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Abstract

This thesis is concerned with the dynamics in open quantum systems on the basis of so-
called system-bath models. Therein, a physical problem is partitioned into a quantum
system of interest and a (large) surrounding environment. The latter constitutes a
(heat) bath. As a principle, however, the bath degrees of freedom are assumed to be in
thermal equilibrium, even while the system can be perturbed by strong external driving
forces. This thesis presents collected works concerned with extending the system-bath
framework to the situation of driven bath modes.

We show that a dipole-type coupling of bath modes to a classical electric �eld leads
to an e�ective force on the quantum system of interest. This force represents the e�ect
of the nonequilibrium distribution of the bath and depends on its spectral characteristics.
We analyze this force in detail and investigate its e�ect on suitable model systems. We
�nd that the linear response for a polarizable molecule immersed in liquid water and a
colloidal quantum-dot metal-nanoparticle setup is qualitatively altered and includes
negative absorbance. Quantum dynamics are obtained for the driven spin-boson model
by utilizing a Born-Markov quantum master equation approach and the non-interacting
blip approximation. The resulting force is most relevant at low temperatures and
small to intermediate system-bath coupling strength with strong external driving �elds.
We �nd evidence that excitation of the quantum system by way of this force is more
e�ective when resonances are present in the environment.

As an example for a nonequilibrium environment, we also consider the optical
response of liquid water to an intense terahertz pulse by analyzing the resulting Kerr
e�ect. We employ a matrix method on the basis of an Euler-Langevin equation to
characterize the rotational dynamics of a water molecule and compare the theoretical
predictions with experimental data. We �nd some qualitative agreement and a strong
in�uence of the permanent molecular dipole moment on the resulting signal. A prelim-
inary analysis suggests that bath driving e�ects can secure better aggreement with the
experimental data.

Finally, we discuss the extension to parametrically driven bath modes and give an
outlook to more applications where bath driving can be used as a modelling prescription.
We hope that the research contained in this thesis paves the way for further research
on the topic of driven quantum baths and is able to inform novel applications.
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Kurzfassung

Die vorliegende Dissertation behandelt die Dynamik in o�enen Quantensystemen auf
Basis sogenannter System-Bad-Modelle. Darin wird ein physikalisches Problem in ein zu
untersuchendes Quantensystem und eine (große) Umgebung eingeteilt. Letzteres stellt
ein (Wärme-) Bad dar. Im Allgemeinen wird das Bad als im thermischen Gleichgewicht
angenommen, obwohl das System durch starke externe Treibkräfte beein�usst werden
kann. Diese Dissertation widmet sich daher der Verallgemeinerung von System-Bad-
Modellen zu getriebenen Badmoden.

Wir zeigen, dass eine dipolartige Kopplung der Moden an ein klassisches elektrisches
Feld zu einer e�ektiven Kraft auf das Quantensystem führt. Diese Kraft drückt die resul-
tierende Nichtgleichgewichtsverteilung des Bades aus und hängt von dessen spektralen
Eigenschaften ab. Wir betrachten diese Kraft im Detail und untersuchen deren E�ekt auf
verschiedene Modellsysteme. Konkret �nden wir qualitative Änderungen und negative
Absorption im linearen Antwortverhalten eines polarisierbaren Moleküls in Wasser,
sowie dem eines kolloidalen Quantenpunktes in Kontakt mit einem metallischen Nan-
oteilchen. Weiterhin wird die Quantendynamik des getriebenen Spin-Boson-Modells
mit Hilfe einer Born-Markov-Quantenmastergleichung und der “non-interacting-blip”-
Näherung betrachtet. Es zeigt sich, dass die Kraft am wirkungsvollsten bei niedri-
gen Temperaturen, schwacher bis mittlerer Kopplungsstärke und starken elektrischen
Feldern wird. Wir �nden zudem Hinweise darauf, dass das Quantensystem durch die
Existenz einer Badresonanz e�ektiver angeregt wird.

Als weiteres Beispiel für eine Nichtgleichgewichtsumgebung betrachten wir die
optische Antwort von Wasser auf einen intensiven Puls im Terahertzbereich durch
Analyse des Kerr-E�ekts. Dazu verwenden wir eine Matrixmethode auf Basis einer
Euler-Langevin Gleichung für die Rotationsbewegung eines Wassermoleküls und vergle-
ichen die theoretischen Vorhersagen mit experimentellen Messungen. Wir �nden eine
grobe qualitative Übereinstimmung sowie einen starken Einschlag des permanenten
Dipolmoments auf das entstehende Signal. Erste Analysen lassen vermuten, dass eine
bessere Übereinstimmung mit den experimentellen Daten durch getriebene Bade�ekte
erreicht werden kann.

Wir schließen die Dissertation mit einem Ausblick auf potenzielle Anwendungen
und eine Erweiterung des Formalismus zu parametrisch getriebenen Bädern. Wir ho�en,
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dass die Ergebnisse in dieser Dissertation zu weiterer Forschung im Bereich getriebener
Quantenbäder führt und neuartige Anwendungen inspirieren kann.
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mann Grabert.

• The entirety of Part 6. This includes the derivation of the in�uence functional
for a linearly driven bath, the emergence of the non-Markovian force, the strong
coupling, non-zero temperature dynamics for dipolar bath driving and the outlook
to parametric bath driving.

• The outlook and detailed discussion of water dynamics with respect to the Kerr
e�ect in Part 7.
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the transition probability and extensions to the Kerr e�ect theory of Part 7.

vi



Contents

1 Introduction: Driven quantum baths 1

2 Quantum dissipation and system-bath models 4
2.1 Decoherence and relaxation . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Golden rule rates . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Dephasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Detailed balance . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 System-bath models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 The Caldeira-Leggett model . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Bath spectral density . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 The spin-boson model . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Some solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Quantum master equations . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Path integral methods . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 The Onsager model and driven quantum systems 34
3.1 Electrodynamics in materials . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Macroscopic Maxwell equations . . . . . . . . . . . . . . . . . . 34
3.1.2 Electrostatic boundary conditions . . . . . . . . . . . . . . . . . 37
3.1.3 Dynamic polarization . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.4 Refractive index and dielectric function . . . . . . . . . . . . . 39
3.1.5 Nonlinear e�ects and Kerr e�ect . . . . . . . . . . . . . . . . . 41
3.1.6 Molecular polarizability . . . . . . . . . . . . . . . . . . . . . . 43

3.2 The Onsager solvation model . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Continuum solvation models . . . . . . . . . . . . . . . . . . . 46
3.2.2 Electrostatics for the Onsager sphere . . . . . . . . . . . . . . . 47
3.2.3 Connection to system-bath models . . . . . . . . . . . . . . . . 50

3.3 Driven dissipative quantum systems . . . . . . . . . . . . . . . . . . . . 51
3.3.1 General features . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



3.3.2 Dipolar coupling to a time-dependent electric �eld . . . . . . . 53
3.3.3 Transition probabilities of a driven two-state system . . . . . . 54
3.3.4 Linear response theory . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.5 Optical Bloch equations . . . . . . . . . . . . . . . . . . . . . . 59
3.3.6 Floquet theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Linear response of nanosystems in a linearly driven bath 63
4.1 The driven bath Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Quantum Langevin dynamics for a linearly driven bath . . . . . . . . . 64

4.2.1 Caldeira-Leggett model . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Spin-boson model . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.3 Evaluation of the e�ective force . . . . . . . . . . . . . . . . . . 67

4.3 Polarizable molecule immersed in water . . . . . . . . . . . . . . . . . . 69
4.3.1 Water in the THz regime . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 Linear response of a polarizable molecule . . . . . . . . . . . . 72
4.3.3 Dynamic polarizability . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Interacting quantum-dot metal-nanoparticle setup . . . . . . . . . . . . 77
4.4.1 Quantum dots and plasmons . . . . . . . . . . . . . . . . . . . . 79
4.4.2 The two-sphere geometry . . . . . . . . . . . . . . . . . . . . . 80
4.4.3 Linear response of the quantum dot . . . . . . . . . . . . . . . . 82
4.4.4 Evaluation of the linear response . . . . . . . . . . . . . . . . . 84

4.5 Conclusion of Part 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 The non-Markovian force and quantum master equation approach 88
5.1 The non-Markovian force . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1 The e�ective force . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.2 Rede�ned Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.3 Characterization of the non-Markovian force . . . . . . . . . . 94

5.2 Adiabatic-Markovian master equation approach . . . . . . . . . . . . . 97
5.2.1 Liouville space quantum master equation . . . . . . . . . . . . 97
5.2.2 Born approximation . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.3 Adiabatic-Markovian approximation . . . . . . . . . . . . . . . 101
5.2.4 Rates and Bloch equations . . . . . . . . . . . . . . . . . . . . . 103

5.3 Two-state system dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.1 Validity of the nonequilibrium Bloch equations . . . . . . . . . 106
5.3.2 Zero temperature rates and bath state . . . . . . . . . . . . . . 107
5.3.3 Time-dependent dynamics . . . . . . . . . . . . . . . . . . . . . 108
5.3.4 Response spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Conclusion of Part 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



6 Driven in�uence functional and strong coupling dynamics 117
6.1 The path integral formulation and the non-interacting blip approximation117

6.1.1 Closed expressions for the system dynamics . . . . . . . . . . . 119
6.1.2 The non-interacting blip approximation (NIBA) . . . . . . . . . 125
6.1.3 Dynamics within the NIBA . . . . . . . . . . . . . . . . . . . . 127

6.2 Formulation for a linearly driven bath . . . . . . . . . . . . . . . . . . . 129
6.2.1 The in�uence functional for a linearly driven bath . . . . . . . 129
6.2.2 Initial correlations and emergence of the non-Markovian force 132
6.2.3 NIBA dynamics for a linearly driven bath . . . . . . . . . . . . 134
6.2.4 Parametrically driven baths . . . . . . . . . . . . . . . . . . . . 143

6.3 Conclusion of Part 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 THz Kerr e�ect dynamics in liquid water 146
7.1 Kerr e�ect dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.1.1 Microscopic description . . . . . . . . . . . . . . . . . . . . . . 147
7.1.2 Euler-Langevin description . . . . . . . . . . . . . . . . . . . . 148
7.1.3 Wigner’s D-functions . . . . . . . . . . . . . . . . . . . . . . . 150
7.1.4 Matrix formulation of the dynamic Kerr e�ect . . . . . . . . . . 152
7.1.5 Exact solution for isotropic di�usion . . . . . . . . . . . . . . . 154

7.2 Implementation for liquid water . . . . . . . . . . . . . . . . . . . . . . 155
7.2.1 The case of liquid water . . . . . . . . . . . . . . . . . . . . . . 155
7.2.2 Resulting dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.2.3 Possible corrections . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3 Conclusion of Part 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8 Summary and outlook 167

Appendix A Mathematical identities and de�nitions 169

Appendix B Cavity and reaction �eld for a layered sphere and an ellipsoid172

Appendix C Evaluation of correlators in the Liouville space formalism 177

AppendixD Transitionprobabilities from thenonequilibriumBloch equa-
tions 180

Appendix E Evaluation of the path integrals 182

Appendix F Corrections to the THz Kerr e�ect in water due to interac-
tions and bath driving 186

ix



Part 1

Introduction: Driven quantum baths

The statistical equilibrium by itself is an idealized time-independent state. However,
even simple things such as driving a current through a wire or heating up a metal drives
the substance out of its thermal equilibrium state for a time. In fact, any time-dependent
force creates a nonequilibrium situation in principle [4]. It is for this simple reason that
understanding nonequilibrium phenomena represents a focal point for physical inquiry.
While transport problems and chemical reaction kinetics [5–7] are probably the most
well known examples, novel methods of quantum control such as the emergence of
topological phases from driving [8, 9] or light-induced superconductivity [10, 11] are
also applications related to nonequilibrium phenomena.

In the easiest case, the dynamics out of equilibrium can be rendered by expansion of
the density matrix around the equilibrium state with only small deviations originating
from external stimuli [5]. Well known formulae such as Ohm’s law can be derived
using this simple picture [12]. Another class of approaches is given by semiclassical
descriptions based on the early work on statistical physics, such as the Boltzmann,
Fokker-Planck and Smoluchowski equations, which describe the time evolution of the
partition function by way of particle collisions or di�usive processes [7, 13]. Today,
sophisticated schemes such as renormalization group methods (e.g. [14–16]), the
Keldysh formalism [17, 18] or specialized simulation techniques (e.g. [19, 20]) are
commonplace.

This work is concerned with a particular class of phenomenological descriptions
called system-bath models. Therein, a physical problem is partitioned into a system of
interest and a surrounding environment. The latter is represented through one or many
large reservoirs, called baths, usually assumed to be in thermal equilibrium. In contrast
to the ordinary treatment in statistical physics and thermodynamics, these (heat) baths
are modeled explicitly through microscopic degrees of freedom. This allows to describe
the reequilibration of a quantum system or to investigate the competition between
driving, damping and decoherence in its dynamics. Collected under the label Quantum
Dissipation, these models have been used in the past to analyze the behavior of quantum
dots in order to �nd suitable conditions for quantum computing [21–23], the decay of
excitons in biological complexes [24–26] or the low-temperature tunneling dynamics
in glasses [27–30]. In fact, their versatility and the inherently microscopic approach
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makes them a highly useful and successful framework to develop appropriate models
for a variety of physical applications (see [31–33] and the references therein).

As a principle, however, the bath degrees of freedom are kept in thermal equilibrium,
even while the system can be perturbed by strong external driving forces. This is
mandated only for cases where any coupling to the external force can be neglected or
the thermalization times are comparably fast such that any deviation from the original
equilibrium is negligible on the relevant time scales. This dissertation presents collected
works concerned with extending the system-bath framework to the situation of driven
bath modes and investigates their e�ect on the dynamics of a system of interest.

Indeed, how environmental driving (or a nonequilibrium environment in general)
impacts the response of physical systems has been the question in a variety of physical
applications and more formal work on the issue has garnered attention in recent
years. For instance, Grabert and Frey showed that current �uctuations, which act as
bath driving contributions, produce additional noise sources in the case of tunneling
junctions [34–36]. Furthermore, molecular dynamics simulations of liquid water imply
that strong THz pulses can be used as an e�cient heating mechanism and succeed to
transfer energy into distinct modes of immersed molecules [37–39]. Driven baths have
also been used for quantum cosmology [40], proposed as a model for the (instantaneous)
normal modes in liquids [41, 42] and as a potential way to analyze surface enhanced
Raman scattering or increase the e�cacy of chemical reactions [1, 43].

In this dissertation, we focus our attention on the case of bilinear driving with
classical �elds and show that the system-bath framework leads to the creation of
an additional force component which acts on the system of interest. This new force
represents the full nonequilibrium dynamics of the bath and does not lead to a change of
its �uctuation spectrum. We show that the resulting e�ective force qualitatively changes
the response of the system of interest and paves the way for further development in
the �eld of driven quantum baths. We also outline ways to extend to the parametrically
driven case and discuss a possible application in nonlinear optics.

The setup of the thesis follows this outline. We start with an introduction to system-
bath models in Part 2. This includes a discussion of the two most relevant toy models
(the Caldeira-Leggett and spin-boson models) as well as a general introduction to
relaxation and decoherence phenomena. Since system-bath models are by themselves
problems of many-body physics, we outline a few sophisticated solution methods. Two
of which (master equations and the path integral approach) are discussed in more detail
and are applied to the problem in subsequent chapters.

Part 3 concerns classical electrodynamics and the dynamics of driven quantum
systems. Particular focus lies on linear and nonlinear dielectric phenomena where we
introduce both terminology and the relevant molecular quantities of interest. This
chapter also introduces continuum solvation models which describe the environment
on the basis of its dielectric properties. One particularly simple implementation, the
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Onsager sphere model, will be discussed in more detail and allows us to de�ne the
spectral characteristics of our baths. Finally, we present a brief introduction to driven
quantum systems on the basis of a generic two-state system. We show how its dynamics
can be framed by transition probabilities and we give a short account of linear response
theory and the optical Bloch equations.

We start with the discussion of driven quantum baths in Part 4, based on a �rst
original paper on the topic [1]. Here, we introduce the notion of dipolar bath driving
and evaluate the dynamics on the basis of a quantum Langevin approach. We go on to
determine the corrected linear response for two particular nanosystems. Speci�cally, a
polarizable molecule immersed in water driven by a THz �eld source and a quantum-dot
metal-nanoparticle setup excited by an optical laser �eld. The Onsager sphere model
will be used to quantify the resulting force.

Part 5 is concerned with generalizing the resulting force contribution and elucidates
its connection to nonequilibrium dynamics. In this part, we show how the e�ective
force can be introduced on the level of the Hamiltonian and re�ects the nonequilibrium
state of the bath due to external driving of the bath modes. We then present and utilize
an established master equation approach for a coupled two-state system. This allows
us to derive a response function where the e�ective force is taken into account in a
nonlinear way. This part is based on a second publication on the topic [2].

Part 6 translates the problem into the path integral language. We derive the driven
in�uence functional and show how the e�ective force emerges naturally from this
approach. The dynamics of a coupled two-state system are then derived by way of the
non-interacting blip approximation which allows us to investigate the high temperature,
strong system-bath coupling regimes. Speci�cally, we look at the resulting dynamics in
four di�erent coupling and temperature ranges and compare to what was found in the
preceding chapters. Finally, we brie�y discuss the generalizing case of parametrically
driven baths as an outlook for future research. This part of the thesis contains novel
work which has not been published yet.

In Part 7, we look at a particular experimental realization where external preparation
of the environment by a pulse changes the response of a dynamical quantity. Speci�cally,
we look at the theoretical treatment and analysis of the Kerr e�ect, a nonlinear electric
e�ect which induces birefringence in an otherwise isotropic liquid. We implement
the theory for the case of water and compare our results to recent measurements in
the terahertz regime. The chapter closes with an outlook, where we discuss possible
improvements and also brie�y consider the e�ect of bath driving contributions. This
chapter contains work published in a recent collaborative paper [3].

We close this work with Part 8, which contains a summary of the work done in
this dissertation and presents an outlook for future implementations of bath driving.
Particular focus will be given to physical applications, where bath driving may play an
important role to describe the underlying physical phenomena.
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Part 2

Quantum dissipation and system-bath models

Environments are ubiquitous in physical applications. From the coupling of elemen-
tary particles to the electromagnetic �eld to the interaction of biomolecules with the
surrounding water, small functional entities usually couple to a macroscopic number of
peripheral degrees of freedom which together constitute an environment or bath as in
“heat bath”. A large environment leads to ordinary damping in the form of relaxation as
well as to the loss of quantum features in a process called decoherence [44–46]. Both
phenomena are the subject of dissipative quantum mechanics, a �eld concerned with
methods designed to mimic and explain the underlying dynamics of open quantum sys-
tems and related applications (see, e.g., [33, 47]). In this part of the thesis we are going
to present some basic ideas of dissipative quantum mechanics and discuss methods to
tackle the emerging many-body physics.

We start with a short introduction to decoherence and relaxation e�ects in the
quantum realm and give some simple expressions for relaxation dynamics on the basis
of golden rule rates. The second section introduces system-bath models. Speci�cally,
we discuss the spin-boson and Caldeira-Leggett models which constitute the minimal
models of dissipative quantum mechanics. Both will be instrumental for our discussion
of the e�ect of a driven bath. This section also contains a brief introduction to spectral
densities. Finally, we close this part with a third section that will discuss some approxi-
mate solution methods for the system-bath problem with a focus on master equation
and path-integral approaches. This part of the thesis is largely based on the books by
Nitzan [5], Weiss [33] and Caldeira [31] which should be consulted for more details on
the subject.

2.1 Decoherence and relaxation

The Hamiltonian time evolution of quantum mechanics is reversible and an isolated
atom will experience the same dynamics, no matter the sign of the time arrow. This
observation stands in contrast to the presence of irreversibility and the absence of
quantum e�ects in macroscopic systems. The answer to this dilemma is found in
the presence of an environment: coupling many external degrees of freedom to a
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Figure 2.1: Dynamics of the Jaynes-Cummings model (JCM) based on the formulas in Zimmer-
mann and Wauer [48] and Meystre and Sargent [49] for three di�erent initial conditions. The plot
shows the probability Pe(t) of �nding the system in the excited state of the two-state system (TSS).
We assumed resonance (the detuning is zero) and set the coupling constant toM = 0.5∆, where ∆
is the TSS splitting. No dynamics are observed for the case when the JCM starts in an eigenstate
(green dotted line). Zero detuning gives an even superposition between excited and non-excited state
such that the value 1/2 is obtained from projection. Regular oscillations are found when starting in
a state with �xed photon number (n = 0, blue dashed line). This is an eigenstate of the uncoupled
system but a superposition state of the full JCM, showcasing what is known as quantum beats.
Starting with the oscillator in a coherent state (modulus |α| = 6.0; red solid line) leads to a quick
collapse from dephasing but also to periodic revivals after some time (inset). This implies that only
macroscopic environments can lead to irreversibility.

quantum system leads to energy transfer, while the interaction leads to a process called
decoherence. The latter means that superposition states decay as a large environment
constantly measures the state of the quantum system, thus restricting it to certain basis
states. For this reason, decoherence is often cited as the answer to the Schrödinger’s
cat thought experiment [50]. Of course, coupling a system to a large environment does
not mean that their combination shows irreversibility or loses its quantum mechanical
nature; Irreversibility arises, because we restrict our observation to the small quantum
system and its Poincaré recurrence time is practically in�nite for large environments.
One can think of classical statistical mechanics where the system gets “lost in phase-
space” over time [5].

Understanding the precise nature of both e�ects is important for a variety of ap-
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plications. For instance, irreversibility means damping and knowledge of the tiime
scales involved is highly important when driving systems or in order to ensure speci�c
deexcitation pathways. Examples include lasers, where an excitation has to quickly
decay into a radiative pathway in order to produce a population inversion [51, Chapter
1] or rhodopsin, the molecule responsible for photon detection in the retina, whose
excited state persists much longer in its biological environment than without it - likely
to ensure e�cient signal transduction [26, 52]. In turn, understanding and quantify-
ing decoherence is particularly important when considering quantum computational
applications. Here, superposition states are used to store information so any decay
whatsoever must be avoided when performing calculations [53]. In addition, low de-
coherence can lead to long-lived oscillations (an example of so-called quantum beats,
see below) which have been discussed as a method to enhance energy transfer in the
Fenna-Matthews-Olson complex, a protein which plays a crucial role for photosynthesis
in green bacteria [54, 55]. While this was subsequently all but disproven at ambient
temperatures [56, 57], the latter showcases the need for detailed investigations into the
matter.

In this context, an illuminating (counter) example is provided by the Jaynes-Cummings
model (JCM), where a two-state system is coupled to a single bosonic mode [49]. Such
a situation pertains, for instance, to Rydberg atoms placed in optical cavities [58, 59]. In
this case, the two-state system represents two highly excited states of the atom and the
bosonic mode represents the distinguished frequency of the electric �eld determined
by the cavity. The environment of the atom then consists only of a single degree of
freedom which allows for emission or absorption of a single photon with a speci�c
frequency. For the JCM, the exact dynamics can be determined analytically [48, 49, 59]
and examples are shown in Figure 2.1 for three di�erent initial conditions.

Starting with the two-state system in an excited state and the bosonic mode in
the ground state, leads to periodic energy exchange between the two without any
conceivable loss. As expected, an eigenstate of the JCM shows no dynamics. One might,
however, suppose that the in�nite number of states accessible to the mode would make
a di�erence if they were included in a superposition. In fact, by placing the mode in
a coherent state (that is, a superposition of energy eigenstates) recurring collapses
and revivals in the quantum dynamics of the two-state system can be observed. This
is because the states associated with di�erent photon numbers (energies) interfere.
For long enough times the system returns to random periodic energy exchanges [49].
However, the initial collapse gives a clue on the nature of decoherence: a su�ciently
dense set of states with di�erent eigenenergies suppresses quantum coherence by way
of interference. What is notably still absent from this picture is loss of energy, which
can only occur when more degrees of freedom are present as an energy sink. As we will
see, system-bath models describe the environment with both a large number of degrees
of freedom as well as a dense set of states characterized by a continuous frequency
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Figure 2.2: Graphical representation of the toy model for relaxation given in Equation (2.1). A
state |1〉 with energyE1 couples to a continuum of states {|l〉} (gray sphere) with energiesEl (gray
lines) via the couplings Vl1 and V1l. Equation (2.4) shows that the e�ect of the environment on the
state |1〉 consists in a shift of its energy (quantities denoted by a tilde) as well as the presence of
relaxation (Γ).

distribution.
Damping and decoherence e�ects commonly appear in the context of three dynam-

ical features [60, Chapter 3.8]:

Relaxation: Reequilibration of a system with its environment, or, more generally,
decay of an excited state. Relaxation generally implies energy loss and damping.

Dephasing: Decay of phase coherence between quantum states due to energy
loss to the environment. This implies a decay of superposition states and is
synonymous with decoherence.

True dephasing: Decay of phase coherence between quantum states without
energy loss to the environment. This implies a decay of superposition states and
is also synonymous with decoherence.

In the following, we will discuss these features in more detail which yields some
general insights into the dynamics we can expect. We start with relaxation in particular,
and present the so-called golden rule results in the following.

2.1.1 Golden rule rates

A simple way to model relaxation dynamics is by way of the golden rule. The golden
rule is a general formulation for transition probabilities per unit-time in �rst-order
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perturbation theory, when the system is subject to a periodic perturbation [5, 61]. In
this subsection, we demonstrate how relaxation arises on the basis of a minimal model
where we will encounter some general features of system-bath dynamics. The model
itself and the corresponding calculation follows the book by Nitzan [5, Chapter 9.1].

Speci�cally, we assume a single state |1〉 with energy E1 coupled to a continuum of
states {|l〉} with energies El. They are described by the Hamiltonian

H = E1|1〉〈1|+
∑
l

El|l〉〈l|+
∑
l

[
Vl1|l〉〈1|+ V1l|1〉〈l|

]
, (2.1)

where Vij describes the interaction between states i and j. The resulting model is
depicted in Figure 2.2. The dynamics of the Hamiltonian (2.1) can be found by way
of Green’s function methods. In particular, we consider the matrix element c1(t) =
〈1|Ψ(t)〉 for a wavefunction |Ψ〉 with initial condition |Ψ(0)〉 = |1〉. |c1(t)|2 then gives
the probability of the system to remain in state |1〉 at time t. Utilizing the Schrödinger
equation and performing a Laplace transformation yields

c1(t) = − 1

2πi

∫ ∞
−∞

dE G11(E + iε) e−
i
~Et with ε→ 0+. (2.2)

Here, G11(z) labels the Green’s function of state |1〉 in Laplace space

G11(E) = lim
ε→0

1

E + iε− E1 −B1(E)
. (2.3)

B1(E) labels the self-energy which encodes the e�ect of the continuum onto the single
state. It is a common quantity in many-particle physics that encodes in�uence of
many-body e�ects as an e�ective one-particle potential [62]. It is given here as

B1(E) = lim
ε→0

∑
l

|V1l|2

E − E1 + iε
= Λ1(E) + (i/2)Γ1(E). (2.4)

The second equality used the Sokhotski–Plemelj identity (A.3) to separate real and
imaginary part as

Λ1(E) = P
∑
l

|V1l|2

E − El
, (2.5)

Γ1(E) = 2π
∑
l

|V1l|2δ(E − El). (2.6)

The self-energy in Equation (2.4) renormalizes the resonant energies El into complex
quantities. The real-part leads to a direct shift of the frequency, while the imaginary part
introduces damping by providing a �nite width Γ to the underlying Lorentzian structure
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of the Green’s function. Both are general features, which we will encounter throughout
this thesis when considering system-bath models. In fact, one may also think of the
classical damped harmonic oscillator where next to damping of the amplitude, the
oscillation frequency is also renormalized by the damping constant [63]. The imaginary
part of the self-energy (2.6) depends on the density of states, weighted by a squared
coupling. Later, this quantity will be referred to as the spectral density of the model. It
also implies that a convenient choice of this quantity or the density of states can lead
to comparably simple solutions. For the case of a constant density of states, such that
Γ1(E)/2π =

∑
l |V1l|2 = |V1l|2 and Λ1 = 0, we quickly �nd

|c1(t)|2 = e−k1t, (2.7)

with rate constant

k1 =
Γ1

~
=

2π

~
|V1l|2. (2.8)

The constant in Equation (2.8) is an example of a golden rule rate, which depends on
the squared mean coupling and implies a simple exponential decay of the probability
to stay in state |1〉. This is the simplest case of relaxation, where the system decays
exponentially from an excited state. Far from a purely academic exercise, exponential
decays are commonly found in physical measurements [5] and we will encounter similar
behaviors throughout this thesis.

2.1.2 Dephasing

In order to illustrate how dephasing (decoherence) arises, we present an argument taken
from May and Kühn [60, page 86 �.]. We consider a state |Ψ(t)〉, which can be expanded
in energy eigenstates |n〉 for the energiesEn. The time-dependent Schrödinger equation
then leads to the following representation:

|Ψ(t)〉 =
∑
n

cn(t)|n〉 =
∑
n

cn(t0) e
i
~En(t−t0)|n〉, (2.9)

with expansion coe�cients cn(t) = 〈n|Ψ(t)〉. Equation (2.9) gives the time evolution
of a state by way of phases which depend on the eigenenergies of the Hamiltonian.
The actual number of the phases involved depends on the expansion coe�cient of the
initial state. If it is an energy eigenstate, only a single phase is involved. If it is not, it
will be a superposition state and more phases will contribute.

We will now consider the probability of the system to still be found in |Ψ(t0)〉 at
time t, the survival probability Ps(t). Using Equation (2.9) we �nd

Ps(t) = |〈Ψ(t0)|Ψ(t)〉|2 =
∑
n,m

|cn(t0)cm(t0)|2 e−iωnm(t−t0). (2.10)
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Here, ωnm = (En−Em)/~ is the di�erence of frequencies associated with the eigenen-
ergies. Equation (2.10) shows that a sum of phases determines the survival probability.
On one hand, this means that when the initial state only contains a few states n,
the survival probability will �uctuate and the system will periodically return to its
initial-state with some probability – a feature known as quantum beats, which arise
naturally because the system starts in a superposition state. On the other hand, if the
superposition encompasses a large amount of states n, the various phases will interfere
increasingly with time, leading to a rapid decline of the survival probability. Since
the terms essentially run out of phase, this decay of superpositions is also known as
dephasing. For very long times, the system will settle into a value determined by the
time-independent part

∑
n |cn(t0)|4 [60, page 89].

This simple argument explains what we saw in the dynamics of the JCM in Figure
2.1: the more states are initially involved in a superposition, the more complete a
collapse becomes and the longer revivals take [49]. In contrast, by starting in the
excited state with a �xed photon number, only two eigenstates are involved in the
expansion, thus creating periodic �uctuations. Starting in an eigenstate showed no
dynamics as expected. Quantum beats were visible for both superposition states.

Dephasing and true dephasing appear with rates similar to (2.8) in a Born-Markov
type master equation treatment. In this approach, the system is characterized by a
density matrix where non-diagonal elements give superposition states involved in a
mixed state and the rates apply to. The dephasing rate (see Section 2.3.1 below) is given
as half of the relaxation rate, whereas true dephasing is related to the zero-frequency
response of the environment. The latter implies that this is an elastic process without
energy exchange [5, 60, 64].

2.1.3 Detailed balance

Finally, we address the question of how a state equilibrates with the environment. As
seen in the example of Section 2.1.1, an excited state will decay if enough unoccupied
states are present. However, for �nite temperature one should expect equilibration
with the environment at some �nite value, determined by the Boltzmann factor. Indeed,
for a two-state system with states |1〉 and |2〉 which only couple to each other through
the bath, one �nds the following relation between the golden rule rates [60]

k1→2

k2→1

= e
− (E1−E2)

kBT . (2.11)

Here, the subscripts give the direction of relaxation between the states (the forward
and backward rates). This condition is known in the context of system-bath models
as detailed balance. Detailed balance is expected for Markovian approximations when
the bath is in thermal equilibrium [5, Chapter 8.3][17, Chapter 10.4] and is a direct
consequence of assuming that the system equilibrates with its environment. Detailed

10



Figure 2.3: Graphical representation of the Caldeira-Leggett model. A one-dimensional quantum
particle (small circle) of massM and position q moves in a potential V (q). The bath is described by
the Hamiltonian HB (large gray circle) which models the environment as a collection of harmonic
oscillators (blue potentials). The particle couples bilinearly to the bath through its position q with
coupling constants cα.

balance is not ful�lled in some approximation schemes, such as the Lindblad master
equation method [5, page 390].

2.2 System-bath models

System-bath models provide a simple way to model decoherence and relaxation dy-
namics of quantum systems. In this section, we present the two most well-known
minimal models which will provide the basis for our discussion of driven bath e�ects.
We start with the so-called Caldeira-Leggett model which describes a one-dimensional
particle in contact with a harmonic environment. The dynamics of this particle can be
framed by way of a quantum Langevin equation. This approach naturally leads to the
de�nition of a spectral density which parametrizes the environment within system-bath
formulations. We will show that the imaginary part of the environmental susceptibility
can be used to obtain the spectral density. Furthermore, we elucidate the impact of
Lorentzian-shaped spectral densities which can be used to model speci�c modes in the
environment. Lastly, we introduce the spin-boson model, which describes system-bath
dynamics on the basis of a coupled two-state system.
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2.2.1 The Caldeira-Legge� model

We start our discussion of system-bath models with the so-called Caldeira-Leggett model
(CLM). It describes a one-dimensional quantum particle in a potential coupled to a
collection of harmonic oscillators. A graphical representation is shown in Figure 2.3. As
we will see, the dynamics of this simple model already leads to damping and �uctuations
for the quantum particle and mimics the behavior found in macroscopic systems. The
model is also highly useful for the discussion of metastable problems: if the potential is
a double-well, transitioning between wells can be parametrized by the coordinate of
the particle. The model can then be used to gauge the impact of dissipation on barrier
crossing or tunneling, for instance in the case of chemical reaction dynamics [5, 6]. In
addition, the model emerges naturally in case of superconducting quantum interference
devices (SQUIDs), where the magnetic �ux across a gap in a superconducting ring
follows the dynamics of the model when external current �uctuations are taken into
account [33, Chapter 3][31, Chapter 3.4]. The Hamiltonian of the CLM (H) is given by
a sum of a system part (HS), a bath part (HB), coupling terms (HSB) and a so-called
counter term (HC) as

H = HS +HB +HSB +HC. (2.12)

The system-Hamiltonian is a one-dimensional particle of mass M with position
operator q and momentum operator p in a position-dependent but (for now) time-
independent potential V (q), i.e.,

HS =
p2

2M
+ V (q). (2.13)

The bath part consists of N uncoupled harmonic oscillators with masses mα, fre-
quencies ωα and position and momentum operators xα and pα. Speci�cally,

HB =
N∑
α=1

1

2

[
p2
α

mα

+mαω
2
αx

2
α

]
. (2.14)

This rather simple choice of modeling for the environment re�ects the notion that
the equilibrium state of an individual mode is not signi�cantly perturbed such that a
harmonic approximation can be made [5, Chapter 6.5].

The coupling term is given through a simple bilinear structure which relates the
position operators of the oscillators and the quantum particle via oscillator-dependent
coupling constants cα as

HSB = −q
N∑
α=1

cαxα. (2.15)
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The bilinear choice forHSB implies that the environment is large so the average coupling
to a single mode in a geometrically macroscopic environment can be assumed as weak
[33, page 18]. Note that this does not imply a weak interaction between system and
bath as the total e�ect takes into account the contribution of all modes. As we will
see below, the linear dependence on the oscillator position is also relevant in its own
right as it allows to integrate out the environment and obtain terms which mimic
ordinary macroscopic damping. It is also worthy to note, that the dependence on
system operators in HSB can be more arbitrary. This can be used, for instance, to
describe the interaction with translationally-invariant environments or to model the
behavior of two Brownian particles [33, page 19][31]. However, in this thesis we restrict
ourselves to the simple bilinear form given above.

Finally, the counter-term represents a normalization of the system potential in such
a way, that V (q) is not qualitatively altered from the interaction with the oscillators
and only its dissipative e�ects remain. It depends on q2 by way of

HC = q2

N∑
α=1

c2
α

2mαω2
α

. (2.16)

Quantum Langevin equation

The dynamics of the Caldeira-Leggett model can be cast into the form of a simple
quantum analogue of the classical Langevin equation, simply called the quantum
Langevin equation (QLE). It follows directly from the Heisenberg equations of motion
for the position and momentum of the particle. By combination of the two, the position
operator is found to satisfy

M
d2q(t)

dt2
+
dV (q)

dq
+ q(t)

N∑
α=1

c2
α

mαω2
α

=
N∑
α=1

cαxα(t). (2.17)

Similarly, the position operator of a single oscillator xα has to conform to

mα
d2xα(t)

dt2
+mαω

2
αxα(t) = cαq(t). (2.18)

Equation (2.18) is the equation of motion for a forced harmonic oscillator with external
force cαq(t). It can be solved by way of standard Green’s function methods to obtain
[65, Chapter 2.2]

xα(t) = xα(t0) cos [ωα(t− t0)] +
pα(t0)

mαωα
sin [ωα(t− t0)]

+
cα

mαωα

t∫
t0

ds q(s) sin [ωα(t− s)].
(2.19)
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where t0 labels the initial time point. Result (2.19) can be inserted into Equation (2.17)
to yield the dynamics of the quantum particle as

M
d2q(t)

dt2
+
dV (q)

dq
+ q(t)

N∑
α=1

c2
α

mαω2
α

= ξ(t− t0) +
N∑
α=1

c2
α

mαωα

t∫
t0

ds q(s) sin [ωα(t− s)].
(2.20)

Equation (2.20) determines the dynamics of the system in the quantum analogue of a
Newtonian equation of motion. The homogeneous part of Equation (2.19) has been
absorbed into the term ξ(t− t0) and the homogeneous part gives the last term on the
right hand side. This represents a retarded q-dependent force. We will see later that
its structure represents the linear response to the perturbation by the bath. Finally, a
partial integration yields the QLE

M
d2q(t)

dt2
+
dV (q)

dq
+M

t∫
t0

ds γ(t− s)
(
dq(s)

ds

)

= ξ(t− t0)−Mγ(t− t0)q(t0).

(2.21)

Equation (2.21) recreates the dynamics of the classical Langevin equation in the
quantum realm: the �rst additional term introduces damping by way of a time-nonlocal
damping kernel γ(t), while the contribution ξ(t) is a �uctuating force. The damping
kernel is given by

γ(t) = Θ(t)
1

M

N∑
α=1

c2
α

mαω2
α

cos [ωαt]. (2.22)

Here, the Heaviside function Θ(t) is explicitly included as γ(t) is a causal quantity. The
�uctuating force is given by

ξ(t) =
N∑
α=1

cα

[
xα(t0) cos [ωαt] +

pα(t0)

mαωα
sin [ωαt]

]
. (2.23)

ξ(t) depends on the initial values of the bath operators which are usually drawn from
thermal equilibrium. This directly implies Gaussian �uctuations as

〈ξ(t)〉B = TrB [ξ(t)ρeq
B ] = 0, (2.24)

where ρeq
B = exp(−βHB)/ZB is the canonical distribution operator of the uncoupled

bath with inverse temperature β and partition function ZB. TrB[. . . ] signi�es a trace
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over bath states. The �uctuations ful�ll a colored noise relation given by the autocorre-
lation function

〈ξ(t)ξ(t′)〉B = ~L(t− t′) = ~ [L′(t− t′) + iL′′(t− t′)]

=
N∑
α=1

~c2
α

2mαωα

[
coth

(
~ωαβ

2

)
cos (ωα(t− t′))− i sin (ωα(t− t′))

]
.

(2.25)

Here, we assumed t > t′ and introduced the function L(t) = L′(t) + iL′′(t) as a
shorthand. Equation (2.25) is the reason for non-Markovian e�ects which are absent in
the classical equation where white noise is often assumed [31, Chapter 5.1][33, Chapter
2]. As in the classical case, the �uctuation spectrum (2.25) determines the resulting
dissipative dynamics.

The additional term γ(t − t0)q(t0) in Equation (2.21) is called the initial slip and
gives a force contribution which depends on the initial position of the quantum particle
q(t0). It can be absorbed into the random-force operator such that the �uctuations now
occur around q(t0) instead of zero. In principle, the bath can then be chosen to be in
equilibrium with the particle located at this position to restore Gaussian �uctuations [65,
Chapter 2.2][31, Chapter 5.1]. Finally, it should also be noted that the partial integration
from Equation (2.20) to (2.21) led to the cancellation of the counter-term.

2.2.2 Bath spectral density

The �uctuating force and the damping kernel depend on summations over each oscillator.
A convenient parameterization is given by way of the so-called spectral density

J(ω) =
π

2

N∑
α=1

c2
α

mαωα
δ(ω − ωα). (2.26)

Using Equation (2.26) directly leads to

γ(t) = Θ(t)
2

Mπ

∫ ∞
0

dω
J(ω)

ω
cos (ωt) , (2.27)

while the �uctuation spectrum (2.25) becomes

L(t) =
1

π

∫ ∞
0

dω J(ω)

[
coth

(
~ωβ

2

)
cos (ωt)− i sin (ωt)

]
. (2.28)

The spectral density (2.26) represents the density of states for the oscillators weighted
by the coupling constants and is only nonzero for positive frequencies. It describes the
response to an excitation of the bath at a certain frequency and is the most important
way that the bath can be parametrized within system-bath models. This is usually done
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by assuming the bath to be large and the states of the bath to be dense such that the
spectral density can be written as a function of frequency. A particular choice reads

J(ω) ≈ η

(
ωs

ωs−1
c

)
e−ω/ωc . (2.29)

Here, η is a prefactor which determines the strength of the system-bath interaction.
The exponential in (2.29) regularizes the function for high frequencies with a cuto�
frequency ωc. This re�ects inertial e�ects of the underlying physical makeup of the
bath, for instance molecular vibrations which have a �nite mass and thus will not react
to excitations at large enough frequencies. The main point, however, is the validity of
the power-law behavior at low frequencies. In practice, this means ωc is taken to be
smaller than the Fermi, Drude or Debye frequencies but much larger than the frequency
scales of the system we are interested in [33, Chapter 3.1] [31, Chapter 5.1]. Because
of this, the limiting case ωc →∞ is often considered at the end of the calculation [33,
Chapter 3.1][31].

Finally, the factor ωs describes the low-frequency dynamics on the basis of the
parameter s. The denominator is used to secure the correct dimension and may also
contain a di�erent frequency scale [31, 33]. For s = 1, Equation (2.29) is referred to
as an Ohmic spectral density. For this particular case and with large values of ωc, the
damping kernel becomes instant by

γ(t) =
2η

M
δ(t), (2.30)

which recreates a simple Stokes friction term in the QLE (2.21), as

M

t∫
t0

γ(t− s)
(
dq(s)

ds

)
ds = η

(
dq(t)

dt

)
. (2.31)

Note that the δ-function counts only half due to the upper bound of the integral [31,
33]. Equation (2.30) recreates the typical form of the classical Langevin equation for a
particle in a viscous �uid. In an electrical circuit, Equation (2.31) can also be identi�ed
with friction from a (series) resistor, hence the name “Ohmic” [33].

Environmental susceptibility

The spectral density (2.29) is a phenomenological choice, appropriate in many cases [33].
However, the spectral density of a given environment can also be found by experimental
means, for instance from optical line-narrowing experiments [66, 67] or photon-echo
measurements [68]. It can also be determined directly from the autocorrelation function
in molecular dynamics simulations [69]. In this section, we show that the spectral
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density can be connected to the environmental susceptibility which will ultimately
allow us to use the dielectric function as a modeling prescription in Part 3 of this thesis.

The following argument is based on the book by Caldeira [31, Chapter 5.1]. We
start with the Fourier transform of Equation (2.18)

xα(ω) = − cα
mα(ω2 − ω2

α)
q(ω). (2.32)

In Equation (2.17), we have seen that the bath in�uences the system by way of a
collective coordinate

∑
α cαxα(t). Insertion of Equation (2.32) into its Fourier transform

yields

N∑
α=1

cαxα(ω) = −
N∑
α=1

c2
α

mα(ω2 − ω2
α)
q(ω) = χenv(ω)q(ω). (2.33)

Here, the last equation introduced the environmental susceptibility χenv(ω). An inverse
Fourier transform yields a convolution of χenv(t) and q(t) in the time domain. This
structure is characteristic for linear response and introduces a retarded structure which
also implies causality for χenv(t). The susceptibility can now be rewritten as

χenv(ω) =
N∑
α=1

c2
α

2mαωα

(
1

ω + ωα
− 1

ω − ωα

)
. (2.34)

Since the response has to be causal, an in�nitesimally positive imaginary part iε is intro-
duced in the denominators. Using the Sokhotski–Plemelj identity (A.3), the imaginary
part is given by

Im [χenv(ω)] =
π

2

N∑
α=1

c2
α

mαωα

[
δ(ω − ωα)− δ(ω + ωα)

]
, (2.35)

which directly gives

Im [χenv(ω)] = J(ω) for ωα > 0. (2.36)

Note that the requirement of a positive frequency directly follows from assuming
positive excitation energies for the harmonic oscillators [31]. In the next part of this
thesis, we will apply Equation (2.36) to a simple dielectric solvation model and use it to
determine the spectral density.

Lorentzian spectral densities

Next to the generic form introduced in Equation (2.29), another class of spectral densities
is given by Lorentzians. Such spectral densities can arise, for instance, in the case of
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a leaky optical cavity and can generally be used as a modeling prescription when
environmental modes are considered [70, 71]. Because of their more intricate frequency
dependence, one speaks of structured baths. For our purposes, we restrict ourselves to
a single Lorentzian and de�ne the following spectral density

J(ω) =
κΓΩ2ω

(ω2 − Ω2)2 + (Γω)2
. (2.37)

Evidently, Equation (2.37) gives a peaked structure located at frequency Ω with width
Γ. The parameter κ is a measure for the system-bath interaction strength. Note that
the low-frequency behavior is also linear in ω, similar to (2.29) for the Ohmic case.

In principle, the form (2.37) can be used as a generic model for resonances in the
environment much like the spectral density introduced in (2.29) for ordinary structure-
less environments. However, the Lorentzian form (2.37) also permits an exact mapping
where the bath can be replaced by a single harmonic oscillator in contact with a bath
described by an Ohmic spectral density. This has been used, for instance, to obtain
more accurate approximation schemes [72, 73]. In the following, we present a short
derivation of this mapping taken from a paper by Garg et al. [74]. We start with the
system-bath Hamiltonian of the CLM with an Ohmic spectral density of the form (2.29).
However, we also include a harmonic oscillator coupled in between bath and system
such that the total Hamiltonian is given by

H =
p2

2M
+ V (q) +

1

2

[
P 2

MO
+MOΩ2

(
q −Q

)2
]

+
N∑
α=1

1

2

[
p2
α

mα

+mαω
2
αx

2
α

]
−Q

N∑
α=1

cαxα +
N∑
α=1

c2
αQ

2

2mαω2
α

.
(2.38)

Here, P and Q label momentum and position operators of the harmonic oscillator and
MO gives its mass. The last two terms give the interaction and counter-term for the
bath. For simplicity, the quantum particle is assumed to interact with the oscillator on
the basis of a shifted harmonic potential. In analogy to the derivation of the QLE in
the previous subsection, we write down the Heisenberg equations of motion for the
position operators to �nd

M
d2q(t)

dt2
= −dV (q)

dq
−MOΩ2

(
q(t)−Q(t)

)
, (2.39)

MO
d2Q(t)

dt2
= MOΩ2

(
q(t)−Q(t)

)
+

N∑
α=1

cα

(
xα(t)− cαQ(t)

mαω2
α

)
, (2.40)

mα
d2xα(t)

dt2
= cαQ(t)−mαω

2
αxα(t). (2.41)
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We now apply a Fourier transformation with frequency ω, which allows us to solve
(2.40) and (2.41) algebraically. Insertion into Equation (2.39) then yields

χenv(ω)q(ω) = MOΩ2
(
q(ω)−Q(ω)

)
= MOΩ2

[
L(ω)

MOΩ2 + L(ω)

]
q(ω), (2.42)

with

L(ω) = −ω2

[
MO +

N∑
α=1

c2
α

mαω2
α(ω2

α − ω2)

]
. (2.43)

The second term of L(ω) is related to the spectral density of the bath. Using the form
(2.29) for the Ohmic case yields

L(ω) = −ω2

[
MO +

2

π

∫ ∞
0

dω′
1

ω′2 − ω2

J(ω′)

ω′

]
= −ω2MO + iηω. (2.44)

Equation (2.42) introduced the environmental susceptibility for the quantum particle
as in Equation (2.33). This de�nition allows us to obtain the corresponding spectral
density by taking the imaginary part. An in�nitesimal imaginary part has to be added
to ω as well in order to ensure causality. With Equation (2.36) we �nally get

Je�(ω) = Im [χenv(ω)] =
ηωΩ4

(Ω2 − ω2)2 + ( ηω
MO

)2
. (2.45)

Equation (2.45) is a Lorentzian spectral density of the form (2.37) with Γ = η/MO and
κ = MOΩ2. This directly implies weak coupling strength for small widths and vice
versa. Similar arguments can be found for the spin-boson model (see below) and we
will exploit these relationships in Part 5.

We have now shown that the intermediate oscillator in contact with a structureless
bath can be replaced by a bath with a Lorentzian spectral density. Our argument rested
on the identi�cation of a suitable environmental susceptibility, which was possible
because of the harmonic potentials involved. Indeed, the analysis presented here
amounts to including the oscillator in the bath and performing a normal mode analysis.
The subsequent changes in the coupling to the system lead to the Lorentzian form [74].

