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Abstract

In economics, researchers have not fully agreed upon the source of rigidities which are
relevant for aggregate dynamics. Typically, rigidities are assumed to have different sources.
For example, rigidities in prices are justified by menu costs and costs of collecting information,
rigidities in consumption by habit formation and rigidities in capital by investment costs.
More recently, the focus has shifted back to incomplete information as the source and
the micro-foundation of frictions. The literature discusses various types of incomplete
information. Early papers, i.e. Phelps (1970) and Lucas (1973), relax the full information
assumption by assuming partial information. This means that all agents share the same but
an incomplete information set.

At the beginning of the 2000’s more complex structures of incomplete information were
analysed. Morris and Shin (2002) assume heterogeneous information which makes the agents
Bayesian learners that extract information from private and public signals.1 Mankiw and
Reis (2002) assume sticky-information in which agents are randomly selected to update
their information set and, hence, part of the agents take their decision based on outdated
information. Further, Sims (2003) introduces the idea of limited information processing
capacity of agents. Under this constraint agents rationally allocate their attention to most
informative private or public signals about the state of the world, while the constraint does
not allow the agents to observe all variables perfectly.

In this dissertation, I focus on incomplete information in the form of partial and het-
erogeneous information. Models with heterogeneous information give rise to higher order
expectations which lead to the so called infinite regress problem. In order to keep the problem
tractable, one needs to impose certain assumptions about the information structure. One way
to reduce the dimension of the state vector is to assume that the fundamentals are revealed
after a finite number of periods. This method was suggested by Townsend (1983) and applied
since the early days of this field of research. Nimark (2011) in comparison chooses to reduce

1I use the term of heterogeneous information for what is also found as noisy information and dispersed
information in the literature.
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the number of state variables by cropping higher orders from the state vector. Thereby, he
argues that the cropped orders of expectations have no impact on the policy rules of the
agents and hence for the dynamics of the model. In his approach the state of the world is
never revealed, which implies a consistent treatment of the information that is available to the
agents in the economy. Kasa (2000) and Rondina and Walker (2011) choose an alternative
way to handle the infinite regress problem. They transform their model in the frequency
domain. This way they find an exact solution to the problem. This approach generates more
precise estimates, but it is very difficult to implement. Considering these arguments, I follow
Nimark (2011) with regard to solving the infinite regress problem throughout the dissertation.

In Chapter 1, I revisit the results of Baxter et al. (2011) and Graham and Wright (2010)
on the effects of incomplete information in the real business cycle (RBC) model. In these
papers, I find a discussion of partial as well as heterogeneous information in the RBC model.
The discussion encompasses convergence criteria for the model with partial information
and pseudo-shocks in the case with heterogeneous information. I review the conclusions
made and argue that one should treat capital separately from exogenous state variables, as
a predetermined endogenous state variable. Then, I show that the filtering problem in the
model with partial information can be simplified to one about the exogenous state variables
only. To the heterogeneous information model a fundamental and a non-fundamental solution
exists. Thereby, the dynamics of the fundamental solution simplifies to the one of the partial
information model. The non-fundamental solution instead gives rise to pseudo-shocks to
capital as reported in the literature. Furthermore, in all cases the signals have to reveal
individual wages, idiosyncratic composite productivity and the return to capital to guarantee
market clearing on the goods market. Moreover, I clarify some derivations made in their
papers such that they are theoretically sound, but I do not develop an alternative framework
which overcomes the practical issues that appear. Based on the theoretical insights of the first
chapter, I generalise the framework and provide practical solutions in the second chapter.

In Chapter 2, I derive a solution algorithm that solves heterogeneous information dynamic
stochastic equilibrium (HI-DSGE) models of a general form. The algorithm is general enough
to handle both predetermined and contemporaneous endogenous as well as exogenous state
variables. In addition, I derive general conditions on the structure of signals to ensure all mar-
kets to clear, and conditions for heterogeneous information to make a difference compared
to partial information models. I illustrate the power of the methodology with an heteroge-
neous information new Keynesian model with capital, which has not been studied before. I
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analyse its dynamic implications compared to the full information version of the model and
discuss three conjectures that Lorenzoni stated in his conlusion. The paper comes with an
extensive Matlab toolkit2, including documentation which allows any researcher to study
heterogeneous information models without in-depth knowledge of the solution methodology.

In Chapter 3, I analyse the asset pricing implications of a heterogeneous information New
Keynesian model. First, I address the equity premium and the risk free rate puzzle. Second, I
relate the model to the finding in the full information literature that nominal rigidities reduce
risk premia when the model is driven by supply shocks, and that risk premia increase with
nominal rigidities in the presence of demand shocks. In a standard New Keynesian model,
demand shocks appear only in the form of monetary policy shocks, while heterogeneous
information models are shown to provide a broader theory of demand shocks.

I find that heterogeneous information can at least mitigate if not resolve the equity
premium and the risk free rate puzzles. With regard to the second issue, I find opposing
effects of supply and demand shocks to the ones in the full information literature.

2The Matlab toolkit can be downloaded under http://sites.google.com/site/hidsge/.





Zusammenfassung

Wirtschaftswissenschaftler sind sich weiterhin nicht einig über die grundlegenden Rigiditäten,
die für aggregierte Konjunkturzyklen bedeutend sind. Typischerweise wird angenommen,
dass Rigiditäten unterschiedliche Gründe haben. Zum Beispiel werden Rigiditäten bei
Preisen mit Preisanpassungs- und Informationssammelkosten verbunden, Konsum passt sich
aufgrund gebildeter Gewohnheiten nur langsam an neue wirtschaftliche Umstände an und
der Kapitalstock wegen Investitionskosten. In den vergangenen Jahren wurde die Aufmerk-
samkeit hingegen wieder auf unvollständige Informationen als Quelle und Mikrofundierung
von Friktionen gerichtet. Jedoch wurden bereits in den 70er Jahren verschiedene Formen
von unvollständigen Informationen diskutiert. Phelps (1970) und Lucas (1973) haben die
Annahme vollständiger Informationen aufgeweicht und Modelle mit partiellen Informationen
entwickelt, in denen alle Agenten die gleichen, aber unvollständige Informationen über den
Zustand der Volkswirtschaft teilen.

Anfang der 2000er wurden dann komplexere Strukturen unvollständiger Informationen
analysiert. Morris and Shin (2002) modellieren die Annahme, dass Agenten heterogene
Informationen erhalten. Das bedeutet, dass sie einerseits private und andererseits öffentliche
Signale über den Zustand der Volkswirtschaft beobachten. Mankiw and Reis (2002) nehmen
hingegen an, dass nur ein Teil der Agenten zu einem gegebenen Zeitpunkt ihre Informationen
aktualisiert und damit der andere Teil seine Entscheidungen auf Grundlage von veralteten
Informationen trifft. Darüber hinaus formuliert Sims (2003) die Idee, dass Agenten nur
über begrenzte Informationsverarbeitungskapazitäten verfügen. Unter dieser Einschränkung
wählen die Agenten selbst welchen privaten oder öffentlichen Signalen sie ihre Aufmerk-
samkeit widmen wollen. Dabei sorgt die Einschränkung dafür, dass sie nicht alle Bestandteile
der Volkswirtschaft vollständig beobachten können.

In dieser Dissertation konzentriere ich mich auf Modelle mit unvollständige Informa-
tionen im Sinne von partiellen und heterogenen Informationen. Modelle mit heterogenen
Informationen erzeugen Erwartungen höherer Ordnung, die zu dem so genannten Problem
endloser Rekursion führen. Um dem Problem Herr zu werden, müssen bestimmte An-
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nahmen über die Informationsstruktur getroffen werden. Eine Möglichkeit die Dimension
der Zustandsvariablen in Grenzen zu halten ist die Annahme, dass der wahre Zustand der
Volkswirtschaft nach einem bestimmten Zeitraum bekannt wird. Diese Methode wurde von
Townsend (1983) vorgeschlagen und findet in der Literatur seither Anwendung. Nimark
(2011) löst das Problem auf andere Weise. Er verringert die Anzahl der Zustandsvariablen
dadurch, dass er diese einfach nach einer bestimmten Anzahl abschneidet. Er argumen-
tiert, dass die Erwartungen höherer Ordnung ab einer bestimmten Ordnung keinen Einfluss
mehr auf die Entscheidungsfindung der Agenten haben und damit auch nicht auf die volk-
swirtschaftliche Dynamik. Bei dieser Methode bleibt der wahre Zustand der Volkswirtschaft
immer unbekannt und die Informationen werden über die Zeit konsistent behandelt. Kasa
(2000) und Rondina and Walker (2011) wählen eine dritte Methode dem Problem unendlicher
Rekursion zu begegnen. Sie transformieren das Problem der Erwartungsbildung in den Fre-
quenzbereich. In Folge dessen finden sie eine exakte Lösung des Problems. Diese ist jedoch
sehr schwierig zu implementieren. Nach Abwägung der Vor- und Nachteile der verschiedenen
Methoden, verwende ich die Methode von Nimark (2011) im Rahmen meiner Dissertation.

In Kapitel 1 greife ich die Ergebnisse von Baxter et al. (2011) und Graham and Wright
(2010) zu unvollständigen Informationen in Modellen realer Konjunkturzyklen (RBC Mod-
elle) auf. In diesen Papieren werden ein Modell mit partiellen und eins mit heterogenen
Informationen diskutiert. Dabei beinhaltet die Diskussion Konvergenzkriterien für Modelle
mit partiellen Informationen und Pseudo-Schocks im Fall mit heterogenen Informationen.
Ich überprüfe die gemachten Schlussfolgerungen und argumentiere, dass man Kapital als
eine voraus bestimmte endogene Zustandsvariable getrennt von exogenen Zustandsvariablen
behandeln sollte. Ich zeige unter diesem Umstand, dass das Filterproblem des Modells mit
partiellen Informationen zu einem Problem von ausschließlich exogenen Prozessen verein-
facht werden kann. Bezüglich des Modells mit heterogenen Informationen bestehen eine
fundamentale und eine nicht-fundamentale Lösung. Dabei führt die fundamentale Lösung
zu der des Modells mit partiellen Informationen. Die nicht-fundamentale Lösung erzeugt
hingegen Pseudo-Schocks in Bezug auf Kapital, wie es in der Literatur dokumentiert ist. In
allen Fällen müssen die individuellen Löhne und die idiosynkratische Produktivität sowie
die Kapitalrendite den Agenten bekannt sein, um die Markträumung auf dem Gütermarkt
zu garantieren. Darüber hinaus stelle ich einige Herleitungen klar, so dass diese theoretisch
konsistent sind. Die Anpassung der Herleitungen beeinflusst die Lösungsmethodik, die zu
praktischen Probleme führen. Auf Grundlage der theoretischen Erkenntnisse dieses ersten
Kapitels entwickele ich im zweiten Kapitel eine Methodik, die theoretisch konsistent und
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praktikabel ist.

In Kapital 2 entwickele ich einen Lösungsalgorithmus für stochastische allgemeine Gle-
ichgewichtsmodelle mit heterogenen Informationen (HI-DSGE Modelle) in allgemeiner
Form. Der Algorithmus kann voraus bestimmte und kontemporäre endogene sowie exogene
Zustandsvariablen gemeinsam verarbeiten. Zusätzlich leite ich Bedingungen für die Signale
her, die die Agenten beobachten, die sicherstellen, dass alle Märkte geräumt werden. Weiter-
hin zeige ich Bedingungen auf, unter denen Modelle mit heterogenen Informationen eine
unterschiedliche Dynamik aufweisen als Modelle mit partiellen Informationen. Ich veran-
schauliche die Möglichkeitenn des Algorithmus anhand eines neukeynesianischen Modells
mit heterogenen Informationen und Kapital, das bisher in der Literatur nicht betrachtet wurde.
Ich analysiere die Bedeutung der heterogenen Informationen für die Dynamik des Modells
im Vergleich zu dem gleichen Modell mit vollständigen Informationen und ich diskutiere drei
Mutmaßungen die Lorenzoni (2010) in der Schlussfolgerung seines Papiers äußert. Mit dem
Papier werde ich ein Matlab-Toolkit inklusive umfassender Dokumentation veröffentlichen
mithilfe dessen jeder Wirtschaftswissenschaftler diese Klasse von Modellen studieren kann
ohne ein tiefgreifendes Wissen der Lösungsmethodik entwickeln zu müssen.

In Kapitel 3 untersuche ich die Implikationen eines neukeynesianischen Modells mit
heterogenen Informationen für die Preisbildung bei Vermögenswerten. Einerseits beziehe
ich mich auf die Puzzles über Aktienprämien und den risikolosen Zinssatz. Andererseits
untersuche ich die Implikationen des Modells für die Bedeutung von Angebots- und Nach-
frageschocks für Aktienprämien. In der Literatur mit vollständigen Informationen wurde
festgestellt, dass nominale Rigiditäten Aktienprämien erhöhen, wenn das Modell von Nach-
frageschocks getrieben ist und diese verringern, wenn die treibende Kraft Angebotsschocks
sind. Diese Beobachtung ist inbesondere interessant, da Modelle mit heterogenen Informa-
tionen eine allgemeinere Theorie von Nachfrageschocks bieten jene als unter vollständigen
Informationen.

Im Ergebnis finde ich, dass heterogene Informationen das Aktienprämiums-Puzzle lin-
dern, wenn nicht sogar lösen können. In Hinblick auf die zweite Frage finde ich gegensät-
zliche Ergebnisse bezüglich der Auswirkungen von Angebots- und Nachfrageschocks auf
Aktienprämien im Vergleich zu denen aus der Literatur mit vollständigen Informationen.
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Chapter 1

Incomplete Information in the Real
Business Cycle Model

1.1 Introduction

In this paper, I analyze the effects of incomplete information in the Real Business Cycle
(RBC) model, where I distinguish between partial and heterogeneous information. I refer
to partial information when agents receive public signals about the state of the economy,
and to heterogeneous information when agents receive private and public information about
the economy. This implies that the model with partial information can be written as a
representative agent model, while models with heterogeneous information generally cannot,
as individual agents behave differently.

There is a large strand of literature on partial and heterogeneous information New Keyne-
sian models. A selection of partial information New Keynesian models include Svensson
and Woodford (2003), Svensson and Woodford (2004), Pearlman et al. (1986) and Pearlman
(1992), on the one hand. On the other hand, Woodford (2003), Lorenzoni (2009) cover
New Keynesian models with heterogeneous information. However, all these papers do not
discuss capital as part of the model. There are only very few papers that cover models
with capital. Baxter et al. (2011) refer to a partial information RBC model with capital
and Blanchard et al. (2013) estimate a medium-scaled partial information DSGE model to
identify noise and structural shocks from the data. Graham and Wright (2010) set up an RBC
model with heterogeneous information. More recently, Hassan and Mertens (2014) suggest a
methodology to incorporate heterogeneous information settings in DSGE models, but they do
not allow for dynamic learning. Angeletos and La’O (2009) develop an RBC model without
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capital. Moreover, Rondina and Walker (2017) design a model with confounding dynamics
in which the agents use a Wiener-Kolmogorov prediction formula to form their expectations.

In this paper, I specifically revisit the papers by Baxter et al. (2011) and Graham and
Wright (2010). They are both of particular interest as they provide a compact and compre-
hensive approach to dealing with incomplete information in the RBC model. I clarify the
conclusions made in their papers and show that they are imprecise. I alter them such that
they are theoretically sound. However, I refrain from developing an alternative framework
which overcomes the practical issues that appear. Based on the theoretical insights in the
paper at hand, I extend the framework and provide practical solutions in my companion paper
Schaefer (2019b).

Baxter et al. (2011) present a parsimonious solution algorithm which can be applied
to solve partial information models that exhibit dynamic and measurement endogeneity.
Dynamic and measurement endogeneity are found in DSGE models and refer to a model
in which state variables, and the signals about them, depend on forward looking variables,
respectively. Further, the authors discuss general stability criteria of the algorithm. Then,
they use the algorithm to solve and discuss the RBC model with partial information.

Graham and Wright (2010) extend the approach of Baxter et al. (2011) to allow for
heterogeneous information. They find that if agents observe prices only, namely individual
wages and the return to capital, the model accommodates a strong negative response in
expected capital to a positive productivity shock. This is surprising in two ways. First, it is
surprising that the prices in the economy do not reveal the state of the economy.1 Second,
they point out that, as true capital is not observable, the expectation of capital is the reference
to compare the data to. Therefore, it is surprising that the expectation of capital responds
negatively to a positive productivity shock. This means that there is a counter-factual response
between the model and the data. The reason for this negative response is that the agents
cannot disentangle the underlying productivity shock from what Graham and Wright (2010)
call a pseudo-shock. The pseudo-shock emerges from the situation that the agents believe
that they previously overestimated the aggregate capital stock, so they expect capital to be
low today and hence invest more compared to the full information case.

In revisiting their results and the conclusions made, I find three important differences.
First, I find that it is important to distinguish between exogenous and predetermined en-
dogenous state variables as they enter the signal extraction problem in different ways. With

1Radner (1979) in Graham and Wright (2010).
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partial information predetermined state variables are known by the agents and with hetero-
geneous information two stable equilibria appear. Second, I show that the signals need to
reveal idiosyncratic productivity, individual wages and the return to capital to ensure market
clearing on the goods market. This fact implies a different guess for the individual forward
looking variables. Third, I formulate the higher order expectations in such a way that they
are consistent with the definition of private information.

These differences affect the results of the papers significantly. I show in this paper that the
filtering problem of the RBC model with partial information presented in Baxter et al. (2011),
when correctly specified, simplifies to a filtering problem of the productivity processes only.
The reason is that individual capital is an individual predetermined state variable which is part
of the agent’s information set. With partial information all agents act alike and thus all agents
choose the same capital. This implies that they do not only know their own individual capital
but they also know aggregate capital. Consequently, they do not need to form expectation
about capital and hence it drops out of the filtering problem completely. In addition, it is
important to point out that agents face only a filtering problem when composite productivity
includes at least two aggregate components of different persistence. Otherwise the model
simplifies to the full information case.

Individual capital drops from the filtering problem of the RBC model with heteroge-
neous information presented by Graham and Wright (2010) for the same reason, as it is an
individual predetermined state variable. However, agents have different productivity and
receive different signals about the economy and hence the capital choices of the agents are
different from one another. Nevertheless, there is a case, when all agents choose only the
return to capital to infer the aggregate capital stock and the individual wages to infer the
exogenous state variables, the solution to the heterogeneous information model simplifies to a
fundamental solution, i.e. the one of partial information.2 Instead, if the agents use the return
to capital and the individual wages jointly to estimate aggregate capital and the exogenous
state variables, then the heterogeneous information model accommodates a non-fundamental
solution. The non-fundamental solution exhibits the same pseudo-shocks as they are reported
in the literature, despite the separate treatment of individual capital as a predetermined state
variable. Therefore, the counter-factual response does not appear for the reason mentioned

2Graham and Wright (2010) consider this equilibrium but deem it unstable based on their treatment of
individual capital.



4 Incomplete Information in the Real Business Cycle Model

by Graham and Wright (2010).3

The remainder of the paper is organized as follows. In Section 1.2, I present a real
business cycle model with incomplete markets which is suitable to analyse the effects of
partial and heterogeneous information. The full information solution is briefly presented
in Section 1.3. The partial information model is analysed in Section 1.4. In Section 1.5, I
discuss the effects of heterogeneous information. Section 1.6 concludes.

1.2 The model

The model is an RBC model with incomplete markets following Graham and Wright (2010),
including a household and a firm sector. However, I assume that the firm’s production func-
tion includes composite productivity with two aggregate components of different persistence,
instead of one, and one idiosyncratic component. The economy is assumed to consist of
an infinite number of geographically separated regions, indicated by j, on which there is
each one household and one firm. In the remainder of the paper, I will refer to the regions
as islands, as it is common in the literature. Firms hire labour only from the households
on their island while capital is traded across the whole economy. Moreover, the agents on
island j share the same information set in period t, Ω jt . The agents know the structure and
parameters of the economy as well as the distribution of the innovations of the stochastic
processes, but they do not directly observe the realization of the state variables. Instead they
receive signals about them, which are a subset of the model’s variables, ϒ jt and ϒt . They can
be individual variables (private signals), ϒ jt ⊆ ϒ jt , and aggregate variables (public signals),
ϒt ⊆ ϒt . Further, it is important to understand that the choice variables of the agents are
part of their information set, but do not add additional information to the filtering problem,
because the choice is taken conditional on the filtering problem about the state variables.
The exception from this fact are individual predetermined state variables.4 They are also
chosen conditional on the current period expectation of the state of the world, but today’s
choice of tomorrow’s variable will be known at the beginning of the next period. This is
an important aspect of the information set, therefore I treat individual predetermined state

3Collary 5 in Baxter et al. (2011) states that a model with dynamic endogeneity might exhibit non-invertible
information sets and explosive eigenvalues. This does not hold true for the partial information version of
the model as capital is not part of the filtering problem and neither for heterogeneous information version in
Graham and Wright (2010), who refer to Baxter et al. (2011), as individual capital is not part of the filtering
problem.

4For details, see Appendix A.2.3.
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variables separately, Xc
j,t+1. Summarizing, the information set includes the whole history of

signals and individual predetermined state variables Ω jt = {ϒ jτ ,ϒτ ,X
c
j,τ+1|τ = 0,1,2, ..., t}.

For simplicity, I define E[Xt |Ω jt ] = E jt [Xt ] = Xt| jt .

In addition, I define a variable to be revealed by a signal in t to the agents on island j if
the variable becomes a member of the information set, Ω jt , after observing the signal. The
signal always reveals itself but can also reveal other variables if they are linear functions of
the signals.

1.2.1 The household’s problem

The household on island j has three choices to maximize its expected discounted utility
subject to its budget constraint and the individual capital law of motion: consumption, C jt ,
labour supply in terms of hours worked, H jt , and tomorrow’s capital stock, K j,t+1. The
subjective discount factor is denoted as β . The utility function is logarithmic in consumption
and power in hours worked, where θ is a scaling factor between the utility of consumption
and leisure. The household has one unit of time endowment per period which it can spend
either on leisure or labour, L jt = 1−H jt . γ determines the Frisch elasticity of labour supply.
The maximisation problem reads:

max
{C jt ,H jt ,K j,t+1}

E jt

[
∞

∑
t=0

β
t
(

lnC jt +θ
(1−H jt)

1+γ

1+ γ

)]
(1.1)

s.t. C jt + I jt = Rk
t K jt +WjtH jt (1.2)

and K j,t+1 =
(
1−δ

)
K jt + I jt , where k j0 = k0 is known. (1.3)

The budget constraint requires that the households capital income and its labour income
is equal to its consumption and investment, I jt . Capital income is defined as the return to
capital, Rk

t , times last period’s choice of capital and wages, Wjt , times hours worked. Further,
tomorrow’s capital stock is equal to today’s non-depreciated capital plus investment. The
depreciation rate is denoted as δ .
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The maximization problem yields a standard Euler equation for consumption and an
equation for the optimal labour choice:

1
C jt

= βE jt

[
Rt+1

C j,t+1

]
, (1.4)

E jt
[
Wjt
]

C jt
= θ

(
1−H jt

)γ
. (1.5)

Define Rt =
(
1−δ

)
+Rk

t as the net return to capital. Note that the choice variables are part
of the information set and hence can be pulled outside of the expectation operator. As I have
not yet discussed the signals that the agents receive, I assume wages and the return to capital
not to be part of the information set at this point.

1.2.2 The firm’s problem

The firm on island j chooses labour demand, N jt , and capital demand, J jt , that maximize
their profits, π jt , subject to a Cobb-Douglas type of production technology, where α is the
output elasticity of capital. Individual output is denoted by Y jt . The firms maximisation
problem reads:

max
{N jtJ jt}

E jt
[
π jt
]
= E jt

[
Yjt −WjtN jt −Rk

t J jt
]

(1.6)

s.t. Yjt =
(
J jt
)α(ez jt N jt

)1−α
. (1.7)

In contrast to the model in Graham and Wright (2010), I assume composite productivity
to consist of two aggregate components, while they assume one, and one idiosyncratic
component, z jt = zt + ε jt , where aggregate productivity itself has a persistent and an tran-
sitory component zt = at + εt . The persistent component follows an AR(1) process with
auto-correlation parameter ρ and innovation νt .5 The three types of innovations are i.i.d.
normally distributed, N(0,σ2

ε j), N(0,σ2
ε ) and N(0,σ2

ν ), respectively. Moreover, it is assumed
that integrating over the idiosyncratic innovations of all islands yields zero,

∫
ε jt d j = 0.

5The results are all unaffected by the assumption that εt is transitory. The results hold as long as the
persistence of at and εt are different. If they were the same, they would enter the choice of consumption with
equal weights and make it irrelevant to the agents to distinguish between them. Additionally, we choose ε jt to
be transitory. With ε jt being persistent one needs to add an exogenous noisy private signal about ε jt for the
model to converge to a consistent solution.
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The first order conditions of the firm’s problem show that the return to capital is equal to
the marginal product of capital and the wage rate is equal to the marginal product of labour:

E jt
[
Rk

t
]
= α

E jt
[
Y jt
]

J jt
and (1.8)

E jt
[
Wjt
]
=
(
1−α

)E jt
[
Yjt
]

N jt
. (1.9)

Again, note that the return to capital, individual wages and individual production are not
part of the information set of the agents, as I have not defined it yet.

1.2.3 Aggregate variables and market clearing

The equilibrium dynamics of the individual variables,

ϒ jt =
{

K jt ,z jt ,Yjt ,C jt , I jt ,H jt ,J jt ,N jt ,Wjt
}
,

are described by the equations (1.2), (1.3), (1.4), (1.5), (1.7), (1.8), (1.9), as well as the
definition of idiosyncratic composite productivity, z jt , and the market clearing condition for
labour. Aggregate variables are defined by the integral over the same individual variables,
i.e. for any variable in the set ϒ jt , ϒt =

∫
ϒ jt d j. The equilibrium dynamics of the aggregate

variables,

ϒt =
{

Kt ,zt ,Yt ,Ct , It ,Ht ,Jt ,Nt ,Wt ,Rk
t ,Rt

}
,

are defined by the aggregated individual equilibrium dynamics, as well as the definition of
the net return to capital and the market clearing condition for capital.

There are three markets to clear, namely the labour, the capital and the goods market.
I follow Graham and Wright (2010) on the labour and capital market clearing conditions.
Labour market clearing requires H jt = N jt for all islands j, as it is assumed that firms demand
labour only from the household of the same island. The capital market is cleared through
the return to capital, Rk

t , which holds for all islands j. In consequence and in line with the
household’s Euler equation, the non-arbitrage assumption requires households to invest their
capital in more productive firms such that the return to capital is the same across the economy.
Hence, generally the capital demand and the capital stock on an island are not the same,
K jt ̸= J jt , but on the aggregate level supply equals demand, Kt = Jt . However, Graham and
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Wright do not discuss market clearing on the goods market. I show that market clearing
requires individual wages, idiosyncratic composite productivity and the return to capital to
be part of the information set.

Proposition 1. Goods market clearing requires that the return to capital, individual wages

and idiosyncratic productivity are part of the information set, Ω jt .

Proof. See Appendix A.2.1.

To understand this result, I first want to clarify the role of prices in a market. Prices are the
result of the agent’s interaction. Thus, all agents that participate in the same market know the
prices on the market, i.e. the prices are part of the information set of all agents participating
in the market. In addition, agents need to take their choice based on idiosyncratic composite
productivity and not their expectation of its components for their decision to be consistent
with its realisation. However, this does not mean that the return to capital, individual wages
and idiosyncratic composite productivity have to be signals.

Additionally, with heterogeneous information individual wages reveal idiosyncratic
composite productivity and thus, the price for capital and the price for labour are sufficient
for market clearing. With partial information any of the two variables suffice.

Proposition 2. The prices on the capital and labour market, being part of the information

set, Ω jt , are sufficient to guarantee market clearing on the goods market.

Proof. See Appendix A.2.2.

1.2.4 State space representation

For the remaining part of the paper, I log-linearise the equilibrium dynamics and write them
in terms of log-deviations from steady state.6

The linearised equations can be cast in the following state space system, which is inspired
by Graham and Wright (2010) and Baxter et al. (2011). The difference with regard to the state
space representation of the equilibrium dynamics is that I explicitly account for endogenous
predetermined state variables. This distinction between endogenous predetermined state
variables and exogenous state variables is crucial for the correct solution of the model.

6To keep the notation as simple and clear as possible we use lower case letters for log-deviations and do not
indicate them with a hat. In the appendix instead I am precise on the notation and indicate log-deviations from
steady state with a hat ϒ̂ jt and logs of a variable with lower case letters.
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First, I define the vector Xc
jt =

[
k jt
]′ of individual predetermined state variables. Further,

I define exogenous idiosyncratic state variables as X jt =
[
ε jt
]′. Analogue, I summarize

aggregate predetermined and exogenous state variables in Xc
t =

[
kt
]′ and Xt =

[
at εt

]′.
Second, I define parameter matrices as expressions without a time subscript: M, N and

G.7 The matrices are constraint by zeros. The reason is that individual predetermined state

variables can be written as functions of individual predetermined state variables, private and

public signals as well as individual forward looking variables. Moreover, the exogenous state

variables depend only on themselves. Private signals generally do not aggregate to public

signals. They typically integrate to aggregate endogenous predetermined and exogenous state

variables. In due consideration of these insights, I can cast all state variables in the following

form:



Xc
j,t+1

X j,t+1

Xc
t+1

Xt+1


=



Mc j
c j 0 0 0

0 Mx j
x j 0 0

0 0 Mc
c Mx

c

0 0 0 Mx
x





Xc
jt

X jt

Xc
t

Xt


+



Mϒ j
c j Mϒ

c j

0 0

0 Mϒ
c

0 0



ϒ jt

ϒt

+



M f j
c j 0

0 0

0 M f
c

0 0



Fjt

Ft

+



0

Nx j

0

Nx



s j,t+1

st+1

 , (1.10)

where s jt and st are i.i.d. Gaussian error terms,

[
s jt

st

]
∼ N

(
0, I
)
.

Contemporaneous variables, such as e.g. investment, labour, wages and the return to

capital can be written as a function of the state variables and forward looking variables:

ϒ jt

ϒt

=

[
Gc j Gc

]Xc
jt

Xc
t

+[Gx j Gx

]X jt

Xt

+[G f j G f

]Fjt

Ft

 . (1.11)

The state space representation is completed with the Euler equations of individual forward

looking variables. The forward looking variables in the model at hand is consumption

7See Appendix A.1.3 for the linearised equilibrium dynamics and Appendix A.1.4 for details on the
parameter matrices.
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Fjt =
[
c jt
]′. All variants of R define parameter matrices:8

R0
c

 Xc
jt

E jt Xc
t

+R0
ϒ

ϒ jt

ϒt

+R0
f

 Fjt

E jt Ft

= E jt

R1
c

Xc
j,t+1

Xc
t+1

+R1
ϒ

ϒ j,t+1

ϒt+1

+R1
f

Fj,t+1

Ft+1


 . (1.12)

It is worth noting that individual forward looking variables are chosen conditional on indi-
vidual predetermined state variables, signals and the individual expectation of next periods
variables, too.

For later reference, I use the definition of the contemporaneous variables (1.11) and the

state law of motion (1.10) to rewrite (1.12) as:9

Q0
c

 Xc
jt

E jt Xc
t

+Q0
x

 X jt

E jt Xt

+Q0
ϒ

ϒ jt

ϒt

+Q0
f

 Fjt

E jt Ft

= Q1
f E jt

Fj,t+1

Ft+1

 . (1.13)

1.3 Full information

Let me start with the full information setting as the benchmark case. I will solve it analogue
to the incomplete information cases.10 The solution algorithm for incomplete information
models is a numerical procedure to solve the model by the methods of undetermined coeffi-
cients which includes three steps. First, I guess the policy function for individual forward
looking variables. Second, I use the guess to express contemporaneous variables in terms of
the state variables and I use the guess to complete the state law of motion. Third, I confirm
my guess for the policy function of forward looking variables, using the state law of motion
and the Euler equation. With incomplete information the guess needs to additionally satisfy
the filtering problem of the agents. Under full information the filtering problem is obsolete.

8For details see Appendix A.1.4.
9Details are to be found in Appendix A.1.4.

