

redistribute from the central chaotic layer C3
C into the upper

chaotic layer C3
U as shown in the PSOS P3 [black dots in

Fig. 3(c)]. This creates a “counterweight” to the particles in

C3
L which slowly, but continuously, grows [for a snapshot see

green dots in Fig. 3(c)], which explains the observed decrease

of the directed transport.

How long can we proceed to accelerate, slow down, and

revert the transport? The time scale is set by the uniform filling

of the entire chaotic sea of P2. This limiting time scale depends

crucially on the flux through the cantorus which in turn can

be tuned by varying the relative strengths of both lattices, i.e.,

by changing γV . For γV = 1 (the value we used), at about

t ∼ 4×105T the entire chaotic sea of the two-lattice setup

(lower, central, and upper sea) is uniformly filled with particles.

At this point, no further modulation of the transport is possible

within our scheme.

V. EXPERIMENTAL REALIZATIONS

We believe that our dynamical control of directed currents

can be realized in experimental setups using cold atoms

in driven optical lattices where the periodic potential is

generated by counterpropagating laser beams of perpendicular

polarization [12,18,20,31]. The resulting lattice can be driven

by phase modulation using acousto-optical modulators and

radio frequency generators which also allow one to keep

both lattices in phase and to implement a driving amplitude

on length scales of the order of L [12,20]. Translating

our parameters to experimentally relevant quantities for

rubidium atoms, we obtain VS = VC ∼ 20Er , ω ∼ 10ωr ,

and the product dk ∼ π
2

, where Er and ωr are the recoil

energy and recoil frequency of the atom, respectively. These

experiments operate in the demonstrated classical regime of

microkelvin temperature [20]. Even for colder temperatures,

in the semiclassical regime, we expect tunneling through

cantori [5], which should not alter our control scheme in

general but only reduce the operational timescale. We note that

our scheme can be refreshed by employing Sisyphus cooling,

which can be used to localize our particle ensemble in the

central chaotic sea again. Notably in these experiments many

particle effects are not important, but one can in principle

tune parameters to probe the impact of weak interaction

effects [36]. This can have important consequences for the

transport [37], but it affects the particle distribution in phase

space only on long time scales [37] and should therefore

leave our scheme unaffected. In contrast to Brownian ratchets,

our mechanism does not depend on noise and we explicitly

checked that it is robust to noise of strengths in the regime

typical for cold atom ratchet experiments [38]. Stronger noise

would enhance the particle flux through the cantori and other

regular structures, significantly decreasing both the maximally

achievable transport velocity and the operational time scale

of our scheme. Also, the thermal broadening of the atomic

beam momentum distribution in this microkelvin temperature

regime is small compared to the width of the central chaotic

sea and thus would not contribute to the particle flux, hence

keeping the efficiency of our scheme unaffected.

Another possible realization is provided by using a su-

perconducting quantum interference device (SQUID) setup

with Josephson junctions as in Ref. [39] operating in the

underdamped classical regime of temperatures ∼1 K (in which

damping, noise, as well as quantum effects can be neglected

safely) with a time dependent biharmonic external flux. Since

this underdamped classical regime has already been realized

experimentally, we believe that realizing our scheme using

such setup is possible [40–43]. Finally, we note that our control

scheme is not restricted to two-lattice systems but could be

applied also to other Hamiltonian systems having mixed phase

spaces and offering chaotic layers which can be systematically

connected and disconnected.

VI. CONCLUSIONS

We provide a scheme offering the real-time control of

directed currents in superimposed driven lattices. It can be

straightforwardly implemented in ac-driven optical lattices

and allows one to design directed currents of cold thermal

atomic ensembles which can be consecutively accelerated,

slowed, and reverted on demand. The mechanism underlying

our scheme operates in phase space and depends only on large

scale structures like the presence of different chaotic layers

and cantori structures and should therefore be applicable more

generally, e.g., as a design principle for targeted delivery of

molecules or colloids in optical devices, or possibly on other

vibrating substrates.
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We show that the direction of directed particle transport in a two-dimensional ac-driven lattice can be

dynamically reversed by changing the structure of the lattice in the direction perpendicular to the applied driving

force. These structural changes introduce dimensional coupling effects, the strength of which governs the timescale

of the current reversals. The underlying mechanism is based on the fact that dimensional coupling allows the

particles to explore regions of phase space which are inaccessible otherwise. The experimental realization for

cold atoms in ac-driven optical lattices is discussed.

DOI: 10.1103/PhysRevE.97.050202

I. INTRODUCTION

The ratchet effect allows one to create a directed particle

transport in an unbiased nonequilibrium environment and thus

to extract mechanical work from a fluctuating bath [1–3].

Such a conversion is impossible for macroscopic equilib-

rium systems and makes the ratchet effect a fundamental

nonequilibrium phenomenon. While originally conceived as

proof-of-principle examples of rectification schemes produc-

ing work from fluctuations [4–7] and as possible explanations

for the mechanism allowing molecular motors to show directed

motion along cytoskeleton filaments [8,9], ratchets now form

a widespread paradigm with a large realm of applications in

atomic, condensed matter, and biophysics.

Specific applications range from the rectification of atomic

[10], colloidal [11], and bacterial motion [12–15] to the

transportation of fluxons in Josephson junction arrays [16,17]

and vortices in conformal crystal arrays [18,19]. Very recently,

it has been demonstrated that ratchets also allow one to control

the dynamics of topological solitons in ionic crystals [20],

enhance photocurrents in quantum wells [21], can rectify

the chirality of magnetization in artificial spin ice [22], and

create a light modulated electron transport across organic bulk

heterojunctions [23].

While the fact that a specific setup creates a directed

particle transport can typically be predicted based on symmetry

properties [24,25], the strength and even the direction of the

emerging currents are far less immediate. In fact, the current

direction can often be reverted by changing the value of a

certain control parameter or the properties of the rectified

objects (e.g., their mass or mobility), without changing the

*Aritra.Mukhopadhyay@physnet.uni-hamburg.de
†xietianting@hotmail.com
‡liebchen@hhu.de
§Peter.Schmelcher@physnet.uni-hamburg.de

symmetry of the underlying equations. Achieving such current

reversals is the key aim of many investigations, as they allow

segregation of particle mixtures by transporting particles of,

e.g., different mass or mobility in opposite directions, where

they can be collected.

While most ratchets are still studied in one spatial dimension

(1D) [3,26], particularly those operating in the Hamiltonian

regime [24,25,27–30], recent experiments have significantly

progressed regarding the construction of highly controllable

two-dimensional (2D) ratchet devices. These include cold

atoms in ac-driven optical lattices [31–33] and the very recent

example of a fully configurable 2D ratchet based on colloids

in holographic optical tweezers [34]. Conceptually, the key

new ingredient in 2D ratchets is the coupling between the

dimensions, which has been shown to allow, in the overdamped

regime, for a directed transport at an angle relative to the driving

law [34,35] and may also involve transportation completely

orthogonal to the driving [36]. In the present work, we

demonstrate that dimensional coupling can even lead to current

reversals.

A 2D potential landscape having a periodic potential

along, e.g., the x direction but without any potential variation

along the perpendicular y direction (henceforth referred to as

“quasi-1D lattice”) allows for directed particle transport when

driven by an appropriately chosen ac-driving force in the x

direction [see Fig. 1(a), upper panel]. Keeping the driving

unchanged but performing a structural change of the lattice

along the y direction introduces dimensional coupling effects.

We show that this coupling does not affect the directed particle

current for short timescales, but reverts its direction at longer

timescales as compared to the quasi-1D lattice [see Fig. 1(a),

lower panel]. These dimensional coupling-induced current

reversals (DCIR) occur dynamically in time [30], as opposed

to the standard scenario of asymptotic current reversals due to

a change of system parameter where the direction of current is

time independent [37–39]. We show that the reversal timescale

can be varied by thousands of driving periods by varying the

2470-0045/2018/97(5)/050202(5) 050202-1 ©2018 American Physical Society
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FIG. 1. (a) Schematic diagram of the setup demonstrating the phenomenon of dimensional coupling-induced current reversal. The filled

dots denote particles and the colors (red/blue) indicate the sign of the x component of their velocities (right/left). In a driven quasi-1D lattice

(upper panel), most particles travel in the negative x direction resulting in an average transport in this direction. However, in the driven 2D

lattice (middle and lower panels) having nonzero dimensional coupling β, most particles initially travel toward the negative x direction but

at later times revert their movement, resulting in a dynamical current reversal. Larger values of the coupling β reduces the timescale of the

current reversal (lower panel). (b) Mean transport velocity of the ensemble along the x direction as a function of time for different values of β

for a linear and logarithmic (inset) timescale. The gray circles correspond to the reversal timescales tr,β for different values of β. Remaining

parameters: U = 0.88, a = 0.48, α = 9.61, and γ = 0.62. There is no directed transport of particles along the y direction.

structure of the lattice perpendicular to the driving direction

[see Fig. 1(a), middle panel]. The underlying mechanism of

these current reversals uses the fact that changing the structure

of the lattice along the second dimension allows the particles to

explore different regions of phase space which are inaccessible

in the quasi-1D lattice.

