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Abstract

Inverse kinematics constitutes an essential task for control of motion, manipulation
as well as interaction in robotics and animation. In this thesis, a novel efficient
algorithm Bio IK is presented for solving complex kinematic body postures on
generic and fully-constrained geometries with multiple joint chains and objectives.
It is based on memetic evolution — combining biologically-inspired evolutionary
and swarm optimisation with the gradient-based L-BFGS-B algorithm. This aims
to combine the characteristic strengths of different optimisation methodologies.
Accurate solutions both for position and orientation can be found in real-time
while robustly avoiding suboptimal extrema as well as singularity issues, and scal-
ing well even for greatly higher degree of freedom.

The algorithm provides high flexibility for the design of custom cost functions,
which can be used for concrete specifications of desired body postures both in joint
and Cartesian space. In particular, the ability to arbitrarily combine different ob-
jectives extends traditional inverse kinematics by handling multiple end effectors
simultaneously while further allowing intermediate goals along the chains, such as
an elbow position or wrist orientation while grasping. Additionally, task-specific
objectives such as minimal displacement between solutions, prioritised joint values,
functional joint dependencies, as well as real-time collision avoidance can directly
be integrated into the optimisation. The algorithm represents a general method for
bounded continuous optimisation, and only requires two parameters to be set for
the population size and number of elite individuals. It adaptively handles varying
dimensionality as well as dynamic exploitation and exploration.

Experiments were conducted on several industrial and humanoid robot models
as well as virtual characters in order to demonstrate its applicability for different
challenging tasks in robotics, human-robot interaction and character animation.
Those include dexterous object manipulation with anthropomorphic robotic hands,
full-body motion, modeling and teleoperation in virtual reality, collision-free tra-
jectory generation, as well as animation post-processing for video games and films.
The results show that the proposed algorithm can compete with popular state-
of-the-art methods for inverse kinematics in terms of speed and robustness, and
is further able to outperform them in flexibility and scalability. In particular, it
has already gained popularity and active usage through dissemination of available
implementations. The algorithm can contribute to solving more complex tasks
and kinematic structures, which is of high interest for current research problems
in robotics and animation.
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Zusammenfassung

Inverse Kinematik stellt eine grundlegende Aufgabe zur Kontrolle von Bewegung,
Manipulation sowie Interaktion in der Robotik und Animation dar. Diese Dis-
sertation prsentiert einen neuartigen und effizienten Algorithmus Bio IK zum
Lsen komplexer kinematischer Körperstellungen auf generischen und vollstndig
eingeschränkten Geometrien mit mehreren Gelenkketten und Zielen. Der Algorith-
mus basiert auf memetischer Evolution, welche biologisch-inspirierte evolutionre
und schwarmartige Optimierung mit dem L-BFGS-B Gradientenverfahren kom-
biniert. Dies zielt darauf ab die charakteristischen Stärken verschiedener Opti-
mierungsmethodologien zu vereinen. Präzise Lösungen für sowohl für Position als
auch Orientierung können in Echtzeit gefunden werden, wobei suboptimale Ex-
trema sowie Singularitäten robust umgangen werden, und eine hohe Skalierbarkeit
sogar für deutlich höhere Freiheitsgrade erreicht wird.

Der Algorithmus besitzt hohe Flexibilität zum Entwickeln beliebiger Kostenfunk-
tionen, welche zur konkreten Spezifizierung gewünschter Körperstellungen sowohl
im kartesischen als auch Gelenkraum benutzt werden können. Insbesondere erweit-
ert die Mglichkeit einer beliebigen Kombination von Zielen traditionelle inverse
Kinematik insofern, dass mehrere Endeffektoren und Zwischenziele entlang der
Ketten berücksichtigt werden können, beispielsweise eine Ellenbogenposition oder
eine Handgelenksorientierung während des Greifens. Weiterhin können Aufgaben-
spezifische Ziele wie minimale Abweichung zwischen Lösungen, priorisierte Ge-
lenkstellungen, funktionale Gelenkabhängigkeiten oder Echtzeitkollisionsvermei-
dung direkt in die Optimierung integriert werden. Der Algorithmus repräsentiert
ein generelles Verfahren für beschränkte kontinuierliche Optimierung, und erfordert
ledigich zwei Parameter für die Populationsgröße und die Anzahl der Eliten zu
definieren. Variierende Dimensionalität sowie eine dynamische Exploration und
Exploitation werden adaptiv gehandhabt.

Die Experimente wurden auf verschiedenen industriellen und humanoiden Roboter-
modellen sowie virutellen Charakteren durchgeführt um die Anwendbarkeit für
verschiedene anspruchsvolle Aufgaben in der Robotik, Mensch-Roboter Interaktion
sowie Charakteranimation zu demonstrieren. Diese umfassen geschickte Manipula-
tion mit anthropomorphischen Roboterhänden, Ganzkörperbewegung in virtueller
Realität, kollisionsfreie Trajektoriengenerierung, sowie Nachbearbeitung von Ani-
mationen für Videospiele und Filme. Die Ergebnisse zeigen dass der vorgestellte
Algorithmus mit gängigen modernen Methoden für inverse Kinematik bezüglich
Geschwindigkeit und Robustheit konkurrieren kann, und ist darüberhinaus in der
Lage diese in Flexibilität und Skalierbarkeit zu übertreffen. Insbesondere hat dieser
bereits Bekanntheit und aktive Anwendung durch Verbreitung der verfügbaren Im-
plementationen erlangt. Der Algorithmus kann zum Lösen komplexerer Aufgaben
und kinematischer Strukturen beitragen, was Relevanz für aktuelle Forschungsprob-
leme in der Robotik und Animation besitzt.
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”The more I study nature, the more I become impressed with ever-
increasing force with the conclusion, that the contrivances and beauti-
ful adaptations slowly acquired through each part occasionally varying
in a slight degree in many ways, with the preservation of natural selec-
tion and those variations which are beneficial to the organism under
complex and ever-varying conditions of life, transcend in an incom-
parable degree the contrivances and adaptations which the most fertile
imagination of the most imaginative of man could suggest with un-

limited time at his disposal.”

– Charles Darwin
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Chapter 1

Introduction

In recent years, there has been a significant increase of interest for research in arti-
ficial and computational intelligence. Biologically-inspired models and algorithms
for learning and optimisation have gained larger popularity and acceptance due to
their generic algorithmic functionality, which can be applied similarly for different
types of problems. In particular, sometimes it can be difficult to find an explicit
computational formulation for a problem, but for which it is still required to obtain
a suitable solution. Previous methods have often been tailored specifically for the
tasks they should solve and under well-defined settings, but showed less flexibility
and scalability, and seemed limited in case of dynamically changing environments.
However, with the rising interest in solving more challenging problems and under-
standing natural phenomena, accompanied by the steadily increasing amount of
data and computational power, it is possible and required to deploy more general
and adaptive methods to process high-dimensional and complex information.

The domain of robotics is one of the fields which increasingly relies on research
in such directions. While it originates from the field of mechanical engineering, it
has evolved into an interdisciplinary research area which combines further knowl-
edge and experience from informatics and computer science, physics and mathe-
matics, as well as psychology and biology. Although it still represents a relatively
young discipline, it has quickly gained an essential role in various industrial sectors,
such as automation and manufacturing, medical surgery, home assistance, military
and security, as well as transport or space exploration. This also introduces a grow-
ing number of research topics in control of motion, perception of visual, auditory
and tacile sensory information, or creating behaviour for intelligent interaction with
other robots or humans. Therefore, research in artificial intelligence and providing
generic methods which imitate and resemble the capabilities of nature for solving
difficult tasks can be considered as a key challenge for further advances in robotics.

This thesis adresses the problem of inverse kinematics, which constitutes a fun-
damental task in the general field of motion and mechanics. It can be described
by finding a suitable configuration of joint values to result in an appropriate pos-
ture for an articulated body by satisfying a given set of objectives. While inverse

1



Chapter 1. Introduction

kinematics has originally evolved from the domain of robotics [92], it has also
become a fundamental tool for animation in games and films [77]. It represents
the opposite to forward kinematics, which describes deriving a particular posture
from a given joint variable configuration. However, while this can be calculated
straightforwardly through a unique sequence of coordinate transformations, a gen-
eral method for inverse kinematics could not yet be found. In particular, analytic
solutions are only available for simple kinematic structures, and larger focus has
been paid on numerical methods to yield approximate solutions — on which this
thesis also focuses on. Still, a manifold of equally suitable solutions can exist, and
it is not generally clear which one to prefer. Furthermore, several issues such as
joint limits, singularities and the Curse of Dimensionality for highly articulated
geometries can turn inverse kinematics into a non-convex optimisation problem for
which fast, robust and scalable methods are required.

Traditionally, the interest for inverse kinematics is in solving a single end effec-
tor position and orientation for a serial kinematic chain. Most popular approaches
aim to iteratively minimise the error by computing the Jacobian [14, 103, 48].
Although such methods are very fast, accurate, and both applied in graphics and
robotics, they largely suffer from suboptimal extrema as they purely rely on follow-
ing the gradient. Specifically in animation, heuristics methods such as the CCD
(Cyclic Coordinate Descent) [110] and FABRIK (Forward and Backward Reaching
Inverse Kinematics) [4] have become more popularly applied due to their simplicity
and even lower computational cost. However, they are more suited for position-only
goals, and are likely to violate joint limits by operating in Cartesian instead of joint
space. Further methods are based on SQP (Sequential Quadratic Programming)
[7, 36] which could be demonstrated to perform a more stable, flexible and reliable
optimisation. Nevertheless, adding constraints to those works best only for under-
constrained systems, and local extrema configurations are still remaining an issue.
Next, sampling-based methods such as GA (Genetic Algorithms) [78, 99, 101] and
PSO (Particle Swarm Optimisation) [25, 83, 18] have also frequently been applied
to solving inverse kinematics. Those provide flexible and scalable methodologies
which support joint limits and further constraints, can robustly avoid subopti-
mal extrema, and also do not suffer from singularities since solutions are directly
generated in joint space. However, the required time to converge to appropriate so-
lutions often remains unfeasibly large for many time-critical applications. Finally,
learning-based methods such as ANN (Artificial Neural Networks) [43, 2] or SVR
(Support Vector Regression) [73] have been used to approximate a function be-
tween joint and Cartesian space. Nevertheless, a major issue comes with a proper
choice and preparation of training samples, and the accuracy often remains too low.

In this work, a memetic evolutionary algorithm Bio IK was developed, which
successfully combines the characteristic strengths of biologically-inspired and gra-
dient-based optimisation for multi-objective inverse kinematics. It extends the
research that was originally started in [93] and further published in [94, 97, 87, 95,
96, 55], and is presented and discussed in more detail throughout this thesis.
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1.1 Motivation

Inverse kinematics is a challenging topic which has been investigated over decades,
but still represents an active field of research with open issues both in robotics
and animation. Although the traditional problem setup is well-researched, ex-
isting methods still seem rather limited in robustly handling more complex and
highly articulated geometries, solving multiple kinematic chains and goals simulta-
neously, being sufficiently accurate and fast, integrating further constraints in joint
or Cartesian space, or supporting collision avoidance while generating postures.
While those benefits often seem mutually exclusive, combining such abilities is
highly relevant and helpful for several tasks and current research problems. Those
include grasping and dexterous object manipulation with anthropomorphic robotic
hands, full-body motion of humanoid robots and virtual characters, motion recon-
struction and teleoperation, simulation and modeling in virtual reality, animation
editing and post-processing, as well as collision-free trajectory generation. The mo-
tivation for this research was initiated by observing exactly those limitations and
challenges for inverse kinematics methods that are implemented in popular tools
for robotics, graphics and simulation. Specifically in robotics, existing plugins for
ROS (Robot Operating System) [34] — such as KDL [50] or Trac-IK [80] — do only
support serial kinematic chains with single end effector pose goals. Available im-
plementations in Unity3D [105], Unreal Engine [27] as well as Maya [61] are more
flexible in handling higher articulated geometries, but showed difficulties in solv-
ing end effector orientations, and frequently produced unrealistic body postures by
violating joint limits. Furthermore, in context of the CML (Crossmodal Learning,
TRR 169) project [81], a major interest was in developing novel methods to improve
robotic manipulation using the anthropomorphic Shadow Dexterous Hand [38], as
well as in generating realistic motion for human-robot interaction. This requires
defining intermediate goals along an arm while manipulating objects, functional
joint dependencies such as for a real-human hand, as well as concurrently solving
multiple chains and end effectors goals. Altogether, this demonstrates the demand
for efficient methods which support specifying a variety of custom objectives and
constraints to solve complex articulated postures.

Since evolutionary computation usually suffers from large computation times to
converge, they can often not leap the hurdle into industrial applications. Recently,
a larger focus in non-linear optimisation has been paid to memetic algorithms,
which hybridise evolutionary computation with local search techniques. This aims
to avoid the slow convergence of simple genetic algorithms while maintaining their
robustness and scalability. This methodology can be efficiently applied to the
inverse kinematics problem, and offers high flexibility for the design of custom cost
functions. In particular, the developed Bio IK algorithm directly follows this idea
of encoding joint variable populations, and has already proven itself a competitive
tool both in research and industry through dissemination of this work. Fig. 1.1
initially highlights its capabilities and suitability if applied to different tasks in
robotics and animation, which will be explained in more detail in chapter 5.
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Figure 1.1: The proposed Bio IK algorithm applied to different types of application
scenarios for inverse kinematics in robotics and character animation.
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1.2 Research Objectives

During this work, the following main research objectives were considered:

• Design of a generic approach for solving inverse kinematics on arbitrary kine-
matic structures with multiple objectives and constraints.

• Combining the characteristic strengths of evolutionary and gradient-based
optimisation to achieve speed, accuracy, robustness, scalability and flexibility.

• Supporting real-time collision avoidance for generating kinematic postures
and trajectories on highly articulated geometries.

• Developing suitable objectives for serving different tasks, such as grasping
and manipulation, intelligent interaction, and animation post-processing.

• Availability of an efficient algorithmic implementation which can be used in
research and industry in robotics (ROS) and character animation (Unity3D).

1.3 Structural Outline

The outline of this thesis to present the condcuted research is structured as follows:

Chapter 2 provides the fundamental knowledge which is essential for a clear under-
standing of the following sections. This includes the mathematical and technical
components of kinematis, as well as a description of different articulated geometries
which were used for this research. Then, the relevant optimisation methodologies
which are combined in the proposed hybrid algorithm are discussed.

Chapter 3 continues with a more detailed presentation of related work, with a par-
ticular focus on numerical and approximate methods for inverse kinematics. Those
are summarised with a critical discussion regarding their benefits and limitations.

Followingly, chapter 4 presents the developed Bio IK algorithm, and discusses all
relevant components, such as the encoding scheme, the objective function design,
the chosen and developed genetic operators, as well as the single evolutionary
phases. In addition, a pseudocode and references to existing implementations are
provided.

Chapter 5 then shows the experimental results on a variety of application scenarios
using different robot models and virtual characters, and evaluates the algorithmic
performance compared to popular related methods. In addition, the impact of this
research will be demonstrated by a selection of work examples that were created
through dissemination of the proposed method.

Finally, chapter 6 concludes with a summary, a list of contributions, a discussion
of limitations as well as some inspirations for future work.

5



Chapter 2

Fundamentals

Kinematics is a field which is strongly related to advanced knowledge in linear al-
gebra, computational models, design and optimisation. Since this thesis addresses
the inverse kinematics problem both for robotics and computer animation, the rel-
evant knowledge for both domains will be provided.

This chapter primarily aims introducing several fundamental components and
terms for kinematics, starting with the mathematical equations for coordinate
transformations (2.1.1) which are essentially required for this topic. It then de-
scribes the composition and complexity of motion for articulated geometries (2.1.2,
2.1.3), and also explaining the related singularity issues (2.1.4). Then, a mathe-
matical formulation of forward kinematics (2.1.5) as well as a generalisation for
inverse kinematics with multiple targets (2.1.6) will be given.

It then introduces the kinematic design of different geometries for robots and char-
acters which were used throughout this research. Those include serial (2.2.1) ma-
nipulators and robotic platforms (2.2.2), anthropomorphic robots (2.2.3), as well
as humanoid (2.2.4) and quadruped (2.2.5) structures. In combination, the par-
ticular challenges for inverse kinematics which are related to these structures are
described.

Lastly, the fundamental concepts and recent advances of the relevant algorithmic
methodologies for the proposed algorithm are presented. Those focus on gradient-
based optimisation (2.3.2), as well as biologically-inspired evolutionary computa-
tion 2.3.3) and swarm intelligence (2.3.4).
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2.1 Kinematics

Kinematics outlines one of the most fundamental aspects in the general field of
motion, covering the transformation of objects with respect to position and orien-
tation, as well as velocity and acceleration, but regardless of mass, force and torque.
It has particular relevance for various applications in robotics and computer graph-
ics, including the design and control of robots, visualisation and simulation, as well
as for creating and post-processing animations of virtual characters [92, 77].

The fundamental equations to determine the pose X “ pxP , yP , zP , φR, θR, ψR)
of an object in three-dimensional Cartesian space are given by (2.1) and (2.2, where
v is the velocity and a the acceleration, and s is a vector of translation or rotation
with respect to the time t. Note that X consists of two separate tuples describing
the position P “ px, y, zq and R “ pφ, θ, ψq, where the latter is defined by a set of
Euler angles which will be described in more detail in section 2.1.1.

vptq “ 9sptq “
dsptq

dt
(2.1)

aptq “ :sptq “
dvptq

dt
(2.2)

Those equations can be used for generating smooth trajectories when designing
a motion controller, i.e. to determine the required amount of acceleration and
decceleration such that velocity is increased and stopped soon enough in order to
reach and not overshoot the target. This feature is available for the implementation
of the proposed Bio IK algorithm in [10], and aims to simulate naturally-looking
movements and transitions between kinematic postures.

Furthermore, the geometry of an articulated kinematic system can be described
by a set of kinematic chains, where each of them is defined by a consecutive set of
linked segments and joints from the root to the end effectors. An end effector de-
notes the last segment which is located at the end of a kinematic chain. Each joint
along the particular kinematic chains is given a specific axis of motion which defines
the either translational or rotational movement for the connected segment, which
is performed relative to a default zero-configuration. In context of this research,
it is important to highlight that the inverse kinematics problem is not considered
exclusively for single kinematic chains, but rather for a skeleton of multiple kine-
matic chains defining a hierarchical tree structure. An example is shown in Fig.
2.1 using the NASA Valkyrie humanoid robot mode. It visualises the hierarchy of
the single segments which are connected by joints, and also shows the particular
motion limits for each joint axis. While the legs represent two independent chains
starting from the root, the chains along the arms and to the head are mutually
affected by the configuration of the upper body. When further aiming for full-body
postures, it is required to also incorporate adjustments for the root pose. Thus,
the whole kinematic structure with all chains must be solved together, for which
advanced methods are required that can handle multiple objectives simultaneously.
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Figure 2.1: Composition of kinematic chains on the NASA Valkyrie humanoid
robot model. The skeleton of segments (cyan) is connected by the single joints
(magenta), where each motion axis (red arrows) has particular lower and upper
limits (red circle arcs) to constrain the motion relative to the default posture.