2.2.3 The spin-boson model

The second minimal model we consider investigates the system-bath interaction on
the basis of a quantum two-state system (TSS), and is therefore called the spin-boson
model (SBM). Speci�cally, the model exchanges the system and system-bath coupling
Hamiltonians encountered in Equation (2.13) and (2.15) for the CLM by de�ning

HS =
∆

2
σx +

ε

2
σz (2.46)

19



Figure 2.4: Emergence of the spin-boson model from a double well potential. The double well V (q)
is characterized by two minima at ±q0/2 separated by a barrier of height Vb. The characteristic
ground states of the minima (blue lines) di�er in energy by the amount ε and possess the tunneling
energy scale ∆. ~ωe gives the separation of a ground state to the corresponding �rst excited state.
For large barrier height, low temperature and large separation to excited states, the potential can
be approximately reduced to the two ground states only, giving rise to a two-state description with
coupling ∆.

and

HSB = −q0

2
σz

N∑
α=1

cαxα = −σz
2

N∑
α=1

~λα
[
bα + b†α

]
. (2.47)

Here, σi are Pauli-matrices and q0 is a discrete position related to the states σz = ±1.
The second equation of (2.47) uses the description by creation and annihilation opera-
tors with coupling constant λα = q0cα(

√
2~ωαmα)−1. Note that our de�nition of HS

in Equation (2.46) di�ers by a minus sign from the usual convention (this changes the
equilibrium values (2.51) and (2.52), for instance). Furthermore, the coupling Hamil-
tonian (2.47) represents the simplest possible form of the system-bath coupling in the
SBM. More complicated terms, such as couplings to σx and/or to multiple baths, are
possible and lead to more intricate dynamics [75–77]. For simplicity, we generally use
the coupling (2.47) in this thesis.

The spin-boson model follows naturally as a limiting case of the CLM for a double-
well potential: if the ground states of the two wells are su�ciently separated from any
excited states and the temperature is also low in contrast to the spacing and the barrier
height, only their ground states will become relevant for the dynamics. The energy
scale ∆ then determines the tunneling matrix element between the two minima and ε
gives the di�erence in energy [33, 78]. A graphical representation is shown in Figure 2.4.
As such, the spin-boson model has been applied mainly for the description of tunneling
problems, for instance of impurities in glasses at low temperatures [27–30], as a model
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Figure 2.5: Typical behavior of the spin-boson model based on the non-interacting blip approxi-
mation for the symmetric case (ε = 0) [31, 33]. (a) Typical regimes and associated behaviors shown
against coupling K given in Equation (2.56) and temperature rescaled by the renormalized TSS
splitting ∆eff . The transition temperature curve T ∗ has been obtained from Weiss [33, Equation
(22.20)]. (b) Typical dynamics of 〈σz(t)〉. The plots assume 〈σz(0)〉 = 1, ~ωc/kBT � 1 and an
Ohmic spectral density. More details can be found in Section 6.1.3 and Weiss [33, Chapter 22].

for atomic force microscopy [79] or as a description of electron transfer reactions [33,
Chapter 20][5, Chapter 16]. Furthermore, no complete analytic solution exists for the
SBM outside of speci�c parameter ranges (for comparison, the CLM is exactly solvable
for a harmonic potential or a free particle [33]). The SBM has therefore been a focus for
the investigation of approximation methods and more elaborate numerical treatments,
as well (see e.g. [73, 80, 81]). In fact, the list of applications of this model is rather
extensive and we refer to the book by Weiss [33] and the review by Grifoni and Hänggi
[32, Chapter 11.1] for more details on its use.

In the following, we discuss some of the dynamics encountered in the SBM as a
general example of the dynamics in a system-bath model.

Typical dynamics of the SBM

In order to understand the dynamics of the SBM, it is useful to look at the dynamics of
the uncoupled TSS �rst. By diagonalization of Equation (2.46) and use of the Schrödinger
equation, one �nds

〈σx(t)〉 =
ε∆

E2

[
1− cos

(
Et/~

)]
, (2.48)

〈σy(t)〉 = −∆

E
sin
(
Et/~

)
, (2.49)

〈σz(t)〉 =
ε2

E2
+

∆2

E2
cos
(
Et/~

)
, (2.50)
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where we assumed that the system starts in the excited state, 〈σz(t0)〉 = 1, and E =√
∆2 + ε2 is the characteristic eigenenergy of HS. Unsurprisingly, we see regular

oscillations in the dynamics of all Pauli matrices. These are quantum beats, created
because we start in a state that is not an eigenstate to HS but rather to σz only. In
contrast, if ∆ = 0 the state does not change, as expected. Going back to the SBM, the
system-bath coupling of Equation (2.47) couples to the system through the operator σz
which implies that the bath aims to localize the state of the TSS in one of the two wells.
In fact, if ∆ = 0, we have that [HS, HSB] = 0 such that no relaxation occurs. However,
dephasing can still be found and the model is then known as the independent boson
model [82][33, Chapter 22.4]. If ∆ 6= 0, we can expect to see oscillations in 〈σz(t)〉
again. As it turns out, their existence is strongly tied to both the coupling strength and
the temperature. For the case of an Ohmic spectral density of the form (2.29) and a
symmetric system with ε = 0, the di�erent regimes are shown exemplary in Figure 2.5
on the basis of results from the non-interacting blip approximation (see Section 6.1.3
and [31, Chapter 10] [33, Chapters 21 and 22] for more details).

Three di�erent regions can be identi�ed: coherent oscillations, incoherent (exponen-
tial) decay and a frozen-in state which occurs for strong coupling at zero temperature.
The coherent and incoherent regimes are divided by a temperature curve T ∗ which
scales with the inverse coupling for very small values. For high temperature and small
coupling, the incoherent regime is characterized by a relaxation rate which scales
with the inverse of the temperature such that the decay becomes more sluggish, the
hotter the bath becomes. At coupling K = 1/2 (see Equation (2.56) for a de�nition) a
transition between coherent oscillations and incoherent behavior occurs even at zero
temperature. At this point, an exact temperature-independent exponential decay can be
found. Inside the coherent regime, smaller couplings and lower temperature lead to less
damped and more long-lasting oscillations until the simple cosine of Equation (2.50) is
obtained for zero coupling. Lastly, for very strong coupling and zero temperature, the
system is localized and the particle cannot tunnel between the two wells.

A nonzero ε complicates this picture, as the eigenstates of the TSS already introduce
a measure of localization into σz . The most obvious result is a change of the equilibrium
positions for the 〈σi(t)〉. Speci�cally, one obtains for weak damping [33, Chapter 21.3.2]

〈σx(∞)〉 = −∆

E
tanh

(
E

2kBT

)
, (2.51)

〈σz(∞)〉 = − ε

E
tanh

(
E

2kBT

)
. (2.52)

Equations (2.51) and (2.52) show that E becomes the relevant energy scale for most
considerations. It is a common practice to include this e�ect by diagonalizing HS which
naturally introducesE, but also leads to a more complicated coupling Hamiltonian from
the rotation [83][33, Chapter 3.3]. We will utilize this method in Part 5. A non-zero ε
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can also arise when considering external forces, as we will discuss more in the next
part of this thesis [32, 33]. A more detailed account on the e�ect of a non-zero ε can be
found in the book by Weiss [33]. We also stress that our discussion here was based on
the behavior for an Ohmic spectral density. Choosing other forms adds an additional
layer of complexity to the model (see e.g. [33, Chapter 22.1.2]).

In closing, the SBM shows a rich and complicated behavior in the parameter space
determined by temperature and coupling. In particular, we focus on the coherent regime
in most parts of this thesis.

De�nitions for the SBM

Finally, we give some general de�nitions of the spin-boson model which deviate from
the presentation for the Caldeira-Leggett case. First, by use of Equation (2.26) the
coupling Hamiltonian (2.47) automatically leads to the spectral density

J (ω) =
π~
q2

0

N∑
α=1

λ2
αδ(ω − ωα). (2.53)

When we discuss the SBM, we usually work with a rescaled density given by

J(ω) = π
N∑
α=1

λ2
αδ(ω − ωα), (2.54)

which has a dimension of a frequency. This de�nition deviates from the de�nition used
in Weiss [33] by a factor of π, where the spectral density for the SBM is denoted as
G(ω).

In Figure 2.5, the dimensionless coupling constantK relates to the parameterization
in Equation (2.29) for the Ohmic case via

J(ω) = 2Kπω exp[−ω/ωc]. (2.55)

This means that J(ω)/π ∝ 2Kω which coincides with the usual de�nition from Leggett
et al. [78]. This coupling can be traced back to the coupling strength η by

K =
ηq2

0

2π~
. (2.56)

The mapping of the Lorentzian density in the last section also has to be adapted for the
SBM. We refer to Section 5.1, where an appropriate mapping is shown in Equation (5.5).
Lastly, we note that we often work with the frequency ω0 associated with the tunneling
energy ∆ = ~ω0. This quantity will appear regularly in this thesis to parametrize the
time variable.
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2.3 Some solution methods

In order to obtain actual dynamics of a system-bath model, approximations have to be
made. This is because system-bath models are still many-body problems with a large
number of degrees of freedom. For this reason, a multitude of approximate solution
methods have been developed. In this section, we present the basic ideas behind master
equation approaches and the path integral formulation. Both methods will be further
developed and utilized in the next parts of this thesis to parametrize the dynamics of
the driven bath problem. We close this section with a brief overview of some additional
solution methods.

2.3.1 �antum master equations

Quantum master equations describe �rst order di�erential equations of the time-
dependent density matrix of the system. These equations usually emerge as perturbative
solutions of the system-bath problem for the assumption of comparably weak system-
bath coupling. However, correlations between bath and the system will still build up
over time. In the easiest case, these are neglected entirely which gives rise to a Born-
Markov quantum master equation, valid for weak coupling and fast decay of memory.
Its most famous implementation has been the so-called Red�eld equation which has
been developed to explain relaxation phenomena of nuclear spins in NMR spectroscopy
[5, 60, 84]. Aside from this, master equations can also be derived in a variety of other
ways and with varying complexity, for instance on the basis of projection operator
techniques, such as the Nakajima-Zwanzig equation [5, Chapter 10], by deriving the
functional forms required of a semi-group in what has been known as Lindblad for-
malism [85] or by utilizing time-nonlocal kernel structures [85, 86]. Furthermore, the
approximations involved can be relaxed even within a Born-Markov treatment, for
instance by calculating and adding non-Markovian corrections [25] or by rotating
the Hamiltonian and doing perturbation theory in a di�erent coupling [73]. In this
section, we aim to provide a short derivation of a fairly general Born-Markov-type
master equation and comment on the structure, the approximations and the solutions
involved. Since we will derive these dynamical equations in more detail on the basis
of a Liouville-space formulation in Part 5, we will only present the most important
steps here. Our presentation is largely based on the books by Cohen-Tannoudji [64]
and Nitzan [5] which should also be consulted for more details. For further reading, we
also like to mention the derivation found in Breuer and Petruccione [85, Chapter 3.3].

Born-Markov quantum master equation

We start with the Liouville-von-Neumann equation for a generic system-bath Hamilto-
nian of the type (2.12) that is not explicitly dependent on time. The combined density
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matrix of system and bath, W (t), then ful�lls

dW̃ (t)

dt
= − i

~
[H̃SB(t), W̃ (t)], (2.57)

where we formulated the equation in the interaction picture, signi�ed by a tilde. Therein,
a generic operatorO has a time dependence given by Õ(t) = e(i/~)(HS+HB)tO e−(i/~)(HS+HB)t.
Equation (2.57) can formally be integrated and the result reinserted to yield an expres-
sion in second order of HSB,

W̃ (t)− W̃ (t0) =− i

~

∫ t

t0

dt′ [H̃SB(t′), W̃ (t0)]

− 1

~2

∫ t

t0

dt′
∫ t′

t0

dt′′ [H̃SB(t′), [H̃SB(t′′), W̃ (t′′)]].
(2.58)

Again, we are interested in the behavior of the small system only. In terms of the density
matrix, this information is encoded within the so-called reduced density matrix of the
system, ρS(t), which emerges after a trace over bath states as

ρS(t) = TrB[W (t)]. (2.59)

With ρS(t) the dynamics of a system observable can be obtained from the corresponding
averages 〈O(t)〉S = TrS [OρS(t)]. Thus, a trace over bath states in Equation (2.58) yields

ρ̃S(t)− ρ̃S(t0) =− i

~

∫ t

t0

dt′ TrB

[
[H̃SB(t′), W̃ (t0)]

]
− 1

~2

∫ t

t0

dt′
∫ t′

t0

dt′′ TrB

[
[H̃SB(t′), [H̃SB(t′′), W̃ (t′′)]]

]
.

(2.60)

Equation (2.60) is exact but due to the existence of the full density matrix on the right-
hand side not solvable. In order to progress, a split of time scales is assumed, where
the correlation time of the bath τc is taken to be much smaller than the typical time
that characterizes the evolution of the system τS. In essence, this argument is similar to
those in the classical Langevin equation: a heavy particle is subject to collisions from
the environment, much faster than the typical time on which the particle moves and
damping (as a consequence of lots of collisions) occurs. For our purposes, this permits a
host of subsequent approximations based on the idea that correlations between system
and bath vanish rapidly [64]. Speci�cally, we can evaluate Equation (2.60) for a time
frame δt with τS � δt� τc which permits us to use a coarse-grained description for
the dynamics of the system. This implies that we can assume W̃ (t′′) ≈ W̃ (t0) on the
right-hand side of Equation (2.60) because neither the density matrix of the system
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nor the bath will change appreciably for su�ciently small coupling and τS � δt. In
addition, we assume the density matrix to factorize as

W̃ (t0) = ρ̃S(t0)⊗ ρ̃B(t0) = ρ̃S(t0)⊗ ρeq
B . (2.61)

Here, ρB is assumed constant which follows from the fact that the bath itself is huge
and will not be perturbed much by the system. In addition, we have assumed thermal
equilibrium for the bath via

ρeq
B =

1

Z
e−βHB , (2.62)

for which the bath density matrix also commutes with the unperturbed time evolution
of the bath. The factorization in Equation (2.61) assumes that no correlations exist
between system and bath at t0. In fact, correlations that build up can be shown to
vanish on a time scale τc and can therefore be neglected for the evaluation over time
scales δt. Lastly, we write HSB as a simple product of operators in the subspaces,

HSB = −A⊗R, (2.63)

where A is an operator in the system subspace and R in the bath subspace. This
choice re�ects the typical bilinear couplings of the Caldeira-Leggett and spin-boson
models (see Equations (2.15) and (2.47)). For simplicity, we assume that the average
〈R̃(t)〉B = TrB[R ρeq

B ] = 0. Putting all of those arguments into Equation (2.60) shows
that only the second term will be nonzero and is de�ned by bath correlators

C(t′ − t′′) = 〈R̃(t′)R̃(t′′)〉B = TrB

[
R̃(t′ − t′′)R̃(0)ρeq

B

]
, (2.64)

where the second equation used the cyclical invariance of the trace. In case of the
system-bath models discussed, Equation (2.64) directly yields the �uctuation spectrum
found in Equation (2.28). The real part then describes the symmetric autocorrelation
function and the imaginary part gives the bath response function. However, next to
the correlator and its complex conjugate, combinations of system operators emerge
from the double commutator. Because of this, a representation in matrix elements of
system-eigenstates (labeled as a, b, c, d) is commonly used. Ultimately, one �nds the
following form of the Born-Markov master equation:

dρS,ab(t)

dt
= −iωab ρS,ab(t) +

∑
c,d (sec)

Rabcd ρS,cd(t). (2.65)

Equation (2.65) is a general form of the Red�eld equation [5, Chapter 10], which is
just a linear di�erential equation with constant coe�cientsRabcd and a phase contri-
bution depending on the transition frequencies ωab = ωa − ωb. In order to arrive at
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Equation (2.65), the coarse-grained evaluation over δt was used to approximate the
instantaneous change of the density matrix. This implies, again, that only dynamics
beyond τc are considered. In addition, we employed the so-called secular approximation.
This approximation neglects small terms, where di�erences of transition frequencies
multiplied with time frames ∆t = t − t0 ∼ τS are large. Lastly, due to the rapidly
decaying integration kernels, the boundaries of the integrals could be sent to in�nity as
well, removing any additional time dependence. With these arguments Equation (2.65)
is approximated for predictions on time scales longer than τS only [64].

Resulting dynamics

According to Equation (2.65) the diagonal elements of the density matrix (which are
just the populations of the states) evolve as [64, Chapter IV C.]

dρS,aa(t)

dt
=
∑
c 6=a

[
Γc→a ρS,cc(t)− Γa→c ρS,aa(t)

]
. (2.66)

Here, Γ are transition rates from states a to c and vice versa. They are given by thermally
averaged golden rule rates as (cf. Equation (2.8))

Γc→a =
2π

~
∑
n,n′

e−βEn

Z
|〈a, n′|HSB|c, n〉|2δ(En + Ec − En′ − Ea). (2.67)

As such, the populations decay with a rate de�ned by the golden rule and exponential
damping is obtained. However, Equation (2.67) also contains transitions into the states
which �ll up the populations. By equating both, a steady state is obtained and we
recover detailed balance conditions as in Equation (2.11).

The non-diagonal elements of the reduced density matrix are often referred to as
coherences. They ful�ll

dρS,ab(t)

dt
= −iωab ρS,ab(t)− [Γab + i∆ab] ρS,ab(t). (2.68)

Here, two new terms de�ne the dynamics: Γab gives rates which turn out to be similar
to (2.67). However, a characteristic factor of 1/2 emerges for terms where the system
changes its state and which are referred to as non-adiabatic contributions. This is an
example of dephasing, where damping of coherences implies the decay of superposition
states. The corresponding adiabatic contributions do not change the state of the bath
and are determined by J(0). These give rise to pure dephasing. The second new
term, de�ned by ∆ab, gives an imaginary contribution which can be factorized into the
transition frequency ωab. This amounts to a frequency renormalization as predicted
in Section 2.1.1. Finally, it should be noted that interactions between non-diagonal
elements and populations are neglected in the secular approximation.
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Approximations

Up to now we have applied quite a few approximations. While all of them can be
motivated by rapid decay of correlations between system and bath, we summarize the
three most important ones in the following:

Perturbative expansion (Born approximation): in general, we require weak
system-bath coupling for Equation (2.58) to be useful. However, it can be shown
that the small parameter of the expansion includes τc such that small enough
correlation times can also be used to motivate the expansion. Nevertheless, weak
coupling ensures that no correlations can build up [64, Chapter IV B.3, D].

The Markov approximation: the Markov approximation assumes no memory
e�ects in the bath from interaction with the system and vice versa. This is
essentially a formal statement about the size of the reservoir and only treating
dynamics beyond τc. If the correlations decay fast enough, no memory is retained
in the coarse-grained description and the density matrix can be assumed to be
constant over the time scale when the correlations are non-zero. Together with
the Born approximation this amounts to an iterative summation of second-order
terms (see Section 5.2.2). This also implies that the coe�cients Rabcd can be
assumed as time-independent [5][64, Chapter IV].

The secular approximation: the secular approximation is a statement about
the size of contributions inRabcd. It states that those terms where the di�erence
of transition frequencies multiplied with ∆t ∼ τS is large, will be small and can
be neglected [64, Chapter IV][60, Chapter 3.8.3]. In a sense, this argument is
reminiscent of results in ordinary quantum perturbation theory which yields
terms with an inverse dependence on frequency di�erences. In fact, the secular
approximation is similar to the rotating wave approximation in quantum optics
that we will encounter in the next part of this thesis [85].

While these approximations seem drastic, they successfully yield both dephasing
and relaxation contributions, give a simple description of typical system-bath dynamics
and also permit an extension to driven systems or more involved treatments. We
will apply a Born-Markov description to a driven bath in Part 5 and discuss these
approximations and the emerging dynamics in more detail.

2.3.2 Path integral methods

Another way to formulate the dynamics of the reduced density matrix is provided by
way of Feynman’s path integral description. Its advantage lies in analytical formulations
of the system-bath problem. In particular, contributions from the path integral can
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be summed up and brought into the form of an exact master equation, which can be
exploited in approximation schemes. The so-called non-interacting blip approximation
(NIBA), for instance, allows to �nd the dynamics for high temperatures and strong
coupling. Presented at length in the 1987 seminal paper by Leggett et al. [78], this
approximation has been used in the analysis of various problems (e.g. [87–89]) and has
also seen some extensions over the years [33, 65]. We will derive the non-interacting blip
approximation in Part 6 and use it to �nd the strong-coupling dynamics of a driven bath.
Another interesting result of the path-integral description is a numerical implementation
called quasiadiabatic propagator path integral method (QUAPI). Here, the analytical
formulation through path integrals is used for an iterative solution over small time slices
dt based on the assumption of su�ciently decaying bath autocorrelation functions.
Since the method itself is numerically exact, it naturally includes memory e�ects, is
usable for arbitrary coupling strengths and can also be readily extended to driven
systems. However, the method is computationally expensive and its implementation
rather complicated such that its applicability is limited [65, 90–92].

In the following, we derive the basics of the path integral formulation based on the
presentation by Weiss [33]. We start with the combined density matrix of system and
bath, W (t). We assume that this density matrix factorizes into system and bath parts
at some time t0, just as in Equation (2.61). Speci�cally, W (t0) = ρS(t0)⊗ ρeq

B , where ρS

is the reduced density matrix of the system. We also assume the bath to be in thermal
equilibrium with its density matrix given by ρeq

B in Equation (2.62). The time evolution
of W (t) between t0 and t can be written by way of time evolution operators, U(t, t0),
such that

W (t) = U(t, t0)W (t0)U †(t, t0). (2.69)

Similar to the previous subsection, we want to obtain the reduced density matrix of
the system at time t which emerges from a trace over bath states. We now use the
Hamiltonian of the Caldeira-Leggett model in Section 2.2.1. This reduces our system to
a single coordinate q and describes the bath as harmonic oscillators with positions xα.
We collect the latter in variables x for brevity. A matrix element of the reduced density
matrix can then be written as

ρS(qf , q
′
f , t) = 〈qf |ρS(t)|q′f〉 =

∫
dxf〈qf ,xf |W (t)|q′f ,xf〉

=

∫
dqi

∫
dq′i

∫
dxf

∫
dxi

∫
dx′i K(qf ,xf , t; qi,xi, t0)

∗ 〈qi,xi|W (t0)|q′i,x′i〉K∗(q′f ,xf , t; q′i,x′i, t0).

(2.70)

Here, K(. . . ) denotes the Feynman propagator which describes the matrix element of
the time evolution operator as K(b, t; a, t0) = 〈b|U(t, t0)|a〉. Integrals over x designate
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integrations over each oscillator coordinate xα. As usual, the Feynman propagator can
be discretized by splitting up the time interval from t0 to t into a large number M of
in�nitesimally small segments δt. Subsequent insertion of the identity allows for a
formulation as a path integral [61],

K(qf ,xf , t; qi,xi, t0) =

∫ qf

qi

Dq
∫ xf

xi

Dx e
i
~ (SS[q]+SB[x]+SSB[q,x]), (2.71)

where the measures stand in forM integrations over the intermediate position eigenval-
ues and the boundaries give the positions at the endpoints of the path. The exponentials
contain the actions S[. . . ] given by

SB[x] =

∫ t

t0

ds

N∑
α=1

1

2

[
mαẋ

2
α(s)−mαω

2
αx

2
α(s)

]
, (2.72)

SSB[q,x] =

∫ t

t0

ds
N∑
α=1

[
cαxα(s)q(s)− c2

αq
2(s)

2mαω2
α

]
, (2.73)

SS[q] =

∫ t

t0

ds

[
Mq̇2(s)

2
− V [q(s)]

]
. (2.74)

Here, a dot signi�es a derivative in time. Insertion of Equation (2.71) into Equation
(2.70) allows us to �nd the reduced density matrix by way of a propagating function
JFV(. . . ) according to

ρS(qf , q
′
f , t) =

∫
dqi

∫
dq′i JFV(qf , q

′
f , t; qi, q

′
i, t0)ρS(qi, q

′
i, t0). (2.75)

The propagating function is given by

JFV(qf , q
′
f , t; qi, q

′
i, t0) =

∫ qf

qi

Dq
∫ q′f

q′i

Dq′e
i
~ (SS[q]−SS[q′])FFV[q, q′], (2.76)

with the Feynman-Vernon in�uence functional FFV[q, q′] given by

FFV[q, q′] =

∫
dxf

∫
dxi

∫
dx′i

∫ xf

xi

Dx
∫ xf

x′i

Dx′

∗ e
i
~ [SSB[q,x]−SSB[q′,x′]] e

i
~ [SB[x]−SB[x′]] ρeq

B (xi,x
′
i).

(2.77)

The Feynman-Vernon in�uence functional describes the interaction between two paths
a system can take and results from the interaction with the bath. In a procedure going
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back to Feynman and Vernon Jr. [93], the path integrals and boundary integrations in
(2.77) can be evaluated to yield

FFV[q, q′] = exp
[
−1

~

∫ t

t0

dt′
∫ t′

t0

dt′′
{
L(t′ − t′′)q(t′′)− L∗(t′ − t′′)q′(t′′)

}
∗ {q(t′)− q′(t′)} − i

~
µ

2

∫ t

t0

dt′{q2(t′)− q′2(t′)}
]

.
(2.78)

Here L(t) is the �uctuation spectrum found in Equation (2.28) and µ = Mγ(0) orig-
inates from the counter-term. Details of the calculation can be found in Appendix E
of this thesis, in the book by Weiss [33, Chapter 5] and in the review by Grabert and
Ingold [94]. The imaginary part of Equation (2.78) leads to damping while the real part
gives rise to decoherence [33]. For the simple bath of uncoupled harmonic oscillators in
thermal equilibrium we also note that L(t) only depends on the di�erence of t′ and t′′.
Equation (2.75) together with the in�uence functional (2.78) thus gives the full solution
of the system-bath problem on the basis of path integrals.

Within the QUAPI method, FFV[q, q′] is parametrized in a basis of discrete position
eigenstates dubbed the DVR-basis [65]. Together with �nite time steps this allows
to formulate the problem using �nite matrices and one obtains an exact recurrence
relation for the reduced density matrix. More details are found in the thesis by Thorwart
[65] or in the original papers by Makri and Makarov [91, 92]. In contrast, the NIBA
approximation for the spin-boson model parametrizes the in�uence functional via
center-of-mass (sojourns) and relative coordinates (blips) where interactions of the
latter are subsequently disregarded. Details for this are found in the book by Weiss [33,
Chapter 21] and in Part 6.

2.3.3 Other methods

In this subsection, we mention a few additional solution methods. As we will not
go into detail, this subsection is only intended as a short overview without claim of
completeness. The cited literature can be used as a starting point for a more in-depth
look into the di�erent subjects.

Hierarchical equations of motion (HEOM)

The HEOM approach constructs the reduced density matrix from a hierarchy of di�er-
ential recurrence relations. This hierarchy follows from introducing additional terms
into the exact path integral expressions. Their order de�nes auxiliary density matrices,
which can be connected to each other by di�erentiation. The zeroth order gives the
exact reduced density matrix. It turns out that for very high orders the coupling be-
tween the matrices e�ectively vanishes such that the hierarchy can be truncated. By
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iteratively solving the hierarchy from top to bottom it is therefore possible to obtain
the reduced density matrix numerically. More details can be found in Ishizaki and
Tanimura [95] and the original papers on the subject [96, 97].

Renormalization group methods

Renormalization group (RG) methods formalize the idea that bath degrees of freedom
are integrated out in order to obtain the dynamics of the system only. Speci�cally,
RG methods systematically decrease the number of degrees of freedom by iteratively
absorbing their e�ect in speci�c quantities, leading to e�ective Hamiltonians. RG
methods can then be understood as mapping procedures which can be used to obtain
solutions on the basis of solvable e�ective models. The most well known example
of their use concerns the emergence of universality near a critical point where many
di�erent physical systems exhibit the same functional dependence. In terms of RG this
was successfully explained by showing that di�erent systems map to the same e�ective
model [98–100]. Practically, the actual procedure can be implemented in a variety of
di�erent ways. For instance on the basis of sophisticated path integral and diagrammatic
descriptions (FRG) [14, 100, 101] or numerically via sequential diagonalization and
truncation of the resulting state-space (NRG and DMRG) [15, 16, 102].

Multicon�gurational time-dependent Hartree methods (MCTDH)

MCTDH methods are a staple of numerical methods which have become increasingly
popular for chemical physicists. In addition to density functional methods for electronic
degrees of freedom, MCTDH can be used to describe the behavior of nuclear dynamics
in molecules. The method is based on a variational ansatz for the wave-function
as a superposition of products of time-dependent single-particle states (a so-called
Hartree product). By using the Schrödinger equation and speci�c variational constraints,
di�erential equations for the single-particle functions can be obtained. A similar ansatz
can also be used to obtain the reduced density matrix. Still, the method is approximate
as the ansatz itself neglects correlations. However, the degree of approximation is
linked to the number of products involved, thus allowing for controlled accuracy and
numerical e�ort. In contrast to previous Hartree-like treatments, MCTDH allows to
describe more degrees of freedom, making it interesting for problems in dissipative
quantum mechanics as well. For instance, the method has been used in the analysis of
an ion in contact with a Bose condensate [103] and has been applied to the spin-boson
model as well [104]. More information can be found in the book by Meyer et al. [105]
and the reviews by Beck et al. [106] and Worth et al. [107].
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Stochastic Schrödinger equations

As an alternative to the formulation by path integrals or reduced density matrices,
system-bath models can also be analyzed using a framework of stochastic pure states.
These states are constructed as solutions of Schrödinger equations which include a
stochastic force. The reduced density matrix then follows as the ensemble average over
projectors onto the states for the di�erent realizations. The Schrödinger equations are
constructed either by formulating the stochastic states in the basis of coherent states or
by way of propagators which follow from path integral expressions [108, 109]. Recently,
this ansatz was extended with ideas from the HEOM method in the so-called hierarchy
of pure states (HOPS) approach. This new method replaces a functional derivative,
which naturally appears in the stochastic Schrödinger equations, with a hierarchy of
di�erential recurrence relations. By iteratively solving the hierarchy, the solutions
converge faster with more accurate results [110].
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Part 3

The Onsager model and driven quantum systems

After we introduced the ideas behind dissipative quantum systems in the last part,
we proceed with the discussion of driven quantum systems. Our main focus will
lie on the interaction with a classical electric �eld and, in particular, on the dipole
approximation. This approach is particularly convenient for system-bath models, as a
simple electrostatic cavity model can be employed to mimic environmental solvation
and model the associated spectral density. The setup of this chapter is oriented along
these core ideas: we begin by recalling the basics of classical electrodynamics with a
focus on the macroscopic description in materials. In the second section, we introduce
the notion of solvation models and discuss the so-called Onsager model. We proceed in
Section 3 with a short introduction to driven dissipative quantum systems including
linear response theory and the optical Bloch equations. This chapter is largely based
on books on the subject matter [5, 49, 111–117].

3.1 Electrodynamics in materials

As a general rule, electrodynamic interactions are among the most important interac-
tions for physical systems. In the form of driving �elds from a laser or the Coulomb
interaction with the environment (for instance in a polar solvent), they also prove to
be particularly important for system-bath descriptions of molecules. Therefore, this
section will give a presentation of classical electrodynamics with a focus on macroscopic
�elds in materials. This allows us to introduce the notion of a dynamic polarization and
we discuss usual forms of the dielectric function. We proceed with a short summary of
nonlinear e�ects and the Kerr e�ect in preparation for our analysis in Part 7. Finally,
we introduce some molecular quantities which determine the interaction with electric
�elds on the microscopic level.

3.1.1 Macroscopic Maxwell equations

What happens when electrical �elds act on a material? In conducting materials such
as metals electric �elds excite conduction electrons which gives rise to currents and
magnetic �elds. In non-conducting materials, however, electrons are bound and cannot
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(a) (b)

Figure 3.1: Depiction of polarization in a dielectric. (a) A dielectric consists of electrically neutral
molecules (green spheres) and molecules with permanent dipole moments (blue ovals and arrows),
which are initially unoriented. (b) Upon application of an external �eld (the dielectric displacement
D), dipole moments are induced in the neutral molecules (dashed green arrows) while the molecules
with permanent dipole moment rotate into the direction of the �eld. The dielectric becomes polarized
with polarization P . This usually amounts to shielding and the measurable electric �eld E inside
the material is smaller thanD (red arrows). In a simple linear approximation the relative dielectric
constant determines the size of this e�ect.

separate or �ow as easily. This means, an electric �eld that is not too strong merely
induces molecular dipole moments by deforming the electron cloud inside the molecules
or it reorients permanent moments across the material. This is known as dielectric
polarization and the corresponding materials as dielectrics. A magnetic �eld, on the
other hand, may induce or reorient magnetic moments which gives rise to a macroscopic
magnetization. Both ideas are formalized by introducing appropriate �elds which take
into account the e�ect of external sources as well as the internal e�ects from polarization
or magnetization. Naturally, this description cannot be valid on the molecular scale as
the �elds created by the molecules or atoms will vary too strongly. Their quantized
nature also has to be taken into account. However, the de�nition of macroscopic �elds
allows for an easy formulation by way of modi�ed Maxwell equations which describe
a coarse-grained picture where molecular details are neglected. In the following, ε0

gives the vacuum permittivity, µ0 the vacuum permeability while boldfaced quantities
designate vectors. With this in mind, we de�ne the displacement �eldD(r, t) as

D(r, t) = ε0E(r, t) + P (r, t), (3.1)

where P (r, t) is the polarization which follows from the average molecular dipole-
moment pmol in a small volume around r, multiplied by their number density N [111,
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115]

P (r, t) = N pmol(r, t). (3.2)

De�nition (3.1) implies that the total electric �eldE(r, t) in the material is modi�ed
because of shielding or enhancement by the molecular dipoles. The displacement �eld
then gives the unmodi�ed �eld contribution created by real charges only. The relation-
ship between these quantities and the two primary origins of dielectric polarization are
depicted exemplarily in Figure 3.1. Similarly, we can also de�ne a magnetization by
way of magnetic momentsmmol as [111, 115]

M (r, t) = N mmol(r, t). (3.3)

The magnetizing �eld is then de�ned as

H(r, t) = µ−1
0 B(r, t)−M (r, t). (3.4)

It can be shown that the �eldsD(r, t) andH(r, t) ful�ll the Maxwell equations,

∇ ·D(r, t) = ρfree(r, t), (3.5)

∇ ·B(r, t) = 0, (3.6)

∇×E(r, t) = −∂B(r, t)

∂t
, (3.7)

∇×H(r, t) = jfree(r, t) +
∂D(r, t)

∂t
. (3.8)

Here, the subscript free designates that only non-bound charges and currents are taken
into account. Any changes in both the charge and the current distribution are absorbed
into the de�nitions ofH andD such that they describe unperturbed �elds created by
external charges and currents only. The measurable magnetic and electric �elds (E
andB) are changed by the corrections from P andM . Their sign, behavior and size
give rise to di�erent classi�cations of materials such as ferromagnetic or paraelectric
substances. In this thesis, we will work with the ordinary dielectric or paraelectric
cases, where no polarization occurs at zero �eld [115]. As can be seen from Equations
(3.1) and (3.4), the contribution of P andM may also change the associated direction
of the �elds and can depend on the �elds inside the material in a complicated manner.
In the easiest case, they can be assumed as linear and isotropic such that polarization
and magnetization become simple proportionalities. That is, for linear dielectrics and
linear magnetizations, we have that

P (r, t) ≈ ε0χeE(r, t), (3.9)

M (r, t) ≈ χmH(r, t), (3.10)
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where χe and χm are called electric and magnetic susceptibility respectively. Inserted in
Equations (3.1) and (3.4), these are often grouped together as new constants

D(r, t) = ε0(1 + χe)E(r, t) = ε0εrE(r, t), (3.11)

B(r, t) = µ0(1 + χm)H(r, t) = µ0µrH(r, t), (3.12)

where εr is the relative permittivity (sometimes called the relative dielectric constant)
and µr the relative permeability. Both quantities are evidently dimensionless.

In the following, we restrict ourselves to the discussion of electrostatic problems
where jfree(r, t) = 0 and no magnetization exists. Nevertheless, we will later also use a
time-dependent electric �eld while we neglect the impact of the dielectric displacement
current in Equation (3.8). This reduces the problem to a purely electrostatic one.

3.1.2 Electrostatic boundary conditions

The usual boundary conditions for electrostatic or magnetostatic problems are altered
in materials. Here, we outline the results for electrostatic problems in the linear regime
and neglect any time dependence for the time being. First, Equation (3.11) implies
that we can de�ne the potential of the electric �eld as usual, that is E(r) = −∇Φ(r).
Insertion of Equation (3.11) into Equation (3.5) yields the associated Poisson equation,

∆Φ(r) = −ρfree(r)

ε0εr
. (3.13)

This means that the overall solution methods to electrostatic problems remain the same
but for an additional factor εr. Thus, the boundary conditions between two dielectric
surfaces 1 and 2 can be derived from Equations (3.5) and (3.7) as usual by considering
the tangential and perpendicular component of the electric �eld at the boundary [111,
112]. Speci�cally, we �nd continuity of the potential,

Φ1(r)|boundary = Φ2(r)|boundary, (3.14)

and a jump in the derivative along the normal n,

εr,1
∂Φ1(r)

∂n
− εr,2

∂Φ2(r)

∂n
= σfree(r). (3.15)

Only the last equation is modi�ed by the existence of the relative permittivities of the
two dielectrics, ε1,r and ε2,r, and by evaluating the surface charge density σ only for
free charges.
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3.1.3 Dynamic polarization

Up to this point, we have not only worked in the isotropic linear approximation, but also
neglected any kind of spatial or time dependence within the response of the dielectric.
By keeping both isotropy and linearity in E, we can write the polarization of Equation
(3.9) by way of an integral for a time and space-dependent linear electric susceptibility
χe(x,x

′; t, t′), according to [5, 49, 117]

P (t,x) = ε0

∫
d3x′

∫ t

−∞
dt′ χe(x,x

′; t, t′)E(x′, t′). (3.16)

Here, χe now relates the two positions x and x′ as well as the times t and t′. For the
case of homogeneity in space and time, only the di�erence of the respective variables
is important such that

P (t,x) = ε0

∫
d3x′

∫ t

−∞
dt′ χe(x− x′; t− t′)E(x′, t′). (3.17)

In this thesis, we usually neglect the spatial dependence and argue that the electric �eld
is assumed to vary little across the length of the physical system of interest. This means,
we use a localized response given by χe(x− x′; t− t′) = χe(t− t′)δ(x− x′) [5]. In
terms of the time variable, Equation (3.17) describes the case in which the electric �eld
changes faster than the response of the dielectric such that the polarization follows
the �eld with a delay. This can happen, for instance, when the molecules forming
the dielectric reorient in the direction of a fast oscillating �eld. The inertia of the
molecules will then naturally introduce a delay into the response of the dielectric. An
instantaneous response (such as as fast reaction of a molecule’s electron cloud) can also
be included by way of an appropriate δ-function. It should be noted that this physical
picture introduces a notion of causality, in that the response must follow after the
perturbation and cannot occur beforehand. This is re�ected mathematically by having
χe(τ) = 0 for τ < 0. Together with the localized response, a Fourier transformation to
frequency space turns Equation (3.17) into a simple proportionality given by

P (ω) = ε0χe(ω)E(ω). (3.18)

Equation (3.18) recreates Equation (3.9) except with an additional frequency dependence.
This implies that in the absence of currents and magnetic �elds, we can apply the
ordinary solution methods of electrostatics to �nd the resulting �elds. Naturally, the
complete absence of currents (especially the displacement current) is an approximation
which we motivate by their relative weakness for weak, slowly varying �elds and the
(essentially) non-conducting nature of dielectric materials. We apply these principles in
the next section to solve the Onsager sphere model.
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Figure 3.2: Typical behavior of a dielectric function ε(ω) for molecules in the condensed phase
at di�erent probing frequencies [113]. The plot is constructed from a Debye-type peak and two
Lorentzian resonances (see Equations (3.20) and (3.34)). The former corresponds to typical dynamics
related to orientation of molecules while the latter models speci�c molecular resonances as shown
exemplary for water molecules in the relevant frequency range. The real part ε′(ω) shows a
characteristic peak-antipeak structure at resonance and determines the phase of an incoming beam
of light. The imaginary part ε′′(ω) produces clearly visible peaks which correspond to damping.
The step-like structure of ε′(ω) shows that for increasing frequency degrees of freedom stop to
contribute and for frequencies too high only nuclear e�ects will eventually remain.

3.1.4 Refractive index and dielectric function

In Equation (3.16) we saw that the polarization could be written by way of a time-
dependent susceptibility. In this subsection, we note that this time dependence can
also be absorbed into the dielectric permittivity found in Equation (3.11). In frequency
space, it is then usually referred to as the dielectric function ε(ω) de�ned by

D(ω) = ε0[1 + χe(ω)]E(ω) = ε0ε(ω)E(ω). (3.19)

Note that we have de�ned ε(ω) without a factor ε0 so that it is equivalent to the
relative permittivity. The dielectric function is an experimentally accessible quantity
which characterizes dielectric materials [113]. Its actual size and behavior depends
on the material and the frequency range probed. For instance, polar compounds in
the condensed phase tend to show recurring structures which can be understood by
molecular resonances separated by almost constant regions. An example is shown in
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Figure 3.2. The resonances can usually be distinguished by three regimes: rotational
excitations which correspond to beam energies in the meV-range, vibrational excitations
which occur in the infrared and electronic resonances at visible and UV frequencies in
the eV-range [113]. The dielectric function can also be used for solids and we will make
use of ε(ω) to model a plasmonic resonance on the surface of a metallic nanoparticle in
the next part of the thesis.

The dielectric function has di�erent forms for di�erent frequency regimes and
whether or not polarization is caused by reorientation of permanent dipoles, induced
dipole moments, molecular excitations or the presence of conductivity [111, 113]. For
our purposes, we note Lorentzians as common structures, which we will discuss in
more detail in Section 4.3, and the so-called Debye relaxation type given by

ε(ω) = ε∞ +
εs − ε∞
1− iωτ

. (3.20)

Here, εs gives a constant contribution at zero frequency, whereas ε∞ describes the
high (in�nite) frequency limit. The form (3.20) assumes the dielectric as a collection of
non-interacting dipoles that all relax with the same time scale τ and is often used as a
simple description for orientational polarization in condensed systems [113, Chapter
VIII]. It can be derived with the methods outlined in Part 7 [13] or it can be seen as a
phenomenological approach by assuming exponential decay of the polarization on the
time scale τ [5, Chapter 15.2][113, §53]. This also implies that Equation (3.20) will be
valid at frequencies below ∼ 1016 Hz [5, pages 50 and 51] where e�ects from induced
dipole moments are practically instantaneous and captured within ε∞. More involved
descriptions and extensions for multiple relaxation times are also possible, such as
the Cole-Cole or the Havriliak–Negami formula [113, §55] [118]. An experimentally
measured �t for a real dielectric function is provided in the next part (Equation (4.26))
for the dielectric response of water in the terahertz regime [119, 120].

The imaginary part of ε(ω) leads to damping, while the real part changes the phase
velocity of an incoming electromagnetic wave. This can be made manifest by noting
that the refractive index of a material with µr = 1 can be obtained by [111, 113]

n(ω) =
√

1 + χe(ω) =
√
ε(ω) = n′(ω) + in′′(ω). (3.21)

Here, we split n into its real part (n′) and its imaginary part (n′′), while we note that the
index is now frequency-dependent. Insertion of (3.21) into a plane wave, propagating
in a direction x with wave number k, frequency ω and amplitude E0, leads to

E(x, t) = E0 e
ikx−iωt = E0 e

−iω(t−nxc ) = E0 e
−iω

(
t−xn

′(ω)
c

)
− 2πxn′′(ω)

λ0 , (3.22)

where c is the speed of light in vacuum. Equation (3.22) describes a wave with a phase
velocity vp = c/n′(ω) and exponential damping characterized by n′′(ω) and the position
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Figure 3.3: Schematic depiction of a Kerr cell. A light beam (green arrow) with propagation-
direction k and electric �eld Ek is sent through a polarizer (gray grates) and enters a cell with a
Kerr medium (blue cylinder). Perpendicular to the beam, an electric �eld E0 acts on the medium
in the cell and changes the refractive index along its direction. This leads to a change in the
polarization of the beam (angle ϕ). A second polarizer can now be used to shut out or permit the
beam by way of E0.

x in relation to the vacuum wavelength λ0. The modulus of Equation (3.20) directly
leads to the Lambert-Beer law, where the intensity of an electromagnetic wave decays
exponentially with the thickness of the sample [111, 113]. In this thesis, the dielectric
function ε(ω) will play a prominent role and we will use it extensively to model di�erent
environments in our system-bath description.

3.1.5 Nonlinear e�ects and Kerr e�ect

After discussing the rather simple picture of a linear isotropic dielectric, we will outline
a few basics of nonlinear dielectrics in this subsection. In particular, we will discuss
the so-called Kerr e�ect which will be a topic in Part 7. As we have seen in Equation
(3.18), we treated the response in the linear regime by way of a frequency-dependent
susceptibility χe(ω). However, the assumption of linearity is based on comparably
weak �elds and there is ultimately no reason to think that the response of the material
may not follow a more complicated dependence. In order to approximate the behavior
for stronger �elds, one can straightforwardly extend the polarization to higher orders
[49, 116, 117]

P̂i(ω) = ε0

3∑
j=1

χ
(1)
ij (ω;ω1)Êj(ω1) + ε0

3∑
j,k=1

χ
(2)
ijk(ω;ω1, ω2)Êj(ω1)Êk(ω2)

+ ε0

3∑
j,k,l=1

χ
(3)
ijkl(ω;ω1, ω2, ω3)Êj(ω1)Êk(ω2)Êl(ω3) + . . . .

(3.23)

Here, we omitted the subscript e such that χ(n) labels the expansion coe�cient of n-th
order and used ijkl to label components of vectors and tensors. The equation thus
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includes the tensorial nature of susceptibilities and covers anisotropic materials. We did,
however, not include summations over perturbations and the like such that Equation
(3.23) should still be seen as approximate. Moreover, the equation describes the rela-
tionship between monochromatic components of the �eld, i.e. E(t) =

∑
j Ê(ωj)e

iωjt,
which means the equation is not directly formulated in frequency space. Nevertheless,
Equation (3.23) shows that amplitudes in di�erent directions as well as frequency com-
ponents of an electric �eld E combine to create the i-th component of the polarization
with frequency ω. In principle, this is already the heart of nonlinear optics: the di�erent
possibilities of combining frequencies, for instance by summation and subtraction, as
well as the coupling of di�erent directions ultimately give rise to a variety of nonlinear
e�ects. For instance, sum-frequency generation is a second-order process which cre-
ates the frequency ω by way of a simple addition ω = ω1 + ω2. This can be directly
exploited in optical setups to create an output beam of desired frequency and direction
by combining two appropriate inputs. Other examples include di�erence frequency
generation, self-(de)focusing and the Pockels and Kerr e�ects. Still, their relative weak-
ness and symmetry considerations restrict the number of important nonlinear e�ects
[116]. Due to phase matching conditions and the high �eld strengths involved, most
applications are also restricted to laser optics where these e�ects are used to create
certain frequencies or shorten the beam. The resulting beams can then be used for such
things as signal transduction in optical �bers or LASIK surgeries to improve eyesight.
An overview of the various applications can be found in the review by Garmire [121].

The rather simple expansion performed in Equation (3.23) can be motivated by
quantum mechanical perturbation theory: coupling to an electric �eld automatically
creates terms in a perturbative expansion that depend inversely on the di�erences
between transition and external driving frequencies. The possible combinations lead
to the structures seen in Equation (3.23) at the corresponding orders. It also makes
manifest that some e�ects will be smaller if the associated di�erences are large. While
this argument is sketchy, it directly illuminates that the combinations of frequencies
and directions follow from energy and momentum conservation of photons and the
transitions involved in the full quantum mechanical treatment. More details and a more
involved discussion can be found in the usual literature [49, 116, 117].

In the following, we focus on the Kerr e�ect which we will analyze for liquid water
in Part 7. The Kerr e�ect describes an intensity-dependent correction to the refractive
index of the material. This leads to birefringence and a change in the direction of
polarization of an incoming beam of light. This was exploited in the past as an ultrafast
shutter mechanism by way of the Kerr cell, illustrated in Figure 3.3 [116, 122]. Today,
its impact is mostly visible in laser physics, where the Kerr e�ect can be used for such
things as mode locking or to create solitons in optical �bers [116, 123–125]. The Kerr
e�ect is described by a third-order nonlinear polarization such as [116]

P̂ KE
x (ω) ∝ ε0χ

KE (3)
xzzx (ω;ω′,−ω′, ω)Êz(ω

′)Ê∗z (ω
′)Êx(ω). (3.24)
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Here, we have assumed that an (optical) �eld of frequency ω occurs in the x direction. A
second electric �eld with frequency ω′ occurs in z-direction. It is clear from the structure
of Equation (3.24), that the intensity of the �eld in z-direction changes the refractive
index for the �eld in x-direction. We can see this explicitly by insertion of Equation
(3.24) into Equation (3.1) and using Equation (3.21) for the nonlinear susceptibility. For
small changes to the refractive index, we �nd [116][117, Chapter 4.1]

∆n ≈ 3χ(3)Iz(ω
′)

2n(ω′)n(ω)cε0

, (3.25)

where c is the speed of light in vacuum, n(ω) the refractive index at the given frequency
and Iz(ω′) is the intensity of the �eld in z-direction. We have also omitted the depen-
dencies of χ(3) for brevity. The phenomenon described by Equation (3.25) is known as
the optical Kerr e�ect (OKE) or the AC Kerr e�ect [116]. If the driving �eld is static, that
is ω′ = 0, the change in refractive index is often written as [113, 116]

∆n = n‖ − n⊥ = nz − nx = λ0KE
2(0), (3.26)

with the Kerr constant K and the probing wavelength λ0 [113, 126]. This case is known
as the DC or static Kerr e�ect. Both e�ects lead to a shift in the polarization of a beam
with �eld components in both z and x direction, as depicted in Figure 3.3.

It can be shown that terms of even order in the expansion (3.23) vanish for materials
with inversion symmetry [116, 117]. This implies that the Kerr e�ect is especially
important for centrosymmetric materials such as gases, liquids and amorphous solids
where second-order contributions are zero [127]. In this case, the OKE can also be
used as a spectroscopic method since the Kerr e�ect is sensitive to reorientational
dynamics of molecular dipoles (cf. Part 7). By measuring the OKE response of a
substance to an ultrafast driving pulse, one is able to resolve the microscopic dynamics
or quantify molecular parameters. OKE spectroscopy is also sensitive to Raman-active
intra- and intermolecular modes, making it particularly useful to explore condensed
matter systems [128–130]. In Part 7, we present a theoretical description of OKE
dynamics based on single-particle rotational di�usion [13, 131] and use it to analyze
recent experimental measurements on the Terahertz Kerr e�ect on liquid water [3].