10Obviously, the full information version of the model can be solved easily using standard techniques
presented in Blanchard and Kahn (1980), Sims (2002) and Klein (2000) for which there exist solvers being
implemented in various computer programs.
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Under full information all agents behave alike. Therefore, I drop the subscript j. I define
Xc

t =
[
kt
]′, Xt =

[
at εt

]′ and Ft =
[
ct
]′. The information set under full information is Ωt =

{Xc
τ+1,Xτ |τ = 0,1,2, ..., t} and the expectation operator becomes E[Xt |Ωt ] = Et [Xt ] = Xt .

I guess that the forward looking variables are a function of predetermined endogenous
and exogenous state variables, i.e:

Ft = η
∗
[
Xc′

t X ′
t

]′
, where η

∗ =
[
η∗

c η∗
x

]
. (1.14)

Then, I can write the state space system as follows. Contemporaneous variables, (1.11),
become a function of the state variables only:

ϒt = G∗(
η
∗)[Xc′

t X ′
t

]′
,

where G∗(η∗) is a matrix which is defined by the matrices of (1.11) and the parameters of
the guess for the policy function of forward looking variables, η∗, defined in (1.14).

Further, I find the state law of motion to read:[
Xc

t+1

Xt+1

]
= M∗(

η
∗)[Xc

t

Xt

]
+

[
N∗

c

N∗
x

]
st+1,

where M∗(η∗) is a matrix that is a function of G∗(η∗) and the matrices of (1.10).

Finally, I substitute the guess for the policy function of the forward looking variables
and the implied state space representation of the model in the Euler equation of the forward
looking variables, (1.13). Then, I equate the parameters of identical variables, to find:

η
∗ =C0 +C1(

η
∗)M∗(η∗). (1.15)

In order to find the solution, I guess initial values for η∗ and solve for them iteratively,
i.e. I determine the fixed point of equation (1.15).11

11The matrices of the full information solution are described in detail in Appendix A.3.1.
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1.4 Partial Information

Similar to the solution of the full information version of the model, I first need to formulate a
guess about the forward looking variables. Then, I express the contemporaneous variables in
terms of the state variables and I use the guess to complete the state law of motion. I confirm
my guess using the Euler equation. As mentioned before, with partial information the fixed
point solution encompasses the policy function for forward looking variables and a filtering
problem.

With partial information agents receive noisy signals about the state of the economy.
However, all agents receive the same information. This implies that the agents behave all
alike, as under full information. Therefore, I drop the subscript j here, too, and define
Xc

t =
[
kt
]′, Xt =

[
at εt

]′ and Ft =
[
ct
]′. Partial and full information share the fact that

endogenous predetermined state variables are part of the agent’s information set as long as
Proposition 1 is not violated, but under partial information agents observe only a subset of
contemporaneous variables as signals, Ωt = {Xc

τ+1,ϒτ |τ = 0,1,2, ..., t}.

Proposition 3. Capital is known to the agent in a model with partial information if market

clearing on the goods market is assured.

Proof. See Appendix A.2.3.

Following up on Proposition 3, I guess that forward looking variables are a function
of predetermined state variables and exogenous state variables as well as the expectation
thereof:

Ft = η
p
[
Xc′

t X ′
t X ′

t|t

]′
, where η

p =
[
η

p
c η

p
x η

p
e

]
. (1.16)

The guess differs to the one in Baxter et al. (2011). Their guess, Ft = ηp

[
Xc

t|t Xt|t

]
, is the

certainty equivalent guess, while the one in this paper instead depends on the information
structure. The guess depends on the information structure as the parameters η p depend on
the Kalman gain, as I will show.

The guess for forward looking variables implies an extended state space system, which
also includes the expectation of exogenous state variables Xt|t . Consequently, contemporane-
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ous variables can be expressed as:

Yt = Gp(
η

p)[Xc′
t X ′

t X ′
t|t

]′
, where Gp(

η
p)= [Gc

(
η

p
c
)

Gx
(
η

p
x
)

Ge
(
η

p
e
)]
(1.17)

and the state law of motion can be written as: Xc
t+1

Xt+1

Xt+1|t+1

= Mp(K ,η p)
Xc

t

Xt

Xt|t

+N p(K ,η p)st+1, (1.18)

where

Mp(K ,η p)=
Mc

c
(
η

p
c
)

Mx
c
(
η

p
x
)

Me
c
(
η

p
e
)

0 Mx
x 0

0 Mx
e
(
K ,η p

x
)

Me
e
(
K ,η p

x
)
 and N p(K ,η p)=

 Nc

Nx

Ne
(
K ,η p

x
)
 .

Mx
e
(
K ,η p

x
)
, Me

e
(
K ,η p

x
)

and Ne
(
K ,η p

x
)

depend on the solution of the fixed point problem
between policy functions mapping the forward looking variables to the state variables and
the Kalman gain, K , derived as part of the filtering problem that is discussed in Section 1.4.1.

I confirm the guess of the forward looking variables analogue to the full information case:

η
p =C0 +C1(

η
p)(TkMp(K ,η p)+ T̸=kMp(K ,η p)Te

)
, (1.19)

where Tk selects capital which follows the state law of motion outside of the expectation
operator and T̸=k the the exogenous state variables that stay within the expectation operator.
Moreover, Te adds up the exogenous state variables and the expectations thereof.12

There is an important reason why the policy function of forward looking variables, (1.16),
is not only a function of expectational variables as claimed by Baxter et al. (2011). I showed
that market clearing requires that the choice of a variable is taken conditional on the observed
signals and not the expectation of its components. In addition, I showed that capital is part
of the information set. Therefore, I can pull it out of the expectation operator in t +1 and,
hence, the period t variables in the state law of motion remain outside of the expectation
operator, too. The expectational parts of the policy function for forward looking variables

12The concrete elements of the matrices Tk, T̸=k and Te are presented in Appendix A.3.2.
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stem from next periods aggregate exogenous state variables. The aggregate state variables
follow their state law of motion and the current period realisations are not known. In this
case, the agents need to form expectations about the distinct state variables today in order to
anticipate its evolution and thus, to optimally choose the forward looking variable.

In effect, the matrix mapping the forward looking variables to the state variables has a
different functional form than under full information. The matrix for predetermined state
variables remains the same η

p
c = η∗

c , but the forward looking variables are mapped differently
to exogenous state variables.13

Concluding, the solution of the partial information model is the fixed point of η p derived
from the Euler equation and K derived from the filtering problem.

1.4.1 Signal extraction problem

In this subsection, I discuss the filtering problem of the agents. I assume, as it is standard in
the literature, that the agents form their expectation about the state variables by means of the
Kalman filter and all agents know that everybody forms their expectation this way. Further,
I assume that the agents have already observed a sufficiently long history of signals such
that the Kalman gain has converged to the steady state Kalman gain. The Kalman updating
equation is defined as follows:

Xt+1|t+1 −Xt+1|t = K
(
ϒt+1 −ϒt+t|t

)
. (1.20)

The forecast error of the state variables is equal to the Kalman gain times the forecast
error of the signals, while the forecast error of the predetermined state variable is zero. This
underscores the importance to distinguish between predetermined state and exogenous state
variables. Furthermore, I show that the filtering problem is also indirectly independent of
predetermined state variables. The forecast error of the signals ϒt+1 −ϒt+1|t is defined as:

ϒt+1 −ϒt+1|t = G
(
η

p)

 Xc

t+1

Xt+1

Xt+1|t+1

−
Xc

t+1|t
Xt+1|t

Xt+1|t


 , (1.21)

13The matrices of the partial information solution are described in detail in Appendix A.3.2. As it is pointed
out by Nimark (2011) in his model with heterogeneous information the parameters mapping the forward looking
variables into the hierarchy of expectations add up to the full information solution. The same reason holds true
also in this case at hand, i.e. η∗

x = η
p
x +η

p
e .
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where predetermined state variables cancel out as well. Plugging (1.20) into (1.21) I find:

ϒt+1 −ϒt+1|t = J−1Gx
(
η

p
x
)(

Xt+1 −Xt+1|t
)
, (1.22)

where J =
(
I −Ge

(
η

p
e
)
K
)
. Then, I can plug (1.22) back into the Kalman updating equation

(1.20) to find:

Xt+1|t+1 =
(
I −K J−1Gx

(
η

p
x
))

Xt+1|t +K J−1Gx
(
η

p
x
)
Xt+1.

If I use the state law of motion for Xt+1 from (1.18), I can derive the state law of motion
of the expectation of the state variables Xt+1|t+1:

Xt+1|t+1 =
[
0 K J−1Gx

(
η

p
x
)
Mx

x (I −KJ−1Gx
(
η

p
x
)
)Mx

x

][
Xc′

t X ′
t X ′

t|t

]′
+K J−1Gx

(
η

p
x
)
Nxst+1, (1.23)

which verifies my guess and identifies Mx
e
(
K ,η p), Me

e
(
K ,η p) and Ne

(
K ,η p) with one

difference: The matrices depend on η p, via J, and not on η
p
x only. I show shortly that one

can eliminate J from the matrices.14

It remains to solve for the Kalman gain K as well as the corresponding mean square
error (MSE) and the variance-covariance matrix of the one period ahead forecast error.15

First, I define the variance-covariance matrix of the one period ahead forecast error by
using the state law of motion of Xt+1 from (1.18):

P = Mx
x P̂Mx′

x +NxN′
x. (1.24)

Second, the MSE, P̂, is defined as:

P̂ =
(
I −K J−1Gx

(
η

p
x
))

P.

14The details on the matrices can be found in Appendix A.3.2.
15Here I follow common wisdom, for example see Hamilton (1994).
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Finally, the Kalman gain can be computed using equations (1.22) and (1.24):16

K =
{

PGx
(
η

p
x
)′
(J−1)′

}{
J−1

(
Gx
(
η

p
x
)
PGx

(
η

p
x
)′)

(J−1)′
}−1

=
{

PGx
(
η

p
x
)′}{Gx

(
η

p
x
)
PGx

(
η

p
x
)′}−1

J.

Baxter et al. (2011) show that one can formulate a parallel filtering problem, in which
the Kalman gain, the MSE and the variance-covariance matrix of the one period forecast
error can be written independently of the effects of predetermined state variables and the
expectations of exogenous state variables. To find their formulation I just multiply out J in
the Kalman gain equation. Then, I find the Kalman gain and the State MSE of the parallel
problem as:

˜K =
{

PGx
(
η

p
x
)′}{Gx

(
η

p
x
)
PGx

(
η

p
x
)′}−1

= K J−1 and P̂ =
(
I − ˜K Gx

(
η

p
x
))

P.

(1.25)

This also affects the state law of motion for the matrices that depend on the Kalman gain.
Mx

e(K ,η p
x
)
, Me

e(K ,η p
x
)

and Ne(K ,η p
x
)

eventually confirm my guess:

Mx
e = ˜K Gx

(
η

p
x
)
Mx

x , Me
e = (I − ˜K Gx

(
η

p
x
)
)Mx

x , and Ne = ˜K Gx
(
η

p
x
)
Nx.

1.4.2 Analytical and numerical results

While so far I have discussed the solution of the partial information version of the model to
the general problem, I discuss in this section the solution of the RBC model as an explicit
example. Given that the filtering problem is relatively simple, I can derive the results of the
filtering problem analytically. However, the fixed point problem, including the solution of the
policy function for forward looking variables, cannot be determined all by hand. Therefore, I
derive the filtering problem analytically, for illustrative purposes, and describe the remaining
part of the fixed point problem to be solved numerically.

16Recall that for symmetric matrices, A = (J−1)Gx
(
η

p
x
)
PGx

(
η

p
x
)′
(J−1)′, it holds that A = A′. Further, for a

non-singular matrix J−1 it holds that (J′)−1 = (J−1)′.
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The state variables of the RBC model can be cast in the form, (1.10). The exogenous
state variables are Xt =

[
at εt

]′, which follow the state law of motion:[
at+1

εt+1

]
= Mx

x

[
at

εt

]
+Nxst+1, where Mx

x =

[
ρ 0
0 0

]
and Nx =

[
σν 0
0 σε

]
.

The predetermined state variable is capital, Xc
t = kt , which follows the state law of motion:

kt+1 = Mc
ckt +Mϒ

c

[
zt

rk
t

]
+M f

c ct ,

where

Mc
c =

(
1−δ +

(
1−α

)Y
K

)
,

Mϒ
c =

[(
1−α

)(
1+ξ

)Y
K −αξ

Y
K

]
and

M f
c =−

(
C
K
+
(
1−α

)
ξ

Y
K

)
,

where ξ = 1−H
γH and where the forward looking variable is consumption: Ft = ct .

I established that any of the two variables, wages and the return to capital, satisfies market
clearing on the goods market. For illustration, I choose the return to capital rk

t as the signal,
which has the form (1.11):

rk
t = Gckt +Gx

[
at

εt

]
+G f ct .

Making use of the guess for the policy function of forward looking variables, (1.16), I
can write the return to capital as:

rk
t =

(
Gc +G f η

p
c
)

kt +
(
Gx +G f η

p
x
)[at

εt

]
+G f η

p
e

[
at|t

εt|t

]
= Gc

(
η

p
c
)
Xc

t +Gx
(
η

p
x
)
Xt +Ge

(
η

p
e
)
Xt|t .
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Further, I define Gx
(
η

p
x
)
=
[
gp

a gp
ε

]
. From the discussion in Section 1.4.1, I know that it is

sufficient to solve the Kalman gain in the form of (1.25):

˜K =
{

PGx
(
η

p
x
)′}{Gx

(
η

p
x
)
PGx

(
η

p
x
)′}−1

=

 gp
a P11

(gp
a)2P11+(gp

ε )2P22
gp

ε P22
(gp

a)2P11+(gp
ε )2P22

 ,
where I already anticipated (1.26) which shows that the variance-covariance matrix of the
forecast error is a diagonal matrix:[

P11 P12

P21 P22

]
=

[
ρ 0
0 0

][
P̂11 P̂12

P̂21 P̂22

][
ρ 0
0 0

]′
+

[
σν 0
0 σε

][
σν 0
0 σε

]′

=

[
ρ2P̂11 +σ2

ν 0
0 σ2

ε

]
. (1.26)

Finally, I need to determine the MSE, (1.25), P̂ =
(
I − ˜K Gx

(
η

p
x
))

P:

[
P̂11 P̂12

P̂21 P̂22

]
=

[1 0
0 1

]
−

 gp
a(ρ

2P̂11+σ2
ν )

(gp
a)2(ρ2P̂11+σ2

ν )+(gp
ε )2σ2

ε

gp
ε σ2

ε

(gp
a)2(ρ2P̂11+σ2

ν )+(gp
ε )2σ2

ε

[gp
a gp

ε

][ρ2P̂11 +σ2
ν 0

0 σ2
ε

]
.

As only P̂11 is unknown, I determine the MSE simply by solving the quadratic equation
associated with the first element in P̂.

0 = ρ
2(gp

a)
2 (P̂11

)2
+ P̂11

(
(gp

ε )
2
σ

2
ν +(1−ρ

2)(gp
ε )

2
σ

2
ε

)
− (gp

ε )
2
σ

2
ν σ

2
ε

With the solution to the Kalman gain, I find the matrices Mx
e
(
K ,η p

x
)
, Me

e
(
K ,η p

x
)

and
Ne
(
K ,η p

x
)

in (1.18) to be:

Mx
e
(
K ,η p

x
)
= ˜K Gx

(
η

p
x
)
Mx

x =

 ρ(gp
a)

2(ρ2P̂11+σ2
ν )

(gp
a)2(ρ2P̂11+σ2

ν )+(gp
ε )2σ2

ε

0
ρ(gp

ε )
2(ρ2P̂11+σ2

ν )

(gp
a)2(ρ2P̂11+σ2

ν )+(gp
ε )2σ2

ε

0

 ,
Me

e
(
K ,η p

x
)
= (I − ˜K Gx

(
η

p
x
)
)Mx

x =

 ρ(gp
ε )

2(ρ2P̂11+σ2
ν )

(gp
a)2(ρ2P̂11+σ2

ν )+(gp
ε )2σ2

ε

0
−ρ(gp

ε )
2(ρ2P̂11+σ2

ν )

(gp
a)2(ρ2P̂11+σ2

ν )+(gp
ε )2σ2

ε

0

 and

Ne
(
K ,η p

x
)
= ˜K Gx

(
η

p
x
)
Nx =

 (gp
ε )

2(ρ2P̂11+σ2
ν )σ

2
ν

(gp
a)2(ρ2P̂11+σ2

ν )+(gp
ε )2σ2

ε

gp
a gp

ε (ρ
2P̂11+σ2

ν )σ
2
ε

(gp
a)2(ρ2P̂11+σ2

ν )+(gp
ε )2σ2

ε

gp
ε gp

a(ρ
2P̂11+σ2

ν )σ
2
ν

(gp
a)2(ρ2P̂11+σ2

ν )+(gp
ε )2σ2

ε

(gp
ε )

2(ρ2P̂11+σ2
ν )σ

2
ε

(gp
a)2(ρ2P̂11+σ2

ν )+(gp
ε )2σ2

ε

 .
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Table 1.1 Calibration - structural parameters

Parameters γ α δ β ρa σν σε σε j H̄

Values 5 1/3 0.025 0.99 0.90 0.01 0.03 0.10 0.2

So far I solved the filtering problem conditional on η
p
x , which is part of the terms[

gp
a gp

ε

]
= Gx

(
η

p
x
)
. The matrix η

p
x , mapping the forward looking variables on the exogenous

state variables, is not identified yet. However, it can be identified using the Euler equation,
(1.19). I cannot identify η

p
x analytically. Therefore, I compute the solution numerically. To

keep my results comparable to the literature, I borrow the parameter calibration from Graham
and Wright (2010).17 The benchmark calibration is presented in Table 1.1.

Graph (a) of Figure 1.1 shows the impulse response function of the state variables of
the partial equilibrium model to a one standard deviation shock to the persistent component
of productivity. The graph shows that the agents learn slowly about the components of
productivity. The second graph (b) shows the response of the exogenous state variables to an
one standard deviation innovation of the transitory component. Also here, the agents attribute
weight to both processes. Capital is known under partial information. Therefore only the
realization and not the expectation of capital is displayed.

Graph (c) shows the response of production, investment, the return to capital and wages to
an innovation to the persistent productivity process under partial information (solid lines) as
well as under full information solution (dashed lines). The impulse response of consumption
is shown in graph (e). The actual difference between the dynamics of the partial to the full
information solution is very small. The largest difference occurs with respect to consumption
and investment. The reason is that as agents believe that the innovation in productivity is
transitory. They invest relatively more and consume less relative to the full information model.
The opposite phenomenon occurs when there is an innovation to the transitory component of
productivity, shown in the graphs (d) and (f).

It is important to note that without the two aggregate components of composite produc-
tivity, the model does not induce learning and the impulse responses were equal to the full
information version of the model.

17In the model at hand I do not allow for a balanced growth path and I assume idiosyncratic productivity to
be transitory. These differences do not affect the quantitative results significantly, but they avoid unnecessary
complications.
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(d) Standard deviation shock to εt . Contempo-
raneous variables.
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Fig. 1.1 Impulse responses. Partial information model.

The graphs (a) and (b) show the impulse response functions of the state variables to innovations of the
aggregate components of productivity. The solid lines represents the impulse responses of the
realized state variables and the dashed lines the ones of the expectation of the state variables. The
graphs (c) and (d) show the impulse responses of selected contemporaneous to the same innovations.
The solid lines represent the responses under partial information and the dashed lines responses under
full information. The graphs in the third row (e) and (f) display the impulse response functions of
forward looking variables also under partial (solid line) and full information (dashed line).
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1.5 Heterogeneous Information

The procedure to solve for the model with heterogeneous information follows the one for
partial information with the only difference that the filtering problem becomes more complex.
With heterogeneous information agents do not behave alike. The relevant state variables and
the information set include the whole model presented in Section 1.2.

Before I proceed, I establish the fact that individual capital, as an individual predetermined
state variable, is part of the information set while aggregate capital is not necessarily part of
it.

Proposition 4. Individual capital is known to the agents in a model with heterogeneous

information.

Proof. See Appendix A.2.3.

The case is not so clear with aggregate capital as there is a fundamental and a non-
fundamental solution to the model with heterogeneous information. Capital is only known to
the agents in the fundamental solution.

Proposition 5. There is a fundamental solution to the heterogeneous information model in

which aggregate capital is known to the agents and a non-fundamental solution in which

aggregate capital is unknown to the agents.

Proof. See Appendix A.2.3.

The intuition for this result is the following. If there is a public signal about at least two
distinct aggregate state variables, there is an equilibrium in which the agents agree on using
the signal to identify one of the state variables and form expectation about the other, using
the remaining signals. Alternatively, they can use all signals to form expectation about the
variables jointly. In the case at hand, the return to capital is a public signal about aggregate
capital and aggregate productivity. The fundamental solution arises if the agents use the
return to capital to identify capital and use the individual wage to form their expectation
about aggregate productivity. The non-fundamental solution arises if the agents use the return
to capital and individual wages jointly to form expectations about both aggregate capital and
aggregate productivity.

Moreover, before I look at the details of the solution, I introduce the concept of higher
order expectations.
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1.5.1 Higher order expectations

With heterogeneous information the law of iterated expectations typically does not hold. This
gives rise to higher order expectations. For any vector of aggregate state variables Γt , I define
the first order expectation as the integral over the individual expectation of all agents in the
economy about that variable, as it is common in the literature. Formally this means:

Γ
(1)
t =

∫
E
[

Γt
∣∣Ω jt

]
d j. (1.27)

Any higher order expectation o is defined as:

Γ
(o)
t =

∫
E
[

Γ
(o−1)
t

∣∣Ω jt

]
d j. (1.28)

For compactness, I summarize the complete hierarchy of higher order expectations in the
vector Γ

(0:∞)
t ,

Γ
(0:∞)
t =

[
Γ

′
t Γ

(1)′
t Γ

(2)′
t . . . Γ

(∞)′

t

]′
. (1.29)

The source of the higher order expectation is the Euler equation for forward looking
variables (1.13). Individual forward looking variables might depend on future aggregate state
variables either directly or indirectly via aggregate forward looking variables or aggregate
contemporaneous variables. These variables might follow an aggregate state law of motion
which by itself depends on aggregate forward looking variables. If one is aggregating over
the individual forward looking variable in order to forward substitute the aggregate forward
looking variable one finds that individual forward looking variables depend on higher order
expectations.

As in Nimark (2011), I will approximate the infinite hierarchy of expectations by a finite
dimension. I define the highest order of expectation to be considered as o.

1.5.2 State space representation

Also with heterogeneous information, I need to guess the functional form of the individual
forward looking variables. But before I proceed, I define Γt = [Xc′

t X ′
t ]
′ and Γ jt =

[
Xc′

jt X ′
jt

]′
to keep the notation clean. I guess that individual forward looking variables depend on
individual state variables, on the hierarchy of expectations of aggregate state variables, the
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individual expectation thereof and the individual expectation of idiosyncratic exogenous state
variables:

Fjt = η f j

[
Γ
(0:o)′
t Γ

(0:o)′
t| jt Γ′

jt X ′
jt| jt

]′
, where η f j =

[
ηeΓ

f j η
e jΓ
f j η

Γ j
f j η

e jx j
f j

]
. (1.30)

Note that there is never a hierarchy of expectation of individual state variables, which
stands in contrast to the formulation of Graham and Wright (2010). The reason is that
individual variables are private information, hence the agent’s best expectation from island
j about idiosyncratic variables on island i is equal to the expectation about the aggregate
variable, i.e. E[Xit |Ω jt ] = E[Xt |Ω jt ] and the aggregate expectation is

∫
E[Xt |Ω jt ] d j = X (1)

t|t .
Therefore, my guess for forward looking variables is different from the one of Graham
and Wright (2010). They guess that Fjt = η f j

[
Γ
(0:o)′
t| jt Γ

(0:o)′
jt| jt

]′, which neglects the effects
of Proposition 4 that individual capital is part of the information set and they formulate a
hierarchy of expectations of individual state variables. There is another complication which
Graham and Wright (2010) do not consider. Individual and aggregate capital are among
others a function of signals which appear outside the expectation operator.

I find the functional form of the aggregate forward looking variables by integrating over
the individual ones of all islands:

Ft = η f

[
Γ
(0:o)′
t Γ

(0:o)′
t| jt Γ′

jt X ′
jt| jt

]′
, where η f = η f jTe. (1.31)

The matrix Te maps the individual state variables and the individual expectation of

the hierarchy of expectation to the aggregate hierarchy of expectation. The idiosyncratic

exogenous state variables and the expectation thereof integrate to zero by assumption. The

guess of the forward looking variables implies an extended state law of motion, which

includes the full hierarchy of expectation, the individual expectations thereof, individual state
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variables and the individual expectation of idiosyncratic exogenous state variables:



Γ
(0:o)
t+1

Γ
(0:o)
t+1| j,t+1

Γ j,t+1

X j,t+1| j,t+1


=



MeΓ
eΓ

0 0 0

MeΓ
e jΓ Me jΓ

e jΓ MΓ j
e jΓ Me jx j

e jΓ

MeΓ
Γ j Me jΓ

Γ j MΓ j
Γ j Me jx j

Γ j

MeΓ
e jx j Me jΓ

e jx j MΓ j
e jx j Me jx j

e jx j





Γ
(0:o)
t

Γ
(0:o)
t| jt

Γ jt

X jt| jt


+



NeΓ

Ne jΓ

NΓ j

Ne jx j



s j,t+1

st+1

 and (1.32)

ϒ jt

ϒt

=

[
GeΓ Ge jΓ GΓ j Ge jx j

][
Γ
(0:o)′
t Γ

(0:o)′
t| jt Γ′

jt X ′
jt| jt

]′
.

The state space system depends, as with partial information, on the solution of the forward
looking variables and on the Kalman gain, which is derived as part of the filtering problem
derived in Section 1.5.3.18

I confirm my guess of the individual forward looking variables analogue to the partial
information case:

η f j =C0 (
η f
)
+C1 (η)

(
Tk jM+ T̸=k jMTe j

)
, (1.33)

where Te j is a matrix which adds up the parameters of the non-expectational state variables
to the expectational ones. The solution of the heterogeneous information model depends on
the fixed point of the policy function for forward looking variables identified by the Euler
equation (1.33) and the Kalman gain derived as part of the filtering problem.

1.5.3 Signal extraction problem

In this subsection, I discuss the filtering problem of agents receiving heterogeneous informa-
tion. As in the case with partial information, I assume that the agents have already observed
a sufficiently long history of signals such that the Kalman gain has converged to the steady
state Kalman gain. The Kalman updating equation is defined as follows:[

Γ
(0:o)
t+1| j,t+1

X j,t+1| j,t+1

]
−

[
Γ
(0:o)
t+1| jt

X j,t+1| jt

]
=

[
Ke jΓ

Ke jx j

]([
ϒt+1

ϒ j,t+1

]
−

[
ϒt+1| jt

ϒ j,t+1| jt

])
. (1.34)

18The matrices of the heterogeneous information solution are described in detail in Appendix A.3.3.



1.5 Heterogeneous Information 25

In addition, I compute the forecast error of the signals as:[
ϒt+1

ϒ j,t+1

]
−

[
ϒt+1| jt

ϒ j,t+1| jt

]
= J−1G1

([
Γ
(0:o)
t+1

X j,t+1

]
−

[
Γ
(0:o)
t+1| jt

X j,t+1| jt

])
, (1.35)

where J =
(

I −
[
Ge jΓ Ge jx j

]
K
)

, G1 =
[
GeΓ Gx j

]
and K =

[
K ′

e jΓ K ′
e jx j

]′
.

Plug (1.35) back into the Kalman updating equation (1.34) to find:[
Γ
(0:o)
t+1| j,t+1

X j,t+1| j,t+1

]
=
(
I −K J−1G1

)[ Γ
(0:o)
t+1| jt

X j,t+1| jt

]
+K J−1G1

[
Γ
(0:o)
t+1

X j,t+1

]
. (1.36)

Now, I make use of the guess for the state law of motion, (1.32), from which I select
the transition and the impact matrix of the hierarchy of expectation and the idiosyncratic
exogenous state variables:

A =
[
AeΓ Ax j

]
=

[
MeΓ

eΓ
0

0 Mx j
x j

]
and B =

[
NeΓ

Nx j

]
.

Using the state law of motion of the hierarchy of expectations and of idiosyncratic

exogenous state variables, I find the state law of motion of the individual expectation of

the hierarchy of expectation and the individual expectation of idiosyncratic exogenous

productivity as defined in (1.32):

 Γ
(0:o)
t+1| j,t+1

X j,t+1| j,t+1

=


(
I −Ke jΓJ−1G1

)
AeΓ

(
I −Ke jΓJ−1G1

)
Ax j(

I −Ke jx jJ−1G1
)

AeΓ

(
I −Ke jx jJ−1G1

)
Ax j


Γ

(0:o)
t| jt

X jt| jt

 (1.37)

+

Ke jΓJ−1G1AeΓ Ke jΓJ−1G1Ax j

Ke jx jJ−1G1AeΓ Ke jx jJ−1G1Ax j


Γ

(0:o)
t

X jt

+
Ke jΓJ−1G1B

Ke jx jJ−1G1B


s jt

st

 ,

To conclude the guess for the state law of motion I only need to find the expression for
MeΓ

eΓ
and NeΓ, which are the transition matrix and the impact matrix of the hierarchy of

expectations. To find the state law of motion of the aggregate hierarchy of expectations, I
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aggregate over (1.37),

Γ
(1:o)
t+1 = Me jΓ

e jΓΓ
(1:o)
t +MeΓ

e jΓΓ
(0:o)
t +Ne jΓTs

[
s j,t+1

st+1

]
, (1.38)

where Ts is a matrix that sets the parameters of idiosyncratic innovations equal to zero. Then,
I verify my guess for the hierarchy of expectations by amending (1.38) with the state law of
motion of the non-expectational state variables:

MeΓ
eΓ =

[
MeΓ

Γ

MeΓ
e jΓ

]
+

[
0 0
0 Me jΓ

e jΓ

]
, and NeΓ =

[
NΓ

Ne jΓTs

]
.

The variance-covariance matrix of the one period ahead forecast error:

P = AP̂A′+BB′, (1.39)

the MSE :

P̂ =
(
I −K J−1G1

)
P. (1.40)

and the Kalman gain, can be derived analogue to the partial information case:

K = {PG′
1}{G1PG′

1}−1J. (1.41)

As with partial information, I multiply out J from the Kalman gain. This makes the
filtering problem independent of individual endogenous predetermined state variables, the
individual expectation of the hierarchy of expectations and the individual expectation of
idiosyncratic exogenous state variables:

˜K = {PG′
1}{G1PG′

1}−1 = KJ−1 and P̂ =
(
I − ˜K G1

)
P. (1.42)

1.5.4 Numerical results

In this subsection, I assess the model dynamics with heterogeneous information. I cannot
solve the filtering problem analytically as in the previous section on partial information as
the state space is a lot larger with the existence of higher order expectations. Therefore, I
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solve the fixed point problem of the policy function for the forward looking variables and the
filtering extraction problem numerically altogether.

Further, I showed in Proposition 5 that there are two possible solutions to the model with
heterogeneous information. As the model dynamics of the fundamental solution are equiva-
lent to the partial information model, I only present the dynamics of the non-fundamental
solution and refer to Figure 1.1 for the dynamics of the fundamental solution.

I choose the signals to be market consistent, as defined by Graham and Wright (2010),
which means that the only signals about the state of the world are the return to capital and
individual wages. The impulse response functions of the model are displayed in Figure 1.2.
The impulse responses of the state variables (solid line) and the first order expectation thereof
(dashed line) are shown in the first two graphs. Graph (a) shows the responses to a standard
deviation shock to the persistent component of productivity and Graph (b) to a shock to the
transitory component.

The most important aspect of the first two graphs is the expectation about capital. An
increase in the return to capital can stem from an increase in productivity or because the
agents previously overestimated the capital stock. Graham and Wright (2010) describe the
latter as a pseudo-shock. In this case, the agents revise downwards their expectation about
the aggregate capital stock and hence agents invest more and realized capital is higher than
under full information. In the RBC model, the agents expectation that the pseudo-shock
moved the return to capital weighs stronger than their expectation that productivity increased.