II. SETUP

We consider N noninteracting classical particles in a 2D

lattice of elliptic Gaussian barriers laterally driven along the

x direction via an external biharmonic driving force f (t) =
dx[sin ωt + 0.25 sin(2ωt + π/2)]. Here, dx and ω are the

amplitude and the frequency of the driving, thereby introducing

a temporal periodicity of T = 2π/ω. The system is described

by the Hamiltonian:

H =
p2

x

2m
+

p2
y

2m

+
+∞∑

i,j=−∞

V e−{βx [x−f (t)−(i+ 1
2

)Lx ]2+βy [y−(j+ 1
2

)Ly ]2}, (1)

where the potential barriers have a height V and the equilibrium

distances between them along x and y are given by Lx and Ly .

respectively. This potential breaks both the parity x → −x +
χ symmetry along the x direction and the time-reversal t →
−t + τ symmetry (for all possible constants χ and τ ), while

preserving parity symmetry along the y direction. Possible

realizations of this setup include cold atoms in optical lattices,

at microkelvin temperatures, where a classical description is

appropriate [33] and which to a good approximation represents

a Hamiltonian setup.

Introducing dimensionless variables x ′ = x
Lx

, y ′ = y

Ly
, and

t ′ = ωt and dropping the primes for simplicity, the equa-

tion of motion for a single particle at position r with

momentum p reads

r̈ =
+∞∑

m,n=−∞
U [r − F (t)ex − Rm,n]e−G[r−F (t)ex−Rm,n], (2)

where F (t) = [a sin t + 0.25a sin(2t + π/2),0] is the effec-

tive driving law, ex = (1,0), Rm,n = (m,n) denotes the po-

sitions of the maxima of the Gaussian barriers where (m −
1
2
),(n − 1

2
) ∈ Z and U (r) = (Ux,βUy), G(r) = α(x2 + γy2).

The parameter space of our system is therefore essentially five

dimensional, where the dimensionless parameters are given

by a reduced barrier height U = 2Vβx

mω2 , an effective driving

amplitude a = dx

Lx
, as well as the two parameters, α = βxL

2
x

and γ = βyL
2
y

βxL2
x
, characterizing the localization of the Gaussian

barriers along the x and y directions. A final key control

parameter is β = βy

βx
which measures the coupling between

the two dimensions. The limits β → 0 and β → ∞ both

correspond to quasi-one-dimensional lattices.

III. RESULTS

To explore the transport properties of our setup, we initial-

ize N = 104 particles with small random velocities vx,vy ∈
[−0.1,0.1] such that their initial kinetic energies are small

compared to the potential height of the lattice. In order to

mimic a localized loading of particles into the lattice, we

initialize the particles within the square regions [−0.1,0.1] ×
[−0.1,0.1] centered around the potential minima of the lattice.

Subsequently, we time evolve our ensemble up to t = 104 by

numerical integration of Eq. (2) using a Runge-Kutta Dormand

Prince integrator.

For β = 0, the lattice is quasi-1D [upper panels in Fig. 1(a)]

and produces a nonzero mean velocity pointing in the negative

x direction [Fig. 1(b)]. This behavior is expected since the

system breaks both the parity and time-reversal symmetry
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along the x direction, thus satisfying the necessary criteria

for a nonzero directed transport [24,27,28]. Since there is no

driving in the y direction, the symmetries are preserved and

hence there is no directed transport along this direction. The

transport in the x direction accelerates until it finally saturates

at v̄x ≃ −1.4.

We now vary β to explore the impact of dimensional cou-

pling effects on the directed transport. As shown in Fig. 1(b),

for β = 0.03, the early time transport velocity is negative and

approaches a similar speed of v̄x ≃ −1.35, as in the quasi-

1D case at around t ≃ 1.5 × 102. Remarkably, thereafter the

transport begins to slow down and vanishes at t = tr,β=0.03 ≃
1.5 × 103. Further on, it changes sign which leads to a current

reversal. Finally, it approaches an asymptotic constant value of

v̄x ≃ 1.2. Therefore, the structural change of the lattice in the

direction orthogonal to the driving force reverts the transport

direction.

To study this dimensionality-induced current reversal in

more detail, we perform our simulations for a stronger di-

mensional coupling β = 0.15 and β = 0.62, which leads to

a qualitatively similar behavior [see Fig. 1(b)]. However, we

find that the timescale at which the reversal occurs strongly

depends on the strength of the dimensional coupling coefficient

β. Specifically for β = 0.62, we obtain tr ≃ 3 × 102 showing

that the reversal timescale can be tuned by at least a factor of

5. We have performed longer simulations up to t = 105 and

found that the transport velocity does not reverse again during

this timescale.

IV. DISCUSSION

The underlying mechanism of the DCIR effect depends

on two generic ingredients: (i) the existence of a mixed

phase space (containing regular and at least two disconnected

chaotic components) in the underlying quasi-1D lattice and

(ii) the diffusional spreading dynamics in the 2D lattice along

the orthogonal direction. We now discuss the occurrence of

negative transport in the quasi-1D lattice (β = 0) and will then

analyze how the dimensional coupling effect can revert the

transport direction.

Due to the absence of forces acting along the y direction,

the dynamics in the quasi-1D lattice [Fig. 1(a)] can be decom-

posed into a constant drift in the y direction and a motion

in a 1D lattice driven along the x axis. The latter case is

described by a three-dimensional (3D) phase space illustrated

by taking stroboscopic snapshots of x(t),vx(t) at t = n(n ∈ N)

of particles with different initial conditions. This leads to

Poincáre surfaces of section (PSOS) as shown in Fig. 2(a)

where the reflection symmetry about vx = 0 is broken. This

PSOS is characterized by two prominent chaotic components

or “seas”: the upper sea CU between 0.75 � vx � 6.0 and the

lower sea CL between −3.5 � vx � 0.2. These chaotic seas

are separated from each other by regular invariant spanning

curves at vx ≃ 0.2 preventing particles from traveling between

the chaotic components. Hence, particles initialized with low

initial energies vx ∈ [−0.1,0.1] and occupying CL, matching

the initial conditions used in our simulations, undergo chaotic

diffusion through the lattice with negative velocities along

the x direction until they are uniformly distributed over CL.

As a result, we observe a negative directed transport of the

FIG. 2. The particle distribution as a function of position x mod

1 and vx (in colormap) of all the N = 104 particles propagating in the

2D lattice with β = 0.03 superimposed on the PSOS of the quasi-1D

driven lattice (regular islands in black and chaotic seas in green) at

(a) t = 50 and (b) t = 104. The region of invariant spanning curves

separating the two chaotic seas has been highlighted by the thick

black dashed line. (c) The particle distribution as a function of y and

t showing the spreading of the ensemble along the y direction with

time.

ensemble. The magnitude of the transport velocity for the

quasi-1D lattice can also be estimated using the “sum rule”

involving the location and size of the regular islands embedded

in CL [27,28].

Let us now explore the mechanism allowing dimensional

coupling (β > 0) to revert the transport direction: In this

case, the phase space is five-dimensional (5D) characterized

by (x,vx,y,vy,t) which complicates both the illustration and

analysis of the transport based on the phase-space structures.

However, up to a certain timescale, the dynamics of the

particles even in this higher dimensional phase space can be

effectively understood in terms of the dynamic occupation

of the ensemble in the quasi-1D PSOS. To show this, we

superpose the snapshots of the ensemble particle coordinates

(x,vx) for β = 0.03 on the quasi-1D PSOS at two different

times t = 50 and t = 104 (Fig. 2). At t = 50, well before the

reversal timescale tr,β=0.03 = 1.5 × 103, the ensemble popula-

tion is confined to CL in a similar way as we have observed

for β = 0 [Fig. 2(a)]. Physically, this results from the fact that

at shorter timescales the particles experience comparatively

strong driving forces which allow them to quickly move along

the x direction while in the y direction they move only very

slowly with a velocity largely dictated by the initial conditions.

Therefore, for a long time, they stay close to the potential

valleys at y = 0 [Fig. 2(c)] where they hardly experience the

2D landscape of the potential.

As time evolves, particles experience more and more of

the 2D character of the potential which effectively transfers

motion in the x direction into motion along the y direction

leading to a symmetric spreading of the ensemble along

the y direction [Fig. 2(c)]. Particles are therefore no longer

dictated by the structure of the 3D phase space but can
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FIG. 3. The time dependence of (a) position and (b) velocity of

a typical particle in the 2D lattice with β = 0.03 initialized in the

lower chaotic sea CL [Fig. 2(a)] demonstrating the crossover to the

upper chaotic sea CU [Fig. 2(b)]. Remaining parameters are the same

as in Fig. 1(b). Note that for this particular trajectory, the crossover

happens at t ≃ 5 × 103, which is larger than the average reversal

timescale tr,β=0.03 = 1.5 × 103 of the ensemble.

explore the entire 5D phase space. They can, in particular,

now freely cross the invariant spanning curves at vx ≃ 0.2

of the 3D phase space to attain significant positive velocities

[Fig. 2(b)]. During the phase of temporal evolution when the

particles can cross the invariant curve, the directed current

slows down and reduces to zero. It finally becomes positive,

since the asymptotic average velocity of the particles along

the positive x direction is higher than that along the negative

x direction. A typical trajectory demonstrating the crossover

from CL to CU is shown in Fig. 3. We checked that the current

reversal and the underlying phase-space structures (especially

the invariant spanning curves separating the chaotic layers)

is robust against moderate variations of the setup parameters,

hence no parameter fine-tuning is necessary to observe the

phenomena.

