
Advances in Machine Learning: Valid Inference
about High-Dimensional Parameters

Cumulative Dissertation

to obtain the academic degree of a “Doctor rerum oeconomicarum” (Dr. rer. oec.)

according to doctoral degree regulations 2014

at the Faculty of Business Administration (Hamburg Business School)

Moorweidenstr. 18

20148 Hamburg (Germany)

University of Hamburg

submitted by: Jannis Malte Kück

born on February 29, 1992 in Bremervörde

Hamburg, 2020



Thesis Committee:

Chairman: Prof. Dr. Knut Haase

1st Examiner: Prof. Dr. Martin Spindler

2nd Examiner: Prof. Dr. Michael Merz

3rd Examiner: Prof. Dr. Matthew Harding

Date of Disputation: November 12, 2020



Acknowledgments

First and foremost, I would like to thank my advisor Martin Spindler who was a constant source of

inspiration for my academic research during the last four years. He was always available and willing

to help me when I needed his support for both research and organizational issues. In particular, I am

indebted to Martin for his efforts that allowed me to visit the Deep Data Lab at the University of

California which had a major impact on both my academic and personal development. Moreover, we are

a perfect team at the chair of statistics at Hamburg Business School and I am proud of all the things

that we have achieved together. In this context, I would like to thank Philipp Bach and Sven Klaaßen.

I highly appreciate to have such great colleagues. I am grateful for their support and all the valuable

discussions with them. I also thank Cornelia Hartwig for helping me with the administrative issues.

Furthermore, I thank my coauthors Victor Chernozhukov and Ye Luo, and Michael Merz for agreeing

to act as second reviewer. I would like to gratefully mention Matthew Harding for inviting me to visit

the Deep Data Lab at the University of California. He also supported me in the last few months, e.g.,

by providing me reference letters and by agreeing to be on my committee. I am grateful to Natalie

Neumeyer for her great teaching and the supervision of my master thesis during my studies of business

mathematics. She contributed significantly to my desire of pursuing a Ph.D. in statistics.

This dissertation concludes an important chapter of my life. I have started my studies almost nine years

ago and I am grateful to all the people who have accompanied me along this way. I especially thank

Moritz Meyer for always supporting me and for being an outstanding friend.

Most of all, I thank Friederike Falk for her unconditional love and support. Friedi, although I am often

highly focused on my work, you are always first and foremost in my mind.

Finally, I would like to express my deep gratitude to my family. In particular, I would like to thank my

parents. They have supported and encouraged me in every possible way, especially during difficult times.

Thank you for always being there for me.



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

1 General Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Conceptual Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Estimation and Inference of Treatment Effects with L2-Boosting in High-Dimensional

Settings 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Econometric Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 L2-Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 L2-Boosting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Post- and Orthogonal L2-Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.4 Computational Details and Comparison to Lasso . . . . . . . . . . . . . . . . . . . 10

2.4 Inference for Treatment Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Inference after Selection among High-Dimensional Controls . . . . . . . . . . . . . 10

2.4.2 Inference on Treatment Effects in an Instrumental Variable Model . . . . . . . . . 12

2.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Setting with High-Dimensional Controls . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.2 IV Estimation with many Instruments . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Application: Analysis of the PAC-man Study . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 The PAC-man Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Transformation Models in High-Dimensions 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Transformation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Transformation Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Nuisance Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Identification of the True Transformation . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Neyman Orthogonality Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Uniform Estimation of the Nuisance Functions . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Entropy Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

I



Contents

3.3.4 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Box-Cox Power Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Yeo-Johnson Power Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Econometric Specification of the Wage Equation . . . . . . . . . . . . . . . . . . . 44

3.5.2 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Uniform Convergence Rates for the Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 Inference in Z-Estimation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.10 Additional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10.1 Approximately Sparse Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10.2 Non-Normal Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Uniform Inference in High-Dimensional Generalized Additive Models 76

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Organization of the Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.9 Uniformly Valid Confidence Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.10 Uniform Nuisance Function Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.11 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.11.1 Computation and Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.11.2 Simulation Study: Smoothing Parameters in B-splines . . . . . . . . . . . . . . . . 124

4.11.3 Empirical Application: Cross-Validation Procedure . . . . . . . . . . . . . . . . . . 124

4.11.4 Empirical Application: Additional Plots for Explanatory Variables . . . . . . . . . 125

5 Uniform Inference in High-Dimensional Gaussian Graphical Models 126

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5 Notes on the Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.8 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.9 Uniform Nuisance Function Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

II



Contents

5.9.1 Uniform Lasso Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.9.2 Uniform Square-Root Lasso Estimation . . . . . . . . . . . . . . . . . . . . . . . . 154

5.9.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6 General Conclusion and Outlook 172

Bibliography 180

Appendices 181

A.1 Statement of Personal Contribution Pursuant to §6(4) PromO . . . . . . . . . . . . . . . . 181

A.2 Short Summaries of Papers Pursuant to §6(6) PromO . . . . . . . . . . . . . . . . . . . . 183

A.3 List of Publications Pursuant to §6 (6) PromO . . . . . . . . . . . . . . . . . . . . . . . . 187

III



List of Figures

2.1 Estimation of the treatment effect with double selection and the naive approach. . . . . . 7

3.1 Box-Cox and Yeo-Johnson transformations for different transformation parameters. . . . . 31

3.2 Coverage for an increasing number of regressors. . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Empirical distribution of the estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Empirical wage distribution from the US survey data. . . . . . . . . . . . . . . . . . . . . 44

3.5 Comparison of Q-Q plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Transformation functions for θ = 0 (black) and θ = θ̂ (red). . . . . . . . . . . . . . . . . . 47

3.7 Coverage for an increasing number of degrees of freedom. . . . . . . . . . . . . . . . . . . 75

4.1 Simulation results for the setting with n = 100 and p = 150. . . . . . . . . . . . . . . . . . 88

4.2 Simultaneous 95%-confidence bands in the Boston housing data application. . . . . . . . . 90

4.3 Additional plots for the Boston housing data application. . . . . . . . . . . . . . . . . . . 125

5.1 Examples of Gaussian graphical models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

IV



List of Tables

2.1 Simulation results: Bias under exact sparsity. . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Simulation results: Bias under approximate sparsity. . . . . . . . . . . . . . . . . . . . . . 15

2.3 Simulation results: Rejection Rate under exact sparsity. . . . . . . . . . . . . . . . . . . . 15

2.4 Simulation results: Rejection Rate under approximate sparsity. . . . . . . . . . . . . . . . 16

2.5 Simulation results: Bias in the IV setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Simulation results: Rejection Rate in the IV setting. . . . . . . . . . . . . . . . . . . . . . 17

2.7 Results of the PAC-man Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Box-Cox: Simulation results for Σ(X) = Ip. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Box-Cox: Simulation results for Σ(X) = Σ
(X)
1 . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Box-Cox: Simulation results for Σ(X) = Σ
(X)
2 . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Yeo-Johnson: Simulation results for Σ(X) = Ip. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Yeo-Johnson: Simulation results for Σ(X) = Σ
(X)
1 . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Yeo-Johnson: Simulation results for Σ(X) = Σ
(X)
2 . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Application: List of regressors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Summary statistics, ACS data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Additional simulations for Box-Cox transformations. . . . . . . . . . . . . . . . . . . . . . 73

3.10 Additional simulations for Yeo-Johnson transformations. . . . . . . . . . . . . . . . . . . . 74

4.1 Data generating processes in the simulation study. . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Simulation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 List of variables in the analysis of the Boston housing data. . . . . . . . . . . . . . . . . . 89

4.4 Smoothing parameters used in the simulation study. . . . . . . . . . . . . . . . . . . . . . 124

4.5 Smoothing parameters used in the empirical application. . . . . . . . . . . . . . . . . . . . 125

5.1 Simulation results for S=1, exp=1 and 1-fold. . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Simulation results for S=5, exp=1 and 1-fold. . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Simulation results for S=5, exp=2 and 1-fold. . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 Simulation results for S=1, exp=1 and 3-fold. . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Simulation results for S=5, exp=1 and 3-fold. . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6 Simulation results for S=5, exp=2 and 3-fold. . . . . . . . . . . . . . . . . . . . . . . . . . 139

V



Chapter 1

General Introduction

1.1 Background

High-dimensional statistical models have become increasingly popular in the last decades. These models

allow for settings where the number of variables p is large (or even larger) compared to the sample size n.

The rise of digitalization has dramatically lowered the cost of data acquisition and allows to collect data of

many variables. Thus, Big Data becomes more and more available which has accelerated the development

of new methods. Key methods in high-dimensional linear regression include Lasso (Tibshirani [93]), the

Dantzig selector (Candes and Tao [25]) and L2-Boosting (Friedman [48], Bühlmann and Yu [23]). Popular

nonlinear regression methods in high-dimensions are tree-based methods like Random Forests (Breiman

[19]) and Neural Nets. All these so-called machine learning (ML) methods are remarkably effective in

prediction contexts. Under structural assumptions, such as sparsity, together with various regularization

schemes, machine learning methods achieve impressively fast estimation rates. L1-penalized methods

like Lasso and the Dantzig selector are widely discussed in the recent literature and the estimation rates

are well understood, see Bickel et al. [13] and Bühlmann and Van De Geer [22], among many others.

Estimation rates for L2-Boosting in sparse linear regression models are presented in Luo and Spindler

[73]. Wager and Walther [100] provide concentration results for Regression Trees and Random Forests

and Chen and White [29] provide results for Neural Nets.

However, this good performance in prediction does not necessarily translate into good performance for

inference about causal parameters that is key for economic applications. In many situations, the interest is

on learning about causal relationships and making inference about treatment effects. In a naive approach

in regression models with many explanatory variables, one might first select the relevant variables by

machine learning methods, like Lasso and Boosting, and then estimate the treatment effect by including

only the selected variables and continue with standard inference methods. Although it is frequently used

in applied work, this approach leads to invalid results since it relies on perfect variable selection in the

first step. This has been excellently highlighted in Leeb and Pötscher [67]. Thus, the challenge is to

combine machine learning with causal inference.

The papers that are collected in this dissertation discuss how machine learning methods can be used to

conduct valid inference in high-dimensional settings. The methodology that is used in the papers relies on

the so-called double machine learning approach. The theoretical framework has been developed by Belloni,

Chernozhukov, Hansen, and coauthors, in a series of papers. Chernozhukov et al. [35] first introduced the

general double machine learning approach to construct confidence intervals for low-dimensional target

parameters in the presence of an unknown, high-dimensional nuisance parameter which can be estimated

with machine learning methods. Recent results of Belloni et al. [12] allow for valid inference about high-

dimensional target parameters by allowing the number of moment conditions to grow with the sample

1



CHAPTER 1 1.2. CONCEPTUAL FRAMEWORK

size. It is worth to notice that there is a second so-called debiasing approach for inference about low-

dimensional parameters in high-dimensions that has been introduced in Van De Geer et al. [96] and Zhang

and Zhang [105]. In the following, the conceptual framework of the double machine learning approach

will be introduced.

1.2 Conceptual Framework

Let W be a random element with values in a measurable space (W,AW) with probability measure P ∈ Pn.

In regression settings, the random variable W often equals the tuple W = (Y,X). Further, it is assumed

to observe n independent identically distributed (i.i.d.) observations of W . The (causal) target parameter

θ0 ∈ R is identified by fulfilling the following moment condition

E[ψ(W, θ0, η0)] = 0.

Here, ψ(·) is a known score function and η0 ∈ T is an unknown, high-dimensional nuisance parameter,

where T is a convex subset of a normed vector space. The double machine learning estimator θ̂0 solves

the empirical version of the moment condition

1

n

n∑
i=1

ψ(Wi, θ̂0, η̂) = 0,

where instead of the unknown nuisance parameter a ML-based estimator η̂ is plugged in. The following

Neyman orthogonality condition is essential for valid inference in high-dimensions. It ensures that the

Gateaux derivative with respect to the nuisance parameter vanishes at zero:

∂rE [ψ(W, θ0, η0 + r(η − η0))] |r=0 = 0.

Heuristically, the condition implies that the moment condition to identify θ0 remains valid under local

mistakes in the nuisance parameter. This idea can be traced back to Neyman who used a similar condition

for robust estimation in low-dimensional settings. The Neyman orthogonality does not need to hold for

all η ∈ T but only for the so-called nuisance realization set T ⊂ T that includes the ML-based estimator

η̂ with probability converging to one. In the following section, the role of the Neyman orthogonality

is discussed in detail and an intuition why this condition is key for valid inference in high-dimensional

settings is provided.

There are several extensions of this basic framework, e.g., the near orthogonality condition that only

assumes that the Gateaux derivative is closed to zero and vanishes sufficiently fast for increasing sample

size. Further, as already mentioned, Belloni et al. [12] provide a framework for valid inference about

a high-dimensional target parameter θ0 = (θ1, . . . , θdn) by allowing the number of moment conditions,

l = 1, . . . , dn, to increase with the sample size. Here, dn denotes the number of target parameters.

The Role of Neyman Orthogonality

Dealing with high-dimensional parameters requires relying upon regularization that leads to a substantial

bias and this bias spreads into the estimation of the target parameters. This is the reason why naive

inference approaches tend to fail in high-dimensions. Under weak regularity conditions, the double

machine learning estimator θ̂ obeys the expansion

J
√
n
(
θ̂ − θ0

)
= An +

√
nDO

(
|η̂ − η0|

)
+
√
nO
(
‖η̂ − η0‖2

)
+ op(1),

2



CHAPTER 1 1.3. OUTLINE

where J is a variance term, An is a well-behaved leading term that is approximately zero-mean Gaussian

and D is defined as

D := ∂rE [ψ(W, θ0, η0 + r(η − η0))] |r=0.

Under Neyman orthogonality, it holds D = 0 and therefore

√
nDO

(
|η̂ − η0|

)
= 0.

Hence,

√
nO
(
‖η̂ − η0‖2

)
= oP (1)

is sufficient for root-n consistency and asymptotic normality of the double machine learning estimator θ̂

which only requires ‖η̂−η0‖ = oP (n−1/4). As mentioned, machine learning methods achieve impressively

fast estimation rates and oP (n−1/4) is often an attainable rate for estimating η0. The Neyman orthogo-

nality condition ensures that the moment condition is insensitive towards these small estimation errors

which leads to valid inference. Considering valid inference about a high-dimensional target parameter

θ0 = (θ1, . . . , θdn) in the presence of high-dimensional nuisance parameters η0,1, . . . , η0,dn , this estimation

rate needs to hold uniformly over all nuisance parameters, namely

sup
l=1,...,dn

‖η̂l − η0,l‖ = oP (n−1/4).

1.3 Outline

This dissertation consists of four research papers that present a variety of applications of the double ma-

chine learning approach with the aim to provide new methodology for valid inference about a potentially

high-dimensional target parameter.

The first paper, presented in Chapter 2, analyzes the following high-dimensional linear regression model

Y = Dθ0 +X1β1 + . . .+Xpβp + ε, E[ε | X,D] = 0

with p potentially much larger than the sample size n. Here, D is a treatment variable and X1, . . . , Xp

are additional covariates. This model is well known in the literature and the double machine learning

approach can be used to conduct valid inference. The estimation of the treatment effect θ0 often relies

on Lasso estimation. Contrary to this, results for valid inference when post- or orthogonal L2-Boosting

is applied for variable selection are provided in Chapter 2.

In the second paper, presented in Chapter 3, the following high-dimensional transformation model

Λθ0(Y ) = XTβθ0 + εθ0

with εθ0 ∼ N (0, σ2) is considered. This model takes up the idea of the high-dimensional linear regression

model and combines it with a parametric transformation of the response variable Λθ(·) ∈ FΛ, where

FΛ = {Λθ(·) : θ ∈ Θ} is a given family of strictly monotone increasing functions. The transformation

allows for more flexibility and aims to change the scale preventing incorrect model assumptions, such

as by establishing normally distributed errors. In Chapter 3, an estimator for the true transformation

parameter θ0 is proposed and proven to be asymptotically normally distributed.

The third paper, which provides the basis of Chapter 4, considers a generalized additive model. General-
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ized additive models are quite popular in statistics, imposing an additive structure of the nonparametric

regression function to evade the curse of dimensionality

Y = β + f1(X1) + . . .+ fp(Xp) + ε, E[ε|X] = 0.

Here, β denotes a constant and f1(·), . . . , fp(·) are univariate regression functions. Chapter 4 provides a

new methodology for uniform valid confidence bands of the nonparametric target component f1.

Chapter 5 provides the fourth paper which analyzes high-dimensional Gaussian graphical models of the

form

X = (X1, . . . , Xp)
T ∼ N (µX ,ΣX).

Graphical models are key for representing dependencies of a large set of variables. The aim of this

paper is to quantify the uncertainty of recovering the support of the precision matrix Σ−1
X by providing

a significance test for a set of potential edges in the graphical model.

Finally, Chapter 6 draws general conclusions and provides an outlook on future research. This dissertation

has its origin in four joint works with various coauthors and as the dissertation was written in a cumulative

way some sections of the chapters are similar, e.g., the sections that introduce the notations. But to avoid

confusion and unnecessary cross references, these sections have been retained.
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Chapter 2

Estimation and Inference of

Treatment Effects with L2-Boosting

in High-Dimensional Settings

2.1 Introduction

Boosting algorithms are very popular in machine learning and have proven to be very useful for pre-

diction and variable selection (Bühlmann and Hothorn [21]). Nevertheless, in many applications the

researcher is interested in inference on selected variables. In many cases there are so-called treatment or

policy variables which the researcher would like to learn about and make inferences, in particular in a

high-dimensional setting. Increasing digitalization in many fields of life makes large data sets available

for research. Typical applications are the estimation of a treatment effect after selecting among many

control variables and the estimation of instrumental variables when there are potentially many instru-

ments. We provide results for valid inference in these settings when post- or orthogonal L2-Boosting is

applied for the variable selection. Usually, inference after model selection leads to invalid results. This

has been highlighted by Leeb and Pötscher in a series of papers, excellently summarized in Leeb and

Pötscher [67]. Here, we use orthogonalized moment conditions introduced by Chernozhukov et al. [35]

and recent results of Luo and Spindler [73] on the rate of convergence of L2-Boosting which yields valid

post-selection inference.

Boosting algorithms represent one of the major advances in machine learning and statistics in recent

years. Freund and Schapire’s AdaBoost algorithm for classification (Freund and Schapire [45]) has at-

tracted much attention from the machine learning community as well as in statistics. Many variants of

the AdaBoost algorithm have been introduced and proven to be very competitive in terms of predic-

tion accuracy in a variety of applications with a strong resistance to overfitting as shown in Bühlmann

and Hothorn [21]. Boosting methods were originally proposed as ensemble methods which rely on the

principle of generating multiple predictions and majority voting (averaging) of the individual classifiers.

An important step in the analysis of Boosting algorithms was Breiman’s interpretation of Boosting as

a gradient descent algorithm in a function space inspired by numerical optimization and statistical es-

timation (Breiman [17], Breiman [18]). Building on this insight, Friedman et al. [46] and Friedman [48]

embedded Boosting algorithms into the framework of statistical estimation and additive basis expansion.

This also enabled the application of Boosting to regression analysis. Boosting for regression was proposed

by Friedman [48], and then Bühlmann and Yu [23] defined and introduced L2-Boosting. An extensive

overview of the development of Boosting and its manifold applications is given in the survey Bühlmann
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and Hothorn [21].

In this paper, we present results for valid inference on treatment effects in a high-dimensional setting.

Boosting has proven to be particularly valuable for prediction, but we show in this paper that it can also

be applied for causal search. In particular, we consider the case of the estimation of a treatment effect

with many control variables, and the estimation of instrumental variables (IVs) with many potential

instruments. The first case, the estimation of a treatment effect with many control variables, can also be

interpreted as inference on a preselected variable in a high-dimensional linear regression model estimated

with L2-Boosting. Our estimation method relies on the so-called orthogonalized moment conditions. This

theory was developed by Belloni, Chernozhukov, Hansen, and coauthors, in a series of papers. The case

of instrumental variables is analyzed in Belloni et al. [5], the treatment effect case in Belloni et al. [8].

Surveys with extensions of the general idea are Chernozhukov et al. [35] and Chernozhukov et al. [33]. To

ground the discussion, we examine a randomized trial of the pulmonary artery catheter (PAC) that was

carried out in 65 intensive care units in the UK between 2001 and 2004 (Harvey et al. [53]). This study

got a lot of attention from the scientific community under the name the “PAC-man”study. The PAC is

a monitoring device commonly inserted into critically ill patients while staying in intensive care units.

It provides continuous measurements of cardiac activity. However, the insertion of a PAC is an invasive

procedure bringing the risk of complications and imposing significant costs as described in Dalen [39].

An early study based on observational data by Connors et al. [37] found that a PAC had a negative effect

on the survival chances of patients and led to increased costs for the health care sector. This finding was

the motivation for a randomized trial by Bloniarz et al. [15] to evaluate PAC interventions. In this study,

around 1,000 patients (approx. 50% treatment and 50% control groups) participated and a large number

of covariates were collected. If, e.g., two-way interactions of the variables are included in the analysis,

the number of parameters already exceeds the number of observations. We analyze the PAC-man data

and find that the intervention has no significant effect on the outcome variable, namely the number of

quality-adjusted years of life.

First, we explain, in Section 2.2, the problems in estimating treatment effects in high-dimensional set-

tings. In Section 2.3, L2-Boosting and two variants, to which our results apply, are introduced. In Section

2.4, we present the formal results for valid inference on (low-)dimensional treatment effects in a possibly

high-dimensional setting. A simulation study and an empirical application are given in Sections 2.5 and

2.6 . Finally, we conclude in Section 2.7.

2.2 Econometric Considerations

The goal is to estimate the treatment effect α of a treatment variable D on an outcome variable Y ,

namely

Y = γ + αD + ε, (2.1)

where γ denotes the intercept and ε a statistical error term. There are two reasons for including covariates

X = (X1, . . . , Xp) in equation (2.1) for the estimation of the treatment effect. First, covariates improve

the precision of the estimation of the average treatment effect in randomized control trials (RCTs). This

argument has already been made in Cox [38]. Second, in observational studies, additional covariates might

establish unconfoundedness, meaning that given the variables in X, the treatment is as randomized and

there are no unobserved confounders. For a book length treatment of this argument, we refer to Imbens

and Rubin [57]. Formally, this means

Y = γ + αD + g(X) + ε, E(ε|D,X) = 0,
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where g(·) is a function of the covariates. The next question is which variables to include in equation

(2.1) from a set of potential covariates. In high-dimensional settings, when the number of covariates p is

larger than the sample size n, variable selection is inevitable, as, e.g., the least squares estimate is not

well defined. Even when p is smaller than n but the ratio p/n is high, ordinary least squares estimates are

unreliable and again variable selection is needed. Including too many (noise) covariates might disguise

the true treatment effect. For example, the study to evaluate the pulmonary artery catheter (PAC) in

Bloniarz et al. [15], which we will also cover, contains 1013 observations and 55 potential covariates. In

medical applications, interaction effects might be prevalent leading in all to 500-1000 two-way interactions

in this example and to a high-dimensional setting with p very large compared to n, or even p� n.

In a naive approach, one might first select the relevant covariates by classical t-tests or modern machine

learning methods, like Lasso and Boosting, and then estimate the treatment effect by including only the

selected variables and continue with standard inference methods. But this procedure, although often

used in applied work, might fail to provide a valid post-selection inference. This has been worked out by

Leeb and Pötscher [67]. We demonstrate this by a simple simulation study with one treatment variable

and one covariate. The data generating process is given by

yi = diα+ x′iβ + εi, di = x′iγ + vi

with α = 0.5, β = 0.2 and γ = 0.8. The noise is normally distributed εi ∼ N(0, 1) and

(di, xi) ∼ N
(

0,
[

1 0.8

0.8 1

])
.

We apply L2-Boosting which is explained later in more detail for variable selection in the naive approach.

The results for 500 repetitions of the scaled estimate α̂ are displayed in Figure 2.1 Panel B. The resulting

distribution is highly biased, shows heavy tails and is not in line with a standard normal distribution.

To provide valid post-selection inference with Boosting, we apply the double selection approach which is

described in Section 2.4 in detail. Figure 2.1 Panel A shows the empirical distribution of the estimates

when employing the double selection methods. They are nearly unbiased and can be approximated by a

normal distribution. The intuition of the double selection method is that it cures the omitted variables

bias which is introduced by imperfect model selection of machine learning methods by running an auxiliary

regression/step. As mentioned, details will be provided later in Section 2.4.

Double Selection Method

D
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Panel A

Naive Model Selection
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Figure 2.1: Histograms of the estimates α̂ of the treatment effect with the double selection
method and naive approach under a DGP with α = 0.5.
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2.3 L2-Boosting

In this section, we describe the L2-Boosting algorithm, namely the original Boosting algorithm for regres-

sion defined in Bühlmann and Yu [23] and two variants, namely the orthogonal and the post-Boosting

algorithm1. To define these algorithms for linear models, we consider the following regression setting:

yi = x′iβ + εi, i = 1, . . . , n, (2.2)

where x′i = (xi,1, . . . , xi,pn) is a vector that consists of pn predictor variables. β is a pn-dimensional

coefficient vector and εi is a random, zero-mean error term with E[εi|xi] = 0. We allow the dimension of

the predictors pn to grow with the sample size n. Also, the case dim(β) = pn � n is allowed. In this

setting, a so-called sparsity condition is unavoidable. This means that there is a large set of potential

variables, but the number of variables which have nonzero coefficients, denoted by s, is small compared

to the sample size, i.e., s < n. This can also be weakened to approximate sparsity. In the following, we

will drop the dependence of pn on the sample size and denote it by p if no confusion will arise. X denotes

the n × p design matrix where the single observations xi form the rows. Xj denotes the jth column

of the design matrix, and xi,j is the jth component of the vector xi. We assume a fixed design with

max1≤j≤p xi,j ≤ C for all i = 1, . . . , n and c ≤ min1≤j≤p En[x2
i,j ] for absolute constants 0 < c < C <∞.

Without loss of generality, we consider standardized regressors, i.e., En[xi,j ] = 0 and En[x2
i,j ] = 1 for

j = 1, . . . , p. Further assumptions will be imposed in the next sections.

The basic principle of L2-Boosting works as follows: The criterion function that we would like to minimize

is the sum of squared residuals as in the ordinary least squares (OLS) case. We initialize the estimator

β̂ to zero (strictly speaking, a p-dimensional vector consisting of zeros). Then, we calculate the residuals

which in this case are equivalent to the observations. Next, we conduct p univariate regressions, namely,

we regress the residuals (in the first round, the observations) on each of the p regressors, resulting in p

univariate regressions. Then, we select the variable or regression which explains most of the residuals

and update this coordinate of our estimated vector in this direction. Now, we repeat this procedure

(the calculation of the updated residuals, p univariate regressions, and updating the estimated coefficient

vector) until some stopping criterion is reached.

The version above and the orthogonal version, introduced next, are, in deterministic settings, also known

as the pure greedy algorithm (PGA) and the orthogonal greedy algorithm (OGA). Boosting is a gra-

dient descent method. In the L2-case, the (negative) gradient equals the residuals and the residuals

are iteratively fitted by a so-called base learner, here componentwise univariate regressions. In the low-

dimensional case, the estimator converges to the OLS solution. In the high-dimensional case, overfitting

can occur in the absence of early stopping. Hence, early stopping prevents overfitting and is an unusual

penalization/regularization scheme.

2.3.1 L2-Boosting Algorithm

The algorithm for L2-Boosting with componentwise least squares is given below. The act of stopping is

crucial for Boosting algorithms, as stopping too late or never stopping leads to overfitting and therefore

some kind of penalization is required. Similar to Lasso, early stopping might induce a bias through

shrinkage. A potential way to decrease the bias is by “post-Boosting”which is defined in the next section.

1A more detailed exposition of the algorithms can be found in Luo and Spindler [73].
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Algorithm 1 L2-Boosting

(1) Initialization: β0 = 0 (p-dimensional vector), f0 = 0, set maximum number of iterations mstop and
set iteration index m to 0.

(2) At the (m+ 1)th step, calculate the residuals Umi = yi − x′iβm.

(3) For each predictor variable j = 1, . . . , p, calculate the correlation with the residuals:

γmj :=

∑n
i=1 U

m
i xi,j∑n

i=1 x
2
i,j

=
< Um, Xj >n

En[x2
i,j ]

.

Select the variable jm that is the most correlated with the residuals, i.e., max1≤j≤p |corr(Um, Xj)|.

(4) Update the estimator: βm+1 := βm + γmjmejm , where ejm is the jmth index vector and fm+1 :=
fm + γmjmXjm .

(5) Increase m by one. If m < mstop, continue with (2); otherwise stop.

2.3.2 Post- and Orthogonal L2-Boosting

Post-L2-Boosting is a post-model selection estimator that applies ordinary least squares (OLS) to the

model selected by the first step, which is L2-Boosting. To formally define this estimator, we make the

following definitions, T := supp(β) and T̂ := supp(βm), that are the support of the true model and the

support of the model estimated by L2-Boosting as described above with stopping at m, respectively. The

superscript C denotes the complement of the set with regard to {1, . . . , p}. In the context of Lasso, OLS

after model selection was analyzed in Belloni and Chernozhukov [6]. Given the above definitions, the

post-model selection estimator or OLS post-L2-Boosting estimator will take the form

β̃ = arg min
β∈Rp

Qn(β) : βj = 0 for each j ∈ T̂C . (2.3)

Qn(β) denotes the squared sum of residuals defined as
∑n
i=1(yi−x′iβ)2. Another variant of the Boosting

algorithm is orthogonal Boosting (oBA), or the orthogonal greedy algorithm in its deterministic version.

Only the updating step is changed. An orthogonal projection of the response variable is carried out

on all the variables which have been selected up to that point. The advantage of this method is that

any variable is selected at most once in this procedure, while in the previous version the same variable

might be selected at different steps which makes the analysis far more complicated. More formally, the

method can be described as follows by modifying step (4) in Algorithm 1: Define Xm
o as the matrix which

consists only of the columns which correspond to the variables selected in the first m steps, i.e., all Xjk ,

k = 0, 1, . . . ,m. Then, we have

βmo = (Xm
o
′Xm

o )−1Xm
o
′y (2.4)

ŷm+1 = fm+1
o = Xm

o β
m
o . (2.5)

2.3.3 Early Stopping

As already mentioned, early stopping is crucial in Boosting to avoid overfitting. The standard approaches

for determining the “optimal” stopping time are cross-validation and a corrected Akaike information

criteria (Bühlmann [20]). Both lack a theoretical foundation in a high-dimensional setting, although

they are applied by practitioners and often give competitive results. In our analysis, in particular in

the simulation study, we rely on theoretical-grounded data driven stopping rules developed in Luo and
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Spindler [73]. The idea is to stop the Boosting algorithm when the improvement in fit is below some

pre-specified threshold.

2.3.4 Computational Details and Comparison to Lasso

Luo and Spindler [73] showed that post-Boosting and orthogonal Boosting achieve the same rate of con-

vergence as Lasso in a sparse, high-dimensional setting (under slightly stronger assumptions). Also in

terms of the empirical performance, Bühlmann and Hothorn [21] did not find an overall superiority of

L2-Boosting over Lasso or vice versa. Friedman et al. [47] pointed out first a strong relationship between

L2-Boosting with componentwise linear least squares and Lasso. Although these methods are not equiv-

alent in general, Efron et al. [42] proofed an approximate equivalence between L2-Boosting and Lasso

and confirmed that L2-Boosting and Lasso are closely related.

Compared to Lasso, Boosting uses an unusual penalization scheme as discussed above. Hence, L2-

Boosting can be interpreted as an approximate and implicit regularized optimization, whereas Lasso

directly solves a complex penalized optimization problem. Further, L2-Boosting solves univariate regres-

sions that are easily parallelizable. Thus, this form of estimation and variable selection is computationally

very efficient. Although there are also efficient algorithms to solve the optimization problem of Lasso, this

leads to a computational superiority of L2-Boosting over Lasso. This has also been observed in Bühlmann

and Hothorn [21] who compare the computing time of L2-Boosting and Lasso in high-dimensional regres-

sions. Hence, Boosting is employed in practice when explicitly solving regularized optimization problems

is not practical. This is usually the case in very high-dimensional settings when p >> n, see Efron et al.

[42].

2.4 Inference for Treatment Effects

In this section, we consider the case where a researcher is interested in estimating the treatment effect α0

of a treatment variable d. We provide results for valid inference after selecting among very many control

variables and in an instrumental variable model with potentially very many instruments when post- or

orthogonal L2-Boosting is used for the variable selection.

2.4.1 Inference after Selection among High-Dimensional Controls

In many situations, the treatment variable is uncorrelated with the error term εi only after controlling

for sufficient control variables denoted by xi. It is not clear which set of control variables to include, in

particular when many potential control variables are available. In such situations, in particular when the

number of variables p is larger than the number of observations n, model selection might be inevitable.

Unfortunately, many modern methods like Lasso or Boosting obtain consistent model selection only

under very strong, in particular in applications in economics, unrealistic assumptions. Hence, relevant

variables might be missed which leads to invalid post-selection inference. To circumvent this problem,

we apply the so-called double selection method introduced in Belloni et al. [8], Chernozhukov et al. [35]

and Chernozhukov et al. [33]. The key idea of double selection is to introduce and estimate an auxiliary

regression which safeguards against model selection errors of moderate size. We consider the model

yi = diα0 + x′iβ + ξi, E[ξi|di, xi] = 0 (2.6)

di = x′iγ + νi, E[νi|xi] = 0. (2.7)
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The estimation method consists of the following three steps where the first two involve model selection

with Boosting:

(1) Run a post- or orthogonal Boosting regression of di on xi. The set of variables which is selected

will be denoted by Î1.

(2) Run a post- or orthogonal Boosting regression of yi on xi. The set of variables which is selected

will be denoted by Î2.

(3) Run an OLS regression of yi on the treatment variable di and the set of variables selected in the

first two steps. This set might be augmented by additional variables.

The estimated regression coefficient of the treatment variable in step (3) above is the double selection

estimator α̌. To analyze this estimator based on L2-Boosting, we impose the following assumptions:

A.1. Let c and C be absolute constants. The following assumptions hold:

(i) We observe wi = (yi, di, xi) i.i.d. on (Ω,F , P ) obeying (2.6) and (2.7) for i = 1, . . . , n.

(ii) The model is sparse: ||β||0 ≤ s and ||γ||0 ≤ s.

(iii) We have E[y2] ≤ C and E[d2] ≤ C.

(iv) It holds c ≤ E[ξ2|di, xi] ≤ C a.s. and c ≤ E[ν2|xi] ≤ C for all i = 1, . . . , n. Further, there exists a

absolute constant 4 < q <∞ such that E [|ξ|q + |ν|q] ≤ C.

(v) We have

(a) s2 log2(p∨n)
n → 0,

(b) log3 p
n → 0 and

(c) sn−1/2+2/q → 0.

Assumption A.1 imposes standard conditions on the data generating process. Assumption A.1 (ii) imposes

sparsity on the two equations. Assumptions A.1 (iii) and (iv) impose technical conditions on the moments

of the random variables. Assumption A.1 (v) restricts the growth of the number of parameters.

A.2. We assume that there exist constants 0 < c < 1 and C such that 0 < 1− c ≤ φmin(s′,En[x′ixi]) ≤
φmax(s′,En[x′ixi]) ≤ C < ∞ for any s′ ≤ M0, where M0 is a sequence such that M0 → ∞ slowly along

with n, and M0 ≥ s. φmin(s′,En[x′ixi]) denotes the minimum eigenvalue of s′-dimensional submatrices

of En[x′ixi]. φmax(s′,En[x′ixi]) is defined in an analog way for the maximum eigenvalue.

This condition is standard for the analysis of Lasso and other machine learning methods in a high-

dimensional setting. It allows for a more general behavior requiring only that the sparse eigenvalues of the

Gram matrix are bounded from above and away from zero. A more restrictive assumption in traditional

econometric research is to assume that the (population) Gram matrix has eigenvalues bounded from

above and away from zero. The sparse eigenvalues condition is fulfilled for many relevant designs. For

examples, we refer to Belloni and Chernozhukov [6]. An extensive overview of different conditions on the

matrices and how they are related is given in Van De Geer and Bühlmann [95].

A.3. With probability greater or equal 1− α, we have sup1≤j≤p | < xij , εi >n | ≤ 2σ̃
√

log(2p/α)
n =: λn for

εi = ξi and εi = νi. Here, < xij , εi >n denotes the empirical inner product and σ̃ :=
√
V ar(εi).

Assumption A.3 holds, e.g., if the error terms are i.i.d. normally distributed random variables. This can

be weakened to cases of non-normality as discussed in Luo and Spindler [73].
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A.4. minj∈T |βj | ≥ J , maxj∈T |βj | ≤ J ′, |α0| ≤ J ′ for some constants J > 0, J ′ < ∞. The same

condition holds for the parameter vector γ.

This assumption is a so-called beta-min condition for the parameters in both equations. Although it

might look quite strong at first glance, it can be weakened so that the sequence of absolute values of

the coefficients is decreasing with the sample size. Moreover, we assume that in the Boosting regressions

early stopping takes place and the stopping criteria follows the proposals in Luo and Spindler [73] for

post- and orthogonal L2-Boosting, i.e., the procedure is stopped when the improvement in fit is below

some pre-specified threshold. With these assumptions, we can now formulate our first main theorem.

Theorem 1. Let {Pn} be a sequence of data generating processes for which Assumptions A.1-A.4 hold

for P = Pn and each n. Then, the double-selection estimator based on post-L2-Boosting/orthogonal

L2-Boosting α̌ satisfies

σ̂−1
n

√
n(α̌− α0)→D N(0, 1) (2.8)

with

σ̂2
n = [Enν̂2

i ]−1En[ν̂2
i ξ̂

2
i ][Enν̂2

i ]−1

for ξ̂i := (yi−diα̌−x′iβ̂)(n/(n− ŝ−1))1/2 and ν̂i := di−x′iγ̂, i = 1, . . . , n, where β̂ denotes the post-double

selection estimator and ŝ = ||T̂ ||0.

Proof. The sparsity condition in Assumption A.1 (ii) and Assumptions A.2-A.4 imply, according to Luo

and Spindler [73], that condition HLMS(P) in Belloni et al. [8] is satisfied. In the regular fix design

setting, Assumption A.1 and Assumption A.4 imply conditions ASTE(P) and SM(P) in Belloni et al.

[8]. Condition SE(P) holds due to Assumption A.2. Hence, Theorem 2 in Belloni et al. [8] yields the

result.

This result can be used to conduct valid inference on the regression coefficient α0. The construction of

uniformly valid confidence intervals is given in the following corollary.

Corollary 2.4.1. Let Pn be the collection of all data generating processes P for which the assumptions

of Theorem 1 hold for given n. Further, let P be the collection of data-generating processes for which the

conditions above hold for all n ≥ n0, and define c(1− ξ) := Φ−1(1− ξ/2). The confidence regions based

upon α̌ and σ̂n are uniformly valid in P ∈ P:

lim
n→∞

sup
P∈P
|P (α0 ∈ [α̌± c(1− ξ)σ̂n/

√
n])− (1− ξ)| = 0.

2.4.2 Inference on Treatment Effects in an Instrumental Variable Model

In this section, we consider the following instrumental variable model with potentially very many instru-

ments

yi = diα0 + β′xi + εi, E[εi|zi] = 0

di = γ′zi + νi

with instrument function Di = D(zi) = E[di|zi] = γ′zi. For simplicity, in our technical analysis we

consider the model above without any controls xi in the first stage equation and a regular fix design Z

with observations zi:

yi = diα0 + εi, E[εi|zi] = 0 (2.9)

di = γ′zi + νi. (2.10)
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To estimate the coefficient α0 of the endogenous treatment variable, we employ the following two-stage

least squares (tsls) procedure: In the first step, we estimate and predict the instrument D̂i = γ̂′zi by

post- or orthogonal L2-Boosting. Finally, we estimate α̂0 by a regression of the outcome variable y on

the predicted instrument D̂i. To analyze this estimator based on L2-Boosting, we impose the following

assumptions:

B.1. Let c and C be absolute constants. The following assumptions hold:

(i) The data (yi, di, zi) is i.i.d. on (Ω,F , P ) and obeys the linear IV model in (2.9) and (2.10).

(ii) The optimal instrument function Di = γ′zi can be approximated by s instruments:

||γ||0 ≤ s.

(iii) We have E[d2] < C.

(iv) It holds c ≤ E[ε2|zi] ≤ C for all i = 1, . . . , n. Further, there exists a absolute constant q > 4 such

that E[|ε|q] + E[|ν|q] ≤ C.

(v) We have

(a) s2 log2(p∨n)
n → 0,

(b) log3 p
n → 0 and

(c) s log(p∨n)
n n2/q → 0.

B.2. We assume that there exist constants 0 < c < 1 and C such that 0 < 1 − c ≤ φmin(s′,En[z′izi]) ≤
φmax(s′,En[z′izi]) ≤ C < ∞ for any s′ ≤ M0, where M0 is a sequence such that M0 → ∞ slowly along

with n, and M0 ≥ s.

B.3. minj∈T |γj | ≥ J , maxj∈T |γj | ≤ J ′ and α0 ≤ J ′ for some constants J > 0, J ′ <∞.

B.4. With probability greater or equal 1− α, it holds sup1≤j≤p | < zij , νi >n | ≤ 2σ̃
√

log(2p/α)
n =: λn for

σ̃ :=
√
V ar(νi).

Again, we assume that the stopping criteria in the Boosting regression follows the proposals in Luo and

Spindler [73]. The Assumptions B.1-B.4 are essentially the same as the Assumptions A.1-A.4 except

some small deviations due to the different underlying setting in Subsection 2.4.1. It is worth to notice

that the growth condition B.1(v) is slightly weaker than the growth condition A.1(v) since Assumption

A.1(v)(c) implies Assumption B.1(v)(c). With these assumptions, we can show that the IV estimator α̂

following the two-stage least squares (tsls) procedure is asymptotically normally distributed. This result

is provided by the following theorem.

Theorem 2. Let {Pn} be a sequence of data generating processes for which Assumptions B.1-B.4 hold

for P = Pn and each n. Then, the IV estimator α̂ based on post-L2-Boosting or orthogonal L2-Boosting

of the optimal instrument satisfies

(Q̂−1Ω̂Q̂−1)−1/2
√
n(α̂− α0)→D N(0, 1)

for Ω̂ := En[ε̂2
i D̂(zi)

2] and Q̂ := En[D̂(zi)
2] with ε̂i = yi − diα̂ and D̂(zi) = γ̂′zi.

This also enables us to construct uniformly valid confidence intervals for the treatment effect as in

Corollary 2.4.1.

13
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Proof. Assumptions B.2-B.4 ensure sufficiently fast convergence rates of the fitted optimal instruments

D̂(zi) = γ̂′zi estimated with post- or orthogonal Boosting in first step regression, i.e.,

||D̂(zi)−D(zi)||2,n ≤ C
√
s log(p ∨ n)

n

and

ŝ ≤ Cs

with probability 1 − o(1) as shown in Luo and Spindler [73]. Since the maximal sparse eigenvalues are

uniformly bounded from above due to Assumption B.2, we conclude

||γ̂ − γ||2 ≤ C||D̂(zi)−D(zi)||2,n ≤ C
√
s log(p ∨ n)

n

with probability 1− o(1) which implies

||γ̂ − γ||1 ≤
√
s||γ̂ − γ||2 ≤ C

√
s2 log(p ∨ n)

n
.

This allows us applying Theorem 4 in Belloni et al. [5] since Assumption B.1 implies conditions AS and

SM in Belloni et al. [5]. This concludes the proof.

2.5 Simulation Study

In this section, we present simulation results for both settings.

2.5.1 Setting with High-Dimensional Controls

First, we consider the following data generating process:

yi = diα0 + x′iθg + ξi (2.11)

di = x′iθm + νi, (2.12)

where (ξi, νi)
′ ∼ N(0, I2) with I2 the 2 × 2 identity matrix and xi ∼ N(0,Σ) with Σkj = 0.5|j−k|. The

parameter of interest, α0, is set equal to 0.5. We consider both a sparse setting and an approximate

sparse setting where θg = θm. In the sparse setting, the first s coefficients are set equal to one and all

other parameters p − s are equal to zero. In the approximate sparse setting, the coefficient vectors are

of the form (1, 0.72, 0.73, . . . , 0.7p−1)′. We vary the sample size n, the number of covariates p and the

sparsity index s. The number of repetitions is R = 500 and we set the nominal significance level to

0.05. Tables 2.1 and 2.3 show the results (bias and rejection rates) for the sparse setting with the double

selection method. Tables 2.2 and 2.4 show the corresponding results for the approximate sparse setting.

Under exact sparsity, the bias of the post-Lasso procedure seems to be slightly smaller than the bias of

the Boosting procedures, while the rejection rates seem to be comparable, in particular in the setting

with relative small p and s. The pattern in the approximate sparsity setting seems to be similar. The bias

of the post-Boosting method is slightly higher than the bias of the orthogonal Boosting method, while

the rejection rate of the post-Boosting method is closer to the nominal level in many settings. Finally,

we would also like to mention that the classical L2-Boosting algorithm performs comparable to the other

booting algorithms analyzed in the simulation study here, although the results are not included in the

tables.
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n p s post-Lasso post-BA oBA
100 10 5 0.000 -0.005 0.005
100 10 10 0.001 0.000 0.041
100 100 5 -0.008 -0.057 -0.027
200 10 5 -0.001 -0.003 0.001
200 10 10 -0.001 -0.001 0.017
200 100 5 -0.005 -0.033 -0.023
200 200 5 0.002 -0.045 -0.025
400 100 5 -0.004 -0.016 -0.007
400 100 10 -0.003 -0.015 0.002
400 200 5 0.002 -0.021 -0.009
400 200 10 0.002 -0.019 -0.002
400 400 5 0.002 -0.032 -0.017

Table 2.1: Simulation results: Bias under exact sparsity.

n p post-Lasso post-BA oBA
100 10 -0.002 -0.008 -0.004
100 50 -0.004 -0.048 -0.036
100 100 -0.007 -0.069 -0.052
200 10 -0.002 -0.005 -0.002
200 50 0.008 -0.013 -0.006
200 100 -0.004 -0.038 -0.030
200 200 0.004 -0.051 -0.039
400 10 -0.000 -0.002 0.000
400 50 -0.004 -0.013 -0.010
400 100 -0.003 -0.019 -0.016
400 200 0.002 -0.022 -0.018
400 400 0.003 -0.035 -0.030

Table 2.2: Simulation results: Bias under approximate sparsity.

n p s post-Lasso post-BA oBA
100 10 5 0.046 0.044 0.080
100 10 10 0.044 0.044 0.114
100 100 5 0.044 0.100 0.148
200 10 5 0.052 0.054 0.058
200 10 10 0.056 0.056 0.092
200 100 5 0.040 0.080 0.132
200 200 5 0.054 0.080 0.158
400 100 5 0.056 0.066 0.078
400 100 10 0.052 0.066 0.120
400 200 5 0.034 0.080 0.074
400 200 10 0.034 0.070 0.130
400 400 5 0.062 0.100 0.108

Table 2.3: Simulation results: Rejection Rate under exact sparsity.
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n p post-Lasso post-BA oBA
100 10 0.044 0.044 0.050
100 50 0.088 0.118 0.110
100 100 0.046 0.114 0.104
200 10 0.052 0.054 0.048
200 50 0.050 0.064 0.048
200 100 0.044 0.102 0.076
200 200 0.050 0.118 0.094
400 10 0.046 0.042 0.048
400 50 0.052 0.056 0.066
400 100 0.062 0.080 0.088
400 200 0.032 0.074 0.076
400 400 0.060 0.112 0.128

Table 2.4: Simulation results: Rejection Rate under approximate sparsity.

2.5.2 IV Estimation with many Instruments

In the setting with many instrumental variables, we consider the following data generating process similar

to the simulation experiment in Belloni et al. [5]:

yi = diα0 + εi, (2.13)

di = γ′zi + νi, (2.14)

(εi, νi) ∼ N

(
0,

(
σ2
ε σεν

σεν σ2
ν

))
i.i.d., (2.15)

where α0 = 1 is the parameter of interest. The regressors Zi = (zi1, . . . , zip)
′ are drawn from a normal

distribution N(0,ΣZ) with E[z2
ij ] = σ2

z and Corr(zij , zik) = 0.5|j−k|. We set corr(ε, ν) = 0.1 and σ2
z and

σ2
e are set to one. Let σ2

v = 1 − γ′Σzγ such that the unconditional variance of the endogenous variable

equals 1. The first stage coefficients are set according to γ = Cγ̃. For γ̃ we use a sparse design, i.e.,

γ̃ = (1, . . . , 1, 0, . . . , 0) with s coordinates equal to one and all other p− s equal to zero. C is set in such

a way that we generate target values for the concentration parameter µ2 = nγ′Σzγ
σ2
v

which determines the

behavior of the IV estimators as described in Hansen et al. [51]. We set the concentration parameter

equal to 180 and vary the sample size n, the number of covariates p and the sparsity index s. The number

of repetitions in the simulations study is again R = 500. We estimate the first stage and calculate the

first stage predictions with L2-Boosting and its variants. The simulation results in Tables 2.5 and 2.6

reveal that Boosting performs comparable to post-Lasso in the examined settings concerning both bias

and the rejection rates (nominal significance level 0.05). The average bias of the estimated treatment

effect is given in Table 2.5, the rejection rates in Table 2.6.
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n p s post-Lasso post-BA oBA
200 100 5 0.002 0.017 0.017
200 100 10 0.008 0.020 0.020
200 400 5 0.012 0.033 0.036
200 400 10 0.015 0.033 0.033
200 800 5 0.007 0.034 0.035
200 800 10 0.011 0.038 0.040
400 100 5 0.001 0.012 0.013
400 100 10 0.004 0.012 0.013
400 400 5 0.012 0.029 0.032
400 400 10 0.021 0.037 0.039
400 800 5 0.009 0.031 0.033
400 800 10 0.016 0.038 0.039
800 100 5 0.005 0.016 0.016
800 100 10 0.013 0.022 0.023
800 400 5 0.007 0.024 0.025
800 400 10 0.008 0.025 0.026
800 800 5 0.003 0.028 0.030
800 800 10 0.010 0.033 0.034

Table 2.5: Simulation results: Bias in the IV setting.

n p s post-Lasso post-BA oBA
200 100 5 0.046 0.038 0.046
200 100 10 0.062 0.056 0.062
200 400 5 0.052 0.060 0.062
200 400 10 0.050 0.068 0.066
200 800 5 0.062 0.068 0.072
200 800 10 0.066 0.090 0.094
400 100 5 0.054 0.066 0.060
400 100 10 0.060 0.072 0.076
400 400 5 0.056 0.064 0.068
400 400 10 0.058 0.074 0.092
400 800 5 0.054 0.078 0.084
400 800 10 0.054 0.074 0.096
800 100 5 0.060 0.060 0.060
800 100 10 0.060 0.062 0.064
800 400 5 0.066 0.084 0.009
800 400 10 0.062 0.072 0.084
800 800 5 0.054 0.074 0.074
800 800 10 0.038 0.066 0.056

Table 2.6: Simulation results: Rejection Rate in the IV setting.
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2.6 Application: Analysis of the PAC-man Study

2.6.1 The PAC-man Study

To illustrate our methodology, we analyze the PAC-man study mentioned in the Section 2.1. There were

1013 patients who took part in this study which was conducted as a randomized control trial. There were

506 patients treated with PAC, and 507 patients formed the control group. The research question was

whether the treatment by a PAC increases the patient’s number of quality-adjusted life years (QALYs),

which is the outcome variable. One QALY represents one year of life in full health whereas an in-hospital

death corresponds to a QALY of zero. The data set contains 53 covariates about each individual in the

study. There are two reasons, as argued in Section 2.2, to use additional covariates in the analysis of this

randomized control trial: First, additional covariates allow a more precise estimation of the treatment

effect. Second, despite the randomized design of the study, conditioning on covariates might reinforce

unconfoundedness. It might be possible that certain conditions (e.g., acute health conditions) lead to

a deviation from the randomized protocol. Using a large set of covariates describing individual specific

health conditions, but also hospital specific conditions, might control for such deviations. The PAC-

man study was discussed widely in the literature. Bloniarz et al. [15], which is closest to our setting,

consider Lasso adjustments of treatment effect estimates in randomized experiments in a high-dimensional

setting. We follow their proposal to construct the design matrix X by including all main effects and

two-way interactions. Interactions which are highly correlated (with a correlation larger than 0.95) are

excluded. Additionally, indicators with very sparse entries (when the number of 1’s is less than 20) are

also removed. This results in a total of 771 regressors2. The covariates contain detailed information

on the patient’s health conditions, e.g., pre-existing conditions and current health status measured by

different biomarkers, and also hospital specific information. For a detailed description, we refer to the

documentation of the PAC-man study.

2.6.2 Results

We estimate the following model:

yi = δdi + β′xi + εi, i = 1, . . . , 1013.

The number of QALYs are the outcome variable yi. The treatment variable di is a binary variable

indicating PAC. εi denotes the residuals. We estimate the (constant) treatment effect without any

controls (baseline estimator) as it is the standard approach in RCTs, but we also control for covariates.

The results are presented in Table 2.7. The baseline estimator gives a negative treatment effect but

with a p-value of 0.759. When we control for covariates, the post-Lasso algorithm gives also a negative,

but insignificant treatment effect. This is in line with the results presented in Bloniarz et al. [15]. In

contrast, the post-Boosting algorithm (post-BA) shows a positive treatment effect, but this effect is also

not significant.

baseline post-Lasso post-BA
Est. −0.062 −0.308 0.224
se 0.201 0.241 0.265
p-value 0.759 0.201 0.397

Table 2.7: Results of the PAC-man Study.

2Bloniarz et al. [15] have in total 1172 regressors as the data set of the PAC-man study which was provided to them
contains six additional variables to which we have no access.
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2.7 Conclusion

In this paper, we apply L2-Boosting, namely the post- and orthogonal version, for estimation of treatment

effects in the setting of many controls and many instruments. We derive uniformly valid results for the

asymptotic distribution of estimated treatment effects. We use the framework of orthogonalized moment

conditions introduces by Belloni, Chernozhukov, Hansen and coauthors in a series of papers to derive the

results. The second ingredient are results on the rate of convergence of L2-Boosting given in Luo and

Spindler [73]. In the simulation study, our proposed method performs well and is comparable with Lasso.

Finally, we analyze the PAC-man study which stimulated a lot of research in medicine and related fields.

We find that the treatment effect is not significantly different from zero.
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Chapter 3

Transformation Models in

High-Dimensions

3.1 Introduction

Over the last few years, substantial progress has been made in the problem of fitting high-dimensional

linear models of the form

Y = XTβ + ε, (3.1)

where the number of regressors p is much larger than the sample size n. The theoretical properties of

penalization approaches, such as Lasso, are now well understood under the assumption that the coefficient

vector β is sparse. A detailed summary of the recent results is given in textbook length in Bühlmann

and Van De Geer [22].

In this paper, we take up the idea of the high-dimensional linear model in (3.1) and combine it with a

parametric transformation of the response variable Λθ(·) ∈ FΛ, where FΛ = {Λθ(·) : θ ∈ Θ} is a given

family of strictly monotone increasing functions. For every θ ∈ Θ, we assume a linear model

Λθ(Y ) = XTβθ + εθ (3.2)

with E[εθ] = 0. Our analysis allows the number of regressors to be much larger than the number of

observations, although we require sparsity for every βθ in (3.2). The goal of data transformation is to

change the scale preventing incorrect model assumptions, such as by establishing normally distributed

errors. Transformation of the dependent variable is very common in statistics and economics. The Box-

Cox power transformations (Box and Cox [16]) or the modification proposed by Yeo and Johnson [102] are

very popular transformations. The aim of transformations is typically to achieve symmetry, normality,

or independence of the error terms. In labor economics the analysis of wage data is key, and wage data

is non-negative and often highly skewed. By default, wage data are transformed by the logarithm and

then further processed, for example, as a dependent variable in a Mincer equation. A crucial point for

the subsequent analysis is that the applied transformation is correctly specified. Feng et al. [44] list some

common scenarios of the misuse and misinterpretation of the log transformation. This underlines the

importance of the right transformation to handle the problem of skewed data and non-negative outcomes.