With regard to productivity, agents cannot clearly disentangle the source of the shocks.
Graph (a) shows that agents expect the transitory component to be the source of the shock
rather than the persistent component, even if the origin of the innovation was actually the
persistent process. The reason is that the agents attribute a larger weight to the more volatile
process. Consequently, the expectation to a shock to the transitory component, shown in
graph (b), are closer to the underlying shock. Altogether, the impulse responses look different
to the one in Graham and Wright (2010) as I include two aggregate components in composite
productivity. If I set σε = 0 and σν = 1 then the impulse responses are very similar to theirs.
The remaining difference stems from the changes in the conclusions that I discussed with
regard to the solution methodology.

In the second row, the two graphs display the impulse response function of selected
contemporaneous variables under heterogeneous information (solid line) and under full
information (dashed line). Graph (c) shows the responses to a standard deviation innovation
to the persistent component of productivity and graph (d) to the temporary one. The last two
graphs (e) and (f) show the impulse responses of consumption, also under heterogeneous
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Fig. 1.2 Impulse responses of the heterogeneous information model. Non-fundamental
solution.

The graphs (a) and (b) show the impulse response functions of the state variables to innovations of the
aggregate components of productivity. The solid lines represents the impulse responses of the
realized state variables and the dashed line of the expectation of the state variables. The graphs (c)
and (d) show the impulse responses of selected contemporaneous to the same innovations. The solid
lines represent the responses under heterogeneous information and the dashed lines the responses
under full information. The graphs in the third row (e) and (f) display the impulse response functions
of forward looking variables also under heterogeneous and full information.



1.5 Heterogeneous Information 29

and full information. If one compares the impulse responses to the partial information
solution, which is equal to the fundamental solution, one sees that the pseudo-shock has a
significant impact on the dynamics of the model dynamics. Investment increases significantly
to persistent and to transitory shocks. With partial information instead, investment increased
only in response to a persistent shock and decreased to a transitory shock compared to the
full information solution.

1.5.5 Discussion

The impulse responses of the state variables from the non-fundamental solution of the hetero-
geneous information model are shown in Figure 1.3. The solid lines show the realizations of
capital and the aggregate persistent component of productivity. The first order expectation
are plotted as dashed lines of the same colour. The first order of expectation is negative
to the positive productivity shock and the first order expectation of productivity is positive
but significantly lower than the realization of productivity. The higher order expectation
of capital are plotted in green and follow in increasing order. In this model higher order
expectations of capital respond stronger to the shock than lower ones. However, this leads to
a stable solution as the expectations converge to one another. The higher order expectations
of productivity are ordered from lower orders of expectations to higher orders and they are
plotted in yellow.

The puzzle about the non-fundamental solution stated by Graham and Wright (2010)
stems from the observation that the first order expectation of capital responds negative to a
positive productivity shock. They argue that one should compare the first order expectation
to the empirical data to be consistent with the model assumption that capital is not directly
observable. Based on empirical analysis, however, one would expect a positive response of
capital to a positive productivity shock.

Altogether, the dynamics of the non-fundamental solution that I present in this paper
are in line with the ones in the literature. I make only different findings with regard to the
potential source for the phenomenon. It cannot come from the explosive root in individual
capital, as claimed by Baxter et al. (2011) and Graham and Wright (2010),19 as it is not part
of the filtering problem and the non-fundamental solution arises nevertheless.

19Collary 5 in Baxter et al. (2011) states that a model with dynamic endogeneity might exhibit explosive
eigenvalues and non-invertible information sets.
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(b) Unit shock to εt . State variables.

Fig. 1.3 Impulse responses of the heterogeneous information model. Non-fundamental
solution. Higher order expectations.

Graph (a) shows the impulse response functions of capital and productivity and the higher order
expectation thereof to a positive shock to the persistent aggregate component of productivity. The
realizations of the variables are plotted in solid lines, the first order condition in dashed lines of the
same colour and the remaining order of expectations as dashed lines of another colour. Graph (b)
shows the impulse responses of the same variables to a positive shock of the transitory aggregate
component of productivity.
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1.6 Conclusion

In this paper, I have revisited the results of the literature on the effects of incomplete
information in the real business cycle (RBC) model. I introduce the notion of predetermined
state variables in the context of incomplete information and show that the filtering problem
of the model with partial information can be simplified to exogenous productivity process
only. Further, the guess for the policy function of forward looking variables is a function of
state variables and expectational variables and not only of expectational variables.

With regard to the heterogeneous information model my contribution extends even further.
Also here, I show that individual capital, as the predetermined state variable, is never part of
the signal extraction problem. This changes the guess for the forward looking variables, too.
Moreover, I correct the formulation of higher order expectation with regard to individual state
variables. Most importantly, I show that there are two stable solutions to the heterogeneous
information model. One in which the state law of motion is a fundamental representation
of the state variables and one in which it is not. The fundamental solution coincides with
the one of the partial information model, while the second corresponds to the case in the
literature. It is also worth mentioning that the non-fundamental solution appears also with
the changes introduced in this paper. Hence, it cannot stem from an interaction between an
explosive part in individual capital and the signal extraction problem, as individual capital is
not part of it.

Finally, I show that the return to capital, individual wages and idiosyncratic composite
productivity need to be revealed by the signals to guarantee market clearing on the goods
market.

This means that the RBC model of Section 1.2 is not particularly interesting to include
either partial or heterogeneous information, besides the appearance of the non-fundamental
solution. However, the literature has followed other avenues to make use of incomplete
information in DSGE models. Blanchard et al. (2013) use a medium scaled DSGE model
with partial information to back out the impact of noise shocks on business cycle dynamics.
Further, it has been shown by Woodford (2003), Lorenzoni (2009) and Angeletos and
La’O (2009) that heterogeneous information play a significant role for the dynamics of a
model if it exhibits strategic complementarity. Following this strand of literature, I analyse
a heterogeneous information new Keynesian model with capital, which exhibits strategic
complementaries in price setting in my companion paper. In Schaefer (2019b), I additionally
develop a solution methodology that can handle contemporaneous exogenous and endogenous
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as well as predetermined endogenous state variables and that shows more robust properties
than the one by Graham and Wright (2010).



Chapter 2

Solving Heterogeneous Information
Dynamic Stochastic General
Equilibrium Models Easily

2.1 Introduction

Heterogeneous information dynamic stochastic general equilibrium (HI-DSGE) models relax
the assumption of perfect information compared to classic DSGE models, while the assump-
tion of rationally behaving agents remains unchanged. This class of models is of particular
interest for economists as heterogeneous information can serve as a micro-foundation for
persistence in macroeconomic variables. The persistence is generated as agents need to learn
about the underlying state of the economy from signals. Heterogeneous information models
are characterized by the fact that agents receive private and public signals about the state
of the economy. In this sense they are different from partial information models that are
characterised by public signals only. Moreover, heterogeneous information models usually
generate more persistence in macroeconomic variables compared to partial information
models.

On the one hand, the literature on partial information includes, among others, the work
of Blanchard et al. (2013) who estimate a new Keynesian model with capital under partial
information and use it to back out noise and structural shocks from the data. Levine et al.
(2012) also contribute to the estimation of partial information models. Collard and Dellas
(2010) evaluate how partial information and the corresponding signal extraction problem
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can generate persistence in macroeconomic variables at the example of a new Keynesian
model. Baxter et al. (2011) derive conditions for stability of models with partial information.
Schaefer (2019a) revisits their analysis and shows that they are imprecise with respect to
the treatment of capital in their model which affects the dynamics of the model. Further,
Svensson and Woodford (2003) discuss optimal monetary policy in a new Keynesian model
with partial information.

On the other hand, there is a growing strand of literature on heterogeneous information
models. However, they are mostly relatively small-scaled. Moreover, each of the papers
presents an individual approach on how to solve the model. Melosi (2014) estimates a
new Keynesian model with heterogeneous information by Woodford (2003) with Bayesian
methods. Nimark (2014) estimates a heterogeneous information model with man-bites-dog
signals and shows that these signals can generate large non-fundamental changes in macroe-
conomic variables. Further, Nimark (2011) discusses an asset pricing model and proposes
a methodology to handle higher order expectations, which I use to solve for higher order
expectations that arise in HI-DSGE models. Lorenzoni (2010) derives optimal monetary
policy in a new Keynesian model with heterogeneous information and in which agents can
insure against their idiosyncratic risk. Moreover, Lorenzoni (2009) shows that heterogeneous
information can generate a substantial amount of demand shocks driving the business cycle.
Angeletos and La’O (2009) analyse a real business cycle model without capital and Hellwig
and Venkateswaran (2009) discuss the price adjustment process in their model.

In a related field of research, Mackowiak and Wiederholt (2011) solve a DSGE model in
which the agents are subject to rational inattention. Rational inattention models are more
complex than HI-DSGE models, as the solution to the models includes a constraint opti-
mization problem in which agents need to decide about optimal signals. This is theoretically
appealing but it also makes the models more difficult to solve. However, one can understand
rational inattention as a general explanation for heterogeneous information to be included in
a model, as it is pointed out in the literature.

Only very few papers include capital as part of the model. Hassan and Mertens (2014)
develop a solution methodology to solve an RBC model with capital in which the agents
receive private information about future productivity and observe the stock price as a noisy
public signal about the economy. The difference to the methodology that I present at the paper
at hand is that my methodology can handle dynamic learning problems in which higher order
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expectations arise. Graham and Wright (2010) also study an RBC model with heterogeneous
information. Further, they apply the insights of Baxter et al. (2011) to construct a solution
methodology that allows to solve incomplete information models. Schaefer (2019a) revisits
their analysis and shows that the model accommodates two possible equilibria from which
one resembles to the partial information model.

In this paper, I build on the insights gained in Schaefer (2019a) and develop a solution
methodology that allows for contemporaneous and predetermined endogenous state variables
as well as exogenous state variables. Furthermore, I exploit the structure of the class of
models to its fullest to generate stability of the solution, generalizing the idea of Lorenzoni
(2009). The novelty of my approach is that it holds for the whole class of models and
does not need to be derived for an explicit model. This allows researchers without in-depth
knowledge of the solution methodology to study HI-DSGE models. I illustrate the power of
the methodology by means of a new Keynesian model with capital that has not been studied
before.

The partial information models and almost all the models with heterogeneous information
that I present in the literature above1 can be cast in the state space form that I present in this
paper and hence can be solved without deriving the methodologies discussed in the individual
papers.

The remainder of the paper is organized as follows. In Section 2.2, I outline the structure
of HI-DSGE models that I cover. Section 2.3 defines the state space representation in which
researcher can cast their model. Then, I derive the solution methodology in Section 2.4.
In Section 2.5, I develop a new Keynesian model with capital that is used to illustrate the
methodology. Furthermore, I examine the dynamic implications of the model in Section 2.6.
Section 2.7 concludes.

2.2 The general setting

HI-DSGE models are based on the assumption that the agents in the economy differ from
one another in two aspects. First, the stochastic processes driving the model consists of
aggregate and idiosyncratic components and second, agents observe private as well as public

1For the model in Nimark (2014), the code would have to be modified as it allows for stochastic changes in
the precision of signals. Changes might also apply for the model in Hassan and Mertens (2014).
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signals about the state of the world. Private signals are by definition only known by the
individual agent receiving them, while public signals are observable by all agents in the
economy. Typically, it is assumed that a group of agents share the same information set. One
can imagine these agents to live in the same region. The literature refers to such a region
typically as an island. Moreover, due to heterogeneous information, the model cannot be
reduced to a representative agent model and it mostly leads to a hierarchy of expectations
as the law of iterated expectations fails. The conditions under which the law of iterated
expectation actually fails are derived in Section 2.3.1.

I formalize this type of economy as follows. I assume there to be an infinite number
of islands j. The agents on each island receive public, ϒt , and private signals, ϒ jt , about
aggregate state variables, Γt , and idiosyncratic exogenous state variables, X jt . The agents on
island j share the same information set Ω jt in time period t. The information set includes
the complete history of current and past signals, Ω jt = {ϒ jτ ,ϒτ |τ = 0,1,2, ..., t} and the
knowledge about the structure of the economy. While agents generally do not observe
innovations of the stochastic processes in the economy, they know the distribution of separate
innovations to occur.2 Further, all agents apply and know that all agents apply the Kalman
filter in order to form their expectation about the state variables.

I define the individual expectation of an arbitrary vector of variables Xt as follows:
E{Xt |Ω jt}= E jt{Xt}= Xt| jt . Moreover, I write aggregate expectations as

∫
E{Xt |Ω jt} d j =

E{Xt |Ωt}= Ēt{Xt}= Xt|t .

2.3 State space representation

In this section, I describe the general state space representation in which researcher can cast
their log-linearised HI-DSGE model and which I use to derive the solution.3

2The underlying idea of this assumption is that agents have received already a sufficiently long history of
signals such that the Kalman filter converged to the steady state Kalman filter.

3Generally, it is possible to allow for a second order approximation of the model and still be able to solve
the model. The complication of the second order approximation arises from the fact that for this purpose one
needs to tackle a quadratic filtering problem, too. A good starting point to do this is the idea from Monfort et al.
(2015). However, extending the methodology to include second order approximation is beyond the scope of
this paper.



2.3 State space representation 37

I distinguish between predetermined endogenous state variables, Xc
jt , Xc

t , contempora-
neous endogenous state variables, Xn

jt , Xn
t and exogenous state variables, X jt , Xt . Moreover,

I collect aggregate and individual contemporaneous variables in the vectors ϒt and ϒ jt .
Aggregate and individual forward looking variables are collected in Ft and Fjt .

Proposition 1. For all markets to clear it is necessary that agents take their choices based

on variables that are part of their information set only.

Proof. The budget constraint of the agents consists of prices and quantities. Agents choose
their individual quantities and they are either price setters or price taker. In either case, they
know the price in the markets in which they are active, which makes these prices part of
their information set. Further, the quantities and prices (if they are price setter) may be set
conditional on composite exogenous processes. If agents do not take their choices conditional
on the composite exogenous process, but instead conditional on the individual expectation
of the components, market clearing is not guaranteed. The reason is that the realisation
of the process is not in line with the agents expectations, i.e. this creates a wedge in the
budget constraints. Market clearing is then only achieved in the case in which the expectation
coincides with the realisation. For further details, see Appendix B.2.1.

Based on Proposition 1, I formulate the state space representation of the model. First, I

define the matrices of the endogenous state variables. Realize that individual endogenous

state variables come along in the following form:

Ac j1
c j An j1

c j

0 An j1
n j


Xc

j,t+1

Xn
jt

=

Ac j0
c j 0

Ac j0
n j An j0

n j


 Xc

jt

Xn
j,t−1

+
Aϒ

c j Aϒ j
c j

Aϒ
n j Aϒ j

n j


ϒt

ϒ jt

+
A f j

c j

A f j
n j

Fjt . (2.1)

Individual endogenous state variables are a function of last period’s individual endogenous
state variables, private and public signals and the individual forward looking variables. Pri-
vate and public signals are a subset of contemporaneous variables, {ϒ jt ,ϒt} ⊆ {ϒ jt ,ϒt}. I
define public signals to consist of at least one aggregate state variable and an aggregate
exogenous noise term. Private signals consist of at least one aggregate or idiosyncratic ex-
ogenous state variable with an idiosyncratic exogenous noise term. Signals can also include
aggregate forward looking variables. It is only important that they do not include individual
endogenous state variables or individual forward looking variables. Intuitively, this is easy to
understand. As the individual choices are made conditional on the state of the economy, the
choice itself does not carry informational content to forecast the state of the economy. Even
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more importantly, it is necessary that endogenous state variables depend only on the signals
and not on the unobservable components to ensure all markets to clear. Throughout the pa-
per st ∼N(0, I) and s jt ∼N(0, I) refer to aggregate and idiosyncratic innovations respectively.

Aggregate endogenous state variables can be of two types. First, integrated individual

endogenous state variables define aggregate state variables,
∫

Xc
jt d j = Xc

t and
∫

Xn
jt d j = Xn

t .

Further, aggregate exogenous policy rules, such as the Taylor rule qualify by their structure

as aggregate endogenous state variables:

Ac1
c An1

c

0 An1
n


Xc

t+1

Xn
t

=

Ac0
c 0 Ax0

c

0 An0
n Ax0

n




Xc
t

Xn
t−1

Xt−1

+
Aϒ

c

Aϒ
n

 ϒt +

A f
c

A f
n

Ft +

As
c

As
n

st . (2.2)

The aggregate components of the private signals can be attributed to state variables, aggregate
forward looking variables and shocks, without loss of generality. I add these to the state law of
motion on the right hand side, as there are also private signals about exogenous state variables.

Exogenous idiosyncratic and exogenous aggregate state variables are simply defined as:

Xt

X jt

=

Ax
x 0

0 Ax j
x j


Xt

X jt

+
As

x 0

0 As j
x j


 st

s jt

 . (2.3)

For notational convenience, I stack aggregate and idiosyncratic state variables in the vectors

Γt =
[
Xc′

t+1 Xn′
t X ′

t
]′ and Γ jt =

[
Xc′

j,t+1 Xn′
jt X ′

jt
]′, respectively. This way, I can write the

complete state law of motion as:

AΓ1
Γ

0

0 AΓ j1
Γ j


Γt

Γ jt

=

AΓ0
Γ

0

0 AΓ j0
Γ j
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Γ j,t−1
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A f

Γ j 0

0 A f j
Γ j
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Fjt

 (2.4)
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Γ
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+
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Γ
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Γ j


 st

s jt
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Second, I cast contemporaneous variables in the form:

Bϒ
ϒ

0

Bϒ
ϒ j Bϒ j

ϒ j


ϒt

ϒ jt

=

BΓ1
ϒ

0
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ϒ j BΓ j1

ϒ j


Γt
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ϒ j BΓ j0
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+
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ϒ

0
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ϒ j Bs j

ϒ j


 st

s jt

 . (2.5)

Contemporaneous variables depend on contemporaneous and lagged state variables, forward
looking variables and shocks or noise terms.

Third, one can cast the individual dynamic Euler equations in the form:

[
0 C f j

f j0

]Ft

Fjt

+[0 CΓ j1
f j0

]Γt

Γ jt

+[0 CΓ j0
f j0

] Γt−1

Γ j,t−1

+Cϒ
f j0

ϒt

ϒ jt

+ (2.6)

E jt

CF
f j1

 Ft+1
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+Cϒ
f j1

 ϒt+1
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+CΓ
f j1

 Γt+1

Γ j,t+1

+[CΓ1
f j0 0

]Γt

Γ jt

+[CΓ0
f j0 0

] Γt−1

Γ j,t−1


= 0.

The individual dynamic Euler equation, (2.6), is used to identify the policy function of the
individual forward looking variables to which the same constraints apply as to individual
endogenous state variables. The agents choose their individual forward looking variables
conditional on individual endogenous state variables, signals and their individual expectation
of tomorrow’s, and in some cases the expectation of today’s, state of the world.

After integrating (2.6), I find the aggregate dynamic Euler equations to be:

[
C f

f 0 0

]Ft

Fjt

+[CΓ1
f 0 0

]Γt

Γ jt

+[CΓ0
f 0 0

] Γt−1

Γ j,t−1

+[Cϒ
f 0 0

]ϒt

ϒ jt

+[Cs
f 0 0

] st

s jt

+ (2.7)

Ēt


[
C f

f 1 0

] Ft+1

Fj,t+1

+[CΓ
f 1 0

] Γt+1

Γ j,t+1

+[Cϒ
f 1 0

] ϒt+1

ϒ j,t+1

+[CΓ1
f 0 0

]Γt

Γ jt

+[CΓ0
f 0 0

] Γt−1

Γ j,t−1


= 0.

Any HI-DSGE model as outlined in Section 2.2 can be cast in this state space representa-
tion.
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2.3.1 Discussion of information structures

In this subsection, I discuss the implications of the modelling choice for higher order ex-
pectations. Higher order expectations appear with heterogeneous information as the law of
iterated expectation does not hold, i.e.

∫
E[Γt |Ω jt ] d j ̸= E[

∫
E[Γt |Ω jt ] d j|Ω jt ]. They enter

into the solution of the model via the forward looking variables. Specifically, they appear if
the model leads to the structure Fjt = E[ f (Ft , ·)| jt], which means that the individual forward
looking variable is a function of the expectation of the aggregate forward looking variable. If
one solves the equation forward, one finds a sum of an increasing number of terms of higher
order expectations. The parameter loading in front of the aggregate forward looking variable
determines the weight given to each order of expectations which is decaying exponentially.

The signal to noise ratios by itself also affect how higher order expectations enter the
policy functions of the agents. If the signal to noise ratio is low, agents rather neglect the
signal and with the signal to noise ratio high they put more weight on it. In the first case
learning is slower and the latter it is faster. In addition, when agents observe a public signal
about more than one aggregate state variable, they could coordinate on an equilibrium in
which one of the aggregate state variables is common knowledge and agents form expectations
only about the others. This is shown in Schaefer (2019a) for a specific real business cycle
model. There are two equilibria in which the dynamics of one resembles to the one of the
partial information version of the model, despite agents receiving both public and private
signals.

2.4 Solution methodology

The solution methodology is a generalization of the method of undetermined coefficients
that is commonly used for full information models and it includes two steps. First, I solve
for parameter matrices of my guess of the policy function of individual forward looking
variables that are invariant to the information available to the agents. Second, I solve the
parameter matrices of the policy function of individual forward looking variables that depend
on the signal extraction problem that agents face to form their expectation about the state of
the economy, which includes an extended state space with a hierarchy of expectations.
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2.4.1 Solve for matrices that are invariant to the information set

In this subsection, I solve for parameter matrices that are invariant to the information that
agents receive. I specify which matrices I refer to after my conjecture about the policy
function of individual forward looking variables.

I guess that the policy function of individual forward looking variables consist of four
groups of variables: lagged state variables, signals, innovations and the hierarchy of expecta-
tions of the state of the economy. I denote the hierarchy of expectation by the vector

[
Z′

t Z′
jt
]′

which will be specified in Section 2.4.2.

Fjt =
[
ξ Γ

f j ξ
Γ j
f j

][
Γt−1

Γ j,t−1

]
+ξ

ϒ
f j

[
ϒt

ϒ jt

]
+
[
0 ξ Z

f j

][ Zt

Z jt

]
+ξ

S
f j

[
st

s jt

]
(2.8)

When aggregated, I find:

Ft =
[
ξ Γ

f 0
][

Γt−1

Γ j,t−1

]
+
[
ξ ϒ

f 0
][

ϒt

ϒ jt

]
+
[
ξ Z

f 0
][ Zt

Z jt

]
+
[
ξ s

f 0
][ st

s jt

]
. (2.9)

Stacking individual and aggregate forward looking variables in one vector yields:[
Ft

Fjt

]
= ξ

Γ

[
Γt−1

Γ j,t−1

]
+ξ

ϒ

[
ϒt

ϒ jt

]
+ξ

Z

[
Zt

Z jt

]
+ξ

S

[
st

s jt

]
. (2.10)

I claim that ξ Γ, ξ ϒ and ξ S are invariant to the information available to the agents.

Next, I combine the state law of motion (2.4) and contemporaneous variables (2.5) and
write them in terms of state variables, forward looking variables and shocks.4[

Γt

Γ jt

]
= AΓ

[
Γt−1

Γ j,t−1

]
+AF

[
Ft

Fjt

]
+AS

[
st

s jt

]
(2.11)[

ϒt

ϒ jt

]
= BΓ

[
Γt−1

Γ j,t−1

]
+BF

[
Ft

Fjt

]
+BS

[
st

s jt

]
(2.12)

To verify my guess for individual forward looking variables, I plug the state law of

motion, (2.11), and the guess for forward looking variables, (2.10), into the individual Euler

4Details on the derivation can be found in Appendix B.3.1.
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equation, (2.6), in period t +1. This yields the following expression:

C f j
f j0Fjt +

(
CΓ1

f j0 +
(
CΓ

f j1AΓ +
(
CF

f j1 +CΓ
f j1AF)

ξ
Γ
)
IΩ

)Γt

Γ jt

+CΓ0
f j0

 Γt−1

Γ j,t−1

+Cϒ
f j0

ϒt

ϒ jt



+E jt


(

Cϒ
f j1 +

(
CF

f j1 +CΓ
f j1AF)

ξ
ϒ

) ϒt+1

ϒ j,t+1



+
(
CΓ

f j1AΓ +
(
CF

f j1 +CΓ
f j1AF)

ξ
Γ
)
I̸=Ω

Γt

Γ jt

+ (CF
f j1 +CΓ

f j1AF)
ξ

Z

 Zt+1

Z j,t+1


= 0,

where IΩ is a diagonal matrix that selects state variables that are part of the information set
Ω jt , while I ̸=Ω is a diagonal matrix that selects all the state variables that are not part of it.
Moreover, CΓ0

f j0 =
[
0 CΓ j0

f j0

]
and CΓ1

f j0 =
[
0 CΓ j1

f j0

]
.

Next, I substitute the state law of motion, (2.11), in t, to find:

(
C f j

f j0 +
(
CΓ1

f j0 +
(
CΓ

f j1AΓ +
(
CF

f j1 +CΓ
f j1AF)

ξ
Γ
)
IΩ

)
AF

)
Fjt (2.13)

+
(

CΓ0
f j0 +

(
CΓ1

f j0 +
(
CΓ

f j1AΓ +
(
CF

f j1 +CΓ
f j1AF)

ξ
Γ
)
IΩ

)
AΓ

) Γt−1

Γ j,t−1

+Cϒ
f j0

ϒt

ϒ jt



+
(
CΓ1

f j0 +
(
CΓ

f j1AΓ +
(
CF

f j1 +CΓ
f j1AF)

ξ
Γ
)
IΩ

)
AS

 st

s jt

+E jt


(

Cϒ
f j1 +

(
CF

f j1 +CΓ
f j1AF)

ξ
ϒ

) ϒt+1

ϒ j,t+1



+
(
CΓ

f j1AΓ +
(
CF

f j1 +CΓ
f j1AF)

ξ
Γ
)
I̸=Ω

Γt

Γ jt

+ (CF
f j1 +CΓ

f j1AF)
ξ

Z

 Zt+1

Z j,t+1


= 0.

Then, I plug my guess for forward looking variables, (2.8), in (2.13) and match coefficients

of identical variables. This directly identifies
[
ξ Γ

f j ξ
Γ j
f j

]
, ξ ϒ

f j and ξ S
f j and confirms my guess
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that they are invariant to the information agents receive.

0 =
(

C f j
f j0 +

(
CΓ1

f j0 +
(

CΓ
f j1AΓ +

(
CF

f j1 +CΓ
f j1AF)

ξξξ
Γ
)
IΩ

)
AF

)[
ξξξ

Γ

f j ξξξ
Γ j
f j

]
(2.14)

+
(

CΓ0
f j0 +

(
CΓ1

f j0 +
(

CΓ
f j1AΓ +

(
CF

f j1 +CΓ
f j1AF)

ξξξ
Γ
)
IΩ

)
AΓ

)
ξξξ

ϒ

f j =−

(
C f j

f j0 +
(

CΓ1
f j0 +

(
CΓ

f j1AΓ +
(
CF

f j1 +CΓ
f j1AF)

ξξξ
Γ
)
IΩ

)
AF

)−1

Cϒ
f j0 (2.15)

ξξξ
S
f j =−

(
C f j

f j0 +
(

CΓ1
f j0 +

(
CΓ

f j1AΓ +
(
CF

f j1 +CΓ
f j1AF)

ξξξ
Γ
)
IΩ

)
AF

)−1

(2.16)

×

(
CΓ1

f j0 +
(

CΓ
f j1AΓ +

(
CF

f j1 +CΓ
f j1AF)

ξξξ
Γ
)
IΩ

)
AS

The expressions show that ξ ϒ
f j and ξ S

f j depend only on ξ Γ and can be determined by simple
matrix inversion. The equation of the lagged state variables however, ξ Γ, describe a quadratic
equation system that one needs to solve numerically.

Proposition 2. The solution to the quadratic equation system that identifies ξ
n j
f j and ξ

c j
f j

coincides with the parameters of the full information solution.

Proof. Individual endogenous state variables are part of the agent’s information set. Through
the state law of motion of individual endogenous state variables all the weight is passed
through to ξ

n j
f j and ξ

c j
f j , the same way as under full information. For details, see Ap-

pendix B.2.2.

This means that I can use the parameters for ξ
n j
f j and ξ

c j
f j directly from the solution of the

full information solution, which can be easily computed with standard algorithms to solve
rational expectation models, such as Sims (2002). ξ Γ

f j and ξ
x j
f j instead do not coincide with

the full information solution, but they can be solved for with numerical root finding routines
as they are implemented in the Matlab function fsolve.

The guess for individual forward looking variables is completely verified as soon as ξ Z
f j

is identified. In order to do so, I use the results of the invariant matrices of the guess in
combination with (2.11) and (2.12) to derive the state law of motion and the contemporaneous
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variables in terms of lagged state, expectational state variables and shocks only.[
Γt

Γ jt

]
= MΓ

[
Γt−1

Γ j,t−1

]
+MS

[
st

s jt

]
+MF

ξ
Z

[
Zt

Z jt

]
(2.17)[

ϒt

ϒ jt

]
= GΓ

[
Γt−1

Γ j,t−1

]
+GS

[
st

s jt

]
+GF

ξ
Z

[
Zt

Z jt

]
(2.18)

In addition, to complete verifying my guess for individual forward looking variables, I need
to make a guess about the state law of motion of an extended state space including the
hierarchy of expectations.[

Zt

Z jt

]
= M

[
Zt−1

Z j,t−1

]
+N

[
st

s jt

]
and

[
ϒt

ϒ jt

]
= G

[
Zt−1

Z j,t−1

]
+H

[
st

s jt

]
(2.19)

Making use of the rewritten state space (2.17), (2.18) and the guess of the extended state

law of motion, I complete verifying my guess for the individual forward looking variables in

(2.13). (2.13) includes signals which are a subset of contemporaneous variables. Analogue

to the notation of signals carrying an underscore to indicate that they are a subset of contem-

poraenous variables, GΓ and GF select the rows of GΓ and GF that correspond to the signals.

Equating identical variables, ξ Z
f j must satisfy the equation:

ξ
Z
f j =−

(
C f j

f j0 +
(
CΓ1

f j0 +
(
CΓ

f j1AΓ +
(
CF

f j1 +CΓ
f j1AF)

ξ
Γ
)
IΩ

)
AF

)−1

(2.20)

×

((
CΓ

f j1AΓ +
(
CF

f j1 +CΓ
f j1AF)

ξ
Γ
)
I̸=Ω +

(
Cϒ

f j1 +
(
CF

f j1 +CΓ
f j1AF)

ξ
ϒ

)
GΓ

+
((

CF
f j1 +CΓ

f j1AF)+(Cϒ
f j1 +

(
CF

f j1 +CΓ
f j1AF)

ξ
ϒ

)
GF
)

ξ
ZM

)
.

The solution to ξ Z
f j depends on the informational content as it depends on the transition

matrix M of the extended state law of motion, (2.19).

2.4.2 Solve the signal extraction problem

I find the solution to the signal extraction problem in a similar manner to Schaefer (2019a).
The main difference with regard to the signal extraction problem is that the methodology in
the paper at hand can handle contemporaneous and predetermined endogenous state variables
as well as exogenous state variables, while the former cannot handle both types of endoge-
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nous variables at the same time.

Before I proceed, recall the fact that both types of individual endogenous state variables
are part of the agents information set in t. It is an important point to understand which vari-
ables the agents need to form their expectation about and which variably carry informational
content for the signal extraction problem. For dealing with the hierarchy of expectations, I
follow the approach of Nimark (2011). He assumes that the state of the economy is never
revealed. To cope with the infinite regress problem of heterogeneous information models
he reduces the dimensionality problem by assuming that the effect of the o+ 1 hierarchy
of expectation does not have any significant effect on the policy function of the agents and
hence the state space system can be truncated at o. At this point, I define the variable Z jt to be
equal to Z jt =

[
Γ
(0:o)′
t| jt Γ′

jt X ′
jt| jt
]′, where Γ

(0:o)
t =

[
Γ′

t Γ
(1)′
t . . . Γ

(o)′
t
]′, Γ

(1)
t =

∫
E
[
Γt |Ω jt

]
d j

and Γ
(o)
t =

∫
E
[
Γ
(o−1)
t |Ω jt

]
d j.