V. CONTROL OF THE CURRENT REVERSAL

Let us finally discuss the dependence of the current reversal

time tr,β on the parameter β. Following the above-outlined

physical picture, the current reversal occurs at time scales

comparable to the time a particle needs to experience a

significant deviation from the neighborhood of the minimum of

the lattice potential along the y direction. For a particular value

of β and a given set of initial conditions, one can thus expect the

reversal timescale tr,β to depend linearly on the average time τβ

the particles need to cross one lattice site along the y direction

for the very first time. In order to estimate τβ for different values

of β, we simulate ensembles of 104 particles each with initial

conditions identical to that used in our setup (Fig. 1), but for

different β values and calculate the corresponding probability

density P (t) of the first crossing time (FCT) t required by a

particle to cross one lattice site along the y direction [Fig. 4(a)].

As β increases, the particles are likely to have shorter FCT and

hence can experience the 2D landscape of the potential much

earlier. This can be clearly seen in Fig. 4(b) (blue) which shows

that the mean FCT τβ decreases with increasing β following

a τβ ∼ β−0.6 power law. Confirming our expectation, a linear

fit is shown to describe the relation between tr,β and τβ to

a good approximation [see Fig. 4(b) (inset)] and hence tr,β
follows a similar inverse power law tr,β ∼ β−0.55 [Fig. 4(b),

red]. The reversal timescale depends also (weakly) on the initial

FIG. 4. (a) The probability density P (t) of the FCT t required by

a particle to cross one lattice site along the y direction for the first

time. (b) The mean FCT τβ (in blue) and the reversal timescale tr,β
(in red) as functions of β with corresponding inverse power-law fits.

The inset shows the linear relationship between tr,β and τβ .

velocities of the particles and we verified that a decrease of

the initial velocity by a factor of 0.01 increases the reversal

timescale approximately by a factor of 1.34.

VI. EXPERIMENTAL REALIZATION

A setup to experimentally observe dimensional coupling-

induced current reversals are cold atoms in optical lattices

generated by laser beams in the regime of microkelvin tem-

peratures where a classical description is appropriate [33].

Setups based on holographic trapping of atoms [40–43] might

also provide an interesting and highly controllable alternative.

The resulting lattice can be driven by phase modulation using

acousto-optical modulators and radio-frequency generators.

Translating our parameters to experimentally relevant quanti-

ties for an optical lattice setup with cold rubidium (Rb87) atoms

and 780 nm lasers, we obtain the lattice height V ∼ 22Er , the

width 1√
βx

∼ 252 nm, the driving frequency ω ∼ 10ωr , and

the driving amplitude dx ∼ 390 nm, where Er and ωr are the

recoil energy and recoil frequency of the atom, respectively.

Interaction, disorder, and noise effects would probably lead to

a slow accumulation of particles within the regular portions

of the phase space [30,44,45], which may also aid them in

crossing the regular barrier confining the initial conditions

in the quasi-2D case to negative and only weakly positive

velocities and may therefore lead to a slight decrease of the

reversal time.

VII. CONCLUDING REMARKS

Dimensional coupling effects in two-dimensional lattices

create another route to produce current reversals. Conversely

to most other cases, the current reversal occurs dynamically

here with a characteristic timescale that can be controlled by the

strength of the coupling. The underlying mechanism is generic,

in the sense that it depends only on the mixed phase-space

structure of the underlying uncoupled quasi-1D lattice and

may therefore apply to a variety of physical systems. Possible

future perspectives include an extensive characterization and

visualization of the four-dimensional PSOS [46,47] in order

to analyze the effect of the dimensional coupling on the

underlying invariant manifolds and directed transport.
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Abstract: We demonstrate that directed transport of particles in a two dimensional driven lattice can
be dynamically reversed multiple times by superimposing additional spatially localized lattices on
top of a background lattice. The timescales of such current reversals can be flexibly controlled by
adjusting the spatial locations of the superimposed lattices. The key principle behind the current
reversals is the conversion of the particle dynamics from chaotic to ballistic, which allow the particles
to explore regions of the underlying phase space which are inaccessible otherwise. Our results can
be experimentally realized using cold atoms in driven optical lattices and allow for the control of
transport of atomic ensembles in such setups.

Keywords: directed transport; current reversal; optical lattice; cold atoms; control of chaos;
chaotic transport

1. Introduction

Originally conceived as a proof of principle behind the working of biological motors [1–4],
the phenomenon of ‘ratchet’ transport of particles, i.e., the emergence of unidirectional particle
transport in an unbiased non-equilibrium environment, has gained widespread applications across
various disciplines [2,5–14]. The necessary ingredients required for such a rectification of random
particle motion into directed transport has been shown to be non-equilibrium, non-linearity and
the breaking of certain spatio-temporal symmetries [7,15,16]. Since then the ratchet effect has found
numerous applications including particle separation based on physical properties [17–19], design
of efficient velocity filters [20,21], transportation of fluxons in Josephson junctions arrays [22,23],
unidirectional motion of active matter [13,24], voltage rectification in superconducting quantum
interference devices (SQUID) [25–27], and enhancement of photocurrents in quantum wells [28].

Due to novel experimental progress in atom trapping techniques, directed transport of atomic
ensembles has been realized in ac-driven optical lattices [29,30] both in the ultracold quantum
regime [31] and at micro kelvin temperatures where a classical dynamics approach successfully
describes the experiments [14,32]. Apart from the vast majority of ratchet-based setups in one
spatial dimension (1D) [7,15,16,33,34], recent experiments have significantly progressed the realization
of highly controllable two dimensional (2D) setups using ac-driven optical lattices [14,29,35,36]
and holographic optical tweezers [37]. Due to such widespread applications of directed particle
transport, the different mechanisms to control the transport have been a topic of ongoing research.
One such mechanism is ‘current reversal’ where the direction of the particle transport can be reversed
by suitably changing one or more system parameters [25,35,38–46]. Indeed, most of the existing
schemes to generate current reversals focus on reverting the direction of asymptotic particle transport
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due to a change of system parameter [47–50]. Only recently has research focused on setups where
the current reversal occurs dynamically in time either due to a time-dependent switching of system
parameters or due to the presence of interactions and dimensional coupling [33,38,51,52].

Here, we present a scheme to dynamically generate multiple current reversals due to
superimposed driven lattices in two dimensions. The setup employs a ‘background lattice’ driven by
an external bi-harmonic oscillating driving force, whose underlying potential is separable in terms of
the spatial coordinates. This allows directed transport of particles along the direction of the driving
force and trapped motion in the orthogonal direction. Superimposing a second lattice in a finite region
of space along the direction of transport leads to a reflection behavior and hence generates a current
reversal. Subsequently, the superposition of a third identical lattice can reflect the transport direction
once again yielding a second reversal of transport. The timescales of the current reversals can be
controlled by the spatial locations of the superimposed lattices. The underlying principle behind
the current reversals lie in the conversion of the particle dynamics from chaotic to ballistic in the
setup involving multiple lattices, a phenomenon which is forbidden in the background lattice alone.
Our paper is structured as follows. In Section 2, we describe the underlying setup in detail and discuss
its relevant symmetries followed by the main results in Section 3. We discuss the cause of the current
reversals in terms of the underlying phase space in Section 4. Finally, in Section 5, we provide a
possible experimental realization of our setup and conclude our findings in Section 6.

2. Setup, Equations of Motion and Symmetries

We consider N non-interacting classical particles of mass m in a two dimensional (2D) periodic
potential V(r) = VB(r) + VG(r). The separable potential due to the ‘background lattice’ is represented by
VB(r) = ṼB(cos2 πx

l + cos2 πy
l ) with potential height ṼB and spatial period l in both x and y directions.

On top of the lattice VB, we superimpose two finite lattices of 2D Gaussian barriers VG1 and VG2 localized

in different regions which can be described by the potential VG(r) = ∑
+∞
m,n=−∞ ŨG(rmn)e−α(r−rmn)

2
with

the barriers centered at positions rmn = (ml, nl) where m, n ∈ Z (see Figure 1a). These two lattices also
have spatial period l along both x and y directions. ŨG(rmn) denote the potential height of the barrier
located at rmn and α is a measure of the widths of the barriers. In addition, the lattices are driven by an
external bi-harmonic periodic driving force fD(t) = a(cos ωt + 0.5 cos 2ωt, 0) along the x-direction with
driving amplitude a and frequency ω. This force is spatially independent. Introducing dimensionless
variables x′ = x

l , y′ = y
l and t′ = ωt and dropping the primes for simplicity, the equation of motion for a

single particle at position r = (x, y) with velocity ṙ = (ẋ, ẏ) reads

r̈ = FB(r) + FG(r) + FD(t)

= UBπ(sin 2πx, sin 2πy) + 2β ∑
+∞
m,n=−∞ UG(Rmn) (r − Rmn) e−β(r−Rmn)2

+ d(cos t + 0.5 cos 2t, 0)
(1)

where FB(r), FG(r) and FD(t) denote the forces due to the background lattice, superimposed lattices of
Gaussian barriers and external driving respectively. The system is described by the four dimensionless

parameters: UB = ṼB
ml2ω2 denoting the effective potential height of the lattice VB, UG(Rmn) =

ŨG(rmn)
ml2ω2

denoting the effective potential heights of the Gaussian barriers, β = αl2 and the effective driving
amplitude d = a

mlω2 . Rmn = (m, n) denote the positions of the maxima of the Gaussian barriers which
coincides with the positions of the potential maxima of the background lattice VB. In this dimensionless
form, the system has a spatial period L = 1 in both x and y directions and a temporal period T = 2π.

