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Abstract 

Natural products (NPs) remain the single most prolific source of inspiration for 
small-molecule drug discovery. Boosted by the increasing amount of data available 
on the chemical, biological, pharmacological and structural properties of NPs, 
computational approaches have become a mainstay in NP research. In silico 
methods are particularly useful as decision support tools, allowing experimenta-
lists to focus their resources on the most promising directions. However, the 
current knowledge of the quantity, quality and relevance of the available data as 
well as of the scope and limitations of cheminformatics methods in NP-based drug 
discovery is limited. 

The aims of this PhD thesis are hence to (i) develop a comprehensive under-
standing of the data that can be utilized for the advancement and application of 
in silico methods in the context of NP research, (ii) develop a new method able to 
identify NPs and NP-like compounds in large compound collections, in order to 
maximize the use of the available chemical data, and (iii) determine the capacity 
of a three-dimensional shape-based method to predict the macromolecular targets 
of complex small molecules such as complex NPs. 

In the first part of this work a comprehensive perspective on the scope and 
limitations of in silico methods in NP-based drug discovery is presented. This is 
followed by an exhaustive review of a large number of virtual and physical NP 
libraries that are relevant to applications in cheminformatics, especially in virtual 
screening. One result of this work is a comprehensive, carefully curated virtual 
collection of 250k NPs. By overlaying this database with a large set of readily 
obtainable small organic compounds we are able, for the first time, to estimate the 
number of readily obtainable NPs, which is in the range of 25k (10% of the known 
NPs).  

In the next phase of this PhD thesis, we conduct an in-depth analysis of the 
physicochemical and structural properties of the known NPs, the readily 
obtainable NPs, and individual NP libraries, as well as compare them with those 
of approved drugs. An in silico algorithm for removing sugars and sugar-like 
moieties from NPs and a rule-based approach for the identification of different NP 
classes are developed. This study shows that NPs are highly diverse. The majority 
of readily obtainable NPs are found to populate areas in chemical space that are of 
direct relevance to drug discovery. For several NP databases, a large number of 
compounds are identified which cover distinct areas in chemical space.  

One important learning from our survey of compound collections is that NPs 
are often mixed with NP derivatives and analogs, as well as with synthetic 
compounds. In fact, substantial numbers of potentially valuable NPs are included 
in commercial compound collections with no mention of NPs or with no labels 
that would allow their easy identification. This prompts us to develop a machine 
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learning approach that enables the automated cherry-picking of NPs and NP-like 
compounds from large compound collections. The method is based on a random 
forest algorithm that obtains a high classification accuracy on holdout data. 
Moreover, we implement a method that allows the visualization of the areas in a 
molecule that contribute to the classification of a compound as either a NP or 
synthetic compound. The best-performing models are provided via a free web 
service.  

The final part of this thesis is dedicated to what is currently one of the hottest 
research topics in cheminformatics, which is the prediction of the macromolecular 
targets of small organic compounds. NPs pose a particular challenge to such 
methods because of the scarcity of available bioactivity data on related compounds 
and the structural complexity of many NPs. The capacity of a three-dimensional 
shape-based approach is systematically explored to identify the biomacro-
molecular targets of structurally complex small molecules (including large and 
flexible NPs and macrocyclic compounds) based on their similarity to non-
complex small molecules (i.e. more conventional, "drug-like" synthetic com-
pounds). This approach obtains good success rates even for compounds that are 
clearly distinct in their structure from any of the ligands present in the knowledge 
base. Cases of complete failure are recorded only for a small number of targets. 
However, complex NPs prove to be challenging even with this robust approach. 

Overall, this PhD thesis provides a wealth of new information and in-depth 
knowledge on the available data and cheminformatics methods relevant to natural 
products-based drug discovery. The study has resulted in accurate models that 
allow the automated identification and extraction of NPs and NP-like compounds 
from compound collections, and in a thoroughly validated, three-dimensional 
shape-based approach for identifying the targets for complex small molecules, 
especially for complex NPs. 
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Zusammenfassung  

Naturstoffe stellen weiterhin die wichtigste Inspirationsquelle für die Entwicklung 
moderner Wirkstoffe dar. Mit der zunehmenden Verfügbarkeit experimenteller 
Daten über die chemischen, biologischen, pharmakologischen und strukturellen 
Eigenschaften von Naturstoffen konnten sich computergestützte Methoden als 
eine tragende Technologie in der Erforschung von Naturstoffen etablieren. Die 
theoretischen Ansätze erlauben es, die limitierten experimentellen Ressourcen in 
die vielversprechendsten Richtungen zu leiten. Das derzeitige Wissen über die 
Quantität, Qualität und Relevanz der verfügbaren experimentellen Daten, sowie 
die Anwendungsbereiche und Grenzen moderner chemieinformatischer 
Methoden im Bereich der naturstoffbasierten Arzneimittelentwicklung, sind 
jedoch begrenzt.  

Die Ziele dieser Doktorarbeit sind daher (i) die Entwicklung eines umfassenden 
Verständnisses über die verfügbaren experimentellen Daten, welche für die 
Weiterentwicklung und Anwendung von computerbasierten Methoden im Kon-
text der Naturstoffforschung genutzt werden können, (ii) die Entwicklung einer 
computerbasierten Methode für die automatisierte Erkennung von Naturstoffen 
und naturstoffähnlichen Verbindungen in großen Moleküldatenbanken (mit dem 
Ziel die Nutzung der verfügbaren chemischen Daten zu maximieren), und (iii) die 
Erforschung der Kapazität shape-basierter Methoden, die Zielproteine strukturell 
komplexer Wirkstoffe, einschließlich Naturstoffe, vorherzusagen. 

Im ersten Teil dieser Arbeit wird eine umfassende Analyse der Anwendungs-
bereiche und Grenzen moderner chemieinformatischer Methoden in der Natur-
stoffforschung präsentiert. Anschließend werden die verfügbaren und für die 
computergestützte Arzneistoffentwicklung relevanten Naturstoffdatenbanken 
umfassend analysiert. Ein wesentliches Resultat dieser Arbeit ist eine sorgfältig 
zusammengestellte, umfangreiche, virtuelle Strukturdatensammlung von 250,000 
Naturstoffen. Diese Moleküldatenbank wird mit einem umfassenden Datensatz 
der weltweit verfügbaren Substanzen verglichen. Dadurch kann zum ersten Mal 
die Anzahl der Naturstoffe abgeschätzt werden, die zeitnahe für eine 
experimentelle Testung zugänglich sind. Es handelt sich hierbei um etwa 25,000 
Substanzen (dies entspricht 10% aller bekannten Naturstoffe).  

In der nächsten Phase dieser Doktorarbeit werden physikalisch-chemische und 
strukturelle Eigenschaften der bekannten Naturstoffe und der verfügbaren Natur-
stoffe mit jenen der zugelassenen Arzneistoffe verglichen. Im Rahmen dieser 
Studie werden ein computerbasierter Algorithmus zur Entfernung von Zuckern 
und zucker-ähnlichen Fragmenten aus Naturstoffen sowie ein regelbasierter 
Ansatz für die Identifizierung verschiedener Naturstoffklassen vorgestellt. Die 
Arbeit zeigt die strukturelle Vielfalt der bekannten Naturstoffe. Viele Naturstoffe 
ähneln in ihren physikalisch-chemischen Eigenschaften jenen der Arzneistoffe, 
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andere Naturstoffe wiederum unterscheiden sich in diesen Eigenschaften deutlich 
von Arzneistoffen und decken andere Bereiche des chemischen Raums ab.  

Eine wichtige Erkenntnis aus dieser Doktorarbeit ist, dass Naturstoffe, deren 
Derivate und Analoga, und synthetische Verbindungen in virtuellen Substanz-
bibliotheken oft gemischt vorliegen und nicht entsprechend gekennzeichnet sind. 
Deshalb wird im Rahmen dieser Arbeit ein maschinelles Lernverfahren entwickelt, 
das automatisch Naturstoffe und naturstoffähnliche Substanzen in großen 
Substanzdatenbanken identifizieren kann. Die Methode basiert auf einem 
Random-Forest Algorithmus und erzielt eine hohe Klassifikationsgenauigkeit. 
Zudem wird eine Methode zur Visualisierung der Molekülbereiche, die 
maßgeblich zur Klassifizierung einer Verbindung als Naturstoff beziehungsweise 
als synthetische Verbindung beitragen, implementiert. Die besten Modelle sind 
über einen Web Service kostenlos für die Öffentlichkeit zugänglich.  

Der letzte Teil der Arbeit widmet sich der computerbasierten Vorhersage der 
Zielproteine kleiner organischer Verbindungen, einem hochaktuellen For-
schungsthema der Chemieinformatik. Naturstoffe stellen aufgrund ihrer oft 
hohen Komplexität und der Knappheit der verfügbaren Bioaktivitätsdaten über 
verwandte Verbindungen eine besonders große Herausforderung für solche 
Ansätze dar. Konkret wird ein Ansatz, der auf dem Vergleich der 
dreidimensionalen Strukturen von Molekülen basiert, untersucht, um 
Zielproteine strukturell komplexer Wirkstoffe (einschließlich großer, flexibler 
Naturstoffe und makrozyklischer Verbindungen) vorherzusagen. Die Vorhersage 
basiert auf der Ähnlichkeit der zu untersuchenden Substanzen zu strukturell 
einfachen Wirkstoffmolekülen (d.h. konventionellen, "Medikamenten-ähnlichen", 
synthetischen Verbindungen). Mit diesem Ansatz werden gute Erfolgsraten selbst 
für Substanzen, deren Struktur sich deutlich von allen Referenzsubstanzen 
abheben, erzielt. Nur in wenigen Fällen kann die Methode nicht zur Aufklärung 
der Zielproteine beitragen. Naturstoffe erweisen sich jedoch auch für diesen 
robusten Ansatz als besonders anspruchsvoll. 

Zusammenfassend liefert diese Doktorarbeit eine Vielzahl neuer Erkenntnisse 
über die für die Naturstoffforschung relevanten Datenbanken und chemie-
informatischen Methoden und trägt somit zu einem tiefgehenden Verständnis bei. 
Im Rahmen der Arbeit werden genaue Modelle für die automatische Identifi-
zierung und Extraktion von Naturstoffen und Naturstoff-ähnlichen Verbindungen 
aus Substanzbibliotheken entwickelt. Zudem wird ein gründlich validierter Ansatz, 
basierend auf dem Vergleich dreidimensionaler Moleküloberflächen, zur 
Identifizierung der Zielproteine strukturell komplexer Wirkstoffe (insbesondere 
komplexer Naturstoffe) erforscht.
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1. Introduction 

1.1. Background  

Natural Products (NPs) have a long and successful record of use as components of 
traditional medicines and herbal remedies. For modern small-molecule drug 
discovery, NPs remain the most prolific source of inspiration [1].As presented in a 
recent statistical analysis of approved drugs from 1981 to 2019, about two-thirds of 
all small-molecule drugs are related to NPs, including unaltered NPs and NP-
derivatives, NPs mimics and/or molecules containing NP pharmacophores [1].  

Because of the long history of evolution, NPs have a wide range of bioactivities 
in different organisms and a large number of NPs are regarded as privileged 
structures [2,3]. This is related to their high diversity in terms of molecular 
structures and physicochemical properties. Many NPs have favorable absorption, 
distribution, metabolism, and excretion (ADME) properties, and some lie outside 
the general drug-like chemical space [4,5]. Some NPs tend to be highly complex in 
terms of molecular structure, for example with regard to three-dimensional (3D) 
molecular shape, stereochemistry and ring systems [6–8].  

However, the bottleneck of NP-based drug discovery is the availability of 
materials for experimental testing. Computational methods have made 
considerable contributions in different aspects of NP-based drug discovery and 
provide support throughout different stages of in silico early drug discovery [9,10]. 
These methods have been shown to be able to help researchers to focus on the 
most promising (plant) materials for experimental testing [11–14]. 

In this chapter, the importance of NPs as sources of inspiration for drug 
discovery as well as the role of cheminformatics methods in NP-based research 
will be highlighted. The scopes and limitations of computational methods in (i) 
data curation and NP dereplication, (ii) chemical space analysis, visualization, 
navigation and comparison, (iii) quantification of NP-likeness, (iv) prediction of 
bioactivity spectra, ADME and safety profiles (toxicity), (v) natural product-
inspired de novo design and (vi) prediction of natural products prone to cause 
interference with biological assays, will be discussed in the following timely review 
(D1).  
 

[D1] Chen, Y.; Kirchmair, J. Cheminformatics in Natural Product-Based Drug 
Discovery. Mol. Inf. 2020, 39, 2000171. 

 
Available at https://doi.org/10.1002/minf.202000171. 
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Abstract: This review seeks to provide a timely survey of
the scope and limitations of cheminformatics methods in
natural product-based drug discovery. Following an over-
view of data resources of chemical, biological and structural
information on natural products, we discuss, among other
aspects, in silico methods for (i) data curation and natural
products dereplication, (ii) analysis, visualization, navigation
and comparison of the chemical space, (iii) quantification of
natural product-likeness, (iv) prediction of the bioactivities

(virtual screening, target prediction), ADME and safety
profiles (toxicity) of natural products, (v) natural products-
inspired de novo design and (vi) prediction of natural
products prone to cause interference with biological assays.
Among the many methods discussed are rule-based,
similarity-based, shape-based, pharmacophore-based and
network-based approaches, docking and machine learning
methods.

Keywords: cheminformatics · natural products · drug discovery · databases · in silico methods

1 Introduction

Natural products (NPs) have a long record of use as
components of traditional medicines and herbal remedies.
Even for modern small-molecule drug discovery they
remain the single most prolific source of inspiration.[1] In
fact, about two-thirds of all small-molecule drugs approved
between 1981 and 2019 are related, to different extents, to
NPs.[1] Whereas only 5% of the drugs that have been
introduced to the market during this timeframe are
unaltered NPs, 28% are NP derivatives, and 35% mimic
and/or contain a NP pharmacophore.[1] A highly visible
recognition of the relevance of NP-research for public
health is the award of the 2015 Nobel Prize in Physiology or
Medicine to William C. Campbell, Satoshi Omura, and
Youyou Tu for the discovery of two NPs (avermectin and
artemisinin) that led to fundamental improvements in the
treatment of diseases caused by parasites.

As a result of evolutionary processes, NPs have a wide
range of bioactivities in different organisms. For this reason
a substantial number of NPs are recognized as privileged
structures.[2,3] NPs are highly diverse in their molecular
structures and physicochemical properties. Many of them
have favorable ADME and physicochemical properties;
others are clearly beyond what is generally considered as
the drug-like chemical space.[4–6] NPs can be highly complex
in terms of molecular structure, in particular with regard to
their 3D molecular shape, stereochemistry, ring complexity
(macrocycles; bridged or fused ring systems) and conforma-
tional space (high number of rotatable bonds; low degree
of aromaticity).[7–9] This poses fundamental challenges to 3D
cheminformatics methods for which reasons the develop-
ment of force fields and algorithms for the prediction of the
protein-bound conformations of such complex molecules
remains one of the most actively pursued research topics in
cheminformatics.[10–15]

The real bottleneck of NP-based drug discovery, how-
ever, is the availability of materials for testing. The sourcing
process can be complex, lengthy and costly, and transport
across borders may prove legally challenging.[16] Once the
material has arrived at its destination, the production of
extracts, the in vitro testing for bioactivity, the identification

and isolation of the bioactive compounds from these
complex mixtures, the determination of the mode of action,
the resupply of compounds of interest (e.g. through partial
or total chemical synthesis), and the profiling of their
pharmacological, pharmacokinetic and toxicological proper-
ties all require expertise, substantial efforts, time and funds,
and there is no guarantee of success.[4,16,17]

Computational methods can make substantial contribu-
tions to NP-based drug discovery and support experimen-
talists throughout the hit discovery, hit-to-lead and lead
optimization phases.[18,19] They have been shown to be
particularly powerful, not just in identifying bioactive NPs,
but also in prioritizing (plant) materials for testing,[20–23]

hence helping experimentalists to focus their resources on
the most promising materials. Computational methods are
also employed, for example, in (i) data curation and NP
dereplication, (ii) chemical space analysis, visualization,
navigation and comparison, (iii) quantification of natural
product-likeness, (iv) prediction of bioactivity spectra,
ADME and safety profiles (toxicity), (iv) natural products-
inspired de novo design and (v) prediction of natural
products prone to cause interference with biological assays.

Compared to the costs involved in experimental
approaches, the funds required for in silico experiments

[a] Y. Chen, J. Kirchmair
Center for Bioinformatics (ZBH), Department of Computer Science,
Faculty of Mathematics, Informatics and Natural Sciences, Uni-
versität Hamburg, 20146 Hamburg, Germany
Tel.: +43 1-4277-55104
E-mail: johannes.kirchmair@univie.ac.at

[b] J. Kirchmair
Department of Pharmaceutical Chemistry, Faculty of Life Sciences,
University of Vienna, 1090 Vienna, Austria
Tel.: +43 1-4277-55104
E-mail: johannes.kirchmair@univie.ac.at
Special Issue “7th Strasbourg Summer School in Chemoinformatics”
(Dragos Horvath)
© 2020 The Authors. Published by Wiley-VCH GmbH. This is an
open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and re-
production in any medium, provided the original work is prop-
erly cited.
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seem almost negligible. An in-house high-performance
computing facility is no longer essential. Today, calculations
can be run (if at all needed) at very large scales in the cloud,
at moderate cost and low complexity. Merely software
license fees remain a substantial cost factor and have
constantly increased throughout recent years. At the same
time, we are now seeing a growing number of powerful
open-source tools becoming available, much like what has
been quite common to the field of bioinformatics. Some of
the most outstanding software in this context are RDKit[24]

and CDK[25,26] (both are open-source toolkits for cheminfor-
matics), KNIME[27] (an open-source analytics platform), and
scikit-learn[28,29] (an open-source Python module for machine
learning).

With this review, we aim to provide a succinct but
comprehensive overview of the scope and limitations of
cheminformatics methods in NP-based drug discovery in a
format that is accessible to researchers from different
domains with an interest in drug discovery. The discussion
covers a large number of state-of-the-art methods in
cheminformatics as well as data resources relevant to NP-
based drug discovery.

2 Natural Products Collections Relevant to
Computer-guided Natural Products Research

2.1 Virtual Natural Products Collections

The last decade has seen a steep increase in databases
providing access to chemical, biological, pharmacological,
toxicological and structural data on NPs. We recently
conducted comprehensive surveys of databases that are
particularly relevant to NP-based drug discovery.[6,30,31] As a
minimum requirement, any of the more than 30 databases
surveyed feature a chemistry-aware web interface for
searching and browsing molecular structures. Most of the
databases also offer free bulk download, enabling virtual
screening and other applications. From these studies we

gathered that the total number of NPs for which their
structures can be obtained via bulk download from free
databases is in excess of 250k, approaching 300k.

Unfortunately, the half-life of many (NP) databases is
short; only few of them are sustainably managed and under
continued development. Data quality is always of concern,
but when it comes to NPs, extra caution should be
exercised, in particular when using the data with computa-
tional methods relying on the accurate representation of
3D molecular structures. This is because stereochemical
information on NPs is fairly commonly inaccurate or
incomplete.

Virtual NP databases can be categorized into (i)
encyclopedic and general NP databases, (ii) databases
enriched with NPs used in traditional medicines, (iii)
specialized databases focused on specific habitats, geo-
graphical regions, organisms, biological activities, or even
specific NP classes. The largest of all free NP databases is
Super Natural II,[32] which consists of more than 325k NPs.
The database can be queried via a chemistry-aware web
interface but bulk download is not officially supported.
Among the most outstanding free, downloadable resources
is the Universal Natural Products Database (UNPD),[5] which
lists more than 200k NPs from all forms of life. Unfortu-
nately, this database appears to no longer be hosted.
Further large databases include the TCM
database@Taiwan,[33] which lists more than 60k NPs found
in Chinese medical herbs, the Natural Product Atlas,[34,35]

offering data on over 25k NPs from bacteria and fungi, and
the Collective Molecular Activities of Useful Plants (CMAUP)
database,[36] a collection of over 47k NPs from more than
5600 plants with their biological activities information.

In contrast to information on molecular structures, data
on the biological activities and protein-bound conforma-
tions of NPs remain sparse. By overlapping our set of
approximately 250k NPs with the full ChEMBL database (a
database providing bioactivity data on approximately 2
Million compounds),[37,38] we found that only about 16%
were present in the ChEMBL database and had at least one
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matics (ZBH) of the Universität Hamburg. She
received her bachelor’s degree in pharmacy
from Jilin University (2013) and her master’s
degree in medicinal chemistry from Peking
University (2016). Her research is focused on
the development and application of computa-
tional methods for the identification of bio-
active natural products and the prediction of
their biomacromolecular targets.

Johannes Kirchmair is an assistant professor in
cheminformatics at the Department of Phar-
maceutical Chemistry of the University of
Vienna and head of the Computational Drug
Discovery and Design Group (COMP3D). He
also is a group leader at the Center for
Bioinformatics (ZBH) of the Universität Ham-
burg. After earning his PhD from the Univer-
sity of Innsbruck (2007), Johannes worked in
different capacities at Inte:Ligand GmbH
(Vienna), BASF SE (Ludwigshafen), the Univer-
sity of Cambridge and ETH Zurich. He also
held a junior professorship in applied bio-
informatics at the Universität Hamburg (2014
to 2018) and an associate professorship in
bioinformatics at the University of Bergen
(2018 to 2019).

Review www.molinf.com

© 2020 The Authors. Published by Wiley-VCH GmbH Mol. Inf. 2020, 39, 2000171 (3 of 17) 2000171



bioactivity annotation.[31] Likewise, by overlapping the NP
dataset with all small-molecule ligands represented in the
Protein Data Bank (PDB), we found that for only about
2000 NPs at least one co-crystallized X-ray structure of high
quality is available.[6] The X-ray structures of three NPs
approved as drugs and bound to their target proteins are
shown in Figure 1.

Since the publication of our recent works,[30,31] more
than one dozen new NP databases have appeared and
existing ones have been updated. However, only few of
these databases offer bulk download of molecular struc-
tures. Among the most relevant databases to mention is
the Marine Natural Library,[40] which allows the download of
the full dataset of more than 14k marine NPs. In early 2020,
a new database was introduced which its authors claim to
be the world‘s largest collection of NPs.[41] It should be
noted that this database combines data from resources of
which some are known to also include substantial numbers
of NP derivatives and analogs, and that the data will require
additional curation for most applications in
cheminformatics.[41]

The reader is referred to refs. [30,31,41–45] for addi-
tional information on NP databases relevant to cheminfor-
matics.

2.2 Physical Natural Products Collections

Today, most of the hundreds of compound suppliers
worldwide provide comprehensive information on the
molecular structures (and other properties) of their com-
pounds for the purpose of virtual screening and other
applications free of charge. The majority of the commercial
compound collections are dominated by synthetic com-
pounds. By overlapping a comprehensive collection of
more than 250k NPs (which we compiled by curating and
merging all of the NP datasets available to us[31]) with the
7.3 million in-stock compounds listed in the ZINC
database[46,47] (a comprehensive database of compounds
that are available from various commercial sources and
research institutes), we found that only about 10% of the
known NPs (approximately 25k) are readily obtainable for
experimental testing.[31] This confirms that the availability of
materials for experimental evaluation represents the bottle-
neck in NP-based drug discovery. Note that by allowing
minor structural deviations between NPs and purchasable
compounds, meaning the inclusion of mainly NP derivatives
and analogs, the number of readily obtainable compounds
increases by roughly 10k to 30k.[31] It is also worthwhile
mentioning that the majority of the readily obtainable NPs
have physicochemical properties that are considered favor-
able in the context of drug discovery. In fact, more than half

Figure 1. Examples of approved NP drugs and how they bind to their target proteins: (A) (-)-galantamine, an acetylcholinesterase inhibitor
approved for the treatment of Alzheimer’s disease (PDB ID 1DX6), (B) tacrolimus, a macrocyclic immunosuppressant targeting the
immunophilin FKBP-12 (FK506 binding protein; PDB ID 1FKF) and (C) chenodeoxycholic acid, an endogenous bile acid that is used for the
treatment of hypocholesterolemia. Chenodeoxycholic acid stimulates the farnesoid X receptor (FXR; PDB ID 6HL1). Carbon atoms grey;
oxygen atoms red; nitrogen atoms blue. Hydrogen bonds formed between the ligand and the protein or water molecules are visualized by
red arrows (acceptors on the ligand side) and green arrows (donors on the ligand side); hydrophobic features are visualized as yellow
spheres, and negative ionizable features as red stars. Visualization and pharmacophore perception with LigandScout.[39]
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of them are fragment-sized (molecular weight below
300 Da),[31] hence offering ample opportunities for optimiza-
tion.

Purified NPs are available from more than 100 commer-
cial providers worldwide[31] but only a dozen of these
companies offer more than 5000 NPs. Pure collections of
genuine NPs are rare whereas mixed catalogues are
commonplace. In these mixed catalogues, however, genu-
ine NPs, NP derivatives and NP analogs are rarely labeled as
such. Surprisingly often there is no mention of NPs found
on the websites of compound providers, even of those
vendors that offer substantial numbers of different NPs.
Therefore, tools for identifying NPs and NP-like compounds
can be of high value to NP-based drug discovery (see
Section 6 for details).

The discussion of catalogue sizes should not obscure
the importance of compound diversity with respect to
physicochemical, structural and biological properties. In this
context it is encouraging to know that the (above-
mentioned) 25k readily purchasable NPs cover more than
5700 Murcko scaffolds. We also found that the readily
purchasable NPs give a good representation of all of the
major NP classes, such as alkaloids, steroids and
flavonoids.[6]

3 Computational Methods for Structure
Elucidation and Dereplication of Natural
Products

The sourcing of materials for the extraction and isolation of
NPs are expensive and time-consuming, and with increasing
knowledge of NPs, the chances for finding novel com-
pounds are diminishing. In order to enable the efficient use
of the available experimental resources, analytical and
computational methods are utilized in tandem in order to
identify known NPs as well as NPs with undesirable proper-
ties at the earliest possible point in time.[44] An important
component in this interplay of technologies are databases
providing measured analytical data (e.g. bioactivities,
chromatographic data, mass spectrometry (MS) and nuclear
magnetic resonance (NMR) spectroscopy data) for known
NPs and their interrogation with computational methods.
However, even the largest of these databases cover only a
small fraction of the known NPs, for which reason computa-
tional methods are increasingly being employed also for
the prediction of MS fragmentation and NMR spectra,
sometimes in combination with structure generators.[44]

There are elaborate algorithms in place which allow the
transformation of spectral data into representations (re-
duced to peak lists, numerical vectors, trees or others) that
enable the efficient comparison of spectra and ranking
according to their similarity. In other words, these methods
have the capacity to identify spectra derived not only from
the same compounds but also from structurally related
compounds. This means that the applicability of these

methods goes beyond known NPs and that they can
provide, for example, valuable hints on chemical classes
and functional groups. However, such analyses still require
manual interaction by an expert, hence limiting
automation.[48]

A main approach to computer-assisted dereplication is
the combination of analytical data with multivariate data
analysis.[44] Using dimensionality reduction techniques such
as principal component analysis (PCA), clustering methods,
and/or discrimination analysis can help to identify interest-
ing NPs in complex mixtures, e.g. NPs in extracts that are
unique to a particular organism of interest.[49,50]

Systems for computer-assisted structure elucidation
(CASE) aim to identify the correct structure of a compound
of interest based on the available spectroscopic data.[51]

More specifically, CASE systems enumerate the structures
that are consistent with the experimental (spectroscopic)
data and rank them according to their probability. Ideally,
CASE systems work in a fully automated fashion, at low
error rates. Elaborate CASE systems also take stereospecific
NMR data and/or calculations based on density functional
theory into account and hence can be used for the
assignment of stereochemical properties to NP structures.[51]

Machine learning approaches enjoy high interest in NP
dereplication. For example, in a recent study the capacity of
machine learning algorithms to assign NPs to eight NP
classes (such as chromans) based on 13C NMR spectroscopy
data was explored.[52] The best performance was obtained
with an XGBoost classifier. For most NP classes, more than
80% of the compounds of a test set were correctly
assigned. Another study successfully employed a convolu-
tional neural network-based approach for the rapid identi-
fication of new NPs from a filamentous marine
cyanobacterium.[53]

A different approach is taken by the NP-
StructurePredictor.[54] Based solely on targeted molecular
weights derived from m/z values obtained by liquid
chromatography-MS, this tool produces a rank-ordered list
of likely NP structures. In order to do so, the tool features a
structure generator that can combine the different scaffolds
and decorations (which draws from a large NP database),
and that can infer structures from structurally related
scaffolds.

For more information on experimental and computa-
tional methods for NP dereplication readers are referred to
recent reviews on this topic, for example, refs.
[44,48,55,56].

4 Computational Analysis of the
Physicochemical and Structural Properties of
Natural Products

Cheminformatics has been playing a key role in the
characterization of NPs by their physicochemical and
structural properties, and in the comparison of NPs with
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small-molecule drugs, drug-like compounds and other
types of (organic) molecules. NPs cover a much broader
chemical space than synthetic compounds and they
populate also areas in chemical space that are generally not
(or only with great difficulties) synthetically
accessible.[6,8,19,57,58] The structural uniqueness (and complex-
ity) of some NPs could allow them to target macro-
molecules that are otherwise undruggable.[16]

NPs are on average heavier and more hydrophobic than
synthetic drugs and synthetic, drug-like compounds.[59]

Their structural complexity is also often higher, in particular
with regard to stereochemistry (commonly quantified by
the number of chiral centers,[57,59–66] the number of fraction
of Csp3 atoms,[6,8] and/or the number of bridgehead atoms
in ring systems[67]) and 3D molecular shape.[8,68]

NPs show an enormous diversity of ring systems, in
particular of aliphatic systems.[6,8,57,63,65] One study showed
that 83% of core ring scaffolds of NPs are absent in
commercially available screening databases.[69] With regard
to atom composition, two of the most discriminative
features of NPs over synthetic compounds are the (on
average) low number of nitrogen atoms and high number
of oxygen atoms.[57,59,62–64] Nevertheless, a clear majority of
the known NPs, and even more so in physical NP libraries,
are drug-like.[6]

NPs from different kingdoms have distinct physicochem-
ical and structural properties.[66,70–76] For example, NPs with
macrocycles or long aliphatic chains are more commonly to
marine species than terrestrial species.[74] Also bacteria
produce many macrocyclic NPs.[75] Their NPs are character-
ized by a high proportion of heteroatoms and, related to
this, a high diversity of functional groups.[76]

5 Computational Methods for the Assessment
of the Structural Diversity of Natural Products

NPs are unrivalled in terms of structural diversity, a fact
which is also reflected on a fragment level.[77] Most of the
studies assessing the structural diversity of NPs and
comparing them to that of synthetic compounds make use
of the concept of molecular frameworks (scaffolds) intro-
duced by Bemis and Murcko.[78] In recent work, Ertl and
Schuhmann[75] show an intuitive visualization of scaffolds
characteristic to NPs and compare them with those of
synthetic compounds. They also provide a comparison of
scaffolds frequently observed in NPs produced by bacteria,
plants, fungi or animals. Rule-based methods offer a differ-
ent angle towards NP diversity analysis. They allow, for
example, the automated assignment and assessment of the
major NP classes.[6]

A powerful tool for the intuitive, visual analysis of the
structural diversity of sets of compounds is Scaffold
Hunter.[79,80] The Java-based, open source software features
a graphical user interface and multiple clustering algo-
rithms. Scaffold Hunter is based on the idea of the

hierarchical representation and classification of molecular
scaffolds (“scaffold tree”). An early version of this tool
formed the basis of the structural classification of NPs
(SCONP), a method for charting the chemical space of
NPs.[81]

One of the most commonly employed techniques for
mapping the chemical space is PCA,[6,58,59,64,73,82,83] which
projects high-dimensional data into a low-dimensional
space for improved interpretability, while keeping informa-
tion loss to a minimum. The most relevant result of PCA
and starting point for interpretation is the PCA scatter plot,
which shows the distribution of the data points in the low-
dimensional space. When interpreting a PCA scatter plot it
is very important to understand and consider the propor-
tion of variance explained by the shown (two or three)
principal components. Only if the proportion of variance
explained is sufficiently high, the observed distribution of
the data points is informative. This is typically not the case
for PCAs based on molecular fingerprints; physicochemical
property descriptors usually give better results with PCA.

To avoid the need for the recalculation of the principal
components as new compounds are added to the datasets,
a method named ChemGPS[84] was developed and extended
for use with NPs (“ChemGPS-NP”[85]). The method utilizes
predefined rules in combination with selected molecular
structures to render a “global drugspace map” into which
new structures are projected based on predicted PCA
scores. ChemGPS-NP has been used in several studies for
mapping the chemical space of small molecules,[71,86] for
mode of action prediction,[87] and for the analysis of
structure-activity relationships.[86,88]

Also self-organizing maps and generative topographic
maps have been regularly utilized for comparing the
molecular structures of NPs with those of drugs, and for
visualizing the structural diversity of fragment-sized and
non-fragment sized NPs.[66,89,90] One interesting observation
from these analyses is a high degree of resemblance of NPs
and synthetic drugs in term of their pharmacophore
features, despite profound differences in chemical
structure.[90]

Further powerful methods for dimensionality reduction
include T-distributed Stochastic Neighbor Embedding (t-
SNE)[91] and the recently introduced Uniform Manifold
Approximation and Projection for Dimension Reduction
(UMAP) method.[92] t-SNE produces plots where, overall,
similar objects are located in close proximity and dissimilar
objects are modeled by distant points. t-SNE can produce
visualizations that are superior to those from PCA but the
method does not scale well with the size of data sets.
UMAP is conceptually related to t-SNE and produces similar
results but it is faster.

The research group of Medina-Franco has been develop-
ing several methods for the intuitive characterization,
visualization and comparison of compound collections, with
focus on NP databases. For example, they developed the
Consensus Diversity Plot (CDP),[93] which allows the compar-
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ison of datasets by a single, straightforward 2D plot
representing the median (or other) values of four key
properties of choice (e.g. physicochemical property, molec-
ular diversity, scaffold diversity). Each dataset is represented
by a single data point. The data point is positioned in the
2D plot according to two properties of choice represented
by the x and y axes. The third property of choice is
represented by color coding of the data points, and the
fourth one (intuitively, this would be the database size) is
represented by the size of the data point. The method has
been used for the visual comparison of multiple small-
molecule databases[83,94–96] and is accessible via a web
service.[93]

Recently, researchers from the same group reported the
development of a new method for the representation of
the chemical space of compound databases by a single
fingerprint called Statistical-Based Database Fingerprint (SB-
DFP).[97] The SB-DFP is widely applicable and can be derived,
in principle, from any molecular fingerprint and for any
reference set. The SB-DFP is generated by comparing the
binomial distributions of features of the molecular finger-
print of choice among the compounds of a dataset of
interest and that of a reference dataset. Only bits for which
significantly higher “on” rates are observed in the molecular
fingerprint among the compounds in the dataset of interest
(than in the reference set) will be set to “1” in the SB-DFP.
The SB-DFP was utilized for assessing and visualizing the
similarity of the chemical space of sets of NPs and synthetic
compounds, confirming that NP collections cover ample
chemical space that remains to be explored (more
thoroughly) in the context of drug discovery.

6 Computational Methods for the Assessment
of Natural Product-likeness

Computational tools are able to discriminate NPs and NP-
like compounds from synthetic compounds with high

accuracy, and they are also able to quantify the NP-likeness
of compounds. As such they are commonly applied to
compound design, library design, the selection of NPs (and
NP derivatives and analogs) from mixed compound collec-
tions, and for compound prioritization.[59,98]

One of the most established approaches is the NP-
Likeness Score developed by Ertl et al.[99] Employing
Bayesian statistics, this score quantifies the NP-likeness of
compounds based on the similarity of their fragments with
those of known NPs. The NP-Likeness Score has been re-
implemented in different software and platforms, with
some modifications.[100–103] Further approaches include a
conceptually related method employing extended connec-
tivity fingerprints (ECFPs)[98] as well as a rule-based
approach.[104] More recently, we developed NP-Scout,[59] a
tool for identifying NPs and NP-like compounds in large
sets of molecules. The random forest classifiers are trained
on a large collection of known NPs and synthetic com-
pounds. On a representative test set, a classifier based on
MACCS keys obtained an area under the receiver operating
characteristic curve (AUC) of 0.997 and a Matthews
correlation coefficient (MCC) of 0.960. NP-Scout makes use
of similarity maps, which highlight areas in a molecule that
contribute to the prediction of a molecule as NP or
synthetic compound (Figure 2). NP-Scout is accessible via a
free web service.[105]

Most recently, the Natural Compound Molecular Finger-
print (NC-MFP) was introduced as a new approach of
describing in particular the structural features of NPs in
terms of the scaffolds and fragments they are composed
of.[106] The NC-MFP was shown to outperform established
fingerprints in discriminating NPs from synthetic com-
pounds.

Figure 2. Similarity maps of (A) vorapaxar and (B) empagliflozin. Green-highlighted atoms contribute to the classification of a molecule as a
natural product; orange-highlighted atoms contribute to the classification of a molecule as a synthetic compound. Adapted from [59] (CC BY
4.0; https://creativecommons.org/licenses/by/4.0).
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7 Computational Methods for the Identification
of Bioactive Natural Products

Computational methods have a strong track record in the
identification of bioactive NPs. The entire range of virtual
screening methods has been applied for NP research, from
simple, fast methods based on 2D molecular fingerprint
similarity to more complex, 3D methods based on molec-
ular shape similarity, pharmacophore models, molecular
interaction fields, or docking. More recently, machine
learning approaches have become a mainstay in virtual
screening for bioactive NPs.[107]

In particular 3D virtual screening methods are chal-
lenged by the structural properties of many NPs such as
high degrees of conformational flexibility, the complexity of
their molecular shapes and ring systems (notably macro-
cycles), insufficiencies of molecular force fields primarily
parameterized for synthetic compounds, and uncertainties
related to protonation states, tautomerism and oxidation
states (for example, the possible involvement of polyphe-
nols in redox cycles is often disregarded). One approach to
reduce the structural complexity of NPs is to remove the
sugars and sugar-like components from NPs in cases where
they are deemed not to be essential for bioactivity.[66,108]

This can be done, for example, by use of defined (SMARTS)
patterns.[6,100]

Given the sparsity of available structural data, docking
of NPs to the structures of macromolecules can pose a
profound challenge. This is because docking algorithms and
scoring functions are highly sensitive even to very small
changes in 3D structure such as those commonly induced
by ligand binding (including solvent effects). However, also
this hurdle may be overcome by the prudent use of
homology modeling techniques, induced fit docking ap-
proaches, and/or molecular dynamics simulations. In the
case of highly flexible proteins, docking against multiple,
representative protein structures (“ensemble docking”) may
be a good way forward (not only for virtual screening but
also for binding mode prediction).[109,110] Diligence and
patience will certainly be required and, above all, checks of
the plausibility of a hypothesis using all available informa-
tion can help to piece the puzzle together.