As it is shown in the literature, the signal extraction problem includes two steps. First,
one guesses the state law of motion of the extended state law of motion, which includes
non-expectational and expectational state variables. Second, one uses the guess for the
state law of motion to compute the Kalman gain and the associated mean square error. The
difference to the literature is that the signal extraction problem typically does not includes
predetermined and contemporaneous endogenous state variables simultaneously.

The extended state law of motion for the class of models covered in this paper includes
the hierarchy of expectation, the individual expectation thereof as well as individual state
variables and the individual expectation of the exogenous idiosyncratic state variables. The
extended state law of motion takes the form:

Γ
(0:∞)
t

Γ
(0:∞)
t| jt
Γ jt

X jt| jt

=


MeΓ

eΓ
0 0 0

MeΓ
e jΓ Me jΓ

e jΓ MΓ j
e jΓ Me jx j

e jΓ

MeΓ
Γ j Me jΓ

Γ j MΓ j
Γ j Me jx j

Γ j

MeΓ
e jx j Me jΓ

e jx j MΓ j
e jx j Me jx j

e jx j




Γ
(0:∞)
t−1

Γ
(0:∞)
t−1| j,t−1

Γ j,t−1

X j,t−1| j,t−1

+


NeΓ

Ne jΓ

NΓ j

Ne jx j


[

st

s jt

]
. (2.21)
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Combining the guess for the extended state law of motion, (2.21), with the expressions
for the non-expectational state variables, (2.17), and (2.18), I find:

[
Γt

Γ jt

]
=

[
MeΓ

Γ
0 0 0

MeΓ
Γ j Me jΓ

Γ j MΓ j
Γ j Me jx j

Γ j

]
Γ
(0:∞)
t−1

Γ
(0:∞)
t−1| j,t−1

Γ j,t−1

X j,t−1| j,t−1

+
[

NΓ

NΓ j

][
st

s jt

]
, and (2.22)

[
ϒt

ϒ jt

]
=
[
GeΓ Ge jΓ GΓ j Ge jx j

]


Γ
(0:∞)
t−1

Γ
(0:∞)
t−1| j,t−1

Γ j,t−1

X j,t−1| j,t−1

+H

[
st

s jt

]
, (2.23)

which confirms the part of the guess (2.21) that refers to the non-expectational state variables.5

The agents use the Kalman filter to form their expectation about the state of the economy.
The Kalman updating equation reads:[

Γ
(0:o)
t| jt

X jt| jt

]
=

[
Γ
(0:o)
t| j,t−1

X jt| j,t−1

]
+

[
Ke jΓ

Ke jx j

]([
ϒt

ϒ jt

]
−

[
ϒt| j,t−1

ϒ jt| j,t−1

])
. (2.24)

Next, I use (2.23) and I recall that individual endogenous state variables are part of the
information set to compute the forecast error of the signals as:6[

ϒt

ϒ jt

]
−

[
ϒt| j,t−1

ϒ jt| j,t−1

]
=
[
GeΓ Gx j

]([
Γ
(0:o)
t−1

X j,t−1

]
−

[
Γ
(0:o)
t−1| j,t−1

X j,t−1| j,t−1

])
+H

[
st

s jt

]
. (2.25)

5For details, see Appendix B.3.2.
6The formulation here is significantly simpler compared to the formulation in Schaefer (2019a). The

difference is that in Schaefer (2019a) the predetermined state variables enter the state vector in t, Γt =[
Xc

t Xt
]
, which makes excessive reformulations necessary to find the forecast errors independently of individual

endogenous state variables.
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Plugging (2.24) and the relevant parts of the guess for the extended state law of motion,
(2.21), back into (2.25) yields:[

Γ
(0:o)
t| jt

X jt| jt

]
= (M1 −K G1)

[
Γ
(0:o)
t−1| j,t−1

X j,t−1| j,t−1

]
+K G1

[
Γ
(0:o)
t−1

X j,t−1

]
+K H

[
st

s jt

]
, (2.26)

where K =
[
K ′

e jΓ K ′
e jx j
]′
, G1 =

[
GeΓ Gx j

]
,

M1 =

[
MeΓ

eΓ
0

0 Mx j
x j

]
, N1 =

[
NeΓ

Nx j

]
.

The individual expectation of the hierarchy of expectation as well as endogenous state vari-
ables cancel out. This is logical as they are taken conditional on the estimate of the state of
the economy and thus cannot contribute to estimate it.

Equation (2.26) confirms the part of the guess, (2.21), that refers to the individual
expectation of the hierarchy of expectation and the exogenous idiosyncratic state variables. It
remains to identify the transition matrix and the impact matrix of the hierarchy of expectations,
MeΓ

eΓ
and NeΓ. I find these matrices by aggregating the state law of motion of Γ

(0:o)
t| jt and by

amending it with the state law of motion of the aggregate non-expectational variables (2.22).

MeΓ
eΓ =

[
MeΓ

Γ

MeΓ
e jΓ +Me jΓ

e jΓTo

]
NeΓ =

[
NΓ

Ne jΓTS

]
(2.27)

Here, To is a matrix that shifts the state space at the beginning of the hierarchy by one order
of hierarchy and truncates the last one. TS sets the entries of the idiosyncratic innovations
equal to zero.

This concludes the derivation of the extended state law of motion. The solution of the
model is defined as the fixed point between the state law of motion of the extended state
space, the identification of ξ Z

f j as well as the Kalman gain and the mean square error (MSE).

The Kalman gain matrix can be computed as follows:

K =
(
M1P̂G′

1 +N1H ′)(G1P̂G′
1 +HH ′)−1 ; (2.28)
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and the MSE is defined by the Riccati equation:

P̂ = M1P̂M′
1 +N1N′

1 −
(
M1P̂G′

1 +N1H ′)(G1P̂G′
1 +HH ′)−1 (G1P̂M′

1 +HN′
1
)
. (2.29)

2.4.3 Reduction of dimensionality

In the previous subsection, I showed how to solve the model for the extended state law of
motion including individual and aggregate state variables. However, this is computationally
inefficient.

The solution is defined by the fixed point between the guess for the policy function of
the individual and aggregate forward looking variables, the guess for the extended state law
of motion and the Kalman gain. However, the signal extraction problem, presented in Sec-
tion 2.4.2 includes only the aggregate hierarchy of expectation and exogenous idiosyncratic
state variables. Thus, it is sufficient to solve for the policy function of the aggregate state
variables, because the idiosyncratic exogenous state variable does not interact with the fixed
point of the aggregate policy functions.

This means that one can reduce the problem to the fixed point solution between the
aggregate part of the extended state law of motion, the aggregate guess for aggregate forward
looking variables and the Kalman gain. Nevertheless, the discussion of the individual decision
problem is important as only this way I can define which variables stay inside and which
outside of the expectation operator when determining the policy function for forward looking
variables.

2.5 The model

The model is a New Keynesian Model with incomplete markets following Lorenzoni (2009),
extended by capital and a constant relative risk aversion (CRRA) utility function.

The economy is assumed to be separated in an infinite number islands indicated by
j, on which there is each one household, one final goods producing firm, a continuum of
capital producers in perfect competition and a continuum of firms producing heterogeneous
intermediary goods. The agents on island j share the same information set Ω jt available to
them in time period t. The firms of the wholesale sector hire labour and rent capital from the
household on their island. The final goods producing firm buys a random subset of goods
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produced by the firms of the wholesale sectors of other islands. The household consumes the
bundle of goods produced by the final goods producer on their island, provides labour and
rents capital to the wholesale sector only on their island. In addition, it invests in a one period
discounted bond and accumulates capital. The capital producers use the final composite
good as material input to produce new capital. Thereby, capital is island specific and it is
sold only to the household on its island.7 In this setting the agents on island j do not know
all quantities and prices of the goods in the economy and they also do not know aggregate
productivity. Hence, they need to form their expectations about the aggregate state of the
economy.

2.5.1 The household’s problem

The household on island j chooses its consumption of the composite good, C jt , produced
on their island by the final goods producer, labour supply in terms of hours worked, H j f t , to
firm f on its island, tomorrow’s bond holdings, B j,t+1 and tomorrow’s capital stock, K j,t+1,
such that it maximizes its expected discounted utility subject to its budget constraint and its
individual capital state law of motion. The utility function exhibits CRRA preferences in
consumption and a power form in hours worked, where ψ is a scaling factor between the
utility of consumption and the disutility of labour. The subjective discount factor is denoted
by β , σ represents the rate of intertemporal substitution and γ determines the Frisch elasticity
of labour supply.

max
{C jt ,H j f t ,B j,t+1,K j,t+1}

U = E jt

[
∞

∑
t=0

β
t
(C1−σ

jt

1−σ
− ψ

1+ γ

∫
H1+γ

j f t d f
)]

(2.30)

s.t.

B j,t+1

Rn
t

+ P̄jtC jt +Qn
jtY

kd
jt = B jt +W n

jt

∫
H j f t d f +Zn

jtK jt +
∫ 1

0
Π j f t d f +

∫ 1

0
Π

k
jlt dl

(2.31)

Y kd
jt = K j,t+1 − (1−δ )K jt (2.32)

7This assumption is made for simplicity. One could imagine that there is an integrated market for capital
across the whole economy in which the agents potentially need to form expectations about the aggregate capital
stock due to this reason. This could happen if there is a competitive advantage for the capital producer on one
island, i.e. a lower price level or lower marginal costs and non-linear adjustment costs. In a linearised model,
the latter condition is not satisfied. Hence, any capital producer could just produce enough to cover the demand
on their island and no trade would happen.
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On the expenditure side, the household can either save by investing in the one period risk
free bond B j,t+1 at the nominal return Rn

t , invest in its capital stock Y kd
jt at the price Q jt and it

can consume the amount C jt of the composite final good at the price P̄jt . The income of the
household consists of the payout from last period’s investment in the one period risk free
bond, the income from labour and capital and, as the household owns the firms on the same
island, the profits of the firms.

The maximization problem yields standard first order conditions, with Λ jt being the
Lagrangian multiplier to the budget constraint.

0 =C−σ

jt −Λ jt P̄jt (2.33)

0 = Λ jtW n
jt −θHγ

jt (2.34)

0 =
Λ jt

Rn
t
−βE jt

[
Λ j,t+1

]
(2.35)

0 = Λ jtQn
jt −βE jt

[
Λ j,t+1

(
(1−δ )Qn

j,t+1 +Zn
j,t+1

)]
(2.36)

Choice variables in time period t of the household on island j are part of the information
set Ω jt . Further, I make use of Proposition 1. It implies prices and quantities of the markets
agents interact in to be part of the information set.

With heterogeneous information, the individual budget constraint matters for the dynam-
ics of the model and cannot simply be aggregated. On the aggregate level bond holdings
are traded in net zero supply, but the household on island j might have positive or negative
bond holdings. The fact that bond holdings can be negative makes the log-linearisation of
the budget constraint non-trivial. To overcome the issue, I follow Lorenzoni (2009). One can
combine the budget constraint, (2.31), with the first order conditions for consumption, (2.33),
and bond holdings, (2.35), as well as the definition of the profits of the firms in the wholesale
and capital producing sector, to find the budget constraint in linear terms as:8

βb j,t+1 +C1−σ
∗ ĉ jt +

X∗
Cσ
∗

x̂ jt = b jt +
Y∗
Cσ
∗

(
ŷ jt + p̂ jt − ˆ̄p jt

)
, (2.37)

where b j,t+τ = E jt

[
B j,t+τ

Cσ
j,t+τ

P̄j,t+τ

]
. The budget constraint in this paper differs in two aspects

from the version in Lorenzoni (2009). First, I allow for a more general utility function.

8Details on the derivation can be found in Appendix B.1.1.
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Instead of log-utility in consumption, I allow for a more general CRRA utiltiy function.
Second, my model includes capital.

2.5.2 The firm’s problem

There are three types of firms on an island - the wholesale sector with a continuum of
intermediate goods producing firms, a final goods producing firm and a continuum of capital
producing firms. The intermediate goods producing firms produce differentiated consumption
goods. They hire labour and rent capital from the household on its island as factor inputs. The
final goods producer purchases differentiated goods from a random subset of the wholesale
sectors of other islands and produces a composite final good. Parts of the final goods are sold
to to the capital producers as material input and the remaining part is sold the household for
consumption. The capital producers produce homogeneous capital goods and sell it to the
household on their island.

The wholesale sector

The intermediate goods producing firm f on island j chooses labour demand, N j f t , capital
demand, K j f t , and sets its price Pj f t , that maximize its discounted profits subject to a its
production technology and the demand function for its good.

It is common in the literature on new Keynesian models that capital is owned by house-
holds and rented to the firms of the wholesale sector. In this case, the intermediate goods
producing firms choose first labour and capital input that minimize marginal costs first, and
second they choose its price that maximizes profits conditional on marginal the costs.

The production technology is a Cobb-Douglas function with constant returns to scale.
The production factors are composite productivity, labour and capital, where α is the output
elasticity of labour. Composite log-productivity is assumed to consist of an aggregate and
an idiosyncratic component a jt = at +ω jt Aggregate and idiosyncratic log-productivity are
persistent and follow the processes at = ρaat−1+νt and ω jt = ρωω j,t−1+ε jt . The two inno-
vations are assumed to be i.i.d. N(0,σ2

ν ) and N(0,σ2
ε j), respectively. Moreover, integrating

idiosyncratic innovations over all islands yields zero,
∫

ε jt d j = 0.
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The firm’s cost minimization problem reads:

min
{N j f t ,K j f t}

E jt

[W n
jt

Pjt
N j f t +

Zn
jt

Pjt
K j f t

]
s.t. Yj f t = A jtNα

j f tK
1−α

j f t . (2.38)

From which the first order conditions are:

0 =
W n

jt

Pjt
−αµ j f t

Yj f t

N j f t
and (2.39)

0 =
Zn

jt

Pjt
− (1−α)µ j f t

Yj f t

K j f t
. (2.40)

Combining the first order conditions, I find real marginal costs, µ jt = µ j f t as:

µ jt =

(
1

PjtA jt

)(W n
jt

α

)α( Zn
jt

1−α

)1−α

.

The nominal marginal costs are defined as the product of the real marginal costs times the
price index of the goods produced on island j, µn

jt = µ jtPjt .

For the optimal price setting, I apply the nominal stochastic discount factor,

Mn
jt,t+τ = β

τ
C−σ

j,t+τ

C−σ

jt

P̄jt

P̄j,t+τ

,

as the firms are owned by the households and profits are formulated in nominal terms.
Price stickiness is implemented by assuming Calvo pricing. Under this assumption firms
can only infrequently adjust prices at the rate 1− θ . This implies that in a given period
the price on an island consists of a fraction of optimally chosen and lagged prices, Pjt =[
(1−θ)P∗1−ε

jt +θP1−ε

j,t−1

]1−ε

. All firms that can change the price in a given period choose
the same price Pj f ,t+τ = P∗

jt that maximizes its expected discounted profits subject to the
demand for its product:

max
{Pj f ,t+τ}

Π j f t = E jt

[
∞

∑
τ=0

θ
τMn

jt,t+τ

(
Pj f ,t+τ −µ

n
jt
)

Yj f ,t+τ

]
(2.41)

s.t. Yj f ,t+τ =
∫

Θ j,t+τ

(
Pj f ,t+τ

P̄i,t+τ

)−ε

Yi,t+τ di. (2.42)
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The total demand for the firm’s product is defined by the demand of the final goods producers
of a random subset of other islands Θ jt and the relative price of the good to the price index of
each of these final goods producers. The first order condition with respect to the individual
price, Pj f ,t+τ , yields the non-linear version of the new Keynesian Phillips curve:

0 = E jt

[
∞

∑
τ=0

θ
τMn

jt,t+τ

(
(1− ε)P∗−ε

jt + εµ
n
jtP

∗−(1+ε)
jt

)∫
Θ j,t+τ

P̄ε
i,t+τYi,t+τ di

]
. (2.43)

From this equation, I can derive an island specific linearised version of the new Keynesian
Phillips curve:9

π jt = κµ jt +βE jt
[
π j,t+1

]
, (2.44)

where κ = (1−βθ)(1−θ)
θ

. The island specific new Keynesian Phillips curve leads to the classic
aggregate new Keynesian Phillips curve, when integrated, with the difference that the func-
tion includes the aggregate expectation operator and not the full information operator.

Final goods sector

The final goods producing firm on island j produces the final good by bundling intermediate
goods from a random subset, Ξ jt , of the heterogeneous goods produced by the wholesale
sector of other islands. The production function of the final goods producing firm on island j
is defined as follows:

Y jt =

(∫
Ξ jt

∫ 1

0
Y

ε−1
ε

jimt dm di
) ε

ε−1

. (2.45)

The final goods producing firm chooses the components of the production bundle that
minimizes the cost of the bundle subject to its production function:

min
{Y ji f t}

∫
Ξ jt

∫ 1

0
PjimtYjimt dm di (2.46)

s.t. Yjt =

(∫
Ξ jt

∫ 1

0
Y

ε−1
ε

jimt dm di
) ε

ε−1

. (2.47)

9For details, see Appendix B.1.2.
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From this, I find that the demand function for the good produced by firm m on island i by
the final goods producing firm on island j and the price index of the final good, P̄jt :

Yjimt =

(
Pimt

P̄jt

)−ε

Y jt and P̄jt =

(∫
Ξ jt

P1−ε

it di
) 1

1−ε

. (2.48)

The capital producing sector

The capital producer l on island j produces new capital goods, Y ks
jlt , according to the following

production technology:

Y ks
jlt = φ

(
X jlt

K jlt

)
K jlt . (2.49)

The production technology has the properties φ (δ ) = δ , φ ′ (δ ) = 1 and φ ′′
(

X jlt
K jlt

)
< 0 and

hence is convex. The capital producer buys material inputs X jlt at the price P̄jt from the final
goods producing firm. Capital is sold at the nominal price Qn

jt on the island specific market
and maximises its profits:

max
{X jlt ,K jl,t+1}

Π
k
jlt = E jt

[
Qn

jtφ

(
X jlt

K jlt

)
K jlt − P̄jtX jlt

]
(2.50)

From the first order condition, I derive the nominal price of capital:

0 = Qn
jtφ

′
(

X jlt

K jlt

)
− P̄jt . (2.51)

Compared to the full information problem, the capital producing firms on different islands
will not choose the same investment capital ratios with heterogeneous information as there is
different productivity and prices on different islands. However, the capital producers within
an island act identically such that I drop the subscript l without loss of generality.

2.5.3 The central bank

The central bank follows the Taylor rule:

rn
t = (1−ρr)rn

∗+ρrrn
t−1 +ϕπ̃t , (2.52)
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where the central bank responds to a noisy measure of inflation π̃t = πt +ωt . The
innovation is assumed to be i.i.d. ωt ∼ N(0,σω).

2.5.4 Aggregate variables and market clearing

Households on island j supply labour to all firms f on the same island. And all firms set their
individual labour demand, their capital stock and their prices to produce their differentiated
good. All these variables are aggregated on the island level, ϒ jt =

∫
ϒ j f t d f . Further, the

price index of the goods produced on an island is defined as:

Pjt =

(∫ 1

0
P1−ε

j f t d f
) 1

1−ε

. (2.53)

The equilibrium dynamics of the island specific variables,

ϒ jt =
{

B jt ,K jt ,C jt ,Λ jt ,H jt , P̄jt ,Pjt ,W n
jt ,Z

n
jt ,N jt ,

µ jt ,X jt ,Qn
jt ,Pjt ,A jt ,ω jt ,Y ks

jt ,Y
kd
jt ,Y jt ,Π jt ,Π

k
jt

}
,

are fully described by the equations (2.31), (2.32), (2.33), (2.34), (2.35), (2.36), (2.38), (2.39),
(2.40), (2.41), (2.42), (2.43), (2.49), (2.50), (2.51), (2.54), as well as the functional form of
the capital adjustment function, the definition of composite productivity, a jt , idiosyncratic
productivity ω jt , the definitions of the price indices and nominal marginal costs, and the
market clearing condition for labour and capital.

Aggregate variables are defined by the integral over the realizations of idiosyncratic
variables of all islands. In other words, for any variable in the set ϒ jt , ϒt =

∫
ϒ jt d j. The

equilibrium dynamics of the aggregate variables,

ϒ jt = {Kt ,Ct ,Λ
n
t ,Ht ,Pt ,W n

t ,Z
n
t ,Nt ,

µt ,Xt ,Qn
t ,Pt ,At ,ωt ,Y ks

t ,Y kd
t ,Yt ,Πt ,Π

k
t ,R

n
t

}
,

are defined by the individual equilibrium equations being aggregated as well as the definition
of the Taylor rule (2.52) and the state law of motion of aggregate productivity.
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The aggregate price index is defined as:

Pt =

(∫ 1

0
P1−ε

jt d j
) 1

1−ε

. (2.54)

Labour market clearing requires H jt = N jt for all islands j as the household provides
labour only to the firms on their island. The capital market also clears locally at the nominal
price for capital Qn

jt and the bonds market clears globally in zero net supply at the return Rn
t .

Goods market clearing leads to the well known aggregate identity Yt =Ct +Xt .

2.5.5 Calibration

For the numerical evaluation of the model, I calibrate the model as summarized in Table 2.1.
Specifically, I set the intertemporal rate of substitution equal to one and the Frisch elasticity
of labour supply to 2 in the baseline calibration. This allows me to directly compare the
model dynamics of the new Keynesian model with capital to the one without, presented by
Lorenzoni (2009). The discount factor is assumed to be 0.99 which corresponds to an annual
risk free rate of 4% and the depreciation rate is set to 10% annually. The output elasticity
is set to 2/3 and so is the frequency of price adjustment. The latter is corresponding to an
average duration of 6 months in which a firm does not change prices. The convexity of
the capital adjustment function is set to approx. 0.23. All these values are standard in the
literature.

Less common is the calibration of the exogenous processes and noise terms, because
they are, besides the process for aggregate productivity, not relevant for full information
models. Here, I also follow Lorenzoni (2009), who chooses the signal to noise ratios such
that the effects of noise shocks are maximized. The standard deviation of the noise term is
assumed to be four times as large as the standard deviation of the innovation to aggregate
productivity. The measurement error of inflation instead is only 8% its size. The standard
deviation of innovations to idiosyncratic variables are instead 10 to 20 times as large as the
one to aggregate productivity.
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Table 2.1 Calibration - structural parameters

Parameter Values Description

σ 1 Intertemporal rate of substitution
β 0.99 Discount factor
γ 0.5 Inverse Frisch elasticity

α 2/3 Output elasticity of labour
δ 0.025 Depreciation rate
η 1/4.3 Convexity of capital adjustment function
θ 2/3 Frequency of price adjustment

ρa 0.98 Auto-correlation parameter of aggregate productivity
ρω 0.00 Auto-correlation parameter of idiosyncratic productivity
σν 0.077 Std of innovation to aggregate productivity
σε j 20 σν Std of innovation to idiosyncratic productivity
σω 0.08 σν Std of measurement error in inflation
σε 4 σν Std of noise

σε j1 10 σν Std of idiosyncratic supply draw
σε j2 10 σν Std of idiosyncratic price draw

H̄ 0.3 Steady state labour share

2.6 Model dynamics

The model that I presented in Section 2.5 allows me to analyse the concluding remarks
of Lorenzoni (2009).10 He first conjectures that relaxing the assumption that productivity
follows a random walk would lead to a higher consumption response than under the random
walk assumption. Second, the idiosyncratic innovation could be assumed to follow an
autoregressive process, too. He conjectures that this might either diminish the effects of
noise shocks as the agent’s ability to forecast idiosyncratic productivity increases or the serial
correlation could induce stronger effects due to slower learning about aggregate variables.
Third, "adding capital may help to generate larger demand responses following a noise
shock".

10Lorenzoni (2009) modifies the method of Townsend (1983) to solve the hierarchy of expectations. Smaller
differences may arise due to the used methodology. However, the methodology is sensitive to the convergence
criteria. For details, see Appendix B.4.



58 Solving HI Dynamic Stochastic General Equilibrium Models Easily

2.6.1 New Keynesian model without capital

In this subsection, I first discuss the model dynamics of the new Keynesian model without
capital for different hierarchies of expectations. Then, in the second step, I evaluate the first
two conjectures stated above.

To understand the effect of the truncation of the higher order expectations on the model
dynamics, I plotted the impulse response functions of the hierarchy of expectations of
aggregate productivity, at , the nominal interest rate, rn

t , and the aggregate price level, pt for
two different dimensions of the expanded state space in Figure 2.1. Thereby, I truncate the
hierarchy of expectations at two degrees of higher order expectation. First, I truncate the
hierarchy of expectations at o = 8, which is the choice of Nimark (2014). Second, I truncate
it at o = 50, which is the choice of Lorenzoni (2009).

The graphs (a) and (b) show the impulse responses to an innovation to a productivity
shock and a noise shock, when I truncate the hierarchy of expectations at o = 8. The solid
lines represent the realisations of the state variables, the dashed line of the same colour the
first order expectation and the higher order expectations are shown as dashed lines in an
alternative colour. The graphs show that the hierarchy of expectations is very narrow for
all variables. The nominal interest rate does not exhibit a hierarchy of expectation as the
realisation is known to the agents. The plots also show that the hierarchy of expectation is
clearly ordered.

The next two graphs (c) and (d) show the hierarchy of expectations, when I truncate
the hierarchy of expectations at o = 50. As the implied dynamics conditional on the two
dimensions of the hierarchy of expectation are very similar, I proceed the analysis with the
smaller dimension.

In the next step, I discuss the conjectures stated above. The first conjecture was that lower
persistence of aggregate productivity would increase the initial response of consumption
compared to the case in which productivity changes are permanent. Figure 2.2 shows the
impulse responses for the two cases. It shows that the opposite is the case. If the persistence
of the aggregate process is lower, than the response of consumption becomes weaker. The
reason is the same as under full information. If productivity increases, agents do not consume
all the gains they make in the current period. They save it instead for the coming periods in
which productivity will be lower. The agents tend to smooth consumption.
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(a) Standard deviation shock to νt . o = 8.
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(b) Standard deviation shock to εt . o = 8.
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(c) Standard deviation shock to νt . o = 50.
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(d) Standard deviation shock to εt . o = 50.

Fig. 2.1 Impulse responses of hierarchy of expectation. Model without capital.

The graphs (a) and (b) show the impulse response functions of the hierarchy of expectations to
productivity and noise shocks when o = 8. The solid lines represents the impulse responses of the
realized state variables and the dashed lines the hierarchy of expectations of the state variables. The
graphs (c) and (d) show the same variables with the only difference that the model is solved with
o = 50.
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Fig. 2.2 Impulse responses of consumption for different values of ρa.

The graphs show the impulse responses of consumption to a productivity shock νt , a noise shock εt

and a shock to inflation ωt for different values of the persistence of the aggregate productivity process,
ρa.

Next, introducing persistence to idiosyncratic productivity does not change the aggregate
model dynamics much. The reasons are the following. First, the agents attribute most of
the movements in composite productivity to the idiosyncratic process already when it is
transitory. The persistence in the idiosyncratic productivity process increases the Kalman
gain even more and closer to one, but in effect this does not change the overall picture. The
same effect one achieves by increasing the standard deviation of the idiosyncratic innovation
without introducing persistence. Second, beyond the first point, the individual expectation
of the agents about their idiosyncratic productivity process has no impact on aggregate
dynamics.

2.6.2 New Keynesian model with capital

In this subsection, I analyse the equilibrium dynamics of the new Keynesian model with
capital and heterogeneous information. I first compare the model dynamics of the full infor-
mation new Keynesian model with the ones of the heterogeneous information model. Then, I
discuss the third conjecture stated above.

Figure 2.3 shows that the impulse responses to a productivity shock under heterogeneous
information is not too different from the ones under full information. Nevertheless, there
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are also differences when comparing the impulse responses to productivity shocks under
heterogeneous and full information. It is most evident for the price of capital. It is 0.05
percent higher and the gap is persistently growing over the horizon. This result corresponds
with the observed higher investment and lower consumption under heterogeneous information
compared to the full information model. The reason is that the agents believe that the shock to
be lower than under full information. Related to their consumption smoothing incentive they
consume less and invest relatively more than under full information. The main differences
appear in response to noise shocks as these shocks do not exist under full information.

Now, I turn to the conjecture of Lorenzoni (2009). His conjecture was that capital might
prolong the effects of noise shocks on demand. Figure 2.4 shows that relative to the model
without capital, the responses of output to a productivity shock are lower. With respect to the
noise shock the initial response of output is also lower which stands in contrast to Lorenzoni’s
conjecture.

2.7 Conclusion

In this paper, I derived a solution algorithm that solves HI-DSGE models of a general form.
I illustrated the power of the methodology at the example of a new Keynesian model with
capital that has not been studied before. Based on this model, I discussed the effects of
persistent aggregate and idiosyncratic productivity processes, and the effect of capital on the
model dynamics compared to the full information model and the heterogeneous information
new Keynesian model without capital. Altogether, the model with capital does not seem
to be capable of creating more noise driven fluctuations than the model without, which, as
stated by Lorenzoni (2009), does not generate sufficiently much fluctuation as indicated in
the data. For future research it might be interesting to implement mechanisms that induce
either higher strategic complementarity in prices or in other parts of the model in order to
increase the effects of heterogeneous information. One way could be to impose firm specific
capital in the veins of Sveen and Weinke (2005).
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(a) Standard deviation shock to νt . Contem-
poraneous variables.
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(b) Standard deviation shock to εt . Forward
looking variables.
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(c) Standard deviation shock to νt . Contem-
poraneous variables.

0 5 10 15
−0.02

0

0.02

0.04

0.06

0.08

0.1

 

 

c
t

π
t qn

t
c

t
* π

t
* qn

t
*

(d) Standard deviation shock to εt . Forward
looking variables.

Fig. 2.3 Impulse responses of selected variables.

The graphs (a) and (b) show the impulse response functions of selected jump variables to a
productivity shock and a noise shocks. The solid lines represents the impulse responses of the of the
variables under heterogeneous information and the dashed lines the ones under full information. The
graphs (c) and (d) show the the forward looking variables in the same way.
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Fig. 2.4 Impulse responses of output.

The graphs show the impulse responses of output to a shock to aggregate productivity and a noise
shock in the model without capital (dashed line) and capital (solid line).





Chapter 3

Asset Pricing Implications of a
Heterogeneous Information New
Keynesian Model

3.1 Introduction

The literature has identified a number of asset pricing puzzles in economics. I will limit
the analysis in this paper to the two best known. As layed out by Kocherlakota (1996), the
equity premium puzzle, documented by Mehra and Prescott (1985), states that there is not a
plausible pair of the subjective discount factor and the measure of relative risk aversion in a
representative agent framework that can match both the empirical values of the annual real
interest rate and the equity premium. The stated problem is that the discount factor is bounded
by one from above and thus the agents need to be very averse to consumption risk in order to
generate asset pricing implications comparable to historical data, which stands in contrast to
empirical evidence. In addition, with high risk aversion, although one can generate the equity
premium, the risk free rate becomes significantly larger than in the data. This phenomenon
is pointed out by Weil (1989) and it is generally known as the risk free rate puzzle. He
is also showing that one can select a higher intertemporal rate of substitution to achieve a
lower risk free rate with Epstein and Zin (1989) preferences. However, also in this case, one
still needs high risk aversion in order to generate the empirically observable equity premium.1

1The utility function allows to calibrate the parameter for the risk aversion and the ratio of intertemporal
substitution independently.
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The subsequent work by Abel (1990) and Constantinides (1990) show in an endowment
economy that habit formation can resolve the equity premium and the risk free rate puzzle.
However, under habit formation the volatility of the risk free rate becomes implausibly high.
In order to match the moments of the asset prices better, Campbell and Cochrane (1999)
propose a sensitivity function which is time varying and that creates higher habit formation
in bad than in good times. This improves the fit of their endowment economy with the data,
especially the high volatility.

