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Abstract

Colloidal nanoparticles have the potential to be integrated in var-
ious applications such as solar cells, sensors or light-emitting de-
vices due to their electronic and optical properties. An important
parameter dictating the particle–particle interactions and thus the
charge transport between them is the organic ligand shell, sur-
rounding the particles. Using molecular linkers to connect the
particles, the transport and coupling can be precisely tuned for
different applications.

Theoretically, the charge transport through such molecules can
be described using methods as the Landauer-Büttiker approach,
which describes the electron transport through nanostructures
and molecules in the coherent tunneling regime. Experimentally,
the transport properties are usually studied using scanning tun-
neling microscopy, mechanically controlled break junctions or on
self-assembled monolayers, but such techniques are usually lim-
ited to very specific experimental situations and are, e.g., not
suited to study ultrafast dynamics of photoexcited charges. In
the last years, several new techniques to access such timescales in
nanostructures have been established, especially terahertz spec-
troscopy has proven to be a valuable experimental tool.

The work presented in this thesis aims to explore the applica-
bility of terahertz spectroscopy to measure the electron transport
through molecules, without the need of macroscopic electrodes or
complicated measures to contact the samples. This was done us-
ing experimental schemes with and without optical excitation.

Films of interlinked gold nanoparticles were synthesized us-
ing drop casting and layer-by-layer techniques and subsequently
studied using terahertz time-domain spectroscopy, without op-
tical excitation. Such materials have been studied in the past
with regard to the electron transport properties of the linker
molecules, but studies using terahertz spectroscopy are rare. The
films of gold nanoparticles synthesized with aliphatic and aro-
matic molecular linkers showed no indications of losses in the ter-
ahertz range while being absorptive in the visible. This indicates
no conductivity at terahertz frequencies and poses the question
of the applicability of terahertz spectroscopy for the study of the
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Abstract

charge transport through molecules in such systems. Classical
Monte-Carlo simulations extended by parameters from quantum
chemical calculations showed a modification of the low-frequency
conductivity of such systems, which could not be validated in the
experiments.

Additionally, linked and unlinked CuInSe2 particle films were
investigated using optical-pump terahertz-probe spectroscopy to
study the dynamics of photoexcited charges. The results, in com-
bination with DC conductivity measurements, showed a change
of the hopping transport mechanism depending on the molecular
linker. This can potentially be linked to the band alignment of the
particles and linker molecules and demonstrates the possibilities
of terahertz spectroscopy for studies on photoexcited systems.

To obtain a deeper understanding, the electron transport through
molecules was not investigated solely using experimental meth-
ods. Inelastic processes in molecular junctions have been studied
based on an extension of the Landauer-Büttiker approach, in or-
der to understand the relationship between tunneling pathways
in molecules and the strength of electron-phonon interactions of
specific vibrations, which are given by the inelastic electron tun-
neling spectra. A method which is able to calculate the coupling
only for selected vibrations was implemented in this work. The
findings suggest that tunneling pathways can be traced using in-
elastic electron tunneling spectroscopy if the molecular vibrations
of interest are sufficiently localized.

In total, the idea of using terahertz spectroscopy as a general ap-
proach to study charge transport through molecules was proven
to be difficult to implement. For the study of the aforementioned
ultrafast charge transfer processes it has been demonstrated as a
valuable tool, as shown for the CuInSe2 particle films. But using
more sophisticated experimental approaches such as the combi-
nation of terahertz spectroscopy and scanning probe techniques
could enable the study of charge transport through molecules at
terahertz frequencies.
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Zusammenfassung

Kolloidale Nanopartikel haben aufgrund ihrer elektrischen und
optischen Eigenschaften das Potential, in verschiedene Anwen-
dungen wie Solarzellen, Sensoren oder Leuchtquellen integriert
zu werden. Einen großen Einfluss, welcher die Wechselwirkun-
gen zwischen den Partikeln und so auch den Elektronentransport
bestimmt, hat die organischen Ligandenhülle, welche die Partikel
umgibt. Indem molekulare Linker genutzt werden, um die Parti-
kel zu verbinden, können der Transport und die Wechselwirkun-
gen ja nach Anwendung eingestellt werden.

Der Ladungstransport durch solche Moleküle kann theoretisch
durch Methoden wie den Landauer-Büttiker Ansatz beschrieben
werden, der den Elektronentransport durch Moleküle und Na-
nostrukturen im Regime des kohärenten Tunnelns beschreibt.
Experimentell werden derartige Transportmechanismen z.B. mit
Rastertunnelmikroskopen oder mechanisch kontrollierten Bruch-
kontakten gemessen, aber derartige Methoden sind in der Regel
beschränkt auf sehr spezifische Experimente und unter anderem
nicht geeignet, um die ultraschnelle Dynamiken von optisch an-
geregten Ladungsträgern zu untersuchen. In den letzten Jahren
wurden jedoch mehrere neue Techniken etabliert, um solche Zeit-
skalen auflösen zu können, unter anderem hat sich die Terahertz-
spektroskopie als wertvolle Methode erwiesen.

Im Rahmen dieser Dissertation wurden die Anwendbarkeit von
Terahertzspektroskopie untersucht, um den Elektronentransport
durch Moleküle zu messen, ohne die Notwendigkeit makroskopi-
sche Elektroden anzubringen oder andere komplizierte Methoden
die Proben zu kontaktieren. Dabei wurden Experimente sowohl
mit als auch ohne optische Anregung durchgeführt.

Vernetzte Gold Nanopartikel Film wurden mit Auftropf- oder
Schicht-bei-Schicht-Methoden präpariert und mit Terahertzspek-
troskopie untersucht. Derartige Proben wurden in der Vergan-
genheit zwar schon im Hinblick auf den Elektrontransport durch
die Linkermoleküle zwischen den Partikeln erforscht, jedoch sind
Studien, die Terahertzspektroskopie verwenden, selten. Die Fil-
me mit aliphatischen und aromatischen Linkern zeigten keine
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Zusammenfassung

Absorption im Terahertzbereich, während sie Licht im sichtba-
ren Bereich stark absorbierten. Das deutet darauf hin, dass keine
Leitfähigkeit im Terahertzbereich zu messen ist, und es stellt sich
die Frage, ob Terahertzspektroskopie geeignet ist, die Transport-
eigenschaften an solchen Systemen zu messen. Klassische Monte-
Carlo Simulationen, die mit Parametern aus quantenchemischen
Berechnungen modifiziert wurden, zeigten eine Änderung der
niederfrequenten Leitfähigkeit solcher System, was durch die Ex-
perimente nicht bestätigt werden konnte.

Zusätzlich wurden verknüpfte und unverknüpfte CuInSe2 Parti-
kelfilme mit Pump-Probe Experimenten untersucht, um das Ver-
halten von optisch angeregten Partikeln zu untersuchen. Die Er-
gebnisse, zusammen mit DC Leitfähigkeitsmessungen, zeigten ei-
ne Änderung des Hopping-Transportes abhängig vom verwende-
ten Linker. Diese deutet potentiell auf ein Anpassung der elek-
tronischen Zustände der Partikel und Moleküle hin und demon-
striert die Möglichkeiten, mit Terahertzspektroskopie Studien von
optisch angeregten System durchzuführen.

Um ein tieferes Verständnis zu gewinnen, wurde der Elektronen-
transport durch Moleküle nicht allein mit experimentellen Me-
thoden untersucht. Inelastische Prozesse in molekularen Brücken
wurden mit einer Erweiterung des Landauer-Büttiker Ansatzes
berechnet, um Erkenntnisse über den Zusammenhang zwischen
Tunnelpfaden und der Stärke der Wechselwirkung zwischen
Elektronen und molekularen Schwingungen zu gewinnen. Da-
für wurde eine Methode, diese Wechselwirkungen nur für ausge-
wählte Schwingungen zu berechnen, neu implementiert. Die Re-
sultate zeigen, dass Tunnelpfade über die Wechselwirkung zwi-
schen den tunnelnden Elektronen und der Molekülschwingungen
nachvollziehbar sind, sofern diese ausreichend lokalisiert sind.

Zusammfassend hat sich gezeigt, dass die Idee, Terahertzspek-
troskopie zur Untersuchung von Ladungstransport durch Mole-
küle zu nutzen, schwierig umzusetzen ist. Für Studien von ultra-
schnellen Landungstransferprozessen hat es sich jedoch als wert-
volles Tool bewiesen, wie an den Filmen aus CuInSe2 Partikeln
gezeigt wurde. Aufwendigere experimentelle Techniken, wie die
Kombination von Terahertzspektroskopie und Rastersondenme-
thoden, könnten jedoch die Untersuchung von Ladungstransport
durch Moleküle bei Terahertz-Frequenzen ermöglichen.

xii



1 Introduction

”Things on a very small scale behave like nothing that
you have any direct experience about. They do not be-
have like waves, they do not behave like particles, they
do not behave like clouds, or billiard balls, or weights
on springs, or like anything that you have ever seen.”

Richard P. Feynman, The Feynman Lectures
on Physics, Volume III, p. 1-1

Understanding the transport of charges is one of the most funda-
mental elements of modern physics, physical chemistry and re-
lated branches of science. From electronic devices such as tran-
sistors or diodes, to optoelectronic applications like light-emitting
diodes or lasers to chemical processes like the reduction and oxi-
dation reactions inside a fuel cell or biological processes like pho-
tosynthesis - the key to explain each of these mechanisms is to
understand how charges are transferred from one place or state
to another.

In 1900, Paul Drude developed a simple model to describe the be-
havior of an electron by modeling them as tiny particles following
a Newtonian equation of motion (EOM). This gave him the pos-
sibility to describe the frequency-dependent response of (quasi)
free charges, such as the conduction electrons in metals, to an
external electric field [1]. Even though this is a very simple ap-
proach, it remains powerful and popular until today. But like a lot
of classical models, the Drude model has its limits. When the dy-
namics of charged particles are studied on a meso- or nanoscale,
quantum mechanics have to be incorporated into the description.
And, as mentioned above in the quote by Richard Feynman, the
behavior of particles on small scales is weird. They behave quite
differently than we would expect from the macroscopic world de-
termining our daily lives.

To understand the electron movement through matter, it is im-
portant to have a closer look at the electron’s wave-particle du-
ality, that they behave like particles and waves. Our human lan-
guage, which is shaped by our daily experience with macroscopic
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1 Introduction

and relatively slow objects, tries to adapt words we know, such as
“particle” or “wave”, to describe the behavior of quantum objects
and imprinting the meanings we associate with those words.

But in the end an electron, like every other “particle” is both, a
wave and a particle. Even though we intuitively view an elec-
tron as a tiny ball-like object, it is a scientific fact that it shows
the behavior and properties of a wave, e.g. when it penetrates
classical barriers and suddenly appears on its other side. This is
called tunneling, a fundamental concept to the understanding of
quantum mechanics. The tunneling of an electron through a bar-
rier can be explained by describing the electron as a wave packet
(Figure 1.1), which is partially reflected and partially transmitted
at barrier. The ability of particles to apparently “jump” instan-
taneously from one side of a barrier to the other (thus, in real
space), or from one electronic state to another (thus, in k-space)
is the very basic concept which governs the mobility of charges.

Figure 1.1: Reflection and
transmission of a wave packet
at a barrier in one dimension.
Data for the plot was obtained
with modified code based on
[2]. A measurement follow-
ing the scattering at the bar-
rier would localize an elec-
tron represented by the wave
packet on one of the side of
the barrier - with a lower but
nonzero probability for the
right side, indicating a certain
chance that the electron has
tunneled through the barrier.
The arrows denote the wave
vector 𝑘 or the propagating di-
rection of the wave packets.

𝑘

𝑡

Barrier

As mentioned above, for many scenarios we do not have to ap-
ply quantum mechanical models to describe the conductivity of
an object, but can rely on simpler, often (semi-)classical models.
But the advent of nanotechnology, new experimental tools and
methods and the societal need for technological progress asks for
a deeper understanding of the transport mechanisms, which can
be used to tailor new and exciting functionalities.

The most apparent field of technology which is dominated by the
transport properties of electrons is, of course, electronics. But
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before discussing this topic in depth, some other examples should
be given to highlight the broad interconnection of this topic.

In solar cells, the energy of a photon is absorbed by an electron,
which is transferred to an excited state with higher energy (e.g.
the conduction band of a semiconductor). Thus, the electron has
moved already in k-space - but it is necessary that it moves in
real space as well to extract it from the solar cell and insert it
in electrical circuits or store its energy. The same way, the so-
called hole, the empty state the excited electrons has left behind
and which can be regarded as a positively charged particle, has
to be extracted. In silicon semiconductor solar cells, this is done
by doping the semiconductor in a controlled way, thus controlling
the flow of the electron in the conduction band and the hole in the
valence band [3]. Silicon solar cells are the most common type
of solar cells. These are the cells on rooftops or large-scale so-
lar power plants. Besides the many types of solar cells employing
different crystalline semiconductors, molecules are under study as
well, e.g. in Grätzel or organic solar cells [4–6]. These systems
have been extensively studied, including studies employing ter-
ahertz (THz) spectroscopy, to identify parameters important to
improving the charge separation and charge transport after pho-
toexcitation and thus improving the cells’ efficiency [7–12].

For biological systems it is also important to understand elec-
tron transport, especially for systems that perform photosynthe-
sis. Light-harvesting complexes show surprisingly high efficiency
in transferring the energy from the so-called antenna, which ab-
sorbs light, to the reaction center, where the energy is used to
perform chemical reactions. One example is the Fenna-Matthews-
Olson (FMO) complex, for which in 2007 quantum coherence
features have been found [13]. Subsequent quantum mechani-
cal simulations have shown several ways of explaining the high
efficiency, e.g. in the framework of quantum transport through
disordered networks. [14–17]. Biological systems also some-
times show surprisingly efficient long-range electron transfer, e.g.
through proteins [18, 19]. Quantum features in biology are still
under debate, especially since it is quite complicated to achieve
similar coherence times for artificial systems at room tempera-
tures.

The understanding of how electrons move in k as well as in real
space shaped our electronic technologies, which may have been
the most influential in forming our societies in the last century.
One of the most central electronic devices, the transistor, was only
enabled by the understanding of the electron mobility in semicon-
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1 Introduction

ductors and was rewarded with a Nobel price in physics in 1956
[20].

The electronic, and in particular semiconductor, industry has
been driven since then by the miniaturization and improvement
of transistors. Modern computer processors can contain millions
of transistors. But pushing the clock speed of transistors past the
4 GHz mark has been proven to be very difficult (see Figure 1.2).

Figure 1.2: Development of
the single-core frequency and
number of transistor per chip
over the years. Data ob-
tained from [21]. The aver-
age frequency from year 2000
on (2443 MHz) is shown as a
dashed line. 1E0

1E1
1E2
1E3
1E4
1E5
1E6
1E7

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

2443 MHz

Year

Frequency [MHz]
Number of Transistors (in thousands)

1E0
1E1
1E2
1E3
1E4
1E5
1E6
1E7

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

In the past, this frequency speed-up was mostly obtained by re-
ducing the dimensions of the transistors, such as the size of the
gates, which has been more or less constant since Intel has intro-
duced the 45 nm technology in 2007 [22, 23].

Naturally, this scaling down has its limits when it reaches the di-
mensions of atomic bonds or lattice constants [24]. Several other
factors limit the shrinking of the devices, like the onset of quan-
tum tunneling or heat accumulation [22, 24]. Thus, any further
improvements cannot rely on simple changes of the geometry and
dimensions only, but researchers have to look for new materials,
too. IBM, for example, has demonstrated a graphene-based tran-
sistor, which was able to run at 100 GHz [25]

The idea that molecules can act as electronic components came
up around the 50s [26], but what really sparked the field was the
proposal of a single-molecule rectifier by Arieh Aviram & Mark A.
Ratner in Oct. 1974 [27]. This, together with the invention of the
scanning tunneling microscope (STM) in 1983, built the founda-
tions for the field of molecular electronics [28, 29]. Scientific ad-
vances in both theoretical and experimental methods in the last
decades led to discoveries such as molecular switches [30–34],
molecular transistors [35–38] or molecular rectifiers [39–45].
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anchoring
group

STM tip

substrate

molecule

eV

𝐸 MO levels
electrode electrode

Figure 1.3: The basic pic-
ture to understand tunneling
transport through molecules.
Left: Exemplary scheme of
a STM setup to measure
the conductance of a sin-
gle molecule. Right: En-
ergy diagram for a molecule
sandwiched between to elec-
trodes with an applied bias
eV, which is visualized by the
shifted Fermi levels.

Figure 1.4: Operation of
a mechanically controlled
break junction (MC-BJ). By
bending the the underlying
substrate, the gold wire is
pulled apart until a gap
is formed. In solution,
molecules can bridge the gap
and the current through the
molecules can be measured.

From a theoretical point of view, the Landauer-Büttiker (LB) ap-
proach [46, 47] has been successfully established to describe the
tunneling transport through short molecules. The way an electron
moves through such a molecule is not so different to the picture of
a wave packet getting transmitted/reflected by a barrier as shown
in Figure 1.1. For structure-property relationships, the electronic
structure of the molecule and the electrodes it is connected to
have to be taken into account, which was successfully done using
density-functional theory (DFT), tight-binding schemes or Hückel
methods [46–51]. These or similar approaches have been used
to study quantum interference [52–55], inelastic effects [56–
64], spin-selective transport [65–68] or aforementioned molecu-
lar switches [30, 34, 69–72]. Computer program packages have
been developed that can describe transport through molecular
junctions, usually in combination with DFT, including TRANSSI-
ESTA [73], QUANTUMATK [74] or our in-house code ARTAIOS
[75]. More details and a discussion of the LB approach will be
given in Chapter 2.

Experimental techniques have also been developed further [76,
77]. Aside from the already mentioned STM techniques, me-
chanically controlled break junctions (MC-BJs) as shown in Fig-
ure 1.4 are routinely used to measure the conductance of (sin-
gle) molecules [77–79]. Nanoparticle arrays have also been used,
where the conductivity of the array is changed by the molecules
connecting the particles [77] - this will be further discussed in
Part III. Actually, devices which are using molecules as elec-
tronic elements have very recently become commercially avail-
able: Overdrive pedals for guitars, which use diodes to artificially
clip sinusoidal signals thus altering the spectrum, have been build
using molecular rectifiers by the company “Nanolog” [80]. They
also sell the molecular junctions as a basic building block for other
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Input OutputBridge

Figure 1.5: Visualization of
information transfer by spin
flips. The spins are coupled
ferromagnetically. Thus, an
induced spin flip at the input
causes the neighboring spins
to flip, until finally the output
spin is flipped as well.

Figure 1.6: All-spin based
logic gate. From Khajetoo-
rians, A. A. et al. Realizing
All-Spin-Based Logic Opera-
tions Atom by Atom. Sci-
ence 332, 1062–1064 (May
2011). Reprinted with per-
mission from AAAS.
1 A nice article which intro-
duces the idea of plasmonics
in a general fashion was writ-
ten by Harry A. Atwater, pub-
lished 2007 in the Scientific
American [89].

applications.

Molecules offer new and exciting approaches to build electronic
devices (as the graphene-based transistor mentioned above). It
is tempting to speculate about molecular electronics as a replace-
ment of silicon-based devices, but maybe it is more likely that
molecules as electronic elements will enhance and complement
silicon-based devices. But molecules as electronic elements are
not only interesting in specific devices, they are directly connected
to already mentioned fields like organic solar cells, biological pro-
cesses or other chemical process where, e.g., electron transfer
through molecules is involved. Thus, pushing forward the field
of molecular electronics should not be justified only by the quest
for faster or cheaper electric devices, but also in terms of basic
research and the drive to understand the world around us.

In addition to using the charge as an information carrier, it is
also possible to use the spin degree of freedom [65–67]. This
could potentially increase the information density and also over-
come problems concerning heat accumulation or generation by
moving charges. Spins can couple via (anti)ferromagnetic cou-
pling, transferring information without the need to actually move
an electron (see Figure 1.5). A notable experiment performed by
Khajetoorians et al. demonstrated the realization of a logic gate
based only on the spin interactions of single atoms [81].

To build such spintronic devices, molecules are also of high in-
terest. Molecules can be tailored specifically to promote ferro-
magnetic or antiferromagnetic coupling. Also, chiral molecules
can act as spin valves by promoting a higher transmission proba-
bility for electrons with the correct spin or introducing switching
capabilities [82–85].

A totally different approach is not only to use electrons, but pho-
tons to perform calculations. Light is fast (oscillating in the ~100
Terahertz instead of Gigahertz range as our transistors), but also
not so small: In the (human) visible range, wavelengths range
from 380 to 740 nm, much more than the typical dimensions of
modern electronics. But by using the coupling between light and
matter, light can be squeezed into small dimensions, for example
by exploiting the properties of plasmons, collective oscillations of
free electrons which can couple to light and form a plasmon po-
lariton [86]. These can confine the light field in sub-nanometer
dimensions [87, 88]. For so-called plasmonics1 to play a role
for future technology, active control over the plasmon has to be
achieved, which has initiated the field of “active plasmonics” [90].
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Plasmons can also be used to excite spin currents, thus linking the
fields of plasmonics and spintronics [91].

But what do molecules have to do with that? Actually, the in-
terplay between plasmonic excitations and molecular conduction
recently has been under study, establishing a field called molec-
ular electronic plasmonics (MEP) [92–95]. Also, many systems
of interest for plasmonic applications are colloidal in nature, such
as gold nanoparticles (AuNPs), which show a strong plasmonic
resonance in the visible range (the electronic and optical proper-
ties of AuNPs will be discussed in Chapter 8). The surfaces of the
particles are covered with ligands or molecules are used to con-
nect the particles directly to facilitate charge transport. Plasmons
of the adjacent particles can couple, which can be tuned by the
linking molecules [96]. For larger distances, this coupling can
be mostly understood by employing Maxwell’s equations, but for
small/subnanometer distances, a “charge transfer plasmon” can
arise, which stems from quantum tunneling between two parti-
cles [95]. Thus, in such systems, optical excitations and electron
transport can interact with each other, in such a number of ways
that it can hardly be covered here comprehensively. This also asks
for new tools to study the properties of such systems. Measure-
ments of electron transport usually happens on slow timescales,
even though the microscopic process can be quite fast. Optical
processes, on the other hand, are fast, usually in the femtosec-
ond to nanosecond regime. This also asks for new ways to study
transport phenomena, since traditional STM or MC-BJ experi-
ments perform DC measurements, without the possibility to ac-
cess short-lived currents.

One relatively new technique which enables the measurement of
the mobility of electrons on a short time scale is THz spectroscopy.
There, an electromagnetic pulse is generated, whose frequency is
so low (several terahertz) that it can actually move free electrons
in real space, thus probing the conductivity of a sample. This
can be used to get the conductivity of a sample without the need
of contacting it. When it is combined with an optical excitation
by a pulsed laser, it can be used to study the conductivity of a
photoexcited system on ultrashort timescales (~ps) [97–99].

A more detailed overview over recent results and achievements
in the field of THz spectroscopy will be given in Chapter 5, but
it should be mentioned that is has been used to study tunneling
currents, most of the experiments have been carried out quite re-
cently and usually performed in STMs, where the high resolution
of the STM can combined with the ultrashort temporal resolu-
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1 Introduction

2 Currents in STMs not
induced by THz radiation
but plasmons have received
a similar attention, see
Ref. [103].

Figure 1.7: Schematic draw-
ing for the THz induced
tunneling in gold nanostruc-
tures. Reprinted with per-
mission from Jelic, V. et
al. Ultrafast terahertz con-
trol of extreme tunnel cur-
rents through single atoms
on a silicon surface. Na-
ture Physics 13, 591–598
(Feb. 2017). Copyright 2017
American Chemical Society.

tion of a THz pulse [100, 101]. It was shown that the tunneling
of electrons from the tip to the substrate (or vice-versa) could
be controlled by the polarization/carrier-envelope phase (CEP)
of a strong THz pulse. Jelic et al. performed a similar experiment
for a silicon atom [102] and comprehensively discussed the THz-
induced band bending and hot electron dynamics. Several other
examples involves the vibrational-assisted tunneling2 induced by
a THz pulse or the investigation of the field enhancement [104–
106].

A study which is also of high importance for this thesis was pub-
lished by Yoshioka et al. in 2015 [107]. They investigated the THz
response of non-percolated and percolated gold films on Si(100)
substrates. By varying the intensity of the THz beam and fitting
the obtained data with the Drude-Smith (DS) model, the local-
ization and damping parameters decreased for samples close to
the percolation threshold. This implies that the stronger electric
fields can make the electrons tunnel from a gold structure to an-
other (see Figure 1.7).

Since THz has been successfully used to study the conductivity
and transport mechanisms of nano-sized system, the question
arises whether THz spectroscopy can be employed to measure
the conductance of molecular junctions, especially in AuNP films
where the particles are linked by these molecules? And if yes, can
we go a step further and study optical excitations of the particles
or the molecules and their effects on the molecular conduction?
If so, this would open many possibilities to study new and excit-
ing phenomena, establish new tools to study molecular junctions
and maybe even tune the system by the right choice of molecular
linker to perform certain tasks, e.g. the extraction of hot carriers
generated by a decaying plasmon.

To contribute to this question, this thesis focuses on two aspects.
First, using computational tools, inelastic effects in molecular
junctions are studied with respect to the identification of tun-
neling paths through molecules. Unveiling tunneling pathways
through molecules can, e.g., answer the question whether elec-
trons follow helical paths in helical structures [108–110]. This
work has been published in [111].

Second, several AuNP films connected with molecular linker have
been prepared and studied by THz spectroscopy. Parts of this
work were published in “Impact of the Crosslinker’s Molecular
Structure on the Aggregation of Gold Nanoparticles” [112]. These
nanoparticle films acted as a model system to study the inter-
actions between THz radiation and linked AuNP. Additionally,
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semiconducting CuInSe2 particles linked by short molecules have
been studied in an collaboration with the group of Horst Weller.
The results have been published as “Postdeposition Ligand Ex-
change Allows Tuning the Transport Properties of Large-Scale
CuInSe2 Quantum Dot Solids” [113].

The thesis is organized as follows:

Part 1 - Transport through Nanoscopic Systems discusses the
theoretical approach to describe electron transport through
nanoscopic systems, in particular molecules in molecular
junctions. An introduction into the LB approach in combi-
nation with DFT will be given. Results obtained by studying
inelastic effects in molecular junctions will be discussed re-
garding the relation between inelastic effects and tunneling
pathways. Additionally, Monte Carlo (MC) simulations for
the THz response of AuNP films are presented.

Part 2 - Terahertz Spectroscopy introduces the concept of Tera-
hertz spectroscopy, giving an overview of our setup as well
as the techniques to process and extract parameters from
the measurements.

Part 3 - Terahertz Spectroscopy of Metallic and Semiconduct-
ing Films and Particles discusses THz spectroscopy on thin
evaporated gold films, which were used as benchmark mea-
surements, gold nanoparticle films and CuInSe2 quantum
dot solids. The optical an electronic properties of AuNPs
will be discussed in detail here together with an overview
over current research regarding AuNP.
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Part I

Electron Transport through
Nanoscopic and Molecular

Systems

11





3 The Pauli principle states
that two identical fermions
(elementary particles with
half-integer spin) cannot be
in the same state of a quan-
tum system at the same time.
For a wavefunction𝛹 this im-
plies that it has to be antisym-
metric with respect to permu-
tation [114].

𝛹 = 𝜓1(𝒓1)𝜓2(𝒓2) − 𝜓1(𝒓2)𝜓2(𝒓1),

where 𝒓1,2 are the spatial
and spin coordinates of the
fermions.

Figure 2.1: Coherent tunnel-
ing (top) and hopping trans-
port of electrons from an elec-
trode on the left to the right
electrode.

2 Coherent Tunneling

2.1 Tunneling Transport through Molecules

To describe the transport of charges through nanoscale systems
like nanoparticles, molecules or vacuum tunneling gaps, models
have to account for the quantum nature of the system. With-
out concepts such as quantum tunneling or the Pauli exclusion
principle3 essential aspects of the charge transport through a
molecule can neither be understood nor described. But solving a
full quantum-mechanical description of for example a molecular
junction is usually not possible or at least highly complex and ex-
pensive to calculate. Thus, depending on the size and complexity
of the system, different levels of theory or transport approaches
have to be used [115].

Different realms of charge transport in nanoscale systems exist.
Maybe the most important differentiation to be made is the ques-
tion whether the transport through specific systems is coherent, so
that a specific phase relation between the incoming and outgoing
electron wave packet is preserved. The transport through a film
of nanoparticles for example usually does not [116]: The electron
will stay for a finite amount of time on a particle, will interact with
it and hinder further electrons to tunnel onto the particle. This
will destroy the coherence, as the phase information is not pre-
served. In this case, the transport mechanism is usually referred
to as “hopping”, as the transport path involves several sequen-
tial tunneling processes between the input and the output/elec-
trodes (Figure 2.1). This is the dominant transport mechanism
e.g. through polymers, metallic nanoparticle arrays or quantum
dot solids [77, 116–121]. Depending on the size of the system
through which the transport is happening and the strength of the
interactions within, an electron also can travel coherently. This is
usually fulfilled for short molecules where the highest-occupied
molecular orbital (HOMO) and lowest-unoccupied molecular or-
bital (LUMO) are reasonably far from the Fermi energy and which
measured at low temperature. This coherent tunneling transport
is again understood best using the idea of a wave packet, which
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2 Coherent Tunneling

is partially transmitted through a barrier. The transmitted wave
has a fixed phase relation to the incident one.

The idea to describe electron transport in nanoscopic systems not
on a particle basis but as a wave (or more specific a wave packet)
was presented by Rolf Landauer in July 1957 [46]. He estab-
lished the so-called “Landauer Formula”, which connects the con-
ductance 𝐺 of a system to the transmission

𝐺(𝐸,𝑉) = 𝐺0􏾜
𝑛
𝑇𝑛(𝐸, 𝑉), (2.1)

where 𝐺0 = 2𝑒2/ℎ is the quantum of conductance and 𝑇𝑛(𝐸, 𝑉)
refers the transmission probability for a channel 𝑛. 𝑒, ℎ are the
elementary charge and the Planck constant, respectively. Thus,
resistance arises due to scattering/reflection of the electron or
wave packet when entering/leaving the system. This so-called
Landauer-Büttiker (LB) picture of electron transport is different
to, e.g., a classical Drude picture of charge transport, where the
resistance arise because of the scattering of electrons inside the
junction.

An intuitive way to understand the energy-dependent transmis-
sion through a barrier is the analogy of a Fabry-Pérot (FP) etalon.
This will also be discussed as a concept for the THz transmis-
sion through samples in Chapter 6. Monochromatic light pass-
ing through a transparent slab will be reflected internally, that
is at the boundaries of the slab. These reflections can interfere
with each other constructively or destructively depending on the
phase difference, which is governed by the thickness, refractive
index, wavelength and transmission angle. Changing the wave-
length will result in a change of the transmitted intensity mea-
sured at one specific angle behind the FP etalon, thus resulting in
an energy-dependent transmission function (Figure 2.2) [122].

To obtain an energy-dependent transmission through a molecular
junction using the LB approach, the system is usually divided into
electrodes and the central system, as depicted in Figure 2.3 [77,
123, 124]. A variety of purely quantum mechanical features can
be derived from this approach, e.g. the occurrence of quantum
interference of an electron wave packet [77, 124]. One example
is the so-called Aharonov-Bohm effect [125]. There, a magnetic
field induces a phase difference into two otherwise equal trans-
mission channels. Depending on the induced phase, they inter-
fere constructively (destructively), which results in a high (low)
current through the system. A more detailed discussion the LB
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2.1 Tunneling Transport through Molecules
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Figure 2.2: Wavelength–dependent transmission of electromagnetic radiation through a FP etalon/interferome-
ter with a thickness of 1 µm at normal incidence. The incoming (from the left) electromagnetic wave is partially
reflected and transmitted. The transmitted part undergoes multiple reflections inside the slab which interfere
which each other. This leads to a wavelength–dependent transmission pattern due to destructive/constructive
interference as shown in the right graph. The data was obtained for a “finesse” of 5 and 20 [122]. The finesse
is a measure of quality of a FP etalon and depends on the intensity of the internal reflections.

4 When discussing molecu-
lar electronics, it is import
to distinguish it from the
field or “organic electronics”.
Usually, molecular electron-
ics is regarded as a subfield
of the latter, with a focus on
much smaller dimensions us-
ing more complex or com-
plete models [126].

approach and how it can be used together with DFT to calculate
the transport through molecules will be given in the next section.

𝐸

eV
𝜖0
𝜖1

𝜖2
𝜖3

molecule/
central regionelectrode electrode

𝐴

Figure 2.3: Schema of a
molecular junction, the parti-
tioning into the central region
(e.g. the molecule and parts
of the contact region) and the
two electrodes and a depic-
tion of the electronic states.
The electronic bands of the
electrodes are filled up to the
Fermi level (blue area), but
the respective Fermi levels are
shifted by the applied voltage
eV. The molecule has dis-
crete electronic states, shown
as lines in the central region.

On the experimental side, several techniques exist to measure the
transport through molecules4. This includes scanning probe tech-
niques such as the STM or conductive atomic-force microscopy
(AFM), MC-BJ, lithographic structures, nanoparticle films or self-
assembled monolayers (SAMs) [77]

In a typical STM measurement, molecules are deposited on a
surface. This can e.g. be done by sublimating or evaporating
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2 Coherent Tunneling

5 In MC-BJ experiments
a statistical analysis of the
measured conductance
can for example be used
to differentiate between
measurements where only
one molecule was bridging
the junction or multiple [77,
79, 126, 130].

the molecules in the vacuum chamber of the microscope (or a
separate sample preparing chamber) [77]. Then, the surface is
scanned with the STM tip until a deposited molecule is identified.
This can be approached and an I-V curve can be recorded, which
stems from the tunneling current through the molecule. Different
techniques to verify the existence of the molecule in the tunneling
junction exists, including Raman spectroscopy or inelastic elec-
tron tunneling spectroscopy (IETS). The latter will be discussed
further in Chapter 3.

MC-BJ experiments use a thin gold wire, which is slowly pulled
until it breaks. Right before the rupture of the wire, only a few
atoms are connecting the two parts of the wire. Thus, after rup-
ture, two electrodes with atomic-sized tips have been formed. Al-
ternatively, the two electrodes can be formed using, e.g., litho-
graphic methods. When placing this in a solution with linker
molecules, the molecules can adsorbate on the electrodes [77].
The distance between the electrodes can be manipulated pre-
cisely and changed from a full-contact regime (with direct contact
of the electrodes) over a regime where one or several molecules
are bridging the gap to a regime without connection between the
electrodes. For each distance, the current through the junction
can be recorded. This is usually repeated a lot of times, thus col-
lecting the traces of up to several thousand molecules [77].

Another techniques to study the transport through molecules is
to prepare extended films of metal nanoparticles which are con-
tacted by two electrodes and replace the particles’ stabilizing lig-
ands with conducting linker molecules [127–129]. The bottle-
neck for electrons which travel through the film from one elec-
trode to the other are the gaps between the particles. The inser-
tion of linker molecules into the gaps thus changes the conduc-
tance of the whole film.

These techniques differ in how many molecules take part in the
transport. An STM can measure the transport through single
molecules, while e.g. measurements involving contacted SAM or
also MC-BJ experiments5 can have several molecules in the tun-
neling junction [77, 126].

The differences between a “single molecule” and an “ensemble”
approach have been described elsewhere [126, 131, 132] and
can be summarized as follows. Single molecules are much easier
to model theoretically and single-molecule experimental setups
are able to measure various properties of the molecular junction,
like visualizing the molecular orbitals (MOs) [133] or getting a
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2.2 The Landauer-Büttiker Approach

For formulas, the following
convention regarding the no-
tation of formulas is adapted:
Vectors are written in small
letters and bold, matrices
in capital letters and bold.
Functions and operators (as
functions) are written up-
right. Operators can also be
written in matrix form, then
they will be italic, in capital
letters and bold.

vibrational footprint via IETS [134]. But due to thermal fluctu-
ations and different bonding motives, the measured results can
vary quite strongly and a careful statistical analysis is necessary
[79, 135–137]. Also, the integration of single molecule junctions
into applications is challenging. “Ensemble” methods are presum-
ably easier to integrate into circuits and provide a more stable
electronic response due to the averaging over several molecular
junctions. In such systems, more interactions (e.g between the
molecules) can occur, which is more difficult to describe.

There are numerous books [77, 115, 124, 138, 139] and reviews
[26, 49, 50, 92, 131, 132, 140–146] which give a general intro-
duction to molecular electronics and over the latest developments
in research or specific aspects like interaction with light [92]. Es-
pecially the books from Elke Scheer and Juan Cuevas and Massi-
miliano Di Ventra offer a good starting point [77, 124].

2.2 The Landauer-Büttiker Approach

The LB approach describes electron transport with the idea of a
barrier, on which an electronic wave packet can be reflected or
transmitted with certain probabilities as shown in Figure 1.1. The
structure of such a tunneling junction is depicted in Figure 2.3.
The incoming electrons enter and leave the junction via the metal-
lic electrodes. A transmitted electron which has been in a state |𝑙⟩
on the left side of the barrier (the left electrode) ends up in some
state |𝑟⟩ on the right side of the barrier (the right electrode), with
a probability given by the transmission 𝑇𝑙𝑟.

By summing over all possible transmission channels, the conduc-
tance can be obtained using the Landauer formula (Equation 2.1)
[46]. The transmission probabilities can be represented as the so-
called scattering matrix 𝑻 , which contains all transmission prob-
abilities from states on the left side to states on the right side of
the scattering region.