More often than in virtual screening-docking algorithms
produce good results in binding mode prediction.[111]

Provided that the NP of interest is not excessively large or
flexible (as a rough guide, not exceeding 35 heavy atoms or
eight rotatable bonds), that the ligand binding site is well-
defined (i. e. not overly shallow, not solvent-exposed), and
that the interaction between the binding partners involves
two or more directed interactions, there is a good chance
that a sufficiently accurate binding pose can be obtained
that offers crucial insights for the development of optimiza-
tion strategies. Binding pose prediction is more feasible
than virtual screening because it allows to largely disregard
the most challenging aspect of docking, which is the
scoring of compounds according to their binding affinity,

and it allows researchers to focus their effort on one specific
ligand-target pair. Importantly, in particular in the context
of NP research, docking enables the rationalization of
stereoselectivity in ligand binding (and other processes,
such as metabolism). The importance of using the correct
stereochemical information with 3D approaches, especially
with docking, cannot be overstated.

In the following paragraphs we briefly discuss represen-
tative examples of studies in which virtual screening was
successfully employed for the identification of bioactive
NPs. For more comprehensive discussion of applications,
the reader is referred to excellent reviews.[18,112]

Using katsumadain A (a diarylheptanoid inhibiting
influenza neuraminidase) as a template for 3D molecular
shape-based screening, a number of structurally distinct
NPs were identified that inhibit the viral enzyme with IC50

values in the submicromolar to low micromolar range (for
example artocarpin (1), which is depicted in Figure 3).[113] In
another study, pharmacophore-based virtual screening was
combined with a shape-based approach in order to identify
activators of the G protein-coupled bile acid receptor 1
(GPBAR1).[114] In addition to several NP databases also a
collection of synthetic compounds was screened. Among
the 14 selected NPs eight (57%) obtained a measured
receptor activation of at least 15% at 20 μM concentration.
Two of these compounds, farnesiferol B (2) and micro-
lobidene (3), are based on molecular scaffolds that had not
yet been associated with GPBAR1 modulation. Both com-
pounds were reported to have EC50 values of approximately
14 μM. Among the 19 selected synthetic compounds, only
two were active (applying the identical activity threshold).

Influenza neuraminidase has also been successfully
addressed by docking. For example, a database of NPs
related to plants endogenous to Malaysia was screened for
potential inhibitors of influenza neuraminidase.[20] From the
five plants with the highest hit rates in docking, twelve NPs
with moderate inhibitory activity on influenza neuramini-
dase were identified by experimental testing (one example
is rubraxanthone (4)), four of which had been ranked by
docking among the top-100 compounds in the hit list.

A pharmacophore approach was utilized to screen a
collection of 10k NPs related to traditional Chinese medi-
cine for compounds targeting the farnesoid X receptor
(FXR), a transcription factor involved in inflammatory liver
diseases.[115] Screening results indicated a high likelihood of
activity of lanostane triterpenes from the mushroom
Ganoderma lucidum. Several of these lanostanes were
isolated and subjected to experimental testing in a reporter
gene assay. Five lanostanes showed a dose-dependent
induction of FXR with EC50 values in the low micromolar
range, the most active ones being ergosterol peroxide (5)
and ganodermanontriol (6).[21]

Rupp et al.[116] explored a number of different machine
learning approaches in order to identify NP derivatives that
selectively activate the peroxisome proliferator-activated
receptors (PPARγ). The authors focused on the use of
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Gaussian process models (with different kernels) that they
employed to learn pharmacophoric patterns from a
medium-sized set of synthetic PPARγ ligands. By screening
and ranking several hundred thousand commercially avail-
able compounds, the authors identified a truxillic acid
derivative (7) as a selective activator of PPARγ (EC50=
10 μm).

Another study from the same lab[117] employed machine
learning-based virtual screening for the identification of
mimetics of the Alzheimer drug (�)-galantamine (Figure 1).
Like for many Alzheimer drugs, the therapeutic efficacy of
(�)-galantamine is linked to activities on multiple proteins
rather than a single one. In the search for efficacious
compounds it is hence important to consider polypharma-
cology. To this end, Grisoni et al. employed the machine
learning-based target prediction models SPIDER and TIGER
(which are discussed in more detail in the next section) to
identify (in this case synthetic) compounds with bioactivity
spectra that are comparable to that of (�)-galantamine.
Using these models, they selected 20 compounds from a
set of more than 3 Million purchasable compounds for
testing. Among the selected compounds, several showed
interesting activities in vitro. Two compounds of small size
were shown to have polypharmacological profiles that are
considered to be favorable for the treatment of Alzheimer’s
disease.

8 Computational Methods for the Prediction of
the Macromolecular Targets of Natural
Products

Knowing the macromolecular target(s) of small molecules is
of utmost importance to the assessment of the pharmaco-
logical efficacy and safety of compounds, and for their
further development. However, even for a substantial

number of marketed drugs the mode of action is unknown
or only vaguely understood. The road to the experimental
identification of the target(s) of small molecules can be very
lengthy and expensive, and there is a good chance to be
met by disappointment on the way, for example, when it
becomes clear that “the target” of a supposedly innovative
compound is an established drug target or, worse, a protein
known to be not a viable drug target. Computational
approaches are hoped to make a significant contribution to
making mode of action identification more efficient and
there is an increasing body of evidence that some of these
hopes are becoming reality (as will be discussed below).

In silico target prediction can be regarded as a large-
scale application of virtual screening (see the previously
discussed study of Grisoni et al.[117]), in the way that one,
several or many compounds are screened against the
widest possible set of macromolecules. A plethora of
methods and models have been reported in recent
years[118–121] and they have become established as important
tools in early drug discovery. Related to the challenges
involved in docking and structure-based methods in
general (in particular, the limited coverage of macromole-
cules by the available structural data), most approaches for
target prediction are ligand-based.

Ligand-based methods cover the full range from
straightforward similarity-based approaches to complex
machine learning and network-based approaches. Surpris-
ingly, despite today‘s abundance of computational methods
for target prediction, our understanding of the value of
these methods under real-world conditions remains
limited.[122] This is primarily because of the (in general)
prohibitive costs involved in the experimental, systematic,
prospective evaluation of such models, but also because of
the partly insufficient, superficial retrospective validation
protocols that are regularly employed.[122,123] To our best
knowledge, the only computational method for which a

Figure 3. Examples of natural products and natural product derivatives identified by virtual screening.
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systematic experimental validation has been reported so far
remains the well-known Similarity Ensemble Approach
(SEA).[124–126] One may rightly argue that validating models
on existing data generally leads to an overestimation of
how well a model will perform under real-world conditions,
however, there is at least one more important point to
consider when judging the value of target prediction
approaches based on retrospective validation studies: under
real-world conditions, researchers will rarely face the
situation where no hints on a compound‘s target are
available at all. A scenario where a substantial amount of
information is available on a compound of interest, e.g.
phenotypic assay readouts with different cell lines or data
for structurally related compounds, is more likely. By adding
up all of the available information it is likely that many
false-positive predictions can be ruled out, hence leaving
much fewer candidate targets to be investigated exper-
imentally.

In a recent, in-depth study of the performance and
scope of a similarity-based approach and a machine
learning approach for predicting the targets of small
molecules, we show that the reliability of predictions of
either approach strongly depends on the structural relation-
ship between the compounds of interest and compounds
represented in the training set (or knowledge base).[123] This
fact needs to be carefully considered when working with
NPs, given the fact that models for target prediction are
mostly designed for, and trained on, measured data for
synthetic compounds.

In the same study we found that, surprisingly, with the
currently available data, the similarity-based approach
generally outperformed the machine learning approach.
While a direct comparison of these two approaches should,
for several reasons, be considered with great caution, the
results suggest that the simple similarity-based approach is
a good choice, in particular also when taking into account
model interpretability. This is also reflected by the good
performance of other established, similarity-based models
such as SwissTargetPrediction.[127]

Most NPs are structurally distinct from more conven-
tional, synthetic compounds, which account for the bulk of
the measured activity data. More complex similarity-based
methods that compare molecules based on their 3D
molecular shape are designed to recognize such distant
structural similarity but until recently it was unclear how
well these methods would work in practice. We systemati-
cally explored the capacity of ROCS,[128,129] a leading, shape-
based screening engine that also takes into account
chemical feature distributions, to identify the macromolecu-
lar targets of “complex” small molecules based on a
knowledge base of “non-complex” compounds with meas-
ured bioactivity data.[130] For the purpose of this work, we
defined molecules as “complex” if they are either (very)
large in size (45 to 55 heavy atoms) or macrocyclic (and
large). In contrast, we defined molecules as “non-complex”
if they were small in size (15 to 30 heavy atoms). A total of

28 pharmaceutically relevant targets were studied. For each
of the targets a diverse set of 10 complex small molecules
was automatically generated. A single, low-energy confor-
mation of each of these molecules was used as a query for
screening with ROCS against a multi-conformational knowl-
edge base. The knowledge base represents 3642 targets
with a total of 272 640 non-complex small molecules. This
study found that ROCS correctly ranked at least one known
target among the top 10 positions (out of a list of 3642) for
up to 37% of the 280 complex small molecules serving as
queries. Considering the dissimilarity of the queries and the
compounds in the knowledge base, this performance is
remarkable. It indicates that target prediction is possible for
a substantial number of challenging complex molecules.
Note that researchers will be able, in many cases, to
strongly reduce the number of target candidates based on
expert knowledge and available information. Among the
280 complex small molecules were at least 31 known,
complex NPs and NP-like compounds. For these com-
pounds, the top-10 success rate was lower (23% vs. 37%).
This is related to the fact that the median Tanimoto
coefficient based on Morgan2 fingerprints of the complex
NP (or NP-like compound) and the closest non-complex
small molecule in the knowledge base is only 0.13. For pairs
of compounds sharing such a low degree of similarity it can
be expected that their binding modes are distinct, which is
generally beyond the scope of ligand-based methods. In
summary, taking into account capacity of these methods
and their low demand in computational power, we believe
it is worthwhile using these methods in any case as
valuable ideas may emerge from their use.

Besides 3D similarity-based approaches, also 3D phar-
macophore-based approaches are regularly used for target
prediction in the context of NP research. One example is a
profiling study in which secondary metabolites isolated
from the medical plant Ruta graveolens were screened
against a battery of more than 2000 pharmacophore
models representing over 280 targets.[131] From this in silico
screen, among other bioactive NPs and interactions,
arborinine was identified as an inhibitor of acetylcholines-
terase (measured IC50=35 μM).

In recent years the models for NP target prediction
which have seen most interest certainly are those based on
machine learning. Notable examples include SPiDER,[132]

TIGER,[133] and STarFish.[134] SPiDER uses self-organizing maps
in combination with “fuzzy” molecular descriptors that
allow for extending its usage to NPs.[135,136] The model was
instrumental in the identification of 5-lipoxygenase, PPARγ,
glucocorticoid receptor, prostaglandin E2 synthase 1, and
FXR as targets of the macrolide archazolid A,[137] and it
correctly predicted prostanoid receptor 3 as a target of
doliculide, a 16-membered depsipeptide.[138] SPIDER also
successfully identified the targets of several fragment-like
NPs such as (i) sparteine, for which the kappa opioid
receptor, p38α mitogen-activated protein kinase, muscar-
inic and nicotinic receptors were experimentally confirmed
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as targets,[3] (ii) DL-goitrin, for which the pregnane X
receptor and the muscarinic M1 receptor were experimen-
tally confirmed as targets,[139] (iii) isomacroin, for which the
platelet-derived growth factor receptor and the adenosine
A3 receptor were experimentally confirmed as targets,[139]

and (iv) graveolinine, for which cyclooxygenase-2 and the
serotonin 5-HT2B receptor were experimentally confirmed as
targets.[139]

Building on predictions from SPiDER, the Drug-Target
Relationship Predictor (DEcRyPT)[140] employs random forest
regression in order to generate a refined list of likely
macromolecular targets. Use of DEcRyPT led to the
successful identification of 5-lipoxygenase as a target of the
ortho-naphthoquinone β-lapachone.[140] The hydroquinone
form of β-lapachone was confirmed as a nanomolar
inhibitor of 5-lipoxygenase.

TIGER is conceptually related to SPiDER. However, it
employs modified CATS descriptors and uses a different
method for scoring the predicted targets (taking into
account ensemble similarity). TIGER successfully identified
the orexin receptor, glucocorticoid receptor, and cholecys-
tokinin receptor as targets of the marine NP (⌃)-marinopyr-
role A.[133] The model also rightly predicted, among other
proteins, estrogen receptors α and β as targets of the
stilbenoid resveratrol.[141]

STarFish is a stacked ensemble approach for target
prediction trained on synthetic compounds. Various ma-
chine learning algorithms were explored as part of the
development process. The best stacking approach identified
by the authors used molecular fingerprints as input for a
random forest model and a k-nearest neighbors model
(level 0). The probabilities predicted by these two models
for each of the targets are then used as input for a meta-
classifier based on logistic regression (level 1). The stacking
approach was found to perform substantially better on a
test set of NPs (ROC AUC 0.94; BEDROC score 0.73) than the
individual models (AUCs between 0.70 to 0.85; BEDROC
scores between 0.43 and 0.59).[134]

Also network approaches focused on the prediction of
the macromolecular targets of NPs have been reported. For
example, Cheng and co-workers developed statistical net-
work models in order to link NPs to anti-cancer targets[142]

and proteins involved in aging-associated disorders.[143]

Most recently, multi-task deep neural networks were
trained on medical indication data and employed for
identifying privileged molecular scaffolds in NPs (in this
case, scaffolds for which multiple NPs built on the identical
scaffold are active in the same indication).[144] Based on the
predictions of these models, a privileged scaffold dataset
for 100 indications was compiled that could serve as a
starting point for NP-based drug discovery.

For additional information on this topic, the reader is
referred to refs. [18,19,145].

9 Computational Identification of Natural
Products Likely to Interfere with Biological
Assays

The inclination of NPs to cause interference with biological
assays continues to pose a significant challenge to the
experimental screening of NPs.[146,147] The flavonoid querce-
tin, a known aggregator and pan-assay interference com-
pound, gives an illustrative example of the scale of the
problem: as of July 28, 2020, the PubChem Bioassay
database listed quercetin as conclusively active in more
than 800 unique bioassays, which represents a hit rate of
more than 50% (among all conclusive assay outcomes).

By far the most commonly observed mechanism of
assay interference is aggregate formation, which occurs
under specific assay conditions.[148] Further relevant mecha-
nisms are covalent binding, redox-cycling, membrane
disruption, metal chelation, interference with assay spectro-
scopy, and decomposition in buffers.[149]

The development of computational approaches aiming
to tackle this problem has been slow. Until recently, tools
accessible to users included several rule sets, few similarity-
based approaches, and a statistical approach. Among the
rule sets, the best known and most applied collection is the
pan-assay interference compounds (PAINS) rule set.[149,150]

Although clearly declared by its inventors, users of the
PAINS rules set all too often neglect the significant
limitations of its scope, applicability and reliability. Further
examples of relevant rule sets include the REOS rules[151]

and a set of rules derived from an NMR-based method for
identifying small molecules that cause false-positive assay
outcomes due to reactivity (ALARM NMR).[152]

A useful similarity-based approach is Aggregator Advi-
sor, which flags compounds which are in a close structural
relationship to known aggregators (a simple approach of
which negative outcomes of course do not indicate the
benignity of compounds).[153] The statistical approach, called
BADAPPLE,[154] calculates a promiscuity score based on
molecular scaffolds.

More recently, we introduced Hit Dexter 2.0, the second
generation of a set of machine learning models that are
designed to identify compounds that are likely to show
frequent hitter behavior in primary screening assays and/or
confirmatory dose-response assays, regardless of the under-
lying (interference) mechanism.[155]

All these approaches have in common that they are
derived from datasets dominated by synthetic compounds.
As we point out in our work on Hit Dexter 2.0, the training
set, even though consisting of about 250k compounds,
covers only a small fraction (approximately 15%) of the
known NPs with compounds that are structurally sufficiently
similar so that reliable predictions by the model can be
expected.[155] This means, once again, that caution must be
exercised when using any of these approaches in particular
in the context of NPs.
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10 De Novo Design of Nature-inspired
Compounds and Compound Collections

Limited synthetic accessibility poses a major challenge to
the exploration and use of NPs and NP-derived
compounds.[19,156] In order to overcome this hurdle, re-
searchers have devised a number of strategies for the
design of synthetically accessible compounds with NP-like
properties. For example, diversity-oriented synthesis (DOS)
is a concept that utilizes pairs of complexity-generating
reactions to produce diverse and complex compounds with
NP-like architectures (enriched with stereogenic centers and
sp3-hybridized atoms).[156,157] In contrast to DOS, biology-
oriented synthesis (BIOS) starts from biologically active
scaffolds and seeks to generate small to medium-sized
collections of complexity-reduced, NP-like compounds.[80,158]

BIOS is guided by the hierarchical representation and
classification of molecular scaffolds, as well as the structural
similarity of the ligand-sensing cores of proteins.[81,159]

A further strategy for the efficient synthesis of diverse,
NP-like compounds utilizes chemoselective reactions for the
distortion of ring systems that are part of readily available
NPs.[160,161] Common conversions in this context include ring
cleavage, ring expansion, ring fusion and ring rearrange-
ments.

Novel classes of compounds can also be derived by
fragment-based compound design starting from NP-derived
fragments.[156] This NP-inspired strategy may enable the
efficient exploration of the biologically relevant chemical
space beyond the known NPs and NP scaffolds.

Shifting the focus to computational approaches, Har-
tenfeller et al.[162] developed DOGS, a de novo design tool
which utilizes information on more than 25k readily
available synthetic building blocks in combination with a

large set of established reaction rules to generate com-
pounds which are likely synthetically accessible. Impor-
tantly, DOGS utilizes structural and pharmacophoric de-
scriptions of (bioactive) reference compounds in order to
steer the compound generation process into desired
directions.

Starting from NPs active on the retinoid X receptor
(RXR), DOGS was employed for the design of novel,
synthetically accessible, NP-inspired RXR ligands. Five out of
six compounds designed by DOGS proved to be RXR
agonists and to have similar nuclear receptor selectivity
profiles to the respective templates (one example is 8,
shown in Figure 4).[135] In a further study, DOGS was utilized
for the design of mimics of (�)-englerin, a complex
sesquiterpene with potent anti-proliferative activity.[163] A
total of 323 unique designs were generated by DOGS. After
several filtering and scoring steps, two proposed molecules
(9 and 10) were selected and synthesized (one thereof with
a slight modification). Both compounds were confirmed in a
functional, cell-based assay as potent inhibitors of the
transient receptor potential melastatin 8 (TRPM8) ion
channel.[164]

In a follow-up study, the above-mentioned ranking
approach was extended to take into account also the 3D
molecular shape similarity (based on global fractal dimen-
sionality) of the 323 designs.[165] One of two compounds
selected by this approach (11) was again confirmed as
potent inhibitor of TRPC4 and TRPM8 channels.

Merk et al. used a deep recurrent neural network
approach for the de novo design of RXR modulators.[166] The
neural network was trained on synthetic compounds with
measured bioactivities on RXR. By fine-tuning the model
with a small set of NPs modulators of RXR, the authors
showed that their model was able to produce synthetically

Figure 4. Examples of de novo designed molecules inspired by natural products.
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accessible NP mimetics that have a high chance of being
active on the intended target. Following a selection
procedure that involved target prediction and the assess-
ment of molecular similarity, three designs were selected
for experimental testing of which two compounds (12 and
13) were confirmed to modulate the RXR with a potency
that is comparable with that of the templates.

For additional information on de novo design in the
context of NP research, the reader is referred to ref. [19].

11 Computational Prediction of ADME and
Safety Profiles of Natural Products

NP-based drug discovery often faces challenges related to
the ADME and safety profiles of NPs. Among the most
prominent examples of anti-targets addressed by NPs is the
hERG channel[167] (its blockage is linked to potentially fatal
cardiac arrhythmia), cytochrome P450 enzymes (which can
cause drug-drug interactions and toxicity), and the P-
glycoprotein (an efflux pump with broad substrate specific-
ity that can effectively cause drug resistance). A plethora of
computational models of different kinds (i. e. statistical
models, machine learning models, pharmacophore models,
docking, etc.) address these and many other anti-targets
and endpoints.[96,168–173] However, it is important to consider
that, as a result of the available data, these and most other
in silico models are trained and/or tested on compounds
that are primarily of synthetic origin. Therefore, extra
caution must be exercised in relation with NPs, and the
applicability domain of the models must be closely
observed.

Not all models are equally affected by the structural and
physicochemical differences of NPs and synthetic com-
pounds. For example, the applicability of Hit Dexter 2.0 to
NPs is limited. The reliability of Hit Dexter’s predictions has
been shown to decrease substantially when moving away
from the training data beyond a certain point, and the
training data are primarily composed of synthetic com-
pounds. In contrast, a conceptually related machine learn-
ing model for the prediction of the sites of metabolism of
small molecules, FAME 3, was shown to perform well on
NPs, even though the majority of compounds in the
training set are again of synthetic origin.[174] The reason for
the high robustness of the FAME 3 models and their good
performance on NPs is that the liability of atom positions in
molecules is described based on their proximate atom
environment, and these proximate neighborhoods are
much more redundant among NPs and synthetic com-
pounds than their global molecular similarity.

12 Summary

NPs pose some extraordinary challenges to experimentalists
and theoreticians alike, but statistics on recently approved,

small-molecule medicines show that the research of NPs is
worth all the effort and can yield valuable, innovative drugs.
Modern in silico methods can make a substantial contribu-
tion to the acceleration and de-risking of NP-based drug
discovery. However, the applicability of models must be
closely observed, in particular when working with NPs as
computational approaches are mostly designed for, and
trained on, data for synthetic compounds. Unfortunately,
even the recently developed models still often lack robust
definitions of the applicability domain and do not warn
users adequately about compounds for which predictions
are not reliable. Researchers may in particular feel tempted
to use one of the many free, user-friendly web servers to
quickly predict physicochemical or biological properties of
NPs. Obviously, also for these web services the principle
holds true that in the absence of robust indicators of the
reliability of individual predictions, these predictions are not
to be trusted.

Given the reinvigorate interest in NP research, the
growing amount of accessible biological, chemical and
structural data, and advances in algorithms, modeling
techniques and computational power, the future will see
the continued integration of computational methods in NP-
based drug discovery pipelines.
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1.2. Aims 

A wide range of cheminformatics methods are applied in natural products-based 
drug discovery, but most of them are designed for, and trained on data from, 
synthetic compounds. The goal of this doctoral research project was to obtain an 
in-depth understanding of the quality, quantity and reach of the data on NPs 
available in the public domain, and to advance computational methods that allow 
the exploitation of these data, for example for virtual screening and target 
prediction. 

The aim of the first phase of this research project is to obtain a comprehensive 
overview of data resources for the computer-guided discovery of bioactive NPs, 
including resources focused on the physicochemical properties of NPs or their 
interaction with macromolecules. The study should render, for the first time, a 
clean and comprehensive picture of the number of known NPs and readily 
obtainable NPs (Chapter 2.1). 

With the new insights gained during this study and the cheminformatics 
infrastructure in place, the aim of the second phase of this research project is to 
obtain an in-depth understanding of the physicochemical and structural 
properties of NPs and the subset of readily obtainable NPs, and how these 
properties compare to those of approved drugs (Chapter 3.1).  

Many NP data sets have quality issues. For example, while claiming to consist 
of only genuine NPs, many databases also contain NP-derivatives and NP-analogs. 
On the other hand, many compound libraries presented as synthetic compound 
collections are found to contain surprisingly high numbers of NPs. In order to 
maximize the accessibility of chemical data on NPs, the aim of the third part of 
this study is to devise a novel machine learning approach for the identification of 
NPs and NP-like compounds in large molecular libraries (Chapter 3.2). 

The aim of the final part of this study is to adopt a computational method for 
one of the most pressing questions in cheminformatics, and in the context of NP 
research in particular: What are the macromolecular targets of small molecules? 
A few studies suggest that computational approaches can make a significant 
contribution to answering this question but no systematic study on this topic in 
the context of natural products research has been published as of yet. As we show 
in Chapter 3.3, 3D approaches based on molecular shape similarity may be able to 
recognize even distant molecular similarity and to provide valuable indications of 
the likely targets of NPs.  
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2. Data Resources and Methods 

In this section, the data resources and methods of direct relevance to this work are 
described. Additional information on cheminformatics methods relevant to 
natural products-based drug discovery is provided in D1. 

2.1. Data Resources for the Computer-Guided Discovery of 
Bioactive Natural Products 

Due to the importance of NPs in drug discovery an increasing number of NP 
databases have become available in recent years. These databases enable large-
scale virtual screening for the discovery of bioactive NPs, and the study of the 
physicochemical and biological properties characteristic to NPs. They can provide 
inspiration for NP-based drug discovery and be of value to many additional 
applications. 

In 2017, we conducted a comprehensive and detailed survey of data resources 
on NPs focused on resources that are of relevance to the computer-assisted 
discovery of bioactive NPs. In total, we reviewed 25 virtual and 31 physical NP 
libraries and determined the types, quantity and quality of data provided by these 
resources. (D2) 

One of the main conclusions of this work is that the number of known NPs is 
approximately 250k, and that roughly 10% (25k) of these NPs are readily obtainable 
for testing. By allowing minor structural deviations to include mainly NP 
derivatives and analogs, the number of readily obtainable compounds increases 
by roughly 10k to 30k. Furthermore, a large number of fragment-sized NPs 
especially for the readily purchasable NPs were identified. 

 

[D2] Chen, Y.; de Bruyn Kops, C.; Kirchmair, J. Data Resources for the Computer-
Guided Discovery of Bioactive Natural Products. J. Chem. Inf. Model. 2017, 57 
(9), 2099–2111. 
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ABSTRACT: Natural products from plants, animals, marine life, fungi, bacteria, and other organisms are an important resource
for modern drug discovery. Their biological relevance and structural diversity make natural products good starting points for drug
design. Natural product-based drug discovery can benefit greatly from computational approaches, which are a valuable precursor
or supplementary method to in vitro testing. We present an overview of 25 virtual and 31 physical natural product libraries that
are useful for applications in cheminformatics, in particular virtual screening. The overview includes detailed information about
each library, the extent of its structural information, and the overlap between different sources of natural products. In terms of
chemical structures, there is a large overlap between freely available and commercial virtual natural product libraries. Of particular
interest for drug discovery is that at least ten percent of known natural products are readily purchasable and many more natural
products and derivatives are available through on-demand sourcing, extraction and synthesis services. Many of the readily
purchasable natural products are of small size and hence of relevance to fragment-based drug discovery. There are also an
increasing number of macrocyclic natural products and derivatives becoming available for screening.
KEYWORDS: Natural product databases, Natural products, Chemical space, Traditional Chinese medicine, Drug discovery,
Virtual screening, Plants, Maritime species, Vendors, Purchasable compounds

■ INTRODUCTION
Natural products (NPs) are historically and currently relevant
as components of traditional medicines and herbal remedies.1,2

Botanicals in particular have been used worldwide throughout
history to treat various afflictions, and some of the traditional
healing practices involving NPs, including traditional Chinese
medicine (TCM) and traditional Indian healing systems such as
Ayurveda, remain the primary treatment option for many
people. Other ancient civilizations, among them Mesopotamia,
ancient Egypt, and ancient Greece, also documented their use
of medicinal plants, animal products, and minerals. Herbal
remedies were relied on during the dark and middle ages in
Europe as well. The transition from natural remedies of
unknown molecular content to modern western medicine
began in the early 19th century with the isolation of morphine
from opium, followed quickly by the isolation of further
alkaloids from plants.3 More recently, the transition from
traditional remedies to single-compound drugs has resulted in
the development of drugs such as artemisinin, a notable success
story of a drug discovered from traditional Chinese medicine

that earned its discoverer the 2015 Nobel Prize in Physiology
or Medicine.4,5

Natural products already play an important role in drug
development. Unlike traditional medicines, which rely primarily
on herbal remedies, minerals, and animal products due to their
greater accessibility, modern drugs that are NPs or NP
derivatives also come from marine life, fungi, bacteria, and
other organisms. Today most major classes of antibiotics, from
penicillins to macrolides, are based on NPs isolated from
microbes,2 as are two of the three main currently used classes of
antifungals: polyenes and echinocandins.6 In addition, many
other compounds used to treat various diseases are NPs or NP
derivatives. Structurally, over half of all small-molecule drugs
approved between 1981 and 2014 resemble NPs.1 Of those, 6%
are unaltered NPs, 26% are NP derivatives, and 32% mimic a
NP and/or contain a NP pharmacophore.1 Examples of drugs
from the latter two categories, along with the corresponding
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NPs, are shown in Figure 1. Furthermore, certain categories of
drugs are based to an even higher extent on NPs. For example,

73% of small-molecule antibacterials approved between 1981
and 2014 are NPs or NP derivatives.1

The benefits of NPs as starting points for drug discovery can
be explained by the biological relevance of their structures. The
success of screening depends to a large extent on the structural
diversity of the compound library and the pharmacological
relevance of the scaffolds it contains. Meanwhile, most
combinatorial screening libraries are developed around
synthetic compounds and designed to be drug-like or lead-
like in order to preemptively take synthesizability and oral
bioavailability into account. Despite the intention of designing
combinatorial libraries that cover as large a portion of the
chemical space as possible, the imposed constraints of drug-
likeness and lead-likeness constrict these libraries to some
portion of the chemical space representing oral bioavailability
rather than covering the entirety of the biologically relevant
chemical space.2 Even large, diverse combinatorial libraries can
only encompass a small portion of all possible structural and
chemical diversity.11

Natural products and NP-derived drugs have more
physicochemical and structural diversity than synthetic drugs
and also represent a larger area of the chemical space.12 Many
NPs, however, would not be considered drug-like or lead-like
based on typical physiochemical properties.13 Yet NPs stem
from an organism’s adaptation to its environment and thus have
an evolution-based, specific biological purpose. It therefore
makes sense that NPs generally contain biologically relevant
scaffolds.14 Substructures or scaffolds of NPs are often
considered privileged structures,15−17 meaning they may offer

improved bioactivity against diverse targets.18 One study has
found that nearly 1300 ring scaffolds (with up to 11 heavy
atoms in the molecule) found in NPs, or 83% of all such ring
scaffolds, are not found in commercial compound libraries.19

This finding indicates the potential of NP structural features
that is untapped in terms of combinatorial libraries. Hence it is
clear that the benefits to using NPs in drug design are easily
overlooked by typical combinatorial screening libraries.20,21

Compound libraries can, however, be created in order to take
advantage of the opportunities presented by NPs and their
scaffolds. Such a library could be composed of NPs that have
been filtered for drug- or lead-likeness or based on NP scaffolds
within small molecules that are easier to synthesize than larger,
more structurally complex NPs.2,17 NPs can also be used as
starting points for modifications, such as site- and stereo-
selective transformations as well as the addition of reactive
groups, to further increase the diversity of NP-based libraries.22

Natural products and their derivatives have been shown to
have higher hit rates in high-throughput screening (HTS) than
traditional synthetic combinatorial libraries;20,21 however, NPs
present difficulties for HTS that synthetic compound libraries
do not. Isolated NPs are rarely available in sufficient quantities
for HTS use,11 and running HTS on isolated NPs results in an
artificial bias toward those available in ample abundance.
Therefore, HTS is typically carried out using crude extracts
from organisms, and the active component(s) must be
subsequently isolated and characterized. Despite recent
advances in HTS specifically in the context of crude NP
extracts, such as prefractionation and choice of a favorable assay
type, several complications remain.11 These obstacles to
successful HTS stem mostly from the multicomponent nature
of the extract, as some compounds may interfere with the assay
as well as decompose, aggregate or precipitate.3 In addition, the
assay result for a crude extract may be confounded by
antagonistic or synergistic interactions among its compo-
nents.23 In this case, different experimental results would be
achieved with isolated constituents. A similar problem arises
from widely varying concentrations of the compounds
contained in a crude extract, varying from too low for detection
to so high that nonspecific inhibition confounds the results.23

Added to these difficulties with HTS are obstacles such as the
extraction and characterization of a sample, followed by the
extensive time and effort necessary to isolate a NP of interest as
well as to synthesize, partially synthesize, or modify it.
Computational approaches enable saving time and resources

by identifying more promising compounds and focusing the
effort of extraction, purification, or synthesis on the NPs with
the most encouraging results from computational methods such
as docking, quantitative structure−activity relationship (QSAR)
modeling, and pharmacophore-based methods. Computational
approaches can be used, for example, to predict binding
affinities to a particular target, to predict ADME (absorption,
distribution, metabolism, excretion) and toxicological proper-
ties, and to elucidate the biological significance of an observed
effect, such as that of an herbal remedy. To make useful NP-
related predictions with computational approaches, however, it
is necessary to have access to accurate structures with defined
stereochemistry.
When using virtual screening for NPs, the higher structural

complexity and larger portion of potentially undesirable or
reactive substructures compared to synthetic, drug-like
molecules should be taken into account. NPs tend to have
more chiral centers than drug-like, synthetic compounds.12,23,24

Figure 1. Three examples of a drug (left column) compared to the NP
(middle column) it is derived from or mimics. A flexible alignment
with ROCS7 is shown in the third column for each drug−NP pair
(drug in gray, natural product in orange). Vorapaxar is a derivative of
the NP himbacine,8 belinostat mimics the NP trichostatin A,1,9 and
empagliflozin mimics and contains the pharmacophore of the NP
phlorizin.1,10 Atom colors: oxygen in red, nitrogen in blue, sulfur in
yellow, fluorine in green, and carbon in gray and orange for the drug
and natural product, respectively.
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Unknown chirality may make it necessary to enumerate and
screen all possible stereochemical configurations of a particular
molecule in order to predict whether such a compound could
bind to the target at all. If the chirality is unknown or undefined
for many atoms, such a process is costly and, in any case, the
actual chirality of the NP may remain undetermined. The
stereochemistry can only be definitively determined exper-
imentally, after extraction and purification of the NP.
In addition to higher stereochemical complexity, NPs as a

whole have higher shape complexity, i.e., more complex
scaffolds.25 These scaffolds are often made up of larger, more
complex ring systems, including fused ring systems that
contribute to more rigid scaffolds. Further, NPs contain a
larger portion of sp3-hybridized bridgehead atoms than

synthetic small molecules26,27 and generally tend to be less
aromatic, with arene systems contained in only 38% of known
NPs.17 Interestingly, this higher 3D shape complexity exists
concurrently with the trend of privileged substructures in NPs.
Of greater concern for virtual screening purposes is that
undesirable functional groups and substructures are more
prevalent in NPs, as well as that NPs tend to have more reactive
elements.17,23 Nearly half of all known NPs contain a reactive
or undesired substructure, in contrast to less than 10% of
approved drugs.17 Multitarget interactions and target class
promiscuity, however, are more likely to be found in synthetic
compounds than in NPs.17,25 In terms of undesired
substructures, glycosides and molecules with other metabol-
ically unstable functional groups such as esters are likely quickly

Table 1. Virtual Natural Product Libraries

Library No. of moleculesa Bioactivitiesb Free usec

Molecular
libraries provided
free of charged

Chemistry-
aware Web
interfacee

Included
in the
analysisf

Scientific
literature

Online
presence

Dictionary of Natu-
ral Products
(DNP)

>230k (>153k) yes no no yes yes 38

Reaxys >220k yes no no yes no 39
Super Natural II >325k yes yes no yes no 40 41
UNPD >229k (>167k) no yes yes no yes 42 43
TCM database@
Taiwan

>60k (∼50k) yes (traditional Chinese
medicines)

yes yes yes yes 44 45

TCMID >13k (>11k) yes (traditional chinese
medicines)

yes yes no yes 46 47

Chem-TCM >12k yes no no yes no 48 49
HIT >700 (>400) yes yes via ZINC yes yes 50 51
HIM ∼1300 (∼700) yes (focus on ADME and

toxicity data)
yes via ZINC yes yes 52 53

AfroDb ∼1000 (∼900) yes yes yes no yes 54 55
AfroCancer ∼400 (>350) yes (focus on anticancer

activity)
yes yes no yes 56 57

AfroMalariaDB >250 (∼250) yes (focus on antimalaria
activity)

yes yes no yes 58 59

SANCDB >600 (∼600) no yes yes yes yes 60 61
NANPDB >4400 (∼3900) yes yes yes yes yes 62 63
NPACT ∼1500 (∼1400) yes (focus on anticancer

activity)
yes via ZINC yes yes 64 65

NPCARE >6500 from online search;
>1500 in bulk download (>1500)

yes (focus on anticancer
activity)

yes yes no yes 66 67

TIPdb ∼9000 (∼8000) yes (focus on anticancer,
antiplatelet and antitu-
berculosis activity)

yes yes no yes 68,69 70

Natural Products in
PubChem Sub-
stance Database

∼3000 (∼2800) yes yes yes yes yes 71 72

StreptomeDB ∼4000 (∼3600) yes yes yes yes yes 73 74
UEFS Natural Prod-
ucts

∼500 (∼500) no via ZINC via ZINC no yes

NuBBE database >1800, including >1700 plant NPs
and >100 microorganism NPs
(∼1700)

yes (focus on antimicrobial
activity)

yes yes yes yes 75 76

Carotenoids Data-
base

>1100 yes yes no yes no 77 78

AntiBase >40k yes no no yes no 79 80
DMNP >55k (including NP derivatives) yes no no yes no 81
MarinLit >29k yes no no yes no 82
aNumber of molecules reported in the primary literature, on the Web site of the database provider, or supplied in the original files. The number in
brackets reports the number of unique molecules as defined by unique InChIs83,84 (without the stereochemistry and fixed hydrogen layers) among
the sets of standardized molecules (counterions of salts removed and compounds neutralized with the Wash function in MOE85) for any data sets
accessible to the authors. bIndicates whether a database includes bioactivity data that can be downloaded or accessed via a Web interface. cIndicates
whether a database can be used free of charge, either via download or a Web interface. dIndicates whether the molecular structures of a database are
downloadable in bulk or available upon request from the authors free of charge. eIndicates whether a chemistry-aware Web interface and search
functionality (such as exact structure, substructure and similarity search) is provided. fIndicates whether a database has been included in the analysis
presented in this review.
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cleaved in vivo. The core structure can be better taken into
account by using SMARTS patterns or other algorithms to
remove such moieties prior to virtual screening (see, e.g., ref
28). A more subtle difficulty regarding virtual screening with
NPs is that any force fields and force field-based approaches, as
well as computational models for predicting physicochemical
and biological properties, are in general biased toward synthetic
molecules. This effect has arisen from the larger abundance of
synthetic molecules combined with their lower complexity
compared to NPs. Despite these difficulties, virtual screening of
NPs can lead to the discovery of compounds with promising in
vitro or in vivo activity (see, e.g., refs 29−31).
Virtual NP libraries provide a bridge between virtual

screening and the benefits of NPs for drug discovery. Screening
libraries of known NPs can circumvent problems with
extracting and purifying samples, or at least postpone these
difficulties until later, when they can be directed toward only
the most promising NPs. Previous reviews of NP databases
(e.g., refs 32−37) have concentrated on a general comparison
of several databases. For example, Füllbeck et al.33 describe five
publically available virtual databases containing NPs, six
commercially available virtual NP databases, and companies
and suppliers of NPs broken down by part of the world. On the
other hand, Lagunin et al.35 and Tung34 focus on databases of
plant natural products. In addition, other NP reviews have
provided a short list of NP databases that can be used for virtual
screening (e.g., refs 2,23).
In contrast to these previous publications, the focus of this

review is on NP libraries that are useful for applications in
cheminformatics, specifically virtual screening. We provide a
detailed discussion of available virtual and physical NP libraries,
along with a comparison of their contents. We additionally
consider the portion of virtually available NPs that are readily
purchasable.