In this study, we will present an estimate for the unknown transformation parameter θ0 ∈ Θ in a high-
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dimensional transformation model, which satisfies

Λθ0(Y ) = XTβθ0 + εθ0 (3.3)

with εθ0 ∼ N (0, σ2) and independent from X. This means that, under the true parameter θ0, the errors

are normally distributed with unknown variance. We establish that our estimator is root-n consistent,

asymptotically unbiased, and normal. The transformation enables us to establish normality of the error

terms and subsequent application of procedures based on normality. Our setting fits into a general Z-

estimation problem with a high-dimensional nuisance function which depends on the target parameter θ.

Inference on a target parameter in general Z-estimation problems in high dimensions is covered in Belloni

et al. [9] and Chernozhukov et al. [35]. In high-dimensional transformation models, the nuisance function

depends on the target parameter θ; therefore, in the supplementary material, we establish a theorem

regarding inference in a general Z-estimation setting under a different set of entropy conditions where

such a dependence is explicitly allowed. This result might be of independent interest for Z-estimation

problems with the same underlying structure.

In this paper, we focus on estimation and inference on the transformation parameter because this is the

first crucial step and it is important for the interpretation of the model and application of subsequent

statistical procedures. A related line of research has focused on inference on the covariates in the model.

Given that inference in this case relies on the estimated transformation model, valid post-selection/

estimation inference is crucial, as pointed out by Bickel and Doksum [14] which has led to a vivid

discussion on this topic. Bickel and Doksum [14] cover the parametric case, the semiparametric case

is covered by Linton et al. [70], and has more recently been examined by Kloodt and Neumeyer [61],

amongst others. Inference on the covariates in high-dimensional settings is an interesting problem that

we plan to address in future research. The underlying theory is built on Neyman orthogonal moment

conditions, as summarized in Chernozhukov et al. [35].

Literature Review

The Box-Cox transformation was introduced in Box and Cox [16], one of the most cited papers in statis-

tics. Since then, transformation models are widely used by empirical researchers and also have stimulated

a lot of research on theoretical aspects. Both the transformation parameter and the regression coefficients

have been extensively considered in the literature. In this review, we will mostly focus on paper dealing

with the transformation parameter. For a thorough review, we refer to Sakia [88] who also mostly focuses

on estimation and inference on the transformation parameter. Transformation models are applied in all

fields of statistics, including medicine, biostatistics and economics. In economics transformations of the

dependent and independent variables are considered. Transformation models are used in labor economics,

health economics, macroeconomics and finance, to mention a few, and there the focus has also been on

the transformation itself. For example, although Nelson and Granger [77] are interested in forecasting

performance, the choice and estimation of the transformation parameter is crucial. For a detailed list of

applied papers, we refer to the survey of Sakia [88]. Manning and Mullahy [74] discuss transformation in

health economics.

Transformation models also have been challenging and stimulating for theoretical developments. Already

Box and Cox [16] propose a test for the transformation parameter based on a likelihood ratio test. An-

drews [2] proposes an exact test for the transformation parameter. Amongst many others, Atkinson [4]

and Carroll [26] proposed further refinements for inference on the transformation parameter. Transfor-

mation models have also been analyzed in a semi-/nonparametric setting (e.g., Linton et al. [70]) and

under endogeneity (Vanhems and Van Keilegom [97]). To the best of our knowledge, we are the first

to estimate and provide inference results on the transformation parameter in a high-dimensional setting
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extending a huge body of literature on the inference on the transformation parameter.

Moreover, we also we contribute to the literature on double machine learning. In this setting, the target

of interest is a low-dimensional parameter, while there is also a high-dimensional nuisance parameter

involved. The double machine learning framework allows for valid inference on the target parameter in

this setting. An excellent overview over this approach is given in Chernozhukov et al. [35] (see also the

references therein). The authors mention that in principle the nuisance parameter can depend on the

target parameter, but do not pursue this idea further. In this paper, we allow explicitly for this situation

which is technically much more involved than the standard case, and give normal conditions for this

situation.

Plan of this Paper

The rest of this paper is organized as follows. In Section 3.2, we formally define the setting and propose

an estimator for the transformation parameter. In Section 3.3, we prove that a Neyman orthogonality

condition holds and we provide theoretical results for the estimation rates of the nuisance functions. We

also present the main result for the asymptotic distribution of the estimated transformation parameter.

Section 3.4 provides a simulation study and Section 3.5 gives an empirical application. The proofs

are provided in Appendix 3.7. The supplementary material includes additional technical material. In

Appendix 3.8, conditions for the uniform convergence rates of the Lasso estimator are presented. Finally,

Appendix 3.9 provides a theoretical result about inference on a target parameter in general Z-estimation

problems with dependent and high-dimensional nuisance functions.

Notation

In what follows, we work with triangular array data {(Zi,n, i = 1, ..., n), n = 1, 2, 3, ...} with Zi,n =

(Yi,n, Xi,n) defined on some common probability space (Ω,A, P ). The law Pn ∈ Pn of {Zi, i = 1, ..., n}
changes with n. Thus, all parameters that characterize the distribution of {Zi, i = 1, ..., n} are implicitly

indexed by the sample size n, but we omit the index n to simplify notation.

The l2 and l1 norms are denoted by || · ||2 and || · ||1. The l0-norm, || · ||0, denotes the number of nonzero

components of a vector. We use the notation a ∨ b := max(a, b) and a ∧ b := min(a, b).

The symbol E denotes the expectation operator with respect to a generic probability measure. If we need

to signify the dependence on a probability measure P , then we use P as a subscript in EP . For random

variables Z1, . . . , Zn and a function g : Z → R, we define the empirical expectation

En[g(Z)] ≡ EPn [g(Z)] :=
1

n

n∑
i=1

g(Zi)

and

Gn(g) :=
1√
n

n∑
i=1

(
g(Zi)− E

[
g(Zi)

])
.

For a class of measurable functions F on a measurable space, let N(ε,F , ‖ · ‖) be the minimal number of

balls Bε(g) := {f : ‖g − f‖ < ε} of radius ε to cover the set F . Let F be an envelope function of F with

F (x) ≥ |f(x)| for all f ∈ F . The uniform entropy number with respect to the Lr(Q) seminorm || · ||Q,r
is defined as

ent(F , ε) := sup
Q

logN(ε‖F‖Q,r,F , Lr(Q)),

where the supremum is taken over all probability measures Q with 0 < EQ[F r]1/r <∞. For any function

ν(θ, u) we use the notation ν̇θ∗(u) := ∂ν(θ, u)/∂θ|θ=θ∗ , respectively ν′θ(u
∗) := ∂ν(θ, u)/∂u|u=u∗ .
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3.2 Transformation Model

We consider a high-dimensional transformation model where the unknown transformation parameter θ0

is identified as being the only parameter for which the errors are normally distributed. This assumption is

typical for transformation models. Let {Λθ(·) : θ ∈ Θ} be a given parametric family of strictly monotone

increasing and two times differentiable functions and Θ ⊂ R be compact. For every θ ∈ Θ, we assume a

linear model

Λθ(Y ) = XTβθ + εθ (3.4)

with E[εθ|X] = 0. We write

εθ := Λθ(Y )−mθ(x)︸ ︷︷ ︸
=XT βθ

with

mθ(x) ≡ m(θ, x) := E[Λθ(Y )|X = x].

Additionally, define

σ2
θ ≡ σ2(θ) := V ar(εθ).

We allow the number of covariates p = pn to increase with the sample size n, but we require that the

index set

Sθ := {j : βθ,j 6= 0}

is sparse for every θ ∈ Θ with s := supθ∈Θ ||βθ||0. The number of relevant variables s = sn may also

increase with the sample size n but it does so at a moderate rate. We assume that βθ is differentiable in

θ. Therefore, we can write

Λ̇θ(Y ) = XT β̇θ + ε̇θ (3.5)

with E[ε̇θ|X] = 0 under regularity conditions (as mentioned later on). The model (3.5) is sparse with

ṡ := supθ∈Θ ||β̇θ||0 ≤ 2s.

The assumption that βθ is sparse and differentiable is common in other applications. For example,

in high-dimensional quantile regression, Belloni and Chernozhukov [7] assume that for every quantile

u ∈ (0, 1) the coefficient β(u) is sparse and smooth with respect to u.

We estimate θ0 by a method similar to the “profile likelihood procedure” proposed in Linton et al.

[70]. The main idea is to formulate our estimation problem as a Z-estimation problem and then plug-in

estimates for all unknown terms.

3.2.1 Transformation Parameter

For the estimation of the transformation parameter, we first determine the likelihood. Since Λθ(·) is

strictly increasing, we have

P (Y ≤ y|X) = P (Λθ(Y ) ≤ Λθ(y)|X) = P (εθ ≤ Λθ(y)−mθ(X)|X).
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For θ = θ0, we obtain

P (Y ≤ y|X) = P (εθ0 ≤ Λθ0(y)−mθ0(X)|X)

= P (εθ0 ≤ Λθ0(y)−mθ0(X))

= Φ

(
Λθ0(y)−mθ0(X)

σ

)
with Φ being the cdf of a standard normal distribution and σ ≡ σθ0 .

By transforming the densities, we obtain

fY |X(y|x) = fεθ0 (Λθ0(y)−mθ0(x))Λ′θ0(y)

=
1√

2πσ2
exp

(
− (Λθ0(y)−mθ0(x))2

2σ2

)
Λ′θ0(y)

and therefore the following log-likelihood function

lY |X(θ) = −n
2

log(2πσ2
θ)− 1

2σ2
θ

n∑
i=1

(Λθ(Yi)−mθ(Xi))
2 +

n∑
i=1

log(Λ′θ(Yi)).

The maximum likelihood estimator

θ∗ = arg max
θ∈Θ

[
− 1

2
log(2πσ2

θ)− 1

2σ2
θn

n∑
i=1

(Λθ(Yi)−mθ(Xi))
2

+
1

n

n∑
i=1

log(Λ′θ(Yi))

] (3.6)

fulfills

0 = ∂

(
− 1

2
log(2πσ2

θ)− 1

2σ2
θn

n∑
i=1

(Λθ(Yi)−mθ(Xi))
2

+
1

n

n∑
i=1

log(Λ′θ(Yi))

)
/∂θ

∣∣∣∣
θ=θ∗

=
1

n

n∑
i=1

[
− σ̇θ∗

2

2σ2
θ∗
− 1

σ2
θ∗

(Λθ∗(Yi)−mθ∗(Xi))(Λ̇θ∗(Yi)− ṁθ∗(Xi))

+
σ̇θ∗

2

2σ4
θ∗

(Λθ∗(Yi)−mθ∗(Xi))
2 +

Λ̇′θ∗(Yi)

Λ′θ∗(Yi)

]
=: En

[
ψ
(
(Y,X), θ∗, h0(θ∗, X)

)]
,

where h0 : Θ×X → R× R+ × R× R with

h0 ≡ (h0,1, h0,2, h0,3, h0,4) := (mθ, σ
2
θ , ṁθ, σ̇

2
θ)

is a nuisance function. We substitute the function h0 by a Lasso estimator ĥ0, which is defined in

Subsection 3.2.2 and analyzed in Subsection 3.3.2.

Finally, we estimate the transformation parameter θ0 by an estimator θ̂, which solves∣∣∣En[ψ((Y,X), θ̂, ĥ0(θ̂, X)
)]∣∣∣ = inf

θ∈Θ

∣∣∣En[ψ((Y,X), θ, ĥ0(θ,X)
)]∣∣∣+ εn, (3.7)

where εn = o
(
n−1/2

)
is the numerical tolerance.
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3.2.2 Nuisance Function

The unknown nuisance function

h0 = (mθ, σ
2
θ , ṁθ, σ̇

2
θ)

can be estimated by

ĥ0 = (m̂θ, σ̂
2
θ , ˆ̇mθ, ˆ̇σ

2
θ),

where m̂θ(x) = xT β̂θ with β̂θ being the Lasso estimate

arg max
β

En[(Λθ(Y )− xTβ)2] +
λ

n
||Ψθβ||1

with penalty term λ and penalty loadings Ψθ as in Belloni et al. [11] (p. 260). Analogously, we estimate

ṁθ by ˆ̇mθ(x) = xT
ˆ̇
βθ with

ˆ̇
βθ being the Lasso estimate

arg max
β

En[(Λ̇θ(Y )− xTβ)2] +
λ̃

n
||Ψ̃θβ||1.

The unknown variance σ2
θ can be estimated by

σ̂2
θ :=

1

n

n∑
i=1

ε̂2
i,θ

and σ̇2
θ by

ˆ̇σ2
θ :=

2

n

n∑
i=1

ε̂i,θ ˆ̇εi,θ

with ε̂i,θ := Λθ(Yi)− m̂θ(Xi) and ˆ̇εi,θ := Λ̇θ(Yi)− ˆ̇mθ(Xi). Under regularity conditions,

σ̇2
θ = ∂E[ε2

θ]/∂θ = E[∂(ε2
θ)/∂θ] = 2E[εθ ε̇θ]

holds.

3.2.3 Identification of the True Transformation

First, we formulate our estimation problem as a Z-estimation problem (cf. 3.2.1). Let

H = H1 ×H2 ×H3 ×H4

be a suitable convex space of measurable functions with H1 = {h1 : (θ, x) 7→ R}, H2 = {h2 : θ 7→ R+},
H3 = {h3 : (θ, x) 7→ R} and H4 = {h4 : θ 7→ R}. We obtain the moment function

ψ
(
(Y,X), θ, h

)
: (Y × X )×Θ×H → R

with

(
(Y,X), θ, h

)
7→ − h4(θ)

2h2(θ)︸ ︷︷ ︸
=:I(θ,h2,h4)

− 1

h2(θ)
(Λθ(Y )− h1(θ,X))(Λ̇θ(Y )− h3(θ,X))︸ ︷︷ ︸

=:II(θ,h1,h2,h3)
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+
h4(θ)

2
(
h2(θ)

)2 (Λθ(Y )− h1(θ,X))2

︸ ︷︷ ︸
=:III(θ,h1,h2,h4)

+cθ,

where cθ :=
Λ̇′θ(Y )
Λ′θ(Y ) . The supports of X and Y are given by X and Y, respectively.

The next lemma ensures the identification of the transformation parameter under weak regularity con-

ditions. The conditions A1, A4, and A5 are only sufficient conditions and they will be required for our

main theorem stated in Subsection 3.3.4.

Lemma 1. Under the conditions A1, A4, and A5, the true parameter θ0 is identified as a unique solution

of the moment condition

E
[
ψ
(
(Y,X), θ0, h0

)]
= 0.

Proof.

We use the same argument as Neumeyer et al. [78]. Define

f (θ)(y|x) :=
1√

2πσ2
θ

exp

(
− (Λθ(y)− xβθ)2

2σ2
θ

)
Λ′θ(y).

The expected Kullback-Leibler-Distance between fY |X and f (θ) is greater or equal to zero and equality

only holds for the true parameter θ0. Therefore, the following expression is minimized in θ0∫ ∫
log

(
fY |X(y|x)

f (θ)(y|x))

)
fY |X(y|x)dydFX(x)

=

∫ ∫
log(fY |X(y|x)fY |X(y|x)dydFX(x)︸ ︷︷ ︸

constant

−
∫ ∫

log(f (θ)(y|x))fY |X(y|x)dydFX(x)︸ ︷︷ ︸
=E[log(f(θ)(Y |X))]

.

It follows that E[log(f (θ)(Y |X))] is maximized for the true parameter θ = θ0. Under the regularity

conditions A1, A4 and A5, it holds

E
[
ψ
(
(Y,X), θ0, h0

)]
= E

[
∂

∂θ
log(f (θ)(Y |X))

∣∣
θ=θ0

]
=

∂

∂θ
E[log(f (θ)(Y |X))]

∣∣
θ=θ0

= 0.

Here, we used that for all θ

0 < c ≤ σ2
θ and σ2

θ ≤ E
[
sup
θ∈Θ

ε2
θ

]
≤ C <∞,

which is shown in the proof of Theorem 7.

3.3 Main Results

This section focuses on the central elements of our Z-estimation problem, which are Neyman orthogonality,

uniform estimation of the nuisance function, and a theorem about the asymptotic distribution of the

estimated transformation parameter based on an entropy condition. In the following, we consider the

model described in Section 3.2.
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3.3.1 Neyman Orthogonality Condition

To be able to use plug-in estimators for the nuisance function, the moment condition to identify θ0 needs

to be insensitive towards small changes in the estimated nuisance function. This property is granted by

the Neyman orthogonality condition that is defined in Chernozhukov et al. [35]. In this work, the authors

describe the condition in great detail and they provide an extensive overview of the settings where the

condition holds.

To prove the Neyman orthogonality condition, we define the Gateaux derivative with respect to some

h ∈ H in h0

Dr[h− h0] := ∂r

{
E
[
ψ
(

(Y,X), θ0, h0 + r(h− h0)
)]}

,

where

h0 + r(h− h0)

:=
(
mθ + r(h1 −mθ), σ

2
θ + r(h2 − σ2

θ), ṁθ + r(h1 − ṁθ), σ̇
2
θ + r(h2 − σ2

θ)
)
.

It is important to mention that H1 to H4 are assumed to be convex, which ensures that the term

ψ
(

(Y,X), θ0, h0 + r(h− h0)
)

is well defined and exists for all r ∈ [0, 1).

Lemma 2. Let H′ ⊆ H. Under the conditions

E
[
sup
θ∈Θ

ε2
θ

]
<∞ and E

[
sup
h∈H′

∣∣∣ψ((Y,X), θ0, h
)∣∣∣] <∞

the Neyman orthogonality condition

D0[h− h0] = 0

is satisfied for all h ∈ H′.

It is sufficient to restrict the condition onto the nuisance realization set, that is defined in Subsection

3.3.3, which contains the estimated nuisance function with probability 1− o(1).

Our estimation procedure is closely related to the “concentrated out” approach in general likelihood

and other M-estimation problems described in Chernozhukov et al. [35] and Newey [79]. In Lemma 2.5,

Chernozhukov et al. [35] provide conditions when the score ψ is Neyman orthogonal at (θ0, h0). They

suppose that the target parameter θ and the nuisance parameter h0(θ) solve the optimization problems

max
θ∈Θ,h∈H

E[l((Y,X), θ, h(θ))] (3.8)

and

h0(θ) = arg max
h∈H

E[l((Y,X), θ, h(θ))] (3.9)

for all θ ∈ Θ, where l is a known criterion function. However, our model does not fit in this setting since

we set

lY |X(θ) = −n
2

log(2πσ2
θ)− 1

2σ2
θ

n∑
i=1

(Λθ(Yi)−mθ(Xi))
2 +

n∑
i=1

log(Λ′θ(Yi)),

which is the log-likelihood of our model (3.4) only if θ = θ0. Therefore, in general, h0(θ) does not satisfy

(3.9) and our problem is not covered by this setting.
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Next, we give a set of assumptions that are needed for the following theorems and have already been

used for Lemma 1 (A1, A4, and A5).

Assumptions A1-A11.

The following assumptions hold uniformly in n ≥ n0, P ∈ Pn:

A1

E
[
sup
θ∈Θ
| log(Λ′θ(Y ))|

]
<∞

A2 The parameters obey the growth condition

s log(p ∨ n) ≤ δnn1/2

and

log3(p ∨ n) ≤ δnn

for δn ↘ 0 approaching zero from above at a speed at most polynomial in n.

A3 For all n ∈ N, the regressor X = (X1, . . . , Xp) has a bounded support X .

A4 Uniformly in θ, the conditional variance of the error term and its derivation with respect to the

transformation parameter are bounded:

0 < c ≤ inf
θ∈Θ

E
[
ε2
θ|X

]
≤ sup
θ∈Θ

E
[
ε2
θ|X

]
≤ C <∞

0 < c ≤ inf
θ∈Θ

E
[
ε̇2
θ|X

]
≤ sup
θ∈Θ

E
[
ε̇2
θ|X

]
≤ C <∞.

A5 The transformations and its derivations are measurable and the classes of functions

FΛ :=
{

Λθ(·)|θ ∈ Θ
}
ḞΛ :=

{
Λ̇θ(·)|θ ∈ Θ

}
have VC index CΛ <∞ and ĊΛ <∞, respectively. Further, the classes FΛ and ḞΛ have envelopes

FΛ and ḞΛ, respectively, with

E[FΛ(Y )14] <∞ and E[ḞΛ(Y )8] <∞.

A6 The following condition for the second derivation of the transformation with respect to θ holds:

sup
θ∈Θ

E
[(

Λ̈θ(Y )
)2] ≤ C.

A7 The minimum and maximum sparse eigenvalues of X are bounded away from zero and above,

namely

0 < κ′ ≤ inf
||δ||0≤s log(n),||δ||=1

||XT δ||P,2

≤ sup
||δ||0≤s log(n),||δ||=1

||XT δ||P,2 ≤ κ′′ <∞.
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A8 The class of functions

JΛ :=

{
cθ(·) =

Λ̇′θ(·)
Λ′θ(·)

∣∣∣∣θ ∈ Θ

}
has an envelope JΛ with

E[JΛ(Y )6] <∞.

A9 For all θ ∈ Θ and h̃ ∈ H̃, it holds that

(i)

E
[(
ψ
(
(Y,X), θ, h0(θ,X)

)
− ψ

(
(Y,X), θ0, h0(θ0, X)

))2]
≤ C|θ − θ0|2

(ii)

E
[(
ψ
(
(Y,X), θ, h̃(θ,X)

)
− ψ

(
(Y,X), θ, h0(θ,X)

))2]
≤ CE

[
‖h̃(θ,X)− h0(θ,X)‖22

]
(iii)

sup
r∈(0,1)

∣∣∣∣∂2
r

{
E
[
ψ
(
(Y,X), θ0 + r(θ − θ0), h0 + r(h̃− h0)

)]}∣∣∣∣
≤ C

(
|θ − θ0|2 + sup

θ∗∈Θ
E
[
‖h̃(θ∗, X)− h0(θ∗, X)‖22

])

for a constant C independent from θ and H̃ defined in Subsection 3.3.3.

A10 For h ∈ H̃, the function

θ 7→ E
[
ψ
(
(Y,X), θ, h(θ,X)

)]
is differentiable in a neighbourhood of θ0 and, for all θ ∈ Θ, the identification relation

2|E[ψ((Y,X)), θ, h0(θ,X)]| ≥ |Γ(θ − θ0)| ∧ c0

is satisfied with

Γ := ∂θE
[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
> c1.

A11 The map (θ, h) 7→ E[ψ((X,Y ), θ, h)] is twice continuously Gateaux-differentiable on Θ×H.

Assumptions A1-A11 are a set of sufficient conditions for the main result stated in Theorem 6. Assump-

tion A1 allows us to interchange derivation and integration, which is necessary for the verification of

the moment condition. In the sparsity condition A2, both the number of parameters p and the number

of relevant variables s can grow with the sample size in a balanced way. If s is fixed, the number of

potential parameters p can grow at an exponential rate with the sample size. This means that the set of

potential variables can be much larger than the sample size, only the number of relevant variables s has

to be smaller than the sample size. This situation is common for Lasso-based estimators. Our growth

condition is in line with other results in the literature, e.g., with Belloni et al. [9] and many others.

Assumptions A2, A6, and A7 are needed for the uniform estimation of the nuisance function. Condition

A3 can be relaxed, cf. Assumption 6.1 from Belloni et al. [11]. Assumption A7 is a standard eigenvalue

29



CHAPTER 3 3.3. MAIN RESULTS

condition for the Lasso estimation. Condition A4 prevents degenerate distributions in the models (3.4)

and (3.5). Assumptions A5, A6 and A8 control the complexity of the class of transformations and bound

the moments uniformly over θ. Assumptions A5 and A6 will be discussed in more detail in Comment

3.3.1. Assumption A9 is a set of mild smoothness conditions. Assumption A10 implies sufficient identi-

fiability of the true transformation parameter θ0. Assumption A11 only requires differentiability of the

function (θ, h) 7→ E[ψ((X,Y ), θ, h)] which is a weaker condition than the differentiability of the function

(θ, h) 7→ ψ((X,Y ), θ, h).

Comment 3.3.1.

Since there exists a true parameter θ0 such that all moments of Λθ0(Y ) exist, choosing an appropriate

class of transformations FΛ and restricting the parameter space lead to reasonable assumptions on the

moments in A5 and A6. Consider the class of Box-Cox transformations

Λθ(y) =


yθ−1
θ for θ 6= 0

log(y) for θ = 0

and let, without loss of generality, Θ = [a, b] with a < 0 < b. We show that Assumption A5 and A6 are

satisfied if E[Y 14a] and E[Y 14b] exist. The envelope fulfills

sup
θ∈Θ
|Λθ(y)| = max

θ∈{a,b}
|Λθ(y)| = Λb(y)1{y≥1} − Λa(y)1{0≤y<1}

since Λθ(·) is monotonically increasing in θ and positive for all θ if y ≥ 1. Hence,

E

[(
sup
θ∈Θ
|Λθ(Y )|

)14
]

= E[Λb(Y )141{Y≥1}] + E[Λa(Y )141{0≤Y <1}]

= E

[(
Y b − 1

b

)14

1{Y≥1}

]
+ E

[(
Y a − 1

a

)14

1{0≤Y <1}

]
<∞.

Analogously, we have

sup
θ∈Θ
|Λ̇θ(y)| = max

θ∈{a,b}
|Λ̇θ(y)| = Λ̇b(y)1{y≥1} + Λ̇a(y)1{0≤y<1}

since Λ̇θ(·) is continuously in θ and monotonically increasing for all θ if y ≥ 1 and monotone decreasing

for y < 1. Hence,

E

[(
sup
θ∈Θ
|Λ̇θ(Y )|

)8
]

= E[Λ̇b(Y )81{Y≥1}] + E[Λ̇a(Y )81{0≤Y <1}]

= E

[(
1

b2
(b log(Y )Y b − Y b + 1)

)8

1{Y≥1}

]

+ E

[(
1

a2
(a log(Y )Y a − Y a + 1)

)8

1{0≤Y <1}

]
<∞

30



CHAPTER 3 3.3. MAIN RESULTS

if E[Y 14a] and E[Y 14b] exist. Further, it holds

sup
θ∈Θ

E
[(

Λ̈θ(Y )
)2
]

= sup
θ∈Θ

E

[(
1

θ3

(
log(Y θ)− 1

)2
Y θ + Y θ − 2

)2
]
.

The class of Yeo-Johnson power transformations is an extension of the Box-Cox transformations allowing

for negative values in the domain.

Figure 3.1: Box-Cox and Yeo-Johnson transformations for different transformation parame-
ters.

As illustrated in the Figure 3.1, the tail behavior of the Yeo-Johnson power transformations are closely

related to the Box-Cox transformations implying similar assumptions on the moments of Y to ensure

the Assumptions A5 and A6. Since the Box-Cox transformations are bounded from below by −1/θ for

θ > 0 and from above by −1/θ for θ < 0, the transformation Λθ(Y ) cannot be normally distributed except

when θ = 0. This problem has also been discussed in Draper and Cox [41] and in Amemiya and Powell

[1]. Hence, θ0 = 0 is the only possible null hypothesis for this class of transformations. In the class of

Yeo-Johnson power transformations the range of valid null hypotheses is given by θ0 ∈ [0, 2].

The following lemma shows that the first part of condition A5 is satisfied for the popular Box-Cox power

transformations and the modification proposed by Yeo and Johnson.

Lemma 3. The class of Box-Cox transformations F1 = {Λθ(·)|θ ∈ R} and the class of derivatives

F2 = {Λ̇θ(·)|θ ∈ R} with respect to the transformation parameter θ are VC classes. The same holds for

Yeo-Johnson power transformations.

The proof of the lemma is given in Appendix 3.7.
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3.3.2 Uniform Estimation of the Nuisance Functions

The rates for the estimation of the regression functions mθ and ṁθ can be directly obtained by the

uniform prediction rates of the Lasso estimator. The proofs are given in the appendix.

Theorem 3.

Under the Assumptions A1-A7, uniformly for all P ∈ Pn with probability 1− o(1), it holds that:

sup
θ∈Θ
||β̂θ||0 = O(s) (3.10)

sup
θ∈Θ
||XT (β̂θ − βθ)||Pn,2 ≤ δ̃nn−

1
4 (3.11)

sup
θ∈Θ
||β̂θ − βθ||1 ≤ δ̃n

√
sn−

1
4 , (3.12)

respectively

sup
θ∈Θ
|| ˆ̇βθ||0 = O(s) (3.13)

sup
θ∈Θ
||XT (

ˆ̇
βθ − β̇θ)||Pn,2 ≤ δ̃nn−

1
4 (3.14)

sup
θ∈Θ
|| ˆ̇βθ − β̇θ||1 ≤ δ̃n

√
sn−

1
4 , (3.15)

where δ̃n is a positive sequence approaching zero from above at a polynomial speed in n.

As a consequence of the uniform rates of the Lasso estimator, we are able to achieve uniform rates for

the estimation of the variance σ2
θ and its derivation σ̇2

θ .

Theorem 4.

Under the assumptions of Theorem 3, uniformly for all P ∈ Pn with probability 1− o(1), it holds that:

sup
θ∈Θ
|σ̂2
θ − σ2

θ | ≤ δ̃nn−
1
4 (3.16)

sup
θ∈Θ
|ˆ̇σ2
θ − σ̇2

θ | ≤ δ̃nn−
1
4 . (3.17)

3.3.3 Entropy Condition

At first, we define the following classes of functions

H̃1 :=

{
h̃1 : Θ×X → R| h̃1(θ, x) = xT β̃θ, ‖β̃θ‖0 ≤ Cs, ‖β̃θ − βθ‖1 ≤ δ̃n

√
sn−

1
4 ,

‖XT (β̃θ − βθ)‖P,2 ≤ δ̃nn−
1
4

}
,

H̃2 :=
{
h̃2 : Θ→ R+| |h̃2(θ)− σ2

θ | ≤ δ̃nn−
1
4

}
,

H̃3 :=

{
h̃3 : Θ×X → R| h̃3(θ, x) = xT β̃θ, ‖β̃θ‖0 ≤ Cs, ‖β̃θ − β̇θ‖1 ≤ δ̃n

√
sn−

1
4 ,

‖XT (β̃θ − β̇θ)‖P,2 ≤ δ̃nn−
1
4

}
,

H̃4 :=
{
h̃4 : Θ→ R| |h̃4(θ)− σ̇2

θ | ≤ δ̃nn−
1
4

}
and

H̃ := H̃1 × H̃2 × H̃3 × H̃4.
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The set H̃ is called the nuisance realization set. Theorems 3 and 4 enable us to choose constants C

independent from θ and still contain the estimated functions in H̃ with probability 1−o(1). Furthermore,

for an arbitrary but fixed θ ∈ Θ, we define the following projections

H̃1(θ) :=
{
h̃1 : X → R| h̃1(x) = h̃1(θ, x) ∈ H̃1

}
H̃2(θ) :=

{
c ∈ R+

∣∣ |c− σ2
θ | ≤ δ̃nn−1/4

}
and H̃3(θ), H̃4(θ), respectively, H̃(θ), analogously. We restrict the entropy of H̃(θ) uniformly over θ to

use the maximal inequality stated in Theorem 5.1 from Chernozhukov et al. [31]. This enables us to

bound the empirical process in the proof of Theorem 8 (step 1).

Theorem 5. Under the Assumptions A4, A5, and A8, the class of functions

Ψ(θ) =
{

(y, x) 7→ ψ
(
(y, x), θ, h̃(θ, x)

)
, h̃ ∈ H̃(θ)

}
has a measurable envelope ψ̄ ≥ supψ∈Ψ(θ) |ψ| independent from θ with

E
[
(ψ̄(Y,X))q

]
≤ C1

for some q ≥ 4. The class Ψ(θ) is pointwise measurable and, uniformly for all θ ∈ Θ, it holds

sup
Q

logN(ε||ψ̄||Q,2,Ψ(θ), L2(Q)) ≤ C1s log

(
C2(p ∨ n)

ε

)
with C1 and C2 being independent from θ.

The motivation of the entropy condition stated in Theorem 5 is described in Comment 3.9.1. The entropy

condition and the results in Subsection 3.3.1 and Subsection 3.3.2 enable us to establish the asymptotic

distribution of our estimated transformation parameter.

3.3.4 Main Theorem

The main theorem provides that our estimator θ̂ converge with rate 1/
√
n and is asymptotic unbiased

and normal.

Theorem 6. Under the Assumptions A1-A11, the estimator θ̂ in (3.7) obeys

n
1
2 (θ̂ − θ0)

D−→ N (0,Σ),

where

Σ := E
[
Γ−2ψ2

(
(Y,X), θ0, h0(θ0, X)

)]
with Γ = ∂θE

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
.

A standard bootstrap can be applied to estimate the unknown variance Σ. Therefore, asymptotic level-α

tests for null hypothesis can be constructed based on Theorem 6.
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3.4 Simulation

This section provides a simulation study of the proposed estimator. The data generating process is given

by

Λθ0(Y ) = XTβθ0 + ε.

The coefficients are set to

βθ0,j =

1 for j ≤ s

0 for j > s.

Therefore, βθ0 is a sparse vector with ‖βθ0‖0 = s and {Λθ : θ ∈ Θ} is a given class of transformations.

The design matrix is simulated as

X ∼ N
(

0,Σ(X)
)

for the following three different correlation structures

Σ
(X)
0 = Ip,

Σ
(X)
1 = (c|i−j|)i,j∈{1,...,p},

and

Σ
(X)
2 = (1− cp)Ip + (cp−|i−j|)i,j∈{1,...,p}

with c = 0.35. The error terms ε are i.i.d. N (0, σ2)-distributed, where σ2 is chosen according to the

correlation matrix Σ(X) to keep the signal-to-noise ratio (SNR) at a fixed level. To obtain the simulated

values for Yi, which are used for the estimation of θ0, we apply the inverse transformation Λ−1
θ0

onto the

simulated values of Λθ0(Yi). We consider different classes of transformations, correlation structures, and

vary the number of the regressors p, the number of observations n, the sparsity index s as well as the

SNR. Additional simulations with approximate sparsity and non-normal errors are displayed in Appendix

3.10. The SNR is defined as

SNR =
V ar(XTβθ0)

V ar(ε)
.

The number of repetitions is set to R = 500. The accuracy of the estimate θ̂ is measured by the mean-

absolute-error (MAE)

MAE =
1

R

R∑
h=1

|θ̂h − θ0|.

The accuracy of the predictive performance is measured out-of-sample on an independent sample (test

sample) by the relative mean-squared-error

MSE =
1

R

R∑
h=1

Ent
[(

Λθ0(Y )−XT β̂θ̂h

)2
]
/V ar(ε).

The empirical expectation Ent [·] is taken over the test sample of size nt = 200. Both measures MAE and

MSE are based on the unknown transformation parameter θ0. Additionally, for a fixed level α = 0.05,

we validate the significance level (acceptance rate) of a test of the form

H0 : θ0 = θ.
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We test if a given θ ∈ Θ is the right transformation parameter to guarantee normally distributed errors.

Therefore, we estimate the unknown variance Σ via bootstrap by drawing k = 100 bootstrap samples

and construct a (1− α)-confidence interval of the form[
θ −

√
Σ̂z(1−α/2), θ +

√
Σ̂z(1−α/2)

]
,

where zγ is the γ-quantile of the standard normal distribution. The empirical acceptance rate is reported.

3.4.1 Box-Cox Power Transformations

In the first setting, we analyze the class of Box-Cox transformations. The Box-Cox transformations are

defined as

Λθ(y) =


yθ−1
θ for θ 6= 0

log(y) for θ = 0.

This class and the class of its derivatives with respect to the transformation parameter θ are VC classes

by Lemma 3.

In their initial paper “An Analysis of Transformations”, Box and Cox [16] proposed to calculate approx-

imate confidence intervals for the transformation parameter based on the quantiles of the chi-squared

distribution. The R package MASS by Venables and Ripley [98] includes the function boxcox which

computes and optionally plots the profile log-likelihood for the parameter of the Box-Cox power transfor-

mation. The plot includes the 95%-confidence intervals for the transformation parameter. Nevertheless,

such confidence intervals are only valid in the low-dimensional case. Figure 3.2 displays a short simulation

(n = 100, s = 5, SNR = 1, θ0 = 0 and covariance structure Σ
(X)
1 ) to emphasize that the coverage of their

approach declines with an increasing number of regressors (p/n close to one), whereas our method is able

to provide valid confidence intervals.

Figure 3.2: Coverage for an increasing number of regressors.
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To test the behavior of our proposed estimator in a high-dimensional setting, we set the true transfor-

mation parameter θ0 = 0 and summarize the results for the all settings in the Tables 3.1–3.3. In the

three settings, the average of the estimators is close to the true value of 0. The acceptance rate, MAE

and relative MSE seem to be comparable for all three settings. In summary, the results reveal that the

estimated parameter value is, on average, close to the true one and that the acceptance rate is close to

the nominal level of 95%.

Figure 3.3 shows the empirical distribution of θ̂ generated by 10000 independent simulations from the

last setting in Table 3.2 with SNR=1. This confirms that our estimator is normally distributed.

Figure 3.3: Empirical distribution of the estimator.

36



CHAPTER 3 3.4. SIMULATION

n p s SNR Estimator Acceptance rate MAE rel. MSE

100 20 5 1.0 -0.00055821 0.928 0.0216 1.8060

100 20 5 3.0 -0.00109542 0.958 0.0209 1.2233

100 20 10 1.0 -0.00029139 0.938 0.0151 1.8626

100 20 10 3.0 0.00025676 0.952 0.0184 3.3238

100 20 20 1.0 -0.00004602 0.946 0.0103 1.7504

100 20 20 3.0 0.00073964 0.950 0.0131 3.5360

100 50 5 1.0 -0.00010804 0.940 0.0217 1.9122

100 50 5 3.0 -0.00140765 0.966 0.0205 1.5162

100 50 10 1.0 0.00011707 0.948 0.0148 1.8327

100 50 10 3.0 -0.00014981 0.970 0.0170 3.5025

100 50 20 1.0 -0.00039691 0.956 0.0101 1.8685

100 50 20 3.0 0.00015181 0.926 0.0131 3.7509

100 100 5 1.0 0.00004696 0.946 0.0208 1.6940

100 100 5 3.0 0.00018713 0.972 0.0209 1.6054

100 100 10 1.0 -0.00050597 0.938 0.0156 2.0206

100 100 10 3.0 0.00091064 0.940 0.0186 3.8155

100 100 20 1.0 0.00063239 0.934 0.0112 1.8887

100 100 20 3.0 -0.00047847 0.952 0.0130 3.6160

100 200 5 1.0 0.00126572 0.944 0.0222 1.8953

100 200 5 3.0 -0.00027602 0.974 0.0220 1.8385

100 200 10 1.0 0.00061581 0.954 0.0155 1.9005

100 200 10 3.0 0.00051767 0.966 0.0184 3.7384

100 200 20 1.0 -0.00161354 0.960 0.0112 1.7789

100 200 20 3.0 -0.00055394 0.944 0.0138 3.5126

200 20 5 1.0 0.00031100 0.938 0.0141 1.1520

200 20 5 3.0 -0.00059165 0.942 0.0133 0.9418

200 20 10 1.0 -0.00039975 0.926 0.0107 1.7806

200 20 10 3.0 -0.00027409 0.962 0.0098 1.2756

200 20 20 1.0 -0.00010337 0.934 0.0069 1.7440

200 20 20 3.0 0.00030134 0.936 0.0089 3.3897

200 50 5 1.0 -0.00072350 0.924 0.0140 1.3226

200 50 5 3.0 0.00023937 0.934 0.0130 0.9610

200 50 10 1.0 0.00037448 0.928 0.0107 1.7955

200 50 10 3.0 0.00001872 0.986 0.0100 1.5800

200 50 20 1.0 -0.00000121 0.936 0.0074 1.8593

200 50 20 3.0 -0.00101499 0.930 0.0095 3.7088

200 100 5 1.0 -0.00098745 0.918 0.0151 1.4290

200 100 5 3.0 -0.00147473 0.942 0.0128 1.0899

200 100 10 1.0 -0.00070476 0.918 0.0107 1.9961

200 100 10 3.0 0.00074576 0.964 0.0106 2.0574

200 100 20 1.0 0.00029025 0.924 0.0076 1.8810

200 100 20 3.0 0.00147962 0.950 0.0085 3.6083

200 200 5 1.0 -0.00099558 0.952 0.0133 1.5255

200 200 5 3.0 0.00039661 0.936 0.0139 0.9671

200 200 10 1.0 -0.00037153 0.920 0.0110 1.8903

200 200 10 3.0 0.00108176 0.958 0.0111 2.2986

200 200 20 1.0 -0.00025439 0.942 0.0072 1.7740

200 200 20 3.0 0.00016864 0.918 0.0095 3.4971

200 500 5 1.0 -0.00012946 0.942 0.0137 1.6904

200 500 5 3.0 0.00037737 0.946 0.0136 1.0846

200 500 10 1.0 -0.00103134 0.942 0.0104 1.9300

200 500 10 3.0 -0.00003818 0.958 0.0121 2.6936

200 500 20 1.0 -0.00004502 0.930 0.0078 2.1176

200 500 20 3.0 -0.00063815 0.946 0.0089 4.1060

Table 3.1: Box-Cox: Simulation results for Σ(X) = Ip.
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n p s SNR Estimator Acceptance rate MAE rel. MSE

100 20 5 1.0 0.00035548 0.932 0.0161 1.2439

100 20 5 3.0 -0.00097029 0.956 0.0147 1.0356

100 20 10 1.0 -0.00046551 0.960 0.0098 1.6340

100 20 10 3.0 0.00092449 0.962 0.0107 1.5360

100 20 20 1.0 0.00001787 0.904 0.0080 1.7442

100 20 20 3.0 0.00025592 0.940 0.0094 2.7994

100 50 5 1.0 -0.00025392 0.942 0.0154 1.3759

100 50 5 3.0 0.00003743 0.960 0.0152 1.0898

100 50 10 1.0 -0.00032109 0.936 0.0111 1.7082

100 50 10 3.0 0.00047115 0.966 0.0112 1.7237

100 50 20 1.0 -0.00002715 0.934 0.0078 1.8586

100 50 20 3.0 -0.00019370 0.952 0.0093 3.2917

100 100 5 1.0 -0.00095235 0.938 0.0147 1.4640

100 100 5 3.0 -0.00019675 0.940 0.0159 1.2573

100 100 10 1.0 0.00029316 0.946 0.0108 1.9001

100 100 10 3.0 -0.00095316 0.964 0.0120 2.0610

100 100 20 1.0 -0.00013236 0.962 0.0075 1.8949

100 100 20 3.0 0.00021921 0.960 0.0093 3.3810

100 200 5 1.0 0.00093168 0.966 0.0150 1.4550

100 200 5 3.0 0.00031272 0.982 0.0142 1.1441

100 200 10 1.0 0.00056643 0.956 0.0111 1.8399

100 200 10 3.0 -0.00082101 0.974 0.0125 2.2858

100 200 20 1.0 -0.00038676 0.968 0.0073 1.7771

100 200 20 3.0 -0.00019953 0.966 0.0088 3.3579

200 20 5 1.0 -0.00030945 0.938 0.0102 0.9889

200 20 5 3.0 0.00070246 0.940 0.0102 0.9428

200 20 10 1.0 -0.00073690 0.940 0.0068 1.1929

200 20 10 3.0 0.00004800 0.946 0.0071 1.0059

200 20 20 1.0 -0.00044286 0.936 0.0052 1.5740

200 20 20 3.0 -0.00007465 0.972 0.0051 1.4465

200 50 5 1.0 0.00006431 0.944 0.0101 1.0327

200 50 5 3.0 0.00007992 0.932 0.0095 0.9615

200 50 10 1.0 0.00045421 0.948 0.0072 1.2865

200 50 10 3.0 0.00075009 0.930 0.0074 1.0532

200 50 20 1.0 -0.00021506 0.934 0.0052 1.7684

200 50 20 3.0 0.00004748 0.966 0.0053 1.7234

200 100 5 1.0 0.00022107 0.938 0.0103 1.1767

200 100 5 3.0 -0.00031888 0.944 0.0100 1.0891

200 100 10 1.0 0.00009239 0.928 0.0075 1.4996

200 100 10 3.0 0.00009438 0.942 0.0070 1.2155

200 100 20 1.0 -0.00029642 0.926 0.0053 1.8474

200 100 20 3.0 0.00051585 0.958 0.0054 2.0451

200 200 5 1.0 -0.00001408 0.946 0.0104 1.0535

200 200 5 3.0 -0.00036084 0.930 0.0102 0.9629

200 200 10 1.0 0.00034062 0.930 0.0074 1.4832

200 200 10 3.0 -0.00009682 0.962 0.0066 1.1283

200 200 20 1.0 -0.00004576 0.936 0.0053 1.7540

200 200 20 3.0 -0.00119200 0.962 0.0059 2.2391

200 500 5 1.0 0.00022032 0.948 0.0100 1.1980

200 500 5 3.0 -0.00096893 0.948 0.0104 1.0818

200 500 10 1.0 0.00042015 0.944 0.0077 1.6414

200 500 10 3.0 0.00000990 0.958 0.0072 1.2561

200 500 20 1.0 0.00056736 0.936 0.0053 2.1036

200 500 20 3.0 -0.00013055 0.952 0.0061 3.0273

Table 3.2: Box-Cox: Simulation results for Σ(X) = Σ
(X)
1 .

38



CHAPTER 3 3.4. SIMULATION

n p s SNR Estimator Acceptance rate MAE rel. MSE

100 20 5 1.0 -0.00029259 0.952 0.0203 1.7828

100 20 5 3.0 -0.00092329 0.964 0.0196 1.1910

100 20 10 1.0 0.00012073 0.950 0.0145 1.8485

100 20 10 3.0 0.00241193 0.934 0.0186 3.2932

100 20 20 1.0 -0.00010180 0.920 0.0104 1.7404

100 20 20 3.0 -0.00013027 0.926 0.0132 3.4969

100 50 5 1.0 0.00058965 0.938 0.0209 1.9268

100 50 5 3.0 -0.00013828 0.968 0.0203 1.4251

100 50 10 1.0 -0.00141342 0.928 0.0157 1.8490

100 50 10 3.0 0.00082478 0.948 0.0189 3.5726

100 50 20 1.0 0.00048334 0.918 0.0111 1.8691

100 50 20 3.0 0.00132362 0.948 0.0126 3.7501

100 100 5 1.0 -0.00160281 0.938 0.0226 1.6711

100 100 5 3.0 0.00193019 0.978 0.0203 1.5980

100 100 10 1.0 0.00111299 0.960 0.0157 1.9941

100 100 10 3.0 0.00109876 0.956 0.0186 3.7599

100 100 20 1.0 -0.00159371 0.938 0.0111 1.8879

100 100 20 3.0 0.00029929 0.948 0.0132 3.6296

100 200 5 1.0 0.00110187 0.960 0.0212 1.9099

100 200 5 3.0 -0.00106521 0.984 0.0216 1.8807

100 200 10 1.0 0.00014970 0.966 0.0145 1.9117

100 200 10 3.0 -0.00030942 0.964 0.0196 3.7486

100 200 20 1.0 0.00014200 0.952 0.0108 1.7889

100 200 20 3.0 -0.00065953 0.972 0.0133 3.5190

200 20 5 1.0 -0.00066470 0.956 0.0122 1.1421

200 20 5 3.0 -0.00007279 0.942 0.0124 0.9439

200 20 10 1.0 0.00023762 0.924 0.0100 1.7593

200 20 10 3.0 0.00056502 0.958 0.0101 1.2129

200 20 20 1.0 0.00062338 0.924 0.0073 1.7263

200 20 20 3.0 0.00019359 0.956 0.0084 3.2262

200 50 5 1.0 0.00131883 0.946 0.0141 1.3133

200 50 5 3.0 0.00028543 0.946 0.0135 0.9588

200 50 10 1.0 -0.00068094 0.938 0.0107 1.8158

200 50 10 3.0 -0.00046929 0.952 0.0104 1.5506

200 50 20 1.0 -0.00047593 0.948 0.0072 1.8612

200 50 20 3.0 -0.00020800 0.932 0.0091 3.7182

200 100 5 1.0 -0.00080455 0.938 0.0138 1.3802

200 100 5 3.0 0.00006808 0.954 0.0129 1.0877

200 100 10 1.0 -0.00077886 0.928 0.0106 1.9660

200 100 10 3.0 0.00072632 0.968 0.0102 2.0464

200 100 20 1.0 -0.00003686 0.944 0.0073 1.8808

200 100 20 3.0 -0.00028688 0.950 0.0085 3.6061

200 200 5 1.0 -0.00010218 0.912 0.0142 1.5353

200 200 5 3.0 0.00138252 0.946 0.0136 0.9609

200 200 10 1.0 0.00000420 0.932 0.0101 1.8956

200 200 10 3.0 -0.00004370 0.962 0.0109 2.2782

200 200 20 1.0 -0.00028175 0.932 0.0075 1.7815

200 200 20 3.0 0.00030455 0.946 0.0085 3.5073

200 500 5 1.0 -0.00004556 0.930 0.0143 1.6798

200 500 5 3.0 0.00023905 0.940 0.0139 1.0843

200 500 10 1.0 0.00016880 0.932 0.0110 1.9023

200 500 10 3.0 -0.00135486 0.960 0.0118 2.7441

200 500 20 1.0 -0.00005315 0.936 0.0078 2.0996

200 500 20 3.0 -0.00009986 0.932 0.0093 4.0653

Table 3.3: Box-Cox: Simulation results for Σ(X) = Σ
(X)
2 .
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3.4.2 Yeo-Johnson Power Transformations

Next, we consider the class of Yeo-Johnson power transformations. The Yeo-Johnson power transforma-

tions are defined as

Λθ(y) =



(y+1)θ−1
θ , for y ≥ 0, θ 6= 0

log(y + 1), for y ≥ 0, θ = 0

− (−y+1)2−θ−1
2−θ , for y < 0, θ 6= 2

− log(−y + 1), for y < 0, θ = 2.

We set the true transformation parameter θ0 = 1 and summarize the results in the Tables 3.4–3.6. We

get similar patterns as under the Box-Cox transformation.