To obtain the poses of the single segments and end effectors with respect to
a particular joint variable configuration, the transformations along the hierarchy
must be calculated recursively starting from the root. This process is called for-
ward kinematics, and represents the opposite to inverse kinematics, as visualised
in Fig. 2.2. More specifically, let θ denote a n-dimensional joint variable configu-
ration which dimensionality is given by the number of motion axes, then forward
kinematics yields the desired segment poses X1, ...,Xk and vice versa for inverse
kinematics. However, this mapping is generally not bijective or uniquely invertible
— while calculating forward kinematics always produces a unique solution for the
segment poses, inverse kinematics can accept multiple solutions of joint variable
configurations, which will be discussed in more detail in sections 2.1.5 and 2.1.6.
In addition, it is important to note that X must not only be an end effector,
but can also represent an intermediate segment within the kinematic tree. This
interpretation and notation will also be used throughout this thesis.
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Figure 2.2: Mapping between joint and Cartesian space by forward and inverse
kinematics using the joint variables θ1, ..., θn and segment poses X1, ..., Xk.

2.1.1 Coordinate Transformations

Geometric coordinate transformations between two domains A,B in Cartesian
space can be defined through a bijective mapping f : A ÞÑ B^f´1 : B ÞÑ A where
ff´1 “ I and f : Rn ÞÑ Rn holds. In kinematics, only translation and rotation
need to be considered when having a constant uniform scale between the connected
joints. This section will discuss two methods for implementing these transforma-
tions, given by homogeneous matrices and quaternion-vector representations, with
the latter being used for this research. [59, 24]

Homogeneous Transformations

Coordinate transformations can be specified using homogeneous transformation
matrices as shown in (2.3) where t, R P R3 denote a three-dimensional transla-
tion vector t and rotation matrix R. This composition enables combining both
algebraic operations of translation and rotation within a fixed and consistent four-
dimensional matrix representation.

Tt “

»

—

—

—

–

1 0 0

0 1 0 t

0 0 1

0 0 0 1

fi

ffi

ffi

ffi

fl

TR “

»

—

—

—

–

0

R 0

0

0 0 0 1

fi

ffi

ffi

ffi

fl

(2.3)

The rotation matrices Rx, Ry, Rz P R3 then define a rotation about a particular
Cartesian axis by an angle α, and can be formulated as (2.4) considering the right-
hand rule, where S and C denote the sine and cosine functions.

Rxpαq “

»

—

–

1 0 0

0 Cα ´Sα

0 Sα Cα

fi

ffi

fl

Rypαq “

»

—

–

Cα 0 Sα

0 1 0

´Sα 0 Cα

fi

ffi

fl

Rzpαq “

»

—

–

Cα ´Sα 0

Sα Cα 0

0 0 1

fi

ffi

fl

(2.4)

Applying a successive multiplication of transformations T1, ..., Tn again yields a
transformation matrix of the final resulting coordinate system, where its first three
columns define the axis alignments and fourth the position with respect to the root
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transformation T0. Considering that matrix multiplications are generally not com-
mutative, it can be shown that left-hand side multiplication causes global trans-
formations while right-hand side multiplication results in local transformations for
the resulting frame. Note that this also affects the order of rotation and translation
to compose a coordinate frame. Given a set of Euler angles pφ, θ, ψq where φ de-
notes a Roll about the X-axis, θ a Pitch about the Y-axis and ψ a Yaw about the
Z-axis, those can be used to formulate a single rotation matrix. This composition
usually follows the Z-X-Y order, along with a further preceding translation, and
finally results in the transformation sequence T “ Tt ¨TRψ ¨TRφ ¨TRθ 2.5 that needs
to be consistent for the kinematic calculations.

T “

»

—

—

—

–

Cψ Cθ ´ Sψ Sφ Sθ ´Cφ Sψ Cψ Sθ ` Cθ Sψ Sφ tx

Cθ Sψ ` Cψ Sφ Sθ Cψ Cφ Sψ Sθ ´ Cψ Cθ Sφ ty

´Cφ Sθ Sφ Cφ Cθ tz

0 0 0 1

fi

ffi

ffi

ffi

fl

(2.5)

Quaternion-Vector Transformations

A more computationally efficient way to perform coordinate transformations is to
use vector addition for translation and quaternion multiplication for rotation. Al-
though the consistent representation is lost, one can show that the required amount
of arithmetic operations for each frame transformation can be significantly reduced
compared to using homogeneous matrices. In addition, using quaternions can avoid
the related gimbal lock issues, in which case the rotation matrix becomes rank defi-
cient. A quaternion is given by a four-dimensional vector q “ px, y, z, wq which can
be constructed from a rotation by an angle α about an arbitrary three-dimensional
normalised axis a “ px, y, zq as denoted by (2.6). Thus, any sequence of homoge-
neous rotation matrices can also be expressed through a single quaternion.

qapαq “ pqx, qy, qz, qwq “ paxS
α

2
, ayS

α

2
, azS

α

2
, C

α

2
q (2.6)

Regarding the order of multiplication sequences, the same principle as for matrix
concatenation holds true. Using the same Z-X-Y order for kinematic transforma-
tions, a quaternion rotation can be constructed from Euler angles through 2.7.

q “ qzpψq ¨ qxpφq ¨ qypθq (2.7)

If required, a quaternion can also be transformed into a rotation matrix (2.8).

Rpqq “

»

—

–

1´ 2q2
y ´ 2q2

z 2qxqy ´ 2qzqw 2qxqz ` 2qyqw

2qxqy ` 2qzqw 1´ 2q2
x ´ 2q2

z 2qyqz ´ 2qxqw

2qxqz ´ 2qyqw 2qyqz ` 2qxqw 1´ 2q2
x ´ 2q2

y

fi

ffi

fl

(2.8)
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Finally, the transformation TC which concatenates two particular frames TA and
TB following a left-handside multiplication can be obtained according to 2.9, where
ptA, qAq and ptB, qBq are the translation and rotation of TA and TB respectively.

TC “ TA ¨ TB “

#

tC “ tA ` qA ¨ tB

qC “ qA ¨ qB
(2.9)

2.1.2 Degree of Freedom

The DoF (Degree of Freedom) of an articulated body is typically related to its
overall kinematic complexity. In particular, it can be derived from the existing
motion axes of the single joints along the chains, as shown in Fig. 2.3. Usually,
a higher DoF also increases the amount of redundancy for available joint variable
configurations to reaching identical end effector poses. However, this introduces
further mathematical issues, such as singularities and suboptimal extrema, as will
be discussed more in sections 2.1.4 and 2.1.6. In order to reach full 3D-poses
of position and orientation, 6 DoF are usually sufficient. Systems with lower or
higher DoF can be described as under- or overarticulated. Note that this only
holds if all pairs of consecutive motion axes are not coaligned to each other, which
would violate the laws of Euler rotations — resulting in an immediate loss of the
available DoF. Thus, the DoF of articulated bodies can grow arbitrarily high, and
a suggestion for different methods to derive the DoF is discussed in [79, 62].

Figure 2.3: 6 DoF geometry of the articulated UR5 manipulator.

Furthermore, each DoF can also be represented by the translational (surge,
sway, heave) and rotational (roll, pitch, yaw) dimensions in which a particular ob-
ject can move or operate. Hence, these dimensions give an upper six-dimensional
bound in Cartesian space, where surge/roll is related to the X-axis, sway/pitch to
the Y -axis and heave/yaw to the Z-axis with respect to the coordinate system of
the object. This interpretation is often used in engineering or aeronautics in order
to describe the workspace or the space of motion of an object.

In this work, the DoF is calculated as the sum over all motion axes that are
influencing the desired segment poses of the articulated body, and which then give
rise to the search space dimensionality of the proposed evolutionary algorithm.
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2.1.3 Joint Types

There are several types of joints available to define the either translational or
rotational motion of the single segments. However, the classification and under-
standing of joints slightly differs between robotics and graphics. In particular,
robotic joints are typically understood as connections between rigid objects which
are controlled by a joint value and a specified axis to calculate the relative offset
between segments. This is important for mechanical applications since it directly
allows integrating joint limits to constrain the motion by lower and upper bounds.
In animation, joints can also be represented as raw transformations between those
segments — and thus can be controlled purely based on position and orientation
information in Cartesian space. However, this makes it more difficult to avoid
violation of joint limits, which is particulary important to create natural motion.
Therefore, this research uses the former representation by solving postures in joint
space rather than in Cartesian space.

An overview of different joint types is given by Tbl. 2.1, and which are all
supported by the Bio IK algorithm. The most relevant types are given by revolute
and prismatic joints, which can be combined to create 2 or 3 DoF rotational or
translational motion. Note that every joint motion of can be limited by an up-
per or lower bound, which formulates box-constraints for the specific joint space
dimensions. This makes it easier to sample from realistic postures in joint space.
However, there are also robots which have joints that allow unconstrained con-
tinuous motion, i.e. for the gripper for an robotic arm. Such robotic design can
be helpful for manipulating objects, and to avoid running into joint limits when
generating a trajectory to transfer from one posture into another. Unconstrained
translational joints can be used to solve a required position of a robot base for
manipulation, or to update a character pelvis while running over uneven terrain.

Joint DoF Description

Rigid 0
This type does not allow any motion, but can be used to
defineg fixed connections between segments.

Revolute 1 This joint allows rotational motion about a particular axis.

Prismatic 1 This joint allows translational motion along a particular axis.

Cylindric 2
This joint allows one rotational and one translational motions
with respect to their axes.

Planar 3
This joint allows two translational and one rotational motions
within a plane that is perpendicular to a particular axis.

Spheric 3 This joint allows rotational motion about all three axes.

Table 2.1: Overview of different joint types.
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2.1.4 Singularities

Singularities are a major issue in the kinematic design of robots. A singularity can
be observed as an instantaneous loss in the DoF when solving motion postures. In
particular, the first derivative of the kinematics equations 2.1 yields the velocity
and allows calculation of the Jacobian matrix, which is popularly used for inverse
kinematics as will be desribed in section 3.2.1. When a singularity occurs, this
matrix becomes rank deficient and numerically unstable, and causes infinite ve-
locities to occur for the joint variables. The problem then becomes that physical
systems like robots can not move infinitely fast. In practise, this means that tasks
which require precise control of motion, such as industrial manufacturing, might
become more difficult to handle. In addition, there exists an infinite number of
joint variable configurations which all lead to an identical pose for the end effector.
Although the amount of singular configurations increases with a growing DoF, the
probability to end up in a singularity can be decreased due to the larger range
of solutions and transitions between postures. For 6 DoF robots, there are only
a few types of singularities that can occur, and the goal typically is to detect or
avoid such configurations in order not to break the mechanical system. Some in-
tuitive methods to achieve this are to strictly define a maximum velocity for each
joint, or to design the robot geometry with small angles between connected seg-
ments so they are not lined up straight. It is also possible to add small offsets
around near-singular configurations, typically when the joint approaches a zero
value. Finally, an efficient but not always possible technique is to transform the
task into a workspace region for which is known that no singular configurations
exist. [23, 56, 91]

While gradient-based approaches often suffer from singularities, the proposed
method in this research avoids these issues by sampling configurations directly
from joint space, and not solely requiring a gradient in order to obtain solutions.

2.1.5 Forward Kinematics

The computation of forward kinematics (2.10) relates to the mapping from joint to
Cartesian space. Using the joint variables θ1,...,n, the resulting set of segment trans-
formations X1,...,k can be obtained by a recursive calculation of coordinate trans-
formations along the hierarchical kinematic geometry. This mapping is straight-
forward and always return unique solutions.

fpθq “ X1,...,k (2.10)

Considering a single kinematic chain, the transformation from the root to the end
effector segment is given by a series of successive transformations (2.11), where
each iTi`1 describes a transformation between a pair of consecutive segments.

rootTee “
root T1

1T2 ...
ee´1Tee (2.11)
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In this thesis, every transformation iTi`1 is understood as a local transformation,
whereas a transformation WTi denotes the global transformation of a segment rel-
ative to the world coordinate system TW .

Since forward kinematics can be computed analytically and for any geometry,
it is often used to find an approximate solution for inverse kinematics. The key
concept is to calculate relative offsets for the segments with respect to the joint
variable changes, and to obtain error measurements to optimise an objective func-
tion, such as for gradient-based or evolutionary and swarm optimisation. Those
methods will be discussed in section 2.3.

2.1.6 Inverse Kinematics

Inverse kinematics 2.12 describes the opposite of forward kinematics, and hence
refers to the mapping from Cartesian to joint space. It formulates the problem
of finding a suitable n-dimensional joint variable configuration θ of joint values
θ1, ..., θn for a given set of segment transformations X1,...,k.

θ “ f´1
pX1,...,kq (2.12)

However, this problem is non-trivial, and zero up to infinite solutions can exist
to satisfy an identical Cartesian target by different joint variable configurations.
Usually, the target is defined by a full pose, but can also be given only by position
or orientation depending on the task. Although algebraic solutions can be derived
for simple geometries, and which are also able to return all existing solutions, those
become unavailable as soon as the geometry grows a little more complex. There-
fore, many approaches rely on numerical approximation, but which again brings
other problems into play, such as suboptimal extrema, joint constraints, as well as
higher computational cost. Suboptimal extrema can particularly occur when run-
ning into joint limits. For example, although a Cartesian target might be closer to
reach when exceeding a joint limit, a large turn into the other direction can often
be required in order not to violate the kinematic constraints. The further presence
of singularities also complicates solving inverse kinematics, as described previously
in section 2.1.4. Particular methods can be used to avoid such problems, but often
are either too slow or not accurate enough for many applications. Some popular
related methods addressing these issues will be discussed in chapter 3.

This research extends the general understanding of inverse kinematics by the
ability to specify an arbitrary number of objectives to be considered for solving
body postures. In particular, those do not only need to be in Cartesian space,
but can also be designed to support joint space objectives, such as minimal dis-
placement between configurations or prioritisation for particular joint values. More
generally, any objective which defines a continuous loss term can be used for the
optimisation, which is considered as a minimisation problem. This methodology
for the proposed algorithm with concrete formulations for a list of objectives will
be presented in detail in section 4.4.
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2.2 Articulated Geometries

There exists a variety of different kinematic geometries which are specifically de-
signed for their applications in robotics, games and films. This section introduces
some of them, and which were all used for the experiments in chapter 5 in order
to demonstrate the flexibility and scalability of the proposed method.

2.2.1 Serial Manipulators

Serial manipulators are most common in industrial robotic applications, and are
described by a single serial kinematic chain. They typically consist of 6 or 7 DoF
like the robot arms shown in Fig. 2.4. Manipulators with higher DoF can be
described as hyperredundant, mostly providing a continuous range of joint config-
urations to reach identical poses. The reason why 6 DoF are often chosen for the
kinematic design is influenced by Jacobian methods, which are traditionally used
for inverse kinematics. When solving a single end effector pose, the dimensional-
ity in joint and Cartesian space matches becomes coinciding. This is particularly
helpful as these methods depend on matrix inversion, as will be described more in
section 3.2.1. Since the manipulators are specifically designed for manufacturing
tasks, a high accuracy of 10´5m/rad is usually desired.

Figure 2.4: Examples of serial manipulators, including the KuKA KR120 (left),
KuKA LBR iiwa (middle left), UR5 (middle right) and FANUC M-10iA (right).

2.2.2 Robotic Platforms

Two robots for more complex applications are shown in Fig. 2.5. Those typically
consist of multiple arms and a higher articulated body, as well as a multi-sensory
platform. Although the arms are often used as serial independent chains, using
the available body joints can be used to ease manipulation. Both gripper poses
are then affected in case of the liftable torso of the PR2 robot. As this joint has a
considerably lower velocity than the arm joints, a weighting to prefer joint value
changes among those would be preferred. The mounted head and arm cameras
further allow using distance information that can be used for collision avoidance.
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Figure 2.5: Example of robotic platforms using the Baxter and PR2 robot models.

2.2.3 Anthropomorphic Robots

Anthropomorphic geometries represent a similar kinematic structure and visual
appearance as humans. Those cause a more difficult problem for inverse kinemat-
ics, as they typically involve a much higher DoF as well as dependent kinematic
chains. As shown in Fig. 2.6, all fingers of the hand are affected by the config-
uration of the wrist, and thus must be handled together when solving grasps for
dexterous object manipulation. In addition, encoding functional relations between
joints as for a real-human hand is required to create natural configurations.

Figure 2.6: Example of an anthropomorphic robot by the Shadow Dexterous Hand.
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2.2.4 Humanoids

Humanoid geometries as shown in Fig. 2.7 outline a challenging task for inverse
kinematics both in robotics and animation. In addition to their very high DoF and
multiple dependent joint chains, the root pose of the pelvis needs to be incorpo-
rated. This is neccessary in order to create realistic postures, such as for kneeling,
walking or running. Thus, a whole joint hierarchy must be solved simultaneously.

Figure 2.7: Example of humanoid geometries using a mannequin doll, the NASA
Valkyrie robot model, and the Kyle game character.

2.2.5 Quadrupeds

Quadruped geometries, like the one shown in Fig. 2.8, also combine the different
challenges for inverse kinematics similarly to humanoids. However, since they
have four legs, it is usually desired to ensure multiple contact points. Additionally,
known joint couplings between the fore- and hindlegs can be used to ease the
creation of animations, and for generating suitable motion sequences.

Figure 2.8: Example of a quadruped geometry using a wolf game character.
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2.3 Algorithmic Methodologies

Solving inverse kinematics can be done either by analytical or numerical methods.
Although analytical would be preferred, they are often not feasible to construct in
opposit to numerical techniques. In general, numerical optimisation is a mathemat-
ical technique that has consistently performed well on complex problems [58, 51].
Since this research also focuses on the latter methodology, this section aims the
introduce the fundamental concepts to obtain approximate solutions for inverse
kinematics, and which are used for the design of the proposed memetic algorithm.

2.3.1 Multi-Objective and Multi-Modality

When formulating a task as an optimisation problem, there is usually more than
one variable which influences the quality of a solution. Thus, a larger number
of concurrent variables must be considered, which increases the complexity and
formulates a multi-objective optimisation problem. The range of solutions which
optimise the quality with respect to the single quantities is called Pareto front,
and from which a final solution must be selected. However, it is not generally clear
how to chose this solution, and requires to define an individual tradeoff between
the involved criterions. For inverse kinematics, this can be understood as assigning
more relevance to particular segment poses — i.e. for the finger tips rather than
the additionally specified elbow position when solving a grasp. Multi-modality
then refers to the problem of having multiple locally-optimal solutions under the
same cost function. This gives rise to a non-convex optimisation problem, and
for which it becomes desirable to search for multiple solutions simultaneously.
However, only few methods are able to do so, and the challenge becomes to avoid
suboptimal extrema and to find the global optimum. Though, finding the global
solution is never guaranteed for any optimiser in non-convex optimisation. This
multi-modality is strongly present for inverse kinematics, given by the range of
solutions in joint space that map to the same segment poses for the end effectors.
The core concepts of these two terms are visualised in Fig. 2.9.