■ VIRTUAL NATURAL PRODUCT LIBRARIES
There are many virtual NP databases in existence, both
commercial and freely available. These databases vary in size,
focus, and the types of information they contain for each
compound. Here we focus on the databases that can be of use
for virtual screening and further applications in cheminfor-
matics. In particular, we prioritize downloadability of chemical
structures with annotated stereochemistry. If the complete
database is not available for download either online or upon
request, then we require, at a minimum, chemistry-aware search
functionality on the Web site with access to the chemical
structures of the search results. The information provided here
is not intended as an exhaustive list of all NP databases but
rather as an overview of those that are of particular interest for
virtual screening (Table 1).
Comprehensive Databases. Dictionary of Natural

Products (DNP). The Dictionary of Natural Products
(DNP)38,86 is one of the most comprehensive collections of
NPs available to date. This commercial database includes
information on names and synonyms, physicochemical proper-
ties (e.g., molecular weight, pKa, solubilities and spectroscopic
data) and molecular structure of NPs, in addition to biological
source and use. Stereochemistry for the structures is only
included as a property and indicated in Fisher-type diagrams,
separate from the 2D connection tables and InChIs. The
compounds are classified into structural type, with a total of
over 1050 classes. An abundance of physicochemical and
structural information is provided, including UV spectra,

biological sources, hazards, toxicity data, and dissociation
constants. The database is available both online and as CD-
ROM.

Reaxys. A commercial chemical database with a focus on
providing detailed information for synthetic chemists, Reaxys39

contains extensive information on over 220k NPs collected
from a large selection of periodicals.87 The information on the
NPs contained in Reaxys includes structures, reactions, physical
properties, biological sources, and bioactivity data. The NPs can
be accessed via the Web interface, which provides detailed
search functionality. It is possible to search for all NPs and then
download the search results in SD or SMILES file format.

Super Natural II. Super Natural II, with over 325k natural
compounds, is currently the largest freely available database of
NPs. This database provides chemical structures, physicochem-
ical properties and predicted toxicity classes.40 The compounds
were collected from 16 vendor databases and five freely
available databases (KEGG,88 MetaCyc,89 UNPD,42 HMDB,90

and ZINC91). The stereochemistry is defined via chirality flags
in the MOL files and isomeric SMILES. All structures and
corresponding information are available for download in the
form of one individual MOL file per compound from the Web
site; however, it is not possible to download the entire database
at once. The Web interface allows structure search (sub-
structure and similarity) as well as searching by compound
classification, several physicochemical properties, and supplier.
The Web site additionally provides a search functionality for
the mechanism of action starting with either a molecular (sub-)
structure or a target.

UNPD. The Universal Natural Products Database (UNPD) is
the largest freely available NP database that can be downloaded
in full.42 Currently containing over 229k compounds, this
database is a consolidation of NPs from several preexisting
databases: Reaxys,39 Chinese Natural Product Database
(CNPD),92 CHDD93 (database containing components of
Chinese traditional medicinal herbs, previously developed by
the authors of the UNPD), and Traditional Chinese Medicines
Database (TCMD).94 For each compound, a 3D structure with
explicit stereochemistry defined by the 3D coordinates (each
stereoisomer receives its own uniquely numbered structure in
the case of ambiguous or racemic stereochemistry) as well as
several identifiers and molecular descriptors are included in the
downloadable files, either as individual SD files for single
compounds or as an SD or CSV file containing the entire
database. This database can be searched according to several
different identifiers, chemical structure, and natural source.

Databases Focused on Traditional Chinese Medicines.
TCM Database@Taiwan. The Traditional Chinese Medicine
Database@Taiwan (TCM Database@Taiwan) is the largest
freely available source of traditional Chinese medicine (TCM)
ingredient data.44 This database contains over 60k TCM
compounds from over 450 herb, mineral, and animal product
TCMs compiled from a literature search including Chinese
medical texts and dictionaries. The database is partitioned into
22 TCM usage classes (e.g., dampness-resolving medicinal and
astringent medicinal) in addition to, in some cases, further
subclasses based on traditional Chinese theories.44 Searching
the database by TCM category and TCM is possible on the
Web site, as is an advanced search based on molecular
properties and chemical structure. This database provides
comprehensive ingredient-to-TCM mapping combined with
3D structures of each ingredient, including references to the
original research articles for each compound and TCM. The

Journal of Chemical Information and Modeling Review

DOI: 10.1021/acs.jcim.7b00341
J. Chem. Inf. Model. 2017, 57, 2099−2111

2102



chemical structures of each compound are available with
stereochemistry defined by the atom coordinates.
TCMID. The Traditional Chinese Medicine Integrated

Database (TCMID)46 stands out among the freely available
NP databases because of its incorporation of data on drugs,
targets, and diseases. This information is linked to NPs and the
TCM herbs or formulas they are found in. In this way, this
database focuses on the interface between traditional Chinese
medicine and modern western medicine. The associations
between the six components in the database (TCM formula,
herb, compound, disease, drug, and target) are easily searchable
on the Web site as well as available for download. In addition,
other information such as chemical identifiers, the chemical
structure including stereochemistry, and usage information can
also be obtained via the TCMID. Visualization of these
relationships is provided by the network display tool on the
TCMID Web site that shows the ingredient−targets network,
the ingredient−targets−drug−disease network, and the herb−
target−disease network. For example, a visualization of the
herb−target−disease network shows at a glance which
ingredients are present in the herb, the targets of those
compounds, and the diseases related to those targets. The
information provided by the TCMID is thereby directly useful
for drug discovery research, and can in particular be used to
examine potential multitarget effects and molecular mecha-
nisms.95 The data on herbal ingredients come from the TCM
Database@Taiwan, the Traditional Chinese Medicine Informa-
tion Database (TCM-ID),96 and the Encyclopedia of Tradi-
tional Chinese Medicines.97 The linking of this information
goes beyond that of the TCM Database@Taiwan in that the
targets, drugs, and diseases are also included. The data for these
three aspects come from DrugBank98 and OMIM.99

Chem-TCM. The Chemical Database of Traditional Chinese
Medicine (Chem-TCM) is a commercial database focused on
traditional Chinese medicine.48 Like the TCMID, the Chem-
TCM seeks to link traditional Chinese medicine to molecular
targets of western medicine. These connections come from
predicted activity based on models for each target or disease.
For each compound, the Chem-TCM provides a calculated
affinity for each of 28 major TCM categories and predicted
activity against 41 therapeutic targets in western medicine.
Chemical and botanical information is also provided. This
database contains >12k compounds from around 350 herbs and
allows structure and substructure search, text search, and
creation of customized subsets of the database. Compound
structures are available in SD format and stereochemistry
information is provided.
HIT. The Herbal Ingredients’ Targets database (HIT)

connects active ingredients from herbs to their biological
targets.50 The Web site, which is freely available for academic
use, provides an interface that links herbs to their ingredients
and each ingredient to its target(s). The HIT database is
searchable by keyword, including compound, herb, and protein
target keywords, as well as by compound similarity and target
similarity (based on protein sequence). The database is cross-
linked to various relevant databases such as DrugBank, PDB,
Therapeutic Targets Database (TTD),100 Uniprot,101 and
TCM-ID. The molecular structures can be downloaded from
ZINC,91,102 including stereochemistry defined by chiral flags.
HIM. The Herbal Ingredients in vivo Metabolism database

(HIM) has a distinct focus on ADMET data, in particular
metabolism.52 Information about metabolism, bioactivity, and
other ADMET properties was collected from primary and

secondary sources for all herbal ingredients present in the
database. These data are cross-linked to relevant databases,
including PubChem, HIT, and TCM-ID, and are freely
available for academic use. Like the HIT, the HIM database
can not be downloaded from the Web site but the molecular
structures are available via ZINC. Stereochemistry is defined by
the chiral flags in the 3D structures downloadable from ZINC.
The contents of HIM are searchable on the Web site, either by
text search, substructure search, or similarity search. A
metabolism scheme is presented for each herbal active
ingredient, including multiple generations of metabolites. The
bioactivity data for each active ingredient may include a general
classification, such as anticancer or antibacterial, rather than a
specific protein target.

Databases and Libraries of African Natural Products.
AfroDb. Focused on NPs from African medicinal plants, the
AfroDb is a relatively small NP library with large structural
diversity.54 This library, including 3D structures with stereo-
chemistry (defined via chiral flags in the SD file) is freely
available for download, either from the Supporting Information
of the original publication (ref 54) or via the ZINC catalog of
NPs.

AfroCancer. The African Anticancer Natural Products
Library, AfroCancer,56 contains experimentally confirmed
anticancer, cytotoxic, and antiproliferative compounds from
African medicinal plants. This database is freely downloadable
from the Supporting Information of the original publication
(ref 56) and includes 3D structures with stereochemistry
defined by chirality flags. The pan-African natural products
library (p-ANAPL)103 provides information about the avail-
ability of the compounds in the AfroCancer database upon
request.

AfroMalariaDB. The African Antimalarial Natural Products
Library, AfroMalariaDB,58 contains antimalarial NPs from 131
African plant species. The antiplasmodial and antimalarial
activity of the compounds contained in this database has been
measured in vitro and/or in vivo. In addition to activity,
calculated physicochemical properties are provided. This
database can be downloaded from the Supporting Information
of the original publication (ref 58), including 3D structures
with stereochemistry flags. Information about the availability of
the compounds is provided by p-ANAPL upon request.

SANCDB. SANCDB, the South African natural compound
database, contains NPs from South African plants and marine
life. The first African database of NPs with a Web interface,60

the SANCDB is freely available and provides references, 3D
structures, and other details for NPs compiled manually from
the literature. Stereochemistry information is provided by
isomeric SMILES. This database can be searched online by
name, chemical structure, source organism, structural classi-
fication of the compound, physicochemical properties, and
more. Structures can be downloaded in several formats from
the search results, and users can contribute their own
compounds to the database.

NANPDB. The Northern African Natural Products Database,
NANPDB,62 is a freely accessible database containing NPs from
Northern Africa. These NPs and their source organisms,
biological activities and activity type (e.g., anticancer,
antimalarial) were collected from the literature. The com-
pounds come mostly from plants, but some stem from
endophytes or animals, fungi, or bacteria. The contents of the
NANPDB can be downloaded as a single file in either SMILES
or SD format. Stereochemistry is included via chirality flags in
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the SD files and isomeric SMILES. The Web interface includes
search functionality and allows submission of data to be
included in the NANPDB. In addition to a basic search by
compound name, organism or keyword, the NANPDB Web
site offers a structure search based on either substructure or
similarity.

Other Focused and Smaller-Sized Databases. NPACT.
Cancer is the focus of NPACT,64 the Naturally occurring Plant-
based Anticancer Compound−Activity−Target database. This
database is unusual in that it provides bioactivities of the NPs
against over 300 cancer cell lines and protein targets. NPACT
describes approximately 5200 compound−cell line and
approximately 2000 compound−target interactions.64 Stereo-

Table 2. Physical Natural Product Libraries

Supplier (Sub-) set name No. of moleculesa
Chemistry-aware
Web interfaceb Composition

Online
presence

Analyticon Discovery MEGx − Purified natural products
of microbial and plant origin

>4200 no NP-only 110

Analyticon Discovery NATx − Semisynthetic natural
product-derived compounds

>26k no NPs and (semi-) synthetic
compounds

110

Analyticon Discovery FRGx − Fragments from nature >200 no NPs and (semi-) synthetic
compounds

110

Analyticon Discovery MACROx − Next generation
macrocycles

>1800 no NPs and (semi-) synthetic
compounds

110

Ambinter and Greenpharma Natural products >8000 yes NP-only 111,112
Ambinter and Greenpharma Natural product derivatives >11k yes (Semi-) synthetic compounds 111,112
InterBioScreen Natural Compound (NC)

Collection
>1300 natural compounds and
>64k derivatives and analogs

no NPs and (semi-) synthetic
compounds; distinguishable by
tags

113

InterBioScreen Building Blocks >13k no NPs and (semi-) synthetic
compounds

113

InterBioScreen Natural Scaffold Libraries >500 no NPs and (semi-) synthetic
compounds

113

Developmental Therapeutic
Program (DTP), NCI/NIH

Natural Products Set IV >400 no NP-only 114

TimTec Natural Product Library (NPL) ∼800 yes NP-only 115
TimTec Natural Derivatives Library (NDL) ∼3000 yes NPs and (semi-) synthetic

compounds
115

TimTec Flavonoids ∼500 yes NPs and (semi-) synthetic
compounds

115

TimTec ExtendedDB Flavonoid Derivatives >4000 yes NPs and (semi-) synthetic
compounds

115

TimTec Gossypol Derivatives ∼100 yes NPs and (semi-) synthetic
compounds

115

Pi Chemicals Natural Products Catalog ∼2400 (∼1900 natural
compounds)

no NPs and semisynthetic
compounds; distinguishable by
tags

116

p-ANAPL Library >500 no NP-only
Selleck Chemicals Natural Products ∼130 no NP-only 117
TargetMol Natural Compound Library ∼850 no NP-only 118
AK Scientific Natural Products ∼250 yes NP-only 119
AK Scientific Synthetic-Additives ∼130 yes NPs and (semi-) synthetic

compounds
119

MicroSource Discovery
Systems

Natural Products Collection
(NatProd)

∼800 no NPs and (semi-) synthetic
compounds

120

Specs Natural Products ∼750 yes NPs and (semi-) synthetic
compounds

121

Sequoia Research Products >2300 no NPs and (semi-) synthetic
compounds

122

Labseeker Natural Compounds >5300 yes NPs and (semi-) synthetic
compounds

123

Pharmeks Screening Compounds >340k (>2600 natural
compounds and derivatives)

yes NPs and (semi-) synthetic
compounds; distinguishable by
tags

124

Pharmeks Building Blocks >12k yes NPs and (semi-) synthetic
compounds

124

Princeton BioMolecular
Research

Macrocycles >1500 yes NPs and (semi-) synthetic
compounds

125

Biopurify Phytochemicals TCM Compounds Library >2000 no NPs and (semi-) synthetic
compounds

126

INDOFINE Chemical
Company

Natural Products, Flavonoids,
Coumarins, etc.

∼1900 no NPs and (semi-) synthetic
compounds

127

MedChem Express Natural Product Library >200 no NPs and (semi-) synthetic
compounds

128

aNumber of molecules reported on the Web site of the database provider or supplied in the original files. bIndicates whether a chemistry-aware Web
interface and search functionality (such as exact structure, substructure and similarity search) is provided.
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chemistry is defined by chiral flags in the downloadable MOL
files, and the database is searchable, including a similarity search
for structures. The entries are supplemented with references to
other databases, including HIT and PubChem, as well as
structures, properties and bioactivity data.
NPCARE. The focus of the freely available Database of

Natural Products for CAncer gene REgulation (NPCARE) is
on the relationship between NPs and cancer.66 Specifically, this
database contains information on gene expression and
inhibition of cancer cells upon application of NPs. The
database entries contain information on the cancer type, the
NP and its source, the activity, the cancer cell line used, and the
target gene or protein. Structural information is provided for
more than 6500 compounds,66 with stereochemistry defined by
chiral flags in the SD files. Structures of more than 1500 of
these compounds are available for bulk download, although
without stereochemistry information.
TIPdb. The Taiwan indigenous plant database (TIPdb)

contains anticancer, antituberculosis, and antiplatelet phyto-
chemicals from plants indigenous to Taiwan.68 This freely
available database includes 3D structures, which are referred to
as the TIPdb-3D.69 The online database is searchable by plant
and chemical names, database ID, and activity. Bioactivity
information is available upon searching or browsing the TIPdb;
however, this information is not present in the downloadable
SD files.
Natural Products in PubChem Substance Database. The

PubChem database contains NPs and their associated
bioactivity data. This information can be accessed from the
PubChem Substance database by the following query:
“MLSMR[SRC] AND NP[CMT]”.71 The resulting set of
NPs consists of around 3000 unique chemical structures.104,105

Bioactivity data against 666 protein targets and other molecular
targets is available for most of these NPs. Stereochemistry is
defined via chiral flags in the downloadable structures.
StreptomeDB. The StreptomeDB is focused on NPs

produced by streptomycetes,73 with data assembled from the
literature, the Novel Antibiotics Data Base,106 and KNAp-
SAcK.107,108 Stereochemistry is defined by chiral flags in the SD
file. The StreptomeDB is freely available online and is
searchable by name, structure, substructure, structural similarity
and scaffold, as well as other aspects such as compound
properties and activity. Phylogenetic classification of strepto-
myces species is also included and is browsable via the Web
site.
UEFS Natural Products. The Natural Products database of

The State University of Feriera De Santana (UEFS) in Brazil
contains structures of around 500 NPs collected from the
literature. This data set is included in ZINC and does not have
its own Web site.
NuBBE Database. Focused on NPs and derivatives from

plants and microorganisms native to Brazil, the NuBBE
database is a freely accessible online database.75 This database
provides, in addition to chemical compound information,
pharmacological and toxicological data. The search capabilities
include structure, compound identity, NMR shifts, physico-
chemical properties, and biological source. All structures can be
downloaded in bulk as 3D structures in MOL2 file format.
Carotenoids Database. The Carotenoids Database77

concentrates on natural carotenoids, currently containing over
1100 of this class of compound from nearly 700 source
organisms. The data contained in this online database were
obtained from the literature and include chemical information,

source organisms, and biological function of the compounds.
Structures, including stereochemical information encoded in
the isomeric SMILES and the InChI, are provided but can only
be downloaded one molecule at a time.

AntiBase. The AntiBase database79 is a comprehensive
compilation of over 40k NPs, primarily with antimicrobial
activity. The data provided in AntiBase come from the primary
and secondary literature and include physicochemical proper-
ties, spectroscopic data, biological data such as activity and
toxicity, and the biological source. Stereochemistry information
is included. This database is commercially available in several
software formats. The search capabilities of AntiBase include
NMR shift search in addition to structure and text search.

DMNP. The Dictionary of Marine Natural Products
(DMNP)109 is a subset of the DNP that contains around 55k
marine NPs and their derivatives. This database is available
both online and as a combination of book and CD-ROM.

MarinLit. The MarinLit database82 is a comprehensive
collection of marine NPs from the literature. The record for
each literature article is comprised of bibliographic information,
keywords, taxonomy of marine organisms, any compounds
published for the first time in that article, and collection
location of these new NPs. Compound records additionally
include a full structure with stereochemistry, identifiers such as
InChI, and chemical descriptors. Through the Web interface,
the database can be queried on any of these aspects as well as
on a combination of multiple parameters. In conjunction with
its text and structure search capabilities, MarinLit provides
additional search options for the purpose of dereplication.

■ PHYSICAL NATURAL PRODUCT LIBRARIES
Most vendors offer physical libraries that include a mix of NPs
with synthetic and/or semisynthetic compounds. Catalogs
consisting exclusively of natural products are rare. The
molecular structures of purchasable natural products are
generally provided free of charge and downloadable in bulk
from the vendors’ Web sites. An overview of physical natural
product libraries is provided in Table 2. The overview is not
comprehensive and is limited to catalogs that explicitly mention
NPs and provide chemical structures or chemistry-aware search
functionality on their Web sites.

Collections Consisting Entirely of Natural Products.
AnalytiCon Discovery. AnalytiCon Discovery provides a
continuously growing collection of purified NPs. This
collection, named MEGx, contains over 4200 highly pure
compounds of known chemical structure. Many of the
microbial compounds in this collection are exclusive to
AnalytiCon, which isolates new NPs at a rate of around 500
novel compounds per year. In addition to the NP subset
MEGx, AnalytiCon offers a semisynthetic NP-derived com-
pound subset (NATx) with over 26k compounds, a macro-
cycles subset (MACROx) with over 1800 compounds, and a
subset of fragments from nature (FRGx) with over 200
fragments.

Ambinter and Greenpharma. Ambinter and Greenpharma
offer a set of approximately 8000 natural compounds. These
include a number of different phytochemical families, alkaloids
being the most well-represented thereof due to their vast
structural diversity. In addition, these companies also offer a set
of approximately 11k NP derivatives.

InterBioScreen. The Natural Compound (NC) collection of
InterBioScreen consists of over 1300 NPs. In addition, this
collection includes more than 64k NP derivatives and analogs.

Journal of Chemical Information and Modeling Review

DOI: 10.1021/acs.jcim.7b00341
J. Chem. Inf. Model. 2017, 57, 2099−2111

2105



These are annotated and hence can be distinguished from the
genuine NPs. The majority of the compounds come from plant
species, while 5 to 10% are of microbial origin and around 5%
originate in marine life. Uncommon compounds are present in
the NC collection as well, including allelopathic agents, unusual
classes of phytoalexins, and specific sex attractants. Inter-
BioScreen also offers a library of over 13k building blocks of
natural and synthetic origin as well as more than 500 natural
scaffolds for compound synthesis.
Developmental Therapeutic Program (DTP) Natural

Products, NCI/NIH. The Developmental Therapeutic Program
(DTP) of the National Cancer Institute (NCI) of the National
Institutes of Health (NIH) provides a collection of NPs
(Natural Products Set IV) including an SD file of 2D structures.
This set contains over 400 NPs selected from the nearly 140k
compounds in the DTP Open Repository based on structural
diversity, availability, origin, and purity.
TimTec. TimTec’s Natural Product Library (NPL) contains

800 pure NPs, mainly of plant origin but also from animal,
bacterial, and fungal sources. TimTec additionally provides a
Natural Derivatives Library (NDL) of over 3000 compounds,
including natural derivatives, seminatural compounds, and NP
analogs. The compounds in this library were selected from the
literature and in-house data. A further subset of around 500
flavonoid derivatives is based on nine flavonoid core structures,
and the Extended Flavonoid Derivatives database contains over
4000 compounds. A small library of gossypol derivatives is
available as well.
Other Vendors. PI Chemicals offers a library of approx-

imately 1900 natural compounds (annotated) and 400
semisynthetic chemicals. The p-ANAPL is a physical library
of over 500 NPs, mostly flavonoids, found in African medicinal
plants. Selleck Chemicals provides a NP library containing
around 130 NPs from plant, marine, and microbial sources.
TargetMol’s Natural Compound Library includes around 850
compounds from many sources, including microorganisms,
plants, and animals. The NP subset from AK Scientific contains
around 250 naturally derived compounds, and a separate
catalog of synthetics and additives includes over 100 flavonoids,
food additives/preservatives, and vitamins.
Mixed Collections of Natural Products and Natural

Product Derivatives. Several vendors offer NPs as part of a
larger collection of compounds. In these cases it is often
difficult or not possible to separate the NPs from NP
derivatives and synthetic compounds. The Natural Products
Collection (NatProd) from MicroSource Discovery Systems,
containing 800 NPs and derivatives, includes natural com-
pounds from plant, animal, and microbiological sources. Specs
provides a collection of approximately 750 NPs, either isolated
or synthesized, and NP derivatives of varying complexity from
marine, plant, and microbial sources. Larger collections are
available from Sequoia Research Products, a company special-
izing in biochemicals and other NPs with over 2300
compounds in its database, and Labseeker, a product
distribution platform for over 5300 natural, semisynthetic,
and synthetic compounds. The compound collection of
Pharmeks is a diverse, mostly heterocyclic collection of organic
molecules. Of the over 340k screening compounds in this
library, over 2600 are natural compounds and derivatives
thereof. In addition, Pharmeks offers over 12k building blocks,
both natural and synthetic.
There are some collections with specialized focus as well.

Princeton BioMolecular Research offers libraries of macrocyclic

molecules, with a total of over 1500 such compounds. These
compounds are a mixture of NPs, semisynthetic NP derivatives,
and completely synthetic molecules. TCM compounds are
available from Biopurify Phytochemicals’ TCM Compounds
Library, which contains over 2000 natural compounds.
INDOFINE Chemical Company has a focus on flavonoids,
offering around 1900 NPs and semisynthetic compounds that
include flavonoids, flavones, isoflavones, flavanones, coumarins,
chromones, chalcones, and lipids. In addition, MedChem
Express offers around 200 bioactive NPs for which preclinical
research and clinical trials have indicated bioactivity and safety.

■ COVERAGE AND REACH OF CHEMICAL
STRUCTURES DEPOSITED IN NATURAL PRODUCT
LIBRARIES

The coverage, reach and overlap of molecular libraries was
determined by counting the unique InChIs (without the
stereochemistry and fixed hydrogen layers) among the sets of
standardized molecules (counterions of salts removed and
compounds neutralized with the Wash function in MOE).85

Coverage of Free and Commercial Virtual Natural
Product Libraries. The number of known NPs is around
250k, measured based on the freely available virtual natural
product libraries as well as the DNP (i.e., all libraries indicated
in Table 1 as being included in the analysis). More NPs can be
found in freely accessible virtual NP databases (i.e., the subset
of all free libraries indicated in Table 1) than are in the DNP
(Figure 2a). The DNP contains about 53% of the compounds

contained in the free libraries, whereas 70% of the compounds
in the DNP can be found in at least one free library. This large
overlap between the DNP and the freely accessible virtual NP
databases stems primarily from the UNPD, the most
comprehensive freely available, fully downloadable virtual NP
database (Figure 2b). Although Super Natural II is larger than
the UNPD, it was not used in the comparisons because it is not
downloadable.
Coverage of molecular scaffolds appears to go along with

database size. The DNP, UNPD and all freely accessible virtual
NP databases together contain structures based on about 38k,
45k and 58k different Murcko scaffolds (calculated with
RDKit129 in KNIME130), respectively. Flavonoids, steroids,

Figure 2. Overlap between the DNP and (a) the freely accessible
virtual NP libraries or (b) the UNPD.
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anthraquinones, coumarins and indoles are among the most
populated scaffolds of all of these data sets. It is important to
note that despite the good coverage of molecular structures by
free databases, there are other advantages to commercial
databases such as richer annotation.
Number of Readily Purchasable Natural Products and

Derivatives. One consideration for virtual screening of NPs is
what portion of the compounds present in any of the virtual NP
libraries (“known NPs”) would be readily purchasable for
experimental testing (“readily purchasable NPs”). The number
of NPs offered by NP-only physical libraries is fairly low
(around 11k unique compounds). However, many more NPs
are available from vendors of mixed physical libraries (i.e.,
libraries containing NPs and (semi-) synthetic compounds). A
comprehensive resource representing the purchasable chemical
space is the ZINC database.91,102 The ZINC subset of readily
purchasable compounds (downloadable as the ZINC “in-stock”
subset) consists of around 7.3 M compounds. The overlap of
this ZINC subset with the known NPs indicates that
approximately 25k NPs (10% of all known NPs) covering
more than 5600 different Murcko scaffolds are readily
purchasable (Figure 3) from at least one of more than 100

vendors identified as NP suppliers (Table 3). Nine of the
largest of these suppliers each offer over 5000 readily
purchasable NPs. In comparison, a recent study on the
purchasable chemical space indicated that 36% of all NPs
included in the TCM Database@Taiwan, the DNP and the
StreptomeDB are purchasable if one is prepared to also use on-
demand sourcing, extraction and synthesis services, which
involve longer lead times and higher costs.131

When small deviations in molecular structure are allowed
(i.e., Tanimoto coefficient based on ECFP4-like Morgan2
fingerprints equal to 0.7 or higher; calculated with RDKit), the
coverage of virtual NP libraries by the ZINC “in-stock” subset
increases (Figure 4) to 24% (∼58k). These compounds are
likely to be NP derivatives or analogs.

Comparing the molecular weight (MW) and logP of readily
purchasable vs known NPs (Figure 5) indicates that readily
purchasable NPs have a lower median molecular weight (267 vs
424 Da) and logP (2.18 vs 2.92). Here readily purchasable is
defined as being contained in the overlap between virtual NP
libraries and the ZINC “in-stock” subset. The size of available
NPs is relevant because small, fragment-sized NPs can be used
as starting points for fragment-based drug discovery. Out of the
known NPs, about 23% (∼57k of ∼250k) are fragment-sized
(MW less than 300 Da). Moreover, fragment-sized compounds
make up 57% (∼14k) of readily purchasable NPs.
Another category of compounds of particular interest for

drug discovery are macrocycles. Because of their constrained
conformations, macrocycles can provide an entropic binding
advantage. The benefit of macrocycles extends to NPs, and in

Figure 3. Comparison of the content of virtual NP libraries and the
ZINC “in-stock” subset.

Table 3. Numbers of Natural Products Readily Purchasable from Suppliers.a

Number of
readily

purchasable
natural
products Suppliers

>5000 Molport, TimTec, AK Scientific, Tetrahedron Scientific, BOC Sciences, FineTech Industry, Sigma-Aldrich, Specs, National Cancer Institute (NCI)
3000−5000 Fluorochem, Nanjing Kaimubo Pharmatech Company, Hong Kong Chemhere, Oxchem Corporation, BePharm, Zelinsky Institute, Combi-Blocks,

Debye Scientific, Matrix Scientific, WuXi AppTec, Ark Pharm, Bide Pharmatech, BioSynth, InterBioScreen, Labseeker, StruChem, Alfa-Aesar
2000−3000 AstaTech, Enamine, Oakwood Chemical, Frontier Scientific Services, Alfa Chemistry, Key Organics, Apollo Scientific, W&J PharmaChem,

AnalytiCon Discovery, Acros Organics, Pi Chemicals, Syntharise Chemical
1000−2000 Toronto Research Chemicals, Capot Chemical, Rostar, INDOFINE Chemical Company, Alinda, Pharmeks, Innovapharm, Synthon-Lab, Vesino

Industrial, Life Chemicals, Bosche Scientific, Chem-Impex International, Vitas-M Laboratory, Biopurify Phytochemicals, Otava Chemicals, A2Z
Synthesis, Cayman Chemical, Accela ChemBio, Molepedia, Curpys Chemicals, ChemDiv, AsisChem

100−1000 Boerchem Pharmatech, AbovChem, Ryan Scientific, Hangzhou Yuhao Chemical Technology, TargetMol, APExBIO, Princeton BioMolecular
Research, EDASA Scientific, ChemBridge, Maybridge, MolMall, HDH Pharma, UORSY, Chemik, Bachem, Creative Peptides, MedChem Express,
Aronis, Heteroz, Selleck Chemicals, Tocris, Frinton Laboratories, Asinex, Synchem, EndoTherm Life Science Molecules, Coresyn, SpiroChem,
Advanced ChemBlock

aNumbers are estimates based on the overlap of all known NPs and the compounds present from a particular vendor in the “in-stock” subset of
ZINC.

Figure 4. Cumulative histogram of maximum molecular similarity
(Tanimoto coefficient) for the compounds in virtual NP libraries
compared to the ZINC “in-stock” subset. The bars in the histogram
represent the number of known NPs with a maximum molecular
similarity greater than or equal to the bin threshold.
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fact a number of existing macrocyclic drugs are NPs or NP
derivatives. Macrolides, which are derived from NPs, make up a
large portion of the macrocyclic drugs on the market, including
the majority of the orally administered macrocycles.132 In
addition, the TCM Database@Taiwan has been shown to be
highly enriched for a number of macrocyclic structures not
present in large chemical databases such as ChEMBL,
PubChem, and SciFinder.133 Around 14% (∼35k) and 13%
(∼33k) of known NPs contain a ring with >7 and >11 atoms,
respectively. Fewer of the readily purchasable NPs are
macrocycles; approximately 800 and 700 have a ring containing
>7 and >11 atoms, respectively.
The ChEMBL134,135 is a widely used source of compound

information, in particular biological data, for over 1.7 million
compounds. Around 16% (∼40k) of known NPs can be found
in the current version of the ChEMBL. Though NPs make up
only a small portion of the ChEMBL, this coverage of known
NPs indicates that this freely available database is a good
resource for information on the bioactivity of NPs.

■ CONCLUSIONS
Over 250k known NPs can be found in virtual NP libraries.
Though there are many smaller virtual libraries of NPs with
different areas of focus, there are larger, more comprehensive
databases as well, both commercial and freely available. We
found the overlap between the commercial and freely available
virtual libraries in terms of NP structures to be quite large. In
addition, a number of libraries of purchasable NPs provide
corresponding structures that can also be used for virtual
screening. Of the approximately 250k known NPs, i.e. those
available in virtual NP libraries, around 25k are readily
purchasable. In addition, NP derivatives and analogs are readily

purchasable for a further 10k to 30k known NPs, estimated
based on molecular similarity.
The use of virtual NP libraries contributes to effective

computer-guided drug discovery, enabling more efficient use of
NPs as starting points for drug development. The many NP
libraries that are already available are valuable resources, and
many of these continue to grow in size.
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Our 2017 review on NP databases was well-received by the scientific community 
and we were invited to publish an updated and extended analysis as a book chapter 
in a volume of Progress in the Chemistry of Organic Natural Products dedicated to 
cheminformatics in NP research (D3).  

The book chapter includes several additional virtual NP databases and uses a 
more fine-graded categorization into encyclopedic and/or general NP databases, 
databases focused on traditional medicines, databases focused on a specific 
habitat or geographical region, and databases focused on specific organisms, 
biological activities or specific NP class.  

Importantly, the book chapter also includes information on physicochemical 
properties of NPs from the different virtual and physical NP databases. This 
information originates primarily from our study presented in Chapter 3.1 
(Characterization of Physicochemical and Structural Properties of Natural 
Products, D4).  
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1 Introduction

Throughout history, natural products have been used as components of traditional
medicines and herbal remedies. For modern small-molecule drug development as
well, natural products remain the single most productive source of inspiration
[1, 2]. According to a widely cited survey of drugs approved between 1981 and
2014 [1], 6% of all small-molecule drugs are unaltered natural products, 26% are
natural product derivatives, and 32% are natural product mimetics and/or contain a
natural product pharmacophore.

The high importance of natural products is rooted in their evolution-based
specific biological purposes, which enable them to exhibit a wide range of biological
activities across different organisms. Their structural and physicochemical diversity
outrivals that of modern synthetic collections [3–5], and their often high complexity
with respect to molecular shape and stereochemistry [3, 6, 7] adds to their ability to
modulate a significant number of targets for which no synthetic compounds are
known.

Today, in addition to botanicals, natural products from bacteria, fungi, and marine
life are increasingly being explored. However, developing drugs from natural
products remains a challenging resource- and time-consuming task. Covalent bind-
ing, aggregate formation, decomposition, precipitation, and other chemical, physi-
cal, and biological processes pose technical barriers to assays run on crude extracts
or isolated natural products [2, 8]. Apart from technical complications, the avail-
ability of material for testing remains a severe bottleneck. The sourcing process can
be complex and expensive, and further complications may arise when material needs
to be transferred across national boundaries [2].

Computational methods such as docking, pharmacophore modeling, and quanti-
tative structure–activity relationship modeling can make a significant contribution to
natural product-based drug discovery as they allow the selection of promising
natural products for extraction, purification, (partial) synthesis, and biological testing
[9]. An essential precondition for the application of in silico approaches is access to
information on the molecular structure of natural products, which today is available
from a large number of sources [10]. These sources can be categorized into two main
classes: virtual natural product databases and physical natural product collections.

Virtual natural product databases contain the molecular structures of known
natural products and vary in size, coverage, and types of information they contain
for the individual compounds, among other aspects. As such, they can be further
divided into encyclopedic or general, natural product databases, and specialized
collections that are focused on, for example, traditional medicines, geographical
regions, or bioactivities (e.g., compounds with anticancer or antimalarial activity).
The majority of virtual natural product databases are accessible via online services
that offer free searching and browsing functionalities. Many of them also offer an
option for bulk download, thus enabling virtual screening applications, such as the
Dictionary of Natural Products (DNP) [11] and Reaxys [12].
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Physical natural product collections are mostly commercial offerings of in-stock
natural products and natural products that are sourced or synthesized on-demand.
Most vendors make the content of their collections browsable and searchable via free
public web services. These web services also often include an option for bulk
download. However, the download function may only be enabled after (usually
free) registration for the web service.

With this contribution, we aim to provide a timely overview of natural product
data sources useful for virtual screening and other applications in cheminformatics.
The contribution builds on our recent analyses of virtual natural product databases
and physical natural product collections [10, 13] and adds a wealth of information on
the latest reported natural product data sources.

2 Virtual Natural Product Databases

In this section, we discuss virtual natural product databases that are particularly
relevant for cheminformatics applications in the context of drug discovery. As such,
priority is given to resources offering free bulk download of chemical data. At a
minimum, the virtual natural product databases listed in this section provide a
chemistry-aware web service for browsing and searching, and access to the molec-
ular structures of the search results (Table 1).
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2.1 Encyclopedic and General Natural Product Databases

2.1.1 Dictionary of Natural Products (DNP)

The Dictionary of Natural Products [11] is one of the most established encyclopedic
collections of natural products available to date. The commercial database consists
of more than 230k natural products, 46k of which are not covered by any of the free
virtual natural product collections investigated in our recent study [10] and marked
in Table 1. The molecular structures are richly annotated with compound names and
synonyms, physicochemical properties (e.g., molecular weight, pKa, solubilities,
and spectroscopic data), biological sources, use, and toxicity data. One particularly
useful feature of this database is that the natural products are classified into 1050
structural types. Importantly, stereochemical information is stored only in Fisher-
type diagrams, separate from the 2D connection tables and InChIs. The database is
accessible via a web service [11] and also distributed as a CD-ROM.