In summary, the empirical acceptance rate is close to the nominal level of 95% and the transformation

parameter is estimated accurately.
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n p s SNR Estimator Acceptance rate MAE rel. MSE

100 20 5 1.0 0.99989085 0.956 0.0531 1.7955

100 20 5 3.0 0.99701139 0.956 0.0480 1.2454

100 20 10 1.0 0.99732572 0.946 0.0440 1.8621

100 20 10 3.0 1.00201985 0.954 0.0492 3.2990

100 20 20 1.0 1.00463863 0.932 0.0402 1.7570

100 20 20 3.0 0.99917208 0.940 0.0411 3.5338

100 50 5 1.0 1.00133561 0.942 0.0532 1.9071

100 50 5 3.0 0.99966997 0.982 0.0478 1.4648

100 50 10 1.0 1.00094266 0.940 0.0450 1.8360

100 50 10 3.0 1.00174621 0.960 0.0469 3.4738

100 50 20 1.0 0.99837549 0.964 0.0371 1.8729

100 50 20 3.0 0.99618151 0.938 0.0426 3.7640

100 100 5 1.0 1.00272122 0.956 0.0533 1.6976

100 100 5 3.0 0.99727378 0.954 0.0509 1.6225

100 100 10 1.0 1.00291725 0.944 0.0461 2.0220

100 100 10 3.0 1.00002603 0.942 0.0499 3.8505

100 100 20 1.0 1.00041509 0.952 0.0385 1.8904

100 100 20 3.0 1.00047398 0.958 0.0404 3.6226

100 200 5 1.0 0.99793573 0.968 0.0529 1.8893

100 200 5 3.0 0.99789085 0.974 0.0481 1.8679

100 200 10 1.0 1.00024902 0.962 0.0460 1.9035

100 200 10 3.0 1.00304432 0.952 0.0494 3.7504

100 200 20 1.0 0.99993355 0.948 0.0386 1.7806

100 200 20 3.0 0.99405454 0.948 0.0442 3.5148

200 20 5 1.0 1.00012449 0.938 0.0361 1.1689

200 20 5 3.0 1.00053857 0.936 0.0313 0.9433

200 20 10 1.0 1.00430230 0.944 0.0306 1.7735

200 20 10 3.0 0.99971274 0.960 0.0265 1.2521

200 20 20 1.0 1.00210897 0.936 0.0276 1.7453

200 20 20 3.0 0.99636422 0.936 0.0307 3.4005

200 50 5 1.0 0.99718193 0.954 0.0328 1.3104

200 50 5 3.0 1.00180263 0.942 0.0301 0.9625

200 50 10 1.0 0.99989134 0.930 0.0322 1.8054

200 50 10 3.0 1.00179570 0.962 0.0278 1.5387

200 50 20 1.0 0.99889235 0.948 0.0264 1.8607

200 50 20 3.0 1.00058817 0.942 0.0287 3.6990

200 100 5 1.0 0.99853711 0.960 0.0365 1.3969

200 100 5 3.0 0.99629466 0.952 0.0284 1.0922

200 100 10 1.0 1.00497857 0.946 0.0326 1.9988

200 100 10 3.0 0.99964084 0.960 0.0286 1.9631

200 100 20 1.0 0.99985907 0.938 0.0273 1.8807

200 100 20 3.0 0.99925090 0.952 0.0294 3.6156

200 200 5 1.0 1.00204386 0.952 0.0363 1.5089

200 200 5 3.0 1.00042547 0.946 0.0318 0.9710

200 200 10 1.0 1.00150067 0.956 0.0312 1.8897

200 200 10 3.0 1.00058871 0.972 0.0295 2.2308

200 200 20 1.0 1.00327436 0.948 0.0268 1.7748

200 200 20 3.0 1.00077426 0.954 0.0293 3.4977

200 500 5 1.0 1.00337876 0.934 0.0394 1.7058

200 500 5 3.0 1.00004203 0.946 0.0319 1.0865

200 500 10 1.0 0.99965877 0.948 0.0303 1.9287

200 500 10 3.0 0.99864655 0.962 0.0327 2.8189

200 500 20 1.0 1.00182442 0.950 0.0271 2.1191

200 500 20 3.0 1.00092662 0.948 0.0297 4.1020

Table 3.4: Yeo-Johnson: Simulation results for Σ(X) = Ip.
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n p s SNR Estimator Acceptance rate MAE rel. MSE

100 20 5 1.0 0.99619347 0.924 0.0463 1.2505

100 20 5 3.0 0.99833394 0.960 0.0371 1.0300

100 20 10 1.0 0.99814415 0.946 0.0403 1.6382

100 20 10 3.0 0.99896106 0.980 0.0346 1.5484

100 20 20 1.0 1.00332660 0.946 0.0321 1.7477

100 20 20 3.0 1.00242808 0.952 0.0345 2.8320

100 50 5 1.0 1.00706413 0.950 0.0448 1.3922

100 50 5 3.0 0.99862564 0.950 0.0374 1.0930

100 50 10 1.0 0.99785945 0.952 0.0400 1.6867

100 50 10 3.0 1.00405369 0.970 0.0361 1.7500

100 50 20 1.0 1.00049886 0.942 0.0333 1.8622

100 50 20 3.0 1.00275828 0.954 0.0354 3.3531

100 100 5 1.0 0.99964792 0.958 0.0436 1.4512

100 100 5 3.0 1.00018733 0.970 0.0378 1.2533

100 100 10 1.0 0.99887052 0.970 0.0365 1.9048

100 100 10 3.0 0.99914381 0.976 0.0365 2.1079

100 100 20 1.0 1.00325414 0.940 0.0341 1.8941

100 100 20 3.0 0.99795875 0.968 0.0348 3.4283

100 200 5 1.0 0.99980596 0.952 0.0443 1.5039

100 200 5 3.0 1.00318283 0.966 0.0385 1.1348

100 200 10 1.0 0.99710813 0.966 0.0376 1.8528

100 200 10 3.0 0.99990709 0.966 0.0375 2.2494

100 200 20 1.0 0.99974527 0.960 0.0328 1.7787

100 200 20 3.0 0.99885191 0.972 0.0378 3.3678

200 20 5 1.0 0.99989759 0.934 0.0296 0.9913

200 20 5 3.0 0.99927178 0.938 0.0266 0.9426

200 20 10 1.0 0.99825191 0.946 0.0263 1.1789

200 20 10 3.0 1.00157433 0.958 0.0224 1.0135

200 20 20 1.0 0.99910827 0.960 0.0222 1.5879

200 20 20 3.0 1.00413773 0.972 0.0214 1.4732

200 50 5 1.0 0.99924325 0.954 0.0279 1.0390

200 50 5 3.0 0.99789757 0.938 0.0274 0.9633

200 50 10 1.0 0.99936383 0.934 0.0255 1.2709

200 50 10 3.0 1.00053949 0.946 0.0230 1.0500

200 50 20 1.0 0.99867395 0.940 0.0231 1.7741

200 50 20 3.0 0.99961880 0.960 0.0218 1.7622

200 100 5 1.0 1.00275165 0.948 0.0286 1.1760

200 100 5 3.0 1.00077422 0.938 0.0268 1.0959

200 100 10 1.0 0.99893851 0.946 0.0259 1.4928

200 100 10 3.0 0.99928876 0.954 0.0215 1.2266

200 100 20 1.0 1.00268155 0.950 0.0232 1.8406

200 100 20 3.0 1.00002885 0.936 0.0240 2.0552

200 200 5 1.0 0.99787872 0.946 0.0300 1.0546

200 200 5 3.0 1.00001108 0.948 0.0254 0.9609

200 200 10 1.0 1.00056662 0.952 0.0254 1.4767

200 200 10 3.0 0.99799385 0.954 0.0221 1.1000

200 200 20 1.0 1.00192636 0.950 0.0225 1.7554

200 200 20 3.0 1.00334912 0.944 0.0245 2.2427

200 500 5 1.0 0.99802326 0.944 0.0285 1.1891

200 500 5 3.0 1.00012563 0.950 0.0249 1.0809

200 500 10 1.0 0.99925335 0.942 0.0266 1.6549

200 500 10 3.0 1.00042866 0.968 0.0231 1.2702

200 500 20 1.0 1.00126983 0.956 0.0230 2.0999

200 500 20 3.0 0.99924659 0.966 0.0240 3.0074

Table 3.5: Yeo-Johnson: Simulation results for Σ(X) = Σ
(X)
1 .
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n p s SNR Estimator Acceptance rate MAE rel. MSE

100 20 5 1.0 1.00367279 0.940 0.0537 1.7783

100 20 5 3.0 1.00025425 0.962 0.0434 1.1977

100 20 10 1.0 1.00152401 0.928 0.0453 1.8476

100 20 10 3.0 0.99637531 0.940 0.0500 3.2971

100 20 20 1.0 0.99787166 0.950 0.0373 1.7399

100 20 20 3.0 1.00308084 0.958 0.0402 3.4867

100 50 5 1.0 1.00006547 0.956 0.0517 1.9355

100 50 5 3.0 0.99994812 0.970 0.0440 1.4556

100 50 10 1.0 1.00093756 0.952 0.0438 1.8509

100 50 10 3.0 0.99763201 0.942 0.0477 3.5271

100 50 20 1.0 0.99963396 0.952 0.0381 1.8688

100 50 20 3.0 1.00081743 0.946 0.0409 3.7607

100 100 5 1.0 0.99656704 0.948 0.0540 1.6708

100 100 5 3.0 1.00272331 0.980 0.0490 1.6782

100 100 10 1.0 1.00153317 0.942 0.0463 1.9951

100 100 10 3.0 1.00006603 0.948 0.0501 3.7814

100 100 20 1.0 0.99852324 0.944 0.0358 1.8897

100 100 20 3.0 1.00049696 0.958 0.0427 3.6400

100 200 5 1.0 1.00081946 0.964 0.0536 1.9168

100 200 5 3.0 0.99650061 0.970 0.0533 1.9694

100 200 10 1.0 0.99879653 0.964 0.0438 1.9138

100 200 10 3.0 1.00063372 0.964 0.0477 3.7520

100 200 20 1.0 0.99787393 0.960 0.0385 1.7897

100 200 20 3.0 0.99913458 0.966 0.0414 3.5283

200 20 5 1.0 1.00265436 0.954 0.0326 1.1445

200 20 5 3.0 1.00058134 0.954 0.0301 0.9432

200 20 10 1.0 1.00125043 0.938 0.0321 1.7606

200 20 10 3.0 0.99988890 0.960 0.0257 1.2246

200 20 20 1.0 1.00160783 0.940 0.0264 1.7254

200 20 20 3.0 0.99932267 0.964 0.0274 3.1870

200 50 5 1.0 1.00079590 0.954 0.0341 1.3372

200 50 5 3.0 0.99866985 0.926 0.0324 0.9649

200 50 10 1.0 1.00102807 0.954 0.0310 1.8102

200 50 10 3.0 1.00030919 0.954 0.0283 1.6297

200 50 20 1.0 1.00095764 0.952 0.0270 1.8610

200 50 20 3.0 0.99814638 0.944 0.0300 3.7048

200 100 5 1.0 0.99798485 0.930 0.0373 1.3546

200 100 5 3.0 1.00223459 0.950 0.0294 1.0932

200 100 10 1.0 0.99968150 0.940 0.0318 1.9679

200 100 10 3.0 0.99912236 0.974 0.0286 2.0782

200 100 20 1.0 1.00017655 0.954 0.0258 1.8803

200 100 20 3.0 0.99963970 0.936 0.0296 3.6140

200 200 5 1.0 0.99632996 0.950 0.0345 1.4789

200 200 5 3.0 0.99986194 0.954 0.0303 0.9649

200 200 10 1.0 1.00113110 0.932 0.0320 1.8961

200 200 10 3.0 1.00199368 0.968 0.0294 2.2247

200 200 20 1.0 1.00122702 0.950 0.0275 1.7819

200 200 20 3.0 1.00000603 0.956 0.0287 3.5083

200 500 5 1.0 1.00762721 0.952 0.0384 1.7089

200 500 5 3.0 1.00006396 0.966 0.0298 1.0830

200 500 10 1.0 0.99891396 0.942 0.0318 1.9029

200 500 10 3.0 1.00001533 0.956 0.0327 2.7849

200 500 20 1.0 1.00069240 0.942 0.0267 2.0994

200 500 20 3.0 1.00125883 0.932 0.0300 4.0673

Table 3.6: Yeo-Johnson: Simulation results for Σ(X) = Σ
(X)
2 .
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3.5 Application

3.5.1 Econometric Specification of the Wage Equation

In labor economics, the analysis of wage data is key. In addition, labor economics aims to identify the

determinants of wages to estimate a so-called Mincer equation and to evaluate the impact of labor market

programs on wages. Wages are non-negative and show a high degree of skewness which is not compatible

with a normal distribution. Hence, wages are transformed in almost all studies by the logarithm. Figure

3.4 shows the weekly wage distribution (in US dollar) from the US survey data which are described in

the next section.

Figure 3.4: Empirical wage distribution from the US survey data.
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Here, we focus on the estimation of a Mincer type equation. The Mincer equation formulates a rela-

tionship between log wages (W) and schooling (S), experience (Exp), and other control variables (X,

p-dimensional):

logW = α+ βS + γExp+ δExp2 + µ′X + ε (3.18)

with ε ∼ N (0, σ2). α, β, γ, δ are coefficients and µ is a p-dimensional vector of the coefficients of the

control variables. We consider a high-dimensional setting where the set of potential control variables is

high and we do not take it for granted that the log transformation is appropriate but instead we estimate

a transformation model and test for the transformation parameter. The model is given by

Λθ0(W ) = αθ0 + βSθ0 + γExpθ0 + δExp2
θ0 + µ′θ0X + εθ0 (3.19)

with εθ0 ∼ N (0, σ2).

3.5.2 Data Set

Overview

In our empirical study, we use data from the 2015 American Community Survey (ACS) that is provided

by Ruggles et al. [87] and extracted from the IPUMS-USA website1. The ACS provides a 1%-sample of

the US population with mandatory participation. The data offers a large number of socio-economic char-

acteristics at the individual and household level, such as education, industry, occupation, and earnings.

We restrict our attention to individuals who graduated from university and are working full time (30+

hours), at least 50 weeks a year. Weekly earnings are computed as annual earnings divided by 52 (weeks).

We exclude individuals with experience > 60 and age > 65. Moreover, we discard individuals with a

weekly wage of less than $10 (which is likely to be unreasonable given that we only consider full-time

employees). Then, we drop all observations with a weekly wage under the 2.5%-quantile and over the

97.5%-quantile. Our final sample comprises 315, 291 individual observations.

In our analysis, we use 14 initial regressors which are either directly available from the ACS data or have

been constructed. We list the variables in Table 3.7. Mostly, we use the categories as provided in the

ACS data. This might be particularly informative for the region, occupation, and industry variables for

which different definitions exist. Moreover, we construct the variables “years of education” and “labor

market experience” from the information available. We construct all of the two-way interactions of the

initial regressors, where the categorical variables are transformed to level-wise dummies. Additionally,

we include the variable “field of degree” to account for the individual’s educational background. Finally,

we drop all of the constructed variables that are nearly constant over all observations and we end with a

high-dimensional setting with a total of 1, 743 regressors.

Descriptive Statistics

Table 3.8 provides the summary statistics for a selection of the variables that are available in our final

sample from the ACS data. Figure 3.4 and the following descriptive statistics illustrate that the mean

of weekly wage for university graduates is higher than the median; hence, we have skewed data. Weekly

wage is characterized by non-negativity and a high variability.

1https://usa.ipums.org/usa/
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Variable Type Baseline Category

Female binary
Marital status six categories never married, single
Race four categories White
English language skills five categories speaks only English
Hispanic binary
Veteran Status binary
Industry 14 categories wholesale trade
Occupation 26 categories management, science, arts
Region (US census) nine categories New England division
Experience (years) continuous
Experience squared continuous
Years of Education continuous
Family Size continuous
Number of own young children continuous
Field of degree 37 categories administration, teaching

Table 3.7: Application: List of regressors.

Variable Mean SD Median

Weekly wage 1591.22 1100.20 1307.69
Experience (years) 20.75 11.36 21
Years of Education 16.91 1.24 17
Female 0.48 0.50 -
White 0.84 0.37 -
Black/Negro 0.07 0.25 -
Chinese 0.02 0.15 -
Hispanic 0.05 0.23 -
Veteran Status 0.05 0.21 -

Sample Size 315291

Table 3.8: Summary statistics, ACS data.

3.5.3 Results

The estimated transformation parameter is θ̂ = −0.1260646. The confidence interval is based on the

asymptotic normality of the estimate θ̂ and the variance is estimated via 300 bootstrap samples. Since

the confidence interval [−0.1307524,−0.1213768] does not include 0, we can reject the null hypothesis

θ = 0 on a 5% significance level which is equivalent to a log transformation. In Figure 3.5, we compare

the Q-Q plot of the untransformed wages with the Q-Q plot of the transformed wages with our estimated

parameter (with a normal distribution determined by the sample mean and sample variance) and with

the Q-Q plot under the log transformation (θ = 0). The estimated errors without transformation are

not normally distributed, whereas after the transformation of the response variable with θ̂ the estimated

error terms seem to fit a normal distribution quite well. Considering the transformation function, one can

recognize that for a transformation parameter below zero the transformation has a stronger curvature

(see figure 3.6). This implies that the wages are more positively skewed towards normal distribution

after a log transformation. Although we reject the log transformation, Figure 3.5 reveals that the log
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transformation might give a reasonable approximation for applications in labor economics.

Figure 3.5: Comparison of Q-Q plots.

Figure 3.6: Transformation functions for θ = 0 (black) and θ = θ̂ (red).
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3.6 Conclusion

In this paper, we propose an estimator for the transformation parameter in a high-dimensional setting.

Transformation models, in particular the Box-Cox and Yeo-Johnson transformation, are very popular

in applied statistics and econometrics. The rise of digitalization has led to an increased availability of

high-dimensional data sets and, hence, make it necessary to extend models for this setting when the

number of variables p is large (or even larger) compared to the sample size n. We build on the recent

results on the Neyman orthogonality condition to prove the asymptotic normality of our estimator. The

nuisance functions are estimated with Lasso.

Our setting fits into a general Z-estimation problem with a high-dimensional nuisance function, which

depends on the target parameter θ. We extend the results in Belloni et al. [9] and Chernozhukov et al.

[35] to allow for an explicit dependency of the nuisance function on the target parameter θ. This result

might be of interest for Z-estimation problems with the same structure.

In labor economics, wage is by default transformed with the logarithm. In our application, by analyzing

US survey data, we are able to show that the log transformation is rejected on 5% significance level but

the log transformation might give an appropriate approximation.

In future research, we would like to address the problem of estimation and inference on elements of the

coefficient vector of the regressors.
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Appendix

3.7 Proofs

Proof of Lemma 2.

We refer to Section 3.2.3 for the notation. Let h = (h1, h2, h3, h4) ∈ H′ be arbitrary. First, we consider

∂r

(
Λθ0(Y )−

(
mθ0(X) + r

(
h1(θ0, X)−mθ0(X)

)))∣∣∣
r=0

= mθ0(X)− h1(θ0, X)

and analogous

∂r

(
Λ̇θ0(Y )−

(
ṁθ0(X) + r

(
h3(θ0, X)− ṁθ0(X)

)))∣∣∣
r=0

= ṁθ0(X)− h3(θ0, X).

Additionally, we have

∂r

((
σ2
θ0 + r(h2(θ0)− σ2

θ0)
)−1
) ∣∣∣

r=0
= −

h2(θ0)− σ2
θ0(

σ2
θ0

)2
and

∂r
(
σ̇2
θ0 + r(h4(θ0)− σ̇2

θ0)
) ∣∣∣
r=0

= h4(θ0)− σ̇2
θ0 .

By the product rule, we obtain

E
[
∂rI(θ0, σ

2
θ + r(h2 − σ2

θ), σ̇2
θ + r(h4 − σ̇2

θ))|r=0|X
]

= E

[
h4(θ0)− σ̇2

θ0

2σ2
θ0

− σ̇2
θ0

h2(θ0)− σ2
θ0

2
(
σ2
θ0

)2 ∣∣∣∣X
]

=
h4(θ0)− σ̇2

θ0

2σ2
θ0

− σ̇2
θ0

h2(θ0)− σ2
θ0

2
(
σ2
θ0

)2 ,

E
[
∂rII(θ0,mθ + r(h1 −mθ), σ

2
θ + r(h2 − σ2

θ), ṁθ + r(h1 − ṁθ))|r=0|X
]

=E

[
−
h2(θ0)− σ2

θ0(
σ2
θ0

)2 (
Λθ0(Y )−mθ0(X)

)(
Λ̇θ0(Y )− ṁθ0(X)

)∣∣∣∣X
]

+ E

[
1

σ2
θ0

(
mθ0(X)− h1(θ0, X)

)(
Λ̇θ0(Y )− ṁθ0(X)

)∣∣∣∣X
]

+ E

[
1

σ2
θ0

(
Λθ0(Y )−mθ0(X)

)(
ṁθ0(X)− h3(θ0, X)

)∣∣∣∣X
]

=−
h2(θ0)− σ2

θ0(
σ2
θ0

)2 E
[
εθ0 ε̇θ0

∣∣X]+
mθ0(X)− h1(θ0, X)

σ2
θ0

E
[
ε̇θ0
∣∣X]︸ ︷︷ ︸

=0

+
ṁθ0(X)− h3(θ0, X)

σ2
θ0

E
[
εθ0
∣∣X]︸ ︷︷ ︸

=0

=−
h2(θ0)− σ2

θ0(
σ2
θ0

)2 E
[
εθ0 ε̇θ0

∣∣X] ,
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and

E
[
∂rIII(θ0,mθ + r(h1 −mθ), σ

2
θ + r(h2 − σ2

θ), σ̇2
θ + r(h4 − σ̇2

θ))|r=0|X
]

=E

[
h4(θ0)− σ̇2

θ0

2
(
σ2
θ0

)2 (
Λθ0(Y )−mθ0(X)

)2∣∣∣∣X
]

− E

[
σ̇2
θ0

h2(θ0)− σ2
θ0(

σ2
θ0

)3 (
Λθ0(Y )−mθ0(X)

)2∣∣∣∣X
]

+ E

[
σ̇2
θ0(

σ2
θ0

)2 (Λθ0(Y )−mθ0(X)
)(
mθ0(X)− h1(θ0, X)

)∣∣∣∣X
]

=
h4(θ0)− σ̇2

θ0

2
(
σ2
θ0

)2 E
[(

Λθ0(Y )−mθ0(X)
)2∣∣X]︸ ︷︷ ︸

=σ2
θ0

− σ̇2
θ0

h2(θ0)− σ2
θ0(

σ2
θ0

)3 E
[(

Λθ0(Y )−mθ0(X)
)2∣∣X]︸ ︷︷ ︸

=σ2
θ0

+
σ̇2
θ0(

σ2
θ0

)2 (mθ0(X)− h1(θ0, X)
)
E
[
εθ0
∣∣X]︸ ︷︷ ︸

=0

=
h4(θ0)− σ̇2

θ0

2σ2
θ0

− σ̇2
θ0

h2(θ0)− σ2
θ0(

σ2
θ0

)2 .

The conditions enable us to change derivation and integration, hence we obtain

D0[h− h0]

= ∂r

{
E
[
ψ
(

(Y,X), θ0, h0 + r(h− h0)
)]}∣∣∣

r=0

= E
[
∂rψ

(
(Y,X), θ0, h0 + r(h− h0)

)∣∣∣
r=0

]
= E

[
E
[
∂rψ

(
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)∣∣∣
r=0
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= E

[
− E

[
∂rI(θ0, σ

2
θ + r(h2 − σ2

θ), σ̇2
θ + r(h4 − σ̇2
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]

− E
[
∂rII(θ0,mθ + r(h1 −mθ), σ

2
θ + r(h2 − σ2

θ), ṁθ

+ r(h1 − ṁθ))|r=0|X
]

+ E
[
∂rIII(θ0,mθ + r(h1 −mθ), σ

2
θ+

r(h2 − σ2
θ), σ̇2

θ + r(h4 − σ̇2
θ))|r=0|X

]
+ ∂rcθ0 |r=0︸ ︷︷ ︸

=0

]

= E
[
−
h4(θ0)− σ̇2

θ0

2σ2
θ0

+ σ̇2
θ0

h2(θ0)− σ2
θ0

2
(
σ2
θ0
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= 0,

where we used σ̇2
θ0

= 2E[εθ0 ε̇θ0 ] in the last step.
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Proof of Theorem 3.

Assumptions A1-A7 directly imply the conditions in Theorem 7 for the model (3.4) and (3.5) except for

B7. We need to show that the empirical eigenvalues converge to the restricted sparse eigenvalues defined

in A7. By Lemma P.1 in Belloni et al. [12], we have

E

[
sup

||δ||0≤s log(n),||δ||=1

∣∣‖XT δ‖2Pn,2 − ‖X
T δ‖2P,2

∣∣]

≤ C

s log2(n) log(p)

n
+

√
s log2(n) log(p)

n
κ′′

 ≤ C
√
s log2(n) log(p)

n

and using Markov’s inequality we obtain

sup
||δ||0≤s log(n),||δ||=1

∣∣‖XT δ‖2Pn,2 − ‖X
T δ‖2P,2

∣∣ = o(1)

with probability 1 − o(1). This implies condition B7 for n large enough since the restricted sparse

eigenvalues are bounded away from zero and above.

Proof of Theorem 4.

As shown in the proof to Theorem 7, we have

sup
θ∈Θ

∣∣∣ 1
n

n∑
i=1

(
ε2
θ,i − E[ε2

θ]
)∣∣∣ = O(log(n)n−1/2),
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θ∈Θ

∣∣∣ 1
n

n∑
i=1

(
ε̇2
θ,i − E[ε̇2

θ]
)∣∣∣ = O(log(n)n−1/2)

and with an analogous argument

sup
θ∈Θ

∣∣∣ 1
n

n∑
i=1

(
εθ,iε̇θ,i − E[εθ ε̇θ]

)∣∣∣ = O(log(n)n−1/2)

with probability 1− o(1). Hence, we obtain with probability 1− o(1)
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θ∈Θ
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θ |
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(
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)
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(
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θ]
)
− 2

n

n∑
i=1

εθ,iX
T
i

(
β̂θ − βθ

)
+

1

n
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(
XT
i

(
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))2

︸ ︷︷ ︸
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θ∈Θ
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n
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i=1

(
ε2
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θ]
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+ sup
θ∈Θ

∣∣∣||XT (β̂θ − βθ)||2Pn,2
∣∣∣︸ ︷︷ ︸

=O

(
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√√√√ 1
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(
max

(√
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n
,

log(n)

n1/2

))
≤ δ̃nn−

1
4

for a suitable sequence δ̃n ↘ 0, due to the growth condition A2. By the same argument, we obtain with

probability 1− o(1)

sup
θ∈Θ
|ˆ̇σ2
θ − σ̇2

θ |

= sup
θ∈Θ

∣∣∣∣ 2n
n∑
i=1

(
Λθ(Yi)− m̂θ(Xi)︸ ︷︷ ︸

=εθ,i−
(
m̂θ(Xi)−mθ(Xi)

)
)(

Λθ(Yi)− ˆ̇mθ(Xi)︸ ︷︷ ︸
=ε̇θ,i−

(
ˆ̇mθ(Xi)−ṁθ(Xi)

)
)

− 2E[εθ ε̇θ]

∣∣∣∣
= 2 sup

θ∈Θ

∣∣∣∣ 1n
n∑
i=1

(
εθ,iε̇θ,i − E[εθ ε̇θ]

)
− 1

n

n∑
i=1

εθ,i
(

ˆ̇mθ(Xi)− ṁθ(Xi)
)

− 1

n

n∑
i=1

ε̇θ,i
(
m̂θ(Xi)−mθ(Xi)

)
+

1

n

n∑
i=1

(
m̂θ(Xi)−mθ(Xi)

)(
ˆ̇mθ(Xi)− ṁθ(Xi)

)
︸ ︷︷ ︸

≤
(

1
n

n∑
i=1

(
m̂θ(Xi)−mθ(Xi)

)2
) 1

2
(

1
n

n∑
i=1

(
ˆ̇mθ(Xi)−ṁθ(Xi)

)2
) 1

2

∣∣∣∣

≤ 2 sup
θ∈Θ

∣∣∣ 1
n

n∑
i=1

(
εθ,iε̇θ,i − E[εθ ε̇θ]

)∣∣∣︸ ︷︷ ︸
=O(log(n)n−1/2)

+2 sup
θ∈Θ

∣∣∣ 1
n

n∑
i=1

εθ,i
(

ˆ̇mθ(Xi)− ṁθ(Xi)
)∣∣∣︸ ︷︷ ︸

≤2 sup
θ∈Θ

∣∣∣||XT (
ˆ̇
βθ−β̇θ)||Pn,2

√
1
n

n∑
i=1

ε2θ,i

∣∣∣
+ 2 sup

θ∈Θ

∣∣∣ 1
n

n∑
i=1

ε̇θ,i
(
m̂θ(Xi)−mθ(Xi)

)∣∣∣︸ ︷︷ ︸
≤2 sup

θ∈Θ

∣∣∣||XT (β̂θ−βθ)||Pn,2

√
1
n

n∑
i=1

ε̇2θ,i

∣∣∣
+

(
sup
θ∈Θ

∣∣∣||(m̂θ(Xi)−mθ(Xi)
)
||2Pn,2

∣∣∣︸ ︷︷ ︸
=O

(
s log(p∨n)

n

) sup
θ∈Θ

∣∣∣||( ˆ̇mθ(Xi)− ṁθ(Xi)
)
||2Pn,2

∣∣∣︸ ︷︷ ︸
=O

(
s log(p∨n)

n

)
) 1

2

≤ 2 sup
θ∈Θ
||XT (

ˆ̇
βθ − β̇θ)||Pn,2︸ ︷︷ ︸

=O

(√
s log(p∨n)

n

) sup
θ∈Θ

√√√√ 1

n

n∑
i=1

ε2
θ,i︸ ︷︷ ︸

=O(1)

+2 sup
θ∈Θ
||XT (β̂θ − βθ)||Pn,2︸ ︷︷ ︸
=O

(√
s log(p∨n)

n

) sup
θ∈Θ

√√√√ 1

n

n∑
i=1

ε̇2
θ,i︸ ︷︷ ︸

=O(1)

+O
(s log(p ∨ n)

n

)
+O(log(n)n−1/2)
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and

sup
θ∈Θ
|ˆ̇σ2
θ − σ̇2

θ | = O

(
max

(√
s log(p ∨ n)

n
,

log(n)

n1/2

))
≤ δ̃nn−

1
4 .

Proof of Theorem 5.

The strategy of the proof is similar to the proof of Theorem 1 from Belloni et al. [9]. Let C,C1 and C2

denote generic positive constants that may differ in each appearance, but do not depend on the sequence

P ∈ Pn.

For every θ ∈ Θ, the set H̃1(θ) consists of unions of p choose Cs sets, where the set of indices {i ∈
{1, . . . , p} : βi 6= 0} has cardinality not more than Cs, and therefore is a subset of a vector space with

dimension Cs. It follows that H̃1(θ) consists of unions of p choose Cs VC-subgraph classes H̃1,k(θ) with

VC indices less or equal to Cs+ 2 (Lemma 2.6.15, Vaart and Wellner [94]).

Using Theorem 2.6.7 in Van der Vaart and Wellner (1996), we obtain

sup
Q

logN(ε‖H̃1‖Q,2, H̃1(θ), L2(Q))

≤ sup
Q

log

( ( pCs)∑
k=1

N(ε‖H̃1‖Q,2, H̃1,k(θ), L2(Q))

)

≤ sup
Q

log

( (
p

Cs

)
︸ ︷︷ ︸
≤
(
e·p
Cs

)Cs
K(Cs+ 2)(16e)Cs+2

(
1

ε

)2Cs+2
)

≤ log

((e · p
Cs

)Cs
K(Cs+ 2)(16e)Cs+2

(
1

ε

)2Cs+2
)

≤ Cs log
(p
ε

)
with C beeing independent from θ. Since

sup
h1(θ)∈H̃1(θ)

|h1(θ, x)| ≤ sup
β̃:‖β̃θ−βθ‖1≤δ̃n

√
sn−

1
4

|xT β̃|

≤ sup
β̃:‖β̃θ−βθ‖1≤δ̃n

√
sn−

1
4

|xT β̃ − xTβθ|+ |xTβθ|

≤ KC + E [FΛ|X = x] =: H̃1(x),

the envelope H̃1 can be chosen independent from θ. Here and in the following, we omit the dependence

from Y in FΛ ≡ FΛ(Y ) to simplify notation.

By the same argument, we obtain

sup
Q

logN(ε‖H̃3‖Q,2, H̃3(θ), L2(Q)) ≤ Cs log
(p
ε

)

with envelope H̃3(x) := KC + E
[
ḞΛ|X = x

]
.

Next, we consider

H̃4(θ) : =
{
c ∈ R

∣∣ |c− σ̇2
θ | ≤ δ̃nn−1/4

}
⊆
[
σ̇2
θ − Cn−1/4, σ̇2

θ + Cn−1/4
]

⊆
[
−(c+ Cn−1/4), (c+ Cn−1/4)

]
,
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where c = supθ∈Θ |σ̇2
θ | <∞. This implies

sup
Q

logN(ε‖H̃4‖Q,2, H̃4(θ), L2(Q))

≤ sup
Q

logN
(
ε(c+ C),

[
−(c+ Cn−1/4), c+ Cn−1/4

]
, | · |

)
≤ log

(
C

ε

)

for all θ ∈ Θ with envelope H̃4 = c+ C and C independent from θ.

Remark that 0 < c1 = infθ∈Θ σ
2
θ and c2 = supθ∈Θ σ

2
θ < ∞ due to Assumptions A4 and A5. For n

sufficient large, we find a c3 with 0 < c3 ≤ c1 − Cn−1/4. Therefore, we can define

H̄2(θ) : =

{
1

h̃2(θ)

∣∣ h̃2(θ) ∈ H̃2(θ)

}
⊆
{

1/c
∣∣ |c− σ2

θ | ≤ Cn−1/4
}

=

{
1/c
∣∣ |c− σ2

θ |
|cσ2

θ |
≤ 1

|cσ2
θ |
Cn−1/4

}
⊆
{

1/c
∣∣ |c− σ2

θ |
|cσ2

θ |
≤ C∗n−1/4

}
=
{
c̄
∣∣ |c̄− 1/σ2

θ | ≤ C∗n−1/4
}

=
[
1/σ2

θ − C∗n−1/4, 1/σ2
θ + C∗n−1/4

]
⊆
[
1/c2 − C∗n−1/4, 1/c1 + C∗n−1/4

]
with C∗ = C

c3c1
. Analogously, we obtain

sup
Q

logN(ε‖H̄2‖Q,2, H̄2(θ), L2(Q)) ≤ log

(
C

ε

)
for all θ ∈ Θ with envelope H̄2 = 1/c2 + C∗ and C independent from θ. Define

I(θ, H̄2, H̃4) :=

{
−1

2
h4(θ)h2(θ)| h4(θ) ∈ H̃4(θ), h2(θ) ∈ H̄2(θ)

}
,

II(θ, H̃1, H̄2, H̃3)

:=

{
(y, x) 7→ −h2(θ) (Λθ(y)− h1(θ, x))

(
Λ̇θ(y)− h3(θ, x)

)
| h1(θ) ∈ H̃1(θ), h2(θ) ∈ H̄2(θ), h3(θ) ∈ H̃3(θ)

}

and

III(θ, H̃1, H̄2, H̃4) :=

{
(y, x) 7→ 1

2
h2

2(θ)h4(θ) (Λθ(y)− h1(θ, x))
2

| h1(θ) ∈ H̃1(θ), h2(θ) ∈ H̄2(θ), h4(θ) ∈ H̃4(θ)

}
.
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By Lemma L.1 in the supplement to Belloni et al. [11], we have

logN
(
ε‖1/2H̄2H̃4‖Q,2, I(θ, H̄2, H̃4), L2(Q)

)
≤ logN

(ε
4
‖H̄2‖Q,2, H̄2(θ), L2(Q)

)
+ logN

(ε
4
‖H̃4‖Q,2, H̃4(θ), L2(Q)

)
≤ 2 log

(
C

ε

)
.

Using A5, we obtain

logN

(
ε‖H̄2(FΛ + H̃1)(ḞΛ + H̃3)‖Q,2, II(θ, H̃1, H̄2, H̃3), L2(Q)

)
≤ logN

(ε
2
‖H̄2(θ)‖Q,2, H̄2(θ), L2(Q)

)
+ logN

(ε
4
‖(FΛ + H̃1)‖Q,2,FΛ − H̃1(θ), L2(Q)

)
+ logN

(ε
4
‖(ḞΛ + H̃3)‖Q,2, ḞΛ − H̃3(θ), L2(Q)

)
≤ log

(
2C

ε

)
+ logN

(ε
8
‖FΛ‖Q,2,FΛ, L2(Q)

)
+ logN

(ε
8
‖ḞΛ‖Q,2, ḞΛ, L2(Q)

)
+ logN

(ε
8
‖H̃1‖Q,2, H̃1(θ), L2(Q)

)
+ logN

(ε
8
‖H̃3‖Q,2, H̃3(θ), L2(Q)

)
≤ log

(
2C

ε

)
+ C ′Λ log(8C ′′Λ/ε) + Ċ ′Λ log(8Ċ ′′Λ/ε) + Cs log

(8p

ε

)
+ Cs log

(8p

ε

)
≤ C1s log

(C2p

ε

)
and with an analogous argument

logN

(
ε‖1

2
H̄2

2 H̃4(FΛ + H̃1)2‖Q,2, III(θ, H̃1, H̄2, H̃4), L2(Q)

)
≤ C1s log

(C2p

ε

)
.

Since

Ψ(θ) = I(θ, H̄2, H̃4) + II(θ, H̃1, H̄2, H̃3) + III(θ, H̃1, H̄2, H̃4) + cθ,

we can define the envelope

ψ̄(Y,X) :=
1

2
H̄2H̃4 + H̄2(FΛ + H̃1)(ḞΛ + H̃3)

+
1

2
H̄2

2 H̃4(FΛ + H̃1)2 + JΛ,

which is independent from θ with

E
[(
ψ̄(Y,X)

)4]
= E

[(
1

2
H̄2H̃4 + H̄2(FΛ + H̃1)(ḞΛ + H̃3) +

1

2
H̄2

2 H̃4(FΛ + H̃1)2 + JΛ

)4
]

<∞,
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where we used A5 and A8. Additionally, by using N(ε||JΛ||Q,2, cθ, L2(Q)) = 1 for all θ ∈ Θ and Lemma

L.1 in the supplement to Belloni et al. [11], we obtain

sup
Q

logN(ε||ψ̄||Q,2,Ψ(θ), L2(Q)) ≤ C1s log

(
C2(p ∨ n)

ε

)
,

where the supremum is taken over all probability measures Q with EQ
[(
ψ̄(Y,X)

)2]
<∞.

Proof of Theorem 6.

We demonstrate that the conditions C1-C7 from Theorem 8 are satisfied. Most conditions are already

proven in the preceding theorems. The condition C1 is shown in Lemma 1. Due to Theorem 3 and 4

condition C3 is satisfied with H̃ and H̃(θ) as defined in Subsection 3.3.3. Condition C5 is proved in

Theorem 5. Again, choosing H′ = H̃ as defined in Subsection 3.3.3, the conditions in Lemma 2 hold

where we used (3.22) and the envelope in C5 which implies C4. Since conditions C2 and C7 are the same

as A11 and A10, we need to verify C6. Due to condition A2, choosing ρn = o(n−1/4), we have

sup
θ∈Θ,h̃∈H̃(θ)

|E[ψ((Y,X)), θ, h0(θ)]− E[ψ((Y,X)), θ, h̃(θ)]|

≤ sup
θ∈Θ,h̃∈H̃(θ)

E
[(
ψ
(
(Y,X), θ, h̃(θ,X)

)
− ψ

(
(Y,X), θ, h0(θ,X)

))2] 1
2

≤ sup
θ∈Θ,h̃∈H̃(θ)

CE
[
‖h̃(θ,X)− h0(θ,X)‖22

] 1
2

≤ Cρn,

where we used A9 (ii) and

E
[
‖h̃(θ,X)− h0(θ,X)‖22

]
= E

[
(h̃1(θ,X)−mθ(X))2

]
+ E

[
(h̃2(θ)− σ2

θ)2
]

+ E
[
(h̃3(θ,X)− ṁθ(X))2

]
+ E

[
(h̃4(θ)− σ̇2

θ)2
]

≤ Cρ2
n.

The last inequality follows from the properties of H̃ and condition A7. We have

E
[
(h̃1(θ,X)−mθ(X))2

]
= E

[(
XT (β̃θ − βθ)

)2
]

≤ sup
θ∈Θ
‖β̃θ − βθ‖22(κ′′)2

≤ C sup
θ∈Θ

∥∥∥XT
(
β̃θ − βθ

)∥∥∥2

Pn,2

≤ Cρ2
n

and

E
[
(h̃2(θ)− σ2

θ)2
]
≤ Cρ2

n

due to the bounded empirical sparse eigenvalue. The same holds for the two remaining terms with an

analogous argument. Therefore, C6 (i) holds.
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In the following, we take the supremum over all θ with |θ − θ0| ≤ Cρn and h̃ ∈ H̃(θ), meaning

sup ≡ sup
θ:|θ−θ0|≤Cρn,h̃∈H̃(θ)

.

By A9 (i) and (ii), we have

supE
[(
ψ
(
(Y,X), θ, h̃(θ,X)

)
− ψ

(
(Y,X), θ0, h0(θ0, X)

))2]1/2
= supE

[(
ψ
(
(Y,X), θ, h̃(θ,X)

)
− ψ

(
(Y,X), θ, h0(θ,X)

)
+ ψ

(
(Y,X), θ, h0(θ,X)

)
− ψ

(
(Y,X), θ0, h0(θ0, X)

))2
]1/2

≤ supE
[(
ψ
(
(Y,X), θ, h̃(θ,X)

)
− ψ

(
(Y,X), θ, h0(θ,X)

))2

+
(
ψ
(
(Y,X), θ, h0(θ,X)

)
− ψ

(
(Y,X), θ0, h0(θ0, X)

))2

+ 2
(
ψ
(
(Y,X), θ, h̃(θ,X)

)
− ψ

(
(Y,X), θ, h0(θ, x)

))
(
ψ
(
(Y,X), θ, h0(θ,X)

)
− ψ

(
(Y,X), θ0, h0(θ0, X)

))]1/2

≤ supC

(
E
[
‖h̃(θ,X)− h0(θ,X)‖22

]
+ |θ − θ0|2

+ |θ − θ0|
√

E
[
‖h̃(θ,X)− h0(θ,X)‖22

])1/2

≤ Cρn
≤ Cn−1/4.

Due to growth condition A2, we have

n−1/4s
1
2 log

( (p ∨ n)

n−1/4

) 1
2

+ n−
1
2 + 1

q s log
( (p ∨ n)

n−1/4

)
= o(1)

and C6 (ii) follows.

Condition C6 (iii) follows directly from A9 (iii):

sup
r∈(0,1)

sup

∣∣∣∣∂2
r

{
E
[
ψ
(
(Y,X), θ0 + r(θ − θ0), h0 + r(h̃− h0)

)]}∣∣∣∣
≤ sup
θ:|θ−θ0|≤Cρn,h̃∈H̃(θ)

C

(
|θ − θ0|2 + sup

θ∗∈Θ
E
[
‖h̃(θ∗, X)− h0(θ∗, X)‖22

])
≤ Cρ2

n

= o(n−1/2).

Proof of Lemma 3.

Comment 3.7.1. The proof for Box-Cox transformations is from Vaart and Wellner [94] who refer to

Quiroz et al. [82]. It heavily relies on the properties of the dual density from Assouad [3]. We give

a detailed version of the proof of Quiroz et al. [82] and extend the idea to the class of derivatives and

Yeo-Johnson power transformations.
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Since adding a single function to a class of functions can increase the VC index at most by one, we exclude

the parameter θ = 0 from the proof and restrict the class to

F ′1 =
{

Λθ(·)|θ ∈ R \ {0}
}
.

At first, recall that F ′1 is a VC class if and only if the between graph set

C :=
{
Cθ|θ ∈ R \ {0}

}
with

Cθ :=
{

(x, t) ∈ R+ × R|0 ≤ t ≤ Λθ(x) or Λθ(x) ≤ t ≤ 0
}

is a VC class (cf. Vaart and Wellner [94], page 152). We now consider the dual class (cf. Assouad [3]) of

C given by

D :=
{
D(x,t)|(x, t) ∈ R+ × R

}
with

D(x,t) : =
{
θ ∈ R \ {0}|(x, t) ∈ Cθ

}
=
{
θ ∈ R \ {0}|0 ≤ t ≤ Λθ(x) or Λθ(x) ≤ t ≤ 0

}
.

For the derivative of Λθ(x), we have

Λ̇θ(x) =
1

θ2

(
(θ log(x)− 1)xθ + 1

)
≥ 0

⇔ (θ log(x)− 1)xθ ≥ −1

⇔ log(xθ) ≥ xθ − 1

xθ
,

which is true for all x and θ. Since Λθ(x) is continuous and monotone increasing in θ, the set D(x,t) is

the union of at most two intervals in R \ {0} and therefore D is a VC class, which by Proposition 2.12 in

Assouad [3] implies that C is a VC class.

By the same argument as above, we have to prove that

D′ =
{
D′(x,t)|(x, t) ∈ R+ × R

}
is a VC class with

D′(x,t) :=
{
θ ∈ R \ {0}|0 ≤ t ≤ Λ̇θ(x)

}
,

since Λ̇θ(x) ≥ 0. The second derivative with respect to θ is given by

Λ̈θ(x) =
1

θ3

( (
log(xθ)− 1

)2
xθ + xθ − 2︸ ︷︷ ︸

=:f(xθ)

)
.

The case x = 1 directly implies Λ̈θ(x) = 0. Substitute z = xθ in f(xθ) and note that

f ′(z) = (log(z)− 1)
2

+ 2 (log(z)− 1) + 1 = (log(z))
2 ≥ 0.
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This together with f(1) = 0 implies f(z) ≥ 0 for z ≥ 1 and f(z) < 0 for z < 1. The four cases

x > 1, θ > 0

0 <x < 1, θ < 0

}
⇒ xθ > 1

x > 1, θ < 0

0 <x < 1, θ > 0

}
⇒ 0 < xθ < 1

and the coefficient 1/θ3 imply

Λ̈θ(x) =

≥ 0 for x ≥ 1

< 0 for x < 1.

We have that Λ̇θ(x) is continuous in θ, monotone increasing for x ≥ 1 and monotone decreasing for x < 1.

This again implies that the set D(x,t) is the union of at most two intervals in R \ {0}. Now, we consider

the class of Yeo-Johnson power transformations

F2 =
{

Ψθ(·)|θ ∈ R \ {0, 2}
}
,

where we exclude the parameters θ = 0 and θ = 2. The between graph set is given by

C̃ :=
{
C̃θ|θ ∈ R \ {0, 2}

}
with

C̃θ :=
{

(x, t) ∈ R× R|0 ≤ t ≤ Ψθ(x) or Ψθ(x) ≤ t ≤ 0
}
.

Since Ψθ(x) ≥ 0 for x ≥ 0 and Ψθ(x) < 0 for x < 0, we have

C̃θ : =
{

(x, t) ∈ R× R|0 ≤ t ≤ Ψθ(x) or Ψθ(x) ≤ t ≤ 0
}

=
{

(x, t) ∈ R+
0 × R|0 ≤ t ≤ Ψθ(x)

}
∪
{

(x, t) ∈ R− × R|Ψθ(x) ≤ t ≤ 0
}

=
{

(x, t) ∈ R+
0 × R|0 ≤ t ≤ Λθ(x+ 1)

}︸ ︷︷ ︸
=:C̃θ,1

∪
{

(x, t) ∈ R− × R| − Λ2−θ(−x+ 1) ≤ t ≤ 0
}︸ ︷︷ ︸

=:C̃θ,2

.

The sets

C̃1 :=
{
C̃θ,1|θ ∈ R \ {0, 2}

}
and C̃2 :=

{
C̃θ,2|θ ∈ R \ {0, 2}

}
are VC-classes as shown above. Using Lemma 2.6.17 (iii) from Vaart and Wellner [94],

C̃1 t C̃2 =
{
C̃θ,1 ∪ C̃θ,2|C̃θ,1 ∈ C̃1, C̃θ,2 ∈ C̃2

}
is a VC-class which contains C̃. The statement for the class of derivatives can be shown analogously.
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Supplementary Material

3.8 Uniform Convergence Rates for the Lasso

Assumptions B1-B7.

The following assumptions hold uniformly in n ≥ n0 and P ∈ Pn:

B1 Uniformly in θ, the model is sparse, namely sup
θ∈Θ
‖βθ‖0 ≤ s.

B2 The parameters obey the growth conditions n−1/3 log(p∨n) ≤ δn and s log(p∨n) ≤ δnn for δn ↘ 0

approaching zero from above at a speed at most polynomial in n.

B3 For all n ∈ N, the regressor X = (X1, . . . , Xp) has a bounded support X .

B4 Uniformly in θ, the conditional variance of the error term is bounded

0 < c ≤ inf
θ∈Θ

E
[
ε2
θ|X

]
≤ sup
θ∈Θ

E
[
ε2
θ|X

]
≤ C <∞.

B5 The transformations are measurable and the class of transformations

FΛ :=
{

Λθ(·)|θ ∈ Θ
}

has VC index CΛ and an envelope FΛ with

E[FΛ(Y )6] <∞.

B6 The transformations are differentiable with respect to θ and the following condition holds:

sup
θ∈Θ

E
[(

Λ̇θ(Y )
)2] ≤ C <∞.

B7 With probability 1 − o(1), the empirical minimum and maximum sparse eigenvalues are bounded

from zero and above, namely

0 < κ′ ≤ inf
||δ||0≤s log(n),||δ||=1

||XT δ||Pn,2

≤ sup
||δ||0≤s log(n),||δ||=1

||XT δ||Pn,2 ≤ κ′′ <∞.
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Theorem 7.

Under Assumptions B1-B7 above, uniformly for all P ∈ Pn with probability 1− o(1), it holds:

1. sup
θ∈Θ
||β̂θ||0 = O(s),

2. sup
θ∈Θ
||XT (β̂θ − βθ)||Pn,2 = O

(√
s log(p∨n)

n

)
,

3. sup
θ∈Θ
||β̂θ − βθ||1 = O

(√
s2 log(p∨n)

n

)
.

Proof. We verify Assumption 6.1 from Belloni et al. [11]. Due to Assumption B1 and Assumption B2,

the condition in 6.1(i) is satisfied. Needless to say, the Assumption 6.1(ii) holds for a compact Θ ⊂ R.

Remark that Assumption B4 and Assumption B5 imply the conditions in 6.1 (iii). Due to Assumption B3,

the conditions in 6.1(iv)(a) are satisfied and we can omit the X in the technical conditions in 6.1(iv)(b).

The eigenvalue condition 6.1(iv)(c) is the same as in B7. Therefore, we have to show with probability

1− o(1):

(1) sup
θ∈Θ
|(En − E)ε2

θ ∨ (En − E)Λθ(Y )2| = O (δn)

(2) n1/2 sup
|θ−θ′|≤1/n

|En [εθ − εθ′ ] | = O (δn) and

(3) log(p ∨ n)1/2 sup
|θ−θ′|≤1/n

En
[
(εθ − εθ′)2

]1/2
= O (δn) .

Since FΛ is a VC-class of functions with VC index CΛ, we have by Theorem 2.6.7 in Vaart and Wellner

[94]

logN(ε‖FΛ‖Q,2,FΛ, L2(Q)) ≤ C ′Λ log(C ′′Λ/ε) (3.20)

for any Q with ‖FΛ‖2Q,2 = EQ[F 2
Λ] <∞, where the constants C ′Λ and C ′′Λ only depend on the VC index.

Define

F ′Λ :=
{
E [Λθ(·)|X] |θ ∈ Θ

}
with envelope F ′Λ := E[FΛ|X] and

E2
Λ :=

{
(Λθ(·)− E [Λθ(·)|X])

2 |θ ∈ Θ
}

with envelope (FΛ + F ′Λ)
2
. By Lemma L.2 in the supplement to Belloni et al. [11], we have

sup
Q′

logN(ε‖F ′Λ‖Q′,2,F ′Λ, L2(Q′)) ≤ sup
Q

logN((ε/4)2‖FΛ‖Q,2,FΛ, L2(Q)), (3.21)

where the supremum on the left-hand side is taken over all probability measures Q′ with

‖F ′Λ‖2Q′,2 := EQ′
[(
E[FΛ(Y )|X]

)2] ≡ EQ′
[(
E[FΛ|X]

)2]
<∞.

Since E2
Λ ⊂ (FΛ −F ′Λ)2, it follows by Lemma L.1 in the supplement to Belloni et al. [11] for any Q̃ with

EQ̃[(FΛ + F ′Λ)4] <∞ and 0 < ε ≤ 1

logN(ε‖(FΛ + F ′Λ)2‖Q̃,2, E
2
Λ, L2(Q̃))

≤ 2 logN
(ε

2
‖FΛ + F ′Λ‖Q̃,2,FΛ −F ′Λ, L2(Q̃)

)
≤ 2 logN

(ε
4
‖FΛ‖Q̃,2,FΛ, L2(Q̃)

)
+ 2 logN

(ε
4
‖F ′Λ‖Q̃,2,F

′
Λ, L2(Q̃)

)
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≤ 2 sup
Q

logN
(ε

4
‖FΛ‖Q,2,FΛ, L2(Q)

)
+ 2 sup

Q′
logN

(ε
4
‖F ′Λ‖Q′,2,F ′Λ, L2(Q′)

)
≤ 4 sup

Q
logN

(
ε2

256
‖FΛ‖Q,2,FΛ, L2(Q)

)
,

where we used (3.21) in the last step. We conclude

logN(ε‖(FΛ + F ′Λ)2‖Q̃,2, E
2
Λ, L2(Q̃)) ≤ 4C ′Λ log(256C ′′Λ/ε

2)

= 16C ′Λ log

(
16
√
C ′′Λ/ε

)
by (3.20). Under Assumption B5, for all r ∈ {1, 2, 3}, it holds

E
[
F ′2rΛ

]
= E

[
(E [FΛ|X])

2r
]
≤ E

[
E
[
(FΛ)

2r |X
]]

= E
[
F 2r

Λ

]
<∞,

which implies

E
[
(FΛ + F ′Λ)4

]
= E

[
F 4

Λ

]
+ E

[
F ′4Λ

]︸ ︷︷ ︸
≤E[F 4

Λ]

+6 E
[
F 2

ΛF
′2
Λ

]︸ ︷︷ ︸
≤
√

E[F 4
Λ]E[F ′4Λ ]

+ 4 E
[
F 3

ΛF
′
Λ

]︸ ︷︷ ︸
≤
√

E[F 6
Λ]E[F ′2Λ ]

+4 E
[
FΛF

′3
Λ

]︸ ︷︷ ︸
≤
√

E[F 2
Λ]E[F ′6Λ ]

≤ C <∞.

Remark that

E
[
sup
θ∈Θ

ε2
θ

]
≤ E

[
(FΛ + F ′Λ)2

]
≤ C <∞. (3.22)

We have

√
n sup
θ∈Θ
|(En − E)ε2

θ| = sup
g∈E2

Λ

|Gn(g)|.

For every σ2
C with supg∈E2

Λ
E[g2] ≤ σ2

C ≤ E
[
(FΛ + F ′Λ)4

]
:= G1 < ∞ and universal constants K and K2

with probability not less than 1− (1/ log(n)), it holds

sup
g∈E2

Λ

|Gn(g)|

≤ 2K

[(
Sσ2

C log(AG
1/2
1 /σC)

)1/2

+ SG
1/2
1 log(AG

1/2
1 /σC)

]
+K2(σC log(n)1/2 +G

1/2
1 log(n))

= O(log(n))

by Lemma 1 in Belloni et al. [9] with q = 2, t = log(n), A = 16
√
C ′′Λ and S = 16C ′Λ. Therefore, it follows

with probability 1− o(1)

sup
θ∈Θ
|(En − E)ε2

θ| = O

(
log(n)√

n

)
.
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Analogously, it can be shown with probability 1− o(1)

sup
θ∈Θ
|(En − E)Λθ(Y )2| = O

(
log(n)√

n

)
.

(1) follows by Assumption B2.

Further, we have

sup
|θ−θ′|≤1/n

|En [εθ − εθ′ ] | = sup
|θ−θ′|≤1/n

1√
n
|Gn(εθ − ε′θ)|.

Define E ′Λ :=
{
εθ − εθ′ |θ, θ′ ∈ Θ

}
and EΛ :=

{
εθ = (Λθ(·)− E [Λθ(·)|X]) |θ ∈ Θ

}
. Using the same

argument as above, we obtain

logN(ε‖2(FΛ + F ′Λ)‖Q̃,2, E
′
Λ, L2(Q̃))

≤ logN
(ε

2
‖2FΛ‖Q̃,2,FΛ, L2(Q̃)

)
+ logN

(ε
2
‖2F ′Λ‖Q̃,2,F

′
Λ, L2(Q̃)

)
≤ sup

Q
logN (ε‖FΛ‖Q,2,FΛ, L2(Q)) + sup

Q′
logN (ε‖F ′Λ‖Q′,2,F ′Λ, L2(Q′))

≤ 2 sup
Q

logN

((ε
4

)2

‖FΛ‖Q,2,FΛ, L2(Q)

)
≤ 4C ′Λ log(4

√
C ′′Λ/ε).

Since

E ′′Λ :=
{
εθ − εθ′ |θ, θ′ ∈ Θ, |θ − θ′| ≤ 1/n

}
⊂ E ′Λ,

we can use Lemma 1 again, since we obtain the same envelope and bound for the entropy as for E ′Λ. We

achieve for every σ2
n with supg∈E′′Λ E[g2] ≤ σ2

n ≤ E[4(FΛ +F ′Λ)2] := G2 and universal constants K and K2

with probability at least 1− (1/ log(n))

sup
g∈E′′Λ

|Gn(g)|

≤ 2K

[(
Sσ2

n log(AG
1/2
2 /σn)

)1/2

+ n−
1
4S2E[(FΛ + F ′Λ)4]1/4 log(AG

1/2
2 /σn)

]
+K2(σn log(n)1/2 + n−

1
4 2E[(FΛ + F ′Λ)4]1/4 log(n))

by Lemma 1 with q = 4, t = log(n), A = 4
√
C ′′Λ, S = 4C ′Λ.

We have

sup
|θ−θ′|≤ 1

n

E[(εθ − εθ′)2]

= sup
|θ−θ′|≤ 1

n

E
[(

Λθ(Y )− E[Λθ(Y )|X]− Λθ′(Y ) + E[Λθ′(Y )|X]
)2]

= sup
|θ−θ′|≤ 1

n

E
[((

Λθ(Y )− Λθ′(Y )
)
−
(
E[Λθ(Y )|X]− E[Λθ′(Y )|X]

))2
]

= sup
|θ−θ′|≤ 1

n

(
E
[(

Λθ(Y )− Λθ′(Y )
)2]

+ E
[
E
[(

Λθ(Y )− Λθ′(Y )
)
|X
]2

︸ ︷︷ ︸
≤E
[(

Λθ(Y )−Λθ′ (Y )
)2
|X
]
]
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− 2E
[(

Λθ(Y )− Λθ′(Y )
)
E
[(

Λθ(Y )− Λθ′(Y )
)
|X
]]

︸ ︷︷ ︸
≥0

)

≤ sup
|θ−θ′|≤ 1

n

2E
[(

Λθ(Y )− Λθ′(Y )
)2]

= sup
|θ−θ′|≤ 1

n

2E
[
(θ − θ′)2

(
Λ̇θ̄(Y )

)2]
≤ 2

n2
sup
θ∈Θ

E
[(

Λ̇θ(Y )
)2]

︸ ︷︷ ︸
≤C

= O(n−2).

Therefore, we can choose σ2
n = O(n−2) and obtain with probability 1− o(1)

n1/2 sup
|θ−θ′|≤1/n

|En [εθ − εθ′ ] | = sup
|θ−θ′|≤1/n

|Gn(εθ − ε′θ)|

= sup
g∈E′′Λ

|Gn(g)|

= O

(
log(n)

n1/4

)
= O (δn) .

To verify (3), we can use the same arguments as above and we remark that

sup
|θ−θ′|≤1/n

En
[
(εθ − εθ′)2

]
≤ sup
|θ−θ′|≤1/n

E
[
(εθ − εθ′)2

]
+

∣∣∣∣∣ sup
|θ−θ′|≤1/n

(
En
[
(εθ − εθ′)2

]
− E

[
(εθ − εθ′)2

])∣∣∣∣∣
≤ sup
g∈E2

Λ
′

1√
n
Gn(g) +O(n−2)

with E2
Λ
′

:=
{

(εθ − εθ′)2|θ, θ′ ∈ Θ
}
. The entropy of this class is bounded by

logN(ε‖4(FΛ + F ′Λ)2‖Q̃,2, E
2
Λ
′
, L2(Q̃))

≤ 2 logN
(ε

2
‖4(FΛ + F ′Λ)‖Q̃,2, E

′
Λ, L2(Q̃)

)
≤ 2 logN

(ε
4
‖4FΛ‖Q̃,2,FΛ, L2(Q̃)

)
+ 2 logN

(ε
4
‖4F ′Λ‖Q̃,2,F

′
Λ, L2(Q̃)

)
≤ 2 sup

Q
logN (ε‖FΛ‖Q,2,FΛ, L2(Q)) + 2 sup

Q′
logN (ε‖F ′Λ‖Q′,2,F ′Λ, L2(Q′))

≤ 4 sup
Q

logN

((ε
4

)2

‖FΛ‖Q,2,FΛ, L2(Q)

)
≤ 8C ′Λ log

(
4
√
C ′′Λ/ε

)
.