Figure 2.9: Visualisation of multi-objective and multi-modal optimisation.
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2.3.2 Gradient-Based Optimisation

Methods that rely on computing a gradient to obtain a solution are among the
most popular and powerful tools in numerical and non-linear optimisation. The
gradient vector provides information about the direct neighbourhood around one
particular point of the function to be optimised, and is used to derive a direction
for an optimal update step. Therefore, gradient-based optimisation can be consid-
ered as a class of iterative and local optimisation techniques, which are fast and
accurate if a proper solution is found. In particular, they quickly converge to local
optima that are closest to the current location, but what often ends up running into
suboptimal solutions if the optimisation was started from an unfortunate location,
as shown in Fig. 2.10. For inverse kinematics, this can be understood as requiring a
larger variation of particular joints due to joint limits or objectives which constrain
the search space. Generally, chosing the starting location is not straightforward,
and usually makes them less robust and scalable than related sampling-based tech-
niques, which will be described in sections 2.3.3 and 2.3.4. A simple technique to
avoid this issue is to start multiple times with different initialisations. However,
the number of required restarts is not given, and it also remains difficult to decide
when to perform a reinitialisation. Additionally, since gradient-based methods are
uni-modal techniques, which means they can only track one solution at a time, the
progress over last iterations gets lost. In this context, section 4.5.8 of the proposed
algorithm shows how evolution can easily be used to reintegrate such information.

Besides the traditional gradient and coordinate descent methods, which always
follow the direction of the steepest descent either for the whole vector or each
dimension individually, there are further techniques that can be applied to larger-
scale problem of higher dimensionality as well as non-linearity. Newton and Quasi-
Newton methods make use of the Hessian matrix, which provides a more smooth
and robust convergence, but with higher computational cost per iteration. Since
convergence is only guaranteed for convex or concave problems, a popular approach
is to formulate the objective function using single quadratic terms. [76, 88]

Figure 2.10: Visualisation of gradient-based optimisation.
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2.3.3 Evolutionary Computation

Evolutionary computation is an optimisation technique in biologically-inspired ar-
tificial intelligence that is driven by the theory of natural evolution of C. Darwin
and G. Mendel. Those algorithms simulate a selection, recombination and mu-
tation of chromosomes which follows the principle of Survival of the Fittest with
respect to those individuals that are most responsive to change. Intuitively, if
there is a complex computational problem which is difficult to formulate, but of
which it is easily possible to generate samples and to measure their quality, then
evolution can be used to solve such problems without requiring particular assump-
tions over the search space function. The chromosomes of the individuals are the
variables of the function to be optimised, and are randomly combined and mod-
ified until a satisfactory solution is found. The quality of a solution is described
by the fitness, which measures the success of an individual within the population
under the objective function. In particular, the objective function can be designed
arbitrarily, which is why evolutionary algorithms have proven theirselves especially
well-suited for multi-objective and bounded optimisation. In addition, they do not
neccesarily rely on computing a gradient, which makes them applicable also for
non-differentiable as well as discrete combinatorial problems. However, since they
act as global optimisers, they are typically considerably slower than gradient-based
local search techniques, as introduced previously in section 2.3.2. More specifically,
the fitness evaluation often causes the bottleneck for such algorithms, which makes
them difficult to use for time-critical applications. Nevertheless, even simple vari-
ants perform comparatively well on all types of problems, so they tend to remain
independent from the specific problem complexity. Finally, the concept of having
multiple particles for search space exploitation and exploration allows to perform
a robust and computationally scalable multi-modal optimisation, as demonstrated
in Fig. 2.11. In comparison to Fig. 2.10, evolution performs less efficient if the
objective function convex or concave, but becomes more reliable and potentially
successful if there are multiple local extrema, and where escaping from suboptimal
points is required in order to find better or even global solutions. [26, 31]

Figure 2.11: Visualisation of evolutionary optimisation.
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GA (Genetic Algorithms) are the most popular subfield of evolutionary sys-
tems. Those were introduced by J. H. Holland [40], although first motivations
were already given earlier in [104, 107, 82, 33]. However, since they represent the
most basic version of evolutionary computation as shown in Fig. 2.12, they are
often outperformed by many related and more advanced evolutionary methods.

Figure 2.12: Optimisation cycle of GA.

One of them is given by DE (Differential Evolution) [100] which has become a
well-acknowledged approach for global continuous optimisation problems. Fur-
thermore, memetic algorithms that were initially inspired by [19] have also gained
larger popularity. Those combine evolution with suitable local optimisation meth-
ods with the aim to speed up convergence and to increase the accuracy. Lastly,
the No-Free-Lunch theorem [113] states that there can be no single approach that
performs well under all problems. As visualised in Fig. 2.13, this can be considered
as a particular strength of evolutionary algorithms in comparison to specific prob-
lem tailored methods. Since they do not require any assumptions on the fitness
landscape, they can be observed to perform well over all different problems.

Figure 2.13: No free lunch theorem for evolutionary algorithms. [26]
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2.3.4 Swarm Intelligence

Swarm optimisation is a biologically-inspired methodology which aims to imitate
the behaviour of natural collective systems in which a group of rather simple organ-
isms can collectively solve complex problems. Intuitively, this can be understood
as having a flock of birds or schools of fish that collectively find food sources
or avoid predators by adopting behaviour of other individuals. This methodology
shares many similarities with evolution in terms of search space exploration, multi-
objective and multi-modal optimisation, as well as robustness and scalability, as
discussed in section 2.3.3. They also do not require a gradient to be computable.
However, instead of iteratively recombining and mutating new particles from ex-
isting ones, the particles are flying through the fitness landscape through updating
their velocity and direction with respect to their surrounding particles. This is
expected to quickly converge towards optimal solutions. In more detail, they are
predominantly suited for global continuous optimisation problems, but usually
with a higher rate of exploitation than exploration. As visualised in Fig. 2.14, the
particles tend to be more attracted by local extrema, and can often be observed
to circulate around them. While this usually achieves a higher quality in less time
when already being close to good local optima, it also becomes more difficult and
unlikely to escape from suboptimal solutions. [26, 31]

This optimisation methodology was initially introduced by J. Kennedy and R.
Eberhart [46] with PSO (Particle Swarm Optimisation) as a basic variant. In this,
the direction and velocity of each particle is updated according to the success of
itself, its locally neighbouring particles as well as the globally best particle. This
yields three directions where each of them is individually and randomly weighted.
It was later extended in [47] using an additional inertia weight to improve the
algorithm. Since then, it has gained large popularity and further variants were in-
troduced, including multi-swarm approaches, neighbourhood topologies, adaptive
parameter adjustments, as well as combinatorial versions for discrete optimisation
problems. A survey and review over these techniques can be found in [114, 11].

Figure 2.14: Visualisation of swarm optimisation.
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Related Work

This chapter provides a literature review of existing state-of-the-art methods for
inverse kinematics. This specifically includes algorithms both from robotics and
animation in order to discuss and compare the particular strengths and limitations.
Those can be classified as shown in Fig. 3.1. First, section 3.1 mentions some ana-
lytical methods to construct the kinematic equations for kinematic chains. Section
3.2 then discusses some traditional and popularly applied gradient-based meth-
ods for numerical inverse kinematics in robotics, including Jacobian and Newton
methods. A review of heuristic algorithms which are particularly designed for char-
acter animation, such as CCD and FABRIK, will be given in section 3.3. Section
3.4 then compares some recent research for inverse kinematics using biologically-
inspired sampling-based approaches based on GA and PSO. Lastly, section 3.5
reviews the results that could be obtained by learning-based methods using deep
learning or statistical regression. The approaches are then discussed in section 3.6
in order to motivate the chosen design of the Bio IK algorithm in chapter 4.

Figure 3.1: Classification of different methods for inverse kinematics.
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3.1 Analytic

Given a particular kinematic geometry, analytic methods can be constructed to
provide closed-form expressions. The obtained solutions are exact, and can also
return all existing joint configurations for a particular reachable Cartesian pose.
Although these methods are the fastest among the related methods, they are typ-
ically only available for rather simple geometries of lower dimensionality as the
complexity rapidly increases with each additional DoF. However, they are some-
times used in combination with other techniques, and to support the optimisation.

In [54], a method was presented which utilises closed-form solutions for parts
of the kinematic chains using a non-linear equation solver. Those partial sub-
chains are then combined after solving each of them analytically, which could be
demonstrated to improve solving manipulators and robots with high redundancy.
In particular, solutions on the Justin robot could be obtained in less than 1 ms.
However, the inverse kinematics problem was solved for position only, and it was
not clear how to integrate weights for multiple solution criteria.

Furthermore, [108] presented a combination of sampling-based techniques with
a precomputation the reachability space. Therefore, it was able to handle arbitrary
kinematic chains, and also to generate collision-free solutions of grasp configura-
tions in cluttered environments. For the reachability analysis, a discretised data
structure was used to efficiently query the validity of a sampled configuration. The
experiments demonstrated promising results in solving grasps on bimanual setups
with up to 20 DoF, and for which computation times of less than 1 s were required
depending on the number of obstacles.

The IKFast [21] method provides an implementation [22] which automatically
generates the algebraic equations. However, it performs well only for kinematic
chains with up to 6 DoF, as the equations grow too complex otherwise. Hence, it
is rather suited only for serial industrial manipulators, and impractical for solving
multiple and highly articulated chains simultaneously.

In [44], a full-body approach for analytical inverse kinematics in animation was
presented. The solutions for typical reaching tasks were obtained by interpolating
between pre-defined postures which are organised as a functional sequence to the
goal. In particular, this method was also able to efficiently avoid joint limits as
well as collisions with the environment.

A complete analytical solution for the humanoid NAO robot was published in
[52]. They also provided a implementation of the kinematic equations which can
obtain solutions for the kinematic chains within only a few microseconds. Never-
theless, the solutions are also only considering position-only inverse kinematics for
the single end effectors targets.

24



3.2. Gradient-Based

3.2 Gradient-Based

Gradient-based methods are among the most widely applied techniques for solv-
ing inverse kinematics in robotics. This is reasoned by their ability to achieve
high accuracy within a proper short amount of time, and since they can also be
applied to different geometries. As they require approximating first- or second-
order derivatives, they are more computationally expensive than related analytic
and heuristic methods in sections 3.1 and 3.3. However, they can directly operate
in joint space which eases the use of joint limits, and seem to be more flexible to
include additional objectives, such as orientation goals for solving full pose targets.

3.2.1 Jacobian Methods

Most traditionally used methods for robotic inverse kinematics are based on com-
puting the Jacobian (3.1), which is a matrix of first-order partial derivatives of
each joint variable, and yields a linear approximation of the resulting end effector
velocities in Cartesian space. [14]

Jpθqij “

ˆ

δXi

δθj

˙

(3.1)

The task then is to find an appropriate update of the joint variable configuration
θ1 “ θ ` ∆θ such that the error vector ~e in direction from the segment to the
given target is minimised as smoothly and quickly as possible. The most simple
and computationally cheap version is using the transpose method (3.2), where α
defines a small factor to move in direction of the gradient [6, 112]. This solution
generates smooth motion, but usually suffers from a slower convergence.

∆θ “ αJT~e (3.2)

A quicker optimisation can be obtained by matrix inversion. However, calculat-
ing the inverse is not always possible as it requires the DoF to be similar to the
dimensionality of the error vector, which is why many manipulators are intention-
ally designed with exactly 6 DoF. Therefore, a common method to handle geome-
tries with different DoF is using the Moore-Penrose pseudoinverse (3.3) method
[111, 63]. Nevertheless, it can be observed to become instable in near-singular
configurations, which can cause jittery motion and no solutions to be found at all.

∆θ “ JT pJJT q´1~e (3.3)

A way to avoid such issues is by using the DLS (Damped Least Squares) method
(3.4), which is also known as the Levenberg-Marquardt technique. It was firstly
applied to inverse kinematics in [109, 37], and further extended with SVD (Singular
Value Decomposition) in [13]. However, chosing the damping constant λ is not
trivial, and can considerably slow down the optimisation if chosen too high.

∆θ “ JT pJJT ` λ2Iq´1~e (3.4)
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In Fig. 3.2, the different approaches are compared regarding their computa-
tional performance and accuracy. The pseudoinverse method is not contained due
to the discussed singularity issues. It can be observed that the DLS and SVD-DLS
methods are able to outperform the transpose technique when a higher accuracy is
desired, or a larger number of iterations is available. However, while such methods
do usually not scale well for higher articulated geometries, an extended version
of the Jacobian was proposed in [103] for solving inverse kinematics on humanoid
robots. In [48], the Jacobian method was also successfully used for real-time char-
acter animation tasks, achieving good results on different articulated geometries.

Figure 3.2: Jacobian Transpose, DLS and SVD-DLS comparison on 10 DoF. [4]

A popular implementation which is commonly being used with robotics software
such as ROS is available by the Orocos KDL framework [50]. A major drawback of
the Jacobian method is that it largely suffer from multiple local extrema, which can
cause no acceptable solution to be found at all. This can be particularly observed
for the results on different serial manipulators listed in Tbl. 3.1, which were ob-
tained from 10000 randomly-sampled and reachable queries with a Cartesian pose
error of 10´5. Although the DoF is relatively low, using an optimisation timeout
of 5 ms does not seem to achieve satisfactory results in terms of reliability.

Manipulator DoF Time Success

PR2 Arm 7 1.37 ms 83.14%

Baxter Arm 7 2.21 ms 61.07%

KuKA LBR iiwa 14 R820 7 3.37 ms 37.71%

UR5 6 3.30 ms 35.88%

NASA Valkyrie Arm 7 3.01 ms 45.18%

Table 3.1: Orocos KDL performance on serial manipulators. [80]
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3.2.2 Newton Methods

More promising results could be achieved using Newton-based optimisation for
inverse kinematics. Although this technique is more costly than the Jacobian
methods in section 3.2.1 as it utilises computation of second-order derivatives, a
more reliable optimisation with higher robustness for non-smooth functions could
be observed. In order to lower the computational cost per iteration, Quasi-Newton
methods were designed to only estimate the inverse of the Hessian matrix using a
second-order Taylor approximation instead of fully calculating it [60, 76, 88]. One
of the most popularly applied and acknowledged methods is given by the BFGS
(Broyden-Fletcher-Goldfarb-Shannon) algorithm [12, 30, 35, 90]. The algorithm
was originally designed for unconstrained optimisation, and required an expensive
calculation of the Hessian matrix. It was then further improved to the L-BFGS-B
(Limited-Memory BFGS with Bound Constraints) method, which has improved
computational performance in approximation of the Quasi-Newton method [75],
and also allows incorporation of box constraints for each variable [15]. Intuitively,
its particular strength is that it robustly allows optimisation on arbitrary twice-
differentiable objective functions Ω 3.5, and performs notably well and efficient
even with a very high number of variables.

Ωpx` σq « Ωpxq ` r∇ΩpxqsTσ `
1

2
σTHΩpxqσ (3.5)

The method was successfully applied for complex inverse kinematics on highly
articulated geometries in animation and motion capture [115, 36]. Smooth joint
variable updates with a fast convergence could be observed, and which also did not
suffer from singular configurations. Therefore, good results could also be achieved
in robotics. The TRAC-IK plugin for ROS [80] utilises a combination of the BFGS
algorithm with SQP (Sequential Quadratic Programming) [7]. Further heuristic
restarts from random initial seeds were integrated with the aim to detect and avoid
suboptimal configurations. The results in Tbl. 3.2 show better results on serial
kinematic chains, and can outperform the previous Jacobian results in Tbl. 3.1 in
terms of faster as well as more reliable optimisation using the same experimental
setup. Still, it remains unclear how the algorithm performs in solving multiple
segment poses, which is currently not supported by the implementation.

Manipulator DoF Time Success

PR2 Arm 7 0.59 ms 99.84%

Baxter Arm 7 0.60 ms 99.17%

KuKA LBR iiwa 14 R820 7 0.56 ms 99.63%

UR5 6 0.42 ms 99.55%

NASA Valkyrie Arm 7 0.61 ms 99.63%

Table 3.2: TRAC-IK performance on serial manipulators. [80]
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3.3 Heuristic

Heuristic methods for inverse kinematics iteratively estimate the required joint up-
dates using geometric calculations. They are more popularly applied in graphics
and animation since they require less time per iteration, and thus are often pre-
ferred in order to maintain high frame rates. Most prominent algorithms are given
by CCD and FABRIK, and for which different variants are implemented in [74]
and [57], as well as used in modern graphics engines such as Unity3D [105], Unreal
[27] and Maya [61]. However, the algorithms are mainly optimising joint positions
rather than joint values. This is often sufficient for applications such as motion
capture and animation editing as well as post-processing, but makes it more dif-
ficult to have a direct relation between Cartesian and joint space in order not to
violate joint limits. In addition, it generally becomes more difficult to integrate
further constraints and objectives, and the methods seem more suited for solving
position-only goals.

3.3.1 CCD

The CCD (Cyclic Coordinate Descent) [110, 17] is a traditional and one of the
most popular heuristic algorithms. It is simple to implement and only requires
very little computational cost per iteration, which makes it applicable for process-
ing multiple characters simultaneously. Each joint along the kinematic chain is
updated indepedently, iterating from the last to the first link. The calculations
can be done purely by using dot and cross product operations between the posi-
tions of the end effector pee and the current joint and pi with respect to the target
position pt. The required angular change ∆θi of the current joint about the derived
normal vector ~n can then be calculated as denoted in (3.6) and (3.7).