2.1.2 AntiBase

AntiBase [15] is a comprehensive commercial database including more than 43k
natural products collected primarily from microorganisms and higher fungi (includ-
ing algae, cyanobacteria, lichens, yeasts, Ascomycetes, and Basidiomycetes).
AntiBase stands out due to the large amount of spectrometric data provided (includ-
ing experimental and computed 13C NMR data). The individual natural products are
annotated with further physicochemical properties and biological data, such as
pharmacological activities and toxicity. AntiBase is available in several software
formats featuring powerful text, structure, and spectra search capabilities.

2.1.3 Reaxys

Reaxys [12] is a comprehensive resource for chemical information relevant to
synthesis chemists. As such, Reaxys has no specific focus on natural products, but
contains information on the molecular structures, reactions, physical properties,
biological sources, and activity data for more than 260,000 natural products. Reaxys
is accessible via a web interface, which features detailed search functionality. Bulk
download of natural products (and other chemicals and data) is supported.

2.1.4 Super Natural II

Super Natural II [16] provides chemical information on more than 325,000 natural
products and, accordingly, is currently one of the most comprehensive free data
sources available. Super Natural II draws data from several preexisting databases
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and provides information on molecular structures (including stereochemistry anno-
tations), suppliers, bioactivities, computed physicochemical properties, and toxicity
classes. The web interface supports the download of individual structures but not
bulk download.

2.1.5 Universal Natural Products Database (UNPD)

With a total of more than 229,000 entries, the Universal Natural Products Database
(UNPD) [18] is currently the most comprehensive of all free and commercial
resources on natural products that offer bulk download. Drawing data from a number
of different sources, including the Chinese Natural Product Database (CNPD) [67],
the CHDD [68] (a database of compounds of traditional Chinese medicinal herbs,
previously provided by the authors of the UNPD), and the Traditional Chinese
Medicines Database (TCMD) [69], the UNPD is itself a component of Super Natural
II. Our recent analysis showed that approximately one-third of the natural products
contained in the UNPD are not covered by any of the other investigated virtual
natural product databases [13]. We also found that the UNPD covers a wide
chemical space and represents all major classes of natural products. Approximately
85% of the natural products contained in the UNPD comply with Lipinski’s rule of
five (here and elsewhere, statements on the compliance with Lipinski’s rule of five
refer to the molecular structures of natural products after the removal of sugars and
sugar-like moieties with the tool “SugarBuster” [13]). The connection tables of
UNPD store 3D structures with explicit stereochemistry defined by atom coordinates
(enantiomers are stored as individual entries) plus several identifiers. In recent years,
significant downtimes of the web presence have been observed.

2.1.6 Natural Product Activity and Species Source (NPASS)

The Natural Product Activity and Species Source [19] is another large resource of
chemical and biological information on natural products. The database currently
includes more than 35,000 natural products from a total of approximately 25,000
species. Two-thirds of the natural products come from Viridiplantae; the remaining
third comes primarily from Metazoa, fungi, and bacteria. Bioactivity data are
recorded against approximately 3000 protein targets, more than 1300 microbial
species and a similar number of cell lines. Natural Product Activity and Species
Source offers a powerful, chemistry-aware web interface for browsing and
searching. Data for individual natural products can easily be downloaded, but bulk
download of structures and other data is not offered.
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2.1.7 Collective Molecular Activities of Useful Plants (CMAUP)

Collective Molecular Activities of Useful Plants [21] is a large, new resource for
information on plant natural products and their biological activities. The database
stores information on over 47,000 natural products of more than 5600 plants native
to greater than 150 countries and regions. The individual natural products are
annotated with recorded bioactivities against more than 640 biomacromolecular
targets. In addition, information on plant species, use, geographical distribution,
metabolic pathways, gene ontologies, and diseases is provided. The database can be
browsed and searched via a free, chemistry-aware web interface. Free bulk down-
load of structural data (including stereochemical information) and metadata is also
supported.

2.1.8 Natural Product Atlas

The Natural Product Atlas [23] has been recently introduced as a comprehensive
resource of chemical information on natural products from bacteria (including
cyanobacteria) and fungi (including mushrooms and lichens) reported in peer-
reviewed original research articles. The current version of the database covers
approximately 20,000 natural products, almost one-third of which are found in
Streptomyces. Further prominent genera are Aspergillus and Penicillium, each
representing approximately 10% of the data. The web service provides powerful
tools for browsing, searching, and data visualization. Particularly noteworthy are the
network visualization features, which allow users to obtain a solid overview of the
molecular diversity and coverage of the chemical space. An option for bulk down-
load of the database is provided.

2.1.9 Pye et al. Dataset

As part of a comprehensive survey of natural products discovered between 1941 and
2015, Pye et al. have recently published a dataset of almost 6300 natural products
that have been published between 2012 and 2015 [24]. As such, the dataset provides
a good overview of the chemical space of natural products discovered in recent
years. All structures are available as isomeric SMILES (simplified molecular input
line entry specification) from the supporting information.

2.1.10 Natural Products Included in the PubChem Substance Database

The PubChem database [70] contains structures of more than 3500 natural products,
which can be retrieved using the query “MLSMR [SRC] AND NP[CMT]”
[25]. Most compounds are annotated with bioactivity data, covering a total of
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more than 650 biomolecular targets. Approximately 40% of all compounds are not
covered by any other resource investigated in our recent study [13]. More than 95%
of all natural products of this dataset comply with Lipinski’s rule of five; greater than
half of all compounds are alkaloids. All structures are downloadable and include
stereochemical information.

2.1.11 UEFS Natural Products

Researchers from the State University of Feira de Santana (UEFS) in Brazil have
deposited a dataset of approximately 500 natural products for download at the ZINC
database [71, 72]. The natural products have been compiled from papers that the
authors and collaborators have published separately. Noteworthy is the relatively
high proportion of flavonoids in the dataset [13].

2.2 Databases Focused on Traditional Medicines

2.2.1 Traditional Chinese Medicine Database@Taiwan

The TCM Database@Taiwan [27] is the most comprehensive free resource for
molecular structures of natural products related to TCM. It has been compiled
from Chinese medical texts and various dictionaries, and contains the structures of
more than 60,000 natural products from over 450 herb, animal, and mineral product
TCMs. Important features of this database include the organization of the data into
22 TCM usage classes, such as “digestant medicinal”, and comprehensive ingredient-
to-TCM mapping. We found that 38% of all natural products of the TCM
Database@Taiwan are alkaloids, which is one of the highest percentages observed
among all investigated databases [13]. The database also stands out due to its large
proportion of high molecular weight natural products, among which polyphenols
and basic alkaloids are particularly prominent. In contrast to the previously discussed
natural product databases, the proportion of natural products in compliance with
Lipinski’s rule of five is only 51%. The web interface of the TCM
Database@Taiwan offers advanced search functionalities based on molecular struc-
tures and physicochemical properties. Bulk download of all molecular structures
including stereochemical information is supported.

2.2.2 Traditional Chinese Medicine Integrated Database (TCMID 2.0)

The TCMID 2.0 [29] is a large database of natural products that links traditional
Chinese with modern western medicine by incorporating data on drugs, targets, and
diseases. The database integrates data on herbal ingredients from, among many other
sources, the TCM Database@Taiwan, TCM-ID [73], and the Encyclopedia of
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Traditional Chinese Medicines [74]. Since its initial release in 2013, the database has
been substantially expanded, with the latest release counting more than 43k com-
pounds. As major additions to the latest release, almost 4k mass spectra of natural
products and over 176,000 protein-protein interactions have been added. The
TCMID 2.0 web interface offers, among many other features, a tool for visualizing
ingredient-target-drug-disease networks and herb-target-disease networks. This
enables users, for example, to browse the natural products of a herb of interest, the
targets of these natural products and how they are linked to diseases. As such, the
platform can provide valuable information on multi-target effects and molecular
mechanisms. Download of molecular structures (including stereochemical informa-
tion) and associated data is possible in principle. At the time of writing, the online
presence of this database could not be confirmed.

2.2.3 Yet Another Traditional Chinese Medicine Database (YaTCM)

The YaTCM database [30] is a further recently introduced database on natural
products from Chinese medicinal herbs. The database currently holds more than
47,000 records of natural products found in over 6200 herbs. Like TCMID 2.0
(which is integrated into YaTCM), the chemical data are supplemented with a wealth
of information on targets (approximately 3500 therapeutic targets are covered),
pathways, and diseases. The web service offers chemistry-aware browsing and
search functionality. The website also features an in silico model for target prediction
and tools for visualizing networks of TCM recipes, herbs, natural products, known
and predicted protein targets, pathways, and diseases. Bulk download of chemical
information is not supported.

2.2.4 Chemical Database of Traditional Chinese Medicine (Chem-
TCM)

Chem-TCM [33] is a commercial resource that holds more than 12,000 records on
natural products from approximately 350 herbs used in TCM. The database provides
rich chemical information, including molecular structures with stereochemical infor-
mation, names and identifiers, molecular scaffold types, and natural product classes.
The botanical information includes Latin binomial botanical names, pharmaceutical
names, and Chinese herb names. Chem-TCM seeks to link TCM to western medi-
cine by including activities against 41 drug targets predicted with a random forest
model [32]. In addition, the database includes estimated affinities of molecular
activities according to 28 traditional Chinese herbal medicine categories. Chem-
TCM is provided via a chemistry-aware software application and as SD files.
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2.2.5 Herbal Ingredients In Vivo Metabolism Database (HIM)

The Herbal Ingredients In Vivo Metabolism (HIM) [34] consists of around 1300
natural products richly annotated with absorption, distribution, metabolism, and
excretion (ADME) data and information on compound toxicity. Most natural prod-
ucts of HIM comply with Lipinski’s rule of five, and approximately one-third of the
natural products in this database are not available from any of the other resources that
we investigated recently [13].

At the time of writing, the online presence of this database could not be con-
firmed. The molecular structures of HIM can, however, be accessed via the ZINC
database and include stereochemical information.

2.2.6 Herbal Ingredients’ Targets Database (HIT)

The Herbal Ingredients’ Targets (HIT) database [35] is a collection of more than
530 active ingredients from herbs. Most natural products of HIT comply with
Lipinski’s rule of five [13]. As for HIM, the web presence of HIT could not be
confirmed at the time of writing, but the molecular structures (including stereochem-
ical information) are available via the ZINC database. The natural products stored in
HIT are covered to a large extent by other databases [13].

2.2.7 Indian Medicinal Plants, Phytochemistry, and Therapeutics
Database (IMPPAT)

The Indian Medicinal Plants, Phytochemistry, and Therapeutics (IMPPAT) database
[36] is a rich resource of chemical, biological, and botanical information on Indian
medicinal plants, covering more than 9500 natural products from more than 1700
species. The chemistry-aware web interface allows browsing and searching. A
network visualization tool allows the investigation of plant-natural product associ-
ations, plant-therapeutic use associations, and plant-formulation associations. Bulk
download of molecular structures is not supported.

2.3 Databases Focused on a Specific Habitat or Geographic
Region

2.3.1 Dictionary of Marine Natural Products (DMNP)

The Dictionary of Marine Natural Products [38] is a subset of the Dictionary of
Natural Products (DNP) containing more than 55,000 marine natural products and
their derivatives. This commercial resource is provided as a web service (with
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similar capacities as that of the DNP) and is also distributed as a combination of a
book and CD-ROM.

2.3.2 MarinLit Database

The MarinLit database [39] is a large database of marine natural products collected
from journal articles. The commercial resource currently lists more than 33,000
natural products, richly annotated with bibliographic information, molecular structure,
names, biological sources, physicochemical properties, and identifiers. MarinLit’s
web interface provides powerful search functionalities and features for the
dereplication of natural products.

2.3.3 Taiwan Indigenous Plant Database (TIPdb)

The TIPdb database [40] provides information on the anticancer, antituberculosis,
and antiplatelet activity of more than 9000 natural products of plants indigenous to
Taiwan. Noteworthy are the rather high percentage of natural products with sugars
and sugar-like moieties (25%) and a rather low percentage of alkaloids (14%)
[13]. The web service offers basic browsing and searching functionality, and the
molecular structures of all natural products can be downloaded in bulk.

2.3.4 Northern African Natural Products Database (NANPDB)

With more than 6800 natural products records, NANPDB [43] is the largest database
of natural products isolated from species native to Northern Africa, primarily plants
but also endophytes, animals, fungi, and bacteria. This freely accessible database has
been compiled from many different sources, including articles published in natural
product journals as well as Ph.D. theses. The database provides information on
source organisms, biological activities, and activity types (e.g., antimalarial, cancer-
related). We have shown that the chemical space covered by NANPDB is similar to
that of approved drugs, with more than 90% of all compounds complying with
Lipinski’s rule of five [13]. Noteworthy is the high proportion of natural products
containing sugars and sugar-like moieties (28%). The Northern African Natural
Products Database is provided via a chemistry-aware web interface [44] and can
be downloaded in SMILES and SD file format (including stereochemical
information).

2.3.5 AfroDb Database

The AfroDb database [45] is a diverse collection of natural products found in African
medicinal plants. Worth mentioning is the high percentage of phenols and phenol
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ethers in this database (61%), which is approximately double of that of the DNP
[13]. The molecular structures (including stereochemical information) are freely
available in the supplementary information of the original publication and via the
ZINC database.

2.3.6 South African Natural Compound Database (SANCDB)

The SANCDB [46] is composed of more than 700 natural products from plants and
marine life native to South Africa. The database has been compiled manually from
the literature and contains information on molecular structure (including stereo-
chemistry information), name, structural class, source organism, and physicochem-
ical properties. A free, chemistry-aware web interface for searching and browsing is
provided. The resource is also accessible via a representational state transfer appli-
cation programming interface (REST API).

2.3.7 African Anticancer Natural Products Library (AfroCancer)

AfroCancer [48] focuses on natural products from African medicinal plants with
confirmed antineoplastic, cytotoxic, or antiproliferative activity. The database con-
tains a high percentage of phenols and phenolic compounds (57%) [13]. The molec-
ular structures (including stereochemical information) are freely available in the
supplementary information of the original publication.

2.3.8 African Antimalarial Natural Products Library (AfroMalariaDB)

The AfroMalariaDB [49] is focused on natural products with antimalarial or
antiplasmodial activity confirmed by in vitro and/or in vivo experiments. It consists
of approximately 250 natural products collected from more than 130 African plants.
Like AfroDb and AfroCancer, AfroMalariaDB is rich in phenols and phenolic
compounds [13]. The database is available for download in the supplementary
information of the original publication.

2.3.9 Nuclei of Bioassays, Biosynthesis, and Ecophysiology of Natural
Products Database (NuBBEDB)

The NuBBE database [50, 51] lists more than 2200 natural products of mainly plants
but also fungi, insects, marine organisms, and bacteria native to Brazil. In addition to
chemical information, pharmacological and toxicological data are provided. Most of
the natural products contained in NuBBEDB are drug-like [50]. Compared to other
sources, a low proportion of alkaloids (9%) is observed [50]. The chemistry-aware
web interface allows the search for compounds according to structure, spectroscopic

52 Y. Chen et al.



information, physicochemical properties, and biological source. Bulk download of
structures in MOL2 file format is available.

2.3.10 BIOFACQUIM Database

The BIOFACQUIM database [54] is a manually compiled dataset of natural prod-
ucts isolated and characterized in Mexico. Approximately three-quarters of the
400 natural products currently listed in this database are from plants and 23% are
from fungi. The web service offers basic searching functionality and bulk download
of all data (molecular structures including stereochemical information).

2.4 Databases Focused on Specific Organisms

2.4.1 Pseudomonas aeruginosa Metabolome Database (PAMDB)

The PAMDB [56] is a rich resource of natural products found in Pseudomonas
aeruginosa. The database contains more than 4300 natural products linked to
ontology, reaction, and pathway data. The database also provides information on
the physicochemical properties of natural products and cross-links to external
resources. The PAMDB can be browsed and searched via a chemistry-aware web
interface [57]. The web service also offers bulk download of data in various formats.

2.4.2 StreptomeDB 2.0

StreptomeDB 2.0 [58] is a comprehensive database of about 4000 natural products
produced by Streptomycetes. The database has been compiled from the literature, the
Novel Antibiotics Database [75], and KNApSAcK [76, 77]. The individual molec-
ular structures (including stereochemical information) are annotated with names,
Streptomyces species, biological activities, and key physicochemical properties.
Approximately one-third of the natural products recorded in StreptomeDB2.0 are
not available from any of the other resources that we investigated recently
[13]. StreptomeDB2.0 stands out by having one of the largest proportions of natural
products containing sugars and sugar-like moieties (25%). Although most of the
natural products of StreptomeDB2.0 cover areas in chemical space that are also
densely populated with approved drugs, only a relatively small portion of the natural
products in this database comply with Lipinski’s rule of five (70%). Noteworthy are
a high proportion of alkaloids (47%), although only relatively few of these contain a
basic nitrogen (19%). The database can be freely searched and browsed via a
chemistry-aware web interface. Bulk download of the data in SD file format with
chirality flags is supported.

Resources for Chemical, Biological, and Structural Data on Natural Products 53



2.5 Databases Focused on Specific Biological Activities

2.5.1 Database of Natural Products for Cancer Gene Regulation
(NPCARE)

The NPCARE database [60] contains more than 6500 natural products with potential
anticancer activity measured for a total of approximately 1100 cell lines for 34 cancer
types. The natural products in NPCARE originate from more than 2000 plants,
marine species, and microorganisms. The provided data include chemical informa-
tion (including molecular structures with stereochemistry annotations) and informa-
tion on modulated genes and proteins. The molecular structures of a subset of more
than 1500 compounds are available for bulk download (the SMILES notations do
not include stereochemical information; however, this information can be retrieved
using the PubChem compound identifiers provided).

2.5.2 Naturally Occurring Plant-Based Anti-cancer Compound-
Activity-Target Database (NPACT)

The NPACT database [62] is focused on plant-derived natural products with exper-
imentally confirmed cancer-inhibitory activity. The database lists more than 1500
compounds annotated with approximately 5200 compound-cell line and 2000
compound-target interactions. Cross-links with other resources such as the HIT
database and PubChem are also provided. The chemistry-aware web interface allows
browsing and searching. The molecular structures including stereochemical infor-
mation can be downloaded from the ZINC database.

2.5.3 InflamNat Database

The InflamNat database [64] contains 665 natural products with experimentally
confirmed anti-inflammatory activity. Most natural products (86%) originate from
terrestrial plants; a minority comes from marine life, terrestrial fungi, and bacteria.
The InflamNat database is rich in flavonoids and triterpenoids. Cross-linking with
the PubChem Bioassay database provides information on the biomolecular targets of
the natural products. All structures are provided in the supporting information of the
publication on InflamNat.
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2.6 Databases Focused on Specific Natural Product Classes

2.6.1 Carotenoids Database

The Carotenoids Database [65] contains over 1100 natural carotenoids extracted
from almost 700 source organisms. The resource was compiled from the primary
literature. The web interface provides access to molecular structures, source organ-
isms, and biological function of the individual carotenoids. The structures of indi-
vidual carotenoids can be downloaded in various formats (including stereochemical
information) but only one molecule at a time.

3 Physical Natural Product Collections

Few physical collections are in existence that are purely based on genuine natural
products. More common are physical collections containing a mix of natural prod-
ucts, natural product analogs and derivatives, and synthetic compounds. Among the
mixed collections, only a minority have annotated their compounds as genuine
natural products, semisynthetic, and synthetic compounds. However, computational
approaches allow the accurate discrimination of natural products and (semi-)
synthetic compounds based on molecular structures. The latest in silico approach,
“NP-Scout”, has been reported from our lab [78]. The NP-Scout approach is a
random forest-based machine-learning model that calculates the probability of a
compound being a natural product. The model was trained on more than 265,000
natural products and synthetic molecules. On an independent test set of over 80,000
compounds, the model reached an area under the receiver operating characteristic
curve (AUC) of 0.997 and a Matthew’s correlation coefficient (MCC) of 0.960,
documenting the high performance of the model. The NP-Scout web service also
supports the generation of similarity maps, which indicate atoms in a molecule that
contribute significantly to the classification of a molecule as a synthetic molecule or
natural product. This allows, for example, the identification of synthetic fragments in
natural product derivatives. Two examples of similarity maps generated with
NP-Scout are shown in Fig. 1, for vorapaxar and empagliflozin. Vorapaxar is a
derivative of the natural product himbacine, for which NP-Scout correctly identifies
the decahydronaphtho[2,3-c]furan-1(3H )-one scaffold as being a natural product
fragment. Empagliflozin mimics the flavonoid phlorizin, and NP-Scout correctly
recognizes the C-glycosyl moiety as being a natural product fragment.

In the following Sections, we will discuss examples of physical natural product
collections for which molecular structures are accessible via a chemistry-aware web
interface and/or bulk download. An overview of the resources discussed herein is
provided in Table 2.
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Fig. 1 Similarity maps of (a) vorapaxar and (b) empagliflozin. Green-highlighted atoms contribute
to the classification of a molecule as a natural product; orange-highlighted atoms contribute to the
classification of a molecule as a synthetic compound. Adapted from [78] (CC BY 4.0; https://
creativecommons.org/licenses/by/4.0)

Table 2 Physical natural product collectionsa

Supplier name (Sub-)set name
Number of
compounds

Collection
composition

Molecular
structures
provided
free of
charge

Web
presence

Ambinter and
Greenpharma

Natural products >8000;
plated col-
lection of
480 NPs

NPs only Yes [79, 80]

Ambinter and
Greenpharma

Natural product
derivatives

>11,000 (Semi-) synthetic
compounds

Yes [79, 80]

AnalytiCon
Discovery

MEGx—Purified
natural products
of microbial and
plant origin

~5000 NPs only Yes [81]

AnalytiCon
Discovery

NATx—Semi-
synthetic natural
product-derived
compounds

>29,000 NPs and (semi-)
synthetic
compounds

Yes [81]

AnalytiCon
Discovery

MACROx—Next
generation
macrocycles

>2000 Semisynthetic
compounds
based on nine
scaffolds

Yes [81]

AnalytiCon
Discovery

FRGx—Frag-
ments from
Nature

>200 NPs and (semi-)
synthetic
compounds

Yes [81]

Chengdu
Biopurify
Phytochemicals

TCM Com-
pounds Library

>4600 NPs and (semi-)
synthetic
compounds

Yes [82]

(continued)
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Table 2 (continued)

Supplier name (Sub-)set name
Number of
compounds

Collection
composition

Molecular
structures
provided
free of
charge

Web
presence

Selleck
Chemicals

Natural Products ~1600
(plated)

NPs only Yes [83]

TargetMol Natural Com-
pound Library

>1500
(plated)

NPs only Yes [84]

MedChem
Express

Natural Product
Library

>1500;
plated col-
lection of
>900 NPs

NPs only Yes [85]

InterBioScreen Natural Com-
pound
(NC) Collection

>1300 nat-
ural com-
pounds and
66,000
derivatives
and analogs

NPs and (semi-)
synthetic com-
pounds; distin-
guishable by tags

Yes [86]

InterBioScreen Building Blocks >13,000 NPs and (semi-)
synthetic
compounds

Yes [86]

InterBioScreen Natural Scaffold
Libraries

>500 NPs and (semi-)
synthetic
compounds

Yes [86]

TimTec Natural Product
Library (NPL)

~800 NPs only No [87]

TimTec Natural Deriva-
tives Library
(NDL)

~3000 NPs and (semi-)
synthetic
compounds

Yes [87]

TimTec Flavonoids
Collection

~500 NPs and (semi-)
synthetic
compounds

Yes [87]

TimTec Flavonoid Deriv-
atives Extended
Collection

>4000 NPs and (semi-)
synthetic
compounds

Yes [87]

TimTec Gossypol Deriva-
tives Collection

~100 NPs and (semi-)
synthetic
compounds

Yes [87]

AK Scientific Natural Products ~500 NPs only Yes [88]
Developmental
Therapeutic
Program (DTP)
of NCI NIH

Natural Products
Set IV

~400 NPs only Yes [89]

INDOFINE
Chemical

Natural Products,
Flavonoids, Cou-
marins, etc.

>4000 NPs and (semi-)
synthetic
compounds

Yes [90]

(continued)
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3.1 Pure Natural Product Collections

In this section, we list offerings of pure natural product collections and mixed
collections in which genuine natural products are clearly marked and can hence be
distinguished from other compounds.

3.1.1 Ambinter and Greenpharma

With more than 8000 listed compounds, the physical natural product collection of
Ambinter and Greenpharma [79] is one of the largest offerings available to date. As
we have shown previously [13], approximately half of all these natural products are
available exclusively from these providers. The collection stands out due to the well-
balanced representation of all major natural product classes, which is comparable to
that observed for the DNP [13]. Ambinter and Greenpharma also offer a collection of
more than 11,000 purchasable natural product derivatives and a preformatted col-
lection of 480 diverse natural products.

Table 2 (continued)

Supplier name (Sub-)set name
Number of
compounds

Collection
composition

Molecular
structures
provided
free of
charge

Web
presence

Pharmeks Screening
Compounds

>360,000
(>2800
NPs and
NP
derivatives)

NPs and (semi-)
synthetic com-
pounds; distin-
guishable by tags

Yes [91]

Pharmeks Building Blocks >12,000 NPs and (semi-)
synthetic
compounds

Yes [91]

Princeton Bio-
Molecular
Research

Macrocycles >1500 NPs and (semi-)
synthetic
compounds

Yes [92]

MicroSource
Discovery
Systems

Natural Products
Collection
(NatProd)

~800 NPs and (semi-)
synthetic
compounds

Yes [93]

Specs Natural Products >600 NPs and (semi-)
synthetic
compounds

Yes [94]

aAdapted with permission from [10]. Copyright 2017 American Chemical Society
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3.1.2 AnalytiCon Discovery

AnalytiCon Discovery [81] offers a continuously growing collection of purchasable
natural products (“MEGx”). The collection consists of approximately 5000 com-
pounds, the majority of which are available exclusively from this provider
[13]. Among the offered compounds are many microbial natural products. The
MEGx has the highest proportion of natural products containing sugar or sugar-
like fragments among all natural product collections we investigated previously. In
contrast, the percentage of alkaloids in this collection is low (14%). AnalytiCon also
offers collections of more than 29,000 semisynthetic compounds derived from
natural products (“NATx”), over 2000 macrocycles (“MACROx”), and more than
200 fragments from Nature (“FRGx”).

3.1.3 Chengdu Biopurify Phytochemicals

Chengdu Biopurify Phytochemicals [82] offers a collection of over 4600 compounds
related to TCM. The collection is rich in flavonoids, alkaloids, phenols, and terpe-
noids. Many of the natural products are offered exclusively by this provider.

3.1.4 Selleck Chemicals

Selleck Chemicals [83] offers a plated collection of over 1600 natural products for
screening. The collection is rich in flavonoids and phenolic natural products, and
more than three-quarters of the natural products in this collection comply with
Lipinski’s rule of five [13].

3.1.5 TargetMol Collection

TargetMol [84] offers a plated collection of more than 1500 natural products for
screening. The compounds originate from plants, animals, microorganisms, and
other organisms. Many of the natural products of this collection are active on
pharmaceutically relevant proteins.

3.1.6 MedChem Express Collection

The MedChem Express collection [85] offers a diverse ensemble of more than 1500
natural products, including 216 alkaloids, 189 terpenoids and glycosides, 183 acids
and aldehydes, 156 flavonoids, and 88 saccharides and glycosides. The company
also offers a plated collection of more than 900 natural products for screening.

Resources for Chemical, Biological, and Structural Data on Natural Products 59



3.1.7 InterBioScreen Collection

InterBioScreen [86] offers the Natural Compound (NC) collection of purchasable
compounds, which contains over 1300 genuine natural products plus 66,000 natural
product derivatives (the labels allow the discrimination of genuine natural products
from natural product analogs and derivatives). The vast majority of natural products
contained in this collection originate from plants, 5 to 10% are isolated from
microbes, and another 5% from marine species. The NC collection includes uncom-
mon compounds as well, such as certain classes of phytoalexins, allelopathic agents,
and specific sex attractants. In our recent studies, we found that the NC collection
features the highest rate of steroids among all investigated natural product databases
[13]. Approximately 95% of all compounds of the natural product collection comply
with Lipinski’s rule of five. InterBioScreen also offers a collection of over 13,000
building blocks that are partly related to natural products, plus more than 500 natural
product scaffolds for compound synthesis.

3.1.8 TimTec Collection

The Natural Product Library (NPL) from TimTec [87] consistes of approximately
800 genuine natural products. These natural products originate primarily from
plants, but some have animal, bacterial, or fungal origins. In addition, TimTec offers
the Natural Derivatives Library (NDL), which is composed of more than 3000
natural product derivatives, natural product analogs, and semi-natural compounds.
A subset of 500 flavonoid derivatives based on nine core flavonoid scaffolds is
available, as are an extended collection of over 4000 flavonoid derivatives and a
small collection of gossypol derivatives.

3.1.9 AK Scientific Collection

AK Scientific [88] offers a collection of approximately 500 natural products includ-
ing alkaloids, flavonoids, stilbenoids, terpenoids, and terpenes. The company also
provides a subset of synthetic compounds and additives, containing over 100 flavo-
noids, food preservatives/additives, and vitamins.

3.1.10 Natural Products Set IV of the National Cancer Institute’s
Developmental Therapeutic Program (DTP)

The Developmental Therapeutic Program of the National Cancer Institute, National
Institutes of Health, provides a plated collection of approximately 400 natural
products for experimental screening. These natural products have been selected
from 140,000 compounds available from the DTP Open Repository based on
compound diversity, availability, and purity. According to our previous analysis
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[13], more than 60% of these compounds are available exclusively from this source.
Approximately 80% comply with Lipinski’s rule of five, which is the lowest among
all investigated physical collections. Noteworthy is the high proportion of alkaloids
(42%).

3.2 Mixed Collections of Natural Products, Semisynthetic, and
Synthetic Compounds

More than 100 vendors offer natural products for experimental testing today, as will
be discussed in the next section. However, only a rather small number of vendors
explicitly mention the presence of natural products in their mixed physical collec-
tions. One of them is INDOFINE Chemical [90], which offers around 4000 natural
products and semisynthetic compounds including flavones, isoflavones, flavanones,
coumarins, chromones, chalcones, and lipids. The company also has a broad port-
folio of synthetic compounds.

Pharmeks [91] offers a diverse, mostly heterocyclic collection of 360,000 organic
molecules, 2800 of which are natural products or natural product derivatives. In
addition, Pharmeks also offers more than 12,000 building blocks of both synthetic
compounds and natural products.

Princeton BioMolecular Research [92] provides a collection of over 1500 mac-
rocyclic natural products, natural product derivatives, and synthetic compounds.
MicroSource Discovery Systems [93] offers its Natural Products Collection
(“NatProd”), which is composed of 800 natural products and natural product deriv-
atives originating from plant, animal, and microbial sources. Specs [94] offers a
collection of over 600 isolated or synthesized natural products and natural product
derivatives originating from fungi, bacteria, plants, marine species, and other
organisms.

4 Coverage and Reach of Molecular Structures Deposited
in Natural Product Collections

As part of one of our previous studies [10], we have analyzed the coverage and reach
of 18 virtual natural product databases (marked in Table 1 as included in the analysis
published in Ref. [10]) and several physical natural product collections. The number
of unique compounds contained in the individual datasets was determined by
counting unique InChIs (without stereochemistry and fixed hydrogen layers) derived
from neutralized molecules (i.e., counter-ions of salts removed and compounds
neutralized with the Wash function in the Molecular Operating Environment
(MOE) [95]). Summarized here are some of the most relevant findings of this study.
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4.1 Coverage of Free and Commercial Virtual Natural
Product Collections

The 18 virtual natural product databases marked in Table 1 contain more than
250,000 unique natural products in total. Approximately 46,000 of these natural
products are exclusively covered by the DNP, which is the most widely accepted
reference natural product database (Fig. 2a). At the same time, 70% of all natural
products listed in the commercial DNP are also present in at least one free database.
The largest contribution to the significant overlap between the DNP and the free
virtual natural product collections stems from the UNPD, which remains the most
comprehensive free and fully downloadable virtual natural product database.

4.2 Readily Obtainable Natural Products and Derivatives

In the context of early drug discovery, virtual screening in particular, it is important
to understand both the proportion of and coverage of chemical space by natural
products that are readily obtainable for experimental testing. Only approximately
11,000 natural products are readily obtainable from pure, physical natural product
collections. However, the number increases to more than 25,000 when also taking
mixed physical collections into account. This number was derived by overlaying a
dataset of 250,000 known natural products (sources marked in Table 1) with the
7.3 million readily obtainable compounds listed in the ZINC database “in-stock”
subset (Fig. 3). The ZINC database is widely accepted as the most comprehensive
meta-database of purchasable compounds and offers a subset of readily obtainable
compounds. As part of this analysis, 100 vendors of natural products were identified.
Only nine of these offer more than 5000 readily obtainable compounds (Table 3).
The number of accessible natural products can be further increased by using services
for on-demand sourcing, extraction, and synthesis. This involves longer lead times

Fig. 2 The overlap between the Dictionary of Natural Products (DNP) and (a) the freely accessible
virtual natural product collections or (b) the Universal Natural Products Database (UNPD).
Reprinted with permission from [10]. Copyright 2017 American Chemical Society
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Fig. 3 Comparison of the
content of virtual natural
product collections and the
ZINC “in-stock” subset.
Reprinted with permission
from [10]. Copyright 2017
American Chemical Society

Table 3 Numbers of natural products readily purchasable from suppliersa

Number of readily
purchasable NPs Suppliers

>5000 Molport, TimTec, AK Scientific, Tetrahedron Scientific, BOC Sci-
ences, FineTech Industry, Sigma Aldrich, Specs, National Cancer
Institute (NCI)

3000 to 5000 Fluorochem, Nanjing Kaimubo Pharmatech Company, Hong Kong
Chemhere, Oxchem Corporation, BePharm, Zelinsky Institute,
Combi-Blocks, Debye Scientific, Matrix Scientific, WuXi AppTec,
Ark Pharm, Bide Pharmatech, BioSynth, InterBioScreen, Labseeker,
StruChem, Alfa-Aesar

2000 to 3000 AstaTech, Enamine, Oakwood Chemical, Frontier Scientific Ser-
vices, Alfa Chemistry, Key Organics, Apollo Scientific, W&J
PharmaChem, AnalytiCon Discovery, Acros Organics, Shanghai Pi
Chemicals, Syntharise Chemical

1000 to 2000 Toronto Research Chemicals, Capot Chemical, Rostar, INDOFINE
Chemical, Alinda, Pharmeks, Innovapharm, Synthon-Lab, Vesino
Industrial, Life Chemicals, Bosche Scientific, Chem-Impex Interna-
tional, Vitas-M Laboratory, Biopurify Phytochemicals, Otava
Chemicals, A2Z Synthesis, Cayman Chemical, Accela ChemBio,
Molepedia, Curpys Chemicals, ChemDiv, AsisChem

100 to 1000 Boerchem Pharmatech, AbovChem, Ryan Scientific, Hangzhou
Yuhao Chemical Technology, TargetMol, APExBIO, Princeton
BioMolecular Research, EDASA Scientific, ChemBridge, May-
bridge, MolMall, HDH Pharma, UORSY, Chemik, Bachem, Creative
Peptides, MedChem Express, Aronis, Heteroz, Selleck Chemicals,
Tocris, Frinton Laboratories, Asinex, Synchem, EndoTherm Life
Science Molecules, Coresyn, SpiroChem, Advanced ChemBlock

aNumbers are estimates based on the overlap of all known natural products (NPs) and the
compounds present from a particular vendor in the “in-stock” subset of ZINC. Reprinted with
permission from [10]. Copyright 2017 American Chemical Society
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and higher costs but, as Lucas et al. [96] have shown recently, approximately
one-third of all natural products listed in the DNP, TCM Database@Taiwan, and
StreptomeDB are obtainable via these routes.

As observed in the physical collection sizes reported in Table 2, the number of
readily obtainable natural product analogs and derivatives is much higher than that
of genuine natural products. Hence, by allowing small deviations in molecular
structure from genuine natural products, a much higher number of natural product-
like compounds become readily obtainable. As shown in Fig. 4, there are approxi-
mately 58,000 natural products readily obtainable that have a Tanimoto coefficient
based on Morgan3 fingerprints [97] equal to 0.7 or higher. Given these high
similarity values, these compounds are likely natural product derivatives or analogs.

Macrocycles have gained significant interest in the context of drug discovery in
recent years. Due to their conformational constraints, macrocycles can provide
advantages in entropic binding and specificity [98]. Our analysis has shown that
approximately 14% (35,000) of all 250,000 known natural products contain rings
formed by more than seven atoms. However, only approximately 800 genuine
natural products with a ring size larger than seven atoms are readily obtainable

Fig. 4 Cumulative histogram of maximum molecular similarity (Tanimoto coefficient) for the
compounds in virtual natural product libraries compared to the ZINC “in-stock” subset. The bars in
the histogram represent the number of known natural products with a maximum molecular
similarity greater than or equal to the bin threshold. Reprinted with permission from [10]. Copyright
2017 American Chemical Society
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(note that, e.g., AnalytiCon offers more than 2000 semisynthetic, macrocyclic
compounds based on nine scaffolds).

5 Resources for Biological Data on Natural Products

The majority of virtual natural product databases provide biological information in
addition to chemical data (Table 1). Most of this information is in the form of
bioactivities measured for organisms, cells, or individual biomacromolecules. Sev-
eral resources provide information on pathways, diseases, and ADME properties.

The ChEMBL [99] database is one of the most comprehensive sources of
measured biological activities of small molecules. The database is manually com-
piled primarily from scientific publications. It also draws information from other
sources such as the PubChem Bioassay database [100, 101]. The latest version of the
ChEMBL database counts over 1.8 million distinct compounds annotated with more
than 15.2 million activity records on a total of more than 12,000 targets. In our recent
analysis, we found that approximately 16% (40,000) of known natural products are
contained in ChEMBL [10].

6 Resources for Structural Data on Natural Products

The Cambridge Structural Database (CSD) [102] provides a wealth of information
on the three-dimensional structures of small-molecule organic and metal-organic
compounds. Currently, the database is approaching the milestone of storing 1 million
structures derived by X-ray and neutron diffraction analysis.

Structural information of natural products bound to their biomacromolecular
targets is available from the Protein Data Bank (PDB) [103] but remains sparse.
We found that for approximately 2000 natural products at least one X-ray crystal
structure in complex with a biomacromolecule is deposited in the PDB [13]. A small
number of structures of protein-bound macrocyclic natural products are also
available [104].