3.1.6 Molecular polarizability

Lastly, we introduce the molecular polarizability. The molecular polarizability αmol
de�nes the relationship between an external electric �eld and the (induced) dipole
moment of a molecule. Again, the simplest case is a linear relationship with the local
electric �eld Eloc which gives the �eld that acts on a single molecule inside a material
[111, 117]

pmol = αmolEloc. (3.27)
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Note that Equation (3.27) can be easily generalized to the anisotropic case, where
αmol is promoted to a three-dimensional tensor. By assuming that pmol represents an
averaged quantity, Equation (3.27) can be used to obtain the polarization via Equation
(3.2). This assumption also permits us to evaluate the local electric �eld which contains
corrections from the di�erence between the continuum description to the actual �eld
on the molecular level. It can be connected to the macroscopic polarization to yield the
so-called Clausius-Mosotti equation [111]

αmol =
3ε0

N

(
εr − 1

εr + 2

)
, (3.28)

where N is the number density of molecular dipoles in the material. This result
introduces a local-�eld correction given by an additional factor of (εr + 2)/3 for the
linear susceptibility [117]. The Clausius-Mosotti equation can also be rewritten by
substituting the refractive index of Equation (3.21) and is then known as the Lorentz-
Lorenz equation. Furthermore, by comparing Equation (3.18), we can see that we are
similarly able to ascribe a time dependence to the molecular polarizability, leading to

pmol(ω) = αmol(ω)Eloc(ω). (3.29)

We will exploit the relationship (3.29) in the next chapter to model a polarizable molecule
in a driven bath. Next, we note that (3.29) can also be expanded to higher orders, known
as hyperpolarizabilities. The dipole moment can then be written as [112, 113, 117]

pi,mol(ω) = µi(ω) +
3∑
j=1

αij(ω;ω1)Êj(ω1) +
3∑

j,k=1

βijk(ω;ω1, ω2)Êj(ω1)Êk(ω2)

+
3∑

j,k,l=1

γijkl(ω;ω1, ω2, ω3)Êj(ω1)Êk(ω2)Êl(ω3) + . . . .
(3.30)

Here, we wrote the equation for a component i and introduced the hyperpolarizabilities
β and γ. In preparation for our treatment in Part 7, we also included a permanent
molecular dipole moment µ. The advantage of the description in Equation (3.30) lies in
the inclusion of local �eld e�ects and the focus on molecular quantities in contrast to
the macroscopic description in Equation (3.23).

Finally, we introduce a simple modeling prescription for the molecular polarizability
usually referred to as the Lorentz oscillator model [114, 132]. The model treats the
dielectric as a collection of forced and uncoupled harmonic oscillators for the electrons
in a molecule and can be seen as a shorthand for the deformation of their electronic cloud.
The classical equation of motion for a single electron under a periodic perturbation by
a monochromatic electric �eld follows as [111, 114, 132]

me
d2r(t)

dt2
+meΓ

dr(t)

dt
+meω

2
0r(t) = −eE0e

−iωt. (3.31)
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Here, me is the electron mass, r(t) the position, Γ a damping factor (for instance from
collisions or radiative losses), ω0 the frequency of the oscillator and E0 the amplitude
of the electric �eld with frequency ω. Since a forced oscillator settles into the external
frequency after a while, we can set r(t) ≈ r0e

−iωt and focus on the particular solution.
Insertion yields for the dipole moment

pmol = −er(t) =
e2E0

me(ω2
0 − ω2 − iΓω)

e−iωt, (3.32)

which gives the polarizability as

αmol(ω) =
e2

me(ω2
0 − ω2 − iΓω)

. (3.33)

Note that this derivation assumed that the local �eld in Equation (3.32) is equal to
the external �eld. Equation (3.33) is an ordinary Lorentzian excitation spectrum with
particular resonances of the electronic cloud. αmol(ω) is connected to the dielectric
function via Equations (3.18) and (3.19) such that these Lorentzian structures also appear
in ε(ω). Speci�cally, one �nds the Drude form [111]

ε(ω) = 1 +
Ne2

ε0me

∑
j

fj
ω2
j − ω2 − iΓω

. (3.34)

Here, j labels the atoms in the dielectric and the variable fj describes the so-called
oscillator strength which gives the number of electrons with resonant frequency ωj .
In a quantum mechanical treatment the fj are given by matrix elements of transition
dipole moments and the ωj are transition frequencies between states [114, 132]. While
the model itself is simplistic, the resulting form of the dielectric function in Equation
(3.34) is fairly general and can be speci�ed further for special cases such as conducting
metals or liquids like water [111]. We will see examples for both cases in the next part
of this thesis.

3.2 The Onsager solvation model

In this section, we will discuss the Onsager solvation model and provide a detailed
calculation for a simple spherical geometry. We begin by outlining the basic idea behind
continuum solvation models and provide a short introduction to the concept. Further
reading can be found in the lengthy reviews by Tomasi et al. [133–135], the books by
Böttcher [112, 113] and Mennuci and Cammi [136].
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3.2.1 Continuum solvation models

As implied in Part 2, one of the most important applications for system-bath models
is the description of molecules in a solvent. In general, solvent molecules can react to
the presence of a polar solute with shielding, electron transfer, distortion of internal
charges and chemical bonding, all of which can change the molecular properties or
the observed spectra of the solute [5, 112, 137]. This situation is ubiquitous when it
comes to liquids and also particularly important for biological systems where proteins
and their functional groups are naturally immersed in water or embedded within a
speci�c molecular environment [5, 26]. However, properly treating solution amounts to
the evaluation of a quantum mechanical many-body problem which can only be done
approximately, if at all [133, 138]. A particularly simple treatment, originally developed
by Onsager, Kirkwood and Born [139–141], has proven popular instead: the solvent is
described as a continuous dielectric such that a solute interacts with its environment
by way of e�ective electric �elds. The solute is modeled as a charge distribution placed
inside a cavity, which stands in for the molecular radius. The electric �eld of the solute
polarizes the dielectric, giving rise to a so-called reaction �eld that acts back onto the
solute, describing the interaction between the system and its environment. This class
of simple (semi-) classical models is known as continuum solvation models [112, 135].

Over the years, such things as the actual shape of the cavity for di�erent molecules
(ellipsoidal, spherical, molecule-shaped etc.) [26, 112, 134, 135], its size [112, 142,
143], the detailed charge distribution [134, 135] and various quantum mechanical
improvements (of the solute and even by explicitly taking into account a limited number
of solvent molecules) have been considered [133, 134, 144]. Continuum solvation models
have been used in conjunction with quantum chemical methods to predict molecular
parameters such as the dipole moment in solution [144–147], to explain reaction rates
of chemical reactions [5, 136], surface enhanced Raman scattering (SERS) [134, 148] or
energy transfer in biological systems [26, 52].

Nevertheless, the simplest models still serve as a useful analytical tool to gain
physical insight into the impact of solvation on molecular properties. For our purposes,
we note that McKenzie et al. [26, 52] used simple spherical geometries in conjunction
with spin-boson models as a proxy for the description of relaxation and energy transfer
dynamics in biological systems. Recently, the e�ect of a time-dependent cavity radius
coupled to a spin-boson model has also been considered for the solution of certain iron
complexes whose solvation shell changes size when the complex switches spin states
[149, 150]. Both applications showcase that coupling simple system-bath descriptions
and continuum solvation models allows for the construction of useful minimal models
which can be connected to experimentally measurable quantities by way of their
dielectric properties.

In the following, we derive the e�ective electric �elds for the case of a point dipole
in a spherical cavity - a description which we will refer to as the Onsager model. We
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Figure 3.4: The Onsager solvation model. Solvent e�ects are modeled by a continuum approach
where the environment of a molecule is given by an in�nite dielectric with dielectric function εd(ω).
The molecule is represented by a dipole µ(ω) located at the center of a spherical cavity with radius
a. An electric �eld E(ω) acts on the setup. The dipole becomes subject to two �eld contributions: a
reaction �eld from interaction with the dielectric which leads to damping and a dressed driving
�eld originating from E(ω), known as the cavity �eld.

will outline how the emerging �elds can be used to quantify the spectral density of
Equation (2.26) and we shall see later that they also allow us to quantify the e�ect of
bath-driving contributions. As noted, more complicated cavity shapes can make for
more accurate models and additional results for a layered model and an ellipsoidal
cavity can be found in Appendix B.

3.2.2 Electrostatics for the Onsager sphere

In this subsection, we outline the electrostatic calculation in the Onsager sphere model
for vanishing external �eld. Similar calculations can be found in the literature [111,
112], where our proceedings will largely follow the derivation outlined in a paper by
McKenzie and Gilmore [26]. In the original publication by Onsager [141] an external
�eld is also taken into account. This situation is outlined in Part 4, where we will
interpret the additional term (the cavity �eld) as an e�ective bath driving contribution.
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We start by assuming a spherical molecule with radius a and permanent dipole
moment µ. It is placed inside a dielectric with relative permittivity εd(ω). The molecule
itself is assumed to be a cavity in the dielectric with εc(ω) = 1 and a point dipole
located at its center oriented into the z-direction. This dipole, its direction and the
associated forces can then be seen as a minimal model for the behavior of a solvated
molecule. The model is depicted in Figure 3.4.

In order to �nd the dynamics, we neglect any currents and only focus on the impact
of the polarization. As discussed in Section 3.1.3, we can then work in frequency space
where we only have to solve the Poisson Equation (3.13) in the di�erent dielectric regions.
Since we assume that no free charges exist, the problem reduces to the evaluation of
the Laplace equation,

∆Φ(r, ω) = 0, (3.35)

at position r. The problem has a spherical symmetry so it is advantageous to work in
spherical coordinates characterized by the two angles θ and ϕ and the distance from
the origin r. In this case, the Laplace equation can be solved by expanding the potential
in a series of spherical harmonics [111]. We have

Φ(r, θ, ϕ, ω) =
∞∑
l=0

m=+l∑
m=−l

[
Alm(ω)rl +

Blm(ω)

rl+1

]
Ylm(θ, ϕ), (3.36)

where Ylm(θ, ϕ) label the spherical harmonics. We can simplify this expansion, as the
direction of the dipole imposes a cylindrical (azimuthal) symmetry on the problem such
that the dependence on ϕ vanishes. Equation (3.36) then reduces to

Φ(r, θ, ω) =
∞∑
l=0

[
Al(ω)rl +

Bl(ω)

rl+1

]
Pl(cos(θ)), (3.37)

where the Pl(x) are Legendre-polynomials. The corresponding derivative in r-direction
is given by

∂Φ(r, θ, ω)

∂r
=
∞∑
l=0

[
lAl(ω)rl−1 − (l + 1)

Bl(ω)

rl+2

]
Pl(cos(θ)). (3.38)

The potential (3.37) can be determined from the boundary conditions of the model.
First, the potential has to obey the general boundary conditions (3.14) and (3.15) at the
boundary between the two dielectric regions. We �nd for the potential inside the cavity
Φc and in the dielectric Φd that

Φd(r = a) = Φc(r = a), (3.39)

εd(ω)
∂Φd(r, ω)

∂r

∣∣∣∣
r=a

=
∂Φc(r, ω)

∂r

∣∣∣∣
r=a

. (3.40)
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Moreover, we assume that the potential has to vanish at in�nity and recreates the �eld
of the point dipole near the origin

Φd(r →∞) = 0, (3.41)

Φc(r → 0) =
µ(ω)

4πε0r2
cos(θ). (3.42)

Note that all the boundary conditions in Equations (3.39) to (3.42) depend only on
the radial coordinate r, due to the spherical nature of the boundary. This drastically
simpli�es the following calculation. We start by noticing that P1(x) = x and all
Legendre polynomials are linearly independent. This directly leads to the observation
that only the l = 1 component of Equation (3.37) is important. Indeed, if we use the
conditions (3.41) and (3.42), we directly �nd

Ad
1(ω) = 0 , Bc

1(ω) =
µ(ω)

4πε0

, Ad
l 6=1(ω) = 0 , Bc

l 6=1(ω) = 0. (3.43)

Here, c and d label the coe�cients for the corresponding potentials. If we insert the
coe�cients for l 6= 1 into the conditions (3.39) and (3.40) we quickly obtain that
Bd
l 6=1 = 0 and Ac

l 6=1 = 0, as well. Therefore, we only need to consider the two equations
for the radial coe�cients with l = 1, given by

Ac
1(ω)a+

µ(ω)

4πε0a2
=

Bd
1 (ω)

a2
, (3.44)[

Ac
1(ω)− 2

µ(ω)

4πε0a3

]
= −2εd(ω)

Bd
1 (ω)

a3
. (3.45)

Combining (3.44) and (3.45) quickly leads to

Bd
1 (ω) =

µ(ω)

4πε0

[
3

2εd(ω) + 1

]
, (3.46)

Ac
1(ω) = −2

µ(ω)

4πε0a3
χo(ω), (3.47)

where we have de�ned the frequency-dependent Onsager susceptibility,

χo(ω) =
εd(ω)− εc(ω)

2εd(ω) + εc(ω)
=

εd(ω)− 1

2εd(ω) + 1
. (3.48)

Insertion of (3.45) and (3.46) then yields for the potential inside the cavity

Φc(r, θ, ω) =
µ(ω)

4πε0r2
cos(θ)−

[
µ(ω)

2πε0a3
χo(ω)

]
r cos(θ). (3.49)
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Equation (3.49) has two contributions: the �rst one gives the �eld of the dipole itself
while the latter describes an e�ective �eld pointing along the direction of the dipole.
It is caused by the reaction of the dielectric to µ(ω) and is therefore referred to as the
reaction �eld. In the next subsection, we show that this leads to damping and can be
directly compared to the terms that arose in Part 2.

3.2.3 Connection to system-bath models

The reaction �eld in Equation (3.49) implies a force in the z-direction. In the time
domain, the component along z can be easily calculated as

QEz(t) = Q

∫ t

−∞
dt′ χo(t− t′)

µ(t′)

2πε0a3

= q(t)γ(0)−
∫ t

−∞
dt′ γ(t− t′)dq(t

′)

dt′
,

(3.50)

where Q is the separated charge of the dipole and q(t) its (time-dependent) length. To
obtain the second equality, we have performed a partial integration with γ(t) de�ned
as

γ(t) =
Q2

2πε0a3

∫ ∞
t

dt′ χo(t
′). (3.51)

As we can see, Equation (3.50) creates an e�ective damping term characterized by the
damping-kernel in (3.51). In this way, the structure of the Onsager model automatically
leads to terms similar to those found in the quantum Langevin Equation (2.21). In fact,
we can directly argue that the susceptibility χo(ω) de�ned in Equation (3.48) can be
seen as the environmental response of Equation (2.33). This allows us to derive the
corresponding spectral density by taking the imaginary part as per Equation (2.36). We
directly see that

J(ω) =
Q2

2πε0a3
Im[χo(ω)]. (3.52)

Hence, we have now directly modeled an environment through its experimentally
accessible dielectric function ε(ω). We will use this connection extensively throughout
this thesis. Finally, we note that the partial integration in (3.50) introduces an additional
term which acts as a potential renormalization by γ(0) if the potential is harmonic.
This is the static response of the dielectric to the dipole in the cavity, similar to the
potential renormalization obtained in the Caldeira-Leggett model of Section 2.2.1. It
can also be treated by de�ning an appropriate counter-term.

Finally, we emphasize that the equivalence in this section holds because we e�ec-
tively considered a one-dimensional model by aligning the dipole to the z-direction
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and the spherical cavity creates a cylindrical symmetry. If this is not the case, the direc-
tion of the dipole and its relative orientation to the cavity has to be considered. This
case is discussed brie�y in Boettcher [112, Chapter IV] and also implies that a proper
connection to a system-bath model can only be made in such a case if the system-bath
description is extended to multiple spatial dimensions.

3.3 Driven dissipative quantum systems

In this section, we discuss dissipative quantum systems under the in�uence of external
driving forces. Since the �eld itself is vast and general features are hard to identify, we
will largely stick to a presentation of a few selected methods. Nevertheless, the tools
we develop in this part of the thesis will su�ce for our analysis in the next chapters.
We start this section with a brief introduction to driven dissipative quantum systems,
based on the review by Grifoni and Hänggi [32] where a more detailed discussion can
be found. Afterwards, we present the dipolar coupling of a classical �eld to a quantum
system and proceed to discuss its impact on transition probabilities. In the next two
subsections we present two particular methods, namely linear response theory and the
optical Bloch equations. The former is a general scheme for weakly driven systems
while the latter takes dissipation into account explicitly. We close this part with a
short description of Floquet theory which is an important tool for periodically driven
problems. Since we will mostly look at the example of a driven two-state system (TSS)
throughout, our focus will implicitly lie on the spin-boson model. The content on
driven systems is largely taken from the books by Meystre and Sargent [49], Boyd [117]
and Shankar [61], whereas the dissipative aspects include content from the books by
Nitzan, Weiss and Caldeira [5, 31, 33]

3.3.1 General features

A general approach to driven quantum systems is to study the di�erent time scales of
the problem. In order to illustrate this idea, it is useful to consider the simple example
of a classical harmonic oscillator under the in�uence of (su�ciently small) damping
and a sinusoidal driving force. Assuming that the oscillator is initially dislocated from
its rest position, it will start to swing in some manner before it eventually settles into
an oscillation determined by the external perturbation alone. The latter is what is
usually referred to as a steady-state, which labels a dynamic equilibrium situation [5].
This happens because the homogeneous solution is exponentially damped while the
inhomogeneous part has an amplitude with a Lorentzian structure [63]. For earlier
times, both contributions mix and lead to a comparably complicated behavior. For
the case of a slowly varying force, the undriven frequency determines the initial time-
evolution. All in all, we can see the in�uence of three distinct time scales: one associated
with the frequency of the undriven system, another with the external perturbation
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Figure 3.5: Energies and transition probabilities in the Landau-Zener-Stückelberg model. (a)
Eigenenergies of the two-state system of Equation (2.46) in the Landau-Zener model where ε(t) = vt.
For vanishing ∆, the eigenstates are those of σz and the energies of the two states E↑,↓ = ∓vt/2
(solid lines) cross. If∆ 6= 0, the eigenstates are di�erent and their energiesE± = ±

√
∆2 + (vt)2/2

show an avoided crossing structure (dotted lines). In the in�nite past and future both descriptions
overlap as ∆ becomes negligible to ε(t). In order to stay in the ground state, the system has to
switch states. (b) Landau-Zener probability for the system to stay in the ground state PLZ versus
the velocity v. Faster speeds result in a suppression. When dissipative e�ects are included, the
probability shows a strong temperature dependence (dotted lines). Note that the probabilities for
non-zero temperature are only rough sketches (denoted by a tilde) based on the results in Nalbach
and Thorwart [151] where the associated numerical results can be found.

and lastly the time scale of the damping process. Their competition gives rise to the
di�erent regions seen in the dynamics.

In the quantum case similar arguments can often be made. The prototypical example
is the so-called Landau-Zener-Stückelberg model [5, 32, 152–154]. Here, a two-state
system is subject to a driving force linear in time. This can, for instance, serve as a
toy model for the progression of a reaction coordinate or a collision process between
two molecules [5, Chapter 2.4]. Within the TSS description of Equation (2.46) the force
couples to the bias energy such that ε(t) = vt. The energy spectrum over time is
depicted in panel (a) of Figure 3.5. Assuming that the system is in the ground state of σz
in the far past, one usually asks about the probability of �nding the system in the ground
state in the far future. Because the energy of the two states change and eventually cross,
this requires the system to switch states. It turns out, that this probability depends
exponentially on the value ∆/|v| where larger speeds suppress the probability for a
transition [5, 151]. This is shown in Figure 3.5 panel (b). One may imagine, that the
system exhibits typical quantum beats when ε(t) becomes comparable to ∆. If ε(t)
changes too quickly, the system does not have enough time to “beat” and the system is
trapped in the state it started in and ends up in the excited state. In turn, slower speeds
allow for the system to switch into the new ground state.
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When adding dissipative e�ects to the Landau-Zener model its dynamics become
more complicated. Initially, the system is in the ground state such that it can interact
with the bath only when thermally populated bath modes are available whose energy
correspond to the momentary splitting energy. The characteristic time scale of this
interaction then depends on the temperature, the cuto� frequency and the velocity
v [151]. Most importantly, the bath leads to relaxation and the competition between
the two time scales determines the change in probability. For low temperatures, the
resonant time scale is fairly small such that the impact of the bath is restricted to lower
speeds. In fact, the transition probability exhibits a clear dent, showing that comparably
slow driving gives the system enough time to equilibrate during the crossing. For faster
speeds, the e�ect becomes negligible and the exponential decay is restored. For higher
temperatures, the dent grows more and more pronounced until the curve becomes
essentially �at at the equilibrium value up to very high speeds [83, 151]. A stronger
coupling strength does not invalidate this simple analysis and can be roughly explained
by the same mechanism [151].

In contrast to this rather simplistic approach, systems can show highly nontrivial
e�ects when both driving and dissipation is present. For instance, tunneling problems
can exhibit resonances in a driven steady-state for particular values of the relaxation
strength, called quantum stochastic resonances [32, Chapter 3.2.2]. Driving can also
completely suppress tunneling in what is known as coherent destruction of tunneling
[32, Chapter 3.2.2] (cf. Section 2.2.2). All examples we mentioned, showcase that the
interaction between driving and dissipation can strongly impact the dynamics of a
system. However, more general features are hard to identify which is why we now turn
to the actual description of driven and driven dissipative systems in the following.

3.3.2 Dipolar coupling to a time-dependent electric field

The interaction of a quantum system with an electric �eld can be quickly obtained by
canonical quantization. In particular, we can couple an electric �eld to a dipole moment
by recalling the appropriate energy term [5, 49]

Hint(t) = −µ ·E(t). (3.53)

Here, the dipole moment µ is now promoted to an operator while the �eld E(t) is still
a function. This is a semiclassical ansatz as the �eld itself has to be quantized for a true
quantum description. It turns out that the electromagnetic �eld can be described by a
bath of harmonic oscillators [33, 155]. For this reason, system-bath descriptions are
also ubiquitous in quantum optics (see, e.g., [49, 64]).

However, we will stick to a semiclassical description in this thesis which can be used
for �elds of high intensity where the number of photons is large [5, 49]. Per de�nition,
Equation (3.53) also merely recreates the interaction with a dipole and not with higher
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moments which can play a role in more complicated charge distributions. However, the
dipolar case is the term of lowest order and we will only use dipolar coupling schemes
throughout this thesis.

Still, the question of how exactly a quantum system exhibits a dipole moment
remains. For a simple one-dimensional dipole of one elementary charge, we may write
the dipole operator as µ = ex with position operator x. We can rewrite the position
by way of creation and annihilation operators in the case of a harmonic oscillator. In
this case, it directly follows that only matrix elements between two di�erent energy
eigenstates are non-zero (Equation (A.7)). For a two-state system representing the two
lowest states, this implies that only non-diagonal elements of the density matrix ρ can
contribute in this basis. We �nd [49]

〈µ(t)〉 = Tr
[
µ(t)ρ

]
= µ12ρ12 + µ21ρ21, (3.54)

where |1〉 designates the lower and |2〉 the higher-lying state with subscripts denoting
the associated matrix elements. In this way, we can see that a coupling of dipolar type
(3.53) couples to transitions and we can include the coupling to the spin-boson model
of Equation (2.46) by making the asymmetry ε of the system time-dependent

HS(t) =
∆

2
σx +

ε(t)

2
σz . (3.55)

Comparison with Figure 2.4 implies that the coupling changes the di�erence in
energy between the two ground states of a double well. In general, driving can also
occur in the tunnel coupling which is related to a modulation of the barrier height [32].
In practice, driving of ∆ or ε is chosen according to the underlying physical system.
For our purposes, we will largely stick to the case of a time-dependent ε.

Nevertheless, a direct consequence of Equation (3.55) is already visible: since driving
induces transitions by changing the eigenstates and eigenenergies of the two-state
system, we can expect that an initial state will likely not be an eigenstate to the
momentary system. This implies that the state becomes a superposition of momentary
eigenstates such that some kind of quantum beat must occur as per our discussion in
Sections 2.1.2 and 2.2.3. We will see an example of this in the following.

3.3.3 Transition probabilities of a driven two-state system

In quantum optics, a particularly interesting quantity are transition probabilities which
give the time-dependent probability of a transition between states induced by an
external driving �eld. In general, this is done by evaluating the expansion coe�cients
of a wave-function |Ψ(t)〉. In case of a two-state system, we can write

|Ψ(t)〉 = c1(t)|1〉+ c2(t)|2〉 = C1(t)e−iω1t|1〉+ C2(t)e−iω2t|2〉, (3.56)
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Figure 3.6: Transition probability as predicted by the Rabi formula of Equation (3.61) for two
values of the detuning δ and a Rabi frequency of R0 = 2ω21. The Rabi formula predicts periodic
oscillations of the transition probability depending on time or on the length of a rectangular pulse.
At resonance, the system can be fully excited for certain pulse lengths (red curves). For nonzero
detuning, the amplitudes become smaller and the oscillations become more rapid (blue curves).

where cn(t) = 〈n|Ψ(t)〉 are probability amplitudes and |n〉 are the energy eigenstates.
The second equation rede�ned the expansion coe�cients as Cn(t) which include a
phase based on the eigenenergies ~ωn. This amounts to a formulation in the interaction
picture. To get a transition probability, we have to assume that the system is initially
in the lowest energy state, i.e., c1(0) = C1(0) = 1. The transition probability can then
be obtained by solving the Schrödinger equation for the coe�cients and taking their
modulus squared as

PT = |c2(t)|2 = |C2(t)|2 = 1− |c1(t)|2 = 1− |C1(t)|2. (3.57)

However, even for two-state systems, analytic solutions for arbitrary driving pulses
do not exist. Notable exceptions are rectangular pulses and monochromatic �elds for
which exact solutions can be derived. Approximate solutions have also been developed
for Gaussian and similarly shaped pulses. In the following, we give a few results
within the so-called rotating-wave approximation and �rst-order perturbation theory
to showcase the general behavior for a monochromatic beam. This part will be based on
the presentation in Meystre and Sargent [49]. In the second part, we give approximate
results for more involved driving schemes.
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Monochromatic driving

We start with results for sinusoidal driving, derived using �rst-order time-dependent
perturbation theory. The Hamiltonian is assumed to consist of a time-independent part
and a time-dependent perturbation H = H0 + V (t). The interaction has the form

V (t) = V0 cos(ωet) =
µE0

2

(
eiωet + e−iωet

)
, (3.58)

where ωe is the external driving frequency, V0 is a time-independent operator and also
includes factors which determine the strength of the interaction. The second equation
translates this into the language of the simple dipolar coupling introduced in (3.53)
with dipole operator µ and �eld strength E0 where the �eld has been assumed to occur
parallel to the dipole moment. An iterative integration of the Schrödinger equation
yields in �rst order of V [49]:

C2(t) ≈ −iV21

2~

[
ei(ω21+ωe)t − 1

i(ω21 + ωe)
+
ei(ω21−ωe)t − 1

i(ω21 − ωe)

]
, (3.59)

where ω21 = ω2 − ω1 and V21 = 〈2|V0|1〉. The structure of (3.59) has two contributions
which depend on the sum and the di�erence of the transition and the external driving
frequency. When ω21 ≈ ωe one can neglect the �rst term in favor of the latter to obtain
the transition probability as

PT = |C2(t)|2 ≈ R2
0

sin2
[
(ω21 − ωe) t2

]
(ω21 − ωe)2

. (3.60)

Here, we used Equation (3.58) to de�ne R0 = µ12E0/~ as the so-called Rabi �opping
frequency and wrote µ21 for the matrix element of the dipole-moment operator [49,
Chapter 3.2 and 3.3]. As we suspected, Equation (3.60) shows that the �eld rotates the
TSS eigenstates with a certain period. Because we evaluated C2(t), we obtain periodic
maxima and minima when they are either parallel or perpendicular to the excited state
of the unrotated system. This means that the two-state system shows a coherent phase
relationship with the external perturbation. At this stage, we can also easily include the
e�ect of more states by introducing an integration over possible splitting frequencies
with a corresponding weight function - a spectral density. One ends up with golden
rule rates from Section 2.1.1 for a well-peaked structure and slowly varying density of
states [49, Chapter 3.2]. It is also possible to include damping in a phenomenological
way, which leads to an additional exponential damping term exp(−γt) in Equation
(3.60). Such a damping process then de�nes relaxation to low-lying states which do not
take part in the two-state dynamics we consider [49, Chapter 4.1].

Result (3.60) is valid for weak perturbations and for the case of working near
resonance. The latter assumption is referred to as the rotating-wave approximation
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(RWA) which argues that rapidly oscillating terms in the dynamics can be neglected. A
non-perturbative result can also be derived on the basis of the RWA alone, where the
counter-rotating terms are neglected already in the perturbation (3.58). One �nds [49,
Chapter 3.3]

PT = |C2(t)|2 ≈ R2
0

R2
0 + δ2

sin2

[√
R2

0 + δ2

(
t

2

)]
. (3.61)

Equation (3.61) is referred to as the Rabi formula with the detuning, δ = ω21 − ωe,
quantifying the di�erence to resonance conditions. The Rabi formula exhibits the same
sin2 dependence as Equation (3.60) but also predicts a dependence of the frequency on
the �eld strength. This behaviour is known as Rabi oscillations [156, 157], which are
shown exemplarily in Figure 3.6 for two values of δ.

Before proceeding, we note that the result (3.59) also underscores the reasoning
done in Section 3.1.5 for a �nite number of nonlinear optical e�ects per order. For more
than two states, terms as in (3.59) appear where the transition frequencies are given
by combinations between the di�erent levels. Only those combinations that �t to the
external frequency will be relevant and the rest can be neglected [116].

Pulsed driving

Up until now, we have only considered monochromatic driving with a practically
in�nite duration. We now focus on the behavior of pulse-shaped driving, which is
highly relevant for many state-of-the-art laser applications and for the preparation of
quantum states. Hence, this subject has also been a focus of extended research over the
years [156–159] and we will outline some simple results here.

We start by noting that pulses usually include a carrier frequency which gives rise
to a distinct plane-wave [51]. This allows us to use the description (3.58) and apply the
RWA. The remaining time-dependent pro�le is then absorbed into a time-dependent
Rabi frequency R(t) = R0f(t) with a pulse-shape function f(t). For resonant driving,
such that δ = 0, the population transfer after conclusion of the pulse is determined by
the area of the pulse alone. Speci�cally [156],

PT = sin2

(
A

2

)
, (3.62)

with the pulse-area

A = R0

∫ ∞
−∞

dt f(t). (3.63)

For a rectangular pulse, where R(t) = R0 in an interval 0 ≤ t ≤ T , the Rabi
formula (3.61) is recovered with time t replaced by the duration of the pulse T . This
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is valid even for nonzero detuning [157]. The squared sine dependence on the area of
(3.62) shows that the transition probability will be maximized for rectangular pulses
when R0T = π. Pulses that reach maximum population transfer are therefore known
as π-pulses [157].

As noted previously, analytic solutions in the RWA for arbitrary pulse-shape func-
tions with non-zero detuning do not exist. A notable exception is a sech-shaped pulse
which multiplies an additional factor of ∼ sech2(Aδ/2R0) to Equation (3.62) [156, 160,
161]. For other bell-shaped pulses, Rabi oscillations persist while the amplitude of the
transition probability and the location of the zeroes depend on the exact behavior of the
pulse-wings and the activation and deactivation behavior of the pulse [156, 157]. We are
most interested in Gaussian pulses, for which approximate solutions have been found
[157, 159, 161]. In particular, for large α = R(t)/δ an involved approximation scheme
yields an additional factor ∼ sech2(s[ln(α)]−1/2) multiplied to a squared sine with a
detuning and pulse length dependent factor s [161]. This predicts Rabi oscillations but
also a slow growth for the amplitude for smaller detuning or larger driving strength,
which is also seen experimentally and numerically [156, 159, 161]. Finally, we note that
pulse-shaped driving is often treated on the basis of a time-dependent rotation into a
momentary eigenbasis (the so-called adiabatic basis) where we will see an example of
in Part 5 (see e.g. [157]).

3.3.4 Linear response theory

A particularly easy method to analyze time-dependent quantum systems is given by
way of linear response theory. In linear response, the time-dependent perturbation is
assumed to be weak such that any deviations are linear in its strength. This permits
us to �nd the lowest order corrections to expectation values of observables. Note that
this method is based on the density matrix formalism and is therefore applicable to
mixed states as well. Our presentation in the following is taken largely from the book
by Nitzan [5, Chapter 11].

We start by assuming that the Hamiltonian of a quantum system can be split into a
bare partH0 and a time-dependent perturbation V (t). The Liouville equation of motion
is then given by

∂ρ(t)

∂t
=
i

~
[H0 + V (t), ρ(t)], (3.64)

where ρ(t) is the density matrix of the system under study. We now assume the system
to be in thermal equilibrium before V (t) is activated by setting

ρ(−∞) = ρeq =
e−βH0

Tre−βH0
. (3.65)

Here, β gives the inverse temperature. We can progress similarly to the derivation of
the master equation in Section 2.3.1 and formally integrate Equation (3.64). We then
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approximate ρ(t) ≈ ρeq at �rst order to �nd

ρ(t) = ρeq − i

~

∫ t

−∞
dt′e−

i
~H0(t−t′)[V (t′), ρeq]e

i
~H0(t−t′). (3.66)

We can now use Equation (3.66) to derive the change in an observable O. To do this,
we note that 〈O(t)〉 = Tr[Oρ(t)] and obtain after a few manipulations [5]

〈O(t)〉 − 〈O〉eq = − i
~

∫ t

−∞
dt′ Tr[δÕ(t− t′)[V (t′), ρeq]], (3.67)

where δO = O − 〈O〉eq. The tilde denotes the interaction picture. For simplicity we
now assume that V = −AF (t), where F (t) is a time-dependent function and A is
a system operator. This choice mimics the dipolar coupling of Equation (3.53). By
reordering, we �nally obtain

〈O(t)〉 − 〈O〉eq =
i

~

∫ t

−∞
dt′ 〈[δÕ(t− t′), A]〉eqF (t′)

=

∫ ∞
−∞

dt′ χOA(t− t′)F (t′).
(3.68)

Here, the expectation value 〈[δÕ(t − t′), A]〉eq was combined into the susceptibility
χOA(t− t′) in the last equation, which is sometimes also written as the retarded Green’s
function G(t, t′) (cf. Equation (4.20)). Note that both imply causality.

We achieved two things at this stage: First, the time dependence of an observable is
now encoded in an integral over an equilibrium average, which can be easily calculated.
Any deviation from equilibrium is only linearly dependent on the strength of the
perturbation F (t), which implies weak perturbations of the equilibrium state of the
system. Second, we have now rather belatedly shown the typical linear response
structure we have already seen in Part 2 (e.g. in Equations (2.20) and (2.33)) and we
directly argued for when discussing the time-dependent polarization in Equation (3.17).
However, we should note that Equation (3.68) also assumes an equilibrium distribution
such that a dependence on t−t′ arises in the argument. We will calculate linear response
spectra in the next chapters.

3.3.5 Optical Bloch equations

The next method we discuss is known as the optical Bloch equations. In contrast to
the simple perturbative approach in the last subsection, the Bloch equations couple
driving with a Born-Markov master equation treatment and can thus naturally include
damping and dephasing (decoherence) within the description. The presentation here is
based on the books by Nitzan [5, Chapter 10] and Cohen-Tannoudji et al. [64, Chapter
V].
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In principle, we already have all that we need to extend the master equation treat-
ment of Section 2.3.1 with driving terms. To see this, we note that for a two-state system
Equations (2.66) and (2.68) become

ρ̇11(t) = Γ ρ22(t), (3.69)
ρ̇22(t) = −Γ ρ22(t), (3.70)
ρ̇12(t) = iωr ρ12(t)− (Γ/2) ρ12(t), (3.71)
ρ̇21(t) = −iωr ρ21(t)− (Γ/2) ρ21(t), (3.72)

where we set the backward rate Γ1→2 to zero and used Γ12 = Γ21 = Γ/2 with Γ2→1 =
Γ. We also wrote ẋ(t) = dx(t)/dt as a shorthand and used ρ(t) for the reduced
density matrix of the system. The frequency shifts from the interaction with the bath
were included in the renormalized two-level frequency ωr. Equations (3.69) to (3.72)
manifestly ful�ll conservation of probability as ρ̇11 + ρ̇22 = 0 and Hermiticity as
ρ̇12 = ρ̇∗21.

As master equations recreate the e�ect of a bath, it is straightforward to include
driving via a macroscopic �eld as per Equation (3.55). Speci�cally, for a monochromatic
beam where ε(t)/2 = µE0 cos(ωet), we can use the Liouville equation to obtain driving
terms such as

ρ̇11(t) ∝ −iR0 cos (ωet) [ρ21(t)− ρ12(t)] , (3.73)

with the Rabi frequency R0 = µ12E0/~. We can simplify further by using the rotating-
wave approximation, as described in Section 3.3.3, and neglect rapidly oscillating terms.
Equation (3.73) then turns into

ρ̇11(t) ∝ −iR0

[
eiωetρ21(t)− e−iωetρ12(t)

]
. (3.74)

Results for terms in ρ̇21(t) follow similarly. Insertion into Equations (3.69) to (3.72) then
yields the so-called optical Bloch equations

˙̃ρ11(t) = −i(R0/2) [ρ̃21(t)− ρ̃12(t)] + Γ ρ̃22(t), (3.75)
˙̃ρ22(t) = i(R0/2) [ρ̃21(t)− ρ̃12(t)]− Γ ρ̃22(t), (3.76)
˙̃ρ12(t) = iδ ρ̃12(t)− i(R0/2) [ρ̃22(t)− ρ̃11(t)]− (Γ/2) ρ̃12(t), (3.77)
˙̃ρ21(t) = −iδ ρ̃21(t) + i(R0/2) [ρ̃22(t)− ρ̃11(t)]− (Γ/2) ρ̃21(t). (3.78)

Here, we have switched to a rotating frame by de�ning ρ̃12(t) = ρ12(t)e−iωet and
ρ̃21(t) = ρ21(t)eiωet, while ρ̃11(t) = ρ11(t) and ρ̃22(t) = ρ22(t). This also introduces the
detuning, de�ned as in Section 3.3.3 as δ = ωr − ωe. As every Hermitian two-by-two
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matrix can be constructed from the three Pauli matrices and the identity, Equations
(3.75) to (3.78) can be rewritten for the Pauli matrices to yield

d

dt
〈σz(t)〉 = −δ〈σy(t)〉 − (Γ/2)〈σz(t)〉, (3.79)

d

dt
〈σy(t)〉 = δ〈σz(t)〉 −R0〈σx(t)〉 − (Γ/2)〈σy(t)〉, (3.80)

d

dt
〈σx(t)〉 = R0〈σy(t)〉 − Γ〈σx(t)〉 − (Γ/2). (3.81)

Note that we have used our convention for the spin-boson model (3.55) and exchanged
σz and σx in contrast to the literature results [5, Chapter 10.5.2][64, Chapter V.A.4].

The Bloch equations are valid near resonance due to the rotating wave approx-
imation but also assume comparably slow driving by way of R0 � ωr which also
follows from the comparably fast decay of correlations in the reservoir. This constraint
originates from the fact that any modi�cations of the transition rates Γ due to driving
are neglected in this treatment [64]. In contrast to the master equation results, cou-
plings between coherences and populations exist in Equations (3.75) to (3.78) such that
the result cannot be formulated purely by transition rates between the two states (cf.
Equation (2.66)) [64]. Instead, the typical dynamics associated with the Bloch equations
depend on the competition between the driving and damping - much as we argued
in Section 3.3.1. In the simplest case, where δ = 0 and damping is strong such that
Γ� R0 → 0, one obtains exponential damping determined by (1/2)Γ and Γ. In the
opposite regime, where Γ � R0, the system oscillates with the Rabi frequency in
addition to damping with (3/4)Γ and (1/2)Γ. In addition, steady state solutions can be
found which predict a Lorentzian structure about δ with half-width

√
(Γ2/4) + (R2

0/2).
Moreover, the population of the upper state is proportional to R2

0/4 which shows that
very intense pulses will merely equalize the two levels [64].

In Part 5, we will explicitly derive Bloch equations for a driven bath on the basis of
an adiabatic treatment of the driving processes. Ultimately, we obtain results similar to
Equations (3.79) to (3.81) but with time-dependent rates.

3.3.6 Floquet theory

In addition to the two methods outlined, we mention Floquet theory as an important
approach for the analysis of problems involving external driving forces. In Floquet
theory, the external perturbation is assumed to be periodic in time, for instance from a
monochromatic �eld or a pulsed laser. The wavefunction of the quantum system can
then be written as a time-periodic analogue to a Bloch wave where a quasi-energy plays
the role of the crystal momentum. The Floquet functions then ful�ll a time-independent
Schrödinger equation for each quasi-energy which can be solved by the usual methods.
An intrinsic advantage of this ansatz is that secular terms are avoided while periodicity
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is automatically secured. For instance, it is possible to use Floquet theory to derive
approximate solutions for a two-state system under monochromatic driving without
recourse to the RWA [32, Chapter 3.2]. The ansatz can also be extended to non-periodic
driving schemes [32, Chapter 2.4]. As we will not use this method in this thesis, we
refer to the review by Grifoni and Hänggi [32] and the references therein for more
details.
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Part 4
Linear response of nanosystems in a linearly

driven bath

In this chapter we will take a �rst look at the impact of driven baths onto the dynamics
of coupled systems. Our method of choice will be the Langevin Equation presented in
Part 2. We derive the dynamics for dipolar bath driving on the basis of the Caldeira-
Leggett model in the �rst section and show that the result can be cast into the form of an
additional time-dependent force component for the system under study. In the second
section, we quantify this force contribution by use of the Onsager solvation model as
discussed in Part 3. Our stated aim follows in the next two sections: We investigate
the linear response of two particular physical nanosystems and show that bath driving
qualitatively changes the associated response spectrum. The results presented herein
provide a strong physical motivation to further investigate and develop the theoretical
foundations of the dynamics in driven baths. The results in this part of the thesis are
based on our work in Grabert et al. [1].

4.1 The driven bath Hamiltonian

A simple way to characterize the dissipative dynamics of a physical system lies in the
formulation of appropriate system-bath models. Thus, we presented two particular
minimal models in Section 2.2: the Caldeira-Leggett and the spin-boson model. We
also discussed how a classical electric �eld can couple to a quantum system in Section
3.3. Bath driving can then be introduced in a very intuitive manner by coupling the
bath operators to a �eld in the spirit of Equation (3.53). For a simple bosonic bath of N
oscillators, we therefore introduce the general driven bath Hamiltonian:

HDr
B (t) = HB +HIB(t) =

N∑
α=1

1

2

[
p2
α

mα

+mαω
2
αx

2
α

]
+

N∑
α=1

fα(xα, pα, t)

=
N∑
α=1

~ωα
[
b†αbα +

1

2

]
+

N∑
α=1

f ′α(bα, b
†
α, t).

(4.1)

Again, the bath is represented by a collection of harmonic oscillators, now driven
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by an unspeci�ed function fα(. . . , t) which couples to the position and momentum
operators of the associated oscillators. In the second line, we rewrote the Hamiltonian
using the appropriate creation and annihilation operators bα and b†α of an oscillator
mode (see Equation (A.5)). The function fα introduced by the additional driving term
HIB(t) can be speci�ed to contain terms which explicitly describe the interaction of
the oscillators with a magnetic or electric �eld, as long as we assume that the sample is
small in comparison to the wavelength of the external �elds. In this work, we largely
restrict ourselves to a simple linear coupling of the form

fα(xα, pα, t) = −dαxαF (t), (4.2)

where we sequestered the time dependence into a (real) function F (t). The coupling to
each oscillator is represented by separate coupling constants dα. The choice of Equation
(4.2) recreates the e�ect of Equation (3.53), that is, the oscillators e�ectively represent
dipoles which couple to a classical electric �eld F (t). In fact, we may see the above
description as a simple model for the polarization of a molecular environment: as brie�y
discussed in Part 3, molecules in an electric �eld of comparably low frequency rotate to
orient their permanent dipole moments into the direction of the �eld. If we neglect any
spatial dependence, we can restrict the process to one dimension, where the position
xα acts as a measure for the overall orientation into the direction of the �eld. Since
the bath modes are assumed to be harmonic as usual, we also implicitly assume that
only small deviations from equilibrium are induced by the external driving process.
Equation (4.2) coupled with (4.1) provides us with a suitable �rst look into the e�ect of
a driven bath and we use

HDr
B (t) =

N∑
α=1

1

2

[
p2
α(t)

mα

+mαω
2
αx

2
α

]
−

N∑
α=1

dαF (t)xα

=
N∑
α=1

~ωα
[
b†αbα +

1

2

]
−

N∑
α=1

~µαF (t)(bα + b†α),
(4.3)

where we have de�ned the coupling µα for the description using annihilation and
creation operators. In the next section, we evaluate the dynamics following Equation
(4.3) using the quantum Langevin Equation. Also note that we neglect the zero-point
energy as it will not play a role in our analysis.

4.2 Quantum Langevin dynamics for a linearly driven bath

With the driven bath Hamiltonian of Equation (4.3) at hand, we can investigate the
e�ect of a driven bath by using the quantum Langevin Equation (QLE) discussed in
Section 2.2.1. The total system-bath Hamiltonian is now given by

H(t) = HS +HSB +HDr
B (t) +HE(t), (4.4)
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where the term HE(t) contains additional driving terms which act onto the system only.
In the following, we evaluate the dynamics for the linearly driven bath of Equation (4.3)
for both the Caldeira-Leggett and the spin-boson models discussed in Section 2.2. We
will then proceed to use the Onsager sphere model of Section 3.2 to characterize the
resulting e�ects.

4.2.1 Caldeira-Legge� model

Following Equations (4.4) and (2.13) the total Hamiltonian reads

H(t) =
p2

2M
+ V (q)− q

N∑
α=1

cαxα + q2

N∑
α=1

c2
α

2mαω2
α

+
N∑
α=1

1

2

[
p2
α

mα

+mαω
2
αx

2
α

]
− F (t)

[
d0q +

N∑
α=1

dαxα

]
,

(4.5)

where we use a simple dipolar coupling HE(t) = −d0F (t)q(t) to model the impact
of the �eld F (t) on the system. We �nd the Heisenberg Equation of motion for the
oscillator positions as

mα
d2xα(t)

dt2
+mαω

2
αxα(t) = cαq(t) + dαF (t). (4.6)

Equation (4.6) is similar in form to the usual result of Equation (2.18) but with the ho-
mogeneity shifted as cαq(t)→ cαq(t) + dαF (t). As such, the bath operators still follow
the dynamics of forced oscillators and we can directly substitute the new homogeneity
in Equation (2.19). We obtain

xα(t) = xα(t0) cos [ωα(t− t0)] +
pα(t0)

mαωα
sin [ωα(t− t0)]

+
1

mαωα

t∫
t0

ds [dαF (s) + cαq(s)] sin [ωα(t− s)],
(4.7)

which di�ers from the previous result only by a new �eld-dependent term. We perform
the same manipulations as in Section 2.2.1 to arrive at the associated quantum Langevin
equation

M
d2q(t)

dt2
+
dV (q)

dq
+M

t∫
t0

ds γ(t− s)dq(s)
ds

= ξ(t− t0) + d0F (t) +

t∫
t0

ds λ(t− s)F (s),

(4.8)
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where γ(t) is the damping kernel de�ned in Equation (2.22) and ξ(t) is the �uctuating
force of Equation (2.23) where we also included the initial-slip term for brevity. Equation
(4.8) shows that a linearly driven bath merely introduces a correction to the driving
force experienced by the system. This also meshes well with our expectations from Part
3, where we saw that polarization leads to a correction of the underlying �eld inside a
dielectric and therefore also to the force experienced by a quantum system. The new
total force is now given as

Feff(t) = d0F (t) +

t∫
t0

ds λ(t− s)F (s). (4.9)

Here, the correction from bath-driving is characterized by a force kernel

λ(t) =
N∑
α=1

cαdα
mαωα

sin [ωαt] =
2

π

∞∫
0

dωJ̄(ω) sin [ωt]. (4.10)

In the second equation we have introduced an e�ective spectral density J̄(ω) de�ned
in analogy to Equation (2.26) by

J̄(ω) =
π

2

N∑
α=1

cαdα
mαωα

δ(ω − ωα), (4.11)

which incorporates both the system-bath couplings cα as well as the coupling constants
between the force and the bath dα.

4.2.2 Spin-boson model

Equation (4.9) represents a general result, valid for any potential choice of the system,
as long as the system-bath coupling remains linear in the bath position operators. For
this reason, we can proceed in a similar manner for the spin-boson Hamiltonian de�ned
by Equations (2.46) and (2.47). We also include a direct driving term that couples to the
spin-boson model according to (3.55). In total, we have

H(t) =
∆

2
σx +

ε

2
σz − q0

σz
2

N∑
α=1

cαxα

+
N∑
α=1

1

2

[
p2
α

mα

+mαω
2
αx

2
α

]
− F (t)

2

[
d0σz +

N∑
α=1

dαxα

]
,

(4.12)

where it should be noted that we scaled the force by a factor of two to account for the
de�nitions in the system Hamiltonian. The Heisenberg equations of motion for the
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Pauli matrices are then given by

dσx
dt

= −σy(t)
~

[
ε− d0F (t)− q0

N∑
α=1

cαxα(t)

]
, (4.13)

dσy
dt

= −∆

~
σz(t) +

σx(t)

~

[
ε− d0F (t)− q0

N∑
α=1

cαxα(t)

]
, (4.14)

dσz
dt

=
∆

~
σy(t). (4.15)

Insertion of Equation (4.7) into Equations (4.13), (4.14) and (4.15) yields the time-
evolution for the Pauli matrices in the driven bath as

dσx
dt

= −σy(t)
~

εeff(t)− ξ̄(t)− q2
0

2

t∫
t0

ds χ(t− s)σz(s)

 , (4.16)

dσy
dt

= −∆

~
σz(t) +

σx(t)

~

εeff(t)− ξ̄(t)− q2
0

2

t∫
t0

ds χ(t− s)σz(s)

, (4.17)

dσz
dt

=
∆

~
σy(t), (4.18)

where we have de�ned ξ̄(t) from the homogeneous part of Equation (4.7) and combined
the integrand of (2.20) into a single kernel χ. As expected, the e�ect of a driven bath is
now included via an e�ective asymmetry εeff(t) which determines the time evolution
of the Pauli matrices. It is given by

εeff(t) = ε− d0F (t)− q0

2

t∫
t0

ds λ(t− s)F (s). (4.19)

The e�ective time-dependent asymmetry includes the e�ect of the direct driving contri-
bution, as well as the bath driving which is determined by the kernel of Equation (4.10)
and the e�ective spectral density of (4.11). Note that we will encounter the bath driving
term usually with λ(s− t) later, as the minus in Equation (4.19) can be conveniently
absorbed into the sine found in Equation (4.10).