∆θi “ cos´1
p
pee ´ pi
||pee ´ pi||

¨
pt ´ pi
||pt ´ pi||

q (3.6)

~n “
pee ´ pi
||pee ´ pi||

ˆ
pt ´ pi
||pt ´ pi||

(3.7)

In partiular, the rotation normal is obtained at each calculation step instead of
allowing to use specified rotation axes about which the motion is constrained. This
makes it less predictable for the optimisation since joint limits can not be spec-
ified directly for the single axes. As a result, the method can often be observed
to produce unrealistic postures, and tends to overestimate particular joints along
the kinematic chain. Therefore, the amount by which each joint is updated within
every optimisation step is usually controlled by an additional custom weight. Nev-
ertheless, since CCD operates locally on each joint, it is rather difficult to efficiently
combine multiple kinematic chains. More specifically, the equations shown in (3.6)
and (3.7) break if there are multiple end effectors or segments that shall be solved
simultaneously. Also note that only the position of the end effector is optimised,
and the method becomes more complex if solving an orientation goal is also desired,
in which case the relative rotation also needs to be incorporated.
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3.3.2 FABRIK

FABRIK (Forward and Backward Reaching Inverse Kinematics) [4, 3, 5] is a more
recent algorithm which has quickly gained strong popularity and relevance in char-
acter animation. Similarly to the introduced CCD method in previous section
3.3.1, it optimises joint positions in Cartesian instead of operating in joint space.
However, instead of traversing a single direction along the chain, it consists of two
consecutive phases in an iterative and recursive forward and backward reaching
mode. Let λi “

di
ri

be defined by the initial and new distances di and ri between
two joint positions pi and pi`1 with i “ 1, ..., n ´ 1 and pn being the target po-
sition of the end effector, then the forward (3.8) and backward (3.9) calculations
iteratively optimise the required joint locations p1,...,n to reach a desired position
for the end effector.

pi “ p1´ λiqpi`1 ` λipi (3.8)

pi`1 “ p1´ λiqpi ` λipi`1 (3.9)

Intuitively, FABRIK solves articulated postures through finding points on lines
recursively instead of calculating rotational joint updates with respect to the end
effector for each joint individually. This technique is fast, scalable, and provides
several advantages over CCD. In example, multiple end effectors can be solved
simultaneously and it does also not tend to overextend particular joints. However,
further inclusion of orientational joint limit constraints is rather diffcult, and the
method remains unapplicable for applications in robotics where solutions in joint
space are required.

In Fig. 3.3, CCD and FABRIK methods are compared regarding their required
amount of iterations and computation time to reach a desired accuracy for an end
effector position, and for which FABRIK produces considerably better results.

Figure 3.3: CCD and FABRIK comparison on 10 DoF. [4]
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3.4 Sampling-Based

Sampling-based methods based on biologically-inspired artificial intelligence pro-
vide a generic and robust technique for bounded non-linear optimisation. They
offer high flexibility to design custom multi-objective functions, and perform well
even under high-dimensional and non-convex search spaces. In particular, they
are more robust in avoiding suboptimal extrema, but typically remain consid-
erable slower than previous introduced gradient-based and heuristic methods in
sections 3.2 and 3.3. They do not suffer from singularities and can directly oper-
ate in joint space through encoding joint variable configurations as particles. In
addition, while integrating joint limits is often difficult for other methods, it turns
beneficial for sampling-based techniques as it allows to restrict the search space.

3.4.1 Genetic Algorithms

Solving inverse kinematics by using GA is not novel, and has already been pre-
sented initially in [78]. In this, the flexibile applicability of these methods on
generic and redundant geometries for solving single end effector configurations was
demonstrated. Later, genetic niching methods have been used in [101, 102] to find
multiple solutions of joint configurations for a given target pose on industrial ma-
nipulators, and it was possible to obtain smaller error rates both for position and
orientation. Since GA are often costly and require expensive fitness evaluations,
[1, 49] demonstrated the higher computational efficiency when using parallel im-
plementations. In particular, methods based on DE and memetic evolution seem
to have recently gained a larger popularity. A hybridisation of evolution and Ja-
cobian optimisation was proposed in [28]. Multiple parallel local searches were
implemented to achieve a higher accuracy in less time and fewer iterations using
robotic geometries with up to 7 DoF. Another memetic variant combined with DE
was also proposed in [106]. In this, the method was not only applied to inverse
kinematics, but also to path generation problems on serial as well as more complex
anthropomorphic geometries. Nevertheless, although the algortihm performed bet-
ter than the original DE, the accuracy was only about 10´3m/rad Cartesian error,
and computation times of a few hundred milliseconds for inverse kinematics or up
to a few seconds for path generation were required. Some results are shown in Fig.
3.4, which visualises the success rate and computational cost for their method on
serial redundant manipulators. Considering the success rate, it was demonstrated
that solutions can be robustly found by evolution, and for which the required
number of generations was much lower using their proposed δDE (Memetic DE)
compared to DE. An improvement could also be observed regarding the computa-
tion time. Nevertheless, it still remains too high for real-time applications. Finally,
[99] presented an evolutionary method to generate task-specific motion trajectories
with multiple constraints on the iCub humanoid robot. Their inverse kinematics
solution was able to robustly handle further objectives for inverse kinematics, such
as the viewing direction of the head for inspecting objects from different angles,
or for bimanual manipulation tasks while providing collision-free solutions.

30



3.4. Sampling-Based

Figure 3.4: Success rate and time for DE and δDE. [106]

3.4.2 Particle Swarm Optimisation

PSO represents a more recent optimisation technique than GA in previous section
3.4.1, and which could also be demonstrated to be suitable for inverse kinematics
problems. Throughout the literature, similar benefits as for GA are reported due
to their generic optimisation methodology for which no specific conditions or as-
sumption are required. In [25, 41], the method was applied to solve end effector
configurations for serial and redundant robotic manipulators. However, inverse
kinematics was only solved for raw position goals. More challenging scenarios were
considered in [83], where an extended variant of PSO was applied for providing
collision-free solutions in cluttered environments. Furthermore, full pose targets
were successfully solved in [16] with sufficiently high accuracy. A statistical anal-
ysis and applicability for biped gait generation was done in [85, 84]. Lastly, [18]
demonstrated the scalability of PSO on hyper-redundant serial manipulators with
up to 180 DoF. Their results for inverse kinematics with single pose goals are listed
in Tbl. 3.3. Although the required computation times are relatively high, solu-
tions are found for which Jacobian methods would likely run into singularities. In
addition, all optimised solutions were free from self-collisions and also did not re-
sult in collisions with obstacles in the environment. The method was also applied
for generating collision-free paths in environments with many obstacles with cube
shapes. The experiments aimed to demonstrate the scalability of their method in
environments with up to 150 obstacles. However, the collision-checking was found
to be rather expensive, and obtaining solutions typically required a minute in total.

DoF 30 60 90 120 150 180

Time 1.57 s 3.36 s 7.46 s 15.47 s 22.11 s 37.03 s

Table 3.3: PSO performance on hyperredundant serial manipulators.[18]
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3.5 Learning

Another perspective for solving inverse kinematics comes with learning methods.
Since it is not generally available to obtain a closed-form analytic expression for
generating solutions, the aim of using learning approaches is to find an approximate
of this functional mapping between joint and Cartesian space. Once this function
is learned, solutions can be generated very quickly and repeatable, which offers an
advantage over numerical optimisation methods. However, since inverse kinematics
typically includes multiple solutions for Cartesian targets, the issue becomes that
learning can start interpolating between multiple training samples. Therefore, the
choice of training samples remains difficult, and the error can eventually remain
too large for many practical applications if the whole workspace shall be learned.

3.5.1 Artificial Neural Networks

ANN (Artificial Neural Networks) are biologically-inspired models which are suit-
able for learning non-linear functions. In [43], those were applied to solving inverse
kinematics poses on the SCARA serial manipulator of 4 DoF using a standard MLP
(Multi-Layer-Perceptron) architecture. The solutions were found to be accurate
enough, but were only conducted for a relatively simple and low-dimensional ge-
ometry. A combination with GA was proposed in [53] using the 6 DoF Stanford
manipulator and achieved micrometer accuracy, but only considerd position-only
targets. An ELM (Extreme Learning Machine) with a single hidden layer MLP
was used for the 7 DoF PUMA 560 robot arm in [29]. This method was able to
considerably lower the required training time, and also to improve the accuracy
when solving pose goals. However, only very small training sets with a maximum
of 1000 training samples were used, and it remains unclear how much of the ac-
tual workspace of the robot has been learned. Recently, [2] proposed a solution
which additionally uses the current joint variable configuration as input besides the
desired end effector pose for a 6 DoF robot. They reported considerably better re-
sults in terms of motion control, and demonstrated smoothly generated paths and
end effector trajectories. Nevertheless, there seems no literature available which
applies these models for more complex and highly-articulated geometries.

3.5.2 Support Vector Regression

Similar results as for ANN in section 3.5.1 could also be achieved using SVR
(Support Vector Regression). In [73], an additional spatial decomposition method
and an analytic method for the orientation were integrated for solving poses of a
7 DoF manipulator. Although queries could be computed very quickly, this tech-
nique formulates a very specific non-generic setup, and position errors of 10´3 m
remained. A comparison of SVR and ANN has been conducted in [89] using the
7 DoF PA-10 model. It was found that SVR requires less training data, and does
not get stuck in suboptimal extrema configurations. However, there also seems no
research conducted for geometries with higher DoF or multiple concurrent targets.
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3.6 Discussion

Among the discussed methods in this chapter, it could be observed that there
exists a huge discrepancy between the different methods regarding accuracy and
computational cost, robustness and scalability, as well as flexibility to be applied
for different applications and kinematic geometries. Even more, their particular
strengths and limitations seem mutually exclusive. However, analysing their as-
pects was essentially relevant for the chosen design of the Bio IK algorithm that
will be presented in the following chapter 4.

This research has the aim to provide a generic method for multi-objective in-
verse kinematics. Hence, analytic solutions are not an option since they need to be
constructed individually for each geometry. Also, they are typically not available
for kinematic structures with higher DoF, such as humanoid robots or virtual game
characters. For those, it is rather impracticable to find explicit or a combination
of closed-form solutions in order to solve postures for full-body motion.

The results of gradient-based methods demonstrated a fast and accurate con-
vergence, and which could be applied to generic geometries. In particular, SQP
as well as Quasi-Newton methods like the BFGS algorithm could be observed to
provide a more robust and flexible optimisation in terms of constraint design than
the popularly applied Jacobian approaches. However, the suboptimal extrema is-
sue remains, and collision avoidance was neglected for such methods. Finaly, no
research explicitly considered solving multiple kinematic chains and objectives si-
multaneously, so it is difficult to tell how they scale for higher kinematic complexity.

The heuristic CCD and FABRIK methods are well-suited for character anima-
tion tasks, but usually not applicable for real robots. This is because joint limits
can be violated, solving orientation is not easily available, and motion axes can
not be specified but are derived as required by the geometric calculations.

In contrast to gradient-based and heuristic techniques, a review of related GA
and PSO methods showed much slower convergence and lower accuracy. Neverthe-
less, they excelled in terms of robustness and scalability, and also covered the only
research that considered significantly higher DoF, whilst other methods were only
applied to 6 or 7 DoF geometries. In addition, they could also be demonstrated to
be applicable for generating collision-free solutions and trajectories.

Furthermore, ANN and SVR which aim to learn the inverse kinematics func-
tion have been demonstrated to be a possible alternative to analytic solutions for
relatively simple geometries. Nevertheless, they must be trained individually for
each geometry, and seem to be unapplicable for more complex setups.

In conclusion, gradient- and sampling-based methods suggest to be combined,
which together could serve the different performance aspects for inverse kinematics.
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Bio IK Algorithm

This chapter presents the developed Bio IK algorithm. The chosen algorithmic
design is mainly motivated by the literature review in previous chapter 3, and
can be used for solving complex and highly articulated postures in robotics and
animation. The following sections are based on the research that was published in
[94, 97, 87, 95, 96, 55].

This chapter starts with a problem statement in section 4.1 which motivates the
performance requirements and design challenges for the proposed algorithm.

The general algorithmic scheme will be shortly introduced in section 4.2. This
includes a visualisation and higher-level explanation of the memetic optimisation
framework, as well as an overview of mathematical symbols that are used during
the following sections.

Section 4.3 then describes the genetic encoding scheme of joint variable configura-
tions as well as the formulation of constraints for the evolutionary optimisation.

Followingly, the objective function design is presented in section 4.4. This partic-
ulary covers a detailed explanation and discussion of several objectives which can
be directly used for creating custom cost functions.

The single evolutionary phases are then discussed in section 4.5. A mathematical
description is provided for each of them, along with some visualisations for the
main phases of the algorithm.

Section 4.6 further discusses some computational improvements which are optional
for the algorithm. Those include a data structure to efficiently calculate the for-
ward kinematics equations, as well as a possible integration of multi-core threading.

Finally, section 4.7 provides a pseudocode for the complete algorithm, as well as a
reference to existing implementations in Unity3D (C#) and ROS (C++) that are
ready to be used for robotics and animation.
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4.1 Problem Statement

The aim of this research is to provide an efficient and generic method for inverse
kinematics. The proposed algorithm seeks to extend the traditional understanding
of inverse kinematics by the ability to handle multiple kinematic chains simulta-
neously, defining custom objectives both in joint and Cartesian space, and to be
robustly applicable for solving postures on fully-constrained and highly articu-
lated structures. The intention is to provide a solution that can be used both for
robotics and animation, and can be individually extended for custom needs and
requirements. The different methods that were discussed in the previous chapter
4 all have their particular benefits, but are either suffering from local extrema,
high computation time, low scalability, or being difficult to extend for multiple or
different objectives. Therefore, the aim of the proposed algorithm aims to serve
five different performance aspects for solving inverse kinematics, which can be
formulated as follows:

• Success – An existing solution for a given accuracy under the defined ob-
jectives and constraints can also be found within a specified amount of time.

• Accuracy – The solution shall be as precise as required, typically with an
error below 10´3m/rad.

• Time – The solution shall be found as fast as possible, preferably within a
very few milliseconds, but never more than 10 ms.

• Continuity – The distance between solutions in joint as well as Cartesian
space shall be as minimal as possible.

• Adaptivity – Robustness, scalability and fast convergence can be main-
tained for varying kinematic geometries.

• Flexibility – The algorithmic methodology allows adding further objectives
and constraints, and can be extended to fulfil task-specific requirements.

In order to meet these challenges, biologically-inspired optimisation algorithms can
provide robustness and scalability, while gradient-based methods can offer a fast
and accurate convergence — which combination results in a memetic evolutionary
optimisation strategy. This methodology could be demonstrated to perform well,
but the challenge remains in finding a suitable combination of global and local op-
timisation methods. In particular, not every local search technique can be flexibly
used for custom objective functions and concurrently be applied to constrained op-
timisation problems, but which is important in order to create a generic memetic
algorithm. Surprisingly, although the L-BFGS-B method can serve these require-
ments, it seems that this hybridisation has not yet been applied to the inverse
kinematics problem. The research question then becomes how well this combina-
tion can perform for the different challenging tasks and applications in robotics
and animation, which will be extensively investigated in chapter 5.
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4.2 Algorithmic Scheme

The general scheme of the proposed Bio IK algorithm is visualised in Fig. 4.1, and
represents a memetic evolutionary framework for bounded continuous optimisation
problems. It is based on a hybridisation of GA and PSO, which is implemented by
combination of the recombination and the additional adoption phase. These phases
together introduce an evolutionary momentum for the individuals, which is grad-
ually updated and propagated over generations. Intuitively, this heuristic aims to
follow directions which achieved improvements during previous iterations, and lets
offspring keep particular characteristics of successful individuals. For the mutation
phase, an extinction operator was designed which adaptively controls exploration
and exploitation, reduces the required number of parameters, and is suitable for
varying problem dimensionalities. This is especially relevant when solving very
different kinematic geometries of varying DoF. The niching phase aims to concur-
rently explore different regions in the search space in order to avoid premature
convergence in suboptimal regions. The elitism exploitation then implements the
memetic combination, which specifically speeks to enhance potentially good indi-
viduals among the population. Those are given by a dynamically selected set of
elites, and which control the number of concurrently tracked solutions. In addition,
both the global and local search can utilise the same objective function through
an additional gradient approximation on the fitness landscape. Finally, configura-
tions might occur in which all niches are stuck in suboptimal regions. Therefore,
the wipe out criterion was designed to heuristically detect such situations, and in
which case a partial reinitialisation is performed.

Figure 4.1: Algorithmic model of the Bio IK algorithm.
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Fig. 4.2 visualises the optimisation strategy of Bio IK, which combines the
previously discussed benefits of gradient-based, evolutionary and swarm optimi-
sation in terms of a fast, robust and multi-modal optimisation in Fig. 2.10, 2.11
and 2.14. The extinction operator and niching phase aim to maintain a reason-
able genetic diversity by covering information from different regions in the search
space, regardless of how much progress has been done so far by the population. At
the same time, recombination and adoption aims to produce a higher density of
individuals around potential solutions. The memetic exploitation then performs a
gradient-based search on some potentially good solutions, and the mutation helps
to get around non-smooth regions in the fitness landscape. Lastly, Tbl. 4.1 lists
the mathematical symbols which are used consistently used over the next sections.

Figure 4.2: Visualisation of memetic evolutionary optimisation of Bio IK.

θ Joint variable configuration
n Problem dimensionality
x Genotype
g Momentum
ξ Extinction
φ Fitness
Ω Objective function
L Objective loss term
Ψ Population of size ϕ with Ψ1,...,ϕ

E Elites of size κ with E1,...,κ

Γ Mating pool
S, R, M,
A, E, W

Evolutionary operators for [S]election, [R]ecombination,
[M]utation, [A]doption, [E]xploitation and [W]ipe out

Ura,bs Uniformly-distributed random value between a and b
Icpa, bq Linear interpolation between a and b weighted by c

Table 4.1: Mathematical symbols for the algorithmic formulations.
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4.3 Gene Encoding

Intuitively, the basic concept of solving inverse kinematics through evolution is to
encode body postures as individuals, which are then evolved until a satisfactory
solution is found. This can be done either through using quaternion-vector or
joint value representations. The former requires seven dimensions for each local
transformation between segments, and makes it more difficult to consider joint
limits. The latter representation requires as many dimensions as given by the DoF
in total, and can directly integrate joint limits. Therefore, the latter method is
used for which a joint variable configuration θ is encoded as the genotype x of an
individual. This can be denoted as (4.1), which uses a real-valued gene encoding
for each related joint, and gives rise to a n-dimensional search space.

θ “̂ x “
´

x1 | x2 | x3 | ... | xn´1 | xn

¯

(4.1)

Integrating joint limits is an essential task when operating on real robots, or to
achieve realistic postures on virtual characters in games and films. Thus, each gene
is constrained (4.2) by the lower and upper limits of its particular joint, and which
is simply clipped in case of exceeding its bounded search space domain. If a joint
has no limits, no constraints are assigned to the gene and it can evolve freely.

θimin ď xi ď θimax @i “ 1, ..., n (4.2)

Note that the set of all existing joints in the segment hierarchy is encoded instead of
each kinematic chain for itself. Thus, each evolved individual directly represents a
valid joint variable configuration for the whole body posture, which is an advantage
over related methods that often require costly post-processing in order not to
violate joint limits. The resulting transformations for the body posture can then
be obtained by evaluating the genotype x through forward kinematics (2.10).

4.4 Objective Function

The design of the objective function usually outlines one of the most crucial chal-
lenges in evolutionary optimisation. In particular, especially if multiple objectives
shall be considered concurrently, the formulation of the function is not straightfor-
ward. This is because the single loss terms must be formulated to be in a sensible
relation to each other, so that their minimisation occurs equally. Furthermore, the
combination of those should not cause strong fluctuations in the resulting fitness
landscape, as this would increase the chance to get stuck in suboptimal regions. In-
stead, smooth transitions between regions are preferred, and all objectives should
independently yield the same value for the global optimum.