7 Conclusions

During the last few years, the chemical, biological, and structural information
available on natural products has increased substantially. Today, the molecular
structures of several hundred thousand natural products are available from a large
number of different sources. In particular, natural products from botanical sources
are to a large part covered by subscription-free resources that permit bulk export or
download of data, allowing an array of different cheminformatics methods to be
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employed in the context of drug discovery. It is important to mention that the quality
and quantity of the information provided by the individual sources vary substan-
tially. For example, not all sources provide information on stereochemical proper-
ties, which in fact are often incomplete or inaccurate for natural products anyway. To
the best of our knowledge, there have been no systematic studies on the quality of the
data provided by natural product databases. This would, of course, be an important
aspect to examine further.

Measured data on biological activities and ADME properties are becoming
increasingly available, whereas structural information on natural products bound to
their biomacromolecular target remain sparse. The bottleneck for drug discovery
continues to be the availability of material for experimental testing. It is estimated
that only about 10% (25,000) of all known natural products are readily obtainable
from commercial and other sources. However, a substantially higher number of
natural product-like compounds are readily obtainable.

In the coming years, we expect a further increased growth rate for chemical,
biological, and structural data on natural products. In particular, we expect resources
providing free access and bulk data download to play an ever more important role.
One major challenge is to develop strategies for the sustainability of such valuable
sources. What is seen today, unfortunately, is that many databases are no longer
maintained after they have been reported in the scientific literature, and there are
many examples of resources that go offline even within 1 year after their launch. This
phenomenon is, of course, not specific to natural product databases but part of a
general and largely unsolved problem.

Despite the remaining challenges, the large amount of data on natural products
available today enables investigators to effectively employ computational methods
and make substantial contributions to natural product-based drug discovery.
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2.2. Chemical Data Preprocessing and Molecular Descriptor 
Calculation 

One compound may be represented by different molecular structures. For this 
reason it is essential to develop and employ a robust protocol for the preprocessing 
(including structure standardization) of molecular structures prior to conducting 
any analyses or model building. 

This subsection describes a generalized approach to preprocessing molecular 
structures. Further information is provided in the individual Methods sections of 
the publications presented as part of the Results section of this dissertation. 

Today, a plethora of tools for molecular structure preprocessing are at our 
disposal. The work of this thesis builds primarily on the use of the KNIME data 
analytics platform [15], MOE [16] and RDKit [17] (via Python scripts). 

The general data preprocessing workflow involves the: 

● conversion of different input formats to Simplified Molecular Input Line 
Entry Specification (SMILES) [18] 

● addition of hydrogens 
● removal of salt components 
● removal of compounds with uncommon elements (usually, any compounds 

consisting of elements other than H, B, C, N, O, F, Si, P, S, Cl, Br and I) 
● removal of compounds with molecular weight above or below a defined 

threshold 
● assignment of appropriate formal charges (in general, neutralization) 
● assignment of a standard tautomer state or enumeration of possible 

tautomers 
● generation of the IUPAC International Chemical Identifier (InChIs) [19,20] 

or canonicalization of SMILES notations (ignoring or considering stereo-
chemical information as appropriate) 

Following data preprocessing, molecular descriptors or fingerprints are 
calculated. More specifically, for studying the physicochemical properties of NPs 
and comparing them with those of approved drugs (Chapter 3.1, D4) we employed 
MOE and RDKit for descriptor calculation (controlled via KNIME). For our 
analysis of a shape-based approach for predicting the macromolecular targets of 
complex small molecules (Chapter 3.3, D6) we used RDKit for descriptor 
calculation (controlled via Python scripts). 

2.3. Chemical Space Analysis 

One of the most frequently employed methods for the characterization and 
comparison of the chemical space covered by individual data sets is principal 
component analysis (PCA), which is explained in more detail in D1. Briefly, PCA is 
a data projection method which reduces high-dimensional data into a low-
dimensional space (usually a two-dimensional (2D) or 3D space for the purpose of 
visualization). The loadings of the principal components (PCs) indicate the 
correlation between a descriptor and a PC, thus helping to understand whether 
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certain descriptors are positively or negatively correlated with PCs and have strong 
effect on PCs. When two datasets are different on one PC, the main descriptors 
responsible for this difference can be identified. 

The PCAs reported in this thesis are based on simple, physically meaningful 
molecular descriptors such as molecular weight, log P, topological polar surface 
area, number of hydrogen bond acceptors, number of hydrogen bond donors, 
number of heavy atoms, fraction of rotatable bonds, number of nitrogen atoms, 
number of oxygen atoms, number of acidic atoms, number of basic atoms, sum of 
formal charges, number of aromatic atoms, number of chiral centers, and number 
of rings. The list of molecular descriptors used for each PCA study can be found in 
D4 and D5.  

2.4. Rule-Based Approaches 

For the characterization of NP databases, we elaborated and employed several 
rule-based approaches, described in more detail in Chapter 3.1 (D4). Because sugar 
or sugar-like moieties are in most cases not of interest in drug discovery, we 
developed “SugarBuster” (D4), a rule based method for deglycosylation. The rules 
are SMILES arbitrary target specification (SMARTS) [21] patterns that are designed 
to remove sugar and sugar-like moieties. The rules are defined as follows:  

● five-membered aliphatic ring moieties with 
 exactly one heteroatom in the ring AND 
 all carbons forming the ring being a member of only one ring AND 
 at least two substituents with EITHER 

i two oxygen atoms attached directly to the ring OR 
i one oxygen atom and one nitrogen atom attached directly to 

the ring 
● six-membered aliphatic ring moieties with 

 a maximum of one heteroatom in the ring AND 
 all carbons forming the ring being a member of only one ring AND 
 at least three substituents with EITHER 

i three oxygen atoms attached directly to the ring OR 
i two oxygen atoms and one nitrogen atom attached directly 

to the ring. 

The algorithm removes the defined sugar and sugar-like fragments and returns 
the largest aglycon component (fragment with the highest number of heavy atoms) 
of the input molecule.  

For classifying NPs into different NP classes, substructure matching by 
SMARTS patterns was also applied. The NP classes that can be identified include: 

● basic alkaloids, defined as any NP with at least one basic nitrogen atom 
● extended definition of alkaloids, defined as any NP with at least one basic 

nitrogen atom, quaternary nitrogen atom or carboxamide moiety 
● phenols 
● phenols or phenol ethers 
● steroids, defined by the core ring system 
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● flavonoids, as well as several different subclasses of flavonoids namely 
anthocyanidins, chalcones, flavandiols, flavanols, flavanones, flavanonols, 
flavones, flavonols, and isoflavones, based on the scaffolds defined in Figure 
26.35 of ref 22. The structures and the developed SMARTS patterns of the 
flavonoid subclasses are shown in Table 1. 

2.5. Machine Learning Methods 

Machine learning is becoming one of the most common in silico methods for drug 
discovery. Although several different machine learning algorithms have been 
explored during these studies (including support vector machines, random forest, 
and artificial neural networks), we converged to using a random forest algorithm 
(implemented in the scikit-learn library [23,24]) for modeling as it consistently 
obtained the best performance. 

In the development of NP-Scout (Chapter 3.2, D5), large sets of NPs and 
synthetic molecules were merged and then randomly split into a training set and 
a test set with a ratio of 4:1 using the “train_test_split” method in the 
“model_slection” module of scikit-learn. In fingerprint space, structurally distinct 
molecules may have identical fingerprints. For this reason, deduplication, based 
on fingerprints, was separately performed for all NPs and all synthetic molecules 
in the training data. Any fingerprints present in both the NP and synthetic 
molecules subsets were removed in order to avoid conflicting class labels.  

For the training set, 10-fold cross-validation was used to train models and 
stratified K-Folds cross-validation (“StratifiedKFold”) was performed to keep the 
same distribution of classes for each fold. Cross-validated grid-search was 
employed to select the best hyperparameters to train the models, while in this 
study (D5) hyperparameter tuning had no obvious improvement of the perfor-
mance.  

Random forest classifiers were generated using default settings, except for 
“n_estimators”, which was set to “100”, and “class_weight”, which was set to 
“balanced”. Three different models were built based on three different descriptors 
sets, namely Morgan2 fingerprints (1024 bits) [25,26] and MACCS keys (166 bits) 
calculated with RDKit, and 206 2D physicochemical property descriptors 
calculated with MOE. 
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Table 1. Examples of different subclasses of flavonoids and their substructure 
SMARTS patterns.  

Subclasses of 
flavonoids 

Structures from  
ref 22 SMARTS patterns 

Anthocyanidins 

 

[cR1]1([OX2&!R])[cR1][cR1]([OX2&!R])[c
R1]c2[oR1;+][cR1]([cR1]3[cR1][cR1][cR1]([
OX2&!R])[cR1][cR1]3)[cR1]([OX2&!R])[cR
1]c12 

Chalcones 

 

[cR1]1([OX2&!R])[cR1][cR1]([OX2&!R])[c
R1][cR1]([OX2&!R])[cR1]1[#6&!R](=O)[#6
&!R]=[#6&!R][cR1]1[cR1][cR1][cR1]([OX2
&!R])[cR1][cR1]1 

Flavandiols 

 

[cR1]1([OX2&!R])[cR1][cR1]([OX2&!R])[c
R1]c2[OR1][CR1]([cR1]3[cR1][cR1][cR1]([O
X2&!R])[cR1][cR1]3)[CR1]([OX2&!R])[CR1
]([OX2&!R])c12 

Flavanols 

 

[cR1]1([OX2&!R])[cR1][cR1]([OX2&!R])[c
R1]c2[OR1][CR1]([cR1]3[cR1][cR1][cR1]([O
X2&!R])[cR1][cR1]3)[CR1]([OX2&!R])[CR1
]([*;!O])c12 

Flavanones 

 

[cR1]1([OX2&!R])[cR1][cR1]([OX2&!R])[c
R1]c2[OR1][CR1]([cR1]3[cR1][cR1][cR1]([O
X2&!R])[cR1][cR1]3)[CR1]([*;!O])[CR1](=
O)c12 

Flavanonols 

 

[cR1]1([OX2&!R])[cR1][cR1]([OX2&!R])[c
R1]c2[OR1][CR1]([cR1]3[cR1][cR1][cR1]([O
X2&!R])[cR1][cR1]3)[CR1]([OX2&!R])[CR1
](=O)c12 

Flavones 

 

[cR1]1([OX2&!R])[cR1][cR1]([OX2&!R])[c
R1]c2[oR1][cR1]([cR1]3[cR1][cR1][cR1]([O
X2&!R])[cR1][cR1]3)[cR1]([*;!O])[cR1](=O
)c12 

Flavonols 

 

[cR1]1([OX2&!R])[cR1][cR1]([OX2&!R])[c
R1]c2[oR1][cR1]([cR1]3[cR1][cR1][cR1]([O
X2&!R])[cR1][cR1]3)[cR1]([OX2&!R])[cR1]
(=O)c12 

Isoflavones 

 

[cR1]1([OX2&!R])[cR1][cR1]([OX2&!R])[c
R1]c2[oR1][cR1]([*;!O])[cR1]([cR1]3[cR1][c
R1][cR1]([OX2&!R])[cR1][cR1]3)[cR1](=O)
c12 
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In the validation step, the performance of the selected models was measured 
on the test set. Model performance was characterized utilizing the Matthews 
correlation coefficient (MCC) [27] and area under the receiver operating 
characteristic curve (AUC). The MCC is one of the most robust measures for 
evaluating the performance of binary classifiers, as it considers the proportion of 
all classes in the confusion matrix (i.e., true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN)):  

𝑀𝐶𝐶 =  𝑇𝑃∗𝑇𝑁 − 𝐹𝑃∗𝐹𝑁
√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)

  

MCC values range from -1 to 1, where 1 indicates perfect prediction, -1 a total 
opposite prediction, and 0 a performance equal to random prediction. The AUC 
was used to measure how well the models are able to rank NPs early in a list. The 
AUC can range from 0 to 1, where 1 indicates a perfect model, 0 indicates the model 
reversed the classes, and 0.5 means the model has no class separation capacity.  

The model’s ability to identify NPs was also tested on the Dictionary of Natural 
Products [28] as an external validation set. 

2.6. Three-Dimensional Shape-Based Similarity Method 

The usage of molecular similarity methods in drug discovery is based on the so-
called “similarity principle”, which states that compounds with similar chemical 
structures are likely to share similar properties, such as biological activities. 

Most NPs are in low degree of structural similarity with more conventional, 
synthetic compounds, which account for the bulk of the measured activity data. 
Compared to 2D similarity-based approaches, more complex similarity-based 
methods that compare molecules based on their 3D molecular shape are designed 
to recognize such distant structural similarity. In Chapter 3.3 (D6), we 
systematically explored the capacity of ROCS [29,30], a leading shape-based 
screening engine that also takes into account chemical feature distributions, to 
identify the macromolecular targets of "complex" small molecules based on a 
knowledge base of "non-complex" compounds with measured bioactivity data.  

Molecular similarity was quantified separately by each of four similarity metrics 
implemented in ROCS: ShapeTanimoto score, TanimotoCombo score, 
RefTverskyCombo score, and FitTverskyCombo score. As suggested by their 
names, these metrics are either based on the Tanimoto or the Tversky coefficient. 
The Tanimoto coefficient and Tversky coefficient quantify the similarity of two 
molecules, f and g, based on their self-volume overlaps (If and Ig) and the volume 
overlap between the two molecules (Of,g): 

𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜𝑓,𝑔 =  𝑂𝑓,𝑔

𝐼𝑓 + 𝐼𝑔 − 𝑂𝑓,𝑔
  

𝑇𝑣𝑒𝑟𝑠𝑘𝑦𝑓,𝑔 =  𝑂𝑓,𝑔

𝛼∗𝐼𝑓 + 𝛽∗𝐼𝑔
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The Tversky coefficient can be asymmetric (depending on the alpha and beta 
parameters chosen; normally alpha + beta = 1), hence allowing the emphasis of 
either substructure or superstructure matching. 

The ShapeTanimoto score only considers the fit of the molecule shapes for the 
volume overlap, whereas the three "combo" scores additionally take the type and 
distribution of chemical features (color) into account. The ShapeTanimoto score 
ranges from 0 to 1, with a value of 1 indicating a perfect fit of molecular shapes. 
The "combo" scores typically range from 0 to 2, with equal weights applied to the 
shape and color components.  

The RefTverskyCombo score assigns an alpha value of 0.95 to the query as the 
main self-overlap term. The FitTverskyCombo score, on the contrary, assigns a 
beta value of 0.95 to the fit molecule. Note that the RefTverskyCombo and 
FitTverskyCombo scores can have values greater than 2 because the overlap of the 
two compounds can be larger than a molecule’s self-overlap. 

ROCS was run with factory settings with the following exceptions: both “-
besthits” and “-maxhits” were set to “0” in order to cause ROCS to retain all results. 
The “-rankby” option was set to “ShapeTanimoto”, “TanimotoCombo”, 
“RefTverskyCombo”, or “FitTverskyCombo” in order to have the results ranked by 
the four similarity metrics. For experiments using the ShapeTanimoto score, the 
“-shapeonly” function was enabled in order to cause ROCS to align molecules by 
taking only molecular shape into account (and not color).  
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3. Results 

3.1. Characterization of Physicochemical and Structural 
Properties of Natural Products 

NPs can differ substantially from synthetic molecules with regard to their 
physicochemical and structural properties, and these differences have been 
assessed in a large number of studies [31–33]. However, the understanding of the 
physicochemical properties and the chemical space of NPs from distinct resources, 
backgrounds and domains is limited. For this reason, based on the NP collections 
available to us (D2), we conducted a comprehensive cheminformatics analysis to 
obtain a detailed picture of the physicochemical and structural properties of 
different NP data sets (D4).  

Overall, we analyzed 18 virtual NP libraries and nine physical NP libraries, from 
which we compiled data sets of all known NPs (from all the virtual databases), and 
the readily obtainable NPs (from all the physical libraries and the known NPs 
presented in ZINC database [34,35]). Additionally, a set of approved drugs from 
NPs or NP derivatives and the data set of NPs with high quality X-ray crystal 
structures in the Protein Data Bank (PDB) [36,37] were also included in the 
analysis.  

The study provides detailed information on the number of unique structures, 
exclusive structures, scaffolds, structures containing sugar or sugar-like moieties, 
different NP classes, and different physicochemical properties etc. of each data 
resource, and also provides insights on the overall chemical space covered by the 
most relevant data resources.  

As part of this study, an algorithm that can remove sugars and sugar moieties 
from NPs, as well as a rule-based approach that can identify different major classes 
of NPs, were developed. 

The details of this work are reported in the following publication. 
 

[D4] Chen, Y.; Garcia de Lomana, M.; Friedrich, N.-O.; Kirchmair, J. 
Characterization of the Chemical Space of Known and Readily Obtainable 
Natural Products. J. Chem. Inf. Model. 2018, 58 (8), 1518–1532. 

 
Available at https://doi.org/10.1021/acs.jcim.8b00302. 
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ABSTRACT: Natural products remain one of the most productive
sources of chemical inspiration for the development of new drugs. The
structures of more than 250 000 natural products are available from
public databases. At least 10% of these compounds are readily obtainable
for experimental testing from commercial vendors and public research
institutions. While the physicochemical properties of known natural
products have been thoroughly studied and compared to those of drugs
and other types of small molecules, the information available on the
content, coverage, and relevance of individual virtual and physical natural
product libraries is clearly limited. The aim of this study was the
development of a detailed understanding of the coverage of chemical
space by known and readily obtainable natural products and by individual
natural product databases. For this purpose, we compiled comprehensive
data sets of known and readily obtainable natural products from 18 virtual databases (including the Dictionary of Natural
Products), nine physical libraries, and the Protein Data Bank (PDB). We also developed and employed an algorithm
(“SugarBuster”) for the removal of sugars and sugar-like moieties, which are generally not in the focus of interest for drug
discovery, from natural products. In addition, we devised a rule-based approach for the automated classification of natural
products into natural product classes (alkaloids, steroids, flavonoids, etc.). Among the most important results of this study is the
finding that the readily obtainable natural products are highly diverse and populate regions of chemical space that are of high
relevance to drug discovery. In some cases, substantial differences in the coverage of natural product classes and chemical space
by the individual databases are observed. More than 2000 natural products are identified for which at least one X-ray crystal
structure of the compound in complex with a biomacromolecule is available from the PDB.

■ INTRODUCTION
Natural products (NPs) have a long history of use as
components of traditional medicines. With the advent of
synthetic organic chemistry in the early 19th century, a
transition began from the use of complex mixtures of unknown
content to the exploration and use of single bioactive natural
products. Today, a large percentage of approved drugs are NPs
or derived from NPs. According to a comprehensive analysis,
6% of all small-molecule drugs approved between 1981 and
2014 are unaltered NPs, 26% are NP derivatives, and 32% are
NP mimetics and/or contain an NP pharmacophore.1

In comparison to synthetic drug-like molecules, NPs stand
out because of their enormous structural and physicochemical
diversity.2−4 Rooted in their evolution-based specific biological
purposes, NPs exhibit a wide range of biological activities in
different organisms. Some NP scaffolds or substructures are
therefore considered privileged structures.5,6

A large number of NP libraries are available today. In a
recent work, we analyzed the value of 25 virtual and 31
physical NP libraries for computer-guided drug discovery.7

The virtual NP libraries include encyclopedic databases such as
the Dictionary of Natural Products (DNP)8 as well as many

specialized libraries focused, among others, on NPs related to
traditional Chinese medicine (TCM) (e.g., TCM Database@
Taiwan9), certain geographic regions (e.g., AfroDb10), or
specific indications such as cancer (e.g., NPCARE11). In total,
these virtual NP libraries contain more than 250 000 unique
NPs.7 Most of them can be used free of charge, for instance, for
virtual screening.
A severe bottleneck in the research on NPs is the availability

of material for testing. Only an estimated 10% of NPs that have
their chemical structures deposited in virtual libraries are
readily purchasable from commercial sources for timely
experimental testing.7 There are also legal aspects to consider
when sourcing NPs, in particular when transferring materials
across national boundaries.12 Here, computational methods
that allow the identification of the most promising NPs for
extraction, purification, (partial) synthesis, and biological
testing are of high value to drug discovery. These methods
in particular include virtual screening technologies for cherry-
picking NPs with a high chance of exhibiting the desired
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biological activity, but also approaches for ADME, toxicity, and
target prediction.6,13,14 However, cheminformatics methods

applied to drug discovery are generally developed on the basis
of and for use with synthetic drug-like molecules.

Table 1. Overview of Data Sets Investigated in This Worka

aAbbreviations: AfroCancer, the African Anticancer Natural Products Library; AfroDb, NPs from African medicinal plants; AfroMalariaDB, the
African Antimalarial Natural Products Library; DNP, Dictionary of Natural Products; HIM, the Herbal Ingredients in Vivo Metabolism Database;
HIT, the Herbal Ingredients’ Targets Database; NANPDB, the Northern African Natural Products Database; NPACT, the Naturally Occurring
Plant-Based Anticancer Compound-Activity-Target Database; NPCARE, Database of Natural Products for Cancer Gene Regulation; NuBBE,
Nuclei of Bioassays, Ecophysiology and Biosynthesis of Natural Products Database; p-ANAPL, the Pan-African Natural Products Library;
SANCDB, the South African Natural Compound Database; StreptomeDB, NPs produced by streptomycetes; TCM Database@Taiwan, the
Traditional Chinese Medicine Database@Taiwan; TCMID, the Traditional Chinese Medicine Integrated Database; TIPdb, the Taiwan Indigenous
Plant Database; UEFS Natural Products, the natural products database of the State University of Feira De Santana; UNPD, the Universal Natural
Products Database; ND, not determined. bNumber of unique molecular structures after data preprocessing (including the removal of sugars and
sugar-like moieties with SugarBuster; see Materials and Methods for details). cThe numbers of compounds contained in the database source files
are reported in ref 7. Differences between the numbers of compounds in the preprocessed data and the database source files are primarily related to
the duplicate removal process. dNumber or percentage of NPs exclusive to a data resource within the categories “virtual NP databases” or “physical
NP libraries”. For example, 73% of all NPs contained in the AnalytiCon Discovery MEGx database are exclusively available via this provider. eThe
color gradient indicates the percentages of unique compounds assigned to various NP classes and ranges from white (lowest percentage) to dark
green (highest percentage). The color gradient should not be interpreted as indicative of “better” or “worse” values. NPs can be assigned to more
than one NP class. fAny NP with at least one sugar or sugar-like moiety as defined by SugarBuster (see Materials and Methods for details). gAny
NP with at least one basic nitrogen atom. hExtended definition of alkaloids: any NP with at least one basic nitrogen atom or quaternary nitrogen
atom or carboxamide moiety. iAny compound based on a characteristic scaffold as defined in Figure 26.35 of ref 73. jSubset of the Newman and
Cragg data set containing all drugs approved between 1981 and 2014 that are NPs or NP derivatives.
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In comparison with synthetic drug-like molecules, NPs can
be of higher structural complexity, in particular with respect to
stereochemical aspects and molecular shape (e.g., NPs tend to
have a higher number of chiral centers15−17). Therefore,
computational methods may need to be modified to make
them applicable to NPs. An interesting example of such a
modification is an approach for predicting the mode of action
of complex NPs by dissecting them into medium-sized
fragments.13

A study by Ertl and Schuffenhauer4 comparing the
physicochemical and structural properties of NPs with those
of bioactive and organic drug-like molecules found that while
there is a clear separation in the structural space that NPs and
synthetic molecules populate, bioactive molecules were present
in both groups. Importantly, an automated deglycosylation
procedure was employed in this study to remove sugar
moieties from NPs, as these primarily affect pharmacokinetic
properties (they are generally metabolically labile) but are only
rarely part of the pharmacophore and, as such, essential for
bioactivity. Gu et al.18 compared the physicochemical property
space of NPs (represented by the Universal Natural Products
Database (UNPD)18) with that of FDA-approved drugs. They
found that NPs are highly diverse in structure and that a large
fraction of them obey the commonly applied definitions of
drug-likeness. A study comparing Merck’s NP collection, the
company’s sample collection, and the 200 top-selling drugs of
2006 found that NPs cover a much broader region of chemical
space than compounds of the two other chemical origins.2

Chen et al.19 carried out a comparative analysis of NPs, human
metabolites, drugs, clinical candidates, and known bioactive
compounds. They found that NPs and human metabolites
cover different regions of chemical space compared with
synthetic compounds. It was also found that NPs have the
highest ring-system complexity among all of the investigated
data sets and that NPs and human metabolites have more
three-dimensional molecular shape diversity (related, e.g., to
branching). El-Elimat et al.20 compared the regions of chemical
space covered by metabolites from fungi, cyanobacteria, and
plants with that covered by FDA-approved anticancer drugs.
They found a partial overlap of the regions of chemical space
covered by metabolites from the three origins but also detected
regions of chemical space populated only by compounds of a
specific origin. One of their main conclusions was that the
regions of chemical space covered by the investigated
metabolites and FDA-approved anticancer drugs align well.
Muigg et al.21 compared the regions of chemical space of NPs
harvested from marine and terrestrial organisms with that of
synthetic compounds. They found clear differences in the
regions of chemical space covered by the compounds of these
three origins. For example, NPs extracted from marine
organisms tend to be large and highly flexible compared with
synthetic compounds, which are generally smaller and less
flexible. NPs originating from terrestrial organisms were found
to be often large and rigid. Very recently, Shang et al.22

analyzed the chemical space covered by marine natural
products. They found long chains and macrocyclic structures
to be more prominent among marine natural products than
terrestrial ones. Lucas et al.23 compiled a data set of over 68
million unique purchasable compounds and overlaid them with
a set of more than 227 000 known NPs. They found the NPs
to have higher shape and stereogenic complexity than
fragment-like compounds, drug-like compounds, and inhibitors

of protein−protein interactions. Some bioactive substructures
common to NPs were rarely observed for marketed drugs.
The differences in the regions of chemical space covered by

NPs and synthetic molecules of different origin have been
thoroughly studied. However, the coverage of the chemical
space relevant to drug discovery by readily obtainable NPs
remains largely unknown, although it is highly relevant to early
drug discovery and to computer-guided screening of NP
libraries in particular. Few studies of the chemical space
covered by individual NP libraries have been reported. For
example, Yongye et al.24 analyzed the scaffold diversity of five
publicly available NP databases (three libraries of compound
vendors, the NP subset of ZINC,25 and TCM Database@
Taiwan9), one combinatorial library set, and a general
screening library from Maybridge.26 They found that the
investigated NP databases differ with respect to coverage of
chemical space and scaffold diversity.
Most published studies do not include a mechanism for

removing sugars and sugar-like moieties (which in the context
of drug discovery are generally not in the focus of interest)
from NPs. Also, most published analyses of the structural
diversity of NPs and molecular scaffolds are centered around
the counting of cyclic systems, while some biologically active
scaffolds do not have a ring system or consist of a combination
of ring systems and linkers. Here an analysis of the abundance
of NP classes (alkaloids, flavonoids, steroids, etc.) would be of
interest.
With this work, we aim to go beyond the range and

thoroughness of previous studies to develop a comprehensive,
detailed, and clean picture of the chemical space covered by
NPs and its representation by molecular libraries of readily
obtainable NPs. In order to do so, we have developed an
algorithm for the automated removal of sugars and sugar-like
moieties from molecular structures and devised a rule-based
approach for the automated identification of major classes of
NPs.

■ RESULTS
Data Sets. We collected and curated data from different

sources to compile two comprehensive data sets, one
representing the chemical space covered by known NPs and
the other describing the chemical space covered by readily
obtainable NPs. An overview of all of the data sets analyzed in
this work is provided in Table 1. When interpreting this table,
it is important to consider that the color gradient is not
indicative of “better” or “worse” values and that NPs can be
assigned to more than one NP class.
The data set of known NPs consists of a total of 208 166

unique compounds based on 50 366 unique Murcko scaffolds.
It was compiled from (i) two encyclopedic NP databases and a
general, smaller-sized NP database, (ii) four databases focused
on NPs related to TCM, (iii) five databases focused on African
plants and marine life, (iv) one database focused on Taiwanese
plant species, (v) one database specializing in Brazilian species,
and (vi) several others focused on specific biological activities
and source organisms.
The data set of readily obtainable NPs consists of 25 524

unique compounds based on 5704 unique Murcko scaffolds.
The majority of these NPs were retrieved from the overlap of
the subset of readily obtainable compounds from ZINC 1527,28

(around 7.3 million compounds) with the set of all known
NPs. In addition, we collected NPs from nine vendor libraries
of readily obtainable NPs (see “physical NP libraries” in Table
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1). These physical NP libraries are a subset of those discussed
in our previous work7 that consist entirely of genuine NPs and
for which we were able to obtain access to chemical
information.
The chemical space of drugs is represented by the Approved

Drugs subset of DrugBank.29,30 The data set consists of 1867
unique compounds based on 1053 Murcko scaffolds. In
addition, on the basis of a comprehensive survey of natural
products as sources of new drugs by Newman and Cragg,1 we
compiled a data set of 59 NPs and 320 NP derivatives (in this
work denoted as the “Newman and Cragg data set”) that were
approved as drugs between 1981 and 2014. Last but not least,
we extracted a complete subset of known NPs cocrystallized
with biomacromolecules from the Protein Data Bank
(PDB)31,32 for analysis (see Materials and Methods for
details).
Impact of the Removal of Sugars and Sugar-like

Moieties on Physicochemical Properties. In the context of
drug discovery, and drug design in particular, sugars and sugar-
like moieties in NPs are generally not a focus of interest
because they primarily affect pharmacokinetic properties and
only rarely are essential for bioactivity. For this reason, we have
devised and employed a set of rules (SMARTS patterns) to
remove such moieties from the individual molecules (see
Materials and Methods for details). The rule set identified
sugars and sugar-like moieties in approximately 20% of all
known and readily obtainable NPs (which is comparable to the
rates reported in other studies3,16) and in 5% of all approved
drugs (Table 1).
In order to assess the impact of this processing step on this

analysis, as a first step we compared the distributions of two
key physicochemical properties, molecular weight (MW) and
(calculated) log P, prior to and after the removal of sugars and
sugar-like moieties. As shown in Figure 1, the procedure led to
reductions in the median MWs of known and readily
obtainable NPs by 43 and 22 Da, respectively, and increases
in the median log P values by approximately 0.40 and 0.26 log
units, respectively. The overall impact on approved drugs was
very small (ΔMW = −4 Da; Δ(log P) = +0.04 log units).
The further analysis is based on molecular structures after

the removal of sugars and sugar-like moieties. The main text
reports median or mean values as appropriate. Further data are
reported in Table 2 (the color gradient should not be
interpreted as indicative of “better” or “worse” values).

Characterization of Known NPs, Readily Obtainable
NPs, and Approved Drugs. In order to determine the
chemical space covered by known and readily obtainable NPs
and compare it with that of approved drugs, principal
component analysis (PCA) based on 17 relevant physico-
chemical properties was employed (see Materials and Methods
for details). The score plots are reported in Figure 2A; the
loadings of the first and second principal components (PCs)
are listed in Table S1. PC1 and PC2 explain 39% and 14% of
the total variance, respectively. There is no descriptor that
dominates PC1 or PC2. Instead, features correlated with the
size of a molecule, in particular MW, the number of heavy
atoms, topological polar surface area, and number of hydrogen-
bond acceptors are major contributors to PC1. The sum of
formal charges, number of acidic atoms, and log P are major
contributors to PC2.
The score plot shows that the chemical space covered by

known NPs is substantially larger than that of readily
obtainable NPs and drugs. The chemical space of drugs is
well-represented by that of readily obtainable NPs. Approved
drugs contain fewer phenols and phenol ethers (26%) than
known and readily obtainable NPs (37% and 35%,
respectively).
With respect to individual physicochemical properties, the

overall distribution of MW (which is correlated with the size of
molecules) among known NPs is similar to that of drugs
(Figure 1A). The median MWs of known NPs and drugs are
381 and 326 Da, respectively. Unsurprisingly, there is a larger
fraction of heavy compounds (MW greater than 500 Da)
found among known NPs (27%) than among drugs (15%).
Interestingly, however, readily obtainable NPs are substantially
smaller than known NPs and drugs (median MW of 266 Da).
More than 58% of readily obtainable NPs are fragment-sized
(MW less than 300 Da), which is a much higher proportion
than among known NPs (28%) and drugs (41%). Fragment-
sized NPs can be of high value as starting points for
optimization, which may explain their large share among
readily obtainable NPs.
The median log P of known NPs (3.33) is almost 1 log unit

higher than that of drugs (2.46), indicating that NPs are
generally more hydrophobic (Figure 1B). In contrast, the
median log P values of readily obtainable NPs and drugs are
comparable (2.47 vs 2.46, respectively).
The molecular flexibility of molecules is in part represented

by the number of rotatable bonds. The average numbers of

Figure 1. Distributions of (A) MW and (B) log P for all known NPs, readily obtainable NPs and approved drugs. Dashed lines indicate the
distributions prior to the removal of sugars and sugar-like moieties (denoted as “sugars” in the figure legends); continuous lines indicate the
distributions after the removal of these moieties.
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rotatable bonds of known NPs and drugs are comparable (6.47
vs 6.58; Figure 3A), and so are their average fractions of
rotatable bonds (0.20 vs 0.22; Figure 3B). As a result of the
difference in molecular size, the average number of rotatable
bonds of readily obtainable NPs is smaller (4.86), although
their average fraction of rotatable bonds is similar (0.23).
Known NPs have on average more than twice as many chiral

centers (4.69) as drugs (1.98) and readily obtainable NPs
(2.12) (Figure 3C). The largest difference is observed for the
fraction of achiral compounds, which is approximately 45% for

drugs and readily obtainable NPs but less than 25% for known
NPs. When the removal of sugars and sugar-like moieties
(which contain several stereogenic atoms) is taken into
consideration, these findings are in line with previous
reports.4,18,74,75

A second characteristic number that reflects the three-
dimensional complexity of molecular structures is the number
of Csp

3 atoms, for which trends similar to those observed for
chiral centers are recorded. The median fraction of Csp

3 atoms
of known NPs (0.59) is higher than those of readily obtainable

Table 2. Overview of the Physicochemical Properties of Known NPs, Readily Obtainable NPs, Drugs, and Individual
Databases Investigated in this Worka

aValues are indicated by a color gradient, ranging from dark blue (minimum value) via white to dark green (maximum value). The color gradient is
not indicative of “better” or “worse” values. bSubset of the Newman and Cragg data set containing all drugs approved between 1981 and 2014 that
are NPs or NP derivatives. cFraction of compounds complying with Lipinski’s rule of five.
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NPs (0.45) and drugs (0.42), which is in agreement with
previous reports.19,75 The density distribution plot (Figure 3D)
shows that a large portion of drugs have a smaller fraction of
Csp

3 atoms than NPs, with the highest densities recorded
around a value of 0.4. For known NPs, the highest densities are
observed around a value of 0.8.
Although known NPs on average consist of more rings

(3.79) than drugs (2.71) (Figure 3E), known NPs contain
fewer aromatic rings than drugs (1.22 vs 1.52; Figure 3F).
Most noticeable is that readily obtainable NPs usually have no
rings or just a single ring, whereas most drugs and known NPs
have three or four rings. Many of these trends can be attributed
to the size of molecules and are in agreement with results
published elsewhere.4,16,19,74,76 More details on the propen-
sities of various types of rings are provided in Figure S1.
Known NPs have on average approximately 70% fewer

nitrogen atoms (Figure 3G) than drugs and 45% more oxygen
atoms (Figure 3H) than drugs and readily obtainable NPs. The
findings differ from previous reports (e.g., ref 4) because of the
removal of sugars and sugar-like moieties. Related to the
occurrence of oxygen and nitrogen atoms and size, a difference
in the occurrence of hydrogen-bond acceptors and donors is
observed among known NPs (4.91 and 2.65, respectively),
readily obtainable NPs (3.51 and 1.86, respectively), and drugs
(4.39 and 2.62, respectively). Most obvious in this regard is an
accumulation of readily obtainable NPs with few hydrogen-
bond acceptors and donors (Figure 3I,J).
Drugs have on average more acidic atoms (0.81) than

known NPs (0.43) and readily obtainable NPs (0.50) (Figure
3K). Because of the higher propensity of nitrogen atoms in
drugs, they also have on average more basic atoms (0.65) than
known NPs (0.29) and readily obtainable NPs (0.16) (Figure
3L).
Approximately three-quarters of known NPs comply with

Lipinski’s rule of five.77 Interestingly, the fraction of readily
obtainable NPs satisfying Lipinski’s rule of five (0.94) is higher

than the fraction of approved drugs that comply with the rule
(0.89).

Characterization of Approved Drugs That Are NPs or
NP Derivatives. The prepared Newman and Cragg data set
consists of a total of 59 NPs and 320 NP derivatives that were
approved as drugs between 1981 and 2014 (see Materials and
Methods for details). Most of these compounds are located in
regions of chemical space that are most densely populated with
approved drugs (Figure 2B). Over one-third of these
compounds are basic alkaloids, 62% are alkaloids according
to the extended definition of “alkaloids” (see footnote h of
Table 1 for details), 27% are phenols and phenol ethers (vs
26% for all approved drugs), and 12% are steroids (vs 5% for
all approved drugs). The density distribution of the MW of
these compounds (Figure 4A) shows an accumulation of heavy
compounds (mostly peptides) among these drugs (median
MW of 434 Da vs 326 Da for all approved drugs). Related to
the greater size of these compounds, an exceptionally high
number of rotatable bonds (mean 16.34 vs 6.58 for all
approved drugs) and one of the highest numbers of chiral
centers (mean 6.39 vs 1.98 for all approved drugs) are
observed (Table 2). Also, the average numbers of nitrogen and
oxygen atoms, hydrogen-bond donors and acceptors, and
acidic and basic atoms are approximately twice as high as those
of approved drugs. In contrast, the median log P (2.21) is
comparable to that of approved drugs (2.46), but its
distribution is wider (Figure 4B). Only two-thirds of all
compounds in this data set comply with Lipinski’s rule of five
(vs 89% for all approved drugs).

Characterization of NPs Cocrystallized with Bioma-
cromolecules. For 2060 unique NPs (based on 510 Murcko
scaffolds), at least one X-ray crystal structure of good quality
(according to the assessment of global quality measures
described in Materials and Methods) in complex with a
biomacromolecule is available. The PCA plot in Figure 2C
shows a high density of cocrystallized ligands in areas of

Figure 2. Scatter plots of the second PC against the first PC for the reference data sets based on 17 relevant physicochemical properties. All of the
panels show the data points of the known NPs and approved drugs. In addition, the individual panels show (A) the readily obtainable NPs, (B) the
Newman and Cragg data set, and (C) the NPs present in X-ray structures in the PDB. PC1 and PC2 explain 39% and 14% of the total variance,
respectively.
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chemical space densely populated with approved drugs but also
a substantial number of compounds populating other areas.