The number of electrons at a specific energy is given by the Fermi
distribution [147]

𝑓𝑙,𝑟(𝐸) = 􏿶exp 􏿶
𝐸 − 𝜇𝑙,𝑟
𝑘𝐵𝑇

􏿹 + 1􏿹
−1

, (2.2)

where 𝑘𝐵 is the Boltzmann constant, 𝑇 the temperature and 𝜇𝑙,𝑟
the electrochemical potential of the left or right electrode. With-
out any applied voltage, the number of electrons passing the cen-
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2 Coherent Tunneling

tral region from left to right and from right to left should be the
same (assuming 𝑇𝑖𝑗 = 𝑇𝑗𝑖), thus canceling any current.

By applying a potential, 𝜇𝑙 and 𝜇𝑟 are shifted by e𝑉 = 𝜇𝑙−𝜇𝑟 with
respect to each other, as depicted in Figure 2.3. This difference
in the Fermi level creates a “window” (𝑓(𝐸)𝐿−𝑓(𝐸)𝑅) for electrons
with a specific energy to travel only from the left to right elec-
trode, but not the other way (Figure 2.4). This already shows us
that the whole system would show no current if the central region
had no current-carrying states inside this window.

Figure 2.4: Energy window
of current–carrying electrons
spanned by 𝑓(𝐸+e𝑉/2)𝐿−𝑓(𝐸−
e𝑉/2)𝑅 for a bias voltage of 2
(blue) and 4 V (orange). 𝑘B𝑇
was set to 0.2.

0

0.2

0.4

0.6

0.8

1

1.2

−6 −4 −2 0 2 4 6

𝑓

Energy

2 V
4 V

0

0.2

0.4

0.6

0.8

1

1.2

−6 −4 −2 0 2 4 6

By assuming an energy-dependence of the transmission function
𝑇 = ∑𝑛 𝑇𝑛 given in Equation (2.1), the current at a specific volt-
age can be obtained by effectively integrating only over the chan-
nels energies which are inside the window spanned by the Fermi
functions of the electrodes at that voltage, as given in [46, 47]

𝐼 = 2𝑒
ℎ 􏾙

∞

−∞
d𝐸 􏿮𝑓𝑙(𝐸 + 𝑒𝑉/2) − 𝑓𝑙(𝐸 − 𝑒𝑉/2)􏿱 𝑇(𝐸). (2.3)

As one can see from Equation (2.3), 𝑇(𝐸) is the central quantity
to be computed in order to obtain the current.

For simple systems, an expression for 𝑇(𝐸) can be found analyti-
cally, which will be presented below. For more complicated sys-
tems, the non-equilibrium Green’s function (NEGF) formalism in
combination with DFT or other effective single-particle electronic-
structure theories can be used.

2.2.1 Transmission through a Single-Level System

The transmission through a single-level system can be derived
using the expression for the transmission through a slab. The
boundaries of the slab resemble the contacts of the single-level
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2.2 The Landauer-Büttiker Approach

system with the electrodes. This approach is actually the same
as for the FP etalon described above and also for the modeling of
a THz pulse passing through a sample, which will be covered in
Chapter 6. The total transmission probability is given by [124]

𝑇 = 𝑇𝑙𝑇𝑟
1 + 𝑅𝑙𝑅𝑟 − 2√𝑅𝑙𝑅𝑟 cos𝜒

(2.4)

= 𝑇𝑙𝑇𝑟
􏿴1 − √𝑅𝑙𝑅𝑟􏿷

2
+ 2√𝑅𝑙𝑅𝑟 (1 − cos𝜒)

, (2.5)

where 𝑇𝑙,𝑟 are the transmission probabilities for the wave to be
transmitted into the or out of central region and 𝑅𝑙,𝑟 = 1 − 𝑇𝑙,𝑟
are the respective reflection probabilities. 𝜒 is the phase the wave
accumulates by passing back and forth inside the central region.
The total transmission is maximized if cos𝜒 = 1, thus 𝜒 = 𝑛2π. By
assuming𝑅𝑙 ≃ 𝑅𝑟 = 1, 𝑇𝑙 ≃ 𝑇𝑟 ≪ 1, we can simplify Equation (2.5)
to

𝑇 = 𝑇𝑙𝑇𝑟
􏿴1 − √(1 − 𝑇𝑙)(1 − 𝑇𝑟)􏿷

2
+ 2 (1 − cos𝜒)

(2.6)

≃ 𝑇𝑙𝑇𝑟

􏿵𝑇𝑙+𝑇𝑟2 􏿸
2
+ 2 (1 − cos𝜒)

, (2.7)

where the last step has been performed using a first–order Taylor
expansion of 𝑇𝑙,𝑟[124]. Assuming an energy dependence of the
accumulated phase 𝜒 → 𝜒(𝐸), we can again perform a second–
order Taylor expansion of 𝜒(𝐸) around an energy 𝜖0, where the
transmission is maximized

1 − cos𝜒(𝐸) ≃ 1
2 􏿶

d𝜒(𝐸)
d𝐸 􏿹

2

(𝐸 − 𝜖0)2 (2.8)

and additionally define

𝛤𝑙,𝑟 = 𝑇𝑙,𝑟 􏿶
d𝜒(𝐸)

d𝐸 􏿹
−1

⇔ 𝑇𝑙,𝑟 = 𝛤𝑙,𝑟 􏿶
d𝜒(𝐸)

d𝐸 􏿹 . (2.9)
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2 Coherent Tunneling

By inserting Equation (2.8) and (2.9) into Equation (2.7), we ob-
tain

𝑇(𝐸) =
𝛤𝑙 􏿵

d𝜒(𝐸)
d𝐸 􏿸 𝛤𝑟 􏿵

d𝜒(𝐸)
d𝐸 􏿸

⎛
⎜⎜⎜⎜⎝
𝛤𝑙􏿵

d𝜒(𝐸)
d𝐸 􏿸+𝛤𝑟􏿵

d𝜒(𝐸)
d𝐸 􏿸

2

⎞
⎟⎟⎟⎟⎠

2

+ 2 􏿶
1
2 􏿵

d𝜒(𝐸)
d𝐸 􏿸

2
(𝐸 − 𝜖0)2􏿹

=
𝛤𝑙𝛤𝑟 􏿵

d𝜒(𝐸)
d𝐸 􏿸

2

􏿵d𝜒(𝐸)
d𝐸 􏿸

2
􏿵𝛤𝑙+𝛤𝑟2 􏿸

2
+ 􏿵d𝜒(𝐸)

d𝐸 􏿸
2
(𝐸 − 𝜖0)2

= 𝛤𝑙𝛤𝑟

􏿵𝛤𝑙+𝛤𝑟2 􏿸
2
+ (𝐸 − 𝜖0)2

. (2.10)

This is called the “Breit–Wigner” formula, which was first derived
for resonances in the interactions of neutron radiation with mat-
ter [121, 148]. 𝛤𝑙,𝑟 is the coupling between the central region to
the left or right electrode. Assuming that the interaction between
the left electrode and the central region is the same as the inter-
action between the right electrode and the central (𝛤𝑐𝑙 = 𝛤𝑐𝑟), the
formula can be further simplified.

In Figure 2.5, the resulting transmission function is shown, to-
gether with the current obtained using Equation (2.3) and the
differential conductance 𝐺 = d𝐼/d𝑉.

Figure 2.5: Obtained trans-
mission, current and conduc-
tance through a single-level
system with 𝜖0 = 0.5 eV as
described in Equation (2.10)
for two different coupling
strengths between electrodes
and the central system. As
one can see, the increased
coupling leads to a broader
transmission peak, which re-
sults in an increased cur-
rent and broader conduc-
tance peaks. Effects of the
applied voltage on the trans-
mission function are not in-
cluded here. An applied po-
tential can, e.g., shift the en-
ergy 𝜖0.
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2.2 The Landauer-Büttiker Approach

As one can see from Equation (2.10) (and also Figure 2.5), 𝜖0
gives the energy of the peak in the transmission function, while 𝛤
effectively changes the width. In experimental situations, where
the data shows a single peak in the conductance, values for 𝜖 and
𝛤 can be obtained by fitting the model to the data. For multi-
ple resonances at 𝜖0,1,… the transmission can be modeled by the
sum of several resonances given by Equation (2.10), if they are
sufficiently separated in energy [124].

2.2.2 The Non-Equilibrium Green’s Function Approach
and Density Functional Theory

For more realistic system, it is preferred to obtain an expression
of 𝑻 based on first-principles descriptions or methods. The non-
equilibrium Green’s function establishes a way to calculate the
transport through molecular junctions based on such methods.
For these methods, the electronic structure of a junction has to be
calculated by solving the Schrödinger equation

H𝛹 = 𝐸𝛹, (2.11)

where 𝛹 is the wavefunction of the system under study, H is the
Hamiltonian operator and 𝐸 the energy of the system. In the fol-
lowing, the Born-Oppenheimer approximation is made [114]. As
a wavefunction for a many-particle system, a Slater determinate
can be used, given by

𝛹(𝒓1, 𝒓2, … , 𝒓𝑁) =
1

√𝑁!

|
|
|

𝜓1(𝒓1) 𝜓2(𝒓1) … 𝜓𝑁(𝒓1)
𝜓1(𝒓2) 𝜓2(𝒓2) … 𝜓𝑁(𝒓2)

⋮ ⋮ ⋱ ⋮
𝜓1(𝒓𝑁) 𝜓2(𝒓𝑁) … 𝜓𝑁(𝒓𝑁)

|
|
|

(2.12)

𝑁 is the number of electrons, 𝒓𝑖 the spatial and spin coordinates
of the 𝑖-th electron and 𝜓𝑖 a single-particle function. 𝜓𝑖 can be
represented by a linear combination of atomic orbitals (LCAO),
as given by

𝜓𝑖 = 𝑐𝑖,1𝜙𝑖,1 + 𝑐𝑖,1𝜙𝑖,1 +⋯+ 𝑐𝑖,𝑛𝜙𝑖,𝑛 =
𝑛
􏾜
𝑗
𝑐𝑖,𝑗𝜙𝑖,𝑗, (2.13)

where 𝑐𝑗 is a coefficient which weights the contribution of an
atomic orbital to the molecular orbital and 𝜙𝑗 an atomic orbital,
which can be given by Slater or Gaussian-type orbitals [114].

21



2 Coherent Tunneling

Density Functional Theory

Density Functional Theory (DFT) has been proven as a reliable
and efficient approach to describe the electronic structure of
molecules or solids [149]. In general, the Hamiltonian H for 𝑁
electrons in an external potential caused by e.g. the nuclei is given
by

H = − 1
2

𝑁
􏾜
𝑖
∇ 2
𝑖

􏿋􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏿍
T𝑒

+
𝑁
􏾜
𝑖
𝑣ext(𝒓𝑖)

􏿋􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏿍
V𝑛𝑒

+ 1
2

𝑁
􏾜
𝑖≠𝑗

𝑁
􏾜
𝑖

1
𝒓𝑖 − 𝒓𝑗􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍

V𝑒𝑒

. (2.14)

The first sum T𝑒 represents the kinetic energy operator for the
electrons, the second sum V𝑛𝑒 the interaction with the external
potential and the third sum V𝑒𝑒 represents the Coulomb interac-
tions between the electrons. In this section, atomic units are used
so that 𝑒 = 𝑚e = ℏ = 4π𝜖0 = 1, where 𝑒 is the elementary charge,
𝑚e the mass of an electron, ℏ the reduced Planck constant and 𝜖0
the vacuum permittivity. Additionally, DFT is discussed within
the Born-Oppenheimer-regime, thus neglecting the motion of the
nuclei. This approximation is reasonable, since the motion of the
nuclei is far slower than the motion of the electrons, so that the
electrons almost instantaneously react to any change of the nu-
clei’s position.

This system can be solved for example by using a Slater deter-
minant as approximations for the wavefunctions, and then mini-
mizing the systems total energy by varying the expansion coeffi-
cients of the Slater determinant. This approach is called Hartree-
Fock (HF) theory. HF provides reasonable results for a range of
systems, but is still not satisfactory for several, e.g. a simple F2
molecule is not bound in HF[149]. Post-HF methods are able to
improve the results, but usually at a computational cost: HF al-
ready scales with the fourth power of the system size, and these
post-HF methods perform even worse. Thus, in the mid 1900s
there was a need to find a new method with a similar or better
accuracy and improved performance, to be able to describe larger
systems.

In 1964 and 1965, Hohenberg, Kohn and Sham lead the foun-
dation of density-functional theory (DFT) theory [150, 151]. In
contrast to HF theory or other wavefunction–based methods, it
assumes that all ground-state properties of an 𝑁-electron system
are determined by the total ground-state electron density 𝜌0. This
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2.2 The Landauer-Büttiker Approach

6 This is not a practical for-
malism to calculate the de-
sired properties, but more
proof that those are con-
tained in 𝜌.

assumption reduces the computational cost, since the system co-
ordinates are reduced from 4𝑁(for wave-function methods/theo-
ries) to 3.

In wavefunction-based methods, the external potential 𝑣ext de-
fines the wavefunction and thus all properties of interest.

𝑣ext → 𝜓 → 𝜌, 𝐸,… (2.15)

The first Hohenberg-Kohn theorem states that the external po-
tential and hence the total energy is a unique functional of the
electron density. Thus, the scheme above effectively changes6 to
[149]

𝜌 → 𝑣ext → 𝜓 → 𝐸, 𝜌… (2.16)

In that way, the Hamiltonian and thus 𝐸 can be reformulated to
depend on 𝜌 as a fundamental variable. The total energy is then
given by

𝐸[𝜌] = 𝑇𝑒[𝜌] + 𝑉𝑛𝑒[𝜌] + 𝑉𝑒𝑒[𝜌] (2.17)
= 𝐹[𝜌] + 𝑉𝑛𝑒[𝜌], (2.18)

where 𝐹[𝜌] describes the parts which do not depend on 𝑣ext. The
variational principle is introduced with the second Hohenberg-
Kohn theorem, which states that the density 𝜌′ , which minimizes
the total energy, is the exact ground-state density [150],

𝐹[𝜌′] +􏾙𝑣ext𝜌
′ ≥ 𝐹[𝜌] +􏾙𝑣ext𝜌 = 𝐸0. (2.19)

Kohn & Sham [151] showed that 𝐹[𝜌] can be re-ordered into ac-
cessible terms and those,which are hard to treat on a theoretical
level as

𝐹[𝜌] = 𝑇non[𝜌] + 𝐽[𝜌] + 𝐸𝑋𝐶[𝜌]. (2.20)

Here, 𝑇non[𝜌] is the kinetic energy of a non-interacting reference
system of Fermions with the same ground-state density as the
interacting system and 𝐽[𝜌] the classic Coulomb interactions be-
tween the electrons. 𝐸𝑋𝐶[𝜌], the exchange-correlation functional,
summarizes the non-classical contributions to the kinetic energy
and to the electron-electron interactions. Up to this point, DFT
is ab-initio, but in order to calculate 𝐸𝑋𝐶, approximations have to
be introduced.

A set of single-particle equations is obtained, similar to the HF
equations [114, 151]. These Kohn-Sham equations are given
by

hKS𝜓𝑖 = 𝜖𝑖𝜓𝑖, (2.21)
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7 The advanced Green’s func-
tion is related to the retarded
Green’s function by 𝐺adv =
𝐺†

ret [115].
8 The NEGF+DFT approach
discussed here describes the
transport of non-interacting
fermions. For transport of in-
teracting fermions, see, e.g.,
Ref. [165]

with hKS as the effective single-particle Hamiltonian

hKS = −12∇
2 + 𝑣KS (2.22)

with 𝑣KS = 𝑣ext + 𝑣el +
𝜕𝐸𝑋𝐶
𝜕𝜌 , (2.23)

where 𝑣𝑒𝑙 is the classical Coulomb potential. Thus, instead of
solving a many-body Schrödinger equation, DFT yields the prop-
erties of interest by solving Equation (2.21) for non-interacting
fermions with the same ground-state density as the interacting
system [151]. The wavefunction of the non-interacting system is
described by a Slater determinant (Expression 2.12), where the
single–electron functions are called Kohn-Sham orbitals. This al-
lows to represent the effective single–particle Hamiltonian a local
basis and enables partitioning, as will be used in the next sec-
tion.

The first approximation for 𝐸𝑋𝐶 was proposed by Kohn & Sham
[151]. They applied the local density approximation (LDA) to cal-
culate the exchange-correlation energy based on a uniform elec-
tron gas with the density 𝜌(𝑟) and a uniformly distributed pos-
itive background charge [152–154]. An improvement over the
LDA approach was to include the first derivative of the density
with respect to spatial coordinates. This approach is called gen-
eralized gradient approximation (GGA). One of the most popu-
lar GGAs is the BP86 functional developed by Becke and Perdew
[155, 156].

Another popular functional is B3LYP [157, 158], which mixes
a part of Hartree-Fock exchange into the exchange-correlation
functional. This group of functionals is called “hybrid function-
als”.

For further studies, the interested reader is pointed to several re-
views discussing latest advances (and also problems) of DFT, e.g.
from Burke, Becke, Jones or others [149, 159–163]. A particular
amusing review was published by Kieron Burke and coworkers in
2015 [164].

The Non-Equilibrium Green’s Function Formalism

To obtain an expression for 𝑻 using DFT, the definition of the
retarded7 Green’s function for an effective single-particle Hamil-
tonian8 H [115, 124] is introduced as

𝑮(𝐸) = 􏿮(𝐸 + i𝜂)𝟏 − 𝑯􏿱
−1

⇔ 􏿮(𝐸 + i𝜂)𝟏 − 𝑯􏿱𝑮(𝐸) = 𝟏. (2.24)
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2.2 The Landauer-Büttiker Approach

The Hamiltonian of a molecular junction in a local basis as given
in Kohn-Sham DFT can be represented by

𝑯 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑯𝑙 𝑽𝑙𝑐 0
𝑽𝑐𝑙 𝑯𝑐 𝑽𝑐𝑟
0 𝑽𝑟𝑐 𝑯𝑟

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (2.25)

where 𝑯𝑐,𝑙,𝑟 describes the electronic structure of the electrodes or
central region, while 𝑽 is the coupling between the central region
and the electrodes [123]. Inserting this into the definition of the
Green’s functions yields

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑬 − 𝑯𝑙 −𝑽𝑙𝑐 0
−𝑽 †

𝑙𝑐 𝑬 − 𝑯𝑐 −𝑽 †
𝑟𝑐

0 −𝑽𝑟𝑐 𝑬 − 𝑯𝑟

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑮𝑙 𝑮𝑙𝑐 0
𝑮𝑐𝑙 𝑮𝑐 𝑮𝑐𝑟
0 𝑮𝑟𝑐 𝑮𝑟

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
= 𝟏 (2.26)

with 𝑬 = (𝐸+ i𝜂)𝟏 and 𝑽𝑏𝑎 = 𝑽 †
𝑎𝑏 [115]. By performing the matrix

multiplication, for 𝑮𝑐

𝑮𝑐(𝐸) = [𝑬 − 𝑯𝑐 − 𝜮𝑙(𝐸) − 𝜮𝑟(𝐸)]
−1 (2.27)

with 𝜮𝑙,𝑟(𝐸) = 𝑽 †
(𝑙,𝑟)𝑐(𝑬 − 𝑯𝑙,𝑟)−1𝑽(𝑙,𝑟)𝑐 (2.28)

= 𝑽 †
(𝑙,𝑟)𝑐𝑮𝑙,𝑟𝑽(𝑙,𝑟)𝑐 (2.29)

can be found. 𝜮 is the self-energy representing the interaction of
the molecule with the electrode. Additionally, the coupling matrix
𝜞

𝜞 = i(𝜮 − 𝜮†) (2.30)

can be defined. Following [115, 124], the transmission matrix
can then be written as

𝑻(𝐸) = tr 􏿮𝜞𝑙𝑐(𝐸)𝑮𝑐(𝐸)𝜞𝑟𝑐(𝐸)𝑮†
𝑐 (𝐸)􏿱 . (2.31)

From a DFT calculation of a molecular junction, in principle all
entries of the Hamiltonian matrix 𝑯 can be obtained and thus
the current through the junction can be calculated using Equa-
tions (2.31) and (2.3). The details of the implementation into
ARTAIOS will be presented in the next section. For further infor-
mation regarding the LB approach or the non-equilibrium Green’s
function methodology the interested reader may refer to [48, 77,
115, 123, 124, 166].
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9 As given in the intro-
duction, other programs
which employ the LB
approach to calculate trans-
port phenomena include
SIESTA/TRANSSIESTA [73],
QUANTUMATK [74] or
GOLLUM [167].

10 The overlap matrix is
given by the elements 𝑆𝑖𝑗 =
⟨𝜓𝑖|𝜓𝑗⟩ for a non-orthogonal
basis, which becomes 𝑆𝑖𝑗 = 𝛿𝑖𝑗
for an orthogonal basis.

2.3 Transport Calculations using Artaios

ARTAIOS is a post-processing program for quantum mechanical
calculations. As a so-called meta-program, it can interface to
third-party programs which perform quantum mechanical calcu-
lations and processes the output, thus it can easily profit from
latest developments and new features. In contrast to transport
programs9 which include self-consistent field (SCF) schemes such
as SIESTA [73], effects of the applied voltage on the electronic
structure can not be calculated. But in order to study qualitative
trends and perform conceptual analyses, the modular structure
of ARTAIOS is preferable. Depending on the type of calculation,
it supports GAUSSIAN, TURBOMOLE, ADF or NWCHEM [51, 168,
169]. Aside from transport calculations, it enables the calculation
of Heisenberg exchange-spin coupling constants or analysis of lo-
cal spins [170]. The main purpose of ARTAIOS is the calculation
of electron transport properties of molecular junctions, based on
the LB approach in combination with the NEGF method. Besides
the calculation of the spin-dependent transmission function on
the basis of e.g. DFT calculations, the program e.g. allows for an
analysis of the local transmissions (atomic decomposition of the
transmission to study transmission pathways [168, 171]). Within
the scope of this thesis, the program was extended to be able to
calculate inelastic electron tunneling (IET) spectra together with
the MOVIPAC program package. This will be presented in Chap-
ter 3.

As input, the output files of an electronic structure calculation
as well as an input file which specifies the system has to be pro-
vided. From the quantum mechanical calculations, the Hamilto-
nian/Fock matrix 𝑯 and the overlap matrix 𝑺10 are the central
quantities. As shown before (Equation (2.31) and (2.3), the cur-
rent through a junction in the LB approach is given by

𝐼 = 𝑒
ℎ 􏾙

∞

−∞
d𝐸 􏿮𝑓𝑙(𝐸 + 𝑒𝑉/2) − 𝑓𝑙(𝐸 − 𝑒𝑉/2)􏿱 𝑇(𝐸),

while the transmission matrix as central quantity can be evalu-
ated from by the trace over the retarded Green’s functions for the
central region and the couplings of the electrodes to the central
region

𝑇(𝐸) = tr 􏿮𝜞(𝐸)𝑮(𝐸)𝜞(𝐸)𝑮†(𝐸)􏿱

with

𝑮𝑐(𝐸) = [𝑬 − 𝑯𝑐 − 𝜮𝑙(𝐸) − 𝜮𝑟(𝐸)]
−1
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in an orthogonal and
𝑮𝑐(𝐸) = [𝐸𝑺 − 𝑯𝑐 − 𝜮𝑙(𝐸) − 𝜮𝑟(𝐸)]

−1 (2.32)
in a non-orthogonal basis. The Hamiltonian matrix 𝑯 and the
overlap matrix 𝑺 are directly obtained from the quantum me-
chanical calculations. To calculate 𝜮, ARTAIOS applies the “wide-
band” limit by default [115, 172]. Usually the electrodes studied
are gold electrodes, which have a relatively constant density of
states around the Fermi level. For the Green’s functions of the
electrodes,

𝑮𝑙,𝑟 = −iπLDOSconst𝛿𝑖𝑗 (2.33)
is assumed. For the local density of states of the s-band,
0.036 eV−1 is used, obtained from DFT calculations for bulk gold
[173]. This enables the calculation of the self-energies (Equa-
tion 2.29) and consequently the coupling matrices

𝜞 = −2Im (𝜮) . (2.34)

Figure 2.6 summarizes the NEGF formalism to the LB approach
and how it is implemented in ARTAIOS.

Electronic structure
calculation using

G09, Turbomole, ...
𝑮𝑙,𝑟 = ?

𝑮𝑐 = (𝐸𝑺 −
𝑯𝑐 − 𝜮𝑟 − 𝜮𝑙)−1

𝛴𝑙,𝑟 = 𝑽 †
𝑙,𝑟𝑮𝑙,𝑟𝑽𝑙,𝑟

𝑇 = tr 􏿴𝜞𝑙𝑐𝑮𝑐𝜞𝑟𝑐𝑮†
𝑐􏿷 𝛤 = i 􏿴𝛴 − 𝛴†􏿷

𝐼 =
𝑒
πℏ

∫
∞

−∞
d𝐸 􏿮𝑓𝑙 − 𝑓𝑟􏿱 𝑇

𝑯, 𝑺

𝜮𝑙,𝑟

𝑽

𝑮𝑐

𝜞(𝑙,𝑟)𝑐

𝑇

Figure 2.6: Diagramm of the
data flow in ARTAIOS to calcu-
late the transmission function
𝑇 or the current 𝐼(𝑉).

In the following, some examples using ARTAIOS to calculate the
transport properties of molecular junctions are discussed.

2.3.1 Transmission through a Hydrogen Bridge

Before, the transmission through a simple single-level system was
described, which results in a transmission function which has a
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Au H H Au𝑑 𝑑

Figure 2.7: Structure of the
dihydrogen bridge. The dis-
tance 𝑑 is varied from 1 to 6 Å.

11

Lorentzian shape. The width corresponds to the coupling be-
tween the central system and the electrodes, and the position to
the energy of the single level. But can similar results be obtained
using a first-principles approach, e.g. with DFT in combination
with ARTAIOS?

To illustrate the influence of the coupling with a more realistic sce-
nario, transport calculations for a hydrogen bridge are performed.
This is a two-level system, which also can be approximated using
a sum of two Lorentzians as given by the Breit-Wigner formula.
Such a system has been studied experimentally [174] using platin
electrodes. Here, gold electrodes are used to be able to apply the
wide-band limit implemented in ARTAIOS and to be consistent
with later calculations.

The structure of molecular hydrogen is obtained by a structure
relaxation using GAUSSIAN 09 (B3LYP/LanL2DZ)11 [157, 175,
176]. The electrodes are modeled using each a single gold atom
(see Figure 2.7). The distance 𝑑 between the gold atoms and the
hydrogen is increased from 1 to 6 Å, thus decreasing the coupling
between the electrodes and molecular bridge. Using ARTAIOS,
the transmission function is calculated for each 𝑑 and shown in
Figure 2.8 as a heatmap. Here, the breaking of the bonds at a
certain distance is disregarded. DFT is not capable of describing
this properly, since it models the whole system in a single deter-
minant. But as we are not interested in bond-breaking effects but
merely want to study the effect of a changing coupling between
the electrodes and the molecule, this is not essential.

Figure 2.8: Transmission
through a H2 bridge (de-
picted above) for different
distances displaced as a heat
map. When the distance
is increasing, the coupling
becomes weaker and the
broad transmission con-
denses into sharp peaks. For
some points, the transmission
exceeds unity, which can
be explained with either
numerical artifacts or as the
contribution from more than
one tunneling channels. 1
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This visualizes how, with decreasing coupling, the transmission
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function condenses into two sharp peaks located roughly at the
HOMO and LUMO energies of the isolated H2 (−11.67 eV and
3.14 eV). When the coupling is stronger, shifts and broadening
of the peaks are obtained.

A two-level Breit-Wigner model

𝑇(𝐸) =
2
􏾜
𝑖=1

𝐴𝑖
𝛤2
𝑖

𝛤2
𝑖 + (𝐸 − 𝜖𝑖)2

(2.35)

is fitted to the transmission function calculated using ARTAIOS to
obtain values for the coupling and the energy levels. Figure 2.9
shows the calculated and fitted transmission functions for two
different distances, as well as the values 𝛤1,2 and 𝜖1,2 extracted
from the fit for 𝑑 = 2Å to 𝑑 = 5Å.
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Figure 2.9: Upper panel: Cal-
culated (solid line) and fit-
ted (dashed line) transmis-
sion function of the hydrogen
bridge shown in Figure 2.7 for
𝑑 = 3 Å and 𝑑 = 5 Å. The
fit was performed using Equa-
tion (2.35). Lower panel: The
dependency of the the ener-
gies 𝜖1,2 and the coupling 𝛤1,2
on the distance between the
electrodes and the hydrogen
molecule.

The coupling between the LUMO and the electrodes is much
stronger than for the HOMO. Thus, the current would be domi-
nated by tunneling through the LUMO, which indicates electron
transport through this H2 bridge. The main tunneling channel
is also determined by the distance of the resonances for 𝜖1, 𝜖2 to
the Fermi energy, which is not always easily to determine [177]
and can e.g. be estimated using calculations of large gold clusters
[178], which yields 𝐸f = −5.0 eV. If the HOMO was closer to the
Fermi energy and coupled more strongly, the picture would be dif-
ferent and hole transport would be obtained. At close distances
(𝑑 ≤ 2.5Å), the coupling between the molecule and the electrodes
becomes very high and signatures of the molecular orbitals cannot
be distinguished. But the results should be taken with a grain of
salt, since this is a model system and does not represent realistic
structures nor a structure, which has been optimized.
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12 But not exclusively, see,
e.g. Refs. [52–54, 181, 183–
187]

2.3.2 Quantum Interference and Tunneling Pathways

To demonstrate the capabilities of ARTAIOS regarding the analysis
of local transmission pathways, a phenanthrene junction is inves-
tigated, where the thiol anchoring group is attached on one side
to the para position, as well as to the two neighboring meta posi-
tions. Such structures show a unique property of coherent tunnel-
ing transport, quantum interference. This can drastically change
the transport properties of a molecular junction, even though the
electronic structure might be quite similar [55, 179]. Quantum
interference in molecular junctions can be understood as the in-
terference with competing tunneling pathways [180–182]12, thus
the understanding and control of tunneling paths enables control
over the transport properties of a junction.

The input structures of the isolated molecules have been re-
laxed using Gaussian 09, the BP86 correlation functional and
the LanL2DZ basis set [155, 156, 175, 176]. Au9 cluster have
been added to mimic the electrodes, with a sulfur-gold distance
of 2.85 Å. Transport calculations using ARTAIOS have been per-
formed based on Gaussian 09 single point calculations at the same
level of theory.

The Lewis structures and obtained transmission functions are
shown in Figure 2.10. The transmission function obtained for
the structure with the sulfur anchoring group placed at the para
position is significantly higher than for the two meta positions.

Figure 2.10: Top: Lewis
structure of the phenanthrene
junction, the different colored
thiol group on the right side
marks the different anchoring
positions for the right elec-
trode. Bottom: Transmission
functions (left) and current
(right) obtained for a phenan-
threne junction, where the
gold clusters were attached to
different positions of the ring.
The colors of the curves cor-
responds to the structure with
the respectively colored thiol
group.
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This is a purely quantum mechanical effect and can not be under-
stood by looking at the energy level diagram alone, as the energies
of the frontier orbitals vary by less than 0.032 eV for the HOMO
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2.3 Transport Calculations using ARTAIOS

Figure 2.11: Local trans-
missions for the three
phenanthrene junctions
(odered from top to bottom),
evaluated at 𝐸F = −5 eV.

and 0.002 eV for the LUMO. By looking at the local transmis-
sions [168, 171] (Figure 2.11), the reason behind the differences
between the transmission functions becomes clear: When the an-
choring group is attached at the para position, a direct tunneling
path through the molecule exists. For the other two placements of
anchoring group, ring currents occur. The current which is leav-
ing the system through the anchoring group is significantly lower,
since destructive interference between the pathways which lead
to the “output” occur. In Figure 2.11, the outgoing currents are
not even visualized due to the threshold for the drawn arrows.

These interference features manifest themselves in sharp antires-
onances in the transmission function or can decrease the total
transmission. Such interference effects can be quite sensitive to
external stimuli. This sparked the interest to use molecules show-
ing interference effects to build molecular switches, quantum in-
terference transistors or logic gates [52, 183, 184, 188–191]. The
example presented here demonstrate a) the effect of quantum in-
terference on the transmission function and thus the transport
properties of a molecular junction and b) the value of evaluating
tunneling pathways as obtained using ARTAIOS. For an in-depth
analysis of this class of molecules regarding transport properties
and quantum interference refer to Ref. [192].

The NEGF+DFT approach implemented in ARTAIOS is a power-
ful tool to study the transport properties of molecular junctions.
Two exemplary sytems were studied, a H2 bridge as a model sys-
tem to understand the influence of the interactions between the
electrodes and the central system, and phenanthrene junctions
demonstrating the effects of quantum interference and analysis of
tunneling pathways. In the next chapter, the extension of the LB
approach to inelastic effects and the implementation into ARTAIOS
+ MOVIPAC will be discussed. The theoretical approach in AR-
TAIOS approximates several aspects in the simulation of the trans-
port properties, as the already mentioned wide-band limit for the
description of the electrodes. Additionally, electron-electron in-
teractions in the molecular junction are not incorporated. A way
to do this would be to use the Meir-Wingreen formula [165]. Self-
consistent transport calculations as, e.g., implemented in SIESTA
are also capable to describe effects of the electric field over the
junction and resulting rectification effects.
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13 𝜖0 refers here to the vac-
uum permittivity, not to an
energy.

2.4 Loosing Coherence: Hopping Transport and
Coulomb Blockade

So far, transport has only been discussed in detail in terms of co-
herent tunneling through a nanoscopic system. But this is not a
realistic assumption in all cases. It has been shown that, e.g.,
with increasing length of a molecular wire, the transport pro-
cess changes from tunneling to hopping [193–197]. Hopping de-
scribes a series of consecutive tunneling events, where coherence
is lost. It can be distinguished from coherent tunneling experi-
mentally by the temperature dependence (coherent tunneling has
none) or its length dependence.

The regimes of hopping and tunneling transport trough molecules
or nanoparticles overlap, as it is not always easy to predict which
type of transport a specific system shows [77, 198]. A full dis-
cussion of this topic is outside the scope of this work, but in the
following some fundamental aspects of incoherent tunneling and
the “Coulomb blockade” in comparison with the coherent tunnel-
ing model are discussed.

Hopping transport goes along with a finite amount of time a
charge stays on a specific site of the bridge or a particle. This
can lead to Coulomb repulsion between this charge and any fur-
ther charges, which can block the current through the system as
long the charge is on the particle. This is the so-called Coulomb
blockade [121] and shows a typical step-like behavior in the I-
V curves (Figure ??). The conditions for the Coulomb blockade
regime are usually weak coupling between the electrodes and the
particle and low temperatures (𝑘B𝑇 < 𝐸C, where 𝐸C is the energy
which has to be overcome to charge the particle with one more
electron.

The charging energy 𝐸C of particle is given by

𝐸C = 𝑒2
𝐶 , (2.36)

where𝐶 the capacitance of the particle, which is given for a sphere
of radius 𝑟 as 𝐶 = 4𝜋𝜖0𝑟 [199]13. As long as the applied potential
𝑒𝑉 is smaller than 𝐸C, no current flows. If the energy is enough to
charge the particle, one electron at a time can pass the particle,
but no further increase of the current is observed until enough
voltage is applied to charge the particle twice. An additional gate
voltage can be used to lower or increase the energy needed, which
enables the use of devices in the Coulomb blockade regime as
single electron transistors. One example was shown by Maeda et

32



2.4 Loosing Coherence: Hopping Transport and Coulomb
Blockade

al.. A gold nanoparticle connected with a source, a drain and two
gates was used to perform logic XOR or NXOR operations [200].
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Figure 2.12: Charging en-
ergy and level spacing of a
particle with respect to its
size. The dashed line repre-
sents the energy of 𝑘B298K,
thus the thermal energy at
room temperature.

To estimate whether a system is in the incoherent hopping and
Coulomb blockade regime or not, one can compare the spacing of
the electronic levels of the system with the charging energy. To
estimate the spacing between the electronic levels, the expression
for energy levels of a particle in a box can be used which is given
by

𝐸𝑛 =
ℏ2𝜋2𝑛2
2𝑚e𝑟2

. (2.37)

In Figure 2.12, the size-dependence of the charging energy 𝐸C and
the energy difference between 𝐸1 and 𝐸2 for a particle in a box
are plotted. At particle sizes below 0.8 nm, the spacing between
the individual levels is greater than the charging energy. Thus, if
the applied potential is big enough to fill the state, the charging
energy is already overcome. For particle sizes above 0.8 nm, the
spacing of the energy levels is small compared to the charging
energy. If the applied potential is high enough to overcome the
charging energy, the spacing between the individual does not play
a role or can be seen as a continuum.

Interestingly, both regimes (hopping in the Coulomb blockade
regime and coherent tunneling) can show similar results for the
differential conduction. If, e.g., the Breit-Wigner formula for
the transmission function (Expression 2.10) together with Equa-
tion (2.3) for the calculation of the current is used, the d𝐼/d𝑉 plot
shows peaks which correspond to the resonances of the transmis-
sion function. Similarly, for a system in the Coulomb blockade
regime, the conductance shows peaks when the energy is enough
to charge the particle by one more electron (Figure ??). These
peaks are equidistant in energy and separated by the charging
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energy 𝐸C, while for a system in the coherent tunneling regime,
they are related to the electronic structure of the system.

