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Abstract

The unique properties of x-ray free-electron lasers (XFELs), such as their
immense brilliance, ultrashort pulse duration, and high photon energies,
make XFELs an incredibly useful tool in a plethora of different scientific
fields. Their applictions include unique imaging techniques used in struc-
tural biology and bio-engineering, the study of new effects in nanophysics,
and the creation and probing of exotic states of matter used to investigate
astrophysical objects and phenomena. Due to the development of XFELs
over the last few decades, there has been an increasing need to theoretically
describe the x-ray—matter interactions, and subsequent radiation-induced
interactions, that are prevalent in various kinds of irradiated systems. This
dissertation is dedicated to the theoretical modeling of electron-impact ion-
ization in warm dense matter (WDM). Electron-impact ionization is a pre-
dominant contributor to radiation damage induced by an XFEL pulse in
dense materials.

The first part considers the process of electron-impact ionization for an
isolated atom. Specifically, I consider how the cross section for this process
changes for different electronic configurations of the same ion. I find that
this change may be quite substantial. It depends on the charge state of the
ion, the energy of the ionizing electron, and on how much the two electronic
configurations being compared differ from each other.

The second part revolves around the theoretical description of warm
dense matter states. I develop a novel toolkit called XCRYSTAL, which cal-
culates electronic states present in a transient state of nonisothermal WDM
from first principles. With XCRYSTAL, I calculate the electronic energies for
these WDM states, which allows for predictions of the ionization potential
depression caused by the presence of a dense and charged environment. In
addition, I investigate the temperature dependence of the band structure of
a WDM system and provide physical justifications for the observed trends.

The third and final part uses the results of the previous two parts to
model electron-impact ioinization in the warm dense matter states described
by XCRYSTAL. Here, I develop the theory to calculate the cross section in this
system and provide an in-depth discussion on its practical implementation.



Zusammenfassung

Die einzigartigen Eigenschaften von Rontgen-Freie-Elektronen-Lasern
(XFELs), ihre immense Brillanz, ultrakurze Pulsdauer und hohe Photonenen-
ergien, machen XFELs zu einem unglaublich niitzlichen Werkzeug fiir eine
Vielzahl verschiedener wissenschaftlicher Bereiche. Zu den Anwendungen
gehoren einzigartige Bildgebungsverfahren fiir die Strukturbiologie und
Biotechnik, Untersuchung neuer Effekte in der Nanophysik sowie die Erzeu-
gung und Untersuchung exotischer Materiezustande zur Erforschung astro-
physikalischer Objekte und Phdnomene. Durch die Entwicklung von XFELSs
in den letzten Jahrzehnten besteht ein zunehmender Bedarf an theoretischen
Beschreibungen der Wechselwirkungen zwischen Rontgenstrahlung und Ma-
terie und den nachfolgenden strahlungsinduzierten Wechselwirkungen, die
in verschiedenen Arten von bestrahlten Systemen vorherrschen. Diese Dis-
sertation widmet sich der theoretischen Modellierung der Elektronenstof3-
Ioinisierung in warmer, dichter Materie (WDM). Die Elektronenstofiionisa-
tion trégt hauptsachlich zu Strahlenschéden bei, die durch einen XFEL-Puls
in dichten Materialien verursacht werden.

Der erste Teil befasst sich mit dem Prozess der Elektronenstoflionisation
fiir ein isoliertes Atom. Insbesondere betrachte ich, wie sich der Querschnitt
flir diesen Prozess bei verschiedenen elektronischen Konfigurationen dessel-
ben Ions #ndert. Es stellt sich heraus, dass diese Anderung ziemlich erhe-
blich sein kann. Der Ladungszustand des Ions, die Energie des ionisierenden
Elektrons und die spezifische elektronischen Konfigurationen ergeben hierbei
unterschiedliche StofSquerschnitte.

Der zweite Teil behandelt die theoretische Beschreibung warmer Zustande
in dichter Materie. Ich beschreibe hier die Entwicklung eines neuartigen
Toolkits namens XCRYSTAL, das elektronische Zustdnde, die in einem
Ubergangszustand von nichtisothermer WDM vorliegen, ab-initio berech-
net. Mit XCRYSTAL betrachte ich die elektronischen Energien fiir diese
WDM-Zustéande, was Vorhersagen fiir die Verringerung des Ionisationspo-
tentials ermoglicht, die durch das Vorhandensein einer dichten und gelade-
nen Umgebung verursacht wird. Zuséatzlich untersuche ich die Temperat-
urabhéngigkeit der Bandstruktur eines WDM-Systems und gebe physikalis-
che Begriindungen fiir die beobachteten Trends.

Aufbauend auf den beiden vorangegangenen Teilen behandelt der dritte
und letzte Teil die Modellierung der Ionisierung durch Elektronen in warmen
Zustanden dichter Materie mittels XCRYSTAL. Ich entwickle hier eine Theo-
rie, um den StoBquerschnitt zu berechnen, und diskutiere dessen praktische
Umsetzung.
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Chapter 1

Introduction

X-ray free-electron lasers (XFELs) [4-8] have the capability of providing
ultrafast pulses (< 100 fs) of transversally coherent laser light in the x-ray
regime (~ 250 — 25,000 eV) at immense peak brilliances (up to ~ 1033
photons/sec/mm? /mrad?/0.1% bandwidth). This is achieved by introduc-
ing a highly energetic electron bunch (~ 17.5 GeV) into an array of rapidly
alternating magnetic fields, called undulators. This subsequently causes the
trajectory of the electron bunch to alternatingly curve, thereby emitting elec-
tromagnetic radiation. The emitted radiation is made transversally coherent
through the process of self-amplified spontaneous emission (SASE), whereby
the electrons interact with the emitted photons [9]. Several XFEL facilities
have already been established around the globe, including the LCLS [10],
SACLA [11], the European XFEL [12,13], PAL-XFEL [14], SwissFEL [15],
and FLASH [16].

The applicability of XFELSs is highly diverse and interdisciplinary, rang-
ing from atomic physics to molecular biology [17-25], from nanophysics to
solid-state physics [26-29], and to astrophysics [30]. The theoretical results
presented in this thesis are of particular importance to two fields of XFEL
applications, namely their imaging capability in the context of structural
biology [31-33] and their capability to create and probe exotic states of
matter [34,35].

The imaging capability of XFELs arises from the fact that from the
scattered light that is observed after irradiating some sample, the three-
dimensional structure of that sample can be deduced [21-25]. For a single
scatterer, such as a single biomolecule for example, the amount of scattered
photons will be limited, making its structural imaging rather challenging.
Two methods can be used to circumnavigate this issue. The first way is
to increase the number of scatterers, albeit in a specific manner. Namely,
if the scatterers are in crystalline form, the coherent diffraction from the
crystal allows for an enhanced scattering signal. For example, a molecule of
interest can be grown in a (nano)crystalline form and one may subsequently
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2 CHAPTER 1. INTRODUCTION

irradiate numerous of these samples to obtain its molecular structure. This
is the principle underlying serial-femtosecond crystallography (SFX) [31,32].
The second way is to increase the number of photons to be scattered. This
is where the immense brilliance of the XFEL pulses comes into play. The
ultra-intense nature of XFEL pulses negates the necessity for the use of a
crystalline structure. However, the high brilliance of the pulse also causes
rapidly progressing damage to occur within the sample [36,37]. Therefore,
the x-ray pulse may obliterate the sample to be imaged, causing the scat-
tered light to not accurately represent the structural information. This can,
however, be remedied by the ultrafast nature of the XFEL pulse. The tempo-
ral span of the pulse is short enough to outrun radiation-induced molecular
dynamics, thereby retaining the structural information in the scattered sig-
nal. However, electronic motion can not be outrun with currently available
XFEL pulses [38]. Therefore, the understanding of the radiation damage in-
duced by electronic motion, including its treatment in simulation toolkits, is
crucial to achieve high-resolution structural information from experimental
data [38-43].