Noteworthy is an accumulation of alkaloids (37% vs 26% for
all known NPs) and a lower abundance of phenols and phenol

Figure 3. Distributions of key physicochemical properties among known NPs, readily obtainable NPs, and approved drugs: (A) number of
rotatable bonds, (B) fraction of rotatable bonds, (C) number of chiral centers, (D) fraction of Csp

3 atoms, (E) number of rings, (F) number of
aromatic rings, (G) number of nitrogen atoms, (H) number of oxygen atoms, (I) number of hydrogen-bond acceptors, (J) number of hydrogen-
bond donors, (K) number of acidic atoms, and (L) number of basic atoms. Histograms of specific types of rings are provided in Figure S1.

Figure 4. Distributions of (A) MW and (B) log P of known NPs, approved drugs, drugs that are NPs or derived therefrom (Newman and Cragg
data set), and NPs for which at least one X-ray structure of a complex with a biomacromolecule has been deposited in the PDB.
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ethers (22% vs 37% for all known NPs) (Table 1). Most
cocrystallized NPs are of low MW (Figure 4A). The median is
just 189 Da, compared with 326 Da for approved drugs and
381 Da for known NPs. However, there are several instances of
high-MW NPs in this data set. In contrast to the Newman and
Cragg data set, these NPs are not primarily peptides but rather
macrolides, lipids, and oligosaccharides. The median log P is
roughly 1 log unit lower than that of approved drugs and 2 log

units lower than that of known NPs (Figure 4B). In
conjunction with the low average MW of cocrystallized NPs,
in particular the numbers of rings (over 35% of these
compounds are acyclic), oxygen atoms, and hydrogen-bond
acceptors are lower than those of known NPs. Overall, with
respect to the considered physicochemical properties,
cocrystallized NPs are generally more similar to approved
drugs than known NPs.

Figure 5. Scatter plots of the second PC against the first PC for (A) virtual NP databases and (B) physical NP libraries based on 17 relevant
physicochemical properties. PC1 and PC2 explain 39% and 14% of the total variance, respectively.
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Characterization of Individual NP Databases. For all of
the databases discussed in this section consisting of more than
1000 NPs, PCA plots illustrating the coverage of the chemical
space are provided in Figure 5. Figures 6 and S2−S23 report
the physicochemical property distributions of the individual
databases. Statistical data are reported in Table 2.
Virtual NP Databases: Encyclopedic and General Data-

bases. The DNP is the most established encyclopedic database
of NPs and is used as the reference data set for this
comparative analysis. It covers a total of more than 128 000
unique NPs based on over 28 000 different Murcko scaffolds
(Table 1). Approximately 28% of these NPs are exclusively
available via this virtual NP database (see the “exclusive NPs”
columns in Table 1). The UNPD is slightly larger in size,
consisting of over 140 000 unique NPs based on over 34 000
different Murcko scaffolds. Approximately one-third of these
NPs are not covered by any other virtual NP database. Both
DNP and UNPD clearly cover the largest regions of chemical
space among all of the NP databases (Figure 5A), with all of
the major NP classes well-represented (Table 1; it should be
noted that NPs can be assigned to more than one scaffold
class). The distributions of key physicochemical properties are
similar for the two databases (Table 2 and Figures 6 and S2−
S23): Approximately half of the compounds contained in the
DNP and UNPD have a MW between 270 and 470 Da and a
log P between 1.70 and 4.80. Approximately 85% of the NPs
contained in either database comply with Lipinski’s rule of five.
The NPs subset of the PubChem Substance Database

consists of 2760 unique NPs, about 40% of which are not
included in any other virtual NP database. It is a diverse library
of NPs (1031 Murcko scaffolds) that stands out because of its
good coverage of the chemical space of approved drugs (Figure
5A). A strong presence of alkaloids (52% vs 20% for the DNP)

is notable, whereas the proportions of steroids (2% vs 7% for
the DNP) and NPs containing sugars or sugar-like moieties
(5% vs 17% for the DNP) are low. The database contains the
highest proportion of NPs complying with Lipinski’s rule of
five (97%). NPs from this library are on average smaller and
less hydrophobic than those contained in the DNP (median
MW and log P of 320 Da and 2.56, respectively, vs 351 Da and
3.02 for the DNP) but very comparable with approved drugs
(median MW of 326 and log P of 2.46). They have on average
the highest fraction of rotatable bonds (median of 0.17 vs 0.15
for the DNP) and second-highest number of aromatic rings
(mean of 1.83 vs 1.01 for the DNP) among all of the virtual
NP libraries.

Virtual NP Databases Related to TCM. Four databases
containing NPs related to TCM are included in this analysis.
The TCM Database@Taiwan is the most comprehensive
database in this category by far, containing over 42 000 unique
NPs based on ∼16 000 Murcko scaffolds. More than half of the
NPs in this database are not present in any other virtual NP
library. The database is particularly rich in basic alkaloids (38%
vs 11% for the DNP) and also in phenols and phenol ethers
(51% vs 34% for the DNP). NPs from this database cover in
part a unique region of chemical space (Figure 5A). The TCM
Database@Taiwan stands out because of a substantially larger
fraction of NPs with high MW (median of 536 Da vs 351 Da
for the DNP), including in particular polyphenols and basic
alkaloids. Also, the median log P for this data set (4.71) is
much higher than those for the DNP (3.02) and any other
database. This is associated with a large number of NPs with,
e.g., many rotatable bonds (mean of 7.36 vs 5.81 for the DNP),
rings (mean of 6.26 vs 3.11 for the DNP), and hydrogen-bond
donors (mean of 3.56 vs 2.34 for the DNP) and acceptors
(mean of 6.03 vs 4.49 for the DNP). Less than 15% of the NPs

Figure 6. Violin and box plots illustrating the distributions of (A, B) MW and (C, D) log P for the (A, C) virtual NP databases and (B, D) physical
NP libraries.
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included in this database are achiral, in contrast to 27% and
50% for the DNP and the NP subset of PubChem, respectively.
Only 51% of the NPs contained in this database comply with
Lipinski’s rule of five, which is the lowest rate among all of the
databases.
The TCMID focuses on the relationship between herbs,

targets, and diseases and contains over 10 000 unique NPs
representing more than 3600 Murcko scaffolds. However, most
of the NPs contained in this database are also found in other
virtual libraries. For example, the TCM Database@Taiwan
contains 82% of the molecular structures in the TCMID. In
contrast to the TCM Database@Taiwan, the physicochemical
property distributions of the NPs contained in the TCMID are
similar to those observed for the DNP. Also, the region of
chemical space covered by this data set is more similar to that
covered by approved drugs (Figure 5A).
HIM (636 unique NPs) and HIT (387 unique NPs) are two

smaller-sized databases related to TCM. Around 27% of all
NPs contained in HIM are exclusively available via this virtual
NP library, whereas HIT is almost entirely covered by other
resources. HIM provides metabolism information for herbal
ingredients, whereas HIT connects herbal ingredients to their
biological targets. The NPs of both databases have a lower
median MW (282 and 276 Da, respectively) and log P (2.18
and 2.48, respectively) than those of the DNP (351 Da and
3.02, respectively). This is associated with, e.g., the lower
numbers of rotatable bonds (means of 3.05 and 3.27), chiral
centers (46% and 53% of NPs in HIM and HIT, respectively,
are achiral), and oxygen and nitrogen atoms (fewer than 30%
of the NPs in either database have at least one nitrogen atom).
Approximately 95% of the NPs included in either database
comply with Lipinski’s rule of five.
Virtual NP Databases Focused on African Plants and

Marine Life. AfroDb, AfroCancer, AfroMalariaDB, NANPDB,
and SANCDB focus on NPs from plants and marine life
indigenous to Africa. NANPDB contains 3297 unique NPs
(1237 Murcko scaffolds) from Northern African species
(mainly plants) and is the largest among these libraries. The
other four databases contain several hundred NPs each.
AfroDb is focused on NPs from African medicinal plants;
SANCDB is a collection of NPs from South African plants and
marine life; AfroCancer contains NPs from African medicinal
plants with confirmed anticancer, cytotoxic, or antiproliferative
activity, and AfroMalariaDB contains antimalarial NPs from
African plant species. For AfroDb, AfroCancer, and AfroMalar-
iaDB, an accumulation of phenolic NPs is observed
(approximately 60% of the NPs from these databases contain
at least one phenol or phenol ether). This is reflected in a high
average number of aromatic rings (at least 1.55 vs 1.01 for the
DNP) and low median fractions of Csp

3 atoms (at most 0.39 vs
0.60 for the DNP) and rotatable bonds (around 0.10 vs 0.15
for the DNP). With the exception of SANCDB, these
databases contain a much lower percentage of alkaloids
(around 10%) compared with the DNP (20%). This is
associated with an equally lower average number of nitrogen
atoms per NP (approximately 0.25−0.30) compared with the
DNP (0.64). NANPDB stands out because it exhibits one of
the highest rates of NPs containing sugars or sugar-like
moieties (28% of NPs vs 17% for the DNP), whereas
SANCDB exhibits one of the highest rates of steroids (14%
of NPs vs 7% for the DNP) among all of the NP databases.
The region of chemical space covered by NANPDB is similar
to that covered by approved drugs (Figure 5A).

Other Virtual NP Databases with a Geographical
Context. TIPdb is focused on anticancer, antituberculosis,
and antiplatelet phytochemicals from plants indigenous to
Taiwan. It contains 6673 unique NPs based on 2339 Murcko
scaffolds that cover a region of chemical space similar to that of
approved drugs (Figure 5A). Noteworthy are a below-average
occurrence of alkaloids and low average number of nitrogen
atoms (0.34 vs 0.64 for the DNP). No substantial differences
in the physicochemical property distributions in comparison to
the DNP are observed.
NuBBE focuses on NPs and derivatives from plants and

microorganisms native to Brazil. It consists of 1613 unique
NPs based on 636 Murcko scaffolds. The region of chemical
space covered by this database is primarily a subspace of that of
approved drugs (Figure 5A). NuBBE is characterized by a
higher proportion of flavonoids (6% vs 2% for the DNP) and
lower proportion of alkaloids (9% vs 20% for the DNP). The
latter is reflected by one of the lowest numbers of nitrogen
atoms (0.26 vs 0.64 for the DNP) and the lowest number of
hydrogen-bond donors (1.40 vs 2.34 for the DNP) on average.
The UEFS Natural Products database contains 476 unique

NPs based on 270 Murcko scaffolds. Notable is the very low
rate of NPs containing sugars and sugar-like moieties (3% vs
17% for the DNP). The database contains a high proportion of
flavonoids (9% vs 2% for the DNP) and few alkaloids (12% vs
20% for the DNP). Similar to NuBBE, the average numbers of
nitrogen atoms (0.27) and hydrogen-bond donors (1.77) and
acceptors (3.67) are low compared with those for the DNP
(0.64, 2.34, and 4.49, respectively).

Virtual NP Databases Focused on Anticancer Activity.
NPACT and NPCARE are smaller-sized databases focused on
NPs related to anticancer activity. NPACT is characterized by
a high proportion of phenols and phenol ethers (50% vs 34%
for the DNP) and a low proportion of alkaloids (6% vs 20% for
the DNP). This is accompanied by the lowest average number
of nitrogen atoms (0.17 vs 0.64 for the DNP) among all
databases (90% of the NPs contained in NPACT have no
nitrogen atoms). NPCARE is more balanced than NPACT
with respect to the NP classes. For both databases a strong
accumulation of NPs in regions of chemical space densely
populated with approved drugs is observed (Figure 5A).

Virtual NP Databases Focused on Specific Source
Organisms. StreptomeDB consists of 3182 NPs based on
1322 Murcko scaffolds. Approximately one-third of the NPs
listed in this database are not available from any other virtual
NP library. The database is characterized by one of the highest
proportions of NPs containing sugars or sugar-like moieties
(25% vs 17% for the DNP). In the PCA plot, the majority of
NPs of StreptomeDB are located in areas densely populated
with approved drugs (Figure 5A). The database is rich in
alkaloids (47% vs 20% for the DNP), although few of them
contain a basic nitrogen atom (19% of all NPs contained in
this data set). StreptomeDB contains only few steroids (1% vs
7% for the DNP). Notable are very broad distributions of MW
(Figure 6A) and log P (Figure 6C). Also, higher abundances of
nitrogen and oxygen atoms are observed, accompanied by an
above-average number of moieties forming hydrogen bonds.
Noteworthy is the low compliance with Lipinski’s rule of five
by NPs in this database (0.70 vs 0.86 for the DNP), which is
undercut only by the TCM Database@Taiwan.

Physical NP Libraries. Score plots illustrating the regions of
chemical space covered by four of the largest physical NP
libraries are reported in Figure 5B. From the plots it can be
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seen that the NPs of all of these libraries accumulate in areas
densely populated with approved drugs.
Ambinter and Greenpharma NPs. Ambinter and Green-

pharma offer a library of 6058 unique NPs based on 2331
Murcko scaffolds. The library contains more than 4000 NPs
exclusively provided by this vendor, which is the largest
number among all of the physical NP libraries investigated in
this work. With respect to the prevalence of individual NP
classes and physicochemical properties, this database is the one
closest to the average of all NP databases. No substantial
differences in the distributions of physicochemical properties
compared to the DNP are observed.
AnalytiCon Discovery MEGx Database. The AnalytiCon

Discovery MEGx database consists of 3346 unique NPs based
on 1247 Murcko scaffolds that have been isolated from plants
and microorganisms. The library stands out because of the
largest percentage of NPs (73%) provided exclusively by this
vendor. The database is also characterized by the highest
proportion of NPs containing sugars or sugar-like moieties
(35% vs 17% for the DNP). A below-average proportion of
alkaloids is observed (14% vs 20% for the DNP; only 3% basic
alkaloids), which is reflected by a low average number of
nitrogen atoms (0.38 vs 0.64 for the DNP) and the lowest
average number of basic atoms among all of the databases
(0.04 vs 0.16 for DNP). Over 80% of NPs from this database
do not contain a nitrogen atom.
Pi Chemicals NPs. Pi Chemicals offers 1244 unique NPs

based on 561 Murcko scaffolds. The data set is characterized
by the second highest proportion of NPs containing sugars or
sugar-like moieties (32%) after the AnalytiCon Discovery
MEGx database (35%). It contains an above-average
percentage of steroids (10% vs 7% for the DNP). The
distributions of most physicochemical properties are similar to
those observed for the DNP.
InterBioScreen NPs. InterBioScreen offers a database of

1067 unique NPs based on 485 Murcko scaffolds. This
database is characterized by the highest rate of steroids among
all of the NP databases (15% vs 7% for the DNP) and one of
the highest rates of alkaloids (35% vs 20% for the DNP). NPs
from InterBioScreen are on average smaller (median MW of
309 Da) and more hydrophilic (median log P of 2.42) than
NPs from the DNP (median MW of 351 Da and median log P
of 3.02). They contain on average a much lower number of
rotatable bonds (3.26) than the NPs from the DNP (5.81).
More than half of the NPs from InterBioScreen (54%) have no
more than three rotatable bonds. They have lower average
numbers of oxygen atoms (3.92) and hydrogen-bond acceptors
(3.84) than NPs from the DNP (5.06 and 4.49, respectively).
Ninety-five percent of NPs from InterBioScreen comply with
Lipinski’s rule of five, which is the highest value among all of
the physical databases (also reached by NPs from Selleck
Chemicals).
TargetMol NPs. TargetMol provides an NP library of 674

unique NPs based on 319 Murcko scaffolds. A high percentage
of NPs with sugar and sugar-like moieties is observed (27% vs
17% for the DNP). The NPs are smaller-sized (median MW of
295 Da vs 351 Da for the DNP) and more hydrophilic
(median log P of 2.42 vs 3.02 for the DNP).
p-ANAPL. This physical NP library consists of 443 unique

structures based on 191 Murcko scaffolds. Approximately two-
thirds of these NPs are not available via any other physical NP
library. Noteworthy is a prevalence of phenols and phenol
ethers (72% vs 34% for the DNP) and flavonoids (11% vs 2%

for the DNP), whereas alkaloids are rare (6% vs 20% for the
DNP). With respect to the physicochemical properties of NPs,
the database stands out because it exhibits the second-lowest
average number of rotatable bonds (2.99 vs 5.81 for the DNP)
and the lowest median fraction of Csp

3 atoms among all of the
databases (0.21 vs 0.60 of DNP). Distinct compressed shapes
of the violin plots of the fractions of rotatable bonds and Csp

3

atoms are observed (Figure S3B). Furthermore, NPs from p-
ANAPL have the lowest average number of chiral centers
among all of the physical NP databases (1.83 vs 3.99 for the
DNP). More than half of the NPs from p-ANAPL are achiral.
The average number of nitrogen atoms is the lowest among all
of the physical NP databases (0.22 vs 0.64 for the DNP). In
contrast, NPs from p-ANAPL have a much higher average
number of aromatic rings than those from most of the other
databases (1.96 vs 1.01 for the DNP, the second highest
overall). More than 80% of the molecules from p-ANAPL do
not contain a nitrogen atom. Most of these observations are
related to the abundance of phenols and phenol ethers in this
database.
NCI/NIH NP Set IV. The NCI/NIH NP Set IV consists of

392 unique NPs representing 278 Murcko scaffolds. Approx-
imately 61% of these NPs are not available from any other
physical NP library. In terms of NP class distributions, the
database is quite the opposite of p-ANAPL. It contains a high
proportion of alkaloids (42% vs 20% for the DNP) and few
flavonoids (1% vs 2% for the DNP). NPs from this data set
have the highest median MW among all of the physical NP
libraries (median MW of 349 Da) but are on average not
particularly hydrophobic (median log P of 2.31 vs 3.02 for the
DNP). Noteworthy is the lowest fraction of rotatable bonds
among all of the databases (mean 0.12 vs 0.20 for the DNP).
The large median MW and prevalence of alkaloids are reflected
by high average numbers of rings (3.70 vs 3.11 for the DNP)
and nitrogen atoms (1.32 vs 0.64 for the DNP). Only about
40% of NPs from the NCI/NIH NP Set IV are free of nitrogen
atoms. More than 80% of the NPs from this data set comply
with Lipinski’s rule of five, which is the lowest value among all
of the physical libraries.
AK Scientific NPs. AK Scientific offers 174 unique NPs

based on 93 Murcko scaffolds. Noteworthy is the highest
percentage of flavonoids among all of the databases (13% vs
2% for the DNP) and, related to this, a high proportion of
phenols (40% vs 24% for the DNP). The average number of
chiral centers is low (2.03 vs 3.99 for the DNP).
Selleck Chemicals NPs. Selleck Chemicals offers 155 unique

NPs based on 92 Murcko scaffolds. Similar to the library from
AK Scientific, this one features a high percentage of flavonoids
(12%) and phenolic NPs (52%). Most obvious is the high
rigidity of NPs from this library. The average number of
rotatable bonds is just 2.83 (vs 5.81 for the DNP), which is the
lowest value among all of the databases. Ninety-five percent of
the NPs from Selleck Chemicals comply with Lipinski’s rule of
five.

■ CONCLUSIONS
In this work, we compiled comprehensive data sets of known
and readily obtainable NPs to characterize their coverage of
chemical space and compare it with that of approved drugs and
various virtual and physical NP libraries. SugarBuster was
developed as a new approach to remove sugars and sugar-like
moieties from NPs because these moieties are rarely essential
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to biological activity and, for this and other reasons, generally
are not a focus of interest for drug discovery.
NPs cover a much wider region of chemical space than

approved drugs, and a significant number of NPs are located in
areas of chemical space that are also densely populated with
drugs. This is established knowledge and part of the reason
why NPs have been and remain one of the most productive
sources of drug leads. At least 10% of the more than 250 000
known NPs for which chemical structures have been deposited
in public databases are readily obtainable from commercial
vendors and public research institutions. In previous work,7 we
showed that at least 58 000 compounds that are structurally
closely related to known NPs (and therefore considered
putative NP analogues or derivatives) are readily obtainable.
This work shows that the readily obtainable NPs are highly

diverse (representing more than 5700 different Murcko
scaffolds) and cover the major NP classes. The vast majority
of readily obtainable NPs share regions of chemical space with
approved drugs. Nearly two-thirds of them are fragment-sized.
All of these properties substantiate the high relevance of readily
obtainable NPs to drug discovery. Interestingly, and relevant in
particular to structure-based drug design, more than 2000
different NPs are represented by at least one X-ray crystal
structure in complex with a biomacromolecule in the PDB.
These NPs are generally smaller-sized and more hydrophilic
than approved drugs.
A comprehensive analysis of drugs approved between 1981

and 2014 that are NPs or derived from NPs shows that the
majority of these medicines are alkaloids (62%), followed by
phenols and phenol ethers (27%) and steroids (12%). A
significant number of these drugs (mostly peptides) have high
MW.
We also characterized the chemical space covered by 18

virtual NP databases and nine physical NP libraries using the
DNP as an encyclopedic reference. Several distinctive features
of individual databases could be identified. For example, the
NPs subset of the PubChem Substance Database stands out
because of its high proportion of drug-like NPs and the TCM
Database@Taiwan because of its coverage of a wide and in
part unique region of chemical space containing many large
and highly chiral NPs. In addition, p-ANAPL differs from all of
the other databases by containing NPs with a very low fraction
of Csp

3 atoms and, associated with this, a very high number of
aromatic rings.
Some NP databases are particularly rich in certain NP

classes, such as the TCM Database@Taiwan in basic alkaloids,
p-ANAPL in phenols and phenol ethers, and (the NP subset
of) InterBioScreen in steroids. The physical NP libraries are
characterized by smaller-sized and more hydrophilic, drug-like
compounds that are located in regions of chemical space
densely populated with approved drugs.
Overall, this work confirms the relevance of NPs as one of

the most important sources of drug leads and provides a
comprehensive and detailed view of known and readily
obtainable NPs. We believe that these insights will be helpful
in the selection of data sources for computer-guided drug
discovery.

■ MATERIALS AND METHODS
Data Sets. The data set of known NPs was derived by

combining all of the compounds of the virtual NP databases
(see Table 1 for a complete list of databases). The data set of
readily obtainable NPs was compiled from the physical NP

libraries (Table 1) and the NPs contained in ZINC. The latter
data set was obtained by an InChI-based78 (stereochemistry
and fixed hydrogen layers disabled) overlap of all of the virtual
NP databases with the “in stock” subset of ZINC 15.27,28

Genuine NPs contained in the mixed physical compound
library of Pi Chemicals were identified using the property tag
“Natural or Semi-Natural”. In analogy, the property “index”
was used to extract genuine NPs from the InterBioScreen
Natural Compounds collection.
A comprehensive set of drugs that are NPs or NP derivatives

and were approved between 1981 and 2014 were extracted
from the Newman and Cragg data set (provided in the
Supporting Information of ref 1). NPs and NP derivatives were
identified by the “source” tags “N” and “ND”, respectively. Out
of the 387 items assigned to these two categories, we were able
to retrieve the chemical structures of 59 NPs and 320 NP
derivatives from PubChem on the basis of the generic names
provided by Newman and Cragg. Chemical structures could
not be assigned without ambiguity to eight entries (most of
which were mixtures). Those entries were removed from the
data set.
NPs contained in the PDB were identified by overlapping

the set of all known NPs with the complete set of small
molecules extracted from structures stored in the PDB31,32 that
match the following conditions: (i) has free ligand(s); (ii)
experimental method is X-ray and has experimental data; (iii)
R factor Rwork < 0.4; (iv) R factor Rfree < 0.45; (v) resolution <
2.5 Å.

Data Set Preparation. All of the molecules were
neutralized, and hydrogens were added with the MOE79

“Wash” node in KNIME.80 During this process, the minor
components of salts were removed. Sugars and sugar-like
moieties were removed with a newly developed tool called
SugarBuster. SugarBuster identifies and removes:

• five-membered aliphatic ring moieties with
• exactly one heteroatom in the ring AND
• all carbons forming the ring being a member of

only one ring AND
• at least two substituents with EITHER

• two oxygen atoms attached directly to the
ring OR

• one oxygen atom and one nitrogen atom
attached directly to the ring

• six-membered aliphatic ring moieties with
• a maximum of one heteroatom in the ring AND
• all carbons forming the ring being a member of

only one ring AND
• at least three substituents with EITHER

• three oxygen atoms attached directly to the
ring OR

• two oxygen atoms and one nitrogen atom
attached directly to the ring.

The aglycon component with the highest number of heavy
atoms is returned after fragmentation. Following this
procedure, the MOE “Wash” node was also used to produce
copies of the molecular structures with charged strong acids
and bases for the later calculation of descriptors that require
charged molecules and for the identification of duplicate
molecules on the basis of InChI notation (same procedure as
described above). Any compound consisting of elements other
than H, B, C, N, O, F, Si, P, S, Cl, Br, and I was removed.
Molecular descriptors were calculated with RDKit81 and MOE.
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Principal Component Analysis and Classification of
Natural Products. Descriptors computed for PCA analysis
were MW, log P, topological polar surface area (TPSA),
number of hydrogen-bond acceptors (a_acc), number of
hydrogen-bond donors (a_don), number of heavy atoms
(a_heavy), fraction of rotatable bonds (b_rotR), number of
nitrogen atoms (a_nN), number of oxygen atoms (a_nO),
number of halogen atoms (Halogens), number of acidic atoms
(a_acid), number of basic atoms (a_base), sum of formal
charges (FCharge), number of aromatic atoms (a_aro), and
number of chiral centers (chiral) calculated with MOE as well
as the number of rings (NumRings) and fraction of Csp

3 atoms
(FractionCsp

3) calculated with RDKit.
The substructure matching methods implemented in RDKit

were used to classify natural products as noted in the Table 1
footnotes.
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(57) Nućleo de Bioensaios, Biossińtese e Ecofisiologia de Produtos
Naturais (NuBBE). http://nubbe.iq.unesp.br/portal/nubbedb.html
(accessed April 19, 2017).
(58) Mangal, M.; Sagar, P.; Singh, H.; Raghava, G. P. S.; Agarwal, S.
M. NPACT: Naturally Occurring Plant-Based Anti-Cancer Com-
pound-Activity-Target Database. Nucleic Acids Res. 2013, 41, D1124−
D1129.
(59) Naturally Occurring Plant Based Anticancerous Compound-
Activity-Target DataBase (NPACT). http://crdd.osdd.net/raghava/
npact (accessed April 13, 2017).
(60) Database of Natural Products for Cancer Gene Regulation
(NPCARE). http://silver.sejong.ac.kr/npcare (accessed Feb 20,
2017).
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3.2. Machine Learning Method for Assessing Natural Product-
Likeness 

During our analysis of data resources for NP research we noticed that in some 
databases NPs are mixed with (semi-) synthetic compounds. On the other hand, 
we found some libraries of genuine NPs to be contaminated with NP-derivatives, 
NP-analogs and, in some cases, even synthetic reactants. There are also many 
libraries that contain valuable NPs, but do not mention the inclusion of such. We 
therefore concluded that a method for the automated identification of NPs and 
NP-like compounds would be desirable and of significance to NP-based drug 
discovery. 

As part of this work we developed NP-Scout (D5), a set of random forest 
classifiers able to discriminate NPs (and NP-like compounds) from synthetic 
compounds with high accuracy. This method is built on updated collections of 
freely available NPs and an equivalent number of synthetic compounds. NP-Scout 
is accessible via the NERDD (New E-Resource for Drug Discovery) web server 
(https://nerdd.zbh.uni-hamburg.de/) which provides in silico tools for early drug 
discovery developed by our group (A1).  

The details of this method are described in the following publication. In July 
2020, the publication was selected by the editors as a hot paper (Editor's choice) 
of the journal Biomolecules. 
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Abstract: Natural products (NPs) remain the most prolific resource for the development of
small-molecule drugs. Here we report a new machine learning approach that allows the identification
of natural products with high accuracy. The method also generates similarity maps, which highlight
atoms that contribute significantly to the classification of small molecules as a natural product
or synthetic molecule. The method can hence be utilized to (i) identify natural products in large
molecular libraries, (ii) quantify the natural product-likeness of small molecules, and (iii) visualize
atoms in small molecules that are characteristic of natural products or synthetic molecules. The models
are based on random forest classifiers trained on data sets consisting of more than 265,000 to
322,000 natural products and synthetic molecules. Two-dimensional molecular descriptors, MACCS
keys and Morgan2 fingerprints were explored. On an independent test set the models reached areas
under the receiver operating characteristic curve (AUC) of 0.997 and Matthews correlation coefficients
(MCCs) of 0.954 and higher. The method was further tested on data from the Dictionary of Natural
Products, ChEMBL and other resources. The best-performing models are accessible as a free web
service at http://npscout.zbh.uni-hamburg.de/npscout.

Keywords: natural products; natural product-likeness; machine learning; random forest;
classification; similarity maps; visualization; molecular fingerprints; web service

1. Introduction

Natural products (NPs) continue to be the most prolific resource for drug leads [1–4]. A recent
analysis found that over 60% of all small-molecule drugs approved between 1981 and 2014 are genuine
NPs, NP analogs or their derivatives, or compounds containing an NP pharmacophore [5]. NPs are
characterized by enormous structural and physicochemical diversity [6–8]. Some of the regions in
chemical space covered by NPs are not, or only rarely, populated by synthetic molecules (SMs) [7,9].
The structural complexity of many NPs exceeds that of compounds found in conventional synthetic
libraries for screening, in particular with respect to stereochemical aspects, molecular shape, and ring
systems [10–18].

The primary bottleneck of NP research is the scarcity of materials for testing. In a recent study,
we showed that the molecular structures of more than 250,000 NPs have been deposited in public
databases, and that only approximately 10% of these are readily obtainable from commercial providers
and other sources [19].
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Given the fact that NPs exhibit a wide range of biological activities that are of immediate
relevance to human health, new avenues that would make NP research more effective are being
explored, in particular, research involving computational approaches [2]. For example, computational
methods have been employed successfully for the identification of bioactive NPs [20–22] and their
bio-macromolecular targets [23–26]. They have also been successfully utilized for the design of simple
synthetic, bioactive mimetics of NPs [27–29]. In this context, computational methods for quantifying the
NP-likeness of compounds can be valuable tools to guide the de novo generation of NP mimetics and
optimize the NP-likeness of lead compounds. Such methods may also be useful for identifying genuine
NPs in commercial compound libraries, which often also contain SMs [19]. This can be valuable in the
context of library design and for the prioritization of compounds for experimental testing.

The best-known in-silico approach for identifying NPs is the NP-likeness score developed
by Ertl et al. [30]. The NP-likeness score is a Bayesian measure that quantifies a compound’s
similarity with the structural space of NPs based on structural fragments. As such, the model can
identify sub-structures characteristic to NPs. The method has been re-implemented, with some
modifications, in various platforms (e.g., [31–33]). Among them is the Natural-Product-Likeness
Scoring System [31], which allows the calculation of the NP-likeness score (with some modifications).
The Natural-Product-Likeness Scoring System also allows the use of customized data sets for training.
An alternative approach for quantifying NP-Likeness, following a similar modeling strategy, but based
on extended connectivity fingerprints (ECFPs), was reported by Yu [34]. Also a rule-based approach
has been reported [35].

In this work, we present the development and validation of new machine learning models for
the discrimination of NPs and SMs. To the best of our knowledge, these models are trained on the
largest collection of known NPs that have been employed for the development of such classifiers.
Among further developments, we present the utilization of similarity maps [36] for the visualization
of atoms of a molecule, which are characteristic for NPs or SMs, according to the models.

2. Materials and Methods

2.1. Data Preparation

NPs were compiled from several physical and virtual NP databases (see Results for details).
The chemical structures were parsed directly from SMILES notation, where available. Alternatively,
chemical structures stored in chemical table files (e.g., SDF) were parsed with RDKit [37] and
converted into SMILES. Minor components of salts were removed by the method described in ref. [38].
Any compounds with a molecular weight below 150 Da or above 1500 Da, and any compounds
consisting of elements other than H, B, C, N, O, F, Si, P, S, Cl, Se, Br, or I were filtered. The “canonicalize”
method, which was implemented in the “tautomer” class of MolVS [39], was used for neutralizing
the molecular structures and merging tautomers. After the removal of duplicate SMILES (ignoring
stereochemistry), the processed NP reference data set consisted of a total of 201,761 NPs.

SMs were compiled from the “in-stock” subset of ZINC [40,41]. In a first step, 500,000 compounds
of ZINC were picked by random selection from the complete “in-stock” subset and pre-processed
following the identical protocol used for the NP databases. After generating unique, canonicalized
SMILES, any molecules present in the NP reference data set were removed from the SM data set (as
determined by the comparison of canonicalized SMILES). Then, random sampling was used to compile
a reference data set of SMs of identical size as the NP reference data set (i.e., 201,761 compounds).

The Dictionary of Natural Products (DNP) [42] and the ChEMBL database [43,44] were
pre-processed following the identical protocol outlined for the NP and SM data sets. The ChEMBL
sub-set of molecules, published in the Journal of Natural Products, was retrieved directly from
ChEMBL [43,45]. The natural products subset of ZINC was downloaded from the ZINC website [46].
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2.2. Principal Component Analysis

Fifteen two-dimensional molecular descriptors calculated with the Molecular Operating
Environment (MOE) [47] were used for principle component analysis (PCA): MW (Weight), log
P (log P (o/w)), topological polar surface area (TPSA), number of hydrogen bond acceptors (a_acc),
number of hydrogen bond donors (a_don), number of heavy atoms (a_heavy), fraction of rotatable
bonds (b_rotR), number of nitrogen atoms (a_nN), number of oxygen atoms (a_nO), number of acidic
atoms (a_acid), number of basic atoms (a_base), sum of formal charges (FCharge), number of aromatic
atoms (a_aro) and number of chiral centers (chiral), and number of rings (rings).

2.3. Model Building

Prior to model building, the preprocessed NP and SM reference data sets were merged, resulting
in a total of 403,522 data records. The merged data set was then randomly split into a training set of
322,817 and a test set of 80,705 compounds (ratio of 4:1). In fingerprint space, structurally distinct
molecules may have identical fingerprints. For this reason, de-duplication, based on fingerprints, was
separately performed for all NPs and all SMs in the training data. Any fingerprints present in both the
NP and SM subsets were removed, in order to avoid conflicting class labels. This procedure resulted in
a training set of 156,119 NPs and 161,378 SMs represented by Morgan2 fingerprints, and in a training
set of 108,393 NPs and 157,162 SMs represented by MACCS keys.

Morgan2 fingerprints (1024 bits) [48,49] and MACCS keys (166 bits) were calculated with
RDKit, and 206 two-dimensional physicochemical property descriptors were calculated with MOE.
Random forest classifiers (RFCs) were generated with scikit-learn [50,51] using default settings, except
for “n_estimators”, which was set to “100”, and “class_weight”, which was set to “balanced”.

The NP-likeness calculator [30,31,52] was trained on atom signatures derived from the identical
NP and SM data sets, used for training the RFCs. Subsequently, the NP-likeness score was calculated
for each molecule in the test set, according to the atom signatures. All calculations used a signature
height of 3, resulting in scores ranging from �3 to 3. Molecules with a score greater than 0.0 were
labeled as NPs, and molecules with a score lower, or equal to 0.0 were labeled as SMs. NP class
probabilities (and AUCs) were derived by normalizing these scores to a range from 0.0 to 1.0.

2.4. Similarity Maps

Similarity maps were computed with the RDKit [37] Chem.Draw.SimilarityMaps module based
on RFCs derived from Morgan2 fingerprints (1024 bits).

3. Results

3.1. Compilation of Data Sets for Model Development

An NP reference data set of 201,761 unique NPs was compiled from 18 virtual NP libraries and
nine physical NP databases. The reference data set is identical to that compiled as part of our previous
work [8], with two amendments: First, the compounds of the DNP [42] were not included in the data set,
as they serve as an external test set in this work, and second, the recently published Natural Products
Atlas database [53] was added as a new data source. An overview of the NP data sources utilized in
this work is provided in Table 1. The table also reports the number of molecules that are contained in
the individual databases prior to, and after, data preprocessing. This is a procedure that includes the
removal of salt components and stereochemical information, the filtering of molecules composed of
uncommon elements, and with a molecular weight (MW) below 150 Da or above 1500 Da, and the
removal of duplicate molecules (see Methods for details). An equal amount (i.e., 201,761) of synthetic
organic molecules (SMs) was collected from the “in-stock” subset of ZINC [41] by random selection.
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Table 1. Size of the individual data sets prior to and after data preprocessing.

Name 1

Number of
Molecules in

SMILES Notation
Successfully Parsed

with RDKit

Number of
Unique Molecules

After Data
Preprocessing

Scientific Literature
and/or Online Presence

UNPD 229,140 161,228 [54,55]
TCM Database@Taiwan 56,325 45,422 [56,57]

NP Atlas 20,018 18,358 [53]
TCMID 13,188 10,918 [58,59]
TIPdb 8838 7620 [60–62]

Ambinter and Greenpharma NPs 7905 6680 [63,64]
AnalytiCon Discovery MEGx 4315 4063 [65]

NANPDB 6841 3734 [66,67]
StreptomeDB 3990 3353 [68,69]

NPs of PubChem Substance Database 3533 2638 [70,71]
NuBBE 1856 1637 [72,73]

Pi Chemicals NPs 1783 1511 [74]
NPCARE 1613 1479 [75,76]
NPACT 1516 1376 [77,78]

InterBioScreen NPs 1359 1116 [79]
AfroDb 954 865 [80,81]

TargetMol Natural Compound Library 850 745 [82]
HIM 1284 641 [83,84]

SANCDB 623 588 [85,86]
UEFS Natural Products 493 469 via ZINC [40,87]

p-ANAPL 538 456 [88]
NCI/NIH DTP NP set IV 419 394 [89]

HIT 707 362 [90,91]
AfroCancer 388 352 [92,93]

AfroMalariaDB 265 250 [94,95]
AK Scientific NPs 242 177 [96]

Selleck Chemicals NPs 173 163 [97]
NP data set TOTAL - 201761

1 UNPD: the Universal Natural Products Database; TCM Database@Taiwan: the Traditional Chinese Medicine
Database@Taiwan; NP Atlas: the Natural Products Atlas; TCMID: the Traditional Chinese Medicine Integrated
Database; TIPdb: the Taiwan Indigenous Plant Database; NANPDB: the Northern African Natural Products
Database; StreptomeDB: Streptome Database; NuBBE: Nuclei of Bioassays, Ecophysiology and Biosynthesis of
Natural Products Database; NPCARE: Database of Natural Products for Cancer Gene Regulation; NPACT: the
Naturally Occurring Plant-based Anti-Cancer Compound-Activity-Target Database; AfroDb: NPs from African
medicinal plants; HIM: the Herbal Ingredients in-vivo Metabolism Database; UEFS Natural Products: the natural
products database of the State University of Feira De Santana; p-ANAPL: the Pan-African Natural Products Library;
NCI/NIH DTP NP set IV: the NP (plated) set IV of the Developmental Therapeutic Program of the National Cancer
Institute/National Institutes of Health; HIT, the Herbal Ingredients’ Targets Database; AfroCancer, the African
Anticancer Natural Products Library; AfroMalariaDB, the African Antimalarial Natural Products Library.