Hopping transport through nanoparticles as well as molecules has
different regimes. At high temperatures, hopping usually occurs
from one site to the next, which is called nearest-neighbor hop-
ping [201]. If the temperature becomes lower and/or the disor-
der in the system increases, hopping can be dominated by the ac-
tivation energy 𝐸𝑎 and not the distance, which leads to variable–
range hopping processes [120, 201–203]. More details regard-
ing different types of hopping transport are discussed in Chap-
ter 9.
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3 Inelastic Electron Tunneling
Spectroscopy and Tunneling
Pathways

The following chapter has been published in a modified version
as Deffner, M. & Herrmann, C. The Limits of Inelastic Tunnel-
ing Spectroscopy for Identifying Transport Pathways. (preprint,
submitted to Chemrxiv) (Mar. 2020).

The Landauer-Büttiker (LB) approach can not only be used to
describe the elastic tunneling transport through molecular junc-
tions. It can also be used to study e.g. heat transport or inelas-
tic processes [142]. Inelastic processes can imprint information
about the molecular vibrations of a molecular junction into the
current. Also, inelastic processes play an important role in the
loss of coherence or dephasing of the tunneling current.

IETS is a technique to study the interplay between tunneling
transport and molecular vibrations. Usually, a tunneling electron
passes a junction while preserving its energy. If the applied bias
and thus the energy of the electron is high enough to excite a
molecular vibration, it can also scatter inelastically with the sys-
tem and transferring (or absorbing) energy to a vibration. Even
though the electron can lose a bit of energy, this is notable in the
transport by a increase or decrease of the measured current. This
can be explained by recalling that the tunneling transport is gov-
erned by the tunneling probability for an electron with a specific
energy and the number of conduction channels. When the en-
ergy is enough to excite a vibration, an additional possibility (or
transport channel) is created, thus increasing the current [134].
By calculating the second derivative of the current with respect to
the voltage, a peak or dip is obtained at those energies, which cor-
respond to a molecular vibration. Figure 3.1 shows a schematic
depiction of this processes.

Experimentally, IET spectra are recorded using STM or MC-BJ
setups in combination with lock-in techniques or specific devices,
usually at low temperatures [134, 204–206]. This can be used
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Figure 3.1: Elastic and inelas-
tic tunneling through a tun-
neling barrier representing a
molecule between two elec-
trodes. ℏ𝜔 corresponds to
the energy of a vibrational
quantum. For energies below
ℏ𝜔, just the elastic channel is
available. At energies higher
or equal to ℏ𝜔, the inelas-
tic channel is openend which
leads to an slight increase of
the tunneling current. By cal-
culating the second derivative
of the current with respect to
the voltage, the IET spectrum
is obtained
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to verify the presence of a molecular in junction or study its con-
formation [207, 208]. Apart from that, IETS can also be used
to study tunneling pathways through molecular junctions. The
knowledge of tunneling pathways allows to understand and con-
trol the transport through molecules. This has, e.g., been studied
in proteins [209–213]. This is also interesting for spin filtering
or chiral systems, where pathway analysis can identify whether
electrons follow helical paths in helices [108] or in electronically
helical structures [109], which can be important for understand-
ing chiral induced spin selectivity [214–234].

On the theoretical side, various techniques like the already men-
tioned local transmission analysis allows to extract information
about tunneling pathways from first–principles calculations [110,
168, 171, 212, 213, 235–241]. This is much more complicated
with experimental techniques. One possible approach is to re-
late the IET spectra and the intensity of specific modes with the
tunneling path, since it has been found that the IETS intensity
depends on whether the mode is inside or outside the tunneling
path [63, 242]. To investigate the feasibility of this idea, we im-
plemented a way to calculate IET spectra into ARTAIOS [75] and
MOVIPAC [243] based on the approach developed by Troisi et al.
[62, 244]. This allows us to use the mode–tracking algorithm in
MOVIPAC [243, 245, 246], which can selectively calculate vibra-
tional modes without the need of a full calculation and diagional-
ization of the Hessian matrix1. Especially for molecular junctions,
where vibrations of functional groups can potentially be used as
a tracer for tunneling pathways, this approach can be beneficial

1The Hessian matrix contains the second derivatives of the energy with respect
to geometry [114].
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due to the reduction of calculation time.

In the following, the theoretical approach for the calculation of
IET spectra is presented and validated using a set of representa-
tive systems. Afterwards, the connection between tunneling path-
ways and IET spectra is investigated using systems with delocal-
ized and localized vibrations.

3.1 Theoretical Background

For the calculation of the IET spectra, we follow the approach
derived by Troisi et al.[244], who generalized the theoretical
description of the elastic tunneling current through a molecular
junction within the coherent tunneling regime [123]. This ap-
proach is valid for low bias voltage, low temperatures and the
Fermi levels of the electrodes far away from resonances with ef-
fective single-particle levels of the molecules. Otherwise, effects
such as charging and polaron formation have to be considered
[247].

As discussed Section 2.2, the Hamiltonian 𝐻tot of the molecular
junction contains part describing the electrodes and the central
region containing the molecule (or the molecules and parts of the
electrodes), as well as the interactions between the subsystems:

Htot = HL + HR + HC + VLC + VRC,

where 𝐻L,R,C is the Hamiltonian of subsystems and 𝑉 the cou-
pling between the electrodes and the central region. Using a
Green’s function approach (Section 2.2.2), the so-called transmis-
sion function 𝑇(𝐸) is obtained as

𝑇(𝐸) = tr 􏿴𝜞L(𝐸)𝑮C(𝐸)𝜞R(𝐸)𝑮C(𝐸)†􏿷 .

This describes the probability of an electron transmitted from one
electron to the other for a certain energy. The elastic zero-bias
conductance 𝐺𝑒𝑙 is given by

𝐺el = 𝐺0𝑇(𝐸F) (3.1)

To introduce the electron-vibration coupling, the dependency of
the Hamiltonian for the central system on the nuclear coordinates
is taken into account (𝑯C → 𝑯C(𝑄)). Now, the Hamiltonian and
likewise the expression for 𝑮C(𝐸) depend parametrically on the
nuclear coordinates of the molecules. Performing a Taylor ex-
pansion of 𝑮(𝐸) for a set of vibrational modes {𝑄𝛼} (using mass-
weighted coordinates) around the equilibrium position {𝑄𝛼} = 0,
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14 The index 𝛼 is dropped the
following.

the first order correction is nonzero only for an initial and final
state, which differ by one vibrational quantum [244]. This part
(𝑮𝛼) describes the correction to the elastic current due to the
emission (or adsorption) of one vibrational quantum and is given
by

𝑮𝛼
𝑖𝑗 =

√(2)
2 􏿶

𝜕𝑮𝑖𝑗(𝐸, {𝑄𝛼})
𝜕𝑄𝛼

􏿹
{𝑄𝛼}=0

. (3.2)

From this matrix, the IETS intensity d2𝐼
d𝑉2 for each mode 𝛼 can be

calculated by [64]

𝑊𝛼 = 𝑔0tr 􏿴𝜞L(𝐸F)𝑮𝛼
C(𝐸F)𝜞R(𝐸F)𝑮𝛼

C(𝐸F)†􏿷 . (3.3)

Often not the complete IET spectrum is of interest, but only the
contribution of some specific vibrations or the fingerprint in a
certain energetic region. To be able to address this problem for
realistic systems, where the calculation of a complete spectrum
would be expensive, we introduce the mode-tracking algorithm
described in [245, 246]. To obtain the vibrational normal modes
of a molecule within the harmonic approximation, the eigen-
value14 equation

𝑯 (𝑚)𝑸 = 𝜆𝑸 (3.4)

has to be solved, where 𝑯 (𝑚) is the Hessian matrix containing
the second derivatives of the energy with respect to the mass-
weighted nuclear Cartesian coordinates 𝑸. The time-consuming
step is not always (depending of the system under study) the di-
agonalization itself, but can be the calculation of the entries of
𝑯 (𝑚).

The mode-tracking algorithm does not calculate and diagonalize
the full Hessian matrix. Instead, it applies a Davidson, Jacobi-
Davidson or Lancos algorithm to perform an iterative subspace
diagonalization of the Hessian matrix, based on a set of initial
guess modes that may be chosen based on chemical intuition or
knowledge on which parts of the system will contribute most to a
vibration of interest [243, 245, 248–250].

The normal modes 𝑸𝛼 can be projected onto a set of basis vectors
𝒃𝑗 ∈ 𝑩 by

𝑸 = 􏾜
𝑗
𝑐𝑗𝒃𝑗, (3.5)

where 𝒄𝑗 ∈ 𝑪 contains the expansion coefficients. By choosing an
(initially) small basis, approximated normal modes as input guess
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are obtained. The (compared to 𝑯) small Davidson matrix 𝑯̃ can
be constructed by

𝑯̃ = 𝑩⊤𝑯𝑩 = 𝑩⊤𝜮. (3.6)

The size of 𝑯̃ depends on the size of the chosen basis. As shown
in [246], 𝜮 can be obtained by numerically calculating the deriva-
tives of the electronic energy along the basis vectors 𝒃𝑗 using

𝜮 = 􏿰
𝜕
𝜕𝒃𝑗

􏿶
𝜕𝐸𝑒,𝑖
𝜕𝑟𝐴

􏿹􏿳
0
. (3.7)

By diagonalizing 𝑯̃ , 𝜆(𝑖) and 𝑪(𝑖) are obtained, where the index
(𝑖) denotes the iteration step of the algorithm. Thus, the normal
modes 𝑸(𝑖) as obtained in that iteration can be constructed. As
long as the desired convergence is not reached [249], this pro-
cess is repeated and new basis vectors are constructed using the
residuum vector 𝒓(𝑖)

𝒓(𝑖) = (𝑯 − 𝜆(𝑖))𝑸(𝑖). (3.8)

For more details regarding the convergence of the mode-tracking
algorithm, see [249].

For the calculation of IET spectra, we combine the mode-tracking
algorithm as implemented in MOVIPAC[243, 245, 246] with our
program package ARTAIOS [51, 75].

Our implementation of the IETS calculation into MOVIPAC is
schematically shown in Figure 3.2. First, the initial guess for the
modes of interest is generated by AKIRADEFINE. This can be, for
instance, a certain stretching mode or all Cartesian displacements
of a specific atom. We note that it is also possible to leave out this
step and to just calculate the whole spectrum. For the obtained
modes, the Green’s functions of the distorted structures are cal-
culated using ARTAIOS in a parallel fashion. This is done by the
SNFDC algorithm. Afterwards, the derivatives (Equation (3.2))
are calculated by the SNF algorithm, which calls ARTAIOS to cal-
culate the trace in Equation (3.3). These procedures are closely
related to the functionalities of the individual programs: The
calculation of the IETS intensity given in Equation (3.3) is for-
mally similar to the calculation of the zero-bias conductance in
Equation (3.1). The combination of ARTAIOS and AKIRA has
several advantages. First, MOVIPAC and consequently AKIRA is
highly parallelizable, while providing full restarting compatibil-
ities. Second, since MOVIPAC and ARTAIOS are meta-programs
which do not perform quantum chemical calculations on their
own but interface several electronic structure codes. Third, the
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Figure 3.2: Schematic repre-
sentation of our implementa-
tion for the IETS calculation.
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mode-tracking approach can drastically reduce computation time,
enabling the study of environmental effects or the influence of the
contact geometry on the IETS intensity of a vibrational mode and
thus the strength of the electron-vibration.

3.2 Comparison to Previous Experiments and
Calculations

In the last years, several groups have presented theoretical ap-
proaches to calculate IET spectra and compared them to experi-
mental findings. Some of the most extensively studied molecules
are oligophenylene-ethynylene (OPE), oligophenylene-vinylene
(OPV) and alkane(di)thiols such as hexadecane-thiol. First mea-
surements were performed by Kushmerick et al. in 2004 [251],
first-principles calculations of the spectra of these molecules were
done e.g. by Troisi & Ratner [64], Kula et al. [58] and Paulsson
et al. [60]. Paulsson et al. modeled the junction within periodic
boundaries. Troisi & Ratner (in their 2005 paper) and Kula et
al. used a very similar approach using non-periodic DFT calcula-
tions, but they differ in the way they treat the electrodes: The first
did not considered electrode-molecule interactions explicitly and
calculated the IETS for two chosen “gateway” orbitals, while the
latter simulated the IETS for different types of contact structures,
such as a gold chain or triangular contacts. Their findings show

40



3.2 Comparison to Previous Experiments and Calculations

that the IETS can be highly sensitive to the contact structure. Sev-
eral other publications focused on different alkane(di)thiols [252,
253], the effect of functional groups on the IETS of saturated
molecules [62], the effect of the electrode separation on the IETS
for a single OPE molecule [254] or the interplay between molec-
ular junctions showing interference features and inelastic effects
[255, 256].

To validate our implementation, we present calculations of the
IET spectra for OPE, OPV and several alkanedithiols. We com-
pare our findings to results by Kushmerick et al., Paulsson et al.,
Troisi and Ratner and Kula and Lua [58, 60, 64, 251]. To compare
the spectra, we did not apply our modetracking approach at this
point, but computed the full spectrum instead. The structures
of the dithiol molecules are optimized using Gaussian09 [175]
in combination with the B3LYP exchange-correlation functional
[157] and the LanL2DZ [176] or def2SVP [257, 258] basis set.
We chose these settings to be consistent to Kula and Luo [58]
(for the aromatic systems) and to [259]for the aliphatic ones. To
mimic the electrodes, the terminal hydrogen atoms are stripped
and small gold clusters consisting of three gold atoms are at-
tached with an Au-S distance of 2.85 Å as in Refs. [58, 62].
For the calculation of the vibrational modes, the same computa-
tional methods have been used as for the structure optimization.
The wide-band limit is applied to calculate the self-energies of the
electrodes, which should be suitable for our type of calculations
[260, 261], but it should be pointed out that ARTAIOS in prin-
ciple allows for descriptions of the self-energy beyond the wide-
band limit. The given intensities are calculated using expression
(3.3) and give the second derivative of the current with respect
to the applied voltage ( d2𝐼

d𝑉2 vs 𝑉) [247]. For OPE and OPV, we
calculated the IETS for 𝐸F = −0.14 a.u. = −3.81 eV as in [64].

The IET spectra for OPE (Figure 3.3, left) and OPV (Figure 3.3,
right) are dominated by only a few vibrations. For OPE, the most
dominant modes are the 𝜈C C (triple-bond stretching) mode
(2289 cm−1), the stretching of the aromatic rings/𝜈C C (double-
bond stretching) mode (1624.06 cm−1) and the 𝜈(CS)/𝜈(CC)
modes (1082 cm−1, 1154 cm−1). OPV (Figure 3.3, right) is lack-
ing the carbon-carbon triple-bond, thus the most intense modes
are the stretching of the aromatic rings (1620 cm−1), the 𝜈(CS)
mode (1086 cm−1) and the 𝜈(CC) mode (1214 cm−1). A combined
CC stretching and CH wagging mode at 1383 cm−1 can be found,
which is not present in OPE. In agreement with previous findings
concerning IETS propensity rules, out-of-plane and asymmetric
modes contribute only little to the IETS [262–264]: When com-
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Figure 3.3: Calculated
IET spectra for OPE (left)
and OPV (right) using
B3LYP/LANL2DZ. The lines
in blue represent the full
spectrum, the orange ones
show the 10 most intense
vibrations only.
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paring the asymmetric and the symmetric stretching mode of the
triple-CC bond in OPE, the IETS intensity differs by 6 orders of
magnitude. We note that the spectrum can well be reproduced
when only considering the 10 most intense normal modes, again
supporting the idea of calculating the IETS selectively for specific
modes. Aside from aromatic systems, we studied alkane-dithiols

Figure 3.4: IET spectra for
alkanedithiols C7 to C11, ob-
tained using B3LYP/def2SVP
in stick (orange) represen-
tation and broadened by
a gaussian broadening of
500 cm−1(blue).
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of different lengths (7 to 11 CH2 units, labeled as C7, C8, C9,
C10 and C11) and compare our findings with previous results.
All calculations were performed using B3LYP/def2SVP, and we
are again calculating the whole spectrum rather than a few se-
lected vibrations. As Fermi energy we choose 𝐸F = −3.26 eV as in
[62]. The obtained spectra are shown in Figure 3.4. For all spec-
tra, the following observations can be made: Stretching modes of
the carbon–carbon or the carbon-sulfur bonds show a major con-
tribution to the IETS. Additionally, wagging and twisting motions
of the CH2 group give rise to an IETS signal at 1400 cm−1, which
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increases with increasing length of the molecule.

Our findings agree with the experimental findings of Kushmer-
ick et al.[251] or calculations in [58, 60, 64, 259], but we note
that we assign some modes differently. For other cases, simi-
larities are more difficult to find. For example, the frequencies
and intensities calculated by Solomon et al.[265] for several alka-
nedithiols are not in total agreement, as in their spectra the CH2
wagging and twisting modes do not show a high intensity. Other
results [62, 259] also deviate from our findings. We attribute
this to the nature of IETS: As shown by Kula et al.[58], differ-
ent junction geometries can alter the IET spectrum fundamen-
tally. Frequency-wise well separated and thus easy distinguish-
able modes like the CC–double– or triple–bond–stretching vibra-
tions in aromatic molecules discussed above are missing, so the
effects of conformational differences are not so easily to separate
from, for example, employing a somewhat different theoretical
approach.

We conclude that our methodology is consistent with measured
and calculated IET spectra from the literature within the frames
of the introduced approximations. We also point out that for some
cases, the IET spectrum can be reproduced with just a few vibra-
tional modes.

3.3 Tracking Tunneling Pathways using IETS

To study the relationship between tunneling pathways and IET
spectra, we focus on three different molecular junctions, for which
in Lewis structures as shown in Figure 3.5. The first system is an
iron(II)porphyrin molecular junction with a CO and an imidazole
ligand in a low-spin ground state (Figure 3.5 a)). Such complexes
are of high interest for molecular electronics, as they show switch-
ing behavior [266–268]. This specific complex was studied in our
group before and it was found the the local currents obtained us-
ing ARTAIOS usually bypass the central iron atom and the ligands
for all energies, except for those close the energies of the iron 𝑑
orbitals [168]. Thus, we expect the IETS intensity of vibrational
modes of the ligands to be low, except for these energies.

The second system is a nitrile–substituted biphenyl junction (Fig-
ure 3.5 b)), which was already studied by Troisi & Ratner [262].
The vibrational modes of the nitrile groups are less decoupled
of the whole junction compared to the iron(II)porphyrin junc-
tion, but should be still differentiable in the frequency-domain.
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Figure 3.5: Lewis structures
of the molecules used to
study the relationship be-
tween tunneling pathways
and IET spectra.
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Last, we study a set of meta-substituted benzene/pyridine junc-
tions (Figure 3.5 c)). By the insertion of the nitrogen, tunneling
pathways can be altered, so the questions arises whether this can
be traced in the IET spectra of these systems. The three system
vary in a way the molecular vibrations of interest are coupled to
the whole system, thus representing a systematic approach.

3.3.1 Methods

All optimizations of the molecule’s structures were performed us-
ing Turbomole 6.6, Ahlrichts split-valence triple-𝜁 basis set with
polarization functions on all atoms (def2-TZVP) basis set and the
BP86 functional. The resolution-of-identity (RI) approximation
as implemented in Turbomole 6.6 was used [155, 156, 257, 258,
269–272]. The convergence criterion of the self‐consistent field
(SCF) algorithm was a change of energy below 10−8 Hartree. The
convergence criterion for the structure optimizations was a gra-
dient below 10−4 a.u.

To build a molecular junction, after the optimization the terminal
hydrogen of the terminal thiol groups are stripped and replaced
with small gold cluster (Au3). 2.85 Å was chosen for the sulfur-
gold distance. Using the obtained molecular junctions, transport
calculations have been performed using ARTAIOS in combination
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with Gaussian 09. The LanL2DZ basis set and B3LYP exchange–
correlation functional have been used [157, 175, 176]. As de-
scribed earlier, the wide–band limit has been used for the calcu-
lation of the Green’s function matrices of the electrodes.

For the analysis of the local transmissions through specific atoms,
the local transmission from atom 𝐴 to all other atoms was sum-
marized and normalized by the total transmission 𝑇(𝐸), as given
by

𝑇𝐴(𝐸) =
∑𝐵 |𝑇𝐴𝐵(𝐸)|

𝑇(𝐸) . (3.9)

This analysis can yield local atomic transmissions higher than the
total transmission, since it does not distinguish between local cur-
rents which contribute to the total transmission and e.g. ring cur-
rents.

The calculation of vibrational modes was performed using
MOVIPAC in combination with Turbomole 6.6, using the same
computational settings as for the structure optimization. Depend-
ing on the system either a full calculation of the Hessian ma-
trix was performed, or just specific vibrational modes were cal-
culated using the mode-tracking algorithm. Visualizations of se-
lected modes can be found in the Appendix, Section E.

Subsequent IETS calculation were performed as described in Sec-
tion 3.1, thus a combination of MOVIPAC and ARTAIOS together
with Gaussian 09. As computational settings, again the LanL2DZ
basis set and B3LYP exchange-correlation functional have been
chosen.

For some systems, a statistical analysis of the contribution of in-
dividual atoms to the IET was performed. This was done by sum-
marizing the displacement of each atom for all modes, multiplied
with the respective IETS intensity of the modes. This is given by

𝐶𝐴 =
𝑁𝑄

􏾜
𝛼
|𝑑𝐴,𝑄𝛼 |𝑊𝛼, (3.10)

where 𝐶𝐴 is the contribution to the IETS of atom 𝐴, |𝑑𝐴,𝑄𝛼 | is the
length of the displacement vector of a vibrational mode 𝛼 and 𝑊𝛼
the IETS intensity of that mode.

To artificially “tune” or change the tunneling pathways through a
molecule, the IETS here is evaluated at different 𝐸F. From a trans-
port calculation as performed in this thesis, the exact Fermi en-
ergy can not easily be obtained [177]. Established approaches are
to use the Fermi energy obtained from calculation on relatively
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large gold clusters or to take the middle of the HOMO/LUMO en-
ergies. Since the exact Fermi energy is not known, it is here used
as “quasi-free” parameter, which means we explore the tunnel-
ing pathways and IET spectra for probable Fermi energies and
compare those, but it should mentioned that this is not directly
possible in experiments.

3.3.2 Results and Discussion

Fe(II)Porphyrin

The results for the Fe(II)Porphyrin junction are summarized in
Figure 3.6. The local transmission analysis confirms previous re-
sults [168]: The local current are bypassing the central iron atom
via the organic backbone at most energies. This can be seen in the
plot of the local transmissions (Figure 3.6 a)) at 𝐸F = −5 eV and
also at the energy–resolved plot comparing the local transmis-
sions through a terminal sulfur and the iron atom (Figure 3.6 d)):
The normalized transmission through the sulfur atom is close to
one at all energies, since the electrons are entering an leaving the
system via the thiol groups. The transmission through the Fe (and
also the atoms of the coordinated CO) is much lower, but rises for
the resonance at 𝐸F ≃ −6 eV, which is also visualized by the plot
of the local currents in (Figure 3.6 b)).

The stretching mode of the CO ligands serves as a marker for
the transmission through the iron atom. The local transmissions
through the atoms of the CO following the transmission through
the iron atom. This directly translates to the IETS intensity of
that mode. Being low for most energies, the intensity rises by
more than two orders of magnitude when the electrons tunnel
via the central Fe atom.

Since this vibrational mode was calculated using the the mode–
tracking algorithm, it demonstrates also the advantage of the cho-
sen approach. Molecular junctions can be relatively large systems
because of the inclusion of the electrodes, which makes the cal-
culation of the full Hessian a rather time-costly approach. The
calculation of the CO stretching mode using AKIRA took only 6
single-point calculations.

This examples demonstrates how the IETS can be successfully
used to track the local current in a molecular junction, at least
for a system where the “tracer” vibrational mode is fairly decou-
pled from the whole system and localized. Situations, where the

46



3.3 Tracking Tunneling Pathways using IETS

100

T
ra

n
sm

is
si

on

c)

10−1

101

L
o
ca

l
T

ra
n

sm
is

si
on

s d) S

Fe

C

O

−7 −6 −5 −4

Energy [eV]

10−1

101

IE
T

S
in

t.
of
ν

(C
O

)

e)

−5 eV

−6 eV

a)

b)

Figure 3.6: Calculated local transmissions at a) −5 and b) −6 eV through the Fe(II)Porphyrin junction. c) shows
the transmission function d) the local transmission through selected atoms and c) IETS intensity of the CO
stretching mode for different 𝐸F. The IETS intensity of the stretching modes follows the local transmissions
through the associated atoms (Fe, C, O).
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Figure 3.7: Local trans-
missions through the CN-
substituted biphenyl junction
obtained at 𝐸F = −5 eV
top)and 𝐸F = −7.8 eV. At
the upper graph, the is no
preference of tunneling path-
ways through the benzene
subunits. At the lower graph,
the tunneling current prefers
the side of the subunits with
the CN groups.

molecular vibrations of a tracer group are more closely connected
to the backbone of the molecule are studied in the following.

CN-substituted Biphenyl

In Ref. [262], this CN-substituted biphenyl junction was already
investigated and the intensities of the CN stretching vibrations
were found to by low, suggesting that the tunneling current is
bypassing the the nitrile group. This can be shown analyzing the
local transmission through the corresponding atoms (Figure 3.7).

The top panel pf Figure 3.8 shows the total transmission, while
the middle panel shows the transmissions through the carbon and
nitrogen atom of one nitrile group, as well as the transmission
through a carbon atom of the central C C bond. The transmis-
sion through the central C C is nearly one all the time, while the
transmission through the atoms of the nitrile groups more than
one magnitude lower. This changes only at the resonance associ-
ated with destructive interference features. There, the contribu-
tion of the nitrile groups becomes comparable to the transmission
through the central carbon bond.

The IETS intensities of the stretching vibration of the central
C C bond (2209 cm−1) is for most energies, at which the spec-
trum is calculated, much higher than the intensity of the sym-
metric and asymmetric stretching vibration of the nitrile groups
(2242 cm−1 and 2241 cm−1). This is in agreement with expecta-
tions drawn from propensity rules [262, 273] and the local trans-
missions. Similar to the results obtained for Fe(II)porphyrin, this
changes when the the IETS is evaluated at energies close to in-
terference features (around 7.8 eV). There, the IETS intensity of
the nitrile groups becomes comparable or even higher than the
intensity of the central C C stretching mode.

A similar behavior can be observed at around −1.7 eV. In contrast
to the interference feature at 7.8 eV, the IETS intensities are de-
creased directly at the resonance, but again, in that energy range,
the IETS intensity as well as the local transmissions through the
respective atoms is increased.

For this system, the statistical analysis given in Equation (3.10)
is applied as well. Figure 3.9 shows the calculated values for 𝐶𝐴
obtained for calculations performed at different Fermi energies.

For all energies except 7.8 eV, there is a notable dip in the con-
tributions for the atoms of the nitrile groups. But this changes at
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Figure 3.8: Top: Transmission through the CN-substituted biphenyl junction. Middle: Local transmission
through a carbon atom of the central C C bond and through the atoms of a C N bond. Bottom: IETS inten-
sities for the stretching mode of the central C C bond as well as the symmetric and antisymmetric stretching
vibrations of the CN groups.

7.8 eV, where the calculated contribution becomes similar to the
other atoms. The low contribution of, e.g., the sulfur atoms in
this plot might be puzzling at first, but this can explained by the
wavenumbers of modes they are involved in: The analysis here
left out modes with wavenumbers below 500 cm−1, due to the in-
teraction of low-frequency modes and the gold clusters.

The statistical analysis confirms the results obtained analyzing
just selected vibrational modes in combination with the local
transmissions. In this system, the nitrile groups usually are not
within the tunneling path, and consequently are showing a low
IETS intensity. When the Fermi energy is artificially shifted close
to energies, where the transmission through functional groups is
higher, the IETS intensities are increased as well.

Meta–substituted Benzene/Pyridine Junctions

In the example above, the “tracer” vibrations are still relatively
localized, even though less than for the Fe(II)porphyrin system.
Still, the assumption regarding the relation of tunneling pathways
and IETS intensities still holds. In the following, meta-substituted
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Figure 3.9: Statistical analysis of the contribution of the individual atoms to the IETS spectrum, as given by
Equation (3.10). The legend gives the energies, for which the IET spectra have been calculated. At 𝐸F = −7.8 eV,
the relative contributions through the atoms of the nitrile groups are significantly higher.

benzene and pyridine junctions are studied. In such junctions,
the transmission is reduced due to destructive interference, but
it was shown before that inelastic interactions can be larger than
for examples without interference [186, 255, 256]. Figure 3.10
shows the structure, total transmission and transmissions through
an atom placed in the shorter and the longer path of the ring.

In the benzene junction, the shorter path is preferred over the
longer one at nearly all energies off resonance. But with the in-
sertion of the nitrogen into the lower path (second structure), the
transport can be “redirected” to the longer path for energies at
around −4 eV. This is reasonable close to a realistic estimates
of the Fermi energy (which is not easily to be determined us-
ing the chosen computational approach [177]). Thus, this can
be an example for which control over the tunneling path could
be achieved. Insertion of the nitrogen atom into the longer path
(third structure) mostly reestablish the tunneling preference of
the shorter path, except for energies around −6.2 eV. The follow-
ing analysis focuses on the second system.

Due to the localized nature of the vibrational modes, it is not pos-
sible to relate specific vibrations with the shorter or longer tunnel-
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Figure 3.10: Transmission and local transmission through the meta substituted benzene and pyridine junctions.

ing path. Thus, the statistical analysis given in Equation (3.10)
is applied. The resulting data is shown in Figure 3.11, alongside
with a plot of the local transmission at the energies, for which the
IET spectrum was evaluated.

The results are less clear than for the other systems. The is no
strong change in the ratios between the contributions for the ni-
trogen atom in the shorter path and the contribution of the carbon
atoms of the longer path. For 𝐸F = −3.5 eV, a slight drop of the
contributions of the nitrogen atom relatively to the contribution
of the carbon atom can be observed. This would be in line with
the local transmissions, but the effect is rather small and should
be considered with care.

3.3.3 Summary

Summarizing, we could show that the IETS intensities of specific
modes can act as a tracer for a tunneling path through molecular
junctions, but only if the relevant vibrations are not too delocal-
ized and do not couple to the rest of the molecule.

For the Fe(II)porphyrin, the CO adsorbed onto the central iron
atom acted as a tracer for tunneling current through the iron
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Figure 3.11: Top: The local transmissions for four different energies are displayed. The lower the energy, the
more the lower tunneling path is preferred, as already shown in Figure 3.10. Bottom: The statistical analysis
using Equation (3.10) shows no significant changes in the contribution of the individual atoms to the IETS.

atom, which occur at energies close to the iron’s d-orbital ener-
gies. For the CN-substituted biphenyl junction, the local current
through the nitrile groups as well es the intensity of their stretch-
ing modes is low compared to, e.g., the IETS intensity of the C C
stretching modes. Close to interference resonances, the local cur-
rent through the nitrile groups as well as their IETS intensities
increase, again demonstrating the relationship between tunnel-
ing pathways. For the third system, meta-substituted pyridine,
the relationship can not be established. The vibrations includ-
ing e.g. the nitrogen atom in the shorter tunneling path couple
too strongly the rest of the molecule, as that a direct connection
between the tunneling path and the IETS intensity of specific vi-
brational modes could be established.

The results reported here depend on the applied approximations,
as the partitioning of the transmission to atomic contributions to
obtained local transmissions. Situations, where the current do
not follow bonds have been reported [110] and would require
more flexible approaches [109, 241, 274] as used in this work.
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Figure 4.1: Visualization of a
QM/MM model.

4 Strategies for Multi-Scale
Approaches

4.1 Introduction

One obvious problem when investigating small, nanosized sys-
tems in an ab-initio or atomistic way are the size limitations of
the chosen approach. DFT can be used to describe a molecular
junction as discussed and utilized above, but already for the de-
scription of the electrodes, compromises have to be made. To be
able to capture the physics of macrosized samples without loosing
insight into the “nano dimension” and the underlying quantum
mechanical, several orders of magnitudes considering the system
size have to be spanned.

This “multiscale modeling” is especially important for going from
basic science to real-world applications [275, 276] and also for
shifting from a descriptive to a predictive approach. Usually this
is done by either incorporating physical regions which are treated
on a more complex level of theory into a simpler surrounding (em-
bedding) or by coarse-graining/parametrization, where a coarse-
grained model gets its parameters from a more detailed descrip-
tion [277–281].

An example for the first scenario are QM/MM approaches, where
a region described by DFT is embedded into a region which is
described by a classical force fields (QM/MM) [282–285] (Fig-
ure 4.1). This can be improved also by self-learning algorithms
or neural networks [286, 287]. Another example for embedding
is a solvated molecule which is described by DFT, while the sol-
vent is treated as a simple polarizable field instead of modeling
each solvent molecule explicitly.

Density-functional tight-binding (DFTB) approaches are an ex-
ample where results from a high-level calculation (DFT) are fed
into a coarse-grained or conceptually simpler model to be able to
describe larger systems [288, 289] (Figure 4.2). Calogero et al.
used this approach to model the currents induced by a gold tip in
huge graphene flakes, where the region where the gold tip and
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Figure 4.2: Information flow
in a coarse-grained model.
High-level calculation for a
smaller system yield parame-
ters for a calculation of a big-
ger system.

the graphene flakes interact are treated with DFT, while the rest
of the flake was treated on a tight-binding (TB) level-of-theory
[289].

In this work, the interaction of THz radiation with nanoparticle
films is studied, where the particles are linked by molecules. The
individual linker molecule between two particles can be studied
using ARTAIOS, but this neglects the specific interactions of the
electromagnetic wave with the particle film and also the AuNP
itself. It is highly complicated to tackle this problem completely
on a DFT level-of-theory (or similar), but it is important also for a
correct description of molecules and particles under illumination
of ultrashort optical, UV or X-ray pulses [290–292].

Modeling the interactions of THz radiation with the nanoparti-
cle film including the transport through the molecular junction
and, e.g., the polarization and field enhancement effects of the
AuNPs on a purely quantum mechanical basis is out of the scope
of this work. Instead, we choose the approach of adapting existing
models to describe the THz response of materials and add exten-
sions or parameters based on quantum mechanical calculations
of molecular junctions.

First, disregarding any interaction or molecules between the par-
ticles and disregarding the any size effects of the particles (thus
assuming a gold bulk), the response of metals in the THz regime
has been successfully modeled using the classical Drude model1
[1, 293].

Decreasing the thickness of a gold film will eventually lead to thin,
isolated gold islands, which starts to resemble a film of AuNPs.
The Drude model is at some point not able to describe this system
properly, since for DC or low-frequency conductivity is suppressed
due to the non-percolated structure of the film (Figure 4.3). To
accommodate for this, effective-medium theories (EMTs) could
in principle be used to describe a mixture of a metal and an in-
sulator. Interestingly, in Ref. [294] EMTs has been proven not
to be very good at describing the THz response, but the Drude-
Smith (DS) model performed much better. The DS model is a
phenomenological extension of the Drude model to incorporate
the quasi-DC/low frequency suppression (see also Chapter 6).

The DS model is criticized for being non–physical [295] but has
been established within the THz community simply due to the
fact that it is capable of describing a lot of results obtained for

1Different models to describe and understand the conductivity in the THz
range are presented in Section 6.5
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continuous film non-percolated filmelectric field

e−

e−

e−

e−

low frequency

high frequency

collision

Figure 4.3: Schematic repre-
sentation of conductivity re-
duction for low frequencies in
non-percolated structures. At
low frequencies, the explored
space by the electron is larger
than for high frequencies. If a
structure is smaller than this
space, the movement of the
electron is hindered and the
conductivity becomes lower.
At higher frequencies, the ex-
plored space is smaller, thus
size limitations or boundaries
do play a smaller role.

nanomaterials. More insight was obtained by MC simulations
performed by Němec et al. and Cocker et al. [8, 296]: Individ-
ual electrons were modeled as classical particles (as in the Drude
model) but placed inside a box, which acted as a reflective barrier
for the particles. Using this approach, they were able to reproduce
a behavior similar to the DS model but on a proper physical basis.
Calculations based on first-order pertubative quantum mechani-
cal approach yielded very comparable spectra [297–299]

In the following, the MC approach is adopted to first reproduce
the results obtained by Němec et al. and Cocker et al. [8, 296]
which yields a behavior similar to the DS model. Afterwards,
an energy-dependent transmission probability is introduced to
include the tunneling current through the molecular junctions
which connect the particles. The parameters are obtained using
the LB ansatz as implemented in ARTAIOS.

4.2 Monte Carlo Conductivity Simulation with
Perfectly Transmissive Boundaries

To model a system with perfectly transmissive boundaries, elec-
trons are initialized at a random position inside a box and with
a velocity 𝑣⃗ randomly chosen from a Gaussian distribution with
a mean of zero and 𝜎 = √𝑘𝐵𝑇/𝑚∗ (independently for the 𝑥 and
𝑦 components) as in [296]. As electron mass the effective mass
of electrons in thin gold films is chosen (𝑚∗ = 1𝑚e) [300]. The
scattering rate 𝜏, the size of the box or particle 𝑑 and the ampli-
tude 𝐸0 of the incident electromagnetic wave are free parameters.
The quality of the simulation depends on the time step 𝛥𝑡 (set to
0.1 fs), the number of timesteps (usually 1𝐸6) and the number
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Figure 4.5: Frequency-
resolved conductivity
obtained for different 𝜏
obtained with the MC
simulation. All curves are
normalized. On the left
size, plots of 𝜎 using the
Drude formula and the same
scattering times are shown.
The MC simulation are in a
very good agreement with
the analytical solution. The
simulation was performed
with 𝑇 = 0K, 100 electrons
and 1𝐸6 time steps.
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Figure 4.4: Influence of the
temperature on the MC sim-
ulations. Increasing the tem-
perature leads to more noise.
The curves are shifted with
respect to each other in along
the y axis for visibility.

of electrons. The temperature also effects the noise and thus the
quality of the simulation, as shown in the Figure 4.4.