For every σ2
C with supg∈E2

Λ
′ E[g2] ≤ σ2

C ≤ E
[
16(FΛ + F ′Λ)4

]
:= G3 < ∞ and universal constants K and

K2 with probability not less than 1− (1/ log(n)), it holds

sup
g∈E2

Λ
′
|Gn(g)|

≤ 2K

[(
Sσ2

C log(AG
1/2
3 /σC)

)1/2

+ SG
1/2
3 log(AG

1/2
3 /σC)

]
+K2(σC log(n)1/2 +G

1/2
3 log(n))
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= O(log(n))

by Lemma 1 in Belloni et al. [9] with q = 2, t = log(n), A = 4
√
C ′′Λ and S = 8C ′Λ.

We conclude

sup
|θ−θ′|≤1/n

En
[
(εθ − εθ′)2

]
= O

(
log n√
n

)
and

log(p ∨ n)1/2 sup
|θ−θ′|≤1/n

En
[
(εθ − εθ′)2

]1/2
= O(δn)

since n−1/3 log(p ∨ n) ≤ δn.

3.9 Inference in Z-Estimation Problems

In this section, we consider a general Z-estimation problem, where the target parameter θ0 obeys the

moment condition

E
[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
= 0.

We allow the unknown, high-dimensional nuisance function

h0(θ,X) = (h0,1(θ,X), . . . , h0,m(θ,X)) ∈ H

to depend on the target parameter θ. The central theorem is a statement about the asymptotic distri-

bution of an estimator, which solves∣∣∣En[ψ((Y,X), θ̂, ĥ0(θ̂, X)
)]∣∣∣ = inf

θ∈Θ

∣∣∣En[ψ((Y,X), θ, ĥ0(θ,X)
)]∣∣∣+ εn, (3.23)

where εn = o(n−1/2) is the numerical tolerance. We need a more general form of the conditions in Section

3.3.

Assumptions C1-C7.

The following assumptions hold uniformly in n ≥ n0 and P ∈ Pn:

C1 The true parameter θ0 obeys the moment condition

E
[
ψ
(
(Y,X), θ0, h0

)]
= 0.

C2 The map (θ, h) 7→ E[ψ((X,Y ), θ, h)] is twice continuously Gateaux-differentiable on Θ×H.

C3 Let H̃ = {h̃ : Θ×X 7→ Rm} ⊆ H be a suitable set of functions. For every θ ∈ Θ, we have a nuisance

function estimator ĥ(θ) and a set of functions H̃(θ) = {h̃ : X 7→ Rm : h̃(x) = h̃(θ, x) ∈ H̃} with

P (ĥ(θ) ∈ H̃(θ)) = 1 − o(1), where H̃(θ) contains h0(θ, ·) and is constrained by conditions given

below.

C4 For all h̃ ∈ H̃, the score ψ obeys the Neyman orthogonality property

D0[h̃− h0] = 0.
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C5 For all θ ∈ Θ, the class of functions

Ψ(θ) =
{

(y, x) 7→ ψ
(
(y, x), θ, h̃(θ, x)

)
, h̃ ∈ H̃(θ)

}
has a measurable envelope ψ̄ ≥ supψ∈Ψ(θ) |ψ| independent from θ, such that for some q ≥ 4

E
[
(ψ̄(Y,X))q

]
≤ C.

The class Ψ(θ) is pointwise measurable and, uniformly for all θ ∈ Θ, it holds

sup
Q

logN(ε||ψ̄||Q,2,Ψ(θ), L2(Q)) ≤ C1s log

(
C2(p ∨ n)

ε

)
with C1 and C2 being independent from θ.

C6 (i) For a positive sequence ρn ↘ 0 with

n−1/2
(
s

1
2 log(p ∨ n)

1
2 + n−

1
2 + 1

q s log(p ∨ n)
)

= O(ρn),

we have

sup
θ∈Θ,h̃∈H̃(θ)

|E[ψ((Y,X)), θ, h0(θ,X)]− E[ψ((Y,X)), θ, h̃(θ,X)]| ≤ Cρn.

(ii) We define

supE
[(
ψ
(
(Y,X), θ, h̃(θ,X)

)
− ψ

(
(Y,X), θ0, h0(θ0, X)

))2]1/2
=: rn,

where the supremum is taken over all θ with |θ − θ0| ≤ Cρn and h̃ ∈ H̃, meaning

sup ≡ sup
θ:|θ−θ0|≤Cρn,h̃∈H̃(θ)

,

and it holds rns
1
2 log

(
(p∨n)
rn

) 1
2

+ n−
1
2 + 1

q s log
(

(p∨n)
rn

)
= o(1) with q from Assumption C5.

(iii) It holds

sup

∣∣∣∣∂2
r

{
E
[
ψ
(
(Y,X), θ0 + r(θ − θ0), h0 + r(h̃− h0)

)]}∣∣∣∣ = o(n−1/2),

where

sup ≡ sup
r∈(0,1),θ:|θ−θ0|≤Cρn,h̃∈H̃(θ)

.

C7 For h ∈ H̃, the function

θ 7→ E
[
ψ
(
(Y,X), θ, h(θ,X)

)]
is differentiable in a neighborhood of θ0 and, for all θ ∈ Θ, the identification relation

2|E[ψ((Y,X)), θ, h0(θ,X)]| ≥ |Γ(θ − θ0)| ∧ c0

is satisfied with

Γ := ∂θE
[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
> c1.
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Since the nuisance functions depend on the target parameter, the conditions ensure that they can be

estimated uniformly over all θ with a sufficiently fast rate.

Theorem 8. Under the Assumptions C1-C7, an estimator θ̂ of the form (3.23) obeys

n
1
2 (θ̂ − θ0)

D−→ N (0,Σ),

where

Σ := E
[
Γ−2ψ2

(
(Y,X), θ0, h0(θ0, X)

)]
with Γ = ∂θE

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
.

Comment 3.9.1.

This setting and the theorem is almost identical to Assumption 3.4 and Theorem 3.3 in Chernozhukov

et al. [35]. Their theorem holds for dependent nuisance functions, but the entropy condition may be hard

to verify in some settings:

Suppose the unknown nuisance function h0 is a linear function of X, where the coefficients β0(θ) (‖β0(θ)‖0 ≤
s for all θ) are dependent on the target parameter. If h0(θ,X) = Xβ0(θ) is estimated by the Lasso esti-

mator, the uniform covering entropy of

Fh :=
{
ψ
(
·, θ, h(θ, ·)

)
, θ ∈ Θ

}
may not fulfill the desired condition. This is because the uniform covering entropy of the class

H :=
{
h(θ, ·) : X → R|h(θ,X) = β(θ)X, ‖β(θ)‖0 ≤ s, θ ∈ Θ

}
can not be bounded by representing the class as the union over sets with a bounded VC-index (see, e.g.,

in Belloni et al. [9]) since the indices which differ from zero may vary for each θ.

In their example, the estimation of the average treatment effect, this problem does not occur, since the

estimated nuisance functions do not depend on the target parameter. To bypass this, we rely on a slightly

different set of entropy conditions, which enables us to restrict the entropy of the classes uniformly over

all θ ∈ Θ.

Proof. We are using similar arguments as in proof of Theorem 2 from Belloni et al. [9]. We prove our

theorem under an arbitrary sequence P = Pn ∈ Pn. Therefore, the dependence of P on n can be sup-

pressed. Let ρn be a positive sequence converging to zero.

Step 1.

Let θ̃ be an arbitrary estimator fulfilling |θ̃− θ0| ≤ Cρn with probability 1− o(1). We aim to prove that

with probability 1− o(1)

En
[
ψ
(
(Y,X), θ̃, ĥ(θ̃, X)

)]
= En

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
+ ∂θE

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
︸ ︷︷ ︸

:=Γ

(θ̃ − θ0) + o(n−
1
2 ).

By Assumption C1, we can expand the term

En
[
ψ
(
(Y,X), θ̃, ĥ(θ̃, X)

)]
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= En
[
ψ
(
(Y,X), θ̃, ĥ(θ̃, X)

)]
+ E

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
︸ ︷︷ ︸

=0

+ En
[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
− En

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
+ E

[
ψ
(
(Y,X), θ̃, ĥ(θ̃, X)

)]
− E

[
ψ
(
(Y,X), θ̃, ĥ(θ̃, X)

)]
= En

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
︸ ︷︷ ︸

:=I

+E
[
ψ
(
(Y,X), θ̃, ĥ(θ̃, X)

)]
︸ ︷︷ ︸

:=II

+ En
[
ψ
(
(Y,X), θ̃, ĥ(θ̃, X)

)]
− E

[
ψ
(
(Y,X), θ̃, ĥ(θ̃, X)

)]
︸ ︷︷ ︸

:=III

−
(
En
[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
− E

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
︸ ︷︷ ︸

:=IV

)

= I + II + III − IV.

Considering the last two terms, we have with probability 1− o(1)

n
1
2

(
III − IV

)
=

1√
n

n∑
i=1

(
ψ
(
(Y,X), θ̃, ĥ(θ̃, X)

)
− ψ

(
(Y,X), θ0, h0(θ0, X)

)
−
(
E
[
ψ
(
(Y,X), θ̃, ĥ(θ̃, X)

)]
− E

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]))
≤ sup
θ:|θ−θ0|≤Cρn

∣∣∣∣[ 1√
n

n∑
i=1

(
ψ
(
(Y,X), θ, ĥ(θ,X)

)
− ψ

(
(Y,X), θ0, h0(θ0, X)

)
−
(
E
[
ψ
(
(Y,X), θ, ĥ(θ,X)

)]
− E

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]))]∣∣∣∣
≤ sup
θ:|θ−θ0|≤Cρn

(
sup

f∈Ψ′(θ)

|Gn(f)|

)

with

Ψ′(θ) =
{

(y, x) 7→ ψ
(
(y, x), θ, h̃(θ, x)

)
− ψ

(
(y, x), θ0, h0(θ0, x)

)
, h̃ ∈ H̃(θ)

}
and envelope 2ψ̄. Here, we used Assumption C5 and that we have ĥ(θ,X), h0(θ,X) ∈ H̃(θ) for all θ ∈ Θ

by Assumption C3 with probability 1− o(1). We note that

sup
Q

logN(ε||2ψ̄||Q,2,Ψ′(θ), L2(Q)) ≤ C1s log

(
C2(p ∨ n)

ε

)
for constants C1 and C2 beeing independent from θ. We want to apply Lemma 1 from Belloni et al. [9].

By Assumption C6, we have

sup
θ:|θ−θ0|≤Cρn,f∈Ψ′(θ)

E
[
f2
(
(Y,X)

)]
= sup
θ:|θ−θ0|≤Cρn,h̃∈H̃(θ)

E
[(
ψ
(
(Y,X), θ, h̃(θ,X)

)
− ψ

(
(Y,X), θ0, h0(θ0, X)

))2]
=: r2

n

with rns
1
2 log

(
p∨n
rn

) 1
2

+ n−
1
2 + 1

q s log
(
p∨n
rn

)
= o(1).
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Choosing σ2
n = r2

n and maxq∈{2,4} E[(ψ̄(Y,X))q] ≤ C, the first inequality of Lemma 1 in Belloni et al. [9]

implies

E

[
sup

f∈Ψ′(θ)

|Gn(f)|

]

≤ K

(C1sσ
2
n log

(
C2(p ∨ n)C

1
2

σn

)) 1
2

+ n−
1
2 + 1

qC1sC
1
q log

(
C2(p ∨ n)C

1
2

σn

)
≤ K ′

(
σn

(
s log

(
p ∨ n
σn

)) 1
2

+ n−
1
2 + 1

q s log

(
p ∨ n
σn

))
.

Applying the second part of Lemma 1 with t = log(n), we obtain

n
1
2 |III − IV | ≤ sup

θ:|θ−θ0|≤Cρn

(
sup

f∈Ψ′(θ)

|Gn(f)|
)

≤ sup
θ:|θ−θ0|≤Cρn

(
2E
[

sup
f∈Ψ′(θ)

|Gn(f)|
]

+Kq

(
σn log(n)

1
2 + n−

1
2 + 1

qC
1
q log(n)

))
≤ K ′q

(
σn

(
s log

(p ∨ n
σn

)) 1
2

+ n−
1
2 + 1

q s log
(p ∨ n
σn

))
= o(1).

Now, we expand the term II. Let h̃ ∈ H̃ and θ̃ ∈ Θ.

By Taylor expansion of the function r 7→ E
[
ψ
(
(Y,X), θ0 + r(θ̃ − θ0), h0 + r(h̃ − h0)

)]
and Assumption

C2, we have

E
[
ψ
(
(Y,X), θ̃, h̃

)]
= E

[
ψ
(
(Y,X), θ0, h0

)]
+ ∂r

{
E
[
ψ
(
(Y,X), θ0 + r(θ̃ − θ0), h0 + r(h̃− h0)

)]}∣∣∣∣
r=0

+
1

2
∂2
r

{
E
[
ψ
(
(Y,X), θ0 + r(θ̃ − θ0), h0 + r(h̃− h0)

)]}∣∣∣∣
r=r̄

for some r̄ ∈ (0, 1). Due to the orthogonality condition in C4, it holds

∂r

{
E
[
ψ
(
(Y,X), θ0 + r(θ̃ − θ0), h0 + r(h̃− h0)

)]}∣∣∣∣
r=0

=∂r

{
E
[
ψ
(
(Y,X), θ0 + r(θ̃ − θ0), h0 + r(h̃− h0)

)]}∣∣∣∣
r=0

−D0[h̃− h0]

=∂r

{
E
[
ψ
(
(Y,X), θ0 + r(θ̃ − θ0), h0 + r(h̃− h0)

)]
− E

[
ψ
(
(Y,X), θ0, h0 + r(h̃− h0)

)]}∣∣∣∣
r=0

=∂r

{
r(θ̃ − θ0)∂θE

[
ψ
(
(Y,X), θ, h0 + r(h̃− h0)

)]∣∣∣
θ∈[θ0,θ0+r(θ̃−θ0)]

}∣∣∣∣
r=0

=(θ̃ − θ0)∂θE
[
ψ
(
(Y,X), θ0, h0

)]
.
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By Assumption C6, we have∣∣∣∣∂2
r

{
E
[
ψ
(
(Y,X), θ0 + r(θ̃ − θ0), h0 + r(h̃− h0)

)]}∣∣∣∣
r=r̄

∣∣∣∣ = o(n−1/2)

and therefore

E
[
ψ
(
(Y,X), θ̃, h̃

)]
= Γ(θ̃ − θ0) + o(n−1/2).

In total, we obtain with probability 1− o(1)

En
[
ψ
(
(Y,X), θ̃, ĥ(θ̃, X)

)]
= En

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
+ Γ(θ̃ − θ0) + o(n−

1
2 ).

Step 2.

We want to prove that with probability 1− o(1)

inf
θ∈Θ

∣∣∣En[ψ((Y,X), θ, ĥ(θ,X)
)]∣∣∣ = o(n−

1
2 ).

Define

θ∗ := θ0 − Γ−1En
[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
.

By the central limit theorem, it follows directly

|θ∗ − θ0| = |Γ−1|
∣∣∣En[ψ((Y,X), θ0, h0(θ0, X)

)]
︸ ︷︷ ︸

=O
(
n−

1
2

)
∣∣∣ ≤ Cρn.

Using Step 1, we obtain with probability 1− o(1)

inf
θ∈Θ

∣∣∣En[ψ((Y,X), θ, ĥ(θ,X)
)]∣∣∣ ≤ ∣∣∣En[ψ((Y,X), θ∗, ĥ(θ∗, X)

)]∣∣∣ = o(n−
1
2 )

by inserting the definition of θ∗.

Step 3.

We aim to show that the estimated θ̂ converges towards θ0, meaning with probability 1− o(1)

|θ̂ − θ0| ≤ Cρn.

By definition of θ̂ and Step 2, we have∣∣∣En[ψ((Y,X), θ̂, ĥ(θ̂, X)
)]∣∣∣ = o(n−

1
2 ).

Since ĥ(θ) ∈ H̃(θ) with probability 1− o(1) for all θ ∈ Θ, we have

sup
θ∈Θ

∣∣∣En[ψ((Y,X), θ, ĥ(θ,X)
)]
− E

[
ψ
(
(Y,X), θ, ĥ(θ,X)

)]∣∣∣
≤ sup
θ∈Θ

(
n−

1
2 sup
g∈Ψ(θ)

|Gn(g)|

)
= O

(
n−1/2

(
s

1
2 log(p ∨ n)

1
2 + n−

1
2 + 1

q s log(p ∨ n)
))

,
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where we used Lemma 1 in Belloni et al. [9] and E
[
(ψ̄(Y,X))2

]
≤ C as in Step 1. Combining this with

the triangle inequality, we obtain

∣∣E[ψ((Y,X), θ̂, h0(θ̂, X)
)]∣∣

≤ sup
θ∈Θ,h̃∈H̃(θ)

|E[ψ((Y,X)), θ, h0(θ,X)]− E[ψ((Y,X)), θ, h̃(θ,X)]|

+ sup
θ∈Θ,h̃(θ)∈H̃(θ)

∣∣∣En[ψ((Y,X), θ, h̃(θ,X)
)]
− E

[
ψ
(
(Y,X), θ, h̃(θ,X)

)]∣∣∣
+
∣∣∣En[ψ((Y,X), θ̂, ĥ(θ̂, X)

)]∣∣∣ ≤ Cρn
by Assumption C6. Hence, it follows by Assumption C7 with probability 1− o(1)

|Γ(θ̂ − θ0)| ∧ c0 ≤ 2
∣∣E[ψ((Y,X)), θ̂, h0(θ̂, X)]

∣∣ ≤ Cρn
and dividing by Γ > c1 gives the claim of this step.

Step 4.

Due to Step 3, we are able to use Step 1 for the estimated parameter and obtain with probability 1−o(1)

En
[
ψ
(
(Y,X), θ̂, ĥ(θ̂, X)

)]
= En

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
+ Γ(θ̂ − θ) + o

(
n−

1
2

)
.

By Step 2, we have

Γ(θ̂ − θ)

= En
[
ψ
(
(Y,X), θ̂, ĥ(θ̂, X)

)]
︸ ︷︷ ︸

=o
(
n−

1
2

)
−En

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
+ o

(
n−

1
2

)

= −
(
En
[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
− E

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
︸ ︷︷ ︸

=0

)

+ o
(
n−

1
2

)
.

Using the central limit theorem, we get with probability 1− o(1)

n
1
2 (θ̂ − θ)

= −Γ−1n
1
2

(
En
[
ψ
(
(Y,X), θ0, h0(θ0, X)

)]
− E

[
ψ
(
(Y,X), θ0, h0(θ0, X)

)])
︸ ︷︷ ︸

D−→N (0,Σ)

+ o(1)

with

Σ := Var
(

Γ−1ψ
(
(Y,X), θ0, h0(θ0, X)

))
= E

[
Γ−2ψ2

(
(Y,X), θ0, h0(θ0, X)

)]
.
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3.10 Additional Simulations

This section provides additional simulation studies.

3.10.1 Approximately Sparse Setting

In the approximately sparse setting, the coefficients are set to

βθ0,j =

1 for j ≤ s
1

(j−s+1)2 for j > s.

The other parameters are chosen as in the simulations in the main text (Section 3.4), but to restrict the

calculation time we focus on the correlation structure Σ
(X)
1 . The results for Box-Cox transformations

(θ0 = 0) are presented in Table 3.9 and the results for Yeo-Johnson power transformations (θ0 = 1) in

Table 3.10. We note that the case p = 20 and s = 20 is not contained in both tables since these settings

coincide with the exactly sparse setting. The results are similar to the exactly sparse setting and the

acceptance rate is close to the nominal level.
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n p s SNR Estimator Acceptance rate MAE rel. MSE

100 20 5 1.0 -0.00072435 0.946 0.0147 1.2232

100 20 5 3.0 0.00065075 0.944 0.0139 1.0325

100 20 10 1.0 -0.00035129 0.950 0.0108 1.6230

100 20 10 3.0 -0.00068912 0.940 0.0114 1.4992

100 50 5 1.0 -0.00052439 0.952 0.0141 1.3855

100 50 5 3.0 -0.00039227 0.970 0.0136 1.1084

100 50 10 1.0 0.00037004 0.952 0.0103 1.7093

100 50 10 3.0 0.00040427 0.952 0.0111 1.7451

100 50 20 1.0 0.00024774 0.948 0.0071 1.8708

100 50 20 3.0 0.00032668 0.946 0.0092 3.3351

100 100 5 1.0 0.00115031 0.958 0.0143 1.4935

100 100 5 3.0 -0.00002014 0.976 0.0147 1.3083

100 100 10 1.0 0.00066524 0.952 0.0105 1.8751

100 100 10 3.0 -0.00072896 0.966 0.0119 2.0950

100 100 20 1.0 -0.00033613 0.936 0.0079 1.8906

100 100 20 3.0 -0.00003507 0.962 0.0091 3.4120

100 200 5 1.0 -0.00067739 0.976 0.0151 1.4985

100 200 5 3.0 -0.00000964 0.966 0.0151 1.1812

100 200 10 1.0 -0.00071120 0.952 0.0105 1.8505

100 200 10 3.0 -0.00149334 0.980 0.0130 2.2642

100 200 20 1.0 -0.00103713 0.946 0.0080 1.7758

100 200 20 3.0 -0.00008740 0.962 0.0094 3.3879

200 20 5 1.0 -0.00104238 0.924 0.0095 0.9621

200 20 5 3.0 0.00119542 0.928 0.0098 0.9285

200 20 10 1.0 0.00034137 0.942 0.0067 1.1898

200 20 10 3.0 -0.00036637 0.932 0.0068 1.0075

200 50 5 1.0 0.00029033 0.938 0.0100 1.0325

200 50 5 3.0 0.00128785 0.946 0.0095 0.9765

200 50 10 1.0 0.00027922 0.948 0.0069 1.2999

200 50 10 3.0 0.00015796 0.950 0.0067 1.0655

200 50 20 1.0 0.00014660 0.932 0.0053 1.7986

200 50 20 3.0 0.00027307 0.948 0.0054 1.8437

200 100 5 1.0 0.00033937 0.944 0.0087 1.1958

200 100 5 3.0 -0.00000796 0.946 0.0090 1.1458

200 100 10 1.0 0.00027762 0.946 0.0069 1.4877

200 100 10 3.0 0.00127725 0.946 0.0070 1.2023

200 100 20 1.0 -0.00028952 0.944 0.0051 1.8415

200 100 20 3.0 0.00049090 0.954 0.0060 2.0796

200 200 5 1.0 0.00045282 0.926 0.0101 1.0675

200 200 5 3.0 0.00005082 0.952 0.0096 0.9836

200 200 10 1.0 0.00062688 0.944 0.0076 1.4918

200 200 10 3.0 0.00052976 0.954 0.0070 1.1149

200 200 20 1.0 0.00011013 0.940 0.0051 1.7536

200 200 20 3.0 -0.00068245 0.966 0.0057 2.2181

200 500 5 1.0 0.00058465 0.906 0.0104 1.2234

200 500 5 3.0 -0.00013389 0.926 0.0097 1.1230

200 500 10 1.0 0.00012013 0.942 0.0075 1.6718

200 500 10 3.0 0.00021128 0.944 0.0070 1.2930

200 500 20 1.0 0.00019671 0.944 0.0052 2.0953

200 500 20 3.0 -0.00008077 0.974 0.0060 3.0412

Table 3.9: Additional simulations for Box-Cox transformations.
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n p s SNR Estimator Acceptance rate MAE rel. MSE

100 20 5 1.0 1.00056735 0.962 0.0418 1.2250

100 20 5 3.0 0.99698158 0.932 0.0410 1.0245

100 20 10 1.0 0.99986806 0.942 0.0382 1.6179

100 20 10 3.0 0.99983138 0.960 0.0373 1.5512

100 50 5 1.0 1.00426870 0.950 0.0421 1.3767

100 50 5 3.0 1.00276705 0.962 0.0362 1.1167

100 50 10 1.0 0.99942878 0.950 0.0391 1.7085

100 50 10 3.0 1.00116016 0.966 0.0357 1.7955

100 50 20 1.0 0.99842764 0.946 0.0321 1.8739

100 50 20 3.0 0.99724029 0.966 0.0355 3.4082

100 100 5 1.0 1.00384643 0.942 0.0462 1.4958

100 100 5 3.0 0.99651381 0.962 0.0382 1.2919

100 100 10 1.0 0.99891940 0.950 0.0385 1.8919

100 100 10 3.0 0.99564080 0.968 0.0361 2.1218

100 100 20 1.0 0.99995916 0.950 0.0326 1.8880

100 100 20 3.0 1.00184681 0.950 0.0374 3.4484

100 200 5 1.0 1.00045974 0.978 0.0424 1.5090

100 200 5 3.0 0.99536783 0.968 0.0383 1.1875

100 200 10 1.0 0.99877481 0.972 0.0377 1.8432

100 200 10 3.0 1.00074576 0.962 0.0398 2.3258

100 200 20 1.0 0.99797088 0.952 0.0346 1.7767

100 200 20 3.0 1.00079835 0.976 0.0352 3.3919

200 20 5 1.0 0.99985307 0.928 0.0292 0.9671

200 20 5 3.0 0.99996887 0.962 0.0255 0.9295

200 20 10 1.0 1.00053756 0.924 0.0259 1.1881

200 20 10 3.0 0.99887849 0.942 0.0223 1.0106

200 50 5 1.0 1.00122936 0.916 0.0312 1.0292

200 50 5 3.0 0.99870047 0.944 0.0258 0.9795

200 50 10 1.0 1.00219511 0.946 0.0251 1.2824

200 50 10 3.0 0.99885312 0.938 0.0237 1.0708

200 50 20 1.0 0.99941435 0.936 0.0224 1.7849

200 50 20 3.0 0.99886322 0.960 0.0224 1.8152

200 100 5 1.0 1.00073382 0.932 0.0301 1.1934

200 100 5 3.0 0.99614218 0.926 0.0268 1.1418

200 100 10 1.0 1.00113064 0.936 0.0271 1.5229

200 100 10 3.0 1.00177678 0.956 0.0214 1.1959

200 100 20 1.0 1.00030201 0.948 0.0240 1.8491

200 100 20 3.0 0.99925082 0.948 0.0230 2.1054

200 200 5 1.0 1.00129852 0.938 0.0288 1.0590

200 200 5 3.0 0.99850564 0.940 0.0275 0.9827

200 200 10 1.0 0.99588019 0.938 0.0262 1.5113

200 200 10 3.0 1.00066971 0.954 0.0233 1.1361

200 200 20 1.0 0.99697192 0.940 0.0239 1.7520

200 200 20 3.0 1.00029713 0.962 0.0216 2.2585

200 500 5 1.0 1.00007598 0.962 0.0279 1.2183

200 500 5 3.0 0.99890970 0.936 0.0276 1.1211

200 500 10 1.0 1.00145277 0.936 0.0272 1.6619

200 500 10 3.0 0.99971989 0.962 0.0226 1.2654

200 500 20 1.0 0.99981870 0.940 0.0242 2.1018

200 500 20 3.0 0.99695433 0.964 0.0231 2.9583

Table 3.10: Additional simulations for Yeo-Johnson transformations.
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3.10.2 Non-Normal Errors

In this section, we evaluate the performance of our proposed method under non-normal errors. The same

simulation is run as in Section 3.4 with n = 100 observations, but we simulate errors according to a

t-distribution with df degrees of freedom

ε ∼ t(df).

We focus on the correlation structure Σ
(X)
1 and the Box-Cox transformations (θ0 = 0). We set s = 20

and vary the degrees of freedom.

Figure 3.7: Coverage for an increasing number of degrees of freedom.

Figure 3.7 displays the effect of non-normal errors on the coverage. If the deviation from the normal

distribution is high (low number of degrees of freedom), the coverage differs largely from the nominal

level of 95%. With an increasing number of regressors the coverage gradually approaches the nominal

level.
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Chapter 4

Uniform Inference in

High-Dimensional Generalized

Additive Models

4.1 Introduction

Nonparametric regression allows the estimation of the relationship f between a target variable Y and

input variables X = (X1, . . . , Xp)
T without imposing (strong) functional assumptions:

Y = f(X1, . . . , Xp) + ε,

where ε denotes the random error term satisfying E[ε|X] = 0. When p is large, estimation of the regression

function f(X1, . . . , Xp) is practically infeasible due to the curse of dimensionality. One approach to

overcome this challenge that has been very popular in statistics and econometrics is to impose additional

additive structure leading to generalized additive models (GAMs):

Y = α+ f1(X1) + . . .+ fp(Xp) + ε, (4.1)

where α is a constant and fj(·), j = 1, . . . , p, are smooth univariate functions. The idea of GAMs can

be traced back to Friedman and Stuetzle [49], Stone [90] and Hastie and Tibshirani [54]. Estimation

and inference in the low-dimensional setting with fixed p has been analyzed widely in the literature. For

an introduction to GAMs, we refer to the textbook treatments by Hastie and Tibshirani [54] and Wood

[101]. In recent years, considerable progress has been made in understanding and analyzing GAMs in

high-dimensional settings (i.e., when the number of components can grow with the sample size) under

the additional assumption that only a small subset of the components of size s are nonzero. In high-

dimensional settings, the focus has been on theoretical results on the estimation rate of sparse additive

models. This has been analyzed in Sardy and Tseng [89], Lin and Zhang [69] and many others [83, 75,

56, 62, 59, 81, 71]. How to perform statistical inference for the model has shown to be a much more chal-

lenging problem. Confidence bands that measure the uncertainty of the estimation in a setting with fixed

dimension have been widely studied by Härdle [55], Sun and Loader [91], Fan and Zhang [43], Claeskens

and Keilegom [36] and Zhang and Peng [106]. A standard assumption in high-dimensions is sparsity

meaning that only a small subset of s components is different from zero. Results regarding inference for

GAMs in a high-dimensional setting have been derived only recently. We discuss these results in the next
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paragraphs and emphasize our contribution to the existing literature.

Kozbur [64] proposes an estimation and inference method for a single target component called Post-

Nonparametric Double Selection which is an application of the double machine learning approach devel-

oped in Belloni et al. [8]. Our work contributes to this expanding literature on high-dimensional inference,

especially to the debiased/double machine learning literature. Results for valid confidence intervals for

low-dimensional parameters in high-dimensional linear models were also derived in Van De Geer et al.

[96] and Zhang and Zhang [105]. For a survey on post-selection inference in high-dimensional settings

and generalization, we refer to Chernozhukov et al. [33]. We consider the same setting as Kozbur [64],

i.e., a more general additively separable model

Y = f1(X1) + f−1(X2, . . . , Xp) + ε,

that includes the general additive model (GAM)

Y = α+ f1(X1) + . . .+ fp(Xp) + ε.

Kozbur [64] focuses on inference on functionals of the form θ = a(f1) and obtains pointwise confidence

intervals based on a penalized series estimator. In contrast, we are able to construct uniformly valid

confidence bands for the whole function f1. Our paper builds on recent results, allowing for inference

on high-dimensional target parameters, provided by Belloni et al. [12] and Belloni et al. [10]. Further,

Kozbur [64] relies on two high level assumptions on Lasso estimation and variable selection (see Assump-

tions 9 and 10 in Kozbur [64]) that are hard to verify. We clarify technical requirements and provide

results on uniform Lasso estimation that are needed to perform valid inference.

Gregory et al. [50] use the so-called Debiasing approach introduced in Zhang and Zhang [105] to esti-

mate the first component f1 in a high-dimensional GAM where the number p of additive components

may increase with sample size. The estimator is constructed in two steps. The first step is an under-

smoothed estimator based on near-orthogonal projections with a group Lasso bias correction. Then, a

debiased version of the first step estimator is used to construct pseudo responses Ŷ . In the second step,

a smoothing method is applied to a nonparametric regression problem with Ŷ and covariates X1. Un-

der sparsity assumptions on the number of nonzero additive components, they show the so-called oracle

property meaning asymptotic equivalence of their estimator and the oracle estimator where the functions

f2, . . . , fp are known. The asymptotics of the oracle estimator are well understood and carry over to the

proposed debiasing estimate including methodology to construct uniformly valid confidence intervals for

f1. Nevertheless, Gregory et al. [50] do not explicitly focus on inference and they need much stronger

assumptions to let the oracle property hold. For example, they assume normally distributed errors that

need to be independent to X. Further, they assume a bounded support of X. As in our paper, they

choose a large set of basis functions (e.g., polynomials or splines) to approximate the components f1 and

f−1. However, we allow the degree of approximating functions to grow to infinity with increasing sample

size.

Lu et al. [72] provide an explicit procedure for constructing uniformly valid confidence bands for com-

ponents in high-dimensional additive models. They argue that this is a challenging problem, as a direct

generalization of the ideas for the finite-dimensional case is difficult. Confidence bands in the low-

dimensional case are mostly built upon kernel methods, while estimators for sparse additive models are

sieve estimators based on dictionaries. To derive their results, Lu et al. [72] have to combine both kernel

and sieve methods to utilize the advantages of each method resulting in a kernel-sieves hybrid estimator.

This also leads to a two-step estimator with many tuning parameters as the bandwidth and penalization
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levels that need to be chosen by cross-validation. The advantage of our estimator is that we can stay

in the sieves framework and nevertheless derive valid confidence bands. This is possible as we consider

the problem as a high-dimensional Z-estimation problem utilizing recent results from Belloni et al. [12].

We also provide a theory driven choice of the penalization level. As in Gregory et al. [50], Lu et al. [72]

assume normally distributed errors that are independent to X. This is much more restrictive than in our

paper since we only need to assume sub-exponential tails and we allow for heteroscedastic error terms.

Further, they assume that the number of nonzero components s = O(1) is bounded. In our setting,

s may grow to infinity with increasing sample size. However, their approach differs from ours in that

they consider an additive local approximation model with sparsity (ATLAS), in which they only need to

impose a local sparsity structure.

The finite sample properties of our estimator are evaluated in a simulation study that is based on the

data generating processes in Gregory et al. [50]. The results show that the suggested method is able to

perform valid simultaneous inference even in small samples and high-dimensional settings. Finally, we

include an empirical application to the Boston housing data and provide evidence on nonlinear effects of

certain socio-economic factors on house prices.

4.1.1 Organization of the Paper

The paper is organized as follows. In Section 4.2, the setting is outlined. Section 4.3 introduces the

estimation method. In Section 4.4, the main result is provided. A simulation study, highlighting the

small sample properties and implementation of our proposed method, is presented in Section 4.5. Section

4.6 illustrates the use of the method in an empirical application to the Boston housing data. The proof

of the main theorem is provided in Section 4.8. The Appendix includes additional technical material.

In Appendix 4.9, a general result for uniform inference about a high-dimensional linear functional is

presented. Appendix 4.10 provides results regarding uniform Lasso estimation rates in high-dimensions.

Finally, computational details are presented in Appendix 4.11.

4.1.2 Notation

Throughout the paper, we consider a random element W from some common probability space (Ω,A, P ).

We denote by P ∈ Pn a probability measure out of large class of probability measures, which may vary

with the sample size (since the model is allowed to change with n), and by Pn the empirical probability

measure. Additionally, let E respectively En be the expectation with respect to P , respectively Pn, and

Gn(·) denotes the empirical process

Gn(f) :=
√
n

(
1

n

n∑
i=1

f(Wi)− E[f(Wi)]

)

for a class of suitably measurable functions F :W → R. ‖·‖P,q denotes the Lq(P )-norm. In the following,

we write ‖ · ‖Ψρ for the Orlicz-norm that is defined as

‖W‖Ψρ := inf {C > 0 : E [exp((|W |/C)ρ)− 1] ≤ 1}

for ρ > 1. Further, ‖v‖1 =
∑p
l=1 |vl| denotes the `1-norm, ‖v‖2 =

√
vT v the `2-norm and ‖v‖0 equals the

number of nonzero components of a vector v ∈ Rp. We define v−l := (v1, . . . , vl−1, vl+1 . . . , vp)
T ∈ Rp−1

for any 1 ≤ l ≤ p. ‖v‖∞ = supl=1,...,p |vl| denotes the sup-norm. Let c and C denote positive constants

independent of n with values that may change at each appearance. The notation an . bn means an ≤ Cbn
for all n and some C. Furthermore, an = o(1) denotes that there exists a sequence (bn)≥1 of positive
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numbers such that |an| ≤ bn for all n where bn is independent of P ∈ Pn for all n and bn converges to

zero. Finally, an = OP (bn) means that, for any ε > 0, there exists a C such that P (an > Cbn) ≤ ε for all

n.

4.2 Setting

Consider the following nonparametric additively separable model

Y = f(X) + ε = f1(X1) + f−1(X−1) + ε

with E[ε|X] = 0 and Var(ε|X) ≥ c. Let the scalar response Y and features X = (X1, . . . , Xp) take

values in Y and X = (X1, . . . ,Xp), respectively. We assume to observe n i.i.d. copies (W (i))ni=1 =

(Y (i), X(i))ni=1 of W = (Y,X), where the number of covariates p is allowed to grow with sample size n.

For identifiability, we assume E[f−1(X−1)] = 0. We aim to construct uniformly valid confidence regions

for the first nonparametric component of the regression function, namely we want to find functions l̂(x)

and û(x) converging to f1(x) with

P
(
l̂(x) ≤ f1(x) ≤ û(x),∀x ∈ I

)
→ 1− α.

Here, I ⊆ X1 is a bounded interval of interest where we want to conduct inference. We approximate

f1 and f−1 by a linear combination of approximating functions g1, . . . , gd1
and h1, . . . , hd2

, respectively.

Define

g(x) := (g1(x), . . . , gd1
(x))T

for x ∈ R and

h(x) := (h1(x), . . . , hd2
(x))T

for x ∈ Rp−1. It is important to note that we allow the number of approximating functions d1 and d2 to

increase with the sample size. Assume that the approximations are given by

f1(X1) = θT0 g(X1) + b1(X1), (4.2)

where θ0,l ∈ Θl and analogously

f−1(X−1) := βT0 h(X−1) + b2(X−1), (4.3)

where b1 and b2 denote the error terms. Additionally, it is convenient to define the combination

z(x) := (g1(x), . . . , gd1(x), h1(x), . . . , hd2(x))T

for x ∈ Rp, where we abbreviate

Z := z(X) = (g1(X1), . . . , gd1
(X1), h1(X−1), . . . , hd2

(X−1))T .

For each element gl of g, we consider

gl(X1) = (γ
(l)
0 )TZ−l + b

(l)
3 (Z−l) + ν(l) (4.4)
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and E[ν(l)|Z−l] = 0 and Var(ν(l)|Z−l) ≥ c. This corresponds to

E[gl(X1)|Z−l] = (γ
(l)
0 )TZ−l + b

(l)
3 (Z−l)

with approximation error b
(l)
3 (Z−l). The second stage equation (4.4) is used to construct an orthogonal

score function for valid inference in a high-dimensional setting as in Chernozhukov et al. [35]. Estimating

f1(·) ≈ θT0 g(·)

can be recast into a general Z-estimation problem of the form

E [ψl(W, θ0,l, η0,l)] = 0, l ∈ 1, . . . , d1

with target parameter θ0, where the score functions are defined by

ψl(W, θ, η) =
(
Y − θgl(X1)− (η(1))TZ−l − η(3)(X)

)
·
(
gl(X1)− (η(2))TZ−l − η(4)(Z−l)

)
.

Here,

η = (η(1), η(2), η(3), η(4))T

with η(1) ∈ Rd1+d2−1, η(2) ∈ Rd1+d2−1, η(3) ∈ `∞(Rp) and η(4) ∈ `∞(Rd1+d2−1). The true nuisance

parameter η0,l is given by

η
(1)
0,l := β

(l)
0

η
(2)
0,l := γ

(l)
0

η
(3)
0,l (X) := b1(X1) + b2(X−1)

η
(4)
0,l (Z−l) := b

(l)
3 (Z−l),

where β
(l)
0 is defined as

β
(l)
0 := (θ0,1, . . . , θ0,l−1, θ0,l+1, . . . θ0,d1 , β0,1, . . . , β0,d2)T .

Essentially, the index l determines which coefficient is not contained in β
(l)
0 . The third part of the

nuisance functions captures the error made by the approximation of f1 and f−1 which is independent

from l. Therefore, we sometimes omit l.

Comment 4.2.1. The score ψ is linear, meaning

ψl(W, θ, η) = ψal (X, η(2), η(4))θ + ψbl (X, η)

with

ψal (X, η(2), η(4)) = −gl(X1)(gl(X1)− (η(2))TZ−l − η(4)(Z−l))

and

ψbl (X, η) = (Y − (η(1))TZ−l − η(3)(X))(gl(X1)− (η(2))TZ−l − η(4)(Z−l))

for all l = 1, . . . , d1.
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Comment 4.2.2. The score function ψ satisfies the moment condition, namely

E [ψl(W, θ0,l, η0,l)] = 0

for all l = 1, . . . , d1, and, given further conditions mentioned in Section 4.4, the near Neyman orthogo-

nality condition

Dl,0[η, η0,l] := ∂t
{
E[ψl(W, θ0,l, η0,l + t(η − η0,l))]

}∣∣
t=0

. δnn
−1/2,

where ∂t denotes the derivative with respect to t and (δn)n≥1 a sequence of positive constants converging

to zero.

4.3 Estimation

In this section, we describe our estimation method and how the uniform valid confidence bands are con-

structed. The nuisance functions are estimated by Lasso regressions. Finally, they are plugged into the

moment conditions that are solved for the target parameters, which yield an estimate f̂1 for the first com-

ponent. The lower and upper curve of the confidence bands are finally based on the estimated covariance

matrix and a critical value which is determined by a multiplier bootstrap procedure. As mentioned, the

details are given in this section.

Let

g(x) = (g1(x), . . . , gd1(x))
T ∈ Rd1×1

and

ψ(W, θ, η) = (ψ1(W, θ1, η1), . . . , ψd1
(W, θd1

, ηd1
))
T ∈ Rd1×1

for some vector

θ = (θ1, . . . , θd1)T

and

η = (η1, . . . , ηd1)T .

For each l = 1, . . . , d1, let η̂l =
(
η̂

(1)
l , η̂

(2)
l , η̂

(3)
l , η̂

(4)
l

)
be an estimator of the nuisance function. The

estimator θ̂0 of the target parameter

θ0 = (θ0,1, . . . , θ0,d1
)T

is defined as the solution of

sup
l=1,...,d1

{∣∣∣En[ψl(W, θ̂l, η̂l)]∣∣∣− inf
θ∈Θl

∣∣∣En[ψl(W, θ, η̂l)]∣∣∣} ≤ εn, (4.5)

where εn = o
(
δnn
−1/2

)
is the numerical tolerance. Finally, the target function f1(·) can be estimated by

f̂1(·) := θ̂T0 g(·). (4.6)
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Define the Jacobian matrix

J0 :=
∂

∂θ
E[ψ(W, θ, η0)]

∣∣∣∣
θ=θ0

= diag (J0,1, . . . , J0,d1
) ∈ Rd1×d1

with

J0,l = E[ψal (W, η
(2)
0,l , η

(4)
0,l )]

= −E[((γ
(l)
0 )TZ−l + b

(l)
3 (Z−l) + ν(l))ν(l)]

= −E
[(

(γ
(l)
0 )TZ−l + b

(l)
3 (Z−l)

)
E[ν(l)|Z−l]︸ ︷︷ ︸

=0

]
− E[(ν(l))2]

= −E[(ν(l))2]

for all l = 1, . . . , d1. Observe that

E
[
ψ(W, θ0, η0)ψ(W, θ0, η0)T

]
=: Σεν

is the covariance matrix of εν := (εν(1), . . . , εν(d1)). Define the approximate covariance matrix

Σn : = J−1
0 E

[
ψ(W, θ0, η0)ψ(W, θ0, η0)T

]
(J−1

0 )T

= J−1
0 Σεν(J−1

0 )T ∈ Rd1×d1

with

Σn : =



E[(εν(1))2]
E[(ν(1))2]2

E
[
εν(1)εν(2)

]
E[(ν(1))2]E[(ν(2))2]

. . .
E
[
εν(1)εν(d1)

]
E[(ν(1))2]E[(ν(d1))2]

E
[
εν(2)εν(1)

]
E[(ν(2))2]E[(ν(1))2]

E[(εν(2))2]
E[(ν(2))2]2

. . .
E
[
εν(2)εν(d1)

]
E[(ν(2))2]E[(ν(d1))2]

...
...

. . .
...

E
[
εν(d1)εν(1)

]
E[(ν(d1))2]E[(ν(1))2]

E
[
εν(d1)εν(2)

]
E[(ν(d1))2]E[(ν(1))2]

. . . E[(εν(d1))2]

E[(ν(d1))2]2


.

The approximate covariance matrix can be estimated by replacing every expectation by the empirical

analog and plugging in the estimated parameters

Σ̂n : = Ĵ−1En
[
ψ(W, θ̂, η̂)ψ(W, θ̂, η̂)T

]
(Ĵ−1)T

= Ĵ−1Σ̂εν(Ĵ−1)T

=



En[(ε̂ν̂(1))2]
En[(ν̂(1))2]2

En
[
ε̂ν̂(1)ε̂ν̂(2)

]
En[(ν̂(1))2]En[(ν̂(2))2]

. . .
En
[
ε̂ν̂(1)ε̂ν̂(d1)

]
En[(ν̂(1))2]En[(ν̂(d1))2]

En
[
ε̂ν̂(2)ε̂ν̂(1)

]
En[(ν̂(2))2]En[(ν̂(1))2]

En[(ε̂ν̂(2))2]
En[(ν̂(2))2]2

. . .
En
[
ε̂ν̂(2)ε̂ν̂(d1)

]
En[(ν̂(2))2]En[(ν̂(d1))2]

...
...

. . .
...

En
[
ε̂ν̂(d1)ε̂ν̂(1)

]
En[(ν̂(d1))2]En[(ν̂(1))2]

En
[
ε̂ν̂(d1)ε̂ν̂(2)

]
En[(ν̂(d1))2]En[(ν̂(1))2]

. . . En[(ε̂ν̂(d1))2]

En[(ν̂(d1))2]2


.

This estimated covariance matrix can be used to construct the confidence bands

û(x) := f̂1(x) +
(g(x)T Σ̂ng(x))1/2cα√

n

l̂(x) := f̂1(x)− (g(x)T Σ̂ng(x))1/2cα√
n

,
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where cα is a critical value determined by the following standard multiplier bootstrap method introduced

in Chernozhukov et al. [30]. Define

ψ̂x(·) := (g(x)T Σ̂ng(x))−1/2g(x)T Ĵ−1
0 ψ(·, θ̂0, η̂0)

and let

Ĝ =
(
Ĝx
)
x∈I

=

(
1√
n

n∑
i=1

ξiψ̂x(Wi)

)
x∈I

,

where (ξi)
n
i=1 are independent standard normal random variables (especially independent from (Wi)

n
i=1).

The multiplier bootstrap critical value cα is given by the (1− α)-quantile of the conditional distribution

of supx∈I |Ĝx| given (Wi)
n
i=1.

4.4 Main Results

Now, we specify the conditions that are required to construct the uniformly valid confidence bands.

Since we would like to represent f1 and f−1 by their approximations in (4.2) and (4.3), we need to

choose an appropriate set of approximating functions. Let d̄n := max(d1, d2, n, e) and C be a strictly

positive constant independent of n and l. Additionally, we set t1 := supx∈I ‖g(x)‖0 ≤ d1. The following

assumptions hold uniformly in n ≥ n0 and P ∈ Pn:

Assumption A. 1.

(i) It holds

inf
x∈I
‖g(x)‖22 ≥ c > 0, sup

x∈I
sup

l=1,...,d1

|gl(x)| ≤ C <∞

and, for all ε > 0,

logN(ε, g(I), ‖ · ‖2) ≤ Ct1 log

(
An
ε

)
.

(ii) There exists 1 ≤ ρ ≤ 2 such that

max
l=1,...,d1

‖b(l)3 (Z−l)‖Ψρ ≤ C, ‖b1(X1) + b2(X−1)‖Ψρ ≤ C.

Additionally, the approximation errors obey

E
[(
b1(X1) + b2(X−1)

)2] ≤ Cs log(d̄n)/n,

max
l=1,...,d1

E
[(
b
(l)
3 (Z−l)

)2] ≤ Cs log(d̄n)/n

and

En
[(
b1(X1) + b2(X−1)

)2]− E
[(
b1(X1) + b2(X−1)

)2] ≤ Cs log(d̄n)/n,

max
l=1,...,d1

(
En
[(
b
(l)
3 (Z−l)

)2]− E
[(
b
(l)
3 (Z−l)

)2]) ≤ Cs log(d̄n)/n.
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(iii) We have

sup
‖ξ‖2=1

E
[
(ξTZ)2

(
b1(X1) + b2(X−1)

)2] ≤ CE [(b1(X1) + b2(X−1)
)2]

and

sup
‖ξ‖2=1

E
[
(ξTZ)2

(
b
(l)
3 (Z−l)

)2] ≤ CE [(b(l)3 (Z−l)
)2]

for l = 1, . . . , d1.

(iv) It holds

E
[
ν(l)
(
b1(X1) + b2(X−1)

)]
≤ Cδnn−1/2

with δn = o
(
t
− 3

2
1 log−

1
2 (An)

)
.

Assumption A.1(i) contains regularity conditions on g. We assume that the infimum of the `2-norm of

g(x) is bounded away from zero, but the supremum is allowed to increase with sample size (affecting the

growth conditions in A.2(v)). The lower bound on the infimum is not necessary and can be replaced

by a decaying sequence at the cost of stricter growth rates. The Assumptions A.1(ii) and (iii) are

tail and moment conditions on the approximation error. These assumptions are mild since the number

of approximating functions may increase with sample size. Finally, Assumption A.1(iv) ensures that

the violation of the exact Neyman Orthogonality due to the approximation errors is negligible. It is

worth to notice that if b1(X1) and b2(X−1) are measurable with respect to Z−l (for example in the linear

approximate sparse setting for the conditional expectation), the exact Neyman Orthogonality holds. Now,

we go more into detail regarding the condition on the covering number of the image of g. Especially, if

t1 < d1, the complexity of the approximating functions is reduced significantly. One obtains

g(I) ⊆
(d1
t1

)⋃
j=1

g(j)(I),

where each g(j)(I) is only dependent on t1 nonzero components. It is straightforward to see that for each

g(j)(I) the covering numbers satisfy

N(ε, g(j)(I), ‖ · ‖2) ≤
(

6 supx∈I ‖g(x)‖2
ε

)t1
(cf. Vaart and Wellner [94]) implying

logN(ε, g(I), ‖ · ‖2) ≤ log

(d1
t1

)∑
j=1

N(ε, g(j)(I), ‖ · ‖2)


≤ log

((
e · d1

t1

)t1 (6 supx∈I ‖g(x)‖2
ε

)t1)

≤ t1 log

((
6ed1 supx∈I ‖g(x)‖2

t1

)
1

ε

)
≤ Ct1 log

(
d1

ε

)
.

For specific classes of approximating functions the complexity can be further reduced.

84



CHAPTER 4 4.4. MAIN RESULTS

Assumption A. 2.

(i) For all l = 1, . . . , d1, Θl contains a ball of radius

log(log(n))n−1/2 log1/2(d1 ∨ e) log(n)

centered at θ0,l with

sup
l=1,...,d1

sup
θl∈Θl

|θl| ≤ C.

(ii) It holds

‖β(l)
0 ‖0 ≤ s, ‖β(l)

0 ‖2 ≤ C

for all l = 1, . . . , d1 and

max
l=1,...,d1

‖γ(l)
0 ‖0 ≤ s, max

l=1,...,d1

‖γ(l)
0 ‖2 ≤ C.

(iii) There exists 1 ≤ ρ ≤ 2 such that

max
j=1,...,d1+d2

‖Zj‖Ψρ ≤ C, ‖ε‖Ψρ ≤ C.

(iv) It holds

inf
‖ξ‖2=1

E[(ξTZ)2] ≥ c, sup
‖ξ‖2=1

E[(ξTZ)4] ≤ C

and the eigenvalues of the covariance matrix Σεν are bounded from above and away from zero.

(v) There exists a fixed q̄ ≥ 4 such that

(a) n
1
q̄
s2t31 log

2+ 4
ρ (d̄n) log(An)
n = o(1),

(b) n
1
q̄

supx∈I ‖g(x)‖62st
4
1 log(d̄n) log2(An)

n

(
log

2
ρ (d1) ∨ s

√
s log(d̄n)

n

)
= o(1),

(c) n
1
q̄
t13
1 log

6
ρ (d1) log7(An)

n = o(1).

Assumptions A.2(i) and (ii) are regularity and sparsity conditions, where the number of nonzero regression

coefficients s = sn is allowed to grow to infinity with increasing sample size. A detailed comment on

the sparsity condition is given in Comment 4.4.2. Assumption A.2(iii) contains tail conditions on the

approximating functions (and therefore on the original variables) as well as for the error term. Assumption

A.2(iv) is a standard eigenvalue condition, which restricts the correlation between the basis elements (and

therefore between the original variables). For example, if the conditional variance of ν(l) is uniformly

bounded away from zero, the second inequality of A.2(iv) holds. Finally, Assumption A.2(v) provides

the growth conditions. These are given in general terms and depend on the choice of the approximation

functions. Choosing B-Splines simplifies the growth conditions significantly as we discuss in Comment

4.4.1.

Theorem 9. Given Assumptions A.1 and A.2, it holds that

P
(
l̂(x) ≤ f1(x) ≤ û(x),∀x ∈ I

)
→ 1− α,

uniformly over P ∈ Pn, where cα is a critical value determined by a multiplier bootstrap method.
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Comment 4.4.1. An appropriate and common choice in series estimation are B-Splines. B-Splines are

positive and local in the sense that g(x) ≥ 0 and supx∈I ‖g(x)‖0 ≤ t1 for every x, where t1 is the degree

of the spline. The l1-norm of B-Splines is equal to 1, meaning

‖g(x)‖1 =

d1∑
j=1

gj(x) = 1

for every x (partition of unity). Hence, Assumption A.1(i) is met with

1√
t1
≤ inf
x∈I
‖g(x)‖22 ≤ sup

x∈I
‖g(x)‖22 ≤ 1 and sup

x∈I
sup

l=1,...,d1

|gl(x)| ≤ 1.

The covering numbers of g(I) is given by

logN(ε, g(I), ‖ · ‖2) ≤ log

 d1∑
j=1

N(ε, g(j)(I), ‖ · ‖2)


≤ t1 log

6d
1
t1
1 supx∈I ‖g(x)‖2

ε


≤ C log

(
d1

ε

)
.

Choosing the degree of the B-Splines of order t1 = log(n), the growth rates in Assumption A.2(v) simplify

to

n
1
q̄
s2 log2+ 4

ρ (d̄n) log(d1)

n
= o(1) and n

1
q̄

log7+ 6
ρ (d1)

n
= o(1).

It is worth to notice that in the first growth condition

n
1
q̄
s2 log2+ 4

ρ (d̄n) log(d1)

n
= o(1)

both the total number of approximating functions d1 and d2, and the number of relevant functions s may

grow with the sample size in a balanced way. If s is bounded, the number of approximating functions can

grow at an exponential rate with the sample size. This means that the set of approximating functions

can be much larger than the sample size, only the number of relevant function s has to be smaller than

the sample size. This situation is common for Lasso based estimators. Our growth condition is in line

with other results in the literature, e.g., with Belloni et al. [12], Belloni et al. [10] and many others. The

second growth condition ensures that

n
1
q̄

log7+ 6
ρ (d1)

n
= o(1)

and is in line with Chernozhukov et al. [30]. It guarantees the validity of multiplier bootstrap in our

setting and allows us to construct uniformly valid confidence regions.