Chapter 3 investigates the effect of electron-impact ionization in the
context of imaging done by XFELs. The contribution of this process to
radiation damage is significant in dense systems [37,38]. Electron-impact
ionization is the process whereby an incoming electron scatters with, and
ejects, a bound electron, thereby ionizing the parent atom of the latter [44—
49]. In Chapter 3, we studied whether the explicit electronic configuration
of an ion of a given charge state present in an imaged sample affects the
electron-impac-ionization cross section. The conclusion is that the electronic
configuration does indeed affect the cross section for a specific ionic charge
state and this effect cannot, therefore, be simply ignored [1]. The observed
trends are discussed and justified in the framework of the developed theory.

Aside from the imaging capability of XFELSs, we mentioned their ability
to create and probe exotic states of matter. The exotic state of matter of
particular interest for this thesis is warm dense matter (WDM). Ever since
its conceptual inception, warm dense matter has asserted itself as one of the
most peculiar, and therefore interesting, states of matter [50]. It lies in this
region of phase space where plasma physics and condensed-matter physics,
and to some degree atomic physics, overlap; characterized by temperatures of
the order of T ~ 0.1 —100 eV and densities ranging from 1073 to 102 g/cm?3.
This makes it difficult to describe theoretically as conventional methods
from either plasma physics or condensed-matter physics cannot be trivially
extended into this regime. All that can be done is to use ideas from these
fields and gain insight with regards to their applicability to WDM. This is
particularly exciting, as it gives way for creativity and innovation in the
development of new theories that potentially apply to WDM.Warm dense
matter is not only theoretically interesting as, on the grand scale of the
Universe, it is abundantly present. After all, it is expected to be present to



some degree in nearly all stars, in other stellar bodies such as white dwarfs,
and in large planets [51-55]. Warm dense matter has been created in the last
century in plasma experiments, but mostly as an intermediary, and transient,
product. Consider as example the experiments related to the creation of
plasmas in the context of fusion [56-59]. For fusion to occur, much higher
temperatures than those characterized by WDM need to be obtained, but
by heating up a sample to those temperatures, one will inevitably encounter
the WDM regime, even if that was not aspired. Now, with the advent of
XFEL facilities, the creation of WDM has become, aside from a byproduct,
also a dedicated goal [34,35,60-63]. To create it, to probe it, and to study it.
And apart from its thermodynamical properties, also processes within this
state of matter are of importance, to describe its evolution and model how
these processes differ in this regime from a conventional context. The goal of
this thesis has been to contribute to the advancement of our understanding
of warm dense matter as well as processes therein.

Chapter 4 addresses the explicit calculation of the electronic states
present in warm dense matter, which is created by irradiating a solid sample
with an XFEL pulse. Despite its importance, WDM remains a particularly
elusive state of matter to describe theoretically [50]. This is due to the
fact that both quantum coupling effects as well as thermal effects come into
play at similar magnitudes, foregoing a trivial extension of conventional
condensed-matter theories at zero temperature, or of plasma theories, into
the WDM regime. In Chapter 4, a specific transient nonisothermal state
of WDM, with a lifetime of tens of fs, created during XFEL experiments
is investigated. In this transient state, electrons are assumed to be hot,
with temperatures typical for WDM conditions (10,000 — 10 million K),
whereas the nuclei are assumed to remain cold and “frozen” in a lattice
structure [64-70]. The electronic states in this system were calculated with
a novel toolkit, XCRYSTAL [3]. Specifically, we calculated the change in
ionization potentials in ions caused by the presence of a dense and charged
environment as opposed to a single isolated ion. Additionally, the band
structure was calculated for these systems as a function of temperature.
In light of the results presented in Chapter 4, we comment on the effects
of the incorporation of the explicit lattice structure, as well as the proper
treatment of the so-called core orbitals.

In Chapter 5 the topics of the previous two chapters are combined, to
consider the electron-impact-ionization cross section within transient non-
isothermal WDM. The WDM state will evolve beyond this transient state,
progressing from the nonisothermal system considered in Chapter 4, so as to
include lattice vibrations, electron-ion coupling, and eventually, nuclear in-
teraction and dynamics [64-70]. The main catalyst inducing this evolution
can be attributed to electronic processes. It is expected that the process
of electron-impact ionization plays a significant role in this context. The
explicit calculation of the electronic states performed by XCRYSTAL will al-
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low for the first calculation of the electron-impact-ionization cross section
in this WDM state from first principles. The respective theory framework
developed by the author is presented, followed by an elaborate discussion
on the implementation of this framework into the XCRYSTAL code.
Chapter 6 provides a summary and outlook.

Before presenting the original work of this thesis, a description of the
theoretical framework that is relevant for all three parts is presented in
Chapter 2. This chapter outlines the many-electron quantum theory that
was employed, the calculation of cross sections within perturbation theory,
the inclusion of temperature, and, finally, the description of electronic states
in a periodic system.



Chapter 2

Theory framework

The purpose of this chapter is to introduce the theory that was used as a
basis for the original work done in the upcoming Chapters 3 to 5. The frame-
work presented in this chapter can be found in Refs. [71-77]. We will start
with the general formulation of the principle of stationary action for both
classical particles and fields, which will allows us to naturally define and
relate Lagrangians, Lagrangian densities, Hamiltionians, and Hamiltonian
densities. Having done so, we will extend this formalism into the framework
of quantum mechanics, thereby introducing the the use and importance of
(Hermitian) operators in this framework. This will lead us into a discussion
on the distinction between first and second quantization in quantum theory.
Using the quantization of the electromagnetic field as an example, we will
provide a general recipe for developing a quantum theory in second quan-
tization, which will be used throughout this thesis. Subsequently, we will
develop the formalism for the theoretical description of a many-electron sys-
tem. This will be followed up by addressing the approximations made for its
practical implementation, finally arriving at the derivation of the so-called
Hartree-Fock-Slater equations. After an overview of the use of perturbation
theory in the framework of quantum mechanics, we will introduce the cross
section as a valuable observable and derive how it is to be calculated using
the previous results for the specific example of electron-impact ionization.
We will finish with a brief discussion on the incorporation of temperature
and a periodic environment in this framework.