With this in mind, the fitness φ of an individual under the objective function
Ω (4.3) that shall be minimsed is evaluated using the RMSE (Root-Mean-Square-
Error) over all single objectives whose loss terms are calculated by L. In addition,
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each objective can be further weighted by w to integate customisable posture
specifications. This supports task-specific needs, such as preferring higher accuracy
in position over orientation while forcing a joint along to arm to keep a particular
joint value. Another example is desiring a smaller error for the finger tips than
for the viewing direction of the head or the position of the elbow. This allows to
easily define target priorities for manipulation or interaction tasks.

φ “ Ωpxq “

g

f

f

e

1

k

k
ÿ

j“1

wjL2
jpxq (4.3)

By using a squared error metric to combine the different objectives, the aim is to
transform the initial linear problem into a quadratic which introduces smoothness,
and eventually leads to a near-convex solution for the optimisation. Finally, the
objective function formulates a single-objective evolutionary optimisation problem,
but in which multiple objectives for inverse kinematics are combined. A list of
objectives which are currently available for the algorithm are presented during the
following sections. All objectives are formulated in a way such that they yield zero
error for an optimal solution. Note that further objectives can be easily added to
the algorithm, and only need to describe a twice-differentiable continuous function
that becomes minimised to zero if a solution is found.

4.4.1 Position

A position objective aims to minimise the translational error between a segment
and a given target it shall reach. It represents the most elementary goal for inverse
kinematics besides the orientation objective, which will be described in the next
section 4.4.2. Both together then define the full pose of a segment. Although both
position and orientation could be combined in a single pose objective, the design
decision was to define single objectives for both since solving them together may
not always be required. However, in contrast to orientation errors which always
fall into the range r0, πs, position errors can grow arbitrarily large. Intuitively,
specifying a target at the end of the room yields a considerably higher position
error than if right in front at a table, but the orientation error can still remain
the same and never grow larger than π. Therefore, a normalisation of the position
error needs to be done so that the evolution equally minimises both the errors in
position and orientation. This normalisation mainly depends on the size of the
kinematic geometry. Therefore, the normalisation is performed according to (4.4),
where d “ ||Ypos´X pos|| denotes the Euclidean distance between the position of the
Cartesian target Y and the resulting segment transformation X , L is the constant
length of the kinematic chain from the root to the segment, and λ is the variable
distance from the root to X under the evaluated joint variable configuration, as
visualised in Fig. 4.3. Multiplying by π finally yields a position error between
r0, πs to be used for optimising the position loss term.

LPosition “
πd

a

pL` dqpλ` dq
(4.4)
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Figure 4.3: Visualisation of the position objective.

4.4.2 Orientation

In addition to the position objective in section 4.4.1, solving an orientation objec-
tive as shown in Fig. 4.4 is usually also desired, and neccessary in order to solve
full pose goals for the segments. The loss for the orientation error can be defined
through calculating the quaternion dot product between a particular segment X
and its Cartesian target Y , as denoted by (4.5). This yields an error between r0, πs
which becomes zero if all Cartesian axes of the segment and the target are aligned.

LOrientation “ 2 cos´1
pX quat

¨ Yquat
q (4.5)

Figure 4.4: Visualisation of the orientation objective.
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4.4.3 Direction

Sometimes the user wants to have the head or eyes of a character looking at a
particular point while moving the rest of the body. In robotics, it can be re-
quired to have the camera which is located at a robot arm to track an object
while manipulating it. Existing implementations for inverse kinematics do usually
not consider this ability, and it can be rather difficult to be integrated for some
methods. However, such tasks can be easily solved simultaneously by the Bio IK
algorithm through adding a further objective to minimise the angular error be-
tween the direction from the segment to the target as well as an arbitrary viewing
direction V , as visualised in Fig. 4.5.

LDirection “ cos´1
pV ¨ pYpos

´ X pos
qq (4.6)

Figure 4.5: Visualisation of the direction objective.

4.4.4 Distance

Collision avoidance is a challenging issue which is often neglected by generic in-
verse kinematics solvers. Mostly, computationally expensive collision checks are
required after a solution was found, and often that solution has to be discarded
again. Therefore, efficiently integrating collision avoidance for generic inverse kine-
matics is not yet considered to be solved. However, using the proposed method,
self-collision as well as collisions with objects in the environment can be avoided
through defining an objective which forces the optimisation to punish small dis-
tances between points. More specifically, the distance d between two particular
points can be forced not to fall under a specific radial distance threshold r using
a shifted hyperbolic function, as denoted by (4.7). As visualised in Fig. 4.6, this
technique prevents spherical collisions as a hard-constraint by returning an infinite
error if d becomes lower than r, but acts as a soft-constraint otherwise. Adjust-
ing the objective weight lastly controls the responsiveness in maintaining lower or
larger distances between points.

LDistance “

#

8 if pd´ rq ď 0
1
d´r

else
(4.7)
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Figure 4.6: Visualisation of the distance objective.

4.4.5 Displacement

In some cases, it might be desired to perform larger updates only for particular
joints, and to move those preferably more than others. The displacement objective
is specifically designed for such goals, and punishes configurations with larger dis-
tances in joint space. As formulated by (4.8), each joint is assigned an individual
weight ε for which the objective seeks to keep the average variation between x and
the current solution x˚ to be minimal. This can be helpful if some joints have slow
acceleration or maximum velocity, or to create more realistic motion for virtual
characters. An example on the slowly lifting torso of the PR2 robot is visualised
in Fig. 4.7. Also, pointing and looking at a target should preferably cause more
motion for the neck, arm and fingers instead for the pelvis and upper body. In
addition, this objective passively causes smoother motion between solutions, but
is also likely to cause a stronger exploitation than exploration for the optimisation.

LDisplacement “
1

n

n
ÿ

i“1

εi|x
˚
i ´ xi| (4.8)
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Figure 4.7: Visualisation of the displacement objective.

4.4.6 Joint Value

A similar technique as for the displacement objective in previous section 4.4.5 can
also be applied to single genes. For those, it is possible to try keeping a prioritised
value Θ for the gene xi of a particular joint, as denoted by (4.9). This forces the
optimisation to transfer the required motion to the remaining joints in a way that
the error for maintaining Θ is compensated. The introduced amount of stiffness
for the joint is then controlled by the objective weight, for which a lower weight
allows larger motion and a higher weight strongly forces the evolution to keep that
particular value. This can be helpful for manipulation tasks, in which an elbow or
wrist shall approximately stick to a desired angle while moving an object.

LJointV alue “ |Θ´ xi| (4.9)

Figure 4.8: Visualisation of the joint value objective.
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4.4.7 Functional Relation

Using the proposed algorithm, it is also possible to specify functional relations
between joints. Intuitively, this can be imagined as coupling joint values to be
depending to each other, such as the fingers of a real-human hand for which the
little finger also causes joint variations for the ring, middle and index fingers.
Integrating this functionality is relevant for creating more realistic movement for
virtual characters, dexterous manipulation with anthropomorphic hands, as well
as for more plausible motion of robots when interacting with humans. Let hipxq
denote a function over the encoded joint values x in relation to a particular gene xi,
then formulating this relation as xi “ hipxq and converting it into an optimisation
problem 0 “ xi ´ hpxq gives rise to the resulting loss function to be minimsed as
(4.10). Note that this method is not restricted to linear functions, but can also
serve non-linear relations between joints that usually exist for living organisms.

LFunctionalRelation “ |xi ´ hpxq| (4.10)

4.4.8 Projection

It is also possible to construct more complex objectives by formulating them as a
combination of others. An example is given by an objective which aims to project a
point of a segment on top of the surface of an object such that the normals of both
become aligned. This can be particularly helpful for animation post-processing
tasks like interaction with objects or automatic foot placement as visualised in
Fig 4.9. The corresponding loss term (4.11) can be formulated as a combination
of the position and orientation objectives. In case a projection ray in direction V
from the segment point results in a hit H, the inputs for the single objectives are
given by the hit position Hpos as well as the rotation from V to the negative hit
normal ´Hnorm multiplied with the segment rotation.

LProjection “
LPositionpHposq ` LOrientationp∆pV,´Hnormq ¨ X rotq

2
(4.11)

Figure 4.9: Visualisation of the projection objective.
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4.5 Evolutionary Phases

This section discusses the design of the evolutionary phases for the Bio IK al-
gorithm. After describing the initialisation in section 4.5.1, the operator for the
parent and survivor selection is formulised in section 4.5.2. Followingly, the de-
signed recombination, mutation and adoption operators are presented in sections
4.5.3, 4.5.4 and 4.5.5, which jointly produce an offspring from selected individuals
of the previous generation. Section 4.5.6 then describes the niching scheme, which
interferes the reproduction in a way that multiple potential paths are explored.
The elitism exploitation is discussed in section 4.5.7, and which represents a very
relevant part of the algorithm. Finally, the wipe out criterion and termination
conditions are given in sections 4.5.8 and 4.5.9.

4.5.1 Initialisation

The initialisation of the algorithm is important to directly support a fast con-
vergence, and can be done straightforwardly through randomly sampling in the
search space. For each inverse kinematics query, the algorithm is initialised using
ϕ ´ 1 randomly generated individuals where ϕ denotes the population size, and
Ura,bs describes a uniformly-distributed random value between a and b. This can
be denoted as 4.12). Thus, all genes are randomly sampled between the particular
lower and upper joint limits, and one further individual is created from a seed
state, which is given by the currently assigned joint variable configuration θ.

x1
“ θ x2,...,ϕ

i “ Urθimin ,θimax s @i “ 1, ..., n (4.12)

This technique aims to support finding a solution that is near to the current solu-
tion of the kinematic body, but also to quickly find solution if the new target has
a considerably larger distance to the current configuration.

In addition, for each individual a momentum variable g is encoded, which is
required for the integration of swarm dynamics into the evolution. This value is
gradually updated with the modifications of the gene vector, and is initialised as
zero for all individuals according to (4.13).

g1,...,ψ
i “ 0 @i “ 1, ..., n (4.13)

4.5.2 Selection

This section describes both the parent and survivor selection strategy. Considering
the former, the parents for creating new offspring are chosen using a rank-based
selection scheme. This has particular benefits over raw fitness-based selections for
which the fittest individual might be selected too frequently. This woud typically
lead to a decreased diversity and premature convergence, usually getting stuck in
suboptimal extrema. For the rank-based selection, the intrinsic selection proba-
bility tables for selecting a parent P can be efficiently precalculated depending

45



Chapter 4. Bio IK Algorithm

on the size γ of the mating pool Γ. Accordingly, the parent selection operater
SP can be formulated as (4.14), for which the probabilities are normalised within
the range r0, 1s and sum up to a total probability of 1. Note that this selection
operator is also used to select the prototype individual for the adoption phase in
section 4.5.5, as well as for selecting a dynamic subset of individuals for the elitism
exploitation in section 4.5.7. As soon as all individuals have evolved, the survivor
selection phase straightforwardly combines all evolved offspring Λ of size λ with
the exploited elite individuals E of size κ into the next generation Ψ1 of size ψ.
Hence, the survivor selection operator SS (4.15) always maintains the same size of
individuals within the population where ψ “ λ` κ holds.

SP : P Ð ppΓiq “
γ ´ i` 1
řγ
i“1 i

(4.14)

SS : Ψ1
Ð E Y Λ (4.15)

4.5.3 Recombination

The recombination phase creates λ “ ψ ´ κ offspring where each of them is gen-
erated from two parent individuals P1 and P2, as visualised in Fig. 4.10. Each
parents are selected based on their rank as described in previous section 4.5.2. Ev-
ery gene is recombined through a randomly-weighted average of both parent genes,
where Icpa, bq is a linear interpolation between a and b weighted by c and Ur0,1s is
a uniformly-distributed random value within r0, 1s. In addition, a small amount of
the momentum g of both parents is added, which aims to let offspring immediately
dive a little deeper into the direction which likely caused improvement for their
parents. This aims to integrate the particle velocity procreation of PSO into the
evolutionary optimisation. Similarly, the initial momentum for the new offspring
is created by a decayed random combination of both parent momentums.

R :

#

xi “ IUr0,1spx
P1
i , x

P2
i q ` gi

gi “ Ur0,1s g
P1
i ` Ur0,1s g

P2
i

(4.16)

Figure 4.10: Particle visualisation for the recombination phase.
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4.5.4 Mutation

Mutation aims to maintain a genetic diversity among individuals, and to discover
potential solutions in unexplored regions. This is particularly relevant in order to
escape from suboptimal extrema, and to increase the robustness for non-smooth
fitness landscapes. In terms of generic inverse kinematics, an operator is required
which remains adaptive to varying kinematic geometries whose DoF define the
search space dimensionalities. Thus, higher DoF requires smaller while a lower
DoF needs higher probabilities for the mutation rate in order to achieve effective
changes for the genes. In addition, the mutation strength should be designed adap-
tively such that the evolution remains sensitive to local extrema but also explo-
rative at the same time. A simple method would be using an inverse-proportional
probability for the number of genes, but which is not adaptive to the current opti-
misation progress. Instead, an extinction operator was designed which uses a factor
ξ to adaptively control mutation rate and strength for offspring depending on the
fitness φ of their parents, and can be calculated as (4.17). This factor measures
the relative success of an individual within the whole population regarding its rank
and fitness, and finally yields a normalised value between r0, 1s. Note that φmin
and φmax define the minimum and maximum fitness values within the population.
It is then possible to define the mutation operator as (4.18), where p defines the
mutation rate between r 1

n
, 1s and the mutation strength is calculated by a random

offset using the average extinction of both parents and the domain size given by
the joint limits. Finally, the performed mutation is also added to the momentum of
the individual. This operator is visualied in Fig. 4.11 and achieves small variations
for offspring with good parents, but can still allow any configuration in the search
space to be sampled.

ξ “
φ` φminp

i´1
ϕ´1

´ 1q

φmax
(4.17)

M :

$

’

&

’

%

p “ ξP∅ pn´1q`1
n

x1i “ xi ` Ur´1,1s
ξP1`ξP2

2
pθimax ´ θiminq

g1i “ gi ` px
1
i ´ xiq

(4.18)

Figure 4.11: Particle visualisation for the mutation phase.
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4.5.5 Adoption

Adoption is an additionally designed phase for the Bio IK algorithm which further
integrates the swarm dynamics of PSO in combination with the recombination
phase in section 4.5.3. This phase aims simulate the velocity update step of PSO
where each particle adjusts its motion based on its neighbours and the globally best
performing particle. In an evolutionary algorithm, this can be achieved through
considering the neighbours as the parents and the globally best particle as the
fittest individual in the population. Therefore, the adoption operator updates
the genes of an individual by adding an interpolated direction to the randomly-
weighted average genotype of its parents P∅ as well as to a prototype individual P˚
which is similarly selected by its rank. This operator can be formulated as 4.19),
and is visualised in Fig. 4.1. Intuitively, this operator aims to adopt promising
characteristics of successful individuals within the population.

A :

#

x1i “ xi ` IUr0,1spUr0,1spx
P∅
i ´ xiq, Ur0,1spx

P˚
i ´ xiqq

g1i “ gi ` px
1
i ´ xiq

(4.19)

Figure 4.12: Particle visualisation for the adoption phase.

4.5.6 Niching

In evolutionary computation, niching is a common technique which aims to avoid
premature convergence which typically lead to suboptimal solutions. The goal is
to let the population discover multiple solutions simultaneously by forming smaller
subgroups of individuals. The intention for inverse kinematics is to concurrently
track multiple suitable postures and thus to increase the robustness of the algo-
rithm. In more detail, a pre-selection scheme is used which immediately removes a
parent from the mating pool Γ whose offspring scored a better fitness value. This
can be formulated as (4.20), and encourages the population to explore different
paths at the same time. Note that in case the mating pool becomes empty, a
random offspring is created.

N :

#

ΓzP1 if Ωpxq ă ΩpxP1q

ΓzP2 if Ωpxq ă ΩpxP2q
(4.20)
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4.5.7 Elitism Exploitation

The exploitation phase specifically seeks to enhance potentially good solutions
among the population. This formulates the concept of memetic evolution, which
is assumed to improve the speed and continuity of convergence. Intuitively, the
algorithm continually samples configurations from the search space using a global
search which is based on recombination, mutation and adoption, and then performs
a more expensive local search only on a small subset of individuals. The phase is
visualised in Fig. 4.13, and performs a gradient-based search on a set of selected
elite individuals. In total, there are κ elites which are given by the fittest individual
Ψ1 as well as κ ´ 1 other randomly selected elite individuals. For those, a rank-
based selection strategy without duplicates is used, which means that no individual
is chosen as elite twice and κ ď ψ must hold. The gradient-based search utilises the
L-BFGS-B algorithm, which was described previously in section 2.3.2. While there
is a larger number of possible methods for the exploitation, not all of them satisfy
the algorithmic requirements. The L-BFGS-B is particularly suited for bounded,
high-dimensional and non-smooth optimisation problems, which can be the case for
inverse kinematics on highly articulated geometries. However, most important is
its ability that it can optimise arbitrary twice-differentiable continuous functions,
and thus allows the same objective function Ω to be used by the global evolutionary
and local gradient-based search. It only requires to additionally approximate the
gradient ∇Ω on the fitness landscape at point x. This can be done by calculating
the partial derivatives on the genotype of an individual, as denoted by (4.21). For
this, all genes are iteratively modified by a very small value to approximate the
gradient on the objective function. The operator can then be formulated as (4.22),
which causes elite individuals to not only survive but also to be improved, to guide
the momentum, as well as to search for multiple solutions simultaneously.

∇Ωi “

ˆ

δΩ

δxi

˙

(4.21)

E :

#

x1 “ L-BFGS-Bpx,Ω,∇Ωq

g1 “ Ur0,1sg ` px
1 ´ xq

(4.22)

Figure 4.13: Particle visualisation for the exploitation phase.
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4.5.8 Wipe Out

Although the evolutionary phases are designed to robustly avoid suboptimal so-
lutions, it can still be possible that all niches get stuck and achieve no further
improvements. In such cases, performing a reinitialisation can often be assumed
to achieve an overall faster convergence instead propagating new individuals until
a successful exploration occurs. The condition to heuristically initiate a resam-
pling can be denoted as (4.23), and is met if the current solution x˚ could not be
replaced by the fittest genotype x1, and if no further fitness improvement could be
achieved for any elite individual xε within the set of elites E .

W : φ1
ě φ˚ ^ φε1 ě φε @ ε P E (4.23)

The reinitialisation is then performed as described in (4.12). However, the current
solution x˚ is used as the new seed and is reintegrated into the new population with
x1 “ x˚. This achieves a partial reinitialisation which does not lose information
about the best solution that could be found so far. More specifically, this can be
considered as an advantage of multi-modal sampling-based methods over unimodal
gradient-based techniques for optimisation, where the latter would basically be
started from scratch after being reinitalised.