Our setup breaks the generalized time reversal symmetry St: t −→ −t + τ, r −→ r + δδδ

(for arbitrary constant translations δδδ and τ of space and time respectively) and the generalized
parity symmetry Px: x −→ −x + δ, t −→ t + τ in the x-direction. As a result, directed transport
of a particle ensemble is expected along the x-direction [7]. Since the setup preserves the generalized
parity symmetry along the y-direction: Py: y −→ −y + δ, t −→ t + τ, directed transport is not possible
along this direction. Throughout the following discussions, by ‘transport’ we would always refer to
the directed transport along the x-direction.
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Figure 1. (a) Schematic representation of a slice of our 2D setup along the x-direction and viewed
along the y-direction. The filled dots denote particles and the colors red and black denote diffusive and
ballistic motion respectively. The arrows denote the direction of motion of the particles at asymptotic
timescales (t = t f ) with the length of the arrow being proportional to the magnitude of the x component
of their velocities, i.e., vx. In the presence of only the driven background lattice VB depicted in blue
(setup I, upper panel), most particles exhibit diffusive/chaotic transport towards right, hence the
average transport is along the positive x-direction. On superimposing a finite lattice of 2D Gaussian
barriers VG1 (in green), most particles undergo a conversion from diffusive to ballistic motion leading to
a reversal of their average transport direction (setup II, middle panel). Their velocities can be reversed
once again due to the superposition of a second identical lattice of Gaussian barriers VG2, thus leading
to a second current reversal. The external driving force is along the x-direction. (b) Mean transport
velocity of the ensemble along the x-direction as a function of time for the three different setups.
UG(Rmn) = 0 for all (m, n) in setup I. For the setup II, UG(Rmn) = 5 for 5 × 103 < m < 104 and
vanishes elsewhere whereas for setup III, UG(Rmn) = 5 for 5 × 103 < |m| < 104 and zero elsewhere.
Remaining parameters: UB = 1.0, β = 5, d = 0.5.

3. Results

To explore the transport properties of our setup, we initialize N = 104 particles within a square
region x, y ∈ [−5, 5]× [−5, 5] with small random velocities vx, vy ∈ [−0.1, 0.1]× [−0.1, 0.1]. The initial
velocities of the particles are chosen randomly within the low velocity regime such that their initial
kinetic energies are small compared to the potential heights of the lattices. Subsequently we time
evolve our ensemble up to time t = t f = 4 × 104 T by numerical integration of Equation (1) using
a Runge-Kutta Dormand Prince integrator [53]. The background lattice is large enough such that
the ensemble never leaves the lattice throughout the duration of the simulation; hence no boundary
conditions are imposed on the particles. We now discuss the transport properties of our setup
characterized by the average velocity v̄x of the particle ensemble along the x-direction.

In the presence of only the background lattice VB (setup I in Figure 1a), the particles exhibit directed
transport along the positive x-direction with an asymptotic transport velocity v̄x ≃ 1.3 (Figure 1b).
In the setup II we consider a spatially localized lattice of Gaussian barriers VG1 superimposed on the
lattice VB (Figure 1a), such that UG(Rmn) = 5 for 5 × 103 < m < 104 and UG(Rmn) = 0 everywhere
else. We define x1 = 5 × 103 − ǫ and x2 = 104 + ǫ with ǫ = 5L as the left and right ‘edges’ of the
lattice VG1, since the force on the particles due to the Gaussian barriers is negligible for x < x1 and
x > x2. In this case, we observe an initial directed transport along the positive x-direction with v̄x > 0
(Figure 1b). However, the transport velocity starts to decelerate and at t ≃ 3.1 × 103 T, the transport
completely vanishes. Thereafter, the ensemble is transported along the negative x-direction with
v̄x < 0 and the transport velocity finally saturates to v̄x ≃ −7.1. Hence, a superimposed spatially
localized lattice of Gaussian barriers can trigger a current reversal with the reversal timescale in this
case given by tr1 = 3.1 × 103 T, i.e., when v̄x changes its sign.

In the third setup (setup III), we consider a second identical lattice of Gaussian barriers VG2

superimposed on the lattice VB between x = −x1 and x = −x2, such that now UG(Rmn) = 5 for
5 × 103 < |m| < 104 and UG(Rmn) = 0 elsewhere (Figure 1a). Up to t ≃ 4.6 × 103T, the transport
velocity exhibits a similar behavior as that observed in setup II (Figure 1b). Thereafter, instead of
asymptotically attaining a negative value, the velocity increases steadily, exhibiting a second current
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reversal at t = tr2 = 5.6 × 103 T before finally attaining a constant value v̄x ≃ 4.7. The timescales of
current reversal can be controlled by the locations of the lattices VG1 and VG2. Overall, this demonstrates
a controllable scheme to generate multiple reversals of directed particle transport by superimposing
spatially localized lattices of 2D Gaussian barriers over a background lattice.

4. Discussion

The mechanism behind such controllable multiple current reversals in our setup crucially depends
on the structure of the phase space underlying the system. Since the particles are non-interacting
and can move along both x and y directions, the single particle phase space in our externally driven
lattice setup is five-dimensional (5D); characterized by (x, px, y, py, t). However in the regions where
the lattices VG1 and VG2 are absent, the particle dynamics along x and y directions can be completely
decoupled. Hence the dynamics of the particles moving only through the background lattice VB driven
along the x-direction can be described in terms of a three-dimensional (3D) phase space characterized
by (x, px, t) along x and a 2D phase space characterized by (y, py) along y direction. Since we are only
interested in the transport along the x-direction, we would henceforth only refer to the 3D phase space
along the x-direction in the course of our discussion.

4.1. Directed Transport in Background Lattice

First, we discuss the directed transport of particles in the positive x-direction in the presence
of only the lattice VB and the driving force. To do so, it is necessary to understand the phase space
underlying our setup I by taking stroboscopic snapshots of particle trajectories x(t), vx(t) at t =

nT(n ∈ N) with each particle having different initial conditions. This leads to the 2D Poincaré surface
of sections (PSOS): {x(nT) mod L, vx(nT)}, which provide a representative overview of the structure
of the complete 3D phase space (Figure 2a). Due to the broken Px and St symmetries, the PSOS do not
possess any reflection symmetry about vx = 0. The PSOS is characterized by a single chaotic manifold
or ‘chaotic sea’ bounded by the two first invariant spanning curves (FISC) at vx ≃ 10 and vx ≃ −6.
The chaotic sea correspond to trajectories undergoing diffusive motion through the lattice. The large
regular island embedded in the chaotic sea denotes trapped particles oscillating near the potential
minima of the lattice. The particles with speed |vx| higher than the speed of the respective FISC at
positive and negative velocities correspond to ballistic unidirectional motion through the lattice along
positive or negative x-directions.

Figure 2. (a) The stroboscopic 2D Poincaré surface of sections (PSOS) in the (x, vx) plane corresponding
to the driven background lattice VB. The regular islands and invariant curves (in black) denote trapped
oscillations and ballistic motion respectively. The chaotic sea (in green) denotes diffusive motion.
(b) The asymptotic particle distribution as a function of position x mod L and vx (in colormap) of
all the N = 104 particles propagating in the setup I superimposed on the PSOS shown in Figure 2a.
The parameters are the same as in Figure 1.

The low energy initial coordinates of our particle ensemble correspond to trajectories in the
chaotic sea. Hence in the course of their time evolution, they ergodically populate the entire chaotic
sea. This can be observed from (Figure 2b), where we project the snapshot of the ensemble population
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distribution as a function of the particle coordinates (x, vx) at time t = t f onto the PSOS. This leads
to a converged value of the ensemble velocity which is equal to the transport velocity of the chaotic
manifold [16]. Physically this signifies that these particles undergo diffusive motion through the lattice
which is however asymmetric about vx = 0 due to the broken symmetries. Hence, the asymptotic
average velocity of the ensemble is non-zero and the particles exhibit directed transport along
x-direction with v̄x ≃ 1.3 as observed in Figure 1b.

4.2. First Current Reversal

Next, we discuss why the transport velocity is reversed due to the superposition of a localized
lattice of 2D Gaussian barriers VG1 on the background lattice VB as in the setup II. Here, the particle
dynamics is governed by the 2D PSOS (Figure 2a) in the region where only the lattice VB is present,
but by the full 5D phase space in the region x1 < x < x2 due to the presence of both the lattices VB and
VG1. Although this 5D phase space cannot be straightforwardly visualized, it turns out that the cause
of current reversal can be explained solely on the basis of the ensemble population in the 2D PSOS
in Figure 2a. Since the ensemble is initialized near the origin (0, 0), the particles initially experience
the spatial potential only due to the lattice VB and hence their initial dynamics is exactly the same as
described for setup I in the previous subsection. As a result the initial transport velocity is v̄x ≃ 1.3.