3.2. Analysis of the Physicochemical Properties of Natural Products and Synthetic Molecules

Prior to model development, we compared the chemical space covered by the 201,761 unique
NPs, and the equal number of unique SMs, using principal component analysis (PCA), based on
15 relevant physicochemical properties (see Methods for details). The score plot in Figure 1 shows that
the chemical space of SMs is essentially a sub-space of NPs.

NPs have on average a higher MW than SMs (506 Da vs 384 Da) and a larger proportion of heavy
compounds (38% vs. 10% of all molecules have a MW greater than 500 Da; Figure 2a). SMs have a
narrower distribution of calculated log P values as compared to NPs (Figure 2b) but their averages
are comparable (3.31 versus 3.25). SMs and NPs show clear differences in the entropy of element
distributions in molecules, with NPs having, on average, a lower entropy than SMs (1.39 versus 1.63;
Figure 2c). NPs tend to have more chiral centers (mean 6.66 vs. 0.75; Figure 2d), substantially fewer
nitrogen atoms than SMs (mean 0.76 vs. 2.94; Figure 2e), and more oxygen atoms (mean 7.39 vs. 2.88;
Figure 2f) [7,10,12–15,17].
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3.3. Model Development and Selection

Random forest classifiers [98] were trained on three different descriptor sets: 206 two-dimensional
physicochemical property descriptors calculated with MOE [47], Morgan2 fingerprints (1024 bits) [48,49]
calculated with RDKit [37], and MACCS keys (166 bits), also calculated with RDKit. Model performance
was characterized utilizing the Matthews correlation coefficient (MCC) [99] and area under the receiver
operating characteristic curve (AUC). The MCC is one of the most robust measures for evaluating the
performance of binary classifiers, as it considers the proportion of all classes in the confusion matrix
(i.e., true positives, false positives, true negatives, and false negatives). The AUC was used to measure
how well the models are able to rank NPs early in a list.

As reported in Table 2, the models derived from any of the three descriptor sets performed very
well. The AUC values, that were obtained during 10-fold cross-validation, were between 0.996 and
0.997; the MCC values were 0.950 or higher. No noticeable increase in performance was obtained by
the further increase in the number of estimators (n_estimators) and the optimization of the maximum
fraction of features considered per split (max_features; data not shown). Therefore, we chose to
use 100 estimators, and the square root of the number of features, as the most suitable setup for
model generation.

Table 2. Performance of models derived from different descriptors or fingerprints.

Test Method Metric 1
MOE

Two-Dimensional
Descriptors

Morgan2
Fingerprints
(1024 Bits)

MACCS
Keys

NP-Likeness
Calculator

10-fold cross-validation
AUC 0.997 0.997 0.996 /
MCC 0.953 0.958 0.950 /

Independent test set AUC 0.997 0.997 0.997 0.997
MCC 0.954 0.960 0.960 0.959

1 AUC: area under the receiver operating characteristic curve: MCC: Matthews correlation coefficient.

3.4. Model Validation

In a first step, the performance of the selected models was tested on an independent test set.
The AUC and MCC values, that were obtained for the selected models on this independent test set, are
comparable with those obtained for the 10-fold cross-validation: AUC values were 0.997 for models
based on any of the three types of descriptors and MCC values were 0.954 or higher.
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Given the fact that the type of descriptor, used for model generation, did not have a substantial
impact on model performance, we opted to select the model based on MACCS keys as the primary
model for further experiments, because of its low complexity and good interpretability. This model
achieved a very good separation of NPs and SMs for the independent test set, as shown in Figure 3a.
Approximately 63% of all NPs were assigned an NP class probability of 1.0, whereas 51% SMs were
assigned an NP class probability of 0.0. Only approximately 1% of all compounds were assigned
values close to the decision threshold of 0.5 (i.e., between 0.4 and 0.6).
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The model’s ability to identify NPs was also tested using the DNP as an external validation
set. By definition, the DNP should consist exclusively of NPs. After the removal of any molecules
present in the training data (based on canonicalized SMILES), the preprocessed DNP consisted of
60,502 compounds. Approximately 95% of these compounds were predicted as NPs by the model,
demonstrating the model’s capacity to identify NPs with high sensitivity (Figure 3b).

3.5. Comparison of Model Performance with the NP-Likeness Calculator

We compared the performance of the model derived from MACCS keys to the NP-likeness
calculator (based on the Natural-Product-Likeness Scoring System; see Introduction), which we trained
and tested on the identical data sets used for the development of our models. On the independent
test set, the NP-likeness calculator performed equally well as our model, with an AUC of 0.997 and
an MCC of 0.959 (Table 2). Approximately 95% of all compounds of the DNP were classified as NPs
(i.e., having assigned an NP-likeness score greater than 0; see Figure S1), which is comparable to the
classification obtained with our model based on MACCS keys.

3.6. Analysis of Class Probability Distributions for Different Data Sets

In addition to the above experiments, we used the model based on MACCS keys for profiling the
ChEMBL database and a subset thereof. The ChEMBL database [44] primarily contains SMs, and 87%
of all compounds stored in ChEMBL were predicted as such (Figure 4a). Interestingly, 42,949 molecules
(~3%) were assigned an NP class probability of 1.0, and therefore likely are NPs. This finding is
in agreement with our previous study, which identified approximately 40,000 NPs in the ChEMBL
database, by overlapping the database with a comprehensive set of known NPs [19].
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A subset of the ChEMBL database containing molecules originating from the Journal of Natural
Products [45] has been used as a source of genuine NPs to train models for the prediction of
NP-likeness [31]. Our model based on MACCS keys predicts a small percentage of the molecules (less
than 4%) in this data set as not NP-like (Figure 4b). Closer inspection of the compounds predicted as
not NP-like reveals that these are, for example, SMs used as positive controls in biochemical assays.
They include the drugs celecoxib, glibenclamide and linezolid, all of which are predicted with an NP
class probability of 0.0. This experiment demonstrates that the classifiers can be used as powerful tools
for the identification of NPs or SMs in mixed data sets with high accuracy.

A second example of a data set that by its name is assumed to consist exclusively of NPs
is the natural products subset of ZINC [46]. The class probability distribution calculated for this
subset however is similar to that obtained for the complete ChEMBL, indicating the presence of a
substantial number of SMs (including NP derivatives and NP analogs) in this subset (Figure 4c): Only
approximately 43% of all compounds in the NPs subset of ZINC were classified as NPs; around 23%
were assigned an NP class probability of 1.0.
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3.7. Analysis of Discriminative Features of Natural Products and Synthetic Molecules

The most discriminative features were determined, based on the feature_importances_ attributes
computed with scikit-learn (see Methods for details). For the classifier based on MOE two-dimensional
molecular descriptors, the three most important features were the number of nitrogen atoms (a large
fraction of NPs has no nitrogen atom; see Figure 2e), the entropy of the element distribution in molecules
(NPs have on average lower element distribution entropy than SMs; see Figure 2c), and the number
of unconstrained chiral centers (NPs have on average more chiral centers than SMs; see Figure 2d).
An overview of the ten most important features is provided in Table 3.

Table 3. Feature importance for the random forest classifier based on MOE two-dimensional descriptors.

Identifier Used by MOE Feature Importance 1 Description

a_nN 0.103 Number of nitrogen atoms.

a_ICM 0.051 Entropy of the element distribution in the molecule.

chiral_u 0.045 Number of unconstrained chiral centers.

GCUT_SLOGP_0 0.045 Descriptor derived from graph distance adjacency
matrices utilizing atomic contribution to log P.

SlogP_VSA0 0.044 Surface area descriptor taking into account the
contributions of individual atoms to log P.

chiral 0.042 Number of chiral centers.

GCUT_SLOGP_3 0.036 Descriptor derived from graph distance adjacency
matrices utilizing atomic contribution to log P.

a_nO 0.025 The number of oxygen atoms.

GCUT_PEOE_0 0.025
Descriptor derived from graph distance adjacency

matrices utilizing partial equalization of orbital
electronegativities charges.

SlogP_VSA1 0.024 Surface area descriptor taking into account the
contributions of individual atoms to log P.

1 From the feature_importances_ attribute of the classifier based on MOE two-dimensional descriptors. The higher,
the more important the feature is.

For the classifier based on MACCS keys, the 15 most important features are reported in Figure 5.
In agreement with the differences observed in the physiochemical property distributions of NPs versus
SMs (see Analysis of the Physicochemical Properties of Natural Products and Synthetic Molecules),
the most important MACCS keys describe the presence or absence of nitrogen atoms, such as key 161,
matching molecules containing at least one nitrogen atom, key 142, matching molecules with at least
two nitrogen atoms, and keys 117, 158, 122, 156, 75, 110, 133, 92 and 80, matching molecules containing
specific nitrogen-containing substructures. Also several oxy gen-containing substructures are among
the most important features, such as keys 139, 117, 110, 92.
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3.8. Similarity Maps

Similarity maps [36] allow the visualization of the atomic contribution of molecular fingerprints
and can be extended to visualize the “atomic weights” of the predicted probability of the machine
learning model. During several test runs with different Morgan fingerprint, radii, and bit vector lengths,
we identified a radius of 2 and a bit vector length of 1024 bits as the most suitable setup for generating
fine-grained similarity maps. The examples of similarity maps, generated with this descriptor, and the
random forest approach, are reported in Table 4 for representative molecules, none of which have
been part of model training. In this similarity maps, green highlights mark atoms contributing
to the classification of a molecule as NP, whereas orange highlights mark atoms contributing to the
classification of a molecule as SM. As expected, the similarity maps for the NP arglabin are mostly green,
whereas for the synthetic drugs, bilastine and perampanel, are mostly orange. For NP derivatives
and mimetics, the similarity maps are more heterogeneous and show green, as well as orange areas.
The thrombin receptor antagonist vorapaxar is a derivative of the piperidine alkaloid himbacine.
Vorapaxar shares a decahydronaphtho[2,3-c]furan-1(3H)-one scaffold with himbacine, but has the
piperidine ring replaced by a pyridine, besides other modifications. The similarity map generated for
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vorapaxar shows that the model correctly identifies the decahydronaphtho[2,3-c]furan-1(3H)-one as
NP-like, whereas it associates the modified areas with synthetic molecules. In the case of empagliflozin,
which mimics the flavonoid phlorozin, the model correctly recognizes the C-glycosyl moiety as NP-like,
whereas other atoms in the molecule are associated with synthetic molecules.

Table 4. Examples of similarity maps generated by the NP classifier based on Morgan2 fingerprints.

Similarity Map 1 Name Source 2 NP Class
Probability

Disease
Indication

Year
Introduced
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1 Green highlights mark atoms contributing to the classification of a molecule as NP, whereas orange 
highlights mark atoms contributing to the classification of a molecule as SM. 2 N: Unaltered NP; ND: 
NP derivative; S*: Synthetic drug (NP pharmacophore); S: Synthetic drug; NM: Mimic of NP. 
Definitions according to ref [5]. 

3.9. NP-Scout Web Service 

A web service named “NP-Scout” is accessible free of charge via http://npscout.zbh.uni-
hamburg.de/npscout. It features the random forest model, based on MACCS keys for the 
computation of NP class probabilities and the random forest model, based on Morgan2 fingerprints 
(with 1024 bits) for the generation of similarity maps. 

Users can submit molecular structures for calculation, by entering SMILES, uploading a file with 
SMILES or a list of SMILES, or drawing the molecule with the JavaScript Molecule Editor (JSME) 
[102]. The results page (Figure 6) presents the calculated NP class probabilities and similarity maps 
of submitted molecules in a tabular format. The results can be downloaded in CSV file format. 
Calculations of the NP class probabilities and the similarity maps take few seconds per compound 
and approximately 15 min for 1000 compounds. Users may utilize a unique link provided upon job 
submission to return to the website after all calculations have been completed. 
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3.9. NP-Scout Web Service

A web service named “NP-Scout” is accessible free of charge via http://npscout.zbh.uni-hamburg.
de/npscout. It features the random forest model, based on MACCS keys for the computation of NP
class probabilities and the random forest model, based on Morgan2 fingerprints (with 1024 bits) for
the generation of similarity maps.

Users can submit molecular structures for calculation, by entering SMILES, uploading a file
with SMILES or a list of SMILES, or drawing the molecule with the JavaScript Molecule Editor
(JSME) [102]. The results page (Figure 6) presents the calculated NP class probabilities and similarity
maps of submitted molecules in a tabular format. The results can be downloaded in CSV file format.
Calculations of the NP class probabilities and the similarity maps take few seconds per compound
and approximately 15 min for 1000 compounds. Users may utilize a unique link provided upon job
submission to return to the website after all calculations have been completed.
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4. Conclusions

In this work, we introduced a pragmatic machine learning approach for the discrimination of
NPs and SMs and for the quantification of NP-likeness. As shown by validation experiments using
independent and external testing data, the models reach a very high level of accuracy. An interesting
and relevant new aspect of this work is the utilization of similarity maps to visualize atoms in
molecules making decisive contributions to the assignment of compounds to either class. A free web
service for the classification of small molecules and the visualization of similarity maps is available at
http://npscout.zbh.uni-hamburg.de/npscout.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/9/2/43/s1,
Figure S1: Distribution of calculated NP-likeness scores for the DNP (after removal of any compounds present in
the training set).
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3.3. Scope of 3D Shape-Based Approaches in Predicting the 
Macromolecular Targets of Structurally Complex Small 
Molecules 

Knowing the target(s) of small molecules is one of the most important tasks to 
evaluate the pharmacological efficacy and safety of compounds, and for further 
optimization. However, even for many approved drugs their targets remain to be 
identified. There is an increasing number of computational methods for target 
prediction recently but predicting likely targets for natural products or in general 
for structurally complex small molecules (CSMs) is more challenging.  

One challenge in target prediction for NPs is that there is much less bioactivity 
data compared to structurally less complex, synthetic molecules. NPs differ from 
synthetic molecules in terms of physicochemical and structural properties and 
many NPs have complex 3D molecular shapes. When using in silico methods 
trained on synthetic molecules to predict targets for NPs, extra caution should be 
exercised.  

A 3D shape-based method was evaluated to predict the macromolecular targets 
of structurally CSMs, including natural products and macrocyclic ligands, and 
details of the study are shown in the following publication (D6). 
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ABSTRACT: A plethora of similarity-based, network-based,
machine learning, docking and hybrid approaches for predicting
the macromolecular targets of small molecules are available today
and recognized as valuable tools for providing guidance in early
drug discovery. With the increasing maturity of target prediction
methods, researchers have started to explore ways to expand their
scope to more challenging molecules such as structurally complex
natural products and macrocyclic small molecules. In this work, we
systematically explore the capacity of an alignment-based approach
to identify the targets of structurally complex small molecules
(including large and flexible natural products and macrocyclic
compounds) based on the similarity of their 3D molecular shape to
noncomplex molecules (i.e., more conventional, “drug-like”,
synthetic compounds). For this analysis, query sets of 10 representative, structurally complex molecules were compiled for each
of the 28 pharmaceutically relevant proteins. Subsequently, ROCS, a leading shape-based screening engine, was utilized to generate
rank-ordered lists of the potential targets of the 28 × 10 queries according to the similarity of their 3D molecular shapes with those
of compounds from a knowledge base of 272 640 noncomplex small molecules active on a total of 3642 different proteins. Four of
the scores implemented in ROCS were explored for target ranking, with the TanimotoCombo score consistently outperforming all
others. The score successfully recovered the targets of 30% and 41% of the 280 queries among the top-5 and top-20 positions,
respectively. For 24 out of the 28 investigated targets (86%), the method correctly assigned the first rank (out of 3642) to the target
of interest for at least one of the 10 queries. The shape-based target prediction approach showed remarkable robustness, with good
success rates obtained even for compounds that are clearly distinct from any of the ligands present in the knowledge base. However,
complex natural products and macrocyclic compounds proved to be challenging even with this approach, although cases of complete
failure were recorded only for a small number of targets.

■ INTRODUCTION
The past decade has seen a boost in the development of in
silico approaches for the prediction of the macromolecular
targets of small molecules.1−3 Progress has been fueled by,
among other factors, (i) the increasing amount of chemical and
biological data available in the public domain, (ii) the strategic
shift from the “one drug-one target” paradigm that had
dominated small-molecule drug discovery for decades to the
concept of polypharmacology,4 and (iii) advances in computa-
tional power and algorithms. Despite the rapid development,
however, it is challenging to obtain a realistic understanding of
the performance of target prediction methods.5

There are several classes of in silico approaches for target
prediction in existence: (i) similarity-based methods, which use
the similarity between data such as small molecules, targets,
and interactions to make predictions,6 (ii) network-based
methods, where networks based on anything from ligand
similarity7 to highly heterogeneous data are built to gain

systemic understanding of modeled data,8 (iii) machine
learning approaches, which make use of machine learning
methods such as random forests, support vector machines, or
artificial neural networks to make predictions,9 (iv) reverse (or
inverse) docking methods, which dock queries into potential
targets to make predictions based on docking scores3 and
methods which combine two or several types of these
approaches.1

A large proportion of models reported in the scientific
literature are available as free public web services or
commercial tools.10 Most models utilize information from

Received: February 13, 2020
Published: May 5, 2020

Articlepubs.acs.org/jcim

© 2020 American Chemical Society
2858

https://dx.doi.org/10.1021/acs.jcim.0c00161
J. Chem. Inf. Model. 2020, 60, 2858−2875

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

D
ow

nl
oa

de
d 

vi
a 

31
.1

6.
16

.2
17

 o
n 

Ju
ne

 2
9,

 2
02

0 
at

 0
9:

35
:3

6 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.



the largest public resources of chemical and biological data,
PubChem,11 and the ChEMBL database.12 PubChem currently
contains more than 102 million compounds and 268 million
bioactivity data points,13 and the latest release of the ChEMBL
database contains close to 2 million compounds, with more
than 16 million measured activities.14

With the increasing coverage and reliability of the models,
researchers have started to develop strategies for predicting the
likely targets of more challenging compounds such as natural
products,15,16 for which there is a notorious lack of available
measured data,17 and macrocyclic compounds, characterized
by a large number of conformational degrees of freedom in
combination with distinct torsional angle preferences.18−20 For
example, Reker et al.21 dissected the macrocyclic antitumor
agent archazolid A and used pharmacophoric descriptions of

these fragments to relate them to small molecules with known
bioactivities. Several then unknown targets of archazolid A that
were predicted by this approach have subsequently been
confirmed in biological tests. More recently, Cockroft et al.16

have reported on the development of a stacked ensemble
approach which, despite being trained on data for synthetic
compounds, is able to predict the macromolecular targets of
natural products with good accuracy.
In silico methods based on the comparison of the 3D

molecular shapes of aligned molecules are predestined for use
in target prediction because of their ability to recognize
similarity among structurally dissimilar compounds, as long as
their molecular shapes (or at least parts of their molecular
shapes) are preserved. Most shape-based methods take the
distribution of chemical features (“color”) into account, which

Figure 1. Examples of CSMs and non-CSMs. Represented on the left are the three most diverse CSMs (used as queries in this study) identified for
the HIV-1 protease, paired box protein Pax-8 and mu opioid receptor, and on the right the five most diverse non-CSMs (representing the
knowledge base compounds). More details on the automated and unbiased procedure employed for selecting these example compounds are
provided in the Compilation of a Test Set for Target Prediction section in the Methods section.
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contributes substantially to their performance.22 They form the
basis of several target prediction approaches23−25 and are also
attractive tools for virtual screening and scaffold hop-
ping.22,26,27

Here, we systematically investigate the capacity of a leading
3D alignment-dependent, shape-based approach to identify the
macromolecular targets of structurally complex small mole-
cules (CSMs) on the basis of their molecular similarity with
non-CSMs. In the context of small-molecule drug discovery,
3D shape-based screening, and this study alike, non-CSMs are
compounds that medicinal chemists would identify as typical
drug-like small molecules of low structural complexity. In
contrast, CSMs represent less conventional compounds,
characterized, above all, by their larger size (reflected by a
high number of heavy atoms and high molecular weight), and
along with it, larger numbers of conformational degrees of
freedom and/or higher 3D shape complexity (Figure 1). CSMs
include, in particular, complex natural products and macro-
cyclic compounds, many of which are of high relevance to drug
discovery but typically lack experimental data. Therefore, if it is
found in this study that computational approaches based on
3D shape-based alignment are indeed capable of deriving the
likely macromolecular targets of CSMs based on data
measured for more conventional small molecules, this could
open new avenues to support drug discovery efforts in less
densely populated, and hence more innovative, areas of the
relevant chemical space.

■ METHODS
Extraction of High-Quality Data from ChEMBL. The

ChEMBL database12,28 was processed following a protocol
inspired by the work of Bosc et al.29 First, any data records
matching the following criteria were extracted from ChEMBL:
(1) Bioactivity record includes a molecular structure (canon-

ical_smiles is not null).
(2) Reported bioactivity is measured on a single protein or a

protein complex (i.e., conf idence_score 7 or 9).
(3) data_validity_comment is null OR “manually validated”.
(4) potential_duplicate is “0”.
(5) activity_comment is not “inconclusive” OR “unspecified”

(capitalization ignored).
(6) standard_type is “Kd” OR “Potency” OR “AC50” OR

“IC50” OR “Ki” OR “EC50”.
(7) NOT (standard_value is null AND pchembl_value is

null AND activity_comment is not “active” (capital-
ization ignored)).

(8) NOT (standard_relation “>”, “ ≥ ”, or “ ≫ ” AND
standard_value less than 20 000).

This procedure resulted in a total of 1 452 655 data records.
A small number of these data records (2157) had
concentrations applied to bioactivity measurements reported
in μg·mL−1 as opposed to nM; these values were converted
into nM. Next, for each compound−target pair, the median
bioactivity value was calculated (because compounds may have
assigned more than one bioactivity value for one and the same
target). Any compounds with a median activity smaller than or
equal to 10 000 nM were defined as active, and all other
compounds were discarded. This resulted in a total of 481 194
molecules, corresponding to 786 817 bioactivity records.
Processing of Molecular Structures. The molecular

structures extracted from ChEMBL as SMILES were imported
into MOE30 (parsing failed for one molecule) and prepared

using MOE’s Wash function. Processing included the removal
of the minor components of salts, neutralization, and the
addition of hydrogen atoms. Any molecules with a molecular
weight in the range of 150 to 1500 Da were kept. The
molecules were then labeled “CSM” or “non-CSM” according
to the following definition (see Results for motivation and
discussion of the thresholds): non-CSMs are compounds with
15 to 30 heavy atoms, whereas CSMs include all compounds
with 45 to 55 heavy atoms and all macrocycles with 30 to 55
atoms. Compounds consisting of more than 55 heavy atoms
were discarded, as were very small compounds (less than 15
heavy atoms) and CSMs with at least one undefined chiral
atom (to ensure that stereochemistry is unambiguously defined
for all queries).
Next, conformers were generated with OMEGA,31,32 a

widely applied, systematic, knowledge-based conformer
ensemble generator that makes extensive use of fragment
libraries. OMEGA features a “default” or “classic” mode, which
handles molecules with rings formed by up to nine atoms, and
a macrocycle mode, which handles molecules with larger ring
systems. A recent benchmark study of commercial conformer
ensemble generators identified OMEGA’s classic algorithm as
the best commercial tool with respect to both accuracy and
speed.33 Also OMEGA’s macrocycle mode has been shown to
obtain good performance on macrocycles.34

For all non-CSMs (knowledge base compounds), ensembles
of a maximum of 400 conformers were calculated with
OMEGA (the default value is 200 conformers). OMEGA’s
classic mode was employed for all non-CSMs without any rings
formed by more than nine atoms (the flipper option, which
enumerates the stereochemical configurations of undefined
chiral atoms, was enabled). OMEGA’s macrocycle mode was
employed to generate conformer ensembles for any molecule
with rings formed by more than nine atoms (in accordance
with the developer’s specifications).
All CSM queries were represented by the lowest energy

conformation generated with OMEGA’s classic or macrocycle
modes, applying the same ring size cutoffs as for non-CSMs.
The composition of the data set resulting from this

processing workflow is reported in Table 1.

Compilation of a Test Set for Target Prediction. A test
set of 28 targets was compiled by following a protocol designed
to ensure that the selected proteins are diverse and
representative of pharmaceutically relevant protein space.
Starting from the sorted list of the 39 proteins with the
highest number of CSM records in the processed data set
(108− 730 CSMs per target), a diverse and representative set

Table 1. Composition of Processed Data Set

Number of
compounds

Number of
bioactivity
records

Number
of targets

Complex small
molecules
(CSMs)

macrocycles 2780 4618 474a

Complex small
molecules
(CSMs)

nonmacrocycles 10 870 16 640 1164a

Noncomplex
small
molecules
(non-CSMs)

nonmacrocycles 272 640 460 047 3642

aCorresponding to a total of 1318 unique targets.
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of proteins was selected based on the following procedure:
First, for proteins for which bioactivity records are available for
multiple species, only the data for the species with the largest
number of CSMs was retained. Second, the protein “protease”
from human immunodeficiency virus 1 (CHEMBL2366517)
was removed because of the availability of a more
comprehensive set of data on the protein “human immuno-
deficiency virus type 1 protease” (CHEMBL243). Cytochrome
P450 enzymes and transporters were excluded because of their
wide substrate selectivity and the fact that substrates are known
to have multiple binding modes. In the final step, the
remaining proteins were clustered with CD-HIT35,36 based
on their full-length amino acid sequence (a sequence identity
cutoff of 0.4 was employed for this procedure). For each of the
clusters, only the protein with the largest number of CSMs was
kept. With the 28 targets of interest now defined, in the next
step, for each of the selected proteins, the 10 most diverse
CSMs were determined with MOE’s function for the
generation of diverse subsets (using MACCS fingerprints in
combination with the Tanimoto coefficient).
Target Prediction. The 280 (28 × 10) CSMs served as

queries for screening with ROCS37,38 against the knowledge
base of 272 640 non-CSMs (note that the number of unique
CSMs is 269 as a minority of the selected CSMs are active on
more than one of the selected 28 proteins). The proteins were
ranked according to the maximum similarity between a CSM
query and all non-CSM ligands recorded for a protein in the
knowledge base.
Molecular similarity was quantified separately by each of

four similarity metrics implemented in ROCS: ShapeTanimo-
to, TanimotoCombo, RefTverskyCombo, and FitTverskyCom-
bo score. As suggested by their names, metrics are either based
on the Tanimoto or the Tversky coefficient. The Tanimoto
coefficient quantifies the similarity of two molecules, f and g,
based on their self-volume overlaps (If and Ig) and the volume
overlap between the two molecules (Of,g)

= + −
O

I I O
Tanimotof g

f g

f g f g
,

,

,

The Tversky coefficient can be asymmetric (depending on
the alpha and beta parameters chosen), hence allowing
emphasize on either substructure or superstructure matching

α β= +
O

I I
Tverskyf g

f g

f g
,

,

The ShapeTanimoto score ranges from 0 to 1, with a value
of 1 indicating a perfect fit of molecular shapes. Importantly,
the ShapeTanimoto score only considers the fit of shapes for
the volume overlap, whereas the three “combo” scores
additionally take the type and distribution of chemical features
into account. The “combo” scores typically range from 0 to 2,
with equal weights applied to the shape and color components.
The RefTverskyCombo score assigns an alpha value of 0.95

to the CSM query molecule as the main self-overlap term,
meaning, in the context of this study, that it emphasizes the
matching of the CSM (which, by design of the data sets, is the
superstructure). The FitTverskyCombo score, on the contrary,
assigns a beta value of 0.95 to the fit molecule (i.e., the
knowledge base molecule), emphasizing the match of the non-
CSM (substructure). Note that the RefTverskyCombo and
FitTverskyCombo scores can have values greater than 2
because the overlap of two compounds can be larger than a
molecule’s self-overlap.
ROCS was run with factory settings with the following

exceptions: both “-besthits” and “-maxhits” were set to “0” in
order to cause ROCS to retain all results. The “-rankby” option
was set to an appropriate value in order to have the results
ranked by the four similarity metrics. For experiments using
the ShapeTanimoto score, the “-shapeonly” function was
enabled in order to cause ROCS to align molecules by taking
only molecular shape into account (and not color). Targets
assigned identical scores were also assigned identical ranks.

Figure 2. Schematic overview of the general approach.
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■ RESULTS AND DISCUSSION

The aim of this work is to determine the capacity of 3D
alignment-dependent shape-based approaches to predict the
macromolecular targets of CSMs based on their similarity to
non-CSMs with measured bioactivities (Figure 2).
Defining what constitutes a complex or a noncomplex

molecule is a nontrivial task because molecular complexity is
context dependent and its perception inherently subjective.
Thus, it does not come as a surprise that there is no universally
applicable and easily interpretable metric for the quantification
of molecular complexity in existence.39

Our aim was to identify an effective, robust, and,
importantly, easily interpretable metric. We investigated several
of the many complexity metrics discussed in a recent review.39

By visual inspection of the molecular structures contained in
our processed data sets, we unanimously converged on using
the number of heavy atoms as a metric of structural complexity
for the following reasons:

(1) The number of heavy atoms correlates well with
molecular weight (and molecular size), the most

important parameter in drug discovery besides log P,
and chemists are well familiar with it.

(2) In the context of shape-based screening, the number of
heavy atoms is more descriptive of molecular complexity
than other common measures such as the number (or
fraction) of Csp3 atoms because nonplanarity itself does
not pose a particular challenge to the algorithms under
investigation.

(3) The aim of this study is to understand the limits of 3D
shape-based approaches for target prediction, and these
are, like for most other in silico approaches, defined
primarily by the available data, and there are clearly
more data available for conventional drug-like com-
pounds (small “small molecules” with molecular weight
below 500 Da), than there are for larger-sized
compounds (Figure S1).

Hence, for the purpose of this study, non-CSMs are any
compounds consisting of 15−30 heavy atoms (corresponding
to an average molecular weight from 222 to 424 Da for this
data set). In contrast, CSMs are compounds that are unusually
large (minimum of 45 heavy atoms; corresponding to an
average of 631 Da) or macrocyclic with at least 30 heavy

Table 2. Overview of Targets Selected for Testing Performance of 3D Shape-Focused Target Prediction Approach

Target ID Target name
Protein

classification
Target

abbreviation Organism
No.

CSMsa
No. non-
CSMsb

CHEMBL243 Human immunodeficiency virus type 1
protease

enzyme HIV-1 protease Human immunodeficiency
virus 1

703 185

CHEMBL2362980 Paired box protein Pax-8 unclassified PAX8 Homo sapiens 390 465
CHEMBL270 Mu opioid receptor membrane

receptor
MOR Rattus norvegicus 337 299

CHEMBL4616 Ghrelin receptor membrane
receptor

GHSR Homo sapiens 299 127

CHEMBL2001 Purinergic receptor P2Y12 membrane
receptor

P2Y12 Homo sapiens 290 70

CHEMBL4822 Beta-secretase 1 enzyme BACE1 Homo sapiens 289 1634
CHEMBL3717 Hepatocyte growth factor receptor enzyme HGFR Homo sapiens 274 800
CHEMBL3948 Angiotensin II type 1a (AT-1a) receptor membrane

receptor
AGTR1 Oryctolagus cuniculus 266 43

CHEMBL4860 Apoptosis regulator Bcl-2 ion channel BCL2 Homo sapiens 266 84
CHEMBL203 Epidermal growth factor receptor erbB1 enzyme EGFR Homo sapiens 233 1451
CHEMBL259 Melanocortin receptor 4 membrane

receptor
MC4R Homo sapiens 233 85

CHEMBL325 Histone deacetylase 1 epigenetic
regulator

HDAC1 Homo sapiens 192 1453

CHEMBL1957 Insulin-like growth factor I receptor enzyme IGF1R Homo sapiens 177 514
CHEMBL2820 Coagulation factor XI enzyme F11 Homo sapiens 173 15
CHEMBL5023 p53-binding protein Mdm-2 other nuclear

protein
MDM2 Homo sapiens 156 183

CHEMBL5658 Prostaglandin E synthase enzyme PGES Homo sapiens 153 288
CHEMBL5251 Tyrosine-protein kinase BTK enzyme BTK Homo sapiens 147 83
CHEMBL286 Renin enzyme REN Homo sapiens 144 84
CHEMBL4414 Plasmepsin 2 enzyme PM2 Plasmodium falciparum 144 15
CHEMBL220 Acetylcholinesterase enzyme AChE Homo sapiens 130 1083
CHEMBL2327 Neurokinin 2 receptor membrane

receptor
NK2R Homo sapiens 129 45

CHEMBL2954 Cathepsin S enzyme CTSS Homo sapiens 123 424
CHEMBL4662 Proteasome Macropain subunit MB1 enzyme MB1 Homo sapiens 121 73
CHEMBL240 HERG ion channel HERG Homo sapiens 117 2260
CHEMBL244 Coagulation factor X enzyme F10 Homo sapiens 115 277
CHEMBL3572 Cholesteryl ester transfer protein ion channel CETP Homo sapiens 114 26
CHEMBL1865 Histone deacetylase 6 epigenetic

regulator
HDAC6 Homo sapiens 112 1070

CHEMBL3706 ADAM17 enzyme ADAM17 Homo sapiens 108 256
aNumber of ligands that are CSMs. bNumber of ligands that are non-CSMs.
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atoms. Any compounds with more than 55 heavy atoms
(corresponding to an average molecular weight of 772 Da)
were not considered in this study because of the excessive size
of their conformational space. The numbers of CSMs and non-
CSMs present in the processed ChEMBL data set are reported
in Table 1.
Twenty-eight representative and pharmaceutically relevant

targets were selected for testing, each represented by the 10
most diverse bioactive CSMs (giving rise to a total of 280 CSM
queries). Each of the 280 CSM queries was represented by a
calculated minimum energy conformation, whereas each of the
272 640 non-CSMs of the knowledge base (with measured
bioactivities on a total of 3642 proteins) was represented by up
to 400 conformers representative of the low-energy conforma-
tional space.
Characterization of Data Sets Underlying the

Evaluation. Targets. The 28 targets selected for this study
(Table 2) are diverse and a good representation of the
pharmaceutically relevant protein space. The pairwise identity
of the full-length protein sequence of all selected targets is
below 40%. Most target classes are well represented, as shown
by the comparison of the target class distributions over all
proteins that have at least one CSM ligand (1318 proteins)
and the 28 selected targets (Figure 3). Only transporters and
transcription factors are not represented. The transporters
represented by a significant number of diverse CSMs in the
data set bind a wide variety of substrates, in part with clearly
distinct binding modes, for which reason we excluded them, as
we excluded cytochrome P450 3A4 for the same reason. There
are no transcription factors with sufficient numbers of CSM
records that would allow their inclusion in this study.
Complex and Noncomplex Small Molecules. The

physicochemical property spaces of the 13 650 CSMs and
272 640 non-CSMs serving as the data basis of this work are
clearly distinct, as shown in Figure 4. While most CSMs in this
study have a molecular weight between 550 and 800 Da
(median 664 Da), most non-CSMs have a molecular weight of
less than 500 Da (median 355 Da; Figure 4a). Analogous
observations are made for the number of heavy atoms (Figure
4b), where the median is 47 for CSMs and 25 for non-CSMs.
CSMs have a substantially higher number of rotatable bonds
than non-CSMs (median 11 vs 4; Figure 4c) and also a higher
number of chiral centers on average (median 2 vs 0; Figure
4d). Also the average number of rings (Figure 4e) and the
number of aromatic rings (Figure 4f) are higher for CSMs
(average 4.96 and 3.39, respectively) than for non-CSMs
(average 3.23 and 2.46, respectively). Although the fraction of

heteroatoms (Figure 4g) in CSMs and non-CSMs is
comparable (median 0.25 for both classes of compounds),
the log P (Figure 4h) is higher for CSMs (median 4.85 and
3.33, respectively).

Performance of Shape-Based Screening with Differ-
ent Similarity Metrics. ROCS features two different
alignment modes: a default mode, which takes into account
both molecular shape and color, and the shape-only mode,
which considers molecular shape only. Both of these alignment
modes were assessed in this study with different scores
implemented in ROCS in the following setups (consistent with
the underlying algorithm): (i) the default alignment mode in
combination with the TanimotoCombo, RefTverskyCombo,
and FitTverskyCombo scores and (ii) the ShapeTanimoto
score in combination with ROCS’ shape-only mode (i.e., with
the -shapeonly function enabled).

Performance Measured for Individual Complex Small
Molecules. Among the four investigated scores, the Tanimo-
toCombo score clearly outperformed all other scores in
ranking the targets of CSMs among the top positions of 3642
proteins (Table 3 and Figure 5a; note for the figure that
steeper curves indicate worse performance and that the y-axis is
on a logarithmic scale). With the TanimotoCombo score, the
target of interest (i.e., the target assigned to this particular
query) was ranked among the top-5 positions for 83 (30%) of
the 280 CSM queries (note that the automated query selection
procedure resulted in the selection of 10 CSMs which are
active on more than one of the 28 targets; accordingly, these
CSMs represent more than one query). The success rate
increases to 41% when considering the top-20 ranks and to
47% when considering the 40 top-ranked proteins (which
corresponds to roughly 1% of the total list of proteins
represented by the knowledge base).
Compared to the TanimotoCombo score, the success rates

obtained by the ShapeTanimoto, RefTverskyCombo, and
FitTverskyCombo scores were roughly 20 percentage points
lower. The RefTverskyCombo score tended to have higher
success rates than the ShapeTanimoto and FitTverskyCombo
scores when considering a greater number of ranks (top-40,
top-80, and top-200).
In order to obtain a better understanding of the reasons for

the observed differences in the target ranking performance of
the individual scores, we (i) visually inspected alignments and
related them to the respective score values, (ii) analyzed the
relationships between scores and ranks, and (iii) determined
the relationships between scores and molecular weight.