These ideas also have been brought forward to macroeconomic models. Lettau and Uhlig
(2000) investigate Campbell and Cochrane (1999)’s mechanism in a business cycle model
and find that under these conditions the volatility in consumption is ten percent of what is
found in the data. Moreover, they find that habit formation in consumption in combination
with habit formation in leisure resolves this issue. Uhlig (2007) proceeds in this vein and
shows that sticky wages help to match business cycle facts and asset pricing implications.

Furthermore, Tallarini Jr. (2000) applies Epstein and Zin (1989) preferences and calibrates
the relative risk aversion parameter and the rate of intertemporal substitution independently.
In doing so, he finds that changes in the relative risk aversion has little impact on macroeco-
nomic dynamics. However, he also shows that this does not resolve the equity premium and
risk free rate puzzle, because relative risk aversion still needs to be implausibly high.2

The literature mentioned above discusses asset pricing implications in real economies.
Instead De Paoli et al. (2010) compute the asset pricing implications of a new Keynesian
model and find that nominal rigidities decrease risk premia when the model is mainly driven
by productivity shocks and increase them when driven by demand shocks. In a standard New
Keynesian model demand shocks appear only in the form of monetary policy shocks, while
heterogeneous information models are shown to provide a broader theory of demand shocks.
Lorenzoni (2009), in particular, shows that noise shocks can account for up to 72 percent of
demand driven business cycle volatility. On a different note Heer et al. (2012) point out that
the model by De Paoli et al. is not capturing fundamental labour market facts and propose to
include wage stickiness, following Erceg et al. (2000).

As heterogeneous information models currently do not allow for higher order approxima-
tions, I will follow the approach of Jermann (1998) to derive the asset pricing implications of

2The relative risk aversion required to match the asset pricing facts in the production economy is (χ +
θ)/(1+θ) = 25.8.
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the model. He shows that one can use the log-linear solution of a macroeconomic model and
combine it with log-linear asset pricing formulae. With regard to heterogeneous information,
Barillas and Nimark (2013) derive asset pricing formulae for a term structure model, but they
do not decompose the rates in the veins of Jermann. Moreover, they do not derive the asset
pricing formula for equity. It is also noteworthy that they formulate the stochastic discount
factor exogenously. Thus, the contribution of this paper is twofold. First, I generalize the
methodology of Jermann (1998) to assess asset pricing implications of a DSGE model with
heterogeneous information. Second, I extend the model by Heer et al. (2012) to allow
for heterogeneous information and assess its asset pricing implications which defines the
stochastic discount factor endogenously.

I find that the heterogeneous information model mitigates if not resolves the equity
premium and the risk free rate puzzle. Thereby, heterogeneous information especially
affect the risk free rate. Due to the uncertainty about the aggregate state of the economy,
precautionary savings are higher than under full information and hence, the risk free rate is
lower. At the same time the return to equity remains relatively unchanged which implies a
higher risk premium. Another helpful effect of heterogeneous information is that, while it
decreases the risk free rate, it does not increase the standard deviation thereof.

Finally, in contrast to the results in the literature, higher nominal rigidities increase the
equity premium when the heterogeneous information model is mostly driven by supply
shocks and reduces the risk premium when it is driven by demand shocks.

The remainder of the paper is organized as follows. In Section 3.2, I derive the log-normal
asset pricing formulae under heterogeneous information. In Section 3.3, I present the model.
Then, I compute the asset pricing implications in in Section 3.4. Section 3.5 concludes.

3.2 Asset pricing formulae

Barillas and Nimark (2013) point out that the stochastic discount factor of the agents needs
to be individual with heterogeneous information sets. This condition holds true in the model
at hand, in which I derive the stochastic discount factor endogenously as part of the DSGE
model, which has not been done before.



68 Asset Pricing Implications of a HI New Keynesian Model

I derive log-linear asset pricing formulae in the line of Jermann (1998) to provide
insights into the forces at play that differentiate asset pricing formulae under heterogeneous
information from the ones under full information. Jermann (1998) decomposes the non-linear
asset pricing formulae into expected values, variances and covariances. In doing so, he finds
a closed form solution for the risk free rate, but not for the return to equity. To gain deeper
insights into the return to equity, he splits the equity return into the infinite sum of the return
to strips. Strips are future one time payments of dividends. I proceed similarly.

The general asset pricing formula under heterogeneous information looks as follows:

Pt = β
1

Λ jt
E jt

[
Λ j,t+1 (Pt+1 +Dt+1)

]
. (3.1)

The price of an asset is equal to the present discounted value of the next periods payout.
In the general case, the payout is equal to next periods price plus a dividend or coupon
payment. In the case of the risk free rate, the payout is one with certainty, (Pt+1 +Dt+1) = 1.

The asset pricing formula needs to hold for all agents. When forward substituting, I
therefore apply the expectation operator of agent i ̸= j.3 Iterating forward once yields:

Pt = β
2 1

Λ jt
E jt

[
Λ j,t+1

Λi,t+1
Ei,t+1

[
Λi,t+2Pt+2

]]

+β
2 1

Λ jt
E jt

[
Λ j,t+1

Λi,t+1
Ei,t+1

[
Λi,t+2Dt+2

]]
+β

1
Λ jt

E jt

[
Λ j,t+1Dt+1

]
. (3.2)

As private information is by definition private to the agent holding it, the best expectation
that an agent can form about the expectation of another agent is the average expectation, i.e.
E jt
[
Eit
[
·
]]

= E jt
[
Et
[
·
]]

. Taking this fact into account and integrating over j4, I find the
following expression when iterating forward K times:

Pt =
1
Λt

β
KEt

[
Λt+KPt+K

]
+ ...+

1
Λt

K

∑
k=1

β
kEt

[
Et+1

[
. . .Et+k−1

[
Λt+kDt+k

]]]
. (3.3)

For K → ∞ the first term vanishes and one finds the well known representation of the
price as the present discounted sum of an infinite income stream. However, the present

3In this regard I follow Barillas and Nimark (2013).
4This is a short cut for solving the problem. Strictly speaking, one should aggregate over the approximated

version of the equation. Up to a first order approximation the results are the same without loss of generality.
However, the implications for the variance may differ. Nevertheless, I leave this issue open for future research.
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discounted value of each term does not coincide with a strip as under full information.5

In the following, I derive the log-normal asset pricing formulae for the risk free rate and
the the return to equity, by exploiting the characteristics of log-linearly distributed random
variables. First, the expected value of a log-normally distributed random variable ϒt is equal
to the expected value plus one half its variance, E jt

[
ϒt
]
= exp

{
E jt
[

lnϒt
]
+ 1

2Var jt
[

lnϒt
]}

.
Second, the standard deviation of a log-normally distributed random variable is defined as:

Std jt
[
ϒt
]
= E jt

[
ϒt
]√

exp
{

Var jt
[

lnϒt
]
−1
}
.

3.2.1 Risk free rate

The real price of the one period zero coupon bond, which defines the risk free rate, is equal
to the stochastic discount factor:

Q f
t = β

1
Λ jt

E jt

[
Λ j,t+1

]
. (3.4)

Integrating over j and inverting the price formula for the zero coupon bond yields the
formula for the risk free rate:

R f
t =

1
β

ΛtEt

[
1

Λt+1

]
. (3.5)

Applying the transformations following the log-linearity assumption, the log-normal
asset pricing formula for the risk free rate reads:

R f
t =

1
β

exp

{
−
(
Et
[
λt+1

]
−λt

)
− 1

2
V art

[
λt+1

]}
. (3.6)

Further, taking the unconditional expectation of the risk free rate, the resulting expression
under heterogeneous information reads in closed form:6

E
[
R f

t
]
=

1
β

exp

{
1
2

(
Var
[

Et
[
λt+1

]
−λt

]
−E

[
V art

[
λt+1

]])}
.

5For details see Appendix C.1.1.
6For details see Appendix C.1.2.
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As in the full information case, the unconditional expectation of the risk free rate depends
on the steady state value of the risk free rate and the variance of the expected growth rate of
marginal utility, but it deviates with respect to the third term. With heterogeneous information,
the unconditional expectation of the risk free rate depends on the variance of marginal utility
and not on the variance of the difference between marginal utility and its expectation. This
means that the precautionary savings effect under heterogeneous information is typically
larger under heterogeneous information than under full information. The additional uncer-
tainty stems from the fact that aggregate marginal utility is unknown at any point in time.
Further differences may arise due to the variance of the expected growth rate of marginal
utility, which depends on the dynamics of marginal utility. In this respect, I cannot derive any
theoretical insights. Hence, I will come back to this point in Section 3.4.2 when conducting
the numerical assessment.

The standard deviation of the risk free rate could differ under heterogeneous information
relative to full information, too. First, it depends on the unconditional expectation of the
risk free rate. And second, it also depends on the variance of the expected growth rate of
marginal utility:

Std
[
R f

t
]
= E

[
R f

t
]√√√√exp

{
Var
[

Et
[
λt+1

]
−λt

]}
−1. (3.7)

Differences in the unconditional expectation of the risk free rate were discussed above
and so was the variance of expected marginal utility growth.

3.2.2 Equity price

Assume that equity pays the dividend Dt+k in period k. Above, I showed that one can express
the price of equity as the infinite sum of present discounted dividend stream:

Vt = β
1
Λt

Et

[
Λt+1 (Vt+1 +Dt+1)

]
=

∞

∑
k=1

Vt [Dt+k], where (3.8)

Vt [Dt+k] = β
k 1
Λt

Et

[
Et+1

[
. . .Et+k−1

[
Λt+kDt+k

]]]
.

For the equity price one cannot derive a closed form solution neither for the unconditional
expectation nor the standard deviation. Instead one needs to simulate them. However,
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following the approach of Jermann (1998), one can gain further insights to the drivers of the
return to equity by analysing the terms of the infinite sum:

Rt,t+1 =
Vt+1

Vt
=

∞

∑
k=1

Vt+1[Dt+k]

Vt
=

∞

∑
k=1

W [Dt+k]Rt,t+1[Dt+k], where (3.9)

Rt,t+1[Dt+k] =
Vt+1[Dt+k]

Vt [Dt+k]
and W [Dt+k] =

Vt [Dt+k]

Vt
.

I call Rt,t+1[Dt+k] the return to the strip of a single dividend payment Dt+k in period k.
However, it is actually not exactly the same as the return to a strip under full information, as
the law of iterated expectations does not hold with heterogeneous information. While this is
important to point out, it does not affect the derivation of the details below. The return to
equity is neverthelsess an infinite weighted sum of that term and I can use it to derive further
insights from it. The weight between the return of a strip and the return to equity is defined
by W [Dt+k].

For convenience, I define the iterative higher expectations for an arbitrary variable ϒt as:

E(k−1)
t

[
ϒt+k

]
= Et

[
. . .Et+k−1 [ϒt+k]

]
. (3.10)

Then, the return to the strip can be written in log-linear form as:

Rt,t+1[Dt+k] =
1
β

exp
{

E(k−1)
t+1

[
λt+k +dt+k

]
−λt+1 −

(
E(k−1)

t
[
λt+k +dt+k

]
−λt

)
+

1
2

V ar(k−1)
t+1

[
λt+k +dt+k

]
− 1

2
V ar(k−1)

t
[
λt+k +dt+k

]}
, (3.11)

where V ar(k−1)
t

[
ϒt+k

]
defines the variance corresponding to the higher order expectations:

V ar(k−1)
t

[
ϒt+k

]
= Et

[(
E(k−1)

t+1 [ϒt+k]−E(k−1)
t [ϒt+k]

)(
E(k−1)

t+1 [ϒt+k]−E(k−1)
t [ϒt+k]

)′]
.
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Further, to find the expected return, I apply the expectation operator another time. Then,
the expected return to the strip reads:

Et [Rt,t+1[Dt+k]] =
1
β

exp
{

Et
[
E(k−1)

t+1
[
λt+k +dt+k

]
−λt+1 −

(
E(k−1)

t
[
λt+k +dt+k

]
−λt

)]
+

1
2

Et
[
V ar(k−1)

t+1
[
λt+k +dt+k

]]
− 1

2
Et
[
V ar(k−1)

t
[
λt+k +dt+k

]]
+

1
2

V art
[
E(k−1)

t+1
[
λt+k +dt+k

]
−λt+1 −

(
E(k−1)

t
[
λt+k +dt+k

]
−λt

)]}
.

Note that the variance of a log-normally distributed random variable is constant.

Under full information the first two terms with regard to the expectations of variables
in time t + k cancel out and only one part, the negative expected growth of marginal utility,
remains. Here instead, all three terms stay part of the formula. Moreover, the conditional
variance of contemporaneous variables is zero under full information. The other variance
terms instead can be rewritten to find an expression consisting of the conditional variance
of marginal utility and the covariance between the expectation of the payout in time period
t + k and tomorrows marginal utility. With heterogeneous information I arrive at a similar
expression, which is different only due to the uncertainty about the current state of the
economy.

Et [Rt,t+1[Dt+k]] =
1
β

exp
{

Et
[
E(k−1)

t+1
[
λt+k +dt+k

]
−λt+1 −

(
E(k−1)

t
[
λt+k +dt+k

]
−λt

)]
+

1
2

V art
[
E(k−1)

t+1
[
λt+k +dt+k

]
−E(k−1)

t
[
λt+k +dt+k

]]
+

1
2

Et
[
V ar(k−1)

t+1
[
λt+k +dt+k

]]
− 1

2
Et
[
V ar(k−1)

t
[
λt+k +dt+k

]]
+

1
2

V art
[
λt+1 −λt

]
−Covt

[
E(k−1)

t+1
[
λt+k +dt+k

]
−E(k−1)

t
[
λt+k +dt+k

]
,λt+1 −λt

]}
.



3.3 The model 73

After further transformations, I find:

Et [Rt,t+1[Dt+k]] =
1
β

exp
{

Et
[
E(k−1)

t+1
[
λt+k +dt+k

]
−λt+1 −

(
E(k−1)

t
[
λt+k +dt+k

]
−λt

)]
+ℑ[λt+k +dt+k]−

1
2

V art
[
λt+1 −λt

]
−Covt

[
E(k−1)

t+1
[
λt+k

]
−E(k−1)

t
[
λt+k

]
− (λt+1 −λt) ,λt+1 −λt

]
−Covt

[
E(k−1)

t+1
[
dt+k

]
−E(k−1)

t
[
dt+k

]
,λt+1 −λt

]}
. (3.12)

In this formula, I summarised the variance terms that cancel out under full information as
ℑ[λt+k +dt+k]:

ℑ[λt+k +dt+k] =
1
2

V art
[
E(k−1)

t+1
[
λt+k +dt+k

]
−E(k−1)

t
[
λt+k +dt+k

]]
+

1
2

Et
[
V ar(k−1)

t+1
[
λt+k +dt+k

]]
− 1

2
Et
[
V ar(k−1)

t
[
λt+k +dt+k

]]
.

Equation (3.12) is ultimately very similar to the full information one. In addition to the full
information expression it includes two expectational terms and an additional variance term,
ℑ[λt+k + dt+k]. The covariance terms are structurally the same as under full information,
with the difference that all terms are expressed relative to the current state of the world.
This makes sense as the current state of the world is not directly observed and hence the
expectation about it induces uncertainty.

3.3 The model

The model is a New Keynesian Model with incomplete markets following Lorenzoni (2009)
using the transformation of signals introduced by Nimark (2014). The differences of the
model at hand are that I include capital into the model and that price stickiness results from
intangible costs in the veins of Rotemberg (1982) instead of staggered pricing as in Calvo
(1983). Moreover, I allow for habit formation and sticky wages. These are the modelling
aspects that have been proven to be useful to match asset pricing facts in macroeconomic
models. Under full information the model corresponds to the model of Heer et al. (2012).
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The economy is assumed to be geographically separated in an infinite number of regions
(hereafter islands), indicated by j, in which there is each one household, one final goods
producing firm, a continuum of capital producers and firms producing differentiated interme-
diary goods. The agents on island j share the same information set Ω jt available to them in
period t. The firms of the wholesale sector accumulate capital and hire labour, where capital
and labour are traded only regionally. Moreover, the intermediate goods producing firms
have monopolistic power and set prices subject to their demand. The final goods producing
firm buys a random subset of goods produced by the firms of the wholesale sectors of other
islands. The household consumes the bundle of goods produced by the final goods producer
on their island, provides labour to the wholesale sector on their island and invests in a one
period discounted bond. Moreover, it can only infrequently adjust wages with the firms it
is providing labour to. The capital producers also use the composite final good as material
input to produce new capital goods.

In this setting the agents on island j do not know all quantities and prices of the goods in
the economy and they also do not know aggregate productivity. Hence, they need to form
expectations about the aggregate state of the economy. Further, the aggregate state of the
economy is relevant for the agents decision as price setting is complementary.

3.3.1 The household’s maximization problem

The household on island j chooses consumption of the composite goods produced on their
island by the final goods producer, C jt , nominal wages of firm f on its island, W n

j f t , to which
it provides a specific type of labour and tomorrow’s bond holdings, B j,t+1. It chooses these
variables such that it maximizes its expected discounted utility subject to its budget constraint
and the demand functions for each type of labour provided by the household. It is assumed
that the household has a continuum of members such that they provide heterogeneous types
of labour to all firms on their island and that they share the aggregate income. Households
can negotiate wages only with probability 1−ϕ , i.e. I apply a Calvo-type of wage setting.
This type of wage setting has been advocated by Erceg et al. (2000) and Gali (2011). The
utility function exhibits CRRA preferences in consumption and in hours worked, where θ

is a scaling factor between the utility of consumption and and the disutility of labour. σ

represents the rate of intertemporal substitution and γ determines the Frisch elasticity of
labour supply. Furthermore, agents exhibit external habit formation, ϑ jt = χcC j,t−1, where
χc defines the degree of the habit. The firms demand for any type of labour is defined by a



3.3 The model 75

CES demand function.

max
{C j,t+τ ,W j f ,t+τ ,B j,t+τ+1,S j,t+τ+1}

E jt

[
∞

∑
τ=0

(ϕβ )τ

((
C j,t+τ −ϑ j,t+τ

)1−σ

1−σ
− θ

1+ γ

∫
H1+γ

j f ,t+τ
d f
)]

s.t.
B j,t+τ+1

Rn
t+τ

+ P̄j,t+τC j,t+τ = B j,t+τ +
∫ (

W n
j f ,t+τH j f ,t+τ +Π j f ,t+τ

)
d f +Π

k
j,t+τ

(3.13)

H j f ,t+τ =

(
W n

j f ,t+τ

W n
j,t+τ

)−εw

H j,t+τ (3.14)

On the expenditure side, the household can either save by investing in the one period risk
free bond B jt at the nominal return Rn

t and it can consume the amount C jt of the composite
final good at the price P̄jt . The income of the household consists of the payout from last
period’s investment in the one period risk free bond, the income from labour and the profits
from the intermediary firms and the capital producers.

The maximization problem of the households yields a standard Euler equation for con-
sumption and an optimal wage setting equation for the agents that can adjust their wages.
All agents of the household that are selected to update wages in a given period set the same
nominal wage W n

j∗,t =W n
j f ,t+τ

:

Λ jt

P̄jt
= βRn

t E jt

[
Λ j,t+1

P̄j,t+1

]
, (3.15)

W n
j∗,t =

θ
εw

εw −1

E jt

{
∑

∞
τ=0 (ϕβ )τ

(
W n

j,t+τ

)(1+γ)εw
H1+γ

j,t+τ

}
E jt

{
∑

∞
τ=0 (ϕβ )τ

Λ j,t+τ

(
W n

j,t+τ

)εw
H j,t+τ

}


1
1+εwγ

, (3.16)

where Λ jt =
(
C j,t+τ −ϑ j,t+τ

)−σ is the marginal utility. As only a fraction of agents can
adjust their nominal wages, the wage index on island j is equal to the weighted average of
the agents adjusting wages and the previous periods wage index:

(
W n

jt
)1−εw = (1−ϕ)

(
W n

j∗,t
)1−εw +ϕπ

(
W n

j,t−1
)1−εw . (3.17)
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When log-linearising the equations (3.16) and (3.17), I find the island specific wage
Phillips-curve:

π
w
jt = κ

w (w jt +λ jt − γh jt
)
+βE jt

[
π

w
j,t+1

]
, (3.18)

where κw =− (1−βϕ)(1−ϕ)
ϕ(1+εwϕ) .

3.3.2 The firm’s problem

There are three types of firms on an island: a continuum of intermediate goods producing
firms acting in monopolistic competition, a continuum of capital producers in perfect compe-
tition and a final goods producing firm. The intermediate goods producing firms produce
differentiated consumption goods. They hire labour from the household on their island and
they accumulate capital as factor inputs. They buy capital from the capital producing firms
on their island. The final goods producer purchases the differentiated goods from a random
subset of the wholesale sectors of other islands and produces a composite final good. Parts of
the final goods are sold to to the capital producers as material input and the remaining part is
sold the household for consumption.

Final goods sector

The final goods producing firm on island j produces the final good by bundling intermediate
goods from a random subset, Ξ jt , of the heterogeneous goods produced by the wholesale
sector of other islands. The production function of the final goods producing firm is defined
as follows:

Yjt =

(∫
Ξ jt

∫ 1

0
Y

ε−1
ε

jimt dm di
) ε

ε−1

. (3.19)

Choosing the combination of goods that maximises profits of the final goods producing
firm leads to the following demand function of the final goods producer on island j for the
good of firm m on island i:

Yjimt =

(
Pimt

P̄jt

)−ε

Y jt and P̄jt =

(∫
Ξ jt

P1−ε

it di
) 1

1−ε

. (3.20)

The price index of the bundle of goods is defined as P̄jt .
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The capital producing sector

The capital producer l on island j chooses investments, X jlt , to maximize its profits, Πk
jlt ,

according to the following production technology:

Y ks
jlt = φ

(
X jlt

K jlt

)
K jlt , (3.21)

where φ

(
X jlt
K jlt

)
is convex, i.e. φ ′′

(
X jlt
K jlt

)
< 0. As it is assumed that the capital producers on

an island to act in perfect competition, one can drop the subscript l without loss of generality.
Thus, one finds the nominal price of capital on island j to be:

Qn
jt =

P̄jt

φ ′
(

X jt
K jt

) . (3.22)

The wholesale sector

The intermediate goods producing firm f on island j chooses labour demand, N j f t , next
periods capital stock, K j f ,t+1, and sets its price Pj f t , that maximize its discounted profits
subject to a Cobb-Douglas type of production technology, the capital state law of motion,
the demand function for its good and the adjustment cost functions for prices. I apply the
nominal stochastic discount factor, as the firms are owned by the households and the profits
are formulated in nominal terms.

max
{N j f ,t+τ ,K j f ,t+τ+1,Pj f ,t+τ}

E jt

[
∞

∑
τ=0

β
τ

Λ j,t+τ

Λ jt

P̄jt

P̄j,t+τ

(
Π j f ,t+τ −Pad j

j f ,t+τ

)]
(3.23)

s.t. Π j f ,t+τ = Pj f ,t+τYj f ,t+τ −W n
j f ,t+τN j f ,t+τ −Qn

j,t+τY kd
j f ,t+τ

(3.24)

Yj f ,t+τ = A j,t+τKα
j f ,t+τN1−α

j f ,t+τ
(3.25)

K j f ,t+τ+1 = (1−δ )K j f ,t+τ +Y kd
j f t (3.26)

Yj f ,t+τ =
∫

Θ j,t+τ

(
Pj f ,t+τ

P̄i,t+τ

)−ε

Yi,t+τ di

Pad j
j f ,t+τ

=
χ p

2

(
Pj f ,t+τ

π̄Pj f ,t+τ−1
−1
)2

Yj,t+τPj,t+τ

The profits, Π j f t , of firm f on island j, are defined as the revenues from production
less the costs for labour and expenditures for investment. The firm pays the nominal price
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for capital, Qn
t = Q jt P̄jt times its capital demand, Y kd

j f t . The firm produces its differentiated
good Yj f t with the island specific composite productivity A jt as well as labour and capital as
factor inputs, where α is the output elasticity of capital. The capital state law of motion is
fairly standard, where δ stands for the depreciation rate and Y kd

j f t is the capital that the firm
demands from the capital producer. The firm’s demand function depends on the demand of
the final goods producers that are randomly selected to buy the goods from island j, Θ jt . It is
assumed that price adjustment costs are intangible an not tangible. This implies that they are
not affecting the profits and hence the dividend payout.7 The overall costs are determined by
the adjustment parameter χ p.

Composite productivity is assumed to consist of an aggregate and an idiosyncratic com-
ponent A jt = At exp{ε jt}, where aggregate productivity is persistent At = Aρa

t−1 exp{νt}. The
two types of innovations are assumed to be i.i.d. N(0,σ2

ε j) and N(0,σ2
ν ), respectively. More-

over, integrating idiosyncratic innovations over all islands yields zero,
∫

ε jt d j = 0.

The first order conditions yield the optimality condition for labour demand, the Euler
equation of capital, and the non-linear version of the new Keynesian Phillips curve.

W n
jt = (1−α)µn

jt
Yj f t

N j f t
(3.27)

Q jtΛ jt = βE jt

[
Λ j,t+1

(
(1−δ )Q j,t+1 +α

Yj f ,t+1

K j f ,t+1

µn
j,t+1

P̄j,t+1

)]
(3.28)

[
(1− ε)+ εµ jt

]
P−ε

j f t

∫
Θ jt

P̄ε
it Yit di−χ

pYjt
Pj f t

π̄Pj f ,t−1

(
Pj f t

π̄Pj f ,t−1
−1
)
= (3.29)

+χ
p
βE jt

[
Λ j,t+1

Λ jt

P̄jt

P̄j,t+τ

Y j,t+1

(
P2

j f ,t+1

π̄P2
j f t

)(
Pj f ,t+1

π̄Pj f t
−1
)]

Log-linearising equation (3.29) around the steady state and recognising that all firms on
the same island choose the same prices, yields the island specific Phillips-curve:

π jt = κµ jt +βE jt
[
π j,t+1

]
, (3.30)

where κ = ε−1
χ p . The Phillips-curve derived from Calvo price setting and Rotembergs

menu costs is the same for a given choice of χ p, as under full information.

7The reason is, following the arguments of De Paoli et al. (2010), to focus on broader modelling aspects and
not on the modelling details of price adjustment.
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3.3.3 The central bank

The central bank follows the Taylor rule:

Rn
t = (Rn

∗)
1−ρr

(
Rn

t−1
)ρr

(
π̃t

π∗

)ρπ

exp{ξt}, (3.31)

where the central bank responds to a noisy measure of inflation π̃t = πt exp{ωt} and
ξt ∼ N(0,σ2

ξ
) is a monetary policy shock.

3.3.4 Aggregate variables and market clearing

Households on island j supply labour to all firms f on the same island. And all firms set their
individual labour demand, their investment and their prices to produce their differentiated
good. All these variables are aggregated on the island level by ϒ jt =

∫
ϒ j f t d f . Further, the

price index of the goods produced on an island is defined as:

Pjt =

(∫ 1

0
P1−ε

j f t d f
) 1

1−ε

. (3.32)

The equilibrium dynamics of the island specific variables:

ϒ jt =
{

B j,t+1,Λ jt ,W n
j∗,t ,W

n
jt , P̄jt ,Y ks

jt ,φ
′
(

X jt

K jt

)
,D jt ,Yjt ,K j,t+1,N jt ,

Qn
jt ,Pjt ,C jt ,A jt ,H jt ,Y kd

jt

}
are described by the equations (3.13), (3.15), (3.16), (3.17), (3.20), (3.21), (3.22), (3.24),
(3.25), (3.26), (3.27), (3.28), (3.29) as well as the definition of marginal utility, composite
productivity, A jt , and the market clearing condition for labour and capital.

Aggregate variables are defined by the integral over the realizations of idiosyncratic
variables of all islands. In other words, for any variable in the set ϒ jt , ϒt =

∫
ϒ jt d j. The

equilibrium dynamics of the aggregate variables:

ϒt =

{
Λt ,Vt ,W n

∗,t ,W
n

t ,Y
ks

t ,φ ′
(

Xt

Kt

)
,Dt ,Yt ,Kt+1,Nt ,Qn

t ,Pt ,Ct ,At ,Ht ,Y kd
t ,R f

t

}
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are defined by the same equations being aggregated as well as the Taylor rule. Moreover, the
aggregate price index is defined as:

Pt =

(∫ 1

0
P1−ε

jt d j
) 1

1−ε

. (3.33)

Labour market clearing requires H jt = N jt for all islands j as the household provides
labour only to the firms on their island and so does capital Y ks

jt = Y kd
jt . The bonds market

clears in zero net supply.
Goods market clearing leads to the identity Yt =Ct +Xt .

3.4 Asset pricing implications

Throughout the analysis, I assume that dividends are equal to the aggregate real profits of the
firms in the wholesale and capital producing sectors.

3.4.1 Calibration

For the numerical evaluation of the model, I calibrate the model as summarized in Table 3.1.
In the literature, the parameters that I choose to define the decision rules of the households

are mostly standard. The subjective discount factor is set equal to 0.99, which corresponds
to an annual steady state interest rate of 4 %. Further, the Frisch elasticity is assumed to be
equal to 2 which is in line with the estimate of Smets and Wouters (2007). The relative risk
aversion is set to 5, which is in the middle ground between the log-utility assumption and the
upper bound of 10 stated by Mehra and Prescott (1985). Moreover, it corresponds to the asset
pricing literature such as Jermann (1998) and De Paoli et al. (2010). Habit formation is set to
0.6 which lies in the range of empirical estimates of Bartolomeo et al. (2011) and it is only
slightly lower than the estimate of Smets and Wouters (2007). Not as common is the choice
of nominal wage rigidity. I choose the Calvo-parameter to be 0.2 which leads to an average
wage adjustment frequency of 5 months. Typically, the average wage adjustment duration is
more similar to the average price adjustment duration o four quarters. However, the choice
does not significantly affect the results.8 The last parameter relevant for the households is the

8The algorithm to solve the heterogeneous information model seems to become sensitive to the parametrisa-
tion with the given number of state variables. It will be up to future research to find the reason for this.
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Table 3.1 Baseline calibration - structural parameters

Parameter Values Description

β 0.99 Subjective discount factor
γ 0.5 Inverse Frisch elasticity
σ 5 Relative risk aversion
χc 0.6 Habit formation
φ 0.2 Calvo parameter, wages
εw 4 Wage elasticity of labour demand
α 1/3 Output elasticity of capital
χ p 80 Menu costs of price setting
η 7.5 Price elasticity of demand
δ 0.025 Depreciation rate
ξ k 4.3 Capital adjustment cost
ρr 0.90 Interest rate adjustment, Taylor rule
ρπ 1.5 Inflation adjustment, Taylor rule
ρa 0.95 Auto-correlation of productivity
σν 0.77 Std of aggregate productivity innovation
σω 0σν Std of measurement error in inflation
σε 0.4σν Std of noise shock
σξ 0.4σν Std of monetary policy shock
σε j 20σν Std of idiosyncratic productivity innovation
σ1

ε j 10σν Std of idiosyncratic price draw
σ2

ε j 20σν Std of idiosyncratic supply draw
H̄ 0.3 Steady state labour share
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wage elasticity of labour demand. Here, I choose the parameter as in Heer et al. (2012) who
borrow the calibration from Erceg et al. (2000).

With regard to the firms decision rules, I calibrate the output elasticity of capital equal
to 1/3. Furthermore, the price stickiness is calibrated to an average price duration of 4
quarters and a mark-up of 15 %. Capital depreciates at a rate of 10 % annually and the
capital adjustment cost parameter is calibrated to be 4.3 as in Jermann (1998). The remaining
parameters of the capital adjustment cost function can be derived from the assumption that the
function is equal to the investment to capital ratio in steady state and that the first derivative
of the function is equal to one in steady state.

The parameters for the Taylor rule are borrowed from Lorenzoni (2009). The reason for
this decision is, as pointed out by Nimark (2014), that the noise shocks are only demand
shocks if the adjustment parameter for output in the Taylor rule is sufficiently low. As, I want
to evaluate in how far the additional demand shocks induced by heterogeneous information
affect the asset pricing implications, I keep the calibration of Lorenzoni.