4.5.9 Termination

The algorithm finally terminates if either all objectives are satisfied or a speci-
fied time limit was exceeded. Convergence is measured by a condition for each
objective. In particular, using a fitness threshold to decide for convergence is not
appropriate as it does not give rise to the individual errors, and can not guaran-
tee that all of them are satisfied. Therefore, individual termination conditions for
each objective are defined. For the position and orientation objective in sections
4.4.1 and 4.4.2, an error threshold is used to specify the desired accuracy for each
segment pose. This can be calculated similarly to their loss functions by com-
puting the Euclidean and angular distance between the segment and the target.
Same holds for the direction objective in section 4.4.3 which is also given an error
threshold for the angular error between two vectors. For the distance objective in
section 4.4.4, it is required that the Euclidean distance between two points remains
larger than the specified minimum distance. Nevertheless, this should always be
the case anyways as approaching this threshold causes significantly increasing loss
values going to infinity. The projection objective in section 4.4.8 is given both
an error threshold for the position and orientation error, but is always considered
as converged if no hit occured. For the remaining joint value, displacement and
functional relation objectives in sections 4.4.6, 4.4.5 and 4.4.7, the convergence
conditions are optional. Those are not specficially required since they are primar-
ily designed for guiding the evolution. If all defined termination conditions over
the objectives are met, the algorithm stops optimisation and returns the evolved
solution. However, note that even if the algorithm did not converge, the best
approximate solution that could be found so far can be returned.
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4.6 Computational Improvements

This section describes two computational improvements that were developed for
the evolutionary algorithm to achieve a faster optimisation. The first is given by
a data structure which can be used to efficiently compute the forward kinematics
equations for fitness evaluations, and will be discussed in section 4.6.1. The second
is given section 4.6.2, and describes how multi-core threading can be efficiently
used to evolve generations. Both extensions are optional, and do not influence
any performance of the algorithm apart from its computational speed in which
solutions can be obtained.

4.6.1 Optimised Forward Kinematics Tree

While evolutionary computation outlines a very general method for arbitrary op-
timisation problems as it requires no particular knowledge or assumptions of the
fitness landscape, there is usual no direct link between algorithmic and problem
complexity. Instead, the typical issue for evolutionary algorithms is that the com-
plexity is transferred to the amount of fitness evaluations. This can quickly accu-
mulate to a larger amount of computation time, and for which improvements in
approximating or improving evaluation can achieve considerable speedups.

When solving inverse kinematics, multiple end effector systems such as the fin-
ger tips of an anthropomorphic arm, humanoid robots or highly articulated game
characters contain many shared joints along their kinematic chains. For those,
the forward kinematics equations then become partially equivalent, and many of
the transformations can become redundant. This is especially the case when only
small joint variable changes are applied by the evolutionary operators for the en-
coded genotypes of the individuals. Same holds for the gradient approximation,
where only one gene is changed at a time. In this context, this section presents
the OFKT (Optimised Forward Kinematics Tree) which is designed to efficiently
process multiple forward kinematics queries by caching transformations and set-
tings from preceding calculations, and assuming that only a few joint values are
changed between successive queries. Repeated evaluations can then be processed
more quickly rather than naively calculating the full recursive set of forward kine-
matics equations along the kinematic tree. Although improvements could be im-
plemented manually, the data structure can efficiently handles different types of
coordinate transformations among the segments.

As described previously in section 2.1.5, the transformations for the forward
kinematics function (2.10) from the root to each single end effector segment can be
computed via (2.11). As denoted by (4.24), the transformations between the single
relevant segments can be grouped into reference and local transformations, given as
Ri and Li respectively. While a local transformation is understood as the segment
frame itself, a reference transformation represents the transformation from the
root to the segment. However, not every segment must have a joint attached, and
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therefore Si denotes the static transformation transformation between a segment’s
preceding non-static segment to a segment’s local transformation with θj “ 0 as the
default configuration. In particular, also note that Si only needs to be computed
once, and is then stored to avoid recalculating non-changing transformations.

Ri “ Ri´1 Li Li “ Si T pθjq (4.24)

Construction

The OFKT itself basically represents a kinematic tree given by a linked list of
segments, one for each moveable part of the kinematic structure. Within each
node, Ri and Li are individually computed and stored, together with the currently
assigned joint variable θj. While the former depends on the preceding reference
and the current local transformation, the latter is calculated using the segment’s
static transformation Si modified by θj. Alg. 1 summarises building the OFKT
data structure which can then be used for efficiently processing multiple successive
forward kinematics queries.

Input : Geometry, Root, End Effectors
1 OFKT = CreateLinkedList(Root, End Effectors);
2 Chains = GetChains(Root, End Effectors);
3 foreach Segment in Chains do
4 if Segment.HasJoint() then
5 Node = OFKT.Insert(Segment);
6 Node.ComputeAndStoreStaticTransformation();
7 Node.StoreJointVariable();
8 Node.ComputeAndStoreLocalTransformation();
9 Node.ComputeAndStoreReferenceTransformation();

Algorithm 1: Building the OFKT

Querying

The input for an forward kinematics query is given by a joint variable configura-
tion which needs to be processed by the OFKT. It then uses the stored variables
within each node for the current transformation and the joint value under which
the local transformation was evaluated. As described in Alg. (2), the procedure
for updating forward kinematics transformations is started at the root node of the
linked list, and is recursively called for all childs. In addition, a boolean parameter
is recursively passed which initially assumes that no update of reference transfor-
mations would be required. The flag is set in case of joint variable changes, which
requires recalculating the local transformation and thus also the reference trans-
formation. As soon as one local update was performed, a relative update is also
neccessary for all subsequent nodes. After the tree traversal, the resulting segment
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transformations Wi can be returned in world space using (4.25), where the addi-
tional worldTroot transformation is prepended. Intuitively, the OFKT computes all
transformations in reference to the root of the kinematic model and only requires
updating a smaller set of non-static transformations.

Wi “
world Troot Ri (4.25)

Input : Joint Variable Configuration
Output: End Effector Transformations

10 Function UpdateFK(Node, RequireUpdate):
11 if HasJointVariableChanged() then
12 Node.StoreJointVariable();
13 Node.ComputeAndStoreLocalTransformation();
14 RequireUpdate = true

15 if RequireUpdate then
16 Node.ComputeAndStoreReferenceTransformation();

17 foreach Child of Node do
18 UpdateFK(Child, RequireUpdate);

19 return;

20 UpdateFK(OFKT.Root, false);
21 foreach End Effector Node do
22 return Node.ComputeWorldTransformation();

Algorithm 2: Querying the OFKT

Complexity

This section conducts a theoretical evaluation for the OFKT data structure re-
garding the total required transformations in four application scenarios, which
are listed in Tbl. 22. Given a n-dimensional serial joint variable configuration,
one forward kinematics pass requires calculating n local transformations which are
then concatenated by n transformations, and one further from the world to the
root transformation. This calculation will be used as baseline for performance
comparison with the OFKT data structure.

1. Forward kinematics computation by updating a (random) number of values
along a serial kinematic chain: This is the typical query after evolving the
genes of an individual. In general, 2n ` 1 calculations would be needed for
independent forward kinematics queries. Using the OFKT, previous results
can be reused and the required amount of local transformation updates be-
comes equivalent to the number of changed joint values j ă n. Traversing the
single segments then results in n ´ i instead of n reference transformations,
where i is the first modified index along the serial kinematic chain.
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Scenario Standard OFKT

Random Modifications 2n` 1 n´ i` j ` 1

End Effector Computation 2n` 1 5

Single Iterative Modifications 2n2 ` n n2

2
` 5n

2

Multiple End Effectors kp2n` 1q kp2n` 1q ´ 2pk ´ 1qs

Table 4.2: Overview of the computational complexity for the OFKT.

2. Predicting the end effector world transformation by modifying exactly one
joint value: This is helpful for determining or estimating the error gradient.
Only one local L

1

i as well as three further transformations Ri´1 L
1

i R
´1
i Ree are

neccessary for calculating the end effector transformation, followed by one
additional world transformation. In particular, the required transformations
of the single segments are already available, and enable to directly obtain
the relative end effector change.

3. Iteratively updating exactly one joint value while maintaining information
about all segment transformations: This is particularly important for en-
abling efficient further computation of relative transformations within the
kinematic tree. n queries are performed iteratively, requiring np2n ` 1q cal-
culations. Using the OFKT, each of the n queries automatically avoids recal-
culating unchanged transformations, resulting in n local updated segments
and a total of npn`1q

2
calculations for the affected reference transformations.

4. Forward kinematics calculations on different chains with multiple end effec-
tors of an anthropomorphic arm: This is relevant in terms of scalability
for complex geometries. A 27 DoF anthropomorphic geometry is considered,
starting with a 7 DoF arm and splitting up into a hand with five 4 DoF fin-
gers — giving rise to k “ 5 chains with 11 DoF each. Hence, calculating all
end effectors individually would require kp2n` 1q transformations, while the
OFKT automatically avoids recalculating the shared s “ 7 arm joints.

4.6.2 Multi-Threading

The algorithm allows to be parallelised on the CPU to speedup the evolution. For
each elite individual, an additional thread is created to perform the L-BFGS-B
exploitation. This is because the exploitation is rather costly compared to the other
tasks, but can be run independently from the offspring creation. In particular,
the remaining individuals are evolved on the main thread, which must be done
sequentially because of the niching phase that was introduced in section 4.5.6, and
which introduces mutual dependency between parents and offspring. Concurrently,
the elitism exploitation on the allocated threads continues iterating until the main
thread has finished evolving offspring so that no computation time remains unused.
Thus, the population size implicitly controls the number of exploitation steps that
can be performed by the L-BFGS-B modules within each generation.
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4.7 Implementation

The algorithm is availably implemented for research and development in robotics
and animation. The implementations are given as an asset for Unity3D (C#) and
a plugin for ROS (C++), which both are popular tools in their particular fields.

4.7.1 Pseudocode

The pseudocode of the complete Bio IK algorithm is shown in Alg. 3. It covers
the algorithmic details for initialisation and the phases for one evolutionary cycle.

Input : Population Size, Number of Elites, Seed
23 Assign Seed as Solution;
24 Initialize Population;
25 yy Incorporate Solution;
26 yy Create PopulationSize´ 1 Random Individuals;
27 yy Evaluate and Sort Individuals by Fitness;
28 yy Calculate Extinction Factors;
29 yy Try Update Solution;
30 while Not Terminated do
31 Assign whole Population to the Mating Pool;
32 for All Selected Elite Individuals do
33 Perform Exploitation using L-BFGS-B;

34 for All Non-Elite Individuals do
35 if Mating Pool is not empty then
36 Select Parents and Prototype from Mating Pool and Create

new Individual by Recombination, Mutation and
Adoption;

37 Constrain Genes to Dimension Bounds;
38 Evaluate Fitness;
39 Remove worse Parents from Mating Pool;

40 else
41 Create Random Individual;
42 Evaluate Fitness;

43 Add Individual to Offspring;

44 Select Elites and Offspring as the new Population;
45 Sort Individuals by Fitness;
46 Calculate Extinction Factors;
47 Try Update Solution;
48 if Wipe Out Criterion Fulfilled then
49 Reinitialise Population;

50 Return Solution;

Algorithm 3: Bio IK Algorithm
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4.7.2 Unity3D Asset (C#)

The Unity3D implementation [10] consists of a single component which can be
added to the start of a transform hierarchy from where inverse kinematics shall
be solved. The asset automatically detects the existing kinematic geometry of
segments, and provides user-friendly custom inspectors as well as parameter vi-
sualisations for the solver, joints and objectives. It further includes an API to
control the algorithm, although it can also be entirely used without any program-
ming. The visualisation of the models is shown in Fig. 4.14. The segments are
connected by teal lines, where each is marked by a small sphere. Each joint is
represented by a magenta cube which rotation is given by the orientation of joint
axes. When a segment is selected, it becomes highlighted by a circle in which the
particular motion limits are drawn in case a joint is attached to it. The custom
inspector for the script component, as well as the segments and joints is shown
in Fig. 4.15. All variables are serialised in the editor, and implement an Undo
and Redo functionality. The first variable defines whether threading shall be used
or not. This is because is it not always supported for particular target platforms
such as WebGL when compiled, in which case it needs to be deactivated. The next
parameters are used to let the user specify the desired number of generations per
frame, as well as the population size and number of elites. The smoothing factor

Figure 4.14: Geometry visualisation for the Bio IK asset in Unity3D.

56



4.7. Implementation

is a value between r0, 1s which interpolates the Cartesian transformations of seg-
ments given the last and current frame, and which smooths out the motion a bit
in case a larger configuration change occured. If the character is animated, it can
be weighted into the optimisation as a seed to force the evolution to stick as close
as possible to the original animation. Similarly, it is possible to blend between the
inverse kinematics solution and the animation. Furthermore, while each segment
can have at most one joint, it is possible to add multiple objectives to it. The joint
motion can then either be rotatioal or translational, and allows setting a rotation
order for the Euler angles to construct the quaternion rotations. All motion is cal-
culated relative to the default frame of the segment for which an additional anchor
or orientation offset can also be defined if needed. The motion axes for each joint
can then be controlled independently and specify a 0 to 3 DoF joint. The joint
motion can either be instantaneous or realistic, where the latter requires to define
a maximum velocity and maximum acceleration. Both unconstrained as well as
constrained motion is supported, which allows floating motion for the pelvis as
well as setting angular joint limits for the bones to ensure realistic postures. Next,

Figure 4.15: Main component and inspectors for the Bio IK asset in Unity3D.
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the custom inspectors for the single objectives are visualsed in Fig. 4.16. Cartesian
targets can be set via drag-and-drop by object transforms, but also manually via
position or angular rotation values. Note that it is also possible to apply changes
to the parameter values of the solver, joints or objectives during runtime, as well
as to enable, disable, add or remove them for dynamic interactive tasks.

Figure 4.16: Objective inspectors for the Bio IK asset in Unity3D.
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4.7.3 ROS Plugin (C++)

The ROS implementation [9] is written as an inverse kinematics plugin for MoveIt!.
In contrast to KDL and TRAC-IK, the Bio IK plugin can solve multiple goals at
once. All goal classes derive from a Goal base class, and implement an evaluate
method as well as a describe method. Information is exchanged via a GoalContext
object, allowing the interface to be extended at a later time without breaking
the API. The evaluate method is called after each mutation and returns a fitness
measure for the current joint values and segment poses. Which joints and segments
a goal depends on is queried by the inverse kinematics solver during initialisation by
calling the describe method. Bio IK can be extended by additional goal classes that
do not have to be implemented within the package itself, but can be implemented
within another package that calls the Bio IK solver. A detailed description of the
implementation and the further available goal types can be found in [87].

Figure 4.17: Software design for the Bio IK plugin in ROS. [87]
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Experiments and Results

This chapter presents the experimental results of the proposed Bio IK algorithm,
which aim to demonstrate its performance and flexibility for different applications
in robotics and animation. All experiments were conducted based on the experi-
mental setup which is described in section 5.1. While the first sections are mainly
investigating the general algorithmic aspects and improvements, the remaining sec-
tions are entirely focusing on concrete tasks or geometries for inverse kinematics.
Initially, section 5.2 gives a parameter evaluation in order to provide an intuition
for a suitable choice in population size and number of elites. Section 5.3 then fol-
lows with an evaluation of the algorithmic and computational improvements, which
were designed to increase the speed and robustness of the algorithm. The perfor-
mance for traditional inverse kinematics in solving pose goals on serial kinematic
chains of robotic manipulators is then demonstrated in section 5.4. In addition,
the algorithm is compared to related popular methods for inverse kinematics re-
garding its success rate and computation time. In section 5.5, the algorithm is
applied to the more challenging task of solving full-body postures and motion with
multiple goals using the NASA Valkyrie robot model. Followingly, the results for
dexterous manipulation experiments with the anthropomorphic Shadow Dexter-
ous Hand are given in section 5.6. Section 5.7 then demonstrates how collision
avoidance can be achieved by the algorithm, and which usually outlines a difficult
task for generic inverse kinematics. The algorithm was then applied for full-body
motion reconstruction and teleoperation in virtual reality in section 5.8, as well as
for collision-free trajectory generation in section 5.9. In section 5.10, the algorithm
is demonstrated for animation editing and post-processing using highly-articulated
game characters. In order to provide a visual understanding and explanation of
the results, section 5.11 shows some evolutionary landscapes, posture distribu-
tions and particle propagations for optimising inverse kinematics queries. Finally,
section 5.12 presents some work that has been created by other users through
dissemination of the available implementation for Unity3D.
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5.1 Experimental Setup

The experiments were conducted using an ASUS ROG G-751 notebook with 2.6 GHz
processor cores. The Unity3D engine was chosen as the main research environment
using the available Bio IK implementation [10]. Further experiments to compare
the algorithm with existing implementations for robotic inverse kinematics and
simulation were also done using the available Bio IK version [9] for ROS. All sta-
tistical results were evaluated over 10000 independent, uniformly-distributed and
reachable inverse kinematics configurations that were optimised from random ini-
tial seeds. This number was found to produce unsignificantly small deviations
between the results. Both computational improvements using multi-core thread-
ing and the OFKT data structre in sections 4.6.2 and 4.6.1 were used, leading to
a faster convergence due to a lower computation time per generation. In Unity3D,
the robot models were imported using a URDF (Unified Robot Description For-
mat) models which has been implemented as part of this research.

Model Source Description

UR5 [70] Serial manipulator with 6 DoF.

Fanuc M-10iA [42] Serial manipulator with 6 DoF.

KuKA LBR iiwa R820 [68] Serial manipulator with 7 DoF.

KuKA KR120R2500pro [66] Serial manipulator with 6 DoF.

PR2 [69]
Mobile robotic platform with two 7 DoF
arms, a 1 DoF translational torso, and an
unconstrained rotational wrist motion.

Baxter [64]
Robotic research platform with two
7 DoF arms.

NASA Valkyrie [71]
Humanoid robot with a 35 DoF body and
two further 13 DoF hands.

Shadow Dexterous Hand [39]
Anthropomorphic robotic hand with
19 DoF by a 2 DoF wrist, two 4 DoF and
three 3 DoF fingers.

Human Mannequin [65]
Human mannequin with 42 DoF, having
a 3 DoF pelvis, 6 DoF spine, two 7 DoF
legs and arms, as well as a 5 DoF head.

Kyle [67]

Humanoid game character with up to
78 DoF, having a 3 DoF pelvis, spine,
neck and head, 7 DoF legs and arms, and
19 DoF for the fingers of each hand.

Wolf [72]

Quadruped game character with up to
58 DoF, having a 3 DoF pelvis, neck and
head, 9 DoF spine, 8 DoF front legs and
6 DoF back legs, as well as a 12 DoF tail.