Comment 4.4.2. The sparsity condition in A.2(ii) restricts the number of nonzero regression coefficients

s = sn in the equations (4.2), (4.3) and (4.4). Through this, we especially assume that the regression

function f can be approximated sufficiently well by only s relevant basis functions. Note that we do not

directly control the number of relevant covariables but the number of approximating functions in total.

This is another sparsity condition as in Gregory et al. [50] and Lu et al. [72] who restrict the number of

relevant additive components in the GAM model (4.1). Our model also includes the approximate sparse

setting due to the error terms b1 and b2 in (4.2) and (4.3). This is more flexible and more realistic for
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many applications. Furthermore, we do not define θT0 g(X1) as the best projection of f1(X1) in (4.2) (and

βT0 h(X−1) for f−1(X−1) in (4.3)) as in Gregory et al. [50]. We only assume a sparse projection which

is “close” to the best projection where the distance is measured with ‖ · ‖P,2 as described in Assumption

A.1(ii).

4.5 Simulation Results

To verify the theoretical guarantees of our estimator in practice, we perform a simulation study which

is based on the settings in Gregory et al. [50] and Meier et al. [75]. We consider the finite sample

performance of our estimator in a high-dimensional model of the form

yi =

p∑
j=1

fj(xi,j) + εi,j

with i = 1, . . . , n, j = 1, . . . , p. The definition of the functions fj(xj), j = 1, . . . , j, are presented in Table

4.1. We extend the initial setting in Gregory et al. [50] to allow for heteroscedasticity, i.e., we specify

εj ∼ N(0, σj) with σj = σ · (1+ |xj |) and σ =
√

12
67 . This value for σ ensures a signal-to-noise ratio that is

comparable to the settings in [50]. Data sets are generated for scenarios with dimensions n ∈ {100, 1000}
and p ∈ {50, 150}. In all cases, sparsity is imposed by only allowing the first four components, f1, ..., f4,

to be nonzero. The regressors X are marginally uniformly distributed on an interval I = [−2.5, 2.5] with

correlation matrix Σ with Σk,l = 0.5|k−l|, 1 ≤ k, l ≤ p, which corresponds to the setting in Gregory et al.

[50] with the strongest correlation structure.

Component Function

1 f1(x1) = − sin(2 · x)
2 f2(x2) = x2 − 25

12

3 f3(x3) = x
4 f4(x4) = exp(−x)− 2

5
· sinh( 5

2
)

5, . . . , p fj(xj) = 0.

Table 4.1: Definition of the functions in the data generating processes that are used in the
simulation study. Data generating processes are based on settings in Gregory et al.
[50] and Meier et al. [75].

In the simulation, we use the previously suggested estimator to generate predictions f̂j(xj) for the function

fj(xj) and construct simultaneous confidence bands that are defined by l̂j(xj) and ûj(xj), accordingly.

The functions fj(xj) in the additive model are approximated using cubic B-splines. Variable selection

is performed using post-Lasso with theory-based choice of the penalty level as implemented in the R

package hdm [32]. Further details related to the implementation and parametrization in the simulation

study can be found in Appendix 4.11.

Table 4.2 presents the empirical coverage achieved by the estimated simultaneous 95%-confidence bands

in R = 500 repetitions as constructed over an interval of xj I = [−2, 2]. A confidence band is considered

to cover the function fj(xj) if it contains the true function entirely, i.e., if for all values of xj ∈ I it holds

that l̂j(xj) ≤ fj(xj) ≤ ûj(xj). The results serve as empirical evidence on the validity of the method. In

most cases, the empirical coverage approaches 95% or is above the nominal level. This observation can

be made even for the setting with more regressors than observations.

The first two plots in Figure 4.1 illustrate the averaged confidence bands as constructed for four different

intervals of xj , i.e., I = [−x0, x0] with x0 = 0.5, 1.0, 1.5, 2. It can be observed that as the interval I

becomes wider, the width of the confidence bands increases, as well. The two plots at the bottom of

Figure 4.1 show the empirical coverage as obtained for a sequence of values x0,j with I = [−x0,j , x0,j ]
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n p f1 f2 f3 f4 f5

100 50 0.994 0.982 0.968 0.938 0.990
100 150 0.992 0.976 0.952 0.886 0.988
1000 50 0.998 0.980 0.962 0.848 1.000
1000 150 1.000 0.968 0.986 0.806 1.000

Table 4.2: Simulation results. Coverage achieved by simultaneous 0.95%-confidence bands in
R = 500 repetitions as generated over a range of values of xj, I = [−2, 2].

with x0,j = 0.01, 0.02, . . . , 2. Whereas the coverage remains stable over a wide range of x0,j values,

the coverage decreases slightly for larger x0,j . This behavior arises due to boundary problems that are

common in most nonparametric smoothing methods and explain the relatively low coverage achieved for

f4.
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Figure 4.1: Simulation results for the setting with n = 100 and p = 150. (Top) Gray shaded
areas illustrate averaged 95%-confidence bands obtained in R = 500 repetitions
for functions f1(x1) and f2(x2). Blue lines correspond to the estimated functions

f̂j(xj) and green lines to the true functions fj(xj). (Bottom) Empirical coverage
achieved by confidence bands for a sequence of values x0,j with I(xj) = [−x0,j , x0,j ]
with xj,0 = 0.01, 0.02, . . . , 2. Plots on the left refer to f1(x1), plots on the right to
f2(x2).
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4.6 Empirical Application

As a real-data example, we apply our estimator to the Boston housing data that has been first used in

Harrison Jr and Rubinfeld [52] and later been reassessed in several studies, e.g., Kong and Xia [63] and

Doksum and Samarov [40]. The data set is available via the R package mlbench ([68, 80]). The data

contains information on housing prices for n = 506 census tracts in Boston based on the 1970 census.

We perform inference on the effect of 11 continuous variables on the dependent variable MEDV which

measures the median value of owner-occupied homes (in USD 1000’s). A list of the explanatory variables

is provided in Table 4.3.

MEDV median value of owner-occupied homes in USD 1000’s
LSTAT percentage of lower status population
CRIM per capita crime rate by town
NOX nitric oxides
TAX full-value property-tax rate per USD 10,000
AGE proportion of owner-occupied units built prior to 1940
DIST weighted distances to five Boston employment centers
RM average number of rooms per dwelling
INDUS proportion of non-retail business acres per town
ZN proportion of residential land zoned for lots over 25,000 sq.ft
BLACK 1000(B − 0.63)2 where B is the proportion of blacks by town
PTRATIO pupil-teacher ratio by town
CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

Table 4.3: List of variables in the analysis of the Boston housing data.

The implemented model is given by

MEDVi =f1(LSTATi) + f2(CRIMi) + f3(NOXi) + f4(TAXi)+

f5(AGEi) + f6(DISTi) + f7(RMi) + f8(INDUSi)+

f9(ZNi) + f10(BLACKi) + f11(PTRATIOi) + γ · CHAS + εi.

As in the simulation study, the functions fj(xj) are approximated with cubic B-splines and variable

selection is performed using post-Lasso with theory-based choice of the penalty term. The smoothing

parameters k = {kj , k−j} have been determined according to a heuristic cross-validation rule that is

outlined in Appendix 4.11. The results illustrated in Figure 4.2 suggest nonlinear and significant effects

for the variables LSTAT and RM that are generally in line with economic intuition and the findings in

Kong and Xia [63] and Doksum and Samarov [40]. Whereas for small values of the LSTAT variable, i.e.,

the percentage of lower status of the population, the estimated effect f̂1(LSTAT) is positive, it decreases

and, finally, becomes negative for higher values of LSTAT. The nonlinearities found for the variable RM

suggest that the average number of rooms per dwelling impacts housing prices positively if the average

number of rooms exceeds seven. The results for the other regressors that are presented in Appendix 4.11

point at nonlinear effects that are, however, not significant.
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Figure 4.2: Plots of f̂1(LSTAT) and f̂7(RM) with simultaneous 95%-confidence bands in the
Boston housing data application.

4.7 Conclusion

In this paper, we provide methodology for inference about a nonparametric component of an additively

separable regression function in high-dimensions. We are able to construct uniformly valid confidence

bands. Our work contributes to the double machine learning literature by extending this approach al-

lowing to conduct valid inference about a linear functional of a high-dimensional target parameter. Our

simulation studies show that our proposed method gives reliable results. We demonstrate the imple-

mentation and the use of the proposed method in practice by analyzing the well-known Boston housing

data set. Our methodology suggests nonlinear and significant effects for the variables LSTAT and RM

that denotes the percentage of lower status population and the average number of rooms per dwelling,

respectively. This is in line with the economic intuition and the findings in the literature.

90



CHAPTER 4 4.8. PROOFS

4.8 Proofs

Proof of Theorem 9.

We will prove that the Assumptions A.1 and A.2 imply the Assumptions B.1-B.5 stated in Appendix 4.9

and then the claim follows by applying Theorem 10. Without loss of generality, we assume min(d1, n) ≥ e
to simplify notation.

Assumption B.1

Both conditions (i) and (ii) are directly assumed in A.1(i). Due to A.1(ii) and A.2(iv), it holds

E
[
(ν(l)))2

]
= E

[(
gl(X1)− (γ

(l)
0 )TZ−l − b(l)3 (Z−l)

)2]
≤ C

(
sup
‖ξ‖2=1

E[(ξTZ)2] + E
[(
b
(l)
3 (Z−l)

)2])
. C,

where we used that ‖γ(l)
0 ‖2 ≤ C. It holds

E
[
(ν(l)))2

]
≥ Var(ν(l)|Z−l) ≥ c.

Since the eigenvalues of Σεν are bounded from above and away from zero,

Σn = J−1
0 Σεν(J−1

0 )T ∈ Rd1×d1

directly implies B.1(iii).

Assumption B.2

For each l = 1, . . . , d1, the moment condition holds

E [ψl(W, θ0,l, η0,l)] = E
[(
Y − f(X)

)(
gl(X1)− (γ

(l)
0 )TZ−l − b(l)3 (Z−l)

)]
= E

[
εν(l)

]
= E

[
ν(l) E [ε|X]︸ ︷︷ ︸

=0

]
= 0.

For all l = 1, . . . , d1, define the convex set

Tl :=
{
η = (η(1), η(2), η(3), η(4))T :η(1), η(2) ∈ Rd1+d2−1,

η(3) ∈ `∞(Rp), η(4) ∈ `∞(Rd1+d2−1)
}

and endow Tl with the norm

‖η‖e := max
{
‖η(1)‖2, ‖η(2)‖2, ‖η(3)(X)‖P,2, ‖η(4)(Z−l)‖P,2

}
.

Further, let τn :=

√
s log(d̄n)

n and define the corresponding nuisance realization set

Tl :=

{
η ∈ Tl :η(3) ≡ 0, η(4) ≡ 0, ‖η(1)‖0 ∨ ‖η(2)‖0 ≤ Cs,
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‖η(1) − β(l)
0 ‖2 ∨ ‖η(2) − γ(l)

0 ‖2 ≤ Cτn,

‖η(1) − β(l)
0 ‖1 ∨ ‖η(2) − γ(l)

0 ‖1 ≤ C
√
sτn

}
∪ {η0,l}

for a sufficiently large constant C. For arbitrary random variables X and Y , it holds

‖E[X|Y ]‖Ψρ : = inf{C > 0 : E[Ψρ(|E[X|Y ]|/C)] ≤ 1}

≤ inf{C > 0 : E[E[Ψρ(|X|/C)|Y ]] ≤ 1}

= ‖X‖Ψρ .

Due to Assumption A.2(iii), this implies

max
l=1,...,d1

‖ν(l)‖Ψρ = max
l=1,...,d1

‖gl(X1)− E[gl(X1)|Z−l]‖Ψρ

≤ max
l=1,...,d1

‖gl(X1)‖Ψρ + max
l=1,...,d1

‖E[gl(X1)|Z−l]‖Ψρ

. C.

Therefore, we are able to bound the q-th moments of the maxima by

E
[

max
l=1,...,d1

|ν(l)|q
] 1
q

= ‖ max
l=1,...,d1

|ν(l)|‖P,q

≤ q!‖ max
l=1,...,d1

|ν(l)|‖Ψ1

≤ q! log
1
ρ−1(2)‖ max

l=1,...,d1

|ν(l)|‖Ψ1

≤ Cq! log
1
ρ−1(2) log

1
ρ (1 + d1) max

l=1,...,d1

‖ν(l)|‖Ψp

≤ C log
1
ρ (d1),

where C does depend on q and ρ but not on n. For F := {εν(l) : l = 1, . . . , d1}, it holds

Sn : = E

[
sup

l=1,...,d1

∣∣√nEn [ψl(W, θ0,l, η0,l)]
∣∣]

= E

[
sup
f∈F

Gn(f)

]

and the envelope supf∈F |f | satisfies

‖ max
l=1,...,d1

εν(l)‖P,q ≤ ‖ε‖P,2q‖ max
l=1,...,d1

ν(l)‖P,2q

≤ C log
1
ρ (d1).

We can apply Lemma P.2 from Belloni et al. [12] with |F| = d1 to obtain

Sn ≤ C log
1
2 (d1) + C log

1
2 (d1)

(
n

2
q

log
2
ρ+1(d1)

n

)1/2

. log
1
2 (d1),

due to A.2(v)(a). Finally, Assumption A.2(i) implies B.2(i). Assumption B.2(ii) holds since, for all

l = 1, . . . , d1, the map (θl, ηl) 7→ ψl(X, θl, ηl) is twice continuously Gateaux-differentiable on Θl × Tl,
which directly implies the differentiability of the map (θl, ηl) 7→ E[ψl(X, θl, ηl)]. Additionally, for every
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η ∈ Tl \ {η0,l}, we have

Dl,0[η, η0,l] := ∂t
{
E[ψl(W, θ0,l, η0,l + t(η − η0,l))]

}∣∣
t=0

= E
[
∂t
{
ψl(W, θ0,l, η0,l + t(η − η0,l))

}]∣∣
t=0

= E
[
∂t

{(
Y − θ0,lgl(X1)−

(
η

(1)
0,l + t(η(1) − η(1)

0,l )
)T
Z−l

−
(
η

(3)
0,l (X) + t(η(3)(X)− η(3)

0,l (X))
))

(
gl(X1)−

(
η

(2)
0,l + t(η(2) − η(2)

0,l )
)T
Z−l

−
(
η

(4)
0,l (Z−l) + t(η(4)(Z−l)− η(4)

0,l (Z−l))
))}]∣∣∣∣

t=0

= E
[
ε(η

(2)
0,l − η

(2))TZ−l

]
+ E

[
ν(l)(η

(1)
0,l − η

(1))TZ−l

]
+ E

[
ε
(
η

(4)
0,l (Z−l)− η

(4)(Z−l)
)]

+ E
[
ν(l)

(
η

(3)
0,l (X)− η(3)(X)

)]
with

E
[
ε(η

(2)
0,l − η

(2))TZ−l

]
= E

[
((η

(2)
0,l − η

(2))TZ−lE[ε|X]
]

= 0,

E
[
ν(l)(η

(1)
0,l − η

(1))TZ−l

]
= E

[
(η

(1)
0,l − η

(1))TZ−lE[ν(l)|Z−l]
]

= 0,

E
[
ε
(
η

(4)
0,l (Z−l)− η

(4)(Z−l)
)]

= E
[(
η

(4)
0,l (Z−l)− η

(4)(Z−l)
)
E[ε|X]

]
= 0

and

E
[
ν(l)

(
η

(3)
0,l (X)− η(3)(X)

)]
= E

[
ν(l)
(
b1(X1) + b2(X−1)

)]
≤ Cδnn−1/2

due to Assumption A.1 with δn = o
(
t
− 3

2
1 log−

1
2 (An)

)
. Due to the linearity of the score and the moment

condition, it holds

E[ψl(W, θl, η0,l)] = J0,l(θl − θ0,l)

and, due to

|J0,l| = E
[
(ν(l))2

]
,

Assumption B.2(iv) is satisfied.

For all t ∈ [0, 1), l = 1, . . . , d1, θl ∈ Θl and ηl ∈ Tl \ {η0,l}, we have

E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, η0,l))

2
]

= E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, ηl) + ψl(W, θ0,l, ηl)− ψl(W, θ0,l, η0,l))

2
]

≤ C

(
E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, ηl))

2
]

∨ E
[
(ψl(W, θ0,l, ηl)− ψl(W, θ0,l, η0,l))

2
])
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with

E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, ηl))

2
]

= |θl − θ0,l|2E
[(
gl(X1)(gl(X1)− (η

(2)
l )TZ−l)− η(4)

l (Z−l)
)2
]

≤ C|θl − θ0,l|2
(
E
[
gl(X1)4

]
E
[(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
)4
]) 1

2

≤ C|θl − θ0,l|2

due to Assumption A.2(ii), (iv) and the definition of Tl. By similar arguments, we obtain

E
[
(ψl(W, θ0,l, ηl)− ψl(W, θ0,l, η0,l))

2
]

= E

[((
Y − θ0,lgl(X1)− (η

(1)
l )TZ−l − η(3)

l (X)
)(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
)

−
(
Y − θ0,lgl(X1)− (η

(1)
0,l )

TZ−l − η(3)
0,l (X)

)(
gl(X1)− (η

(2)
0,l )

TZ−l − η(4)
0,l (Z−l)

))2
]

= E

[((
Y − θ0,lgl(X1)− (η

(1)
l )TZ−l − η(3)

l (X)
)

·
(

(η
(2)
0,l − η

(2)
l )TZ−l + η

(4)
0,l (Z−l)− η

(4)
l (Z−l)

)
+
(
gl(X1)− (η

(2)
0,l )

TZ−l − η(4)
0,l (Z−l)

)
·
(

(η
(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)− η(3)

l (X)
))2

]

≤ C

(
‖η(2)

0,l − η
(2)
l ‖2 ∨ ‖η

(1)
0,l − η

(1)
l ‖2 ∨ ‖η

(3)
0,l (X)‖P,2 ∨ ‖η(4)

0,l (Z−l)‖P,2
)2

= C‖η0,l − ηl‖2e,

where we used the definition of Tl, A.1(iii) and

sup
‖ξ‖2=1

E[(ξTZ)4] ≤ C.

Therefore, Assumption B.2(v)(a) holds with ω = 2 since it is straightforward to show Assumption B.2(v)

for ηl = η0,l. It holds ∣∣∣∣∂tE[ψl(W, θl, η0,l + t(ηl − η0,l))
]∣∣∣∣

=

∣∣∣∣E[∂t{(Y − θ0,lgl(X1)−
(
η

(1)
0,l + t(η

(1)
l − η

(1)
0,l )
)T
Z−l

−
(
η

(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X))
))

·
(
gl(X1)−

(
η

(2)
0,l + t(η

(2)
l − η

(2)
0,l )
)T
Z−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))}]∣∣∣∣

=

∣∣∣∣E[(Y − θ0,lgl(X1)− (η
(1)
0,l + t(η

(1)
l − η

(1)
0,l ))

TZ−l

− (η
(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X)))
)
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·
(

(η
(2)
0,l − η

(2)
l ))TZ−l + η

(4)
0,l (Z−l)− η

(4)
l (Z−l)

)
+
(
gl(X1)− (η

(2)
0,l + t(η

(2)
l − η

(2)
0,l ))

TZ−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))

·
(

(η
(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)− η(3)

l (X)
)]∣∣∣∣

= |I1,1 + I1,2 + I1,3 + I1,4|

with

I1,1 = E
[(
Y − θ0,lgl(X1)− (η

(1)
0,l + t(η

(1)
l − η

(1)
0,l ))

TZ−l

− (η
(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X)))
)(

(η
(2)
0,l − η

(2)
l ))TZ−l

)]
≤ C‖η(2)

0,l − η
(2)
l ‖2,

I1,2 = E
[(
Y − θ0,lgl(X1)− (η

(1)
0,l + t(η

(1)
l − η

(1)
0,l ))

TZ−l

− (η
(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X)))
)(
η

(4)
0,l (Z−l)

)]
≤ C‖η(4)

0,l (X)‖P,2,

I1,3 = E
[(
gl(X1)− (η

(2)
0,l + t(η

(2)
l − η

(2)
0,l ))

TZ−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))(

(η
(1)
0,l − η

(1)
l )TZ−l

)]
≤ C‖η(1)

0,l − η
(1)
l ‖2,

I1,4 = E
[(
gl(X1)− (η

(2)
0,l + t(η

(2)
l − η

(2)
0,l ))

TZ−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))(

η
(3)
0,l (X)

)]
≤ C‖η(3)

0,l (X)‖P,2.

This implies Assumption B.2(v)(b) with B1n = C. Finally, to obtain Assumption B.2(v)(c) with B2n = C,

we note that

∂2
t E [ψl(W, θ0,l + t(θl − θ0,l), η0,l + t(ηl − η0,l))]

= ∂tE
[(
Y −

(
θ0,l + t(θl − θ0,l)

)
gl(X1)−

(
η

(1)
0,l + t(η

(1)
l − η

(1)
0,l )
)T
Z−l

−
(
η

(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X))
))

·
(

(η
(2)
0,l − η

(2)
l ))TZ−l + η

(4)
0,l (Z−l)

)
+
(
gl(X1)−

(
η

(2)
0,l + t(η

(2)
l − η

(2)
0,l )
)T
Z−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))

·
(

(θ0,l − θl))gl(X1) + (η
(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)

)]
= 2E

[(
(θ0,l − θl)gl(X1) + (η

(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)

)
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·
(

(η
(2)
0,l − η

(2)
l ))TZ−l + η

(4)
0,l (Z−l)

)]
≤C

(
|θ0,l − θl|2 ∨ ‖η0,l − ηl‖2e

)
using the same arguments as above.

Assumption B.3

Note that the Assumptions B.3(ii) and (iii) both hold by the construction of Tl and by the Assumptions

A.1(ii) and A.2(ii). The main part to verify Assumption B.3 is to show that the estimates of the nuisance

function are contained in the nuisance realization set with high probability. We will rely on uniform Lasso

estimation results stated in Appendix 4.10. Therefore, we have to check the Assumptions C.1(i) to (v).

Due to Assumption A.2(iii), it holds

max
j=1,...,d1+d2

‖Zj‖Ψρ ≤ C and max
l=1,...,d1

‖ν(l)‖Ψρ ≤ C,

which are the tail conditions in Assumption C.1(i) for the auxiliary regressions. Assumption C.1(ii) is

directly implied by Assumption A.2(iv) and

min
l=1,...,d1

min
j 6=l

E
[
(ν(l))2Z2

−l,j
]

= min
l=1,...,d1

min
j 6=l

E
[
Z2
−l,j E[(ν(l))2|Z−l]︸ ︷︷ ︸

=Var(ν(l)|Z−l)≥c

]
≥ c.

Additionally, the uniform sparsity condition in Assumption C.1(iii) holds by Assumption A.2(ii) and

the growth condition in Assumption C.1(iv) by Assumption A.2(v)(a). Finally, the condition on the

approximation error in Assumption C.1(v) holds due to A.1(ii). Therefore,

η̂
(2)
l ∈ Tl for all l = 1, . . . , d1

with probability 1−o(1). To estimate η
(1)
0,l , we run a Lasso regression of Y on Z. By analogous arguments,

it holds

‖β(l)
0 − β̂(l)‖0 ≤ ‖θ̂‖0 + ‖β̂‖0 ≤ Cs,

‖β(l)
0 − β̂(l)‖2 ≤

√
‖θ − θ̂‖22 + ‖β0 − β̂‖22 ≤ C

√
s log(d̄n)

n
,

‖β(l)
0 − β̂(l)‖1 ≤ ‖θ − θ̂‖1 + ‖β0 − β̂‖1 ≤ C

√
s2 log(d̄n)

n

with probability 1− o(1) using Assumptions A.1(ii), A.2(ii)-(v) and

min
l=1,...,d1+d2

E
[
ε2Z2

l

]
= min
l=1,...,d1+d2

E
[
Z2
l E[ε2|X]︸ ︷︷ ︸

=Var(ε|X)≥c

]
≥ c.

This directly implies that with probability 1 − o(1) the nuisance realization set Tl contains η̂
(1)
l for all

l = 1, . . . , d1.

Combining the results above with η̂(3) ≡ 0 and η̂(4) ≡ 0, we obtain Assumption B.3(i). Define

F1 :=
{
ψl(·, θl, ηl) : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl

}
.
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To bound the complexity of F1, we exclude the true nuisance function (the true nuisance function is the

only element of Tl with a nonzero approximation error)

F1,1 :=
{
ψl(·, θl, ηl) : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl \ {η(l)

0 }
}
⊆ F (1)

1,1F
(2)
1,1

with

F (1)
1,1 :=

{
W 7→ Y − θlgl(X1)− (η

(1)
l )TZ−l : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl \ {η(l)

0 }
}
,

F (2)
1,1 :=

{
W 7→ gl(X1)− (η

(2)
l )TZ−l : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl \ {η(l)

0 }
}
.

Note that the envelope F
(1)
1,1 of F (1)

1,1 satisfies

‖F (1)
1,1 ‖P,2q ≤

∥∥∥∥ sup
l=1,...,d1

sup
θl∈Θl,‖η(1)

0,l−η
(l)
l ‖1≤C

√
sτn

(
|ε|+ |η(3)

0 (X)|

+ |(θ0,l − θl)gl(X1)|+ |(η(1)
0,l − η

(1)
l )TZ−l|

)∥∥∥∥
P,2q

. ‖ε‖P,2q + ‖η(3)
0 (X)‖P,2q + ‖ sup

l=1,...,d1

gl(X1)‖P,2q

+
√
sτn‖ sup

j=1,...,d1+d2

Zj‖P,2q

. C + log
1
ρ (d1) +

√
sτn log

1
ρ (d1 + d2)

. log
1
ρ (d1)

due to A.1(ii), A.2(v) and analogously

‖F (2)
1,1 ‖P,2q . log

1
ρ (d1),

where we assumed d1 ≥ 2 without loss of generality. Next, note that due to Lemma 2.6.15 from Vaart

and Wellner [94] the set

G1,1 :=
{
Z 7→ ξTZ : ξ ∈ Rd1+d2+1, ‖ξ‖0 ≤ Cs, ‖ξ‖2 ≤ C

}
is a union over

(
d1+d2+1

Cs

)
VC-subgraph classes G1,1,k with VC indices less or equal to Cs+ 2. Therefore,

F (1)
1,1 and F (2)

1,1 are unions over
(
d1+d2+1

Cs

)
and

(
d1+d2

Cs

)
VC-subgraph classes, respectively, which combined

with Theorem 2.6.7 from Vaart and Wellner [94] implies

sup
Q

logN(ε‖F (1)
1,1 ‖Q,2,F

(1)
1,1 , ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
and

sup
Q

logN(ε‖F (2)
1,1 ‖Q,2,F

(2)
1,1 , ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
.

Using basic calculations, we obtain

sup
Q

logN(ε‖F (1)
1,1F

(2)
1,1 |Q,2,F1,1, ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
,
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where F1,1 := F
(1)
1,1F

(2)
1,1 is an envelope for F1,1 with

‖F1,1‖P,q ≤ ‖F (1)
1,1 ‖P,2q‖F

(2)
1,1 ‖P,2q . log

2
ρ (d1).

Define

F1,2 :=
{
ψl(·, θl, η0,l) : l = 1, . . . , d1, θl ∈ Θl

}
and with an analogous argument we obtain

sup
Q

logN(ε‖F1,2‖Q,2,F1,2, ‖ · ‖Q,2) . log

(
d1

ε

)
,

where the envelope F1,2 of F1,2 obeys

‖F1,2‖P,q . log
2
ρ (d1).

Combining the results above, we obtain

sup
Q

logN(ε‖F1‖Q,2,F1, ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
,

where the envelope F1 := F
(1)
1,1F

(2)
1,1 ∨ F1,2 of F1 satisfies

‖F1‖P,q . log
2
ρ (d1).

Therefore, Assumption B.3(iv) holds with υn . s, an = d1 ∨ d2 and Kn . log
2
ρ (d1). For all f ∈ F1, we

have

E[f2]
1
2 . sup

‖ξ‖2=1

E[(ξTZ)4]
1
2 . C

and, for each l = 1, . . . , d1,

E
[
ψl(W, θl, ηl)

2
] 1

2

= E
[(
Y − θlgl(X1)− (η(1))TZ−l − η(3)(X)

)2(
gl(X1)− (η(2))TZ−l − η(4)(Z−l)

)2] 1
2

= E
[(
gl(X1)− (η(2))TZ−l − η(4)(Z−l)

)2
· E
[(
Y − θlgl(X1)− (η(1))TZ−l − η(3)(X)

)2|X]︸ ︷︷ ︸
≥V ar(ε|X)≥c

] 1
2

≥ c

due to Assumption A.2(iv). This implies Assumption B.3(v). Assumption B.3(vi)(a) holds by the

definition of τn and υn . s. For the next growth condition, we note

(B1nτn + Sn log(n)/
√
n)ω/2(υn log(an))1/2 + n−1/2+1/qυnKn log(an)

. (τn + log
1
2 (d1) log(n)/

√
n)(s log(an))1/2 + n−1/2+1/qs log

2
ρ (d1) log(an)

.

(
n

2
q
s2 log2+ 4

ρ (d̄n)

n

) 1
2

. δn
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with δn = o
(
t
− 3

2
1 log−

1
2 (An)

)
due to Assumption A.2(v)(a) and analogously

n1/2B2
1nB

2
2nτ

2
n . n1/2τ2

n =

√
s2 log2(d̄n)

n
. δn,

since q can be chosen arbitrarily large.

Assumption B.4(i)− (ii)

Define

F0 := {ψx(·) : x ∈ I},

where ψx(·) := (g(x)TΣng(x))−1/2g(x)TJ−1
0 ψ(·, θ0, η0). We note that for any q > 0 the envelope F0 of

F0 satisfies

‖F0‖P,q = E
[
sup
x∈I

∣∣∣(g(x)TΣng(x))−1/2g(x)TJ−1
0 ψ(W, θ0, η0)

∣∣∣q] 1
q

. E
[
sup
x∈I

∣∣g(x)TJ−1
0 ψ(W, θ0, η0)

∣∣q] 1
q

= E

[
sup
x∈I

∣∣∣∣∣
d1∑
l=1

gl(x)J−1
0,l ψl(W, θ0,l, η0,l)

∣∣∣∣∣
q] 1

q

. E

[
sup
x∈I

∣∣∣∣∣
d1∑
l=1

gl(x)εν(l)

∣∣∣∣∣
q] 1

q

. t1E

[
sup

l=1,...,d1

∣∣∣εν(l)
∣∣∣q] 1

q

. t1 log
1
ρ (d1).

By using the same argument as above, we directly obtain B.4(ii) with

Ln . t31 log
3
ρ (d1).

Therefore, we can find a larger envelope F̃0 with

‖F̃0‖P,q . t31 log
3
ρ (d1).

To bound the entropy of F0, we note that

∥∥ψx(W )− ψx̃(W )
∥∥
P,2

=
∥∥∥(g(x)TΣng(x))−1/2

d1∑
l=1

gl(x)E[(ν(l))2]−1ψl(W, θ0,l, η0,l)

− (g(x̃)TΣng(x̃))−1/2
d1∑
l=1

gl(x̃)E[(ν(l))2]−1ψl(W, θ0,l, η0,l)
∥∥∥
P,2

≤ |(g(x)TΣng(x))−1/2 − (g(x̃)TΣng(x̃))−1/2|

·
∥∥∥ d1∑
l=1

gl(x)E[(ν(l))2]−1ψl(W, θ0,l, η0,l)
∥∥∥
P,2
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+ (g(x̃)TΣng(x̃))−1/2
∥∥∥ d1∑
l=1

(
gl(x)− gl(x̃)

)
E[(ν(l))2]−1ψl(W, θ0,l, η0,l)

∥∥∥
P,2

= |(g(x)TΣng(x))−1/2 − (g(x̃)TΣng(x̃))−1/2|
∥∥∥g(x)TJ−1

0 ψ(W, θ0,l, η0,l)
∥∥∥
P,2

+ (g(x̃)TΣng(x̃))−1/2
∥∥∥(g(x)− g(x̃)

)T
J−1

0 ψ(W, θ0,l, η0,l)
∥∥∥
P,2

. |(g(x)TΣng(x))−1/2 − (g(x̃)TΣng(x̃))−1/2| sup
x∈I
‖g(x)‖2

+ ‖g(x)− g(x̃)‖2

due to the sub-multiplicativity of the spectral norm and the bounded eigenvalues.

Additionally, it holds

|(g(x)TΣng(x))−1/2 − (g(x̃)TΣng(x̃))−1/2|

.

∣∣∣∣∣
(
g(x̃)TΣng(x̃)

g(x)TΣng(x)

)1/2

− 1

∣∣∣∣∣
. |g(x̃)TΣng(x̃)− g(x)TΣng(x)|

= |(g(x)− g(x̃))TΣn(g(x) + g(x̃))|

≤ |〈Σn(g(x)− g(x̃)), (g(x) + g(x̃))〉|

. ‖g(x)− g(x̃)‖2 sup
x
‖g(x)‖2,

which implies

∥∥ψx(W )− ψx̃(W )
∥∥
P,2

. ‖g(x)− g(x̃)‖2 sup
x
‖g(x)‖22.

Using the same argument as in Theorem 2.7.11 from Vaart and Wellner [94], we obtain

sup
Q

logN(ε‖F̃0‖Q,2,F0, ‖ · ‖Q,2)

. sup
Q

logN

((
εt31 log

3
ρ (d1)

supx ‖g(x)‖22

)
sup
x
‖g(x)‖22,F0, ‖ · ‖Q,2

)

≤ logN

((
εt31 log

3
ρ (d1)

supx ‖g(x)‖22

)
, g(I), ‖ · ‖2

)

. t1 log

(
An
ε

)
.

Therefore, Assumption B.4(i) is satisfied with %n = t1.

Assumption B.5

Next, we want to prove that with probability 1− o(1) it holds

sup
l=1,...,d1

|Ĵl − J0,l| = o(1),

where Ĵl = En[−gl(X1)(gl(X1)− (η̂
(2)
l )TZ−l)].
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It holds

|Ĵl − J0,l| ≤ |Ĵl − E[−gl(X1)(gl(X1)− (η̂
(2)
l )TZ−l)]|

+ |E[−gl(X1)(gl(X1)− (η̂
(2)
l )TZ−l)] + J0,l|

with

|E[−gl(X1)(gl(X1)− (η̂
(2)
l )TZ−l)] + J0,l|

≤ |E[gl(X1)(η̂
(2)
l − η

(2)
0,l )

TZ−l)]|+ |E[gl(X1)η
(4)
0,l (Z−l)]|

. τn.

Let

G̃1 :=

{
X 7→ −gl(X1)(gl(X1)− (η

(2)
l )TZ−l) : l = 1, . . . , d1, ‖η(2)

l ‖0 ≤ Cs,

‖η(2)
l − η

(2)
0,l ‖2 ≤ Cτn, ‖η

(2) − η(2)
0,l ‖1 ≤ C

√
sτn

}
.

The envelope G̃1 of G̃1 satisfies

E[G̃q1]
1
q ≤ E

 sup
l=1,...,d1

sup
η(2):‖η(2)

l −η
(2)
0,l ‖2≤C

√
sτn

|gl(X1)|q|(gl(X1)− (η
(2)
l )TZ−l)|q

 1
q

≤ ‖ sup
l=1,...,d1

gl(X1)‖P,2q

· E

 sup
l=1,...,d1

sup
η(2):‖η(2)

l −η
(2)
0,l ‖2≤C

√
sτn

|(gl(X1)− (η
(2)
l )TZ−l)|2q

 1
2q

. log
1
ρ (d1)

(
‖ sup
l=1,...,d1

ν(l)‖P,2q ∨ ‖ sup
l=1,...,d1

b
(l)
3 (Z−l)‖P,2q

∨ E
[

sup
l=1,...,d1

sup
η(2):‖η(2)

l −η
(2)
0,l ‖2≤C

√
sτn

(η
(2)
0,l − η

(2)
l )TZ−l)

2q

] 1
2q
)

. log
1
ρ (d1)

(
log

1
ρ (d1) ∨

√
sτn log

1
ρ (d1 + d2)

)
. log

2
ρ (d1)

and with the same arguments as above we obtain

sup
Q

logN(ε‖G̃1‖Q,2, G̃1, ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
.

Therefore, by using Lemma P.2 from Belloni et al. [12], it holds

sup
l=1,...,d1

|Ĵl − J0,l| . sup
f∈G̃1

|En[f(X)]− E[f(X)]|+ τn

. K

(√
s log(d̄n)

n
+ n

1
q
s log

2
ρ (d1) log(d̄n)

n

)
+ τn

with probability 1− o(1).
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Next, we want to bound the restricted eigenvalues of Σ̂εν with high probability by showing

sup
‖v‖2=1,‖v‖0≤t1

|vT
(
Σ̂εν − Σεν

)
v| . un (4.7)

with

un . t1

(
n

1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

) 1
2

for a suitable q̃ > q̄. Define ξi := εiνi, ξ̂i := ε̂iν̂i and observe that

Σ̂εν − Σεν

=
1

n

n∑
i=1

ξ̂iξ̂
T
i − E[ξiξ

T
i ]

=
1

n

n∑
i=1

ξiξ
T
i − E[ξiξ

T
i ]

+
1

n

n∑
i=1

ξi
(
ξ̂i − ξi

)T
+

1

n

n∑
i=1

(
ξ̂i − ξi

)
ξTi +

1

n

n∑
i=1

(
ξ̂i − ξi

)(
ξ̂i − ξi

)T
.

Using the Lemma Q.1 from Belloni et al. [12], we can bound the first part.

Due to the tail conditions on ε and ν, we obtain(
E
[

max
1≤i≤n

‖εiνi‖2∞
])1/2

≤
(
E
[

max
1≤i≤n

‖εi‖4
]
E
[

max
1≤i≤n

‖νi‖4∞
])1/4

. n
2
q log

1
ρ (d1)

for an arbitrary but fixed q ≥ 4. Then, Lemma Q.1 implies

E

[
sup

‖v‖2=1,‖v‖0≤t1

∣∣∣vT( 1

n

n∑
i=1

ξiξ
T
i − E[ξiξ

T
i ]
)
v
∣∣∣]

= E

[
sup

‖v‖2=1,‖v‖0≤t1

∣∣∣En[(vT ξi)2 − E
[(
vT ξi

)2]]∣∣∣]
. δ̃2

n + δ̃n

with

δ̃n .
(
n

4
q log

2
ρ (d1)t1 log2(t1) log(d1) log(n)n−1

) 1
2

.

(
n

5
q
t1 log1+ 2

ρ (d1)

n

) 1
2

and

δ̃2
n

u2
n

.
(
n

1
q̃−

5
q t1s

)−1

= o(1)

for q > 5q̃. Using Markov’s inequality, we directly obtain

sup
‖v‖2=1,‖v‖0≤t1

∣∣∣vT( 1

n

n∑
i=1

ξiξ
T
i − E[ξiξ

T
i ]
)
v
∣∣∣ . un
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with probability 1− o(1). Note that applying the results on covariance estimation from Chen et al. [28]

instead would lead to comparable growth rates. Further, with probability 1− o(1), it holds

sup
l=1,...,d1

|θ̂l − θ0,l| . τn

due to Appendix A from Belloni et al. [12]. Define

G̃2
2 :=

{
(ψl(·, θl, ηl)− ψl(·, θ0,l, η0,l))

2 : l = 1, . . . , d1, |θl − θ0,l| ≤ Cτn, ηl ∈ Tl \ {η0,l}
}

with

sup
Q

logN(ε‖G̃2
2‖Q,2, G̃2

2 , ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
.

Here, G̃2
2 is a measurable envelope of G̃2

2 with

G̃2
2 = sup

l=1,...,d1

sup
θl:|θl−θ0,l|≤Cτn,ηl∈Tl

(
ψl(W, θl, ηl)− ψl(W, θ0,l, η0,l)

)2
and

‖G̃2
2‖P,q

.
∥∥∥ sup
l,θl,η

(2)
l ,η

(4)
l

(
(θ0,l − θl)gl(X1)

(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
))2∥∥∥

P,q

+
∥∥∥ sup
l,ηl

((
Y − θ0,lgl(X1)− (η

(1)
l )TZ−l − η(3)

l (X)
)(

(η
(2)
0,l − η

(2)
l )TZ−l + η

(4)
0,l (Z−l)− η

(4)
l (Z−l)

))2∥∥∥
P,q

+
∥∥∥ sup
l,η

(1)
l ,η

(3)
l

((
gl(X1)− (η

(2)
0,l )

TZ−l − η(4)
0,l (Z−l)

)(
(η

(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)− η(3)

l (X)
))2∥∥∥

P,q

=: T1 + T2 + T3.

It holds

T1 . τ2
n

∥∥∥ sup
l,η

(2)
l ,η

(4)
l

(
gl(X1)

(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
))2∥∥∥

P,q

≤ τ2
n‖ sup

l
(gl(X1))2‖P,2q

∥∥∥ sup
l,η

(2)
l ,η

(4)
l

(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
)2∥∥∥

P,2q

. τ2
n log

4
ρ (d1),

T2 ≤
∥∥∥ sup
l,η

(1)
l ,η

(3)
l

(
Y − θ0,lgl(X1)− (η

(1)
l )TZ−l − η(3)

l (X)
)2∥∥∥

P,2q∥∥∥ sup
l,η

(2)
l ,η

(4)
l

(
(η

(2)
0,l − η

(2)
l )TZ−l + η

(4)
0,l (Z−l)− η

(4)
l (Z−l)

)2∥∥∥
P,2q

. sτ2
n

∥∥∥ sup
l
‖Z−l‖2∞

∥∥∥
P,2q

+ log
2
ρ (d1)

. sτ2
n log

2
ρ (d1 + d2) + log

2
ρ (d1)

103



CHAPTER 4 4.8. PROOFS

and

T3 ≤ ‖ sup
l

(ν(l))2‖P,2q
∥∥∥ sup
l,η

(1)
l ,η

(3)
l

(
η

(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)− η(3)

l (X)
)2∥∥∥

P,2q

. log
2
ρ (d1)

(
sτ2
n

∥∥∥ sup
l
‖Z−l‖2∞

∥∥∥
P,2q

+ 1
)

. log
2
ρ (d1)

(
sτ2
n log

2
ρ (d1 + d2) + 1

)
.

By using an analogous argument as above, we obtain

σ̃ : = sup
f∈G̃2

2

E
[
f(X)2

] 1
2

= sup
l=1,...,d1

sup
θl:|θl−θ0,l|≤Cτn,ηl∈Tl

E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, η0,l))

4
] 1

2

.
s2 log(d1 ∨ d2)

n
.

Again, we can apply Lemma P.2 from Belloni et al. [12] to obtain

sup
f∈G̃2

2

|En[f(X)]− E[f(X)]| ≤ K
(
σ̃

√
s log(d̄n)

n
+ n

1
q ‖G̃2

2‖P,q
s log(d̄n)

n

)
. sτ3

n ∨ n
1
q log

2
ρ (d1)τ2

n

with probability 1− o(1). Note that we have already shown Assumption B.2(v)(a) which implies

sup
f∈G̃2

2

E[f(X)] ≤ C
(
|θl − θ0,l|2 ∨ ‖η0,l − ηl‖2e

)
. τ2

n.

This implies

sup
l=1,...,d1

En
[(
ε̂iν̂

(l)
i − εiν

(l)
i

)2
]
≤ sup
f∈G̃2

2

En[f(X)] . n
1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

and, with an analogous argument, we obtain

sup
l=1,...,d1

En
[(
εiν

(l)
i

)2
]
. 1.

Therefore, it holds

sup
‖v‖2=1,‖v‖0≤t1

|vT 1

n

n∑
i=1

ξi
(
ξ̂i − ξi

)T
v|

= sup
‖v‖2=1,‖v‖0≤t1

|En
[
vT ξi

(
ξ̂i − ξi

)T
v
]
|

≤ sup
‖v‖2=1,‖v‖0≤t1

∣∣∣∣∣
(
En
[(
vT ξi

)2]En [(vT (ξ̂i − ξi))2
]) 1

2

∣∣∣∣∣
. sup
‖v‖2=1,‖v‖0≤t1

∣∣∣∣∣
(
En
[(
vT
(
ξ̂i − ξi

))2
]) 1

2

∣∣∣∣∣
= sup
‖v‖2=1,‖v‖0≤t1

(
d1∑
k=1

d1∑
l=1

vkvlEn
[
(ε̂iν̂

(k)
i − εiν(k)

i )(ε̂iν̂
(l)
i − εiν

(l)
i )
]) 1

2
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. t1 sup
l=1,...,d1

En
[
(ε̂iν̂

(l)
i − εiν

(l)
i )2

] 1
2

. t1

(
n

1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

) 1
2

and

sup
‖v‖2=1,‖v‖0≤t1

|vT 1

n

n∑
i=1

(
ξ̂i − ξi

)(
ξ̂i − ξi

)T
v| . t21

(
n

1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

)
with probability 1 − o(1). Combining the steps above, this implies (4.7) if un = o(1) which is ensured

by the growth conditions. Next, note that for every sparse vector w ∈ Rd1 (‖w‖0 ≤ t1) there exists a

corresponding matrix

Mw ∈ Rd1×d1 : (Mw)k,l =

1 if wk 6= 0 ∧ wl 6= 0

0 else

such that

wT (Σ̂εν − Σεν)w = wT
(
Mw � (Σn − Σ̂n)

)
w.

Due to (4.7), it holds

sup
‖w‖0≤t1

sup
‖v‖2=1

∣∣∣vT (Mw � (Σ̂εν − Σεν)
)
v
∣∣∣ ≤ sup

‖v‖2=1,‖v‖0≤t1

∣∣∣vT (Σ̂εν − Σεν)v
∣∣∣ . un,

which implies

sup
‖w‖0≤t1

‖Mw � (Σ̂εν − Σεν)‖2 . un

and

sup
‖w‖0≤t1

‖Mw � Σ̂εν‖2 . 1

due to Assumption A.2(iv). For v ∈ Rd1 , this can be used to show

sup
‖v‖2=1,‖v‖0≤t1

|vT
(
Σ̂n − Σn

)
v| . un (4.8)

with probability 1−o(1) which can be interpreted as an upper bound for the sparse eigenvalues of Σ̂n−Σn.

It holds

Σ̂n − Σn = Ĵ−1Σ̂εν(Ĵ−1)T − J−1
0 Σεν(J−1

0 )T

= Ĵ−1Σ̂εν
(
Ĵ−1 − J−1

0 )T +
(
Ĵ−1 − J−1

0

)
Σ̂εν(J−1

0 )T

+ J−1
0

(
Σ̂εν − Σεν

)(
J−1

0 )T .

Note that

sup
‖v‖2=1,‖v‖0≤t1

|vT Ĵ−1Σ̂εν
(
Ĵ−1 − J−1

0 )T v|

= sup
‖v‖2=1,‖v‖0≤t1

|vT Ĵ−1
(
Mv � Σ̂εν

) (
Ĵ−1 − J−1

0 )T v|

105



CHAPTER 4 4.8. PROOFS

≤
∥∥∥Ĵ−1

∥∥∥
2

sup
‖w‖0≤t1

∥∥∥(Mw � Σ̂εν

)∥∥∥
2

∥∥∥(Ĵ−1 − J−1
0 )T

∥∥∥
2

. n
1
q
s log

2
ρ (d1) log(d̄n)

n
+ τn

due to the sub-multiplicative spectral norm. The same bound holds for the second term. The third term

can be bounded by

sup
‖v‖2=1,‖v‖0≤t1

|vTJ−1
0

(
Σ̂εν − Σεν

)(
J−1

0 )T v| . un.

This implies (4.8). We finally obtain

sup
x∈I

∣∣∣∣∣ (g(x)T Σ̂ng(x))1/2

(g(x)TΣng(x))1/2
− 1

∣∣∣∣∣ . sup
x∈I

∣∣∣g(x)T
(
Σ̂n − Σn

)
g(x)

∣∣∣
≤ sup

x∈I
‖g(x)‖22 sup

‖v‖2=1,‖v‖0≤t1
|vT
(
Σ̂n − Σn

)
v|

. sup
x∈I
‖g(x)‖22un

with probability 1− o(1) and εn . supx∈I ‖g(x)‖22un which is the first part of Assumption B.5.

Assumption B.4(iii)− (iv)

Define

σx : = (g(x)TΣng(x))1/2, σ̂x := (g(x)T Σ̂ng(x))1/2

and

F̂0 := {ψx(·)− ψ̂x(·) : x ∈ I}

with ψ̂x(·) := σ̂−1
x g(x)T Ĵ−1

0 ψ(·, θ̂, η̂). For every x and x̃, it holds

‖ψx(W )− ψ̂x(W )− (ψx̃(W )− ψ̂x̃(W ))‖Pn,2

=
∥∥∥σ−1

x g(x)TJ−1
0 ψ(W, θ0, η0)− σ−1

x̃ g(x̃)TJ−1
0 ψ(W, θ0, η0)

−
(
σ̂−1
x g(x)T Ĵ−1ψ(W, θ̂, η̂)− σ̂−1

x̃ g(x̃)T Ĵ−1ψ(W, θ̂, η̂)
)∥∥∥

Pn,2

=
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))J−1
0,l ψl(W, θ0,l, η0,l)

−
d1∑
l=1

(σ̂−1
x gl(x)− σ̂−1

x̃ gl(x̃))Ĵ−1
l ψl(W, θ̂l, η̂l)

∥∥∥
Pn,2

≤
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))
(
J−1

0,l − Ĵ
−1
l

)
ψl(W, θ0,l, η0,l)

∥∥∥
Pn,2

+
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))Ĵ−1
l

(
ψl(W, θ0,l, η0,l)− ψl(W, θ̂l, η̂l)

)∥∥∥
Pn,2

+
∥∥∥ d1∑
l=1

(
(σ−1
x gl(x)− σ−1

x̃ gl(x̃))− (σ̂−1
x gl(x)− σ̂−1

x̃ gl(x̃))
)
Ĵ−1
l ψl(W, θ̂l, η̂l)

∥∥∥
Pn,2

=:I4,1 + I4,2 + I4,3.
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We obtain

I4,1 =
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))
(
J−1

0,l − Ĵ
−1
l

)
ψl(W, θ0,l, η0,l)

∥∥∥
Pn,2

≤ σ−1
x

∥∥∥(g(x)− g(x̃))T
(
J−1

0 − Ĵ−1
)
ψ(W, θ0, η0)

∥∥∥
Pn,2

+ |σ−1
x − σ−1

x̃ |
∥∥∥g(x̃)T

(
J−1

0 − Ĵ−1
)
ψ(W, θ0, η0)

∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2 sup
‖v‖2=1,‖v‖0≤2t1

∥∥∥vT(J−1
0 − Ĵ−1

)
ψ(W, θ0, η0)

∥∥∥
Pn,2

+ ‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22 sup

‖v‖2=1,‖v‖0≤t1

∥∥∥vT(J−1
0 − Ĵ−1

)
ψ(W, θ0, η0)

∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22un,

where we used that

sup
‖v‖2=1,‖v‖0≤t1

∥∥∥vT(J−1
0 − Ĵ−1

)
ψ(W, θ0, η0)

∥∥∥2

Pn,2

= sup
‖v‖2=1,‖v‖0≤t1

∣∣∣vT(J−1
0 − Ĵ−1

) 1

n

n∑
i=1

ξiξ
T
i

(
J−1

0 − Ĵ−1
)T
v
∣∣∣

≤
∥∥∥J−1

0 − Ĵ−1
∥∥∥2

2
sup
‖v‖0≤t1

∥∥∥Mv �

(
1

n

n∑
i=1

ξiξ
T
i

)∥∥∥2

2

. u2
n.

Analogously, we obtain

I4,2 =
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))Ĵ−1
l

(
ψl(W, θ0,l, η0,l)− ψl(W, θ̂l, η̂l)

)∥∥∥
Pn,2

≤ σ−1
x

∥∥∥(g(x)− g(x̃))T Ĵ−1
(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

+ |σ−1
x − σ−1

x̃ |
∥∥∥g(x̃)T Ĵ−1

(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2 sup
‖v‖2=1,‖v‖0≤2t1

∥∥∥vT Ĵ−1
(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

+ ‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22 sup

‖v‖2=1,‖v‖0≤t1

∥∥∥vT Ĵ−1
(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22un.

It holds

I4,3 =
∥∥∥ d1∑
l=1

(
(σ−1
x gl(x)− σ−1

x̃ gl(x̃))− (σ̂−1
x gl(x)− σ̂−1

x̃ gl(x̃))
)
Ĵ−1
l ψl(W, θ̂l, η̂l)

∥∥∥
Pn,2

≤
∣∣σ−1
x − σ̂−1

x

∣∣∥∥∥(g(x)− g(x̃))T Ĵ−1ψ(W, θ̂, η̂)
∥∥∥
Pn,2

+
∣∣(σ−1

x − σ̂−1
x )− (σ−1

x̃ − σ̂
−1
x̃ )
∣∣∥∥∥g(x̃)T Ĵ−1ψ(W, θ̂, η̂)

∥∥∥
Pn,2

.
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Note that

∣∣(σ−1
x − σ̂−1

x )− (σ−1
x̃ − σ̂

−1
x̃ )
∣∣

=
∣∣∣ 1

σxσx̃
(σx̃ − σx)− 1

σ̂xσ̂x̃
(σ̂x̃ − σ̂x)

∣∣∣
=

1

σ̂xσ̂x̃

∣∣∣ σ̂xσ̂x̃
σxσx̃

(σx̃ − σx)− (σ̂x̃ − σ̂x)
∣∣∣

.
∣∣(σx̃ − σx)− (σ̂x̃ − σ̂x)

∣∣+
∣∣∣ σ̂xσ̂x̃
σxσx̃

− 1
∣∣∣∣∣σx̃ − σx∣∣

with ∣∣∣ σ̂xσ̂x̃
σxσx̃

− 1
∣∣∣∣∣σx̃ − σx∣∣ ≤ (∣∣∣ σ̂x

σx
− 1
∣∣∣ σ̂x̃
σx̃

+
∣∣∣ σ̂x̃
σx̃
− 1
∣∣∣)∣∣σx̃ − σx∣∣

. εn
1

σx

∣∣σ2
x̃ − σ2

x

∣∣
. εn‖g(x)− g(x̃)‖2 sup

x
‖g(x)‖2

uniformly over x ∈ I with probability 1− o(1) and

∣∣(σx̃ − σx)− (σ̂x̃ − σ̂x)
∣∣

≤ 1

(σ̂x̃ + σ̂x)

∣∣(σ2
x̃ − σ2

x)− (σ̂2
x̃ − σ̂2

x)
∣∣+
∣∣∣( 1

(σx̃ + σx)
− 1

(σ̂x̃ + σ̂x)

)
(σ2
x̃ − σ2

x)
∣∣∣

.
∣∣(σ2

x̃ − σ2
x)− (σ̂2

x̃ − σ̂2
x)
∣∣+
∣∣∣ (σ̂x̃ + σ̂x)

(σx̃ + σx)
− 1
∣∣∣∣∣σ2

x̃ − σ2
x

∣∣.
Using an analogous argument as in the verification of Assumption B.5, we obtain

|(σ2
x − σ̂2

x)− (σ2
x̃ − σ̂2

x̃)| = |(g(x)− g(x̃))T (Σn − Σ̂n)(g(x) + g(x̃))|

≤ ‖(Σn − Σ̂n)(g(x)− g(x̃))‖2 sup
x∈I
‖g(x)‖2

. ‖g(x)− g(x̃)‖2un sup
x∈I
‖g(x)‖2

with probability 1− o(1), where the last inequality holds due the order of the sparse eigenvalues in (4.8).