Since the transport velocity is positive, the particles reach x = x1 in the course of time where they
encounter the lattice VG1 in addition to VB. In the region x1 < x < x2, since the particle dynamics is no
longer governed by the 2D PSOS, the particles are now no longer confined to the central chaotic sea
and can access higher velocities beyond the FISC. In fact, the higher potential heights of the Gaussian
barriers ensure that most of the particles perform chaotic diffusive motion even at higher velocities
corresponding to the full 5D phase space of our setup. This leads to an interesting conversion process
between diffusive and ballistic motion of the particles at the left edge of the lattice VG1, i.e., at x = x1,
which is the key mechanism behind the current reversal. A diffusive particle close to the left edge but
with x > x1 can cross this edge in the course of time back to x < x1 with vx < 0. However, its velocity
vx immediately after crossing back can be either &−6 in which case it lies in the chaotic sea performing
diffusive motion or .−6 which means it moves away ballistically from the lattice VG1 towards the
negative x-direction. For the particles with vx . −6, such a conversion from diffusive to ballistic
motion ensures that they perform unidirectional ballistic flights towards the negative x-direction,
thus attaining a permanent negative velocity. On the other hand, since the particles with vx & −6
perform diffusive motion they can again enter the region x1 < x < x2 in course of time. They would
then undergo the same conversion mechanism until all the particles undergo the conversion from
diffusive to ballistic motion with vx . −6. This can be observed in Figure 3a where we plot the
asymptotic distribution of the ensemble over the 2D PSOS. Most of the particles are located on the
invariant curves vx . −6 moving ballistically in the negative x-direction. This results in the asymptotic
ensemble transport velocity v̄x ≃ −7.1. The dynamical change in the transport direction leads to the
current reversal at tr1 = 3.1 × 103 T.
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Figure 3. The asymptotic particle distribution as a function of position x mod L and vx (in colormap)
of all the N = 104 particles propagating in the (a) setup II and (b) setup III projected on to the PSOS
shown in Figure 2a. The parameters are the same as in Figure 1.

4.3. Second Current Reversal

We now discuss why the transport can be reversed once again by superimposing a second identical
lattice of Gaussian barriers VG2 between x = −x1 and x = −x2 as in the setup III. Initially since the
particles are initialized near the origin (0, 0), the ensemble drifts towards the positive x-direction and
exhibit the same dynamics as in the setup II. As a result, the transport velocity is initially positive till the
first current reversal occurs at tr1 = 3.1 × 103 T and then continues to be negative until t ≃ 4.6 × 103 T.
Thereafter, the particle dynamics undergo another conversion process due to which the transport
velocity is reversed again.

Unlike the situation in setup II, the particles in the setup III moving ballistically with negative
vx after t = tr1 cannot keep moving through the lattice VB for all longer timescales. Instead at some
point, they interact with the lattice VG2 in the region −x2 < x < −x1. Due to the high kinetic energy of
the particles (since |vx| & 6), some of them can pass through the region and continue their ballistic
flights for longer timescales through the lattice VB. This can be seen from the asymptotic ensemble
distribution projected on to the 2D PSOS in Figure 3b, showing that even at t = t f a considerable
fraction of the ensemble moves with vx . −6.

However, once a particle enters the region −x2 < x < −x1, its dynamics is no longer confined
to the region vx . −6 of the 2D PSOS and can explore the different regions of the 5D phase space.
Hence most of the particles attain vx > 0 which in turn allow them to cross the right edge of the lattice
VG2 at x = −x1 back into the region −x1 < x < x1 where only the lattice VB is present. After crossing
to this region, these particles can either belong to the chaotic sea or to the invariant spanning curves
with velocity higher than the FISC at vx ≃ 10 of the 2D PSOS in Figure 2a. The particles with
vx & 10 perform unidirectional ballistic flights in the positive x-direction. Due to their significantly
higher kinetic energy, most of these particles are not ‘reflected’ further by the lattice VG1 in the region
x1 < x < x2; instead, after crossing this region, they continue moving ballistically through the lattice
VB with vx & 10. This can be observed from the significant distribution of particles with vx & 10 in
Figure 3b at t = t f . As the velocities of more and more particles undergo the conversion from vx . −6
to vx & 10, the transport velocity increases steadily after t ≃ 4.6 × 103 T, leading to a second current
reversal at t = tr2 = 5.6 × 103 T (Figure 1b). On the other hand, the particles in the chaotic layer
would eventually again encounter the lattices VG1 or VG2 so that their chaotic dynamics is eventually
converted to ballistic motion either with vx & 10 or with vx . −6. Due to the overall higher number
of particles moving asymptotically with vx & 10 compared to those with vx . −6 (see Figure 3b),
the asymptotic transport velocity is v̄x ≃ 4.7.

It is worth stressing that the conversion from chaotic to ballistic dynamics of the particles is
possible solely due to the 2D nature of the potential generated by the superimposed Gaussian barriers.
This ensures that the particle dynamics is coupled in the x and y directions upon entering the regions
x1 < |x| < x2 (where the Gaussian barriers are present) whereas it is uncoupled in all other regions.
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In Figure 4a, we show the typical trajectory of a particle in our setup III undergoing such a conversion
process. The particle exhibits diffusive motion in the x direction through the lattice VB until it reaches
the left edge of the lattice VG1 at t ≈ 5 × 103 T. However, since its motion in the y direction is
completely decoupled from the x direction, its velocity component vy shows a regular oscillatory
behaviour until t ≈ 5 × 103 T. The interaction with the 2D Gaussian barriers couples the x and y

motion of the particle leading to a change in both the velocity components vx and vy. It then undergo
ballistic motion with negative vx between t ≈ 5 × 103 T and t ≈ 6 × 103 T. Between t ≈ 6 × 103 T and
t ≈ 8 × 103 T, it interacts with the lattice VG2 exhibiting diffusive motion coupled in x and y directions.
Finally, it undergoes a second conversion from diffusive to ballistic motion at t ≈ 8 × 103 T as it exits
the right edge of the lattice VG2 and ballistically moves with a positive vx thereafter. It is important
to note that the individual timescales of such conversion processes vary for different particles. Some
particles may even undergo multiple conversions between diffusive and ballistic dynamics over long
timescales as shown for another typical trajectory in Figure 4b.

Figure 4. (a,b) Trajectories of two typical particles depicting the conversion between diffusive and
ballistic dynamics in the setup III. The horizontal black lines at x = x1 and x = −x1 in the upper panels
denote the left and right edges of the lattices VG1 and VG2 respectively. The particle in (a) is reflected
twice by these two lattices due to the conversion between diffusive and ballistic dynamics. However,
the particle in (b) undergoes such conversions multiple times over long timescales. The parameters are
the same as in Figure 1.

5. Experimental Realization

Our scheme of multiple current reversal can be experimentally realized using cold atoms or colloids
with optical lattices [14,32,38] and lattices designed using holographic trapping techniques [37,54–57].
The background lattice can be formed by 2D optical lattices where the periodic potential is generated
by counterpropagating laser beams of perpendicular polarization. The spatially localized lattices of
2D Gaussian barriers can be obtained by reflecting a linearly polarized laser beam onto a spatial light
modulator (SLM) displaying a computer generated hologram. The external driving force can be realized
using a piezo-modulator [37].

Translating our parameters to experimentally relevant quantities for an optical lattice setup with
cold rubidium (Rb87) atoms and 780 nm lasers, we obtain the lattice height ṼB ∼ 5Er, the width 1√

α
∼

350 nm, the driving frequency ω ∼ ωr and the driving amplitude a ∼ 0.003 Er/nm, where Er and
ωr are the recoil energy and recoil frequency of the atom respectively. The timescales of the current
reversals can be controlled by the spatial locations of the two lattices of Gaussian barriers. Further
away the lattices are from the origin, i.e., near the initial location of the ensemble, the larger would be
the reversal timescales. In contrast to Brownian ratchets, our mechanism does not depend on noise and
operates in the purely Hamiltonian regime. The effect of weak noise typical for ratchet experiments
with cold atoms and underdamped colloids [10,58] represent minor fluctuations of the average velocity
of the ensemble and this does not affect the functionality of the current reversal mechanism. Interaction
and disorder have been shown to enhance accumulation of particles within the regular regions of the
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phase space [33,59,60], which would aid the conversion of chaotic to ballistic dynamics of particles.
This would possibly decrease the reversal timescales.

6. Brief Conclusions

We provided a scheme to realize time dependent multiple reversals of directed transport in a
two dimensional driven lattice setup by superimposing ‘spatially localized lattices’ on top of a ‘global
background lattice’. In contrast to most other current reversal schemes, the reversal of transport here
occurs dynamically and the timescales of reversal can be controlled by controlling the spatial location
of the localized lattices. The scheme is generic in the sense that the only requirement is a mixed phase
space corresponding to the underlying background lattice and hence can be applied to a variety of
physical systems, for e.g, cold atoms and colloids.
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We demonstrate the control of vortical motion of neutral classical particles in driven superlattices. Our
superlattice consists of a superposition of individual lattices whose potential depths are modulated periodically
in time but with different phases. This driving scheme breaks the spatial reflection symmetries and allows
an ensemble of particles to rotate with an average angular velocity. An analysis of the underlying dynamical
attractors provides an efficient method to control the angular velocities of the particles by changing the driving
amplitude. As a result, spatially periodic patterns of particles showing different vortical motions can be created.
Possible experimental realizations include holographic optical lattice based setups for colloids or cold atoms.
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I. INTRODUCTION

Due to their experimental controllability, driven lattice
potentials have become an important test bed for the ex-
ploration of nonequilibrium physical phenomena [1–3]. The
inherent nonlinearity and tunable symmetries in these sys-
tems allow us to realize different nonequilibrium transport
phenomena, the “ratchet effect” being one of them [4–15].
A ratchet rectifies random particle motion into unidirectional
particle transport in an unbiased nonequilibrium environ-
ment. Certain spatiotemporal symmetries of the system need
to be broken in order to realize it [16–18]. This leads to
numerous applications across different disciplines, such as
controlling the transport of atomic ensembles in ac-driven
optical lattices [19,20] in both the ultracold quantum [1]
and classical regimes [2,12], colloidal transport in driven
holographic optical lattices [21], particle separation based on
physical properties [22–24], and motion of vortices in type-II
superconductors [25–27]. Due to the widespread applicability
of such directed transport, there has been extensive research to
control the strength and direction of the ratchet current. Setups
using one-dimensional (1D) driven lattices have been shown
to effectively accelerate, slow down, or even completely re-
verse the direction of transport [18,28,29]. Two-dimensional
(2D) driven lattices, on the other hand, offer a higher vari-
ability in terms of transport direction and for particles to be
transported parallel to, orthogonal to, or at any arbitrary angle
with respect to the direction of the driving force [21,30,31].