To obtain the frequency resolved conductivity, at each time step
𝑛 the particles are classically propagated by

𝒙𝑛 = 𝒙𝑛−1 + 𝒗𝑛𝛥𝑡 (4.1)

with 𝒗𝑛 = 𝒗𝑛−1 +
𝑒𝛥𝑡
𝑚∗ 𝑬0 cos (2π𝜈𝑛𝛥𝑡) . (4.2)

This is performed for different frequencies 𝜈 of the electromag-
netic wave depending on the frequency range of interest. The
field has only a nonzero x-component, so any velocity in y-
direction is due to scattering. When a particle is scattered with
the probability 1/𝜏, its velocity is re-initialized according to the
temperature. When a particle reaches the boundary of the box, it
is shifted to the other side of the box while preserving its velocity.
This effectively creates periodic boundaries and emulates a bulk
material.

The conductivity is obtained by using the ratio of the Fourier
transformations of the electrons speed and the electric field
[296]

𝜎(𝜔) = 𝑗(𝜔)
𝐸(𝜔) =

ℱ 𝑗(𝑡)
ℱ 𝐸(𝑡) (4.3)

=
∑𝑛 𝑣𝑛ei𝜔2𝜋𝑛𝛥𝑡𝛥𝑡
∑𝑛 𝐸𝑛ei𝜔2𝜋𝑛𝛥𝑡𝛥𝑡. (4.4)

In Figure 4.5, the effect of different scattering times 𝜏 is demon-
strated. The graph shows the results from the MC simulation as
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well as the conductivities calculated with the Drude model. The
simualted frequency-resolved conductivities resemble directly the
curves obtained with the Drude model. This demonstrates that
the MC simulation is able to capture the correct physics and re-
sponse to the electromagnetic wave.

4.3 Monte Carlo Conductivity Simulation with
Perfectly Reflective Boundaries

Similar to the work in [296], now a box with reflective boundaries
is simulated. If an electron reaches the boundaries of the box, it
is reflected by changing the sign of the corresponding entry of
the velocity vector. The rest of the simulation is performed as
before.

When the box size is reduced, at some point the confinement
starts to play a role and a suppression of the quasi-DC current
can be observed. This is happening when the distance the elec-
trons travel becomes comparable to the dimensions of the box.
Thus, this effect should depend on the boxsize and the amplitude
of the incident electromagnetic radiation.

Figure 4.6 shows the obtained complex conductivity for differ-
ent box sizes. Depending on the ratio of the box size (and the
amplitude of the electromagnetic wave), a suppression of the DC
current can be observed. Similar to the DS model, a negative Dip
in the imaginary part of the conductivity can be observed if the
DC suppression is more than 75 %.
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Figure 4.6: MC simulation
for different box sizes 𝑑 from
1 × 10−5 m to 1 × 10−12 m and
𝜏 = 30 × 10−15 s. All curves
are normalized to the original
(unaffected by the box size)
DC conductivity. Fits using
the DS model (dashed lines in
lower panel) to the imaginary
part give a reasonable agree-
ment, but the behavior of the
real part can not be captured.
Fits of the real part tend to fail
at the description of the lower
frequencies.
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Fitting the curves using the DS model unveil its problems repro-
ducing the low-frequency behavior fully (see Figure 4.6, lower
panels). This was also described by Cocker et al. [296], who
have proposed a modified DS model, which shape resembles the
curve obtained by the MC simulations. The results also depend on
whether the DS model is fitted against the real, the imaginary or
both parts. Fitting the DS model to the imaginary parts obtained
from the MC simulation can give reasonable fits for the imaginary
part when the quasi–DC current is completely suppressed. In the
intermediate regime, no satisfying fits can be obtained.

The suppression of the (real) conductivity for low frequencies is
affected by the temperature and the scattering time 𝜏. Shorter
scattering times reduce the mean free path and thus the space,
which is explored by the electron. This leads to a later onset for
the quasi-DC conductivity suppression when decreasing the box-
size, as shown in Figure 4.7.

Figure 4.7: Influence of box
size and scattering time 𝜏 on
the conductivity. A shorter
scattering time implies a
shorter mean free path be-
tween two scattering events.
Thus, an electron travels
less far if scattering time is
shorter, therefor the confine-
ment of the movements of the
electrons happens at smaller
box sizes.
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4.4 Modeling Partially Transmissive Boundaries

To introduce partially transmissive boundaries, the simulation is
extended by introducing a transmission probability 𝑡 of the bar-
riers. For 𝑡 = 1, the periodic system in Section 4.2 is obtained,
for 𝑡 = 0 the situation in the previous section. Even though the
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simulation is performed for classical particles, this adopts the ef-
fect of non-classical transport effects like tunneling or hopping
between the particles. One way to parameterize 𝑡 would, e.g., a
Simmons model for the tunneling through a vacuum gap [301]
with a certain width, corresponding to the distance between the
particles.

Simulations performed for electron in a partially transmissive box
show, that the introduction of a nonzero transmission probability
quickly restores the quasi-DC conductivity. This effectively cre-
ates a “plateau” at the region where the conductivity suppression
would take place if 𝑡 = 0 (Figure 4.8). For bigger particles (here
𝑑 = 10µm), the effect is not noticeable, but for smaller particles
(𝑑 = 1, 0.1nm)), where the localization effect can be seen, the DC
conductivity scales with the transmission probability.
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Figure 4.8: Restoration of
the quasi-DC current through
partially reflective bound-
aries. For an extended box
without any size restrictions,
the shape of the conductivity
resembles the Drude model.
When the box is shrank to
sizes affecting the quasi-DC
mobility, increasing the
transmission probability in-
creases the quasi-DC current.
Higher frequencies are not
affected by this, since the
mean distance traveled by
the electrons becomes shorter
than the box size.

To emulate an energy dependence of the transmission probabil-
ity of the barriers, we employ the Breit-Wigner formula (Equa-
tion (2.10)) to calculate the transmission 𝑇(𝐸).

By choosing appropriate numbers for 𝜖𝑖 and 𝛤𝑖, the effect of a low
or good conducting junction can be emulated. This can, e.g., be
done by fitting the Breit-Wigner model to a transmission func-
tion obtained with the NEGF+DFT approach, as shown in Sec-
tion 2.3.

If an electron hits the boundary, the transmission probability is
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evaluated according to its speed (and thus kinetic energy) and the
formula given above. In Figure 4.9, the effect of an increasing en-
ergy separation between two energy levels is explored. The effect
is very much similar to the simulations with the simple partially–
reflecting border, which are represented by the dashed lines in the
Figure. The value for the transmission probability was obtained
by taking the zero-bias conductance of the above model.

Figure 4.9: Conductivity
obtained from a MC simula-
tion with energy-dependent
partially-reflective bound-
aries. The different energies
for 𝜖𝑖 are given in the legend.
𝜏 was set to 10 fs, the boxsize
is 10 nm, the amplitude of
the electromagnetic wave
is 1E6 and a 𝛤 of 0.01 was
chosen.
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The conductivity curves obtained from simulations seem to be
identical with or without energy-dependent transmission. The
reason behind this is, that the electron does not reach energies
high enough, so that the transmission probability changes signif-
icantly from 𝑇(𝐸F). This is also due the limitations of this ap-
proach. The Drude model assumes that all electrons participate
in charge transport, with a relatively low resulting drift velocity.
In reality, transport is provided by only a few electrons close the
Fermi edge, but with a high velocity: The Fermi velocity for gold
is around 1.4 × 106 m s−1 [147].

Still, this enables to simulate the THz conductivity of particles
which are connected by realistic molecular linkers. As they
are used later in the experimental part of this thesis, nonane-
1,9-dithiol (NON), biphenyl-4,4′-dithiol (BI) and p-terphenyl-
4,4″-dithiol (TER) are chosen as examples. The transmission
function is calculated using the NEGF+DFT approach as im-
plemented in ARTAIOS. The structure optimization of the iso-
lated molecules (NON, BI and TER) was performed using Turbo-
mole 6.6, Ahlrichts split-valence triple-𝜁 basis set with polariza-
tion functions on all atoms (def2-TZVP) basis set and the BP86
functional . We used the resolution-of-identity (RI) approxima-
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tion as implemented in Turbomole 6.6 [155, 156, 257, 258, 269–
272]. The convergence criterion of the self‐consistent field (SCF)
algorithm was a change of energy below 10−8 Hartree. The con-
vergence criterion for the structure optimizations was a gradi-
ent below 10−4 a.u. Transport calculations were performed using
Gaussian 09, the LanL2DZ basis set with the B3LYP functional
[157, 175, 176]. To mimic the gold electrodes, Au9 clusters were
attached to the molecule with a Au-S distance of 2.85 Å while
removing the terminal hydrogen atoms. As determined above,
the full energy-dependence of the transmission function is not
needed, so the transmission probability at the Fermi energy can
directly be used. As described above, the exact Fermi energy is
not known for our systems. Here, the energetic middle between
the frontier orbitals is chosen.

The obtained transmission functions, current-voltage curves and
THz conductivities are shown in Figure 4.10. The transmission
probabilities of the different molecules leads to different quasi-
DC conductivities. The rest of the conductivity is dominated by
the scattering. If the scattering is decreased, the mean free path
is decreased and the boundary effects become less visible, thus
also the effect of transmissive boundaries.

4.5 Summary

This chapter explores the THz conductivity of extended and small
systems using numerical MC simulations. The chosen approach
is based on work by Cocker et al. [296], who tried to understand
the lineshapes of the rather unphysical DS model using this clas-
sical, numerical approach. This is performed by simulating the
propagation of electrons interacting with a classic electric time-
dependent field, while having - among others - the scattering rate,
the size of the simulation box and the transmission of the box bar-
riers as free parameters. If the boundaries of the box are perfectly
transmissive, a periodic system is created which behaves perfectly
like the classical Drude model. Suppression of the low-frequency
conductivity can be observed when the boundaries become more
reflective and the size of the box is in the order of the mean free
path of the electrons. The addition of energy-dependent transmis-
sion probabilities for the boundaries based on the LB approach
can be approximated by feeding 𝑇(𝐸F) into the simulation as a
energy-independent transmission probability.
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Figure 4.10: Transmission functions, current-voltage curves and THz conductivities for 10 nm sized particles
with transmission probabilities obtained from the transmission functions. At the top, the transmission function
and the current calculated with ARTAIOS is shown. The dashed line in the first panel visualizes the Fermi
energy, at which the current is evaluated. The different transmission probabilities yield different low-frequency
conductivities using the MC simulation, but this depends on the scattering time.

62



Part II

Terahertz Spectroscopy

63





15 The term “THz spec-
troscopy” is used here to de-
scribe terahertz time-domain
spectroscopy (THz-TDS)
as well as optical-pump-
terahertz-probe spectroscopy
(OPTP spectroscopy).
OPTP spectroscopy is
sometimes also called
TRTS - time-resolved THz
spectroscopy.

5 The Design and Principles of a
Terahertz Spectrometer

5.1 An Introduction to Terahertz Spectroscopy

Terahertz time-domain spectroscopy (THz-TDS) has been es-
tablished in the last years as a powerful tool to study the
(photo)conductivity, intraband transitions or vibrations for vari-
ous systems, with the possibility to access picosecond timescales.
THz spectroscopy15 refers to methods which use THz radiation
from 0.1 THz up to several tenths of THz, usually generated from
by fs laser pulses.

These frequencies have long been difficult to access (also known
as “terahertz gap” [302]) since electronic measures cannot be
used easily to generate such high frequencies and optical fail as
well, since the energy of THz radiation is below room temperature
(~6.045 THz). With the commercial spread of fs laser systems,
e.g. non-linear optical effects can be used to generate and detect
THz radiation, thus enabling access to the THz range for spectro-
scopic techniques. One remarkable feature of THz spectroscopy
is the ability to measure the oscillating electric field instead of the
intensity of the THz field when using schemes like electro-optical
sampling [303–305]. This allows for the extraction of material
quantities such as the refractive index 𝑛̃,

𝑛̃ = 𝑛1 + 𝑛2i (5.1)
↔ ̃𝜖𝑟 = 𝜖𝑟,1 + 𝜖𝑟,2i (5.2)
↔ 𝜎̃ = 𝜎1 + 𝜎2i, (5.3)

or in a similar way the complex conductivity 𝜎̃ or relative per-
mittivity ̃𝜖𝑟 without the use of the Kramers–Kronig relation. The
THz frequency range is of high interest, as it provides access to
the dielectric response of materials as well as the conductivity,
thus bridging the fields of electrical engineering and optics. This
can also be understood by looking at the relative permittivity or
dielectric function 𝜖𝑟 of a material [304]

̃𝜖𝑟(𝜔) = ̃𝜖𝑏 + i 𝜎̃(𝜔)𝜔𝜖0
, (5.4)
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with ̃𝜖𝑏 as the response of bound carriers or also lattice vibra-
tions and 𝜎̃/𝜔𝜖0 as the response of free carriers (e.g. electrical
conductivity). Which part dominates ̃𝜖𝑟 depends on the angu-
lar frequency 𝜔 of the incident electromagnetic radiation. Con-
ventional conductivity experiments probe the response of free
charges, since ̃𝜖r ≪ 𝜎̃/𝜔𝜖0 (𝜔 → 0). For optical or infrared
experiments, the response of materials is dominated by ̃𝜖𝑏. The
THz regime resembles a transition area from a purely electric to
a purely dielectric response [304].

Thus, by analyzing a materials response to THz radiation it is pos-
sible to extract the bound carrier response ̃𝜖𝑏. From this we can
then deduct the vibrational footprint of the material which gives
access to lower-energetic vibrations as usually accessible via in-
frared spectrosopy. This can be used to study biological systems
like amino acids and peptides [305–313] to e.g. obtain struc-
tural information or to detect drugs or explosives [314–316]. It
can also be used or resolve the chemical composition of materials
[317–320], which is for instance of interest for pharmaceutical
applications.

To obtain properties of the (quasi) free charges 𝜎̃/𝜔𝜖0 (second
term in Equation (5.4)), THz can be employed to study metallic
systems or doped semiconductors [294, 321–324]. In combina-
tion with a pump-probe excitation scheme it is possible to investi-
gate the behavior of photoexcited charges [97–99, 325–329]. As
described in the introduction, THz spectroscopy can be combined
with scanning–probe setups to unite the high spatial resolution
of a tip with the temporal resolution of a THz pulse to study e.g.
tunneling currents [100, 101, 330].

In recent years more elaborate THz experiments have been per-
formed to study - among others - the interfacial electron transport
[331] or ultrafast magnetization/spin dynamics [332–334]. Ad-
ditionally, chip–based electron–accelerators using THz radiation
have been demonstrated [335, 336].

In this chapter, the general layout of a THz spectrometer as well
as the layout of the setup used in this thesis is presented. THz
generation and detection using ZnTe crystals will be discussed.
The chapter afterwards discusses the interaction of the THz beam
with layered samples theoretically, together with the most com-
mon models to interpret the results. The data extraction routine
and its implementation in the python library DUODECIM will be
presented with a discussion of details like the phase unwrapping
problem.
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5.2 Design of a Terahertz Spectrometer

The design principles of THz spectrometer have been extensively
discussed in reviews or books [305, 337–340]. Details regarding
THz spectroscopy of semiconducting materials have e.g. been re-
viewed in Refs. [97, 341]. High-power THz sources have been
recently discussed by Fülöp et al. [342]. Data extraction and in-
terpretation routines (which will be discussed in the next chap-
ter) have been reviewed by James Lloyd-Hughes & Tae-In Jeon
for bulk and nanomaterials [295]. The number of books on the
topic has substantially increased in the last years [302–304, 343–
347].

5.2 Design of a Terahertz Spectrometer

A THz spectrometer, as shown in Figure 5.1, can be divided into
three parts: Generation of the THz radiation, interaction area of
THz radiation with the sample and the detection and reconstruc-
tion of the beam with the detection scheme. Before discussing the
generation and detection in detail, some general aspects will be
covered.

Spectrometers working in the THz frequency range are usually
designed as time–domain spectrometers [302, 304, 305, 326,
344]. Detectors in the visible range use a detection pattern in the
frequency–domain by using a grating, which maps the different
wavelengths on a CCD. THz spectroscopy measures the signal in
the time–domain, which can be easily converted to the frequency–
domain by a Fourier transformation [304].

THz radiation can be generated by various techniques, for exam-
ple by a short-lived current over a photoexcited semiconductor
junction (also called optical switch), cherenkov-like radiation in
LiNbO3 crystals, optical rectification in ZnTe, frequency mixing
in GaSe or air-plasma [304, 337, 338, 342, 347, 348]. All these
methods differ in their complexity, generated power or resulting
frequency range (Figure 5.2). Here, optical rectification in ZnTe
will be used and discussed in detail below.

To guide and focus THz radiation it is difficult to use lenses, since
not that many materials exist which combine low losses, moder-
ately high refractive index and low dispersion in the THz range.
Commercial THz lenses are usually made of silicon, polytetraflu-
oroethylene (PTFE) or TPX (polymethylpentene). Silicon lenses
are used to collect THz radiation directly after a emitter, but are
not suited to collimate or focus an expanded beam. PTFE and
TPX are used in commercial systems to focus and collimate THz
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Laser

sample

generation
crystal (ZnTe)

detection
crystal (ZnTe)

𝛥𝑡𝛥𝜏

𝜆/4 plate

Wollaston
prism

OPA

detector

Figure 5.1: General layout of a THz spectrometer. A beam provided by a Ti:Sa laser (800 nm) is focused on
a ZnTe crystals, which generates THz radiation by optical rectification. The crystal is placed in the focal point
of the first parabolic mirror, which collimates the THz beam. The second mirror focuses the beam on the
sample. The sample can be excited by a pump beam of arbitrary wavelength (displayed as the dashed blue line,
wavelength provided by the optical parametric amplifier (OPA)) for performing OPTP spectroscopy experiments.
The temporal overlap between the THz and the pump beam 𝛥𝜏 is controlled by a mechnical delay stage. The
third mirror collimates the beam again, the fourth focuses it into a second ZnTe crystal, where it is overlapped
with the detection beam (800 nm). The temporal overlap between the THz and detection beam 𝛥𝑡 is controlled
by a second delay stage. The electric field of the THz pulse changes the polarization of the detection beam. After
the detection beam has passed the crystal, its polarization is measured with a combination of a 𝜆/4 plate and a
Wollaston prism which splits the optical beam into two beams with perpendicular polarization. The intensity
of the two polarizations is measured with a balanced photodetector. Not included in this picture is the lock-in
detection with the chopper in the generation and pump beams.
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5.2 Design of a Terahertz Spectrometer

Figure 5.2: Overview of power and frequency range reported for different THz generation schemes. Figure
taken from Fülöp, J. A. et al. Laser-Driven Strong-Field Terahertz Sources. Advanced Optical Materials, 1900681
(Dec. 2019), CC-BY. Please refer to the orginal paper for the references given in the figure. OR refers to optical
rectification, DFG to difference–frequency generation.

effective focal length

THz beam

focus

Figure 5.3: Beam path in a
off-axis parabolic mirror.

beams. They have similar refractive indices in the THz range (1.4-
1.5) combined with a low dispersion and absorption. The rela-
tively low refractive index makes short focal lengths challenging
to obtain.

As an alternative, parabolic off-axis mirrors (Figure 5.3) have
been established [344], since their ability to focus and collimate
is free of dispersion. Even though the alignment is more challeng-
ing than alignment of transmission lenses, they offer an easy way
to overlap the THz beam with an optical laser beam in a collinear
fashion. This is done by drilling a small hole into the center of
the mirror.

Since the duration of THz pulses is in the order of picoseconds,
one has to find a detector which can resolve these small time
scales. These fast dynamics are challenging to detect with purely
electric detectors. Usually, this is overcome by either using the
Pockels effects, where the THz field changes the polarization of
an optical pulse or by using antennas, where the THz pulse cre-
ates a current over a photoexcited semiconductor junction [304].
In both cases, the necessary time resolution is provided by the
optical detection beam, which acts as an optical gating. The gat-
ing pulse duration is in the order of some tenths of femtoseconds,
thus allowing for time-resolved measurements.
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5 The Design and Principles of a Terahertz Spectrometer

5.3 Terahertz Generation using Optical
Rectification

In this work, THz radiation produced by optical rectification in a
<110>-cut ZnTe crystal was used. The advantages of using this
generation scheme are the alignment tolerances and the broad
frequency range of the generated THz pulse. The spectrum is
usually dominated by lower frequencies [303]. Optical rectifica-
tion is a second–order nonlinear effect, that generates quasi-static
polarization 𝑃 by an electromagnetic wave 𝐸 = 𝐸0ei𝜔𝑡 in a crystal
[303]. The induced polarization is given by

𝑃(𝑡) = 𝜖0 􏿮𝜒(1)𝐸(𝑡) + 𝜒(2)𝐸2(𝑡) + 𝜒(3)𝐸3(𝑡) + … 􏿱 (5.5)

with 𝜒(𝑛) as the n-th order susceptibility and 𝐸(𝑡) = 𝐸0(𝑡)e−i𝜔𝑡

as the electric field of the laser pulse. 𝐸0(𝑡) represents the time-
varying envelope of the pulse. Since fs laser pulse contains more
than one frequency 𝜔, for the electric field, which enters Equa-
tion (5.5),

𝐸(𝑡) = 𝐸0,1(𝑡)e−i𝜔1𝑡 + 𝐸0,2(𝑡)e−i𝜔2𝑡 + 𝑐.𝑐. (5.6)

can be written. 𝑐.𝑐. denotes the complex conjugate. For the
second–order term 𝑃(2)(𝑡) = 𝜖0𝜒(2)𝐸2(𝑡), now

𝑃(2)(𝑡) = 𝜖0𝜒(2)[𝐸20,1e−i2𝜔1𝑡 + 𝐸20,2e−i2𝜔2𝑡 (5.7)
+ 2𝐸0,1𝐸0,2e−i𝑡(𝜔1+𝜔2) (5.8)
+ 2𝐸0,1𝐸0,2e−i𝑡(𝜔1−𝜔2) (5.9)
+ 2𝐸0,1𝐸∗0,1 + 2𝐸0,2𝐸∗0,2 + 𝑐.𝑐.] (5.10)

is obtained [122]. The first line represents the second–harmonic
generation process, the second line the sum–frequency genera-
tion and the third line the difference–frequency generation (DFG).
Optical rectification corresponds to the special case when 𝜔1 =
𝜔2, thus the DFG term becomes static. But for a laser pulse with
a time-varying intensity 𝐸0(𝑡) = 𝐸0e−2𝑎𝑡

2 , a time-varying polariza-
tion

|𝑃| ∝ |𝐸0|2, (5.11)
∝ 𝐸2

0e−2𝑎𝑡
2 (5.12)

is obtained. This is shown in Figure 5.4. The change of the po-
larization therefor follows the envelope of the fs laser pulse. This
change is effectively a current, which generates electro–magnetic
radiation in the THz regime [303].
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Sampling
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Figure 5.4: THz generation
using optical rectification in
ZnTe obtained with an arbi-
trary puls. The optical pulse
induces a polarization in the
crystal. The change of the po-
larization generates the THz
pulse, its spectrum can be
seen in the right panel. The
data plotted here was ob-
tained using an optical pulse
of arbitrary frequency and a
pulsewidth of 50 fs.

The longer the optical pulse travels in phase with the THz pulse
inside the crystal, the higher the intensity of the resulting beam,
since more and more THz radiation is generated. The different
frequencies of the THz pulse as well as the optical pulse will, how-
ever, experience dispersion and propagate at different velocities.
This will lead to destructive interference of the generated THz
radiation, limiting the thickness of the generation crystal. Using
800 nm laser pulses as provided by Ti:Sa oscillators, this condi-
tion can be satisfied using ZnTe crystals, for which THz generation
lengths of above a millimeter can be used [303, 349]. The choice
of the crystal thickness is always a trade-off between bandwidth
and intensity. A thicker crystal leads to a more intense THz pulse,
but decreases the intensity of higher frequencies due to destruc-
tive interference. Optimization of the phase matching conditions
can easily be obtained by rotating the crystal.

5.4 Detection of Terahertz Radiation using
Electro-Optical Sampling

The most common technique to detect a THz pulse is to use a
second read-out pulse 𝐸optical(𝑡) to scan the THz by changing the
temporal delay 𝛥𝑡 between the two beams. The measured signal
is a convolution of the electric field of the (unknown) THz pulse
and the read-out pulse [305],

𝑆(𝑡) ∝ 𝐸optical(𝑡) ⊛ 𝐸THz(𝑡). (5.13)

Since the duration of the optical pulse (usually < 100 fs) is much
shorter than the THz pulse ≃ 1 − 5 ps, the optical pulse can be
approximated by a delta function. The convolution in Equa-
tion (5.13) can be simplified and the measured signal 𝑆(𝑡) is di-
rectly proportional to 𝐸THz(𝑡).

71



5 The Design and Principles of a Terahertz Spectrometer

Figure 5.5: Electro-optical
sampling of a THz pulse
(black) using a fs optical
pulse (orange). The timing
between the two beams is
changed and the polarization
of the optical beam after the
detection crystal is measured.

𝛥𝑡 Polarization reconstructed pulse

probe
pulse

THz
pulse

As already depicted in Figure 5.1, scanning of the THz pulse is
done using an optical delay line or delay stage. This maps the
problem of the temporal resolution to the spatial precision of the
delay stage. A 10 fs step 𝛥𝑡 translates to ≃ 1.5µm delay stage
displacement. The whole scanned time window is given by 𝑇 =
𝑁𝛥𝑡 (with 𝑁 as the number of steps), which results in a frequency
resolution of 𝛥𝜈 = 1/𝑇 and a maximal frequency 𝜈max = 1/𝛥𝑡.

When the THz passes through a ZnTe (or other non-
centrosymmetric crystals such as GaP), it changes or modifies the
birefringence of the crystal [304]. Thus, the polarization of an
optical beam is altered when being overlapped in space and time
with the THz pulse. This change of polarization of the optical
read-out pulse can be measured. This is usually done by insert-
ing a quarter-wave plate in the detection beam after the detec-
tion crystal. This changes the linear polarization to circular. A
Wollaston prism can be used to split the beam according the the
polarization into two linearly polarized beams with perpendicu-
lar polarization [303–305]. The intensity of these two beams can
be measured using a pair of balanced photodiodes. This is usu-
ally done with a lock-in amplifier, where the lock-in frequency
is set by a chopper, which chops the THz generation. Thus, the
measured signal is the difference of the polarization of the optical
pulse with and without induced change of polarization due to the
THz beam. In that the way, the electric field inside the crystal can
be reconstructed.

This idea is illustrated in Figure 5.5. As already mentioned, us-
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5.5 Some Comments to the Setup Used in this Work

ing electro-optical sampling the field, not the intensity of the
THz pulse can be reconstructed, since the the induced birefrin-
gence is proportional to the field, not the intensity. Similar to the
generation using non-linear effects, the detection performance is
affected by the dispersion the different pulses experience while
passing through the crystal. Shorter crystals improve the detected
frequency range, but decrease the measured signal [349].
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Figure 5.6: Exemplary THz
pulse obtained using electro-
optical sampling. The ar-
rows mark echos of the main
pulse generated in the gener-
ation/detection crystals.

Figure 5.6 shows an exemplary THz pulse. The main pulse is fol-
lowed by smaller pulses, which are echos from internal reflections
of the different object in the beam path, here the detection and
generation crystals of the setup.

5.5 Some Comments to the Setup Used in this
Work

The THz setup used in this thesis is seeded by a Spectra-Physics
Spitfire Ace system (2 × 3W, 35 fs). During the course of the the-
sis, the system underwent several changes and redesigns, e.g. the
generation of THz was changed from focusing the optical beam
on a ZnTe crystal to a non-focused THz generation in a large ZnTe
slab. This was performed with the intention to increase the THz
beam power, while decreasing the frequency range. Bare gold off-
axis parabolic mirrors from Edmund Optics were used to guide
the THz beam. As balanced photodetectors, the Newport Nir-
vana balanced optical receiver was chosen, the lock-in detection
scheme was realized using a National Instruments data acquisi-
tion card together with a ThorLabs chopper. The whole system
was controlled by self-written Labview programs, first written by
Dr. Shekhar Priyadarshi, later rewritten by the author of this the-
sis.

When performing OPTP spectroscopy measurements, the optical
excitation wavelength is generated by a TOPAS/NirUVVis OPA.
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5 The Design and Principles of a Terahertz Spectrometer

The excitation power can be controlled by variable neutral density
filter and a 𝜆/2 waveplate in a motorized rotating mount together
with a polarizing beam splitter.

Assuming a complete realignment is necessary for the setup, the
procedure was usually as follows. First, the optical path length
was calculated for the generation, detection and optical pump and
adjusted to assure a temporal overlap in the sample (for the opti-
cal pump) and the detection crystal. Then, the optical beams were
aligned with the use of irises as perfectly straight lines. Then, the
first mirror pair to collimate and focus the THz beam on the sam-
ple is inserted. A first rough alignment is performed to obtain a
spot at the sample again, then a diffuser is inserted at the posi-
tion where the generation crystal is supposed to got. The scat-
tered light is used to optimize the light path to the sample. The
same procedure is repeated for the second mirror pair, which col-
limates the THz beam after the sample and focuses it on the detec-
tion crystal. Fine alignments like to optimize the overlap and the
beam path into the balanced photodiodes were performed while
monitoring the THz pulse shape in the computer.

Since the laser performance, the setup and the detailed alignment
changed during the thesis, the shape and spectra of the THz pulses
shown here can be quite different from each other.
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16 In this section, complex
quantities such as the refrac-
tive index 𝑛 will not be la-
beled using the tilde. Where
just the real or imaginary part
is used it will be addressed or
the notation 𝑎 = 𝑎1 + 𝑎2i will
be used.

𝐻(𝜔) 𝑛(𝜔)

approximations/
minimization

Figure 6.1: Extraction of
physical parameters such as
the refractive index from the
transfer function using ap-
proximations and minimiza-
tion algorithms.

6 Parameter Extraction and
Interpretation

THz measurements provide the time-dependent electric fields of
a pulse, which has passed through a sample of interest, and a
reference pulse. Using the Fourier transformation ℱ , these can
be converted to a spectrum

𝐸ref(𝑡)
ℱ−−→ 𝑆ref(𝜔), (6.1)

𝐸sample(𝑡)
ℱ−−→ 𝑆sample(𝜔). (6.2)

From these, the so-called transfer function 𝐻(𝜔) can be con-
structed as

𝐻(𝜔) =
𝑆sample(𝜔)
𝑆ref(𝜔)

. (6.3)

This transfer function contains all information about the elements
in the beam path which affect the propagation of the THz pulse
of the sample measurement in comparison to the reference mea-
surement. It is a complex function16 and can be also expressed in
polar form by

𝐻(𝜔) = |𝐻(𝜔)|ei𝜙(𝜔), (6.4)

where 𝜙 is the phase angle of 𝐻. To obtain parameters of interest
like the refractive index or complex conductivity from the transfer
function, an appropriate model for the beam propagation through
the sample has to be applied. The complexity of this function
can rise substantially depending on number of layers in the sam-
ple, the number of multiple reflections and other factors. In most
cases, this leads to a non-invertible expression. Thus, the param-
eters of interest can not be directly calculated from the transfer
function. To overcome this problem, approximations can be in-
troduced or numerical schemes have to be employed (Figure 6.1),
where an algorithm “tests” a transfer function calculated from a
guessed refractive index against the measured transfer function
[350–354]. These extraction routines are not straight-forward
and hold many pitfalls.
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17 This is only possible
for optically thick samples,
where the internal reflec-
tions do not overlap with the
original pulse.

The obtained frequency-dependent values for the refractive in-
dex or the conductivity are usually analyzed by means of simpler
physical models, which give access to physical parameters like
scattering times or carrier concentrations. Conceptually simple
models like the Drude model or its extension for bound carriers,
the Lorentz-Drude model [1] have been applied successfully for
the description of various systems [295].

In the following, the theoretical transfer functions for single and
double layered samples are given, together with the most com-
mon approximation. Afterwards, the most prominent models to
explain the frequency dependence of the refractive index or con-
ductivity are discussed. In a last step, the implementation of ex-
traction routines in a python library is presented.

In Figure 6.2, examples for the obtained transfer functions for
two exemplary systems are shown. In the upper panel, the pulse
is delayed by the sample with respect to the original beam. This
happens if the real part of the complex refractive index 𝑛 of the
sample is different from the corresponding reference measure-
ment. This phase shift can be directly seen in a nonzero phase of
the transfer function. In the lower panel, the THz pulse lost inten-
sity after passing through the sample due to a nonzero imaginary
part of 𝑛. This leads to a magnitude of the transfer function of
less than 1. For realistic samples, both scenarios can happen at
the same time and can also show a non-trivial dispersion.

For the Fourier transformation, several aspects have to be consid-
ered. Since the recorded pulse can contain later replica of the
initial pulse caused by the etalon effect (multiple reflections of
the pulse inside the substrate or sample), the Fourier transforma-
tion can be done for certain time windows only, thus excluding
any etalon-effects on the spectrum.17 Second, zero-filling (the
addition of zeros at the end or the beginning of the data) can be
done to artificially increase the spectral resolution of the obtained
spectra and reduce any unwanted effects caused by the periodic
nature of the Fourier transformation. Third, any occurring DC off-
set of the pulse has to be removed. Forth, different windows for
the Fourier transformation (as an alternative to zero filling, which
is effectively a rectangular window) change its result. A study of
the effect of different windows on the obtained THz spectra is
given in [355].

The changes of a THz (or any optical) pulse with a angular fre-
quency 𝜔, which is passing through a layered system (like a slab),
can be described using the Fresnel equations or matrix optics for
more complex systems. The beam can be absorbed within the
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Figure 6.2: Example for the transfer functions for the transmission through two exemplary systems. In the
upper row, the pulse is delayed by a material with a nonzero refractive index, but no absorption is happening.
In the lower row, the pulse is transmitted through a lossy medium with a refractive index equal 1, so no delay
is happening. Note the wrapped representation of the phase angle in the top left plot and that the absorption
leads to absolute values |𝐻| less than 1.

media, reflected or transmitted at the interfaces. The absorption
𝑃, reflection 𝑅 or transmission 𝑇 can be described as [122]

𝑃𝑎,𝑑 = exp 􏿶−
i𝑛𝑎𝜔𝑑
𝑐 􏿹 , (6.5)

𝑅𝑎,𝑏 =
𝑛𝑎 − 𝑛𝑏
𝑛𝑎 + 𝑛𝑏

, (6.6)

and 𝑇𝑎,𝑏 =
2𝑛𝑏

𝑛𝑎 + 𝑛𝑏
, (6.7)

where 𝑎, 𝑏 denote two different media, 𝑑 the thickness of the mate-
rial, 𝑐 is the speed of light and 𝑛𝑎/𝑏 the refractive index of medium
𝑎 or 𝑏. All these quantities can be calculated when the complex
refractive index 𝑛 and the thickness 𝑑 is known. The transfer func-
tion 𝐻 is defined as

𝐸out(𝑡) = 𝐻 ⊛ 𝐸in(𝑡) (6.8)
→ 𝑆out(𝜔) = 𝐻𝑆in(𝜔) (6.9)

where 𝐸 refers to the electric field of the electromagnetic wave in
time domain and 𝑆 refers to the spectrum of the electromagnetic
wave. The transfer function convoluted with the incident elec-
tromagnetic field results in the output electric field, which gives
a multiplication in the frequency domain. When two measure-
ments with and without the sample are performed, the transfer
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Figure 6.3: Schematic rep-
resentation of the phase un-
wrapping.

function for a sample of interest can be calculated by (as given
above)

𝐻 =
𝑆sample
𝑆reference

Thus, by building the appropriate transfer function for a specific
system using the Fresnel expressions and inverting it, the complex
refractive index can be obtained.

6.1 The Phase-Unwrapping Problem

For the exponential/polar representation of the complex spec-
trum, phase–unwrapping has to be considered depending on the
used extraction algorithms. Phase–unwrapping is the process to
unfold the phase 𝜙 from the range between −180 to 180° to give a
continuous line (Figure 6.3). Other way around, phase–wrapping
means to fold-back a certain angle to the range from −180 to
180∘.

A simple algorithm to unwrap is to iterate over data points and
detect changes between in the phase greater than 2π. If a jump
is detected, 2π is subtracted from all following datapoints [356].
Usually, library unwrapping functions as contained in MATLAB or
the python-numpy library use similar schemes and will also be
used in this thesis for (un)wrapping.

The problem of this approach is that it does not perform well with
phase noise. This can occur at low signal–to–noise situations, like
at very low (≤ 0.1THz) or high frequencies. The noise can make
the unwrapping algorithm detect the phase jump to early or to
late, which results in a wrong phase offset starting from that data
point to higher frequencies. One way to circumvent that problem
is to exclude the areas with insufficient signal–to–noise and ex-
trapolate the phase afterwards by assuming a linear phase [356].
Additionally, the scanning range defines the frequency resolu-
tion 𝛥𝜈 = (𝑁𝛥𝑇)−1, where 𝑁 is the number of measured data
points and 𝛥𝑡 the temporal resolution. Thus, the frequency when
a phase jumps occurs can only be determined within the given
precision. It is generally advised to examine the resulting trans-
fer function for phase jumps with respect to the noise level.