Throughout this thesis, Hartree atomic units will be employed, i.e., the
electron mass m., the elementary charge e, and the reduced Planck constant
h are all set equal to 1, whereas the vacuum permittivity g is set equal to
1/47. In addition, the Boltzmann constant kp is also set equal to 1.
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2.1 Principle of stationary action

The principle of stationary action is a way to derive the equations of motions
of a particular system. It is, in essence, simply a reformulation of classical
Newtonian mechanics. However, it turns out that the principle of stationary
action reaches far beyond the realm of classical mechanics and extends nat-
urally into the fields of quantum mechanics and relativity. For this reason,
it is an appropriate starting point of our theoretical formalism.
Consider a system with N degrees of freedom, described by the general-
ized coordinates q = (q1, ¢, -..,qn ). The action S is defined as
to
S = t dt L(q(t),q(t),t), (2.1)
1
where ¢ defines the generalized velocities. The Lagrangian L is defined
as the difference between the total kinetic energy of the system and the
potential energy of the system, L =T — V. Considering the variation of .5,
we can calculate:
to

08 = dt 5L(q(t)¢(i(t)vt)
t1
2 N oL oL
/tl ZZ; (8 3%‘

8@[1 8@[1 dt
t2 oL t2 oL oL
Uy (o) + [ 5= 5 (5 ) o]}
oL . 1" t2 oL d 0L
0q; +/ dt < — )(5 IR 2.2
{ [an & ]tl t1 aQZ dt 0q; 1 ( )

If we assume the initial and final points in configuration space, q(t1) and
q(t2), to be fixed, such that their variations are zero, the first term vanishes.
Imposing the principle of stationary action implies that we take the variation

of S to be zero, thus setting S = 0, which recovers the Euler-Lagrange (E-L)
equations for the equations of motion:

oL d JL

O0q;  dt 0qg;
We can show this is equivalent to Newton’s second law of motion by consid-
ering the Lagrangian

to .
/ » [8L . d(5ql)}
t1

= 1M

1

2

I
.MZ

1

2

=0, fori=1,...,N. (2.3)

N
Z V(x1,X2, ..., XN), (2.4)
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with m;, x;, and %x; the mass, position, and velocity of the i-th particle,
respectively. Plugging this into Eq. (2.3) immediately yields:

N
—VV (X1, X, ..., XN) = »_m%; = 0. (2.5)
i=1
Defining the force, F = —VV,| we recover Newton’s second law of motion.

This last connection between the force and the potential is valid for con-
servative forces, i.e., forces that result in the work done to move a particle
between two points being independent of the path taken. All interactions
considered in this thesis result in conservative forces.

We define the generalized (canonical) momentum conjugate to coordi-
nate g; as

OL

= 5o (2.6)

pi
This is a natural choice as we know from Noether’s theorem that an invari-
ance with respect to a coordinate g; leads to the conservation of momentum,
which follows immediately from Eq. (2.3), by plugging in the definition of
pi [Eq. (2.6)] and setting 0L/0q; = 0. The conventional form for the total
momentum, p = » ., m;X;, can be recovered using this definition in con-
junction with the Lagrangian in Eq. (2.4). The Hamiltonian, H, is defined
via a Legendre transformation of the Lagrangian

and is a constant of the motion if the Lagrangian is not explicitly dependent
on time. This can be shown by considering

att =5 (Gorau + G ) + Gl

—~\dg; ' Op; ot
=d <Z ¢ipi — L)
oL oL
= ——dq; + ¢;dp; | — —=—dt, 2.
from which we can read off
OH OH OH oL
YR op; 1 ot ot (2:9)

In all cases considered in this thesis, the Hamiltonian represents the total
energy T4V of the system. Furthermore, we will not be considering explicit
time dependence in Lagrangians throughout this work, and will omit it
henceforth.
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We can extend this framework to include an infinite number of degrees
of freedom, i.e., going from a discrete number of generalized coordinates to
using continuous (vector-)fields A(x,t). The Lagrangian L can (often) be
written as a volume integral over a Lagrangian density, £:

= /dgl‘ [,(A,ain,atAi), (210)

where 0; = 0/0x; and 0; = 0/0t. Same as before, we obtain the equations
of motion by setting §.5 = 0, yielding:

to
68 = dt/d%éﬁ(A,ain,atAi):O, (2.11)
where
oL  9(64;) oL  I(6A;)
A; + . (212
0L = Z 5 Za A) oz, o) ot (212)

Imposing similar conditions as before, dA4;(t1) = 0 and §A;(t2) = 0, and
imposing the additional condition that §A; — 0 as x — oo for all times, we
may again perform an integration by parts resulting in

0 8£ oL
— =0. 2.1
ot 8(8; Ay) Z 0z 0( 8 A ye 0 (2.13)

Analogous to before, we may define a canonical momentum density field
II(x,t) with components

oL
IT; = , 2.14
50,4 244
and a Hamiltonian H in terms of a Hamiltonian density H
H= / drH, with H = (0:;A)-TI - L. (2.15)

The purpose of this section was to show that all that is needed to deter-
mine the equations of motion of a system is either the Hamiltonian or the
Lagrangian (only one is desired as the other is connected via a Legendre
transformation). From them, an action S can be constructed and the equa-
tions of motion can be derived by imposing that this action is stationary,
6S = 0. In addition, the Hamiltonian represents the total energy of the
system considered.
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2.2 Quantum theory

To develop a quantum-mechanical framework, one has the choice of employ-
ing one of two schemes: first quantization or second quantization. First and
second quantization lie at the heart of the wave-particle duality in quan-
tum mechanics. In simple terms, first quantization refers to the fact that
particles behave like waves and second quantization to the fact that waves
exhibit particle-like behaviour [73]. Examples are, for instance, electrons
being described with the Schrédinger equation, which is a wave equation,
or electromagnetic waves being described by photons, and vibrations in a
lattice by phonons. In this section, we will elaborate on first and second
quantization and use it to extend the classical formalism of Sec. 2.1 into the
microscopic quantum world.

2.2.1 First quantization and the Schrodinger equation

To introduce first quantization, consider a particle in one dimension. Con-
ventionally, one may describe this particle using quantities such as its posi-
tion z and its velocity v = & at any given moment in time. We disembark
from this in the quantum realm and instead describe the particle with a
complex-valued probability-amplitude function ¥(z,t), that obeys a wave
equation

ov 1 9%V

where m is the mass of the particle and V is the external potential. Ad-
mittedly, this is quite an assumption to make. Why should we care about
a probability function, why would it be complex, and why would it follow a
wave equation? Unfortunately, the historical development of quantum me-
chanics is such that theory and experiment walked hand in hand together
very closely, depending on each other for guidance. As such, the consensus
that they reached is utterly unintuitive and pedagogically difficult to justify.
However, guided by experiment, we may take it as an ansatz and be assured
that it works.
Like any probability amplitude, ¥(x,t) is normalized to one

o0
/ do |9 (2, ) = 1, (2.17)
—0o0

which imposes ¥(z,t) — 0 as © — oo. This defines the probability-density
function associated to the particle at the space-time point (z,t) as |¥(x,t)|?.
In addition, it defines the wave functions ¥(z,t) as vectors in a complex L>-
Hilbert space with an inner product defined as

(U]®) = /_OO dz Ul (z,1)®(z, 1), (2.18)
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for two vectors |¥) and |®) in this L?-Hilbert space. As a probability am-
plitude, ¥(x,t) shares the interpretation that if one wants to know the
expectation value of an observable quantity, such as z, it is calculated as:

(z) = /_OO dz Ul 2. (2.19)

One can proceed by considering the expectation value of the particle’s ve-
locity. Using Eq. (2.16), it follows that

diz) :/da:x2|\lf|2

dt ot
i 0 or  out
= —Z (gptZ2 - 22
Qm/dxm(?m <\IJ Oxr  Ox \p>
—i ov
= — 1) el 2.2
- dx B (2.20)

from which we can find the momentum p = md(x)/dt. Together

(z) :/:\Iﬁ (2] © pz/dx\lﬁ [—i%] 0,

[e.e]
:/ ol (2] @ :/daz ol [p] @ (2.21)
[e.e]