4.2.3 Evaluation of the e�ective force

As we have seen in Equations (4.9) and (4.19), linear bath driving introduces a correction
to the external force experienced by the system which gives rise to a new total force.
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Naturally, linear response theory, as discussed in Section 3.3.4, can be applied with
respect to this extended force, as well. In particular, what we aim for in this part of the
thesis is a description following Equation (3.68) via

〈O(t)〉 − 〈O〉0 ≈
1

~

∫ ∞
−∞

dt′ G(t, t′)Feff(t′). (4.20)

Here, the retarded Green’s function G(t, t′) is de�ned similarly to the susceptibility in
Equation (3.68) and we have used the subscript 0 to indicate that the expectation values
are evaluated for the undriven case.

Equation (4.20) requires us to compute both G(t, t′) for the observable O as well
as the full e�ective force Feff(t). While the former amounts to the solution of the
(undriven) system-bath problem and we can apply any of the methods outlined in Part
2, the evaluation of the e�ective force itself is potentially more involved. The reason
for this lies in its dependence on the e�ective spectral density of Equation (4.11) which
is an a priori unknown quantity. As we have seen in Part 2, however, the bath spectral
density of Equation (2.26) can be connected to phenomenological quantities by use of
the environmental susceptibility according to Equation (2.36). In particular, we saw later
that the dielectric function can be used to model the spectral density in Equation (3.52).
This was done on the basis of the Onsager model where the resulting reaction �eld
was assumed to represent the response of the bath to the system in question. Similarly,
we can obtain an e�ective external driving �eld from the same model which allows us
to specify the total e�ective force. We do this by tweaking the boundary condition in
Equation (3.41) to

Φd(ω, r)|r→∞ = −E(ω)r cos(θ), (4.21)

which represents an external �eld in the z-direction [111]. Since this external �eld
permeates both the dielectric as well as the cavity, the resulting �eld inside the cavity
will be dressed by the interaction with the dielectric. Following the steps in Section
3.2.2, we obtain the total potential in the cavity as

Φc(r, θ, ω) = −
[
2
µ(ω)

4πε0a3
χo(ω) + [1 + χo(ω)]E(ω)

]
r cos(θ) +

µ(ω)

4πε0r2
cos(θ).

(4.22)

Again, the �rst term represents the reaction �eld and the last term the potential created
by the dipole. The second term represents the corrected in�uence from external driving
in the setup and is commonly referred to as the cavity �eld in the literature [135,
145, 162]. We can directly argue in the same way as before that the contributions
in Φc(r, θ, ω) give rise to a classical equation of motion reminiscent of the Langevin
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dynamics for a one-dimensional particle. Using µ(t) = Qq(t) for a dipole with charge
Q and separation q(t), the total �eld is modi�ed into

Etot(t) =
Q

2πε0a3

∫ t

t0

ds χr(t− s)q(s) +

∫ t

t0

ds χc(t− s)E(s), (4.23)

where the �rst term contains the contribution of the reaction �eld characterized by χr(t)
and the latter contains the cavity �eld characterized by χc(t). The integral boundaries
imply causality and the absence of dynamics before t0. In the case of Equation (4.23) the
Fourier transforms χc(ω) = 1 + χo(ω) and χr(ω) = χo(ω) are de�ned by the Onsager
susceptibility of Equation (3.48). The correction from the cavity �eld possesses the
same structure as the e�ective force by comparison to Equation (4.9). Thus, we can
directly state that

Feff(t) = Q

∫ t

t0

ds χc(t− s)E(s) = QE(t) +Q

∫ t

t0

ds χo(t− s)E(s). (4.24)

Comparison with (4.9) also shows that λ(t) = Qχo(t). Or in other words,

J̄(ω) = (2πε0a
3/Q)J(ω). (4.25)

As such, the use of the Onsager model allows us to consider the new e�ective
spectral density of Equation (4.11) as directly proportional to the ordinary bath spectral
density. Similar results can also be obtained in di�erent geometries like a layered
dielectric sphere as shown in Appendix B and will also appear in the quantum-dot
metal-nanoparticle setup discussed below. This implies that the result (4.25) is a general
manifestation of linear bath driving and we will explicitly assume a proportionality for
the calculations in Parts 5 and 6. However, Equation (4.24) predicts a separability into
a direct driving and a retarded force contribution, which is not always true in more
complicated geometries.

4.3 Polarizable molecule immersed in water

With the dynamics of the linearly driven bath problem at hand and a way to characterize
the resulting force, we can now ask about the impact of a driven bath on the linear
response spectra in speci�c physical problems. As outlined in the introduction, this
e�ect is usually taken as negligible as external driving tends to be tuned to the system
modes under study and strongly o�-resonant to the environment (cf. our discussion
of driven quantum systems in Section 3.3). Therefore, we aim to gauge the impact of
bath driving on the response of physical model systems by explicitly utilizing problems
where resonant environmental modes may play a role.
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Figure 4.1: Toy model for a polarizable molecule in water. The probe molecule is represented by a
spherical Onsager cavity with radius a and is assumed to contain a single harmonic polarizability
mode at frequency Ω. The surrounding water is characterized by its dielectric function ε(ω) given
in Equation (4.26). A time-dependent electric �eld E(ω) acts on both.

First, we look at the most paradigmatic problem related to driven baths: a molecule
immersed in a solvent - as, in general, a molecule cannot be excited by an external source
without perturbing the solvent as well. Speci�cally, we consider a polarizable molecule
immersed in water while both are excited by a THz �eld source. This rather speci�c
problem garnered attention in view of recent advances in THz spectroscopy methods
which allows for a more thorough investigation of this frequency regime at higher �eld
strengths [123, 163, 164]. For instance, recent studies on the THz-induced Kerr e�ect
were conducted in an e�ort to determine the sign of the anisotropy of the molecular
polarizability of various solvent molecules such as water [3, 165, 166]. In addition, the
dielectric function of water in this regime is still highly debated and THz spectroscopy
methods are seen as a way to gain additional information about their physical origin
[118–120]. Most importantly, however, recent molecular dynamics simulation studies
suggest an e�cient heating mechanism present for liquid water in the THz regime
which can also be used to excite speci�c molecular modes of immersed molecules
[37–39]. While these studies do not target speci�c environmental modes and achieve
their heating mainly through sheer intensity, the energy of THz photons can be used
to couple to rotational modes and modes corresponding to weak intermolecular forces
[163], as well. This turns the problem into an interesting example for the application of
our driven bath approach.

In the following, we employ a simple toy model shown exemplarily in Figure 4.1.
We consider a polarizable molecule with a harmonic polarizability mode resonant to
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Figure 4.2: The dielectric function ε(ω) for water given by Equation (4.26) and the corresponding
Onsager susceptibility χo(ω) given by Equation (3.48). The real parts ε′ and χ′o are depicted in (a),
whereas the imaginary parts ε′′ and χ′′o are shown in (b). The shaded regions give the contributions
from each term in Equation (4.26). The intermolecular stretching mode (red shaded region) leads to
a clearly visible peak in the imaginary parts, albeit slightly shifted to about 6 THz for χ′′o(ω).

a speci�c THz frequency and characterize the environment by the dielectric function
of water in this regime. The molecule itself is represented by a spherical Onsager
cavity where polarization creates a dipole moment, such that we are able to use the
quanti�cation laid out in Section 4.2.3. This reduces the problem to a forced harmonic
oscillator which permits us to easily obtain analytic results for the linear response in
the long-time limit.

4.3.1 Water in the THz regime

The usual energy spectrum of THz photons lies in the meV-range with wave numbers
ranging from 3.3 cm−1 to about 334 cm−1. This places the excitation energies close
to the thermal energy at room temperature. Characteristic excitations in this regime
are therefore rather low in energy and are most commonly represented by low-lying
molecular and weak intermolecular excitations characterized by dynamics in the pi-
cosecond regime. Speci�cally, rotational and low-lying vibrational degrees of freedom
of large molecules as well as collective excitations of supramolecular complexes of small
interacting molecules are usually found [163]. Water falls into the second category,
where hydrogen bonding in the liquid phase allows for collective dynamics to emerge.
The dynamics of its dielectric function in the THz regime are commonly associated with
three relaxation times at about 0.1 ps, 1 ps and 8.3 ps. While their exact microscopic
origin is still debated, the �rst is attributed to dynamic breaking and reforming of
hydrogen bonds while the next fastest process corresponds to rotational relaxation
of free or weakly bound water molecules. The slowest process has by far the highest
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contribution and is thought to correspond to collective reorientational phenomena, i.e.,
dynamics of water molecules within the whole hydrogen-bond network. In addition,
intermolecular modes may also contribute [118, 120, 167, 168].

Yada et al. probed the dynamics of liquid water using THz attenuated total re�ection
time-domain spectroscopy in order to parametrize the resulting dielectric function [119,
120]. We utilize their result parametrized according to

ε(ω) =
∆ε1

1− iωτ1

+
∆ε2

1− iωτ2

+
As

ω2
s − ω2 − iωγs

+ ε∞, (4.26)

with parameters given by ∆ε1 = 73.9, τ1 = 8.76 ps, ∆ε2 = 1.56, τ2 = 0.224 ps,
As = 35.1× (2π)2 THz2, ωs = 5.3× (2π) THz, γs = 5.4× (2π) THz and ε∞ = 2.34. The
dielectric function clearly exhibits two Debye relaxation backgrounds of the type seen
in Equation (3.20) corresponding to overdamped dynamics of rotational modes. The
Lorentzian contribution (cf. Equation (3.34)) represents a characteristic intermolecular
collective stretching mode at 5 THz which can be excited in the relevant frequency
region. The last term represents electronic and any other dynamics much faster than
the typical picosecond scale we consider. We have omitted another Lorentzian contri-
bution from an intermolecular librational mode at about 15 THz as we will focus on
the dynamics created by the stretching mode. The dielectric function (4.26) and the
corresponding Onsager susceptibility (3.48) are shown in Figure 4.2. As expected, the
mode creates a pronounced peak in the corresponding susceptibility and, thus, also in
the spectral density. However, the peak is shifted slightly to about 6 THz.

4.3.2 Linear response of a polarizable molecule

After discussing the dielectric properties of the environment, we are now in the po-
sition to model a suitable probe. As shown in Section 3.1.6, the (isotropic) molecular
polarizability can be modeled by a simple Lorentz oscillator model for the electrons in
a molecule. In general, multiple modes may contribute as implied in Equation (3.34).
The dynamic polarizability α(ω) of a single mode then gives rise to an induced dipole
moment µ(ω) by way of Equation (3.29), that is

µ(ω) = α(ω)E(ω). (4.27)

Here, we have neglected any spatial dependence and local �eld corrections and have
reduced the electric �eld to a single component. In this way, the dynamic polarizability
represents the linear response to the electric �eld E(ω) in the frequency domain. We
now consider only a single mode at frequency Ω. As before, we de�ne the dipole
moment as µ(t) = eq(t), where e is an elementary charge and q(t) a coordinate which
describes the charge separation in our molecular probe. Utilizing the Caldeira-Leggett
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model we explicitly use a harmonic potential

V (q) =
1

2
MΩ2q2(t), (4.28)

as suggested by Equation (3.31). This gives rise to the quantum Langevin Equation

µ̈(t) + Ω2µ(t) =
e

M
ξ(t− t0) +

e2

2Mπε0a3

∫ t

t0

ds χr(t− s)µ(s)

+
e2

M

∫ t

t0

ds χc(t− s)E(s),
(4.29)

where we have directly inserted the de�nition of the resulting reaction- and cavity �eld
contributions from Equation (4.23). ξ(t) is given by the homogeneous part of Equation
(4.7) and we abbreviated time derivatives by dots. In order to obtain the linear response,
we consider the average of Equation (4.29) such that 〈ξ(t)〉 = 0. This follows by setting
〈. . . 〉 = Tr[. . . ρ(t0)] and assuming that the initial density matrix ρ(t0) factorizes into
system and bath parts with the bath in thermal equilibrium. We get

〈µ̈(t)〉+ Ω2〈µ(t)〉 =
e2

2Mπε0a3

∫ t

t0

ds χr(t− s)〈µ(s)〉

+
e2

M

∫ t

t0

ds χc(t− s)E(s).
(4.30)

Next, we apply a Fourier transformation and consider the long-time limit such that
t0 → −∞. This allows us to write the integrals as products in frequency space to obtain

〈µ(ω)〉 =
e2

M

χc(ω)E(ω)

[Ω2 − ω2 − e2

2Mπε0a3χr(ω)]
. (4.31)

Equations (4.31) and (4.27) show that the dynamic polarizability in frequency space is
given by

α(ω) =
e2

M

χc(ω)

Ω2
[
1− α0

2πε0a3χr(ω)
]
− ω2

, (4.32)

where we have used α0 = e2/(MΩ2) as the static polarizability of the mode Ω. The
ratio in the denominator then gives a ratio between a polarizability volume (cf. Equation
(7.2)) and the volume associated with the Onsager sphere. For a monochromatic �eld of
the form E(t) = E0 cos(ωet), the dipole moment in the time domain becomes

〈µ(t)〉 =
e2E0

M
Re

 χc(ωe) e
−iωet

Ω2
[
1− α0

2πε0a3χr(ωe)
]
− ω2

e

 . (4.33)
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Figure 4.3: Real part of the dynamic polarizability α(ω) = α′(ω) + iα′′(ω) given in Equation
(4.34) (red line) in contrast to the result without bath driving (blue line). Both results have been
scaled by the maximum of the result without bath driving to enable a comparison. Bath driving
leads to an enhancement of the driving e�ect as seen from its increased peak height. However, bath
driving also introduces a slight asymmetry into the corresponding peaks (red numbers).

Equation (4.33) shows a proportionality given by 〈µ(t)〉 = Re [α(ωe)E0e
−iωet]. The

dynamic polarizability α(ω) therefore gives a suitable measure of the linear response
of the problem.

4.3.3 Dynamic polarizability

We are now going to characterize the dynamic polarizability in Equation (4.32) for the
case of water. In order to start, we need to specify the probe molecule. We set our probe
frequency to Ω = 4.5 THz or about 150 cm−1. This places the polarizability mode in
the vicinity of the intermolecular stretching peak that appears in Equation (4.26), such
that mutual excitation becomes possible in principle. Numerous examples of molecular
modes in a similar frequency range exist [169, 170]. Examples include stretching modes
of small halocarbons [171], e.g. in solid CI4, a torsional mode of acetaldehyde [172] or a
deformation in the ring-methyl bond in toluene [173]. These examples also allow us
to settle for potential Onsager radii: most involve fairly small molecules and we can
use values for the geometric parameters in the few Angstrom range. Polarizabilities
di�er more strongly. For instance, typical values for α0/4πε0 are about 1.5 Å3 for water,
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Figure 4.4: Imaginary part of the dynamic polarizability α(ω) = α′(ω) + iα′′(ω) given in
Equation (4.34) (red line) in contrast to the result without bath driving (blue line). Both results
have been scaled by the maximum of the result without bath driving to enable a comparison. Bath
driving leads to an enhancement of the absorbance as seen from its increased peak height (red
number). However, bath driving also shifts the result downward and produces a small negative
undershoot beyond the resonance (inset).

about 2.5 Å3 for methane and about 10 Å3 for benzene [174, 175]. Using an average
bond length of a = 2 Å as a gauge of the Onsager radius, we can see that the prefactor
2α0/4πε0a

3 is of the order of 1. However, this factor only determines the frequency
shift of the associated response peaks and gives an overall scaling factor, which will
not play a role since we will only consider relative quantities later. Therefore, we set
2α0/4πε0a

3 = 1 for simplicity in the following.
We also need to choose the particular geometry of the Onsager solvation model

in order to specify the cavity and reaction �eld components. For the simple spherical
geometry of Figure 4.1, we can directly use the results from Section 4.2.3 to obtain

α(ω) =
e2

M

1 + χ(ω)

Ω2
[
1− α0

2πε0a3χ(ω)
]
− ω2

, (4.34)

where χ(ω) = [ε(ω)− 1]/[2ε(ω) + 1] is the Onsager susceptibility of the environment
according to Equation (3.48) with ε(ω) given for water by Equation (4.26). This gives a
spectral density J(ω) = (e2/2πε0a

3)Im[χ(ω)] via Equation (3.52). We also note that
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the change introduced by bath driving can be included as

α(ω) = [1 + χ(ω)]α0(ω), (4.35)

where α0(ω) = e2

M

{
Ω2
[
1− α0

2πε0a3χ(ω)
]
−ω2

}−1 gives the dynamic polarizability with-
out the bath-driving contribution. Figures 4.3 and 4.4 show the dynamic polarizability
together with the results without bath driving as described by Equation (4.35). Evidently,
driving enhances the overall response of the system in question by a factor of about
30% both in the real and the imaginary part. This implies an overall stronger signal
related to polarizability responses of suitable molecules when bath driving is included.
This result already shows that bath driving in a structured bath can, in principle, be
used to enhance the response properties of modes in a probe. However, the argument
proves to be more subtle: the coupling to the bath also introduces qualitative changes
to the spectrum, as seen in the inset of Figure 4.4 that shows a negative undershoot
beyond the resonance. In addition, a new asymmetry in the resonance peaks of the real
part can also be observed. Both features can be quanti�ed by separating (4.35) into its
real and imaginary part. Denoting real parts by a prime and imaginary parts by two
primes, we �nd

α′(ω) =
1 + χ′(ω)

Λ2

[
1− ω2

Ω2
− Vfχ′(ω)

]
− Vf

Λ2

[
χ′′(ω)

]2, (4.36)

α′′(ω) =
Vf
Λ2

χ′′(ω) +
χ′′(ω)

Λ2

[
1− ω2

Ω2

]
. (4.37)

The results for the undriven bath read

α′0(ω) =
1

Λ2

[
1− ω2

Ω2
− Vfχ′(ω)

]
, (4.38)

α′′0(ω) =
Vf
Λ2

χ′′(ω), (4.39)

where we wrote the dimensionless volume fraction as Vf = α0/2πε0a
3. The symbol Λ

contains the Lorentzian characteristic of the response

Λ2 = α−1
0

{[
1− ω2

Ω2
− Vfχ′(ω)

]2

+
[
Vfχ

′′(ω)
]2} . (4.40)

A comparison shows that the additional contribution from bath driving mixes real
and imaginary part. This leads to both an enhancement in the real part by a factor of
1 + χ′(ω) as well as a downward shift proportional to [χ′′(ω)]2. The latter produces the
asymmetry. In the imaginary part, bath driving produces a possible sign related to the
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position of the frequency with respect to the resonance. Hence, bath driving always
leads to a sign change within the simple spherical model, but only if the frequency is
larger than the frequency of the resonance. Furthermore, the emergence of a negative
sign is independent of the actual dielectric function of the environment because the
impact of χ′(ω) cancels in Equation (4.37).

This is an interesting result, as a comparison with the solution for the Lorentz
oscillator model of Equation (3.33) suggests that this changes the sign of the damping
constant. In contrast to ordinary damping, bath driving seems to e�ectively modulate
the constant for this model, such that energy is deposited in the system at the right driv-
ing frequency via the bath itself. Unfortunately, this would also predict exponentially
rising solutions in the simple forced oscillator model and could point to limitations of
our simplistic approach. On the other hand, we can translate the linear polarizability
above to a refractive index by use of the Clausius-Mosotti equation (3.28). A sign change
of the imaginary part could then imply a change in the sign of the exponential decay of
a probe beam according to (3.22). In other words, the system seems to emit radiation
and strengthens the external �eld instead of showing absorption. Such a situation was
shown to be possible for nonlinear oscillators when looking at classical models for
lasing by Borenstein and Lamb Jr. [176]. They argued that this was possible because
the nonlinearity introduced couplings between phase and amplitude, not present in
an ordinary harmonic oscillator. We may suppose that the coupling between real and
imaginary part of the polarizability introduced by bath driving plays a similar role.
Another possible explanation may be found in the so-called Fano e�ect which describes
interference of scattering amplitudes between a discrete state and a continuum and
eventually gives rise to similarly asymmetric or inverted lineshapes [177–179]. A more
detailed analysis should be considered in future research.

4.4 Interacting quantum-dot metal-nanoparticle setup

The second application we consider concerns colloidal semiconductor quantum dots in
the vicinity of metallic nanoparticles. Colloidal quantum dots describe nanometer-sized
solid-state structures that display discrete electronic states similar to molecules or atoms.
The size dependence of these features and their sensitivity to environmental conditions
has led to a surge in research into potential applications. Examples include light-
emitting diodes (LEDs) or solar panel setups where their high tunability is exploited to
increase emission or absorption yields [180–184]. The addition of metallic nanoparticles
introduces electromagnetic interactions between dot and nanoparticle which is seen
as another way to enhance and control their dynamics. In particular, the coupling to
collective surface excitations of conduction electrons called plasmons has been a focus
of recent research [185]. Plasmonic excitations have been discussed as e�cient single-
photon sources [186, 187], for biosensing [188] and to further boost light-emitting diodes
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Figure 4.5: Toy model for a colloidal semiconductor quantum dot (SQD) interacting with a metallic
nanoparticle (MNP). Both are modeled as dielectric spheres immersed in a dielectric medium. All
regions are then characterized by their corresponding dielectric constants or functions (ε). The
interaction is constrained to dipole-dipole interactions between an induced dipole moment in the
MNP and a dipole in the quantum dot. The latter is modeled as a two-state system where transitions
between a ground |g〉 and excited state |e〉 produce a dipole moment that couples to an e�ective
�eld Es inside the dot. The �eld originates from interactions with the MNP as well as with an
external electric �eld E(ω) which perturbs both the dot and the MNP. The latter e�ect introduces
bath-driving contributions.

and solar-cell yield [189, 190]. The theoretical description usually treats the problem
on the basis of classical electrodynamics which may include multipole e�ects and gives
rise to distinct features such as the Fano e�ect [179, 191–193]. In this section we aim to
model the problem on the basis of a simple system-bath approach and investigate the
impact of bath driving contributions using the linear response of a quantum dot.

Our toy model is summarized in Figure 4.5. We apply the system-bath approach by
looking at the interaction of a semiconductor quantum dot (SQD) with a single metallic
nanoparticle (MNP) which we treat as a dynamical bath. The plasmon is included via
the Drude model [111, 194] for the dielectric function of the nanoparticle which entails
a structured spectral density. In contrast to the previous section, the quantum dot is
assumed to constitute a two-state system, allowing for a description on the basis of the
spin-boson model. The quantum dot then interacts with the mode by way of electric
�elds and we restrict ourselves to dipole-dipole interactions. Finally, we are going to
apply the Onsager description by assuming a simpli�ed geometry where the dot and
the nanoparticle are modeled as dielectric spheres. Since the resulting geometry is more
involved than the simple cavity we considered up until now, we explicitly derive the
corresponding reaction- and cavity �eld components in a separate subsection. We start
with a discussion of the underlying model.
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4.4.1 �antum dots and plasmons

In general, bulk materials exhibit a continuum of electronic states due to the large
number of particles involved. In the simplest case, these states are arranged in bands
due to the repeating crystal structure of the material and de�ne the material as a
conductor, semiconductor or an insulator. If a band is not �lled or no separation to an
empty band exists, electrons can be excited easily and a current can be induced. If a
measurable energetic gap exists between a full and an empty band, more voltage is
required to induce a �ow of current. For many semiconductors in use, this gap is of the
order of an electron volt which corresponds to wave lengths in the visible spectrum.
In nanometer-sized semiconductor particles the fewer number of atoms imply that
the bands start to unravel at the edges and transitions between discrete states can be
observed. This quasi-zero-dimensional behavior gives rise to the term quantum dot.
Since the exact energy of these transitions depends on the size, they can be �ne-tuned
across the visible spectrum [180, 181].

For a minimal model, we restrict ourselves to the lowest state of the conduction
band and the highest of the valence band and assume that no other states of the dot
take part in the dynamics. This allows us to describe the dot as a simple two-state
system. Its interaction with the electric �eld is then modeled by coupling the transition
matrix element to a classical �eld. Speci�cally, we use the system Hamiltonian

HS =
~ω0

2
σz − µσxEs(t), (4.41)

where the e�ective �eld Es(t) contains all in�uences from the driven bath, as well
as the direct coupling to an external electric �eld. Equation (4.41) deviates from our
convention for the spin-boson model up to this point, in order to better �t the physical
picture: the external �eld induces transitions between two states in the lower and
higher band and does not just perturb the tunneling dynamics as implicitly assumed in
the usual convention. In e�ect, we employ the driven spin-boson model, discussed in
Equation (4.12), but exchange the roles of σx and σz such that the dynamics between
the two conventions should not be di�erent. Finally, we have also replaced ε by its
frequency ω0 here and have absorbed a factor of two in the de�nition of Es. µ then
represents the interband optical transition matrix element between the two states of
the dot (cf. Equation (3.54)).

The bath is represented by the metallic nanoparticle. For optical frequencies nanopar-
ticles made of noble metals such as gold or silver are often used [195]. In classical
electrodynamics a dipole moment in a quantum dot will lead to the redistribution of
free charges in a metal, leading to the creation of mirror charges. From an electrostatic
perspective, only in�nite conductive planes will create perfect mirror charges [111]
such that multipole e�ects will enter from the limited geometry of the nanoparticles.
Next to the redistribution of electrons, the charge �uctuations on the dot and the ex-
ternal �eld may induce additional resonant oscillations of conduction electrons called
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Figure 4.6: Geometric parameters of the simple two-sphere Onsager model of Figure 4.5 for the
interaction between a semiconductor quantum dot (SQD) and a metallic nanoparticle (MNP). The
two spheres are separated by a distance R with radii and dielectric constants given by as and εs
and am and εm(ω), respectively. The intermediate space is characterized by the dielectric constant
εi and an external electric �eld E(ω) applied parallel to the z-axis. The problem can be treated on
the basis of the vectors rs and rm and their angles to the z-axis, Θs and Θm.

plasmons. These oscillations represent �uctuations in the electronic charge density
and can be thought of as charge density waves on the metallic surface. A common
approximation is done on the basis of the Drude-Sommerfeld model [190, 194] which
predicts a Lorentzian excitation spectrum by describing the conduction electrons as
a noninteracting gas of free particles. Speci�cally, it allows us to write the dielectric
function inside the nanoparticle as [111, Chapter 7.5][194]

εm(ω) = 1−
ω2
p

ω2 + iΓω
, (4.42)

where ωp is the plasma frequency and the relaxation time is given by τD = 1/Γ that
represents the inverse width of the resonance peak. In order to �nd the spectral density
of the problem, we are now tasked with �nding the environmental susceptibility for
the geometry of our model.

4.4.2 The two-sphere geometry

We consider the simpli�ed geometry shown in Figure 4.6 and apply the same methods
as in Section 3.2. The nanoparticle and the quantum dot are modeled as dielectric
spheres with a speci�c distance R. The dot features the dielectric constant εs and
radius as while the nanoparticle is modeled by the dynamic dielectric function εm(ω) of
Equation (4.42) with the radius am. Both spheres are immersed in a dielectric medium
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with dielectric constant εi. The problem is assumed to have a cylindrical symmetry
along the z-direction which is parallel to both the external �eld E(ω) as well as the
separation between the two spheres. The dipole µs(ω) is assumed to be pointlike as
usual and to be oriented along the z-axis as well.

In order to apply the system-bath approach to the problem at hand, we have to
determine the corresponding electrostatic reaction and cavity �elds inside the quantum
dot. Since we aim to keep the analysis simple, we restrict ourselves to dipole-dipole
interactions and apply the generic condition of small radii a/R� 1. We start by de�n-
ing the relevant vectors and orientations according to Figure 4.6 to �nd the geometric
conditions

rm cos Θm = R + rs cos Θs, (4.43)
rs sin Θs = rm sin Θm, (4.44)

with rm and rs being the moduli of the generic vectors rs and rm. This gives rise to
the connection

r2
m = r2

s +R2 + 2rsR cos Θs (4.45)

between rs and rm. As usual, we are tasked with �nding the electrostatic potential
Φ in the di�erent dielectric regions. Based on the generic structure for a potential with
cylindrical symmetry in Equation (3.37), we make an ansatz for the potential inside the
dot Φs, the metallic nanoparticle Φm and in the intermediate region Φi, according to

Φs(rs,Θs) = Asi +

[
As1rs +

µs(ω)

4πε0r2
s

]
cos Θs, (4.46)

Φm(rm,Θm) = Ami + Am1 rm cos Θm, (4.47)

Φi(rs,Θs, rm,Θm) =

[
−E(ω)rs +

Bi
1(ω)

r2
s

]
cos Θs +

Ci
1

r2
m

cos Θm, (4.48)

where the potentials are expressed in the spherical coordinates of the dot and the
metallic particle, respectively. We have truncated the series of spherical harmonics at
l = 1 due to the spherical symmetry and the assumption of dipolar interactions only.
In the intermediate region, we assumed the metallic particle to be represented by a
contribution of dipolar type, emerging from an induced dipole moment located at the
center of the MNP. Furthermore, we have already included the external electric �eld
E(ω) and the dipole of the SQD µs(ω). The boundary conditions for the potentials are
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given by

Φi(rs = as) = Φs(rs = as), (4.49)

Φi(rm = am) = Φm(rm = am), (4.50)

εi
∂Φi

∂rs
(rs = as) = εs

∂Φs

∂rs
(rs = as), (4.51)

εi
∂Φi

∂rm
(rm = am) = εm(ω)

∂Φm

∂rm
(rm = am). (4.52)

Putting together Equations (4.46) to (4.48) and the conditions (4.49) to (4.52) yields the
�eld inside the SQD via As1 = −Es(ω). We �nd

Es(ω) = (1 + χs)E(ω) + 2χs
µs(ω)

4πε0a3
s

− 2
a3
m

R3
(1 + χs)χm(ω)E(ω)

+ 4
a3
sa

3
m

R6
(1 + χs)χm(ω)

[
χsE(ω) + (1− 2χs)

µs(ω)

4πε0a3
s

]
.

(4.53)

In order to arrive at Equation (4.53), we have neglected terms of higher order than
a6/R6, have approximated cos Θm/s/r

2
m/s ≈ (1/R3)

[
±R− 2rs/m cos Θs/m

]
and have

used [1− x]−1 ≈ 1 + x where x depends on a3
ma

3
s/R

6. The Onsager susceptibilities
describe the interfaces as

χs =
εi − εs
2εi + εs

and χm(ω) =
εi − εm(ω)

2εi + εm(ω)
. (4.54)

Using the convention that µs(ω) = µσx(ω) and separating the prefactor 2µ/(4πε0a
3
s)

as in Equation (4.23), we �nd

χr(ω) = χs − 2
a3
sa

3
m

R6
(1 + χs)(1− 2χs)χm(ω), (4.55)

while the cavity �eld is characterized by

χc(ω) =

[
1 + χs − 2

a3
m

R3
(1 + χs)χm(ω)

(
1− 2χs

a3
s

R3

)]
. (4.56)

4.4.3 Linear response of the quantum dot

Having determined the cavity and the reaction �eld in Equations (4.55) and (4.56),
the e�ective force is directly provided by Equation (4.23). As such, we are now faced
with the issue of determining the linear response of Equation (4.20) for the spin-boson
model. This requires us to determine the retarded Green’s function of the system which
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can only be done approximately. We will explicitly derive a response function for the
spin-boson model later in Part 5 on the basis of a master equation framework. For
simplicity, however, we defer to the literature in this section. In particular, Gan et al.
[73] use a speci�c unitary transformation of the Hamiltonian after which they apply
the Born approximation in order to derive explicit results for the retarded Green’s
function. In addition to supplying us with a suitable result, their method improves upon
simpler schemes by allowing for a wider parameter range even while still assuming
weak coupling between system and bath. For the system given by Equation (4.41), their
result reads

G(ω) = +
ω − ω0 −R(ω)− iγ(ω)

[ω − ω0 −R(ω)]2 + [γ(ω)]2
Θ(ω)

+
ω + ω0 +R(−ω) + iγ(−ω)

[ω + ω0 +R(−ω)]2 + [γ(−ω)]2
Θ(−ω),

(4.57)

which represents (in our convention) the Fourier transform of the Green’s function
G(t) = −iΘ(t)Tr{ρeq

S [σx(t), σx]} and is valid for zero temperature and weak coupling.
In order to �nd the actual form of the self-energy contributions R(ω) and γ(ω), we
have to derive the spectral density of the model. By application of Equation (2.36) while
noting an additional factor of 2µ from Equation (4.41), we obtain

~J(ω) =
(2µ)2

4πε0a3
s

Im[χr(ω)] = κ
Γω2

rω

(ω2 − ω2
r)

2 + Γ2ω2
. (4.58)

Here, we have inserted the dielectric function of Equation (4.42) and have de�ned
ωr = ωp/

√
2εi + 1. Note that the spectral density J(ω) of Equation (4.58) gives the

rescaled spectral density of Equation (2.54). The prefactor κ includes all geometrical
parameters as

κ =
µ2

4πε0

63ε2
i εsa

3
m

(2εi + εs)2(2εi + 1)R6
. (4.59)

The quantities R(ω) and γ(ω) are then de�ned as

R(ω) =
κωrω

2
0

2~(ω − ωr)(ωr + ω0)2
, (4.60)

γ(ω) =
ω2

0

(ω0 + ω)2
J(ω), (4.61)

where we have assumed for simplicity that Γω → 0 for the calculation of R(ω). The
e�ective driving �eld follows from the equations of motion as

Eeff(t) =

∫ ∞
−∞

dt′χc(t− t′)E(t′)

= E(t) +

∫ ∞
−∞

dt′λ(t− t′)E(t′).
(4.62)
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Figure 4.7: Real (a) and imaginary part (b) of the linear response Φ(ω) = Φ′(ω) + iΦ′′(ω) given
in Equation (4.65), evaluated around the shifted two-state splitting frequency ω1,max ≈ ω0. The
full response (red) is shown in contrast to the bare result Φ0(ω) where bath driving contributions
are not included (blue). Both curves have been normalized to the maximum of the bare result. At
the two-state frequency, the response is suppressed by a factor of 0.43 in both real and imaginary
part (red numbers).

Equation (4.62) shows a direct driving contribution that has been separated from the
cavity �eld by de�ning λ(ω) = χc(ω)− 1. Once more, the kernel λ(t) represents the
e�ect of bath driving. The e�ective driving �eld of the problem in Fourier space then
follows as

Eeff(ω) = [1 + λ(ω)]E(ω). (4.63)

We are now in the position to calculate the linear response of the setup. As before,
we restrict ourselves to the case of monochromatic driving, i.e., E(t) = E0 cos(ωet).
This allows us to obtain the average of µs = µσx as

〈µs(t)〉 = −µ
2

~

∫ ∞
−∞

dt′G(t− t′)Eeff(t′)

= Re

[
−µ

2

~
G(ωe)[1 + λ(ωe)]E0e

−iωet

]
.

(4.64)

We can read o� the extended linear response as

Φ(ω) = −µ
2

~
G(ω)[1 + λ(ω)] (4.65)

4.4.4 Evaluation of the linear response

As before, we aim to evaluate Equation (4.65) and discuss the emerging results in
contrast to the response without bath driving e�ects. To do so, we have to �nd suitable
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Figure 4.8: Real (a) and imaginary part (b) of the linear response Φ(ω) = Φ′(ω) + iΦ′′(ω) given
in Equation (4.65), evaluated around the shifted plasmon frequency ω2,max ≈ ωr . The full response
(red) is shown in contrast to the bare result Φ0(ω) where bath driving contributions are not included
(blue). Both curves have been normalized to the maximum of the bare result. The response at the
plasmon frequency is strongly altered with a complete exchange of real- and imaginary part and
evident quantitative enhancement (red numbers).

parameters for the physical problem. First, our general energy scale has to be in the
optical regime, i.e., has to have values in the low eV-range. For typical gold nanoparticles,
the dielectric function can be modeled with a plasma frequency of ~ωp = 8.5 eV and a
Debye relaxation time of τD = 14 fs [194]. Similarly, CdSe nanocrystals can be used
to model the SQD. In accordance, we set the excitonic energy gap to ~ω0 = 2.5 eV
and choose the dielectric constant of the SQD as εs = 6.0 [191, 196]. The surrounding
medium is assumed to be empty such that εi = 1. This particular choice of energies
re�ects our desire to retain comparable energy scales between the bath mode and the
system. Indeed, with these parameters the renormalized energy scale of the bath mode
turns out to be ~ωr ≈ 2~ω0, which is reasonably close to investigate the impact of the
driven bath mode. Lastly, the dimensions of the setup have been chosen as as = 0.65
nm, am = 7.5 nm and R = 20 nm in line with typical values [191, 196]. Note that this
choice is constrained by the dipole approximation used to derive the cavity and reaction
�eld above. Utilizing all parameters leads to an extremely small coupling strength of
κ ≈ 10−8~ω0 for a dipole of 1 Debye which ful�lls the requirement of low coupling
strength required by Equation (4.57).

The resulting dynamical response is shown in Figures 4.7 and 4.8 at the two relevant
frequencies. Given the small coupling constant, the resonant frequencies are not shifted
appreciably and we can state ω1 ≈ ω0 and ω2 ≈ ωr. The �rst frequency corresponds to
the two-state splitting in the dot. As in case of the polarizable molecule, no signi�cant
qualitative changes can be observed for the parameter range we utilize except for
a broad scaling of peak height. Instead of an enhancement, however, both real and
imaginary part are suppressed by about 43% in contrast to the case without bath driving.
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This suggests that bath driving e�ects interfere with the response characteristics at this
frequency. In contrast, the second frequency corresponds to the plasmonic mode in the
bath and we may therefore expect a stronger impact at this frequency. The response
clearly supports this notion as the peak height is increased by an order of magnitude in
the real part and a factor of four in the imaginary part. Additionally, an almost complete
exchange of real and imaginary part can be observed. This can be made manifest by
splitting the response into real and imaginary part as before. We quickly �nd

Φ′(ω) = −µ
2

~
{
G′(ω)[1 + λ′(ω)]−G′′(ω)λ′′(ω)

}
, (4.66)

Φ′′(ω) = −µ
2

~
{
G′′(ω)[1 + λ′(ω)] +G′(ω)λ′′(ω)

}
, (4.67)

where we denoted real parts with a prime and imaginary parts with two. The second
terms of (4.66) and (4.67) couple imaginary and real parts via the complex function λ(ω),
whereas the �rst lead to a scaling of the response peaks. Again, we may interpret the
negative imaginary part as a sign of emission, whose detailed origin has to be discussed
in future research. Nevertheless, we may suppose that the bounded nature of the TSS
may give rise to a population inversion such that the usual conditions for lasing are
ful�lled.

4.5 Conclusion of Part 4

Throughout this part of the thesis, we have established our �rst major result: a linearly
driven bath creates an additional force component onto the system in question. We have
seen that this force is determined by a retarded kernel λ(t) which can be formulated in
a convenient way by introducing a secondary spectral density J̄(ω) given in Equation
(4.11). This additional spectral density depends on the coupling constants of the force to
the bath modes and is an a priori unknown quantity. By utilizing the Onsager solvation
model, we were able to connect the additional force component to the emerging Onsager
cavity �eld. This approach allowed us to derive a simple proportionality between the two
spectral densities and enabled us to investigate the impact of this new force component.
In this chapter, our method of choice was the evaluation of the extended linear response
for two particular nanosystems. Speci�cally, we have investigated the response of a
polarizable molecule immersed in water and subjected to radiation in the THz-regime,
as well as an interacting quantum-dot metal-nanoparticle setup driven by optical laser
�elds. Both cases represent physical systems where pronounced bath modes indicate
the possibility for the bath to interact with the driving �eld as well. Utilizing the
basic models of quantum dissipation, we have treated the polarizable molecule as
a forced harmonic oscillator and applied the spin-boson model to the quantum-dot
metal-nanoparticle setup. The resulting response spectra show an enhancement or
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suppression as well as qualitative changes which can be explained by a mixing of real
and imaginary part mediated by the Fourier-transformed kernel λ(ω). Indeed, the
e�ects were so profound that the imaginary part of the response became negative,
suggesting that the system is able to emit radiation due to energy transfer from the
driven bath.

This part of the thesis has shown that bath driving changes the dynamics associated
with driven quantum systems, leading not only to an enhancement or suppression
of response signals but also to a qualitatively di�erent response behavior when bath
driving is considered. Bath driving may thus constitute a novel way of exciting and
controlling dissipative quantum systems, for instance by tuning the driving frequency
to the selected bath modes. At this point, such as statement is somewhat surprising
given that we restricted ourselves to purely linear e�ects throughout, most notably by
using a dipolar coupling between bath and driving �eld and by only considering the
extended linear response of the quantum system. In the following parts of this thesis,
we will try to relax some of these assumptions and investigate their impact onto the
dynamics of coupled systems.
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Part 5
The non-Markovian force and quantum master

equation approach

In the last chapter, we saw that a system in contact with a linearly driven bath ex-
periences a new retarded force component which adds to an already present direct
driving force. The linear response for the case of two nanosystems in contact with a
structured bath was seen to be qualitatively altered due to this new force component.
In this part of the thesis, we aim to develop a more complete picture of the problem by
introducing this e�ective force on the level of the Hamiltonian. This procedure will
enable us to show not only that this force fully encodes the nonequilibrium dynamics
of the bath but also allows us to derive and investigate a nonlinear response function
by way of a speci�c master equation approach [83, 197]. This part of the thesis is based
on published results by the author [2].

5.1 The non-Markovian force

We start from the spin-boson model for dipolar bath driving given in Equation (4.12)

H(t) = H0 +HIB(t) =
~ω0

2
σx −

σz
2

N∑
α=1

~λα(bα + b†α)

+
N∑
α=1

~ωαb†αbα −
F (t)

2

N∑
α=1

~µα(bα + b†α).
(5.1)

Here, we used the description in terms of annihilation and creation operators for
the bath Hamiltonian and removed the zero-point energy contribution. In order to
keep our analysis simple, we also set the asymmetry ε = 0 and disregard the direct
driving contribution to the two-state system for the time being. We note the de�nition
∆ = ~ω0 from Section 2.2.3, inserted here as the characteristic frequency ω0 will appear
throughout this part of the thesis to parametrize the time variable. The spectral density
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of the bath is given by Equation (2.54) as

J(ω) = π
N∑
α=1

λ2
αδ(ω − ωα). (5.2)

In this part of the thesis, we consider two kinds of spectral densities

J (1)(ω) =
ηω

ωc
e−ω/ωc , (5.3)

J (2)(ω) = κ
ΓΩ2ω

(ω2 − Ω2)2 + (Γω)2
. (5.4)

Equation (5.3) describes an ordinary Ohmic spectral density as seen in Equation (2.29).
Equation (5.4) is a Lorentzian density as given by Equation (2.37) which represents the
kind of structured baths we already considered for the two nanosystems in the previous
chapter (cf. Equation (4.58)). In contrast to the de�nition in Equation (2.29), the cuto�
frequency ωc has been used here to rescale the density (5.3) such that η and κ have
the same dimension of a frequency. We will also make use of the mapping procedure
outlined in Section 2.2.2. Speci�cally, the undriven Hamiltonian H0 with the Lorentzian
spectral density (5.4) is equivalent to [72–74]

H0 =
~ω0

2
σx − ~gσz(B +B†) + ~ΩB†B

+
N ′∑
α=1

~ω′αb′†αb′α + (B +B†)
N ′∑
α=1

~λ′α(b′α + b′†α),
(5.5)

where the annihilation and creation operators B and B† describe a single harmonic
oscillator with energy ~Ω coupled to a bath with an Ohmic spectral density of the form
(2.29) with prefactor η′ = Γ/(2Ω). The coupling to the system is given by g =

√
κΩ/8.

We also omitted a potential renormalization term here.

Pulsed bath driving scheme

In the previous chapter we considered the response to a simple monochromatic AC
driving �eld in the long-time limit. This led to fairly simple expressions where we could
read o� the corrected linear response directly. In this part of the thesis, we extend our
analysis to pulse-shaped bath driving schemes, where the perturbation is constrained
to a speci�c time span. This will allow us to investigate cases where the coupling time
and the time of onset of the perturbation di�er. As we shall see, this also yields insights
about the nature of the e�ective force and the resulting bath states. Most importantly,
we will use our results to show that the new force component fully encodes the memory
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Figure 5.1: General setup of the pulse-shaped bath driving scheme we consider. The bath (B) is in
equilibrium until time ta, when the bath driving force F (t) is activated. Subsequently, the bath is
driven out of equilibrium (orange color) by a pulse centered at some time tg (orange Gaussian). The
system (S) is coupled to the driven bath at time t0. In this part of the thesis, we consider a generic
spin-boson model with coupling λα. As shown, the driven bath induces an additional e�ective force
Feff(t) on the system.

of the bath by explicitly analyzing the case where the system is coupled to a bath already
subject to driving at an earlier time.

Our general setup is depicted in Figure 5.1. Three times are now relevant: the time
of the onset of the perturbation ta after which F (t) is nonzero, the time tg where the
perturbation is centered and the coupling time t0 when we (instantaneously) couple
system and bath. We assume factorizing initial conditions, i.e., the combined density
matrix W (t) of system and bath is given as a product until the coupling time is reached
(cf. Equation (2.61)). Thus,

W (t ≤ t0) = ρS(t)⊗ ρB(t), (5.6)

where ρS(t) designates the reduced density matrix of the system and ρB(t) the corre-
sponding reduced density matrix of the bath. The bath is assumed to be in equilibrium
until activation of the driving force, i.e.,

ρB(t ≤ ta) = ρeq
B = e−βHB/Z . (5.7)

Here, the temperature is encoded in kBT = 1/β and Z is the equilibrium partition
function of the decoupled bath. Following ta, the bath is driven out of equilibrium and
ρB(t) becomes a nonequilibrium distribution. The bath degrees of freedom are then
subject to the driven bath Hamiltonian (4.3), which reads here

Heff
B (t) = HB +HIB(t) =

N∑
α=1

~ωαb†αbα −
F (t)

2

N∑
α=1

~µα(bα + b†α). (5.8)
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Finally, we consider two particular pulse shapes for the �eld F (t): a δ-shaped and a
Gaussian driving pulse, described by

F (1)(t) = ω−1
0 δ(t− ta), (5.9)

F (2)(t) =
ω−1

0√
2πσ2

e−
(t−tg)2

2σ2 . (5.10)

The area of both pulses is normalized to ω−1
0 and F (t) is set to be dimensionless. For

the Dirac pulse we also note that tg and ta coincide. These particular pulse shapes
permit for relatively simple expressions for the resulting e�ective force.