In contrast to 1D, the 2D driven lattice based ratchet se-
tups also allow for the possibility to convert random particle
motion into rotational or vortical motion leading to nonzero
angular velocity of the particles. This is particularly interest-
ing since it provides a method to realize rotational motion of
neutral particles analogous to the motion of charged particles

*Aritra.Mukhopadhyay@physnet.uni-hamburg.de
†Peter.Schmelcher@physnet.uni-hamburg.de

in a magnetic field without explicitly rotating the system. In
fact, similar setups have been used to generate artificial mag-
netic fields for exploring topological quantum states with cold
neutral atoms in periodically modulated lattices [32,33]. How-
ever, the extensive research on symmetry-breaking-induced
directed transport in the classical regime has mostly fo-
cused on translational currents, and the control of rotational
currents has remained largely unexplored. The few existing
setups either lead to a diffusive rotational motion over an
extended space in the presence of an elliptical ac drive, in-
troducing an inherent rotational bias [34], or require specially
tailored potentials [35,36] and temporally correlated colored
noise [37,38]. Furthermore, due to the lack of spatial tun-
ability of the underlying lattice potential, these setups do not
allow patterns of multiple vortices in space analogous to the
different spatial configurations of artificial magnetic fluxes in
the quantum regime [39].

Here, we address these key limitations and present a
setup to realize controllable rotational motion of classical
particles along closed spatial paths in driven superlattices
without any explicit rotational bias. The individual lattices
are modeled by a periodic arrangement of Gaussian poten-
tial wells whose depths can be individually modulated in a
time-periodic manner, leading to a “spatiotemporally” driven
lattice setup [40,41]. We show that modulating different wells
with the same driving amplitude but different driving phases
allows us to break the relevant symmetries and generate
nonzero average angular velocities for an ensemble of par-
ticles. The angular velocities of individual trajectories can be
controlled by varying the driving amplitude. Additionally, we
demonstrate periodic spatial arrangements of different types
of rotational motion by modulating the different potential
wells with different driving amplitudes and phases.

II. SETUP

We consider N noninteracting classical particles of
mass m in a 2D potential landscape V (r ≡ (x, y, 0), t ) =

2469-9950/2020/102(9)/094309(6) 094309-1 ©2020 American Physical Society
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∑+∞

m,n=−∞ Ũmn(t )e−β(r−rmn )2
formed by a lattice of 2D Gaus-

sian wells centered at positions rmn = (mL, nL, 0), m, n ∈ Z.
The depths of the wells are modulated periodically in time
by the site-dependent driving law Ũmn(t ) = Ṽmn[cos(ωt +

φmn) − 1] with driving frequency ω, driving amplitude Ṽmn,
and a temporal phase shift φmn. We consider the setup to
be dissipative, with the dissipation coefficient of the parti-
cles being denoted by γ̃ . The source of dissipation can be
different for different systems, e.g., viscous drag forces for
colloidal particles or optical molasses for cold atoms [42].
Introducing dimensionless variables r′ = r

L
and t ′ = ωt and

dropping the primes for simplicity, the equation of motion
for a single particle at position r = (x, y, 0) with velocity
ṙ = (ẋ, ẏ, 0) reads

r̈ + γ ṙ =

+∞∑

m,n=−∞

2αUmn(t )(r − Rmn)e−α(r−Rmn )2

+ ξ (t ),

(1)

where Umn(t ) = Vmn[cos(t + φmn) − 1] is the effective site-
dependent driving law with time period T = 2π and driving

amplitude Vmn = Ṽmn

mω2L2 . Rmn = (m, n, 0) denotes the positions

of the Gaussian wells, γ =
γ̃

mω
is the effective dissipation

coefficient, and the parameter α = βL2 is a measure of the
widths of the wells. ξ (t ) = (ξx, ξy, 0) denotes thermal fluctu-
ations modeled by Gaussian white noise of zero mean with
the property 〈ξi(t )ξ j (t ′)〉 = 2Dδi jδ(t − t ′), where i, j ∈ x, y

and D =
γ̃ kBT

mω2L2 is the dimensionless noise strength, with T
and kB denoting the temperature and Boltzmann constant, re-
spectively. Unless mentioned otherwise, we choose Vmn = V

for all the wells, α = 3, and γ = 0.1. The set of all wells
arranged periodically in space with a specific value of the
driving phase φmn forms a sublattice of our system. Our setup
is hence a driven superlattice formed by the superposition of
different sublattices, each driven by a distinct driving phase
φmn. Possible experimental realizations of such a 2D potential
include holographic optical lattices [21,43–46] and optical
superlattices [47] with the lattice depth modulated via stan-
dard amplitude modulation techniques [48,49]. The rotational
dynamics of particles in such a setup could be observed
with colloidal particles or with cold atoms in the classi-
cally describable regime of microkelvin temperatures [12,21].
In colloidal experimental setups with polystyrene micro-
spheres [21], our parameter values would correspond to
typical well widths of ∼10 µm at room temperatures, and the
value of V can be flexibly controlled by the intensity of light.

III. ROTATIONAL CURRENT DUE TO

SYMMETRY BREAKING

The asymptotic dynamics of particles in our setup can be
confined within either a lattice unit cell such as in linear
oscillatory motion or vortical motion along arbitrary closed
spatial curves. There can also be unconfined diffusive or
ballistic motion throughout the lattice. Different particles ex-
hibiting vortical motion can, in general, possess different
angular velocities. Hence, in order to distinguish vortical
motion of a trajectory from ballistic, diffusive, and vortical
dynamics of other trajectories, we use the angular velocity

FIG. 1. Schematic representation of superlattice setups A and B
formed by the superposition of four square sublattices driven with an
amplitude V but at different phases φi =

(i−1)π
2

, i = 1, 2, 3, 4. Each
red circle denotes the position of an individual Gaussian well. The
thick black dashed lines denote the boundary of the lattice unit cells.
The spatial period of setup A is (2,2,0), whereas that of setup B is
(3,3,0) due to the presence of empty sites without any wells. The
blue and green regions in (a) denote plaquettes with clockwise and
counterclockwise chiralities with respect to the spatial orientation of
the wells with driving phases φi. The remaining parameters are V =

0.41, α = 3, γ = 0.1.

�(t ) = [ṙ(t ) × r̈(t )]/ṙ2(t ), which is equivalent to the defi-
nition of curvature of planar curves measuring the speed of
rotation of the velocity vector about the origin [34,50]. Since
the particle dynamics is confined to the xy plane, the only
possible nonzero component of �(t ) is along ẑ, the unit vector
along the z direction. The mean angular velocity of a trajectory
is defined as �̄ = 1

t
lim

t→∞

∫ t

0 �(t ′)dt ′. For trajectories rotating

along a closed spatial curve with period ηT , the mean angular
velocity can be expressed as �̄ = 2πτ

ηT
ẑ = τ

η
ẑ (since T = 2π ),

where 2πτ denotes the total curvature of the curve with the
turning number τ defined as the number of times the velocity
vector winds about its origin [51]. The net rotational current,
defined as the mean angular velocity of an ensemble of par-
ticles with different initial conditions, is given by J� = 〈�̄〉,
where 〈· · · 〉 denotes the average over all trajectories. Since
the only possible nonzero components of �(t ), �̄, and J� are
along ẑ, we drop the symbol ẑ henceforth.

The necessary condition for any setup to exhibit a net
rotational current is to break the symmetries, which keeps the
system invariant but changes the sign of the angular veloc-
ity �(t ) [34]. There are only two symmetry transformations
which can change the sign of �(t ): (i) time reversal together
with optional spatial inversion and space-time translations St ,
t −→ −t + t ′, r −→ ±r + δ, and (ii) parity or reflection P
about any plane perpendicular to the xy plane with optional
spatial rotation R in the xy plane and space-time transla-
tions Sp, r −→ R(Pr) + δ, t −→ t + t ′. Since our setup is
dissipative, St is broken independent of our choice of the
lattice potential V (r, t ). However, the superlattice potential
allows us to preserve or break the symmetry Sp by controlling
the driving phases of the underlying sublattices. In order to
illustrate this, we consider two setups, A and B [Figs. 1(a)
and 1(b)], each consisting of four square sublattices with
the same driving amplitude V = 0.41 but different phases

094309-2
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φi =
(i−1)π

2 , i = 1, 2, 3, 4. The sublattices in setup A have
lattice vectors (2,0,0) and (0,2,0); hence, the setup has a spa-
tial period LA = (2, 2, 0). In contrast, setup B has a spatial
period LB = (3, 3, 0), with the lattice vectors being (3,0,0)
and (0,3,0). As shown in Fig. 1(a), the arrangement of the
sublattices allows us to consider the unit cell of setup A as
a collection of four distinct spatial domains or plaquettes.
The plaquettes are characterized by clockwise or counter-
clockwise arrangement of Gaussian wells with driving phase
φi, i.e., of opposite chirality. Since the parity transformation
Sp reverses chirality, each of these plaquettes breaks the Sp

symmetry. However, since the unit cell has an equal number
of plaquettes with opposite chiralities (two clockwise and two
counterclockwise), the unit cell and hence the entire setup A
are symmetric with respect to Sp. This implies that although
setup A might allow trajectories with different mean angular
velocities �̄, the net rotational current J� must be zero. In
contrast, the entire unit cell of setup B has a counterclockwise
chirality which can be reversed by Sp, and hence, setup B
breaks Sp symmetry. As a result one can expect J� to be
nonzero.