Table 5.1: List of kinematic geometries for the experiments.
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5.2 Parameter Evaluation

The selection of parameters has a major impact on the performance of the algo-
rithm. However, chosing them is not straightforward, and is largely influenced
by the DoF as well as the amount of objectives that shall be minimised. Typi-
cally, a larger DoF formulates a more complex optimisation problem, but can also
introduce a larger solution manifold. In opposite, a higher number of objectives
causes a higher constrained and non-smooth fitness landscape for the evolution.
The only required parameters for the algorithm are given by the population size
and the number of elites. Using a 15 DoF serial kinematic chain, Fig. 5.1 shows
the normalised distribution of efficiency which is measured by the required time
and achieved fitness. The efficiency E for each parameter selection is averaged
over 10000 queries and uses a maximum timeout of 10 ms if not converged. It is
calculated according to 5.1, where ψ and κ denote the population size and number
of elites, m is the number of samples, φ is the achieved fitness and t is the required
time for convergence.

Eψ,κ “
1

m

m
ÿ 1

φ ¨ t
(5.1)

The values are finally normalised to the range r0, 1s for visualisation purposes. It
can be observed that there is a larger range of possible combinations for ψ and κ
for which the evolution performs similarly well.

Figure 5.1: Parameter efficiency on a 15 DoF serial kinematic chain.
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Similar efficiency distributions could also be observed for varying DoF on serial
manipulators. As visualised in Fig. 5.2, choosing at least two elite individuals
should be preferred regardless from the DoF. The results further suggest that
increasing the population size has larger impact for smaller DoF, and seems to be-
come stable for increasing DoF. In general, parameter selections between r50, 150s
individuals with r2, 5s elites were observed to performed well in the experiments.

Figure 5.2: Suitable parameter selections for increasing DoF.

5.3 Selective Improvements

The algorithm was further investigated regarding the designed evolutionary and
computational improvements. Fig. 5.3 visualises the obtained relative improve-
ments on the Shadow Dexterous Hand and the NASA Valkyrie robot by the adop-
tion, exploitation and wipe out operators that were presented in sections 4.5.5, 4.5.7
and 4.5.8. In addition, it was observed that a randomly-weighted interpolation of
weights for the objectives could achieve a more robust optimisation. Although
this strategy might give rise to doubts about its success at first, one can imagine
that the best solution that can ever be found is exactly the one who performs best
regardless of the chosen weights. Thus, potential individuals among will be elim-
inated if they do not perform successful repeatedly when facing different criteria.
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Chapter 5. Experiments and Results

Figure 5.3: Relative contribution to the overall improvement of the Bio IK algo-
rithm over GA regading the main algorithmic extensions and modifications.

The values are measured by the relative loss for the overall convergence when selec-
tively removing one of them. Clearly, the largest improvement is achieved by the
memetic exploitation phase. Furthermore, Fig. 5.4 (left) shows the computational
improvement for fitness evaluations by measuring the required time per generation
for increasing DoF when using the OFKT data structure prestend in section 4.6.1.
It can be observed that the improvement considerably scales for more complex
geometries, reaching a cost reduction per generation by a factor of «8 for 30 DoF.
It also visualises the improvement that could be achieved by multi-core threading,
which was designed for the elitism exploitation as described in section 4.6.2. The
results are obtained from a 35 DoF setup on the NASA Valkyrie robot with a fixed
population size of ψ “ 75. When using threads, the additional computational cost
for each elite can nearly be eliminated compared to a single-core implementation.

Figure 5.4: Computational cost per generation for increasing DoF using standard
calculation and the OFKT data structure for forward kinematics (left [96]), as well
as when using threads for every elite subject to the L-BFGS-B exploitation (right).
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5.4 Serial Inverse Kinematics

In order to measure the general performance of the algorithm in comparison to
related methods, initial experiments were made on common robotic serial manipu-
lator arms shown in Fig. 5.5. Those were selected with respect to solving varying
geometric structures, segment lengths and joint limits, which lastly formulate dif-
ferent search spaces of similar dimensionality. The teal target spheres visualise
the pose objectives to be optimised, and which were generated from random valid
joint configurations using the forward kinematics equations 2.10. The algorithm
was then used to find a solution which minimises the translational and rotational
error to an accuracy of 10´4 m and 10´3 rad. In Fig. 5.6, the average success rate
that could be obtained after a certain number of generations is shown. The graph
demonstrates that all 10000 goal configurations for the tested robot models could

Figure 5.5: Robot models for the experimental results listed in Tbl. 5.2. The teal
spheres visualise the Cartesian pose targets for solving inverse kinematics.
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Chapter 5. Experiments and Results

Figure 5.6: Success rate for serial inverse kinematics with respect to the number
of evolved generations using the robot models in Fig. 5.5.

be successfully evolved. While about 102 generations were required to find all solu-
tions, it can be expected that 101 generations in average are required to converge.
In some cases, only a very small number of generations is sufficient, which can be
reasoned by the elitism exploitation which performs multiple L-BFGS-B iterations
in parallel within one generation. Thus, when starting from a seed configuration
that is near to the solution, the evolution converges immediately. Tab. 5.2 com-
pares the algorithm to existing methods for inverse kinematics. The results show
the required computation times and success rates for the serial manipulator arms
in Fig. 5.5. For the Jacobian (Transpose / DLS) and L-BFGS-B methods, the
optimisation was terminated if the algorithm started violating joint limits, and
in which case no valid solution would be found. For the GA and DE methods,
a time limit of 1 s was specified by which a solution had to be found. While the
gradient-based approaches converge much faster than the evolutionary methods,
their reliability in finding a solution significantly varies for the different robot ge-
ometries. However, although this seems to be more stable for the evolutionary
methods, they also require considerably more time to converge. Finally, Bio IK
requires similar computation time like gradient-based methods of approximately
1 ms in average, but outperforms them with success rates of over 99% when us-
ing a maximum time limit of 10 ms. Furthermore, Fig. 5.7 shows the average
required time to optimise inverse kinematics solutions on hyperredundant manip-
ulators with up to 120 DoF. For those, the algorithm achieves a slightly sublinear
relation between time and DoF. Note that solving such structures is often difficult
for related Jacobian methods due to the typical singularity issues.
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Chapter 5. Experiments and Results

Figure 5.7: Inverse kinematics on hyperredundant serial manipulators.

The algorithm was also compared to existing inverse kinematics plugins for ROS
using the implemented solver [9] that was developed and published in [86, 87]. The
written C++ code is highly optimised, and can achieve even lower computation
times than the implementation in [10]. The results in Fig. 5.3 compare the per-
formance in speed and reliability using KDL [50], TRAC-IK [80], HGSA [95] and
the proposed Bio IK algorithm. KDL is a plugin which is based on Jacobian op-

Solver PR2 UR5
Valkyrie

Arm
Valkyrie

Leg
LBR iiwa

KDL
4.68 ms

(53.10%)
4.59 ms

(41.70%)
3.50 ms

(41.13%)
0.91 ms

(91.68%)
3.17 ms

(51.62%)

TRAC-IK
0.77 ms

(99.91%)
0.52 ms

(99.29%)
0.73 ms

(99.64%)
0.18 ms

(99.98%)
0.41 ms

(99.88%)

HGSA
3.93 ms

(75.69%)
4.12 ms

(51.20%)
4.67 ms

(29.13%)
3.14 ms

(70.14%)
3.49 ms

(66.84%)

Bio IK
0.45 ms

(100.00%)
0.50 ms

(99.93%)
0.51 ms

(99.93%)
0.28 ms

(100.00%)
0,47 ms

(99.93%)

Table 5.3: Inverse kinematics benchmark regarding computation time and success
rate. The results compare different ROS plugins over 10000 valid joint configura-
tions with a maximum timeout of 5 ms and target accuracy of 10´5m/rad. [87]
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5.4. Serial Inverse Kinematics

timisation. TRAC-IK uses SQP and the BFGS method with random heuristic
restarts. HGSA is a previous version of Bio IK which only combines GA, PSO and
a rather simple local search heuristic. It can be observed that Bio IK achieves a
both slightly better computation time and success rate in average than TRAC-IK,
which seem to be the only competitors. This is also demonstrated in Fig. 5.8,
which visualises successful (green) and failed (red) inverse kinematics queries for
box-shaped and randomly-sampled pose goals.

Figure 5.8: Inverse kinematics distributions on the PR2 robot arm. [87]
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Chapter 5. Experiments and Results

5.5 Full-Body Inverse Kinematics

A more challenging inverse kinematics problem is given by solving postures on fully-
articulated humanoid robots. Those have multiple kinematic chains whose joints
from the pelvis to hands, head and feet partially influence the segment and end
effector poses of each other. Therefore, a kinematic tree with multiple kinematic
chains needs to be optimised at once, rather than each chain independently. In
Fig 5.9, the geometry of the NASA Valkyrie humanoid robot is shown. Both arms
are affected by the pelvis and torso configuration, and which further also affect the
finger poses of the anthropomorphic hands. Finding a posture which globally satis-
fies the different goals often causes analytic and gradient-based methods in sections
3.1, 3.2.1 and 3.2.2 to be not applicable anymore as the number of local extrema
and dimensionality increases. Therefore, not much literature seems to be available
for such problems, and most work focuses on traditional serial inverse kinematics.
In Tab. 5.4, the required computation times and success rates for different inverse
kinematics setups of Cartesian goal combinations is listed. This demonstrates the
scalability of the Bio IK algorithm, which maintains a fast and robust convergence
even for multiple objectives and high DoF. When adding further objectives, it was
observed that using a RMSE loss instead of linearly averaging the single errors in
(4.3) achieves a huge improvement for the optimisation — making the evolution
significantly faster and applicable for robustly solving complex full-body postures.

Figure 5.9: Kinematic geometry of the NASA Valkyrie humanoid robot with
61 DoF in total. The model has a 35 DoF body and two 13 DoF hands.
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Chapter 5. Experiments and Results

Next, Fig. 5.10 visualises some keyframes of a full-body motion for lifting and
rotating an object. The motion could be evolved in real-time, and was free from
self-collisions using additional distance objectives between segments. Position and
orientation objectives for the wrist and fingers were defined to grasp the surface of
the object. Moving the object finally generated the required motion of the robot
body. Similarly, an objective for the viewing direction of the head was defined to
look at the object centre. Two further position and orientation objectives were
defined to stick to the ground while optimising the pelvis pose. The average time
to compute one posture using the previous as the seed was about 0.82 ms.

Figure 5.10: Full-body motion on the NASA Valkyrie robot while lifting/rotating
an object. All postures were obtained in real-time and free from self-collisions.
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5.6. Grasping and Dexterous Manipulation

5.6 Grasping and Dexterous Manipulation

The algorithm was further investigated on anthropomorphic robotic hands for solv-
ing grasps and dexterous manipulation scenarios. Such tasks are often difficult
since all fingers are again directly controlled by the preceding joints of the wrist
and the arm of a robot. Also, manipulation with real human hands typically
involves rolling the fingers slightly on top of the surface instead of keeping a par-
ticular pose for the individual finger tips. From a computational perspective, this
requires handling particular objectives as soft-constraints, such as having an ap-
propriately lower weight for the orientation than for the position objective. The
Shadow Dexterous Hand geometry is shown in Fig. 5.11, and consists of a 2 DoF
wrist, 4 DoF thumb and pinky fingers and 3 DoF index, middle and ring fingers.

Figure 5.11: Kinematic geometry of the 19 DoF Shadow Dexterous Hand.

Fig. 5.12 demonstrates the proposed algorithm applied to different exemplary
grasping types for the hand. Those were recorded from data of 444 real-human

Figure 5.12: Solving inverse kinematics for different grasp types on the Shadow
Dexterous Hand using captured real-human hand data.
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Figure 5.13: Finger tip accuracies for reconstructing 444 real-human grasp config-
urations on the Shadow Dexterous Hand as shown in Fig. 5.12.

grasps [8], and the algorithm was then used to find a solution which resembles the
original finger poses of the hand, despite of varying link lengths and joint limits
between the humanoid and robotic hand. All different tested grasp types could be
successfully evolved within 2.1 ms in average. Using a fixed optimisation time of
10 ms, Fig. 5.13 shows the achieved Cartesian accuracy and error deviation of the
single fingers over reconstructing all 444 captured human grasp configurations. The
algorithm was able to obtain solutions with a pose accuracy between 10´5 - 10´4 m
and rad. In particular, slightly better accuracies could be achieved for the thumb
and pinky fingers — which can be reasoned by a higher kinematic flexibility due to
one more DoF, and thus a larger solution manifold in the fitness landscape. Next,
the Shadow Dexterous Hand was attached to the right arm of the PR2 robot as
well as to the KuKA LBR iiwa manipulator. In the first experiment in Fig. 5.14,
a wooden cube was rotated through evolving the motion of the robot from the
arm to the thumb, index and middle fingers — giving rise to 17 DoF in total. A
grasping pose on the surface of the cube was defined for each finger while using a
lower weight for orientation with 0.1 than for position with 10.0. Two weighted
soft-constraints for the wrist orientation with 0.5 and elbow position with 0.25
were specified to constrain the solution manifold to suitable grasping postures.
Note that both intermediate goals are lower weighted in order to provide some
flexibility for the arm configuration while solving grasps. The visualisation shows
the motion of the single joints for two full object manipulation cycles. All joints
of the robot arm can be observed to be modified over time, while also accounting
for joints running into their lower or upper limits. In such cases, the evolution
causes slightly stronger updates for the remaining joints in order to compensate
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5.6. Grasping and Dexterous Manipulation

the errors and to keep satisfying the objectives. For the second experiment in
Fig. 5.15, a capsule was rotated around its vertical axis by defining target poses
on the surface for the thumb and index finger — having 16 DoF in total. Two
additional soft-constraints were similarly defined for the elbow position and wrist
orientation to obtain reasonable grasp postures. The object was moved in real-
time with 100 Hz optimisation time (0.01 s timeout) and low error below 1 mm, as

Figure 5.14: Dexterous object manipulation using the PR2 with the Shadow Dex-
terous Hand. Multiple objectives are used to update the arm, wrist and finger
joints simultaneously to rotate the cube around all three Cartesian axes. Nota-
tion: WR – wrist, FF – first finger, MF – middle finger, TH – thumb.
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shown in the manipulation and accuracy graphs. In general, the motion in both
experiments could be observed to be more human-like since not solving each finger
individually, but also providing proper joint updates for the wrist and arm.

Figure 5.15: Dexterous object manipulation using the KuKA LBR iiwa with the
Shadow Dexterous Hand. Multiple objectives are used to update the arm, wrist
and finger joints simultaneously to rotate the capsule around the vertical axis.
Notation: WR – wrist, FF – first finger, TH – thumb. [94]
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5.7 Collision Avoidance

A difficult task both in robotics and animation is given by collision avoidance,
but which is not generally straightforward to achieve in a computationally efficient
way. However, while robotics requires collisions to be avoided with higher priority
on reliability, the interest in animation is rather to ensure real-time capability to
maintain high interactive frame rates. In particular, a method is desired which
can be used to avoid collisions with the geometry itself and also with obstacles in
the environment in order to provide valid kinematic solutions in Cartesian space.
Although this is usually neglected for generic inverse kinematics solvers, the pro-
posed Bio IK algorithm can efficiently handle this task using the distance objectives
which were described in section 4.4.4. As shown in Fig. 5.16, the geometry of the
KuKA LBR iiwa robot is approximated by a set of spherical distance objectives.
The distance threshold for each pair of points between the robot segments and the
black sphere obstacle is calculated by the radius sum of both bounding spheres. In
the experiment, the robot arm smoothly avoids collisions by maintaining a variable
safety distance while reaching for the teal target sphere. Note that this distance
is controlled by the objective weights, which were set to 10´4 in the experiments.
Solutions were possible to find in real-time using a maximum timeout of 5 ms.

Figure 5.16: Real-time collision avoidance on the KuKA LBR iiwa manipulator
through approximating its geometry by a set of distance objectives.
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A more complex task was performed using the PR2 robot when moving the
gripper to a pose goal that was specified within an open box. The experiment
is visualised in Fig. 5.17. Similarly, the collision geometries for the arm and
box were approximated by a set of spheres through multiple distance objectives.
In more detail, each of the 6 distance objectives of the arm integrates the cost
to all 32 distance points of the box, resulting in 192 distance calculations per
fitness evaluation. When placing the target within a solid part of the box, the
algorithm still tries to reach the target as close as possible without resulting in
a collision. Finally, when placing the target within free space inside the box, a
solution can be found with safety distances to the nearest collision points. This
technique can be applied to achieve real-time collision avoidance for generic inverse
kinematics, but also comes with two challenges. First, the collision geometry needs
to be accurately specified which is not always straightforward. Second, a proper
weighting of distance objectives with respect to the other objectives must be found
such that the gripper gets close enough to the target.

Figure 5.17: Real-time collision avoidance on the PR2 mobile robot platform while
grasping into a box. The robot arm and box geometries were approximated by a set
of distance objectives, using 6 points for the arm and 32 for the box. As visualised,
the robot successfully rejects configurations which would result in collisions for
approaching the teal target sphere (left), but converges otherwise (right).
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5.8 Motion Reconstruction and Teleoperation

Another challenging application for inverse kinematics is given by remotely con-
trolling a robot in virtual reality through teleoperation. Similarly, it can be used
for interactively transferring motion of a real-human on a game character. Such
tasks require a fast and responsive real-time computation, and also the ability to
provide realistic postures for highly articulated models. Otherwise, difficulties in
the human-robot or human-computer interaction can occur by perceiving visual
feedback which largely differs from the expectation of the user. Thus, a robust
handling of different link lengths and joint limits between the kinematic structure
and the real-human operator must be ensured. In Fig. 5.19, an example of re-
constructing human motion on the NASA Valkyrie robot model in virtual reality
is shown. The robot geometry was defined as described in Fig. 5.18. Two po-
sition and orientation objectives were specified for the left and right wrist of the
robot, along with a further orientation objective for the head. The targets were
updated by the tracking information obtained from the HTC Vive controllers and
headset. The pose for the feet was set to be fixed on the ground while solving the
pelvis pose. Hence, only a few goals were used to reconstruct a full-body motion
on a complex humanoid robot. As can be observed, the algorithm successfully
evolves similar looking robot postures as those of the operator. The algorithm
further achieved smooth motion between posture transitions of standing, turning,
stretching, waving or kneeling, and was run in real-time with a timeout of 5 ms.

Figure 5.18: Kinematic setup for the experiment in Fig. 5.19.
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Figure 5.19: Motion reconstruction for teleoperation in virtual reality on the NASA
Valkyrie robot using the HTC Vive controllers and headset.
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5.9 Trajectory Generation

When generating motion on robots or virtual characters, the interest is often not
only in solving final postures, but also in providing trajectories of multiple neigh-
bouring postures between the start and goal configurations. In particular, interac-
tive applications in human-robot interaction and procedural character animation
typically require solving targets which are continually updated by the user, which
results in a dynamic optimisation problem with the objectives changing over time.
Thus, solutions are desired with minimal displacement to the given seed configura-
tion in order to avoid noisy and fluctuating movements. Solving such tasks is not
straightforward since an adaptive switching between exploitation and exploration
for the optimisation is required. More specifically, the goal of this is to follow the
direction of the error gradient as long as it leads to a suitable solution, but to
concurrently allow finding solutions with a larger distance in joint and Cartesian
space and to avoid getting stuck in joint limits.