Figure 3. Comparison of the distribution of target classes across (a) all (1318) proteins with at least one known CSM ligand and (b) the 28 targets
selected for this study.
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Figure 4. Comparison of the physicochemical property spaces of CSMs (blue) and non-CSMs (gray): (a) molecular weight, (b) number of heavy
atoms, (c) number of rotatable bonds, (d) number of chiral centers, (e) number of rings, (f) number of aromatic rings, (g) fraction of heteroatoms,
and (h) log P.

Table 3. Success Rates for Predicting Targets of Interest of Queries with Different Scoring Functions

All/macrocyclic/nonmacrocyclic complex small molecules (CSMs) [%]

Rank TanimotoCombo score ShapeTanimoto score RefTverskyCombo score FitTverskyCombo score

Top-5 30/20/31 9/2/10 11/7/12 9/4/10
Top-10 37/27/39 14/7/16 12/9/12 11/4/12
Top-20 41/29/43 20/11/22 22/13/23 14/7/15
Top-40 (∼1%) 47/33/49 24/11/27 35/18/38 19/7/22
Top-80 54/42/56 34/20/37 46/24/51 28/16/30
Top-200 62/60/63 51/36/54 60/58/60 46/42/47
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The FitTverskyCombo score emphasizes the matching of
the knowledge base molecule (which is the smaller-sized
molecule in this context). We found that the parametrization
of the FitTverskyCombo score leads to the preference for
knowledge base molecules that are particularly small in size
because there is a high likelihood for these molecules to
produce good matches with a part of the CSM. This preference
is reflected by negative Pearson’s and Spearman’s correlation
coefficients for the FitTverskyCombo score and molecular
weight (−0.37 and −0.39, respectively; numbers report
averages over all CSM queries). The fact that alignments of
CSMs with small non-CSMs have a high likelihood of
obtaining high FitTverskyCombo scores is visible from Figure
6, where it is shown that the FitTverskyCombo function
indeed assigns high scores to a much larger proportion of
CSMs aligned with their nearest non-CSM (Figure 6c) than
any of the other scoring functions (Figure 6a, b, d). This

behavior results in high false-positive prediction rates of this
score in the study context, which explains the inferior
performance over the TanimotoCombo score.
The RefTverskyCombo score emphasizes the matching of

the CSM and, consequently, has a preference for larger
molecules, which is reflected by averaged Pearson’s and
Spearman’s correlation coefficients of 0.43 and 0.40,
respectively. Consistent with the fact that pairs of larger-
sized molecules are less likely to produce good matches, the
proportion of targets for which the best match is assigned a
high RefTverskyCombo score value is substantially lower than
for the FitTverskyCombo score (Figure 6b, c).
The reason for the superior performance of the Tanimoto-

Combo score appears to be the fact that, as a balanced measure
of molecular similarity, its ranking capacity is less affected by
differences in the size of molecules. This is reflected by lower
averaged Pearson’s and Spearman’s correlation coefficients

Figure 5. Percentage of queries for which the target of interest (out of 3642 proteins) was assigned ranks better than or equal to the ranks indicated
on the y-axis (“rank order distribution”) for (a) all queries, (b) nonmacrocyclic queries, and (c) macrocyclic queries. Note that steeper curves
indicate worse performance and that the y-axis is on a logarithmic scale.

Figure 6. Relationship between the (a) TanimotoCombo, (b) RefTverskyCombo, (c) FitTverskyCombo, and (d) ShapeTanimoto scores and the
ranks obtained for the targets of interest of the 280 CSM queries. Note that there is one instance where the FitTverskyCombo score is greater than
2.0 (see Target Prediction section in the Methods section for an explanation).
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between the score and molecular weight (0.39 and 0.33,
respectively). Figure 6a shows that high TanimotoCombo
scores generally go along with high target ranks (observed as a
tail toward the bottom right corner of the plot), which is often
not the case for other scores, in particular, the FitTversky-
Combo and ShapeTanimoto scores.
The obvious explanation for the inferior performance of the

ShapeTanimoto score over the three “combo” scores is the
neglect of chemistry, which leads to a lack of specificity during
alignment and scoring and, in turn, a clear preference for
matches involving larger-sized non-CSMs (averaged Pearson’s
and Spearman’s correlation coefficients 0.62 and 0.51,
respectively). ShapeTanimoto scores are often high (Figure
7) because good overlaps of molecular shapes are likely when

chemical features (color) are not considered. However, high
ShapeTanimoto scores often do not correspond to high target
rankings (Figure 6d), which is another indication of the lack of
specificity of this score.
Further conclusions that can be derived from these analyses

are that values obtained with different scores should not be
directly compared. Moreover, the scores obtained for
individual query−target combinations should not be used as
a measure of the likelihood of a compound to be active on that
target. In other words, the predictions provide an indication of
the likelihood of a protein being a target only relative to all
other possible targets.
Performance Measured on a Per-Target Basis. A further

way of analyzing success rates is on a per-target basis,
evaluating the results for query sets (the 10 queries) rather
than individual queries. For 24 of the 28 targets (86%), the
TanimotoCombo score assigned the top rank to the target of
interest for at least one of the 10 queries (Figure 8). For the
ShapeTanimoto, RefTverskyCombo, and FitTverskyCombo
scores, this was only the case for 43%, 57%, and 29% of the 28
proteins, respectively. Additional details are provided in Table
4.
Only for four out of 28 targets, the TanimotoCombo score

failed to rank the target of interest among the top-10 positions
with any of the 10 queries: the paired box protein Pax-8 (Homo
sapiens), plasmepsin 2 (Plasmodium falciparum), neurokinin 2
receptor (Homo sapiens), and cholesteryl ester transfer protein
(Homo sapiens).
For the paired box protein Pax-8, the highest rank obtained

with any of the 10 queries was 32 (TanimotoCombo score).
One of the reasons for failure is the fact that most of the CSMs

active on this target are very different from the bioactive non-
CSMs in terms of chemistry. They are characterized by long
and flexible scaffolds; a minority are macrocyclic (indicated in
Figure 8).
In the case of plasmepsin 2, the best rank obtained was just

420 (TanimotoCombo score). This target is characterized by a
highly flexible ligand binding site to which small molecules are
known to bind in several distinct modes.40 The fact that there
were only 15 non-CSMs recorded for that target may
contribute to the difficulties in recognizing CSMs active on
this protein (note, however, that coagulation factor XI was
correctly identified as the target of two out of the 10 CSMs and
ranked among the top-3 positions even though the target is
represented by only 15 non-CSMs in the knowledge base).
For the neurokinin 2 receptor, the best rank obtained with

any of the 10 CSMs was 96 (TanimotoCombo score). The
reasons for failure appear to be similar to those for Pax-8. Most
of the CSMs have a substantial number of rotatable bonds; a
minority are macrocyclic.
For the cholesteryl ester transfer protein, the best rank

obtained with any of the 10 CSMs was 53 (TanimotoCombo
score). The CSM queries of the cholesteryl ester transfer
protein are characterized by three to four similarly sized
branches originating from a central carbon or nitrogen atom.
The structures of most CSM queries are clearly distinct from
those of the ligands represented in the knowledge base.
Overall, the results obtained on a per-target basis indicate

that the value of the method can be substantially higher in
cases where several compounds targeting the same protein are
explored, although this scenario is rare in the context of CSMs
(as opposed to conventional drug-like compounds). A further
conclusion (derived from the results presented in Figure 8) is
that there is no correlation between the success rates for a
target and the number of non-CSM representing that target in
the knowledge base.

Performance on Macrocyclic as Compared to Non-
macrocyclic Complex Small Molecules. Forty-five of the
280 CSMs are macrocyclic, covering 14 out of the 28 targets
studied in this work. The ring systems of the 45 macrocyclic
CSMs are formed by up to 22 atoms, with a median of 15
atoms (Figure 9).

Figure 7. Density distributions of the four similarity metrics over all
lists of scores obtained for all 280 queries. The TanimotoCombo,
RefTverskyCombo, and FitTverskyCombo score values were scaled to
the same range as the ShapeTanimoto score.

Figure 8. Ranks assigned with the TanimotoCombo score to the
target of interest for the 280 CSM queries. Note that the y-axis is on a
logarithmic scale. The numbers reported at the bottom of the graph
indicate the number of CSM queries for which the target of interest
was assigned the rank of 1 (indicating perfect prediction); the dashed
line indicates the rank of 10.
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Our results show that the task of target prediction is more
challenging for macrocyclic compounds than for nonmacrocy-
clic ones (Figure 5b, c). For the TanimotoCombo score, the
top-5, top-10, top-20, and top-40 success rates for non-
macrocyclic CSMs were 31%, 39%, 43%, and 49%, respectively,
whereas for macrocyclic CSMs, they were just 20%, 27%, 29%,
and 33%, respectively. Besides the low molecular similarity of
macrocyclic compounds with the non-CSMs of the knowledge
base, a major reason for the lower success rates observed for
macrocyclic compounds are the complexities involved in
representing the 3D conformations of these queries, related
to a high number of conformational degrees of freedom and

torsional properties that are distinct from nonmacrocyclic
compounds.

Cases Where at Least One Score Worked Well While
Others Failed. There are several examples of CSMs for which
their targets were ranked at high positions with one score while
other scores failed. We identified nine CSMs (three of them
being macrocyclic compounds) for which their targets were
assigned ranks of 10 or better by at least one score while other
score(s) assigned ranks of 450 or worse (Table 5). In seven
out of the nine cases, the TanimotoCombo score performed
well, while others failed (Figure 10a, b); in two cases the
ShapeTanimoto score outperformed the other scores (Figure
10c, d). For the examples reported in Table 5, it can be seen
that the alignments produced by the three “combo” scores are
generally more consistent in terms of chemistry (in particular,
with regard to the orientation of chemical features) than the
alignments produced by the ShapeTanimoto score. However,
the FitTverskyCombo score failed to identify the target of
interest for many CSMs due to its emphasis on matching the
knowledge base molecule (substructure; see Performance of
Shape-Based Screening with Different Similarity Metrics
section in the Results section). In contrast, the ShapeTanimoto
score often failed because of its disregard of chemistry, which is
reflected by alignments that lack the matching of chemical
features.

Performance as a Function of Molecular Similarity.
The performance of similarity-based approaches depends on

Table 4. Best and Median Target Ranks Obtained by Different Scores for Query Sets Consisting of 10 CSMs Each

Target rank with score

TanimotoCombo RefTverskyCombo FitTverskyCombo ShapeTanimoto

Proteina best median best median best median best median

HIV-1 protease 1.0 116.0 1.0 135.0 2.0 381.5 7.0 356.0
PAX8 32.0 294.0 83.0 315.0 80.0 216.0 126.0 253.0
MOR 1.0 1.0 16.0 19.5 12.0 88.0 1.0 34.0
GHSR 1.0 260.0 1.0 213.5 11.0 794.0 4.0 349.0
P2Y12 1.0 1.5 1.0 24.0 1.0 67.0 1.0 185.5
BACE1 1.0 162.0 16.0 320.0 32.0 304.5 54.0 197.0
HGFR 1.0 87.5 1.0 84.5 6.0 162.5 1.0 59.0
AGTR1 1.0 2.0 1.0 2.0 3.0 89.5 2.0 20.5
BCL2 1.0 236.5 16.0 188.5 153.0 705.0 1.0 280.5
EGFR 1.0 4.5 1.0 18.0 1.0 69.5 1.0 59.0
MC4R 1.0 233.0 28.0 475.5 25.0 274.0 1.0 289.5
HDAC1 1.0 21.5 1.0 63.0 1.0 96.0 1.0 78.5
IGF1R 1.0 25.0 1.0 29.0 1.0 310.0 1.0 126.5
F11 1.0 774.0 1.0 901.0 139.0 1765.0 1.0 462.5
MDM2 1.0 240.5 2.0 326.0 3.0 235.0 1.0 143.5
PGES 1.0 6.0 1.0 41.0 3.0 285.5 8.0 96.0
BTK 1.0 62.5 1.0 59.0 1.0 652.0 1.0 200.0
REN 1.0 95.0 1.0 187.0 1.0 673.5 161.0 599.0
PM2 420.0 1308.5 534.0 1257.0 636.0 1225.0 440.0 1452.0
AChE 1.0 3.0 1.0 47.5 1.0 29.5 17.0 41.0
NK2R 96.0 712.0 305.0 908.5 83.0 372.5 287.0 921.5
CTSS 1.0 18.5 1.0 64.0 1.0 88.0 4.0 99.0
MB1 1.0 132.5 8.0 116.5 17.0 136.0 5.0 529.5
HERG 1.0 12.5 1.0 49.0 28.0 81.5 13.0 62.0
F10 1.0 28.5 16.0 74.5 10.0 420.5 1.0 58.5
CETP 53.0 625.0 1063.0 1772.0 93.0 443.5 6.0 484.0
HDAC6 1.0 39.5 16.0 84.5.0 5.0 89.5 11.0 166.0
ADAM17 1.0 102.5 1.0 141.0 4.0 229.0 2.0 222.0

aFor the explanation of all target acronyms, see Table 2.

Figure 9. Size of largest ring systems of 45 macrocyclic CSMs.
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Table 5. Examples of CSMs for Which Their Targets Were Successfully Identified by One at Least One Score While Others
Failed
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how well the query is represented by the data stored in the
knowledge base. In the context of this study, one of the
simplest measures of the molecular similarity is the difference
in the number of heavy atoms between the CSM query and the
nearest non-CSM ligand. Figure 11a and b shows that the
success rates of the method are largely unaffected by the
differences in the number of heavy atoms over the observed
range. The compatibility of chemical features seems to play a
much more important role than pure differences in molecular
size. This is confirmed when using the Tanimoto coefficient
derived from 2D Morgan2 fingerprints as a measure of
molecular similarity. As shown in Figure 11c, ROCS (in

combination with the TanimotoCombo score) ranked 43% of
all CSMs with a maximum Tanimoto coefficient between 0.2
and 0.3 among the top-10 positions and 73% of all CSMs with
a coefficient between 0.3 and 0.4. This robustness is
remarkable, as molecular structures with a Morgan2 finger-
print-based Tanimoto coefficient below 0.4 are clearly distinct
in most cases. Importantly, it is likely that compounds with
such a low degree of molecular similarity have different binding
modes, which is beyond the reach of any ligand-based
approach.
Among the 280 queries investigated in this work, we

identified 11 compounds (six of them are macrocyclic

Table 5. continued

aQueries marked with a “∗” are macrocyclic compounds. bF11, coagulation factor XI; BACE1, beta-secretase 1; REN, renin; AGTR1, angiotensin II
type 1a (AT-1a) receptor; PGES, prostaglandin E synthase; CETP, cholesteryl ester transfer protein; MOR, mu opioid receptor. cChEMBL IDs
reported are those that obtained the highest/lowest rank for the target of interest of the individual CSM queries, according to the scoring function
indicated in the respective table cells. Alignments shown are those that obtained the highest rank for a CSM query. In cases where multiple
alignments obtained identical scores (and ranks), only one alignment is shown.
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compounds) for which their target was ranked within the top-
10 positions out of 3642 targets, despite being structurally
extremely dissimilar from any ligands (non-CSMs) recorded in
the knowledge base (Tanimoto coefficients lower than 0.18).
As shown in Table 6, most of the alignments produced by
ROCS for the 11 compounds are not only plausible and
sensible from a chemistry point of view but also visually easily

interpretable thanks to the hard Gaussians used by ROCS for
chemical features (color), which cause a lock-in of the
alignment on hydrogen bond donors and acceptors.
We did not observe any cases of CSMs for which their

targets were not ranked early in the hit list and at least one
known ligand shared a high degree of 2D similarity with the

Figure 10. Ranks assigned to the targets of interest of the 280 CSM queries by the (a) TanimotoCombo vs ShapeTanimoto scores, (b)
TanimotoCombo vs FitTverskyCombo scores, (c) ShapeTanimoto vs RefTverskyCombo scores, and (d) ShapeTanimoto vs FitTverskyCombo
scores. The nine compounds for which one score produced good results while others failed are highlighted in blue.

Figure 11. Success rates (i.e., fraction of CSM queries for which the target of interest was ranked among the top-k positions) and how they are
influenced by the structural relationship between the query CSM and the nearest ligand (non-CSM) recorded in the knowledge base: (a) success
rates of the TanimotoCombo score as a function of the difference of molecular size (quantified as number of heavy atoms, separated into bins of
size 5), (b) success rates of the RefTverskyCombo score as a function of the difference of molecular size (separated into bins of size 5), and (c)
success rates of the TanimotoCombo score as a function of the 2D molecular similarity quantified as Tanimoto coefficient based on Morgan2
fingerprints (separated into bins of size 0.1. Note that in panel (c) success rates for queries with a Tanimoto coefficient greater than 0.7 are not
reported because of the limited number of examples. The trends observed in panel (c) are consistent with those observed when using atom type
fingerprints instead of Morgan2 fingerprints to quantify 2D molecular similarity and also when using the Tversky coefficient (α = 0.95) instead of
the Tanimoto coefficient (data not shown).
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Table 6. Examples of CSMs for Which Their Targets Were Successfully Identified Despite Being Dissimilar from Any
Reference Compound
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query (note that the number of CSMs in this category was
small).
Performance as a Function of Common Substruc-

tures. Target rankings are expected to improve with the size of
the maximum common substructure (MCS) shared between
the CSM query and the closest related non-CSM in the
knowledge base (as determined by ROCS). The results
presented in Figure 12 confirm this assumption: For the
TanimotoCombo score, the median ranking of the targets of
interest was 3.5 for CSMs sharing an MCS of at least 20 heavy
atoms with the closest ligand (non-CSM) recorded in the
knowledge base, whereas the median target rank was just 111.5
for CSMs with an MCS of 15 to 19 heavy atoms. The median
target ranks obtained by the RefTverskyCombo, FitTversky-
Combo, and ShapeTanimoto scores were substantially lower
(worse): 28, 80, and 43 for CSMs sharing an MCS of a least 20
heavy atoms, respectively, and 318, 299, and 227 for CSMs
with an MCS of 15 to 19 heavy atoms, respectively. We
repeated this analysis using the percentage of heavy atoms
rather than absolute numbers covered by the MCSs and
observed the same trends (data not shown).
Performance on Natural Products. By overlapping the

queries with a data set of 201 761 natural products compiled as
part of the work reported in ref 41, we determined that at least
six out of the 269 (unique) CSMs are natural products (which
is a surprisingly low portion of natural products). We
employed NP-Scout41 to identify additional CSMs that likely
are natural products or natural product-like. NP-Scout is a
random forest classifier discriminating between natural
products and synthetic molecules. The model is trained on
108 393 natural products and 157 162 synthetic molecules

represented by MACCS keys. The model yielded an AUC of
0.997 and Matthews correlation coefficient of 0.960 during
tests with external data. NP-Scout identified an additional 20
CSMs with a high likelihood (probability >0.70) of being
natural products.
The 26 natural products and natural product-like com-

pounds cover a total of 18 different targets; eight of the queries
are macrocyclic. Using the TanimotoCombo score, ROCS
ranked the targets of interest of the natural products among the
top-10 positions for only seven out of 31 queries (23%; the 31
queries result from the 26 unique natural products and natural
product-like compounds). This success rate is considerably
lower than the ones averaged over all 280 queries (37%), all
245 nonmacrocyclic queries (39%), and all macrocyclic queries
(27%), indicating that the prediction of the targets of complex
natural products is more challenging than of complex synthetic
molecules. A main reason for the low prediction success rates is
the fact that the similarity of complex natural products and
natural product-like compounds and the nearest non-CSMs of
the knowledge base is generally low: The median Tanimoto
coefficient based on Morgan2 fingerprints for these types of
CSMs and the non-CSMs of the knowledge based is only 0.13,
whereas it is 0.21 for the other CSMs and their closest non-
CSMs).

Runtimes. The ROCS screening process takes less than 6 h
per CSM query on a single core of an i5-4590 CPU at 3.30
GHz. Runtimes are therefore expected not to pose a barrier to
the usability of the method.

Table 6. continued

aQueries marked with a “∗” are macrocyclic compounds. b2D molecular similarity between the CSM query and the closest ligand recorded in the
knowledge base (measured as Tanimoto coefficient based on Morgan2 fingerprints). cHDAC1, histone deacetylase 1; AChE, acetylcholinesterase;
PGES, prostaglandin E synthase; HIV-1 protease, human immunodeficiency virus type 1 protease; F11, coagulation factor XI.
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■ CONCLUSIONS
In this work, we showed that the 3D alignment-dependent
shape-based methods ROCS, in combination with the best-
performing scoring function, the TanimotoCombo score, ranks
the targets of approximately one-third of 280 investigated CSM
queries among the top-5 ranks of hit lists of more than 3600
proteins. The success rate increases to 41% if the top-20 ranks
are considered. For 24 of the 28 proteins (86%), the target of
interest was ranked at the top position with at least one of the
10 queries. These results indicate that the method may well be
a valuable tool for prioritizing research efforts in early drug
discovery because researchers, with their expert knowledge and
background information on a compound of interest (e.g.,
observations from phenotypic assays), will likely be able to rule
out many of the proteins wrongly predicted as targets.
An important advantage of ROCS is its use of hard

Gaussians for describing chemical features (color), which
causes a lock-in effect during alignment. Alignments produced
by ROCS therefore typically look “tidy”, enabling chemists to
easily interpret the results and make their own judgements on
the reliability of individual predictions (thereby excluding
many false-positive predictions). Even if none of the
predictions are deemed plausible, e.g., because of the lack of
any good matches with compounds in the knowledge base, this

can be valuable information as it is a good indication for a
compound being novel and perhaps targeting a so-far
unexplored biomacromolecule (or having a distinct binding
mode). An important advantage of similarity-based approaches
over many other methods is that the final prediction relies on a
single data point (as opposed to, for example, machine learning
approaches), making it straightforward for researchers to verify
the reliability of that specific data point with the primary
literature data.
Also, for 3D alignment-dependent shape-based methods, the

success rates for the prediction of the targets of CSMs decline
with decreasing molecular similarity between the CSM query
and the ligands in the knowledge base. Macrocyclic
compounds and natural products prove to be particularly
challenging to the approach. Nevertheless, the robustness of
the approach is impressive, given the fact that structurally
highly dissimilar molecules, even though binding to the same
binding site, may likely exhibit distinct binding modes, which is
beyond the reach of any ligand-based approach.
Taking performance, usability, and interpretability into

account, we believe that 3D alignment-dependent shape-
based approaches such as the one investigated in this work are
predestined for use in target prediction for CSMs and
molecules for which data on structurally related compounds
are scarce. With the increasing amount of bioactivity data, the

Figure 12. Ranks obtained for the targets of interest as a function of the size of the MCS shared between the CSM queries and most similar ligand
(non-CSM) recorded for the respective target for the (a) TanimotoCombo, (b) RefTverskyCombo, (c) FitTverskyCombo, and (d)
ShapeTanimoto scores. The lines are merely a guide for the eye and indicate the median values of the target rankings in relation to the size of the
MCS.
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reach and value of these and related methods will continue to
improve.

■ DATA AVAILABILITY
The complete sets of CSMs and non-CSMs (including the
original SMILES notations from ChEMBL, ChEMBL com-
pound IDs, natural product-likeness scores, and labels for
macrocycles) are available on GitHub at https://github.com/
anya-chen/CSMs_target_prediction.
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4. Concluding Discussion 

In recent years, the amount of data available on the chemical, biological, 
pharmacological and structural properties of NPs has increased dramatically. This 
has fueled the development and application of cheminformatics methods in the 
context of NP research. However, the quantity, quality and relevance of the 
available data on NPs are poorly understood, and the scope and limitations of 
cheminformatics methods often undefined in the context of NP research.  

Starting from a comprehensive literature survey of current applications of 
cheminformatics methods in NP research (Chapter 1.1) and an exhaustive analysis 
of NP data resources relevant to cheminformatics (Chapter 2.1), we conducted a 
detailed and through characterization of the physicochemical and structural 
properties of natural products, as well as the chemical space covered by different 
NP databases (Chapter 3.1). Utilizing the collected chemical data on pure NPs, we 
developed NP-Scout, a machine learning approach for identifying natural 
products and natural product-like compounds (Chapter 3.2). NP-Scout features a 
visualizer that highlights atoms in a molecule which contribute to the 
classification of a compound as a natural product or as a synthetic compound. In 
the last part of this work, the ability of a 3D shape-based method for predicting 
biomacromolecular targets of structurally CSMs, including NPs, was determined 
(Chapter 3.3).  

From our comprehensive analysis of the existing physical and virtual NP 
databases (Chapter 2.1) we learned that approximately 250k NPs are known to date, 
of which roughly 10% (25k) are readily obtainable for testing. An additional 10k to 
30k of readily obtainable, NP-like compounds were identified using a 2D similarity 
search. Important lessons learned from this large-scale data analysis are that few 
of the databases are sustainably maintained and that the stereochemical 
information provided is often incomplete and sometimes even wrong. In order to 
obtain a more detailed and clean picture of the content of the individual NP data 
sets and characterize the physicochemical property space of the represented NPs, 
we devised a method for the automated removal of sugars and sugar-like moieties 
from NPs (Chapter 3.1) as these moieties are rarely part of the pharmacophore and 
as such not essential for bioactivity. 

Most of the previous studies on NPs analyzed molecular structure focusing on 
cyclic systems, overlooking some biologically meaningful scaffolds of NPs that are 
not ring systems or are the combinations of ring systems and linkers. In our work 
(Chapter 3.1), we devised an automated approach based on SMARTS patterns for 
the classification of NPs into the major NP classes, including alkaloids, flavonoids 
(as well as subclasses of flavonoids), and steroids. With this rule set we found that 
some NP databases are particularly rich in certain NP classes. For example, 
StreptomeDB 2.0 [38] has a high proportion of alkaloids (47%), and the South 
African Natural Compounds Database (SANCDB) [39,40] has the highest rates of 
steroids (14%) compared to other virtual NP databases. The rule set was also 
employed in a study (A2) investigating the capacity of machine learning methods 
to identify compounds that have a higher than expected hit rate in biological 
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assays (frequent hitters). Note that we used strict definitions for the subclasses of 
flavonoids in our study, and that further development could extend the defined 
patterns by matching more exceptions and covering more subclasses of flavonoids, 
as well as classification of other types of NPs. Because of many repeated units and 
exceptions, for some classes, algorithms which employ rules beyond just using 
SMARTS patterns for structure detection may be also worth exploring.  

As we also learned from our study, the known NPs cover a much wider chemical 
space than approved drugs, and a large number of NPs populate areas of the 
chemical space that are covered by approved drugs. This explains why NPs are one 
of the most prolific sources of inspiration for drug discovery. In particular the 
readily obtainable NPs are highly diverse, representing more than 5700 different 
Murcko scaffolds and covering all of the major NP classes. Readily obtainable NPs 
are also highly relevant to the chemical space covered by approved drugs and 
around two-thirds of them are fragment-sized thus some of them could serve as 
good start points for optimization. Of relevance to structure-based drug design, 
we identified high quality X-ray crystal structures of more than 2000 different NPs 
bound to at least one biomacromolecule in the PDB. These NPs are generally 
smaller-sized and more hydrophilic than approved drugs. 

Some distinctive features of individual databases were also identified. For 
example, the NPs subset of the PubChem Substance Database [41,42], which 
contains NPs and their associated bioactivity data, stands out due to its high 
proportion of drug-like NPs, and the Traditional Chinese Medicine 
Database@Taiwan [43,44], the largest freely available source of traditional Chinese 
medicine data, is characterized by the coverage of a wide and in part unique 
chemical space containing many large and highly chiral NPs.  

As newer data sources of NPs become available, it would be interesting to re-
evaluate the quality, quantity and availability of NPs. Despite the challenges, 
which include data availability, quality and sustainability, computational methods 
will be a key contributor to NP research and NPs will continue to inform drug 
discovery. 

Among the data quality issues of NP databases, is that many of them have NPs 
mixed with NP derivatives and analogs even though they claim to provide only 
genuine NPs. Also, many synthetic compound libraries contain a significant 
number of NPs which are not labeled or explicitly mentioned. These data 
challenges were our motivation for the development of NP-Scout: a machine 
learning approach to identify and visualize NPs and NP-like compounds (Chapter 
3.2). NP-Scout is built of random forest classification models which were trained 
on a large collection of pure NPs and an equal number of synthetic molecules. 
From principal component analysis, based on the main physicochemical 
properties, we found that although presented by an equal number of unique 
structures, the NPs cover a much larger chemical space than the synthetic 
molecules. There are also some clear differences in individual physicochemical 
properties. For example, NPs have, on average, a higher molecular weight and 
lower element distribution entropy than synthetic molecules. NPs also tend to 
have more chiral centers, fewer nitrogen atoms and more oxygen atoms.  

All three NP-Scout models, based on three different sets of molecular 
descriptors or fingerprints, performed very well. The models achieved AUCs of 
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0.997 and MCCs of 0.954 and higher on the test set. The best performing model 
was able to predict approximately 95% of compounds in the Dictionary of Natural 
Products not represented in the training set as NPs. The model performs similar 
to an earlier well-known method [45] based on Bayesian statistics. We used a Java 
implementation of this method called NP-Likeness calculator [46,47] that allows 
the use of customized data sets for training. When using the same training set and 
test set as ours, the NP-Likeness calculator performed comparable to our models, 
with an AUC of 0.997 and an MCC of 0.959. Furthermore, the applications of our 
best model to the ChEMBL database [48,49] and other two datasets (the ChEMBL 
subset of molecules published in the Journal of Natural Products and the NPs 
subset of ZINC database) showed its ability to distinguish NPs and synthetic 
molecules, especially indicating the existence of synthetic molecules in these two 
datasets which are often used as libraries of genuine NPs.  

To understand and interpret the workings of these models, we first analyzed 
the important features contributing to the classifications. For the classifier based 
on MOE 2D molecular descriptors, the three most important features were the 
number of nitrogen atoms, the entropy of the element distribution in molecules 
and the number of unconstrained chiral centers, whose differences were already 
directly or indirectly seen in the physicochemical properties analysis. For the most 
relevant MACCS keys, also in agreement with the difference in the 
physicochemical properties, the most important key describes the presence or 
absence of nitrogen atoms and other important keys involve substructures with 
nitrogen and/or oxygen atoms. Moreover, the utilization of similarity maps [50] 
allows the visualization of atoms of a molecule which are characteristic to NPs or 
synthetic compounds, according to the Morgan2 fingerprint-based model.  

The models are accessible as a free web service at https://nerdd.zbh.uni-
hamburg.de/npscout/. The web service returns the NP class probability of the 
given molecules and shows the similarity maps, highlighting the NP-like or 
synthetic-like fragments in the molecules. The method can therefore be utilized 
to cherry-pick NPs and NP-like compounds from large molecular libraries, 
quantify the NP-likeness of small molecules, and visualize the atoms in small 
molecules which contribute to the classification of NPs or synthetic compounds. 
This model has also been used in characterization of several other datasets, 
including a comprehensive set of small-molecule ligands observed in high-quality 
co-crystals in the PDB (A3), the “in-stock” subset of ZINC database (A3), as well as 
used in the last part of this dissertation (Chapter 3.3, D6). Additionally, NP-Scout 
is currently being used in several ongoing virtual screening campaigns. Here, the 
NP class probabilities for compounds from multiple commercial screening 
databases are being used to identify bioactive NP-like compounds of interest.  

Many NPs have distinct molecular structures and physicochemical properties. 
The fact that data on NPs are scarce makes target prediction a difficult task for 
NPs, in particular for complex NPs. Methods utilizing 3D molecular shape 
representations for the comparison of molecules may be able to recognize 
relationships between compounds which are less similar. Hence, such methods 
are predestined for use with CSMs such as many NPs. Therefore, in the last part of 
this thesis (Chapter 3.3), we systematically investigated the capacity of ROCS, a 

https://nerdd.zbh.uni-hamburg.de/npscout/
https://nerdd.zbh.uni-hamburg.de/npscout/
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leading shaped-based approach, to identify the macromolecular targets of CSMs 
from non-CSMs.  

The definition of molecular complexity depends on the context and there is no 
universally applicable and easily interpretable metric for its quantification [51]. It 
should be noted that different complexity measures capture different aspects and 
a metric that is defined simply is not necessarily a poor measure of complexity, 
but may in fact be effective at quantifying molecular complexity while being easily 
interpretable. For the purpose of this work, we defined molecules as "complex" if 
they are either very large in size (45 to 55 heavy atoms) or macrocyclic (and large). 
In contrast, we defined molecules as "non-complex" if they were small in size (15 
to 30 heavy atoms).  

A total of 28 pharmaceutically relevant targets were studied and for each target 
a diverse set of 10 CSMs was generated. Using a knowledge base of non-complex 
compounds with measured bioactivity data, a retrospective study to predict the 
targets of 280 CSM queries was conducted. Approximately one-third of these 
queries had the known target ranked among the top-5 of the possible 3642 
proteins when the best-performing scoring function, the TanimotoCombo score, 
was used. The success rate increases to 41% if the top-20 ranks are considered. For 
24 of the 28 proteins (86%), the target of interest was ranked at the top position 
with at least one of the ten queries. These results indicate that the method may be 
valuable for prioritizing research efforts in early drug discovery. Using the 
predictions, researchers will likely be able to rule out many of the proteins wrongly 
predicted as targets based on their expert knowledge and background information 
on a compound of interest (e.g. observations from phenotypic assays).  

ROCS uses hard Gaussians to describe chemical features, so the alignments are 
easy to interpret. Researchers can therefore make their own decision on the 
reliability of the individual predictions based on these alignments, and exclude 
many false-positive predictions. When there is no plausible prediction, the results 
can indicate the novelty of the compound, e.g. targeting unexplored targets or 
having distinct binding mode. In general, for similarity-based approaches, the 
final predictions are based on individual data points that are straightforward to 
verify from primary sources such as literature reports. 

At least 31 known, complex NPs and NP-like compounds (identified by our 
collection of NPs and NP-Scout) were among the 280 CSMs. For these compounds, 
the success rate was lower. For example, when the top-10 ranks were considered 
the success rate for these queries is only 23% vs. 37% for all queries. This is related 
to the fact that the median Tanimoto coefficient based on Morgan2 fingerprints 
of the complex NP or NP-like compound and the closest non-complex small 
molecule in the knowledge base is only 0.13. The success rates for the prediction 
of the targets of CSMs decline with decreasing 2D molecular similarity between 
the CSM query and the closest compound in the knowledge base. For pairs of 
compounds sharing such low degree of similarity their binding modes are likely to 
be distinct, which is generally beyond the scope of ligand-based methods.  

The similarity of a CSM query to its closest compound in the knowledge base 
was measured in different ways in order to understand how performance varied 
with this relationship. The Tanimoto coefficient, using both Morgan2 fingerprints 
and atom types fingerprints, were used to quantify the relationship between a 
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query and the knowledge base. With both fingerprints, the success rates declined 
as the Tanimoto coefficients decreased. Also the Tversky coefficient, which 
measures the asymmetric similarity between two compounds, showed the same 
trends as the Tanimoto coefficient.  

Taking performance, usability and interpretability into account, we believe that 
3D alignment-dependent, shape-based approaches such as the one we 
investigated are capable of predicting targets for molecules for which data on 
structurally related compounds are scarce. With the increasing amount of 
bioactivity data, the reach and value of these and related methods will continue to 
improve. 

Overall, the studies presented in this thesis have resulted in a clean and 
comprehensive picture of the quantity, quality and availability on the data and 
cheminformatics methods relevant to natural products-based drug discovery. The 
work has also resulted in machine learning models which are able to discriminate 
between NPs and synthetic molecules with high accuracy. These models have 
garnered significant interest from the scientific community and are frequently 
accessed via the free web service. Moreover, we have determined the scope and 
limitations of a 3D shape-based approach for the prediction of the biomacro-
molecular targets of CSMs including NPs. We expect that data on more NP 
compounds, richer annotations on NP biological activities and ADME properties, 
and NP data with special focuses will be added to the public domain in the future. 
The growing volume of data and interest in NPs is coupled with the results of our 
studies, which confirm the relevance of NPs as an important source of inspiration 
in drug discovery. We therefore believe that the insights gained through the 
research presented in this dissertation will help with data selection, method 
development and future NP research.  
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Figure S2. Violin and box plots of the fraction of rotatable bonds of (A) virtual NP 
databases, (B) physical NP libraries, and (C) the Newman and Cragg data set and NPs of 
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Figure S3. Violin and box plots of the fraction of Csp3 atoms of (A) virtual NP databases, 
(B) physical NP libraries, and (C) the Newman and Cragg data set and NPs of PDB. 
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Figure S4. Histograms of the number of rotatable bonds for all virtual NP databases. 



Page 7 
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Figure S6. Histograms of the number of chiral centers for all virtual NP databases. 
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Figure S7. Histograms of the number of chiral centers for all physical NP libraries, the 
Newman and Cragg data set, and NPs of the PDB. 
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Figure S10. Histograms of the number of aromatic rings for all virtual NP databases. 
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Figure S11. Histograms of the number of aromatic rings for all physical NP libraries, the 
Newman and Cragg data set, and NPs of the PDB. 
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Figure S12. Histograms of the number of nitrogen atoms for all virtual NP databases. 
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Figure S13. Histograms of the number of nitrogen atoms for all physical NP libraries, the 
Newman and Cragg data set, and NPs of the PDB. 
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Figure S14. Histograms of the number of oxygen atoms for all virtual NP databases. 
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Figure S15. Histograms of the number of oxygen atoms for all physical NP libraries, the 
Newman and Cragg data set, and NPs of the PDB. 
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Figure S16. Histograms of the number of hydrogen-bond acceptors for all virtual NP 
databases. 
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Figure S17. Histograms of the number of the number of hydrogen-bond acceptors for all 
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Figure S18. Histograms of the number of hydrogen-bond donors for all virtual NP 
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Figure S19. Histograms of the number of hydrogen-bond donors for all physical NP 
libraries, the Newman and Cragg data set, and NPs of the PDB.  
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Figure S20. Histograms of the number of acidic atoms for all virtual NP databases. 
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Figure S21. Histograms of the number of acidic atoms for all physical NP libraries, the 
Newman and Cragg data set, and NPs of the PDB.  
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Figure S22. Histograms of the number of basic atoms for all virtual NP databases. 
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Figure S23. Histograms of the number of basic atoms for all physical NP libraries, the 
Newman and Cragg data set, and NPs of the PDB. 
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Figure S1. Distribution of calculated NP-likeness scores for the DNP (after removal of any compounds 

present in the training set). Note that the y-axis is in logarithmic scale. 
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Figure S1. Density distribution of the (a) molecular weight and (b) the number of heavy 
atoms of all 481 194 compounds in the processed data set (blue; these are all valid compounds 
with at least one annotated bioactivity). The gray lines show the respective property 
distributions for the "Approved Drugs" subset of DrugBank1 for reference. 
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