The point of this exercise was to show that we can reformulate the de-
termination of certain quantities x and p into the determination of the ex-
pectation values of suitable operators & = x and p = —id/0x. In general,
an observable O is represented by a Hermitian operator, O, where its expec-
tation value is calculated as (O) = (¥|O|¥) = [ dx wtOW. This operator
must be Hermitian to ensure that its expectation value is real. A key prop-
erty that operators possess is the fact that they do not generally commute.
Acting with £p — pZ = [Z, p] on some test function f reveals that [Z,p] = i.
This representation of physical quantities as operators is referred to as first
quantization. It turns out that promoting quantities to be operators that
satisfy certain commutation relations is a general recipe to extend a clas-
sical theory into a quantum theory. For the general system of N particles
developed in Sec. 2.1 this amounts to

i, 4;] = [Pi Ps] = O, and [, Pj] = 1045 (2.22)

The fact that we may describe (the properties of) particles by using a proba-
bility amplitude ¥ (x, t) (with x being the three-dimensional position vector)
which obeys a wave equation of the form

oV

1 2 kS
— =——VU4+ VU =HY 2.23
2815 2mv + ’ ( )
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reveals one direction of the wave-particle duality. As a quick note, if we fac-
tor out the time-dependence of W(x,t) as W(x,t) = ¥(x)e 1t = oh(x)e Pt
where ¢ and E are eigenfunctions and eigenvalues of the Hamiltonian H ,
we arrive at the time-independent Schrodinger equation:

_%v%p(x) +Vi(x) = Hi(x) = Bo(x), (2.24)

which identifies F as the energy of the particle considered. It turns out that
any solution to the time-dependent Schrédinger equation, W(x,t), may be
written as a linear combination of 1, (x)e~ "t with {t,, E,}, n € N, one
of infinite solutions of Eq. (2.24) [72]. We will return to the inclusion of
time in Sec. 2.4.1. When describing more than one particle, say N of them,
U = W(x1,X3,...,XN,1), and in Eqgs. (2.23) and (2.24) V? must be replaced
by >, V2, ie{l,..,N}.

2.2.2 Second quantization and quantizing the electromag-
netic field

The first quantization scheme works fine for systems where the number of
particles N is fixed. However, there are numerous scenarios where one may
be interested in changing the number of particles present in the system.
The system with a particle added or removed would have to be described
by a new wave function. Thus, having gone through the arduous task of
solving for ¥(x1,x2,...,Xn,t), we could have an interaction occur, thereby
changing the number of particles, and having to solve for a new wave function
U'(x1,X9, ..., XN/, ), with N # N’  all over again. To remedy this, one
performs the process of quantization on the fields that describe your system,
rather than directly on observable quantities. The quantization of fields
leads to the concept of a quantum field. For the vector fields considered in
Sec. 2.1, this amounts to:

[Ai(x), 4; (x)] = [IT;(x), I1; (x')] = 0

[A;(x), T ()] = i6;;0(x — x'). (2.25)
As such, the normal modes of the (now quantum) field, after defining some
basis to represent it in, become quantized. These discrete excitations that
comprise the quantum field are interpreted as particles. This solves the issue
of changing the number of particles NV, since we only need to consider differ-
ent quantized modes to change this number. Having particles pop up in this
way from quantized fields in second quantization reveals the other direction
of the wave-particle duality. Even though this last paragraph phrases the
essence behind second quantization, it is not very informative without an
explicit example. Therefore, as we will be working in second quantization
in this thesis, and to better illustrate the aforementioned concepts, let us
work out the example of quantizing the electromagnetic field.

1
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A classical electromagnetic field is described by Maxwell’s equations,
presented here in Gaussian units

V- E = dmp, (2.26a)
V.B=0, (2.26b)
10B
VXE= —257 (2260)
47 1 0E
VxB=—J+—-—— 2.26d
X c * c ot’ ( )

with E and B denoting the electric and magnetic field, respectively, and p
and J being the charge density and charge density current that arise from
the present charged particles. They are given by:

p(x,t) =D end(x — qn(t)), (2.27a)
J(Xv t) = Z enQn(t)é(x - qn(t))7 (2'27b)

n

with e, being the charge of the n-th particle, and q,(t) and q,(t) its respec-
tive position and velocity. The equations of motion for the particles stem
from coupling them to E and B through the Lorentz force

MnQn(t) = ep <E + %qn(t) X B) , (2.28)

with m,, being the mass of the n-th particle. From Egs. (2.26a)-(2.26d), we
can obtain solutions for E and B in terms of the scalar and vector potentials
® and A, which are
10A
E=-Vb———| 2.29
c Ot ( )
B=VxA. (2.30)

They remain invariant under the following transformation

10X
=0 =9 -~ 2.31
A=A =A+V) (2.32)

where A(x,t) is any real scalar function. This transformation is called a
gauge transformation. As ® and A, and in turn also E and B, remain
invariant under a gauge transformation, physical results should not depend
on the function A(x,t). This thus provides an extra degree of freedom and
it is common to use this advantageously by imposing a particular restriction
on either ® or A with the goal of simplifying computations. The gauge
choice we will employ is the Coulomb gauge, V- A = 0. Note that the scalar
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potential provides no new information, as it can be related to the charge
density via Poisson’s equation:

V20 = —4rp, — d(x,t) = /d3 P ) (2.33)
|x — X’|
Thus, the electromagnetic field itself is characterized solely by the vector
potential A(x,t). Its equation of motion can be derived from Egs. (2.26a)-
(2.26d) and takes the form of a wave equation:

1 9 9 4

We will proceed by only considering the free electromagnetic field, i.e., set-
ting p and J equal to zero. We wish to find a Lagrangian density that
recovers the equation of motion for A(x,t) [Eq. (2.34) with J = 0], such
that we may identify the Hamiltonian and the canonically conjugate mo-
mentum II(x,t), as was explained in Sec. 2.1, thereby identifying what the
canonically conjugate fields are that we wish to quantize.

The free electromagnetic field can be fully described by the Lagrangian
density

Erad = 3 02A (V X A) s (2.35)

where A = 9tA. This Lagrangian density leads to the correct equation of
motion for A as

0 OLraa 1 9%4;

9 _ 2.
9t 9(0,A;)  dnc? of2 (2.362)
a 8£rad o 1 2 ]
Z 57, = -V (2.36b)
aaﬁjd =0, (2.36¢)

which can be used in the E-L equations to arrive at Eq. (2.34) with J = 0.
Having defined a Lagrangian density, we can find the canonical momentum
conjugate to A(x,t) using Eq (2.14)

8'C'rad _ 1
OA  4dmc?

Ti(x, 1) = (2.37)

as well as the Hamiltonian density through Eq. (2.15)

Hyad = 8i [(4meIT)? + (V x A)?]. (2.38)

™
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To quantize the electromagnetic field, we simply promote A and IT to op-
erators A and IT and impose they satisfy the commutation relations in
Eq. (2.25).