It remains to calibrate the stochastic processes. With regard to these parameters, I also
mostly follow Lorenzoni (2009). Additionally, it is to be noted that the standard deviations
of all innovations will be rescaled for computing the asset pricing implications such that
the growth rate of output is equal to 0.01 as in Jermann (1998). Further, for the signal
extraction problem of the agents only the relative standard deviations of the innovations
matter. I choose the standard deviation of the productivity innovation to be equal to 0.77,
which is ten times larger than empirical estimates but it facilitates the solution algorithm. The
standard deviation of the noise shock is 0.4 times the standard deviation of the technology
shock. This is chosen to maximize forecast error variance contribution of the noise shock to
overall volatility. Generally, on the one hand, if the standard deviation of the noise shock
is too low, the contribution is low as agents receive relatively precise signals on the state of
the economy. If they are too high, on the other hand, then agents disregard the signal and
the contribution decreases. In the benchmark calibration, I select the standard deviation of
the monetary policy innovation also to be equal to 40 percent of the standard deviation of
the technology innovation. The idiosyncratic innovations are chosen as in Lorenzoni (2009).
Finally, the auto-correlation of the productivity process is set equal to 0.95, which is the one
selected by De Paoli et al. (2010).
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(b) Forecast error variance decomposition of
dividend payments.

Fig. 3.1 Forecast error variance decomposition.

Graph (a) shows the forecast error variance decomposition of marginal utility for the technology
shock νt , the noise shock, εt , and the monetary policy shock ξt . Graph (b) shows the same forecast
error variance decomposition of the dividend payments.

3.4.2 Numerical results

In this subsection, I first illustrate the variance contribution of the noise shock to the overall
variance. Additionally, I establish the noise shock to be a demand shock in the model at
hand. Second, I compute the asset pricing implications for the full and the heterogeneous
information model. Third, I close the analysis by dissecting the asset pricing formulas to get
a better understanding of the differences between the asset pricing implications of the full
and heterogeneous information version of the model.

Figure 3.1 shows the variance decomposition of marginal utility and the dividend pay-
ments. These two variables are the ones that are critical for asset prices. In the short run
marginal utility is mostly driven by technology shocks, followed by monetary policy shocks
and lastly by noise shocks. Noise shocks contribute barely five percent to total variance.
Moreover, the contribution of both types of demand shocks diminish over time. The picture
of the variance decomposition of the dividend payments is quantitatively different. In the
short run technology shocks contribute the most and noise shock the least, but overall demand
shocks play a significantly larger role. The noise shock contributes initially more than ten
percent and the monetary policy shock up to 35 percent to total variance.
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Equity premium and the risk free rate puzzle

The asset pricing implications of the full information model and the heterogeneous infor-
mation model are summarised in Table 3.2. To evaluate the effects from real and nominal
rigidities conditional on the type of shock, I vary the menu costs for the price setting, repre-
sentative for nominal rigidities and I vary the habit formation parameter representative for
real rigidities.

The first difference between the benchmark calibration of the full and the heterogeneous
information model is to recognise that the risk free rate is significantly lower under hetero-
geneous information. If one is comparing the two terms that define the risk free rate then
it becomes evident that the unconditional variance of the expected marginal utility growth
rate is very similar between the two models. However, the unconditional expectation of
the one period ahead forecast error is significantly larger under heterogeneous information.
The reason is that there is additional uncertainty stemming from the fact that the underlying
aggregate state of the economy is unknown.

A second interesting finding is that the standard deviation of the risk free rate are very
similar between the two models. The reason is that the standard deviation of the risk free rate
depends on the variance of the expected growth rate of marginal utility. And this statistic is
very similar between the two classes of models.

The implications for the equity premium stem almost exclusively from the lower risk
free rate, leading to higher equity premia when considering heterogeneous information. The
standard deviation is also for the equity premium comparable between the two models.

Altogether, heterogeneous information may provide a crucial component to explaining
the equity premium puzzle and the risk free rate puzzle. The reason is that nominal and real
rigidities can be weaker to arrive the low risk free rate. This diminishes the effect that the
risk free rate becomes overly volatile. Additionally, one can find higher equity premia with
fewer constraints on the parameter space.

Supply vs. demand shocks

In this subsection, I bear upon the results of De Paoli et al. (2010) who found out that nominal
rigidities reduce increase the equity premium if the economy is mostly driven by demand
shock and decrease them if they are mostly driven by supply shocks.
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My hypothesis is that the effects might be more pronounced in the presence of heteroge-
neous information as they, shown by Lorenzoni (2009) provide a theory of demand shocks
which go beyond monetary policy shocks. In order to investigate the effects, I first group the
shocks of the model into supply and demand shocks.

The model includes two structural shocks, namely a technology shock and a monetary
policy shock. In addition it includes two noise shocks - inflation noise and noisy information
on technology. However, for the sake of clarity, I abstain from inflation noise as it affects
the Taylor rule in the same way as the monetary policy shock does. On the one hand, the
technology shock defines the supply shock. Then, on the other hand, I group the monetary
policy and the noise shock as demand shocks, as they drive output and prices in the same
direction. Figure 3.2 shows the impulse responses of output and inflation to these three
shocks.

Referring to Table 3.2, in the full information benchmark case, lower habit formation
reduces the risk premium and lower price stickiness increases the risk premium. In contrast
to the findings of De Paoli et al. (2010) this pattern is independent of the relative contribution
of supply and demand shocks. However from their paper it is not clear if their findings only
apply if the economy is only driven by demand or supply shocks, respectively.

The results for the heterogeneous information specifications are a little bit more versatile.
In the benchmark specification one finds a similar pattern as under full information. Lower
habit formation decreases the risk premium, but lower price stickiness does not seem to
increase it either. Moreover, if the model is mostly driven by supply shocks, both, lower
habit formation and lower price stickiness clearly, reduce the risk premium. In the other case,
in which the model is mostly driven by demand shocks, lower habit formation significantly
decreases the risk premium and lower price stickiness significantly increases it. Altogether,
this shows exactly the opposite of what De Paoli et al. (2010) found for full information
models, when looking at heterogeneous information models. If the model is mostly driven by
productivity shocks, then higher nominal rigidities lead to a higher risk premium. If instead
the model is mostly driven by demand shocks, then higher nominal rigidities decrease the
risk premium.
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Fig. 3.2 Impulse responses. Supply and demand shocks.

Graph (a) shows the impulse response functions of output and inflation to an aggregate technology
shock. The solid lines represents the impulse responses of variables under heterogeneous information
and the dashed lines the ones under full information. Graph (b) shows the same impulse responses to
a noise shock and Graph (c) to a monetary policy shock.
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3.5 Conclusion

In this paper, I derived the log-linear asset pricing equations under the assumption of hetero-
geneous information. Moreover, I adapted the model of Heer et al. (2012) to heterogeneous
information, which is a new Keynesian model with sticky wages, habit formation and capital
adjustment costs and has proven to be capable of capturing many relevant macroeconomic
dynamics.

Using the log-linear asset pricing formulae under heterogeneous information and the
solution of the model, I analysed first, if heterogeneous information can be helpful in ex-
plaining the equity premium and the risk free rate puzzle. Furthermore, I take on the results
of De Paoli et al. (2010) who find that rigidities might have different impacts on the risk
premium depending on the shocks that are driving the model.

I find that the heterogeneous information model mitigates if not resolves the equity
premium and the risk free rate puzzle. Thereby, heterogeneous information especially
affect the risk free rate. Due to the uncertainty about the aggregate state of the economy,
precautionary savings are higher than under full information and hence, the risk free rate is
lower. At the same time the return to equity remains relatively unchanged which implies a
higher risk premium. Another helpful effect of heterogeneous information is that, while it
decreases the risk free rate, it does not increase the standard deviation thereof.

Finally, in contrast to the results in the literature, higher nominal rigidities increase the
equity premium when the heterogeneous information model is mostly driven by supply
shocks and reduces the risk premium when it is driven by demand shocks.
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A.1 The model

A.1.1 Equilibrium dynamics

The equilibrium dynamics of
{

K jt ,z jt ,Yjt ,C jt , I jt ,H jt ,J jt ,N jt ,Rk
t ,Wjt

}
are fully described by

by the equations (1.2), (1.3), (1.4), (1.5), (1.7), (1.8), (1.9), the net return to capital as well
as the definition of z jt and the market clearing condition for labour. Moreover, I present the
equation system for the case in which market clearing is assured.

C jt + I jt = Rk
t K jt +WjtH jt (A.1)

K j,t+1 = (1−δ )K jt + I jt (A.2)

1
C jt

= βE
[

1
C j,t+1

Rt+1
∣∣Ω jt

]
(A.3)

Wjt

C jt
= θ(1−H jt)

γ (A.4)

Yjt = Jα
jt
(
Z jtN jt

)1−α (A.5)

Rk
t = α

Yjt

J jt
(A.6)

Wjt = (1−α)
Yjt

N jt
(A.7)

Rk
t = Rt −

(
1−δ

)
(A.8)

H jt = N jt (A.9)

z jt = zt + ε jt (A.10)

at+1 = ρaat +νt+1 (A.11)

zt = at + εt (A.12)

A.1.2 Steady state

The steady state values of the system can be derived conditional on the model’s deep parame-
ters Θ = {α,β ,δ ,γ,θ ,ρa}. Idiosyncratic and aggregate productivity are normalized to one
in steady state and I target labour supply to be H = H̄.
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First, to compute the steady state values, drop the time subscripts of equations (A.1) -
(A.9) and summarize.

C+ I = RkK +WH (A.13)

I = δK (A.14)

R =
1
β

(A.15)

W = θ(1−H)γC (A.16)

Y = KαN1−α (A.17)

Rk = α
Y
K

(A.18)

W =
(
1−α

)Y
N

(A.19)

Rk = R− (1−δ ) (A.20)

H = N (A.21)

Second, solve the system of non-linear equations to find the steady state values.

A.1.3 Log-linearisation around the steady state

Apply log-linearisation around the steady state to the equations (A.1) - (A.9) where ϒ̂ jt =

ln
(

ϒ jt
ϒ

)
denotes log deviations from steady state and lower case letters denote logs.

0 =Cĉ jt + Iî jt −αY
(
rk
t + k̂ jt

)
−
(
1−α

)
Y
(
ŵ jt + ĥ jt

)
(A.22)

0 =
(
1+g

)
k̂ j,t+1 −

(
1−δ

)
k̂ jt −

I
K

î jt (A.23)

0 = E

[
ĉ j,t+1 − rt+1

∣∣∣∣Ω jt

]
− ĉ jt (A.24)

0 = ŵ jt − γ
H

1−H
ĥ jt − ĉ jt (A.25)

0 = ŷ jt −α ĵ jt −
(
1−α

)(
z jt + n̂ jt

)
(A.26)

0 = rk
t − ŷ jt + ĵ jt (A.27)

0 = ŵ jt − ŷ jt + n̂ jt (A.28)
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0 = rk
t −

R
Rk rt (A.29)

0 = n̂ jt − ĥ jt (A.30)

A.1.4 State space representation

Contemporaneous variables

To find individual production, (A.26), as a function of individual capital, composite produc-
tivity, individual consumption and the return to capital, set (A.25) equal to (A.28) and make
use of (A.27) and (A.30):

ŷ jt =−
α
(
1+ξ

)(
1−α

) rk
t +
(
1+ξ

)
z jt −ξ ĉ jt , (A.31)

where ξ = 1−H
γH .

I use the expression of individual production to compute individual labour and wages,
using (A.25) and (A.28):

n̂ jt =− α(
1−α

)ξ rk
t +ξ z jt −ξ ĉ jt , and (A.32)

ŵ jt =− α(
1−α

)rk
t + z jt . (A.33)

Plug (A.31), (A.32) and (A.33) in (A.22):

î jt = α
Y
I

k̂ jt +
(
1−α

)(
1+ξ

)Y
I

z jt −
(

C
I
+
(
1−α

)
ξ

Y
I

)
ĉ jt −αξ

Y
I

rk
t . (A.34)

Individual capital demand follows from equation (A.27) in combination with (A.31):

ĵ jt =−1+αξ

1−α
rk
t +
(
1+ξ

)
z jt −ξ ĉ jt . (A.35)

I find the aggregate contemporaneous variables by integrating over the individual condi-
tions. At this point I also make use of the market clearing condition on the capital market.
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Aggregating (A.35) yields the solution to the return to capital:

rk
t =− 1−α

1+αξ
k̂t +

(
1+ξ

)(
1−α

)
1+αξ

zt −
(
1−α

)
ξ

1+αξ
ĉt . (A.36)

The remaining aggregate contemporaneous variables read:

ŷt =−
α
(
1+ξ

)(
1−α

) rk
t +
(
1+ξ

)
zt −ξ ĉt (A.37)

n̂t =− α(
1−α

)ξ rk
t +ξ zt −ξ ĉt (A.38)

ŵt =− α(
1−α

)rk
t + zt (A.39)

ît = α
Y
I

k̂t +
(
1−α

)(
1+ξ

)Y
I

zt −
(

C
I
+
(
1−α

)
ξ

Y
I

)
ĉt −αξ

Y
I

rk
t (A.40)

Substitute rk
t , (A.36), to find contemporaneous variables as functions of state and forward

looking variables only. Then, I cast the parameters in the matrices of equation (1.11):

ϒ jt

ϒt

=

[
Gc j Gc

]Xc
jt

Xc
t

+[Gx j Gx

]X jt

Xt

+[G f j G f

]Fjt

Ft

 . (A.41)

State variables

Combine (A.23) with (A.34) to find the state law of motions of individual capital and
aggregate it to find the state law of motion of aggregate capital:

k̂ j,t+1 =
(
1−δ +

(
1−α

)Y
K

)
k̂ jt +

(
1−α

)(
1+ξ

)Y
K

z jt

−
(

C
K
+
(
1−α

)
ξ

Y
K

)
ĉ jt −αξ

Y
K

rk
t ; (A.42)

k̂t+1 =
(
1−δ +

(
1−α

)Y
K

)
k̂t +

(
1−α

)(
1+ξ

)Y
K

zt

−
(

C
K
+
(
1−α

)
ξ

Y
K

)
ĉt −αξ

Y
K

rk
t . (A.43)
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I cast the equation of individual and aggregate capital as well as aggregate and idiosyn-

cratic productivity in the corresponding matrices of equation (1.10):



Xc
j,t+1

X j,t+1

Xc
t+1

Xt+1


=



Mc j
c j 0 0 0

0 Mx j
x j 0 0

0 0 Mc
c Mx

c

0 0 0 Mx
x





Xc
jt

X jt

Xc
t

Xt


+



Mϒ j
c j Mϒ

c j

0 0

0 Mϒ
c

0 0



ϒ jt

ϒt

+



M f j
c j 0

0 0

0 M f
c

0 0



Fjt

Ft

+



0

Nx j

0

Nx



s jt

st

 . (A.44)

As outlined in the main text, the individual predetermined state variable can be written
in terms of individual predetermined state variables, individual forward looking variables
and the signals that insure market clearing. However, when I aggregate the individual
predetermined state variables private signals generally do not aggregate to public signals and
instead need to be directly attributed to aggregate state variables.

Euler equation

Individual consumption needs to satisfy the Euler equation (A.24):

ĉ jt = E

[
ĉ j,t+1 − rt+1

∣∣∣∣Ω jt

]
. (A.45)

The parameters of this equation can be directly cast in the matrices of the Euler equation,

(1.12), in the main text:

R0
c

 Xc
jt

E jt Xc
t

+R0
ϒ

ϒ jt

ϒt

+R0
f

 Fjt

E jt Ft

= E jt

R1
c

Xc
j,t+1

Xc
t+1

+R1
ϒ

ϒ j,t+1

ϒt+1

+R1
f

Fj,t+1

Ft+1


 .
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Substitute

[
ϒ j,t+1

ϒt+1

]
using (A.41):

R0
c

 Xc
jt

E jt Xc
t

+R0
ϒ

ϒ jt

ϒt

+R0
f

 Fjt

E jt Ft

=

E jt


(

R1
c +R1

ϒ

[
Gc j Gc

])Xc
j,t+1

Xc
t+1

+R1
ϒ

[
Gx j Gx

]X j,t+1

Xt+1

+(R1
f +R1

ϒ

[
G f j G f

])Fj,t+1

Ft+1


 .

Substitute

[
X j,t+1

Xt+1

]
using (A.44):

R0
c

 Xc
jt

E jt Xc
t

+R0
ϒ

ϒ jt

ϒt

+R0
f

 Fjt

E jt Ft

−R1
ϒ

[
Gx j Gx

]Mx j
x j 0

0 Mx
x

E jt

X jt

Xt

=

E jt


(

R1
c +R1

ϒ

[
Gc j Gc

])Xc
j,t+1

Xc
t+1

+(R1
f +R1

ϒ

[
G f j G f

])Fj,t+1

Ft+1


 .

Substitute

[
Xc

j,t+1

Xc
t+1

]
using (A.44):

R0
c −
(

R1
c +R1

ϒ

[
Gc j Gc

])Mc j
c j 0

0 Mc
c



 Xc

jt

E jt Xc
t



+

R0
ϒ −

(
R1

c +R1
ϒ

[
Gc j Gc

])Mϒ j
c j Mϒ

c j

0 Mϒ
c



ϒ jt

ϒt



+

R0
f −
(

R1
c +R1

ϒ

[
Gc j Gc

])M f j
c j 0

0 M f
c



 Fjt

E jt Ft



−

R1
ϒ

[
Gx j Gx

]Mx j
x j 0

0 Mx
x

+(R1
c +R1

ϒ

[
Gc j Gc

])0 0

0 Mx
c


E jt

X jt

Xt

=

E jt


(

R1
f +R1

ϒ

[
G f j G f

])Fj,t+1

Ft+1


 .
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This can eventually be written as equation (1.13) in the main text:

Q0
c

 Xc
jt

E jt Xc
t

+Q0
xE jt

X jt

Xt

+Q0
ϒ

ϒ jt

ϒt

+Q0
f

 Fjt

E jt Ft

= Q1
f E jt

Fj,t+1

Ft+1

 . (A.46)
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A.2 Proofs

A.2.1 Market clearing

Proposition 1. Goods market clearing requires that the return to capital, individual wages

and idiosyncratic productivity are part of the information set Ω jt .

Proof. Goods market clearing follows from the budget constraint of households, (A.22), and
the firm’s first order conditions for capital, (A.27), and labour, (A.28), individual production,
(A.26), as well as market clearing on the labour ĥ jt = n̂ jt and capital market ĵt = k̂t . There
are three groups of variables that move outside of the expectation operator. First, choice
variables are outside the expectation operator because they are chosen conditional on their
expectation about the state of the world. Second, prices and quantities of the markets on
which the agents interact are part of their information set. Third, idiosyncratic composite
productivity has to be revealed.

0 =Cĉ jt + Iî jt −αY
(
rk
t + k̂ jt

)
−
(
1−α

)
Y
(
ŵ jt + ĥ jt

)
rk
t| jt = ŷ jt| jt − ĵ jt

ŵ jt| jt = ŷ jt| jt − n̂ jt

ŷ jt| jt = α ĵ jt +
(
1−α

)(
z jt| jt + n̂ jt

)
The reasons are the following. If the return to capital was not revealed, rk

t| jt ̸= rk
t , and or the

individual wage, w jt| jt ̸= w jt , the first order conditions for capital and labour do not meet the
budget constraint. Therefore, the prices have to be part of the information set, which is also in
line with the statement above about the interaction of agents, rk

t =
(
1−α

)(
z jt| jt + n̂ jt − ĵ jt

)
and w jt = α

(
ĵ jt − n̂ jt

)
+
(
1−α

)
z jt| jt . Now, assume that the firms choose the capital demand

ĵ jt and their labour demand n̂ jt conditional on their expectation about idiosyncratic composite
productivity, the return to capital and the individual wages in such as way that they satisfy
the first order conditions. If I plug these equations into the budget constraint, I find:

0 =Cĉ jt + Iî jt −Y
(
α k̂ jt +

(
1−α

)(
z jt| jt + ĥ jt

))
.

Using the labour market and the capital market clearing conditions, it is easy to show
that the goods market does not clear. After inserting the mentioned equations in the
budget constraint of the households and aggregating, I find Cĉt + Iît = Y ŷt|t , with ŷt|t =(
α k̂t +

(
1−α

)(
zt|t + ĥt

))
. This does not generate market clearing as zt|t ̸= zt . Only when,
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next to the return to capital and the individual wages, idiosyncratic composite productivity is
revealed, then goods market clear. In this case I find the identity Cĉt + Iît = Y ŷt .

A.2.2 The choice of signals

Proposition 2. The prices on the capital and labour market, being part of the information

set, Ω jt , are sufficient to guarantee market clearing on the goods market.

Proof. The proposition holds true for the partial and for the heterogeneous information model.
I start with the proof for the partial information model. To proceed, recall three facts with
regard to the partial information case. First, all agents behave alike such that all individual
variables are equal to aggregate ones, including capital and consumption. Therefore, one
can drop the subscript j. Second, as stated in Proposition 3, capital, as the predetermined
state variable, is known to the agents. The proposition also shows that, third, the forward
looking variable is a function of capital, composite productivity and the expectation of the
components thereof, ct = cp(kt ,zt ,at|t ,εt|t

)
. I write the return to capital, (A.36), and the

wages, (A.39), as a function of variables that are part of the information set:

rk
t = rk(k̂t ,zt , ĉt

)
, (A.47)

ŵt = w
(
k̂t ,zt , ĉt

)
. (A.48)

Plugging consumption into these equations yields:

rk
t = rk(k̂t ,zt ,at|t ,εt|t

)
and (A.49)

ŵt = w
(
k̂t ,zt ,at|t ,εt|t

)
. (A.50)

Finally, I know from equation (1.22) that the expectation of the state variables does not carry
any informational content for the signal extraction problem as they are the variables to be
identified themselves. Therefore, the only unknown variable on the right hand side of both
equations is composite productivity. Concluding, any of the two variables reveals zt and zt

reveals the other two variables. Thus, with partial information, wages or the return to capital
are sufficient to guarantee market clearing on the goods market.

Similarly, I proceed with the proof for the heterogeneous information model. Recall three
facts with regard to the heterogeneous information case. First, as stated in Proposition 4,
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individual capital as the predetermined state variables is known to the agents. Second,
individual consumption as the individual forward looking variable is a function of individual
capital, idiosyncratic composite productivity and the individual expectation of the hierarchy
of expectations and the individual expectation of the idiosyncratic exogenous state variables,
c jt = c j

(
k jt ,z jt ,rk

t ,k
(0:∞)
t| jt ,a(0:∞)

t| jt ,ε
(0:∞)
t| jt ,ε jt| jt

)
. Inserting the return to capital into individual

consumption and then aggregating gives the policy function of aggregate consumption,
ct = c

(
k(0:∞)

t ,a(0:∞)
t ,ε

(0:∞)
t

)
. I write the return to capital as a function of aggregate state

variables and aggregate forward looking variables, (A.36). Further, I write individual wages
in terms of observables, (A.33):

rk
t = rk(k̂t ,at ,εt , ĉt

)
and (A.51)

ŵ jt = w j
(
rk
t ,z jt

)
. (A.52)

Plugging individual and aggregate consumption into the equations above yields:

rk
t = rk(k(0:∞)

t ,a(0:∞)
t ,ε

(0:∞)
t

)
and (A.53)

ŵ jt = w j
(
z jt ,rk

t
)
. (A.54)

Finally, I know from equation (1.35) that the individual expectation of the state variables do
not carry any informational content for the signal extraction problem as they are the variables
to be identified themselves. The unknown variables of the return to capital are manyfold,
i.e. the complete hierarchy of expectations of the aggregate state variables. To reveal the
return to capital, subsets of those variables need to be observable or, most straight forward,
the return to capital itself. If the return to capital is revealed, individual wages are subject
only to one unknown variable, namely idiosyncratic composite productivity. Concluding,
the two variables ŵ jt and z jt reveal each other. Thus, with heterogeneous information,
individual wages and the return to capital are sufficient to satisfy market clearing on the
goods market.

A.2.3 Capital state law of motion

Proposition 3. Capital is known to the agents in the model with partial information.

Proof. Recall the following model assumptions. First, agents behave identically with partial
information. Therefore, one can look at the aggregate dynamics only. Further, agents are
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ex-ante identical and know the initial capital stock k0. Second, one can write the capi-
tal state law of motion as a function of today’s state variables, signals and consumption,
kt+1 = k

(
kt ,zt ,rk

t ,ct
)
, (A.43). Third, agents observe at minimum one signal to ensure market

clearing on the goods market. For example, the return to capital rk
t = rk(kt ,zt ,ct

)
, (A.36).

For the proof I analyse two cases: on the one hand, the assumption that capital is unknown
to the agents and, on the other hand, the assumption that capital is indeed known to the agent.

1. Capital is unknown to the agent.

If capital is unknown to the agents, then it stays within the expectation operator. In line with
the assumption that capital is not known to the agent, the guess for the functional form of
consumption is:

ct = cp(kt|t ,zt ,rk
t ,at|t ,εt|t

)
. (A.55)

If I apply this guess, the return to capital becomes rk
t = r

(
kt ,zt ,kt|t ,at|t ,εt|t

)
. Further recall,

that the effect of expectational variables do not carry any informational content for the signal
extraction problem as they do not contribute to the forecast error of the signals.

Assume now agents to be located in time period t = 0. In time period 0, k0 is known and
so is k0|0 = k0. Further, agents receive the signal rk

0 = r
(
k0,z0,a0|0,ε0|0

)
which reveals, z0 as

agents estimate a0|0 and ε0|0 in the signal extraction problem. This is sufficient information
to make the consumption choice, c0 = c

(
k0,z0,rk

0,a0|0,ε0|0
)
, and the the capital choice,

k1 = k
(
k0,z0,rk

0,c0
)
. Which shows that capital in the next period is also known to the agents.

In period one, agents receive a new signal rk
1 and the procedure repeats, which proofs that

capital is not unknown to the agents in the case with partial information in any time period
and hence is never part of the signal extraction problem.

2. Capital is known to the agent.

The guess for the functional form of consumption then becomes

ct = c
(
kt ,zt ,rk

t ,at|t ,εt|t
)
. (A.56)

If I plug this guess for consumption in the return to capital, it becomes rk
t = r

(
kt ,zt ,at|t ,εt|t

)
.

From here, the logic follows the case in which capital is assumed not to be known and arrives
at the same conclusion. The correct guess is that capital is indeed known to the agents.
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Proposition 4. Individual capital is known to the agents in a model with heterogeneous

information.

Proof. Recall the following model assumption. First, agents are ex-ante identical and know
the initial capital stock k0. Second, agents choose tomorrows capital k j,t+1 as a function of
today’s individual capital stock, individual consumption, idiosyncratic composite produc-
tivity and the return to capital, k j,t+1 = k j

(
k jt ,z jt ,rk

t ,c jt
)
, (A.42). Aggregate capital follows

the process, kt+1 = k
(
kt ,zt ,rk

t ,ct
)
, (A.43). Third, agents observe signals that ensure goods

market clearing, e.g. the return to capital rk
t = rk(kt ,zt ,ct

)
, (A.36), and individual wages

w jt = w j
(
z jt ,rk

t
)
, (A.33).

For the proof I analyse again two cases: on the one hand, the assumption that individual
capital is unknown to the agents and, on the other hand, the assumption that individual capital
is indeed known to the agent.

1. Individual capital is unknown to the agent.

If individual capital is unknown to the agents, then it stays within the expectation operator.
In line with the assumption that individual capital is unknown to the agent, the guess for the
functional form of individual consumption and aggregate consumption are:

c jt = c j(k jt| jt ,k
(0:∞)′

t| jt ,a(0:∞)′

t| jt ,ε
(0:∞)′

t| jt ,ε ′jt| jt ,z jt ,rk
t
)

ct = c
(
k(1:∞)′

t ,a(0:∞)′

t ,ε
(0:∞)′

t ,rk
t
)
.

If I apply this guess of consumption, the state law of motion of individual capital reads
k j,t+1 = k j

(
k jt| jt ,z jt ,rk

t ,k jt| jt ,k
(0:∞)′

t| jt ,a(0:∞)′

t| jt ,ε
(0:∞)′

t| jt ,ε jt| jt
)

and aggregate capital reads kt+1 =

k
(
k(1:∞)′

t ,a(0:∞)′

t ,ε
(0:∞)′

t ,rk
t
)
. The signals become rt = r

(
k(0:∞)′

t ,a(0:∞)′

t ,ε
(0:∞)′

t
)

and w jt =

w j
(
z jt ,rk

t
)
.

Assume now that that the agents are located in time period t = 0. In time period 0,
k0 = k j0 is known to the agents and so is k(0:∞)′

0 = k0. Further, the agents receive the signals
rk

0 = r
(
k0,a

(0:∞)′

0 ,ε
(0:∞)′

0
)

and w j0 = w j
(
z j0,rk

0
)
. The latter reveals z j0, while the former does

not reveal specific state variables. The innovation to the return to capital can potentially come
from any of the stochastic processes or the hierarchy of expectations. Nevertheless, this is
sufficient information to make a consumption choice c j0 = c

(
k0,a

(0:∞)′

0| j0 ,ε
(0:∞)′

0| j0 ,ε j0| j0,z j0,rk
0
)

that is market clearing. Moreover, one can disregard the expectational variables, as I estab-
lished that they do not carry any informational content for the signal extraction problem.
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Hence, given the information in period t = 0, k j1 becomes known, k j1 = k j(k j0,z j0,rk
0,c j0

)
:

k j0 is known as the initial condition, z j0 via individual wages, w j0, rk
0 is a public signal and

c j0 is known as it is an individual choice variable.

2. Individual capital is known to the agent.

The guess for the functional form of consumption then becomes:

c jt = c j(k jt ,k
(0:∞)′

t| jt ,a(0:∞)′

t| jt ,ε
(0:∞)′

t| jt ,ε ′jt| jt ,z jt ,rk
t
)

ct = c
(
k(0:∞)′

t ,a(0:∞)′

t ,ε
(0:∞)′

t ,rk
t
)
.

Following the same steps as in the previous case, we find the result that individual capital is
indeed known to the agents and is never part of the signal extraction problem.

Proposition 5. There is a fundamental solution to the heterogeneous information model in

which aggregate capital is known to the agents and a non-fundamental solution in which

aggregate capital is unknown to the agents.

Proof. I distinguish two cases. One in which the agents use individual wages only to update
their knowledge of z jt and the return to capital to infer the aggregate states and one in which
the private signal is also used to infer information about the aggregate state.

1. Assume that the agents use only the public signal, rk
t = rk(kt ,zt ,ct

)
for the signal

extraction problem of aggregate capital, kt+1 = k
(
kt ,zt ,ct ,rk

t
)

and the private signal
w jt = w j

(
z jt ,rk

t
)

to infer z jt , with ct = c
(
k(0:∞)′

t ,a(1:∞)′

t ,ε
(1:∞)′

t ,zt ,rk
t
)
.

Next, assume that the agents are located in time period t = 0. In time period 0, k0 = k j0

is known to the agents and so is k(0:∞)′

0 = k0. In addition realize that higher order expecta-
tions only arise with heterogeneous information. If the agents use only the public signals
to estimate aggregate state variables, higher order expectations do not arise. Hence, we
can write aggregate consumption as c0 = c

(
k0,a0|0,ε0|0,z0,rk

0
)

and the return to capital as
rk

0 = rk(k0,z0,a0|0,ε0|0
)
, which is identical to the formulation of aggregate capital with partial

information in Proposition 3. As expectational variables do not carry any informational con-
tent and the initial capital stock is known, the return to capital reveals aggregate productivity
z0, which is sufficient to compute next periods aggregate capital, k1 = k

(
k0,c0,z0,rk

0
)
.1

1Graham and Wright (2010) argue in the proof to their Proposition 1 that the solution in which agents
use the return to capital only to forecast capital is unstable, because they keep capital as part of their filtering
problem, i.e. they do not consider capital separately as a predetermined endogenous state variable.
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2. Assume that agents use both private and public signals for the signal extraction problem
of aggregate state variables.

Again, the signals can be written as rk
t = rk(kt ,zt ,k

(1:∞)′

t ,a(1:∞)′

t ,ε
(1:∞)′

t
)

and w jt =

w j
(
z jt ,rk

t
)
.