5.1.1 The e�ective force

We are now ready to introduce the e�ective force. To do so, we evaluate the Heisenberg
equation of motion for the bath operator bα, subject to the time evolution described
by Equation (5.8). In the following, we denote Heisenberg operators with a tilde and
consider the interval [0, t] with t ≥ ta ≥ 0 for simplicity. b̃α(t) then ful�lls

db̃α(t)

dt
+ iωαb̃α(t)− i µαF (t)

2
= 0, (5.11)

which can be solved to yield

b̃α(t) = b̃0
α(t) +

1

2
Kα(t, ta). (5.12)

The �rst term denoted by b̃0
α(t) gives the undriven time evolution

b̃0
α(t) = bαe

−iωαt, (5.13)

while Kα couples to the identity and describes the driving-induced term

Kα(t, ta) = i

∫ t

ta

dt′eiωα(t′−t)µαF (t′). (5.14)

The corresponding equation for b̃†j(t) can be obtained from Hermitian conjugation. The
new driving term Kα(t, ta) displaces the operator from its equilibrium position at zero.
This follows since

〈b̃j(t)〉eq
B = 〈b̃0

α(t)〉eq
B + 〈Kα(t, ta)/2〉eq

B = Kα(t, ta)/2, (5.15)
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where we have used 〈b̃0
α(t)〉eq

B = 0. This also means that (bath-) averages of the coupling
operator no longer vanish as we have

〈HSB〉B(t) = −σz
2

N∑
α=1

~λα〈x̃α(t)〉eq
B

= −σz
2

Re

[
N∑
α=1

~λαKα(t, ta)

]
≡ σz

2
~Fe�(t),

(5.16)

where we have introduced the dimensionless (Heisenberg) position operator x̃j(t) =

b̃j(t) + b̃†j(t). Equation (5.16) de�nes the e�ective force Fe�(t) as

Fe�(t) = Θ(t− t0) Im

[
1

π

∫ ∞
0

dωJ̄(ω)

∫ t

ta

dt′F (t′)eiω(t′−t)
]

= Θ(t− t0)
1

π

∫ ∞
0

dωJ̄(ω)

∫ t

ta

dt′F (t′) sin[ω(t′ − t)].
(5.17)

In the second equation, we have used that F (t) and J̄(ω) must be real. We have
also explicitly noted the time dependence of the system-bath coupling constants in
a Heaviside function. Evidently, the e�ective force coincides with what we found in
Part 4. However, Fe� is not a force but de�ned as a frequency here such that ~Fe�
gives an e�ective time-dependent asymmetry (as in Equation (4.19)). J̄(ω) is de�ned in
accordance with Equation (5.2) as

J̄(ω) = π
N∑
α=1

µαλαδ(ω − ωα). (5.18)

Lastly, we note that Equation (5.16) denotes the nonequilibrium bath average and
not just the case for equilibrium. This follows because the time evolution of the bath
density matrix can be factored out into the coupling operators until an equilibrium
average remains. Speci�cally,

〈HSB〉B(t) = TrB [HSBρB(t)] = TrB

[
HSBU(t)ρB(0)U †(t)

]
= TrB

[
U †(t)HSBU(t)ρeq

B

]
= 〈H̃SB(t)〉eq

B .
(5.19)

Here, we have denoted the time evolution operator with the Hamiltonian (5.8) as U(t),
used the cyclical invariance of the trace and assumed ρB(0) = ρeq

B . The simple procedure
outlined here will also allow us to rewrite the correlation functions that appear in the
perturbative expansion as equilibrium averages.
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5.1.2 Redefined Hamiltonian

By introducing the e�ective force via Equation (5.16) we can exploit perturbative
methods for our purposes. In particular, we saw in Section 2.3.1 that Born-Markov
master equation approaches are based on perturbation theory in the system-bath
coupling Hamiltonian. The resulting dynamics for the system are then determined by
bath correlation functions (cf. Equation (2.64)). As we have seen in Equation (5.16),
linear bath driving induces a time-dependent shift on the dynamics of the coupling
operator. If we subtract this shift by a suitable rede�nition in the Hamiltonian, we can
recover the dynamics rendered by an undriven bath. This approach is not particularly
new, as it is commonly used in master equation approaches for time-independent
problems when 〈HSB〉 = const [5]. In our case, we add zero to Equation (5.1) by
choosing

H(t) = H(t)− 〈HSB〉B(t) + 〈HSB〉B(t)

= Heff
S (t) +Heff

SB(t) +Heff
B (t),

(5.20)

with Heff
B (t) given in Equation (5.8). As a �rst consequence, the system-bath coupling

operator becomes

Heff
SB(t) = −σz

2

N∑
α=1

~λαxeff
α (t), (5.21)

with xeff
α (t) = xα − 〈x̃α(t)〉eq

B . In addition, the system Hamiltonian also becomes
time-dependent as

Heff
S (t) =

~ω0

2
σx +

~Fe�(t)

2
σz . (5.22)

With this rede�nition, the shifted Heisenberg position operator now includes only
the free time evolution as x̃e�

α (t) = x̃α(t) − 〈x̃α(t)〉eq
B = x̃0

α(t). Consequently, the
bath autocorrelation function remains unchanged compared to the equilibrium case
of Equation (2.25). For later purposes, we note that its real part de�nes the symmetric
bath autocorrelation function BC(t, s) as

BC(t, s) =
N∑

α,α′=1

λαλα′

2
〈
{
x̃e�
α (t), x̃e�

α′(s)
}
〉eq
B

=
N∑
α=1

λ2
α coth

(
β~ωα

2

)
cos[ωα(t− s)] ,

(5.23)
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where {·, ·} denotes the anticommutator. The imaginary part gives the bath response
function BR(t, s) as

BR(t, s) =
N∑

α,α′=1

λαλα′

2
i〈
[
x̃e�
α (t), x̃e�

α′(s)
]
〉eq
B

=
N∑
α=1

λ2
α sin[ωα(t− s)].

(5.24)

Coming back to (5.22), the e�ective force now appears as an e�ective asymmetry of
the two-state system, consistent with our expectation from Equation (4.19). We can also
see from the explicit form in Equation (5.17) that the force includes the full driven time
evolution in the interval [ta, t]. Together with Equations (5.23) and (5.24) this implies
that the force encodes the nonequilibrium properties of the bath. This conclusion is
not new as we have already derived it by way of the quantum Langevin equation in the
last part of this thesis. However, we can now extend this argument to the case where
bath driving sets in prior to the coupling time t0, as depicted in Figure 5.1, where the
system couples to an already driven bath. The force itself will then be zero until time
t0 as it depends on the coupling constants between system and bath. However, for
t > t0, the e�ective force still includes the time interval down to ta when the force was
�rst activated. Thus, the force encodes the history, or memory, of the bath since the
activation of the driving force. It is for this reason, that we can refer to the e�ective
force given in Equation (5.17) as a non-Markovian force. Note that this only describes
the force component introduced by bath driving and we did not take direct driving of
the system into account in this chapter.

5.1.3 Characterization of the non-Markovian force

Before proceeding to evaluate the dynamics, we will take a look at the behavior of the
non-Markovian force given in Equation (5.17). We analyze the force for an Ohmic and
a Lorentzian e�ective spectral density given by

J̄ (1)(ω) =
η̄ω

ωc
e−ω/ωc and J̄ (2)(ω) = κ̄

ΓΩ2ω

(ω2 − Ω2)2 + (Γω)2
. (5.25)

Here, we chose the same form as the spectral densities in Equations (5.3) and (5.4) but
signi�ed the prefactor with an additional bar. This choice is based on our conclusion
in Section 4.2.3 where we saw that the Onsager sphere model can be used to derive a
direct proportionality between the ordinary spectral density and the e�ective spectral
density (Equation (4.25)). We will explicitly make use of this connection in the next
Section. Evaluation of the e�ective force yields

F δ
e�(t) = − 1

πω0

∫ ∞
0

dωJ̄(ω) sin[ω(t− ta)], (5.26)
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Figure 5.2: Normalized e�ective force Fe�(t) (blue) and direct bath driving force η̄F (t) (red) for
the Ohmic density J̄ (1)(ω) driven by a Dirac δ-pulse (a) and a Gaussian pulse (b). Both pulses
are centered at tg = 5ω−1

0 while the Gaussian starts at ta = 0. The bath is characterized by a
cuto� frequency ωc = 5ω0. The interaction strength of the Dirac pulse is set as η̄ = 2ω0 while
the Gaussian has a strength η̄ = 6ω0 and a width σ = ω−1

0 . Both quantities are normalized with
respect to the maximum of the e�ective forces.

for the δ-pulse of Equation (5.9) and

F g
e�(t) = Im

[
1

2πω0

∫ ∞
0

dωJ̄(ω)e−
ω2σ2

2
−iω(t−tg)erfc(ζt)

]
, (5.27)

for the Gaussian pulse of Equation (5.10). We assumed t > t0 in both cases and used
ζt = (iωσ2− t+ tg)/

√
2σ2 while erfc(z) designates the complementary error function.

For the Ohmic density of Equation (5.25), the integral in Equation (5.26) can also be
solved analytically to yield

F
δ,(1)
e� (t) = −2η̄ωc

πω0

ωc(t− ta)
[1 + ω2

c (t− ta)2]2
. (5.28)

The explicit driving pulses F (t) and the resulting non-Markovian forces are shown
in Figure 5.2 for the Ohmic spectral density J̄ (1)(ω) for the parameters indicated. In this
case, the pro�le of the non-Markovian force follows the original pulse closely, albeit
with a lower peak strength. A clear retardation can also be observed. In the case of the
δ-pulse both retardation and subsequent decay follow on a time scale 1/ωc as can be
seen from the analytic solution. The latter result is reasonable, as the cuto� is the only
distinguished frequency scale in the absence of a pronounced mode in the bath. Hence,
similar deviations occur for the Gaussian on that time scale but are overshadowed by the
comparably large width of the original pulse. This implies that the new force becomes
e�ectively instantaneous with F (t) for large cuto�s. In this case the non-Markovian
force simply gives a correction to the strength of a direct driving pulse.
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Figure 5.3: Normalized e�ective force Fe�(t) (blue) and direct bath driving force κ̄F (t) (red)
for the Lorentzian density J̄ (2)(ω) driven by a Dirac δ-pulse (a) and a Gaussian pulse (b). Both
pulses are centered at tg = 5ω−1

0 while the Gaussian starts at ta = 0. The bath is characterized by
the parameters Ω = 1.5ω0 and Γ = 0.1ω0. The interaction strength of the Dirac pulse is set to
κ̄ = 2ω0, while the Gaussian has a strength κ̄ = 6ω0 and a width σ = ω−1

0 . Both quantities are
normalized with respect to the maximum of the e�ective forces.

The Lorentzian cases are shown in Figure 5.3. Their main feature is a comparably
long-lived pattern of exponentially decaying oscillations. These can be successfully
�tted by the function

F
(2)
eff (t) ≈ −A sin(Ωt) e−Γt/2, (5.29)

where A is a �t parameter. Evidently, the force is governed by the interaction with
the mode and is strongly reminiscent of the behavior of a damped harmonic oscillator
with frequency Ω and friction proportional to Γ/2. This observation is in line with the
mapped Hamiltonian in Equation (5.5) if we utilize Equation (2.31): the friction term
of the oscillator is then proportional to ~η′/q2

0 ∝ Γ/2 which directly gives the correct
time scale. As such, a TSS in a Lorentzian bath experiences a force chie�y governed by
the oscillating bath mode. The Lorentzian density may also be simpli�ed in the case of
very narrow resonances as a delta-function. This implies a simple sinusoidal behavior
of the e�ective force in case of the δ-pulse.

In contrast, changes in the pulse shapes themselves only lead to deviations on the
time scale when the force is still active, which is why the �rst oscillation is contorted
in the case of the Gaussian. For stronger damping (i.e. a broader mode) or comparably
long-lasting forces these e�ects will become more important. Finally, the comparison
between spectral densities supports the notion employed in the previous chapter, where
we reasoned that bath driving could have a larger e�ect in baths with pronounced
modes. In contrast, the e�ect from dipolar bath driving just recreates the original pulse
with a di�erent strength for structureless baths with a broad frequency response for
which ωc is large.
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5.2 Adiabatic-Markovian master equation approach

With the non-Markovian force of Equation (5.17) and the rede�ned Hamiltonian of
Equation (5.19) at hand, we are now going to obtain the approximate dynamics for
the two-state system (TSS). For this purpose, we introduce a speci�c master equation
approach based on the works of Nalbach, Horner, Würger and others [25, 198–201].
Speci�cally, a master equation is derived in Liouville space on the basis of a superoper-
ator formalism. Because we are dealing with a nonequilibrium bath, explicit care must
be taken to include its time evolution. We will see that the e�ect of bath driving can be
fully accounted for by the e�ective force within a simple Born approximation scheme.
The dynamics is then obtained through the assumption of a fast decay of bath correla-
tions in conjunction with a comparably slow force (the so-called Adiabatic-Markovian
approximation [83, 197]).

5.2.1 Liouville space quantum master equation

We start our analysis by considering the Liouville-von Neumann equation for the
combined density matrix of system and bath W (t) [5]

dW (t)

dt
= − i

~
[H(t),W (t)] ≡ L(t)W (t). (5.30)

The last equation de�ned the time-dependent Liouvillian superoperator L(t) · =
−(i/~)[H(t), · ] which acts on operators in the product Hilbert space of system and
bath. It can also be written as a sum of system, bath and system-bath coupling parts
L(t) = LS(t) +LB(t) +LSB(t). A formal solution of Equation (5.30) can be formulated
as

W (t) = T exp

[∫ t

t0

ds L(s)

]
W (t0) = U(t, t0)W (t0), (5.31)

where T denotes the proper time ordering [202]. The last equation introduced the time
evolution superoperator U(t, t0) = T exp

[∫ t
t0
ds L(s)

]
. Following Equation (5.6), we

have W (t0) = ρS(t0)⊗ ρB(t0). This allows us to obtain the reduced density matrix of
the system by averaging over the bath states at coupling time (cf. Equation (2.59))

ρS(t) = TrB [U(t, t0)W (t0)] = Ue�(t, t0)ρS(t0). (5.32)

Here, we have de�ned the e�ective time evolution superoperator of the reduced density
matrix of the system Ue�(t, t0) = TrB [U(t, t0)ρB(t0)] = 〈U(t, t0)〉B. Next, we expand
U(t, t0) into a Dyson series as [25]

U(t, t0) = U0(t, t0) +

∫ t

t0

ds U0(t, s)LSB(s)U0(s, t0)

+

∫ t

t0

ds

∫ s

t0

ds′ U0(t, s)LSB(s)U0(s, s′)LSB(s′)U(s′, t0).
(5.33)
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Here, the superoperator U0(t, t0) = US(t, t0) ⊗ UB(t, t0) is the combined time evolu-
tion superoperator of system (US(t, t0)) and bath (UB(t, t0)) without the system-bath
coupling. Subsequent averaging yields the equivalent series for Ue�(t, t0) in the form

Ueff(t, t0) = US(t, t0) +

∫ t

t0

ds US(t, s) 〈LSB(s)U0(s, t0)〉B

+

∫ t

t0

ds

∫ s

t0

ds′ US(t, s) 〈LSB(s)U0(s, s′)LSB(s′)U(s′, t0)〉B .
(5.34)

In order to obtain Equation (5.34) we have utilized 〈U0(t, t0)A(s)〉B = US(t, t0) 〈A(s)〉B
for some operator A. This follows because the e�ect of U(t) can be formulated as

U(t)A = U(t)AU †(t), (5.35)

where U(t) is the ordinary time evolution operator. Cyclic invariance of the trace then
allows cancellation of UB(t, t0). Finally, combining Equations (5.32) with (5.34) leads to
a quantum master equation in Liouville space given by

dρS(t)

dt
= LS(t)ρS(t) + 〈LSB(t)U0(t, t0)〉B ρS(t0)

+

∫ t

t0

ds 〈LSB(t)U0(t, s)LSB(s)U(s, t0)〉B ρS(t0).
(5.36)

Equation (5.36) is still exact as the full time evolution superoperator U(s, t0) is present
on the right-hand side.

5.2.2 Born approximation

In order to �nd explicit the dynamics we need to approximate Equation (5.36). We note
that the structure of the expansion is the same as in Equation (2.60). Neglecting higher
order terms by setting U(t) ≈ U0(t) in the expectation value then similarly amounts to
the Born approximation. To provide more details, this approximation is done on the
basis of a cumulant expansion where only powers of second order correlations are taken
into account [85, 198, 202]. This means that the in�nite sum obtained by reinsertion of
Equation (5.36) into itself is reduced to a kind of power series of the bath correlators
found in Equation (2.64). This is a typical example for a resummation technique of
many-body correlations and can be represented diagrammatically by keeping sequential
one-loop diagrams. A detailed presentation is provided in the paper by Würger [198]
and the doctoral thesis of Nalbach [202] for the equilibrium case. We are going to
generalize the procedure here for the nonequilibrium case and approximate

〈LSB(t)U0(t, s)LSB(s)U(s, t0)〉B

≈ 〈LSB(t)U0(t, s)LSB(s)UB(s, t0)〉B Ueff(s, t0),
(5.37)
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where the average is performed with respect to ρB(t0) which we assume to not be
equal to ρeq

B . However, this assumption is intrinsically problematic as the resummation
procedure can be motivated by the thermal Wick theorem where higher order thermal
averages can be written as the sum of permutations of lower orders [62, 198]. By
using the method in Equation (5.19), we can reduce the correlations to equilibrium
averages once more. To see this, we start by considering the in�nite Dyson series
of Ueff(t, t0) which can be obtained by reinsertion of Equation (5.33) into itself and
subsequent averaging. One �nds that terms of the n-th power in LSB feature an n-th
order correlator Φ(n)(. . . ) which depends on n-time arguments plus the initial time t0.
They are given by

Φ(n)(sn, sn−1, . . . , s2, s1) =

〈LSB(sn)U0(sn, sn−1)LSB(sn−1)U0(sn−1, sn−2) . . .LSB(s1)U0(s1, t0)〉B .
(5.38)

Note that Φ(n) is still a superoperator which acts on operators inside the system Hilbert
subspace. To proceed, we note that in our driving scheme we start from equilibrium at
time ta. This allows us to extract another time evolution superoperator via ρB(t0) =
UB(t0, ta)ρ

eq
B to recover an equilibrium average. This yields

Φ(n)(. . . ) = 〈. . .LSB(s1)U0(s1, t0)〉B = 〈. . .LSB(s1)US(s1, t0)UB(s1, ta)〉eq
B . (5.39)

It is obvious that this step is only relevant when driving precedes the coupling, i.e. for
ta < t0, as the bath is assumed to be in equilibrium prior to ta.

While we now possess equilibrium averages, the nonequilibrium time evolution
changes the correlation function and may either invalidate the perturbative expansion
because of the shift done in Equation (5.21), or changes the time scales such that the
Markov approximation becomes problematic. We can solve these issues in part by
showing that the correlators reduce to the equilibrium case via application of Equation
(5.20). While we will not provide a rigorous proof to all orders, we are going to show in
the following how the time evolutions can be rearranged in second-order correlators in
such a way that the results (5.23) and (5.24) reemerge and brie�y discuss the case for
fourth-order correlators.

Second and fourth order bath correlations

To check how the time evolution factorizes into the di�erent operators, it is necessary
to split the correlators of Equation (5.38) into system and bath parts. This is done
by explicitly writing down the superoperators and evaluating the nested commutator
structure encoded within the Liouvillians. The procedure is outlined in Appendix C
and we only consider some exemplary terms. In particular, the second order correlator
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Φ(2)(t2, t1) yields a term

φ(2)(t2, t1)

=
N∑

α,α′=1

λαλα′TrB

[
xe�
α′(t2)U(t2, t1)xe�

α (t1)U(t1, ta)ρ
eq
B U

†(t1, ta)U
†(t2, t1)

]
,

(5.40)

where U(tj, ti) are the time evolution operators of the bath with Hamiltonian (5.8). We
can now exploit the cyclical invariance of the trace and insert 1 = U(t1, ta)U

†(t1, ta)
to absorb the time dependence into the operators according to

φ(2)(t2, t1) =
N∑

α,α′=1

λαλα′TrB

[
x̃e�
α′(t2 − ta)x̃e�

α (t1 − ta)ρeq
B

]
. (5.41)

This procedure can be done similary for the other ordering that appears from the
commutators and Equations (5.23) and (5.24) emerge naturally (cf. Equations (C.5) and
(C.6)). Before proceeding, it should be mentioned that the dependence on ti − ta in
Equation (5.41) only applies to the free time evolution of the operators. This follows
from the solution of the di�erential equation (5.11) where we can see that the driving
contribution is unchanged when the interval [ta, t] is considered. Therefore, the driving
contribution cancels and the correlators only depend on the di�erence t2 − t1.

In fourth order, a total of 8 orderings can be found (see Equation (C.7)). By similar
methods, one �nds terms such as

φ(4)(t4,t3, t2, t1) =
N∑

α,α′,α′′,α′′′=1

λαλα′λα′′λα′′′

∗ TrB

[
x̃e�
α′′′(t4 − ta)x̃e�

α′′(t3 − ta)x̃e�
α′(t2 − ta)x̃e�

α (t1 − ta)ρeq
B

]
,

(5.42)

which coincides with the equilibrium result. It therefore stands to reason that the
same procedure can be applied to arbitrary high order to regain simple equilibrium
correlations. While this is not a strict proof, we note that this result must be exact as
shown in the QLE treatment of the previous chapter where the only e�ect of a linearly
driven bath is an additional force contribution. We shall also derive this result on the
basis of path integrals in the next part of this thesis. However, this short calculation
allows us to argue that additional time scales will not appear from the bath correlations,
as these are completely absorbed in the e�ective force contribution.

Born-approximated quantum master equation

After arguing that the bath correlators retain their equilibrium result, we apply the
Born approximation. We �rst note that the �rst-order term in the master equation
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(5.36) vanishes because the shift of Equation (5.20) recreates Gaussian �uctuations.
Speci�cally, we have

〈LSB(t)U0(t, t0)〉B ∝
N∑
α=1

λα
〈
x̃eff
j (t− ta)

〉eq

B
= 0, (5.43)

since the average position of an unperturbed oscillator is zero in equilibrium (Equation
(A.7)). We �nally arrive at the Born-approximated quantum master equation

dρS(t)

dt
= LS(t)ρS(t) +

∫ t

t0

dsM(t, s)ρS(s). (5.44)

Here, the kernelM(t, s) is de�ned by Equation (5.37) as

M(t, s) = 〈LSB(t)U0(t, s)LSB(s)UB(s, t0)〉B. (5.45)

While the bath correlators depend only on the di�erence t− s, the system part of
Equation (5.45) is still subject to the non-Markovian force such that more simpli�ca-
tions cannot be made without further approximations. In other words, while we have
simpli�ed the coupling to the bath, we are still left with the problem of a driven system.

5.2.3 Adiabatic-Markovian approximation

In a simple approach applied by Nalbach to the dissipative Landau-Zener problem [83,
197] and previously also noted by Weiss [33, Chapter 23.2], a Markovian approximation
can be connected with the assumption of slow external driving. This gives rise to
time-dependent nonequilibrium Bloch equations. To �nd them, we return to the shifted
Hamiltonian of Equation (5.20) and perform a rotation into the momentary eigenbasis
of the system which we denote by a bar [83]. The system part then transforms as

H̄S(t) = R†(t)Heff
S (t)R(t) =

E(t)

2
τx, (5.46)

with the time-dependent momentary eigenenergies E(t) = ~
√
ω2

0 + [Fe�(t)]2 and the
τi give the rotated Pauli matrices. The rotation is generated by the operator R(t) =
exp [i(φ(t)/2)σy] with the phase φ(t) = arctan [Fe�(t)/ω0]. Similarly, the system-bath
coupling Hamiltonian yields

H̄SB(t) = −
(
u(t)

2
τz +

v(t)

2
τx

) N∑
α=1

~λαxe�
α (t), (5.47)

with the prefactors u(t) = cos[φ(t)] and v(t) = sin[φ(t)]. The rotations done in
Equation (5.46) and (5.47) amount to a transformation into an adiabatic basis which
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is known as a common approach to �nd the dynamics in driven quantum systems, as
mentioned in Sections 2.2.3 and 3.3.3 [157].

The time-dependent rotation introduces an additional term in the time evolution
of the density matrix. Speci�cally, for the rotated combined density matrix W̄ (t) the
Liouville-von Neumann equation (5.30) becomes

dW̄ (t)

dt
= − i

~

[
~
2

(
dφ(t)

dt

)
τy + H̄S(t) +Heff

B (t) + H̄SB(t), W̄ (t)

]
. (5.48)

The time evolution of the bare system is then determined by the rotated system Hamil-
tonian and the derivative of the phase according to

H̄ ′S(t) = H̄S(t) +
~
2

(
dφ(t)

dt

)
τy. (5.49)

This changes the free time evolution superoperator of the system into

ŪS(t, t0) = exp

[∫ t

t0

ds L̄′S(s)

]
= exp

[∫ t

t0

ds

(
L̄S(s)− i

2

(
dφ(t)

dt

)
[τy, ·]

)]
, (5.50)

where a bar over the Liouvillian signi�es that it is constructed from the corresponding
rotated Hamiltonians and we omitted the time ordering for brevity. The rotated kernel
M̄ is then given by

M̄(t, s) =
〈
L̄SB(t)Ū0(t, s)L̄SB(s)UB(s, t0)

〉
B

. (5.51)

As outlined in Section 2.3.1, the Markovian approximation involves well separated
time scales of the system and the bath such that the memory of the bath decays much
faster than any time scale of the system. In this way, the memory kernel M̄(t, s) is
assumed to decay fast with increasing time di�erence t− s. This assumption allows
us to move the reduced density matrix in front of the integral in Equation (5.44) as it
does not change appreciably during the time frame when the integral is evaluated (cf.
the text below Equation (2.60)). Driving does not change this picture as long as it is
su�ciently slow in contrast to the bath. If the force occurs on the time scale of the
system or changes even slower while the bath remains fast, the bath will e�ectively see
a constant system – regardless of the time dependence rendered by the driving. This
notion of adiabaticity of the force is thus compatible with the Markovian approximation
[83]. This allows us to make simpli�cations inside the kernel M̄(t, s) according to

ŪS(t, t0) ≈ exp
[
L̄S(t)(t− t0)

]
, (5.52)

L̄SB(s) ≈ L̄SB(t) , while keeping xeff
j (s). (5.53)

As noted in the previous subsection, we have to keep the time dependence of xeff
j (s)

intact to preserve the equilibrium dynamics of the bath. Our approximations then only
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a�ect the system dynamics and we neglect the time dependence introduced by the
two prefactors in L̄SB, i.e. u(s) ≈ u(t) and v(s) ≈ v(t). In this way, the dynamics of
bath and system inside the kernel depend only on the time di�erence along with a
parametric dependence on t. We therefore write M̄(t, s) ≈ M̄AM(t, t− s).

We are now able to proceed with the ordinary Markov approximation. First, we
have to extract a fast time dependence from the reduced density matrix by switching to
the interaction picture before it can be pulled from the integral [5, 64]. This is done in
our formalism by [83]

ρ̄S(s) = ŪS(s, t0)ρ̄′S(s) ≈ exp
[
L̄S(t)(s− t0)

]
ρ̄′S(s), (5.54)

which directly follows from Equation (5.35) and our approximation in Equation (5.52).
We proceed to simplify the integral in Equation (5.44) by

t∫
t0

ds M̄(t, s)ρ̄S(s) ≈
t−t0∫
0

dτ M̄AM(t, τ)ρ̄S(t− τ)

≈
t−t0∫
0

dτ M̄AM(t, τ)eL̄S(t)(t−τ−t0)ρ̄′S(t) ≈

 ∞∫
0

dτ M̄AM(t, τ)e−L̄S(t)τ

 ρ̄S(t).

(5.55)

Here, we have set τ = t− s in the �rst step, have approximated ρ̄′S(t− τ) ≈ ρ̄′S(t) for
the second and �nally have extended the upper bound of the integral to in�nity on the
basis that the kernel decays fast in our approximation. Insertion into the rotated master
Equation (5.44) �nally leads to the Adiabatic-Markovian quantum master equation (cf.
Equation (2.65))

dρ̄S(t)

dt
= L̄′S(t)ρ̄S(t) + M̄AM(t)ρ̄S(t), (5.56)

where we have de�ned the shorthand

M̄AM(t) =

 ∞∫
0

dτ M̄AM(t, τ)e−L̄S(t)τ

 . (5.57)

5.2.4 Rates and Bloch equations

Equation (5.56) yields the usual Bloch-Red�eld rates which can be derived by a variety
of methods for undriven systems and baths. For instance, by switching to Laplace
space in Equation (5.34) and only taking into account the pole that belongs to the
system frequency during the inverse transformation [25], via the Nakajima-Zwanzig
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projector equation [5, Chapter 10] or by the derviation in Section 2.3.1 [64, Chapter
IV]. In this part of the thesis, we derive these results by evaluating the kernel M̄AM

as matrices in the space of the system operators. We will then proceed to apply the
secular approximation to derive nonequilibrium Bloch equations.

We start with the observation that we can construct the reduced density matrix
from a basis spanned by the (rotated) Pauli matrices τi and the identity operator 12×2.
The reduced density matrix can then be written as

ρ̄S(t) =
1

2

[
12×2 −

3∑
i=1

ri(t)τi

]
=

1

2


1

−rx(t)
−ry(t)
−rz(t)

 , (5.58)

where the last equation has introduced the basis vectors

12×2 =


1
0
0
0

 , τx =


0
1
0
0

 , τy =


0
0
1
0

 , τz =


0
0
0
1

 . (5.59)

The prefactors then give the averages as

〈τi〉(t) = Tr [τiρ̄S(t)] =
1

2
Tr
[
{τi, ρ̄S(t)}

]
= −1

2
ri(t)Tr [12×2] = −ri(t). (5.60)

Explicit evaluation yields L̄SB(t) and ŪS(t) as

ŪS(t) =


1 0 0 0
0 1 0 0

0 0 cos
[
E(t)
~ t
]
− sin

[
E(t)
~ t
]

0 0 sin
[
E(t)
~ t
]

cos
[
E(t)
~ t
]
 , (5.61)

L̄SB(t) =
i

~


0 v(t)

2
f̂(t) 0 u(t)

2
f̂(t)

v(t)
2
f̂(t) 0 −iu(t)f̌(t) 0

0 iu(t)f̌(t) 0 −iv(t)f̌(t)
u(t)

2
f̂(t) 0 iv(t)f̌(t) 0

 , (5.62)

where L̄SB(t) contains superoperators of the bath coupling operator f(t) =
∑N

α ~λαxeff
α (t)

as de�ned in Equation (C.3). Matrix multiplication leads to the kernel

M̄AM = −


0 0 0 0

u2sBR u2cBC (−uvsBC) (−uvcBC)
(uv[1− c]BR) (uvsBC) [u2 + v2c]BC −v2sBC

(−uvsBR) (−uvcBC) v2sBC v2cBC

 , (5.63)
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where we have ommited the time arguments and shorthanded c = cos[(E(t)/~)t] and
s = sin[(E(t)/~)t]. BR and BC describe the bath response and the symmetric bath
autocorrelation function as given in Equations (5.23) and (5.24). In the language of
superoperators they emerge from

BR(t− s) = −(2i~2)−1〈f̌(t)UB(t, s)f̂(s)UB(s, t0)〉B and (5.64)

BC(t− s) = (1/~2)〈f̌(t)UB(t, s)f̌(s)UB(s, t0)〉B. (5.65)

We now apply the secular approximation. As outlined in Part 2, the secular approx-
imation neglects damping terms with certain frequency di�erences corresponding to a
comparably rapid time evolution. This implies that these terms quickly average out
with increasing time. For the two-state system, this happens ordinarily on a time scale
of the order of ω−1

0 . The only terms where this does not happen describe population
transfer and dephasing [60, 64]. To apply the secular approximation, we therefore
neglect couplings between o�-diagonal and diagonal states. These appear as the matrix
elements in Equation (5.63) marked by plain brackets (·). Multiplying the remaining
factor from the Markov approximation still leaves a non-diagonal matrix. Switching
to the basis of L̄S(t) and neglecting any imaginary parts and emerging o�-diagonals
apart from the �rst element in the second line �nally yields [83]

M̄AM(t) ≈


0 0 0 0

−γ0(t) −γ1(t) 0 0
0 0 −γ2(t) 0
0 0 0 −γ2(t)

 , (5.66)

with the elements

γ0(t) =
1

2
J

(
E(t)

~

)
, (5.67)

γ1(t) =
u2(t)

2
J

(
E(t)

~

)
coth

(
βE(t)

2

)
, (5.68)

γ2(t) =
γ1(t)

2
+ v2(t)

[
J(ω) coth

(
β~ω

2

)]
ω→0

. (5.69)

The quantum master equation can then be written as

dρ̄S(t)

dt
= − i

~
[H̄ ′S, ρ̄S(t)]− Γ(t) [ρ̄S(t)− ρ̄eq

S (t)] , (5.70)

where ρeq
S = 1

2

[
12×2 − tanh

(
βE(t)

2

)
τx

]
and Γ(t) = diag(0, γ1(t), γ2(t), γ2(t)). In-

sertion of the density matrix as given in Equation (5.58) leads to a set of di�erential
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equations for its components. We �nd

ṙx(t) = −γ1(t)[rx(t)− req
x (t)] + φ̇(t)rz(t),

ṙy(t) = −γ2(t)ry(t)− (E(t)/~)rz(t), (5.71)
ṙz(t) = −γ2(t)rz(t) + (E(t)/~)ry(t)− φ̇(t)rx(t),

where derivatives in time have been indicated by a dot. Equations (5.71) are typical
examples of Bloch equations and correspond to Equations (3.79) to (3.81). The rates in
Equations (5.68) and (5.69) are similar to those found in Section 2.3.1: γ1 is a golden
rule relaxation rate which determines the populations for τx, while γ2 is responsible
for decoherence and a sum of dephasing and pure dephasing terms. What is notably
absent are frequency renormalizations which were neglected in Equation (5.66).

Due to driving, the Bloch equations now depend parametrically on time via time-
dependent rates γ(t), momentary eigenenergies E(t) and the explicit dependence on
the change of the dynamic phase φ̇(t). This also entails a time-dependent equilibrium
req
x (t) = tanh(βE(t)/2). These nonequilibrium Bloch equations enable us to analyze

some of the dynamics of the two-state system under the in�uence of the non-Markovian
force. We explicitly note that this result only applies because of our procedure in Section
5.1.2, where we introduced the e�ective force in such a way that the bath correlators
retain their equilibrium values during the Born approximation.

5.3 Two-state system dynamics

After framing the dynamics of the system by the nonequilibrium Bloch equations (5.71),
we can now proceed to evaluate the resulting dynamics. We will make use of the
same parameters as those indicated for the e�ective force in Section 5.1.3 such that a
comparison is easily possible. In addition, we also restrict ourselves to the case of zero
temperature for which allows us to make some statements about the emerging state of
the bath. Before proceeding, we take a look at the validity of the Bloch equations for
these parameters.

5.3.1 Validity of the nonequilibrium Bloch equations

In the last section, we applied the usual Born, Markov and secular approximations
while also assuming a comparably slow force. The general requirements of the Born
and Markov approximations do not change. Speci�cally, we still have to assume weak
system-bath coupling and rapidly decaying correlations as discussed in Section 2.3.1.
We may gauge the validity of the secular approximation by considering the general
requirement that terms can be neglected where |ωab − ωcd|−1 � t− t0 with ωab being
frequency di�erences between states [60, Chapter 3.8.3]. In the momentary eigenbasis
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E(t) determines the largest time scale. Since E(t) ≥ ~ω0, the assumption should still
be valid for times longer than ω−1

0 . The only terms for which this assumption fails are
those where the di�erence is zero. These are the terms retained above [60, 64].

Lastly, the question of adiabaticity has to be posed. In the case of the Lorentzian
bath, we saw that the non-Markovian force follows a behavior approximately described
by Equation (5.29) where the only inverse time scales are Ω and Γ/2. By choosing
both on the order or smaller than ω0 while still assuming a separation of time scales
between bath and system, the assumption of a slow force is reasonable. However, the
case is di�erent for the ordinary Ohmic bath where we saw that the e�ective force is
characterized by ωc. For the Gaussian case, the impact of ωc is overshadowed by the
pulse width which can be chosen on the order of ω0, too. Still, for the δ-pulse the force
becomes e�ectively instant for large ωc (see Equation (5.28)). In order to investigate this
particular case, we choose an intermediate value for ωc which should be large enough
to serve as a cuto� but also small enough to extract some general information about
the dynamics. In fact, the parameters used for Figures 5.2 and 5.3 have already been set
to appropriate values such that the dynamics below correspond to the e�ective forces
shown.

5.3.2 Zero temperature rates and bath state

Throughout this section we assume T = 0 when evaluating the nonequilibrium Bloch
equations. As the spectral densities in Equation (5.3) and (5.4) both vanish for ω → 0,
the rates simplify to

γ1(t) =
u2(t)

2
J

(
E(t)

~

)
, γ2(t) =

γ1(t)

2
. (5.72)

More importantly, we are also able to determine the exact state of the bath at zero
temperature. Speci�cally, linear bath driving produces coherent states |Kα(t, ta)〉 with
a time-dependent value determined by Kα(t, ta) seen in Equation (5.14). This follows
because the shape of the e�ective bath Hamiltonian of Equation (5.8) frames the time
evolution of forced oscillators which produces a coherent state from the ground state
|0〉 [203]. The time-dependent density matrix is then a direct product of projectors onto
the coherent state for each oscillator, i.e.,

ρB(t) = U(t, ta)

[
N∏
α=1

|0〉〈0|

]
U †(t, ta) =

N∏
α=1

|Kα(t, ta)〉〈Kα(t, ta)|. (5.73)

We can gauge the value of Kα at long times by considering its modulus. For values of t
large compared to the pulse width while also neglecting ta, we may formally insert the
Fourier transform of the driving force F (ω). We �nd

|Kα|2 ≈ µ2
α|F (ω)|2. (5.74)
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Figure 5.4: Time-dependent relaxation rate γ1(t) of Equation (5.72) (blue) and momentary energy
gap (red) for the Ohmic bath in relation to the equilibrium rate γeq

1 = J (1)(ω0)/2 and the bare
TSS energy scale ∆. The parameters have been chosen the same as in Figure 5.2 with the coupling
strength η = 0.05ω0.

For the simple case of the δ-pulse in Equation (5.9), we have |F (ω)| = ω−1
0 which means

that the modulus of the coherent state remains �nite. Hence, the bath does not dephase
over time by itself, as is expected given each mode is uncoupled such that the energy
cannot be redistributed inside the bath. Nevertheless, interaction with the system may
provide a way for the bath to reequilibrate via back-action and memory e�ects which
are, however, neglected in the Born-Markov treatment. Indeed, the e�ective force
includes the combined frequency response of all oscillators via J̄(ω). As we saw in
Figures 5.2 and 5.3, the e�ective force decays over time, suggesting that the system
equilibrates with the driven bath because it includes this response.

5.3.3 Time-dependent dynamics

Time-dependent rates

The time-dependent rates are shown in Figures 5.4 and 5.5 in relation to the time-
independent rates at t = 0. Since Equation (5.72) states that the dephasing rate reduces
to half of the relaxation rate, we only consider the latter for the analysis. We also note
that the prefactors of J(ω) do not enter as we only show relative quantities.

First, the Ohmic bath shows a behavior similar to the e�ective force in Figure
5.2. While the rate for the δ-pulsed bath only deviates considerably on a time scale
(ωc)

−1 = (1/5)ω−1
0 , the rate for the Gaussian pulse follows the underlying driving

pro�le. The momentary energy mimics this behavior, as it directly depends on the non-
Markovian force. The most interesting feature, however, is that the rates are reduced in
both cases. This behavior stems from the fact that the nonequilibrium Bloch equations
describe both a decay into a momentary equilibrium state of higher energy as well
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Figure 5.5: Time-dependent relaxation rate γ1(t) of Equation (5.72) (blue) and momentary energy
gap (red) for the Lorentzian bath in relation to the equilibrium rate γeq

1 = J (2)(ω0)/2 and the bare
TSS energy scale ∆. The parameters have been chosen the same as in Figure 5.3 with the coupling
strength κ = 0.05ω0.

as the change in eigenstates from the time-dependent rotation. At zero temperature,
the mixing factor u will lead to a suppression of the rate because the eigenstate of the
system is rotated away from the ground state of the TSS. In addition, bath states at
the momentary eigenenergy E(t) must be available such that the spectral density also
factors into the rate. For an Ohmic spectral density the frequency distribution is broad
enough such that the e�ect from u will be the most relevant.

The Lorentzian bath shows a much more peculiar behavior: pairs of large spikes
emerge where the rate is almost two magnitudes larger than the equilibrium rate. In
between, the rate returns brie�y to its equilibrium value. The momentary energy
follows an oscillating behavior as expected from Equation (5.29). The spikes in the rate
occur when the momentary energy remains above the threshold E(t) > ~Ω. If the
energy is lower, the splitting disappears and the enhancement rapidly becomes smaller.
This behavior re�ects the dependence of the rate on the spectral density of the bath
at the momentary energy. Since the Lorentzian is strongly peaked, the large spectral
weight will lead to an increase of the rate if the momentary energy falls on Ω. As the
momentary energy oscillates this situation can happen twice per oscillation, leading to
visible pairs of spikes in the rate.

Similar to the non-Markovian force, the behavior between Gaussian and δ-pulse
only di�ers as long as the bath driving pulse is still active. However, in the Gaussian
case the �rst oscillation shows a suppression of the rate in contrast to the δ-pulse. This
is also a consequence of the narrow Lorentzian which translates the small di�erence
in the momentary energy to a large di�erence in the spectral weight. Therefore, the
larger energy of the Gaussian leads to a smaller rate as the spectral density is sampled
further away from the resonance.
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Figure 5.6: Averages of the Pauli matrices in the rotated system ri(t) and external driving pro�le
F (t) (red solid line) for the Ohmic density J (1)(ω) driven by a Dirac δ-pulse (a) and a Gaussian
pulse (b). The ri(t) correspond to the unrotated system for long times and the decay to the ground
state is visible in rx(t) (green). The parameters used can be found in Figure 5.2, while we have
chosen η = 0.05ω0 and ωc = 5ω0 for the bath.

Populations and coherences

The resulting dynamics for the rotated averages ri is shown in Figures 5.6 and 5.7. The
system starts in the ground state and we plot the averages in the rotated system. This
corresponds to rx(0) = 1 as per our de�nition in Equation (5.60). For very long times
or before the onset of the pulse, these values correspond to the unrotated system as the
e�ective force will be zero. In fact, the system relaxes back to the ground state as the
populations show a slow but steady decline for longer times in all cases.

We can conclude at this point that bath driving can be used to excite a system.
However, for the Ohmic cases this excitation is fairly small, in agreement with the
suppressed rates and relatively quick conclusion of the non-Markovian force. The
populations also follow the pro�le of the rates to some extent, with strong suppression
corresponding to either excitation or a plateau-like behavior. Moreover, the system is
not just excited but the coherences also become non-zero and oscillate regularly for
longer times. In contrast, the Lorentzian cases show a more complicated behavior as
we could suspect from the rates in Figure 5.5: rx(t) not only �uctuates in conjunction
with the non-Markovian force, but also shows additional frequency components which
come from excitation of the underlying mode. We will see this explicitly in the next
subsection. However, the rapid excitation and deexcitation of the system has no direct
signature in the rates shown in Figure 5.5, except that the initial suppression in the
Gaussian case seems to indicate a small plateau at t ≈ 8.0 ω−1

0 . Still, the Lorentzian
bath seems to lead to a much larger and persistent excitation of the TSS.

With the population dynamics in hand, it is also possible to analyze the emerging
transition probabilities according to Section 3.3.3. This serves as an additional test of
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Figure 5.7: Averages of the Pauli matrices in the rotated system ri(t) and external driving pro�le
F (t) (red solid line) for the Lorentzian density J (2)(ω) driven by a Dirac δ-pulse (a) and a Gaussian
pulse (b). The ri correspond to the unrotated system for long times and the decay to the ground
state is visible in rx(t) (green). The parameters used can be found in Figure 5.3, while we have
chosen κ = 0.05ω0, Ω = 1.5ω0 and Γ = 0.1ω0 for the bath.

realistic calculations and can be found in Appendix D.

5.3.4 Response spectra

The time evolution described by the Bloch equations also allows us to determine an
approximate response function of the system. To do so, we recall the de�nition on the
basis of linear response theory done in Section 3.3.4. Speci�cally, we aim to evaluate
(cf. Equation (3.68))

R(t, t0) = TrS

{
i[σ̃z(t, t0), σz]ρS(t0)

}
= TrS

{
σzUeff(t, t0)i[σz, ρS(t0)]

}
. (5.75)

Equation (5.75) is the generalized response function for σz where one time point has
been set to t0. The reason for this choice is that we can easily derive R(t, t0) by
calculating Ueff(t, t0). This is done by identifying R(t, t0) as the expectation value of σz
weighted by a time-dependent auxiliary density matrix ρr(t) = Ueff(t, t0)i[σz, ρS(t0)]
whose elements can be found by use of the Bloch equations. Since we aim to analyze the
response in the original unrotated system, R(t, t0) follows from a linear combination as

R(t, t0) = −[u(t)rz(t) + v(t)rx(t)]. (5.76)

Two remarks need to be made. First, setting one of the two time points to t0 is
done in order to simplify the calculation. A more general result can be derived by
taking additional corrections into account [202]. In order to obtain a �rst picture of
the underlying excitation spectra, the calculation of R(t, t0) still proves su�cient as
we will see in the following. Second, the response function R(t, t0) goes beyond linear
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Figure 5.8: Magnitude of the frequency-dependent response |R(ω)| obtained from Equation
(5.75) (red) for the Ohmic spectral density J (1)(ω) versus the bare response (blue) at the two-state
frequency ω0. Both results are normalized to the maximum of the driven response to allow for a
comparison. The case for the δ-pulse (a) shows almost no reduction of the peak while the peak is
reduced by about 20% in case of the Gaussian pulse (b). In addition, the peak becomes slightly
asymmetric. The parameters used are given below Figures 5.2 and 5.6.

response. This follows because we have speci�cally included the non-Markovian force
on the level of the Hamiltonian and have derived an e�ective time evolution operator.
The only assumptions made with respect to the force concern its relative time scale and
the secular approximation, none of which rely on a series expansion in powers of its
strength. In principle, the results may therefore include non-linear e�ects, as discussed
in Section 3.1.5, and one can think of R(t, t0) as the response function multiplying the
amplitude of a direct driving force in a linear response description.

The response function is shown in Figures 5.8 to 5.10. Here, we have evaluated the
dynamics for the same parameters as before and have performed a discrete Fourier
transformation on the data in order to obtain the frequency-dependent response func-
tion R(ω). Speci�cally, the numerics yield the magnitude of the Fourier coe�cients
such that we e�ectively discuss |R(ω)| in the following. The function is given relative
to the response without bath driving e�ects.

The results around ω0 are shown in Figure 5.8 for the Ohmic bath and in Figure 5.9
for the Lorentzian bath. We see similar results as in the previous chapter: the response
is suppressed for the TSS when bath driving is taken into account. This is the case
even for the simple Ohmic bath where the Gaussian pulse suppresses the response by a
factor of about a third. In contrast, almost no di�erence is seen in case of the δ-pulse.
The Lorentzian bath sees a stronger suppression of about 40% in the δ-case and about
60% in the case of the Gaussian. Similar to the results in Figure 4.4, a slight asymmetry
between the left and the right �ank is visible in all cases, except for the case of an
Ohmic bath plus the δ-pulse.

However, the Lorentzian cases show additional signatures of the underlying mode
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Figure 5.9: Magnitude of the frequency-dependent response |R(ω)| obtained from Equation (5.75)
(red) for the Lorentzian spectral density J (2)(ω) versus the bare response (blue) at the two-state
frequency ω0. Both results are normalized to the maximum of the driven response to allow for a
comparison. Both driving pulses lead to a reduction. In case of the δ-pulse (a) by about 30% while
the Gaussian pulse (b) reduces the peak by about 41%. Both peaks show a slight asymmetry. The
parameters used are given below Figures 5.3 and 5.7.

which are clearly visible beyond the two-state frequency as shown in Figure 5.10 panels
(a) and (b). A clearly de�ned peak arises at about ω = 1.5ω0 and a broad shoulder occurs
between 2ω0 and 2.5ω0 from bath driving. The peak corresponds to the frequency of
the bath mode Ω and is a clear indication of its involvement. The shoulder, as well
as the slightly dented �ank of the peak, should similarly have its origin in di�erent
interactions of the two-state system with the mode. To answer this question, we
consider the mapped Hamiltonian of Equation (5.5): for our choice of parameters, the
coupling to the oscillator is about g ≈ 0.1ω0 while the spectral density of the Ohmic
bath has a prefactor of η′ = 1/30. The latter is still fairly small such that the dynamics
is largely in�uenced only by the interplay between the oscillator and the TSS. In fact,
we may consider the reduced (Jaynes-Cummings) Hamiltonian of system and oscillator,
rendered by

HTSS-HO =
~ω0

2
σx − ~gσz(B† +B) + ~ΩB†B, (5.77)

as a way to �nd possible transitions which should be visible as peaks in the spectrum
(cf. also our initial discussion in Section 2.1). The most relevant are indicated in Figure
5.10 (c), which relates the states of the Hamiltonian (5.77) for zero coupling (g = 0). In
contrast, the values obtained from exact diagonalization with non-zero g are shown in
5.10 (a) and (b) by dotted lines and are related to the bare transitions by the numbers
indicated.

The transitions found do not completely coincide with the spectrum, which is
reasonable in light of the approximations involved for the response function and the
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Figure 5.10: Magnitude of the frequency-dependent response |R(ω)| obtained from Equation
(5.75) (red) for the Lorentzian spectral density J (2)(ω) versus the bare response (blue) away from the
two-state frequency ω0. Results are normalized to the maximum of the driven response to allow for
a comparison. Both the δ-pulse (a) as well as the Gaussian pulse (b) give rise to additional structures
in the spectrum. The emerging peaks correspond well to energy gaps (blue dotted lines) obtained
numerically from the Hamiltonian in Equation (5.77) with g =

√
κΩ/8 ≈ 0.1ω0 (Ω = 1.5ω0).

The level diagram for g = 0 (c) shows the corresponding transitions (blue dotted arrows). Here, the
product state |n, s〉 denotes the number state of the oscillator n, while s describes either the ground
(g) or excited state (e) of the TSS. The parameters used are given below Figures 5.3 and 5.7.

existence of the bath which shifts the energy and broadens the peaks. Nevertheless,
some of them are close enough and can be suspected to determine the spectra. In
particular, we �nd the transitions number 3 and 5 to correspond to the edges of the
shoulder, both of which describe processes involving (de-)excitation of the system and
excitation of the oscillating mode. In contrast, ordinary excitation of the oscillator
corresponds well to the peak at Ω, even though a splitting between the two transitions
(number 2 and 4) is not observed. Transition number 1 merely describes excitation of
the TSS. The di�erence between the δ-pulse and the Gaussian pulse mostly concerns
the relative height of the contributions, where the δ-pulse can be seen to excite the
shoulder more strongly. This e�ect may be caused by their relative durations, which
implies a broader frequency distribution for the δ-pulse. The δ-pulse may therefore
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contain more components resonant to the higher-lying transitions than the Gaussian.
We can conclude that the driven bath qualitatively changes the response spectrum,

similar to what we saw in the previous part of this thesis. While this e�ect is less pro-
nounced in the case of the Ohmic bath, additional resonances appear in the Lorentzian
case.

5.4 Conclusion of Part 5

In Part 5, we have expanded on the results of the previous chapter by discussing the
force created by linear bath driving and evaluating the dynamics of the spin-boson
model using a quantum master equation approach. We have introduced the e�ective
force on the level of the Hamiltonian, where we saw that a simple shift by the average
of the coupling Hamiltonian gives rise to the result of Equation (4.19). In fact, we found
that the force included the e�ect of bath driving before the coupling to the system is
switched on. This led us to conclude that the e�ective force completely describes the
nonequilibrium properties of the bath, prompting the name non-Markovian force. With
this additional knowledge at hand, we have used a quantum master equation treatment
on the basis of a Born-Markov approximation. We reasoned that the shift in the coupling
Hamiltonian automatically reduces the correlators to their equilibrium values such that
the non-Markovian force proves to be the only e�ect from the driven bath. Next, we
have obtained the dynamics of the two-state system on the basis of nonequilibrium
Bloch equations, where we have used the Born, Markov and secular approximations
together with the assumption of a comparably slow e�ective force. We have found,
that the system becomes excited by the interaction with a driven bath alone and an
evaluation of the response spectrum has con�rmed qualitative changes reminiscent
of the results in the previous chapter. Throughout, we have compared forces from a
δ-shaped and a Gaussian pulse as well as Ohmic and Lorentzian spectral densities. This
comparison supported our assumption in Part 4, where bath driving in a Lorentzian
bath was assumed to be more e�ective due to the excitation of a particular bath mode.
Signatures of the latter were found throughout our analysis, whereas the driven Ohmic
bath was overall less e�cient in exciting the system. Most of the di�erences between
the Gaussian and the δ-pulse were found while the external driving pulse was still
active such that any deviations were constrained to comparably short times. The most
visible di�erence proved to be a comparably large excitation of transitions at higher
energy for the δ-pulse.