In order to verify our symmetry analysis and explore the
behavior of rotational current in our system, we initialize
N = 104 particles randomly within a square region x, y ∈

[−100, 100] × [−100, 100] in both setups A and B with small
random velocities vx, vy ∈ [−0.1, 0.1]. Subsequently, we time
evolve our ensemble up to time t f = 104T by numerical in-
tegration of Eq. (1) for different noise strengths D. In the
deterministic limit D = 0, all particles in setup A exhibit
only rotational motion along closed curves with mean angular
velocity �̄ = 1

2 (vortex) or − 1
2 (antivortex). Figure 2(a) shows

a typical trajectory in this setup having �̄ = − 1
2 . The veloc-

ity vector winds around its origin in the clockwise direction
once during the period of rotation 2T ; hence, τ = −1, and
η = 2. The vortical motion persists as the noise strength is
increased to D = 0.001. However, most importantly, there
exists an equal number of trajectories possessing �̄ = − 1

2

and �̄ = 1
2 , signifying that the net rotational current J� = 0

[Fig. 2(b)], as predicted by our symmetry analysis. Even for
higher noise strength up to D = 0.003, such a symmetry-
related cancellation of vortex-antivortex pairs with equal and
opposite angular velocities persists, leading to a zero net ro-
tational current. Beyond D > 0.003, the vortical motion is
destroyed, resulting in a symmetric distribution of particles
around �̄ = 0 and hence J� = 0. The particles in setup B
also exhibit rotational motion; however, unlike in setup A,
all the particles in setup B possess a mean angular velocity
�̄ = 3

5 = 0.6. An example trajectory in setup B in the deter-
ministic limit can be seen in Fig. 2(c). The velocity vector
makes four counterclockwise (at the four corners of the curve)
and one clockwise (corresponding to one full rotation along
the curve) windings around its origin during one period of
rotation 5T ; hence, τ = 3, and η = 5. For D � 0.002, the vor-
tical motion is quite stable, and almost all the particles in the
setup rotate with �̄ = 0.6, resulting in J� = 0.6 [Fig. 2(d)]
in accordance with our symmetry analysis. For D > 0.002,
the particles perform diffusive motion through the lattice, and
the vortical motion is gradually destroyed, thus decreasing the
value of J�.

FIG. 2. Typical trajectories exhibiting rotational motion in
(a) setup A and (c) setup B over one time period of rotation (color
bars). The colored circles denote the positions of individual Gaussian
wells with different driving phases φi. (b) and (d) The fraction of
particles ρ(�̄) possessing mean angular velocity �̄ for different
noise strengths D in setups A and B, respectively. The insets show
the variation of the net rotational current J� with D. The remaining
parameters are the same as in Fig. 1.

IV. CONTROL OF ROTATIONAL CURRENT

The question that naturally arises is that once we de-
sign a driven superlattice which breaks the Sp symmetry,
e.g., our setup B, can we predict the value of J� a priori?
Specifically, how does the mean angular velocity �̄ of the
trajectories depend on the system parameters? For a driven
dissipative nonlinear system like the present one, this can
be answered by analyzing the asymptotic t → ∞ particle
dynamics in the deterministic limit D = 0. The asymptotic
dynamics of the particles is governed by the set of attrac-
tors underlying the phase space of the system, which can be
of two types: (i) regular attractors denoting ballistic, linear
oscillatory and rotational motions and (ii) chaotic attractors
denoting diffusive motion. In order to distinguish between
attractors corresponding to rotational motion compared to
the others, we introduce a slightly modified angular velocity
vector �

′(t ) = [ṙ(t ) × r̈(t )]/[|ṙ(t )||r̈(t )|]. Note that �
′(t ) =

sin ϑ (t ) ẑ, where ϑ (t ) denotes the instantaneous angle be-
tween the velocity and acceleration vectors of the particle.
�

′(t ) transforms under Sp and St in exactly the same way
as �(t ). However, since the values of �

′(t ) are bounded in
the interval [−1, 1], as opposed to �(t ), which becomes large
for small values of ṙ(t ), it is a good quantity to differentiate
between chaotic and regular rotational dynamics of particles.
To illustrate this, we inspect the bifurcation diagram of �

′(t )
in Fig. 3(a) as a function of the driving amplitude V for
our setup B by initializing particles with random positions
and velocities and stroboscopically monitoring �

′(t ) after an
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FIG. 3. (a) Bifurcation diagram of �
′(t ) as a function of the

driving amplitude V depicting the chaotic (broad blue bands) and
regular (thin blue lines) attractors of setup B [see Fig. 1(b)]. (b) The
mean angular velocity �̄ of the attractors in Fig. 3(a) as a function
of V . The values of �̄ for the regular attractors denoting rotational
motion and the turning number τ of the corresponding closed curves
are labeled with arrows. The remaining parameters are the same as
in Fig. 1(b).

initial transient [52]. For certain ranges of values of V , all
the particles in the setup exhibit chaotic motion [broad blue
bands in Fig. 3(a)] such that �

′(t ) takes all possible values
in the range [−1, 1]. For all other values of V , they perform
regular periodic motion, resulting in only specific values of
�

′(t ). Most of these periodic motions correspond to parti-
cles performing rotational motion with different nonzero �̄

(except for 0.19 � V � 0.25) depending on the value of V ,
as shown in Fig. 3(b). This provides an efficient method to
design and control the angular velocities of the trajectories in
our setup by simply choosing the desired driving amplitude
V . Our previous results [see Figs. 2(c) and 2(d)] give such an
example for setup B with V = 0.41.

V. MULTIPLE VORTICES

The ability to control the angular momentum of the par-
ticles with different driving amplitude V allows us to design
lattices with spatially periodic arrangements of multiple vor-
tices. In order to illustrate this, we consider the specific setup
shown in Fig. 4(a). It is designed such that the unit cell
consists of a collection of four plaquettes, D1, D2, D3, and
D4. Each plaquette consists of four Gaussian wells driven
at different phases φi =

(i−1)π
2 , i = 1, 2, 3, 4. The plaquettes

D1 and D4 possess a counterclockwise chirality, whereas D2

and D3 have clockwise chirality with respect to the spatial

FIG. 4. (a) Schematic representation of one unit cell of our setup
consisting of four plaquettes, D1, D2, D3, and D4, with the thick
dashed lines denoting the plaquette boundaries. The shaded circles
denote the positions of individual Gaussian wells driven with ampli-
tudes V1 = 0.51 or V2 = 0.078 and phases φi. D1 and D4 (D2 and
D3) have counterclockwise (clockwise) chirality with respect to the
spatial orientation of the wells with driving phases φi. Trajectories
of particles exhibiting vortical motion for D = 0 with positive (red)
and negative (blue) �̄ have been superimposed on the unit cell. The
trajectories in D1, D2, D3, and D4 have �̄ = −1, 1, − 1

3
, and 1

3
,

respectively. (b) and (c) An extract of the spatial arrangements of
the trajectories exhibiting vortical motion within different plaquettes
for D = 10−4 and D = 10−3, respectively. The remaining parameters
are the same as in Fig. 1.

arrangement of the wells with driving phases φi. Additionally,
the wells in D1 and D2 are driven with amplitude V1 = 0.51,
and those in D3 and D4 are driven with V2 = 0.078. Note
that these specific values of driving amplitude are chosen by
consulting the bifurcation diagram in Fig. 3 to allow only
vortex trajectories with specific angular momenta. We initial-
ize N = 104 particles randomly in this setup within a square
region x, y ∈ [−50, 50] × [−50, 50] with small random ve-
locities vx, vy ∈ [−0.1, 0.1] and propagate the ensemble up
to time t f = 104T . For D = 0, the particles exhibit vortical
motion at long timescales, with their angular velocity being
governed by the plaquette they are trapped within, as shown
in Fig. 4(a). The particles in D1 and D4 rotate with �̄ =

−1 and �̄ = 1
3 , respectively, as predicted by Fig. 3(b). Note

that plaquettes D2 and D3 can be obtained by a spatial parity
transformation on D1 and D4, respectively. Hence, the mean
angular velocity of the particles in D2 and D3 has a sign
opposite that of the particles in D1 and D4, respectively. Even
for D = 10−4, such rotational motion persists, and we obtain a
periodic arrangement of particles in space rotating with dif-
ferent angular momenta [Fig. 4(b)]. For a higher strength
D = 10−3, the vortical motion of particles with �̄ = ± 1

3 is

destroyed, and only the ones with �̄ = ±1 remain, yielding
a different periodic arrangement [Fig. 4(c)]. Noise strengths
D � 4 × 10−3 eventually destroy all the vortex trajectories.