To detect phase jumps correctly, it is also extremely important to
provide the necessary frequency resolution, so that the difference
between two datapoints is not always in the same range as the dif-
ference obtained by the phase jumps. In Figure 6.4, the problem
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is visualized. If the frequency resolution is low, a traditional un-
wrapping algorithm has difficulties to distinguish phase disconti-
nuities from normal phase steps, since the frequency step between
two consecutive steps is so large. Thus, measuring a large tempo-
ral window (and remove second reflections by windowing, where
appropriate) is important if the phase shift induced by the sample
is large.
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Figure 6.4: Influence of the frequency resolution on the phase unwrapping performance. The top as well as
the bottom panels show a “reference” (air) and a “sample” (quartz, 𝑑 = 0.5mm) measurement. On the top, the
signal was cut in time–domain before any internal reflection inside the quartz substrate. In the lower panel,
the full temporal scan was used. Both signals were filtered with a Gaussian window filter located at the top of
the THz signal and a width of 2 ps. The erroneously detected phase jump for the truncated data is marked by
the arrow in the top right panel. From that frequency on, the phase has an incorrect slope. The data extracted
with the full data shows more data points between the phase discontinuities, allows the algorithm to correctly
identify those.

Peter Uhd Jepsen has written an detailed article about the phase
retrieval and unwrapping problem in THz-TDS [357], where he
proposes an “informed”unwrapping. In principle, the phase can
be calculated by identifying the 𝑡0 of a THz pulse (e.g. by looking
for the peak position), and is then given by

𝜙0(𝜈) = 2π𝜈𝑡0. (6.10)

By using this expression as a starting point and testing the ex-
tracted phases against it, errors in the in the phase can be cor-
rected.
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𝑛0 𝑛1 𝑛0

𝑑

Figure 6.5: Schematic rep-
resentation of a THz pulse
transmitting through a slab
with the thickness 𝑑.

18 The geometric series is
given by ∑∞

𝑖 𝑎0𝑞𝑖 =
𝑎0
1−𝑞

6.2 Transfer Function for a Single-Layer System

Single–layer systems studied by THz spectroscopy can be sub-
strates like quartz or silicon, but also pressed pellets including
organic materials or powdered materials. All following deriva-
tions are performed under the assumption of plane wave at nor-
mal incident at the sample.

The incoming beam 𝑆in first passes through an infinite amount of
air/vacuum (𝑛0), than gets reflected and/or transmitted on the
air/slab interface, passes through the slab while experiencing ab-
sorption and dispersion, and finally passing the slab/air interface.
This gives

𝑆sample = 𝑃0,∞𝑇0,1𝑃1,𝑑𝑇1,0𝑃0,∞𝑆in (6.11)

and when the sample is removed (which represents the corre-
sponding “reference” measurement)

𝑆reference = 𝑃0𝑃0,𝑑𝑃0𝑆in (6.12)

For the transfer function, this yields

𝐻 =
𝑆sample
𝑆reference

=
𝑇0,1𝑃1,𝑑𝑇1,0

𝑃0,𝑑
. (6.13)

When multiple/FP reflections within the slab are considered,

𝐻 =
𝑇0,1𝑃1,𝑑𝑇1,0∑

∞
𝑖=0 􏿮𝑅1,0𝑃1,𝑑𝑅1,0𝑃1,𝑑􏿱

𝑖

𝑃0,𝑑
(6.14)

=
𝑇0,1𝑃1,𝑑𝑇1,0

𝑃0,𝑑
􏿶

1
1 − (𝑃1,𝑑𝑅1,0)2

􏿹 (6.15)

is obtained, where in the last step the geometric series representa-
tion of the sum was used18. As already mentioned, this expression
is usually not directly invertible, thus one can introduce approx-
imations to obtain an analytically invertible expression or use a
numerical approach, which tries to fit 𝑛(𝜔) to the experimental
data.

Analytical Solution for a Thick, Low Absorbing Sample

For an optically thick sample, the FP reflections are separated
from the main pulse in the time-domain. This allows to cut the
data to remove the need to incorporate those internal reflections
in the data extraction routine. In the following, it is also assumed
that the absorption in the medium is low.
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6.2 Transfer Function for a Single-Layer System

If the experiment is performed under a dry or nitrogen atmo-
sphere, the refractive index of the surrounding medium can be
set to 1. Inserting Expression (6.5), (6.6) and (6.7) into (6.13)
yields

𝐻(𝜔) = 4𝑛
(1 + 𝑛)2 exp 􏿶

i𝑑𝜔
𝑐 (1 − (𝑛real − i𝑛imag))􏿹

= 4𝑛1
(1 + 𝑛)2

phase shift by refraction
􏿇􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿈􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿉
exp 􏿶

i𝑑𝜔
𝑐 (1 − 𝑛real)􏿹 exp 􏿶

−𝑑𝜔
𝑐 𝑛imag􏿹

􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
absorption

where 𝑛 is the refractive index of the sample. By comparing the
oscillating and non-oscillating parts in

𝐻 = |𝐻| exp(i𝜙)􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍
oscillating

= 4𝑛1
(1 + 𝑛1)2

exp 􏿶
i𝑑𝜔
𝑐 (1 − 𝑛real)􏿹

􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
oscillating

exp 􏿶
−𝑑𝜔
𝑐 𝑛imag􏿹 ,

for 𝑛real and 𝑛imag

exp 􏿴i𝜙􏿷 = exp 􏿶
i𝑑𝜔
𝑐 (1 − 𝑛real)􏿹

⇒ 𝑛real = 1 − 𝑐
𝑑𝜔𝜙 (6.16)

and

|𝐻| = 4𝑛1
(1 + 𝑛1)2

exp 􏿶
−𝑑𝜔
𝑐 𝑛imag􏿹

⇒ 𝑛imag = − 𝑐
𝑑𝜔 ln 􏿶

(1 + 𝑛real)2
4𝑛real

|𝐻|􏿹 (6.17)

can be found. In the last step 𝑛 was assumed to be (nearly)
real-valued, thus the factor 4𝑛1/(1 + 𝑛1)2 is assumed to be real.
Thus, the refractive index can be directly calculated from the ex-
perimental transfer function using Expression (6.16) and (6.17).
This is an effective approximation for common substrate materi-
als, since they are thick enough to host a sample layer and should
not show any notable absorption or features in the THz range.
The calculated refractive index can also be used as starting point
for more elaborate extraction routines.

Numerical approaches

If the approximations performed above are not wanted or applica-
ble, 𝐻 can not be directly inverted to calculate the refractive index
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6 Parameter Extraction and Interpretation

from the experimental data, but 𝑛̃(𝜔) can be found by numerical
means. This was first proposed by Duvillaret et al. [350] and laid
the founding for later extraction routines [351–354]. An arbi-
trary refractive index is inserted into the transfer functions given
in (6.13) or (6.15) and compared against the experimental data.
By varying the refractive index, the difference can be minimized
and a fitting refractive index be found.

In the case of an optically thick sample, the multiple reflections
of the THz beam can be differentiated in time-domain and re-
moved. Inserting the expressions for the transmission (6.7) and
propagation (6.5) terms into (6.13) leads to

𝐻(𝜔) =
􏿵 2𝑛1
𝑛0+𝑛1

􏿸 exp 􏿵− i𝑛1𝜔𝑑
𝑐 􏿸 􏿵 2𝑛0

𝑛0+𝑛1
􏿸

exp 􏿵− i𝑛1𝜔𝑑
𝑐 􏿸

(6.18)

= 4𝑛0𝑛1
(𝑛0 + 𝑛1)2

exp 􏿶
i𝑑𝜔(𝑛0 − 𝑛1)

𝑐 􏿹 (6.19)

Due to the exp(𝑖𝑥) term, this is an oscillatory function with a de-
pendency on the thickness 𝑑, which is difficult to fit. As before,
𝑛0 can be set to 1.0 + 0.0i assuming the experiment is done in a
proper nitrogen/dry air atmosphere. This yields

𝐻(𝜔) = 4𝑛1
(1 + 𝑛1)2

exp 􏿶
i𝑑𝜔
𝑐 (1 − 𝑛1)􏿹 . (6.20)

It is important to note that usually algorithms perform better with
no oscillatory function in the denominator (Expression (6.18) vs
(6.19)), since it gives rise to artifacts and oscillations in the ex-
tracted refractive index. The usual approach to solve this problem
numerically is to define an error function 𝐸𝑟𝑟

𝑀(𝜔) = |𝐻theory(𝜔)| − |𝐻measurement(𝜔)| (6.21)
𝐴(𝜔) = ∠𝐻theory(𝜔) − ∠𝐻theory(𝜔) (6.22)
𝐸𝑟𝑟 = 􏾜(|𝑀(𝜔)| + |𝐴(𝜔)|) (6.23)

as in [352, 353]. Sometimes, the absolute in 𝑀(𝜔) is replaced
by the logarithm of the absolute or the error function is a sum of
the squared values [350]. Using a minimization algorithm like
nelder-mead, 𝐸𝑟𝑟 can be minimized to find the correct 𝑛1. This
has to be done separately for each frequency. The quality of the
fit depends strongly on the parameters for the fitting algorithm,
the thickness and the initial guess.

82



6.3 Transfer Function for a Double-Layer System

𝑛0 𝑛1 𝑛2 𝑛0

𝑑1 𝑑2

Figure 6.6: Schematic rep-
resentation of a THz pulse
transmitting through two
slabs with the thickness 𝑑1
and 𝑑2, as a film deposited
on a substrate.

6.3 Transfer Function for a Double-Layer System

Finding a transfer function for a two–layer systems is conceptu-
ally similar to the single layer, but treating multiple reflections is
more complicated. A system like this can be a sample or a thin
film deposited on a substrate. Without considering any multiple
reflections, the transmitted beam is given by

𝑆sample = 𝑃0,∞𝑇01𝑃1,𝑑1𝑇12𝑃2,𝑑2𝑇20𝑃0,∞𝑆in (6.24)

and when a bare substrate is placed in the beam

𝑆reference = 𝑃0,∞𝑃0,𝑑1𝑇02𝑃2,𝑑2𝑇20𝑃0,∞𝑆in (6.25)

For the transfer function,

𝐻 =
𝑆sample
𝑆reference

=
𝑇01𝑃1,𝑑1𝑇12
𝑃0,𝑑1𝑇02

(6.26)

is obtained. By assuming a nitrogen atmosphere and inserting
the proper terms for the propagation, reflection and transmissions
terms

𝐻(𝜔) = 2𝑛1(𝑛2 + 1)
(𝑛1 + 1)(𝑛1 + 𝑛2)

exp 􏿶
𝑖𝑑1𝜔(−𝑛1 + 1)

𝑐 􏿹 (6.27)

is obtained. For a single slab, it is easy to determine whether the
inclusion of multiple reflections is important. For a thin slab on
a substrate, this might be true for the substrate, but it is difficult
to decide for the thin film. Let us assume that the first internal
reflection of a THz pulse has to be detected at least 2 ps later
than the main pulse so that it can be cut in time-domain, this
sets the limit of the materials thickness to 100 µm (assuming a
refractive index of 2). In reality, deposited films will likely to be
much thinner, so the internal reflection will overlap will the main
pulse. The Fabry-Pérot term for the sample is given by

𝐹𝐵 =
∞
􏾜
𝑘=0

􏿴𝑅1,2𝑃1,𝑑1𝑅1,0𝑃1,𝑑1􏿷
𝑘

(6.28)

= 1
1 − 𝑅1,2𝑃1,𝑑1𝑅1,0𝑃1,𝑑1

. (6.29)

The sum can be resolved since it represents the geometric series.
By inserting all the relevant term, for the full transfer function of
a two-slab system with multiple reflections in the sample,

𝐻(𝜔) =
−2.0𝑛1(𝑛2 + 1.0) exp 􏿵 i𝑑1𝜔(𝑛1+1)

𝑐 􏿸

(𝑛1 − 1.0)(𝑛1 − 𝑛2) − (𝑛1 + 1.0)(𝑛1 + 𝑛2) exp 􏿵 2.0i𝑑1𝑛1𝜔
𝑐 􏿸

(6.30)
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is obtained.

In some cases, it might be useful to include the first reflection in
the substrate as well, for example when it is clearly differentiable
in the time–domain. This can also be used to precisely obtain the
thickness of the different layers, as e.g. shown in [358].

Analytic solution for a thin, conducting film on a substrate

An analytical solution for a thin conducting film, which is thin-
ner than the wavelength and the skin depth was first derived by
Tinkham [359, 360]. Derivations can also be found in [343] or
[361]. This approach has been used to study several kinds of gold
films [294, 361, 362]. In a thin conducting film, an electric field
𝐸 generates a current density 𝑗 = 𝜎𝐸, where 𝜎 is the complex con-
ductivity. Since the thickness of the layer is assumed to be much
smaller than the skin depth, the electric field and thus 𝑗 can be
viewed as uniform in the film. As shown in [361], by looking at
the impedance and expressions for transmission/reflection for a
transmission to a corresponding circuit, the transfer function

𝐻(𝜔) = 1 + 𝑛substrate
1 + 𝑛substrate + 𝑍0𝜎(𝜔)𝑑

(6.31)

with 𝑍0 as the impedance of free space is obtained. If 𝑑 goes to
zero, the transmission coefficient (Equation (6.7)) is regained. By
inverting Equation (6.31) an expression for the so–called “sheet
conductivity” 𝜌 is obtained:

𝜌 = 𝜎𝑑 = 1
𝑍0

􏿵𝑛substrate
𝐻 − 𝑛substrate􏿸 (6.32)

6.4 Transfer Function for a Optically-Excited
System

When OPTP spectroscopy spectroscopy is performed, the THz
pulse probes the change of the refractive index caused by the pho-
toexcitation. Usually, it can be assumed that the optical pulse is
absorbed in the top layers of the material, thus creating a pho-
toexcited “film” at top of the sample. This also covers scenarios,
where a thin, photo–active film is deposited on a photo-inactive
substrate (Figure 6.7).

The theoretical background to obtain a transfer function for a
photoexcited system was comprehensively reviewed by Joyce et
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→ 𝜌 = 𝜎𝑑

e.g. silicon wafer

e.g. semiconductor
on quartz

photexcited
system

Figure 6.7: Optical-pump
and subsequent THz -probe
of a photoactive layer on a
substrate or a single slab.
The optical excitations leads
to the same scenario for
both situations: A thin,
excited layer on an unexcited
substrate.

al. [341]. The measured change of the transfer function is given
as

𝛥𝐻(𝜔)
𝐻(𝜔) = 𝛥𝐸(𝜔)

𝐸(𝜔) = 𝐸on(𝜔) − 𝐸off(𝜔)
𝐸off(𝜔) , (6.33)

where 𝐸on/off(𝜔) is the spectrum obtained from the THz pulse of
the excited/unexcited system. The photoactive layer is usually
very thin compared to the wavelength of the THz radiation and
the substrate quite thick. Thus, the transfer function can be ap-
proximated [341] by

𝐻(𝜔) = 1 + 𝑛sub

(1 + 𝑛sub) − i(𝑛2 − 𝑛sub)
𝜔𝑑
𝑐

, (6.34)

where 𝑛sub is the refractive index of the substrate, 𝑛 the refractive
index of the excited layer and 𝑑 the thickness of the excited layer.
Using 𝜖 = 𝑛2,

𝜖 = i𝑐(1 + 𝑛sub)
𝜔𝑑 􏿶

1
𝐻(𝜔) − 1􏿹 − 𝑛sub (6.35)

can be obtained. Using 𝜖 = 𝜖𝑏 + i𝜎/𝜔𝜖0 and assuming a highly
conductive sample (thus effectively dropping any background in-
fluences 𝜖𝑏),

𝜎 = 𝜖0𝑐(1 + 𝑛sub)
𝜔𝑑 􏿶

1
𝐻(𝜔) − 1􏿹 (6.36)

is obtained for the photoinduced complex conductivity. Often, in-
stead of the conductivity the “sheet conductivity” 𝜌 = 𝜎𝑑 is used
to circumvent the inclusion of the correct thickness of the pho-
toexcited layer - similar to Equation (6.32).
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19 Depending on the defini-
tion of the plane wave (e−i𝜔𝑡

vs. ei𝜔𝑡), the sign in the
denominator (and thus the
sign of the imaginary part)
changes. In literature, both
definitions are common.

6.5 Interpretation of the Obtained Parameters

Even though the obtained parameters already give insight into
the physical processes, usually it is of interest to compare these
with a model, where the obtained values for 𝑛̃ or 𝜎̃ are con-
nected with physical properties. Often, conceptually simple and
(semi)classical models like the Drude model are successfully ap-
plied to understand dispersion of the extracted parameters. An
overview over the different models can also be found in [295].
Apart from the models described here, effective–medium theories
are applied to study in the THz regime [363].

Drude Model

The simplest model to understand the complex conductivity in
the THz range is the so-called Drude model [1, 293]. It models
the dynamic of a free electron using the EOM

d2

d𝑡2 𝑥 +
1
𝜏

d
d𝑡𝑥 = − 𝑒

𝑚𝐸(𝑡). (6.37)

The conductivity is defined as 𝜎 = 𝑗/𝐸 with the current density
𝑗 = −𝑒𝑁𝑥̇, where 𝑒 is the elementary charge and 𝑁 the number of
electrons. For the stationary case 𝑥̈ = 0 the so–called Drude DC
conductivity is obtained

𝜎DC = 𝑁𝑒2𝜏
𝑚∗ , (6.38)

where the effective mass𝑚∗ has been inserted. By assuming 𝐸(𝑡) =
𝐸0e−i𝜔𝑡, for the frequency-dependent conductivity 𝜎Drude(𝜏)

𝜎Drude(𝜏) = 𝜎DC
𝜏

1 − i𝜔𝜏 (6.39)

is obtained19 [293]. Figure 6.8 shows exemplary plots for the
Drude conductivity in the THz range. The relative permittivity
and consequently the refractive index can be obtained from the
Drude conductivity by

𝜖(𝜔) = 1 + i𝜎(𝜔)
𝜖0𝜔

(6.40)

𝑛(𝜔) = √𝜖0(𝜔) (6.41)
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Figure 6.8: Real (left) and
imaginary (right) of the
frequency-dependent Drude
conductivity for different
scattering times 𝜏. The lower
panels show the same data,
but with a logarithmic x-axis.

Lorentz–Drude/Plasmon Model

By introducing a restoring force to Equation 6.37, the “Drude-
oscillator” becomes the “Lorentz-Drude-oscillator”, which is also
called “Plasmon” model in the literature [295, 364]. This model
has been successfully applied to describe e.g. the conductivity of
semiconductor nanowires [341]. The EOM

𝑑2
𝑑𝑡2 𝑥 +

1
𝜏
𝑑
𝑑𝑡𝑥 + 𝜔0𝑥 = − 𝑒

𝑚𝐸(𝑡), (6.42)

is extended by a term for the restoring force 𝜔0𝑥 with the plasmon
frequency 𝜔0. This leads to the expressions for the conductivity
𝜎plasmon(𝜔)

𝜎plasmon(𝜔) =
𝜏𝑒2𝑁/𝑚

1 − 𝑖𝜔𝜏(1 − 𝜔2
0 /𝜔2)

. (6.43)
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The results for different scattering times are visualized in Fig-
ure 6.9. By setting 𝜔0 equal to zero, the Drude model is ob-
tained.

Drude-Smith Model

Another quite famous example in the THz community is the so-
called Drude-Smith (DS) model [365]. It is an phenomenological
generalization of the Drude model and is used often to describe
the conductivity of nanomaterials, but has been criticized often
due to the lack of a physical background.

𝜎DS(𝜔) =
𝜎DC

1 − i𝜔𝜏

⎡
⎢⎢⎢⎢⎢⎣1 +

∞
􏾜
𝑛=1

𝑐𝑛
(1 − i𝜔𝜏)𝑛

⎤
⎥⎥⎥⎥⎥⎦ (6.44)

Here, the coefficient 𝑐𝑛 represents the fraction of the carrier’s orig-
inal velocity after the 𝑛-th scattering event. By assuming just one
scattering event and −1 < 𝑐1 < 0 (which corresponds to backscat-
tering from particle boundaries or similar),

𝜎DS(𝜔) =
𝜎DC

1 − i𝜔𝜏 􏿯1 +
𝑐1

1 − i𝜔𝜏􏿲

is obtained. With 𝑐1 = 0.0, the DS model reduces to the Drude
model again.

Figure 6.10: Real (left)
and imaginary (right) of
the frequency-dependent
Drude–Smith conductivity
for different backscattering
ratios 𝑐1. 𝑡𝑎𝑢 was set to
1𝐸 − 12.
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As already mentioned, the physical insight gained by the DS
model is limited since its pure phenomenological approach. Also,
the truncation of the sum in Expression (6.44) has to be termi-
nated after n = 1, otherwise the model reduces to the Drude
model again with modified scattering rates. Several publications
tried to address this issue by providing physical explanations for
the line shape of the DS model [8, 296]. This is also discussed in
Chapter 4. The DS model has been applied especially to nanos-
tructures such as thin films [366–368] or wires [98], graphene or
carbon nanotubes [99] or organic materials [10, 369, 370].
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Figure 6.11: Real (left)
and imaginary (right) of
the frequency-dependent
generalized Drude model. 𝜏
was set to 1 THz, the other
parameters are given in the
legend.

Generalized Drude Model

The generalized Drude model is a combination of the Cole–Cole
and Cole–Davidson model [371]. This model does not provide in-
sights in the details of the scattering mechanisms, but is a purely
phenomenological approach to change the shape of the Drude
model [295].

𝜎GD(𝜔) =
𝜎DC

􏿮1 − (i𝜔𝜏)1−𝛼􏿱
𝛽 (6.45)

For 𝛼 = 0.0, 𝛽 = 1.0 the Drude model is recovered (see Fig-
ure 6.11). It has been applied to describe the conductivity of
doped silicon in the THz range [371] or graphene [372].

6.6 Implementation into DuoDecim

The extraction procedures and routines described above have
evolved into a python library with the name DUODECIM (from
latin “twelve” as an alternative to “tera”). DUODECIM can be used
as a standalone program, which extracts the refractive index us-
ing an input file, which defines the system, or as a python library
to be used in scripts.

Parameter extraction using DuoDecim as a standalone
program

To use DUODECIM as a standalone program, the measurement of
a reference and a sample has to be provided, for example a mea-
surement of air and a measurement of substrate. An input file de-
fines the parameters for the extraction routines, which are given
in Table 6.1. The program supports various extraction routines,
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6 Parameter Extraction and Interpretation

Figure 6.12: Flowchart for
the standalone version of
DUODECIM

Read input file

Read reference
and sample data

Create trans-
fer function

Choose se-
lected model

Save data

extract refrac-
tive index

like the analytic calculation of the refractive index using Equa-
tion (6.16) and (6.17) or by numerical minimization of Equa-
tion (6.23) using the nelder-mead algorithm. Alternative rou-
tines like the basinhopping algorithm from the scipy.optimize
library or a genetic algorithm can also be included. The program
flow of the standalone execution is shown in Figure 6.12.

This offers a simple and convenient way to extract the refractive
index for standard measurements.

Usage as a python library

Alternatively, the routines can be used as python library and in-
cluded in other python scripts. This is advised for more com-
plicated scenarios where the intermediate steps (see e.g. Sec-
tion 6.1) should be done with care. Additionally, it gives access
to experimental features. A list of routines in the DUODECIM
library is given in Table 6.2. For each routine, the docstring
(help(<function>)) provides more information about the input
and output parameters/variables.

6.6.1 Refractive Index of PTFE in the THz Range

In Figure 6.13, the refractive index for PTFE is shown. The real
part of the refractive index is nearly constant and around 1.4,
while the imaginary part shows no notable absorption.
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Keyword Default value Explanation
$reference reference.dat filename for the reference measure-

ment
$sample sample.dat filename for the sample measure-

ment
$nlayer 1 number of layers - currently only

supporting 1 or 2 layers
$d1 0.01 thickness of layer 1
$d2 0.01 thickness of layer 2 - obsolete if the

sample has only one layer
$guess 2, 0.01 guess for the refractive index
$nsub 1.44, 0.01 refractive index of the substrate for

two layer systems
$nzeros 0 number of zeros for zero-filling
$min 0.1E12 minimum frequency
$max 3.5E12 maximum frequency
$cut position, at which the timetrace is

cut to remove echos
$conv 20−3

speed of light conversion ratio for the x axis of the
measured data to the time-domain

$analytic switches on the analytic parameters
extraction based on Equation (6.16)
and (6.17), can only be used for
single-layered samples

$numeric switch for numerical extraction with-
out FP reflections

$tinkham switch for calculation of conductiv-
ity using the Tinkham approximation
(Equation (6.32))

$print_h switch to write out the transfer func-
tion

$output output filename for output data
$overview plots an overview of the data and

transfer function
$thickness_coarse switch for coarse estimation of sam-

ple thickness
$thickness_fit switch for fitting the sample thick-

ness (experimental)

Table 6.1: Parameters in the
input file for DUODECIM.

function Explanation
fourier calculates the Fourier transformation of a

THz pulse
find_transfer calculates the transfer function
optp_extract extracted the optical conductivity
analytic extract refractive index for a single slab with

the analytic expression
tinkham extract the conductivity using the Tinkham

formula

Table 6.2: Routines included
in the DUODECIM library.
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The extraction was performed for measurement, where any sec-
ondary reflections were cut in the time-domain. As an extraction
model, the analytic model (Equation (6.16) and (6.16)) and the
numeric fitting approach (Section 19) were used. The extracted
complex refractive index is nearly identical using the two differ-
ent techniques.

Figure 6.13: Extracted re-
fractive index for a PTFE chip.
The results from the ana-
lytical and numeric param-
eters extraction are almost
identical, showing the valid-
ity of the assumptions made
to obtain Equation (6.16) and
(6.17)
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6.6.2 Refractive Index of Quartz in the THz Range

Quartz is a suitable material as a substrate for THz spectroscopy
- depending on the way it is synthesized. The terminology is not
always clear what quartz is, since the same material can also be
named “fused quartz” or “fused silica”, depending on the vendor.
Quartz substrates for THz studies should have a low OH content,
which is usually obtained when the substrate is prepared by melt-
ing natural silica grains.

The quartz substrates used in this worked were obtained from
plano-em (“Quarzglas GE 124”, product number 26016, infor-
mation about the material can be found under [373]) with a size
of 19 × 19 × 0.5mm.

The refractive index shown in Figure 6.14 is obtained using
DUODECIM. The recorded electric field is cut in the time–domain
to remove any secondary reflections in the crystals. The analytic
(Equation (6.16) and (6.17)) and numeric (see Section 19) ex-
traction methods yield nearly the same refractive index.

The thickness of the material can be measured e.g. using a mi-
crometer screw, but can also be derived from the THz measure-
ments, since the information about the thickness in encoded in
the second reflection of the pulse. Figure 6.15 shows the refrac-
tive index for different thicknesses, obtained using a numerical
approach that includes the second reflection inside the sample.
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Figure 6.14: Refractive in-
dex of quartz, extracted for
a thickness of 0.62 mm was
used. Quartz exhibits no ab-
sorption in the studied fre-
quency range and a refractive
index of around 2. The nu-
meric and analytic extraction
yield the same results.
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Figure 6.15: Refractive index
of quartz for different thick-
nesses, obtained using the nu-
merical approach including
the second reflection in the
crystal.

If the thickness given to DUODECIM does not exactly correspond
to the real thickness, the extracted refractive index shows oscil-
lations. The occurring spikes can be traced to incorrect phase
unwrapping and is here not corrected. Changing the thickness
also changes the refractive index slightly.

The dependency of the oscillations on the thickness for which the
data is extracted can be used to optimize the thickness, as e.g.
proposed in Refs. [350, 351, 353]. This is usually done by cal-
culating the “total variance”, that is the summed difference be-
tween adjacent data points, or by performing a Fourier transfor-
mation of the refractive index and studying the peak which refers
to the oscillation. The “total variance” method is also included
in DUODECIM, but has to be applied with care. As can be seen in
Figure 6.15, the occurrence of spikes can influence the result and
overshadowing the oscillations of the refractive index.
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7 Terahertz Spectroscopy of Thin
Gold Films

7.1 Introduction

Even though this work is focused on the transport properties of
AuNPs connected with molecules, it is worth to take a step back
and look a conceptually simpler system, thin gold films.

When gold is deposited on substrates using physical methods
like sputtering or evaporation, it does not instantaneously form
a homogeneous layer. First, small nanometer–sized clusters are
grown [374, 375]. By depositing more material, a randomly con-
nected network of gold islands is formed, until finally a continu-
ous layer is completed. This transition of an (in a classical sense)
isolating to a conducting film is called insulator-to-metal transi-
tion (IMT). The percolation threshold describes the amount of
deposited material, when a continuous path from one electrode
to another can be found. Naturally, the conductivity of such a
gold film is changing drastically when crossing the percolation
threshold. In order to prevent the formation of islands, a seed/ad-
hesion layer or a silane-activated surface can be used [375–378]
(see also Habteyes et al.[379] for a study on Au films with both,
a Ti adhesion layer and a molecular linker).

Not only the conductivity, also the optical properties change dras-
tically when crossing the percolation threshold. While the optical
properties of the initially formed gold islands are similar to gold
nanoparticles, as they show a plasmonic absorption band in the
visible spectrum (see Section 8.1.1), a continuous film behaves
like bulk gold, where the optical properties can be understood
with the Drude–model (see Figure 7.2 for 𝜆 ≥ 1 µm). Directly
at the insulator-to-metal transition, Tu et al. found evidence for a
dielectric anomaly [324].

Several studies on thin gold films using THz spectroscopy have
been performed. Thoman et al. [361] studied gold films de-
posited using a chemical and a physical method. They found for
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7 Terahertz Spectroscopy of Thin Gold Films

Figure 7.1: Formation of a
solid gold film by evaporation
of gold on a substrate. With
just a small amount of de-
posited gold, isolated islands
are formed and transport can
only happen by tunneling
processes between the gold
islands (visualized by the dot-
ted red line). When more
gold is deposited, at some
point a percolated structure is
formed, where a continuous
path from the bottom to the
top is formed. This changes
the transport properties of the
film from (classically) isolat-
ing to metallic. Finally, a con-
tinuous film is formed when
the islands grow together.

non-percolated film percolated film continuous film

amount of deposited gold

substrate
gold

the chemically deposited film a suppression of any secondary re-
flections inside the sample, thus creating a anti-reflection coating
for the THz radiation. Walther et al. studied thin gold films at the
IMT using THz-TDS [294]. The films showed a flat THz trans-
mission for all thicknesses, but at the percolation threshold at a
thickness of 6.4 nm, the transmitted power dropped drastically
and also extracted parameters using a Bruggemann EMT and DS
fits showed strong deviations. The EMT approach failed to de-
scribe the behavior over the percolation transition, while the DS
model was able to describe the data properly.

Figure 7.2: Real and imagi-
nary part of the refractive in-
dex of gold, as obtained for
bulk material [380] and a
thin film [381].
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Pre–structured gold films have also been shown to be transparent
for THz radiation. In Ref. [362], 65 nm thick films with holes in
the range of 100 nm to 300 nm were prepared using lithographic
methods. These films showed a strong plasmonic response in the
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visible range, while retaining ∼ 10% transmission for THz radia-
tion. In the review of Takeda et al. [382], several other findings
are summarized. Using the THz transmittance as an indicator,
the percolation threshold for evaporated gold films was found to
be at around 14 nm. Interestingly, the transmittance changed for
THz fields with higher intensities, but this was only found for per-
colated structures. Fits using the DS model showed a decreasing
localization of the electrons with higher THz fields. They con-
cluded that the high fields enabled tunneling between the metal-
lic nanostructures, while for low fields backscattering of the par-
ticles and localization inside the structures occurred [107]. This
is highly relevant for this thesis, since it demonstrates (as already
discussed in the introduction) that tunneling currents in nanos-
tructured materials can be induced and probed using THz spec-
troscopy.

In the following, thin evaporated gold films are studied using UV-
Vis spectroscopy, infrared (IR) spectroscopy and THz-TDS. The
purpose is to get an understanding of THz spectroscopy of small
metallic structures and to demonstrate the data extraction rou-
tines presented in Chapter 6.

7.2 Methods

7.2.1 Film Preparation

Gold films were prepared using a Quorum Q150T coating sys-
tem. As substrates, microscope slides (borosilicate glass,thickness
0.17 mm, purchased from Carl Roth GmbH) and quartz slides
(obtained from plano-em, “Quarzglas GE 124”, product number
26016, see [373] for further information) have been used. All
substrates were cleaned first using usually millipore water (MQ),
acetone or isopropanol and toluene. The samples were mounted
(only one sample per time because of the limited space of the de-
vice) on an adhesive pad in the chamber of the coating system.
The chamber was evacuated and the wolfram filament heated up
slowly. The growth rate (monitored with the in-build quartz crys-
tal microbalance) was always kept below 10 nm/m.
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7.2.2 Spectroscopy

UV-Vis Spectroscopy

UV-Vis spectroscopy was performed with a Varian Cary 50 Bio in
transmission mode. As a reference, an untreated microscope slide
has been used. The measurements were repeated several times,
the samples have been shifted slightly to average over different
places of the sample.

IR Spectroscopy

IR spectroscopy has been performed with a Cary 660 FTIR in
transmission mode. As a reference, an untreated microscope slide
has been used.

Terahertz Time-Domain Spectroscopy

All samples were investigated in our home-build THz spectrom-
eter. As a reference for the measurements of samples prepared
on glass slides, an untreated microscope slide has been used. For
samples prepared with quartz substrates, a quartz substrate was
used as a reference. All measurements were done under a con-
tinuous nitrogen flow to suppress of any absorption lines due to
water vapor. Each measurement was repeated several times. The
scanning range, time steps and integration time per data point
were varied. Data processing and extraction were performed us-
ing DUODECIM as described in Chapter 6.

7.3 Results

7.3.1 Gold Films on Glass Substrates

Samples with thickness from 2 nm to 11.8 nm have been pre-
pared. As thickness, the values obtained with the quartz crystal
microbalance of the Quorum Q150T coater was used. The data
from the UV-Vis and IR measurements are shown in Figure 7.3,
along with the absorption determined from the THz measure-
ments. Only for the three thinnest samples THz data is shown,
since no transmitted pulse was recorded for the thicker samples.
The thinner films (𝑑 = 2, 4nm) show a plasmon like feature in
the visible range at around 700 nm, with nearly no absorption
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at longer wavelengths. In the THz range, these samples are com-
pletely transparent. By increasing the thickness slightly to 4.8 nm,
the picture is changed completely. The peak in the visible range
vanishes and there is absorption over the whole frequency range,
increasing with the wavelength. This is the response of a free-
electron gas as described by the Drude model.
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Figure 7.3: Absorption of evaporated gold films for different thicknesses over a broad spectral range. The thin,
non–continuous films show a plasmon-like feature in the visible range and no absorption at longer wavelengths.
The thicker films show the increasing absorption at longer wavelengths, the typical Drude-like response of a
free–electron gas. No normalization of the data has been performed.

According to the spectra, the metal-to-insulator transition (MIT)
is happening between a film thickness of 4 nm to 4.8 nm, as the
absorption in the THz range is increasing substantially and the
optical spectra is changing accordingly from a plasmon to a bulk
gold response. This should be taken with a grain of salt, since the
film evaporation conditions as the growth rate were not controlled
precisely. This can change the structure of the deposited film and
thus the percolation threshold.

7.3.2 Gold Films on Quartz Substrates

Additionally to the experiments with gold films on glass slides,
films prepared on quartz substrates were investigated using THz
spectroscopy. Borosilicate glass is not a suitable substrate in the
THz range, thus for an extraction of the conductivity quartz is pre-
ferred. Figure 7.4 shows the THz time traces for a measurement
of air, of the substrate and of three gold films with thicknesses of
5.3, 10 and 18.2 nm.
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7 Terahertz Spectroscopy of Thin Gold Films

Figure 7.4: Thz traces for
measurements of air, quartz
and three different evapo-
rated gold films on quartz.
There is nearly no difference
between the measurement of
quartz and the two thinner
films, the thicker films re-
duces the THz transmission
by around 85%. −0.15

−0.1
−0.05

0
0.05

0.1
0.15

0.2
0.25

0.3

0 2 4 6 8 10 12 14 16

El
ec

tri
cfi

eld
[a

.u
.]

Time [ps]

Air
Quartz

𝑑 = 5.3 nm
𝑑 = 10 nm

𝑑 = 18.2 nm

−0.15
−0.1

−0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0 2 4 6 8 10 12 14 16

For the sample with a thickness of 18.2 nm, the complex conduc-
tivity has been extracted using the Tinkham formula (6.32) and
DUODECIM. The refractive index of the substrate is assumed to
be 𝑛̃ = 2 (see section 6.6).
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Figure 7.5: Transfer function and Tinkham sheet conductivity for three gold films on quartz with 𝑑 =
5.3, 10, 18.2nm. The thinner films are transparent in the THz regime, the film with 𝑑 = 18.2 nm shows no-
table absorption and thus a nonzero real sheet conductivity.

By fitting the conductivity of the thickest film with the Drude
model, parameters for 𝜎0 and 𝜏 can be obtained. This was done
for five different measurements in the range from 0.1 to 2.5 THz,
the obtained values are shown in Table 7.1. This is in the range of
other experimental findings, e.g. Olmon et al. found a scattering
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7.4 Summary

Table 7.1: Drude parameters
for fitting the Tinkham sheet
conductivity 𝜌 of a 18.2 nm
thin gold film on a quartz
substrate in the range from
0.1 to 3 THz. The parameters
were obtained for five dif-
ferent measurements of the
film.