In the initial period t = 0, aggregate capital is known, k(0:∞)′

0 = k0. Consequently,
aggregate consumption can be written as c0 = c

(
k0,a

(1:∞)′

0 ,ε
(1:∞)′

0 ,z0,rk
0
)

and the return
to capital as rk

0 = rk(k0,z0,a
(1:∞)′

0 ,ε
(1:∞)′

0
)
. Further, aggregate capital can be written as

k1 = k
(
k0,a

(1:∞)′

0 ,ε
(1:∞)′

0 ,z0,rk
0
)
. In the previous case, the return to capital revealed composite

productivity. In this case, the return to capital is a signal about composite productivity as
well as the hierarchy of expectations of its elements. This information reveal next periods
capital, if aggregate capital depends on these composite productivity and the hierarchy of
expectations in the same way as the return to capital. As the hierarchy of expectation is
entering these equations via the forward looking variable, the variables would depend on it
in the same way, if they depend in the same way on composite productivity and consumption.
Plugging (A.36) into (A.43), I find:

k̂t+1 =

(
1−δ +

(
1−α

)Y
K

)
k̂t +

(
1−α

)(
1+ξ

)
1+αξ

Y
K

zt

−

(
C
K
+

(
1−α

)
ξ

1+αξ

Y
K

)
ĉt .

The return to capital, (A.36), instead reads:

rk
t =− 1−α

1+αξ
k̂t +

(
1+ξ

)(
1−α

)
1+αξ

zt −
(
1−α

)
ξ

1+αξ
ĉt .

Capital and the return to capital would only depend on composite productivity in the
same way if the steady state ratio of output to capital was equal to one. In addition, the
steady state ratio of consumption to capital had to be equal to zero. Especially, the latter is
not feasible under any reasonable assumption.

As only the joint combination for composite productivity and the hierarchy of expectation
of the components is observable from the return to capital, and the combination is different
to the one that enters the capital state law of motion, the individual agents will not be able
to infer aggregate capital in the second period. Thus, aggregate capital is unknown to the
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agents if the agents use both, individual wages and the return to capital jointly to form their
expectation about the state variables.
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A.3 Solution algorithm

A.3.1 Full information solution

I guess that the forward looking variables are a function of the state variables, i.e.

Ft = η
∗
[
Xc′

t X ′
t

]
, where η

∗ =
[
η∗

c η∗
x

]
. (A.57)

Then, in combination with (1.10) and (1.11), I write the state law of motion and the
contemporaneous variables as:[

Xc
t+1

Xt+1

]
= M∗(

η
∗)[Xc

t

Xt

]
+N∗st+1 and ϒt = G

(
η
∗)[Xc

t

Xt

]
, (A.58)

where

M∗(
η
∗)=([Mc

c Mx
c

0 Mx
x

]
+

[
Mϒ

c

0

][
Gc Gx

]
+

[
M f

c +Mϒ
c G f

0

]
η
∗

)
, N∗ =

[
0

Nx

]
and

G∗(
η
∗)= ([Gc Gx

]
+G f η

∗
)
.

I substitute observable variables, (1.11), and the guess for the forward looking variables
in the Euler equations of the forward looking variables (A.46),([

Q0
c Q0

x

]
+Q0

ϒ

[
Gc Gx

])[
Xc

t Xt

]
+
(
Q0

ϒG f +Q0
f
)
Ft = Q1

f Et [Ft+1]. (A.59)

Plug in the guess for forward looking variables and use the state law of motion. One finds
the expression (1.15) in the main text after equating parameters of identical variables:

η
∗ =C0 +C1(

η
∗)M∗(η∗), where

C0 =−
(

Q0
f +Q0

ϒG f

)−1([
Q0

c Q0
x

]
+Q0

ϒ

[
Gc Gx

])
C1(

η
∗)= (Q0

f +Q0
ϒG f

)−1
Q1

f η
∗.
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A.3.2 Partial information solution

I formulate a guess about the functional form of the forward looking variables. I guess
that they are a function of the predetermined state and exogenous state variables and the
expectation of the exogenous state variables:

Ft =
[
η

p
c η

p
x η

p
e

][
Xc′

t X ′
t X ′

t|t

]′
. (A.60)

This implies an expanded state law of motion, which includes the expectation of exoge-
nous state variables Xt|t . Contemporaneous variables, (1.11), can be expressed as:

ϒt = Gp(
η

p)[Xc′
t X ′

t X ′
t|t

]′
, where Gp(

η
p)= [Gc +G f η

p
c Gx +G f η

p
x G f η

p
e

]
.

(A.61)

Then, I substitute the contemporaneous variables, (A.61), into the state law of motion,

(1.10),


Xc

t+1

Xt+1

Xt+1|t+1

=




Mc

c +Mϒ
c Gc Mϒ

c Gx 0

0 Mx
x 0

0 Mx
e (K ,η p

x
)

Me
e (K ,η p

x
)

+


M f
c +Mϒ

c G f

0

0

η




Xc

t

Xt

Xt|t

+


0

Nx

Ne(K ,η p
x
)

st+1, (A.62)

where Mx
e
(
K ,η p

x
)
, Me

e
(
K ,η p

x
)

and Ne
(
K ,η p

x
)

remain to be defined. They are part of the
solution of the fixed point problem between the state law of motion, the matrix mapping the
forward looking variables into the state variables η p and the Kalman gain, K .

I confirm the guess of the forward looking variables analogue to the full information case:

([
Q0

c Q0
x 0

]
+Q0

ϒ

[
Gc Gx 0

])Xc
t

Xt

Xt|t

+(Q0
f +Q0

ϒG f

)
η

p

Xc
t

Xt

Xt|t

= Q1
f η

pEt

 Xc
t+1

Xt+1

Xt+1|t+1

 .
(A.63)
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Reorganize and use the transition matrix of the state law of motion to find the expression
(1.19) in the main text:

η
p =C0 +C1(

η
p)(TkMp(K ,η p)+ T̸=kMp(K ,η p)Te

)
, where

C0 =−
(

Q0
f +Q0

ϒG f

)−1([
Q0

c Q0
x 0

]
+Q0

ϒ

[
Gc Gx 0

])
C1(

η
p)= (Q0

f +Q0
ϒG f

)−1
Q1

f η
p

Tk =

I 0 0
0 0 0
0 0 0

 , T̸=k =

0 0 0
0 I 0
0 0 I

 and Te =

I 0 0
0 0 I

0 0 I

 .

Kalman Updating

The Kalman updating equation is defined as follows:

Xt+1|t+1 −Xt+1|t = K
(
ϒt+1 −ϒt+t|t

)
. (A.64)

The forecast error of the signals ϒt+1 −ϒt+1|t is defined as:

ϒt+1 −ϒt+1|t = G
(
η

p)

 Xc

t+1

Xt+1

Xt+1|t+1

−
Xc

t+1|t
Xt+1|t

Xt+1|t


 , (A.65)

where predetermined choice variables cancel out. Plugging (A.64) into (A.65) we find:

ϒt+1 −ϒt+1|t = J−1Gx
(
η

p
x
)(

Xt+1 −Xt+1|t
)
, (A.66)

where J =
(
I −Ge

(
η

p
e
)
K
)
. I plug this expression back into the Kalman updating equation

(A.64) to find:

Xt+1|t+1 =
(
I −K J−1Gx

(
η

p
x
))

Xt+1|t +K J−1Gx
(
η

p
x
)
Xt+1. (A.67)
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If I use the state law of motion for Xt+1 from (A.62), I derive the state law of motion of
the expectation of the state variables Xt+1|t+1:

Xt+1|t+1 =
[
0 K J−1Gx

(
η

p
x
)
Mx

x
(
I −KJ−1Gx

(
η

p
x
))

Mx
x

]Xc
t

Xt

Xt|t


+K J−1Gx

(
η

p
x
)
Nxst+1, (A.68)

which verifies my guess and identifies Mx
e
(
K ,η p), Me

e
(
K ,η p) and Ne

(
K ,η p).

Kalman Gain

It remains to solve for the Kalman gain K as well as the corresponding mean square error
(MSE) and the variance-covariance matrix of the one period ahead forecast error.

First, define the variance-covariance matrix of the one period ahead forecast error as:

P = E
[(

Xt+1 −Xt+1|t
)(

Xt+1 −Xt+1|t
)′]

= Mx
x P̂Mx′

x +NxN′
x (A.69)

and the MSE as:

P̂ = E
[(

Xt −Xt|t
)(

Xt −Xt|t
)′]

=
(
I −K J−1Gx

(
η

p
x
))

P (A.70)

The Kalman gain can be computed using equations (A.66) and (A.69):

K =

{
E
[(

Xt+1 −Xt+1|t
)(

ϒt+1 −ϒt+1|t

)′]}
(A.71)

×
{

E
[(

ϒt+1 −ϒt+1|t

)(
ϒt+1 −ϒt+1|t

)′]}−1

,

=
{

PGx
(
η

p
x
)′
(J−1)′

}{
J−1

(
Gx
(
η

p
x
)
PGx

(
η

p
x
)′)

(J−1)′
}−1

(A.72)

=
{

PGx
(
η

p
x
)′}{Gx

(
η

p
x
)
PGx

(
η

p
x
)′}−1

J. (A.73)



A.3 Solution algorithm 113

A.3.3 Heterogeneous information solution

Define Γt = [Xc′
t X ′

t ]
′ and Γ jt =

[
Xc′

jt X ′
jt

]′
.

State space representation

Formulate a guess about the functional form of the forward looking variables:

Fjt = η f j

[
Γ
(0:o)′
t Γ

(0:o)′
t| jt Γ′

jt X ′
jt| jt

]′
, where η f j =

[
ηeΓ

f j η
e jΓ
f j η

Γ j
f j η

e jx j
f j

]
. (A.74)

I find the functional form of the aggregate forward looking variables by integrating over
the individual ones of all islands,

Ft = η f

[
Γ
(0:o)′
t Γ

(0:o)′
t| jt Γ′

jt X ′
jt| jt

]′
, where η f = η f jTe. (A.75)

The matrix Te maps the idiosyncratic and individual state variables and the individual
expectation of the hierarchy of expectation to the hierarchy of expectation. The idiosyncratic
exogenous state variables and the expectation thereof cancel out as these variables aggregate
to zero by assumption.

This implies an expanded state law of motion, which also includes the expectation of
exogenous state variables Xt|t . Contemporaneous variables, (1.11), can be expressed as:

ϒt = G
(
η
)[

Γ
(0:o)′
t Γ

(0:o)′
t| jt Γ′

jt X ′
jt| jt

]′
, where (A.76)

G
(
η
)
=
[[

GΓ 0
]

0 GΓ j 0
]
+
[
G f j G f

]
η

=
[
GeΓ

(
ηeΓ
)

Ge jΓ
(
ηe jΓ) GΓ j

(
ηΓ j) Ge jx j

(
ηe jx j)] .
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If I plug the guess for the forward looking variables into the state law of motion of

non-expectational state variables, (1.10), the state law of motion becomes:



Xc
t+1

Xt+1

Xc
j,t+1

X j,t+1


=



Mc
c +Mϒ

c Gc Mx
c +Mϒ

c Gx 0 0

0 Mx
x 0 0

(Mϒ j
c j +Mϒ

c j)Gc (Mϒ j
c j +Mϒ

c j)Gx Mc j
c j +Mϒ j

c j Gc j Mϒ j
c j Gx j

0 0 0 Mx j
x j





Xc
t

Xt

Xc
jt

X jt


(A.77)

+



0 M f
c +Mϒ

c G f

0 0

M f j
c j +Mϒ j

c j G f j (Mϒ j
c j +Mϒ

c j)G f

0 0


η



Γ
(0:o)
t

Γ
(0:o)
t| jt

Γ jt

Γ jt| jt


+



0

Nx j

0

Nx



s jt

st

 .

I summarize the parameter matrices and define:

 Γt+1

Γ j,t+1

=

MΓ

MΓ j





Γ
(0:o)
t

Γ
(0:o)
t| jt

Γ jt

Γ jt| jt


+

NΓ

NΓ j


s jt

st

 , where (A.78)

MΓ =


Mc

c +Mϒ
c Gc Mx

c +Mϒ
c Gx 0

0 Mx
x 0

 0 0 0

0 0 0

+
0 M f

c +Mϒ
c G f

0 0

η

MΓ j =


(Mϒ j

c j +Mϒ
c j)Gc (Mϒ j

c j +Mϒ
c j)Gx 0

0 0 0

 0 Mc j
c j +Mϒ j

c j Gc j Mϒ j
c j Gx j

0 0 Mx j
x j

 (A.79)

+

M f j
c j +Mϒ j

c j G f j (Mϒ j
c j +Mϒ

c j)G f

0 0

η

NΓ =

 0

Nx

 NΓ j =

 0

Nx j

 .

The guess for the extended state law of motion looks then as follows, while the matrices

of the expectational state variables will be defined in the course of the signal extraction
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problem.



Γ
(0:o)
t+1

Γ
(0:o)
t+1| j,t+1

Γ j,t+1

Γ j,t+1| j,t+1


=





MeΓ
eΓ

0 0 0

MeΓ
e jΓ Me jΓ

e jΓ MΓ j
e jΓ Me jΓ j

e jΓ

0 0 0 0

MeΓ
e jΓ j Me jΓ

e jΓ j MΓ j
e jΓ j Me jΓ j

e jΓ j


+



MΓ

0


0

MΓ j

0







Γ
(0:o)
t

Γ
(0:o)
t| jt

Γ jt

Γ jt| jt


+



NΓ

NeΓ


Ne jΓ

NΓ j

Ne jΓ j



s j,t+1

st+1

 (A.80)

The matrices of the Euler equation of forward looking variables are derived in the same

way. Recall (A.46) and plug in contemporaneous variables as well as the guess for forward

looking variables.

[([[
Q0

ϒ
GΓ 0

]
0 Q0

Γ j +Q0
ϒ

GΓ j 0

]
+Q0

ϒG f η f

)
+

([[
Q0

e jΓ 0

]
0 Q0

e jΓ j 0

]
+Q0

f η f

)
Te j

]


Γ
(0:o)
t

Γ
(0:o)
t| jt

Γ jt

Γ jt| jt



+(Q0
f j +Q0

ϒG f j)η f j



Γ
(0:o)
t

Γ
(0:o)
t| jt

Γ jt

Γ jt| jt


= Q1

F ηE jt



Γ
(0:o)
t+1

Γ
(0:o)
t+1| j,t+1

Γ j,t+1

Γ j,t+1| j,t+1


(A.81)

Reorganizing and using the state law of motion for the extended state space I find the
expression in the main text, (1.33):

η f j =C0 (
η f
)
+C1 (η)

(
Tk jM+ T̸=k jMTe j

)
where (A.82)

C0 (
η f
)
=−(Q0

f j +Q0
ϒG f j)

−1
[([[

Q0
ϒ

GΓ 0
]

0 Q0
Γ j +Q0

ϒ
GΓ j 0

]
+Q0

ϒG f η f

)
+
([[

Q0
e jΓ 0

]
0 Q0

e jΓ j 0
]
+Q0

f η f

)
Te j

]
C1 (η) = (Q0

f j +Q0
ϒG f j)

−1Q1
Fη

Te j =


0 I 0 0
0 I 0 0
0 0 0 I

0 0 0 I
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Kalman Updating

The Kalman updating equation is defined as follows:[
Γ
(0:o)
t+1| j,t+1

X j,t+1| j,t+1

]
−

[
Γ
(0:o)
t+1| jt

X j,t+1| jt

]
=

[
Ke jΓ

Ke jx j

]([
ϒt+1

ϒ j,t+1

]
−

[
ϒt+1| jt

ϒ j,t+1| jt

])
. (A.83)

In addition, we can compute the forecast error of the signals as:

[
ϒt+1

ϒ j,t+1

]
−

[
ϒt+1| jt

ϒ j,t+1| jt

]
= G

(
η
)



Γ
(0:o)
t+1

Γ
(0:o)
t+1| j,t+1

Γ j,t+1

X j,t+1| j,t+1

−


Γ
(0:o)
t+1| jt

Γ
(0:o)
t+1| jt

Γ j,t+1| jt

X j,t+1| jt


 , (A.84)

which simplifies, using (1.34), to:[
ϒt+1

ϒ j,t+1

]
−

[
ϒt+1| jt

ϒ j,t+1| jt

]
= J−1G1

([
Γ
(0:o)
t+1

X j,t+1

]
−

[
Γ
(0:o)
t+1| jt

X j,t+1| jt

])
, (A.85)

where J =
(

I −
[
Ge jΓ Ge jx j

]
K
)

, G1 =
[
GeΓ Gx j

]
and K =

[
K ′

e jΓ K ′
e jx j

]′
.

Plug (A.85) back into the Kalman updating equation (A.83) to find:[
Γ
(0:o)
t+1| j,t+1

X j,t+1| j,t+1

]
=

[
Γ
(0:o)
t+1| jt

X j,t+1| jt

]
+KJ−1G1

([
Γ
(0:o)
t+1

X j,t+1

]
−

[
Γ
(0:o)
t+1| jt

X j,t+1| jt

])

=
(
I −KJ−1G1

)[ Γ
(0:o)
t+1| jt

X j,t+1| jt

]
+KJ−1G1

[
Γ
(0:o)
t+1

X j,t+1

]
. (A.86)

Now, I make use of the state law of motion (1.32) and define:

A =
[
AeΓ Ax j

]
=

[
MeΓ

eΓ
0

0 Mx j
x j

]
and B =

[
NeΓ

Nx j

]
.
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to find

 Γ
(0:o)
t+1| j,t+1

X j,t+1| j,t+1

=


(
I −Ke jΓJ−1G1

)
AeΓ

(
I −Ke jΓJ−1G1

)
Ax j(

I −Ke jx jJ−1G1
)

AeΓ

(
I −Ke jx jJ−1G1

)
Ax j


Γ

(0:o)
t| jt

X jt| jt

 (A.87)

+

Ke jΓJ−1G1AeΓ Ke jΓJ−1G1Ax j

Ke jx jJ−1G1AeΓ Ke jx jJ−1G1Ax j


Γ

(0:o)
t

X jt

+
Ke jΓJ−1G1B

Ke jx jJ−1G1B

 .
s jt

st

 ,

which defines the parameter matrices of the guess of the individual expectation of the
hierarchy of expectation and the idiosyncratic state variables in the extended state law of
motion, (1.32).

To conclude the guess for the state law of motion, I only need to find the expression for
MeΓ

eΓ
. To find the state law of motion of the aggregate hierarchy of expectations, I aggregate

over (A.87):

Γ
(1:o)
t+1 = Me jΓ

e jΓΓ
(1:o)
t +MeΓ

e jΓΓ
(0:o)
t +Ne jΓTs

[
s j,t+1

st+1

]
,

where Ts is a matrix that sets the parameters of idiosyncratic innovations equal to zero.
Finally, I amend the hierarchy of expectation with the state law of motion of aggregate state
variables, (A.78):

MeΓ
eΓ =

[
MeΓ

Γ

MeΓ
e jΓ

]
+

[
0 0
0 Me jΓ

e jΓ

]
, and Ne =

[
NΓ

Ne jΓTs

]
.
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Kalman Gain

The Kalman filter reads:2[
Ke jΓ

Ke jx j

]
=

{
E

[([
Γ
(0:o)
t+1

X j,t+1

]
−

[
Γ
(0:o)
t+1| jt

X j,t+1| jt

])([
ϒt+1

ϒ j,t+1

]
−

[
Y t+1| jt
ϒ j,t+1| jt

])′]}

×

{
E

[([
ϒt+1

ϒ j,t+1

]
−

[
ϒt+1| jt

ϒ j,t+1| jt

])([
ϒt+1

ϒ j,t+1

]
−

[
ϒt+1| jt

ϒ j,t+1| jt

])′]}−1

= {PG′
1}{G1PG′

1}−1J. (A.88)

The variance-covariance matrix of the one period ahead forecast error is defined as:

P = E

([Γ
(0:o)
t+1

X j,t+1

]
−

[
Γ
(0:o)
t+1| jt

X j,t+1| jt

])([
Γ
(0:o)
t+1

X j,t+1

]
−

[
Γ
(0:o)
t+1| jt

X j,t+1| jt

])′
=

[
MeΓ

eΓ
0

0 Mx j
x j

]
P̂

[
MeΓ

eΓ
0

0 Mx j
x j

]′
+

[
Ne

Nx j

][
NeΓ

Nx j

]′
. (A.89)

The MSE is defined as:

P̂ =
(
I −KJ−1G1

)
P. (A.90)

As with partial information, I can substitute out J from the Kalman gain, the variance-
covariance of the one period ahead forecast error, the MSE and the state law of motion, by
defining:

K̃ = {PG′
1}{G1PG′

1}−1 = KJ−1. (A.91)

2Recall that for symmetric matrices, A= (J−1)G1PG′
1(J

−1)′, it holds that A= A′. Further, for a non-singular
matrix J−1 it holds that (J′)−1 = (J−1)′.
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B.1 The model

B.1.1 The household’s problem

The household’s maximization problem reads

max
{C jt ,H j f t ,B j,t+1,K j,t+1}

E jt

[
∞

∑
t=0

β
t
(C1−σ

jt

1−σ
− ψ

1+ γ

∫
H1+γ

j f t d f
)]

(B.1)

s.t.

B j,t+1

Rn
t

+ P̄jtC jt +Qn
jtY

kd
jt = B jt +W n

jt

∫
H j f t d f +Zn

jtK jt +
∫ 1

0
Π j f t d f +Π

k
jt (B.2)

Y kd
jt = K j,t+1 − (1−δ )K jt (B.3)

The maximization problem yields standard first order conditions,

0 =C−σ

jt −Λ jt P̄jt (B.4)

0 = Λ jtW n
jt −ψHγ

jt (B.5)

0 =
Λ jt

Rn
t
−βE jt

[
Λ j,t+1

]
(B.6)

0 = Λ jtQn
t −βE jt

[
Λ j,t+1

(
(1−δ )Qn

j,t+1 +Zn
j,t+1

)]
, (B.7)

where Λ jt is the Lagrangian multiplier of the budget constraint, i.e. real marginal utility.
Due to the nature of the problem, the individual budget constraint matters for the dynamics
of the model and cannot be ignored. On the aggregate level bond holdings are traded in net
zero supply, but the household on island j might have positive or negative bond holdings. As
the bond holdings can be negative makes the linearisation of the budget constraint non-trivial.
To overcome the issue, I follow Lorenzoni (2009).

Combine (2.33) with (2.35) to find the individual Euler equation for consumption of the
form

1
Rn

t
= βE jt

[
C−σ

j,t+1P̄jt

C−σ

jt P̄j,t+1

]
(B.8)
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Further, collect the expressions for the profits of the wholesale sector (2.41) and the
capital sector (2.50),

Π j f t =
(
1−µ jt

)
Pj f tYj f t

Π
k
jt = Qn

jtY
ks
jt − P̄jtX jt

as well as the real marginal cost of labour (2.39) and capital (2.40)

W n
jt

Pjt
= αµ jt

Yj f t

N j f t

Zn
jt

Pjt
= (1−α)µ jt

Y j f t

K j f t

and recall that labour market clearing requires
∫

N j f t d f =
∫

H j f t d f and that µn
jt = µ jtPjt .

Plug these expressions into the budget constraint (2.31).

βE jt

[
Cσ

jt P̄jt

Cσ
j,t+1P̄j,t+1

]
B j,t+1 + P̄jtC jt +Qn

t Y kd
jt =

B jt +αµ
n
jtYjt +(1−α)µn

jtYjt +
(
Pjt −µ

n
jt
)

Yjt +Qn
jtY

ks
jt − P̄jtX jt

Collect terms and define b j,t+τ = E jt

[
B j,t+τ

Cσ
j,t+τ

P̄j,t+τ

]
.

βb j,t+1 −b jt =−C1−σ

jt +
PjtYjt − P̄jtX jt

Cσ
jt P̄jt

I do not log-linearise the expressions of the bond holdings. However, the remaining
variables can be log-linearised normally.

βb j,t+1 −b jt =−C1−σ
∗ ĉ jt +

Y∗
Cσ
∗

(
ŷ jt + p̂ jt − ˆ̄p jt

)
− X∗

Cσ
∗

x̂ jt (B.9)
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B.1.2 The firm’s problem

The wholesale sector

The cost minimization problem of the intermediate goods producing firms reads:

min
{N j f t ,K j f t}

E jt

[W n
jt

Pjt
N j f t +

Zn
jt

Pjt
K j f t

]
, (B.10)

s.t. Yj f t = A jtNα
j f tK

1−α

j f t . (B.11)

The corresponding Lagrangian is:

min
{N j f t ,K j f t}

L j f t = E jt

[W n
jt

Pjt
N j f t +

Zn
jt

Pjt
K j f t −µ jt

(
A jtNα

j f tK
1−α

j f t −Y j f t

)]
. (B.12)

The first order conditions are:

0 = E jt

[W n
jt

Pjt
−αµ jt

Yj f t

N j f t

]
and (B.13)

0 = E jt

[W n
jt

Pjt
− (1−α)µ jt

Y j f t

K j f t

]
. (B.14)

The first order conditions can be combined with the production function to find:

µ jt =

(
1

PjtA jt

)(W n
jt

α

)α( Zn
jt

1−α

)1−α

. (B.15)

Conditional on the nominal marginal costs µn
jt = µ jtPjt , firms that can change prices

in a given period choose all the same path of prices, Pj f ,t+τ = P∗
jt , that maximize profits.

Marginal costs, and the price level on the island Pjt are taken as given. For the optimal price
setting, I apply the nominal stochastic discount factor Mn

jt,t+τ
as the firms are owned by the

households and profits are formulated in nominal terms.

max
{Pj f ,t+τ}

E jt

[
∞

∑
τ=0

θ
τMn

jt,t+τ

(
Pj f ,t+τ −µ

n
jt
)

Y j f ,t+τ

]
(B.16)

s.t. Yj f ,t+τ =
∫

Θ j,t+τ

(
Pj f ,t+τ

P̄i,t+τ

)−ε

Yi,t+τ di (B.17)
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I substitute the demand function into the objective function to find:

max
{Pj f ,t+τ}

E jt

[
∞

∑
τ=0

θ
τMn

jt,t+τ

(
P1−ε

j f ,t+τ
−µ

n
jtP

−ε

j f ,t+τ

)∫
Θ j,t+τ

P̄ε
i,t+τYi,t+τ di

]
. (B.18)

The first order condition yields the non-linear version of the new Keynesian Phillips
curve:

0 = E jt

[
∞

∑
τ=0

θ
τMn

jt,t+τ

(
(1− ε)P∗−ε

jt + εµ
n
jtP

∗−(1+ε)
jt

)∫
Θ j,t+τ

P̄ε
i,t+τYi,t+τ di

]
. (B.19)

At this point, I substitute the stochastic discount factor, realize that P∗
jt and Pjt are

independent of τ and hence can be pulled out of the sum, and rearrange, to find

P∗
jt =

ε

ε −1

E jt

[
∞

∑
τ=0

(βθ)τ λ n
j,t+τ

λ n
jt

1
P̄j,t+τ

µn
jt
∫

Θ j,t+τ
P̄ε

i,t+τ
Yi,t+τ di

]
E jt

[
∞

∑
τ=0

(βθ)τ λ n
j,t+τ

λ n
jt

1
P̄j,t+τ

∫
Θ j,t+τ

P̄ε
i,t+τ

Yi,t+τ di
] . (B.20)

By assumption,
∫

Θ j,t+τ
Pε

it Yit di = ε p̄t + yt + ε2
jt . Then, the log-linear approximation of

(B.20) reads:

p∗jt = E jt

[
∞

∑
τ=0

(βθ)τ
(
λ

n
j,t+τ −λ

n
jt − p̄ j,t+τ +µ

n
jt + ε p̄i,t+τ + yi,t+τ + ε

2
jt
)]

(B.21)

−E jt

[
∞

∑
τ=0

(βθ)τ
(
λ

n
j,t+τ −λ

n
jt − p̄ j,t+τ + ε p̄i,t+τ + yi,t+τ + ε

2
jt
)]

= E jt

[
∞

∑
τ=0

(βθ)τ
µ

n
jt

]
.

Write the infinite sum as a Bellman equation:

p∗jt = (1−βθ)µn
jt +βθE jt

[
p∗j,t+1

]
. (B.22)

Next, rewrite the log-linear version of the price state law of motion to become p jt =
1

1−θ
p∗jt +

θ

1−θ
p j,t−1, plug it into (B.22) and substitute µn

jt = µ jt + p jt . After rearranging, I
find the island specific linear new Keynesian Phillips curve:

π jt =
(1−βθ)(1−θ)

θ
µ jt +βE jt

[
π j,t+1

]
. (B.23)
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Final goods sector

The households choose the consumption goods that minimize the costs of the consumption
bundle subject to the Dixit-Stiglitz type of aggregator of the consumption bundle.

min
{Y jimt}

∫
Ξ jt

∫ 1

0
PimtY jimt di dm

s.t. Yjt =

(∫
Ξ jt

∫ 1

0
Y

ε−1
ε

jimt dm di
) ε

ε−1

(B.24)

The Lagrangian reads:

min
{Y jimt}

L jt =
∫

Ξ jt

∫ 1

0
PimtYjimt dm di− P̄jt

(
Yjt −

(∫
Ξ jt

∫ 1

0
Y

ε−1
ε

jimt dm di
) ε

ε−1
)
. (B.25)

The first order condition is:

∂L jt

∂Yjimt
= Pimt − P̄jt

(
Y
− 1

ε

jimt

(∫
Ξ jt

∫ 1

0
Y

ε−1
ε

jimt dm di
)− 1

1−ε

)
= 0, (B.26)

which I can reformulate to find:

Y jimt =

(
Pimt

P̄jt

)−ε

Yjt . (B.27)

I determine the price index by plugging the demand function (B.27) in the consumption
aggregator:

Yjt =

(∫
Ξ jt

∫ 1

0
Y

ε−1
ε

jimt dm di
) ε

ε−1

(B.28)

=

∫
Ξ jt

∫ 1

0

((
Pimt

P̄jt

)−ε

Yjt

) ε−1
ε

dm di


ε

ε−1

, (B.29)

which can be simplified to:

P̄1−ε

jt =
∫

Ξ jt

∫ 1

0
P1−ε

imt dm di. (B.30)
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Capital goods sector

The capital goods firm on island j chooses X jt to maximize its profits

max
{X jt}

Π
k
jt = E jt

[
Qn

jtφ

(
X jt

K jt

)
K jt − P̄jtX jt

]
(B.31)

The first order condition yields the equation for the nominal price of capital,

Qn
jt =

P̄jt

φ ′
(

X jt
K jt

) . (B.32)

B.1.3 Equilibrium dynamics

The individual equilibrium dynamics of

ϒ jt =
{

B jt ,K jt ,C jt ,Λ
n
jt ,H jt , P̄jt ,Pjt ,W n

jt ,Z
n
jt ,N jt ,

µ jt ,X jt ,Qn
jt ,Pjt ,A jt ,ω jt ,Y ks

jt ,Y
kd
jt ,Y jt ,Π jt ,Π

k
jt

}
are fully described by by the equations (2.31), (2.32), (2.33), (2.34), (2.35), (2.36), (2.38),
(2.39), (2.40), (2.41), (2.42), (2.43), (2.49), (2.50), (2.51), (2.54), as well as the functional
form of the capital adjustment function, the definition of composite productivity, a jt , idiosyn-
cratic productivity ω jt , the definitions of the price indices and nominal marginal costs, and
the market clearing condition for labour and capital. The model is completely specified by
the aggregate equations for {Rn

t ,at} which are (2.52) and the state law of motion of aggregate
productivity.