Additionally, ∣∣∣ (σ̂x̃ + σ̂x)

(σx̃ + σx)
− 1
∣∣∣∣∣σ2

x̃ − σ2
x

∣∣ ≤ sup
x∈I

∣∣∣ σ̂x
σx
− 1
∣∣∣∣∣σ2

x̃ − σ2
x

∣∣
. εn‖g(x)− g(x̃)‖2 sup

x∈I
‖g(x)‖2

with probability 1− o(1). Therefore, we obtain

I4,3 . εn‖g(x)− g(x̃)‖2 sup
‖v‖2=1,‖v‖0≤2t1

∥∥∥vT Ĵ−1ψ(W, θ̂, η̂)
∥∥∥
Pn,2

+ (εn ∨ un)‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22 sup

‖v‖2=1,‖v‖0≤t1

∥∥∥vT Ĵ−1ψ(W, θ̂, η̂)
∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2εn sup
x∈I
‖g(x)‖22.

Combining the steps above, we obtain

‖ψx(W )− ψ̂x(W )− (ψx̃(W )− ψ̂x̃(W ))‖Pn,2 ≤ ‖g(x)− g(x̃)‖2‖F̂0‖Pn,2

108



CHAPTER 4 4.8. PROOFS

with

‖F̂0‖Pn,2 . εn sup
x∈I
‖g(x)‖22 = o(1)

due to the growth condition in Assumption A.2(v)(b) as shown below. Using the same argument as in

Theorem 2.7.11 from Vaart and Wellner [94], we obtain with probability 1− o(1)

logN(ε, F̂0, ‖ · ‖Pn,2) ≤ logN(ε‖F̂0‖Pn,2, F̂0, ‖ · ‖Pn,2)

≤ logN(ε, g(I), ‖ · ‖2)

≤ %̄n log

(
Ān
ε

)
with %̄n = t1 and Ān . An. Additionally, it holds

‖ψx(W )− ψ̂x(W )‖Pn,2

=
∥∥∥σ−1

x g(x)TJ−1
0 ψ(W, θ0, η0)− σ̂−1

x g(x)T Ĵ−1ψ(W, θ̂, η̂)
∥∥∥
Pn,2

≤ σ−1
x

∥∥∥g(x)T
(
J−1

0 − Ĵ−1
)
ψ(W, θ0, η0)

∥∥∥
Pn,2

+ σ−1
x

∥∥∥g(x)T Ĵ−1
(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

+ |σ−1
x − σ̂−1

x |
∥∥∥g(x)T Ĵ−1ψ(W, θ̂, η̂)

∥∥∥
Pn,2

. sup
x∈I
‖g(x)‖2(un ∨ εn)

. sup
x∈I
‖g(x)‖2εn

with an analogous argument as above. Therefore, B.4(iii) holds with

δ̄n . sup
x∈I
‖g(x)‖2εn.

To complete the proof, we verify all growth conditions from Assumptions B.4 and B.5. As shown in the

verification of B.3(vi), it holds

t21δ
2
n%n log(An) = δ2

nt
3
1 log(An) = o(1).

Additionally, it holds

n−
1
7L

2
7
n%n log(An) =

t
13
7

1 log
6
7ρ (d1) log(An)

n
1
7

= o(1)

and

n
2
3q−

1
3L

2
3
n%n log(An) = n

2
3q
t31 log

2
ρ (d1) log(An)

n
1
3

= o(1)

for q large enough due to the growth condition in Assumption A.2(v)(c). Note that

εn%n log(An) = εnt1 log(An) . δ̄nt1 log(An).
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Hence, we need to show that

δ̄2
n%̄n%n log(Ān) log(An) = δ̄2

nt
2
1 log2(An) = o(1).

It holds

δ̄2
nt

2
1 log2(An) . u2

n sup
x∈I
‖g(x)‖62t21 log2(An)

.
(
n

1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

)
sup
x∈I
‖g(x)‖62t41 log2(An)

= o(1)

due to Assumption A.2(v)(b). This completes the proof.
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Appendix

4.9 Uniformly Valid Confidence Bands

As in Belloni et al. [12], we consider the problem of estimating the set of parameters θ0,l, l = 1, . . . , d1,

in the moment condition model

E[ψl(W, θ0,l, η0,l)] = 0, l = 1, . . . , d1, (4.9)

where W is a random variable, ψl a known score function, θ0,l ∈ Θl a scalar of interest, and η0,l ∈ Tl
a high-dimensional nuisance parameter. Tl is a convex set in a normed space equipped with a norm

‖ · ‖e. Let Tl be some subset of Tl which contains the nuisance estimate η̂l with high probability. Belloni

et al. [12] provide an appropriate estimator θ̂l and are able to construct simultaneous confidence bands for

(θ0,l)l=1,...,d1 , where d1 may increase with the sample size n. In this section, we are particularly interested

in the linear functional

G(x) =

d1∑
l=1

θ0,lgl(x),

where (gl)l=1,...,d1
is a given set of functions with

gl : I ⊆ R→ R, l = 1, . . . , d1.

We assume that the score functions ψl are constructed to satisfy the near-orthogonality condition, namely

Dl,0[η, η0,l] := ∂t
{
E[ψl(W, θ0,l, η0,l + t(η − η0,l))]

}∣∣
t=0

. δnn
−1/2, (4.10)

where ∂t denotes the derivative with respect to t and (δn)n≥1 a sequence of positive constants converging

to zero. We aim to construct uniform valid confidence bands for the target function G(x), namely

P (l̂(x) ≤ G(x) ≤ û(x),∀x ∈ I)→ 1− α.

Let η̂l be an estimator of the nuisance function. The estimator θ̂0 of the target parameter

θ0 = (θ0,1, . . . , θ0,d1
)T

is defined as the solution of

sup
l=1,...,d1

{∣∣∣En[ψl(W, θ̂l, η̂l)]∣∣∣− inf
θ∈Θl

∣∣∣En[ψl(W, θ, η̂l)]∣∣∣} ≤ εn, (4.11)

where εn = o
(
δnn
−1/2

)
is the numerical tolerance. Let

g(x) = (g1(x), . . . , gd1
(x))

T ∈ Rd1×1

and

ψ(W, θ, η) = (ψ1(W, θ, η), . . . , ψd1(W, θ, η))
T ∈ Rd1×1.
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Define the Jacobian matrix

J0 :=
∂

∂θ
E[ψ(W, θ, η0)]

∣∣∣∣
θ=θ0

= diag (J0,1, . . . , J0,d1
) ∈ Rd1×d1

and the approximate covariance matrix

Σn : = J−1
0 E

[
ψ(W, θ0, η0)ψ(W, θ0, η0)T

]
(J−1

0 )T ∈ Rd1×d1 .

Additionally, define

Sn := E

[
sup

l=1,...,d1

∣∣√nEn [ψl(W, θ0,l, η0,l)]
∣∣]

and

t1 := sup
x∈I
‖g(x)‖0.

The definition of t1 is helpful if the functions gl, l = 1, . . . , d1, are local in the sense that for any point x

in I there are at most t1 � d1 nonzero functions. Now, we state the conditions needed for the uniformly

valid confidence bands.

Assumption B. 1. It holds

(i) inf
x∈I
‖g(x)‖22 ≥ c > 0,

(ii) sup
x∈I

sup
l=1,...,d1

|gl(x)| ≤ C <∞,

(iii) The eigenvalues from Σn are uniformly bounded from above and away from zero.

Since the proof of our main result in this section relies on the techniques in Belloni et al. [12], we try

formulate the following conditions as similar as possible to make the use of their methodology transparent.

Assumption B. 2. For all n ≥ n0, P ∈ Pn and l ∈ {1, . . . , d1}, the following conditions hold:

(i) The true parameter value θ0,l obeys (4.9), and Θl contains a ball of radius C0n
−1/2Sn log(n) centered

at θ0,l.

(ii) The map (θl, ηl) 7→ E[ψl(W, θl, ηl)] is twice continuously Gateaux-differentiable on Θl × Tl.

(iii) The score function ψl obeys the near orthogonality condition (4.10) for the set Tl ⊂ Tl.

(iv) For all θl ∈ Θl, |E[ψl(W, θl, η0,l)]| ≥ 2−1|J0,l(θl − θ0,l)| ∧ c0, where J0,l satisfies c0 ≤ |J0,l| ≤ C0.

(v) For all r ∈ [0, 1), θl ∈ Θl and ηl ∈ Tl, it holds

(a) E[(ψl(W, θl, ηl)− ψl(W, θ0,l, η0,l))
2] ≤ C0(|θl − θ0,l| ∨ ‖ηl − η0,l‖e)ω,

(b) |∂rE[ψl(W, θl, η0,l + r(ηl − η0,l))]| ≤ B1n‖ηl − η0,l‖e,

(c) |∂2
rE[ψl(W, θ0,l + r(θl − θ0,l), η0,l + r(ηl − η0,l))]| ≤ B2n(|θl − θ0,l|2 ∨ ‖ηl − η0,l‖2e).

Note that the notation E abbreviates EP . For a detailed discussion of the ideas and intuitions of these

and the following assumptions, we refer to Belloni et al. [12].

Let (∆n)n≥1 and (τn)n≥1 be some sequences of positive constants converging to zero. Also, let (an)n≥1,

(υn)n≥1, and (Kn)n≥1 be some sequences of positive constants, possibly growing to infinity, where an ≥
n ∨Kn and υ ≥ 1 for all n ≥ 1. Finally, let q ≥ 2 be some constant.
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Assumption B. 3. For all n ≥ n0 and P ∈ Pn, the following conditions hold:

(i) With probability at least 1−∆n, we have η̂l ∈ Tl for all l = 1, . . . , d1.

(ii) For all l = 1, . . . , d1 and ηl ∈ Tl, it holds ‖ηl − η0,l‖e ≤ τn.

(iii) For all l = 1, . . . , d1, we have η0,l ∈ Tl.

(iv) The function class F1 = {ψl(·, θl, ηl) : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl} is suitably measurable and its

uniform entropy numbers obey

sup
Q

logN(ε‖F1‖Q,2,F1, ‖ · ‖Q,2) ≤ υn log(an/ε), for all 0 < ε ≤ 1,

where F1 is a measurable envelope for F1 that satisfies ‖F1‖P,q ≤ Kn.

(v) For all f ∈ F1, we have c0 ≤ ‖f‖P,2 ≤ C0.

(vi) The complexity characteristics an and υn satisfy

(a) (υn log(an)/n)1/2 ≤ C0τn,

(b) (B1nτn + Sn log(n)/
√
n)ω/2(υn log(an))1/2 + n−1/2+1/qυnKn log(an) ≤ C0δn,

(c) n1/2B2
1nB

2
2nτ

2
n ≤ C0δn.

Whereas the Assumptions B.2 and B.3 are identical to the Assumptions 2.1 and 2.2 from Belloni et al.

[12], the analogs to their Assumptions 2.3 and 2.4 need modifications to fit our setting constructing a

uniformly valid confidence band for the linear functional G(x). In this context, define

ψx(·) := (g(x)TΣng(x))−1/2g(x)TJ−1
0 ψ(·, θ0, η0)

and the corresponding plug-in estimator

ψ̂x(·) := (g(x)T Σ̂ng(x))−1/2g(x)T Ĵ−1
0 ψ(·, θ̂0, η̂0).

Let (δ̄n)n≥1 be a sequence of positive constants converging to zero. Also, let (%n)n≥1, (%̄n)n≥1, (An)n≥1,

(Ān)n≥1, and (Ln)n≥1 be some sequences of positive constants, possibly growing to infinity, where % ≥ 1,

An ≥ n, and Ān ≥ n for all n ≥ 1. In addition, assume that q > 4.

Assumption B. 4. For all n ≥ n0 and P ∈ Pn, the following conditions hold:

(i) The function class F0 = {ψx(·) : x ∈ I} is suitably measurable and its uniform entropy numbers

obey

sup
Q

logN(ε‖F0‖Q,2,F0, ‖ · ‖Q,2) ≤ %n log(An/ε), for all 0 < ε ≤ 1,

where F0 is a measurable envelope for F0 that satisfies ‖F0‖P,q ≤ Ln.

(ii) For all f ∈ F0 and k = 3, 4, we have E[|f(W )|k] ≤ C0L
k−2
n .

(iii) The function class F̂0 = {ψx(·)− ψ̂x(·) : x ∈ I} satisfies with probability 1−∆n:

logN(ε, F̂0, ‖ · ‖Pn,2) ≤ %̄n log(Ān/ε), for all 0 < ε ≤ 1

and ‖f‖Pn,2 ≤ δ̄n for all f ∈ F̂0.
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(iv) t21δ
2
n%n log(An) = o(1), L

2/7
n %n log(An) = o(n1/7) and L

2/3
n %n log(An) = o(n1/3−2/(3q)).

Additionally, we need to be able to estimate the variance of the linear functional sufficiently well. Let

Σ̂n be an estimator of Σn.

Assumption B. 5. For all n ≥ n0 and P ∈ Pn, it holds

P

(
sup
x∈I

∣∣∣∣∣ (g(x)T Σ̂ng(x))1/2

(g(x)TΣng(x))1/2
− 1

∣∣∣∣∣ > εn

)
≤ ∆n,

where εn%n log(An) = o(1) and δ̄2
n%̄n%n log(Ān) log(An) = o(1).

As in Chernozhukov et al. [30], we employ the Gaussian multiplier bootstrap method to estimate the

respective quantiles. Let

Ĝ =
(
Ĝx
)
x∈I

=

(
1√
n

n∑
i=1

ξiψ̂x(Wi)

)
x∈I

,

where (ξi)
n
i=1 are independent standard normal random variables (especially independent from (Wi)

n
i=1).

Define the multiplier bootstrap critical value cα as the (1− α)-quantile of the conditional distribution of

supx∈I |Ĝx| given (Wi)
n
i=1.

Theorem 10. Define

û(x) := Ĝ(x) +
(g(x)′Σ̂ng(x))1/2cα√

n
,

l̂(x) := Ĝ(x)− (g(x)′Σ̂ng(x))1/2cα√
n

with Ĝ(x) = g(x)T θ̂0. Given the Assumptions B.1-B.5, it holds

P
(
l̂(x) ≤ G(x) ≤ û(x),∀x ∈ I

)
→ 1− α

uniformly over P ∈ Pn.

Proof. Since Theorem 2.1 in Belloni et al. [12] is not directly applicable to our problem, we have to

modify the proof to obtain a uniform Bahadur representation. We want to prove that

sup
x∈I

∣∣∣√n(g(x)TΣng(x))−1/2g(x)T
(
θ̂ − θ0

)∣∣∣ = sup
x∈I

∣∣∣Gn(ψx)
∣∣∣+OP (t1δn). (4.12)

Assumptions B.2 and B.3 contain Assumptions 2.1 and 2.2 from Belloni et al. [12] which enables us to

use parts of their results. Therefore, it holds

sup
l=1,...,d1

∣∣∣J−1
0,l

√
nEn [ψl(W, θ0,l, η0,l)] +

√
n
(
θ̂l − θ0,l

)∣∣∣ = OP (δn).

Using Assumption B.1, this implies

sup
x∈I

∣∣∣√nEn [g(x)TJ−1
0 ψ(W, θ0, η0)

]
+
√
ng(x)T

(
θ̂ − θ0

)∣∣∣
= sup

x∈I

∣∣∣∣∣∣
d1∑
j=1

gl(x)
(
J−1

0,l

√
nEn [ψl(W, θ0,l, η0,l)] +

√
n(θ̂l − θ0,l)

)∣∣∣∣∣∣
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≤ t1 sup
x∈I

sup
l=1,...,d1

|gl(x)|︸ ︷︷ ︸
≤C

sup
l=1,...,d1

∣∣∣J−1
0,l

√
nEn [ψl(W, θ0,l, η0,l)] +

√
n
(
θ̂l − θ0,l

)∣∣∣
= Op(t1δn).

Since the minimal eigenvalue of Σn is uniformly bounded away from zero, it follows that g(x)TΣng(x)

is uniformly bounded away from zero as long as ‖g(x)‖22 is uniformly bounded away from zero due to

Assumption B.1. This implies (4.12).

Due to Assumption B.5, it holds

P

(
sup
x∈I

∣∣∣∣∣ (g(x)T Σ̂ng(x))1/2

(g(x)TΣng(x))1/2
− 1

∣∣∣∣∣ > εn

)
≤ ∆n

with ∆n = o(1), which is an analogous version of the Assumption 2.4 from Belloni et al. [12]. Therefore,

given the Assumptions B.2-B.5, the proofs of Corollary 2.1 and Corollary 2.2 from Belloni et al. [12] can

be applied implying the stated theorem.

4.10 Uniform Nuisance Function Estimation

To establish uniform estimation properties of the nuisance function, we rely on uniform estimation results

from Klaassen et al. [60]. Consider the following linear regression model

Yr =

p∑
j=1

βr,jXr,j + ar(Xr) + εr = βrXr + ar(Xr) + εr

with centered regressors and ar(Xr) accounts for an approximation error. The errors εr are assumed to

satisfy E[εr|Xr] = 0 for each r = 1, . . . , d.

The true parameter obeys

βr ∈ arg min
β

E[(Yr − βXr − ar(Xr))
2].

We show that the Lasso and post-Lasso estimators have sufficiently fast uniform estimation rates if the

vector βr is sparse for all r = 1, . . . , d. Due to the approximation error ar(Xr), the sparsity assumption

is quite mild and contains an approximate sparse setting. In this setting, d = dn is explicitly allowed to

grow with n. In the following analysis, the regressors and errors need to have at least subexponential

tails. In this context, we define the Orlicz norm ‖X‖Ψρ as

‖X‖Ψρ = inf{C > 0 : E[Ψρ(|X|/C)] ≤ 1}

with Ψρ(x) = exp(xρ)− 1.

Uniform Lasso Estimation

Define the weighted Lasso estimator

β̂r ∈ arg min
β

(
1

2
En
[
(Yr − βXr)

2
]

+
λ

n
‖Ψ̂r,mβ‖1

)
with the penalty level

λ = cλ
√
nΦ−1

(
1− γ

2pd

)
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for a suitable cλ > 1, γ ∈ [1/n, 1/ log(n)] and a fixed m ≥ 0. Define the post-regularized weighted least

squares (post-Lasso) estimator as

β̃r ∈ arg min
β

(
1

2
En
[
(Yr − βXr)

2
])

: supp(β) ⊆ supp(β̂r).

The penalty loadings Ψ̂r,m = diag({l̂r,j,m, j = 1, . . . , p}) are defined by

l̂r,j,0 = max
1≤i≤n

||X(i)
r ||∞

for m = 0 and for all m ≥ 1 by the following algorithm:

Algorithm 2 penalty loadings

Set m̄ = 0. Compute β̂r based on Ψ̂r,m̄.

Set l̂r,j,m̄+1 = En
[((

Yr − β̂rXr

)
Xr,j

)2
]1/2

.

If m̄ = m stop and report the current value of Ψ̂r,m, otherwise set m̄ = m̄+ 1.

Let an := max(p, n, d, e). In order to establish uniform convergence rates, the following assumptions are

required to hold uniformly in n ≥ n0 and P ∈ Pn:

Assumption C. 1.

(i) There exists 1 ≤ ρ ≤ 2 such that

max
r=1,...,d

max
j=1,...,p

‖Xr,j‖Ψρ ≤ C and max
r=1,...,d

‖εr‖Ψρ ≤ C.

(ii) For all r = 1, . . . , dn, it holds

inf
‖ξ‖2=1

E
[
(ξXr)

2
]
≥ c, sup

‖ξ‖2=1

E
[
(ξXr)

2
]
≤ C

and

min
j=1,...,p

E[ε2rX
2
r,j ] ≥ c > 0.

(iii) The coefficients obey

max
r=1,...,d

‖βr‖0 ≤ s.

(iv) There exists a positive number q̃ > 0 such that the following growth condition is fulfilled:

n
1
q̃
s log1+ 4

ρ (an)

n
= o(1).

(v) The approximation error obeys

max
r=1,...,d

‖ar(Xr)‖P,2 ≤ C
√
s log(an)

n

and

max
r=1,...,d

(En[(ar(Xr))
2]− E[(ar(Xr))

2]) ≤ C s log(an)

n

with probability 1− o(1).
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Theorem 11. Under Assumption C.1, the Lasso estimator β̂r obeys uniformly over all P ∈ Pn with

probability 1− o(1)

max
r=1,...,d

‖β̂r − βr‖2 ≤ C
√
s log(an)

n
, (4.13)

max
r=1,...,d

‖β̂r − βr‖1 ≤ C
√
s2 log(an)

n
(4.14)

with

max
r=1,...,d

‖β̂r‖0 ≤ Cs. (4.15)

Additionally, the post-Lasso estimator β̃r obeys uniformly over all P ∈ Pn with probability 1− o(1)

max
r=1,...,d

‖β̃r − βr‖2 ≤ C
√
s log(an)

n
, (4.16)

max
r=1,...,d

‖β̃r − βr‖1 ≤ C
√
s2 log(an)

n
. (4.17)

Proof of Theorem 11.

In the following, we use C for a strictly positive constant, independent of n, which may have a dif-

ferent value in each appearance. The notation an . bn stands for an ≤ Cbn for all n for some fixed C.

Additionally, an = o(1) stands for uniform convergence towards zero meaning that there exists a sequence

(bn)n≥1 with |an| ≤ bn, which is independent of P ∈ Pn and bn → 0. Finally, the notation an .P bn

means that, for any ε > 0, there exists a C such that, uniformly over all n, we have PP (an > Cbn) ≤ ε.

Due to Assumption C.1(i), we can bound the q-th moments of the maxima of the regressors uniformly

by

E
[

max
r=1,...,d

‖Xr‖q∞
] 1
q

= ‖ max
r=1,...,d

max
j=1,...,p

|Xr,j |‖P,q

≤ q!‖ max
r=1,...,d

max
j=1,...,p

|Xr,j |‖ψ1

≤ q! log
1
ρ−1(2)‖ max

r=1,...,d
max

j=1,...,p
|Xr,j |‖ψρ

≤ q! log
1
ρ−1(2)K log

1
ρ (1 + dp) max

r=1,...,d
max

j=1,...,p
‖Xr,j‖ψρ

≤ C log
1
ρ (an),

where C does depend on q and ρ but not on n. For the norm inequalities, we refer to Vaart and Wellner

[94]. Now, we essentially modify the proof of Theorem 4.2 from Belloni et al. [12] to fit our setting and

keep the notation as similar as possible. Let U = {1, . . . , d} and

βr ∈ arg min
β∈Rp

E
[ 1

2
(Yr − βXr − ar(Xr))

2︸ ︷︷ ︸
:=Mr(Yr,Xr,β,ar)

]
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for all r = 1, . . . , d. The approximation error ar(Xr) is estimated with âr ≡ 0. Define

Mr(Yr, Xr, β) := Mr(Yr, Xr, β, âr) =
1

2
(Yr − βXr)

2
.

Then, we have

β̂r ∈ arg min
β∈Rp

(
En [Mr(Yr, Xr, β)] +

λ

n
‖Ψ̂rβ‖1

)
and

β̃r ∈ arg min
β∈Rp

(En [Mr(Yr, Xr, β)]) : supp(β) ⊆ supp(β̂r).

First, we verify the Condition WL from Belloni et al. [12]. Since Nn = d, we have N(ε,U , dU ) ≤ Nn for

all ε ∈ (0, 1) with

dU (i, j) =

0 for i = j

1 for i 6= j.

To prove WL(i), we note that

Sr = ∂βMr(Yr, Xr, β, ar)|β=β
(1)
r

= −εrXr.

Since Φ−1(1− t) .
√

log(1/t) uniformly over t ∈ (0, 1/2), it holds

‖Sr,j‖P,3Φ−1(1− γ/2pd) = ‖εrXr,j‖P,3Φ−1(1− γ/2pd)

≤ (‖εr‖P,6‖Xr,j‖P,6)
1/2

Φ−1(1− γ/2pd)

≤ C log
1
2 (an) . ϕnn

1
6

with

ϕn = O

(
log

1
2 (an)

n
1
6

)
= o(1)

uniformly over all j = 1, . . . , p and r = 1, . . . , d by Assumption C.1(i) and C.1(iv). Further, it holds

E
[
S2
r,j

]
= E

[
ε2
rX

2
r,j

]
≤
(
E
[
ε4
r

]
E
[
X4
r,j

])1/2
≤ C

for all j = 1, . . . , p and r = 1, . . . , d by Assumption C.1(i) and

E
[
S2
r,j

]
= E

[
ε2
rX

2
r,j

]
≥ c

by Assumption C.1(ii) which implies Condition WL(ii). Note that Condition WL(iii) simplifies to

max
r=1,...,d

max
j=1,...,p

|(En − E)[S2
r,j ]| ≤ ϕn

with probability 1−∆n. We use the Maximal Inequality, see for example Lemma P.2 from Belloni et al.

[12]. Let W = (Y,X ) with Y = (Y1, . . . , Yd) ∈ Y and X = (X1, . . . , Xd) ∈ X , respectively. Define

F := {f2
r,j |r = 1, . . . , d, j = 1, . . . , p}
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with

fr,j : W = (Y,X )→ R,

W = (Y,X) 7→ − (Yr − βrXr − ar(Xr))Xr,j = −εrXr,j = Sr,j .

Note that

‖ sup
f∈F
|f |‖P,q = ‖ max

r=1,...,d
max

j=1,...,p
|f2
r,j |‖P,q

= E
[

max
r=1,...,d

max
j=1,...,p

ε2q
r X

2q
r,j

]1/q

≤ E
[

max
r=1,...,d

ε2q
r max
r=1,...,d

max
j=1,...,p

X2q
r,j

]1/q

≤

(
E
[

max
r=1,...,d

ε4q
r

]1/4q

E
[

max
r=1,...,d

max
j=1,...,p

X4q
r,j

]1/4q
)2

≤ C log
4
ρ (an).

Since

sup
f∈F
‖f‖2P,2 = max

r=1,...,d
max

j=1,...,p
E
[
S4
r,j

]
≤ max
r=1,...,d

max
j=1,...,p

E
[
ε8
r

]1/2 E [X8
r,j

]1/2 ≤ C,
we can choose a constant with

sup
f∈F
‖f‖2P,2 ≤ C ≤ ‖ sup

f∈F
|f |‖2P,2.

Additionally, it holds |F| = dp which implies

log sup
Q
N(ε‖F‖Q,2,F , ‖ · ‖Q,2) ≤ log(dp) . log(an/ε), 0 < ε ≤ 1.

Using Lemma P.2 from Belloni et al. [12], we obtain with probability not less than 1− o(1)

max
r=1,...,d

max
j=1,...,p

|(En − E)[S2
r,j ]| = n−1/2 sup

f∈F
|Gn(f)|

≤ n−1/2C
(√

log (an) + n−1/2+1/q log1+ 4
ρ (an)

)
= C

(√
log (an)

n
+

log1+ 4
ρ (an)

n1−1/q

)
≤ ϕn = o(1)

by the growth condition in Assumption C.1(iv). We proceed by verifying Assumption M.1 in Belloni

et al. [12]. The function β 7→Mr (Yr, Xr, β) is convex which is the first requirement of Assumption M.1.

We now proceed with a simplified version of the proof of K.1 from Belloni et al. [12]. To show Assumption

M.1 (a), note that for all δ ∈ Rp∣∣∣En [∂βMr(Yr, Xr, βr)− ∂βMr(Yr, Xr, βr, ar)]
T
δ
∣∣∣

=
∣∣∣En [Xr(ar(Xr))]

T
δ
∣∣∣ ≤ ||ar(Xr)||Pn,2||XT

r δ||Pn,2

.P

√
s log(an)

n
||XT

r δ||Pn,2
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for all r = 1, . . . , d due to Assumption C.1(v). Further, we have

En
[

1

2

(
Yr − (βr + δT )Xr

)2]− En
[

1

2
(Yr − βrXr)

2

]
= −En

[
(Yr − βrXr) δ

TXr

]
+

1

2
En
[
(δTXr)

2
]
,

where

−En
[
(Yr − βrXr) δ

TXr

]
= En [∂βMr(Yr, Xr, βr)]

T
δ

and
1

2
En
[
(δTXr)

2
]

= ||
√
wrδ

TXr||2Pn,2

with
√
wr = 1/4. This gives us Assumption M.1 (c) with ∆n = 0 and q̄Ar =∞. Since Condition WL(ii)

and WL(iii) hold, we have with probability 1− o(1)

1 . lr,j =
(
En[S2

r,j ]
)1/2

. 1

uniformly over all r = 1, . . . , d and j = 1, . . . , p, which directly implies

1 . ‖Ψ̂(0)
r ‖∞ := max

j=1,...,p
|lr,j | . 1

and additionally

1 . ‖(Ψ̂(0)
r )−1‖∞ := max

j=1,...,p
|l−1
r,j | . 1.

For now, we suppose that m = 0 in Algorithm 2. Uniformly over r = 1, . . . , d and j = 1, . . . , p, we have

l̂r,j,0 =

(
En[ max

1≤i≤n
‖X(i)

r ‖2∞]

)1/2

≥
(
En[‖Xr‖2∞]

)1/2
&P 1,

where the last inequality holds due to Assumption C.1(ii) and an application of the Maximal Inequality.

Also uniformly over r = 1, . . . , d, j = 1, . . . , p and for an arbitrary q > 0, it holds

l̂r,j,0 = max
1≤i≤n

‖X(i)
r ‖∞

≤ n1/q

(
1

n

n∑
i=1

‖X(i)
r ‖q∞

)1/q

= n1/q (En[‖Xr‖q∞])
1/q

with

E[‖Xr‖q∞]1/q . log
1
ρ (an).

By Maximal Inequality, we obtain with probability 1− o(1) for a sufficiently large q′ > 0

max
r
|En[‖Xr‖q∞]− E[‖Xr‖q∞]|

. C


√

log
2q
ρ +1(an)

n
+ n1/q′−1 log

q
ρ+1(an)


. log

q
ρ (an)
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since

E[max
r
‖Xr‖qq

′

∞ ]1/q
′
. log

q
ρ (an) and max

r
E[‖Xr‖q2∞]1/2 . log

q
ρ (an).

Uniformly over r, we conclude

l̂r,j,0 ≤ n1/q (En[‖Xr‖q∞])
1/q

≤ n1/q (|En[‖Xr‖q∞]− E[‖Xr‖q∞]|+ E[‖Xr‖q∞])
1/q

.P n
1/q log

1
ρ (an).

Therefore, Assumption M.1(b) holds for some ∆n = o(1), L . n1/q log
1
ρ (an) and l & 1. Hence, we can

find a cl with l > 1/cl. Setting cλ > cl and γ = γn ∈ [1/n, 1/ log(n)] in the choice of λ, we obtain

P

(
λ

n
≥ cl max

r=1,...,d
‖(Ψ̂(0)

r )−1En[Sr]‖∞
)
≥ 1− γ − o(γ)−∆n = 1− o(1)

due to Lemma M.4 in Belloni et al. [12]. Now, we uniformly bound the sparse eigenvalues. Set

ln = log
2
ρ (an)n2/q̄

for a q̄ > 5q̃ with q̃ in C.1(iv). We apply Lemma Q.1 in Belloni et al. [12] with K . n1/q̄ log
1
ρ (an) and

δn . K
√
slnn

−1/2 log(sln) log
1
2 (an) log

1
2 (n)

.

√
n

4
q̄ log(n) log2(sln)

s log1+ 4
ρ (an)

n

.

√
n

5
q̄
s log1+ 4

ρ (an)

n

for n large enough. Hence, by the growth condition in Assumption C.1(iv), it holds

δn = o(1),

which implies

1 . min
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

≤ max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

. 1

with probability 1− o(1) uniformly over r = 1, . . . , d. Define Tr := supp(β
(1)
r ) and

c̃ :=
Lcl + 1

lcl − 1
max

r=1,...,d
‖Ψ̂(0)

r ‖∞‖(Ψ̂(0)
r )−1‖∞ . L.

Let the restricted eigenvalues be defined as

κ̄2c̃ := min
r=1,...,d

inf
δ∈∆2c̃,r

‖δXr‖Pn,2
‖δTr‖2

,

where ∆2c̃,r := {δ : ‖δcTr‖1 ≤ 2c̃‖δTr‖1}. By the argument given in Bickel et al. [13], it holds

κ̄2c̃ ≥

(
min

‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2

− 2c̃

(
max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2(
s

sln

)1/2
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&

(
min

‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2

− 2n
1
q−

1
q̄

(
max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2

& 1

with probability 1− o(1) for a suitable choice of q with q > q̄. Since

λ

n
. n−1/2Φ−1 (1− γ/(2dp)) . n−1/2

√
log(2dp/γ) . n−1/2 log

1
2 (an)

and using the uniformly bounded penalty loading from above and away from zero, we obtain

max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 .P L

√
s log(an)

n

by Lemma M.1 from Belloni et al. [12]. To show Assumption M.1(b) for m ≥ 1, we proceed by induction.

Assume that the assumption holds for Ψ̂r,m−1 with some ∆n = o(1), l & 1 and L . n1/q log
1
ρ (an). We

have shown that the estimator based on Ψ̂r,m−1 obeys

max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 . L

√
s log(an)

n

with probability 1− o(1). This implies

|l̂r,j,m − lr,j | =

∣∣∣∣∣En
[((

Yr − β̂rXr

)
Xr,j

)2
]1/2

− En
[
((Yr − βrXr)Xr,j)

2
]1/2∣∣∣∣∣

≤

∣∣∣∣∣En
[((

(β̂r − βr)Xr

)
Xr,j

)2
]1/2

∣∣∣∣∣
. ‖(β̂r − βr)Xr‖Pn,2 max

1≤i≤n
max

r=1,...,d
‖X(i)

r ‖∞

.P L

√
s log(an)

n
n1/q log

1
ρ (an)

.

√
n4/q

s log1+ 4
ρ (an)

n
= o(1)

uniformly over r = 1, . . . , d and j = 1, . . . , p. Therefore, Assumption M.1(b) holds for Ψ̂r,m for some

∆n = o(1), l & 1 and L . 1. Consequently, we obtain

max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 .

√
s log(an)

n

and

max
r=1,...,d

‖β̂r − βr‖1 .

√
s2 log(an)

n

with probability 1 − o(1) due to Lemma M.1 in Belloni et al. [12]. Uniformly over all r = 1, . . . , d, it

holds ∣∣∣∣(En [∂βMr(Yr, Xr, β̂r)− ∂βMr(Yr, Xr, βr)
])T

δ

∣∣∣∣
=

∣∣∣∣(En [(β̂r − βr)XrX
T
r

])T
δ

∣∣∣∣
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≤‖(β̂r − βr)Xr‖Pn,2‖δXr‖Pn,2 ≤ Ln‖δXr‖Pn,2

with probability 1− o(1), where Ln . (s log(an)/n)1/2. Since the maximal sparse eigenvalues

φmax(lns, r) := max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

are uniformly bounded from above, Lemma M.2 from Belloni et al. [12] implies

max
r=1,...,d

‖β̂r‖0 . s

with probability 1− o(1). Combining this result with the uniform restrictions on the sparse eigenvalues

from above, we obtain

max
r=1,...,d

‖β̂r − βr‖2 . max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 .

√
s log(an)

n

with probability 1−o(1). We now proceed by using Lemma M.3 in Belloni et al. [12]. We obtain uniformly

over all r = 1, . . . , d

En[Mr(Yr, Xr, β̃r)]− En[Mr(Yr, Xr, βr)] ≤
λL

n
‖β̂r − βr‖1 max

r=1,...,d
‖Ψ̂(0)

r ‖∞

.
λ

n
‖β̂r − βr‖1

.
s log(an)

n

with probability 1− o(1), where we used L . 1 and max
r=1,...,d

‖Ψ̂(0)
r ‖∞ . 1. Since

max
r=1,...,d

‖En[Sr]‖∞ ≤ max
r=1,...,d

‖Ψ̂(0)
r ‖∞‖

(
Ψ̂(0)
r

)−1En[Sr]‖∞ .
λ

n
. n−1/2 log

1
2 (an)

with probability 1− o(1), we obtain

max
r=1,...,d

‖(β̃r − βr)Xr‖Pn,2 .

√
s log(an)

n

with probability 1− o(1), where we used

max
r=1,...,d

‖β̂r‖0 . s, Cn . (s log(an)/n)1/2

and that the minimum sparse eigenvalues are uniformly bounded away from zero. By the same argument

as above, we obtain

max
r=1,...,d

‖β̃r − βr‖2 . max
r=1,...,d

‖(β̃r − βr)Xr‖Pn,2 .

√
s log(an)

n
.

This completes the proof.
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4.11 Computational Details

4.11.1 Computation and Infrastructure

The simulation study has been run on a x86 64 redhat linux-gnu (64-bit) (CentOS Linux 7 (Core)) cluster

using R version 3.5.3 (2019-03-11). All Lasso estimations are performed using the R package hdm,

version 0.3.1 by [32] which can be downloaded from CRAN. The construction of B-splines is based on

the R package splines. The R code is available upon request.

4.11.2 Simulation Study: Smoothing Parameters in B-splines

Table 4.4 presents the corresponding smoothing parameters {kj , k−j} of the cubic B-splines that are used

in the simulation study. kj denotes the degrees of freedom chosen to approximate the function fj(xj)

and k−j is chosen for all other functions.

n p f1 f2 f3 f4 f5

100 50 {7, 4} {6, 4} {7, 4} {5, 4} {7, 4}
100 150 {7, 4} {6, 4} {6, 4} {5, 4} {5, 4}
1000 50 {7, 4} {6, 5} {5, 4} {5, 4} {5, 4}
1000 150 {7, 4} {6, 5} {7, 4} {5, 5} {4, 4}

Table 4.4: Smoothing parameters used in the simulation study in Table 4.2.

4.11.3 Empirical Application: Cross-Validation Procedure

The choice of the degrees of freedom parameter k for the construction of B-splines in the empirical

application is based on a heuristic cross-validation which exploits the additive structure of the model.

Let k = {kj , k−j} be the degrees of freedom with kj specifying the smoothing parameters for fj(xj) and

k−j denoting the parameter for all other functions f−j(x−j). To explicitly address the dependence of the

fitted function on the chosen degrees of freedom parameter, we use a notation f̂j(xj , kj) which leads to

the model

yi = fj(xi,j , kj) + f−j(xi,−j , k−j) + εi.

Then, the heuristic rule for choosing k proceeds as follows:

For j = 1, ..., p,

1. set up a grid of values for k−j ,

2. perform a 5-fold cross-validated search for an optimal kj over a grid of values kj , ..., kj , i.e., fit the

regression

yi = fj(xi,j , kj) + f−j(xi,−j , k−j) + εi

and compute MSECV (kj , k−j), where MSECV (kj , k−j) is the cross-validated mean squared error

in prediction provided values kj and k−j .

3. find the optimal value of k∗j which minimizes MSECV over all values of k−j .

We experimented with different settings and repeated the procedure multiple times. The resulting pa-

rameters are listed in Table 4.5.
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NOX 11
CRIM 6
ZN 3
INDUS 6
RM 6
AGE 5
DIST 9
TAX 5
PTRATIO 11
BLACK 5
LSTAT 7

Table 4.5: Smoothing parameters used in the empirical application.

4.11.4 Empirical Application: Additional Plots for Explanatory Variables
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Figure 4.3: Additional plots of the effect of the explanatory variables on the dependent vari-
able MEDV with simultaneous 95%-confidence bands in the Boston housing data
application.
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Chapter 5

Uniform Inference in

High-Dimensional Gaussian

Graphical Models

5.1 Introduction

We provide methodology and theory for uniform inference on high-dimensional graphical models with the

number of target parameters being potentially much larger than sample size. We demonstrate uniform

asymptotic normality of the proposed estimator over d-dimensional rectangles and construct simultane-

ous confidence bands on all of the d target parameters. The proposed method can be applied to test

simultaneously the presence of a large set of edges in the graphical model

X = (X1, . . . , Xp)
T ∼ N (µX ,ΣX).

Assuming that the covariance matrix ΣX is nonsingular, the conditional independence structure of the

distribution can be conveniently represented by a graph G = (V,E), where V = {1, . . . , p} is the set

of nodes and E the set of edges in V × V . Every pair of variables not contained in the edge set is

conditionally independent given all remaining variables. If the vector X is normally distributed, every

edge corresponds to a nonzero entry in the inverse covariance matrix (Lauritzen [66]).

In the last decade, significant progress has been made on the estimation of a large precision matrix

in order to analyze the dependence structure of a high-dimensional normally distributed random vari-

able. There are mainly two common approaches to estimate the entries of a precision matrix. The first

approach is a penalized likelihood estimation approach with a Lasso-type penalty on entries of the pre-

cision matrix, typically referred to as the graphical Lasso. This approach has been studied in several

papers, e.g., in Lam and Fan [65], Rothman et al. [86], Ravikumar et al. [84] and Yuan and Lin [104].

The second approach, first introduced by Meinshausen and Bühlmann [76], is neighborhood based. It

estimates the conditional independence restrictions separately for each node in the graph and is hence

equivalent to variable selection for Gaussian linear models. The idea of estimating the precision matrix

column by column by running a regression for each variable against the rest of variables was further

studied in Yuan [103], Cai et al. [24] and Sun and Zhang [92].
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In this paper, we do not aim to estimate the whole precision matrix but we focus on quantifying the

uncertainty of recovering its support by providing a significance test for a set of potential edges. In

recent years, statistical inference for the precision matrix in high-dimensional settings has been studied,

e.g., in Janková and Van De Geer [58] and Ren et al. [85]. Both approaches lead to an estimate that is

element-wise asymptotically normally distributed and enables testing for low-dimensional parameters of

the precision matrix using standard procedures such as Bonferroni-Holm correction.

In contrast to these existing results, our method explicitly allows for testing a joint hypothesis with-

out correction for multiple testing and conducting inference for a growing number of parameters using

high-dimensional central limit results and under a random design. In particular, our results rely on ap-

proximate sparsity instead of row sparsity which restricts the number of nonzero entries of each row of the

precision matrix to be at most s� n that is in many applications a questionable assumption. In order to

provide theoretical results, fitting the problem of support discovery in Gaussian graphical models into a

general Z-estimation framework with a high-dimensional nuisance function is key. Inference on a (multi-

variate) target parameter in general Z-estimation problems in high-dimensions is covered in Belloni et al.

[9], Belloni et al. [12] and Chernozhukov et al. [35]. To conduct inference on a high-dimensional target

parameter, uniform estimation rates and sparsity guarantees of the nuisance function are crucial. In this

context, we formally apply recent results from Belloni et al. [12] to ensure sufficient fast convergence rate

of the Lasso estimator under approximate sparsity conditions. Moreover, we provide auxiliary results for

the square-root Lasso estimator establishing new uniform estimation rates and sparsity guarantees in a

random design under approximate sparsity conditions. Square-root Lasso is very popular in graphical

models but these results might be of independent interest for related problems in high-dimensional linear

models.

Chang et al. [27] consider testing for high-dimensional parameters of the precision matrix similar to our

setting, in particular conducting inference for a growing number of parameters in a high-dimensional

setting. Our setting and analysis differs from them in several ways. First, Chang propose a biased

correction estimate for the parameter of interest, while we use the Z-estimation framework which does

not require the bias correction step. Second, Chang relies on results from Bühlmann and Van De Geer

[22] to estimate the nuisance parameter. We explicitly derive uniform convergence results for Lasso and

square-root Lasso in a random design setting. Thus, we provide a feasible nuisance parameter estimate

and show how it can be implemented. The choice of the penalization parameter is both theory-grounded

and also feasible in empirical studies. Third, our assumptions are tailored for Gaussian graphical models

and hence are more structured. Finally, we allow for approximate sparsity instead of strict sparsity which

is more realistic for many applications. In a simulation study, we show that our proposed method gives

reliable results even in this challenging setting.

Plan of this Paper

The rest of this paper is organized as follows. First, we introduce the technical notation that is used in

the paper. In Section 5.2, we formally define the setting and embed the problem of support discovery

in Gaussian graphical models into a general Z-estimation problem with a high-dimensional nuisance

function. In Section 5.3, we outline the estimation procedure of the high-dimensional target parameter

and the conditions that are needed to achieve our main theorem presented in Section 5.4. Section 5.5

provides implementation details and shows how our estimation procedure can be modified by cross-fitting

to improve small sample properties. Section 5.6 provides a simulation study on the proposed method. We

conclude in Section 5.7. The supplementary material includes additional technical material. The proof

of our main theorem is provided in Appendix 5.8. The uniform nuisance function estimation is discussed
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in Appendix 5.9. Appendix 5.9.1 formally discusses conditions for the uniform convergence rates of the

Lasso estimator. Finally, Appendix 5.9.2 provides auxiliary results for the square-root Lasso estimator.

Notation

Throughout the paper, we consider a random element X from some common probability space (Ω,A, P ).

We denote by P ∈ Pn a probability measure out of a large class of probability measures, which may vary

with the sample size (since the model is allowed to change with n), and by Pn the empirical probability

measure. ‖ · ‖P,q denotes the Lq(P )-norm. Additionally, let E and En be the expectation with respect to

P and Pn, respectively. Gn(·) denotes the empirical process

Gn(f) :=
√
n

(
1

n

n∑
i=1

f(Xi)− E[f(Xi)]

)

for a class of suitably measurable functions F : X → R.

Further, ‖v‖1 =
∑p
l=1 |vl| denotes the `1-norm, ‖v‖2 =

√
vT v the `2-norm and ‖v‖0 equals the number

of nonzero components of a vector v ∈ Rp. We define v−l := (v1, . . . , vl−1, vl+1 . . . , vp)
T ∈ Rp−1 for any

1 ≤ l ≤ p. ‖v‖∞ = supl=1,...,p |vl| denotes the sup-norm. Let c and C be positive constants independent

of n which value may change at each appearance. The notation an . bn means an ≤ Cbn for all n and

some C. Additionally, an = o(1) denotes that there exists a sequence (bn)≥1 of positive numbers such

that |an| ≤ bn for all n, where bn is independent of P ∈ Pn for all n and bn converges to zero. Finally,

the notation an .P bn means that, for any ε > 0, there exists a C such that, uniformly over all n, we

have PP (an > Cbn) ≤ ε.

5.2 Setting

Let

X = (X1, . . . , Xp)
T ∼ N (µX ,ΣX)

be a p-dimensional random variable. For all (j, k) ∈ E with j 6= k, assume that

Xj =

p∑
l=1
l 6=j

β
(j)
l Xl + ε(j) = β(j)X−j + ε(j)

and

Xk = γ(j,k)X−{j,k} + ν(j,k),

where E[ε(j)|X−j ] = 0 and E[X−{j,k}ν
(j,k)] = 0. Define the column vector

Γ(j) =
(
−β(j)

1 , . . . ,−β(j)
j−1, 1,−β

(j)
j+1, . . . ,−β

(j)
p

)T
.

One may show

Φ0 =
(
Φ1

0, . . . ,Φ
p
0

)
=
(

Γ(1)/V ar(ε(1)), . . . ,Γ(p)/V ar(ε(p))
)
,

where Φj0 is the j-th column of the precision matrix Φ0 = Σ−1
X , see e.g., Janková and Van De Geer [58].

Hence,

β
(j)
k = 0⇔ β

(k)
j = 0⇔ Xj ⊥ Xk|X−{j,k} (5.1)
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for all j 6= k. Assume that we are interested in the following set of potential edges

M := {m1, . . . ,mdn},

where the number of edges dn may increase with the sample size n. In the following, the dependence on n

is omitted to simplify the notation. In order to test whether the variables Xjr and Xkr are conditionally

independent with mr = (jr, kr) for all r ∈ {1, . . . , d}, we have to estimate our target parameter

θ0 = (θm1
, . . . , θmd)T := (β

(j1)
k1

, . . . , β
(jd)
kd

)T .

The setting above fits in the general Z-estimation problem of the form

E
[
ψmr

(
X, θmr , ηmr

)]
= 0

for all r = 1, . . . , d with nuisance parameters

ηmr =
(
β

(j)
−k, γ

(j,k)
)
,

where β
(j)
−k ≡ β(mr) and γ(j,k) ≡ γ(mr). The score functions are defined by

ψmr (X, θ, η) : =
(
Xj − θXk − η(1)X−mr

)(
Xk − η(2)X−mr

)
for mr = (jr, kr) ≡ (j, k), η = (η(1), η(2)) and r = 1, . . . , d. Without loss of generality, we assume j > k

for all tuples mr ∈M.

Comment 5.2.1. The score function ψ is linear, meaning

ψmr (X, θ, η) = ψamr (X, η
(2))θ + ψbmr (X, η)

with

ψamr (X, η
(2)) = −Xk

(
Xk − η(2)X−mr

)
and

ψbmr (X, η) =
(
Xj − η(1)X−mr

)(
Xk − η(2)X−mr

)
for mr = (j, k) and r = 1, . . . , d.

It is well known that in partially linear regression models θ0 satisfies the moment condition

E
[
ψmr

(
X, θmr , ηmr

)]
= 0 (5.2)

for all r = 1, . . . , d and also the Neyman orthogonality condition

∂t
{
E
[
ψmr

(
X, θmr , ηmr + tη̃

)]} ∣∣
t=0

= 0

for all η̃ in an appropriate set, where ∂t denotes the derivative with respect to t. These properties are

crucial for valid inference in high-dimensional settings. We will show these properties explicitly in the

proof of Theorem 12.
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5.3 Estimation

Let X(i), i = 1, . . . , n, be i.i.d. random vectors.

At first, we estimate the nuisance parameter ηmr =
(
η

(1)
mr , η

(2)
mr

)
by running a Lasso/post-Lasso/square-

root Lasso regression of Xj on X−j to compute (θ̃mr , η̂
(1)
mr ) and a Lasso/post-Lasso/square-root Lasso

regression of Xk on X−mr to compute η̂
(2)
mr for each (j, k) = mr ∈ M. The estimator θ̂0 of the target

parameter

θ0 = (θm1 , . . . , θmd)T

is defined as the solution of the empirical version of the moment condition

sup
r=1,...,d

{∣∣∣En[ψmr(X, θ̂mr , η̂mr)]∣∣∣− inf
θ∈Θmr

∣∣∣En[ψmr(X, θ, η̂mr)]∣∣∣} ≤ εn, (5.3)

where εn = o
(
δnn
−1/2

)
is the numerical tolerance and (δn)n≥1 a sequence of positive constants slowly

converging to zero but at least at a polynomial rate in n (cf. proof of Theorem 12).

Assumptions A1-A4.

Let an := max(d, p, n, e) and C be a strictly positive constant independent of n and r. The following

assumptions hold uniformly in n ≥ n0 and P ∈ Pn:

A1 For all mr = (j, k) ∈M with j 6= k, we have the following approximate sparse representations:

(i) It holds

Xj = β(j)X−j + ε(j)

= θmrXk +
(
β(1,mr) + β(2,mr)

)
X−mr + ε(mr)

with

‖β(1,mr)‖0 ≤ s, max
r=1,...,d

‖β(2,mr)‖21 ≤ C
√
s2 log(an)

n

and

max
r=1,...,d

E
[(
β(2,mr)X−mr

)2
]
≤ C s log(an)

n
.

(ii) It holds

Xk = γ(j,k)X−{j,k} + ν(j,k)

=
(
γ(1,mr) + γ(1,mr)

)
X−mr + ν(mr)

with

‖γ(1,mr)‖0 ≤ s, max
r=1,...,d

‖γ(2,mr)‖21 ≤ C
√
s2 log(an)

n

and

max
r=1,...,d

E
[(
γ(2,mr)X−mr

)2
]
≤ C s log(an)

n
.

A2 There exist positive numbers q̃ > 0 and κ < 1 such that the following growth conditions are fulfilled:

n
1
q̃
s2 log4(an)

n
= o(1), log(d) = o

(
n

1
9 ∧ n

κ
q̃

)
.
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A3 For all mr = (j, k) ∈M, it holds

‖β(mr)‖2 + ‖γ(mr)‖2 ≤ C

and

sup
r=1,...,d

sup
θmr∈Θmr

|θmr | ≤ C.

Additionally, Θmr contains a ball of radius log(log(n))n−1/2 log1/2(d) log(n) centered at θmr .

A4 It holds

inf
‖ξ‖2=1

E
[
(ξX)2

]
≥ c and sup

‖ξ‖2=1

E
[
(ξX)2

]
≤ C.

The condition A1 is a standard approximate sparsity condition that is discussed in more detail in Com-

ment 5.3.1 below. The number of relevant variables sn ≡ s captured by the regression coefficient β(1,mr)

and γ(1,mr), respectively, can grow with the sample size. The coefficients β(2,mr) and γ(2,mr), respectively,

are the approximate sparse parts of the true regression coefficients. The misspecification of the sparse

model is controlled by condition A1. The growth condition A2 ensures that s2 log4(an)/n converges

towards zero with at least polynomial speed. If this convergence is too slow (q̃ ≥ 9), the condition on the

number of tested edges becomes more restrictive. This growth condition ensures that log(d) = o(n1/9)

and is in line with Chernozhukov et al. [30]. It guarantees the validity of multiplier bootstrap in our

setting and allows us to construct uniformly valid confidence regions. In general, both the number of

parameters p and the number of relevant variables s can grow with the sample size in a balanced way. If

s is fixed, the number of potential parameters p can grow at an exponential rate with the sample size.

This means that the set of potential variables can be much larger than the sample size, only the number

of relevant variables s has to be smaller than the sample size. This situation is common for Lasso-based

estimators. Condition A3 restricts the parameter spaces and ensures that the true coefficients are well

behaved. The condition A4 is a standard eigenvalue condition that restricts the correlation between the

components of X and bounds the variances of each Xj from below and above. Assumptions A1-A4 com-

bined with the normal distribution of X imply the conditions B1-B4 from Theorem 13 which enables us

to estimate the nuisance parameter sufficiently fast by Lasso and post-Lasso. To ensure a sufficiently fast

convergence rate and sparsity guarantees of the square-root Lasso estimator, further model assumptions

are needed.

Comment 5.3.1. If we have exact sparsity for each β(k) with (j, k) ∈ Mr the sparsity of γ(mr) follows

directly. Observe that for k ∈ {1, . . . , p} \ {j} and l ∈ {1, . . . , p} \ {j, k} we have

β
(k)
l = 0⇔ Xk ⊥ Xl|X−{k,l} ⇔ E[XkXl|X−{k,l}] = 0,

which implies

E[XkXl|X−{j,k,l}] = E
[
E[XkXl|X−{k,l}]|X−{j,k,l}

]
= 0

and thereby

γ
(j,k)
l = 0⇔ Xk ⊥ Xl|X−{j,k,l} ⇔ E[XkXl|X−{j,k,l}] = 0.

Hence, the sparsity condition in A1 for testing on an edge (j, k) is satisfied if each node j and k is only

sparsely connected to all other nodes.
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5.4 Main Results

We are able to construct uniformly valid confidence intervals for a growing number of hypothesis d = dn

by applying new results regarding confidence regions for many parameters from Belloni et al. [12]. To

approximate the limit process of supr=1,...,d θ̂mr , we employ the Gaussian multiplier bootstrap approach.

In this context, we define

Jmr := ∂θE[ψmr (X, θ, ηmr )]
∣∣
θ=θmr

= −E[Xk(Xk − η(2)
mrX−mr )],

σ2
mr := E

[
J−2
mrψ

2
mr (X, θmr , ηmr )

]
and the corresponding plug-in estimators

Ĵmr = −En[Xk(Xk − η̂(2)
mrX−mr )],

σ̂2
mr = En

[
Ĵ−2
mrψ

2
mr (X, θ̂mr , η̂mr )

]
for r = 1, . . . , d. Further, let

ψ̂mr (X) := −σ̂−1
mr Ĵ

−1
mrψmr (X, θ̂mr , η̂mr )

and we define the process

N̂ :=
(
N̂mr

)
mr∈M

=

(
1√
n

n∑
i=1

ξiψ̂mr
(
X(i)

))
mr∈M

,

where (ξi)
n
i=1 are independent standard normally distributed random variables which are independent

from
(
X(i)

)n
i=1

. We define cα as the conditional (1−α)-quantile of supmr∈M |N̂mr | given the observations(
X(i)

)n
i=1

. The following theorem is the main result of our paper and establishes simultaneous confidence

bands for the target parameter θ0.