𝜎0 𝜏
[kS m−1] [fs]

1 2.53 6.12
2 2.61 11.03
3 3.02 16.84
4 3.33 14.85
5 2.39 16.25

time of 𝜏 = 14 ± 3 fs for bulk gold and films with a thickness of
200 nm [380]. The negative imaginary conductivity (Figure 7.5)
at low frequencies for the 18.2 nm film might be puzzling at first,
since this cannot be explained by the Drude model. The extrac-
tion at these low frequencies is quite often unreliable and with-
out any zero-filling, these are just two data points. Other analy-
ses often start at e.g. 0.2 THz , disregarding the low frequencies
[294].

The conductivity for bulk gold is given around 45.1 × 10−7 S m−1

[383], thus the conductivity obtained for the 18.2 nm thin film is
about 0.5% of the bulk conductivity. This is in the same range
as results for gold films on silicon substrates [294], when com-
paring samples which have roughly the same transmission of the
THz radiation (about 1%). Previous studies on much thicker films
(85 nm) found conductivities of about 33% of the bulk conductiv-
ity [384].

7.4 Summary

These experiments using thin gold films already show a surpris-
ing property of metallic nanostructures in the THz regime. Thin,
evaporated gold films which show plasmon–like properties in the
visible range are transparent in the THz range, as the dielectric
function is more likely to be described by a Lorentz-Drude model
than a Drude model. Such thin films are not a homogeneous
or continuous, but a more alike to gold islands on a substrate.
Thicker gold films, which are lacking the plasmon–like feature in
the visible range, are blocking THz radiation, as to be expected
for a metallic film. This already has several implications for the
experiments using films of AuNPs: a) Thin films of metallic nanos-
tructures are likely to be transparent in the THz regime, thus a
certain thickness of the sample is relevant. b) Molecular linkers
are most probably influencing the (quasi-) DC conductivity of the
sample, as already shown in Chapter 4. This can influence the re-
sponse of the film in the THz regime, depending on the change of
the DC conductivity and the scattering parameters of the film.
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20 From a biomedical point of
view, AuNPs are investigated
as contrast agents, sensors or
a method to deliver heat into
a system by optical excitation
[96, 392–396].

8 Terahertz Spectroscopy of Gold
Nanoparticle Films

8.1 Introduction

In this chapter, the preparation, characterization and THz mea-
surements of gold nanoparticle (AuNP) films prepared by drop
casted (or drop cast derived) and layer-by-layer methods is dis-
cussed. Following this introduction, the optical and electrical
properties of AuNP films will be briefly reviewed and summa-
rized.

AuNPs are more or less knowingly used for centuries, famous ex-
amples involve the roman Lycurgus cup, the colored windows of
churches from the middle ages or the work of Michael Faraday
[96, 385–388]. Gustav Mie presented the Mie theory for the the-
oretical description of the optical properties of AuNP as early as
1908 [389, 390].

Starting from the pioneering work of Turkevich et al. in 1951
[391] regarding the synthesis of AuNP, nowadays a zoo of differ-
ent methods, techniques or precursors exist to synthesize parti-
cles with different sizes, shapes and stabilizing ligands [96]. The
ligand shell, which stabilizes the particles and makes them sol-
uble, offers various ways to functionalize the particles. This is
valuable for applications for example in biomedicin20, but the lig-
ands also govern the self-assembly of particles into more or less
ordered aggregates or the transport properties [397–403].

But apart from the flexibility of its surface, the most astonishing
property of a AuNP is its response to visible light, which is gov-
erned by the so-called “plasmon”. This manifests in the strong
reddish color of AuNP solutions and is the source of basic research
interest in AuNPs. A more detailed explanation will be given be-
low.

Numerous reviews which discuss certain aspects of AuNPs have
been published. Here, some of them should be mentioned shortly
to give the interested reader the opportunity to further studies.
Marie-Christine Daniel & Didier Astruc presented in 2004 maybe
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the most complete review. They present the synthesis of the
particles, ligands, film preparation, physical and chemical prop-
erties and also applications in, e.g., biology and catalysis [96].
The review of Sardar et al. published six years later can be seen
as an update [404]. Zabet-Khosousi & Dhirani discussed 2008
the transport mechanisms in nanoparticle assemblies, including
AuNPs [116]. A review with a focus on the optoelectronic prop-
erties was published in 2015 by Liao et al. [129]. In 2017, Kane-
lidis & Kraus discussed the role of ligands with regard to elec-
tronic applications. Summaries regarding hot-electron dynamics
can be found in [405–407] or just recently by Kuppe et al. [408].
Properties of the surface plasmon resonance in AuNP and various
applications are reviewed in [390]. A paper discussing stability
issues while preserving the plasmonic properties was published
just lately [409].

The following chapter is organized as follows: First, the opti-
cal and electronic properties of AuNP and AuNP films will be
discussed along with some experimental aspects concerning the
synthesis, the film preparation and analytical methods. After-
wards, the experiments (preparation and THz spectroscopy) of
drop casted and layer-by-layer prepared films are presented.

The underlying idea of this project is to use the AuNP as a model
system, where the sample contains a multitude of molecular junc-
tions: Dithiol linker molecules which are connected to two neigh-
boring particles, acting as “electrodes”. This idea has already
been exploited for experiments, where the particle film still had to
be contacted with macroscopic electrodes [127, 129, 410–412].
This is not required for THz measurements. Basically, five differ-
ent molecules or scenarios will be studied, as visualized in Fig-
ure 8.1.

Figure 8.1: Ligands/linker
molecules used in this chap-
ter to build AuNP films. OAm
is the stabilizing ligand of the
AuNP after the phase transfer
(see below for details).

oleylamine (OAm)

H2N 􏿶 􏿹
4

􏿶 􏿹
3

nonane-1,9-dithiol (NON)

HS SH

biphenyl-4,4′ -dithiol (BI),
p-terphenyl-4,4″ -dithiol (TER)

HS SH􏿶 􏿹
2,3

4,4-thiobisbenzenethiol (THIO)

HS

S

SH

After the phase transfer to toluene (see below for details), OAm
is the stabilizing ligand of the particles. NON as a dithiol can link
two particles, but is much likely less conductive than the aromatic
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linkers (BI, TER). Transport calculations based on the NEGF-DFT
approach can be found in Chapter 4. THIO was used in some
experiments, as it has a more flexible structure compared to BI
and TER due to the sulfur atom in the middle of the molecule.

8.1.1 Optical Properties of Gold Nanoparticles

The optical properties of AuNPs are determined by the plasmon.
Plasmons are collective oscillations of free or conduction band
electrons. The classical EOM of a free electron gas interacting
with a time-varying electromagnetic wave 𝐸(𝑡) = 𝐸0e−i𝜔𝑡 [293] is
given by

𝑚e
d2𝑥
d𝑡2 + 𝑚e𝛾

d𝑥
d𝑡 = −𝑒𝐸0e−i𝜔𝑡. (8.1)

𝑚e is the mass of an electron, 𝛾 some damping/scattering rate in
the medium and 𝑒 the elementary charge. This is a second-order
differential equation, which can be solved by using the ansatz
𝑥(𝑡) = 𝑥0e−i𝜔𝑡:

−𝑚e𝜔2𝑥0e−i𝜔𝑡 − 𝑚e𝛾i𝜔𝑥0e−i𝜔𝑡 = −𝑒𝐸0e−i𝜔𝑡 (8.2)

⇒ 𝑥 = 𝑒𝐸
𝑚e(𝜔2 + i𝛾𝜔) (8.3)

⇒ 𝑃 = − 𝑁𝑒2𝐸
𝑚e(𝜔2 + i𝛾𝜔) (8.4)

We obtain an expression of the polarization 𝑃 = −𝑒𝑁𝑥 of the elec-
tron gas, with 𝑁 as the electron density. By using the definition
of the electric displacement

𝐷 = 𝜖𝑟𝜖0𝐸 (8.5)
= 𝜖0𝐸 + 𝑃, (8.6)

we obtain 𝜖𝑟, the dielectric constant of the electron gas

𝜖𝑟 = 1 − 𝑁𝑒2
𝜖0𝑚e

1
𝜔2 + i𝛾𝜔 (8.7)

= 1 −
𝜔2p

𝜔2 + i𝛾𝜔 (8.8)

with 𝜔p =
√

𝑁𝑒2
𝜖0𝑚e

. (8.9)

𝜔p is the resonance frequency of the free electron gas. As shown in
Figure 8.2, a free electron gas or systems which can be described
that way (metals, doped semiconductors) are reflective below the
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plasma frequency 𝜔p [293]. The reflectivity 𝑅 can be calculated
by

𝑅 = | 𝑛̃ − 1
𝑛̃ + 2|

2
with 𝑛̃ = √𝜖𝑟. (8.10)

Figure 8.2: Complex refrac-
tive index (left) and reflec-
tivity (right) of a free elec-
tron gas as described by Equa-
tion (8.8) and (8.10). 0
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Oscillations of the electron gas at the resonance frequency 𝜔p can
be seen as plasma oscillations, which can be quantized. The asso-
ciated bosonic quasi-particle is called plasmon [293]. Plasmons
inside a bulk material can be measured using electron energy loss
spectroscopy (EELS), where the electrons can scatter inelastically
and excite a plasmon. Plasmons also exist as surface plasmons,
where light can be coupled for example in an attenuated total re-
flection configuration [413]. These are called “propagating sur-
face plasmon polaritons” [390]. In AuNPs, the plasmon can not
propagate. Thus, they are sometimes called “localized surface
plasmon”. Since the particles are much smaller than the wave-
length of the incoming light, the displacement of the electrons
against the nuclei can be considered coherent, which is called
the quasistatic approximation [390]. Together with the restoring
force of the positively charged lattice, this creates a system simi-
lar to an harmonic oscillator, which is driven by the external light
field. Figure 8.3 visualizes the bulk and surface plasmons as well
as their excitation.

An analytic way to calculate the optical properties of AuNPs is
the so-called Mie-theory [389], published over 100 years ago. It
solves the Maxwell equations for a spherical particle by a mul-
tipole expansion of the electromagnetic fields. A full derivation
can, e.g., be found in [390]. Using the Mie theory, it is easy to
show how the optical spectra change for example due to variations
in size (Figure 8.4) or the dielectric surrounding. Alternatively,
numerical methods as for example finite-elements methods can
also be used to calculate more complex shapes or interactions be-
tween particles.
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bulk plasmon propagating surface plasmonlocalized surface plasmon

e−
ℏ𝜔

ℏ𝜔

𝑑 ≪ 𝜆

Figure 8.3: Schematic depiction of bulk, surface and localized plasmons. The bulk plasmon is a electron density
oscillation inside a gold bulk, which can be probed by EELS. The propagating surface plasmon can be excited
with visible light under the right conditions (e.g. using an attenuated total reflection geometry or a grating) on
a metal/dielectric interface, such as a gold surface. The excitation of localized surface plasmons can be easily
achieved in metal particles with a size smaller than the incident wavelength.
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Figure 8.4: Size dependency
of the absorption spectra of
AuNP as obtained using the
Mie theory. The arrow de-
notes the increasing size of
the particles, from 10 nm up
to 100 nm. The spectra were
obtained using the PYMI-
ESCATT library [421, 422],
as the refractive index of
gold data set from Johnson &
Christy was used [423]. The
refractive index of water as a
solvent was set to 1.33 + 0i.

This also makes it clear why AuNP are so appealing for sensor
applications: The plasmon is depending sensitively on changes
of its local environment, as for example the dielectric constant.
This allows for an optical readout of changes of the chemical en-
vironment. Also, if another AuNP is close by, the electric fields of
the plasmons start to interact, which can lead to a spectral shift
of the plasmon or the appearance of additional resonances. The
resulting optical changes are highly sensitive to the distance be-
tween the particles [414]. The electric field is highly concentrated
in the area between the particles, creating a so-called “hotspot”
with strong coupling between the plasmon and the incident light
[415–418]. This leads to a variety of interesting phenomena, for
example just recently, ultra strong light matter coupling could
be shown for AuNP films with particle sizes ranging from 30 to
40 nm [419, 420]. AuNP can also be used to build plasmonic
wave guides, where light is squeezed into subwavelength dimen-
sions and integrated into photonic circuits [399, 401, 424–426].
Apart from basic research, these unique optical properties are also
interesting for applications, since strong fields give rise to an en-
hancement of Raman signals, which is called surface enhanced
Raman spectroscopy (SERS). This can be used to perform mea-
surements on the vibrational footprint of individual molecules or
obtain high sensitivities [407, 427–429].
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Figure 8.5: Logical opera-
tions with a single AuNP.
Depending on the voltage of
the two gate electrodes, the
current through the particle
could be controlled [200].
Reprinted with permission
from Maeda, K. et al. Logic
Operations of Chemically
Assembled Single-Electron
Transistor. ACS Nano 6,
2798–2803 (Mar. 2012).
Copyright 2012 American
Chemical Society.
21 This is quite similar to
the discussion in the field of
molecular electronics regard-
ing single-electron or ensem-
ble experiments, see Chap-
ter 2.

8.1.2 Transport Properties

Aside from their optical properties, AuNP are studied as elements
of electronic devices. There, it is crucial to consider the influ-
ence of the ligand shell. This shell can create an isolating layer
around the AuNP, which electrons have to pass through by tun-
neling mechanisms.

The electron transport through a AuNP is usually governed by
the Coulomb blockade (see Chapter 2): An electron tunnels on a
AuNP and charges it. Adding additional electrons on that particle
can only be done, if the applied potential gives enough energy
to overcome the Coulomb repulsion. Numerous realizations have
been published in the last years [199, 430–435], including experi-
ments where fundamental logical operations could be performed:
Maeda et al. could show that in a device with a source, a drain and
two gate electrodes, the output current could be controlled by the
voltage of the two gate electrodes (Figure 8.5) [200]. With such
a device, XOR or NXOR logic operations could be performed with
a single particle. In current electronic circuits, an XOR operation
requires several transistors.

Such realizations can be promising candidates for future electron-
ics, but it is still very complicated to integrate an AuNP into a de-
vice in a controlled manner. A different approach can be to incor-
porate AuNPs not as a single particle, but as a film, monolayer or
aggregate21. This is used to study the basic transport properties
of such assemblies, to build sensors or enable printable electron-
ics [116, 397, 436–444]. In such mono- or multilayers, the role
of the ligand becomes much more important. By changing for
example the length of the ligands, the coupling and transport be-
tween two adjacent particles can be precisely controlled. Several
studies showed the dependency of the electron transport through
such AuNP films on the length of the capping ligands [445, 446]
or the electronic structure [117]. Thus, AuNP films with molecu-
lar linkers have also been subject to studies of the MIT [447–451].
Depending on the coupling between the particles mediated by the
distance [452–456], the size of the particles [457] or type of the
molecule [458, 459], AuNP films can be tuned from (classically)
isolating to metallic.

To present an example, van der Molen et al. demonstrated in 2009
that they could switch the conductance of AuNP films by illumina-
tion [127]. They introduced a photochromic diarylethene into the
layer, which upon UV illumination could switch to a conjugated
form and be switched back using visible light (Figure 8.6). This
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demonstrates how the conductivity of a AuNP film can be tuned
and influenced using the molecular linkers between the particles.

Figure 8.6: Optically switch-
able transport in AuNP films.
Depending on the optical
excitation, the molecular
switch between the particles
can be closed or openend,
which changes the optical
and electronical properties
[127]. Reprinted with per-
mission from van der Molen,
S. J. et al. Light-Controlled
Conductance Switching of
Ordered Metal-Molecule-
Metal Devices. Nano Letters
9, 76–80 (Jan. 2009).
Copyright 2009 American
Chemical Society.

The transport properties through AuNP can interact with the op-
tical excitation of the particles. Thus, optoelectronics are of huge
interest, since they enable a link between between photonics/-
plasmonics and electronics and open the way to photonic cir-
cuits or sensor applications [460]. Mangold et al. demonstrated a
bolometric enhancement of the current through AuNP films with
alkane linkers [411]. Plasmon induced or enhanced conduction
in disordered AuNP linked by prophyrin linkers was shown in
[128]. A similar study attributed the increase of the current to
the extraction of plasmon-induced hot electrons [461] or showed
the plasmon-induced electron transfer through molecules [462].
Resonant photoconductance due to the excitation of the linking
molecule was shown for oligo-phenylene-vinylene (OPV) linkers
[412] and also discussed theoretically [463, 464]. The aforemen-
tioned review by Liao et al. discusses additional results and find-
ings [129].

The variety of applications and studies on AuNPs or AuNP films
demonstrate that they can be regarded as a general and flexible
platform to study basic science, molecular electronics or plasmon-
ics. But to study the transport properties of AuNP or prepared
films, the problem of introducing proper electronic contacts has
always to be overcome. Therefore, establishing THz spectroscopy
as a contactless approach to study transport properties in such sys-
tems can pave the way for more possibilities or studies. Especially
concerning optoelectronics this is highly interesting, since short-
lived timescales of optically excited carriers can be accessed.
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8.1.3 Synthesis Techniques

Particle Synthesis

Citrate-stabilized AuNP were used as the starting material for all
further experiments. A general discussion regarding synthesis
can be found in Daniel & Astruc [96]. The particles used here
were obtained using a protocol based on the Turkevich synthesis
[391, 465, 466]. The resulting particles are stabilized by citrate
in aqueous solution, which can be easily exchanged since they
bind only by weak electrostatic interactions. The protocol pre-
sented by Schulz et al. uses the inverse approach (thus injecting
the Au precursor into the hot citrate solution rather than heating
the gold precursor solution and adding the citrate agent) and was
able to decrease the standard deviation of the particles size below
8% and the reproducibility concerning the size below 3%. This
protocol is routinely used to prepare particles for subsequent ex-
periments or reactions in our group, like ligand exchange, phase
transfer or seeded growth.

The AuNPs are obtained by a reduction of Tetrachloroau-
ric(III)acid by a citrate buffer (Trisodium citrate dihydrate / cit-
ric acid) in the presence of EDTA (ethylenediaminetetraacetate).
The reduction of the Tetrachloroauric(III)acid yields the nuclei,
which grow to AuNP.

C6H5O3−
7 → C5H4O2−

5 + CO2 + 2e− + H+ (8.11)

AuCl−4
+3e−−−−−−→
−4Cl−

Au0 particle growth
−−−−−−−−−−−−→ AuNP (8.12)

A very elegant aspect for this reaction is that the reducing agent
also acts as a stabilizing ligand for the obtained AuNPs. The re-
action can be performed with relatively high volumes (~1 L) and
yields concentrations of 3 to 5 nM [466].

Functionalization, Ligand Exchange and Phase Transfer

Functionalization of the AuNP usually involves a ligand exchange
reaction. Different binding motives and ligands have been re-
ported, and a multitude can be used: Starting from weak binding
of citrate due to electrostatic interactions, via amines, phosphines
up to thiols or other ligands including sulfur atoms like dithio-
carbamates which can build strong covalent bonds to gold [403,
467].
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Especially thiols have been established as robust ligands due to
the strength of covalent thiolate-gold bond of around 1.735 to
2.168 eV [468]. The exact binding geometry is not easily to de-
termine, since different bonding motifs exist or a reconstruction
of the surface can occur [468–473]. And the thiol-gold bond still
continues to surprise: In 2019, Inkpen et al. reported physisorbed
gold-thiol bonds for connections formed on air, not in solution
[474].

New ligands can introduce functionalities, improve the stability
of the particles or enables further chemical reactions like cross-
linking a polymer shell around the particle or connecting two
particles. Also, this can be used to transfer the particles from one
phase to another, since the solubility of the particles is mainly de-
termined by the endgroup of the ligands. As already mentioned,
the transport properties of prepared films are highly dependent
on the nature of the ligand shells [402].

To enable further reactions using ligands which are soluble in
organic/unpolar solvents, the AuNPs have to be transferred in
the organic phase. The protocol applied here is based on pre-
vious work [475, 476], was first applied and published by us in
[112] and further improved in [477]. Transferring the AuNPs
from the aqueous to an organic phase enables further reactions
with molecules which are not solvable in water, for example the
aromatic linkers used in this work.

to
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r

𝑡

citrate OAm

Figure 8.7: Schematic depic-
tion of phase transfer and
ligand exchange of citrate-
stabilized particles to toluene,
accompanied by ligand ex-
change of citrate with OAm.

Figure 8.7 shows the general scheme of the phase transfer. First,
the particles are stabilized by citrate in the aqueous solution.
OAm is not soluble in water, but in toluene, the organic phase. At
the solvent-solvent interface, however, ligand exchange can take
place. This will transfer the particle slowly into the organic phase,
replacing the citrate ligand layer with an OAm layer. The reverse
reaction is not probable, since the binding of OAm amine groups
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is stronger than that of the citrates’ carboxylic acids groups. By
adding, e.g., ethanol as a phase transfer agent, the reaction yield
can be improved since it can act as a cosolvent [477–479].

Film Preparation Techniques

To build films using AuNP, several techniques exists. Numer-
ous efforts have been carried out to present ways to prepare or-
dered or unordered films on different substrates, using differ-
ently sized particles and different kinds of ligands or linkers [95,
401]. Roughly, one can distinguish between two different ap-
proaches, even though they are not strictly differentiated. On
the one hand, strategies employing self-assembly techniques are
used. Usually, this involves slow reaction or evaporation rates,
so that order can be established. Examples are the forming of
ordered films on liquid-gas or liquid-liquid interfaces, where the
solvent slowly evaporates, thus increasing the concentration of
particles and forcing them to use the remaining space efficiently,
which results in a crystalline structure [397–400, 472, 477, 480–
489]. On the other hand, films can be prepared by using chem-
ical reactions, which link particles together. Since this usually
happens on relatively fast timescales and the bond prevents fur-
ther reorientation, these films do not show the same order as the
self-assembled ones (but can as in Ref. [490]). These techniques
usually use spin-coating or layer-by-layer (LBL) methods, where
in an alternating fashion molecular linker and AuNP are bound
to a substrate [25, 454, 491–495]. These techniques have the
advantage of being able to build films of arbitrary thickness and
linker molecules. LBL in combination with spin-coating have been
used to build AuNP films which have been utilized as sensor for
gases, pressure or strain [440, 442, 496–499]. The molecular
linkers, often dithiols, were used for the stable connection of the
particles but also to tune the conductivity, either by their length
or electronic structure.

An extensive summary over obtained conductivities for films of
AuNP (and other particles) prepared by different methods (as the
ones mentioned above) and linkers can be found in Ref. [116].
To mention a few examples, the conductivity of films prepared
by Liao et al. could be reversibly changed by the use of ei-
ther an thiolated oligo(phenylene ethynylene) (OPE) linker or
an 1-octanethiol ligand, which gave sheet resistances in the
range of 1 × 107 Ω to 1 × 108 Ω for the OPE linker and 1 × 109 Ω
to 1 × 1011 Ω for the aliphatic ligand [129]. In Ref. [437],
AuNP (𝑑 ≃ 4nm) films were prepared by a layer-by-layer
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Figure 8.8: Schematic
depiction of drop casting
(left) and layer-by-layer
preparation (right) of AuNP
films. Dropcasting: A solution
of AuNP in toluene is dropped
on a substrate. The solvent
evaporates, increasing the
concentration of the particles
until an ordered film is
formed. Layer-by-layer:
AuNP@OAm solution is
placed on a functionalized
substrate, so that the parti-
cles are chemically connected
to the substrate (a). Ligand
solution with a dithiol (DT)
is added, replacing the OAm
ligand of the particles (b).
Afterwards, the next batch
of particles can be added,
which are again chemically
connected to the previous
particle layer (c). Steps b
and c are repeated to obtain
the desired film thickness.

method with various alkanedithiols, yielding conductivities of
3.73 × 10−2 S cm−1 for hexanedithiol up to 4.81 × 10−5 S cm−1 for
hexadecanedithiol at room temperature. In Ref. [500], for par-
ticle films with 1,12-dodecanedithiol and TER, conductivities of
7.7 × 10−4 S cm−1 and 6.9 × 10−3 S cm−1 were found.

8.2 Gold Nanoparticle Films Prepared using
Drop Casting Methods

The initial ligand transfer to the organic phase and drop casting
of our particles into hexagonal closed–packed films was first re-
ported in [112]. The good controllability was later refined and
improved to obtain large area coverage [477]. Samples prepared
with this technique enabled, e.g., the investigation of collective
plasmon properties, known as dark plasmons [419, 420]. The
problem with this approach is to link the particles using molecu-
lar linkers. This can be done by adding linker solution to the drop
casted films, but this also can resolve the film.

An additional approach used here was to place a container on
the substrate, which limits the spread of the solution as shown in
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evaporation
of solvent,
concentration
of AuNP

Figure 8.9: Restricted drop
casting using a small con-
tainer.

Figure 8.9. Thus, the linkers can be added to the AuNP solution
and react with the particles while drying. A disadvantage of this
approach can be that particles can stick to the container and will
not be deposited homogeneously on the substrate due to capillary
forces at the edges between the container and the substrate.

For both approaches, introduction of linker molecules is expected
to reduce order in the films, since the chemical bonding can fix
a particle at a certain space and limits further rearrangements to
optimize the space filling and thus the crystalline structure.

8.2.1 Methods

Direct Drop Cast

Samples using drop cast techniques are prepared by cleaning the
substrates with MQ, ethanol and toluene. A drop of a chosen
volume of the particle solution is placed on the substrate using
an Eppendorf pipette. If the evaporation of the solvent should
be slowed down, the samples were placed in a container together
with a small flask containing toluene to create a saturated toluene
atmosphere.

Drop Cast with Container

The samples were prepared by filling AuNP solution inside the
container with a PTFE chip as substrate, with or without addi-
tional ligand solution. As a container, cut pipette tips were used,
which were pressed on the PTFE substrate (⌀ ≃ 7 mm). In the ex-
periments presented here, just TER in toluene as a linker solution
was used, except for one test where NON in toluene was tested.
Usually, the container was filled only once. In some experiments,
particle or ligand solution was added multiple times to build up
thicker films.

Table 8.1 gives an overview over the samples which have been pre-
pared using just AuNP@OAm in toluene as particle solution with-
out any additional linkers. As shown in the table, three different
concentrations and various volumes have been used. Table 8.2
shows the volumes and concentrations of samples prepared using
AuNP@OAm with TER linker solution (and one sample with NON
linker solution).
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Sample AuNP@OAm solution
Volume [µL] Concentration [nmol L−1]

A101 40 27.7
A102 80 27.7
A103 120 27.7
A104 160 27.7
A105 2 × 80 27.7
A106 4 × 80 27.7
A107 120 27.7
A108 20 145.6
A109 2 × 20 145.6
A110 10 145.6
A111 20 145.6
A112 40 145.6
A113 50 26.7

+ 70 26.7
+ 3 × 100 26.7

Table 8.1: Overview of
sample names and added
AuNP solution for the films
prepared without any linker
molecules.

Sample AuNP@OAm solution TER solution
Volume Concentration Volume Concentration

[µL] [nmol L−1] [µL] [nmol L−1]
A201 80 145.6 10 1
A202 80 27.7 20 1
A203 160 27.7 20 1
A204 160 27.7 20 1
A205 80 27.7 1 1
A206 80 27.7 1 1
A207 120 27.7 20 0.1
A208 120 27.7 20 0.1
A209 2 × 20 145.6 10 0.1
A210 20 145.6 6 0.1
A211 20 145.6 6 1
A112 50 26.7 5 0.1

+ 70 26.7 5 0.1
+ 3 × 100 26.7 5 0.1

NON solution
A301 50 26.7 5 0.1

+ 70 26.7 5 0.1
+ 3 × 100 26.7 5 0.1

Table 8.2: Overview of
sample names and added
amounts of particle and
linker (p-terphenyl-4,4″ -
dithiol (TER) and nonane-
1,9-dithiol (NON)) solution
for the preparation of linked
particle films.
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8 Terahertz Spectroscopy of Gold Nanoparticle Films

Figure 8.10: Pictures of the
samples A104 and A106 pre-
pared using PTFE chips as
substrates.

Terahertz Time-Domain Spectroscopy

All samples were investigated in our home-build THz spectrom-
eter. For each measurement of a sample, measurements of air
and a PTFE substrate as a reference were performed. All mea-
surements were done under a continuous nitrogen flow to get rid
of any absorption lines due to water vapor. Each measurement
was repeated several times. The scanning range, time steps and
integration time per data point was varied. Data processing and
extraction was performed using DUODECIM as described in Chap-
ter 6.

As a statistical tool to identify and filter out measurements with
spikes or high noise, the Jackknife resampling method has been
used. A short summary can be found in the appendix (Section D).
Basically, the Jackknife method checks each measurement for its
influence on the average and standard deviation of all measure-
ments. A measurement with noise increases the standard devia-
tion of the whole set, so by leaving it out, the standard deviation
is decreased.

8.2.2 Results and Discussion

Drop Cast with Container

The dried particles formed films on the PTFE substrates (for exem-
plary pictures see Figure 8.10). Depending on the concentration,
the film had either a reddish color or already a golden appearance
(samples A108 - A212), which indicates the formation of a thick
AuNP layer. At the edge of the tube, irregularities or coffee rings
could be observed.

Terahertz Time-Domain Spectroscopy

Since a lot of measurements using the THz -TDS setup have been
performed on all samples, not every measurement will be dis-
cussed in detail here. Thus, a statistical analysis is given first,
identifying samples of interest. A simple visual inspection of the
time-domain signals is not possible here, since the differences be-
tween reference and sample measurements are very small. There-
fore, the mean absolute error (MAE) of the complex spectra is
used to calculate the distance between the spectrum of a refer-
ence or substrate measurement and the spectrum of a sample.
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22 The polar representation
used here of complex num-
bers 𝑐 = 𝐴ei𝜙 is much more
useful in terms of analyzing
the spectra, since the magni-
tude and phase directly trans-
late to physical properties.
Also, errors or problems con-
cerning the phase unwrap-
ping can not be identified
with the Cartesian represen-
tation (𝑐 = 𝑎 + 𝑏i).
23 The MAE is chosen over
the root-mean-square error
(RMSE) since the latter has
stronger penalty on bigger
differences, and here the fo-
cus is more on small differ-
ences.

Afterwards, some chosen samples will be discussed in detail. Ad-
ditionally, drop casted samples of AuNP with a slightly bigger size
of 45 nm will be discussed.

Statistical analysis

In a single measurement session, usually several traces of the THz
pulse of a reference and several samples are recorded alternat-
ingly. This is done to be able to compensate for slow drifts in the
laser power, since this is affecting the reference and sample mea-
surements equally. If first just the reference is measured several
times and afterwards the sample, a different signal for the sam-
ple could be obtained due to slow changes of e.g. the laser, which
generates the THz pulse [305].

For each single measurement of a session, the complex spectra are
calculated using the python3-numpy library22. Measurements,
for which the Jackknife resampling analysis showed a deviation
higher than 5% of the total standard deviation, are left out of the
following analysis. For each cycle, the MAE23 of the magnitude
and phase between two samples (or sample and reference) is cal-
culated and summed up over the frequency domain from 0.1 to
2.5 THz. Even though usually associated with the calculation of
error, the MAE gives in fact a cumulative distance between two
curves, which can also be used to measure how similar or close
those curves are. Thus, a samples measurement can be compared
to the corresponding reference measurement, which is in this case
a PTFE chip. The term “cumulative” is used here to refer to the
summation over the given frequency range.

Another idea of analyzing the THz measurements statistically
would be not to look at the MAE of the spectra, but for exam-
ple at the correlation of the signals in the time-domain. But this
has the drawback that shifts and attenuation are not similarly in-
cluded, since also an attenuated THz pulse can correlate perfectly
with the original one. In Figure 8.11, the frequency-accumulated
MAE for the magnitude and the phase of the spectra is given.

For most of the samples, the MAE and thus the distance between
complex spectrum of a sample and a measurement of a clean PTFE
chip is low. To put these numbers into context, in Table 8.3 the cu-
mulative MAEs are given for shifted or attenuated beams obtained
by modified a reference/substrate measurement. This shows, that
a shift mostly induces an error into the phase, while an attenu-
ation enters the MAE of the magnitude of the transfer function
more strongly.
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Figure 8.11: Overview of the MAE of the magnitude/absolute and the phase/angle of the spectra for the samples
prepared by drop casting. The blue shaded areas include samples which are prepared without any linkers. The
orange shaded part includes samples prepared using TER, while the greenish area is a sample prepared with
NON. The dashed lines show the calculated MAE for exemplary pulses (see Table 8.3). Multiple points per
sample are obtained from measurements which have been performed at a different day.

Table 8.3: Cumulative MAEs
for artificial modifications of a
THz pulse.

modification MAE(magnitude) MAE(phase)
1 % attenuation 0.0334 0.0213
10 % attenuation 0.3325 0.2107
10 fs shift 0.0035 0.1466
100 fs shift 0.0062 1.4000

Sample A106 and A108 show the highest MAE of all samples.
A106 was mistakenly prepared using a PTFE chip with a different
thickness, thus lacking a corresponding reference measurement
which leads to the high MAE.

For a further analysis, Sample A110, A108 and A206 have been
chosen. Sample A113, A212 and A301 will also be discussed.
These were relatively thick samples prepared the same way using
OAm, TER and NON as ligands, enabling a direct comparison. Ad-
ditionally, a sample prepared by drop casted 45 nm sized AuNPs
will be investigated.

A110

The sample A110 has been prepared by adding 10 µL to the con-
tainer (as depicted in Figure 8.9). Due to the low volume, this re-
sembles a standard drop cast preparation without any constraints
of the drop size. The obtained film appeared violet or gold-
en/metallic, depending on the angle of view.
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26 measurements have been performed for each sample in an al-
ternating fashion as mentioned earlier. In Figure 8.12 a), the
averages of all 26 measurements for a measurements of air, the
substrate (PTFE) and AuNP on PTFE (sample A110) are shown. A
Jackknife analysis unveils some measurements with higher noise
(Figure 8.12 b)). A closer look showed the occurrence of spikes
in these measurements.
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Figure 8.12: a) Measured THz pulses for transmission through air, the substrate (PTFE chip) and the sample
(AuNP on PTFE chip, sample A110). Here, the average over 26 measurements taken on a single day in a
row is shown. b) Cumulated/summed standard deviation for all measurements with iteratively leaving out one
measurement. This gives a hint in which measurement the noise was increased/spikes occurred. c)/d) Obtained
magnitude (abs(𝐻)) and phase (ang(𝐻)) of the transfer function, shown for measurements of two consecutive
days. The magnitude of the transfer function is nearly one, indicating no absorptive losses in the sample. The
phase shows a light slope. This can be referred to a phase shift induced by the AuNP film, but also can be caused
by thickness variations. It can also be seen, that the noise is increasing with the frequency, since the power is
strongly decreased for frequencies above 2.5 THz In c) and d) the average of the transfer functions obtained in
a second set of measurements on another day are shown in red.

The pulse shapes of the reference and sample measurement in
Figure 8.12 a) appear to be nearly equal, thus do not allow any
conclusion about an influence of the AuNP film on the THz prop-
agation.

In a next step, the transfer functions for the sample can be cal-
culated as described in Chapter 6: For each measurement of sub-
strate and sample, the spectra are calculated, divided and the ob-
tained polar representation (absolute and phase) of the transfer
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8 Terahertz Spectroscopy of Gold Nanoparticle Films

function is shown in Figure 8.12 c) and d). Measurements show-
ing outliers in the jackknife analysis were left out of the analysis.
The data shown here is the average of the sets of measurements
performed at two different days. The shaded areas denote the
standard deviation.

For the magnitude as well as the phase the standard deviation is
increasing with frequency, since the signal-to-noise ratio becomes
small at frequencies above 2.5 THz. As can be clearly seen in the
transfer function, there is nearly notable absorption in the sample,
since the magnitude of the transfer function is flat and nearly
equal to 1. The phase shows a slight slope, but this can also be due
to thickness variations of the substrate. No data extraction using
the Tinkham approximation or the numeric approach is shown
here due to the lack of absorption.

This leads to the conclusion, that this particle film is transpar-
ent for THz radiation. Any dispersive influence can not be safely
determined, since the slight slope observed in the phase was not
reproducible and can be caused by various reasons, for example
substrate thickness variations.

A108

The statistical analysis of sample A108 (Figure 8.11) shows a rel-
atively high MAE for the magnitude as well as the phase of the
transfer function. Figure 8.13 displays the average transfer func-
tion (magnitude and phase) as well as the standard deviations
(shaded areas). Measurements with a Jackknife deviation of more
than 1% were left out of the analysis. The result resembles the re-
sults obtained for the sample before: The magnitude is relatively
flat and equals to one, which indicates no absorption in the film.
The phase slope is in the same range as the sample discussed be-
fore and is still below the phase slope induced by a 10 fs shift of
the THz pulse.

Figure 8.13: Mean (solid
line) and standard deviation
(shaded area) for the transfer
function obtained for A108.
Samples, for which the Jack-
knife analysis yielded a devi-
ation higher 1% were left out
of the analysis. 0.96
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The high MAE shown before can not be reproduced with this anal-
ysis. It is most likely that the measurements which have been
sorted out by the more strict Jackknife analysis applied here are
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responsible for the higher MAE. This could be confirmed with an
inspection of the individual THz time traces, which showed spikes
for those measurements, which have been sorted out.

A206

Sample A206 was obtained by adding 80 µL of OAm-AuNP
in toluene (27.7 nmol L−1) and 1 µL TER in toluene solution
(1 nmol L−1) to the container. After drying, the film had a violet,
nearly black color with a visible metallic radiance when looked at
in the right angle.

Measurements have been performed on three different occasions.
On each occasion, 20 traces of the THz pulses have been recorded.
As before, the transfer function is calculated for each pair of
substrate/sample measurements. From these individual transfer
functions the mean and the standard deviations for the magni-
tude and the phase are obtained and shown in Figure (8.14).
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Figure 8.14: Obtained transfer functions for sample A206, from measurements of three consecutive days. The
magnitude of the transfer function show a flat response. The phase shows a negative slope for the first mea-
surements, which vanishes for the other measurements. The shaded areas denote the standard deviation (or 1𝜎
interval).