A particularly limiting constraint in our analysis was the restriction to small system-
bath coupling strength as required by the Born-Markov approach. This is because
we can expect the e�ect of a driven bath to be more profound for larger system-bath
coupling strength. Indeed, the e�ective spectral density of Equation (5.18) is directly
proportional to the system-bath couplings. Hence, we investigate the strong-coupling
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non-zero temperature dynamics and derive the non-Markovian force using a path
integral formulation in the next chapter.
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Part 6
Driven in�uence functional and strong coupling

dynamics

We have shown previously that a linearly driven bath creates an additional force that
acts on an immersed quantum system. Speci�cally, we have seen that this new force
encodes the nonequilibrium dynamics of the bath and have proceeded to call it a non-
Markovian force for this reason. In addition, we have looked at the change in linear and
nonlinear response, as well as the dynamics of the spin-boson model on the basis of a
weak coupling approximation. We proceed to extend our investigation by addressing
the problem of driven baths in terms of the path integral formulation in this chapter.
We will show that the in�uence functional for a linearly driven bath leads to a term that
can be directly identi�ed with the non-Markovian force. However, the path integral
formulation also enables us to investigate the resulting dynamics for the case of strong
system-bath coupling within the so-called non-interacting blip approximation whose
results we are going to derive in this chapter. Furthermore, Shao and Makri [41] and
Hu and Matacz [40] already gave expressions for the in�uence functional for the case
of a parametrically driven bath. We will brie�y discuss their results as a cursory look
into this more daunting problem. The results in this chapter have yet to be published.

6.1 The path integral formulation and the non-interacting blip
approximation

We start this chapter with a brief review of the path integral results for the spin-boson
model on the basis of the discussions found in Weiss [33], Grifoni and Hänggi [32] and
the seminal paper by Leggett et al. [78]. Ultimately, we are going to obtain dynamics
valid for strong system-bath coupling and/or high temperatures via the so-called non-
interacting blip approximation (NIBA) [78]. In this chapter, we work with the driven
spin-boson Hamiltonian de�ned by Equations (3.55) and (2.47), i.e. [33]

H(t) =
∆

2
σx +

ε(t)

2
σz − q0

σz
2

N∑
α=1

cαxα +
N∑
α=1

1

2

[
p2
α

mα

+mαω
2
αx

2
α

]
. (6.1)
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Here, we kept the particle position q0 as in Equation (2.47) and absorbed any driving
contributions into a time-dependent asymmetry for the time being. In order to �nd its
path integral formulation, we mimic the steps outlined in Section 2.3.2 and formulate
the dynamics using a propagating function JFV(. . . ). It connects the reduced density
matrix at coupling time t0 to the matrix at time t via (cf. Equation (2.75))

ρσf ,σ′f (t) =
∑
σi,σ′i

JFV(σf , σ
′
f , t;σi, σ

′
i, t0)ρσi,σ′i(t0). (6.2)

Here, σi and σf label initial and �nal density matrix elements and we have assumed
complete factorization of system and bath density matrices at time t0 as in Equation
(5.6). By discretizing the propagators the propagating function can be written as a path
integral over e�ective spin paths according to

JFV(σf , σ
′
f , t;σi, σ

′
i, t0) =

∫ σf

σi

Dσ
∫ σ′f

σ′i

Dσ′A[σ]A∗[σ′]FFV[σ, σ′], (6.3)

where the spins σ(t), σ′(t) = ±1 represent eigenvalues of the coupling operator σz .
The transition amplitudes A[σ] describe the uncoupled time evolution of the two-state
system (TSS) and may contain additional driving terms. The Feynman-Vernon in�uence
functional FFV[σ, σ′] retains its form. This can be made manifest by recalling our
discussion of the spin-boson model as a limiting case for low temperature and large
barrier height in a double-well potential (cf. Figure 2.4). This means that we can directly
insert the spin states by substituting q(t) = (q0/2)σ(t) in Equation (2.78). We get

FFV[σ, σ′] =

exp

[
−1

4

∫ t

t0

dt′
∫ t′

t0

dt′′
{
σ(t′)− σ′(t′)

}{
L(t′ − t′′)σ(t′′)− L∗(t′ − t′′)σ′(t′′)

}]
,

(6.4)

where the bath correlation function has been rescaled by ~/q2
0 . It is then given by

Equation (2.28) for thermal equilibrium with the rescaled spectral density of Equation
(2.54).

The two-state dynamics is obtained by forming speci�c linear combinations using
the JFV(. . . ) [33, Chapter 21]. We have

〈σz(t)〉 =
∑
σi,σ′i

[
JFV(1, 1, t; ...)− JFV(−1,−1, t; ...)

]
ρσi,σ′i(t0), (6.5)

〈σx(t)〉 =
∑
σi,σ′i

[
JFV(1,−1, t; ...) + JFV(−1, 1, t; ...)

]
ρσi,σ′i(t0), (6.6)

〈σy(t)〉 = i
∑
σi,σ′i

[
JFV(1,−1, t; ...)− JFV(−1, 1, t; ...)

]
ρσi,σ′i(t0). (6.7)
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Here, we have replaced the initial value combination σi, σ
′
i, t0 by dots for brevity.

Equations (6.4) to (6.7) can be written in a more convenient way by introducing center-
of-mass and relative spin coordinates called sojourns and blips according to [33, 78]

η(t) =
1

2

(
σ(t) + σ′(t)

)
sojourn , ξ(t) =

1

2

(
σ(t)− σ′(t)

)
blip. (6.8)

We note that blips and sojourns can only take values of±1 or 0. Insertion into Equation
(6.4) and separation of L(t) into real and imaginary part yields

FFV[η, ξ] = exp

[
−
∫ t

t0

dt′
∫ t′

t0

dt′′ξ(t′)L′(t′ − t′′)ξ(t′′) + iξ(t′)L′′(t′ − t′′)η(t′′)

]
,

(6.9)

which frames the in�uence of the bath in terms of a blip-sojourn and a blip-blip in-
teraction term. Since we have used the spin eigenvalues σ and σ′ to label elements of
the reduced density matrix, diagonal states correspond to a non-zero sojourn while
o�-diagonal states correspond to a non-zero blip. Thus, if the system is initially in the
excited state η(t0) = η0 = +1, Equations (6.5), (6.6) and (6.7) can be written as [33]

〈σz(t)〉 =
∑
η=±1

ηJFV(η, t; η0, t0), (6.10)

〈σx(t)〉 =
∑
ξ=±1

JFV(ξ, t; η0, t0), (6.11)

〈σy(t)〉 = i
∑
ξ=±1

ξJFV(ξ, t; η0, t0). (6.12)

The summations are performed over the �nal states ξ(t) and η(t). Equations (6.10)
to (6.12) frame the dynamics of the system as propagations between blip and sojourn
states.

6.1.1 Closed expressions for the system dynamics

With the parametrization in Equation (6.8) exact expressions for the two-state dynamics
can be derived. We are going to sketch the usual derivation in the following, adapted
from the book by Weiss [33, Chapter 21] where a more thorough discussion can be
found. To make comparisons easier we retained the notation in large parts. Other
presentations can be found in the original paper by Leggett et al. [78] and the review
by Grifoni and Hänggi [32].

Parametrization of blip and sojourn paths

We start by noting that the spin-spin interaction rendered by the in�uence functional
can be seen as a path between four di�erent states because σ(t) and σ′(t) can only take
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Figure 6.1: Parametrization of the path integral by blip and sojourn states ξ and η. (a) The spins
σ and σ′ can only take the values ±1 (blue numbers) which can be directly translated to values for
blips and sojourns via Equation (6.8). If a sojourn is nonzero, the corresponding blip vanishes and
vice versa. This gives rise to four e�ective blip and sojourn states, such that the spin paths can be
parametrized by hopping along the sides of the resulting square. (b) Example of a path made out of
n = 4 jumps (blue numbers and arrows). The path starts from the initial sojourn η0. In this case,
an even number of jumps always results in a �nal sojourn and an odd number in a �nal blip. This
picture was adapted from the presentation in Weiss [33, Chapter 21].

the values ±1 each. In terms of blips and sojourns, this means a constant switching
between states where either blips or sojourns are zero. The resulting paths can be
visualized as hopping along the sides of the square shown in Figure 6.1. They are
parametrized by the number of jumps n, the times tj when the jumps occur and the
state of the sojourn or blip ηj or ξj . For instance, a sojourn-to-sojourn path may be
written by way of Heaviside functions as

η(n)(t′) =
n∑
j=0

ηj [Θ(t′ − t2j)−Θ(t′ − t2j+1)] , (6.13)

ξ(n)(t′) =
n∑
j=1

ξj [Θ(t′ − t2j−1)−Θ(t′ − t2j)] , (6.14)

with ηj, ξj = ±1 [78]. If we start in a sojourn, an even number of jumps always leads
back into a sojourn (diagonal) state while an odd number results in a blip (o�-diagonal)
state. We can exploit this parametrization by partially integrating the exponent in
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Equation (6.9) to obtain

FFV[η, ξ] = exp

[
B[ξ(t0), η(t0), ξ(t)]

]

∗ exp

[∫ t

t0

dt′
∫ t′

t0

dt′′ξ̇(t′)Q′(t′ − t′′)ξ̇(t′′) + iξ̇(t′)Q′′(t′ − t′′)η̇(t′′)

]
.

(6.15)

Here, the function Q(t) = Q′(t) + iQ′′(t) is the twice integrated bath autocorrelation
function. In thermal equilibrium, we �nd

Q(t) =
1

π

∫ ∞
0

dω
J(ω)

ω2

{
coth

(
~ωβ

2

)
[1− cos(ωt)] + i sin(ωt)

}
, (6.16)

where J(ω) is the rescaled spectral density of Equation (2.54). B[η(t0), ξ(t0), ξ(t)]
describes boundary terms from the integration. They read [65]

B[η(t0), ξ(t0), ξ(t)] = −ξ(t)
∫ t

t0

[
Q′(t− s)ξ̇(s) + iQ′′(t− s)η̇(s)

]
ds

−
[
Q′(t− t0)ξ(t)−

∫ t

t0

Q′(s− t0)ξ̇(s)ds

]
ξ(t0)

− i
[
Q′′(t− t0)ξ(t)−

∫ t

t0

Q′′(s− t0)ξ̇(s)ds

]
η(t0).

(6.17)

We will now restrict ourselves to the sojourn-to-sojourn paths (6.13) and (6.14)
which will eventually lead to a closed expression for the population dynamics via
Equation (6.10). Insertion into the in�uence functional (6.15) for a given number of
jumps n leads to a product. Speci�cally,

F
(n)
FV [η, ξ] = Gn[ξ]Hn[ξ, η], (6.18)

where

Gn[ξ] = exp

[
−

n∑
j=1

Q′2j,2j−1 −
n∑
j=2

j−1∑
k=1

Λj,kξjξk

]
(6.19)

represents the blip-blip interaction term and

Hn[ξ, η] = exp

[
i

n−1∑
k=0

n∑
j=k+1

Xj,kξjηk

]
(6.20)
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gives the blip-sojourn interactions. The interaction parameters Xi,j and Λi,j are given
by sums of the function Q(t) during the intervals between jumps, according to

Λj,k = Q′2j,2k−1 +Q′2j−1,2k −Q′2j,2k −Q′2j−1,2k−1, (6.21)

Xj,k = Q′′2j,2k+1 +Q′′2j−1,2k −Q′′2j,2k −Q′′2j−1,2k+1, (6.22)

where we have used the shorthand Qi,j = Q(ti − tj). Note that a di�erent initial
preparation of system and bath can be absorbed into a rede�nition of Xj,0 [33].

Driven system amplitudes

After having rewritten the in�uence functional according to Equation (6.18), the next
task is to �nd a similar parametrization for the system amplitudes which should also
include any driving terms. We note that the amplitudes are determined by matrix
elements of system propagators in the time slices that make up the path integral. For a
time-dependent system Hamiltonian, we may approximate the time evolution operator
US(δt) for a small time-slice δt = tk − tk−1 as

US(δt) = T exp

[
− i
~

∫ tk

tk−1

HS(s)ds

]
≈ exp

[
− i
~
HS(tk)δt

]

= exp

[
− i
~

(
∆

2
σx +

ε(tk)

2
σz

)
δt

]
.

(6.23)

Here, we have inserted the system Hamiltonian of the driven two-state system as given
in Equation (6.1). We are interested in the matrix elements of eigenstates |σk〉 of the
coupling operator σz at time tk. For small δt, we may write [65]

〈σk|US(δt)|σk−1〉 ≈ e−
i
~
ε(tk)

2
σk−1δt〈σk|e−

i
~

∆
2
σxδt|σk−1〉

≈ e−
i
~
ε(tk)

2
σk−1δt〈σk|σk−1〉 −

i∆

2~
δt〈σk|σx|σk−1〉+O(δt2).

(6.24)

Equation (6.24) shows that each time slice either contributes exp[−(i/2~)ε(tk)σk−1δt]
if the state of the system does not change during δt or gives a factor of −(i∆/2~)δt if
the state of the system changes. The amplitude A[σ] represents the continuum limit
for all time slices. Combined with its complex conjugate A∗[σ′], the weight to stay in a
state is given by an exponential which depends on the di�erence of the paths, i.e, the
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blip state. It can be written as

Bm = exp

[
− i
~

N∑
k=1

ε(tk)ξ(tk−1)(tk − tk−1)

]
= exp

[
− i
~

m∑
j=1

ξj

∫ tj

tj−1

dt′ε(t′)

]

= exp

[
−i

m∑
j=1

ξjϑ(tj−1, tj)

]
.

(6.25)

Here, we have rewritten the sum over N time slices into a sum over m blips with
corresponding jump times tj . The in�uence of driving is captured in a bias phase ϑ(t, t′)
determined by an integral over the time-dependent asymmetry within the respective
blips [32, 33]. For a time-independent bias, the integral can be carried out and the term
is directly proportional to the duration of a blip τj = tj−1− tj . If the state of the system
changes between tk−1 and tk the system switches from a sojourn into a blip or vice
versa. The resulting weight per unit time can be written as [33]

−i∆

2~
[
ξ(tk)η(tk−1) + η(tk)ξ(tk−1)

]
. (6.26)

The weight (6.26) contributes at each jump n, where one of the two combinations ξη
is ±1. While the sign of the latter depends on each jump the collective sign depends
only on the boundary values for a sojourn-to-sojourn-path. This can be made manifest
by considering that a sign can only occur when switching between ξ = 1 and η = −1
or ξ = −1 and η = 1. The other transitions will not produce a sign. In order to
progress from η = 1 to η = −1 along any path, one must pass these transitions an
odd number of times. In contrast, staying in η = 1 means passing none of the two
transitions or passing them an even number of times (cf. Figure 6.1 (b)). Hence, the
former leads to a net sign while the latter does not. This allows us to write the total
factor as η0η(−1)n(∆/2~)2n.

Population dynamics and exact master Equation

We are now left with changing the integral measure to account for the parametrization
in blips and sojourns. All possible paths can be represented by a sum over the number
of jumps between sojourns and blips n, the possibilities of arranging the time-ordered
jump times tj within the interval and the sojourn and blip states ξj and ηj [33, Chapter
21.2]. This allows us to replace∫

Dσ
∫
Dσ′ →

∞∑
n=0

∑
{ξj=±1}

∑
{ηj=±1}

∫ t

t0

dtn

∫ tn

t0

dtn−1· · ·
∫ t2

t0

dt1. (6.27)

The curly brackets denote sums over all possible combinations of the ξj and ηj .
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Putting everything into Equation (6.10) and using Equations (6.18) and (6.25) �nally
yields

〈σz(t)〉 = 1 +
∞∑
n=1

(
−1

2

)n ∫ t

t0

D2n{tj}
∑
{ξj=±1}

[B′nF
′
n −B′′nF ′′n ] . (6.28)

Here,

F ′n + iF ′′n = Gn

[
n−1∏
k=0

cos (φk,n) + i sin (φ0,n)
n−1∏
k=1

cos (φk,n)

]
. (6.29)

The phases φk,n =
∑n

j=1+k ξjXj,k stem from the blip-sojourn interaction in Equation
(6.20) while Gn gives the contribution of the blip-blip interaction of Equation (6.19).
The factor Bn = B′n + iB′′n is de�ned in Equation (6.25) and represents the e�ect of the
time-dependent asymmetry. Finally, the integrations over the jump times of Equation
(6.27) have been collected in a new functional integral de�ned as∫ t

t0

Dn{tj} =

∫ t

t0

dtn

∫ tn

t0

dtn−1...

∫ t2

t0

dt1

(
∆

~

)n
. (6.30)

Similar expressions for the coherences and expressions for the propagating functions
can be found in the book by Weiss [33].

The closed expression of Equation (6.28) can now be cast into the form of an
exact master equation for the spin-boson problem. First, it is possible to formulate a
generalized master equation for the conditional populations P (i, t; j, t0) for switching
from state j to state i between t0 and t as [204]

Ṗ (i, t; j, t0) = −
S∑
k=1

∫ t

t0

dt′ K(i, t; k, t′)P (k, t′; j, t0), (6.31)

where S is the maximum number of states. For the case of a two-state system, Equation
(6.31) can be rewritten by forming linear combinations of the kernels K according to

d〈σz(t)〉
dt

= −
∫ t

t0

dt′
[
K(a)
z (t, t′)−K(s)

z (t, t′)〈σz(t′)〉
]

, (6.32)

where the kernels K(s/a)
z (t, t′) = K(−1, t;−1, t′) ± K(1, t; 1, t′). The labels s and a

refer to combinations that are symmetric or antisymmetric under inversion of ε(t). The
kernels represent irreducible components of the correlations F ′nB′n and F ′′nB′′n which
appear in Equation (6.28) [33, 78]. In fact, the kernels give a kind of self-energy which
is usually de�ned as the irreducible contributions in a perturbative expansion by way
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of the Dyson equation [62]. Therefore we need to rewrite the functions F ′ and F ′′ in
terms of irreducible clusters F̃ de�ned according to

F̃ ′/′′n B′/′′n = F ′/′′n B′/′′n −
n∑
j=2

∑
m1,...,mj

(−1)jF ′m1
B′m1

F ′m2
B′m2

. . . F ′/′′mj
B′/′′mj

δ∑
j mj ,n

,

(6.33)

where the mj are summed over as positive integers. Equation (6.28) allows us to �nd
the kernels by comparison as [33]

Kz
(s/a)(t, t′) =

(
∆

~

)2

F
′/′′
1 (t, t′)B

′/′′
1 (t, t′) +

∞∑
n=2

(−1)n−1

(
∆2

2~2

)n
∗
∫ t

t′
dt2n−1

∫ t2n−1

t′
dt2n−2· · ·

∫ t3

t′
dt2

∑
{ξj=±1}

F̃ ′/′′n B′/′′n .
(6.34)

Equation (6.32) in conjunction with Equation (6.34) represent exact results for the
system by way of a generalized quantum master equation and provide the main result
of this section. While both are not solvable, we will see how a simple truncation of the
kernels can yield useful results in the next subsection. It should also be mentioned that
the time-independent problem is often treated in Laplace space because the kernels
(6.34) only depend on t− t′ in this case such that convolutions can be exploited [31, 33].
As we are dealing with an explicitly time-dependent problem this route is not viable
here and we will present the necessary results in the time domain.

6.1.2 The non-interacting blip approximation (NIBA)

As we have seen in Equation (6.32), the dynamics of the spin-boson problem can be cast
in the frame of an exact generalized master equation which depends on a parametriza-
tion of the path integral in terms of sojourns and blips. In order to progress, we have
to approximate. The easiest and most-well known approximation is the so-called non-
interacting blip approximation (NIBA). The NIBA has been presented already in the
seminal paper by Leggett et al. [78] which provided a cornerstone for the applicability
and analysis of the spin-boson model. It rests on the assumption of strongly suppressed
blips such that

the blip-blip interaction is set to Λi,k ≈ 0 and

the blip-sojourn interaction is Xj,k ≈ Xk+1,k = Q′′(t2k+2 − t2k+1).

Such a situation can, for instance, arise for large system-bath coupling and/or high
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temperatures for the case of Ohmic spectral densities. Then, the exponential decay in
Equation (6.19) penalizes blips with respect to sojourns and the time spent in a sojourn
becomes much larger than the time spent in a blip. For Ohmic environments, the NIBA
can also be used with arbitrary coupling, if the temperature is high enough or in case
of a symmetric system with weak coupling down to zero temperature (cf. Section 2.2.3)
[31–33]. Since we already investigated the weak system-bath coupling regime in Part 4
and 5, we are interested mainly in the strong coupling case here. Within the NIBA, the
in�uence functional of Equation (6.18) is approximated as

F
(n)
FV [η, ξ] ≈

n∏
j=1

exp
[
−Q′2j,2j−1 + iQ′′2j,2j−1ξjηj−1

]
. (6.35)

The important characteristic of Equation (6.35) is the factorization into one-blip
contributions. This implies that the irreducible clusters de�ned in Equation (6.33)
simplify. Speci�cally, we have that the in�uence clusters F̃ become zero for all n > 1.
This just leaves the F1 terms and we obtain a quantum master equation as [32, 33]

d〈σz(t)〉
dt

= −
(

∆

~

)2 ∫ t

t0

dt′e−Q
′(t−t′) sin[Q′′(t− t′)] sin[ϑ(t, t′)]

−
(

∆

~

)2 ∫ t

t0

dt′e−Q
′(t−t′) cos[Q′′(t− t′)] cos[ϑ(t, t′)]〈σz(t′)〉.

(6.36)

Equations for the coherences can be obtained similary [32, 33] as

〈σy(t)〉 =
~
∆

d〈σz(t)〉
dt

, (6.37)

〈σx(t)〉 = −
(

∆

~

)∫ t

t0

dt′e−Q
′(t−t′) sin[Q′′(t− t′)] cos[ϑ(t, t′)]

+

(
∆

~

)∫ t

t0

dt′e−Q
′(t−t′) cos[Q′′(t− t′)] sin[ϑ(t, t′)]〈σz(t′)〉.

(6.38)

The impact of driving is encoded in the bias phase given by

ϑ(t, t′) =
1

~

∫ t

t′
dt′′ε(t′′). (6.39)

Note that the results here di�er from the literature by signs and ~, both of which enter
from our slightly di�erent de�nition of HS(t) in Equation (6.1).

The NIBA results can also be obtained by way of a master equation approach
together with a polaron transformation [205, 206]. In the next section, we will use
Equations (6.36), (6.37) and (6.38) to showcase the dynamics of a linearly driven bath
for the case of strong system-bath coupling and non-zero temperature. To facilitate
comparisons, we brie�y discuss some analytic results of the NIBA beforehand.
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6.1.3 Dynamics within the NIBA

As discussed in Section 2.2.3, we can roughly expect two di�erent types of behaviors
for the dissipative two-state system: an overdamped (incoherent) case, for which
the dynamics follows exponential decays and an underdamped case with long-lived
damped oscillations. In fact, the NIBA expressions can be solved by using a Laplace
transformation when no driving is present. This allows for a host of analytic expressions
depending on the exact parameters of the problem and gives the regimes shown in
Figure 2.5 [31, 33]. In this subsection, we present a few of those expressions and
discuss the results of the NIBA. Speci�cally, we focus on the population dynamics of
〈σz(t)〉 under the initial condition 〈σz(0)〉 = 1. Further information and more involved
treatments can be found in the book by Weiss [33, Chapter 22].

Before starting, we note that we assume an Ohmic spectral density of the form (2.29)
and characterize the coupling strength using the prefactor K as de�ned in Equation
(2.56). For the case of β~ωc � 1 (the so-called scaling limit) with β = 1/kBT , we obtain
[33]

Q(t) = 2Kln
(
β~ωc
π

sinh

[
π|t|
~β

])
+ iπKsgn(t), (6.40)

which is used to calculate all expressions below. Also note that, in contrast to the
results in Weiss [33], we continue to use our de�nition of the spin-boson Hamiltonian
in Equation (6.1) which introduces factors of ~−1 and di�erent signs.

Dynamics for a symmetric two-state system

First, we consider the dynamics at zero temperature for the symmetric case with
ε = 0 and no external driving. In this case, the population dynamics follows the
so-called Mittag-Le�er function, a generalization of the exponential series, valid for
K < 1. For K < 0.5, the sum can be split into a coherent and incoherent part
and the system exhibits coherent oscillations. Indeed, one �nds the dependence
〈σz(t)〉coh ∝ cos(at) exp(−bt) for the coherent part. The speci�c case of K = 0.5
marks the transition between coherent and incoherent behavior. At this point the
Mittag-Le�er function reduces to the exponential series and one obtains [31, 33]

〈σz(t)〉 = exp

(
−π∆2

2~2

t

ωc

)
. (6.41)

For the case 1 > K > 0.5, only the incoherent part exists which implies a comparably
sluggish decay. This is known to be false as the decay is exponential in reality [33].
In fact, the NIBA has been noted to be least reliable in this region [31]. For K ≥ 1,
the state of the system is frozen in. The reason for this behavior can be found in the
frequency shift from the bath which renormalizes ∆ to ∆r. In this regime, ∆r becomes
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zero which implies that the system localizes in one of the two wells as the e�ective
tunneling matrix element vanishes [31, 33]. This is an example of the so-called quantum
Zeno e�ect where continuous measurement of a quantum system blocks its decay [207,
208].

A non-zero temperature complicates the picture but does not necessarily change
the underlying dynamics. The incoherent contribution becomes a series of exponentials
which vanishes for zero system-bath coupling such that the dynamics for small K
and low temperature is determined by the coherent oscillation alone [33]. The most
profound di�erence is the existence of the transition temperature T ∗(K) which marks
the crossover between coherent and incoherent behavior as shown in Figure 2.5 (a).
We refrain from discussing more details but note that an approximate formula for this
temperature can be found in the book by Weiss [33, Equation (22.20)] or the original
paper by Weiss et al. [209]. In the incoherent phase, the simplest expression can be
found in the regime far above T ∗ and/or with large K where the decay is again a single
exponential, i.e., [31, 33]

〈σz(t)〉 = exp

(
−
√
π

2

∆2

~2ωc

Γ(K)

Γ(K + 1/2)

[
π

~ωcβ

]2K−1

t

)
. (6.42)

Here, Γ(x) designates the gamma function. This form coincides with golden rule rates
and is valid for kBT � ∆r/K , with the renormalized tunneling matrix element given
by ∆r = ∆(∆/~ωc)K/(1−K) for K < 1. It is also generally valid for K > 1 at any
temperature as long as ~ωc is far larger than kBT and ∆ [33, 78]. Both cases coincide
with the region where the NIBA is always justi�ed for an Ohmic spectral density: that
is, either for K > 1 or for arbitrary K with temperatures larger than kBT ' ∆ [32].

Impact of asymmetry and driving

Solutions for a static asymmetry can be found in Laplace space for small system-bath
coupling and moderate temperature, as well [33]. Here, the existence of a bias leads to
di�erent equilibrium values and gives more involved expressions (see Equations (2.51)
and (2.52)). In particular, one obtains up to three temperature scales which determine
the behavior together with a critical value of the asymmetry. However, the NIBA
becomes invalid for an asymmetric system at low temperatures outside the regime of
very weak system-bath coupling. The equilibrium values also become qualitatively
incorrect at low temperatures [33].

Driving complicates the matter further, for instance, by inducing coherent oscilla-
tions in the incoherent regime through modi�cation of the transition temperature [32].
Nevertheless, for a simple AC driving scheme a Fourier transformation of Equations
(6.36), (6.37) and (6.38) can be performed, yielding solutions for the associated Fourier
components. One �nds a dependence on higher-order Bessel functions which indicate
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that for large frequencies, blips are even better suppressed [33, Chapter 23]. For an
Ohmic bath in the scaling limit at K = 1/2 an exact solution for arbitrary driving can
be derived [33, Chapter 23.1.4]. One �nds,

〈σz(t)〉 = e−
π∆2

2~2
t
ωc + Pa(t), (6.43)

which uses t0 = 0. The additional term Pa(t) reads

Pa(t) = −
(

∆

~

)2

e−
π∆2

2~2
t
ωc

∫ t

0

dt′
∫ t′

0

dt′′e
π∆2

2~2
(t′+t′′)

2ωc sin[ϑ(t′, t′′)]e−Q
′(t′−t′′), (6.44)

which contains the driving contribution and is responsible for the resulting steady state.
In the next section, we will use the results presented here as a comparison to numerical
results from Equation (6.36).

Markovian regime

Finally, we comment on the parameter regime where Markovianity holds [33]. This
regime is characterized by both small system-bath coupling and moderate temperature,
which means that the perturbation theory behind the master equation treatments of
Section 2.3.1 and Part 5 are valid. In particular, we have a temperature larger than the
renormalized energy scale of the biased system Tb ≈

√
∆2
r + ε2/kB which makes the

bath virtually memory-less while K � 1 lends credibility to the Born approximation.
The results for a static asymmetry we discussed above fall into this regime. Indeed, for
the case of T1 � T > Tb, where T1 is the lowest of the new transition temperatures (its
form can be found in Weiss [33, Equation (22.66)]), one obtains the rates derived in Part
5. This dependence implies that for rising temperatures the one-phonon approximation
implied in Born-Markov treatments starts to fail as multi-phonon processes become
more important [33].

6.2 Formulation for a linearly driven bath

In this section, we are going to derive the e�ective force for a linearly driven bath using
path integrals. We will see how the e�ective force integrates the memory of the bath
by considering a driven bath before it couples to the system as seen in the previous
chapter. After rederiving the e�ective force, we numerically solve the dynamic equation
of motion (6.36) for a time-dependent asymmetry and discuss the resulting dynamics.
Appendix E contains additional details about the calculation of the path integrals below.

6.2.1 The influence functional for a linearly driven bath

The dynamics of the spin-boson model is determined by the in�uence functional (6.9)
which encodes the e�ect of the bath on the behavior of the coupled TSS. For a driven

129



bath the in�uence functional needs to be rederived. We start by assuming the bath to be
in thermal equilibrium at time t0 where the combined density matrix W (t) factorizes
into a system and bath part as seen in Equation (5.6). By doing so, we can follow the
steps for the derivation of the path integral and �nd the propagators for the density
matrix as (cf. Equation (2.71))

K(σf ,xf , t;σi,xi, t0) =

∫ σf

σi

Dσ
∫ xf

xi

Dx A[σ]e
i
~ (SDr

B [x]+SSB[σ,x]). (6.45)

Here, we have rewritten the propagators in terms of the e�ective spin paths as in
Equation (6.3). The integration over x is to be understood as path integrations over the
positions xα of every oscillator in the bath. Final states are labeled by the letter f and
initial states by the letter i. The impact of bath driving is captured in the driven bath
action SDr

B [x] which uses the de�nition of Equation (4.12) based on position operators.
As in the previous chapter, we do not take direct driving terms into account in order to
�nd the in�uence from the driven bath only. A single oscillator α then has the action

SDr
α,B[xα] =

∫ t

t0

ds

[
mα

2
ẋ2
α(s)− mα

2
ω2
αx

2
α(s) +

dα
2
F (s)xα(s)

]
. (6.46)

By introducing integrations over auxiliary variables, the reduced density matrix of the
system is given by

ρσf ,σ′f (t) =

∫
dxf

∫
dxi

∫
dx′i

∑
σi,σ′i

K(σf ,xf , t;σi,xi, t0)

∗ K∗(σ′f ,xf , t;σ
′
i,x
′
i, t0)ρσi,σ′i(t0)ρB(xi,x

′
i, t0),

(6.47)

with the bath density matrix element ρB(xi,x
′
i, t0) for the (collective) positions xi and

x′i evaluated at coupling time t0. The in�uence functional follows from

FDr
FV[σ, σ′] =

∫
dxf

∫
dxi

∫
dx′i

∫ xf

xi

Dx
∫ xf

x′i

Dx′

∗ e
i
~

(
SSB[σ,x]−SSB[σ′,x′]

)
e
i
~

(
SDr

B [x]−SDr
B [x′]

)
ρB(xi,x

′
i, t0).

(6.48)

We are now faced with the task of recalculating functional integrals of the form

IDr
α [σ] =

∫ xα,f

xα,i

Dxα e
i
~

(
Sα,SB[σ,xα]+SDr

α,B[xα]
)
. (6.49)

The total action in Equation (6.49) can be written as
Sα,SB[σ, xα] + SDr

α,B[xα]

=

∫ t

t0

ds

[
mα

2
ẋ2
α(s)− mα

2
ω2
αx

2
α(s) +

(
dα
2
F (s) +

cα
2
q0σ(s)

)
xα(s)

]
=

∫ t

t0

ds

[
mα

2
ẋ2
α(s)− mα

2
ω2
αx

2
α(s) +

cα
2
q0σeff(s)xα(s)

]
.

(6.50)
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Here, we have combined the driving force F (t) and the state of the system σ(t) into an
e�ective perturbation

σeff(t) = σ(t) +
dα
q0cα

F (t). (6.51)

Equation (6.50) shows that the action remains that of forced harmonic oscillators.
Therefore, the usual methods still apply (cf. Appendix E) and we can rewrite the path
as the classical solution x̄α(t) plus a term describing quantum �uctuations ζα(t). We
�nd the classical equation of motion as

mα
d2x̄α(s)

ds2
+mαω

2
αx̄α(s) =

cα
2
q0σeff(s). (6.52)

Meanwhile, the action of the �uctuations is unchanged and leads to the usual prefactor
[210]. The path integral (6.49) becomes

IDr
α [σeff ] =

√
mαωα

2πi~ sin[ωα(t− t0)]
e
i
~Φ[xα,i,xα,f ,σeff ], (6.53)

with the phase

Φ[xα,i, xα,f , σeff ] =

mαωα
2χα(t− t0)

{
[x2
α,f + x2

α,i]χ
′
α(t− t0)− 2xα,fxα,i

}
+
cαq0

2

∫ t

t0

ds

[
χα(s− t0)

χα(t− t0)
xα,f +

χα(t− s)
χα(t− t0)

xα,i

]
σeff(s)

− c2
αq

2
0

4

∫ t

t0

ds

∫ s

t0

du
χα(u− t0)χα(t− s)
mαωαχα(t− t0)

σeff(s)σeff(u).

(6.54)

Here, x̄α(t0) = xα,i and x̄α(t) = xα,f are boundary values and χα(t) = sin(ωαt) and
χ′α(t) = cos(ωαt) are fundamental solutions of the harmonic oscillator. As discussed,
we assume the bath to be in thermal equilibrium at coupling time, allowing us to replace
ρB(xα,i, x

′
α,i, t0) = ρeq

B (xα,i, x
′
α,i) as given in Equation (E.8). Similarly, insertion of the

result (6.53) into Equation (6.48) leads to Gaussian integrations over the boundary
values. After some tedious manipulations, we obtain the in�uence functional for a
linearly driven bath as

FDr
FV[σ, σ′] = exp

[
−
∫ t

t0

dt′
∫ t′

t0

dt′′ξeff(t′)L′(t′ − t′′)ξeff(t′′)

]

∗ exp

[
−i
∫ t

t0

dt′
∫ t′

t0

dt′′ξeff(t′)L′′(t′ − t′′)ηeff(t′′)

]
.

(6.55)
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For brevity we have absorbed σeff and σ′eff into e�ective blips and sojourns as in Equation
(6.8). We note that the bath autocorrelation function L(t) is unchanged from the
equilibrium case. E�ects of bath driving only appear as a time-dependent shift of
the system coordinates σ and σ′ via Equation (6.51). As F (t) is real, insertion shows
that the blips are unchanged because ξeff(t) = ξ(t) while the sojourns give ηeff(t) =
η(t) + (dα/q0cα)F (t). This allows us to rewrite Equation (6.55) as

FDr
FV[σ, σ′] = FFV[σ, σ′] ∗ exp

[
−i
∫ t

t0

dt′
∫ t′

t0

dt′′ξ(t′)L̄′′(t′ − t′′)F (t′′)

]
, (6.56)

where we have absorbed the factor dα/q0cα into L(t) for a new L̄(t) while FFV[σ, σ′]
is the bare in�uence functional found in Equation (6.4). Direct comparison with the
results for the system amplitudes in Equation (6.25) shows that the additional term
represents an e�ective time-dependent asymmetry. We read o�

ε(t)/~ = Feff(t) =
1

π

∫ ∞
0

dωJ̄(ω)

∫ t

t0

dt′F (t′) sin[ω(t′ − t)], (6.57)

which directly gives the e�ective force Feff(t) found in Equations (4.19) and (5.17). We
note that the factor q0 vanishes naturally from the rescaling.

We have shown again that a linearly driven bath merely produces a force which
appears as a time-dependent asymmetry. In the next subsection, we derive the density
matrix of the driven bath itself and show that it leads to the non-Markovian force.

6.2.2 Initial correlations and emergence of the non-Markovian force

We utilize the same driving protocol as shown in Figure 5.1. This means, we consider a
pulsed bath driving scheme where the time ta labels the moment when the bath driving
pulse F (t) becomes non-zero while system and bath are (instantaneously) coupled at
t0 with t0 ≥ ta. The e�ect of the bath driving pulse prior to t0 is then encoded in the
bath density matrix element ρB(xα,i, x

′
α,i, t0) that appears in Equation (6.48). In order

to �nd an explicit expression,j we assume that the bath is in equilibrium at time ta. We
can formulate its time evolution using path integrals as

ρB(xi,x
′
i, t0) =

∫
dxp

∫
dx′pKB(xi, t0;xp, ta)K

∗
B(x′i, t0;x′p, ta)ρ

eq
B (xp,x

′
p), (6.58)

where xp are new boundary value integrations for the prehistory of the bath. The
driven bath propagators KB(. . . ) are given as

Kα,B(xα,i, t0;xα,p, ta) =

∫ xα,i

xα,p

Dxα e
i
~S

Dr
α,B[xα], (6.59)
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with the driven bath action of Equation (6.46) and written for a single bath oscillator
α, for brevity. Since the action describes forced oscillators the propagators can be
evaluated as usual. We obtain

Kα,B(xα,i, t0;xα,p, ta) =

√
mαωα

2πi~ sin[ωα(t0 − ta)]
e
i
~ΦB[xα,p,xα,i,F (s)], (6.60)

with the phase

ΦB[xα,p,xα,i, F ] =

mαωα
2χα(t0 − ta)

{
[x2
α,i + x2

α,p]χ
′
α(t0 − ta)− 2xα,ixα,p

}
+
dα
2

∫ t0

ta

ds

[
χα(s− ta)
χα(t0 − ta)

xα,i +
χα(t0 − s)
χα(t0 − ta)

xα,p

]
F (s)

− d2
α

4

∫ t0

ta

ds

∫ s

ta

du
χα(u− ta)χα(t0 − s)
mαωαχα(t0 − ta)

F (s)F (u).

(6.61)

Insertion into Equation (6.58) eventually yields

ρB(xα,i, x
′
α,i, t0) =

1

Zα

√
mαωα

2π~ sinh(ωα~β)
e−

1
~Φeq

eff [xα,i,x
′
α,i,F ]. (6.62)

Here, we have de�ned the e�ective equilibrium phase

Φeq
eff [xα,i, x

′
α,i, F ] =

Φeq[x̄α,i, x̄
′
α,i]− i

dα
2

(
xα,i − x′α,i

) ∫ t0

ta

du cos[ωα(u− t0)]F (u).
(6.63)

Equation (6.63) also includes the equilibrium result of Equation (E.9) but for shifted
variables, de�ned by

x̄α,i = xα,i −
dα

2mαωα

∫ t0

ta

du sin[ωα(t0 − u)]F (u). (6.64)

The equivalent Equation for x̄′α,i follows by replacing xα,i by x′α,i. We note that the
variables in Equation (6.64) exhibit a similar time evolution as the Heisenberg dynamics
in Equation (5.12).

It is now a straightforward matter to insert the result of Equation (6.62) into Equation
(6.48) in order to �nd the dynamics of the system following t0. In order to perform the
required integrations over the boundary values we substitute the shifted variables of
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Equation (6.64) to �nd after some calculations (cf. Appendix E)

FDr
FV[σ, σ′] = exp

[
−
∫ t

ta

dt′
∫ t′

ta

dt′′ξeff(t′)L′(t′ − t′′)ξeff(t′′)

]

∗ exp

[
−i
∫ t

ta

dt′
∫ t′

ta

dt′′ξeff(t′)L′′(t′ − t′′)ηeff(t′′)

]
.

(6.65)

In order to acquire the form (6.65) we have absorbed the implicit time dependence of
the coupling constants cα into the σ(t), such that σ(t < t0) = 0. Explicitly making
use of this time dependence eliminates ta in all but one term. We �nd the corrected
in�uence functional as

FDr
FV[σ, σ′] = FFV[σ, σ′] ∗ exp

[
−i
∫ t

t0

dt′
∫ t′

ta

dt′′ξ(t′)L̄′′(t′ − t′′)F (t′′)

]
, (6.66)

where FFV[σ, σ′] only depends on the coupling time t0. The onset of the perturbation
at time ta appears solely in the lower bound of the integral of the time-dependent
asymmetry. Therefore, the e�ect of initial bath driving is absorbed completely in the
additional force contribution. We have recovered the non-Markovian force of Equation
(5.17) once again.

6.2.3 NIBA dynamics for a linearly driven bath

As outlined in Section 6.1.3, the NIBA allows us to obtain the dynamics for a wide range
of parameters. In the same section, we presented analytical results for the speci�c case
of K = 1/2 in Equations (6.41) and (6.43), as well as a high-temperature solution (6.42)
for arbitrary K . We also noted an analytic zero-temperature result for the symmetric
case, based on the Mittag-Le�er function, whose exact form is given in Weiss [33,
Equation (22.5)]. In the following, we evaluate the NIBA result (6.36) numerically and
include the e�ective force found in Equation (6.57) via the bias phase (6.39). Comparison
with the analytic results then allows us to make statements about the e�ect of a driven
bath with respect to the coupling strength and higher temperatures.

We look at the dynamics for Ohmic and Lorentzian spectral densities again. In this
part of the thesis we use the forms

J (1)(ω) = 2πωKe−ω/ωc and (6.67)

J (2)(ω) = 2πωK ′
Ω4

(ω2 − Ω2)2 + (Γω)2
. (6.68)

The additional factor of π makes the prefactor equivalent to the de�nition in Weiss [33]
and Caldeira [31], as discussed in Section 2.2.3. This allows us to directly compare the
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numerical results to the analytic expressions presented in Section 6.1.3. However, these
expressions were derived for an Ohmic spectral density in the scaling limit such that
we cannot expect agreement for the Lorentzian spectral density. Nevertheless, we have
included a prefactor K ′ = κΓ/2Ω2 in J (2)(ω) as an equivalent to K . For perspective,
the corresponding coupling constants K and K ′ with the values from Part 5 are of the
order of 10−3 and 10−4, respectively.

In the following, we continue to disregard direct driving contributions and only
look at the population 〈σz(t)〉 for the initial condition 〈σz(t0)〉 = 1. A generalization
to other initial conditions is, in principle, possible by following the derivation in Weiss
[33] and Grifoni and Hänggi [32].

Driving terms

We use approximate expressions for the e�ective force in order to minimize the numer-
ical e�ort. In case of an Ohmic spectral density, a Gaussian pulse recreated a Gaussian
albeit slightly shifted, negative, and with smaller peak height (see Figure 5.2). For the
Ohmic spectral density in Equation (6.67) we therefore use

F
(1)
eff (t) ≈ −A Θ(t− t0) e−

(t−s)2

2σ2 . (6.69)

Here, we have de�ned s as a generic shift which includes the position of the Gaussian
tg as well as a slight deviation to model the retardation of the pulse. The prefactor A
has a dimension of frequency and determines the peak height of the force while the
variable σ gives the width of the Gaussian. The Heaviside function is included to make
sure that the e�ective force will only be nonzero following t0. Equation (6.69) leads to
an e�ective bias phase given by

ϑ(1)(t, t′) = Θ(t− t′)Θ(t− t0)Θ(t′ − t0)

∗ A
[
σ
√
π/2
] [

erf

(
t′ − s√

2σ2

)
− erf

(
t− s√

2σ2

)]
.

(6.70)

Here, erf(x) designates the error function such that the di�erence above gives the
impact of the lower and upper bound of the integral, respectively.

For the Lorentzian bath, we consider the �t in Equation (5.29) which was seen to
be valid for both the δ-pulse and the Gaussian at long times. The �t describes damped
oscillations given by

F
(2)
eff (t) ≈ −B Θ(t− ta) sin[Ω(t− ta)]e−

Γ
2

(t−ta). (6.71)

Here, ta is the time of the onset of the perturbation with ta > t0. The variables Ω and
Γ are the position and the width of the Lorentzian peak given in Equation (6.68). The
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generic prefactor B determines the peak height for very small values of Γ. Equation
(6.71) leads to the phase

ϑ(2)(t, t′) =

[
B

(Γ/2)2 + Ω2

]
Θ(t− t′)Θ(t− ta)Θ(t′ − ta)

∗
{

Γ

2

(
sin[Ω(t− ta)] e−

Γ
2

(t−ta) − sin[Ω(t′ − ta)] e−
Γ
2

(t′−ta)
)

+ Ω
(

cos[Ω(t− ta)] e−
Γ
2

(t−ta) − cos[Ω(t′ − ta)] e−
Γ
2

(t′−ta)
)}

.

(6.72)

Before progressing, we discuss the resulting equilibrium values of 〈σz(t)〉. Since we
assume transient forces with ε(t→∞) = 0, they will correspond to the results for a
symmetric system. However, some care must be taken as the equilibrium results in the
NIBA are known to be incorrect at low temperatures. For vanishing ε, we �nd [33] (cf.
the exact values in Equations (2.51) and (2.52))

〈σz(t→∞)〉 = − tanh

(
ε

2kBT

)
=
ε→0

0 , (6.73)

〈σx(t→∞)〉 = −∆

ε
tanh

(
ε

2kBT

)
=
ε→0
− ∆

2kBT
. (6.74)

Equation (6.74) makes this failure obvious because it diverges for zero temperature
instead of yielding −1 as seen in Part 5. While we will not present the dynamics
of 〈σx(t)〉 in the following, it should be noted that our numerical implementation of
Equation (6.36) indeed yields results consistent with Equation (6.74).

Strength of the e�ective force

In order to determine the strength of the bath driving contribution, we note that the
magnitude of Fe� is determined chie�y by the prefactor of the e�ective spectral density
J̄(ω), η̄, and the �eld strength of the associated driving �eld E0. Using Equation (2.56),
we �nd the prefactor corresponding to K as K̂ = q0η̄/2π~. Since the �eld strength also
enters into the e�ective force, the actual dimensionless quantity of interest is given by
K̄ = K̂E0. We used a similar de�nition in Part 5 where we parametrized the driving
strength by combined prefactors. A general relationship between K and K̄ can be
derived on the basis of the Onsager sphere model in Section 4.2.3 as

K̄ = LK =

[
2πε0a

3

q0e
E0

]
K =

(q0e)E0

2π~
χ̄′′, (6.75)

where we have used Equation (4.25) for the second equality sign, whereas the �rst de�nes
the proportionality constantL. The relationship (6.75) is based on the simplest solvation
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model, that is, for a dipole with one elementary charge e located inside a spherical
cavity of radius a. Since we have used a TSS, the quantized position q0 associated with
the states σz = ±1 also enters. The third equality is given for completeness. It has used
Equation (3.52) to express K in model parameters. Therein, χ̄′′o = Im[χo(ωmax)]/ωmax is
a normalization factor with the dimension of a frequency and depends on the Onsager
susceptibility found in Equation (3.48). This factor ensures that K has the right order
of magnitude. The factor K̄ then determines the e�ective force according to

Fe�(t, ta) = 2K̄

∫ ∞
0

dω

(
J̄ (1,2)(ω)

2K̂π

)∫ t

ta

dt′
(
F (t′)

E0

)
sin[ω(t′ − t)]. (6.76)

The superscripts of J̄(ω) indicate that we consider similar forms as in Equations (6.67)
and (6.68). The integrals can be collected in a single factor I(t, ta). If we assume that
the time integral over the force is of the order of ω−1

0 , the result is determined by the
frequency scale of the bath. Speci�cally, if we insert the Ohmic spectral density of
Equation (6.67) we may approximate

Fe�(t, ta) = 2K̄I(t, ta) ∼ 2K̄ωc(ωc/ω0), (6.77)

where ωc is the cuto� frequency. Insertion of the proportionality between K and K̄
then yields for the asymmetry

ε(t) = ~Fe�(t, ta) ∼ 2LK(~ωc)(ωc/ω0), (6.78)

Using Equation (6.75), L can be gauged as L ≈ 3 × 10−5 where we use a moderate
�eld strength of E0 = 10 kV/cm, a = 2Å as approximated in Part 4, and a dipole
of length q0 = 1Å. For a generic cuto� frequency of ωc = 10ω0 with K = 1 this
yields ε(t) ∼ 10−3~ω0 which is a fairly small result, overall. The same holds true for
the Lorentzian density of Equation (6.66): by using the values from Part 5, the cuto�
frequency can be approximated from a numerical evaluation of the frequency integral
as ∼ 7~ω0. While this result depends on Ω and Γ in a nontrivial way, we aim to use the
same values as in the previous chapter such that the resulting asymmetry would be too
small for moderate �elds.