VI. CONCLUSIONS

We have demonstrated that superlattices of periodically
driven localized wells provide highly controllable setups to
realize different patterns of rotational motion of particles. The

094309-4



CONTROLLING VORTICAL MOTION OF PARTICLES IN … PHYSICAL REVIEW B 102, 094309 (2020)

spatial arrangement of the lattices is responsible for breaking
the relevant symmetries, thus allowing for the nonzero average
angular momentum of an ensemble of particles. Our analysis
of the underlying nonlinear dynamical attractors provides an
efficient method to control the angular momentum of the
particles as well as to create a variety of periodic arrangements
of vortical motion with different angular momenta. This might
be useful for technological applications too. For example,
an extension of this scheme with a mixture of two particle
species differing in mass or size would allow us to segregate
them in different spatial plaquettes with each species rotating

with different angular momenta. Future perspectives include
investigation of rotational dynamics of particles operating in
the purely Hamiltonian regime without dissipation, as well as
in the quantum regime with the possibility to realize spatially
varying artificial magnetic fluxes.
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4
Conclusion and Outlook

In this cumulative thesis, we have explored the controllability of directed trans-

port in driven lattices which operate in the underdamped or purely Hamiltonian

regime. The essential aim was to understand the particle dynamics in these sys-

tems in terms of the underlying phase space, which would allow us to control the

transport phenomena by engineering the phase space structures. A second closely

related objective was to better understand the occurrence of directed transport in

two dimensional setups, including rotational or vortical currents. In this chapter,

we would give brief summary of our findings and provide perspectives for future

research.

In [A1], we have shown that particles in a 2D driven optical lattice type poten-

tial can be transported at different angles depending on their physical properties

like mass or size. Specifically, we have demonstrated how the average velocities

of the underlying ballistic attractors in the phase space depend on these physi-

cal properties and the potential height of the lattice. This provided an efficient

scheme to segregate more than two species of particles differing in their mass or

size simultaneously and this was illustrated with examples of colloidal particles

and cold atoms. From the perspectives of ratchet physics, this demonstrates that

a periodically driven 2D dissipative lattice can induce ballistic directed transport

of particles simultaneously at different angles in a species-selective manner. From

the point of view of technical applications, the simultaneous separation of multi-

ple species constitutes a significant improvement over the existing ratchet based

segregation schemes in 1D, which can only separate binary mixtures at a time.

Furthermore, owing to the inherently deterministic character of the mechanism

and non-requirement of an overdamped setup, the scheme can be potentially ap-
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plied to particles with larger sizes too, for e.g. granular particles. A potential

future extension would be to realize such a segregation scheme in 2D Hamilto-

nian systems. In this case, particle-particle interaction or disordered potentials

could play the role of dissipation which might induce transition of particles dy-

namics from chaotic to ballistic with their average velocities characterized by their

physical properties [95, 113].

The investigation of the transport properties of underdamped particles contin-

ued in [A2], where we have shown that they can be transported at specific direc-

tions in different types of 2D Bravais lattices driven by unbiased external forces.

This is indeed one of the very few works where directed transport is achieved in a

2D spatially periodic system driven out of equilibrium only by unbiased ac-forces

[13, 23, 56]. One of the most important feature of this setup is that the required

breaking of spatial inversion symmetry is achieved solely due to the structure

and geometry of the lattice. The velocity of the ballistic attractors underlying the

setup can be controlled by the lattice geometry and the orientation of the oscil-

lating ac-drive. This allow us to realize directed transport parallel, perpendicular

and oblique to the drive orientation depending on the lattice geometry. A remark-

able result is that it is possible to explain the direction of transport even in the lat-

tices without any lines of reflection symmetry, for e.g. oblique lattices, which is in

general impossible using the standard symmetry arguments. Future perspectives

include the investigation of the role lattice geometry plays in directed transport

of particles in purely Hamiltonian setups.

In [A3 − A5], we shifted our focus to 1D and 2D driven lattice setups which

operate in purely Hamiltonian regime without any dissipation. Specifically, the

aim was to devise methods to control the directed transport of ensembles in these

setups in a time-dependent manner. In [A3], we have demonstrated that two

superimposed 1D driven optical lattices can be used to accelerate, freeze and re-

verse the transport on demand by a time-dependent switch of either the potential

height or driving phase of one of the lattices. These parameter switches are shown

to induce characteristic changes in the underlying phase space, which allow us to

control the particle velocities. The key requirement is that the phase space should

be ‘mixed’, i.e. have both chaotic and regular components separated by cantori

structures. Such a generic requirement makes this scheme applicable for different

physical systems, one of them being cold atoms in ac-driven optical lattices.

In [A4] and [A5], we have shown that a time-dependent change of the transport

direction can also occur without any explicit time-dependent switch of a system
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parameter. In [A4], we have demonstrated that the direction of transport in a

2D driven lattice can be reversed dynamically due to the strong coupling of un-

derlying lattice potential in the two dimensions. The timescale of current rever-

sal can be controlled by changing the strength of the dimensional coupling. In

[A5], such a dynamical current reversal is achieved by superimposing spatially

localized lattices over a ‘global’ background lattice. Interestingly, we can induce

multiple current reversals in the setup by using more than one localized lattice at

different positions. The timescales of these reversals can be controlled by adjust-

ing the spatial locations of the superimposed lattices. The key principle behind

both these processes is a precise control of the underlying phase spaces, which

allow the particles to access regions of phase space which are inaccessible other-

wise. Cold atomic ensembles in optical lattices operating in an extremely weak

dissipative regime form an ideal test bed for these effects.

Unlike in [A1 − A5] where the focus is on translational currents, in [A6] we

study the rotational or vortical transport of particles in 2D driven lattices. Here

we demonstrate that superlattices of periodically driven localized potential wells

provide a highly controllable setup to achieve rotational transport of an ensemble.

One of the key findings is that the spatial arrangement of the potential wells hav-

ing different driving phases can be used to design setups which break the reflec-

tion symmetries, thus allowing such rotational motion of particles. The angular

velocities of the particles can be controlled by the potential depths of the wells,

which allow us to realize a variety of spatial arrangements of particles having

different angular velocities. Such rotational motion of neutral particles in driven

lattices is quite interesting since it provides an analogous method to mimic the

behavior of charged particles in a magnetic field. An interesting future perspec-

tive could be the investigation of the particle dynamics in the analogous quantum

setup with the possibility to realize spatially varying artificial magnetic fluxes

[114–118].

One of the major outcome of this thesis is the ability to break different spatio-

temporal symmetries by designing setups composed of individually driven bar-

riers or wells. The fact that the symmetries of the setup depends highly on how

these barriers or wells are arranged in space and how they are driven with time

allow us to flexibly control not only the global but also the local symmetries of the

setup. A second important outcome is the ability to control the large scale phase

space structures underlying the system, for e.g. the ballistic islands, cantori and

chaotic sea for the Hamiltonian setups or the attractors in presence of dissipation.
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Besides allowing a high degree of control over the transport in both 1D and 2D

setups, this also helps us understand the effect of different parameters like lattice

geometry or physical properties of particles on the transport. The ability to tune

the setup symmetries and the phase space presents promising opportunities to re-

alize many novel transport phenomena in future. One of them is the investigation

of the impact of local symmetries on the global transport in driven lattice setups.

It has been shown that locally symmetric structures can play an important role

in the context of wave propagation in both one and two dimensions [119–122].

The concept of local symmetries can be extended to driven lattice setups by con-

sidering periodic arrangements of locally driven potential wells or barriers, with

spatial domains which are locally symmetric with respect to certain symmetry

transformations. Indeed, we have presented such a setup in [A6] where the unit-

cell of our setup could be broken down into multiple spatial domains which are

connected by a spatial parity transformation. It would be interesting to see what

effect these locally symmetric domains have on the phase space of the entire sys-

tem. Could the global translational transport in such systems be decomposed in

terms of certain ‘local’ components governed by the symmetries of these spatial

domains? This might allow targeted design of setups allowing specific values of

transport velocities through a bottom-up approach by combining different locally

symmetric potentials.

In contrast to setups where each potential barrier in the lattice is driven by the

same time-dependent driving force, the setups where each barrier can be driven

differently allow us to design ‘block’ superlattices [47, 48]. The idea is to arrange

the barriers in spatially periodic groups or blocks with all the barriers in each

block being driven by a specific driving law. This promises another interesting

perspective for future research, which is the investigation of particle dynamics in

2D block superlattices. Similar setups in 1D has been shown to introduce new

phenomena like the conversion of an initially diffusive particle ensemble into a

pulsed particle beam [47] or the formation of density wave like structures in space

[48]. One of the major reasons behind the occurrence of these phenomena is the

conversion of particle dynamics from diffusive to ballistic and vice-versa at the

junctions of two consecutive blocks in space. In contrast to the 1D setup where

each block has only two edges, the blocks in the 2D setup can be designed such

that they have multiple edges through which the particles can enter or leave a

specific block. This would allow multiple conversions of particle dynamics at the

different block edges leading to potentially richer density distributions of parti-
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cles over the 2D space. Furthermore, by choosing an appropriate driving law for

a specific block, one can induce directed transport of particles in this block at a

specific direction. By proper arrangement of different blocks in space with dif-

ferent driving laws, one can in principle design many different transport patterns

including transport along closed circular paths in space.

Another interesting perspective is to investigate how a spatially localized dis-

ordered potential impacts the dynamics of particles in the 2D driven lattices. For

similar setups in 1D, it has been shown that localized disorder induces conver-

sion of particle dynamics from diffusive to regular [113] and the efficiency of such

a conversion process depends on the strength as well as the spatial extent of the

disordered potential. In 2D, one can design different spatial distributions of such

disordered potentials and this might lead to different types of modification in the

particle dynamics which are not observed in the 1D counterparts. A particular

aim could be to induce transition of particles from the chaotic sea to specific reg-

ular islands in the phase space by choosing specific profiles of the spatially local-

ized disorder. Additionally, this kind of conversion process might help us classify

the regular manifolds of the underlying phase space for 2D driven Hamiltonian

setups, which is in general not easy to visualize due to its higher dimensionality.
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