To show how this leads to particle-like behavior, we decompose the vector
field A(x,t) into a basis of plane waves. Since A(x,t) satisfies a wave
equation, plane waves form a natural choice for a basis. The mode expansion
is

22 , ‘
Axt) =) = [“k,AEk,Aez(k'x_wkt) +af ef ye i kexmed)

kA VWk “
2 2 .
_ Z TC |:(Ik7)\5k,)\ez(k.x_wkt) + C.C.] , (239)
~ Vwy

where “c.c.”

stands for the complex conjugate of the first term in the square
brackets, wx = c|k| and the volume V is introduced to impose periodic
boundary conditions on the plane waves. The polarization vectors ey y,
with A € {1,2}, denote the two directions of polarization transverse to
the direction of propagation, k/|k|. Explicitly calculating II(x,¢) using
Egs. (2.37) and (2.39) yields

. W i(k-x—w
II(x,t) = —i Z \/ 877ch [akv,\skv,\e (ex—wt) _ce |, (2.40)
k,\

The quantities of particular interest in this context are the mode coefficients
ax, and aL - The promotion of A(x,t) and II(x,t) into operators implies

that ay ) and alT( y are also promoted to operators. The commutation rela-

tions between A and IT immediately allow us to compute the commutation
relations between ay ) and &L y» with the result:

[ax,x, i 3] = [&L,de,x] =0

[t s gy 3] = Oxx Ok (2.41)
Using Eqs. (2.38)-(2.41), we can write Hyaq as

. . o 1
Hiynq = / PrHna = Y wi <aL Ak + —) : (2.42)
v K\ ’ 2

which corresponds to the Hamiltonian for a harmonic oscillator for each
mode (k, \). The operators ax » and &L , now have the remarkable property

that if |ny ») is an eigenstate of H,.q with eigenvalue Ey  (the use of the
notation nk  will become clear shortly), then ay |nk x) and &L \Inin) will
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be eigenstates of that same Hamiltonian, with eigenvalues Ey » — wy and
Ex ) + wy, respectively.

- . . . 1 .
Hyng (e lmicn) = Y wie (aL/,)\’ak’,X + 5) (ax,x[mx0))
KN

o N 1
= Z Wy [(ak,)\a;r(/,)\/ - 5)\,>\’5k,k’) ay: \ + (k25 [N, x)
Ko\

R R . 1
=ak)§ —wk + Z wg/ |:aTk/7>\/ak’,X + 5} Nk, \)

K\
= Gk ) (ﬁrad - Wk) [N, x)
= (Fx — wk) Gk \|nKk ), (2.43)

and similarly Hiaq (&L)\|nk7,\>) = (Ex + wk) dL’)\\nk,)j, i.e., a single quan-
tum of energy, wy, has been respectively removed and added to the mode
(k, A). Equivalently, this can be interpreted as a single particle, in this case
photon, having been annihilated from or created in the mode (k,\). For
this reason, ak ) and dL y are known as annihilation and creation operators
respectively. The number of photons, ny , in each mode (k, A) fully charac-
terizes each eigenstate |ny )), which are called Fock states. The value ny x

is the eigenvalue of the number operator, fy x, which can be read off from
Eq. (2.42) as:

fen = G a2 (2.44)

We can see that ax x|nk ) ~ [nkx — 1) and &L)\|nk7,\> ~ |nk . + 1), and by

normalizing dx x|nk ) and d;r( \|nK,\), they satisfy

ax A M) = /Maca|nia — 1)
A \Imen) = Viex + Lngea + 1) (2.45)

This shows that changing the number of particles, in this case photons,
can be easily accounted for by the operators ay ) and dL y- Note that the
particle-like photonic nature of the electromagnetic fields arose from the
commutation relations between ay ) and dL’ y» Which in turn originated from
tuning the fields A and IT into quantized operators. So allow us to reit-
erate the essence of second quantization [stated directly after Eq. (2.25)]
from this example: ”As such, the normal modes [ayx \ and aL ,J of the (now

quantum) field [A(x,t)], after defining some basis to represent it in [plane
waves] become quantized [ax » and dL y in conjunction with the commuta-
tion relations in Eq. (2.41)]. These discrete excitations that comprise the
quantum field are interpreted as particles [photons|.”
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Of course, much more could be said about the quantized electromagnetic
field, but the whole purpose of this exercise was to show an example of the
general recipe for developing a quantum theory in second quantization (also
referred to as the process of canonical quantization). We summarize it below:

e 1): Identify a Lagrangian (density).

2): Identify the relevant canonically conjugate variables.

3): Construct the Hamiltonian (density).

4): Promote the canonically conjugate variables to operators and im-
pose canonical commutation relations on them.

e 5): Construct the quantum-mechanical Hamiltonian operator.

From the Hamiltonian operator, the energies and eigenfunctions may sub-
sequently be determined as per Eq. (2.24).

Let us now use this formalism of second quantization to develop a quan-
tum theory of the many-electron system.

2.3 Many-electron system

We consider a system consisting of electrons and nuclei. Its Hamiltonian
should contain: (i) the kinetic energies of the electrons and nuclei, (ii) the
Coulomb attraction between electrons and nuclei, (iii) the Coulomb repul-
sion between the nuclei, and (iv) the Coulomb repulsion between the elec-
trons. In this thesis, we will only perform electronic structure calculations
in systems where the Coulomb interaction between nuclei need not be con-
sidered, nor will we consider the kinetic energy of the nuclei, which is much
smaller than that of electrons due to the large mass of the nuclei. Therefore,
our (classical) Hamiltonian takes on the form:

B2 (Yt i e 09
~\2 Sldai—Ral)  24=1ai—qy
Gl

where Z,, and R,, are the nuclear charge and the position of the n-th nu-
cleus, and q; and p; the position and momentum of the i-th electron. In first
quantization, one would promote q; and p; to be operators, with canonical
commutation relations and proceed by letting the resulting Hamiltonian op-
erator, H, act on a wave function describing the electrons Y(X1,X2, ..., XN ),
to solve the eigenvalue equation H 1y = K. However, this scheme is again
dependent on the number of particles, N, in our system. So, keeping in
mind the relevant physics we wish to capture from Eq. (2.46), let us proceed
by applying the recipe of canonical quantization alluded to in the previous
Sec. 2.2.2 to the many-electron system.
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2.3.1 Quantizing the electron field

In Sec. 2.2.2, we described photons as excitations of a quantum field. In an
analogous way, we will describe electrons as excitations of their own quantum
field, denoted by ¥ (x,t). Note the difference between this field ¢ (x,t) and
the wave function ¥(x1,Xa,...,xy,t) from Sec. 2.2.1. In the latter case,
a collection of electrons is described as a collection of particles. This is
apparent from the dependence of ¥ on the explicit positions of the electrons,
X1,Xo9,...,XNy. In contrast, we are about to forego this particle description.
Just as how we started from an electromagnetic field in Sec. 2.2.2 to describe
all photons, we will describe all electrons by a single complex electron field,
b(x, ).