However, we note that the molecular dynamics studies by Mishra, Vendrell and
Santra [38, 39] which investigated the e�ect of strong THz pulses on water used �eld
strengths up to 105 kV/cm, such that values of ε(t) ∼ 10 may be realistic. Thus, we
employ a larger L de�ned by the constraint ε(t) ∼ O(1). A look at Equation (6.75) for
�xed K shows that this can be achieved with �eld strengths of about E0 = 104 kV/cm
but also by using larger cavities (that is, larger molecules) with smaller induced dipole
moments. It is also possible to choose larger cuto�s, but their role is questionable as
they have to be physically motivated or are completely immaterial and are meant to
drop out. In fact, Equation (5.28) implies that the approximation is only valid near the

137



very peak of a pulse where ωc(t− tg) ≈ 1, such that its application for large cuto�s is
dubious. In short, we set the constants A and B of Equations (6.69) and (6.71) to

A = Kω0 and B = K ′ω0. (6.79)

In order to compare A and B above to their values in the previous chapter, we note
that η̄/η ≈ κ̄/κ ≈ 102. Hence, by use of Equation (6.79) we probe the dynamics for
much smaller driving strengths.

Before evaluating the NIBA, we stress the importance of the relationships (6.75)
and (6.78): By way of the Onsager model, they directly relate the coupling constant of
the spectral density to the e�ective force and include the impact of the electric �eld
strength. While this result merely reformulates the conclusions drawn at various stages
of this thesis, generalizations of these identities should enable easy comparisons in
future research. For the present case, the proportionality in Equation (6.79) is especially
important as we investigate a range of di�erent values for K and K ′.

Population dynamics for the Ohmic spectral density J (1)(ω)

First, we investigate the population 〈σz(t)〉 for the Ohmic spectral density in Equation
(6.67) and the Gaussian e�ective force used in Equation (6.69). The parameters of the
Gaussian are determined using the results in Figure 5.2 (b). Speci�cally, we can see
that the width is nearly unchanged by the mediation by the bath, such that we use
σ = ω−1

0 . The Gaussian is also slightly displaced implying that the force is retarded
with respect to the direct driving pulse. We therefore set s = 5.25 ω−1

0 . Using these
values, together with the parameter A = Kω0 from the previous subsection, we obtain
the results shown in Figure 6.2 for four di�erent combinations of K and temperature.
For comparison, we used K ≈ 10−3 in Part 5.

We start by stating agreement of our numerical solutions obtained from Equation
(6.36) and the analytical results discussed in Section 6.1.3. As expected, the dynamics
transition to incoherent behavior at K ≥ 0.5 or for large enough temperatures while
the high temperature solution of Equation (6.42) agrees for large enough temperatures.
Furthermore, we obtain full agreement with the exact solution in Equation (6.41) at
K = 0.5. However, the impact of driving is comparably small in all cases, even more
so when the dynamics is incoherent or the temperature becomes too large. The only
conceivable e�ect can be seen for small coupling when a coherent dynamics is still
present or for the zero temperature solution at K = 0.5.

Thus, temperature has a strong e�ect on the relative e�cacy of the e�ective force.
When the dynamics becomes incoherent with kBT � ε(t), its e�ect is rapidly washed
out even though ε(t) becomes closer to ∆ for increasing coupling strength. Interestingly,
using a comparably strong coupling with small temperatures also makes any driving
contributions matter less. In this regime, the decay becomes so sluggish that any
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Figure 6.2: Resulting numerical solutions of Equation (6.36) for the population 〈σz(t)〉 (solid
red lines) using the Ohmic spectral density (6.67) and the e�ective force (6.69) for four di�erent
combinations ofK and temperature. Each panel also shows the results without driving e�ects (blue
dotted lines). The parameters are A = Kω0, σ = ω−1

0 , s = 5.25 ω−1
0 and ωc = 50 ω0. The legend

for all four panels is found in the upper right corner of panel (b) while the normalized e�ective force
is shown as an inset in panel (a). (a) Result forK = 0.1 at low temperature (kBT = ∆). (b) Result
for K = 0.1 at higher temperature (kBT = 5∆). This panel also shows the high temperature
solution given by Equation (6.42) (green dashed line). (c) Result forK = 0.5 at zero temperature.
This panel also shows the result of the exact solution given in Equation (6.43) (black dashed line).
(d) Result for stronger couplingK = 0.7 at high temperature (kBT = 5∆). This panel shows the
high temperature solution as well.

e�ect cannot change the state much, because the result is always close to one within a
reasonable time frame (ω2

0t/ωc ∼ 1). Further increase of the coupling strength does not
lead to signi�cant changes for the same reason.

The former arguments depend on the actual strength of the bath driving contribution
that we have already chosen large but still smaller than in Part 5. It is therefore useful
to compare results for larger driving strength. For this reason, Figure 6.3 shows the
weak coupling results at K = 0.1 for A = ω0 (thus, K̄/K ≈ 10). The impact of the
e�ective force is now clearly visible, even in the incoherent regime. However, the net
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Figure 6.3: Resulting numerical solutions of Equation (6.36) for the population 〈σz(t)〉 (solid
red lines) using the Ohmic spectral density (6.67) and the e�ective force (6.69) at K = 0.1 with
stronger driving of A = ω0 at two di�erent temperatures. Both panels also show the results without
driving e�ects (blue dotted lines). The parameters are σ = 1 ω−1

0 , s = 5.25 ω−1
0 and ωc = 50 ω0.

(a) Result at low temperature (kBT = 2∆). (b) Result at a higher temperature (kBT = 5∆).
This panel also shows the high temperature solution of Equation (6.42) (green dashed line). The
normalized e�ective force for both panels is shown in an inset in panel (a).

e�ect is still smaller for larger temperatures suggesting that our conclusion about its
in�uence is valid. Both e�ects also vanish rapidly as soon as the pulse concludes. A
comparison with the results from Part 5 suggests that this is due to increased damping
from the larger system-bath coupling and temperature we employed here. It should
be noted that the low-temperature result uses a slightly higher temperature than in
Figure 6.2. This is because the NIBA becomes unreliable for non-zero asymmetry at
temperatures below kBTb =

√
∆2

eff(K) + ε(t)2 which is at most ∼ 1.2∆ for the choice
of parameters here.

Population dynamics for the Lorentzian spectral density J (2)(ω)

We next consider the Lorentzian spectral density of Equation (6.68) with the bias phase
(6.72). In this case, the results from Section 6.1.3 cannot be compared directly as they
were derived for an Ohmic spectral density. Still, by using K ′ we are able to make a
qualitative comparison. In order to parametrize the Lorentzian, we use the same values
as in Part 5, that is, a fairly small peak width of Γ = 0.1 ω0 and a position at Ω = 1.5 ω0.
The results for four di�erent combinations of K ′ and temperature are shown in Figure
6.4. For the sake of comparison, Part 5 employed K ′ ≈ 10−4.

The most evident result of Figure 6.4 is a complete absence of driving e�ects for
the chosen strength of B = K ′ in all cases. The reason for this is two-fold: First,
the Lorentzian spectral density shows incoherent behavior at much weaker coupling
strength. This is why we have chosen a comparably weak coupling in order to illustrate
the dynamics, but also entails an extremely weak driving strength. Second, the oscillat-
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Figure 6.4: Resulting numerical solutions of Equation (6.36) for the population 〈σz(t)〉 (solid red
lines) using the Lorentzian spectral density (6.68) and the e�ective force (6.71) for four di�erent
combinations ofK ′ and temperature. Each panel also shows the results without driving e�ects (blue
dotted lines). The parameters are B = K ′ω0, Γ = 0.1ω0 and Ω = 1.5ω0. The legend for all four
panels is found in the upper right corner of panel (b) while the normalized e�ective force is shown
as an inset in panel (a). (a) Result for K ′ = 0.01 at low temperatures (kBT = 1∆). (b) Result
forK ′ = 0.01 at higher temperature (kBT = 10∆). This panel also shows the high temperature
solution (6.42) (green dashed line). (c) Result for stronger couplingK ′ = 0.1 at low temperature
(kBT = 1∆). (d) Result for K ′ = 0.5 at zero temperature. This panel also shows the result of
the exact solution (6.43) (black dashed line) as well as a solution for a symmetric system at zero
temperature based on the Mittag-Le�er function [33, Equation (22.5)] as a comparison (light-blue
dashed line). Note, that all analytical results shown here are derived for the Ohmic spectral density
(6.67) such that agreement with the numerical results is not expected.

ing driving force also seems to in�uence the dynamics less. This can be gleaned from
the exact solution for the Ohmic spectral density at K = 0.5 which exhibits a much
weaker change than for the Gaussian in Figure 6.2. In fact, this result only imperceptibly
di�ers from the exact zero temperature solution. The Lorentzian solutions, in turn,
show incoherent decay for K ′ = 0.1 already at low temperatures and are (almost)
completely constant at 1 for zero temperature at K = 0.5. For very weak coupling,
distorted oscillations are visible at low temperature. The reason for their peculiar shape
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Figure 6.5: Resulting numerical solutions of Equation (6.36) for the population 〈σz(t)〉 (solid red
lines) using the Lorentzian spectral density (6.68) and the e�ective force (6.71) atK ′ = 0.01 with
stronger driving ofB = ω0 at two di�erent temperatures. Both panels also show the results without
driving e�ects (blue dotted lines). The parameters are Γ = 0.1ω0 and Ω = 1.5ω0. (a) Result at low
temperature (kBT = 2∆). (b) Result at a higher temperature (kBT = 10∆). This panel also shows
the high temperature solution of Equation (6.42) (green dashed line). The normalized e�ective force
for both panels is shown in an inset in panel (a).

can be found in the Fourier spectrum (not shown) which now includes frequencies
around Ω, as we could suspect from the analyses in Sections 2.2.2 and 5.3.4. For a
temperature of kBT = 10∆ the result becomes incoherent. Interestingly, this happens
much earlier than for the Ohmic case where kBT

∗ ≈ 32∆ for K = 0.01. The result at
a higher temperature also does not agree with the solution in Equation (6.42).

Again, we consider the dynamics at even larger driving strength of B = ω0 for
the weak coupling cases given here with K ′ = 0.01 (thus K̄ ′/K ′ ≈ 102). The results
are shown in Figure 6.5. The impact of the long-lasting oscillations is clearly visible,
albeit extremely suppressed in the case of high temperatures. There, the strongest
deviation is on the order of 0.02, or about a third of the remaining population at this
point. In contrast, the low temperature results show large oscillations where the largest
peak is increased by about 0.2 in comparison to the undriven result. The oscillations
follow the force with a frequency close to Ω. The reason for this can be found in the
frequency spectrum as the force adds to the contribution at the oscillator frequency.
The competition between the oscillations at the renormalized TSS frequency and at Ω
is then shifted more towards the latter such that the contributions from the mode are
more pronounced.

Summary

Before proceeding, we sum up the results of the previous analysis. We have seen that
the simple proportionality of Equation (6.79) is not su�cient to see any signi�cant
impact of the driven bath. In fact, at least an order of magnitude more is needed in
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the driving strength to observe any relevant e�ects in the dynamics. Even then our
considerations suggest that bath driving contributions are most relevant in the coherent
regime, i.e., for small to intermediate system-bath coupling at low temperatures. Higher
temperatures seem to wash out e�ects of the e�ective force very e�ciently and strong
coupling implies only very slow decay of the population where any observable e�ect is
also small. The latter stands in contrast to the larger driving strength implied by the
proportionality to the coupling constant.

6.2.4 Parametrically driven baths

We close this section with a brief outlook on a potential improvement to our treatment
which was limited to driving terms linear in the position of the oscillators up until
now. The next more complicated case is a quadratic coupling which could correspond,
for instance, to interaction with an electric �eld via a quadrupole moment. This gives
rise to a time-dependent frequency in the associated equation of motion, turning the
harmonic oscillators into parametrically driven ones. The driven bath Hamiltonian is
now given by

HDr
B =

N∑
α=1

1

2

[
p2
α(t)

mα

+mαω
2
α(t)x2

α

]
. (6.80)

For this case, Hu and Matacz [40] and Shao and Makri [41] have already derived the
in�uence functional. In the following, we outline some of their results.

Parametric oscillators show intricate dynamics and closed analytic solutions are,
in general, not available [211]. Nevertheless, the in�uence functional can be found by
using the unknown fundamental solutions of the equation of motion and constructing
the associated Green’s function for the relevant boundary conditions (cf. Equation
(E.7)). Speci�cally, we de�ne the functions R(α)

a,b (t) to ful�ll [41]

R̈
(α)
a,b (t) + ωα(t)R

(α)
a,b (t) = 0. (6.81)

Here, the superscript (α) labels the solutions for the di�erent modes, while a and b
describe their boundary conditions, given by

R(α)
a (t0) = 1 , Ṙ(α)

a (t0) = 0, (6.82)
R

(α)
b (t0) = 0 , Ṙ(α)

b (t0) = 1. (6.83)
The in�uence functional is then found to take the same form as in thermal equilibrium
(cf. Equation (2.78)) [41],

FDr
FV[q, q′] = exp

[
−1

~

∫ t

t0

dt′
∫ t′

t0

dt′′
[
q(t′)− q′(t′)

]
∗
[
M(t′, t′′)q(t′′)−M∗(t′, t′′)q′(t′′)

]]
,

(6.84)

143



with the kernel M(t, t′) de�ned by

Re
[
M(t′, t′′)

]
=

N∑
α=1

c2
α

2mαωα(t0)
coth

(
~ωα(t0)β

2

)
∗
(
ω2
α(t0)R

(α)
b (t′)R

(α)
b (t′′) +R(α)

a (t′)R(α)
a (t′′)

)
,

(6.85)

Im
[
M(t′, t′′)

]
=

N∑
α=1

c2
α

2mα

(
R(α)
a (t′)R

(α)
b (t′′)−R(α)

b (t′)R(α)
a (t′′)

)
, (6.86)

where we used the same notation as Shao and Makri [41] for system coordinates
q, assumed the R(t) as real and the bath to be in thermal equilibrium at coupling
time t0. Two consequences are immediately obvious: First, parametric driving does
not necessarily change the temperature, as the temperature-dependent prefactor in
Equation (6.85) only depends on the initial frequency and is therefore identical to the
equilibrium result. Any additional time dependence is encoded within the fundamental
solutions Ra and Rb. Second, the kernels are now non-stationary and depend on the
two time-points t′ and t′′, explicitly. However, the kernel itself still follows from the
correlator of the underlying �uctuating force (cf. Equation (2.25)) [40, 41]. It is also
possible to include the spectral density in Equations (6.85) and (6.86) [40]. In this case,
a continuous frequency replaces ωα(t0) such that the spectral density is given by its
value at t0. Finally, the kernel properly reduces to the usual result of Equation (2.28) for
time-independent frequencies where R(α)

a (t) = cos(ωαt) and R(α)
b (t) = ω−1

α sin(ωαt).
In order to obtain the dynamics of a coupled system, we need to �nd the Ra,b(t)

as de�ned in Equation (6.81) as well as a way to treat the more complicated time
dependence of the kernels in the in�uence functional. In principle, the former can be
done numerically. The latter, however, is more problematic as it forces us to consider
the center-of-mass time t′ + t′′ in addition to their di�erence. Even so, Hu and Matacz
[40] successfully derive a master and a Fokker-Planck equation for a parametrically
driven oscillator as the system. It may also be possible to derive results similar to the
NIBA, as the in�uence functional still depends on the blip-blip/blip-sojourn structure
we encountered before. Finally, we also note that the driven bath Hamiltonian (6.80) can
be extended with a dipolar bath driving term and additional damping from a superbath.
Their interplay will have a profound impact on the underlying dynamics, as well [211].

6.3 Conclusion of Part 6

In this part of the thesis, we have successfully reformulated the problem of driven
quantum baths in terms of path integrals. First, we have derived a general formulation
of the spin-boson model in the path integral language and proceeded to present the
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non-interacting blip approximation, valid for strong system-bath coupling and high-
temperatures. The dynamics determined by the NIBA shows a rich behavior with a
smooth transition between coherent and incoherent regimes but also allows for results
in the case of very weak coupling. Linear bath driving was shown to yield an e�ective
force which emerges from the in�uence functional as an additive contribution to the
dynamics. By using approximate results for the e�ective force, we have determined
numerical results within the NIBA and have compared them to its analytic solutions.
Our analyses found that high temperatures reduce the impact of the e�ective force
while results in the strong coupling regime decay too slowly for the force to have
any signi�cant e�ect. The e�ective force is most relevant in the coherent regime,
that is, with small to intermediate system-bath coupling for low enough temperatures.
Nevertheless, a comparison with results from the Onsager model has shown that large
driving strengths are required to see a signi�cant impact of the bath driving contribution.
We have closed this chapter with an outlook to parametrically driven baths, where we
have seen that an in�uence functional can also be derived for this case.

This concludes our discussion of driven baths on the basis of system-bath models
in this thesis. However, many avenues have yet to be analyzed further, starting from
the actual size of the bath-driving contributions in speci�c applications to the impact
of higher-order driving terms. We provide a brief overview in our closing remarks in
Part 8.
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Part 7

THz Kerr e�ect dynamics in liquid water

After discussing some implications of driven baths in the last chapters, we now treat a
di�erent situation: the dynamics underlying the Kerr e�ect in the terahertz frequency
regime. While the topic does not have a direct connection to system-bath models,
it serves as an illuminating example on how a polarized environment quantitatively
shapes the response characteristics of a medium. This part of the thesis is based on a
theoretical description developed by Kalmykov and detailed further in a book by Co�ey
and Kalmykov [13, 131]. In contrast to before, we will not detail the exact derivation and
largely refer to aforementioned sources. Instead, we focus on a qualitative discussion
and a comparison to experimental results which we analyzed in a recent joint publication
[3]. In the �rst section, we give a brief overview of the underlying theoretical treatment
and identify the relevant dynamical quantities that determine the dynamics of a Kerr
e�ect signal. We proceed with a matrix method for the dynamic Kerr e�ect which
eventually leads to a simple description of the time-dependent signal via two vector-
di�erential Equations. In Section 7.2, we apply the model to the case of liquid water
subject to terahertz radiation and compare our results to experimental �ndings. Finally,
we close this chapter with a short summary and an outlook on possible extensions to
the theoretical approach to better �t the experimental data.

7.1 Kerr e�ect dynamics

The Kerr e�ect is a nonlinear optical e�ect. It describes a change to the refractive
index in the direction of an electric �eld. We have already discussed the basics in
Section 3.1.5 and have explained how the polarization axis of an incoming beam can
be changed by way of the Kerr e�ect (cf. Figure 3.3). In this section, we provide an
approximate description utilizing the molecular formulation of Section 3.1.6. Speci�cally,
we determine the nonlinear polarization of the sample by looking at the rotational
dynamics of the molecules involved. This will eventually lead to a description of the
Kerr e�ect dynamics by way of two vector-di�erential equations. We begin with a short
presentation of the static result found in Boettcher and Bordewijk [113] to identify the
relevant physical parameters.
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7.1.1 Microscopic description

From a classical perspective, a dielectric medium reacts to an external �eld by becoming
polarized; an e�ect which we have reduced to molecular parameters in Section 3.1.6.
The polarization was determined on a molecular level by using the molecular dipole
moment pmol which was averaged over all molecules to yield the net macroscopic
polarization. We have also seen in Equation (3.30) that the molecular dipole moment can
be written as a series in powers of the electric �eld strength. The constant contribution
in Equation (3.30) describes the permanent dipole moment of a molecule µ, whereas
the �rst order is determined by the polarizability tensor α. Higher orders are known as
hyperpolarizabilities of which we label the �rst two with β and γ. This means, terms
of �rst and higher order give the contribution of an induced dipole moment. It is worth
mentioning that we already used this description in Section 4.3 to calculate the induced
dipole moment of a polarizable molecule in a driven bath. In this section, we merely
note that we can relate the change of the refractive index in the Kerr e�ect to a change
in the molecular polarizability ∆αmol by way of the Lorentz-Lorenz equation (3.28).
For small di�erences of the refractive index ∆n, we can approximate the expression to
obtain [113, 117, 212, 213]

∆n(t) ≈ 2πρ0

n
∆α(t). (7.1)

If molecules in a solution are probed, n is the mean refractive index of the solvent and
ρ0 the number density of the molecules in solution. In Equation (7.1), ∆α(t) is given as
a polarizability volume

∆α(t) =
∆αmol(t)

4πε0

, (7.2)

where αmol is de�ned as in Part 3. The de�nition (7.2) is useful because it gives values
of the order of one in units of Å3 (see e.g. [214]). In this part of the thesis, we will
exclusively use ∆α to quantify the birefringence. Equation (7.1) allows us to express the
Kerr e�ect as a di�erence between molecular polarizabilities parallel and perpendicular
to the �eld as per Equation (3.26). ∆α contains the corrections implied in Equation (3.30)
so that the overall di�erence of the refractive indices is now directly linked to molecular
parameters. Hence, ∆α(t) must be an averaged quantity. It can be determined by
considering the averaged rotation of molecules with respect to the direction of the
electric �eld. For dilute gases and in the static case one �nds for the Kerr constant [113,
§83]

K ∝
3∑

k,l=1

[
3

kBT
(αklεlk −

1

3
αkkεll)

+
3

(kBT )2
(αklµkµl −

1

3
αkkµ

2
l ) +

4

kBT
βkllµk + 2γlkkl

]
.

(7.3)
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Here, we have omitted all frequency dependencies but used α for the polarizability
at the optical probing frequency and ε as the corresponding value at the driving fre-
quency (which is zero here). The indices describe spatial components in the molecular
coordinate system. According to Equation (7.3), the static Kerr e�ect is determined by
a competition between temperature, permanent dipole moments and polarizabilities
which give rise to induced dipole moments. As we have seen in Part 3, a dielectric
reacts to an external �eld by becoming polarized which originates from reorientation
of molecular dipoles into the direction of an external �eld (cf. Figure 3.1). The descrip-
tion of the Kerr e�ect in Equation (7.3) then describes the competition between the
orientation of molecules due to their permanent dipole moments (orientation) and due
to their induced dipole moments (alignment) [166, 215, 216]. This explanation also
implies a strong frequency dependence: For optical pump frequencies, molecules will
not be able to rotate quickly enough to follow the rapidly changing electric �eld and the
contribution from the permanent dipole moment vanishes. Instead, the Kerr e�ect is
dominated by the rapidly changing electron cloud, i.e., the induced dipole moment [13,
113]. In the following, we present a matrix method derived by explicitly considering the
dynamics of molecular rotations, detailed in Kalmykov [131] and the book by Co�ey
and Kalmykov [13]. It should be noted, that this description is still largely reductionist
and one can generally �nd a complicated and rich behavior in optical Kerr e�ect spectra
for simple liquids where a variety of physical contributions can come into play [128,
130].

7.1.2 Euler-Langevin description

As we have seen, we can formulate the Kerr e�ect in terms of the interaction of the
external �eld with induced and permanent dipoles. These lead to a rotation of molecules
such that their net orientation and alignment determines the overall size of the e�ect
on the macroscopic scale. This is counteracted by thermal �uctuations. This behavior
may be described by way of a three-dimensional Langevin equation of motion for the
rotation of a molecule where the molecule is described as a rigid rotator. Speci�cally,
[13, 131, 217]

d

dt
Îω(t) + ω × Îω + ζ̂ω = −∇V (ϕ(t), θ(t), ψ(t), t) + λ(t). (7.4)

Here, Î is the tensor of inertia of the molecule, ζ̂ is the damping tensor, λ(t) describes
noise and V (...) is a potential. Equation (7.4) describes the rotation in a body-�xed
coordinate system related to the laboratory coordinate system by the Euler angles ϕ(t),
θ(t) and ψ(t). Their de�nition and our convention for the axes is shown exemplary for a
water molecule in Figure 7.1. In this way, the potential V describes the dynamic torque
applied to a molecule because of its relative orientation to an external �eld with ∇V (..)
being the gradient in orientation space. The noise term λ(t) is assumed to be Gaussian
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(a) (b)

(d)

(c)

Figure 7.1: Euler angles for a water molecule. (a) The Euler angles ϕ, θ and ψ are de�ned between
a body-�xed (x,y,z) and an external coordinate system (X ,Y ,Z) [13, 63] shown here for a water
molecule. An arbitrary rotation is given by a sequence of rotations around the Euler angles. First,
around the Z-axis by ϕ (which transforms the Y -axis into the line of nodes N ) then around N
by θ, and �nally around the new z-axis by the angle ψ. (b) Our convention for the body-�xed
axes of a water molecule. Note that the z-axis corresponds to the direction of the permanent dipole
moment. (c) De�nition of the line of nodes N which is given by the intersecting line between the
two planes X,Y (pink) and x, y (yellow). N can also be obtained by rotation of the axis Y by the
angle ϕ. (d) Pictorial de�nition of the Euler angles we use throughout the thesis [13].

white noise which creates an additional torque due to thermal �uctuations. This means
that the description of Equation (7.4) neglects memory e�ects. It also does not include
interparticle interactions, conduction and quantum e�ects. Therefore, Equation (7.4)
amounts to a description of molecular dynamics purely as di�usive reorientational
motion of single particles [13, 218, 219].

A particularly convenient approximation of Equation (7.4) neglects the inertial term
and focuses on overdamped dynamics. This case is usually referred to as the Debye
approximation and a subsequent calculation of the linear response yields the typical
Debye form (3.20) of the dielectric function [13, Chapter 8.3.1]. This approximation is
justi�ed if the frequency of the electric �eld is low enough or, more generally, valid for
small angular velocities ω(t). In this regime, we obtain

ω(t) ≈ 1

kBT
D̂
{
λ(t)−∇V [ϕ(t), θ(t), ψ(t), t]

}
. (7.5)
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Here, D̂ = (kBT )ζ̂−1 is the rotational di�usion tensor. We assume here that D̂ does not
necessarily have the same principal axes as Î which, in general, applies to asymmetric
top molecules [13]. Solutions of Equation (7.5) are obtained by an expansion in Wigner’s
D-functions [13, 113, 220]. We give a short account of them in the following.

7.1.3 Wigner’s D-functions

Wigner’s D-functions DJ
mm′ are de�ned as matrix elements of rotations along the Euler

angles R(ϕ, θ, ψ) in the space of the total angular momentum J and the quantum
number of its z-component m, i.e. [220]

〈Jm|R(ϕ, θ, ψ)|J ′m′〉 = δJ,J ′ e
−imϕdJmm′(θ)e

−im′ψ = δJ,J ′D
J
mm′(ϕ, θ, ψ). (7.6)

They represent wave functions of a rigid symmetric top molecule [13, 217] and are
eigenfunctions of the angular momentum operators J2, Jz and Jz′ , where the prime in
z′ denotes the axis in the body-�xed coordinate system. The �rst equation introduced
a convenient formulation using a purely θ-dependent function dJmm′(θ) [220]. For the
speci�c case where m = m′ = 0, the D-functions are related to Legendre polynomials
PJ(x) by

PJ(cos(θ)) = DJ
00(ϕ, θ, ψ). (7.7)

The DJ
mm′(. . . ) form a basis and can be used to expand any function f(ϕ, θ, ψ) de�ned

in the volume of the three-dimensional rotation group as [220, Chapter 4.10]

f(ϕ, θ, ψ) =
∞∑
J=0

J∑
m=−J

J∑
m′=−J

bJmm′D
J
mm(ϕ, θ, ψ). (7.8)

Here, J runs over either integer or half-integer values and the angles are de�ned in the
domain 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π and 0 ≤ ψ < 2π. The bJmm′ are expansion coe�cients
in this basis (see [220]).

It turns out, that many observables correspond to combinations of only very few
DJ
mm′(. . . ). For instance, the polarization along a laboratory Z-axis for a solution of

unpolarizable molecules with number density ρ0 can be obtained as (cf. Equation (3.2))
[13, 113, 220]

PZ(t) = ρ0〈µZ〉(t) = ρ0µ 〈cos(ϑ)〉(t) = ρ0

+1∑
k=−1

(−1)kµ(−k)〈D1
0k〉(t). (7.9)

In this Equation, µ(0) = µz , µ(±1) = ∓(1/
√

2)(µx ± iµy) are the spherical components
of the permanent dipole vector where the µi are its elements in the molecular coordinate
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system de�ned by the axes xyz (cf. Figure 7.1). The unlabeled µ is the magnitude of the
permanent dipole moment such that µ cos(ϑ) with polar angle ϑ gives the appropriate
projection along Z . This illustrates that Equation (7.9) merely describes a dynamic
coordinate transformation between the laboratory and the molecular system where the
time-dependent Euler angles are encoded in the D-functions. As discussed in Part 3,
the polarization represents an averaged quantity such that the DJ

mm′(. . . ) have to be
averaged over all possible values of the Euler angles. Similarly, the di�erence in the
molecular polarizability of Equation (7.1) can be written as [13, 213, 221]

∆α(t) = 〈αZZ − αXX〉(t)

=
+2∑

k=−2

α(k)

[
〈D2∗

0k〉(t)−
1√
6

(
〈D2∗

2k〉(t) + 〈D2∗
−2k〉(t)

)]
.

(7.10)

Here, the ∗ denotes the complex conjugate and we have considered the di�erence
between the laboratoryZ andX-axes. For an axially symmetric potential and a diagonal
polarizability tensor with αxx ≈ αyy, ∆α(t) is determined by the second Legendre
polynomial which often appears in dynamical equations [117, 212, 222, 223]. The α(m)

describe spherical components of the molecular polarizability tensor constructed from
di�erences in the molecular reference frame. For later purposes, we give them in the
form of a vector a where the α(m) are given by its elements [13]. We have that

a =


α(2)

−α(1)

α(0)

−α(−1)

α(−2)

 =

√
3

8


αxx − αyy + 2iαxy

2(αxz + iαyz)√
6[αzz − Tr[α̂]/3]
2(−αxz + iαyz)
αxx − αyy − 2iαxy

 . (7.11)

Note that the polarizability tensor elements of Equation (7.11) refer to their values at
the probing frequency.

According to Equations (7.1) and (7.10), the Kerr e�ect is then given by corrections
to the di�erences α(m) introduced by the dynamics of the D-functions. While the
representation of the polarization and the change in polarizability using the D-functions
seems heavy-handed, it turns out that the Euler-Langevin equation (7.5) yields a set
of di�erential recurrence relations for the averages 〈DJ

mm′〉(t). If the potential V (Ω, t)
with Euler angles Ω is speci�ed and the series truncated at some point, results for the
〈DJ

mm′〉(t) can be determined [13, 131].
In order to �nd expressions for the Kerr e�ect in particular, we consider the potential

V (t) of a particle subject to a driving �eld E(t). We assume that the molecules couple
to the �eld via permanent and induced dipole moments only, so that we can formulate
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the potential in the laboratory system as (cf. Equation (3.53)) [112, §44]

V (t) = −µ ·E(t)− µind[E(t)] ·E(t)

= −
∑

i=X,Y,Z

µiEi(t)−
1

2

∑
i,j=X,Y,Z

εijEi(t)Ej(t) + . . . . (7.12)

Here, we have labeled components of vectors and tensors by i and j and have neglected
the time dependence of the quantities except for the electric �eld. This means that the
polarizabilities (and, by extension, the induced dipole moment) react instantaneously
to the driving �eld. The second-order values εij are then constant and belong to the
response at the driving frequency. The dots contain the e�ect from hyperpolarizabilities
which we will not take into account further. We restrict the electric �eld E(t) to the
Z-axis such that the potential (7.12) becomes axially symmetric. With Equations (7.9)
and (7.10), the potential can then be expressed by D-functions as [13]

V (Ω, t) = −E(t)
+1∑

k=−1

(−1)kµ(−k)D1
0k(Ω)

+
E2(t)

6

[
Trε̂− 2

+2∑
k=−2

(−1)kε(−k)D2
0k(Ω)

]
.

(7.13)

Here, ε̂ signi�es the polarizability tensor with the elements εij . As before, the µ(k) and
ε(k) give spherical elements as de�ned below Equation (7.9) and in Equation (7.11). With
Equation (7.13) it is now possible to specify the recurrence relations of the 〈DJ

mm′〉(t).
Their exact forms and more details on the derivation can be found in Co�ey and
Kalmykov [13]. At this point we merely note that the dependence on both the permanent
as well as the polarizability tensor in Equation (7.3) arises naturally from the choice of
the potential energy.

7.1.4 Matrix formulation of the dynamic Kerr e�ect

An expansion of the Euler-Langevin Equation (7.5) in terms of Wigner’s D-functions
creates an in�nite hierarchy of coupled di�erential recurrence relations which have
to be truncated to yield solutions. The hierarchy can be ordered in powers of the
electric �eld E(t). If the �eld strength is su�ciently weak in comparison to the thermal
energy but still strong enough to induce the Kerr e�ect, one may truncate the hierarchy
at the order E2(t). Furthermore, the choice of potential in Equation (7.13) as axially
symmetric implies that the potential is independent of the Euler angle ϕ, such that
only D-functions with m = 0 are relevant (cf. Equation (7.6)). Both points leave just
eight D-functions. Their dynamics can be cast in the form of two vector-di�erential
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equations given by [13, 131]

d

dt
c1(t) = Â1c1(t) + E(t)B1, (7.14)

d

dt
c2(t) = E(t)Q̂c1(t) + Â2c2(t) + E2(t)B2. (7.15)

The vectors c1(t) and c2(t) contain averages of �rst and second-order D-functions as

c1(t) =

〈D1
0−1〉(t)
〈D1

00〉(t)
〈D1

01〉(t)

 , c2(t) =


〈D2

0−2〉(t)
〈D2

0−1〉(t)
〈D2

00〉(t)
〈D2

01〉(t)
〈D2

02〉(t)

 . (7.16)

Their time evolution is determined by elements of the rotational di�usion tensor D̂ij

(cf. Equation (7.5)) and the response to the perturbing electric �eld E(t) as formulated
in the potential in Equation (7.13). Here, we set the molecular reference frame xyz in
such a way that the rotational di�usion tensor is diagonal and encoded in the quantities

∆ = (D̂zz)(D̂xx + D̂yy)
−1 − 1

2
, (7.17)

τD = (D̂xx + D̂yy)
−1, (7.18)

and Ξ = (D̂xx − D̂yy)(D̂xx + D̂yy)
−1. (7.19)

As implied by the designation τD, the inverse elements of the rotational di�usion tensor
determine the time scales of dielectric relaxation. In fact, for the case of non-polarizable
molecules and to �rst order in E, one can recover Debye relaxation for the polarization
of the sample. Up to three relaxation times emerge in this case depending on the
orientation of the dipole moment in the molecular reference frame. If the molecular
z-axis is chosen to coincide with the dipole moment, τD represents the only time scale
[13, Chapter 8.3.1]. The matrices Â1 and Â2 are related to relaxation towards the
equilibrium distribution and read

Â1 = −τ−1
D

(
1 + ∆ 0 Ξ/2

0 1 0
Ξ/2 0 1 + ∆

)
, (7.20)

Â2 = −τ−1
D

3 + 4∆ 0 Ξ
√

3/2 0 0
0 3 + ∆ 0 3Ξ/2 0

Ξ
√

3/2 0 3 0 Ξ
√

3/2
0 3Ξ/2 0 3 + ∆ 0

0 0 Ξ
√

3/2 0 3 + 4∆

 . (7.21)
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If Ξ and ∆ can be neglected, the diagonal entries give rise to relaxation times of the
order of τD and τD/3, respectively. The vectorB1 and the matrix Q̂ relate to the impact
of the permanent dipole moment

Q̂ =

√
3

10τDkBT

µ−(3 + 4∆)− µ+Ξ
√

2µzΞ 0

3µz [µ−(3 + 2∆)− 2µ+Ξ]/
√

2 µzΞ√
3/2(µ−Ξ− µ+) 2

√
3µz

√
3/2(µ− − µ+Ξ)

µzΞ [2µ−Ξ− µ+(3 + 2∆)]/
√

2 3µz
0

√
2µzΞ µ−Ξ− µ+(3 + 4∆)

 , (7.22)

B1 =
1

3
√

2τDkBT

 µ−(1 + ∆)− µ+Ξ/2√
2µz

−µ+(1 + ∆) + µ−Ξ/2

 , (7.23)

where µ± = µx ± iµy. Finally, the vectorB2 involves the polarizability at the driving
frequency and reads

B2 =
1

10
√

6τDkBT

(εxx − 2iεxy − εyy)(3 + 4∆)− (εxx + εyy − 2εzz)Ξ
2(εxz − iεyz)(3 + ∆)− 3(εxz + iεyz)Ξ√

6 [2εzz − εxx − εyy + Ξ(εxx − εyy)]
−2(εxz + iεyz)(3 + ∆) + 3(εxz − iεyz)Ξ

(εxx + 2iεxy − εyy)(3 + 4∆)− (εxx + εyy − 2εzz)Ξ

 . (7.24)

For the Kerr measurement, we use the de�nition implied in Equation (7.13), that is, the
perturbing electric �eld is polarized along the Z-axis in the laboratory system spanned
by the axes XY Z . The birefringence is then measured between the axes X and Z such
that Equation (7.10) can be used. By making use of the vector in Equation (7.11), ∆α(t)
can be written as a dot product and the birefringence of Equation (7.1) is obtained as
[13]

∆n(t) =
2πρ0

n

(
a · c2(t)

)
. (7.25)

7.1.5 Exact solution for isotropic di�usion

In order to gain more insight about the actual solutions to Equations (7.14) and (7.15),
we note that it is possible to derive an exact solution for the case of isotropic rotational
di�usion. In this case, Dxx = Dyy = Dzz = D such that Ξ = ∆ = 0 and only the
diagonal elements of the matrices (7.20) and (7.21) remain. We assume isotropic initial
conditions where c1(0) = 0 and c2(0) = 0 and choose the molecular z-axis to coincide
with the permanent dipole moment. We obtain

∆α(t) =
1

5τD

[
3

4

∆α⊥0 ∆ε⊥0
kBT

+
∆α

‖
0∆ε

‖
0

kBT

]∫ t

0

du E2(u)e
−3

(t−u)
τD

+
∆α

‖
0µ

2
z

5(kBT )2

1

τ 2
D

∫ t

0

du

∫ u

0

ds

[
E(u)e

−3
(t−u)
τD

] [
E(s)e

− (u−s)
τD

]
.

(7.26)
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In Equation (7.26) we have de�ned ∆α⊥0 = αxx−αyy and ∆α
‖
0 = αzz−(1/2)(αxx+αyy)

as the polarizability di�erences between the components parallel and perpendicular to
the dipole moment. ∆ε

‖
0 and ∆ε⊥0 are de�ned correspondingly. Equation (7.26) implies

two distinct behaviors: the �rst term describes a unipolar signal which depends on the
anisotropies of the polarizability at the driving frequency, whereas the second term can
create a bipolar contribution that depends on the permanent dipole moment µz . For
molecules with no permanent dipole moment, Equation (7.26) implies a unipolar signal
determined by the polarizability and de�ned by the time scale τD/3. For molecules
with a non-zero permanent dipole moment, the second term contributes as well and we
expect an interplay between both contributions. Finally, we remark that the temperature
dependence of both terms is consistent with Equation (7.3).

7.2 Implementation for liquid water

In this section, we apply Equations (7.14) and (7.15) to the case of liquid water under
THz-radiation and compare the result to an experimental measurement [3]. As noted
in Section 4.3, the THz-regime has recently become more accessible to experimental
methods [163, 164]. The terahertz Kerr e�ect (TKE) in particular uses single-cycle
driving pulses in the THz regime to induce birefringence in a sample. This makes it
possible to better resolve the polarizability dynamics on time scales on the order of time
constants of molecular relaxations [123, 126] and gives access to the contribution of the
permanent dipole moment in the Kerr e�ect dynamics [3, 224]. However, the creation
of pulses with an intensity high enough to produce strong nonlinear e�ects has proved
challenging [123, 126]. This issue is compounded with high absorption and heating of
the sample in the case of liquid water and small polar molecules while the signal itself is
also particularly small in the case of water [126, 167, 225] [3, cf. Supplementary Figure
6]. Despite these di�culties, several recent studies successfully measured the TKE for
water and small alcohols [166, 224–227]. In a collaborative paper on the TKE [3], we
compared experimental results for liquid water obtained by Peter Zalden, Liwei Song
and others to the predictions of Equations (7.14) and (7.15). We detail this comparison
in the following.

7.2.1 The case of liquid water

For a detailed comparison, realistic parameters for liquid water are required. The
most important question concerns the time scales involved in the dynamics of the
birefringence. According to Equation (7.26), we expect them to be determined by the
time-dependent electric �eld and the exponential decays related to dielectric relaxation.
However, the exact nature and the number of decays in this frequency range is debated
and the �ts to the experimental data vary [118, 167, 168]. Usually, one �nds Debye-type
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relaxations in the picosecond range with relaxation times of τ1 ≈ 8.3 ps (for 25°C,
the so-called Debye peak which dominates relaxation), τ2 ≈ 1 ps (which has been
reported as low as 0.2 ps) and sometimes also of τ3 ≈ 0.2 ps (cf. Figure 4.2) [118, 120,
167, 168, 228]. Their purported origin is illuminating: while the largest decay time is
usually associated with the dynamics of the full hydrogen bond network [118, 167, 228]
and the sub-picosecond scales with rapid breaking and reforming of bonds [167, 168,
229], the time scale τ2 is often attributed to rotational dynamics of free or almost free
water molecules [120, 167, 168]. The latter can be made manifest by considering the
Debye-Stokes-Einstein relation for a spherical molecule in a viscous medium and using
an argument made by Elton [118]: It was noted empirically that using the rotational
friction for half radius in the Debye-Stokes-Einstein relation yields relaxation times
which agree for many liquids [118, 230]. In the case of water, we �nd

τ =
4πη(a/2)3

kBT
≈ 1 ps ≈ τ2 ≈ τ1/8, (7.27)

where we have used a = 1.44 Å for the radius of a water molecule [231], η = 0.89
mPas for its viscosity [232] and have assumed 25°C. Note that using the full radius in
Equation (7.27) leads to the Debye peak but this can be argued to be coincidental, given
its supposed origin in the collective dynamics [118]. Nevertheless, as this calculation
rests on the assumption of uncorrelated single-particle dynamics of a Brownian particle,
its success is curious and the Debye-Stokes-Einstein relation has been the subject of
extensive research in this context [118, 233–235]. Indeed, a measurement of the Kerr
e�ect via Raman spectroscopy performed in 2000 by Winkler et al. [236] found its
dynamics dominated by two decays with time constants τa ≈ 3 ps and τb ≈ τa/3 ≈ 1
ps where τa was likewise attributed to single-particle dynamics. We can therefore argue
that the single-particle theory behind Equations (7.14) and (7.15) may prove suitable
for the analysis of the Kerr e�ect in liquid water.

In our model, the decay times are given by inverse elements of the rotational
di�usion tensor. In principle, its elements can be estimated from angular-velocity
autocorrelation functions or by relating time scales found in NMR measurements
[13, 237]. In our case, we utilize tensor elements obtained from molecular dynamics
simulations. Speci�cally we use a tensor obtained by Chevrot et al. [238] which reads

D̂(1) =

0.211 0 0
0 0.114 0
0 0 0.272

 1/ps. (7.28)

Here, we assume that the principal axes coincide with the principal axes of inertia
such that the z-direction points in the direction of the permanent dipole-moment, x
spans the H-H-direction and y points out of the molecular plane as shown in Figure
7.1 (b). By using Equation (7.28), we naturally arrive at τD ≈ 3 ps where τD/3 ≈ 1
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ps as predicted for a Kerr measurement [236]. However, τD is related to the decay of
the polarization and one would expect that τD (as the name suggests) relates to the
Debye peak at τ1 ≈ 8.3 ps. We note that the averaged rotational di�usion constant is
given in our model by Dr = Tr[D̂]/3, such that D−1

r = 2τD for isotropic rotational
di�usion, suggesting a factor of two for a proper comparison. Indeed, 2τD ≈ 6 ps is
much closer to τ1 and this relationship has also been exploited in Chevrot et al. [238].
Nevertheless, the time scale of the polarization is determined by τD and we note that
other simulations found similar results between 3 and 5 ps for the dynamics of the �rst
Legendre polynomial [239]. Still, we stress that more choices of the decay times are
possible and di�erent conventions compound the issue of choosing a proper D̂ further
[239–242]. In the end, we simply note that the choice in Equation (7.28) represents a
good �t to the experimental observations while other values do not fundamentally lead
to a di�erent dynamics.

Next, values for the polarizability tensor of water in the terahertz and in the optical
regime are required. However, the anisotropy of the tensor in the optical regime proves
to be very small and rather di�cult to measure. In particular the quantities

∆α
‖
0 = αzz −

1

2
(αxx + αyy) and ∆α⊥0 = αxx − αyy, (7.29)

introduced in Equation (7.26), are of the order of 0.1 Å3 (cf. Equations (7.30) and (7.31)
below). For comparison, the equivalent for carbon disul�de is of the order of almost
10 Å3 [243]. The signs of the ∆α

⊥,‖
0 are unclear as well [3]. To enable a comparison,

we use two sets of values corresponding to positive and negative sign. Speci�cally, we
utilize values for water vapor in the form [244]

α̂
(1)
0 =

1.626 0 0
0 1.286 0
0 0 1.495

Å3, (7.30)

which has a ∆α
‖,(1)
0 ≈ 0.04 Å3

> 0 and a ∆α
⊥,(1)
0 ≈ 0.3 Å3

> 0. The second set is
derived by way of coupled cluster theory calculations and reads [245]

α̂
(2)
0 =

1.375 0 0
0 1.442 0
0 0 1.321

Å3, (7.31)

which features a ∆α
‖,(2)
0 ≈ −0.09 Å3

< 0 and a ∆α
⊥,(2)
0 ≈ −0.07 Å3

< 0. Note that
we assume the polarizability tensors to be diagonal in the molecular frame chosen.
Moreover, the di�erence between values in the optical regime and the static case has
been found to be fairly small [246]. We may therefore assume that the polarizability in
the THz regime does not di�er from the values in Equations (7.30) and (7.31), such that
we set εij ≈ αij .
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Figure 7.2: Comparison of the measured electric �eld pro�le (blue solid line) [3] and the approxi-
mate �t of Equation (7.32) (red dashed line) we use in this part of the thesis. Both curves are shown
normalized.

Finally, the permanent dipole moment of a water molecule is given by µ = µez
in our molecular system with µ = 2.95 D [247] which is an appropriate value in the
liquid phase. It should be noted that this dipole moment di�ers from the result in the
gas phase where µ ≈ 1.85 D. This is believed to originate from polarization induced by
nearby molecules in the liquid, or, more generally, from interaction e�ects [247, 248].

With these values at hand, we may gauge the impact of the two components in
the isotropic solution of Equation (7.26). A comparison of prefactors between the
two terms directly yields (4πε0∆α0/kBT )/(µ2/(kBT )2) ≈ 10−4 at room temperature.
This implies that the e�ect from induced dipole moments is small in contrast to the
dynamics related to the orientation of permanent dipole moments. For a suitable �eld,
the resulting signal may therefore be bipolar in nature.

7.2.2 Resulting dynamics

Before we can determine the dynamics, the electric �eld E(t) has to be speci�ed. We
use a parametrization which coincides with the experimentally measured �eld strength,
i.e.

E(t) = AE0 cos(ωct+ φ)e−(tp−t)2/(2σ2), (7.32)
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Figure 7.3: Phase shift for liquid water (blue solid lines) obtained via Equation (7.33) from the
theory, versus the experimental data obtained by Zalden, Song et al. [3] (green dotted lines). (a)
The resulting phase shift for the polarizability of Equation (7.30) for which ∆α

⊥,‖
0 > 0. (b) The

phase shift for the polarizability in Equation (7.31) for which ∆α
⊥,‖
0 < 0. Both pictures show the

normalized electric �eld from Equation (7.32) (red dashed lines).

where we have used ωc = 2π×0.3 THz for the carrier frequency with phase φ = −π/4.
The pulse is centered at tp = 4.2 ps and its width is set to σ = 1 ps. The prefactor
A ≈ 1.1 normalizes the pulse such that its maximum gives E0. Figure 7.2 shows the
normalized pulse pro�le (7.32) in contrast to the measured pulse pro�le [3].

The experiment itself employs a center frequency of 0.25 THz with a �eld strength
of 510 kV/cm [3]. However, due to the strong absorption of water and dispersion, we
can expect a frequency shift as well as a lower e�ective �eld strength inside the liquid.
Thus, we use E0 ≈ 150 kV/cm in this thesis which is a more reasonable value for
the average �eld strength inside the cuvette [3]. We obtain µE0/kBT ≈ 0.04 at room
temperature which is appropriate for the low �eld strength approximation.

In general, we also assume room temperature with kBT = 25 meV and the number
density of liquid water as ρ0 = (1/30) Å−3. As initial conditions we have isotropy, i.e.,
c1(0) = 0 and c2(0) = 0.

Phase shi�

The experimental measurement determines the relative phase shift between the electric
�eld in x and z-direction. The time-dependent phase is obtained by multiplying the
time-dependent change in wave number with the distance traveled by the probe beam
within the sample, i.e.

∆Φ(t) ≈ ∆k(t)L = 2πL∆n(t)/λ. (7.33)
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Here, λ = 800 nm is the optical probing wavelength and L = 0.2 mm is the thickness
of the liquid sheet in the cuvette. It should be noted that we neglect any kind of spatial
dependence in Equation (7.33).

Figure 7.3 shows the result for the polarizabilities in Equations (7.30) and (7.31) in
comparison to the experimental results withE(t) given in Equation (7.32). As suspected,
the bipolar pulse indeed creates a bipolar signal dominated by the contribution from
the permanent dipole moment. This is visible from the comparably large contribution
given by c1. However, both curves only agree very roughly with the experimental data.
While the results show some qualitative agreement with similar relaxation behavior
and similar structure, they di�er in both the height as well as the exact position of the
minima and maxima. This becomes worse for the polarizability with negative ∆α0

shown in Figure 7.3 (b) where the overall shape suggests even less agreement with
the experimental data. Taken together, the results imply a positive ∆α0 as well as an
evident failure of the theoretical description in the case of liquid water.