0 =
B j,t+1

Rn
t

+ P̄jtC jt +Qn
jtY

kd
jt −B jt −W n

jt

∫
H j f t d f (B.33)

−Zn
jtK jt −

∫ 1

0
Π j f t d f −Π

k
jt

0 = Y kd
jt −K j,t+1 +(1−δ )K jt (B.34)

0 =C−σ

jt −Λ
n
jt P̄jt (B.35)

0 = Λ jtW n
jt −ψHγ

jt (B.36)

0 =
Λ jt

Rn
t
−βE jt

[
Λ j,t+1

]
(B.37)
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0 = Λ jtQn
jt −βE jt

[
Λ j,t+1

(
(1−δ )Qn

j,t+1 +Zn
j,t+1

)]
(B.38)

0 = Yjt −A jtNα
jt K

1−α

jt (B.39)

0 =
W n

jt

Pjt
−αµ jt

Yjt

N jt
(B.40)

0 =
Zn

jt

Pjt
− (1−α)µ jt

Yjt

K jt
(B.41)

0 = Π jt −
(
Pj,t+τ −µ

n
jt
)

Yj,t+τ (B.42)

0 = Yjt −
∫

Θ jt

(
Pjt

P̄it

)−ε

Yit di (B.43)

0 = E jt

[
∞

∑
τ=0

(θβ )τ
Λ j,t+τ

Λ jt

(
(1− ε)P∗−ε

jt + εµ
n
jtP

∗−(1+ε)
jt

)∫
Θ j,t+τ

P̄ε
i,t+τYi,t+τ di

]
(B.44)

0 = Y ks
jt −φ

(
X jt

K jt

)
K jt (B.45)

0 = Π
k
jt −Qn

t φ

(
X jt

K jt

)
K jt + P̄jtX jt (B.46)

0 = Qn
jtφ

′
(

X jt

K jt

)
− P̄jt (B.47)

0 = φ jt −

(
ω1

1− 1
η

(
X jt

K jt

)1− 1
η

+ω2

)
(B.48)

0 = φ
′
jt −ω1

(
X jt

K jt

)− 1
η

(B.49)

0 = a jt −at −ω jt (B.50)

0 = ω jt −ρωω j,t−1 − ε jt (B.51)

0 = µ
n
jt −µ jtPjt (B.52)

0 = Pjt −
[
(1−θ)P∗1−ε

jt +θP1−ε

j,t−1

]1−ε

(B.53)

0 = P̄jt −
(∫

Ξ jt

P1−ε

it di
) 1

1−ε

(B.54)

0 = N jt −H jt (B.55)

0 = Y ks
jt −Y kd

jt (B.56)

0 = rn
t − (1−ρr)rn

∗−ρrrn
t−1 −ϕπ̃t (B.57)

0 = at −ρaat−1 −νt (B.58)
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B.1.4 Steady state

The steady state values of the system can then be derived conditional on the model’s deep
parameters Θ = {σ ,α,β ,δ ,γ,θ ,ε,ρa,ϕ,ρr,ψ,η ,ω1,ω2}. Idiosyncratic and aggregate pro-
ductivity as well as the price level are normalized to one in steady state and I target labour
supply to be H = H̄. Moreover, recall that φ

(
X∗
K∗

)
= δ and φ ′

(
X∗
K∗

)
= 1 by assumption,

which implies that X∗
K∗

= δ .

To compute the steady state values, first, drop the time subscripts. From (B.37), (B.44)
and (B.47) immediately follows that:

R∗ =
1
β
, (B.59)

µ∗ =
ε −1

ε
and (B.60)

Q∗ = 1. (B.61)

Next, I use (B.37) in (B.38):

Z∗ =
1
β
− (1−δ ), (B.62)

which I combine with (B.39) and (B.43) to find the steady state capital stock,

K∗ =

(
Z∗

(1−α)µ∗A∗Nα
∗

)− 1
α

. (B.63)

The steady state capital stock directly identifies production, (B.39), and in a second step,
capital demand, (B.35), wages, (B.40) and the profits of the wholesale sector, (B.42).

Y∗ = A∗Nα
∗ K1−α

∗ (B.64)

X∗ = δK∗ (B.65)

W∗ = αµ∗
Y∗
N∗

(B.66)

Π∗ = (1−µ∗)Y∗ (B.67)

(B.68)

It remains to solve for consumption and the weight, ψ , that determines the impact of
labour disutility to the household. To do so, realize that X∗ = Y ks

∗ = Y kd
∗ and H∗ = N∗ = H̄.
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This implies, as expected, that the capital producers generate zero profits in steady state.
Inserting all relevant steady state variables into (B.33), I find :

C∗ = Y∗−X∗. (B.69)

The steady state value for consumption defines Λ∗ via (B.35), which can be used to define
ψ:

ψ = Λ∗W∗H−γ
∗ . (B.70)

B.1.5 Log-linearisation around the steady state

Apply log-linearisation around the steady state to the equilibrium dynamics where ϒ̂ jt =

ln
(

ϒ jt
ϒ∗

)
denotes log deviations from steady state and lower case letters denote logs with the

exception of b j,t+τ . Furthermore, it is assumed that Θ jt draws a random idiosyncratic sample
around the aggregate values. The draws follow the normal distribution ε1

jt ∼ N(0,σε j1).
Ξ jt also draws a random sample around the aggregate values, with error terms being ε2

jt ∼
N(0,σε j2).

0 = βb j,t+1 −b jt +C1−σ
∗ ĉ jt −

Y∗
Cσ
∗

(
ŷ jt + p̂ jt − ˆ̄p jt

)
+

X∗
Cσ
∗

x̂ jt (B.71)

0 = δ ŷkd
jt − k̂ j,t+1 +(1−δ )k̂ jt (B.72)

0 =−σ ĉ jt − λ̂ jt − ˆ̄p jt (B.73)

0 = λ̂ jt + ŵn
jt − γ ĥ jt (B.74)

0 = λ̂ jt − rn
t −E jt

[
λ̂ j,t+1

]
(B.75)

0 = λ̂
n
jt + q̂n

t −E jt

[
λ̂

n
j,t+1 +β (1−δ )q̂n

t+1 +βZ∗ẑn
j,t+1

]
(B.76)

0 = ŷ jt −a jt −α n̂ jt − (1−α)k̂ jt (B.77)

0 = ŵn
jt − p̂ jt − µ̂ jt − ŷ jt + n̂ jt (B.78)

0 = ẑn
jt − p̂ jt − µ̂ jt − ŷ jt + k̂ jt (B.79)
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0 = ŷ jt − d̂ jt + ε p̂ jt (B.80)

0 = d jt − yt − ε pt − ε
1
jt (B.81)

0 = π jt −κµ jt −βE jt
[
π j,t+1

]
(B.82)

0 = π jt − p jt + p j,t−1 (B.83)

0 = ŷks
jt − φ̂ jt − k̂ jt (B.84)

0 = q̂n
jt + φ̂

′
jt − ˆ̄p jt (B.85)

0 = φ̂ jt − x̂ jt + k̂ jt (B.86)

0 = φ̂
′
jt +

1
η

(
x̂ jt − k̂ jt

)
(B.87)

0 = µ̂
n
jt − µ̂ jt − p̂ jt (B.88)

0 = n̂ jt − ĥ jt (B.89)

0 = ˆ̄p jt − p̂t − ε
2
jt (B.90)

0 = ŷks
jt − ŷkd

jt (B.91)

0 = a jt −at − ε jt (B.92)

0 = st −at − εt (B.93)

0 = rn
t − (1−ρr)rn

∗−ρrrn
t−1 −ϕπ̃t (B.94)

0 = at −ρaat−1 −νt (B.95)

B.1.6 State space representation

The idiosyncratic signals are ϒ jt =
[
a jt d jt p̄ jt

]′. The aggregate signals are ϒt =
[
st rn

t π̃t
]′.

Given these signals, the equilibrium conditions can be written in the state space system as
presented in Section 2.3.

The individual endogenous predetermined state variables are Xc
j,t+1 =

[
k j,t+1 b j,t+1

]′.
The individual endogenous contemporaneous state variable is Xn

jt =
[
p jt
]
. The individual

forward looking variables are Fjt =
[
cn

jt π jt
]′.
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Contemporaneous variables

Write contemporaneous variables that appear in state variables or forward looking variables in
terms of signals, individual endogenous state variables, individual forward looking variables.

First, combine (B.85) and (B.87).

x̂ jt = k̂ jt +η q̂n
jt −η ˆ̄p jt (B.96)

Second, combine (B.77) and (B.80).

n̂ jt =
1
α

(
d̂ jt − ε p̂ jt −a jt − (1−α)k̂ jt

)
(B.97)

Third, combine (B.73), (B.74), (B.78), (B.80) and (B.97).

µ̂ jt =
1+ γ −α

α
d jt −

1+ γ

α
a jt −

(1+ γ)(1−α)

α
k jt

−
(

1− ε +
(1+ γ)ε

α

)
p jt +σc jt + p̄ jt (B.98)

Finally, combine (B.73) and (B.98).

ẑn
jt =

1+ γ

α
d̂ jt −

1+ γ

α
a jt −

1+(1−α)γ

α
k̂ jt −

(1+ γ)ε

α
p̂ jt +σ ĉ jt + ˆ̄p jt (B.99)

The remaining contemporaneous variables do not need to be transformed to formulate

state and forward looking variables in terms of signals, state and forward looking variables in

the model at hand. The aggregate corresponding contemporaneous variables can be found by

integrating over the idiosyncratic contemporaneous variables. All contemporaneous variables

can be cast in the form (2.5).

ϒt

ϒ jt

=

BΓ1
ϒ

0

BΓ1
ϒ j BΓ j1

ϒ j


Γt

Γ jt

+
BΓ0

ϒ
0

BΓ0
ϒ j BΓ j0

ϒ j


 Γt−1

Γ j,t−1

+
B f

ϒ j 0

B f
ϒ j B f j

ϒ j


Ft

Fjt

+
Bs

ϒ
0

Bs
ϒ j Bs j

ϒ j


 st

s jt

 . (B.100)



B.1 The model 131

State variables

Individual state variables need to be written in terms of individual state and forward looking
variables as well as signals. To do so, I make use of the derivations in Section B.1.6. Inserting
and summarizing yields the following expressions.

βb j,t+1 −
(1− ε)Y∗

Cσ
∗

p̂ jt = b jt −C1−σ
∗ ĉ jt +

Y∗
Cσ
∗

d̂ jt −
Y∗−X∗ε

Cσ
∗

ˆ̄p jt −
X∗
Cσ
∗

k̂ jt −
X∗η

Cσ
∗

q̂ jt

(B.101)

k̂ j,t+1 = k̂ jt +δη q̂ jt −δη ˆ̄p jt (B.102)

p̂ jt = p̂ j,t−1 +π jt (B.103)

ω jt = ρωω j,t−1 + ε jt (B.104)

Aggregate state variables are mostly defined by the integral over the individual state
variables.

k̂t+1 = k̂t +δη q̂t −δη ˆ̄pt (B.105)

p̂t = p̂t−1 +πt (B.106)

Exceptions are aggregate decision rules such as the Taylor rule:

rn
t = (1−ρr)rn

∗+ρrrn
t−1 +ϕπ̃t . (B.107)

These equations can be cast directly in form (2.4):

AΓ1
Γ

0

0 AΓ j1
Γ j


Γt

Γ jt

=

AΓ0
Γ

0

0 AΓ j0
Γ j


 Γt−1

Γ j,t−1

+
A f

Γ j 0

0 A f j
Γ j


Ft

Fjt

 (B.108)

+

Aϒ
Γ

0

Aϒ
Γ j Aϒ j

Γ j


ϒt

ϒ jt

+
As

Γ
0

0 As j
Γ j


 st

s jt

 .

Euler equation

Individual forward looking variables need to be written in terms of individual state and
forward looking variables as well as signals. To do so, I make use of the derivations in
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Section B.1.6. Inserting and summarizing yields the following expressions.

0 = rn
t +σ ĉ jt + ˆ̄p jt −σE jt

[
ĉ j,t+1

]
−E jt

[
ˆ̄p j,t+1

]
(B.109)

0 =−q̂ jt +σ ĉ jt + ˆ̄p jt +β (1−δ )E jt
[
q̂n

j,t+1
]
− (1−βZ∗)σσE jt

[
ĉ j,t+1

]
− (1−βZ∗)E jt

[
ˆ̄p j,t+1

]
+βZ∗

1+ γ

α
E jt
[
d̂ j,t+1

]
−βZ∗

1+ γ

α
E jt
[
a j,t+1

]
−βZ∗

(1+ γ)ε

α
E jt
[
p̂ j,t+1

]
−βZ∗

1+(1−α)γ

α
E jt
[
k̂ j,t+1

]
(B.110)

0 = π jt −κσ ĉ jt −κ ˆ̄p jt −κ
1+ γ −α

α
d̂ jt +κ

(
1− ε +

(1+ γ)ε

α

)
p̂ jt +κ

1+ γ

α
a jt

+κ
(1+ γ)(1−α)

α
k̂ jt −βE jt

[
π j,t+1

]
(B.111)

These equations can be cast directly in form (2.6). Aggregate state variables that are

theoretically revealed like the nominal interest rate are written inside the expectation operator.

In the Matlab code these variables are specifically indicated and moved out of it. Without

this procedure the attribution of variables would become unclear. Therefore, I decided to do

as stated.

[
0 C f j

f j0

]Ft

Fjt

+[0 CΓ j1
f j0

]Γt

Γ jt

+[0 CΓ j0
f j0

] Γt−1

Γ j,t−1

+Cϒ
f j0

ϒt

ϒ jt

+ (B.112)

E jt

CF
f j1

 Ft+1

Fj,t+1

+Cϒ
f j1

 ϒt+1

ϒ j,t+1

+CΓ
f j1

 Γt+1

Γ j,t+1

+[CΓ1
f j0 0

]Γt

Γ jt

+[CΓ0
f j0 0

] Γt−1

Γ j,t−1


= 0.



B.2 Proofs 133

B.2 Proofs

B.2.1 Market clearing

Proposition 1. For all markets to clear it is necessary that agents take their choices based

on variables that are part of their information set only.

Proof. Define the budget constraint as the sum of income and sum of expenditures. Under-
stand that any term of the budget constraint consists of a factor of price and quantity. On the
markets in which the agent is price taker, he chooses his individual quantity or the factors that
determine the quantity. Moreover, individual quantities may depend on exogenous processes.
Next, realise that the price is the outcome of trading decisions of the agents participating in
the market. Hence, the agents that participate in the market knows the price of that market.
This is true for integrated markets over all islands, markets on a subsection of islands and
single islands. When agents have market power they choose the price additional to the
quantity. Concluding, the individual quantities and the prices of the markets in which they
interact are known to the agents.

Write the individual budget constraints as a function f of variables that are part of the
information set. Distinguish signals between endogenous (prices) and exogenous signals:

f (Xc
jt ,X

n
jt ,Fjt ,{ϒt ,ϒ jt},{ϒ

ex
t ,ϒex

jt }) = 0. (B.113)

Then, I find market clearing by aggregating:

f (Xc
t ,X

n
t ,Ft ,{Xc

t ,X
n
t ,Ft},{Xt}) = 0. (B.114)

Assume instead that agents take their choices based on the expectation of the components of
exogenous signals and realise that by definition exogenous variables cannot be affected by
the agents expectation or choice:

f (Xc
jt ,X

n
jt ,Fjt ,{ϒt ,ϒ jt},{Xt| jt ,X jt| jt}), (B.115)

which reads when aggregated:

f (Xc
t ,X

n
t ,Ft ,{Xc

t ,X
n
t ,Ft},{Xt|t}). (B.116)
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All but one variable are the same. Consequently, under the given assumption market clearing
is satisfied if and only if Xt|t = Xt .

B.2.2 Invariant parameter matrices

Proposition 2. The solution to the quadratic equation system that identifies ξ
n j
f j and ξ

c j
f j

coincides with the parameters of the full information solution.

Proof. Individual endogenous state variables are part of the information set. Hence, they will
not be part of ξ Z

f j.Through the state law of motion of individual endogenous state variables
all the weight is passed through to ξ

n j
f j and ξ

c j
f j , the same way as under full information.

This might not be true for idiosyncratic exogenous state variables. However, there is no
problem in identifying their root.
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B.3 Solution algorithm

The guess for forward looking variables reads:[
Ft

Fjt

]
= ξ

Γ

[
Γt−1

Γ j,t−1

]
+ξ

ϒ

[
ϒt

ϒ jt

]
+ξ

Z

[
Zt

Z jt

]
+ξ

S

[
st

s jt

]
. (B.117)

Further, the state law of motion reads:

AΓ1
Γ

0

0 AΓ j1
Γ j


Γt

Γ jt

=

AΓ0
Γ

0

0 AΓ j0
Γ j


 Γt−1

Γ j,t−1

+
A f

Γ j 0

0 A f j
Γ j


Ft

Fjt



+

Aϒ
Γ

0

Aϒ
Γ j Aϒ j

Γ j


ϒt

ϒ jt

+
As

Γ
0

0 As j
Γ j


 st

s jt

 . (B.118)

In addition, I cast contemporaneous variables in the form:

Bϒ
ϒ

0

Bϒ
ϒ j Bϒ j

ϒ j


ϒt

ϒ jt

=

BΓ1
ϒ

0

BΓ1
ϒ j BΓ j1

ϒ j


Γt

Γ jt

+
BΓ0

ϒ
0

BΓ0
ϒ j BΓ j0

ϒ j


 Γt−1

Γ j,t−1

+
B f

ϒ j 0

B f
ϒ j B f j

ϒ j


Ft

Fjt



+

Bs
ϒ

0

Bs
ϒ j Bs j

ϒ j


 st

s jt

 . (B.119)

B.3.1 Invariant solution

First, I combine the state law of motion (B.118) and contemporaneous variables (B.119) to
find the expressions in the main text (2.11) and (2.12).
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Multiply (B.119) with the inverse of the left hand side matrix:

ϒt

ϒ jt

=

Bϒ
ϒ

0

Bϒ
ϒ j Bϒ j

ϒ j


−1BΓ1

ϒ
0

BΓ1
ϒ j BΓ j1

ϒ j


Γt

Γ jt

+
Bϒ

ϒ
0

Bϒ
ϒ j Bϒ j

ϒ j


−1BΓ0

ϒ
0

BΓ0
ϒ j BΓ j0

ϒ j


 Γt−1

Γ j,t−1



+

Bϒ
ϒ

0

Bϒ
ϒ j Bϒ j

ϒ j


−1B f

ϒ j 0

B f
ϒ j B f j

ϒ j


Ft

Fjt

+
Bϒ

ϒ
0

Bϒ
ϒ j Bϒ j

ϒ j


−1Bs

ϒ
0

Bs
ϒ j Bs j

ϒ j


 st

s jt

 . (B.120)

Plug the result into (B.118):


AΓ1

Γ
0

0 AΓ j1
Γ j

−
Aϒ

Γ
0

Aϒ
Γ j Aϒ j

Γ j


Bϒ

ϒ
0

Bϒ
ϒ j Bϒ j

ϒ j


−1BΓ1

ϒ
0

BΓ1
ϒ j BΓ j1

ϒ j



Γt

Γ jt

=


AΓ0

Γ
0

0 AΓ j0
Γ j

+
Aϒ

Γ
0

Aϒ
Γ j Aϒ j

Γ j


Bϒ

ϒ
0

Bϒ
ϒ j Bϒ j

ϒ j


−1BΓ0

ϒ
0

BΓ0
ϒ j BΓ j0

ϒ j



 Γt−1

Γ j,t−1

+

A f

Γ j 0

0 A f j
Γ j

+
Aϒ

Γ
0

Aϒ
Γ j Aϒ j

Γ j


Bϒ

ϒ
0

Bϒ
ϒ j Bϒ j

ϒ j


−1B f

ϒ j 0

B f
ϒ j B f j

ϒ j



Ft

Fjt

+

As

Γ
0

0 As j
Γ j

+
Aϒ

Γ
0

Aϒ
Γ j Aϒ j

Γ j


Bϒ

ϒ
0

Bϒ
ϒ j Bϒ j

ϒ j


−1Bs

ϒ
0

Bs
ϒ j Bs j

ϒ j



 st

s jt

 . (B.121)

Invert the left hand side of (B.121) to find (2.11) and plug it back into (B.120) and
rearrange to find (2.12).[

Γt

Γ jt

]
= AΓ

[
Γt−1

Γ j,t−1

]
+AF

[
Ft

Fjt

]
+AS

[
st

s jt

]
(B.122)[

ϒt

ϒ jt

]
= BΓ

[
Γt−1

Γ j,t−1

]
+BF

[
Ft

Fjt

]
+BS

[
st

s jt

]
(B.123)
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Plug (B.117) into (B.122) and (B.123) to find the non-expectational part of the state space
system.[

Γt

Γ jt

]
=
(
AΓ +AF

ξ
Γ
)[ Γt−1

Γ j,t−1

]
+
(

AS +AF
ξ

S
)[ st

s jt

]
+AF

ξ
Z

[
Zt

Z jt

]
++AF

ξ
ϒ

[
ϒt

ϒ jt

]
[

ϒt

ϒ jt

]
=
(
BΓ +BF

ξ
Γ
)[ Γt−1

Γ j,t−1

]
+
(

BS +BF
ξ

S
)[ st

s jt

]
+BF

ξ
Z

[
Zt

Z jt

]
+BF

ξ
ϒ

[
ϒt

ϒ jt

]

Proceed as before and rewrite the two equations in such a way that the states and the
contemporaneous variables are independent from one another. This way, I find the equations
(2.17) and (2.18) in the main text.[

Γt

Γ jt

]
= MΓ

[
Γt−1

Γ j,t−1

]
+MS

[
st

s jt

]
+MF

ξ
Z

[
Zt

Z jt

]
(B.124)[

ϒt

ϒ jt

]
= GΓ

[
Γt−1

Γ j,t−1

]
+GS

[
st

s jt

]
+GF

ξ
Z

[
Zt

Z jt

]
(B.125)

B.3.2 Signal extraction problem

The guess for extended spate space is given by equation (2.19) in compact form[
Zt

Z jt

]
= M

[
Zt−1

Z j,t−1

]
+N

[
st

s jt

]
and

[
ϒt

ϒ jt

]
= G

[
Zt−1

Z j,t−1

]
+H

[
st

s jt

]
(B.126)

and in the extensive form by equation (2.21)
Γ
(0:∞)
t

Γ
(0:∞)
t| jt
Γ jt

X jt| jt

=


MeΓ

eΓ
0 0 0

MeΓ
e jΓ Me jΓ

e jΓ MΓ j
e jΓ Me jx j

e jΓ

MeΓ
Γ j Me jΓ

Γ j MΓ j
Γ j Me jx j

Γ j

MeΓ
e jx j Me jΓ

e jx j MΓ j
e jx j Me jx j

e jx j




Γ
(0:∞)
t−1

Γ
(0:∞)
t−1| j,t−1

Γ j,t−1

X j,t−1| j,t−1

+


NeΓ

Ne jΓ

NΓ j

Ne jx j


[

st

s jt

]
. (B.127)
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I verify the guess combining the guess (B.126) with (B.124) and (B.125).[
Γt

Γ jt

]
=
(
MΓ +MF

ξ
ZM
)[ Γt−1

Γ j,t−1

]
+
(

MS +MF
ξ

ZN
)[ st

s jt

]
(B.128)[

ϒt

ϒ jt

]
=
(
GΓ +GF

ξ
ZM
)[ Γt−1

Γ j,t−1

]
+
(

GS +GF
ξ

ZN
)[ st

s jt

]
(B.129)

which has the form of (2.22) and (2.23) in the main text.
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B.4 Miscellaneous

B.4.1 Convergence accuracy

Lorenzoni (2009) chooses changes in the impulse responses between different iterations
of the fixed point as a convergence criteria. The tolerance chosen is 1e−4 for the Kalman
filter and 1e−3 for the difference in the impulse responses. If one decreases the tolerance to
lower levels such as 1e−7 then the Matlab code provided as part of the publication does not
converge to a stable solution. The algorithm that I present works at an arbitrary tolerance
which comes only at the costs of speed. For the computations that I present within this paper,
I choose a tolerance of 1e−7.

The reason for the difference between the two algorithm is located in the solution to the
hierarchy of expectations. Lorenzoni (2009) chooses to solve the hierarchy of expectation
under the assumption that the state variables become revealed after T periods, in the veins of
Townsend (1983). However, he is using a formulation which does not require to write the
hierarchy of expectation in a fundamental moving average (MA) representation.

The state space system in his paper is written as Zt = AZt−1 +Bst and ϒt = GZt +Hs jt .
Consequently, he writes the Kalman updating equation after aggregation as:

Zt|t = (I −KG)AZt−1|t−1 +KGZt (B.130)

and guesses that Zt|t = ΞZt . Such that one finds:

ΞZt = (I −KG)AΞZt−1 +KGZt (B.131)

and when one defines a matrix which shifts the time subscript by one period H, then one can
equate the variables and finds Ξ = (I −KG)AΞH +KG. This is different from the original
setting in Townsend (1983) and this solution is not feasible with aggregate predetermined
state variables as in the paper at hand. Here, the state law of motion reads Zt = AZt−1 +Bst

and ϒt = GZt−1 +Hsst +Hs js jt . Then, the Kalman updating equation becomes:

Zt|t = (A−KG)Zt−1|t−1 +KGZt−1 +Hst . (B.132)
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The guess for the state law of motion of the hierarchy of expectation could be Zt|t = ΞAZt−1+

ΞBst , which leads to the expression:

ΞAZt−1 +ΞBst = (A−KG)ΞAZt−2 +ΞBst−1 +KGZt−1 +Hsst , (B.133)

which is not verifying the guess. The correct guess includes the history of shocks of the
signals which can be formulated as an MA component.

The important insight of the difference between the two approaches is not located in
the general representation. Instead, it is to be found in the specific model formulation.
In the new Keynesian model as presented in Lorenzoni (2009), the nominal interest rate,
denoted as it is known to the agents. Assume it be one of the state variables in Zt . If one
looks at equation (B.132), then the right hand side depends only on A as Zt−1|t−1 = Zt−1 for
it−1. This means that the updating equation depends only on the nominal interest rate, when
the state variable, the agents take their expectation of, depends on it and not through the signal.

In the formulation of (B.130) this is not true as Zt−1|t−1 and Zt are written in different
time periods. In effect one finds that the state law of motion of the hierarchy of expectation
in the code of Lorenzoni (2009) includes expectations of it while they theoretically should
not exist. In my eyes this is the strongest candidate as a reason why the solution is sensitive
to the convergence accuracy.
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C.1 The model

C.1.1 Households asset pricing choice

The households choose their asset portfolio as part of their maximization problem. For the
reason of conciseness, I write down only the part of the households problem that is relevant
to the portfolio choice. The household chooses the amount of zero coupon bonds B j,t+1 for
the real price Q f

t , the amount of equity S j,t+1 at the real price Vt and the amount of strips for
each of k different horizons Z j,t+k[Dt+k] at the real price of each of these strips Vt [Dt+k].

max
{C jt ,B j,t+1,S j,t+1,Z j,t+k[Dt+k]}

E jt

[
∞

∑
t=0

β
tU
(
C jt , ·

)]
(C.1)

s.t. Q f
t B j,t+1 +PtS j,t+1 +

K

∑
k=1

Vt [Dt+k]Z j,t+k[Dt+k]+C jt

= B jt +S jt
(
Pt +Dt

)
+

K

∑
k=1

Z jt [Dt+k]Dt (C.2)

The first order condition for consumption yields the expression for the real marginal
utility, Λ jt =Uc(C jt , ·), and the asset pricing formulae for the real price of the one period
zero coupon bond, equity and strips:

Q f
t = βE jt

[
Λ j,t+1

Λ jt

]
and (C.3)

Vt = βE jt

[
Λ j,t+1

Λ jt

(
Vt+1 +Dt+1

)]
(C.4)

Vt [Dt+k] = βE jt

[
Λ j,t+k

Λ jt
Dt+k

]
(C.5)

C.1.2 The risk free rate

Integrating and inverting the price formula for the zero coupon bond yields the formula for
the real risk free rate:

R f
t =

1
β

ΛtEt

[
1

Λt+1

]
. (C.6)
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The corresponding log-normal asset pricing formula reads:

R f
t =

1
β

exp

{
−
(
Et
[
λt+1

]
−λt

)
− 1

2
V art

[
λt+1

]}
. (C.7)

Recall that the variance of the log-normal distribution is constant and hence its variance
is equal to zero. The unconditional expectation of the expected growth rate of marginal
utility is also equal to zero and hence drops out, too. This is the same under full and under
heterogeneous information. However, a difference arises for the unconditional expectation of
the variance of the marginal utility, E

[
V art

[
λt+1

]]
. Under full information this expression

is equivalent to Var
[
λt+1 −Et

[
λt+1

]]
, while there is no simplifying representation under

heterogeneous information. The reason is that the aggregate state variables are known
contemporaneously under full information and hence the conditional variance is equal to
zero, while this does not hold under heterogeneous information.

Further, the unconditional expectation of the risk free rate can be written as:

E
[
R f

t
]
=

1
β

exp

{
E
[

λt −Et
[
λt+1

]
− 1

2
V art

[
λt+1

]]
+

1
2

Var
[

λt −Et
[
λt+1

]
− 1

2
V art

[
λt+1

]]}
(C.8)

=
1
β

exp

{
1
2

(
Var
[

Et
[
λt+1

]
−λt

]
−E

[
V art

[
λt+1

]])}
.

Additionally, the standard deviation of the risk free rate can also be derived in closed
form:

Std
[
R f

t
]
= E

[
R f

t
]√√√√exp

{
Var
[

Et
[
λt+1

]
−λt

]}
−1. (C.9)

Using the log-linear solution of the HI-DSGE model, the unconditional expectation and
the standard deviation are computed as follows. First, note that the model solution can be
represented in state space form with Xt including the aggregate state variables of the model
as well as the higher order expectation thereof. Yt includes all the jump variables.

Xt = MXt−1 +Nst ,

Yt = GXt−1 +Hst ,



144 Chapter 3

where st ∼ N(0, I). Next, I define Gλ and Gd to correspond to the rows in the matrix G

that correspond to the marginal utility and the dividends. The same notation is used for H.

Then, on the one hand, I compute the variance of the expected growth rate of marginal
utility as:

Var
[

Et
[
λt+1

]]
= ((Gλ +Gd)(TKM− I))Var[Xt ] ((Gλ +Gd)(TKM− I))′

+((Gλ +Gd)TKN −Hλ +Hd)((Gλ +Gd)TKN −Hλ +Hd)
′

The matrix TK shifts the order of expectation one level lower, i.e. E(k−1)
t

[
Xt
]
=TKE(k)

t
[
Xt
]
.

Moreover, the unconditional variance is the solution to a simply Riccati equation.

On the other hand, I compute the unconditional expectation of the conditional variance
of next periods marginal utility as:

E
[
V art

[
λt+1

]]
= (Gλ +Gd)V art [Xt ] (Gλ +Gd)

′+(Hλ +Hd)(Hλ +Hd)
′ .

In this equation, the conditional variance in time period t of the state vector in the same
period is defined by the mean square error also used for the Kalman filter. These two
expressions are sufficient to compute the unconditional expectation as well as the standard
deviation of the risk free rate.

C.1.3 Simulating the return to equity

For the return to capital, I first calculate the price for strips of a dividend payment in k periods
of time. For k = 1 the price of a strip reads:

Vt [Dt+k] = β
k exp

{
(Gλ +Gd)(TKM)(k−1)Xt + log(D∗)−λt

+
1
2
(Gλ +Gd)V art [Xt ] (Gλ +Gd)

′+(Hλ +Hd)(Hλ +Hd)
′
}
,
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where D∗ is the steady state value for the dividend payout. For k > 1 the price of a strip
is defined as:

Vt [Dt+k] = β
k exp

{
(Gλ +Gd)(TKM)(k−1)Xt + log(D∗)−λt

+
1
2

(
(Gλ +Gd)(TKM)(k)

)
V art [Xt ]

(
(Gλ +Gd)(TKM)(k)

)′
+

1
2

(
(Gλ +Gd)(TKM)(k−1)TKN

)(
(Gλ +Gd)(TKM)(k−1)TKN

)′}
.

I simulate Xt , λt and dt J = 100 times for T = 200 periods and compute in each period
the price of a strip up to K = 1000 periods ahead. The price of equity, Vt , is then the sum
over all K strips as shown in equation (3.8) of the main text. The unconditional expectation
of the return to equity can then be computed as the average over all periods of all samples of
the return to equity which is defined as the next periods payout over today’s period price:

E
[
Rt,t+1

]
=

1
J

1
T

J

∑
T

∑
t=1

Vt+1 + exp
{

dt+1}D∗
Vt

.

Analogously, I compute the standard deviation of the return to equity as the average of
the standard deviations of each sample:

Std
[
Rt,t+1

]
=

1
J

J

∑Std
[
Rt j,t j+1

]
.
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