Similarly to the sample studied before, the magnitude of the
transfer function indicates no notable absorption. The phase
shows a small negative slope for the first set of measurements,
which becomes nearly negligible for the measurements which
have been performed on following days.

Here, exemplary Tinkham sheet conductivities (see Equa-
tion (6.32)) have been extracted using DUODECIM. Since there
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is no absorption visible in transfer function, the real conductivity
is zero. This is also true for the imaginary part, except for one
measurement with the slight slope.

Similar to the sample studied before, the AuNP film apparently
does not interact with the THz beam at all, but is completely trans-
parent.

A113, A212, A301

These samples were prepared in the same way, using a total vol-
ume of 420 µL of 26.7 nM AuNP@OAm solution. A113 was pre-
pared without the addition of linkers, to A212 in total 15 µL of
0.1 nM TER solution was added. The same amount of NON linker
solution was added to A301. The transfer functions obtained for
40 scans per sample are shown in Figure 8.15

Figure 8.15: Magnitude
(left) and phase (right) of
the transfer functions for the
samples A113, A212 and
A301. Data is shown for
three repetitions of the mea-
surements. The solid lines
represent the averages, the
shaded areas the standard
deviations.

0.9

1

1.1

0 0.5 1 1.5 2 2.5 3
−0.4
−0.2

0
0.2
0.4

0 0.5 1 1.5 2 2.5 3

0.9

1

1.1

0 0.5 1 1.5 2 2.5 3
−0.4
−0.2

0
0.2
0.4

0 0.5 1 1.5 2 2.5 3

0.9

1

1.1

0 0.5 1 1.5 2 2.5 3
−0.4
−0.2

0
0.2
0.4

0 0.5 1 1.5 2 2.5 3

M
an

gi
tu

de

Frequency [THz]

A113 A212 A301

0.9

1

1.1

0 0.5 1 1.5 2 2.5 3

Ph
as

e

Frequency [THz]

−0.4
−0.2

0
0.2
0.4

0 0.5 1 1.5 2 2.5 3

M
an

gi
tu

de

Frequency [THz]

0.9

1

1.1

0 0.5 1 1.5 2 2.5 3

Ph
as

e

Frequency [THz]

−0.4
−0.2

0
0.2
0.4

0 0.5 1 1.5 2 2.5 3

M
an

gi
tu

de

Frequency [THz]

0.9

1

1.1

0 0.5 1 1.5 2 2.5 3

Ph
as

e

Frequency [THz]

−0.4
−0.2

0
0.2
0.4

0 0.5 1 1.5 2 2.5 3

Similar to previous results, the phase of the transfer function
shows a slope for the samples A113 and A212, but not for the
sample A301. The magnitude is one and depending on the mea-
surement, the differences between the samples are within their 1𝜎
interval. Thus, no absorption of the samples can be found, which
would lead to the real part of the conductivity going to zero. The
slope of the phase implies a capacitive response of the particles,
but not for the samples with the NON linker. But as mentioned
earlier, even though the measurements show a signal with the 1𝜎
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Figure 8.16: Recorded electric fields for a measurement without any sample, a quartz substrate and a quartz
substrate with 45 nm-sized AuNP drop casted onto. The refractive index of the substrate causes a noticeable
shift of the THz pulse. The small shift between the sample with and without AuNP (more clearly visible for the
second reflection) can be due to variations of the substrates thickness.

confidence interval, these changes can not be safely distinguished
from influences of substrate thickness variations.

45 nm AuNP

Aside from the 12 nm particles used here, bigger particles have
been studied to check whether THz absorption can be achieved.
The particles were obtained from Florian Schulz and were pre-
pared by a seeded growth protocol. 10 µL were drop casted on a
quartz substrate and measured together with a quartz substrate
as a reference and a measurement of air. The obtained electric
fields are shown in Figure 8.16 a).

Same as before, there is no absorption visible in the transfer func-
tion. The nonzero phase/angle can also be seen in the THz time
traces, since there is a slight shift of the samples to earlier times
with respect to the reference. This is clearly to identify, when
looking at the second reflection in the substrate. This shift can be
explained with variations of the substrate thickness.

Summary

Summarizing the results, the drop casted particle films seem to be
totally transparent in the THz regime. For every measurement,
the magnitude of the transfer function is flat and equal to one,
which indicates no absorptive losses. The phase usually shows a
slight slope, usually negative. But this signal is too small to be
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8 Terahertz Spectroscopy of Gold Nanoparticle Films

trusted and to be used as a starting point for further data extrac-
tion: For the same sample, the phase changed for measurements
performed on subsequent days, e.g. from a negative slope to a
slop of almost zero. Also, when compared to the signal by sim-
ply shifting the THz pulse by 10 fs (which corresponds roughly
to a change of the thickness of 2 µm), all signals in the phase
domain are much weaker. The correct thickness of all samples
could not be easily obtained. One way to obtain correct thick-
nesses would be more advanced theoretical approaches as shown
e.g. in Ref. [358], but it is unlikely that any signatures of the
particles can be obtained, since this only corrects the phase, but
doesn’t change the lack of absorption features in the magnitude
of the transfer functions.
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Figure 8.17: Transfer functions for over 2000 measurements on samples without (left) and with (right) molec-
ular linkers.

Figure 8.17 illustrates again the drawn conclusion. It shows the
transfer functions of over 2000 measurements for AuNP@OAm
and AuNP@TER particle films. The magnitudes scatter around 1,
the phase is nearly zero or condenses into slight shifts.
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8.3 Gold Nanoparticle Films prepared using a
Layer-by-Layer Approach

As an alternative approach, THz studies on AuNP films prepared
by layer-by-layer methods have been studied, as already visual-
ized in Figure 8.8. In contrast to the studies performed with drop
cast samples on PTFE substrates, a material which enables chemi-
cal bonding between the substrate and the particle has to be used.
Here, quartz substrates were chosen, since it is a suitable sub-
strate in the THz range (see Section 6.6) and it allows to use the
rich possibilities of silane chemistry to functionalize the substrates
and bind AuNP as, e.g., in Refs. [117, 448, 454, 501]. Compared
to drop casting methods, the layer-by-layer approach can give a
better control regarding the thickness of the deposited film, as it
is an self-limiting process: Per cycle, only one layer of particles
can be deposited until the surface is completely covered. Any
further particles cannot bind and would be removed by a sub-
sequent washing step. The preparation of most of the samples
studied here is discussed in detail in Ref. [502].

8.3.1 Methods

Materials

The quartz substrates used in this worked were obtained
from plano-em (“Quarzglas GE 124”, product number 26016,
information about the material can be found under [373])
with a size of 19 × 19 × 0.5mm. biphenyl-4,4′-dithiol
(BI)(95%), p-terphenyl-4,4″-dithiol (TER)(86%), nonane-1,9-
dithiol (NON)(95%), 4,4-thiobisbenzenethiol (THIO)(98%) and
oleylamine (OAm)(technical grade) were purchased from Sigma-
Aldrich. Ultrapure water (18.2 MΩ cm, Millipore) (MQ) was used
for all procedures.

For information regarding the AuNP solution see Section 8.2.

Preparation of LBL Films

The protocol used in this work is based on Ref. [437]. The
19 × 19 × 0.5mm substrates are broken into smaller, usually four,
pieces. The quartz substrates were cleaned by rinsing them with
MQ, acetone and/or isopropanol and toluene. Afterwards, they
were placed in a plasma cleaner (Harrick Plasma PDC-002). The
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8 Terahertz Spectroscopy of Gold Nanoparticle Films

chamber was evacuated down to a pressure of 1 mbar, in some
cases the chamber was evacuated for up to 15 additional minutes
to remove water vapor residues. The substrates were activated by
using the “mid” setting for 3 min.

Afterwards, they were either quickly immersed in an (3-
Mercaptopropyl)trimethoxysilane (MPTS) in toluene solution or
a drop of MPTS was deposited on the substrate. The reaction
time was varied for different samples. Afterwards, the functional-
ized substrates were removed from the solution and washed with
toluene.

To add the first particle layer, the samples were immersed into a
solution of AuNP@OAm in toluene. The reaction time and con-
centration of the AuNP solution were varied. To remove unbound
particles, the samples were rinsed with toluene afterwards. For
the ligand exchange/linking reaction, the samples were placed in
a solution of NON, BI, TER or THIO in toluene. The concentra-
tion and reaction time were varied. After washing the samples
with toluene, the whole procedure was repeated until the desired
number of cycles was reached. The exact details of the synthesis
can be found in Ref. [502].

Characterization

To obtain the spectrum of the deposited films, UV-Vis spec-
troscopy was performed using an Agilent Varian Cary 50 Conc,
an Agilent Varian Cary 50 Bio or a Perkin Elmer Lambda 25.
The measurements were either performed by directly measuring
a baseline with a untreated quartz substrate or using a measure-
ment without any sample as a baseline. For the latter, the absorp-
tion of the substrate had to be corrected for later. UV-Vis spectra
were recorded for different positions of the sample by shifting
the sample holder including the sample randomly between the
measurements. The measurements could be performed as well
between the aforementioned cycles as at the end of the synthe-
sis.

Additionally, same samples were investigated in an optical mi-
croscope (Zeiss Axio Scope.A1, A-Plan 40x/0.65 ∞/0.17 lens) to
investigate the of the homogeneity and coverage of the sample.

The topology of some samples was investigated using AFM
(Digital Instruments (now Bruker) Multimode equipped with
a Nanoscope IV controller) and scanning electron microscope
(SEM) (ZEISS Gemini LEO-1150). The AFM measurements are
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used to determine the thickness of the deposited films. The sam-
ples are scratched carefully to remove the film at a certain area.
The created step is scanned, the data processed (removal of con-
stant and linear offset) using GWYDDION.

THz Spectroscopy

The procedure of the THz-TDS measurements similar to the pro-
cedure described for the drop casted samples (Section 8.2). Up to
four samples were mounted in a motorized filterwheel, together
with an unprocessed quartz substrate as a reference. One posi-
tion in the filterwheel was left empty for a reference measurement
without any material inside the beam path. Before the measure-
ment, the alignment was usually slightly adjusted to increase the
peak THz field intensity, e.g. by optimizing the alignment of the
detection beam into the detector. Sometimes, the compressor
length of the laser system was tweaked to increase the peak THz
field by creating a prechirped pulse.

Subsequently, the filterwheel was mounted in the THz setup, the
box surrounding the setup was closed and the system was purged
with nitrogen for at least 10, usually 15 min before the first mea-
surement. The measurements were recorded in an alternating
fashion (sample 1, sample 2, ..., sample 1, sample 2, ...) to adjust
to slow drifts of the system. The scanning range, the scanning
steps, the number of data points per scanning step and the num-
ber of total measurements were varied.

For the extraction of parameters like the complex conductivity or
complex sheet conductivity 𝜎̃(𝜔) = 𝜌̃(𝜔)/𝑑, the obtained data was
analyzed using DUODECIM.

8.3.2 Results and Discussion

Characterization

Over 30 samples have been measured using THz-TDS and even
more have been prepared, e.g. as test experiments for thicker
samples. Here, a chosen selection of samples will be dis-
cussed which represents different thicknesses and different linker
molecules. First, the optical properties and topology of the sam-
ples is discussed, then the THz experiments will be reviewed.

Using UV-Vis spectroscopy, the optical properties of the prepared
films could be used to study the film growth and thickness as well
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Figure 8.18: UV-Vis spectra obtained for LBL filmes with four different linkers. The number of deposition cycles
is given in the respective legends. All samples show an increase of the absorption when more materials is
deposited, accompanied with shits of the plasmon resonance.

as the influence of the linker molecules. The increase of deposited
AuNP on the substrates directly influence the absorption, while
the chosen linker molecules affect the shape, in particular the
plasmon resonance. Figure 8.18 shows the absorption in the vis-
ible range for samples with different thicknesses and for all four
used linker molecules.

According to the spectra, the thickest samples could be obtained
using the NON linker. For all samples, the dominating feature
is the plasmon peak, indicating intact, non-aggregated particles.
Figure 8.19 shows the spectral position of the peak position and
the peak value of the plasmon depending on the number of de-
position cycles. Interestingly, the peak position of the plasmon
first shifts to longer wavelengths due to the coupling of the in-
dividual particles, but shifts back to shorter wavelengths if more
material is deposited. This was also observed in films prepared
by spin-coating layer-by-layer techniques [495].

To obtain information about the film thickness, AFM measure-
ments were performed. Figure 8.20) shows height profiles for
the samples obtained with the NON linker discussed above in Fig-
ure 8.18. As described in the experimental section, any constant
offset or or slope is removed using GWYDDION. Then, the data
is averaged along the axis of the edge. For the data shown here,
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this procedure was repeated for three different areas of the sam-
ple. Outliers and peaks in the data can be attributed to larger
aggregates and agglomerates, which have also been identified us-
ing optical microscopy. For the samples prepared by 5 cycles, a
thickness of 47.70 nm is obtained, for 8 cycles 67.33 nm and for
11 cycles 90.4 nm. This corresponds to 8.73 ± 0.56nm per cycle,
so roughly 1.4 cycles are needed to build up a full layer in this
case.
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Figure 8.20: Height profiles
obtained from AFM measure-
ments for the samples pre-
pared using the NON linker.

Similar analyses were performed for the other samples shown in
Figure 8.18 and discussed in detail in Ref. [502].

THz Spectroscopy

Now, the results from the THz spectroscopy of the LBL samples
are reviewed. First, a focus will be laid on the aforementioned
thick samples prepared using NON. Results using different link-
ers and the influence of the substrate thickness will be discussed
afterwards.
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8 Terahertz Spectroscopy of Gold Nanoparticle Films

The THz scan of a sample prepared by 8 cycles and the NON linker
is shown in Figure 8.21. Panel a) shows the full THz scan for
reference and the sample measurement, including reflections in
the detection an generation crystals and the reflection inside the
quartz substrate (marked with *). In b), the spectrum of both
measurements is shown, obtained for the full temporal scan. This
explained the ripples in the spectrum, cutting the signal in the
time-domain to remove any secondary reflections would yield a
smooth spectrum. The transfer function is shown in panel c). The
absolute part of the transfer function oscillates around one, while
the phase shows a slight slope. This is already quite similar to
the studies performed on drop casted samples, as it indicates no
losses of the THz radiation by passing through the film. Panel d)
shows extracted Tinkham sheet conductivities, obtained for data
that was cut in time-domain to remove secondary reflections.
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Figure 8.21: a) THz time trace including the second reflection inside the quartz substrate (marked by *) as
well the internal reflections inside the generation and detection crystals. b) Spectrum obtained from the full
measurement without any zero filling. The ripples are caused by the internal reflections of the THz pulse. c)
absolute and phase of the transfer function as obtained from the spectra. The frequency range is restricted to
0 − 3THz, since the signal beyond 2.5 THz is too weak. d) Extracted Tinkham sheet conductivity.

For this sample, even though it is rather thick, no absorption could
be found, since the magnitude of the transfer function is unity in
the trustworthy frequency range. The puzzling aspect is the neg-
ative temporal shift of the sample measurement, which can also
be seen in the positive slope of the phase of the transfer function.
This is difficult to see for the main peak in Figure 8.21, but is vis-
ible to see for the second reflection inside the substrate, marked
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𝑑

𝛥𝑡 𝛥𝑡′

Figure 8.22: Sketch of 𝛥𝑡
and 𝛥𝑡′ to estimate the thick-
ness 𝑑 of a sample.

by * in panel a).

The extracted real sheet conductivity is close to zero. At higher
frequencies the obtained value becomes negative, giving a non-
physical result. But since the requirements for the Tinkham model
are not met, such as an absorbing sample, and there is a notable
phase error most probably due to thickness variations of the sub-
strate, this is not surprising.

The major error source regarding the temporal displacement of
the pulse is the thickness of the substrates. The difference in
thickness is expected to be low for samples/substrates obtained by
breaking one substrate, but apparently the variations between the
19 × 19 × 0.5mm samples can be enough to complicate the anal-
ysis. Thus, in the following several substrates are investigated
using THz spectroscopy to estimate an error of the optical thick-
ness.

Influence of the Substrate-Thickness Variation

To further study the influence of the varying substrate thick-
nesses, several substrates are measured using the THz spectrom-
eter. Some of these substrates were taken out of the box, some
were cleaned or silanized.

Besides extraction the refractive index together with the thickness
as described in Chapter 6, two ways exist to estimate the thickness
based on the guess 𝑛̃ ≃ const.

Either the time difference 𝛥𝑡 between the THz peak of a measure-
ment of air and of a quartz substrate can be compared, or the time
𝛥𝑡′ between the first pass and the first internal reflection inside
the quartz substrate can be analyzed, as visualized in Figure 8.22.
For the first case, the thickness 𝑑 is given by

𝛥𝑡 = 𝑑
𝑐0

− 𝑑
𝑐quartz

= 𝑑 􏿶
1
𝑐0

−
𝑛̃quartz
𝑐0

􏿹

→ 𝑑 = 𝑐0𝛥𝑡
1 − 𝑛̃quartz

, (8.13)

where 𝑛̃quartz is the refractive index of quartz and 𝑐0 and 𝑐quartz
are the speeds of light in vacuum and quartz, respectively. For
the second case, the pulse for the first internal reflection travels
in the substrate three times the distance as directly transmitted
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8 Terahertz Spectroscopy of Gold Nanoparticle Films

24 The transfer functions
are obtained with data cut
the time-domain signal be-
fore any second reflection of
the THz pulse.

pulse. Thus, the thickness is given by

𝛥𝑡′ = 2 𝑑
𝑐quartz

= 2
𝑑𝑛̃quartz

𝑐0
→ 𝑑 = 𝛥𝑡′ 𝑐0

2𝑛̃quartz
. (8.14)

By assuming the the refractive index of quartz to be ≃ 2 + 0i, the
“substrate thickness error” can be estimated. A random collection
of THz measurements of quartz is chosen, 𝑑 is obtained using
booth of the above described methods and the mean and standard
deviation is calculated. The results are shown in Figure 8.23.

Figure 8.23: Gaussian
distribution of the substrate
thickness calculated from
the THz measurements for
various quartz substrates.
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This gives an average optical thickness of 0.6233 (0.6356) mm
with an standard deviation of 0.0238 (0.0274) mm, the number
in the brackets corresponds to the value obtained by the analysis
of the internal reflection. The absolute deviation from the thick-
ness provided by the supplier (0.5 mm) is expected, since the re-
fractive index was approximated in this analysis. The standard
deviation nevertheless is much higher as expected and has to be
considered for future analysis.

BI and TER

In the following, the results from the THz spectroscopy for the
samples prepared using the aromatic linkers are investigated.
Here, the calculated transfer functions24 are directly analyzed
and displayed in Figure 8.24. The magnitude of all transfer func-
tions shows no notable absorption below 2.5 THz. Above 2.5 THz,
the experiments became less trustworthy since the signal-to-noise
ratio is low. The phase is either zero or shows a slight positive
slope. This is similar to the results discussed above and is most
likely associated with a slightly thinner substrate of some sample
compared to the reference measurement.
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Figure 8.24: Magnitude and phase of the transfer functions for a set of samples prepared using the BI and the
TER linker. The magnitude is equal to one for all samples, indicating no absorptive losses of the THz pulse while
passing through the AuNP film. The phase of the transfer function is zero for the samples with the presumably
same thickness of the substrate for the sample and reference measurement. For the measurements showing a
positive slope of the phase, a different substrate thickness can be assumed as the reason. The legend gives the
number of cycles for both ligands.

Especially the samples, for which the substrates appear to have
the exact same thickness as the quartz substrate which has been
used for the reference measurements, show very clearly that there
is no notable effect of the particle film on the THz transmission. In
other words, there is no measurable conductivity of the samples
in the THz frequency range.

8.4 Summary

The prepared samples included thick AuNP layers up to nearly
0.1 µm, optically opaque ones prepared by different methods, dif-
ferent ligands, notable DC conductivity or particle size - the THz
transmission was never significantly affected.

Absorptive losses, which would relate to a nonzero real part of
the conductivity would be seen in the magnitude of the computed
transfer functions, but were never observed within the frequency
ranges of trustworthy signal-to-noise.

Any signal which could stem from an phase shift induced by the
particle films and thus affecting the imaginary part of the con-
ductivity could not be found, since the uncertainty induced by
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8 Terahertz Spectroscopy of Gold Nanoparticle Films

the surprisingly high variations of the substrates is so high. Ad-
ditionally, when the transfer function showed a nonzero phase,
a negative phase slope associated with a delay of the THz pulse
while passing through the sample could not be observed. This
also leads to the conclusion that none of the AuNP films showed
a significant conductivity in the THz range.

Additional test experiments using the optical excitation of the
AuNP showed a low response on relatively high excitation pow-
ers. Even though it is tempting to speculate, that an increased
mobility of the hot electrons could been probed by the THz pulse
(with surprisingly high lifetimes), it is more likely that the optical
pump pulse deposited enough energy in the film to destroy it and
slowly turning it into and aggregated or solid sample.

136



9 Carrier Dynamics of CuInSe2
Quantum Dot Solids

The following chapter has been partially published under Gorris,
F. E. S. et al. Postdeposition Ligand Exchange Allows Tuning the
Transport Properties of Large-Scale CuInSe2 Quantum Dot Solids.
Advanced Optical Materials 8 (Nov. 2019). The preparatory work
described there was performed by Dr. Friederieke Gorris in the
group of Prof. Dr. Horst Weller. The OPTP spectroscopy experi-
ments and data processing was done in the group of Dr. Holger
Lange by Dr. Shekhar Priyadarshi and Michael Deffner.

Colloidal semiconductor nanoparticles or quantum dots (QDs)
feature a size-dependent bandgap [503], in contrast to the metal-
lic particles discussed before. Similar to the ligand shell of AuNPs,
the possibility to functionalize the surface of QDs offer many pos-
sibilities for applications like solar cells, screens or light sources
[504–507]. If the particles are deposited as a well-organized film,
the properties of the film can show collective properties, where,
e.g., the charge transport properties are not determined by the
single particle alone. If the coupling between the particles is
strong, the transport mechanism can change from a hopping-type
to a band-like transport [120, 508]. Experimentally this is diffi-
cult to achieve, since most system show a certain degree of disor-
der due to size and shape variations of the particles [509].

But even if no band-like transport can be achieved for a specific
system, the hopping transport can be improved to obtain high
conductivities. By inserting molecular linker into a QD film, the
distance between the particles can be decreased and tunneling
though the molecule can be more favorable that through-space
tunneling from one particle to another [120, 510–513]. Varies
hopping models exist, the hopping process is usually governed
buy the distance and activation energy between two sites which
gives a hopping probability 𝑃 ∝ exp (−2𝑑/𝑎 − 𝛥𝐸/𝑘𝐵𝑇) with 𝑑 as
the hopping distance, 𝑎 the localization length, and 𝛥𝐸 is the
activation energy, which depends on the electronic environment
[202].

137



9 Carrier Dynamics of CuInSe2 Quantum Dot Solids
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Figure 9.1: Lewis structures
of the used linker molecules.

Figure 9.2: TEM micro-
graphs (top) of the particles
and SEM pictures of the
obtained films (bottom).

While the distance can relatively easy be tuned using molecular
linkers [510–513] to enhance charge transport, a less used ap-
proach is to tune the activation energy. This can e.g. be done
by tuning the alignment of the molecular orbitals with the band
edges of the particle [514, 515] and can also be used to obtain
selective hole or electron transport [516, 517].

In the following, CuInSe2 (CIS) quantum dots are investigated
using OPTP spectroscopy. CIS quantum dots are promising can-
didates for various applications since they are less toxic than other
types of QDs, as cadmium and lead-based particles. As mentioned
before, band-like transport is unlikely to achieve in CIS QD solids,
but the influence on the hopping transport of two different molec-
ular linkers, 2-Amino-5-mercapto-1,3,4-thiadiazole (AMTD) and
2,5-Dimercapto-1,3,4-thiadiazole (DMTD) (Figure 9.1) is inves-
tigated here.

Before the discussion of the OPTP spectroscopy results, a brief
summary of the experimental results regarding the synthesis and
DC transport measurements adopted from [113, 518] is pre-
sented. The as-synthesized particles [519] are stabilized by OAm
and have a relatively broad size and shape distribution, as shown
in Figure 9.2. By repetitive spin-coating, large-area samples (1
mm) could be prepared. The thickness could be controlled by the
spin-coating conditions. After the film deposition, the ligand ex-
change was performed. SEM images of the obtained film is shown
in Figure 9.2.

9.1 Methods

For details regarding the synthesis, ligand exchange and transport
properties please refer to Ref. [113, 518]. The preparation of the
samples for OPTP spectroscopy spectroscopy is shortly summa-
rized here, along with the description of the THz experiments.

In a glovebox with nitrogen atmosphere, 60 mL of the as–
synthesized CIS QD solution in n-hexane was given on a PTFE sub-
strate. After drying, the sample was placed in AMTD or DMTD in
acetonitrile solution for 12 hour. The samples without any linker
molecules was placed the same amount of time in pure acetoni-
trile. Afterwards, the film was cleaned with acetonitrile and n-
hexane.

OPTP spectroscopy experiments were performed in the THz setup
described in Chapter 5. Optical excitation was performed us-
ing wavelengths of 480, 500, 650, 850 and 1220 nm at 0.5 and
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9.2 Results and Discussion

1.2 mW. The obtained data was analyzed using DUODECIM as de-
scribed in Chapter 6.

9.2 Results and Discussion

9.2.1 Transport Measurements

The DC transport properties are studied in a field-effect transistor
geometry. The particle films with the native OAm ligand, AMTD
and DMTD all show a linear I-V curve at room temperature (Fig-
ure 9.3). The obtained conductivity are 4.7 × 10−5 S cm−1 for CIS-
OAm, 8.0 × 10−3 S cm−1 for CIS-AMTD and 4.3 × 10−2 S cm−1 for
CIS-DMTD. This is in the same order as polycrystalline CIS films
and a similar stoichiometric composition (1.6 × 10−2 S cm−1)
[520], but lower than the bulk conductivity of 1.5 × 10−1 S cm−1

[521]. When going to lower temperatures, the curves became
increasingly nonlinear (Figure 9.3). At very low temperatures
(10 K) for CIS-OAm and CIS-AMTD no current was observed,
while the CIS-DMTD shows a significant current. This already
hints to fundamental differences in the charge transport.

By measuring field-dependent I-V-curves, mobilities of
9.4 × 10−5 cm V−2 s−1 for the CIS-OAm, 1.2 × 10−2 cm V−2 s−1

for CIS-AMTD and 2.1 × 10−2 cm V−2 s−1 for CIS-DMTD are
obtained. The films exhibit a p-type conductivity, in accordance
with the literature on the crystal composition [520, 522, 523].
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Figure 9.3: I-V curves for CIS-
OAm, CIS-ATMD and CIS-
DMTD at room temperature
(left) and 10 K (right).

By comparing the obtained conductivities with the average dis-
tance of the particle obtained by TEM and SAXS analysis, it can
be shown that the increase of the conductivity is not due to the
simple reduction of the interparticle distance.

139



9 Carrier Dynamics of CuInSe2 Quantum Dot Solids

Figure 9.4: Conductiv-
ity vs. thickness and
fit 𝜎 = 𝐴 exp (−𝑏𝑥) The
particle-to-particle (center-to-
center) distance given here
were obtained from SAXS
measurements.
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From the temperature dependency conductivity of the particle
films conclusion about the exact transport mechanism can be
made. For hopping transport, the temperature dependence of the
conductivity can in general be described by

𝜎(𝑇) = 𝜎0 exp
⎡
⎢⎢⎢⎣− 􏿶

𝑇0
𝑇 􏿹

𝜈⎤⎥⎥⎥⎦ , (9.1)

with a prefactor 𝜎0, the activation energy-dependent characteris-
tic temperature 𝑇0 and an exponential factor 𝜈 which defines the
dominant hopping transport mechanism [203, 524]. If the inter-
particle distance is relatively homogeneous and the temperature
high, electrons will most likely tunnel between adjacent particles.
This is called nearest-neighbor hopping with 𝜈 = 1. If the dis-
order of the system increases or the temperature decreases, the
activation energy rather than the distance becomes the transport-
determining quantity. An electron will not hop to the closest par-
ticle, but to a particle where the activation energy is lower. This
is called variable-range hopping (VRH) transport [524]. Differ-
ent types of VRH exists, most notable Mott-VRH [201, 202] and
Efros-Shklovski (ES) VRH [525]. The latter includes Coulomb in-
teractions which reduce the density of states (DOS) around the
Fermi energy or open up a Coulomb gap and features 𝜇 = 1/2.

By plotting ln[d(ln 𝜎)/d(ln𝑇)] versus ln𝑇, the slope 𝜈 can be found
using linear fits [526] (Figure 9.5). This gives a hopping param-
eters of 𝜈 = 0.51 for the with CIS-OAm QD solid, 𝜈 = 0.50 for
CIS-AMTD and 𝜈 = 0.26 for CIS-DMTD. Thus, with introduc-
ing linker molecules into the QD solid, the transport through the
sample can not only be improved, but also the mechanism can be
changed: CIS-OAm andCIS-AMTD show a 𝑇−1/2 temperature de-
pendence of the conductivity. According to the ES-VRH model,
this implies that the Coulomb interactions between the carriers
are strong or that the DOS at the Fermi edge is low. The DMTD
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Figure 9.5: Temperature-
dependent conductivity for
the three CIS QD solids. The
arrow show the correspond-
ing x-Axis for the data. For
CIS-OAm and CIS-AMTD,
the plot of ln(𝜎) against
1/𝑇1/2 yields a linear slope,
which indicates ES-VRH.
For CIS-DMTD, a linear
slope is obtained for ln(𝜎)
against 1/𝑇1/4, which implies
Mott-VRH.

linker seems to provide a constant DOS for the holes, since the
temperature-dependency 𝑇−1/4 points towards Mott-VRH. This
could also imply, that the frontier orbitals of DMTD align better
with the LUMO of the particles and thus improve the hole trans-
port.

9.2.2 Optical-Pump Terahertz-Probe Spectroscopy

To further investigate these differences, OPTP spectroscopy spec-
troscopy was performed. As described before, THz spectroscopy
can be used to study transport properties on a local scale, disre-
garding the need for contacts and electrodes. By illuminating the
sample with an optical light pulse and probing the excited system
with a THz pulse, the photoinduced conductivity can be obtained
[97, 527].

Figure 9.6 shows exemplary maps of the measured 𝛥𝐸(𝑡, 𝜏) for all
three samples excited with 650 nm at 1.2 µJ. In the lower panel,
the integrated change of the THz transmission with respect to the
time delay 𝜏 as obtained by

𝜖(𝜏) = 􏾙
𝑡
𝛥𝐸(𝑡, 𝜏)2d𝑡, (9.2)

is given, together with triexpoential fits of the curves. This gives
access to the carrier recombination times and directly shows the
most striking difference between the samples. The recombination
of the photocarriers becomes faster for the films prepared with
linked particles, with the CIS-DMTD samples showing the fastest
decay. Increasing the power of the optical pump from 0.5 to 1.2 µJ
per pulse decreases the lifetime of the carriers and changing the
dynamics for, e.g., the CIS-OAm system from nearly monoexpo-
nential to biexponential. Higher fluences generates more carriers,

141



9 Carrier Dynamics of CuInSe2 Quantum Dot Solids

CIS-OAm CIS-AMTD CIS-DMTD ∗100

0.01

0.10

1.00

0 20 40 60 80

∗100

0 20 40 60 80

∗100

0 20 40 60 80

∗100

2 3 4 5 6
t [ps]

0
20
40
60
80

100
120
140

𝜏
[p

s]

2 3 4 5 6
t [ps]

2 3 4 5 6
t [ps]

−0.2
−0.15
−0.1
−0.05
0
0.05
0.1
0.15
0.2

𝛥𝐸

𝜖
[a

.u
.]

𝜏 [ps]

0.01

0.10

1.00

0 20 40 60 80
𝜏 [ps]

0 20 40 60 80
𝜏 [ps]

0.5, data
0.5, fit

1.2, data
1.2, fit

0 20 40 60 80

Figure 9.6: Top row: 𝛥𝐸 maps for all three samples excited with 650 nm and 1.2 µJ. Bottom row: Change of
𝛥𝐸, time-integrated and normalized with respect to 𝜏 for 0.5µJ (blue lines) and 1.2µJ (orange lines) excitation
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The decay dynamics become faster with the insertion of the linker molecules, being the fastest for CIS-DMTD.
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25 The following part is di-
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Quantum Dot Solids. Ad-
vanced Optical Materials 8
(Nov. 2019).

which can relax quickly by multicarrier recombination and Auger
processes [528]. The samples with the connecting ligands show
always an at least biexponential decay, which can be understood
by the increased carrier mobility. The increased mobility leads
to a higher probability of multicarrier relaxation pathways. This
reduction of the lifetimes has the same systematic as the the mo-
bilities obtained by the FET experiments. For the CIS-DMTD sam-
ple, no satisfactory fits are obtained using a biexponential decay,
so triexponential fits were used. To be consistent, the fits in Fig-
ure 9.6 are all performed with triexponential decays. Addition-
ally, fits with biexponetial decays for CIS-OAm and CIS-AMTD
and triexponetial decays for CIS-DMTD can be found in the Ap-
pendix, Section F.

The photoexcation was performed with different wavelengths, but
this does not change the picture substantially. Figure 9.7 gives
an overview over the lifetimes obtained for all three samples with
500, 650 and 800 nm. The induced change of the THz transmis-
sion was fitted with a triexpoential decay,

𝜖fit(𝜏) = Heavi(𝜏 − 𝑡0) 􏿰𝐴0e
− 𝜏−𝑡0

𝜏1 + 𝐴1e
− 𝜏−𝑡0

𝜏2 + (1 − 𝐴0 − 𝐴1)e
− 𝜏−𝑡0

𝜏3 􏿳

(9.3)

where Heavi is the Heaviside function to accommodate for the
rise. Since the data is normalized to 1, the amplitudes of the
three exponential decays are not chosen independently. A tri-
exponential decay model is necessary to obtain sufficiently good
fits for the CIS-DMTD model, but very likely to cause overfitting
for the CIS-OAm system. Still, it gives the possibility for consis-
tently compare the three samples and visualize the decrease of
the lifetimes (see Figure 9.7) for the photogenerated carriers by
changing the particles ligand from OAm to AMTD and DMTD.

Using Equation (6.36),

𝜎(𝜏, 𝜔) = −𝜖0𝑐(1 + 𝑛Substrate)
𝑑

𝛥𝑇(𝜏, 𝜔)
𝑇(𝜏, 𝜔) ,

it is possible to extract the photoinduced complex conductivity
from the samples. Figure 9.8 shows the conductivity for two rep-
resentative 𝜏.

All25 samples show a low real zero-bias conductivity for the pho-
togenerated carriers, but a significant imaginary response, which
indicates a dominant role of bound or localized carriers. As we ob-
served no band-like transport in the previous experiments, this is
expected: In comparison to band transport, hopping events from
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9.2 Results and Discussion

particle to particle are rare, thus the overall response of the ma-
terial is less likely to be Drude-like. For CIS-OAm and CIS-AMTD,
the real part of 𝜎 becomes negative after photoexcitation. This is
a rare observation. Normally, the photoexcitation enhances the
conductivity as the concentration of mobile carriers is increased.
Negative photoconductivities have been reported earlier for pho-
toexcitation of doped materials. When the interaction of the pho-
togenerated carriers with, for example, intrinsic majority carri-
ers leads to a reduction of the mobility while the relative car-
rier concentration is almost constant (because of high intrinsic
concentrations), a negative differential conductivity can be ob-
tained. For example, in graphene, a negative photoconductivity
was observed via OPTP spectroscopy [529, 530]. In the doped
high-mobility samples, electron heating increases the carrier scat-
tering rate, without increasing the effective carrier concentration
significantly. A net decrease of the photoconductivity was also re-
ported for CdSe nanorods with an electron acceptor molecule. In
time-resolved OPTP experiments, after a picosecond trapping of
the electrons, the delocalized hole interacts with the Coulomb po-
tential of the reduced electron acceptor. This leads to an effective
reduction of the hole mobility in the nanorods [531]. In doped Si
nanowires, carriers trapped at dopant ions act as Coulomb scat-
terers, reducing the mobility [532]. A similar observation was
made for p-type Pb1−𝑥Sn𝑥Te films [533].

The remarkable aspect in case of the CIS QD solids is the depen-
dence of the photoinduced conductivity on the connecting lig-
ands. The ligand exchange is not expected to significantly change
the QD’s internal structure. In that case, one would also expect
stronger changes from CIS-OAm to CIS-AMTD and CIS-DMTD
than from CIS-OAm and CIS-AMTD to CIS-DMTD (as observed).
Thus, we assume the change from negative to positive conductiv-
ity to mostly originate from the general change in the transport
process. For another view, the time evolution of the conductivity
peaks are plotted in Figure 9.9 a).