Orientation and alignment

As noted in Equation (7.7), the central elements of the vectors c1 and c2 can be exchanged
with Legendre polynomials. Speci�cally, they give direct measures for orientation and
alignment of the molecules as

〈D1
00〉(t) = 〈cos(θ)〉(t), (7.34)

〈D2
00〉(t) =

1

2

[
〈3 cos2(θ)〉(t)− 1

]
. (7.35)

Here, θ is the Euler angle between the laboratory Z-axis and the molecular z-axis. Since
we have chosen the z-axis to coincide with the permanent dipole moment, the �rst
identity is directly responsible for the polarization of the sample because of Equation
(7.9). The second yields the birefringence via Equation (7.10) when αxx = αyy. In
general, Equation (7.34) describes the orientation of the molecules while Equation (7.35)
refers to the alignment along the axes of largest polarizability [215, 216].

The results are shown in Figure 7.4. As suspected, the theory predicts far more
orientation of the molecules than alignment. Orientation follows the electric �eld
pro�le with a slight delay – a result we expect from the considerations in Section 3.1.3.
Furthermore, the orientation only yields a very small negative contribution despite
the strong negative �eld pro�le at this time. This likely originates from the fact that
the �eld cannot rotate the molecules fast enough to make up for the rapidly vanishing
electric �eld. In contrast, the alignment exhibits a similar behavior as the phase shift,
suggesting that Equation (7.35) gives a large contribution to ∆α(t).
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Figure 7.4: Measures for orientation and alignment in the case of liquid water. Orientation (green
solid line) gives a measure of the polarization of the sample, while the measure of alignment (blue
dotted line) describes orientation along the axes of highest polarizability. The values were evaluated
for the polarizability in Equation (7.30) for which ∆α

⊥,‖
0 > 0. The normalized e�ective �eld (7.32)

is also shown (red dashed line).

Discussion

As we have seen, the results for the phase shift in Figure 7.3 only agree partially with the
observed dynamics, leading us to conclude that a more involved treatment is needed to
describe the measurement. In particular, the Debye approximation assumes overdamped
dynamics where excitation energies are not higher than the low GHz range [13]. This
may be insu�cient for small molecules such as water for which damping might be too
small or for the larger driving frequency used. Another particularly strong limitation
is given by the assumption of a dilute liquid and, thus, non-interacting molecules.
It is well known that water molecules interact via the formation of hydrogen bonds
which strongly impacts the rotational dynamics of water [118, 229, 249]. While we may
suppose that interaction e�ects are also partially taken into account by the elements
of the rotational di�usion tensor which we obtained from MD simulations, explicit
many-particle interactions should be included in the potential of Equation (7.4). The
theory also neglects hyperpolarizabilities. Indeed, hyperpolarizabilities can usually
be assumed to be small [166] and an instantaneous response, commonly associated
with hyperpolarizabilities [128, 130], was not observed [3]. We can gauge the impact
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of the second hyperpolarizability by relating scales according to Equation (7.3). Using
results from simulations [250], we �nd γ‖(0; 0, 0, 0)/(4πε0∆α0µ

2/(kBT )2) ∼ 10−2 for
the mean second hyperpolarizability at zero frequency. While small, a proper frequency
dependence or taking into account the correct elements of the tensor may invalidate
this comparison. Other potential sources of errors include quantum, memory and
conduction e�ects which are neglected a priori in the present theory. In terms of the
electric �eld, we also stress that any position dependence was neglected such that
absorption and di�raction was only taken into account by using a comparably low �eld
strength.

Despite the shortcomings, the overall shape of ∆Φ(t) coincides with the experimen-
tal results for positive ∆α0. This suggests that the functional dependence is at least
partially correct. In fact, the orientation and alignment dynamics presented in Figure
7.4 agree with results obtained from MD simulations performed by Welsh, Mishra
and Santra as discussed in the joint paper [3, Figure 2]. While the simulations also
do not take hyperpolarizabilities into account, both methods predict that the sample
becomes polarized by orientation of molecular dipoles and exhibits a comparably strong
contribution due to the permanent dipole moment. The latter conclusion has also been
drawn in other works [166, 225].

Nevertheless, if the experimental measurement results are convoluted with a Gaus-
sian as a proxy for a longer pulse [3, Figure 1 c], a broadly negative signal is obtained
which is better reproduced by the result for negative ∆α0 in Figure 7.3 (b). A �t to the
experimental data based on the isotropic solution (7.26) also predicts a negative ∆α0

[3, Table 1]. This stands in contrast to usual results obtained for water vapor which
predict a positive sign [166, 251], but a negative signal is also found in other recent THz
measurements albeit at di�erent frequencies [165, 227]. As a way to resolve the issue,
Kampfrath et al. [165] put forward the idea that instead of the rotational dynamics of
single water molecules, the TKE dynamics in the liquid phase correspond to motions of
aggregated water molecules such as water dimers. These clusters are then assumed
to have a negative ∆α0 – in contrast to results obtained at THz frequencies in the gas
phase [166].

In short, while some agreement exists, we must state that the single-particle theory
employed here does not describe the experimental dynamics su�ciently well. However,
the overall shape shows some promising similarities such that inclusion of additional
contributions may be able to alleviate some of the underlying issues.

7.2.3 Possible corrections

Next, we discuss a few possible extensions to the underlying theory. While we are
not going to derive any new results, this section aims to provide avenues for further
research and may lead to better agreement with experimental results.
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Dipole-dipole interactions

In two recent papers, Dejardin, Kalmykov and others [138, 252] expanded on the
theory by taking into account dipole-dipole interactions. This was done on the basis
of mean-�eld theory while assuming a comparably small interaction strength. For
spherical molecules and a simple AC driving �eld of the form E(t) = E0 cos(ωt), they
derive corrections to the (non-) linear susceptibilities (cf. Equation (3.23)). By using an
expansion of the angular probability distribution function in Legendre polynomials,
they derive the relevant expansion coe�cients fn to third order in the �eld strength.
The coe�cient of the second Legendre polynomial in second order of the �eld strength,
f

(2)
2 (t), is what determines the dynamic Kerr e�ect for a symmetric top molecule (cf.

Equation (7.35) and the remark below (7.10)). They �nd [138, Equation (35)]

f
(2)
2 (t) = − 3Λ

5τD

∫ t

−∞
dt′ [f

(1)
1 (t′)]2 e

−3
(t−t′)
τD + . . . , (7.36)

where the dots give corrections we had already included. The coe�cient f (1)
1 is linear

in the �eld strength and determines the linear electric susceptibility and the linear
polarization (see Equation (3.18)). The prefactor Λ = (4πρ0µ

2)/(3kBT ) characterizes
the coupling strength and depends on the number density ρ0. The interaction term
in the potential is proportional to the orientation 〈cos(θ)〉(t). Thus, the mean-�eld
approach amounts to a correction to the e�ective �eld experienced by a dipole from
polarization (cf. Equations (7.9) and (3.1)).

The functional shape seems a promising way to correct the theory with respect
to the experimental results. This is because the �tting procedure employed in the
experimental paper [3] uses the second term in Equation (7.26) and �nds that one of the
two decay times is much smaller than the other. This e�ectively recreates the shape of
the �rst term with a dependence onE2(t) and a decay time of τD/3. A similar functional
dependence can be ascribed to the interaction term in Equation (7.36) while the negative
sign gives the desired decrease of the theoretical signal for positive ∆α0. To gauge its
impact, we have considered a naive implementation of Equation (7.36) in Appendix F.
While the resulting e�ect is small, it nevertheless corrects the result in promising ways.
A proper derivation for asymmetric top molecules and an implementation for arbitrary
pulse shapes may be able to �nd a better agreement with the measurement.

Bath driving e�ects

It is also possible to include bath driving e�ects into the description of the Kerr e�ect
in a simple phenomenological way by making use of the results derived in the previous
chapters. We saw that dipolar bath driving merely creates an additional force component
onto an immersed quantum system. Naively, one may include this e�ect by replacing
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E(t) in our theory by Eeff(t). We start with the Onsager result of Equation (4.24), given
here by

Eeff(t) =

∫ t

t0

ds χc(t− s)E(s) = E(t) +

∫ t

t0

ds χo(t− s)E(s). (7.37)

Here, χc(t) is the susceptibility of the cavity �eld and χo(t) the Onsager susceptibility
as de�ned in Equation (3.48). Since the Onsager model treats the surrounding molecules
as a dielectric, one may see the correction as a sort of mean-�eld theory and Equation
(7.37) as a direct consequence of polarization. The parallels to the correction from
dipole-dipole interactions discussed above are obvious.

Alternatively, one may use a form of the e�ective force derived without recourse to
the Onsager model, given by Equations (4.9) and (4.10) as

Feff(t) = d0E(t) +
2

π

∞∫
0

dωJ̄(ω)

t∫
t0

ds E(s) sin [ω(t− s)]. (7.38)

Here, we have replaced the arbitrary function F (t) by the electric �eld E(t). The
coupling constants d0 and dα are then measures for the charge of molecular dipoles.
In Equation (7.38) the quantity of interest is the e�ective spectral density de�ned
in Equation (4.11). In principle, it is possible to model this quantity by inserting
appropriate functional forms independent of the Onsager model where we just found
that J̄(ω) ∝ J(ω). However, this sort of modeling is as of yet physically unmotivated.
This is further complicated by the fact that the theory presented in Section 7.1 assumes
no resonances and only treats overdamped dynamics. Yet, we have seen in Part 5 that a
structureless Ohmic spectral density leads to almost no e�ect for large ωc, or rather, no
changes to the overall shape of the e�ective driving �eld. Thus we just expect a mere
increase or decrease of the external �eld strength in this case.

Nevertheless, we considered the naive approach in Equation (7.37) in Appendix F in
order to gauge its impact. The e�ect is fairly small but shifts the maxima and minima
as required for a �t to the experimental measurement.

Still, much remains unclear. For instance, Equations (7.37) and (7.38) were derived
for one-dimensional models such that the actual spatial direction of the resulting �eld
contributions is not known. The Onsager model assumes that the dipole is oriented
in the direction of the electric �eld. Implementation of Equations (7.37) and (7.38)
would also assume that no bath driving occurs by way of the optical probing pulse.
Thus, a proper derivation on the basis of the Euler-Langevin equation is required and a
comparison with the dipole-dipole correction (7.36) should also be performed in future
research.
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Hyperpolarizabilities

Hyperpolarizabilities can be readily included in the theory on the level of the potential
(7.12) [13]. They describe higher-order corrections to the polarizability, that is to the
induced dipole moment, such that Equation (7.12) can be extended according to [112,
113, 117]

V (t) = −µ ·E(t)− µind[E(t)] ·E(t)

= −
∑

i=X,Y,Z

µiEi(t)−
∑

i,j=X,Y,Z

εijEi(t)Ej(t)−
∑

i,j,k=X,Y,Z

βijkEi(t)Ej(t)Ek(t)

−
∑

i,j,k,l=X,Y,Z

γijklEi(t)Ej(t)Ek(t)El(t) + . . . .

(7.39)

Here, we omitted all numerical factors for brevity. Similar to Equation (7.13),
Equation (7.39) must be expressed in terms of Wigner’s D-functions. This allows us
to include the potential into the di�erential recurrence relations presented by Co�ey
and Kalmykov [13]. As the 〈Dj

mm′〉(t) ∝ (E0)j for E0 → 0 [13], we expect that in the
low �eld strength approximation only contributions which couple to 〈D2

mm′〉(t) will
become relevant for the dynamics. We can therefore suppose that the matrix theory
of Equations (7.14) and (7.15) will be extended by new terms but additional degrees of
freedom will not be introduced. This matches with the result in Equation (7.3) where
hyperpolarizabilities were explicitly included for the DC case while low �eld strength
was also assumed [113]. Note that Equation (7.39) omits any kind of time dependence in
the hyperpolarizabilities which need to be properly accounted for during the derivation.

Beyond the Debye approximation

Here we merely note that it is also possible to extend the dynamics beyond the over-
damped case by including inertia into the description. This is performed in some detail
in the book by Co�ey and Kalmykov [13, Chapter 10 and 11] which may pave a way
for further extension of the theory.

7.3 Conclusion of Part 7

In this part of the thesis, we have presented a matrix theory for the analysis of the
dynamic Kerr e�ect, based on the rotational motion of free molecules described by a
classical Langevin Equation in the non-inertial approximation [13, 131]. We have seen
that the dynamical motion of a molecule is determined by the (hyper-) polarizabilities
and the permanent dipole moment. The relaxation times emerge from this formulation
by way of the inverse elements of the rotational di�usion tensor. In the following, we
have applied the theory to the case of liquid water driven by an electric �eld in the THz
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regime and have compared our result to an experimental measurement [3]. While the
resulting dynamics has proven to be qualitatively similar, quantitative agreement with
the experimental results could not be achieved. Despite this major shortcoming, we
could conclude that the signal is dominated by orientation and the permanent dipole
moments as the e�ect from polarizabilities was found to be small. This is an important
result for the THz Kerr response, as optical frequencies do not lead to any contribution
from permanent dipole moments [113, 224].

In order to improve upon the theory, we have discussed a few possible corrections
as well. In particular, we have noted dipole-dipole interactions and the e�ects from
linear bath driving. Both describe the e�ect of polarization of the environment and
may lead to desired changes in the e�ective �eld responsible for the Kerr e�ect. We
have also noted corrections from hyperpolarizabilities and inertial e�ects which should
also be investigated in future research.
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Part 8

Summary and outlook

Throughout this thesis, we have seen how bath driving can impact an open quantum
system. Our method of choice has been the use of system-bath models and a simple
linear coupling of the bath modes to a classical external �eld. We have seen in Part 4 that
the quantum Langevin equation produces a new term which we could interpret as an
additional force contribution. This contribution includes the history of the driven bath
and represents the e�ect of the nonequilibrium distribution created by the external force.
It depends on the system-bath couplings, as well as the coupling to the external force by
way of an additional e�ective spectral density. By utilizing a simple continuum solvation
model, we have managed to show a proportionality of this quantity to the ordinary
spectral density of the bath. The resulting e�ective force has then been evaluated in
Part 5 for two typical spectral densities and driving pulse shapes. Only minor deviations
to the original pulse have been found in case of an Ohmic environment while long-
lasting oscillations could be seen for a Lorentzian spectral density. Especially the latter
implies that bath driving e�ects can be expected to be stronger when environmental
resonances have to be taken into account. However, the overall strength of the additional
contribution was gauged to be rather small and no signi�cant impact could be observed
even for larger system-bath coupling strengths, as we have discussed in Part 6. In fact,
the in�uence of the additional force has been most visible for strong electric �elds in the
coherent regime at comparably low temperatures and small to intermediate coupling
strength. Nevertheless, the response spectra discussed in Parts 4 and 5 have shown
a visible impact from bath driving contributions, including qualitative changes and
negative absorbance. This implies, that bath driving may very well lead to interesting
e�ects in speci�c applications.

One such application may be surface enhanced Raman spectroscopy (SERS). This
method achieves higher Raman intensities by adsorbing molecules on metallic surfaces
or colloidal metal nanoparticles. In fact, the impact of the metallic surfaces is so strong
that the signal is boosted by multiple orders of magnitude. In what has been called the
electromagnetic mechanism, this is explained with local �eld hot spots emerging from
interactions of the external �eld with plasmon modes inside the metal [148, 253]. Their
location, size and the resulting enhancement factor depend on the particular geometry
of the setup [148]. Exemplarily, we can consider the Onsager susceptibility of equation
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(3.48) for a metallic sphere. For gold, the real part of the dielectric function becomes
negative in the optical regime (cf. equation (4.42)). The real part of the denominator in
equation (3.48) can therefore cancel at speci�c frequencies, leaving just the imaginary
part. For materials with low absorbance this can lead to very large values of induced
dipole �elds [148]. This connection illustrates that our bath driving approach may be
suitable for an analysis of SERS with the added advantage that the strong �elds involved
can make bath driving e�ects more relevant. Moreover, we already laid the foundations
for a simple model of a colloidal dimer in Part 4 which could be generalized to a model
for SERS. Tomasi [134] already proposed an analysis of SERS using continuum solvation
models in 2004, such that a careful review of recent literature on the subject is required.

Next, we have also shown that bath driving is able to excite a system of interest. This
begs the question if bath driving e�ects can be exploited in chemical reaction dynamics.
Chemical reactions have been investigated previously using system-bath models and an
abundance of literature exists on the subject [5, 6]. By driving the system o�-resonance
but close to a bath mode, we may expect the impact of bath driving to be relatively
strong and an investigation using an appropriate reaction should give insights about
enhancing yields. In this sense, it may also be useful to extend the analysis of transition
probabilities, performed in Appendix D. Since chemical reactions are often associated
with thermally activated barrier crossing [6], a particularly pertinent question is if bath
driving can also be used to achieve higher temperatures in the bath. As we have seen,
this is not the case for linear driving and may not necessarily be the case for parametric
driving either. Still, it may be possible to de�ne an e�ective temperature in the latter
case by carefully absorbing the emerging time dependence. Properly outlining the
requirements of a temperature change in the bath from a driving process is therefore
mandated.

Finally, we address the terahertz Kerr e�ect as discussed in Part 7. Extensions to the
theory which may help to explain the experimental signal of water have already been
discussed and may provide an interesting outlook for future research. To fully use it as
an example of a driven bath, however, requires one to establish a clearer connection to
system-bath models. In addition to de�ning an appropriate system, the problem has
to be generalized to three spatial dimensions and appropriate nonlinear interaction
terms have to be introduced. A possible connection to experimental quantities might
be achievable by looking at nonlinear generalizations of continuum solvation models.

In closing, bath driving represents a natural extension to usual system-bath ap-
proaches, with possible applications in a variety of di�erent �elds. We hope that the
research presented in this thesis provides another step in the understanding of driven
environments and informs the development of new models and applications.
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Appendix A
Mathematical identities and de�nitions

In this appendix, we give some general mathematical de�nitions used throughout the
thesis. Most are given for completeness and are not referenced explicitly.

Fourier transforms

We de�ne the Fourier transform in accordance with Nitzan [5] as

g(ω) =

∫ ∞
−∞

dt g(t)eiωt and g(t) =
1

2π

∫ ∞
−∞

dt g(ω)e−iωt, (A.1)

such that the δ-function is de�ned by

δ(x− a) =
1

2π

∫ ∞
−∞

dk eik(x−a). (A.2)

This gives rise to the de�nition of the Sokhotski–Plemelj identity as

lim
ε→0

1

ω − ω0 + iε
= P 1

ω − ω0

− iπδ(ω − ω0), (A.3)

whereP denotes the principal part of an integral. The Heaviside function can be written
as

Θ(t) = lim
ε→0+

1

2πi

∫ ∞
−∞

dω
eiωt

ω − iε
= lim

ε→0+

(
− 1

2πi

)∫ ∞
−∞

dω
e−iωt

ω + iε
. (A.4)

Creation and annihilation operators

Creation (a†) and annihilation operators (a) are related to position and momentum
operators according to [5]

x =
1

2

√
2~
mω

(a+ a†) and p =
imω

2

√
2~
mω

(a† − a). (A.5)
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They ful�ll the bosonic commutation relation [a, a†] = 1, and are related to the eigen-
states of the harmonic oscillator |n〉 by

a|n〉 =
√
n|n− 1〉 and a†|n〉 =

√
n+ 1|n+ 1〉. (A.6)

Hence, their thermal averages vanish. This is most important for the position operator

〈x〉eq = Tr
[
xρeq

]
=

1

2

√
2~
mω

∑
n

〈n|(a+ a†)|n〉e
−βEn

Z
= 0, (A.7)

because the |n〉 are orthogonal.

Time evolution of the density matrix

The time evolution from t0 to t of a time-independent system with Hamiltonian H , can
be written in terms of the time evolution operator [5]

U(t, t0) = e−
i
~H(t−t0). (A.8)

In the following, we set t0 = 0 and abbreviate U(t, 0) = U(t). In the Schrödinger
picture (subscript S), we have time-dependent states according to

|Ψ(t)〉S = U(t)|Ψ(0)〉S = e−
i
~Ht|Ψ(0)〉S . (A.9)

Since the density matrix can be written as a sum of projectors times a probability, it
shares the same time evolution as the states. This means

ρS(t) = U(t)ρ(0)U †(t). (A.10)

In the Heisenberg picture (subscript H) operators absorb the time evolution such that
the states become time-independent. The density matrix is then constant, as

ρH(t) = U †(t)ρS(t)U(t) = ρ(0). (A.11)

In the interaction picture (subscript I) the Hamiltonian is assumed to be perturbed
according toH = H0+V . States evolve according to the perturbation V while operators
follow the unperturbed time evolution of H0 given by the operator U0(t). We have

|Ψ(t)〉I = U †0(t)|Ψ(t)〉S = e
i
~H0t|Ψ(t)〉S . (A.12)

The density matrix is still time-dependent in this case, as

ρI(t) = U †0(t)ρS(t)U0(t). (A.13)
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Equation (A.10) gives rise to the Liouville-von Neumann equation [5]

d

dt
ρS(t) = − i

~
[H, ρS(t)]. (A.14)

In the interaction picture, the Hamiltonian is replaced by the perturbation such that

d

dt
ρI(t) = − i

~
[VI(t), ρI(t)]. (A.15)

For explicitly time-dependent density matrices an additional partial derivative enters
on the right-hand side. For the case of a time-dependent Hamiltonian, (A.14) and
(A.15) retain their form. Note that Equation (A.8) is then replaced by a time-ordered
exponential over the integral of H(t) (see e.g. [61, 254]).
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Appendix B
Cavity and reaction �eld for a layered sphere and an
ellipsoid

Here, we present results for the cavity and the reaction �eld of two di�erent geometries
of the Onsager solvation model discussed in Section 3.2. First, we focus on a layered
sphere as depicted in Figure B.1 (a). We outline the derivation of the cavity and the
reaction �eld, based on the presentation in Gilmore and McKenzie [26]. The former has
not been given in the cited paper but has been calculated by Scholte [255] previously. We
apply this more complicated geometry to a polarizable molecule in water, as discussed in
Section 4.3 and brie�y discuss the results. Finally, we give expressions for an ellipsoidal
geometry taken from Scholte [255] and Boettcher [112]. The geometry of the latter is
depicted in Figure B.1 (b).

Derivation of the layered model

For the layered sphere, we can directly adapt the discussion from Sections 3.3 and 4.2.
We now �nd a total of six boundary conditions for the potential in the cavity (Φc), inside
the dielectric layer (Φd) and in the surrounding dielectric region (Φs). The interfaces
yield

Φd(r = a) = Φc(r = a), (B.1)

Φd(r = b) = Φs(r = b), (B.2)

εd
∂Φd

∂r

∣∣∣∣
r=a

= εc
∂Φc

∂r

∣∣∣∣
r=a

, (B.3)

εd
∂Φd

∂r

∣∣∣∣
r=b

= εs
∂Φs

∂r

∣∣∣∣
r=b

, (B.4)
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(a) (b)

Figure B.1: Extended Onsager models. (a) Layered sphere geometry, where the dielectric with
frequency-dependent dielectric function εd(ω) constitutes a layer (light red) around the cavity
with thickness b− a. The setup is embedded in another dielectric region with dielectric constant
εs (light blue). (b) Ellipsoidal geometry of the cavity with half-axes a,b and c. The ellipsoid has
a homogeneous polarization P (red arrow) which gives rise to a total dipole moment m (blue
arrow) of the ellipsoid. The polarization and the dipole moment is oriented along a for simplicity.
An external electric �eld E(ω) (black arrows) acts on both setups in the direction of µ and m,
respectively.

where we have dropped the frequency dependence in most quantities for brevity. The
last two conditions are given by the external �eld and the source term of the dipole

Φs(r →∞) = −E(ω) r cos(θ) (B.5)

Φc(r → 0) =
µ(ω)

4πε0r2
cos(θ). (B.6)

Conditions (B.5) and (B.6) yield

As
1 = −E(ω) , Bc

1 = µ(ω)/4πε0 , A
s
l 6=1 = 0 , Bc

l 6=1 = 0. (B.7)

The l 6= 1-terms do not contribute because of the symmetry, while the l = 1 coe�cients
must ful�ll

Ad
1b+

Bd
1

b2
= −E(ω)b+

Bs
1

b2
, (B.8)

Ad
1a+

Bd
1

a2
= Ac

1a+
µ(ω)

4πε0a2
, (B.9)

εdA
d
1 − 2εd

Bd
1

a3
= εcA

c
1 − 2εc

µ(ω)

4πε0a3
, (B.10)

εdA
d
1 − 2εd

Bd
1

b3
= −εsE(ω)− 2εs

Bs
1

b3
. (B.11)
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As before, the coe�cient Ac
1 gives the reaction and the cavity �eld as

Ac
1 = − µ(ω)

4πε0a3

[
1 +

3εc

εd − εc

]
+
Bd

1

a3

[
2εd + εc

εd − εc

+ 1

]
= − µ(ω)

4πε0a3
χr(ω)− E(ω)χc(ω).

(B.12)

The reaction �eld is characterized by

χr(ω) =
2a3(εs − εd)(2εc + εd) + 2b3(2εs + εd)(εd − εc)

2a3(εs − εd)(εd − εc) + b3(2εs + εd)(2εd + εc)

=
2

1 + 2a
3

b3
χsdχdc

[
χdc +

(a
b

)3

χsd

(
2εc + εd
2εd + εc

)]
,

(B.13)

which coincides with the expression (56) of Gilmore and McKenzie [26]. The cavity
�eld is characterized by

χc(ω) =
(3εd)(3εs)b

3

2a3(εs − εd)(εd − εc) + b3(2εs + εd)(2εd + εc)
=

[1 + χdc][1 + χsd]

1 + 2a
3

b3
χsdχdc

,

(B.14)

which coincides with Equation (28) of Scholte [255]. In both equations, we have de�ned
χab = (εa − εb)/(2εa + εb) as the Onsager susceptibilities at the interfaces. Both
expressions reduce to the results given in Sections 3.2 and 4.1 when the layer is absent,
i.e., χsd = 0. For small ratios a/b, (B.14) can be expanded into a Taylor series as

χc(ω) ≈ [1 + χdcχsd + χdc + χsd]

[
1− 2

(
a3

b3

)
χdcχsd

]
= 1 + χ̄c(ω), (B.15)

with

χ̄c(ω) = [χdcχsd + χdc + χsd]

[
1− 2

(
a3

b3

)
χdcχsd

]
− 2

(
a3

b3

)
χdcχsd. (B.16)

Approximation (B.15) restores a separable direct driving contribution.

Polarizable molecule in water with the layered sphere model

We now apply the results for the cavity and the reaction �eld, given in Equations (B.13)
and (B.14), to the case of the polarizable molecule in water, as discussed in Section 4.3.
In practice, we assume that the molecule interacts dynamically only with its hydration
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Figure B.2: Response of a molecule in water derived from Equation (4.32) using the layered sphere
geometry depicted in Figure B.1 (a). The associated reaction and cavity �elds are given in Equations
(B.13) and (B.14). A single prime denotes the real and two denote the imaginary part. (a),(b) Results
for a thin layer with b = 1.5a. (c),(d) Results for a thicker layer with b = 5a.

shell. The surrounding dielectric represents bulk water far away from the molecule.
We therefore have

εd = ε(ω) , εc = 1 and εs = ε(0), (B.17)

where we substituted ε(ω) as the dielectric function of water from Equation (4.26) and
its zero frequency contribution ε(0) ≈ 79 therein. The results are shown in Figure B.2
for two values of a/b. The results are given in relation to results for χc = 1, although
the susceptibility in Equation (B.14) always introduces a dressed �eld. However, the
e�ect of the latter is small and we aim for a comparison to the undressed �eld. The
results exhibit the same structure as in Figures 4.3 and 4.4: the response peaks are
enhanced and a small negative undershoot occurs for the imaginary parts (not shown).
Most importantly, the e�ect of the dielectric is stronger with a more pronounced shift of
the resonance and a larger enhancement by a factor of almost 2 in both cases. A thinner
layer leads to a more pronounced shift of the frequency but reduces the enhancement.
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Since the relevant terms scale with (a/b)3, the results for the thicker layer do not deviate
much from results for even larger b.

Results for the ellipsoid

It is also possible to derive the cavity and the reaction �eld for an ellipsoidal geometry.
However, the solution for an ideal dipole inside such a cavity is very intricate and can
be found in Boettcher [112, §20]. The reason for this is that in the spherical case the
series (3.37) exactly truncates at l = 1, because the Onsager sphere itself reduces to
a large dipole [112]. This is not the case for an ellipsoid where an in�nite number of
terms contribute to the potential. In this part, we therefore give shorter expressions
derived for a homogeneous polarization inside the ellipsoid, which gives rise to a dipole
moment m. The results are taken from Scholte [255] and Boettcher [112, §20], while
we assume that m plays a role equivalent to the point dipole we have used up until
now. The model is depicted in Figure B.1 (b) with the ellipsoidal half-axes a, b and c.
For simplicity, we assume that both the external �eld as well as the polarization are
oriented along the long axis a and we consider the result for a cavity with εc = 1. One
�nds

χr(ω) =
3A(1− A)(εd(ω)− 1)

εd(ω) + (1− εd(ω))A
, (B.18)

Here, the susceptibility χr(ω) couples to a prefactor m(ω)/(4πε0abc) which is equiva-
lent to the de�nition in Equation (B.12). The cavity �eld is then characterized by

χc(ω) =

[
εd(ω)

εd(ω) + (1− εd(ω))A

]
. (B.19)

The factor A depends on the orientation of m and the external �eld. For our choice
above, we have [255]

A =
abc

2

∫ ∞
0

ds
1

(s+ a2)
3
2 (s+ b2)

1
2 (s+ c2)

1
2

=
a<b=c

1

(1− (a/b)2)
− (a/b)

(1− (a/b)2)
3
2

arccos(a/b).
(B.20)

The second equation is a solution for an oblate spheroid, which could, for instance,
stand in for a molecule such as benzene. In general, the cavity �eld can also be written
as a superposition if the �eld does not occur along one of the axes of the ellipsoid [112,
255].
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Appendix C
Evaluation of correlators in the Liouville space formal-
ism

In this appendix, we give more insight into the correlators (5.38) that appear within
the Liouville space quantum master equation of Part 5. Speci�cally, we outline the
emergence of bath response and symmetric bath autocorrelation functions from the
second-order correlator given in Liouville space as

Φ(2)(t2, t1) = 〈LSB(t2)U0(t2, t1)LSB(t1)U0(t1, t0)〉B . (C.1)

For simplicity, we work in thermal equilibrium and drop the explicit time dependence
of the LSB. The latter can be restored easily by respecting the time ordering in the
correlators. In order to evaluate Equation (C.1), it needs to be split into system and bath
parts. To do so, we note that LSB = (−i/~)[HSB, ·] which produces commutators of
composite operators. For general composite operators Oi = AiBi, where Ai acts on the
system subspace and Bi on the subspace of the bath such that [Ai, Bi] = 0, we have
[198]

[A1B1, A2B2] =
1

2
[A1, A2] {B1, B2}+

1

2
{A1, A2} [B1, B2], (C.2)

where {·, ·} denotes the anticommutator. Equation (C.2) shows that the resulting
correlators involve both commutators and anticommutators. This gives rise to a natural
de�nition of two superoperators as

Â = [A, ·] and Ǎ =
1

2
{A, ·}, (C.3)

which ful�ll ÂB = ÂB̌ + B̂Ǎ as a generalization of Equation (C.2). We now assume
LSB = ÂB and split the bare time evolution superoperator into system and bath parts
according to U0(t2, t1) = US(t2, t1)UB(t2, t1). Insertion into Equation (C.1) and use of
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Equation (C.2) yields

Φ(2)(t2, t1) = TrB[ÂB US(t2, t1)UB(t2, t1)ÂB US(t1, t0)UB(t1, t0)ρeq
B ]

= (Â US(t2, t1)Â US(t1, t0))TrB[B̌ UB(t2, t1)B̌ UB(t1, t0)ρeq
B ]

+ (Ǎ US(t2, t1)Â US(t1, t0))TrB[B̂ UB(t2, t1)B̌ UB(t1, t0)ρeq
B ]

+ (Â US(t2, t1)Ǎ US(t1, t0))TrB[B̌ UB(t2, t1)B̂ UB(t1, t0)ρeq
B ]

+ (Ǎ US(t2, t1)Ǎ US(t1, t0))TrB[B̂ UB(t2, t1)B̂ UB(t1, t0)ρeq
B ].

(C.4)

Equation (C.1) is now split between system and bath parts: The bath parts are contained
in the traces and the superoperators act on the bath density matrix ρeq

B . The system
parts are given in the brackets and act on the system density matrix that appears on
the right in the quantum master equation (5.36).

We now focus on the bath parts. Because of cyclical invariance of the trace, terms
where a commutator (the superoperator B̂) is on the left vanish. In the same way,
having an anticommutator on the left allows us to replace B̌ by the bare operator B.
This gives rise to

TrB[B̌ UB(t2, t1)B̌ UB(t1, t0)ρeq
B ] =

1

2
TrB[BUB(t2, t1)(Bρeq

B + ρeq
B B)U †B(t2, t1)]

=
1

2
TrB[(B̃(t2 − t1)B +BB̃(t2 − t1))ρeq

B ] = ~2BC(t2, t1),
(C.5)

and

TrB[B̌ UB(t2, t1)B̂ UB(t1, t0)ρeq
B ] = TrB[BUB(t2, t1)(Bρeq

B − ρ
eq
B B)U †B(t2, t1)]

= TrB[(B̃(t2 − t1)B −BB̃(t2 − t1))ρeq
B ] = −2i~2BR(t2, t1).

(C.6)

The last equation usedB =
∑N

α ~λαxα, to recover the symmetric bath auto-correlation
function BC and the bath response function BR as de�ned in Equations (5.23) and
(5.24) (cf. Equations (5.64) and (5.65)). Tildes signify Heisenberg operators. To obtain
Equations (C.5) and (C.6) we have applied Equation (5.35) for the time evolution su-
peroperators and have exploited UB(t)ρeq

B = ρeq
B which holds for the unperturbed time

evolution and thermal equilibrium. If the latter does not hold, the additional times t1
and t0 will enter, but can also be absorbed into Heisenberg operators. This is the case
in the bath driving scheme of Part 5, where terms as in Equation (5.40) follow naturally.
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We brie�y consider the fourth order result, which reads

Φ(4)(t4, t3, t2, t1) =

〈LSB(t4)U0(t4, t3)LSB(t3)U0(t3, t2)LSB(t2)U0(t2, t1)LSB(t1)U0(t1, t0)〉B
= (Â US(t4, t3)Â US(t3, t2)Â US(t2, t1)Â US(t1, t0))

∗ TrB[B̌ UB(t4, t3)B̌ UB(t2, t1)B̌ UB(t2, t1)B̌ UB(t1, t0)ρeq
B ]

+ (Â US(t4, t3)Â US(t3, t2)Â US(t2, t1)Ǎ US(t1, t0))

∗ TrB[B̌ UB(t4, t3)B̌ UB(t3, t2)B̌ UB(t2, t1)B̂ UB(t1, t0)ρeq
B ]

+ . . . ,

(C.7)

where we have omitted the six other non-zero terms that enter at this order. The bath
parts of Equation (C.7) give rise to higher-order bath correlation functions. By looking
at their structure, we can already see that expressions such as Equation (5.42) emerge
naturally from this procedure, as well.
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Appendix D
Transitionprobabilities from thenonequilibriumBloch
equations

This appendix contains an analysis of the emerging transition probabilities in our
treatment of Part 5. Since we have considered dynamics for a system starting in the
ground state of σx, we can construct a proxy for the transition probability PT (ts) by
considering the population in the excited state. Speci�cally,

PT (ts) ∼ ρ22(ts) =
1

2

[
1− rx(ts)

]
. (D.1)

The time ts has to be chosen after the pulse has terminated and the momentary eigen-
basis coincides with the bare (diabatic) basis once again. However, due to relaxation
the transition probability will depend on the exact time when it is sampled. In addition,
the Lorentzian cases show long-lasting oscillations, which require us to choose a time
point even further away (see Figure 5.3). As such, our considerations can only go so far
as to discuss the general shape of the transition probabilities and not their absolute size.

Nevertheless, Figure D.1 shows the population in dependence of the driving strength,
parametrized by the parameters η̄ and κ̄ as de�ned in Equation (5.25). For the sampling
times, we have chosen ts = 50 ω−1

0 in the case of the Ohmic spectral density and
ts = 500 ω−1

0 for the Lorentzian spectral density. We also point out that we have
neglected any carrier frequency and have only used an envelope to describe the driving
process in Part 5. The external driving frequency is then formally zero and the detuning
is equal to the TSS splitting frequency ω0. Comparison with Equations (3.73) and (3.74)
suggests that the RWA is not needed in this case.

From our considerations in Section 3.3.3, we expect regular oscillations which are
indeed visible in all cases. However, a simple squared-sine-like dependence can only be
observed in the Ohmic plus Gaussian case. For the Dirac pulse, the transition probability
exhibits minima but no zeroes and the Lorentzian cases behave similarly, in addition
to a more complicated frequency dependence. This behavior likely originates from
the more complicated pulse shapes involved. Speci�cally, the e�ective force was given
by the narrow shape of Equation (5.28) for an Ohmic bath driven by a δ-pulse, while
the in�uence of the Lorentzian bath led to damped oscillations as seen in Equation
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Figure D.1: Populations ρ22(ts) versus driving strength for the dynamics calculated in Part 5 as a
proxy for the transition probabilities PT (ts). The populations are obtained via Equation (D.1) from
the non-equilibrium Bloch equations (5.71) with the parameters listed below Figures 5.6 and 5.7.
(a) Results for a Dirac pulse (blue solid lines) and a Gaussian pulse (red solid lines) for the Ohmic
spectral density sampled at ts = 50ω−1

0 . (b) Results for both pulse shapes for a Lorentzian spectral
density sampled at ts = 500ω−1

0 .

(5.29). Indeed, for time asymmetric pulses with non-zero detuning, it is known that
the transition probability does not vanish in many cases, even while periodic Rabi
oscillations do exist [158, 256]. For the Lorentzian spectral density, the oscillations of
Equation (5.29) can be seen as a single asymmetric pulse with a carrier frequency Ω.
While a complete analysis has not been performed yet, it is interesting to note, that
the Dirac pulse creates a more involved interference pattern after κ̄/∆ ∼ 75, while the
Gaussian pulse produces a fairly regular modulation of the Rabi oscillations. A look at
the Fourier spectrum (not shown) reveals that more frequencies are indeed involved in
the former. In contrast, the e�ective force for an Ohmic spectral density and a Gaussian
pulse is also Gaussian shaped. Thus, we recover a slowly rising amplitude and regular
oscillations as discussed in Section 3.3.3.

To conclude, the results from Part 5 show an interesting non-trivial dynamics in
the light of the emerging pulse shapes and we �nd some general features in agreement
with known results. A more detailed analysis of the Rabi oscillations presented could
be used to optimize the excitation probability when bath driving is involved.
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Appendix E
Evaluation of the path integrals

To evaluate the path integrals shown in Part 6, a variety of calculations have been
omitted. We aim to �ll some of these gaps here. Speci�cally, we outline the split into
classical and �uctuation parts following Equation (6.52), the emergence of the phases
in Equations (6.54) and (6.61) and give some hints on the integration over the boundary
values performed for Equations (6.55) and (6.65).

Fluctuation integral

We start with the path integral given in Equation (6.49) and the action (6.50). The
paths are now split into a classical part x̄α(t) and �uctuations ζα(t) according to
xα(t) = x̄α(t) + ζα(t). The classical part ful�lls the Euler-Lagrange equation (6.52).
Insertion into the action (6.50) yields

SDr
α,SB+B[xα, σ] =

∫ t

t0

ds

[
mα

2
ẋ2
α(s)− mα

2
ω2
αx

2
α(s) +

cα
2
q0σeff(s)xα(s)

]
=

∫ t

t0

ds [−ζα(s)]

[
mα ¨̄xα(s) + ω2

αx̄α(s)− cα
2
q0σeff(s)

]
+

∫ t

t0

ds

{
mα

2

[
ζ̇2
α(s)− ω2

αζ
2
α(s)

]}
+

∫ t

t0

ds

[
mα

2
˙̄x2
α(s)− mα

2
ω2
αx̄

2
α(s) +

cα
2
q0σeff(s)x̄α(s)

]
= +

∫ t

t0

ds

{
mα

2

[
ζ̇2
α(s)− ω2

αζ
2
α(s)

]
+
x̄α(s)

2

[
cα
2
q0σeff(s)

]}
+
mα

2

(
˙̄xα(t)x̄α(t)− ˙̄xα(t0)x̄α(t0)

)
.

(E.1)
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The bracket multiplying ζα(t) yields zero because of Equation (6.52) so the �rst equality
directly leads to

IDr
α [σ] = e

i
~S

Dr
α,SB+B[x̄α,σ]

∫ ζα,f=0

ζα,i=0

Dζα e
i
~

t∫
t0

ds mα
2 [ζ̇2

α(s)−ω2
αζ

2
α(s)]

, (E.2)

with the action (E.1) now given for the classical path x̄α(t), only. The second equality
in Equation (E.1) leads to a convenient form which we make use of below. Since the
classical path does not vary, the path integral is now reduced to a path integration over
the �uctuations ζα(t). Note that its boundary values are zero as the full path xα(t) does
not vary at its endpoints. In order to evaluate the integral, we follow the arguments
presented by Grabert et al. [94, Appendix 86,2A]. First, the �uctuations are written as a
Fourier series according to86,2

ζα(s) =
∞∑
n=1

ζ(n)
α sin[νn(s− t0)], (E.3)

which ful�lls the boundary conditions with the frequencies νn = πn/∆t and ∆t = t−t0.
Insertion into the action and use of the orthogonality of the sine and cosine functions
for di�erent n yields

SFl
α [ζα] =

∫ t

t0

ds
mα

2

[
ζ̇2
α(s)− ω2

αζ
2
α(s)

]
=
mα

4
∆t

∞∑
n=1

(ζ(n)
α )2

[
ν2
n − ω2

α

]
. (E.4)

The action (E.4) leads to a product of n Gaussians while the measure can be substituted
by n integrals over the ζ(n)

α . Thus, the whole path integral is reduced to a product of
Gaussian integrations and we can write∫ ζα,f=0

ζα,i=0

Dζα e
i
~S

Fl
α [ζα] = C

∞∏
n=1

[
1− ω2

α∆t2

n2π2

]− 1
2

= C

√
ωα∆t

sin(ωα∆t)
. (E.5)

Here, the last equation used
∏

n[1 − (ω2
α/ν

2
n)] = sin(ωα∆t)/(ωα∆t). The constant

C absorbed all emerging factors such as the Jacobian from the substitution (E.3). In
this way, C coincides with the result for a free particle and can be found easily by
comparison (see e.g. [61, Chapter 8.3]). We �nally obtain

IDr
α [σ] =

√
mαωα

2πi~ sin[ωα(t− t0)]
e
i
~S

Dr
SB+B[x̄α,σ]. (E.6)

A similar derivation can also be found in Altland and Simons [17, Chapter 3.3] where
the solution is constructed from the determinant of the operator inside the action
(the Klein-Gordon operator). We close by noting, that a split into a classical part and
�uctuations can also be performed for more general potentials [61, Chapter 8.6].
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Resulting phases

Equation (E.6) shows that the phases of Equations (6.54) and (6.61) are determined by the
action for the classical path x̄α(t). For a forced harmonic oscillator the Euler-Lagrange
equation can be solved by standard Green’s function methods. With χα(s) = sin(ωαs)
one obtains [94, Appendix A]

x̄α(s) =
χα(s− t0)

χα(t− t0)
xα,f +

χα(t− s)
χα(t− t0)

xα,i

+
q0cα

2mαωα

∫ s

t0

du χα(s− u)σeff(u)

− q0cα
2mαωα

χα(s− t0)

χα(t− t0)

∫ t

t0

du χα(t− u)σeff(u).

(E.7)

We can already see how the di�erent terms of the phase (6.54) arise by comparison
with the second equality in Equation (E.1). Here, the last term gives rise to the free
solution while the term proportional to x̄α(s) produces the terms that depend on cα.
Thus, insertion and rearrangement leads directly to Equations (6.54) and (6.61). Finally,
we give expressions for the equilibrium density matrix which reads [94]

ρeq
B (xα, x

′
α) =

1

Zα

√
mαωα

2π~ sinh(~βωα)
e−

1
~Φeq[xα,x′α], (E.8)

with the phase

Φeq[xα, x
′
α] =

mαωα
2 sinh(~βωα)

{[
(xα)2 + (x′α)2

]
cosh(~βωα)− 2xαx

′
α

}
. (E.9)

The partition function Zα is given by the usual expression for free harmonic oscillators
[94], i.e.,

Zα =
[
2 sinh(~βωα/2)

]−1. (E.10)

Evidently, the equilibrium density matrix gives the imaginary time analogue to the
considerations in the previous subsection.

Boundary value integrations

These calculations are simple Gaussian integrations and can be performed without
di�culty. Due to the number of terms involved, ordering the intermediate results can
still be quite daunting. We therefore give some convenient parametrizations. First, it is
useful to de�ne

A = coth(~βωα) + i cot[ωα(t− t0)] and M =
mαωα

2~
. (E.11)
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Both can be used to de�ne the factors of the resulting Gaussian integrations with the
form exp(−aix2 + bix+ ci). For the integrations required to arrive at Equation (6.65),
the ai can be chosen according to

a1 = MA, (E.12)

for an integration over x̄′α,i �rst, then

a2 = MA∗ − M

A

[
1

sinh2(~βωα)

]
=
M

A

[
1 + cot2[ωα(t− t0)]

]
(E.13)

for a subsequent integration over x̄α,i and

a3 = MA

[
1− 1

A sinh(~βωα)

]
+
M

A

[
1

sinh2(~βωα)
+

1

sin2[ωα(t− t0)]

]
= 2M tanh(~ωαβ/2),

(E.14)

for the �nal integration over the remaining xα,f . All ai then feature a positive real
part such that the Gaussian integrations can be performed. The bi and ci are lengthier
expressions that we will not give in detail. However, b1 can be simpli�ed by using

B =
dα
2

∫ t0

ta

du sin[ωα(t0 − u)] cos[ωα(t− t0)]F (u)

+
dα
2

∫ t0

ta

du cos[ωα(t0 − u)] sin[ωα(t− t0)]F (u)

+
q0cα

2

∫ t

t0

du sin[ωα(t− u)] σeff(u)

=
q0cα

2

∫ t

ta

du sin[ωα(t− u)] σeff(u).

(E.15)

Here, the �rst term originates from the shift (6.64), the second from the additional
term in Equation (6.63) and the third comes from the phase (6.54). In the last equality,
the implicit time dependence of the system-bath coupling has been used such that
Equation (E.15) serves as an example how the non-Markovian force emerges from the
integrations. A similar de�nition can be used for the primed variables. The rest of the
calculation concerns the proper rewriting of double integrals which can be done by
carefully interchanging the order of the integrations.
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Appendix F
Corrections to the THz Kerr e�ect in water due to in-
teractions and bath driving

In this appendix we consider two simple extensions of the Kerr e�ect theory of Part 7,
as outlined in Section 7.2.3.

Dipole-dipole interactions

We start with dipole-dipole interactions, as given in Equation (7.36), and follow the
work by Déjardin and Ladieu [138]. They derive a correction to the dynamic Kerr
e�ect on the basis of spherical molecules and an AC driving �eld. We may assume
that the correction applies only to the dynamics of the second Legendre polynomial
and depends on the anisotropy ∆α

‖
0 due to the considerations below Equation (7.10).

Speci�cally, we use the correction

∆αint(t) = −3∆α
‖
0

5τD

µ2

(kBT )2

Λ

(3 + Λ)2

∫ t

0

du e
−3

(t−u)
τD E2(u), (F.1)

where Λ = (ρ0µ
2)/(3ε0kBT ) de�nes the strength of the interaction and depends on

the number density ρ0 and the absolute value of the permanent dipole moment µ. The
prefactor has been set to agree with that obtained for the (steady-state) polarizabilities
at zero frequency [138, Equation (31)]. Using the values of Part 7, we obtain Λ ≈ 30
such that the prefactor is about a fourth of the size of the permanent dipole contribution
in Equation (7.26). We stress that Equation (F.1) does not involve a detailed rederivation
and should only be seen as an approximate estimate of the e�ect of these interaction
contributions. The results are shown in Figure F.1 (a) for the polarizability in Equation
(7.30). The interaction term shifts the result downwards, as expected, and brings it
closer to the experimental results. However, the overall change is still too small to yield
signi�cant agreement and the di�erence in the peak positions still persists.
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Figure F.1: Results for the phase shift (7.33) with additional corrections (light blue solid lines). (a)
Results for additional dipole-dipole interactions (∆Φint) according to Equation (F.1). (b) Results
for additional bath driving corrections (∆Φbd) according to Equation (F.2). Both panels show the
experimental results by Zalden et al. [3], ∆Φexp (green dotted lines), as well as the uncorrected
results of Part 7, ∆Φ (dark blue dash-dotted lines). The (normalized) electric �eld of Equation (7.32)
is also shown (red dashed lines).

Bath driving contribution

We proceed to bath driving e�ects which we implement as a correction to the electric
�eld experienced by the water molecules. Speci�cally, we apply Equation (7.38) and
use the results from the Onsager sphere model to correct the �eld in the Kerr e�ect
theory of Part 7. Naturally, this assumes that the correction occurs parallel to the
external driving �eld. By combining Equations (3.52), (4.24) and (4.25), we can write
the corrected electric �eld as

Eeff(t) = E(t)− 2

π

∫ ∞
0

dω Im [χo(ω)]

∫ t

t0

ds E(s) sin[ω(t− s)]. (F.2)

The Onsager susceptibility is given by Equation (3.48) and we use the dielectric function
of water as given in Equation (4.26) [119]. As before, this approach should only be seen
as an estimate of the size of relevant bath driving e�ects. Finally, we have included a
minus sign in Equation (F.2) because we aim for a reduction of the �eld due to bath
driving e�ects and no enhancement. The results are shown in Figure F.1 (b) for the
polarizability of Equation (7.30). In contrast to the e�ect from the interactions, the
contribution from bath driving leads to modulations on the basis of the �eld strength
and its impact is most relevant at the positive and negative peaks. We see both a
reduction of the peak height as well as a shift of the peaks to earlier times. Both changes
lead to a slightly better agreement with the experimental results. However, the overall
e�ect is still too small to lead to any signi�cant improvement.
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