In order for the field ¢(x,t) to describe electrons, we want it to in-
corporate spin. The field 1(x,t) therefore really takes on the form of a
two-component spinor field

< _ 1/}1/2(X7t)
Y(x,t) <¢1/2(X7t)) : (2.47)

To have this field to describe electrons, we impose that each of its spinor
components satisfies the Schrédinger equation with a Hamiltonian describing
the same physics as Eq. (2.46). Therefore, we have an equation of motion
for each of the two spin-components of ¥ (x,t):

il/}a(x7t) = {——VQ Z| —R ‘ /d3 ,‘p(x t)‘}dja( )7 (2.48)

where o € {—1/2,+1/2} and the electron density p(x,t) = ¥T(x, t)(x, ).
A Lagrangian that leads to this equation of motion is:

Lol =1 [ dul (0 Gt
/diT(X 2 [nV? le R,
T X X
—§/d3x/d3x'w(x,t) [1/’( LU ’t)]¢(x,t), (2.49)

[x — x|

(1)

as we will now show. As we are working with a (spinor) field, our first step
is to define a Lagrangian density £. Unfortunately, because the third term
involves an integration over all of space, we cannot write this Lagrangian in
terms of a Lagrangian density £, that is itself a function of only the fields
and their (local) temporal and spatial derivatives, as we did in Sec. 2.1.
Fortunately, the principle of stationary action §S = 0 itself made no such
assumption, and is still applicable to this case. For each o-component, it
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just yields E-L equations in terms of functional derivatives with respect to
the fields ¥, (x,t) and ¥, (x,t), and ¥} (x,t) and ¥k (x,t):

t2
55 — dtéL[¢a;¢U7¢;7¢;] =

t1
b2 6L 6L
= dt { 0 + 5w — o0y } (2.50)
/tl 5¢U 1/} 7 5¢0 51/}0
Since the fields ¥, (x,t) and ¥} (x, t) are independent, the first two terms and
the last two terms must be equal to zero separately. Proceeding similarly
to what we did in Sec. 2.1, we can use the chain rule on §i and impose
proper fall-off conditions such that a total time derivative does not survive
the integration. This leads to the E-L equations:
d 6L oL d 6L oL
- —— =0, an - =
dt 5, 0y dt sy 01y
The second equation will yield our equation of motion [Eq. (2.48)]. If we
use the general functional-derivative rules

= 0. (2.51)

% =d(x —x') (2.52a)
SF[f(x,0)]  (SF(xD]Y ( 6/(x.1)
51 D) ‘( 5/ (x.0) ><5f(x/,t)>’ (2.525)

for a function f(x,t) and a functional F[f], we obtain 6L /84 = 0 (trivially)
and find §L /% equal to:

o (,) {__w Z|X_R| [ a2 )‘}w N (253)

As this is equal to zero, we recover Eq. (2.48). Repeating this scheme with
the other E-L equation, we obtain the complex conjugate of Eq. (2.48).

Having found a Lagrangian that reproduces the equations of motion, we
may define the canonical momentum density conjugate to ¥, (x,t):

I, (x,1) = 5% — i (x, ). (2.54)

(e

With it, we can find the relevant Hamiltonian, Hatter, €xpressed in terms
of the spinor field ¥(x,t):

Hpatter = /d333 ZHU(Xat)¢a(X7t)
/d%w(xt Z o R X, t)
/d3 /d%’z/ﬁxt [W (X )]Q/)(x,t). (2.55)

[x — x|
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We now have all the necessary ingredients required to quantize our theory.
We promote the fields ¢(x,t) and II(x,t) into operators ¢)(x) and TI(x),
which, in turn, promotes the Hamiltonian Hjatte; into the operator ﬁmatter.
The operators do not exhibit time dependence as we employ the Schrodinger
picture (see Sec 2.4.1).

To proceed, we need to impose commutation relations on the operators
¥ (x) and II(x). However, we know that the fermionic wave function is anti-
symmetric in first quantization: W(...,x;, ..., Xj,....,t) = =V(..., X}, ..., X4, ..., 1),
fori,j € {1,...N} and ¢ # j. Therefore, to reproduce this behavior we have
to impose for our field operators the relation: ¥(x)¢(x’) = —h(x')1)(x). To
achieve this, the commutator relations are instead replaced by anticommutator
relations, imposing;:

{Q/A)U(X)v &o” (X/)} = {ﬁg(x), ﬁo” (X/)} =0
{1 (%), TTor (x')} = 165,06 (x — X)), (2.56)

where {a,b} = ab+ ba, or by using I1(x) = i)h! (x):

{0 (%), 90 (x)} = {DL(x), 9, (x)} = 0
{00 (%), 9], (x)} = 85,000(x — x). (2.57)

Having identified the relevant Hamiltonian operator and canonical variables,
we may consider how we regain the particle-like behavior for electrons from
the spinor field 1[1(x) As with the electromagnetic field in Sec. 2.2.2; they
will arise as excitations of certain modes of the quantum field with respect
to some basis.

To this end, we proceed by considering the mode expansion of &(x) and
Q/A)T(X) in terms of a complete, orthonormal, enumerable basis of vectors,
¢p(x), that are part of an L?-Hilbert space, so that {¢p|p,) = 6p.¢:

D(x) =) byp(x), and D) =) e elx). (2.58)
p

p

Xt
Xt

From the completeness of the states ¢,(x), we can find the expansion coef-
ficients ¢, and é;r;:

Cp = /de SOL(X) Q/A)(X)y and é;f? — /d3x Q/A)T(X) SDp(X)- (2.59)

The anticommutation relations between 9)(x) and ' (x) immediately allow
us to calculate the anticommutation relations between ¢, and é;r,:

{ép’ éq} = {62;762} =0
{éy, ég} = Opg- (2.60)
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The similarity between the operators ¢, and é;r, and the annihilation and
creation operators, ax  and &L y» of the electromagnetic field is apparent.
Whereas the latter obeyed commutation relations [Eq. (2.41)] consistent
with the photon’s bosonic nature, the former obey anticommutation rela-
tions [Eq. (2.60)] consistent with the electron’s fermionic nature. The op-
erators ¢, and é;r, also share a similar physical interpretation and are the
annihilation and creation operators of the electron field. The anticommu-
tation relations allow us to recover many fermionic properties for any state
vector |P):

e From {¢,,é,} = 0 and {ép,ép} = 0, we can immediately see that
Cplp|P) = Tc;r)\q)) = 0, implying that no two identical electrons may
occupy the same quantum state, thus recovering Pauli’s exclusion prin-
ciple.

e We can define a number operator 7, = é;r,ép, which is a suitable choice
for a number operator as it only has 0 and 1 as eigenvalues:

(ehep)? = 1= 26p2) + & (1 — &pe))e]

(2.61)
which indicates that é;r;ép(l — é;r)ép) = f,(1 —ny) = 0.

e The vacuum state, |0), is defined to have no electrons present, so that
¢p|0) = 0, resulting in 7,|0) = 0 and ﬁpé;r;\0> =1.

e Assuming that the vacuum state is normalized, (0/0) = 1, then for
a single node p, the eigenstates, |n,) of 7, form a complete set, i.e.

1
anzo [np) (np| = 1.

e Finally, one can define multi-orbital states, which are Fock states, from
the vacuum state |0) as:

H{np}) = [n1,ng, ...) = [n1)ng)...
= @)[0), for n,=0,1. (2.62)
=1

We may conclude that we may describe our many-electron system using a
Hamiltonian operator, Hpatter:

I:Imatter Z/dgl’%“( ( )

Z|X—R \

/d3 /d3 /1/}1' [ ( )Q/)(X/)] @;(X), (263)

[x — x|
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where Q/A)(X) is a two-component spin-field operator, satisfying the anticom-
mutation relations in Eq. (2.57). From these, a mode expansion of ¢ (x) in a
complete orthonormal basis of L2-Hilbert-space vectors [Eq. (2.58)], allows
us to identify the coefficients as fermionic annihilation and creation opera-
tors that treat electrons as specific mode excitations of the quantum spinor
field.