Theorem 12.

Under Assumptions A1-A4 with probability 1− o(1) uniformly in P ∈ Pn, the estimator θ̂ in (5.3) obeys

P

(
θ̂mr −

cασ̂mr√
n
≤ θmr ≤ θ̂mr +

cασ̂mr√
n

, r = 1, . . . , d

)
→ 1− α. (5.4)

Using Theorem 12 we are able to construct standard confidence regions which are uniformly valid over a

large set of variables and we can check null hypothesis of the form:

H0 :M∩ E = ∅.

Comment 5.4.1. Theorem 12 provides critical regions of the form

sup
r=1,...,d

∣∣∣∣∣√n θ̂mrσ̂mr

∣∣∣∣∣ > c1−α. (5.5)

Alternatively, we can reject the null hypothesis if

sup
r=1,...,d

∣∣∣∣∣√n θ̂mrσ̂mr

∣∣∣∣∣ < cα
2

or sup
r=1,...,d

∣∣∣∣∣√n θ̂mrσ̂mr

∣∣∣∣∣ > c1−α2 . (5.6)
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The confidence region (5.6) is motivated by the fact that the standard normal distribution N (0, Id) in

high-dimensions is concentrated in a thin spherical shell around the sphere of radius
√
d as described

in Vershynin [99] and therefore might have smaller volume. In future research, we plan to address the

challenging problem analyzing if there is an optimal test that delivers the smallest confidence region. In

this paper, we compare the empirical performance of the two confidence regions. It is worth to notice

that both of the regions (5.5) and (5.6) are based on Gaussian approximation and multiplier bootstrap

for maxima of sums of high-dimensional random vectors in Chernozhukov et al. [30]. The central limit

theorem and bootstrap in high-dimension introduced in Chernozhukov et al. [34] extend this result to more

general sets, more precisely, sparsely convex sets. Hence, our main theorem can be easily generalized to

various confidence regions that contain the true target parameter with probability 1− α. In this context,

let us define

θ̂∗mr (S, exp) =

S∑
s=1

(
√
n
θ̂mr−s
σ̂mr−s

)exp

for a fix S, exp ∈ {1, 2} and

r − s :=

r − s if r − s > 0

d+ (r − s) otherwise
.

A test that rejects the null hypothesis if

sup
r=1,...,d

∣∣∣θ̂∗mr (S, exp)∣∣∣ > c∗1−α (5.7)

has level α since the constructed confidence regions correspond to S-sparsely convex sets, see Chernozhukov

et al. [34]. Here, c∗1−α is the (1 − α)-conditional quantile of supmr∈M |N̂
∗
mr | given the observations(

X(i)
)n
i=1

with

N̂ ∗mr =

S∑
s=1

(
N̂mr−s

)exp
,

where

r − s :=

r − s if r − s > 0

d+ (r − s) otherwise.

5.5 Notes on the Implementation

We have implemented a function that estimates the target coefficients

(θm1 , . . . , θmd)T = (β
(j1)
k1

, . . . , β
(jd)
kd

)T

corresponding to the considered set of potential edges

M := {m1, . . . ,mdn}

by the proposed method described in Section 5.3. It can be used to perform hypothesis tests with

asymptotic level α based on the different confidence regions described in Comment 5.4.1. The nuisance

function can be estimated by Lasso, post-Lasso or square-root Lasso.
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Cross-fitting

In general Z-estimation problems, where a so-called debiased or double machine learning (DML) method

is used to construct confidence intervals, it is common to use cross-fitting in order to improve small

sample properties. A detailed discussion of cross-fitted DML can be found in Chernozhukov et al. [35].

The following algorithm generalizes our proposed method to a K-fold cross-fitted version. We assume

that n is divisible by K in order to simplify notation.

Algorithm 3 cross-fitting

1) Take a K-fold random partition (Ik)Kk=1 of observation indices [n] = {1, . . . , n} such that the size
of each fold Ik is N . Also, for each k ∈ [K] = {1, . . . ,K}, define Ick := {1, . . . , N} \ Ik.

2) For each k ∈ [K] and r = 1, . . . , d, construct an estimator η̂k,mr = η̂mr
(
(Xi)i∈Ick

)
by Lasso/

post-Lasso or square-root Lasso.

3) For each k ∈ [K], construct an estimator θ̂k = (θ̂k,m1
, . . . , θ̂k,md) as in (5.3):

sup
r=1,...,d

{∣∣∣EN,k[ψmr(X, θ̂k,mr , η̂k,mr)]∣∣∣− inf
θ∈Θmr

∣∣∣EN,k[ψmr(X, θ, η̂k,mr)]∣∣∣} ≤ εn
with EN,k[ψmr (Xi)] = N−1

∑
i∈Ik ψmr (Xi).

4) Aggregate these estimators:

θ̂K =
1

K

K∑
k=1

θ̂k.

5) For r = 1, . . . , d, construct the uniform valid confidence interval[
θ̂Kmr −

cασ̂
K
mr

n
, θ̂Kmr +

cασ̂
K
mr

n

]
with

ĴKmr = − 1

K

K∑
k=1

(Xk(Xk − η̂(2)
k,mr

X−mr )),

σ̂Kmr =

√√√√(ĴKmr )
−2

1

K

K∑
k=1

(
ψ2
mr (X, θ̂

K
mr , η̂k,mr )

)
.

Here, cα is the 1− α bootstrap quantile of sup
r=1,...,d

N̂mr with

N̂mr =
1√
n

n∑
i=1

ξiψ̂
K
mr

(
X(i)

)
,

where (ξi)
n
i=1 are independent standard normal random variables which are independent from(

X(i)
)n
i=1

and

ψ̂Kmr (X) := −
(
σ̂Kmr Ĵ

K
mr

)−1

ψmr (X, θ̂
K
mr , η̂

K
mr ).

The confidence region above corresponds to (5.5). Confidence regions corresponding to (5.6) or (5.7) can

be constructed in an analogous way.
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5.6 Simulation Study

This section provides a simulation study on the proposed method. In each example, the precision matrix

of the Gaussian graphical model is generated as in the R-package huge [107]. Hence, the corresponding

adjacency matrix A is generated by setting the nonzero off-diagonal elements to be one and each other

element to be zero. To obtain a positive definite pre-version of the precision matrix, we set

Φpre := v ·A+ (|Λmin(v ·A)|+ 0.1 + u) · Ip×p.

Here, v = 0.3 and u = 0.1 are chosen to control the magnitude of partial correlations. The covariance

matrix Σ is generated by inverting Φpre and scaling the variances to one. The corresponding precision

matrix Φ is given by Σ−1. For a given p, we generate n = 200 independent samples of

X = (X1, . . . , Xp) ∼ N (0,Σ)

and evaluate whether our test statistic would reject the null hypothesis for a specific set of edges M
which satisfies the null hypothesis. Finally, the acceptance rate is calculated over l = 1000 independent

simulations for a given confidence level 1− α = 0.95.

5.6.1 Simulation Settings

In our simulation study, we estimate the correlation structure of four different designs that are described

in the following. In Example 3, we explicitly allow for approximate sparsity instead of strict sparsity

which is more realistic for many applications.

Example 1: Random Graph

Each pair of off-diagonal elements of the covariance matrix of the first p − 1 regressors is randomly set

to nonzero with probability prob = 5/p. The last regressor is added as an independent random variable.

It results in about (p− 1) · (p− 2) · prob/2 edges in the graph. The corresponding precision matrix is of

the form

Φ :=

 B
0...

0

0 · · · 0 1

 ,

where B is a sparse matrix. We test the hypothesis whether the last regressor is independent from all

other regressors that corresponds to

M = {(p, 1), . . . , (p, p− 1)}.

Example 2: Cluster Graph

The regressors are evenly partitioned into g = 4 disjoint groups. Each pair of off-diagonal elements Φ(i,j)

is set nonzero with probability prob = 5/p if both i and j belong to the same group. It results in about

g · (p/g) · (p/g − 1) · prob/2 edges in the graph. The precision Matrix is of the form

Φ :=


B1 0

B2

B3

0 B4

 ,
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where each block Bi is a sparse matrix. We test the hypothesis that the first two hubs are conditionally

independent. This corresponds to test the tuples

M = {(1, p/4 + 1), . . . , (1, p/2), (2, p/4 + 1), . . . , (p/4, p/2)}.

Figure 5.1: Examples of a Random Graph (left) and a Cluster Graph (right).
The edges of the graph are colored in black and the edges contained in the hypothesis in red.

Example 3: Approximately Sparse Random Graph

In this example, we generate a random graph structure as in Example 1. But, instead of setting the other

elements of the adjacency matrix A to zero, we generate independent random entries from a uniform

distribution on [−a, a] with a = 1/20. This results in a precision matrix of the form

Φ :=

 B
0...

0

0 · · · 0 1

 ,

where B is not a sparse matrix. Again, we test the hypothesis whether the last regressor is independent

from all other regressors that corresponds to

M = {(p, 1), . . . , (p, p− 1)}.

Example 4: Independent Graph

By setting

Φ := Ip×p,

we generate samples of p independent normally distributed random variables. We can test the hypothesis

whether the regressors are independent by choosing

M = {(1, 2), . . . , (1, p), (2, 3), . . . , (p− 1, p)}.

5.6.2 Simulation Results

We provide simulated acceptance rates of our proposed estimation procedure with B = 1000 bootstrap

samples for all of the examples above. Confidence Intervall I corresponds to the standard case in (5.5),

whereas Confidence Intervall II is based on the approximation of the sphere in (5.6). In summary, the

results reveal that the empirical acceptance rate is, on average, close to the nominal level of 95% with

a mean absolute deviation of 2.581% over all simulations. The Confidence Intervall II, which has got a

mean absolute deviation of 1.875%, performs significantly better than Confidence Intervall I with a mean

absolute deviation of 3.287%. More complex S-sparsely convex sets seem to result in better acceptance
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rates, whereas higher exponents do not improve the rates. The lowest mean absolute deviation (1.138%)

is achieved in Table 5.2 for S = 5, exp = 1 and without cross-fitting.

Confidence Interval I Confidence Intervall II

Model p d Lasso post-Lasso sqrt-Lasso Lasso post-Lasso sqrt-Lasso

random

20 19 0.931 0.938 0.936 0.929 0.930 0.935

50 49 0.915 0.915 0.916 0.926 0.929 0.932

100 99 0.912 0.912 0.908 0.927 0.930 0.929

cluster

20 25 0.916 0.942 0.918 0.915 0.930 0.921

40 100 0.916 0.919 0.917 0.934 0.947 0.937

60 225 0.897 0.893 0.899 0.921 0.922 0.927

approx

20 19 0.931 0.931 0.931 0.947 0.946 0.947

50 49 0.908 0.908 0.908 0.920 0.920 0.920

100 99 0.902 0.902 0.902 0.935 0.935 0.935

indepent

5 10 0.931 0.931 0.931 0.933 0.933 0.933

10 45 0.927 0.927 0.927 0.937 0.937 0.937

20 190 0.896 0.896 0.896 0.920 0.920 0.920

Table 5.1: Simulation results for S=1, exp=1 and 1-fold.

Confidence Interval I Confidence Intervall II

Model p d Lasso post-Lasso sqrt-Lasso Lasso post-Lasso sqrt-Lasso

random

20 19 0.969 0.925 0.956 0.951 0.932 0.947

50 49 0.942 0.944 0.944 0.942 0.954 0.953

100 99 0.934 0.941 0.940 0.950 0.949 0.952

cluster

20 25 0.972 0.958 0.973 0.914 0.936 0.914

40 100 0.941 0.937 0.945 0.930 0.936 0.942

60 225 0.931 0.947 0.942 0.943 0.937 0.950

approx

20 19 0.958 0.958 0.958 0.965 0.965 0.965

50 49 0.937 0.937 0.937 0.940 0.940 0.940

100 99 0.920 0.921 0.920 0.936 0.936 0.936

indepent

5 10 0.951 0.951 0.951 0.951 0.951 0.951

10 45 0.932 0.932 0.932 0.952 0.952 0.952

20 190 0.926 0.926 0.926 0.947 0.947 0.947

Table 5.2: Simulation results for S=5, exp=1 and 1-fold.
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Confidence Interval I Confidence Intervall II

Model p d Lasso post-Lasso sqrt-Lasso Lasso post-Lasso sqrt-Lasso

random

20 19 0.909 0.916 0.921 0.916 0.921 0.930

50 49 0.931 0.910 0.926 0.926 0.907 0.927

100 99 0.907 0.909 0.909 0.917 0.934 0.923

cluster

20 25 0.910 0.905 0.905 0.904 0.898 0.901

40 100 0.909 0.910 0.910 0.905 0.919 0.921

60 225 0.885 0.894 0.898 0.912 0.925 0.934

approx

20 19 0.929 0.928 0.929 0.929 0.928 0.929

50 49 0.888 0.888 0.888 0.911 0.911 0.911

100 99 0.907 0.907 0.907 0.936 0.936 0.936

indepent

5 10 0.930 0.930 0.930 0.939 0.939 0.939

10 45 0.921 0.921 0.921 0.933 0.933 0.933

20 190 0.916 0.916 0.916 0.938 0.938 0.938

Table 5.3: Simulation results for S=5, exp=2 and 1-fold.

Confidence Interval I Confidence Intervall II

Model p d Lasso post-Lasso sqrt-Lasso Lasso post-Lasso sqrt-Lasso

random

20 19 0.917 0.912 0.919 0.919 0.932 0.918

50 49 0.927 0.911 0.925 0.938 0.936 0.938

100 99 0.903 0.894 0.907 0.926 0.933 0.927

cluster

20 25 0.920 0.899 0.918 0.930 0.929 0.929

40 100 0.920 0.883 0.919 0.927 0.926 0.923

60 225 0.889 0.885 0.896 0.920 0.930 0.928

approx

20 19 0.921 0.922 0.921 0.932 0.934 0.932

50 49 0.899 0.899 0.899 0.926 0.926 0.926

100 99 0.889 0.889 0.889 0.930 0.929 0.930

indepent

5 10 0.922 0.923 0.922 0.935 0.934 0.935

10 45 0.905 0.905 0.905 0.937 0.937 0.937

20 190 0.903 0.903 0.903 0.936 0.936 0.936

Table 5.4: Simulation results for S=1, exp=1 and 3-fold.
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Confidence Interval I Confidence Intervall II

Model p d Lasso post-Lasso sqrt-Lasso Lasso post-Lasso sqrt-Lasso

random

20 19 0.970 0.919 0.964 0.950 0.932 0.958

50 49 0.923 0.911 0.927 0.938 0.951 0.935

100 99 0.929 0.925 0.930 0.949 0.940 0.948

cluster

20 25 0.971 0.970 0.971 0.915 0.931 0.915

40 100 0.926 0.915 0.925 0.925 0.917 0.924

60 225 0.923 0.925 0.926 0.917 0.939 0.930

approx

20 19 0.959 0.959 0.959 0.958 0.956 0.958

50 49 0.932 0.932 0.932 0.931 0.933 0.931

100 99 0.929 0.929 0.929 0.949 0.950 0.949

indepent

5 10 0.940 0.940 0.940 0.951 0.951 0.951

10 45 0.922 0.922 0.922 0.938 0.938 0.938

20 190 0.930 0.930 0.930 0.938 0.938 0.938

Table 5.5: Simulation results for S=5, exp=1 and 3-fold.

Confidence Interval I Confidence Intervall II

Model p d Lasso post-Lasso sqrt-Lasso Lasso post-Lasso sqrt-Lasso

random

20 19 0.914 0.897 0.918 0.922 0.921 0.923

50 49 0.914 0.896 0.911 0.920 0.920 0.921

100 99 0.891 0.878 0.893 0.918 0.909 0.917

cluster

20 25 0.885 0.882 0.888 0.900 0.896 0.901

40 100 0.880 0.877 0.879 0.898 0.910 0.907

60 225 0.886 0.884 0.897 0.915 0.921 0.932

approx

20 19 0.931 0.930 0.931 0.938 0.937 0.938

50 49 0.914 0.913 0.914 0.932 0.933 0.932

100 99 0.894 0.894 0.894 0.924 0.924 0.924

indepent

5 10 0.923 0.922 0.923 0.943 0.942 0.943

10 45 0.917 0.916 0.917 0.934 0.935 0.934

20 190 0.890 0.890 0.890 0.932 0.932 0.932

Table 5.6: Simulation results for S=5, exp=2 and 3-fold.
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5.7 Conclusion

In this paper, we provide results for uniform inference on high-dimensional graphical models with the

number of target parameters being possibly much larger than the sample size. This is in particular

important when certain structures of a causal model should be recovered. As the square-root Lasso

estimator is very popular for the estimation of graphical models, we provide uniform estimation rates and

sparsity guarantees of the square-root Lasso estimator under a random design and approximate sparsity.

These results might be of independent interest for related problems. We show that our proposed method

has very good small sample properties in simulation studies. Although the estimation of graphical models

has been considered as very challenging, as the number of parameters to estimate is often large compared

to the sample size, our results from the simulation studies are very encouraging.
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Appendix

5.8 Proof of Theorem 12

Proof. Let mr = (j, k) be an arbitrary tuple in M. First, we remark that

max
r

E
[(
ν(mr)

)2
]
. 1 and max

r
E
[(
ε(mr)

)2
]
. 1

due to the Assumptions A3 and A4. Let us define the convex set

Tmr = {η = (η(1), η(2)) : η(1) ∈ Rp−2, η(2) ∈ Rp−2}

and endow Tmr with the norm

||η||e = ||η(1)||2 ∨ ||η(2)||2.

Further, let τn :=
√

s log(an)
n and we define the nuisance realization set

Tmr =

{
η ∈ Tmr : ||η(1)||0 ∨ ||η(2)||0 ≤ Cs,

||η(1) − β(mr)||2 ∨ ||η(2) − γ(mr)||2 ≤ Cτn,

||η(1) − β(mr)||1 ∨ ||η(2) − γ(mr)||1 ≤ C
√
sτn

}
∪
{(
β(mr), γ(mr)

)}
for a sufficiently large constant C > 0.

We verify the Assumptions 2.1-2.4 in Belloni et al. [12] to apply Corollary 2.2 of this paper. First, we

verify Assumption 2.1 (i). The moment condition holds since

E[ψmr (X, θmr , ηmr )]

= E[ε(mr)ν(mr)]

= E[E[ε(mr)ν(mr)|X−j ]] = E[ν(mr) E[ε(mr)|X−j ]︸ ︷︷ ︸
=0

] = 0.

In addition, we have

Sn : = E
[
max
r
|
√
nEn[ψmr (X, θmr , ηmr )]|

]
= E

[
sup
f∈F

Gn(f)

]

with F = {ε(mr)ν(mr)|r = 1, . . . , d} and Gn(f) :=
√
n|En[f ] − E[f ]|. By the same arguments as in the

beginning of the proof of Theorem 13, we conclude that the envelope sup
f∈F
|f | of F fulfills

||max
r
|ε(mr)ν(mr)|||P,q = E

[
max
r

(
|ε(mr)ν(mr)|

)q]1/q
≤ E

[
max
r

(
|ε(mr)|

)2q
]1/2q

E
[
max
r

(
|ν(mr)|

)2q
]1/2q

≤ C log(d),
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since the error terms are normally distributed. Using Lemma P.2 (Maximal Inequality I) in Belloni et al.

[12] with |F| = d, we have

Sn ≤ C log1/2(d) + C log1/2(d)

(
n

2
q

log3(d)

n

)1/2

. log1/2(d)

by Assumption A2 for a q > 2q̃. Hence, Assumption A3 implies, for all r = 1, . . . , d, that Θmr contains

an interval of radius Cn−
1
2Sn log(n) centered at θmr for sufficiently large n and for any constant C.

Assumption 2.1 (i) follows. For all mr ∈ M, the map (θ, η) 7→ ψmr (X, θ, η) is twice continuously

Gateaux-differentiable on Θmr × Tmr , and so is the map (θ, η) 7→ E[ψmr (X, θ, η)]. Further, we have

Dmr,0[η, ηmr ] : = ∂tE[ψmr (X, θmr , ηmr + t(η − ηmr ))]
∣∣
t=0

= E
[
∂t

{(
Xj − θmrXk −

(
η(1)
mr + t(η(1) − η(1)

mr )
)
X−mr

)
(
Xk −

(
η(2)
mr + t(η(2) − η(2)

mr )
)
X−mr

)}]∣∣
t=0

= E[ε(mr)(η(2)
mr − η

(2))X−mr ] + E[(η(1)
mr − η

(1))X−mrν
(mr)]

= 0.

Therefore, Assumptions 2.1 (ii) and 2.1 (iii) hold. We notice that

|Jmr | = |∂θE[ψmr (X, θ, ηmr )]|θ=θmr |

= |E[−Xkν
(mr)]|| = |E[(ν(mr))2]| ≤ C

and

|Jmr | = |E[(ν(mr))2]| ≥ c

due to Assumption A4. Since the score ψ is linear with respect to θ, we have

E[ψmr (X, θ, ηmr )] = Jmr (θ − θmr )

for all mr ∈M and θ ∈ Θmr using the moment condition. This gives us Assumption 2.1 (iv).

For all t ∈ [0, 1), mr ∈M, θ ∈ Θmr and η ∈ Tmr , we have

E
[
(ψmr (X, θ, η)− ψmr (X, θmr , ηmr ))2

]
= E

[
(ψmr (X, θ, η)− ψmr (X, θmr , η) + ψmr (X, θmr , η)− ψmr (X, θmr , ηmr ))2

]
≤ C

(
E
[
(ψmr (X, θ, η)− ψmr (X, θmr , η))2

]︸ ︷︷ ︸
=:I

∨ E
[
(ψmr (X, θmr , η)− ψmr (X, θmr , ηmr ))2

]︸ ︷︷ ︸
=:II

)

with

I = |θ − θmr |2E
[(
Xk(Xk − η(2)X−mr )

)2
]

≤ |θ − θmr |2
(
E[X2

k ]E[(Xk − η(2)X−mr )
2]
)1/2

≤ C|θ − θmr |2
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due to Assumption A3, Assumption A4 and the definition of Tmr . Additionally, we have

II = E
[((

Xj − θmrXk − η(1)X−mr
)(
Xk − η(2)X−mr

)
−
(
Xj − θmrXk − η(1)

mrX−mr
)(
Xk − η(2)

mrX−mr
))2
]

= E
[((

Xj − θmrXk − η(1)X−mr
)(

(η(2)
mr − η

(2))X−mr
)

+
(
Xk − η(2)

mrX−mr
)(

(η(1)
mr − η

(1))X−mr
))2
]

≤ C
(
‖η(2)
mr − η

(2)‖2 ∨ ‖η(1)
mr − η

(1)‖2
)2

= C‖ηmr − η‖2e

with similar arguments as above using

sup
‖ξ‖2=1

E
[
(ξX)4

]
≤ C

due to the normal design. Combining these results gives us Assumption 2.1 (v) (a).

We conclude that ∣∣∣∂tE[ψmr(X, θ, ηmr + t(η − ηmr )
)]∣∣∣

=

∣∣∣∣E[(Xj − θXk −
(
η(1)
mr + t(η(1) − η(1)

mr )
)
X−mr

)(
(η(2)
mr − η

(2))X−mr
)

+
(
Xk −

(
η(2)
mr + t(η(2) − η(2)

mr )
)
X−mr

)(
(η(1)
mr − η

(1))X−mr
)]∣∣∣∣

≤ C‖ηmr − η‖e

with the same argument as above, which gives us Assumption 2.1 (v) (b) with B1n = C. To complete

the Assumption 2.1 (v) (c) with B2n = C, notice that∣∣∣∂2
t E
[
ψmr

(
X, θmr + t(θ − θmr ), ηmr + t(η − ηmr )

)]∣∣∣
=

∣∣∣∣∂tE[(Xj −
(
θmr + t(θ − θmr )

)
Xk −

(
η(1)
mr + t(η(1) − η(1)

mr )
)
X−mr

)
·
(
(η(2)
mr − η

(2))X−mr
)

+
(
Xk −

(
η(2)
mr + t(η(2) − η(2)

mr )
)
X−mr

)
·
(
(θmr − θ)Xk + (η(1)

mr − η
(1))X−mr

)]∣∣∣∣
=
∣∣∣2E[((η(2)

mr − η
(2))X−mr

)(
(θmr − θ)Xk + (η(1)

mr − η
(1))X−mr

)]∣∣∣
≤ 2

(
E
[(

(η(2)
mr − η

(2))X−mr
)2]︸ ︷︷ ︸

≤C‖η(2)
mr−η(2)‖22

E
[(

(θmr − θ)Xk + (η(1)
mr − η

(1))X−mr
)2]︸ ︷︷ ︸

≤C
(
|θmr−θ|2+‖η(1)

mr−η(1)‖22
)

)1/2

≤ C
(
|θmr − θ|2 ∨ ‖ηmr − η‖2e

)
.

Therefore, Assumption 2.1 holds. Due to the construction of Tmr , Assumptions 2.2 (ii) and (iii) hold.

Next, we show that the assumptions of Theorem 13 from Section 5.9 hold which implies Assumption

2.2 (i). Notice that Assumption B1 and Assumption B4 are satisfied with ρ = 2. Condition A1 implies
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Assumption B3. Let σ2 > 0 be a uniform lower bound for the variances of the error terms and the

regressors and let c := σzc̃, where zc̃ is the c̃-quantile of a standard normal distribution for an arbitrary

but fixed c̃ ∈ ( 1
2 ,

3
4 ). Uniformly for all r = 1, . . . , d and l ∈ {1, . . . , p} \ {j}, it holds

P
(

(ε(mr))2X2
l ≥ c4

)
= 1− P

(
|ε(mr)Xl| ≤ c2

)
≥ 1− P

(
|ε(mr)| ≤ c ∨ |Xl| ≤ c

)
≥ 1−

(
P
(
|ε(mr)| ≤ c

)
+ P (|Xl| ≤ c)

)
≥ 1− 2P (σ|Z| ≤ c)

= 3− 4c̃ > 0,

where Z ∼ N (0, 1), which implies that

min
r

min
l

E[(ε(mr))2X2
l ] ≥ c4(3− 4c̃) > 0.

Analogously,

min
r

min
l

E[(ν(mr))2X2
l ] > 0.

Combined with Assumption A4, this implies Assumption B2. Therefore, we are able to estimate the

nuisance parameters at a sufficiently fast rate.

Define

F1 : =
{
ψmr (·, θ, η) : r ∈ {1, . . . , d}, θ ∈ Θmr , η ∈ Tmr

}
.

For now, we exclude the true nuisance parameter to bound the covering entropy of F1 and define

F1,1 : =
{
ψmr (·, θ, η) : r ∈ {1, . . . , d}, θ ∈ Θmr , η ∈ Tmr \ {ηmr}

}
⊆ F (1)

1,1F
(2)
1,1

with

F (1)
1,1 = {X → (Xj − θXk − η(1)X−mr ) : r ∈ {1, . . . , d}, θ ∈ Θmr , η

(1) ∈ T ∗mr,1},

F (2)
1,1 = {X → (Xk − η(2)X−mr ) : r ∈ {1, . . . , d}, η(2) ∈ T ∗mr,2},

where T ∗mr := Tmr \ {ηmr}. The envelope F
(1)
1,1 of F (1)

1,1 fulfills

∥∥(F (1)
1,1

)2∥∥
P,2q
≤
∥∥∥ sup
r∈{1,...,d}

sup
θ∈Θmr ,‖η

(1)
mr−η(1)‖1≤C

√
sτn

(
|ε(mr)|

+ |(θmr − θ)Xk|+ |(η(1)
mr − η

(1))X−mr |
)2∥∥∥

P,2q

.
∥∥ sup
r∈{1,...,d}

(
ε(mr)

)2∥∥
P,2q

+
∥∥ sup
r∈{1,...,d}

X2
k

∥∥
P,2q

+ sτ2
n

∥∥ sup
r∈{1,...,d}

‖X−mr‖2∞
∥∥
P,2q

. log(d) + log(d) + sτ2
n log(an)

. log(an)

and with an analogous argument ∥∥(F (2)
1,1

)2∥∥
P,2q

. log(an).
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Since we have excluded the true nuisance parameter, that does not need to be sparse, it holds F (1)
1,1 ⊆ G1,1

and F (2)
1,1 ⊆ G1,1 with

G1,1 :=
{
X → ξX : ξ ∈ Rp, ‖ξ‖0 ≤ Cs, ‖ξ‖2 ≤ C

}
,

where G1,1 is a union over
(
p
Cs

)
VC-subgraph classes G1,1,k with VC indices less or equal to Cs+2 (Lemma

2.6.15, Vaart and Wellner [94]). This implies that F (1)
1,1 and F (2)

1,1 are unions over
(
p
Cs

)
VC-subgraph classes

F (1)
1,1,k and F (2)

1,1,k with VC indices less or equal to Cs + 2. Due to Theorem 2.6.7 in Vaart and Wellner

[94], we obtain

sup
Q

logN(ε‖F (1)
1,1 ‖Q,2,F

(1)
1,1 , ‖ · ‖Q,2)

≤ sup
Q

log

( ( pCs)∑
k=1

N(ε‖F (1)
1,1 ‖Q,2,F

(1)
1,1,k, ‖ · ‖Q,2)

)

≤ log

( (
p

Cs

)
︸ ︷︷ ︸
≤
(
e·p
Cs

)Cs
K(Cs+ 2)(16e)Cs+2

(
1

ε

)2Cs+2
)

≤ log

((e · p
Cs

)Cs
K(Cs+ 2)(16e)Cs+2

(
1

ε

)2Cs+2
)

. s log
(an
ε

)
,

where K is an universal constant and with an analogous argument

sup
Q

logN(ε‖F (2)
1,1 ‖Q,2,F

(2)
1,1 , ‖ · ‖Q,2) . s log

(an
ε

)
.

Using basic calculations on covering entropies (Lemma N.1 in Appendix N, Belloni et al. [9]), we can

bound the covering entropy of the class F1,1 by

sup
Q

logN(ε‖F (1)
1,1F

(2)
1,1 ‖Q,2,F1,1, ‖ · ‖Q,2)

≤ sup
Q

logN
(ε

2
‖F (1)

1,1 ‖Q,2,F
(1)
1,1 , ‖ · ‖Q,2

)
+ sup

Q
logN

(ε
2
‖F (2)

1,1 ‖Q,2,F
(2)
1,1 , ‖ · ‖Q,2

)
. s log

(an
ε

)
,

where F1,1 := F
(1)
1,1F

(2)
1,1 is an envelope for F1,1 with

‖F1,1‖P,q ≤
(∥∥(F (1)

1,1

)2∥∥
P,2q

∥∥(F (1)
1,1

)2∥∥
P,2q

)1/2

. log(an).

Additionally, define

F1,2 : =
{
ψmr (·, θ, ηmr ) : r ∈ {1, . . . , d}, θ ∈ Θmr

}
.

By the same argument as above, F1,2 is a union over d VC-subgraph classes with VC indices less or equal

to 3 implying

sup
Q

logN(ε‖F1,2‖Q,2,F1,2, ‖ · ‖Q,2) ≤ C log
(d
ε

)
. log

(an
ε

)
,
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where the envelope F1,2 of F1,2 obeys

‖F1,2‖P,q . log(an)

with an analogous argument as above. Combining these results, we obtain

sup
Q

logN(ε‖F1‖Q,2,F1, ‖ · ‖Q,2)

= sup
Q

logN(ε‖F (1)
1,1F

(2)
1,1 ∨ F1,2‖Q,2,F1,1 ∪ F1,2, ‖ · ‖Q,2)

≤ sup
Q

logN(ε‖F (1)
1,1F

(2)
1,1 ‖Q,2,F1,1, ‖ · ‖Q,2)

+ sup
Q

logN(ε‖F1,2‖Q,2,F1,2, ‖ · ‖Q,2)

. s log
(an
ε

)
,

where the envelope F1 := F
(1)
1,1F

(2)
1,1 ∨ F1,2 of F1 satisfies

‖F1‖P,q . log(an),

which gives us Assumption 2.2 (iv). For all f ∈ F1, we have

E[f2]1/2 ≤ sup
r,θ,η(1)

E
[
(Xj − θXk − η(1)X−mr )

4
]1/4

sup
r,η(2)

E
[
(Xk − η(2)X−mr )

4
]1/4

. sup
‖ξ‖2=1

E
[
(ξX)4

]1/2
. C

and

E[f2]1/2 = E
[
(Xj − θXk − η(1)X−mr︸ ︷︷ ︸

=:Z1

)2(Xk − η(2)X−mr︸ ︷︷ ︸
=:Z2

)2
]1/2

.

For each Zi with i ∈ {1, 2}, we have

E[Z2
i ] & inf

‖ξ‖2=1
E
[
(ξX)2

]
≥ c.

Therefore, Z1 and Z2 are both centered normally distributed random variables whose variances are

bounded away from zero. This implies

E[Z2
1Z

2
2 ]1/2 ≥ c > 0,

which gives us Assumption 2.2 (v). Assumption 2.2 (vi) (a) holds by construction of τn and vn . s. Due

to the growth condition in A2, we can choose q = 2q̃/(1− κ) such that

n−1/2+1/qs log2(an) = n
1−κ
2q̃ n−1/2s log2(an)

= n−
κ
2q̃

(
n

1
q̃
s2 log4(an)

n

)1/2

. n−
κ
2q̃ .

Additionally, it holds

Cτn(s log(an))1/2 .
s log(an)√

n
. n−

1
2q̃ ,
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log1/2(d)
log(n)√

n
(s log(an))1/2 .

√
s log4(an)

n
. n−

1
2q̃

and

n1/2τ2
n =

s log(an)√
n

. n−
1
2q̃ ,

which gives us Assumption 2.2 (vi) (b) and (c) with δn = n−
κ
2q̃ . Define the class

F0 := {ψ̄mr (·) : r = 1, . . . , d},

where ψ̄mr (·) := −σ−1
mrJ

−1
mrψmr (·, θmr , ηmr ) with σ2

mr := J−2
mrE[ψ2

mr (X, θmr , ηmr )]. By the Cauchy-

Schwarz inequality, for any q > 0, the envelope F0 for F0 satisfies

‖F0‖P,q = E

[
sup

r=1,...,d

(
E[(ε(mr)ν(mr))2]−1/2|ε(mr)ν(mr)|

)q]1/q

. E

[
sup

r=1,...,d

(
|ε(mr)ν(mr)|

)q]1/q

. log(d).

Since |F0| = d, we have

sup
Q

logN
(
ε‖F0‖Q,2,F0, ‖ · ‖Q,2

)
≤ log

(d
ε

)
for all < ε ≤ 1. Therefore, Assumption 2.3 (i) is satisfied with %n = 1 and An = d ∨ n. Since the

errors are centered normally distributed random variables with a uniformly bounded variance, we have

E
[(
ε(mr)

)8]
. C and E

[(
ν(mr)

)8]
. C. This implies E[f4] ≤ C for all f ∈ F0 which gives us Assumption

2.3 (ii). The growth conditions from Corollary 2.1 are satisfied due to Assumption A2. Notice that

δ2
n log(n ∨ d) . n−

κ
q̃ log(n ∨ d) = o(1)

and

log2/7(d) log(n ∨ d) = o(n1/7).

Thus, we can find a q such that

log2/3(d) log(n ∨ d) = o(n1/3−2/(3q)).

Now, we verify Assumption 2.4. Define

ψ̃mr (X, η
(2)) : = −Xk(Xk − η(2)X−mr )

and

m̃mr (η
(2)) : = E[ψ̃mr (X, η

(2))],

where Ĵmr = −En[ψ̃mr (X, η̂
(2))]. It holds

|Ĵmr − Jmr | ≤ |Ĵmr − m̃mr (η̂
(2))|+ |m̃mr (η̂

(2))− m̃mr (η
(2)
mr )|
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with

|m̃mr (η̂
(2))− m̃mr (η

(2)
mr )| = |E[Xk(η̂(2)

mr − η
(2)
mr )X−mr ]|

= ||η̂(2)
mr − η

(2)
mr ||2

∣∣∣∣∣E
[
Xk

(
(η̂

(2)
mr − η

(2)
mr )

||η̂(2)
mr − η

(2)
mr ||2

X−mr

)]∣∣∣∣∣
. ||η̂(2)

mr − η
(2)
mr ||2 . τn.

Further, let us define

G̃1 := {X 7→ ψ̃mr (X, η
(2)) : r = 1, . . . , d, η(2) ∈ T ∗mr,2}

with

sup
r
|Ĵmr − Jmr | . sup

g∈G̃1

|En[g(X)]− E[g(X)]|+ τn.

The class G̃1 has an envelope G̃1 with

E[G̃q1]1/q ≤ E

[
sup
r

sup
η(2)∈T ∗mr,2

|Xq
k(Xk − η(2)Xmr )

q|

]1/q

≤ || sup
r
Xk||P,2qE

[
sup

r,η(2)∈T ∗mr,2
(Xk − η(2)Xmr )

2q

]1/2q

. log
1
2 (d)

|| sup
r
ν(mr)||P,2q ∨ E

[
sup

r,η(2)∈T ∗mr,2
((η(2)

mr − η
(2))Xmr )

2q

]1/2q


. log
1
2 (d)

(
log

1
2 (d) ∨

√
sτn sup

r
E
[
||Xmr ||2q∞

]1/2q)
. log(an)

for all q. By similar arguments as in the verification of Assumption 2.2 (iv), we obtain

sup
Q

logN
(
ε‖G̃1‖Q,2,G1, ‖ · ‖Q,2

)
. s log

(an
ε

)
.

By the Maximal Inequality, it holds

sup
r
|Ĵmr − Jmr | . K

(√
s log(an)

n
+ n1/q s log2(an)

n

)
+ τn

= o
(

log−
3
2 (an)

)
with probability not less then 1− o(1). Next, we want to show that

En[ψ2
mr (X, θ̂mr , η̂mr )]− E[ψ2

mr (X, θmr , ηmr )] = oP (log−1(an)).

By the triangle inequality, we have

|En[ψ2
mr (X, θ̂mr , η̂mr )]− E[ψ2

mr (X, θmr , ηmr )]|

≤ |En[ψ2
mr (X, θ̂mr , η̂mr )]− E[ψ2

mr (X, θ̂mr , η̂mr )]|

+ |E[ψ2
mr (X, θ̂mr , η̂mr )− ψ

2
mr (X, θmr , ηmr )]|

≤ |En[ψ2
mr (X, θ̂mr , η̂mr )]− E[ψ2

mr (X, θ̂mr , η̂mr )]|
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+ E[(ψmr (X, θ̂mr , η̂mr ) + ψmr (X, θmr , ηmr ))
2]1/2

E[(ψmr (X, θ̂mr , η̂mr )− ψmr (X, θmr , ηmr ))2]1/2

≤ |En[ψ2
mr (X, θ̂mr , η̂mr )]− E[ψ2

mr (X, θ̂mr , η̂mr )]|

+ C(|θmr − θ̂mr | ∨ ‖ηmr − η̂mr‖e)

due to Assumption 2.1 (a) and Assumption 2.2 (v). Note that with probability 1− o(1)

sup
r
|θ̂mr − θmr | . τn = o(log−1(an))

due to Appendix A from Belloni et al. [12]. Since

G̃2 :=
{
ψmr (·, θ, η) : r ∈ {1, . . . , d}, |θ − θmr | ≤ Cτn, η ∈ T ∗mr

}
⊆ F1,1,

we obtain the same entropy bounds as for F1,1 implying

sup
Q

logN(ε‖G̃2
2‖Q,2, G̃2

2 , ‖ · ‖Q,2) . s log
(an
ε

)
,

where G̃2
2 is a measurable envelope of G̃2

2 with

‖G̃2
2‖P,q ≤ ‖

(
F1,1

)2∥∥
P,q

≤
(∥∥(F (1)

1,1

)4∥∥
P,q

∥∥(F (2)
1,1

)4∥∥
P,q

)1/2

. log2(an)

due to
∥∥(F (1)

1,1

)4∥∥
P,q

. log2(an) and
∥∥(F (2)

1,1

)4∥∥
P,q

. log2(an). For all g ∈ G̃2
2 , we have

sup
g∈G̃2

2

E[g(X)2]1/2

≤ sup
r,θ,η(1)

E
[
(Xj − θXk − η(1)X−mr )

8
]1/4

sup
r,η(2)

E
[
(Xk − η(2)X−mr )

8
]1/4

. sup
||ξ||2=1

E
[
(ξX)8

]1/2
≤ C.

Therefore, we can find a q > 4 such that with probability 1− o(1)

sup
g∈G̃2

2

|En[g(X)]− E[g(X)]| ≤ K

(√
s log(an)

n
+ n1/q s log3(an)

n

)
= o(log−1(an)),

which implies

En[ψ2
mr (X, θ̂mr , η̂mr )]− E[ψ2

mr (X, θmr , ηmr )] = oP (log−1(an)).

Since 1 . σ2
mr . 1 due to Assumption 2.1 (iv) and Assumption 2.2 (v), we have∣∣∣∣ σ̂mrσmr

− 1

∣∣∣∣ ≤ ∣∣∣∣ σ̂2
mr

σ2
mr

− 1

∣∣∣∣
.
∣∣∣σ̂2
mr − σ

2
mr

∣∣∣
≤
∣∣∣Ĵ−2
mr − J

−2
mr

∣∣∣En[ψ2
mr (X, θ̂mr , η̂mr )]
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+ J−2
mr |En[ψ2

mr (X, θ̂mr , η̂mr )]− E[ψ2
mr (X, θmr , ηmr )]|

.
∣∣∣Ĵmr − Jmr ∣∣∣+ |En[ψ2

mr (X, θ̂mr , η̂mr )]− E[ψ2
mr (X, θmr , ηmr )]|

= oP (log−1(an))

uniformly over all r = 1, . . . , d which gives us Assumption 2.4 with ∆n = o(1) and εn = o(log−1(an)).

Next, we show Assumption 2.3 (iii). The entropy conditions of the class

F̂0 = {ψ̄mr (·)− ψ̂mr (·) : r = 1, . . . , d}

hold by construction with Ān = d ∨ n and %̄ = 1. Further, it holds for all f ∈ F̂0

||f ||Pn,2 = ||σ̂−1
mr Ĵ

−1
mrψmr (X, θ̂mr , η̂mr )− σ

−1
mrJ

−1
mrψmr (X, θmr , ηmr )||Pn,2

≤ |σ̂−1
mr Ĵ

−1
mr − σ

−1
mrJ

−1
mr | · ||ψmr (X, θmr , ηmr )||Pn,2

+ σ̂−1
mr Ĵ

−1
mr ||ψmr (X, θ̂mr , η̂mr )− ψmr (X, θmr , ηmr )||Pn,2

:= I + II.

To bound the first term, we note that uniformly over all r = 1, . . . , d

|σ̂−1
mr Ĵ

−1
mr − σ

−1
mrJ

−1
mr | = oP (log−1(an)),

since 1 . Jmr . 1 and 1 . σmr . 1. Define the class

G̃3 := {ψ2
mr (·, θmr , ηmr ) : r = 1, . . . , d}

with cardinality |G̃3| = d and an envelope G̃3 that fulfills

||G̃3||P,q ≤ E
[
sup
r

(
ε(mr)ν(mr)

)2q
]1/q

. log2(d).

It holds

sup
r
||ψmr (X, θmr , ηmr )||Pn,2 ≤

(
1√
n

sup
g∈G̃3

Gn(g) + sup
r

E[ψ2
mr (X, θmr , ηmr )]

) 1
2

with supr E[ψ2
mr (X, θmr , ηmr )] ≤ C and

1√
n

sup
g∈G̃3

Gn(g) . K

(√
log(an)

n
+ n1/q log3(an)

n

)
= o(1)

with probability 1− o(1). This implies

I = oP
(
log−1(an)

)
uniformly over all r = 1, . . . , d. To bound the second term, define the class

G̃4 := {ψmr (·, θ, η)− ψmr (·, θmr , ηmr ) : r = 1, . . . , d, |θ − θmr | ≤ Cτn, η ∈ Tmr}

for a sufficiently large constant C > 0.
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Due to Assumption 2.2 (i), we have that

ψmr (X, θ̂mr , η̂mr )− ψmr (X, θmr , ηmr ) ∈ G̃4

with probability 1− o(1). Since G̃2
4 ⊆ (F1 −F1)2, the covering number obeys

sup
Q

logN
(
ε‖G̃2

4‖Q,2, G̃2
4 , ‖ · ‖Q,2

)
. s log

(an
ε

)
and the envelope

G̃2
4 = sup

r=1,...,d
sup

|θ−θmr |≤Cτn
sup
η∈Tmr

(ψmr (·, θ, η)− ψmr (·, θmr , ηmr ))
2

satisfies

‖G̃2
4‖P,q

. ‖ sup
r,θ,η(2)

(
(θmr − θ)Xk(Xk − η(2)X−mr )

)2

‖P,q

+ ‖ sup
r,η(1),η(2)

(
(Xj − θmrXk − η(1)X−mr )(η

(2)
mr − η

(2))X−mr

)2

‖P,q

+ ‖ sup
r,η(1)

(
(Xk − η(2)

mrX−mr )(η
(1)
mr − η

(1))X−mr

)2

‖P,q

:= T1 + T2 + T3

with

T1 . τ2
n‖ sup

r,η(2)

(
Xk(Xk − η(2)X−mr )

)2

‖P,q

. τ2
n‖ sup

r
X2
k‖P,2q‖ sup

r,η(2)

(Xk − η(2)X−mr )
2‖P,2q

.
s log(an)

n
log(d)2 = o(log−1(an)),

T2 . ‖ sup
r,η(2)

((η(2)
mr − η

(2))X−mr )
2‖P,2q‖ sup

r,η(1)

(Xj − θmrXk − η(1)X−mr )
2‖P,2q

. sτ2
n‖ sup

r
‖X−mr‖2∞‖P,2q log(d)

.
s2 log(an)

n
log(an) log(d) = o(log−1(an))

and

T3 . ‖ sup
r,η(1)

((η(1)
mr − η

(1))X−mr )
2‖P,2q‖ sup

r
(νmr )

2‖P,2q

. sτ2
n‖ sup

r
‖X−mr‖2∞‖P,2q log(d) = o(log−1(an)).

Since

σ :=

(
sup
g∈G̃2

4

E[g2]

)1/2

.
s2 log(an)

n
= o(log−3(an)),
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it holds

1√
n

sup
g∈G̃2

4

Gn(g) . K

(
σ

√
s log(an)

n
+ n1/q‖G̃2

4‖P,q
s log(an)

n

)
= o(log−4(an))

with probability 1− o(1). Hence,

||ψmr (X, θ̂mr , η̂mr )− ψmr (X, θmr , ηmr )||Pn,2

≤

(
1√
n

sup
g∈G̃2

4

Gn(g) + sup
g∈G̃2

4

E[g(X)]

) 1
2

= o(log−3/2(an))

with probability 1− o(1) due to Assumption 2.1 (v) (a). This gives us II = op
(
log−1(an)

)
with proba-

bility 1− o(1) implying Assumption 2.3 (iii) with δ̄n = o(log−1(an)) = o(1).

It is straightforward to verify that the growth conditions of Corollary 2.2 in Belloni et al. [12] hold.

This completes the proof.

5.9 Uniform Nuisance Function Estimation

Consider the following linear regression model

Yr =

p∑
j=1

βr,jXr,j + εr = βrXr + εr

with centered regressors and errors εr with E[εr] = 0 for each r = 1, . . . , d. The true parameter obeys

βr ∈ arg min
β

E[(Yr − βXr)
2]

with

βr = β(1)
r + β(2)

r .

The parameter β
(2)
r is the approximate sparse part of the true regression coefficient that captures the

misspecification of a sparse model. We show that the Lasso, post-Lasso and square-root Lasso estimators

have sufficiently fast estimation rates uniformly for all r = 1, . . . , d. In this setting, d = dn is explic-

itly allowed to grow with n. In the following analysis, the regressors and errors need to have at least

subexponential tails. In this context, we define the Orlicz-norm ‖X‖Ψρ as

‖X‖Ψρ = inf{C > 0 : E[Ψρ(|X|/C)] ≤ 1}

with Ψρ(x) = exp(xρ)− 1.

5.9.1 Uniform Lasso Estimation

Define the weighted Lasso estimator

β̂r ∈ arg min
β

(
1

2
En
[
(Yr − βXr)

2
]

+
λ

n
‖Ψ̂r,mβ‖1

)
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with the penalty level

λ = cλ
√
nΦ−1

(
1− γ

2pd

)
for a suitable cλ > 1, γ ∈ [1/n, 1/ log(n)] and a fixed m ≥ 0. Define the post-regularized weighted least

squares estimator (post-Lasso) as

β̃r ∈ arg min
β

(
1

2
En
[
(Yr − βXr)

2
])

: supp(β) ⊆ supp(β̂r).

The penalty loadings Ψ̂r,m = diag({l̂r,j,m, j = 1, . . . , p}) are defined by

l̂r,j,0 = max
1≤i≤n

||X(i)
r ||∞

for m = 0 and for all m ≥ 1 by the following algorithm:

Algorithm 4 penalty loadings

Set m̄ = 0. Compute β̂r based on Ψ̂r,m̄.

Set l̂r,j,m̄+1 = En
[((

Yr − β̂rXr

)
Xr,j

)2
]1/2

.

If m̄ = m stop and report the current value of Ψ̂r,m, otherwise set m̄ = m̄+ 1.

Let an := max(p, n, d, e). In order to establish uniform convergence rates, the following assumptions are

required to hold uniformly in n ≥ n0 and P ∈ Pn:

Assumptions B1-B4.

B1 (Tail conditions)

There exists 1 ≤ ρ ≤ 2 such that

max
r=1,...,d

max
j=1,...,p

‖Xr,j‖Ψρ ≤ C and max
r=1,...,d

‖εr‖Ψρ ≤ C.

B2 (Uniformly bounded eigenvalues)

For all r = 1, . . . , dn, it holds

inf
‖ξ‖2=1

E
[
(ξXr)

2
]
≥ c, sup

‖ξ‖2=1

E
[
(ξXr)

2
]
≤ C

and

min
r=1,...,d

min
j=1,...,p

E[ε2
rX

2
r,j ] ≥ c.

B3 (Uniform approximate sparsity)

The coefficients obey

max
r=1,...,d

‖β(2)
r ‖21 .

√
s2 log(an)

n
, max

r=1,...,d
E
[
(β(2)
r Xr)

2
]
.
s log(an)

n

and

max
r=1,...,d

‖β(1)
r ‖0 ≤ s.
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B4 (Growth conditions)

There exists a positive number q̃ > 0 such that the following growth condition is fulfilled:

n
1
q̃
s log1+ 4

ρ (an)

n
= o(1).

Theorem 13. Under the Assumptions B1-B4, the Lasso estimator β̂r obeys uniformly over all P ∈ Pn
with probability 1− o(1)

max
r=1,...,d

‖β̂r − β(1)
r ‖2 ≤ C

√
s log(an)

n
, (5.8)

max
r=1,...,d

‖β̂r − β(1)
r ‖1 ≤ C

√
s2 log(an)

n
(5.9)

with

max
r=1,...,d

‖β̂r‖0 ≤ Cs. (5.10)

Additionally, the post-Lasso estimator β̃r obeys uniformly over all P ∈ Pn with probability 1− o(1)

max
r=1,...,d

‖β̃r − β(1)
r ‖2 ≤ C

√
s log(an)

n
, (5.11)

max
r=1,...,d

‖β̃r − β(1)
r ‖1 ≤ C

√
s2 log(an)

n
. (5.12)

5.9.2 Uniform Square-Root Lasso Estimation

Now, assume that Xr,j are standardized covariates (E[X2
r,j ] = 1 for all j = 1, . . . , p and r = 1, . . . , d)

which are independent from the errors εr. Define

Qr(β) := En[(Yr − βXr − β(2)
r Xr)

2].

The square-root Lasso estimator is defined as

β̂r ∈ arg min
β

(
Q̂1/2
r (β) +

λ

n
‖β‖1

)
,

where Q̂r(β) := En[(Yr − βXr)
2]. Q̂r(β) is a proxy for Qr(β) estimating the approximate sparse part

β
(2)
r by β̂

(2)
r = 0. Let

λ = c′
√
nΦ−1

(
1− γ/(2pd)

)
, (5.13)

where 1− γ is a confidence level associated with the probability of the event (5.14), and c′ > c is a slack

constant. The first part of the analysis is to control the event

λ

n
≥ c max

r=1,...,d
‖Sr‖∞, (5.14)

where

Sr := ∂βQ
1/2(β)|

β=β
(1)
r

= − En[Xr(Yu − β(1)
r Xr − β(2)

r Xr)]√
En[(Yu − β(1)

r Xr − β(2)
r Xr)2]

= −En[Xrεr]√
En[ε2

r]
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is the score of Q1/2 at β
(1)
r . Define

Ŝr := ∂βQ̂
1/2(β)|

β=β
(1)
r

= − En[Xr(εr + β
(2)
r Xr)]√

En[(εr + β
(2)
r Xr)2]

.

The following conditions and Lemma 4 are similar to the condition WL and Lemma M.4 in Belloni et al.

[12]. Let C and C be some strictly positive constants. Additionally, let (ϕn)n≥1, (ϕ̃n)n≥1, (ϕ̄n)n≥1 and

∆n be some sequences of positive constants converging to zero.

Condition WL The following conditions hold:

(i) maxr=1,...,d maxj=1,...,p

(
E
[
|Xr,jεr|3

])1/3
Φ−1(1− γ/(2pd)) ≤ ϕnn1/6,

(ii) C ≤ E
[
|Xr,jεr|2

]
≤ C, for all r = 1, . . . , d and j = 1, . . . , p,

(iii) with probability at least 1− 1
2∆n:

max
r=1,...,d

max
j=1,...,p

|En[X2
r,jε

2
r]− E[X2

r,jε
2
r]| ≤ ϕ̃n

and

max
r=1,...,d

|En[ε2
r]− E[ε2

r]| ≤ ϕ̄n.

The following lemma proves that λ satisfies (5.14) with high probability.

Lemma 4. Suppose that Condition WL holds. In addition, suppose that λ satisfies (5.13) for some

c′ > c and γ = γn ∈ [1/n, 1/ log(n)]. Then, it holds

P

(
λ

n
≥ c max

r=1,...,d
‖Sr‖∞

)
≥ 1− γ − o(γ)−∆n.

Under the same uniform sparsity and regularity conditions as in Theorem 13 we are able to show that

Condition WL is satisfied and hence we can establish uniform convergence rates of the square-root Lasso

estimator. In Section 5.9.2, we additionally assumed independence between the regressors and the error

terms. This eliminates the need to estimate the penalty loadings.

Theorem 14. Suppose that the Assumptions B1-B4 hold. In addition, suppose that λ satisfies (5.13)

for some c′ > c and γ = γn ∈ [1/n, 1/ log(n)]. Then, with probability at least 1− o(1), we have

max
r=1,...,d

‖β̂r − β(1)
r ‖2 ≤ C

√
s log(an)

n
, (5.15)

max
r=1,...,d

‖β̂r − β(1)
r ‖1 ≤ C

√
s2 log(an)

n
(5.16)

with

max
r=1,...,d

‖β̂r‖0 ≤ Cs. (5.17)
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5.9.3 Proofs

Proof of Theorem 13.

As in the previous proof, we use C for a strictly positive constant, independent of n, which value may

differ in each appearance. The notation an . bn stands for an ≤ Cbn for all n for some fixed C. Addi-

tionally, an = o(1) stands for uniform convergence towards zero meaning there exists a sequence (bn)n≥1

with |an| ≤ bn, where bn is independent of P ∈ Pn for all n and bn → 0. Finally, the notation an .P bn

means that, for any ε > 0, there exists a C such that, uniformly over all n, we have PP (an > Cbn) ≤ ε.