The general behavior of CIS-OAm and CIS-AMTD is very simi-
lar: a minimum conductivity is reached after ≈5 ps and then
recovers on timescales of the carrier relaxation time. For CIS-
DMTD, the maximum conductivity is reached directly after pho-
toexcitation and also recovers during the carrier lifetime. This
difference can be reasoned within the picture obtained from the
temperature-dependent studies, schematically displayed in Fig-
ure 9.9 b). In CIS QD solids, majority carriers are holes that lead
to a significant dark current in all three samples. Photoexcitation
generates electron-hole pairs, increasing the carrier concentra-
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9.3 Summary

tion. The photogenerated carriers interact with the intrinsic holes
via Coulomb interaction. For CIS-OAm and CIS-AMTD Coulomb
interactions dominate the hopping probability and the additional
carriers increase the hopping activation energy, lowering the car-
rier mobility. Regarding the amount of intrinsic holes, the net
carrier concentration increase is small compared to the decrease
in mobility, resulting in the conductivity decrease. This was also
observed for other trapped carriers in semiconductor nanostruc-
tures, were Coulomb interactions can lead to a carrier localiza-
tion and reduction of the mobility [531, 532, 534, 535]. For CIS-
DMTD, an alignment of the QD VB and the molecules HOMO pro-
vides states for an efficient M-VRH transport, leading to a signif-
icantly increased mobility of the majority carriers (holes). Under
such conditions, the DOS is not significantly altered by additional
carriers, so that the hopping probability for M-VRH is almost con-
stant. Changes are but negligible compared to the high intrin-
sic (dark) mobility. Then, every photogenerated hole leads to
an increase in conductivity and the carrier recombination results
in a relaxation of this increase, as observed in the experiments.
This demonstrates that the type of the hopping mechanisms not
only determines the hopping probability (and conductivity), but
also alters the system’s response to photoexcitation. As the exact
mechanism depends on the employed ligands, the strategy of us-
ing the ligand’s electronic structure to influence the transport is
very flexible.

9.3 Summary

In this chapter, the influence of short connecting ligands on the
transport in QD solids was investigated. Transport measurements
showed an increase of the mobilities by a factor of around 200.
This demonstrates, that even though no band–like transport could
be achieved, the hopping transport could be tweaked using con-
necting ligands. Temperature dependent measurements showed
a change of the hopping mechanism from ES-VRH for CIS-OAm
and CIS-AMTD to Mott-VRH for the highly conductive CIS-DMTD
sample.

Using OPTP spectroscopy, a similar picture is obtained. The in-
crease of mobilities lead to a faster recombination of the photoex-
cited carriers, which can be explained with Auger processes. The
extracted frequency-resolved photo–conductivities showed a clear
difference between the CIS-OAm/CIS-AMTD and the CIS-DMTD
samples. Both are dominated by the capacitive response (thus,
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9 Carrier Dynamics of CuInSe2 Quantum Dot Solids

the imaginary part of the conductivity), but the photoinduced
carriers lead to a decrease of the real conductivity for the two
lower–conducting samples. This we explain by the Coulomb in-
teractions between the intrinsic holes and photoexcited carrier.
For the samples which show ES-VRH, this leads to a reduction of
the samples’ conductivity. For CIS-DMTD, the Mott-VRH already
hints towards a lower influence of Coulomb interactions, thus the
additional carriers lead to an increase of the conductivity.
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10 Conclusion and Outlook

The study of transport mechanisms on the meso- or nanoscale,
such as the electron transport through molecules, not only offers
an understanding of fundamental quantum mechanical processes
but also of the properties of materials on the macroscale. Us-
ing theoretical methods such as the Landauer-Büttiker approach
(see Chapter 2), the electron transport through molecules can be
studied. Experimentally, the study of such molecular junctions
is much more complicated, but new technologies like THz spec-
troscopy can potentially enable an easy experimental access and
also give the possibility to study ultrafast processes.

Tunneling pathways in molecular junctions yield a variety of
information about the fundamental processes in such systems,
like quantum interference or switching behavior, but are diffi-
cult to access experimentally. IETS is a promising candidate if
the relationship between the IETS intensity of specific vibrational
modes and the tunneling pathways can be established. Chapter 3
presents the implementation of the calculation of IET spectra in
combination with the mode-tracking algorithm, enabling an effi-
cient way to study the interactions between tunneling electrons
and vibrational modes of a molecular junction. Three different
systems were studied with regard to tunneling pathways evalu-
ated from local transmissions and IET spectra. The findings sug-
gest that it is possible to track tunneling pathways for systems
where the vibrations, which are used as tracers for the tunnel-
ing pathways, are sufficiently localized. If a mode couples too
strongly with the rest of the molecule, such relations become more
and more difficult to establish.

To model the transport properties of electrons in AuNP connected
by molecular linkers, numerical simulations (Chapter 4) based on
previous work [8, 296] were performed and extended to simu-
late the influence of linker molecules between particles. The tun-
neling probability through the molecules connecting the particles
was obtained from NEGF+DFT calculations for molecular junc-
tions. The results suggest that the molecules modify the quasi-DC
or low-frequency response to THz radiation, with the transmis-
sion at the Fermi level as the decisive parameter. Whether this
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effect is measurable in experiments depends also on parameters
like the scattering rate and field strengths of the THz radiation.
Both parameters can shift the frequency range, where the effect is
notable, in or out of the experimentally accessible THz window.

Chapters 5 and 6 summarize the experimental design and prin-
ciples of THz spectroscopy and the data extraction routines. The
various methods were implemented in a python package, which
allows the extraction of physical quantities from THz experiments
as a standalone tool or the use as a python library.

To experimentally study the conductivity of molecular junctions
using THz spectroscopy, thin films were prepared using AuNPs
and molecular linkers, creating a network of multiple molecular
junctions between the particles (Chapter 8). Two different syn-
thesis strategies were adopted, simple drop casting and layer-by-
layer methods.

A variety of samples prepared by the different methods, differ-
ent thicknesses and different molecular linkers were studied. The
samples were without exception transparent in the THz regime,
though partially to completely opaque in the visible range. Also,
the obtained particle films were much thicker than evaporated
gold films, which nearly completely absorbed the THz radiation
and have been studied as a benchmark or reference system (Chap-
ter 7). Even though this is interesting for several applications such
as transparent electrodes for solar cells or antireflection coatings
[361, 362], this poses the question whether THz-TDS is a suitable
tool for the study of molecular junctions, or whether the chosen
material system is appropriate.

Several examples for which tunneling current could be observed
have been reported, e.g. in STM setups [100–102, 330] or thin
percolated gold films [382]. In STM setups, the whole exper-
imental situation is much more defined and controllable com-
pared to the experiments demonstrated here. Thus, one possibil-
ity to study the conductivity of molecules using THz spectroscopy
would be to introduce the molecules in an STM and to perform
experiments similar to Ref. [102]. They reported the THz in-
duced tunneling of electrons between an STM tip and individual
atoms of a Si surface, but having the molecule in the STM would
already enable the measurement of the electron transport, thus
spoiling the idea of a simple, contactless way to study the trans-
port properties of molecules. Still, this would shine light on the
THz-induced transport processes in the molecules, and may give
hints about why for the systems studied in this work no transport
could be observed using THz-TDS.
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The experiments by Takeda et al. [382] are much more similar
to the presented ones using AuNP films, but differ in two impor-
tant aspects. First, they used THz radiation generated in lithium
niobate, which yields much higher fields than optical rectification
in ZnTe and thus stronger forces acting on the electrons. Sec-
ond, the gold films they studied can be easily tuned from com-
pletely transparent to completely opaque for THz radiation just
by changing the thickness of the sample. For the system studied
here, the key tuning parameter was the conductivity of the linker
molecules. This can not be changed easily to desired values be-
cause the chemical conditions for linking as well as the availability
of appropriate linker molecules have to be taken into account.

Other studies which investigated the transport properties of
molecules did not utilized ground-state THz spectroscopy, but
rather optical excitations to study the photo-generated carriers
only [328, 329], as presented in Chapter 9. This is a success-
ful approach but also yields different information than THz-TDS
spectroscopy, as it studies exclusive photoexcited carriers but not
the transport properties of a system which is in its ground-state
(with respect to optical excitations).

The study of CuInSe2 quantum dot solids with and without molec-
ular linkers using OPTP films demonstrated that using this ap-
proach, it is possible to study the influence of linkers on the trans-
port properties of a macroscopic sample. The sample showed
hopping transport, which could be tuned by the choice of the lig-
ands from a Efros-Shklovskii to a Mott-type variable-range hop-
ping transport. This hints at a band alignment which favors hole
transport in the samples.

Unveiling the electronic transport processes through individual
molecules is a fascinating and promising effort, which is broadly
interconnected with the study of, e.g., biological process such as
photosynthesis, chemical processes in solar cells or, of course, the
development of new electronic or even optoelectronic and spin-
tronic devices. Theoretical and experimental approaches can go
hand in hand to explore and push the boundaries of new exper-
imental techniques for the study of such systems, such as the
Landauer-Büttiker approach, inelastic electron tunneling spec-
troscopy and THz spectroscopy.
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NON nonane-1,9-dithiol

OAm oleylamine

OPV oligo-phenylene-vinylene

OPA optical parametric amplifier

OPTP spectroscopy optical-pump-terahertz-probe spectroscopy

PTFE polytetrafluoroethylene

QD quantum dot

RMSE root-mean-square error

SEM scanning electron microscope

STM scanning tunneling microscope

SAM self-assembled monolayer

SCF self-consistent field

SERS surface enhanced Raman spectroscopy

THz-TDS terahertz time-domain spectroscopy

THz terahertz

TB tight-binding

VRH variable-range hopping
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Towards reality in modeling of molecular electronics in San
Sebastian (Spain), May 2016: Poster with the title
“ARTAIOS - A transport code for post-processing quantum
chemical electronic structure calculations”

DPG Spring Meeting in Dresden, March 2017: Poster with the
title “Electron transport in Nanoparticle Networks”

CUI Winterschool on Rügen, February 2017: Talk with the title
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Nanoparticles”

DPG Spring Meeting in Regensburg, March/April 2019: Talk
with the title “Carrier Dynamics in CuInSe2 QD Solids stud-
ied by THz Spectrocopy”
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C List of Chemicals

C List of Chemicals

chemical symbols hazard state-
ments (H…)

precautionary
statements
(P…)

2-propanol 225-319-336 210-261-305 +
351 + 338

(3-
mercaptopropyl)
trimethoxysi-
lane

302-317-411 273-280

4,4′-
thiobisbenzenethiol

315-319-335 261-305 + 351
+ 338

nonane-1,9-
dithiol

315-319-335 261-305 + 351
+ 338

acetone 225-319-336 210-233-261-
280-303 + 361
+ 353-370 +
378

biphenyl-4,4′ -
dithiol

302-413 -

p-terphenyl-
4,4″ -dithiol

302-319-410 301 + 312 +
330-305 + 351
+ 338

ethanol 225-319 210-233-280-
303 + 361
+ 353-337 +
313-370 + 378

oleylamine 302-304-314-
335-373-410

260-280-301 +
310-303 + 361
+ 353-304 +
340 + 310-305
+ 351 + 338

toluene 225-304-315-
336-361d-373

210-260-280-
301 + 310-370
+ 378-403 +
235

Table 1: GHS information for
the chemicals used in this
work.
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Table 2: All H, EUH, and P Statements.

Identifier Statement

H200 Unstable explosives.
H201 Explosive; mass explosion hazard.
H202 Explosive, severe projection hazard.
H203 Explosive; fire, blast or projection hazard.
H204 Fire or projection hazard.
H205 May mass explode in fire.
H220 Extremely flammable gas.
H221 Flammable gas.
H222 Extremely flammable aerosol.
H223 Flammable aerosol.
H224 Extremely flammable liquid and vapour.
H225 Highly flammable liquid and vapour.
H226 Flammable liquid and vapour.
H228 Flammable solid.
H240 Heating may cause an explosion.
H241 Heating may cause a fire or explosion.
H242 Heating may cause a fire.
H250 Catches fire spontaneously if exposed to air.
H251 Self-heating: may catch fire.
H252 Self-heating in large quantities; may catch

fire.
H260 In contact with water releases flammable

gases which may ignite spontaneously.
H261 In contact with water releases flammable

gases.
H270 May cause or intensify fire; oxidiser.
H271 May cause fire or explosion; strong oxidiser.
H272 May intensify fire; oxidiser.
H280 Contains gas under pressure; may explode if

heated.
H281 Contains refrigerated gas; may cause cryo-

genic burns or injury.
H290 May be corrosive to metals.
H300 Fatal if swallowed.

continues on next page
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Identifier Statement

H301 Toxic if swallowed.
H302 Harmful if swallowed.
H304 May be fatal if swallowed and enters airways.
H310 Fatal in contact with skin.
H311 Toxic in contact with skin.
H312 Harmful in contact with skin.
H314 Causes severe skin burns and eye damage.
H315 Causes skin irritation.
H317 May cause an allergic skin reaction.
H318 Causes serious eye damage.
H319 Causes serious eye irritation.
H330 Fatal if inhaled.
H331 Toxic if inhaled.
H332 Harmful if inhaled.
H334 May cause allergy or asthma symptoms or-

breathing difficulties if inhaled.
H335 May cause respiratory irritation.
H336 May cause drowsiness or dizziness.
H340 May cause genetic defects. ⟨state route of ex-

posure if it is conclusively proven that no other
routes of exposure cause the hazard⟩

H341 Suspected of causing genetic defects. ⟨state
route of exposure if it is conclusively proven that
no other routes of exposure cause the hazard⟩

H350 May cause cancer. ⟨state route of exposure if
it is conclusively proven that no other routes of
exposure cause the hazard⟩

H351 Suspected of causing cancer. ⟨state route of ex-
posure if it is conclusively proven that no other
routes of exposure cause the hazard⟩

H360 May damage fertility or the unborn child.
⟨state specific effect if known⟩ ⟨state route of ex-
posure if it is conclusively proven that no other
routes of exposure cause the hazard⟩

continues on next page
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Identifier Statement

H361 Suspected of damaging fertility or the unborn
child. ⟨state specific effect if known⟩ ⟨state
route of exposure if it is conclusively proven that
no other routes of exposure cause the hazard⟩

H362 May cause harm to breast-fed children.
H370 Causes damage to organs ⟨or state all organs

affected, if known⟩. ⟨state route of exposure if
it is conclusively proven that no other routes of
exposure cause the hazard⟩

H371 May cause damage to organs ⟨or state all or-
gans affected, if known⟩. ⟨state route of expo-
sure if it is conclusively proven that no other
routes of exposure cause the hazard⟩

H372 Causes damage to organs ⟨or state all organs
affected, if known⟩ through prolonged or re-
peated exposure. ⟨state route of exposure if it
is conclusively proven that no other routes of ex-
posure cause the hazard⟩

H373 May cause damage to organs ⟨or state all or-
gans affected, if known⟩ through prolonged or
repeated exposure. ⟨state route of exposure if
it is conclusively proven that no other routes of
exposure cause the hazard⟩

H400 Very toxic to aquatic life.
H410 Very toxic to aquatic life with long lasting ef-

fects.
H411 Toxic to aquatic life with long lasting effects.
H412 Harmful to aquatic life with long lasting ef-

fects.
H413 May cause long lasting harmful effects to

aquatic life.
H350i May cause cancer by inhalation.
H360F May damage fertility.
H360D May damage the unborn child.
H361f Suspected of damaging fertility.
H361d Suspected of damaging the unborn child.
H360FD May damage fertility. May damage the un-

born child.
continues on next page
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Identifier Statement

H361fd Suspected of damaging fertility. Suspected of
damaging the unborn child.

H360Fd May damage fertility. Suspected of damaging
the unborn child.

H360Df May damage the unborn child. Suspected of
damaging fertility.

EUH001 Explosive when dry.
EUH006 Explosive with or without contact with air.
EUH014 Reacts violently with water.
EUH018 In use may form flammable/explosive vapour-

air mixture.
EUH019 May form explosive peroxides.
EUH044 Risk of explosion if heated under confine-

ment.
EUH029 Contact with water liberates toxic gas.
EUH031 Contact with acids liberates toxic gas.
EUH032 Contact with acids liberates very toxic gas.
EUH066 Repeated exposure may cause skin dryness or

cracking.
EUH070 Toxic by eye contact.
EUH071 Corrosive to the respiratory tract.
EUH059 Hazardous to the ozone layer.
EUH201 Contains lead. Should not be used on surfaces

liable to be chewed or sucked by children.
EUH201A Warning! contains lead.
EUH202 Cyanoacrylate. Danger. Bonds skin and eyes

in seconds. Keep out of the reach of children.
EUH203 Contains chromium (VI). May produce an al-

lergic reaction.
EUH204 Contains isocyanates. May produce an aller-

gic reaction.
EUH205 Contains epoxy constituents. May produce an

allergic reaction.
EUH206 Warning! Do not use together with other

products. May release dangerous gases (chlo-
rine).

continues on next page
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Identifier Statement

EUH207 Warning! Contains cadmium. Dangerous
fumes are formed during use. See informa-
tion supplied by the manufacturer. Comply
with the safety instructions.

EUH208 Contains ⟨name of sensitising substance⟩. May
produce an allergic reaction.

EUH209 Can become highly flammable in use.
EUH209A Can become flammable in use.
EUH210 Safety data sheet available on request.
EUH401 To avoid risks to human health and the envi-

ronment, comply with the instructions for use.
P101 If medical advice is needed, have product con-

tainer or label at hand.
P102 Keep out of reach of children.
P103 Read label before use.
P201 Obtain special instructions before use.
P202 Do not handle until all safety precautions have

been read and understood.
P210 Keep away from heat/sparks/open flames/

hot surfaces. — No smoking.
P211 Do not spray on an open flame or other igni-

tion source.
P220 Keep/Store away from clothing/…/com-

bustible materials.
P221 Take any precaution to avoid mixing with

combustibles …
P222 Do not allow contact with air.
P223 Keep away from any possible contact with wa-

ter, because of violent reaction and possible
flash fire.

P230 Keep wetted with …
P231 Handle under inert gas.
P232 Protect from moisture.
P233 Keep container tightly closed.
P234 Keep only in original container.
P235 Keep cool.

continues on next page
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Identifier Statement

P240 Ground/bond container and receiving equip-
ment.

P241 Use explosion-proof electrical/ventilating/
lighting/… equipment.

P242 Use only non-sparking tools.
P243 Take precautionary measures against static

discharge.
P244 Keep reduction valves free from grease and

oil.
P250 Do not subject to grinding/shock/…/friction.
P251 Pressurized container: Do not pierce or burn,

even after use.
P260 Do not breathe dust/fume/gas/mist/

vapours/spray.
P261 Avoid breathing dust/fume/gas/mist/

vapours/spray.
P262 Do not get in eyes, on skin, or on clothing.
P263 Avoid contact during pregnancy/while nurs-

ing.
P264 Wash … thoroughly after handling.
P270 Do not eat, drink or smoke when using this

product.
P271 Use only outdoors or in a well-ventilated area.
P272 Contaminated work clothing should not be al-

lowed out of the workplace.
P273 Avoid release to the environment.
P280 Wear protective gloves/protective clothing/

eye protection/face protection.
P281 Use personal protective equipment as re-

quired.
P282 Wear cold insulating gloves/face shield/eye

protection.
P283 Wear fire/flame resistant/retardant clothing.
P284 Wear respiratory protection.
P285 In case of inadequate ventilation wear respi-

ratory protection.
continues on next page
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Identifier Statement

P231 + P232 Handle under inert gas. Protect from mois-
ture.

P235 + P410 Keep cool. Protect from sunlight.
P301 IF SWALLOWED:
P302 IF ON SKIN:
P303 IF ON SKIN (or hair):
P304 IF INHALED:
P305 IF IN EYES:
P306 IF ON CLOTHING:
P307 IF exposed:
P308 IF exposed or concerned:
P309 IF exposed or if you feel unwell:
P310 Immediately call a POISON CENTER or doc-

tor/physician.
P311 Call a POISON CENTER or doctor/physician.
P312 Call a POISON CENTER or doctor/physician

if you feel unwell.
P313 Get medical advice/attention.
P314 Get medical advice/attention if you feel un-

well.
P315 Get immediate medical advice/attention.
P320 Specific treatment is urgent (see … on this la-

bel).
P321 Specific treatment (see … on this label).
P322 Specific measures (see … on this label).
P330 Rinse mouth.
P331 Do NOT induce vomitting.
P332 If skin irritation occurs:
P333 If skin irritation or rash occurs:
P334 Immerse in cool water/wrap in wet bandages.
P335 Brush off loose particles from skin.
P336 Thaw frosted parts with lukewarm water. Do

not rub affected area.
P337 If eye irritation persists:
P338 Remove contact lenses, if present and easy to

do. Continue rinsing.
continues on next page
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Identifier Statement

P340 Remove victim to fresh air and keep at rest in
a position comfortable for breathing.

P341 If breathing is difficult, remove victim to fresh
air and keep at rest in a position comfortable
for breathing.

P342 If experiencing respiratory symptoms:
P350 Gently wash with plenty of soap and water.
P351 Rinse cautiously with water for several min-

utes.
P352 Wash with plenty of soap and water.
P353 Rinse skin with water/shower.
P360 Rinse immediately contaminated clothing

and skin with plenty of water before remov-
ing clothes.

P361 Remove/Take off immediately all contami-
nated clothing.

P362 Take off contaminated clothing and wash be-
fore reuse.

P363 Wash contaminated clothing before reuse.
P370 In case of fire:
P371 In case of major fire and large quantities:
P372 Explosion risk in case of fire.
P373 DO NOT fight fire when fire reaches explo-

sives.
P374 Fight fire with normal precautions from a rea-

sonable distance.
P375 Fight fire remotely due to the risk of explosion.
P376 Stop leak if safe to do so.
P377 Leaking gas fire: Do not extinguish, unless

leak can be stopped safely.
P378 Use … for extinction.
P380 Evacuate area.
P381 Eliminate all ignition sources if safe to do so.
P390 Absorb spillage to prevent material damage.
P391 Collect spillage.
P301 + P310 IF SWALLOWED: Immediately call a POISON

CENTER or doctor/physician.
continues on next page
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Identifier Statement

P301 + P312 IF SWALLOWED: Call a POISON CENTER or
doctor/physician if you feel unwell.

P301 + P330
+ P331

IF SWALLOWED: rinse mouth. Do NOT in-
duce vomitting.

P302 + P334 IF ON SKIN: Immerse in cool water/wrap in
wet bandages.

P302 + P350 IF ON SKIN: Gently wash with plenty of soap
and water.

P302 + P352 IF ON SKIN: Wash with plenty of soap and
water.

P303 + P361
+ P353

IF ON SKIN (or hair): Remove/Take off imme-
diately all contaminated clothing. Rinse skin
with water/shower.

P304 + P340 IF INHALED: Remove victim to fresh air and
keep at rest in a position comfortable for
breathing.

P304 + P341 IF INHALED: If breathing is difficult, remove
victim to fresh air and keep at rest in a position
comfortable for breathing.

P305 + P351
+ P338

IF IN EYES: Rinse cautiously with water for
several minutes. Remove contact lenses, if
present and easy to do. Continue rinsing.

P306 + P360 IF ON CLOTHING: Rinse immediately con-
taminated clothing and skin with plenty of
water before removing clothes.

P307 + P311 IF exposed: Call a POISON CENTER or doc-
tor/physician.

P308 + P313 IF exposed or concerned: Get medical advice/
attention.

P309 + P311 IF exposed or if you feel unwell: Call a POI-
SON CENTER or doctor/physician.

P332 + P313 If skin irritation occurs: Get medical advice/
attention.

P333 + P313 If skin irritation or rash occurs: Get medical
advice/attention.

P335 + P334 Brush off loose particles from skin. Immerse
in cool water/wrap in wet bandages.

P337 + P313 If eye irritation persists: Get medical advice/
attention.

continues on next page
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Identifier Statement

P342 + P311 If experiencing respiratory symptoms: Call a
POISON CENTER or doctor/physician.

P370 + P376 In case of fire: Stop leak if safe to do so.
P370 + P378 In case of fire: Use … for extinction.
P370 + P380 In case of fire: Evacuate area.
P370 + P380
+ P375

In case of fire: Evacuate area. Fight fire re-
motely due to the risk of explosion.

P371 + P380
+ P375

In case of major fire and large quantities:
Evacuate area. Fight fire remotely due to the
risk of explosion.

P401 Store …
P402 Store in a dry place.
P403 Store in a well-ventilated place.
P404 Store in a closed container.
P405 Store locked up.
P406 Store in corrosive resistant/… container with

a resistant inner liner.
P407 Maintain air gap between stacks/pallets.
P410 Protect from sunlight.
P411 Store at temperatures not exceeding °C/°F.
P412 Store at temperatures not exceeding 50 °C/

122 °F.
P413 Store bulk masses greater than kg/lbs at tem-

peratures not exceeding °C/°F.
P420 Store away from other materials.
P422 Store contents under …
P402 + P404 Store in a dry place. Store in a closed con-

tainer.
P403 + P233 Store in a well-ventilated place. Keep con-

tainer tightly closed.
P403 + P235 Store in a well-ventilated place. Keep cool.
P410 + P403 Protect from sunlight. Store in a well-

ventilated place.
P410 + P412 Protect from sunlight. Do not expose to tem-

peratures exceeding 50 °C/122 °F.
P411 + P235 Store at temperatures not exceeding °C/°F.

Keep cool.
continues on next page
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Identifier Statement

P501 Dispose of contents/container to …
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D Statistical Methods

D Statistical Methods

Bootstrapping

Bootstrapping describes a technique to create statistical data
based on only one set of data [538]. It is used when the real
distribution of data points is not known. With bootstrapping, the
variability of the mean can be estimated. As shown in Figure 1,
new sets of data are created by randomly choosing data from the
original data set. The mean 𝑥̄𝑏,𝑖 is calculated each time and can
be used to show how much the mean varies over each sample/set
of data.

𝜎̄1

𝜎̄2

𝜎̄3

Figure 1: Schematic repre-
sentation of the bootstrap-
ping technique.

The total mean 𝑥̄𝑏 obtained by bootstrapping is given by

𝑥̄𝑏 =
1
𝑁𝑏

𝑁𝑏
􏾜
𝑖=1

𝑥̄𝑏,𝑖, (1)

where 𝑁𝑏 is number of re-sampling iterations. The variance is
given by

Var(𝑥) = 1
𝑁𝑏

𝑁𝑏
􏾜
𝑖=1

𝑥̄2𝑏,𝑖 − 𝑥̄2. (2)

Jackknife

𝑥̄𝑗,1

𝑥̄𝑗,2

𝑥̄𝑗,3

𝑥0, 𝑥1, … 𝑥𝑁
Figure 2: Visualization of the
Jackknife technique.

A special case of bootstrapping is jackknife, which can be used to
estimate the bias of a set of data. For the jackknife-technique, a
sample 𝑥 of a set of data is removed from the set and the mean
recalculated by

𝑥̄𝑖 =
1

𝑛 − 1
􏾜

𝑗=1,𝑗≠𝑖
𝑥𝑗. (3)
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The mean of the sampling distribution can be calculated from all
the 𝑥̄𝑖 by

𝑥̄ = 1
𝑛

𝑛
􏾜
𝑖=1

𝑥̄𝑖. (4)

The variance of the estimator can be calculated by

Var(𝑥̄) = 𝑛 − 1
𝑛

𝑛
􏾜
𝑖=1

(𝑥̄𝑖 − 𝑥̄)2 . (5)

In this work, the Jackknife analysis was used to quickly identify
measurements in a large set of data, which deviate strongly from
the rest of the data set. This was done by performing the Jackknife
analysis and comparing the obtained values of 𝑥̄𝑖.
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XYZ Coordinates of the Molecular Junction

Coordinates for the Fe(II)Pophyrin Junction

N −1.357511 −0.000000 3.817648
C −2.718846 −0.025528 4.025817
C −3.421873 −0.100345 2.768976
C −2.476929 −0.137686 1.790178
C −1.189157 −0.065349 2.448086
C −3.348499 0.004573 5.261987
C −2.716392 0.037175 6.498012
C −3.415168 0.119580 7.755132
C −2.467033 0.160682 8.733021
C −1.181588 0.078014 8.075239
N −1.353099 0.024228 6.703617
C 0.054713 0.032842 8.733752
S 0.000000 0.000000 10.520434
Fe 0.050369 −0.039451 5.261911
N 1.457102 −0.014498 3.816566
C 2.821628 −0.012807 4.023804
C 3.521008 0.053036 2.768046
C 2.571731 0.085775 1.788001
C 1.286958 0.018166 2.443669
C 3.450900 −0.050449 5.260985
C 2.820698 −0.066982 6.497528
N 1.459905 −0.007654 6.706482
C 1.291695 −0.052382 8.076646
C 2.575025 −0.159596 8.732418
C 3.521936 −0.156363 7.752523
C 0.046653 −0.036303 1.788283
S −0.000000 0.000000 0.000000
N 0.066992 2.064432 5.244243
C −0.679780 2.920611 6.031121
C −0.383904 4.220640 5.705729
N 0.560955 4.142835 4.702105
C 0.806838 2.830030 4.451049
C 0.032366 −1.783003 5.270781
O 0.018023 −2.941983 5.273819
H −0.751324 5.165296 6.086968
H 0.997746 4.924329 4.227470
H 1.508800 2.478589 3.704746
H −1.375332 2.547027 6.771846
H −4.438969 −0.001363 5.263560
H 4.541269 −0.076015 5.260459
H −4.496086 0.155796 7.861727
H −2.608863 0.245143 9.805038
H 2.722795 −0.257125 9.802395
H 4.602195 0.081708 2.661020
H 2.720001 0.166167 0.716633
H −4.503031 −0.137336 2.665160
H 4.601325 −0.228207 7.856489
H −2.618535 −0.218414 0.717981
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Au 0.000000 −1.662766 12.835107
Au −1.440000 0.831384 12.835107
Au 1.440000 0.831385 12.835107
Au 0.000000 −1.662766 −2.314673
Au 1.440000 0.831384 −2.314673
Au −1.440000 0.831384 −2.314673

Coordinates for the CN–Substituted Biphenyl Junction

S 0.000000 −0.000000 18.352069
C 0.116576 0.046877 16.679465
C 0.076260 0.076007 15.456771
C 0.048314 0.099046 14.042743
C 1.245897 0.154258 13.301810
C 1.222166 0.164627 11.903883
C −0.015934 0.119797 11.195814
C −0.051710 0.117223 9.786878
C −0.087276 0.106392 8.564875
C −0.107514 0.089055 7.155688
C 1.094830 0.136739 6.415005
C 1.088104 0.117104 5.029958
C −0.128819 0.047929 4.308307
C −0.133774 0.028713 2.893944
C −0.151063 0.013098 1.670447
S 0.000000 0.000000 0.000000
C −1.180012 0.061818 13.338336
C −1.207602 0.072071 11.953319
C −1.334337 0.020570 6.430557
C −1.336897 −0.000000 5.032377
H 2.203034 0.187509 13.820162
C 2.454848 0.218552 11.183122
H −2.112893 0.022423 13.900268
H −2.159568 0.040584 11.423958
H 2.038048 0.189784 6.958181
H 2.028832 0.154882 4.481217
C −2.577773 −0.027756 7.132935
H −2.285850 −0.053698 4.500886
N 3.465314 0.263066 10.603428
N −3.597518 −0.066724 7.696549
Au 0.000000 −1.662766 20.666742
Au −1.440000 0.831384 20.666742
Au 1.440000 0.831385 20.666742
Au 0.000000 −1.662766 −2.314673
Au 1.440000 0.831384 −2.314673
Au −1.440000 0.831384 −2.314673

Coordinates for the Meta–Substituted Benzene Junction

C −1.467744 −0.000000 4.926826
C −2.132742 0.002769 6.167722
C −3.545443 0.006568 6.191293
C −4.261447 0.007211 4.995730
C −3.605304 0.004406 3.766402
C −2.193081 0.001130 3.720308
C −1.391239 0.001591 7.378865
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C −0.740514 0.000257 8.414041
S −0.000000 0.000000 9.922666
C −1.509786 −0.000360 2.475279
C −0.938838 −0.000798 1.393998
S −0.000000 0.000000 −0.000000
H −4.063910 0.008812 7.149626
H −5.352041 0.010126 5.022958
H −4.170404 0.004551 2.834765
H −0.378884 −0.003080 4.899829
Au 0.000000 −1.662766 12.237339
Au −1.440000 0.831384 12.237339
Au 1.440000 0.831385 12.237339
Au 0.000000 −1.662766 −2.314673
Au 1.440000 0.831384 −2.314673
Au −1.440000 0.831384 −2.314673

Coordinates for the Meta–Substituted Pyridine Junction
(Nitrogen in Shorter Path)

C −2.235637 −0.000000 5.972657
C −3.644969 −0.007448 6.052976
C −4.374730 −0.016379 4.867706
C −3.701997 −0.017213 3.649121
C −2.290426 −0.006815 3.662336
N −1.563341 0.001586 4.800800
C −1.454726 0.004058 7.164712
C −0.792048 0.002785 8.191455
S −0.000000 0.000000 9.670446
C −1.564319 −0.005284 2.435814
C −0.978465 −0.004083 1.363068
S −0.000000 0.000000 −0.000000
H −4.135464 −0.007341 7.025636
H −5.465350 −0.023231 4.893598
H −4.238502 −0.026203 2.701098
Au 0.000000 −1.662766 11.985119
Au −1.440000 0.831384 11.985119
Au 1.440000 0.831385 11.985119
Au 0.000000 −1.662766 −2.314673
Au 1.440000 0.831384 −2.314673
Au −1.440000 0.831384 −2.314673

Coordinates for the Meta–Substituted Pyridine Junction
(Nitrogen in Longer Path)

C −1.965184 −0.000000 6.235711
C −3.380946 −0.009853 6.205505
N −4.091915 −0.014751 5.074983
C −3.438469 −0.010694 3.910437
C −2.026160 −0.000371 3.808964
C −1.287527 0.005806 5.004482
C −1.268495 0.002518 7.469030
C −0.667849 0.001901 8.534361
S −0.000000 −0.000000 10.075217
C −1.389629 0.002110 2.543474
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C −0.871170 0.002112 1.435787
S 0.000000 0.000000 0.000000
H −3.942450 −0.014068 7.142689
H −4.046152 −0.015767 3.002507
H −0.198619 0.014309 4.976525
Au 0.000000 −1.662766 12.389891
Au −1.440000 0.831384 12.389891
Au 1.440000 0.831385 12.389891
Au 0.000000 −1.662766 −2.314673
Au 1.440000 0.831384 −2.314673
Au −1.440000 0.831384 −2.314673
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Visualizations of the molecular vibrations

Figure 3: CO stretching mode
obtained with MOVIPAC and
the modetracking algorithm
for the Fe-prophyrin.

2209 cm−1 2241 cm−1 2242 cm−1

Figure 4: Stretching modes of the central CC bond (left) and the antisymmetric (middle) and symmetric (right)
stretching vibration of the CN groups.
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627.9 cm−1 1075.8 cm−1 1354.5 cm−1 1414.4 cm−1

1538.2 cm−1 1545.6 cm−1 2136.4 cm−1 2138.1 cm−1

Figure 5: Collection of vibrational modes of the the meta-substituted pyridine junction, including the strongest
vibrations found in the IET spectrum.
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IET Spectra
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Figure 6: IET Spectra of the
Fe(II)Porphyrin junction eval-
uated at 𝐸F = −5 eV.
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Figure 7: IET Spectra of
the CN–substituted biphenyl
junction evaluated at 𝐸F =
−5 eV.
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Figure 8: IET Spectra of the
three meta–substituted ben-
zene/pyridine junctions eval-
uated at 𝐸F = −5 eV.
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Fits of the CIS Decay Dynamics

In the following, bi- or triexpoential fits for the ∫𝛥𝐸2(𝜏) dynamics
of the CIS samples are shown. While for CIS-OAm and CIS-AMTD
biexpoential decay fits given by

𝜖fit(𝜏) = Heavi(𝜏 − 𝑡0) 􏿰𝐴0e
− 𝜏−𝑡0

𝜏1 + (1 − 𝐴0)e
− 𝜏−𝑡0

𝜏2 +􏿳 (6)

are sufficient, a triexpoential decay has to be used for the CIS-
DMTD samples:

𝜖fit(𝜏) = Heavi(𝜏 − 𝑡0) 􏿰𝐴0e
− 𝜏−𝑡0

𝜏1 + 𝐴1e
− 𝜏−𝑡0

𝜏2 + (1 − 𝐴0 − 𝐴1)e
− 𝜏−𝑡0

𝜏3 􏿳

(7)
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nat 1.2 500
data
[88.18  9.58  0.55]
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data
[79.62  7.93  0.48]
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Figure 9: Biexponetial fits of the decay dynamics (∫𝛥𝐸2(𝜏)) of CIS-OAm. The title of the individual graphs
shows the excitation power in µJ (0.5 or 1.2) and wavelength in nm. The values given for the orange dotted
lines correspond to the fitting parameters, ordered as 𝜏1, 𝜏2, 𝐴0.
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Figure 10: Biexponetial fits of the decay dynamics (∫𝛥𝐸2(𝜏)) of CIS-AMTD. The title of the individual graphs
shows the excitation power in µJ (0.5 or 1.2) and wavelength in nm. The values given for the orange dotted
lines correspond to the fitting parameters, ordered as 𝜏1, 𝜏2, 𝐴0.
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Figure 11: Triexponetial fits of the decay dynamics (∫𝛥𝐸2(𝜏)) of CIS-DMTD. The title of the individual graphs
shows the excitation power in µJ (0.5 or 1.2) and wavelength in nm. The values given for the orange dotted
lines correspond to the fitting parameters, ordered as 𝜏1, 𝜏2, 𝜏2, 𝐴0, 𝐴1
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G Analysis of Cited Literature

Using a python script, the cited literature in this work could be
analyzed regarding the years of the publication. Figures 12 shows
the number of publications with respect to their your of publica-
tion, filtered by specific keywords in the title of the paper.
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Figure 12: Total publications and publications filtered with specific keywords with respect to their year of
publication.
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