Fig. 5.20 demonstrates the developed algorithm to be applicable for generating
smooth motion trajectories demonstrated on the 42 DoF human body mannequin.
Pose targets were specified for each end effector point on the feet and hands, and
were interactively moved by user input. Within each frame, only few generations
were required for posture refinements. In particular, constant update rates of at
least 250 Hz could be maintained for solving neighbouring solutions, making the
algorihtm fast enough to be used for multiple characters concurrently. However,
good looking motion could also be achieved for much lower optimisation times in or-
der to provide higher update rates. While pure genetic algorithms caused frequent
changes in the assigned postures due to the random jumps, it was observed that
these motion artifacts could be largely eliminated by the integrated swarm adop-
tion and elitism exploitation. Note that it was also possible to specify unreachable
goals, and the evolution could find an optimal joint variable configuration.

Figure 5.20: Real-time motion trajectories on the human body mannequin. [97]
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A further challenge that is particularly relevant in robotics is given by collision-
free trajectory generation. As visualised in Fig. 5.21, a linear interpolation of
trajectory poses from the start to the end pose of the right hand was initially
generated. Each pose was then solved and corrected with the Bio IK algorithm
while using additional distance objectives along the body in order to avoid collisions
with the obstacle sphere. Concurrently, the head was given a direction objective
to keep looking at the right hand. In total, the motion from the pelvis to the head
and right hand was considered while using a timeout of 10 ms. It can be observed
that a smooth and collision-free trajectory around the obstacle could be produced.

Figure 5.21: Real-time motion trajectories with collision avoidance on the NASA
Valkyrie humanoid robot model. Using position, orientation and distance objec-
tives, the given trajectory from the starting to the end pose through the sphere
obstacle is corrected such that the hand is smoothly moved around it.
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5.10 Animation Editing and Post-Processing

Character animation is a challenging field for which inverse kinematics has always
played an essential role. It is most commonly used for solving character postures
for animation keyframe creation. Two example postures for kicking and running
on the Kyle robot are visualised in Fig. 5.22. The full-body postures were gener-
ated using four pose targets for the hand and feet. Through interactively updating
the targets by user input, a set of keyframe postures can be created which finally
produce the animations by blending between postures. Once an animation has
been created, inverse kinematics can be used to create different styles of motion by
animation editing. The developed algorithm can be used for such tasks as demon-
strated in Fig. 5.23 using a quadruped Wolf character. Based on a default walk-
ing animation, the motion was separately modified for two different applications.
First, it was edited into a sneaking animation by resembling the full-body motion
through pose targets for the leg end effectors. The position and orientation values
were obtained by the transformations of the default animation. Furthermore, the
body was lowered by two position objectives for the pelvis and shoulder, and a
higher position goal was given for the tail. This animation could then again be
separated into keyframes for a new animation. Second, the motion was manipu-
lated to keep tracking an object while walking using a direction objective at the
head. The motion of the joints for the upper body from the pelvis along the spine
to the forelegs and to the head was optimised by the evolutionary algorithm.

Figure 5.22: Example postures for generating keyframes for kicking (left) and
running (right) animations on the Kyle humanoid. Four position and orientation
objectives are specified for the desired hand and feet poses.
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Figure 5.23: Real-time animation editing on the quadruped wolf character using
the proposed algorithm. The top row shows an existing animation for a walking
motion. The middle row shows the edited animation into a sneaking motion by
defining two position objectives for the pelvis and shoulder at a lower height, as
well as a further position goal at higher height for the tail. The bottom row shows
the walking animation being manipulated to keep looking at the orange box target.
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Furthermore, the algorithm was used for runtime animation post-processing on
the Kyle humanoid. A common task for this is given by automatic foot placement
in games, which aims to correct the poses of the feet in a way that they do not
disappear in the ground when contacting the surface, but become properly aligned
while traversing the terrain. As visualised in Fig. 5.24, the joints from the pelvis
along both legs to the contact points located at the underside of the feet are post-
processed using projection objectives. For each objective, a normal is pointing

Figure 5.24: Setup for terrain-adaptive foot placement through animation post-
processing as demonstrated in Fig. 5.25. The geometry of the Kyle humanoid
from the pelvis to both feet contact points is post-processed by the algorithm.
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downwards through each foot. Each raycast starts from a 0.5 m offset above the
foot and ends exactly at the specified contact point. This aims to find a projected
target pose in case the feet collide or disappear in the ground. If no surface
intersection occured, the position and orientation values from the default running
animation are used. Fig. 5.25 demonstrates that the algorithm can successfully be
applied to solving such tasks while using a timeout of 1 ms per frame.

Figure 5.25: Runtime animation post-processing for terrain-adaptive foot place-
ment. Given the running animation, the feet of the Kyle humanoid are automati-
cally corrected by projection objectives to be appropriately placed on the ground
in case they would disappear in the environment geometry.
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5.11 Evolutionary Landscapes

The following experiments aim to validate the intended behaviour in search space
exploration and exploitation by visualising the evolutionary optimisation. First,
Fig. 5.26 shows the distribution of the fitness landscape after optimising a full-
body posture on the NASA Valkyrie humanoid with pose targets for the hand and
feet, as well as a viewing target for the head. The corresponding distribution of
evolved postures with their fitness values over all individuals is visualised in Fig.
5.27 and Fig. 5.28. The population size was set to ϕ “ 50 and κ “ 3 elites were
used. It can be observed that a high quality could be achieved especially for the
elites, while a reasonable amount of diversity was maintained for the remaining
population. Thus, the evolution did not entirely run into a single solution, but
still covered a larger area in the search space after convergence. Furthermore,
Fig. 5.30, Fig. 5.31 and Fig. 5.32 visualise the particle propagation of individuals
on the human mannequin, Kyle, Shadow Dexterous Hand and NASA Valkyrie
geometries. The plots demonstrate that multiple solutions can be tracked and
found simultaneously, which is mainly controlled by the number of elites as shown
in Fig. 5.29. More specificaly, using κ “ 1 elite individuals makes the algorithm
to behave very similar to a local search and less likely to escape from suboptimal
extrema. This aligns with the parameter efficiency previously shown in Fig. 5.1.
Using more elite individuals with κ “ 3 or κ “ 6 demonstrates a more multi-
modal optimisation, and seems to provide a larger amount of individuals with
better fitness values. In the fitness bars, the color of the particles represents their
quality from low (red) to high (green). In general, it is demonstrated that the
algorithm can robustly find solutions even for high-dimensional problems.

Figure 5.26: Fitness landscape for the experiment in Fig. 5.27 and Fig. 5.28.
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Figure 5.27: Evolved postures on the NASA Valkyrie of individuals Ψ1,...,25.
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Figure 5.28: Evolved postures on the NASA Valkyrie of individuals Ψ26,...,50.
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Figure 5.29: Evolutionary landscape for inverse kinematics on the upper body
of the human mannequin. Each column represents one joint dimension with the
full optimisation history until convergence from left to right. Each row shows the
fitness distribution over all individuals with the color indicating the fitness. [97]
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Figure 5.30: Evolutionary landscape for full-body inverse kinematics on the Kyle
humanoid. Each column represents one joint dimension with the full optimisation
history until convergence from left to right. The top row shows the fitness distri-
bution over all individuals with the color indicating the fitness. The middle row
shows the procreation from parent to offspring individuals within each generation.
The bottom row exclusively visualises the history of elite individuals.
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Figure 5.31: Evolutionary landscape for solving humanoid grasps on the anthro-
pomorphic Shadow Dexterous Hand. Each column represents one joint dimension
with the full optimisation history until convergence from left to right. The upper
row shows the fitness distribution over all individuals with the color indicating the
fitness. The lower row shows the procreation from parent to offspring individuals
within each generation. [94]
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Figure 5.32: Evolutionary landscape for inverse kinematics on the NASA Valkyrie
arm. Each column represents one joint dimension with the full optimisation history
until convergence from left to right. Each row shows the fitness distribution over
all individuals with the color indicating the fitness. [94]
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5.12 Work Examples and Dissemination

This final experiment section includes some work that has been created through
dissemination of the developed Bio IK algorithm in Unity3D. In particular, the
examples suggest that it is especially well-suited for interactive control of highly-
articulated geometries in virtual reality applications.

5.12.1 Holographer

The Holographer tool was developed for artful photography of posed characters in
virtual reality [32]. The skeleton of a character is adjusted through full-body in-
verse kinematics by interactively moving its bones using the HTC Vive controllers.
In particular, pose targets are not only specified for the end effector, but also
dynamically activated for intermediate segments along the kinematic chains. In
this application, is was important being able to create arbitrary inverse kinematics
setups for different character geometries, and to allow joint limit specifications in
order to obtain realistic postures at any time. First, the models are placed in the
scene and are located inside the camera port (1). The bones of each character are
then manipulated by user control until a desired posture is obtained (2). After
some final adjustments of the character positions in the camera port (3), the scene
is rendered into a photo (4). This workflow in Fig. 5.33 was demonstrated to be
an elegant method for artists to easily pose their characters in virtual reality. As
Bio IK can handle generic geometries, it could directly be used for any desired
setup. Furthermore, it can similarly be applied to animation keyframe generation.

Figure 5.33: Virtual photography by posing characters in Holographer. [32]
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5.12.2 Robot Simulator

The Bio IK asset was further used for the development of a virtual reality robot sim-
ulator [98]. In this, the user can interactively use different industrial robots, apply
joint configuration adjustments, and generate trajectories and motion sequences
for manipulation tasks. The control input is given by the HTC Vive controllers.
In Fig. 5.34, the workflow for an interactive trajectory generation is visualised
using the Fanuc M-10iA serial manipulator. A welder is attached to the robot end
effector. The robot is first moved into a suitable start configuration by the user
(1), defining the first trajectory pose. The user then interactively generates a se-
quence of poses on the surface of the object to be manipulated (2). Those are then
solved by the inverse kinematics algorithm to move the welder along the defined
trajectory lines by the target poses (3,4). In addition to the previous experiment
in Fig. 5.19, this simulation tool demonstrates the applicability of the algorithm
for tasks in human-robot interaction. Furthermore, it was also successfully applied
to solving inverse kinematics on parallel robots as visualised in (5,6,7).

Figure 5.34: Interactive robot simulator in virtual reality. [98]
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5.12.3 Guitar Teacher

Another software that was built using Bio IK is an interactive tool for teaching
guitar playing [20]. The finger grasps for the chords can be viewed from different
camera perspectives by the user. Every finger is assigned a particular pose target
on the guitar fret. However, as this offers a variety of grasp solutions for inverse
kinematics, additional position objectives were used for intermediate finger seg-
ments in order to shape optimal and naturally-looking grasps. In particular, some
fingers should rather be bended while others are desired to be stretched depending
on the grasp types. Concurrently, slight rolling for the finger tips was preferred
while adjusting them, which could be achieved by a proper weighting between po-
sition and orientation objectives. This is a particularly challenging task for such
applications, and for which related methods were found to be rather limited.

Figure 5.35: Guitar teaching with finger grasp visualisations. [20]
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5.12.4 Posture Training in Augmented Reality

The algorithm was further used for scientific research in human-computer interac-
tion [45]. The aim was to evaluate the human perception of visuo-haptic feedback
in augmented reality by pushing the arms of a user. The experimental setup is
visualised in Fig. 5.36, and which uses the Stylo-Handifact spatial user interface
to generate the psychophysical stimuli. Stylo is a haptic device which is attached
to the forearm, and Handifact refers to the visualisation of the virtual hand in
augmented reality. In particular, the Handifact is given by a rigged and textured
model of the human hand. The Bio IK asset was then used for solving postures
of the hand for visualising different pressure levels of pushing, as shown in the top
row. The middle row shows the generated view of the user in augmented reality
when wearing a head-mounted display. The bottom row visualises the method
used for an interactive Tai-Chi training system to correct the motion of the prac-
titioner. For these tasks, realistic configurations based on the joint limits had to
be generated robustly in real-time. This was important to provide an immersive
perception for the user when getting pushed by the virtual hand.

Figure 5.36: Interactive posture training system in augmented reality using the
Stylo-Handifact spatial user interface for visuo-haptic feedback. [45]
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Chapter 6

Conclusion

6.1 Summary

This thesis proposed Bio IK as a novel memetic evolutionary algorithm for solving
inverse kinematics with multiple objectives on fully-constrained generic geometries.
Given a hierarchical kinematic structure, Cartesian position and orientation tar-
gets can be solved concurrently for multiple segments along the kinematic chains.
It further extends traditional inverse kinematics by the ability to specify custom
cost functions by additional task-specific objectives. Those can be used for solving
directional goals to look at particular objects, real-time collision avoidance with the
own geometry or the environment, functional joint dependencies for anthropomor-
phic grasps, or to prioritise particular posture configurations not only in Cartesian
but also in joint space. Further objectives can also be created for individual needs
of the user given a twice-differentiable formulation. The research was motivated
by the issue that methods for such tasks did neither seem readily available nor ex-
tensively studied, but are essentially required for various applications in robotics
and animation. In particular, the literature review of related popular methods of
both domains revealed that their benefits and limitations in solving inverse kine-
matics seem to behave mutually exclusive. Therefore, the aim was to combine
the characteristic strengths of different optimisation methodologies — hybridising
biologically-inspired evolutionary and swarm optimisation with the gradient-based
L-BFGS-B method. This allows the developed algorithm to perform a multi-modal
global and local search at the same time while robustly avoiding suboptimal ex-
trema and singularity issues, as well as providing fast convergence and scalability
for high DoF geometries. In addition, the algorithm was designed to perform an
adaptive optimisation, and only requires two parameters for the population size
and number of elites to be defined. The experiments on several industrial manipu-
lators as well as on humanoid and anthropomorphic robots and virtual characters
demonstrated the algorithm to be suitable for different tasks in robotics and ani-
mation. When solving a larger set of randomly-sampled reachable pose configura-
tions, similar speed of convergence as for popular gradient-based methods could be
achieved, but with significantly higher success rates on all tested geometries. The
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algorithm was further successfully applied to solving full-body postures and kine-
matic motion on the NASA Valkyrie robot, collision-free trajectory generation, as
well as for reconstructing real-human grasps and dexterous manipulation with the
Shadow Dexterous Hand. Especially the abilities to integrate collision avoidance
for generic inverse kinematics as well as to specify intermediate and individually
weighted objectives along the kinematic chains for controlling manipulation tasks
were found to be particular strengths of the proposed optimisation framework.
The method was also demonstrated to create realistic postures for teleoperation in
human-robot interaction by reconstructing the motion of a real-human operator.
Extending the field of application to character animation, the algorithm could be
applied to full-body animation editing of a highly-articulated quadruped charac-
ter, as well as to animation post-processing for terrain-adaptive foot placement of
a humanoid character. All experiments were done in real-time without requiring
any offline precomputations, and no model-specific kinematic equations were hard-
coded to support the optimisation. The visualisations of evolutionary landscapes
then validated the intended behaviour of the algorithmic design in performing a
multi-modal, robust and adaptive optimisation. The algorithm was made avail-
able as implementations for Unity3D (C#) and ROS (C++). It has so far gained
popularity and acknowledgement in both domains by contributing to research in
robotics, human-computer interaction, animation and game development. Finally,
this thesis demonstrated and aims to motivate memetic evolution as a competitive,
efficient and flexible methodology for solving complex inverse kinematics postures.

6.2 Novelty and Contributions

The following most relevant aspects of the proposed research were found to be
novel and contributing to the scientific community:

• A novel memetic algorithm for generic multi-objective inverse kinematics that
can be used for solving postures on highly-articulated kinematic geometries.

• Applicability for challenging applications in robotics, such as grasping with
dexterous anthropomorphic hands and full-body motion of humanoid robots,
as well as for character animation editing and post-processing.

• Competitive against popular state-of-the-art methods, flexible and extend-
able design of cost functions and objectives, and integration of real-time
collision avoidance for generic inverse kinematics.

• Available implementations for Unity3D and ROS in order to support research
and development in robotics and animation.

• Algorithmic hybridisation of evolutionary, swarm and gradient-based opti-
misation using the L-BFGS-B method, which acts as a general optimisation
methodology that is not restricted to inverse kinematics, but can be applied
to bounded twice-differentiable continuous optimisation problems.
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6.3 Limitations and Challenges

Generally, the algorithm was found being flexibly applicable for different tasks by
using suitable combinations of objectives. Even if some functionalities were missing
to fulfil a task, new objectives could be defined quite straightforwardly. However,
main difficulties were observed in finding proper weightings to combine the different
objectives, and which is not generally clear how to solve. In particular, setting
higher weights for collision avoidance or intermediate position or orientation goals
along the kinematic chains can result in not accurately solving end effector targets
anymore, and which are usually of higher importance. Although this behaviour
is correct in terms of multi-objective optimisation, it might not always yield the
desired results for the user. Furthermore, due to the probabilistic optimisation,
it is possible that sudden changes between solutions might occur. Although this
was only observed in very rare cases or for near-singular configurations, and could
be eliminated using a displacement objective to penalise large changes, this issue
should be considered when applied to real-world robotics applications. It was
also observed that the algorithm should be given 1–2 ms optimisation time for
animation editing or post-processing tasks whereas 16 ms (60 Hz) represents the
usual time limit in games in order to maintain real-time frame rates. This suggests
that the algorithm is predominantly suited for fine control of one or some few main
characters rather than for controlling multiple but less important characters at the
same time, and for which computationally faster but less powerful methods are
typically sufficient. Nevertheless, there should be very few cases in which solving
fine control of motion on multiple characters concurrently is actually required.

6.4 Future Work

So far, the algorithm has been predominantly applied to pure kinematic purposes,
but not yet considering the dynamics of the system. Although first experiments
for robot balancing have been successfully conducted in [87] by designing center-
of-gravity objectives, extending the method to inverse dynamics outlines a very
promising goal for future work. Another research goal would be to design a func-
tionality or several heuristics for automatically chosing appropriate weights to com-
bine the objectives. Further investigations might include solving more challenging
tasks in dexterous manipulation, as well as deploying the method for procedurally-
generated animation and close-character interactions. The method can also be
utilised for data augmentation for deep learning by generating manifolds of dif-
ferent motions, trajectories or animations. Finally, the evolutionary optimisation
might be combined with a pretrained neural network controller which generates
an initial solution for inverse kinematics. This solution can then be used as a bias
individual for the evolution, which might not only achieve a faster convergence,
but perhaps also offer a more predictive solution manifold for a given input.
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