Due to Assumption B1, we can bound the q-th moments of the maxima of the regressors uniformly

by

E
[

max
r=1,...,d

‖Xr‖q∞
] 1
q

= ‖ max
r=1,...,d

max
j=1,...,p

|Xr,j |‖P,q

≤ q!‖ max
r=1,...,d

max
j=1,...,p

|Xr,j |‖ψ1

≤ q! log
1
ρ−1(2)‖ max

r=1,...,d
max

j=1,...,p
|Xr,j |‖ψρ

≤ q! log
1
ρ−1(2)K log

1
ρ (1 + dp) max

r=1,...,d
max

j=1,...,p
‖Xr,j‖ψρ

≤ C log
1
ρ (an),

where C does depend on q and ρ but not on n. For the norm inequalities, we refer to Vaart and Wellner

[94]. Now, we modify the proof of Theorem 4.2 from Belloni et al. [12] to fit our setting, but we keep the

notation as similar as possible. Let us define U = {1, . . . , d} and

β(1)
r ∈ arg min

β∈Rp
E
[ 1

2

(
Yr − βXr − β(2)

r Xr

)2

︸ ︷︷ ︸
:=Mr(Yr,Xr,β,ar)

]

with ar = β
(2)
r Xr for all r = 1, . . . , d. Since the coefficient β(2) is approximately sparse by Assumption

B3, we estimate the nuisance parameter ar with âr ≡ 0. Define

Mr(Yr, Xr, β) := Mr(Yr, Xr, β, âr) =
1

2
(Yr − βXr)

2
,

β̂r ∈ arg min
β∈Rp

(
En [Mr(Yr, Xr, β)] +

λ

n
‖Ψ̂rβ‖1

)
and

β̃r ∈ arg min
β∈Rp

(En [Mr(Yr, Xr, β)]) : supp(β) ⊆ supp(β̂r).

First, we verify Condition WL from Belloni et al. [12]. Since Nn = d, we have N(ε,U , dU ) ≤ Nn for all

ε ∈ (0, 1) with

dU (i, j) =

0 for i = j

1 for i 6= j.

To prove WL (i), notice that

Sr = ∂βMr(Yr, Xr, β, ar)|β=β
(1)
r

= −εrXr.
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Since Φ−1(1− t) .
√

log(1/t) uniformly over t ∈ (0, 1/2), it holds

‖Sr,j‖P,3Φ−1(1− γ/2pd) = ‖εrXr,j‖P,3Φ−1(1− γ/2pd)

≤ (‖εr‖P,6‖Xr,j‖P,6)
1/2

Φ−1(1− γ/2pd)

≤ C log
1
2 (an) . ϕnn

1
6 = o(1)

with

ϕn = O

(
log

1
2 (an)

n
1
6

)
uniformly over all j = 1, . . . , p and r = 1, . . . , d by Assumption B1 and B4. Further, it holds

c ≤ E
[
S2
r,j

]
= E

[
ε2
rX

2
r,j

]
≤
(
E
[
ε4
r

]
E
[
X4
r,j

])1/2
≤ C

for all j = 1, . . . , p and r = 1, . . . , d by Assumption B1 and B2 which implies Condition WL (ii). Condition

WL (iii) simplifies to

max
r=1,...,d

max
j=1,...,p

|(En − E)[S2
r,j ]| ≤ ϕn

with probability 1 − ∆n. Let W = (Y,X ) with Y = (Y1, . . . , Yd) ∈ Y and X = (X1, . . . , Xd) ∈ X ,

respectively. Define

F := {f2
r,j |r = 1, . . . , d, j = 1, . . . , p}

with

fr,j : W = (Y,X )→ R,

W = (Y,X) 7→ (Yr − βrXr)Xr,j = εrXr,j = Sr,j .

We notice that

‖ sup
f∈F
|f |‖P,q = ‖ max

r=1,...,d
max

j=1,...,p
|f2
r,j |‖P,q

= E
[

max
r=1,...,d

max
j=1,...,p

ε2q
r X

2q
r,j

]1/q

≤ E
[

max
r=1,...,d

ε2q
r max
r=1,...,d

max
j=1,...,p

X2q
r,j

]1/q

≤

(
E
[

max
r=1,...,d

ε4q
r

]1/4q

E
[

max
r=1,...,d

max
j=1,...,p

X4q
r,j

]1/4q
)2

≤ C log
4
ρ (an).

Since we have

sup
f∈F
‖f‖2P,2 = max

r=1,...,d
max

j=1,...,p
E
[
S4
r,j

]
≤ max
r=1,...,d

max
j=1,...,p

E
[
ε8
r

]1/2 E [X8
r,j

]1/2 ≤ C,
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we can choose a constant with

sup
f∈F
‖f‖2P,2 ≤ C ≤ ‖ sup

f∈F
|f |‖2P,2.

Additionally, |F| = dp, which implies

log sup
Q
N(ε‖F‖Q,2,F , ‖ · ‖Q,2) ≤ log(dp) . log(an/ε), 0 < ε ≤ 1.

Using Lemma P.2 from Belloni et al. [12], we obtain with probability not less than 1− o(1)

max
r=1,...,d

max
j=1,...,p

|(En − E)[S2
r,j ]| = n−1/2 sup

f∈F
|Gn(f)|

≤ n−1/2C
(√

log (an) + n−1/2+1/q log1+ 4
ρ (an)

)
= C

(√
log (an)

n
+

log1+ 4
ρ (an)

n1−1/q

)
≤ ϕn = o(1)

by the growth condition in B4. We proceed by verifying Assumption M.1 in Belloni et al. [12]. The

function β 7→Mr (Yr, Xr, β) is convex which is the first requirement of Assumption M.1. Define

G := {gr : X → (β(2)
r Xr)

2|r = 1, . . . , d}

with envelope

G := max
r=1,...,d

‖Xr‖2∞‖β(2)
r ‖21.

Note that

‖G‖P,q = E
[

max
r=1,...,d

‖Xr‖2q∞‖β(2)
r ‖

2q
1

] 1
q

≤ max
r=1,...,d

‖β(2)
r ‖21E

[
max

r=1,...,d
‖Xr‖2q∞

] 1
q

. max
r=1,...,d

‖β(2)
r ‖21 log(an)

2
ρ

and, for all 0 < ε ≤ 1, we have

N(ε‖G‖P,2,G, ‖ · ‖P,2) ≤ d ≤ d/ε.

Since

sup
g∈G
‖g‖2P,2 = max

r=1,...,d
E[(β(2)

r Xr)
4] . max

r=1,...,d
‖β(2)

r ‖41,

we can use Lemma P.2 from Belloni et al. [12] to obtain with probability not less than 1− o(1)

max
r=1,...,d

|(En − E)[(β(2)
r Xr)

2]|

= n−1/2 sup
g∈G
|Gn(g)|
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. C


√√√√ log(an) max

r=1,...,d
‖β(2)

r ‖41
n

+ n−1+1/q max
r=1,...,d

‖β(2)
r ‖21 log1+ 2

ρ (an)


. C

√ log(an)

n

√
s2 log(an)

n
+
s log(an)

n

√
n2/q

log1+ 4
ρ (an)

n


.
s log(an)

n

for a suitable choice of q where we used maxr=1,...,d ‖β(2)
r ‖21 .

√
s2 log(an)

n due to Assumption B3 and

Assumption B4.

Using the triangle inequality and maxr=1,...,d E
[
(β

(2)
r Xr)

2
]
. s log(an)

n due to Assumption B3, we obtain

max
r=1,...,d

En[(β(2)
r Xr)

2] ≤ max
r=1,...,d

|(En − E)[(β(2)
r Xr)

2]|+ max
r=1,...,d

E[(β(2)
r Xr)

2]

.P
s log(an)

n
. (5.18)

To show Assumption M.1 (a), note that∣∣∣∣En [∂βMr(Yr, Xr, β
(1)
r )− ∂βMr(Yr, Xr, β

(1)
r , ar)

]T
δ

∣∣∣∣
=

∣∣∣∣En [Xr(β
(2)
r Xr)

]T
δ

∣∣∣∣ ≤ ||(β(2)
r Xr)||Pn,2||XT

r δ||Pn,2

.P

√
s log(an)

n
||XT

r δ||Pn,2

for all δ ∈ Rp and for all r = 1, . . . , d. Further, we have

En
[

1

2

(
Yr − (β(1)

r + δT )Xr

)2
]
− En

[
1

2

(
Yr − β(1)

r Xr

)2
]

= −En
[(
Yr − β(1)

r Xr

)
δTXr

]
+

1

2
En
[
(δTXr)

2
]
,

where

−En
[(
Yr − β(1)

r Xr

)
δTXr

]
= En

[
∂βMr(Yr, Xr, β

(1)
r )
]T
δ

and
1

2
En
[
(δTXr)

2
]

= ||
√
wrδ

TXr||2Pn,2

with
√
wr = 1/4. This gives us Assumption M.1 (c) with ∆n = 0 and q̄Ar = ∞. Since Condition WL

(ii) and WL (iii) hold, we conclude with probability 1− o(1)

1 . lr,j =
(
En[S2

r,j ]
)1/2

. 1

uniformly over all r = 1, . . . , d and j = 1, . . . , p, which directly implies

1 . ‖Ψ̂(0)
r ‖∞ := max

j=1,...,p
|lr,j | . 1

and

1 . ‖(Ψ̂(0)
r )−1‖∞ := max

j=1,...,p
|l−1
r,j | . 1.
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For now, we suppose that m = 0 in Algorithm 4. Uniformly over r = 1, . . . , d and j = 1, . . . , p, we have

l̂r,j,0 =

(
En[ max

1≤i≤n
‖X(i)

r ‖2∞]

)1/2

≥
(
En[‖Xr‖2∞]

)1/2
&P 1,

where the last inequality holds due to Assumption B2 and an application of the Maximal Inequality.

Also uniformly over r = 1, . . . , d and j = 1, . . . , p, it holds

l̂r,j,0 = max
1≤i≤n

‖X(i)
r ‖∞

≤ n1/q

(
1

n

n∑
i=1

‖X(i)
r ‖q∞

)1/q

= n1/q (En[‖Xr‖q∞])
1/q

for an arbitrary q > 0, where

E[‖Xr‖q∞]1/q . log
1
ρ (an).

By Maximal Inequality, it holds

max
r
|En[‖Xr‖q∞]− E[‖Xr‖q∞]|

. C


√

log
2q
ρ +1(an)

n
+ n1/q′−1 log

q
ρ+1(an)


. log

q
ρ (an)

with probability 1− o(1) for a sufficiently large q′ > 0 since

E[max
r
‖Xr‖qq

′

∞ ]1/q
′
. log

q
ρ (an) and max

r
E[‖Xr‖q2∞]1/2 . log

q
ρ (an).

We conclude

l̂r,j,0 ≤ n1/q (En[‖Xr‖q∞])
1/q

≤ n1/q (|En[‖Xr‖q∞]− E[‖Xr‖q∞]|+ E[‖Xr‖q∞])
1/q

.P n
1/q log

1
ρ (an)

uniformly over r. Therefore, Assumption M.1(b) holds for some ∆n = o(1), L . n1/q log
1
ρ (an) and l & 1.

Hence, we can find a cl with l > 1/cl. Setting cλ > cl and γ = γn ∈ [1/n, 1/ log(n)] in the choice of λ, we

have

P

(
λ

n
≥ cl max

r=1,...,d
‖(Ψ̂(0)

r )−1En[Sr]‖∞
)
≥ 1− γ − o(γ)−∆n = 1− o(1)

due to Lemma M.4 from Belloni et al. [12]. Now, we uniformly bound the sparse eigenvalues. Set

ln = log
2
ρ (an)n2/q̄

for a q̄ > 5q̃ with q̃ defined in Assumption B4.
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We apply Lemma Q.1 in Belloni et al. [12] with K . n1/q̄ log
1
ρ (an) and

δn . K
√
slnn

−1/2 log(sln) log
1
2 (an) log

1
2 (n)

.

√
n

4
q̄ log(n) log2(sln)

s log1+ 4
ρ (an)

n

.

√
n

5
q̄
s log1+ 4

ρ (an)

n

for n large enough. Hence, by Assumption B4, it holds

δn = o(1),

which implies

1 . min
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

≤ max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

. 1

with probability 1− o(1) uniformly over r = 1, . . . , d. Define Tr := supp(β
(1)
r ) and

c̃ :=
Lcl + 1

lcl − 1
max

r=1,...,d
‖Ψ̂(0)

r ‖∞‖(Ψ̂(0)
r )−1‖∞ . L.

Let the restricted eigenvalues be defined as

κ̄2c̃ := min
r=1,...,d

inf
δ∈∆2c̃,r

‖δXr‖Pn,2
‖δTr‖2

,

where ∆2c̃,r := {δ : ‖δcTr‖1 ≤ 2c̃‖δTr‖1}. By the argument given in Bickel et al. [13], we have

κ̄2c̃ ≥

(
min

‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2

− 2c̃

(
max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2(
s

sln

)1/2

&

(
min

‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2

− 2n
1
q−

1
q̄

(
max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2

& 1

with probability 1− o(1) for a suitable choice of q with q > q̄. Since

λ

n
. n−1/2Φ−1 (1− γ/(2dp)) . n−1/2

√
log(2dp/γ) . n−1/2 log

1
2 (an)

and the penalty loading are uniformly bounded from above and away from zero, we conclude

max
r=1,...,d

‖(β̂r − β(1)
r )Xr‖Pn,2 .P L

√
s log(an)

n

by Lemma M.1 from Belloni et al. [12].

To establish Assumption M.1(b) for m ≥ 1, we proceed by induction. Assume that the assumption

holds for Ψ̂r,m−1 with some ∆n = o(1), l & 1 and L . n1/q log
1
ρ (an).
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We have shown that the estimator based on Ψ̂r,m−1 obeys

max
r=1,...,d

‖(β̂r − β(1)
r )Xr‖Pn,2 . L

√
s log(an)

n

with probability 1− o(1). We notice that

max
r=1,...,d

‖β(2)
r Xr‖Pn,2 .P

√
s log(an)

n

as shown in (5.18). Using the triangle inequality, we obtain with probability 1− o(1)

max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 ≤ max
r=1,...,d

‖(β̂r − β(1)
r )Xr‖Pn,2 + max

r=1,...,d
‖β(2)

r Xr‖Pn,2

. L

√
s log(an)

n
.

This implies

|l̂r,j,m − lr,j | =

∣∣∣∣∣En
[((

Yr − β̂rXr

)
Xr,j

)2
]1/2

− En
[
((Yr − βrXr)Xr,j)

2
]1/2∣∣∣∣∣

≤

∣∣∣∣∣En
[((

(β̂r − βr)Xr

)
Xr,j

)2
]1/2

∣∣∣∣∣
. ‖(β̂r − βr)Xr‖Pn,2 max

1≤i≤n
max

r=1,...,d
‖X(i)

r ‖∞

.P L

√
s log(an)

n
n1/q log

1
ρ (an)

.

√
n4/q

s log1+ 4
ρ (an)

n
= o(1)

uniformly over r = 1, . . . , d and j = 1, . . . , p. Therefore, Assumption M.1(b) holds for Ψ̂r,m for some

∆n = o(1), l & 1 and L . 1. Consequently, we have

max
r=1,...,d

‖(β̂r − β(1)
r )Xr‖Pn,2 .

√
s log(an)

n

and

max
r=1,...,d

‖β̂r − β(1)
r ‖1 .

√
s2 log(an)

n

with probability 1− o(1) due to Lemma M.1 from Belloni et al. [12]. Uniformly over all r = 1, . . . , d, it

holds ∣∣∣∣(En [∂βMr(Yr, Xr, β̂r)− ∂βMr(Yr, Xr, β
(1)
r )
])T

δ

∣∣∣∣
=

∣∣∣∣(En [(β̂r − β(1)
r )XrX

T
r

])T
δ

∣∣∣∣
≤‖(β̂r − β(1)

r )Xr‖Pn,2‖δXr‖Pn,2 ≤ Ln‖δXr‖Pn,2
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with probability 1− o(1), where Ln . (s log(an)/n)1/2. Since the maximal sparse eigenvalues

φmax(lns, r) := max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

are uniformly bounded from above, Lemma M.2 from Belloni et al. [12] directly implies

max
r=1,...,d

‖β̂r‖0 . s

with probability 1− o(1). Combining this result with the uniform restrictions on the sparse eigenvalues

from above, we obtain

max
r=1,...,d

‖β̂r − β(1)
r ‖2 . max

r=1,...,d
‖(β̂r − β(1)

r )Xr‖Pn,2 .

√
s log(an)

n

with probability 1− o(1). Now, we proceed by using Lemma M.3 from Belloni et al. [12]. Uniformly over

all r = 1, . . . , d, it holds

En[Mr(Yr, Xr, β̃r)]− En[Mr(Yr, Xr, βr)] ≤
λL

n
‖β̂r − βr‖1 max

r=1,...,d
‖Ψ̂(0)

r ‖∞

.
λ

n
‖β̂r − βr‖1

.
s log(an)

n

with probability 1− o(1), where we used L . 1 and max
r=1,...,d

‖Ψ̂(0)
r ‖∞ . 1. Since

max
r=1,...,d

‖En[Sr]‖∞ ≤ max
r=1,...,d

‖Ψ̂(0)
r ‖∞‖

(
Ψ̂(0)
r

)−1En[Sr]‖∞ .
λ

n
. n−1/2 log

1
2 (an)

with probability 1− o(1), we obtain

max
r=1,...,d

‖(β̃r − β(1)
r )Xr‖Pn,2 .

√
s log(an)

n

with probability 1− o(1), where we used

max
r=1,...,d

‖β̂r‖0 . s, Cn . (s log(an)/n)1/2

and that the minimum sparse eigenvalues are uniformly bounded away from zero. By the same argument

as above, it holds

max
r=1,...,d

‖β̃r − β(1)
r ‖2 . max

r=1,...,d
‖(β̃r − β(1)

r )Xr‖Pn,2 .

√
s log(an)

n
.

This completes the proof.

Proof of Lemma 4.

We rely upon the proof of Lemma M.4 from Belloni et al. [12]. Since the regressors are standardized for

all j = 1, . . . , p and independent from the error terms for all r = 1, . . . , d, notice that

E[X2
r,jε

2
r]

E[ε2
r]

=
E[X2

r,j ]E[ε2
r]

E[ε2
r]

= E[X2
r,j ] = 1.
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Due to Condition WL(iii), it holds

P

(
max

r=1,...,d
max

j=1,...,p

En[X2
r,jε

2
r]

En[ε2
r]

> 1 + ϕn

)

≤P

(
max

r=1,...,d
max

j=1,...,p

E[X2
r,jε

2
r] + ϕ̃n

E[ε2
r]− ϕ̄n

> 1 + ϕn

)
+ ∆n

≤P
(

max
r=1,...,d

∣∣∣∣E[ε2
r] + ϕ̃n

E[ε2
r]− ϕ̄n

− 1

∣∣∣∣ > ϕn

)
+ ∆n

=P

(
max

r=1,...,d

∣∣∣∣E[ε2
r] + ϕ̃n

E[ε2
r]− ϕ̄n

− E[ε2
r]

E[ε2
r]

∣∣∣∣ > ϕn

)
+ ∆n

=P

(
max

r=1,...,d

∣∣∣∣∣
(
E[ε2

r] + ϕ̃n
)
E[ε2

r]− E[ε2
r]
(
E[ε2

r]− ϕ̄n
)

(E[ε2
r]− ϕ̄n)E[ε2

r]

∣∣∣∣∣ > ϕn

)
+ ∆n

=P

(∣∣∣∣ ((1 + ϕ̃′n)− (1− ϕ̄′n))

(1− ϕ̄′n)

∣∣∣∣ > ϕn

)
︸ ︷︷ ︸

=0

+∆n

for a suitable choice of ϕn = o(1), where ϕ̄′n ≥ Cϕ̄n and ϕ̃′n ≤ Cϕ̃n due to Condition WL(ii). Next,

for each j = 1, . . . , p and r = 1, . . . , d, we apply Lemma P.1 from Belloni et al. [12] with µ = 1 and

`n = c′′ϕ−1
n , where c′′ is a small constant that can be chosen to depend only on C and C. Then,

Condition WL(i) and Condition WL(ii) imply

0 ≤ Φ−1

(
1− γ

2pd

)
≤ n1/6Mn(j, r)

`n
− 1

for Mn(j, r) = E[X2
r,jε

2
r]

1/2/E[|Xr,jεr|3]1/3 for each r = 1, . . . , d and j = 1, . . . , p. Therefore, we have

P

(
c max
r=1,...,d
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(
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2pd

))
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(
c max
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max
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(
1− γ

2pd
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P

(
c
|n1/2En[Xr,jεr]|√

En[ε2
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> c′Φ−1
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j=1

P

c |n1/2En[Xr,jεr]|√
En[X2

r,jε
2
r]

√
En[X2

r,jε
2
r]

En[ε2
r]

> c′Φ−1

(
1− γ

2pd

)
≤

d∑
r=1

p∑
j=1

P

 |n1/2En[Xr,jεr]|√
En[X2

r,jε
2
r]

c
√

1 + ϕn > c′Φ−1

(
1− γ

2pd

)+ ∆n

≤2pd
γ

2pd

(
1 +O(ϕ1/3

n )
)

+ ∆n

≤γ + o(γ) + ∆n

for a sufficiently large n (implying c
√

1 + ϕn ≤ c′).
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Proof of Theorem 14.

The proof relies upon the proof of Lemma M.1. from Belloni et al. [12]. At first, we show that Condition

WL is fulfilled. Condition WL(i), Condition WL(ii) and the first part of Condition WL(iii) have been

verified in the proof of Theorem 13. Hence, we need to show

max
r=1,...,d

|En[ε2
r]− E[ε2

r]| ≤ ϕ̄n

with probability converging to one.

Let W = (Y,X ) with Y = (Y1, . . . , Yd) ∈ Y and X = (X1, . . . , Xd) ∈ X , respectively.

Define F := {fr|r = 1, . . . , d} with

fr : W = (Y,X )→ R,

W = (Y,X) 7→ (Yr − βrXr)
2 = ε2

r.

For a constant C that does depend on q but not on n, notice that

F := ‖ sup
f∈F
|f |‖P,q = ‖ max

r=1,...,d
ε2
r‖P,q =

(
E
[

max
r=1,...,d

ε2q
r

]1/2q
)2

≤ C log(d)
2
ρ ,

where we used the same argument as in the beginning of the proof of Theorem 13. Due to Assumption

B1, the second moments of the error terms are uniformly bounded. Hence, we can choose a constant C

such that

max
r=1,...,d

‖εr‖2P,2 ≤ C ≤ ‖ max
r=1,...,d

ε2
r‖P,q

and, since |F| = d, we have

log sup
Q
N(ε‖F‖Q,2,F , ‖ · ‖Q,2) ≤ log(d).

Therefore, we are able to use Lemma P.2 from Belloni et al. [12] which implies

max
r=1,...,d

|En[ε2
r]− E[ε2

r]| = n−1/2 sup
f∈F
|Gn(f)|

.

(√
log(d)

n
+

log1+ 2
ρ (d)

n1−1/q

)
≤ ϕ̄n

with probability 1− o(1). Due to the definition of β̂r, we have

Q̂1/2
r (β̂r) +

λ

n
‖β̂r‖1 ≤ Q̂1/2

r (β(1)
r ) +

λ

n
‖β(1)

r ‖1,

implying

Q̂1/2
r (β̂r)− Q̂1/2

r (β(1)
r ) ≤ λ

n

(
‖δr,Tr‖1 − ‖δr,T cr ‖1

)
(5.19)

with δr := β̂r − β(1)
r . Due to the convexity of β 7→ Q̂

1/2
r (β), we have

Q̂1/2
r (β̂r)− Q̂1/2

r (β(1)
r ) ≥ δrŜr

with probability 1− o(1). For a sequence Cn .
√

s log(an)
n independent from r, it holds

|δrŜr| ≤ |δrSr|+ |δr(Ŝr − Sr)|
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.P ‖δr‖1
λ

nc
+ |δr(Ŝr − Sr)|

.P ‖δr‖1
λ

nc
+ Cn‖δrXr‖Pn,2.

To obtain the last inequality, notice that

En[(εr + β(2)
r Xr)

2] = En[ε2
r] + 2En[εrβ

(2)
r Xr] + En[(β(2)

r Xr)
2]︸ ︷︷ ︸

≥0

& min
r=1,...,d

E[ε2
r] + oP (1)

& c+ oP (1)

is uniformly bounded away from zero since

min
r=1,...,d

En[εrβ
(2)
r Xr] ≥ − max

r=1,...,d
|En[εrβ

(2)
r Xr]|

≥ − max
r=1,...,d

√
En[ε2

r]En[(β
(2)
r Xr)2]

& −

√(
max

r=1,...,d
E[ε2

r] + ϕ̄n

)(
max

r=1,...,d
E[(β

(2)
r Xr)2] +

s log(an)

n

)

& −
√
s log(an)

n

uniformly converges towards zero with probability 1− o(1) where we used that

max
r=1,...,d

|En[(β(2)
r Xr)

2]− E[(β(2)
r Xr)

2]| .P
s log(an)

n

as shown in the proof of Theorem 13. This implies

|δr(Ŝr − Sr)| =

∣∣∣∣∣∣δr
 En[Xr(εr + β

(2)
r Xr)]√

En[(εr + β
(2)
r Xr)2]

− En[Xrεr]√
En[ε2

r]

∣∣∣∣∣∣
=

∣∣∣∣∣∣δrEn[Xr(εr + β
(2)
r Xr)]

√
En[ε2

r]− En[Xrεr]

√
En[(εr + β

(2)
r Xr)2]√

En[(εr + β
(2)
r Xr)2]En[ε2

r]

∣∣∣∣∣∣
.P

∣∣∣∣δr(En[Xr(β
(2)
r Xr)]

√
En[ε2

r]

+ En[Xrεr]

(√
En[ε2

r]−
√
En[(εr + β

(2)
r Xr)2]

))∣∣∣∣
≤
∣∣∣En[(δrXr)(β

(2)
r Xr)]

√
En[ε2

r]
∣∣∣

+ |En[(δrXr)εr]|
∣∣∣(√En[ε2

r]−
√
En[(εr + β

(2)
r Xr)2]

)∣∣∣︸ ︷︷ ︸
≤
√

En[(β
(2)
r Xr)2]

.
√
En[(δrXr)2]En[(β

(2)
r Xr)2]En[ε2

r]

.P Cn‖δrXr‖Pn,2

by an analogous argument as above. Hence, it holds

Q̂1/2
r (β̂r)− Q̂1/2

r (β(1)
r ) ≥ δrŜr & −‖δr‖1

λ

nc
− Cn‖δrXr‖Pn,2 (5.20)
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with probability 1− o(1). Combining the inequalities (5.19) and (5.20), we obtain

− ‖δr‖1
λ

nc
− Cn‖δrXr‖Pn,2 .P

λ

n

(
‖δr,Tr‖1 − ‖δr,T cr ‖1

)
⇐⇒ ‖δr,T cr ‖1 .P

c+ 1

c− 1︸ ︷︷ ︸
:=c̃

‖δr,Tr‖1 +
n

λ

c

c− 1
Cn‖δrXr‖Pn,2. (5.21)

Further, we have

Q̂r(β̂r)− Q̂r(β(1)
r ) = ‖δrXr‖2Pn,2 − 2En[(Yr − β(1)

r Xr)δrXr]

with

En[(Yr − β(1)
r Xr)δrXr] = En[εrδrXr] + En[(β(2)

r Xr)δrXr]

.P Q
1/2
r (β(1)

r )||Sr||∞||δr||1 + Cn‖δrXr‖Pn,2

due to the Hölder inequality. Due to Lemma Q.1 in Belloni et al. [12] with K . n1/q̄ log
1
ρ (an) for a

suitable q̄ > q̃, k . s and

δn . K
√
sn−1/2 log(s) log1/2(an) log1/2(n)

.

√
n

1
q̃
s log1+ 2

ρ (an)

n
= o(1)

by Assumption B4, it holds

c ≤ φmin(k, r) ≤ φmax(k, r) ≤ C

with probability 1− o(1) uniformly over r = 1, . . . , d. Hence, the restricted eigenvalue

κ2c̃ = min
r=1,...,d

inf
δ∈∆2c̃,r

‖δXr‖Pn,2
‖δ‖2

is bounded away from zero with probability 1− o(1) where

∆2c̃,r = {δ : ||δT cr ||1 ≤ 2c̃||δTr ||1}.

If δr ∈ ∆2c̃,r, then

‖δrXr‖2Pn,2 = 2En[(Yr − β(1)
r Xr)δrXr] + [Q̂1/2

r (β̂r) + Q̂1/2
r (β(1)

r )][Q̂1/2
r (β̂r)− Q̂1/2

r (β(1)
r )]

.P 2Q1/2
r (β(1)

r )||Sr||∞||δr||1 + 2Cn‖δrXr‖Pn,2

+ [Q̂1/2
r (β̂r) + Q̂1/2

r (β(1)
r )]

λ

n

(√
s||δrXr||Pn,2

κ2c̃
− ||δr,T cr ||1)

)
.

Using

Q̂1/2
r (β̂r) ≤ Q̂1/2

r (β(1)
r ) +

λ

n

√
s||δrXr||Pn,2

κ2c̃
,

we conclude

‖δrXr‖2Pn,2 .P 2Q1/2
r (β(1)

r )||Sr||∞||δr||1

+

[
2Q̂1/2

r (β(1)
r ) +

λ

n

√
s||δr||Pn,2
κ2c̃

]
λ

n

(√
s||δr||Pn,2
κ2c̃

− ||δr,T cr ||1)

)
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+ 2Cn‖δrXr‖Pn,2

.P 2
λ

n

(
Q1/2
r (β(1)

r )||δr||1 − Q̂1/2
r (β(1)

r )||δr,T cr ||1
)

+ 2Q̂1/2
r (β(1)

r )
λ

n

√
s||δrXr||Pn,2

κ2c̃
+

(
λ

n

√
s||δrXr||Pn,2

κ2c̃

)2

+ 2Cn‖δrXr‖Pn,2

with (
Q1/2
r (β(1)

r )||δr||1 − Q̂1/2
r (β(1)

r )||δr,T cr ||1
)

= Q̂1/2
r (β(1)

r )||δr,Tr ||1 +
(
Q1/2
r (β(1)

r )− Q̂1/2
r (β(1)

r )
)
||δr||1

≤ Q̂1/2
r (β(1)

r )||δr,Tr ||1 + ‖β(2)
r Xr‖Pn,2||δr||1

.P Q̂
1/2
r (β(1)

r )||δr,Tr ||1 + Cn3c̃||δr,Tr ||1.

With probability 1− o(1), it holds

‖δrXr‖2Pn,2 . 2
λ

n
||δr,Tr ||1

(
Q̂1/2
r (β(1)

r ) + Cn3c̄
)

+ 2Q̂1/2
r (β(1)

r )
λ

n

√
s||δrXr||Pn,2

κ2c̃
+

(
λ

n

√
s||δrXr||Pn,2

κ2c̃

)2

+ 2Cn‖δrXr‖Pn,2

. 2
λ

n

√
s||δrXr||Pn,2

κ2c̃

(
Q̂1/2
r (β(1)

r ) + Cn3c̄
)

+ 2Q̂1/2
r (β(1)

r )
λ

n

√
s||δrXr||Pn,2

κ2c̃
+

(
λ

n

√
s||δrXr||Pn,2

κ2c̃

)2

+ 2Cn‖δrXr‖Pn,2

and we obtain(
1−

(
λ

n

√
s

κ2c̃

)2
)
‖δrXr‖2Pn,2 .P

(
4Q̂1/2

r (β(1)
r )

λ

n

√
s

κ2c̃
+ Cn

(
6c̃
λ

n

√
s

κ2c̃
+ 2

))
||δrXr||Pn,2,

which implies

‖δrXr‖Pn,2 .P
λ
√
s

n
+ Cn .

√
s log(an)

n
.

Here, we used that

Q̂1/2
r (β(1)

r ) = En[(εr + β(2)
r Xr)

2]1/2 ≤ ‖εr‖Pn,2 + ‖β(2)
r Xr‖Pn,2 .P C + ϕ̄n + Cn.

If δr /∈ ∆2c̃,r (implying ||δr,T cr ||1 > 2c̃||δr,Tr ||1), (5.21) directly implies

2c̃||δr,Tr ||1 .P c̃‖δr,Tr‖1 +
n

λ

c

c− 1
Cn‖δrXr‖Pn,2

and

||δr,Tr ||1 .P
n

λ

c

c− 1
Cn‖δrXr‖Pn,2

since c̃ ≥ 1. Additionally, (5.21) implies

‖δr,T cr ‖1 .P
1

2
‖δr,T cr ‖1 +

n

λ

c

c− 1
Cn‖δrXr‖Pn,2

and therefore

‖δr,T cr ‖1 .P
2n

λ

c

c− 1
Cn‖δrXr‖Pn,2,
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which, combined with the inequality above, implies

‖δr‖1 .P
3n

λ

c

c− 1
Cn‖δrXr‖Pn,2.

Using

Q̂1/2
r (β̂r)− Q̂1/2

r (β(1)
r ) ≤ λ

n

(
‖δr,Tr‖1 − ‖δr,T cr ‖1

)
≤ λ

n
‖δr‖1

and following the same argument as above, we obtain

‖δrXr‖2Pn,2 = 2En[(Yr − β(1)
r Xr)δrXr] + [Q̂1/2

r (β̂r) + Q̂1/2
r (β(1)

r )][Q̂1/2
r (β̂r)− Q̂1/2

r (β(1)
r )]

. 2Q1/2
r (β(1)

r )||Sr||∞||δr||1 + 2Cn‖δrXr‖Pn,2

+

(
2Q̂1/2

r (β(1)
r ) +

λ

n
‖δr‖1

)
λ

n
‖δr‖1

.

(
2

1

c

(
Q1/2
r (β(1)

r )− Q̂1/2
r (β(1)

r )
)

︸ ︷︷ ︸
.Cn

+2

(
1

c
+ 1

)
Q̂1/2
r (β(1)

r ) +
λ

n
‖δr‖1

)
λ

n
‖δr‖1

+ 2Cn‖δrXr‖Pn,2

≤ 6

(
Cn
c

+

(
1

c
+ 1

)
Q̂1/2
r (β(1)

r )

)
c

c− 1
Cn‖δrXr‖Pn,2

+

(
3

c

c− 1
Cn‖δrXr‖Pn,2

)2

+ 2Cn‖δrXr‖Pn,2

with probability 1− o(1). Hence, it holds(
1−

(
3

c

c− 1
Cn

)2
)
‖δrXr‖2Pn,2 .P 6

(
Cn
c

+

(
1

c
+ 1

)
Q̂1/2
r (β(1)

r )

)
c

c− 1
Cn‖δrXr‖Pn,2

+ 2Cn‖δrXr‖Pn,2,

which implies

‖δrXr‖Pn,2 .P Cn .

√
s log(an)

n
.

To prove the second claim, we notice that

‖δr‖1 = 1{δr∈∆2c̃,r}‖δr‖1 + 1{δr /∈∆2c̃,r}‖δr‖1
≤ 1{δr∈∆2c̃,r} (1 + 2c̃) ‖δr,Tr‖1 + 1{δr /∈∆2c̃,r}‖δr‖1

.P

(
(1 + 2c̃)

√
s

κ2c̃
+

3n

λ

c

c− 1
Cn

)
‖δrXr‖Pn,2

.P

√
s2 log(an)

n

uniformly over all r = 1, . . . , d. Now, we show that

max
r=1,...,d

‖β̂r‖0 . s.

It holds

0 < c .P min
r=1,...,d

‖εr + β(2)
r Xr‖2Pn,2 ≤ max

r=1,...,d
‖εr + β(2)

r Xr‖2Pn,2 .P C <∞,
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where the first inequality is shown above and the second follows by an analogous argument.

Additionally, we obtain

max
r=1,...,d

∣∣∣‖Yr − β̂rXr‖2Pn,2 − ‖εr + β(2)
r Xr‖2Pn,2

∣∣∣ .P Cn + C2
n = o(1)

due to

‖Yr − β̂rXr‖2Pn,2 = ‖εr + β(2)
r Xr‖2Pn,2 − 2En[(εr + β(2)

r Xr)δrXr] + ‖δrXr‖2Pn,2︸ ︷︷ ︸
.PC2

n

with

|En[(εr + β(2)
r Xr)δrXr]| ≤

√
En[(εr + β

(2)
r Xr)2]En[(δrXr)2]

. (C + oP (1)) ‖δrXr‖Pn,2

.P Cn

uniformly over all r = 1, . . . , d. This implies

|δ(∂βQ̂1/2
r (β)|β=β̂r

− Ŝr)|

=

∣∣∣∣δ
 En[Xr(Yr − β(1)

r Xr)]√
En[(Yr − β(1)

r Xr)2]

− En[Xr(Yr − β̂rXr)]√
En[(Yr − β̂rXr)2]

∣∣∣∣
=

∣∣∣∣δ
(
En[Xr(Yr − β(1)

r Xr)]‖Yr − β̂rXr‖Pn,2 − ‖εr + β
(2)
r Xr‖Pn,2En[Xr(Yr − β̂rXr)]

‖εr + β
(2)
r Xr‖Pn,2‖Yr − β̂rXr‖Pn,2

)∣∣∣∣
.P

∣∣∣∣δ (En[Xr(Yr − β(1)
r Xr)]− En[Xr(Yr − β̂rXr)]

) ∣∣∣∣
≤ ‖δrXr‖Pn,2‖δXr‖Pn,2 .P Cn‖δXr‖Pn,2.

By the definition of β̂r, there exists a subgradient ∂βQ̂
1/2
r (β)|β=β̂r

of Q̂
1/2
r (β̂r) such that

|(∂βQ̂1/2
r (β)|β=β̂r

)j | =
λ

n

for every j with |β̂r,j | > 0. Let T̂r := supp(β̂r) and |T̂r| := ŝr. We obtain

λ

n

√
ŝr = ‖(∂βQ̂1/2

r (β)|β=β̂r
)T̂r‖2

≤ ‖SrT̂r‖2 + ‖(Ŝr − Sr)T̂r‖2 + ‖(∂βQ̂1/2
r (β)|β=β̂r

− Ŝr)T̂r‖2

.P
√
ŝr‖Sr‖∞

+ Cn sup
‖δ‖2=1,‖δ‖0≤ŝr

‖δXr‖Pn,2

+ sup
‖δ‖2=1,‖δ‖0≤ŝr

|δ(∂βQ̂1/2
r (β)|β=β̂r

− Ŝr)|

.P
√
ŝr
λ

nc
+ 2Cn sup

‖δ‖2=1,‖δ‖0≤ŝr
‖δXr‖Pn,2,

where we used

‖(Ŝr − Sr)T̂r‖2 ≤ sup
‖δ‖2=1,‖δ‖0≤ŝr

|δ(Ŝr − Sr)| .P Cn sup
‖δ‖2=1,‖δ‖0≤ŝr

‖δXr‖Pn,2.
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Hence, it holds

ŝr ≤
(

2CnCn
λ(1− 1/c)

)2

sup
‖δ‖2=1,‖δ‖0≤ŝr

‖δXr‖2Pn,2

≤
(

2CnCn
λ(1− 1/c)︸ ︷︷ ︸

:=L

)2

φmax(ŝr, r) . sφmax(ŝr, r) (5.22)

with probability 1− o(1), where

φmax(ŝr, r) := max
‖δ‖0≤ŝr

‖δXr‖2Pn,2
‖δ‖22

.

We can find a suitable C such that M = Cs ∈Mr with

Mr := {m ∈ N : m > 2φmax(m, r)L2}.

Suppose that ŝr > M . By the sublinearity of the maximum sparse eigenvalue (Lemma 3, Belloni and

Chernozhukov [6]), for any integer k ≥ 0 and constant l ≥ 0, we have

φmax(lk, r) ≤ dleφmax(k, r),

where dle denotes the ceiling of l. Since dke ≤ 2k for any k ≥ 1,

ŝr ≤L2φmax(ŝr, r) = L2φmax(Mŝr/M, r)

≤
⌈
ŝr
M

⌉
L2φmax(M, r) ≤ 2ŝr

M
L2φmax(M, r),

that violates the condition that M ∈Mr. Therefore, we have ŝr ≤M . Using (5.22), we obtain

max
r=1,...,d

ŝr ≤ max
r=1,...,d

φmax(M, r)s . s

with probability 1− o(1) and the stated claim follows:

max
r=1,...,d

‖β̂r‖0 . s.

Since the maximal sparse eigenvalues are uniformly bounded from above, we conclude

max
r=1,...,d

‖β̂r − β(1)
r ‖2 . max

r=1,...,d
‖(β̂r − β(1)

r )Xr‖Pn,2 . Cn

with probability at least 1− o(1).

171



Chapter 6

General Conclusion and Outlook

In this chapter, some concluding remarks on this dissertation and an outlook on future research is given.

This work has highlighted how machine learning methods can be used to perform valid inference in high-

dimensional settings. For a detailed discussion of the previous chapters, I refer to the conclusions of each

paper at the end of each chapter. Here, a high-level overview of the main results of the dissertation is

given and the main contributions to the literature are pointed out. The papers that are presented in

this dissertation make the double machine learning approach applicable to a wider range of problems in

high-dimensions by extending and adjusting the underlying proofs.

In Chapter 2, we derived results for the asymptotic distribution of the estimated treatment effects using

L2-Boosting. We achieved this in a high-dimensional linear model with many controls as well as in an

instrumental variable model with potentially many instruments. As mentioned in the introduction, the

estimation and the variable selection in both models often rely on the Lasso estimator. We managed to

proof that L2-Boosting algorithms are a competitive alternative to Lasso due to the comparable estima-

tion rates. This makes L2-Boosting attractive for applied work, in which one is interested in estimating

a treatment effect after variable selection. In Chapter 3, we constructed an estimator for the transfor-

mation parameter in a high-dimensional transformation model and proved the asymptotic normality of

the estimator. In high-dimensional transformation models, the nuisance parameter depends on the target

parameter. We provide new results regarding inference in a general Z-estimation framework under a

different set of entropy conditions where such a dependency is explicitly allowed. As such a dependency

occurs in many statistical models, these results are of independent interest for other high-dimensional

problems with the same underlying structure. Chapter 4 provided a methodology for uniform valid con-

fidence bands of a nonparametric component in the generalized additive model in high-dimensions. In

this setting, one is particularly interested in the linear functional of a high-dimensional target parameter.

This is a nontrivial extension of the double machine learning approach that only provides valid inference

for the target parameter itself. So far generalized additive models are frequently used in empirical work

when the number of covariates is small. Through our work however, the reach of this tool is extended

to also cover settings where the number of available covariates is large compared to the sample size. In

Chapter 5, we presented results for uniform inference in high-dimensional Gaussian graphical models.

We showed how recent methodology can be applied to conduct valid inference in situations where the

number of target parameters is potentially much larger than the sample size. This allows to estimate

the dependencies within a large set of variables and to recover causal structures in complex data sets.

Further, as explained in Chapter 1, uniform estimation rates for the nuisance parameter are crucial to

conduct valid inference. In this context, we established uniform estimation rates and sparsity guarantees

of the Lasso estimator and of the square-root Lasso estimator in a random design under approximate

sparsity conditions. These results are of independent interest for other high-dimensional linear regression
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problems. The papers that are collected in this dissertation emphasize the power and the potential of

the double machine approach. With this dissertation, I would like to contribute that the double machine

learning approach finds more application in practice and, thus, help to avoid flawed conclusions that

might arise from naive approaches in high-dimensions.

The findings of each paper presented in this dissertation pave the way for future research to enhance

the field of double machine learning further. In Chapter 2, we showed that L2-Boosting algorithms are

a competitive alternative to Lasso. However, a more detailed comparison to Lasso is required to un-

derstand in which situations Boosting is superior to Lasso and vice versa. This could be achieved by

extensive simulation studies or a detailed theoretical analysis of L2-Boosting. In contrast to L1-penalized

methods like Lasso, the estimation properties of Boosting algorithms for regression in high-dimensions

are not widely discussed in the literature yet. Further, transformation models in high-dimensions can

be extended by considering another identification strategy for the true transformation parameter. In

many applications, the response variable is transformed to achieve homogeneity of the error terms. In a

research project, I am working on an adjustment of the proposed transformation model, where the true

transformation ensures that the zero conditional mean assumption for the error term holds. In addition,

transformation models can be applied to analyze duration data. In this context, I am working on an

adjustment of the proposed transformation model to link a failure time with a high-dimensional vector

of covariates in an empirical application that analyzes US credit data. In Chapter 4 and Chapter 5,

new methodologies and key theoretical insights are provided. A natural extension for future work is to

increasingly use these methodologies in empirical applications. For instance, I am working on an appli-

cation of the high-dimensional Gaussian graphical model to large data sets from biology and finance in

order to analyze correlation networks. I hope that future research in empirical applications will greatly

benefit from the new methodologies provided by this work.
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A.2 Short Summaries of Papers Pursuant to §6(6) PromO

Short summaries in English language

Estimation and Inference of Treatment Effects with L2-Boosting in High-Dimensional

Settings (Chapter 2)

Boosting algorithms are very popular in machine learning and have proven to be particularly useful

for prediction and variable selection. Nevertheless, in many applications, one is interested in inference

about treatment effects or policy variables in a high-dimensional setting. As rich data sets become more

and more available containing many controls or instrumental variables, variable selection is increasingly

challenging for empirical researchers. We provide a methodology for valid inference about a treatment

effect when post- or orthogonal L2-Boosting is used for the variable selection. This methodology is

applied in a high-dimensional linear model with many controls and in an instrumental variable model

with potentially many instruments. We present simulation results for the proposed methodology as well

as an empirical application. The application is based on the so-called “PAC-man” study, which has

analyzed the effectiveness of a pulmonary artery catheter in a randomized control trial. We confirm that

the treatment effect is not significantly different from zero.

Transformation Models in High-Dimensions (Chapter 3)

Transformation models are a very important tool for applied statisticians and econometricians. In many

applications, the dependent variable is transformed so that homogeneity or normal distribution of the

error holds. We analyze transformation models in a high-dimensional setting, where the set of potential

covariates is large. Our proposed model builds on a high-dimensional linear model and combines it with

a parametric transformation of the response variable. We propose an estimator for the transformation

parameter and show that it is asymptotically normally distributed by using an orthogonalized moment

condition where the nuisance functions depend on the target parameter. We provide general results

regarding inference in Z-estimation frameworks where we explicitly allow for such a dependency. These

results are of independent interest for general Z-estimation problems with the same underlying structure.

A common practice in labor economics is to first transform wages with the log function and then to

further process since wage data is non-negative and often highly skewed. In an empirical application, we

test if this transformation holds for American Community Survey (ACS) data from the United States.

We conclude that the log transformation is rejected on a 5% significance level. In a simulation study, we

show that our estimator works well even in small samples.

Uniform Inference in High-Dimensional Generalized Additive Models (Chapter 4)

Generalized additive models Y = f1(X1) + . . . + fp(Xp) + ε are very popular in statistics. As the

estimation of a nonparametric regression function f(X1, . . . , Xp) is practically infeasible when p is large,

these models impose an additive structure of the regression function. We develop a methodology for

the estimation of the nonparametric component f1 in a high-dimensional setting, where the number of

regressors p may increase with the sample size. As usual in high-dimensions, a sparsity assumption is

crucial for the analysis. We employ sieve estimation and embed it in a high-dimensional Z-estimation

framework which allows us to construct uniformly valid confidence bands for the function f1. We also run

simulation studies which show that our proposed method gives reliable results concerning the estimation

and coverage properties even in small samples. Finally, we demonstrate the use of the proposed method

empirically by analyzing the well-known Boston housing data set. Our methodology suggests nonlinear

and significant effects on the median value of owner-occupied homes for the variables LSTAT and RM,
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that denotes the percentage of lower status population and the average number of rooms per dwelling,

respectively. This is in line with the economic intuition and the findings in the literature.

Uniform Inference in High-Dimensional Gaussian Graphical Models (Chapter 5)

Graphical models have become a very popular tool for representing dependencies within a large set of

variables and are key for representing causal structures. We provide results for uniform inference on high-

dimensional graphical models with the number of target parameters being possibly much larger than the

sample size. This is in particular important when certain features or structures of a causal model should

be recovered. Our results highlight how in high-dimensional settings graphical models can be estimated

and recovered with modern machine learning methods in complex data sets. We do not aim to estimate

the precision matrix but we focus on quantifying the uncertainty of recovering its support by providing a

significance test for a set of potential edges. To construct simultaneous confidence regions on many target

parameters, sufficiently fast estimation rates of the nuisance functions are crucial. In this context, we

establish uniform estimation rates and sparsity guarantees of the square-root Lasso estimator in a random

design under approximate sparsity conditions that might be of independent interest for related problems

in high-dimensions. We also demonstrate in comprehensive simulation studies that our procedure has

good small sample properties.
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Kurzfassungen in deutscher Sprache

Schätzung und Inferenz von Behandlungseffekten mit L2-Boosting in hochdimensionalen

Situationen (Kapitel 2)

Boosting-Algorithmen sind sehr beliebte Methoden des maschinellen Lernens und haben sich für die

Vorhersage und Variablenauswahl als äußerst nützlich erwiesen. Nichtsdestotrotz ist man bei vielen

Anwendungen in hochdimensionalen Situationen daran interessiert, kausale Rückschlüsse über Behand-

lungseffekte oder politische Maßnahmen zu ziehen. Da immer größere Datensätze zur Verfügung ste-

hen, die eine Vielzahl von Kontroll- oder Instrumentalvariablen enthalten, wird die Variablenauswahl

zunehmend herausfordernd für empirische Forscher. Wir liefern eine Methodik zur validen Inferenz über

Behandlungseffekte, wenn post- oder orthogonal L2-Boosting für die Variablenauswahl verwendet wird.

Diese Methodik wird in einem hochdimensionalen linearen Modell mit vielen Kontrollvariablen und in

einem Modell mit potenziell vielen Instrumentalvariablen angewandt. Wir präsentieren sowohl Simula-

tionsergebnisse für die vorgeschlagene Methode als auch eine empirische Anwendung. Die Anwendung

basiert auf der sogenannten
”
PAC-man“-Studie, welche die Effektivität des Pulmonalarterienkatheters

in einer randomisierten Fallstudie untersucht hat. Wir bestätigen in unserer Analyse, dass der Behand-

lungseffekt nicht signifikant von null verschieden ist.

Transformationsmodelle in hoher Dimension (Kapitel 3)

Transformationsmodelle sind ein wichtiges Werkzeug für angewandte Statistiker und Ökonomen. In vie-

len Anwendungen wird die abhängige Variable transformiert, um Homogenität und/oder Normalität der

Fehlerterme zu erzeugen. Wir analysieren Transformationsmodelle in hochdimensionalen Situationen,

in denen die Anzahl an potenziellen Kovariablen groß ist. Unser entwickeltes Modell baut auf einem

hochdimensionalen linearen Modell auf und kombiniert es mit einer parametrischen Transformation der

abhängigen Variable durch eine gegebene Familie von streng monoton steigenden Funktionen. Basierend

auf einer orthogonalisierten Momentenbedingung leiten wir einen Schätzer für den Transformationspa-

rameter her und zeigen, dass dieser asymptotisch normalverteilt ist. Dabei ist hervorzuheben, dass die

unbekannten Störfunktionen von dem Zielparameter abhängen. Wir leiten allgemeine Ergebnisse für

Inferenz in Z-Schätzungsproblemen her, in denen wir eine solche Abhängigkeit ausdrücklich erlauben.

Diese Ergebnisse sind von unabhängigem Interesse für allgemeine Z-Schätzungsprobleme mit der gleichen

zugrundeliegenden Struktur. Eine gängige Praxis in der Arbeitsökonomie ist es, Löhne mit dem Logarith-

mus zu transformieren und dann weiter zu analysieren, da Löhne nicht negativ und oft stark rechtsschief

sind. In einer empirischen Studie untersuchen wir, ob die logarithmische Transformation für American

Community Survey (ACS) Daten aus den USA geeignet ist. Wir kommen zu dem Schluss, dass der

Logarithmus zu einem Signifikanzniveau von 5 % abgelehnt wird. Unsere Simulationsstudie zeigt, dass

der vorgeschlagene Schätzer auch in kleinen Stichproben gute Ergebnisse liefert.

Gleichmäßige Inferenz in hochdimensionalen verallgemeinerten additiven Modellen

(Kapitel 4)

Verallgemeinerte additive Modelle Y = f1(X1)+ . . .+fp(Xp)+ε sind in der Statistik sehr beliebt. Da die

Schätzung einer nichtparametrischen Regressionsfunktion f(X1, . . . , Xp) praktisch nicht möglich ist, wenn

p groß ist, nehmen diese Modelle eine additive Struktur der Regressionsfunktion an. Wir entwickeln eine

Methode für die Schätzung der nichtparametrischen Komponente f1 in hochdimensionalen Situationen, in

denen die Anzahl der Kovariablen p mit der Stichprobengröße steigen kann. Wie üblich in hoher Dimen-

sion, ist eine sogenannte Spärlichkeitsannahme (
”
sparsity“-Annahme) für die Analyse entscheidend. Wir

verwenden die Sieve-Schätzung und betten das Modell in ein hochdimensionales Z-Schätzungsproblem
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ein, um gleichmäßig valide Konfidenzbänder für die Funktion f1 zu konstruieren. Wir führen Simu-

lationsstudien durch, die zeigen, dass unsere Schätzmethode selbst für kleine Stichproben zuverlässige

Ergebnisse bezüglich der Schätzung und den Überdeckungswahrscheinlichkeiten liefert. Abschließend

demonstrieren wir den Nutzen unserer Methodik empirisch, indem wir den bekannten
”
Boston housing“

Datensatz analysieren. Unsere Methodik legt nichtlineare und signifikante Effekte auf Medianwert von

Eigenheimen für die Variablen LSTAT und RM nahe, die den Prozentsatz der Bevölkerung mit niedrigem

Status in der Wohngegend bzw. die durchschnittliche Anzahl von Zimmern pro Wohnung angeben. Dies

steht im Einklang mit der ökonomischen Intuition und den Erkenntnissen aus der Fachliteratur.

Gleichmäßige Inferenz in hochdimensionalen Gaußschen graphischen Modellen (Kapitel 5)

Grafische Modelle sind zu einem beliebten Werkzeug zur Darstellung von Abhängigkeiten einer großen

Menge an Variablen geworden und sind der Schlüssel zur Darstellung kausaler Strukturen. Wir liefern

Ergebnisse für gleichmäßige Inferenz in hochdimensionalen grafischen Modellen, wobei die Anzahl der

Zielparameter möglicherweise bedeutend größer ist als die Stichprobengröße. Dies ist vor allem dann

von Bedeutung, wenn bestimmte Merkmale oder Strukturen eines kausalen Modells untersucht werden

sollen. Unsere Ergebnisse zeigen, wie in hochdimensionalen Situationen graphische Modelle mit modernen

Methoden des maschinellen Lernens in komplexen Datensätzen geschätzt und untersucht werden können.

Wir versuchen dabei nicht die gesamte Präzisionsmatrix zu schätzen, sondern konzentrieren uns auf die

Quantifizierung der Unsicherheit bei der Identifizierung des Trägers, indem wir einen Signifikanztest für

eine große Menge an potenziellen Kanten durchführen. Um gleichmäßige Konfidenzregionen für eine

hohe Anzahl an Zielparametern zu konstruieren, sind ausreichend schnelle Schätzraten der Störfunktio-

nen von entscheidender Bedeutung. In diesem Zusammenhang leiten wir gleichmäßige Schätzraten und

Spärlichkeitsgarantien für den Square-Root-Lasso Schätzer in einem zufälligen Design unter approxima-

tiven Spärlichkeitsbedingungen her, die für verwandte Probleme in hoher Dimension von unabhängigem

Interesse sein könnten. Ebenfalls zeigen wir in umfangreichen Simulationsstudien, dass unsere Methodik

selbst bei kleinen Stichprobenumfängen gute Schätzeigenschaften aufweist.
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