As a final note, we show an easy “recipe” to convert an (electronic)
operator from first quantization to second quantization and back. It goes as
follows. For every discrete position x; being summed over 4, convert this to
a continuous variable x, place the resulting expression between ¥ (x)...th(x)
and integrate over d®z. In order to go back to first quantization, turn
every continuous x that is being integrated over in [ Bt (x)..4h(x) into
a discrete x; being summed over i. As an example, consider the density
operator in first quantization: n(x) = ), 6(x — x;), where i runs over all
electrons considered. Following our recipe, we have

~

n(x) = Z 6(x —x;) = /d3$/%@T(X)5(X —x)(x) =T (x)P(x).  (2.64)

This recipe also allows for a quick comparison between the Hamiltonians in
Egs. (2.46) and (2.63).

2.3.2 Hartree-Fock-Slater equations

Admittedly, the developed formalism does not indicate how to proceed in
actually solving ﬁmatter\w = E|¢). For that we need to turn our attention
to the complete basis of L?-Hilbert-space vectors, lop), that we used in our
mode expansion. For simplicity, let us assume that these states are one-
particle states and are thus henceforth referred to as spin orbitals. Let us
further assume that they satisfy a Schrodinger-like equation of the form:

o) = |3V = ¥ + V| 000 = () (2:65)

where €, is the energy eigenvalue of the spin orbital ¢,(x) and V(x) is
some hitherto unmentioned mean-field potential describing the interaction
of the one electron in the state ¢, (x) with all other electrons. Its usefulness
will become apparent shortly. As ¢,(x) describes a one-particle state, the
defined Hamiltonian operator, H [Eq. (2.65)], is a so-called one-body oper-
ator. In general, a one-body operator, which acts on only one coordinate,
has the general form ¢ = ), #(x;). We can rewrite this operator in second
quantization as

_ / B (x) 1(x) (x), (2.66)
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or after rewriting our field operators in terms of ¢, (x):
i= S el [ el tx) (0
P,
= &heglpplt(x)eg) Z &l eqtpg, (2.67)
P.a

where the matrix element t,, = (p,|t(x)|pq) was defined. We can repeat
this for a general two-body operator:

=—Z o)) = 5 [ [ 600 6ot x i)

Z#J
_ =z delese 3 3 ! '
=5 2 djtfes [ [ dloje o x o (x)eu(x)
pqrs

Z qcscrqurs (2.68)
pQJ“S

We can use these expansions on ﬁmatter from Eq. (2.63). Let us collect
the one-body part and the two-body part under the names Hy,.. and V. _.,
respectively, so that:

N B T -
Hbare—/d3x¢ Z‘X—R| 1/} )

/d3 /d3 le [ ( )Q/)(X/)] QZJ(X), (269)

[x — x|

which become, in terms of our spin orbitals

. 1 Z
Hbare = Z“Dp‘ [—§V2 - Z ﬁ
n mn
Z quCr’qurs, (2.70)

qu‘S

|‘Pq>é};éq

where

1
e = [ @' [ (00— re ). @)
The key step is to add and subtract the one- body operator V to Hmatter,
and to group together Hbare + V H and Ve c—V= Vres This is because

the operator defined as o exactly has the spin orbitals ¢, (x) as eigenstates,
with eigenvalues €, as can be seen from Eq. (2.65). This allows it to take on
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the simple form = Zp epfp. The useful property we have just discovered

is that, if we can find some H}ean-ﬁeld potential V such that the effect of ‘A/res
is very small compared to H, we can gccurately approximate the effect of
Hopatter by a one-particle Hamiltonian H (!), for which we only need to solve
Eq. (2.65). So, the question of interest becomes: what is the best choice
of V to achieve this goal? The answer is provided by the derivation of the
Hartree-Fock equations.

To derive these equations, we must unfortunately make a slight detour
to address the following point. On the one hand, since H = Zp Epp, We
know that its eigenstates are the Fock states [{np}). On the other hand, we
know from Eq. (2.65) that the spin orbitals ¢,(x) are also eigenfunctions of
H. Can a relation be found between the two? Fortunately, the answer is
yes. We may reduce the matrix elements of H with respect to a basis of Fock
states to matrix elements with respect to spin orbitals using the so-called
Condon rules. An explicit derivation is presented for one-body operators.
The results for two-body operators we will only quote. We start with the
matrix element ({n,}/{[{n,}) = dors tm({np}|é,tés\{nq}>. Let us introduce
some notation. We will invoke the shorthand notation |{ng}) = |®), and
use the indices 4, 7, .../a, b, ... to indicate occupied/unoccupied spin orbitals
in |®), so n; = n; =1 and n, = ny = 0. There are only a few possibilities
that will give a non-zero contribution:

e r = s: in this case élér\{nq}> = n,|{ng}), which will only give a
contribution if n, = 1, and |{n,}) = [{ny}). So then ({n,}|t|{n,}) =
(DIE|D) = X2, tre(@IELE,|D) = 3o, i

e r # s now é,tés|{nq}> will only be non-zero if in [{n,}), ns = 1, and
n, = 0. This will only yield a contribution if we can construct [{n,})
from [{ny}). |{np}) is then constructed by taking an electron from an
occupied orbital in |{n,}) and placing it in an unoccupied orbital of
l{nq}). If we consider a single substitution, then [{n,}) = élél\fm =
|@¢), for which ({n,}[{l{ng}) = (RFF®) = 3,  trs(BF[E16|P) = tas-
One can show that double or higher substitutions will yield zero.

The results for two-body operators are
(I)|’U‘(I) va [i5] (I) |@‘(I)> = Zvaj[ij}v <‘I)?Jb|’0|‘1’> = Uablij]s (272)
J

with all other contributions yielding zero. v,
tion operation, i.e. Viji) = Vijij — Vijji-
We can use the Condon rules to derive the Hartree-Fock equations which

i]ij) Tefers to the antisymmetriza-

will provide us with an expression for V. From the variational principle,
given some Hamiltonian operator, we know that its expectation value with
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respect to any normalized wave function (not necessarily an eigenstate) gives
an energy value that is greater than or equal to the ground-state energy, Fy.
The key step is to write out the expectation value of ﬁmatter in a basis of
eigenstates of ﬁbare, i.e., Fock states |®). The goal of the Hartree-Fock
equations is to determine the Fock state |®)) that best approximates the
ground state of Hppatter- We do this by writing out ((Pév |ﬁmatter\@év ) in terms
of spin orbitals ¢; -(x) and ¢j ,(x) (where we separated the spin index o
from the spatial index i) and subsequently minimizing it by varying it with
respect to these spin orbitals, and setting it equal to zero. Therefore, the
functional to minimize is

Elpi (%), 910 (x)] = (@) | Hinatter| 2 ) — Za[<w|w> -1, (273)

where ¢; are Lagrange multipliers introduced to minimize the expectation
value (®) | Hyatter| B ), with the constraint that the spin orbitals ¢; ,(x) are
normalized to 1. Using the Condon rules, we may express E[p; »(x), ©; 5 (x)]
in terms of the spin orbitals:

|3)

Elpio (%), 01, (x)] = 3 (s [—%VQ N

i

+ % Z Vjk[jk] — Z eil{eiles) —1]. (2.74)

J.k

From calculating 6 E[p; o (x), ©; 5 (%)]1/06} ,(x) = 0, we find the first term to

result in:
i) }

i o (%), (2.75)

0 ol 1oe Zn,
*(x){sz\ 2V TRy

1 Z
il v 2 _zn
2 Zn:\x—Rn|

the second term in:

1 1
2507 (x) > Ui = 52 > / d'm / dry

T i,k j,k 01,02
b 0} o1 (X1) P o, (X2)
; X X — X 1 X
590;g(x) { |X1 — X2| [(pJ,CH( 1)()016702( 2) SDk,Ul( 1)@],02( 2)]
. 1
=33 [ ) g [ (02 () = 30 (0 )]
j o

(2.76)
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and lastly the thid term in:

5% o

{ZEz {iles) — 1]} = —€ipi,o(X). (2.77)

Putting all three terms together we arrive at the Hartree-Fock equations:
gipi(x) = <—%V2 - Z b{_ZinR‘) @i(x)
+ Z/d3 ,‘PJ‘X X/(‘ )%(X)
- Z / d’ ’“OJ‘X Xf‘ L) (2.78)

where the second and third term are respectively called the direct and the
exchange interaction. The Hartree-Fock equations are integro-differential
equations which are solved self-consistently. This refers to filling in some
guess for the orbital ¢;(x), determining how well it obeys the Hartree-Fock
equations, refining the guess to a better one, and iterating this procedure
until it converges (if it converges). Once the occupied orbitals ¢;(x) are
known, we can apply the same equations, with ¢ — a to determine the
unoccupied (virtual) orbitals ¢,(x). Comparing Eq. (2.65) to the Hartree-
Fock equatlons we have found an expression for the one-body operator

V= qucpcqqu, with
Vog = Z Upi[qi] - (2.79)

The exchange term in Eq. (2.78) implies that solving this equation can be
very computationally costly due to its nonlocal nature. An approximation
for the exchange term, only involving local terms, can be made with Slater’s
simplification. It is obtained after applying the Hartree-Fock equations to
the electron gas and determining the exchange interaction for it. The average
exchange energy per electron then takes on the compact form:

AR (%p(x))l/g, (2.80)

where p(x) = (B | (x)h(x)| DY) = > go;r(x)goi(x) is the electron density
of the system. This approximation leads to the Hartree-Fock-Slater equa-
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tl.OllSZ
‘ Z 2 |X - R ‘ ‘

/ (%)

3 1/3
- (Zotx >) i)

It is computationably favourable to use this approximation as the exchange
interaction in the Hartree-Fock equations. The Hartree-Fock-Slater equa-
tions [Eq. (2.81)] will be used throughout this thesis to calculate the elec-
tronic structure. They are solved self-consistently as mentioned previously.
The spin orbitals ¢;(x) will be calculated on a radial grid, and are henceforth
referred to as ¢;(r). They are expanded with respect to spherical harmonics
Yém(Qr):

@i(r) = Pnims(r) = uL(T)Yzm(Qr) ( 0s.1/2 > , (2.82)

r 58,71/2

where n, [, m, and s denote the principal, azimuthal, magnetic, and spin
quantum numbers. In addition, r = |r|, and 2, denotes the angular part of
r. Plugging this expansion into the Schrédinger equation [Eq. (2.24)] yields
the radial Schrédinger equation for a given I:

1d> I(1+1)

2 dr? 212

+ V(r)] Uni (1) = Enupu (7). (2.83)

To reiterate: after identifying the physics we wish to capture in our
many-electron description with Eq. (2.46), we used the method of canonical
quantization to identify the correct Hamiltonian operator Hpager [Eq. (2.63)],
and canonically conjugate variables 1(x) and 1 (x). Subsequently, we per-
formed a mode expansion of the latter two in a complete, enumerable or-
thonormal basis, ¢, (x), of L2-Hilbert space, allowing us to define fermionic
annihilation and creation operators ¢, and éITJ. After assuming the basis
functions ¢, (x) to be spin orbitals obeying Eq. (2.65), we approximated

Hipatter 2 a ONe- body Hamiltonian H which has the spin orbitals ¢, (x)
as eigenfunctions. To minimize the error of this approximation, the varia-
tional principle was used to arrive at the Hartree-Fock equations [Eq. (2.78)],
thereby deriving a form for the mean-field potential V' [Eq. (2.79)]. Finally,
a further simplification was given for the exchange term, thereby arriving at
the Hartree-Fock-Slater equations [Eq. (2.81)]. These equations are numer-
ically solved self-consistently on a radial grid.
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2.4 Transition rates

Having gone through the formalism of the electronic-structure calculations
used in this thesis, let us proceed by incorporating the description of tran-
sitions. We will begin with an exposition on time evolution in quantum
mechanics.

2.4.1 Time-dependent perturbation theory

In (non-relativistic) quantum mechanics, time is not an observable, but a
parameter, and has no operator associated to it. Time and space are not
treated on an equal footing and, instead, the Newtonian concept of time
being an absolute background entity is invoked. In this formalism, all ob-
servables are a function of time as an external parameter. However, we may
introduce a time-evolution operator U (t,ty) which evolves a particle’s wave
function from tg to t, with ¢ > tg, i.e.,

(x,t) = Ut to)¥(x, to). (2.84)
The time-evolution operator satisfies some easily proveable properties:
o Ulto, to) = 1,
o Ut, Ut to) = Ult,tg), for t > t' > to,
i
(4
o Ulty,t) = U \(t, 1),

dU (t,t o)/dt) = HU (t,ty), which can be obtained after introducing
(t) = Ult, to)¥(to) into Eq. (2.23),

o Ut(t,t0)U(t,to) = 1, i.c., the time-evolution operator is unitary. This
property follows from the fact that the normalization of states should
not be time dependent.

Using the third property, we can find an explicit form of the time-evolution
operator U (t,tp) self-consistently. Integrating the expression from ¢y to ¢ on
both sides yields

t
Ot tg) =1 —i / ity B (1) (11, 1), (2.85)
to
Substituting the left hand side of this equation into the right hand side, we
obtain:

t
Ot 10) = 1 —z’/ it F (1)
t

0

+ (i) /t t dt  H (t1) / b dto H (t2)U (t2, o), (2.86)

to
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with ¢; > to. This can be iterated further, with t; > to > ... > t,,, yielding
tn 1
U(t t() —2 / dtl / dtn tl ( )
n=0 to to

. {i fane)
_T {eXp [—z’ /t 0 dt’ﬁ(t’)] } _ Temiflt-t)  (9.87)

where the last equality is only valid for time-independent Hamiltonians. The
time ordering operator 7 is defined as

A)B(Y), ift >t
B(t)A(t), ift>t.

T{At)B(t)} = { (2.88)

Having introduced the time-evolution operator, we can define the
Schrodinger picture (SP) and the Heisenberg picture (HP). The former as-
sumes that the wave function carries time dependence and evolves in time
according to the Schrodinger equation. The latter draws back to the more
Newtonian notion of physics, where the aim is to calculate how observables
depend on time. In quantum mechanics, this implies that the operators, not
the states, should evolve in time. The two pictures are equivalent, as they
both share the underlying assumption that the expectation value for any
observable O is given by (O(t)) = (¥(t)|O|¥(t)). The relation between the
two pictures can be made clear through the following definitions:

((0)[0(£,0) (0) T(t,0)[¥(0)) = (¥s(t)|Os|Ws(t)), for SP,

O(t)) = ) A .
o) <\P(0)\(UT(t,0>OU(t,0)) |T(0)) = (Uy|Op(t)|Py), for HP,

which allows us to relate the Schrédinger picture to the Heisenberg picture
via Og(t) = eTHtOge "t Taking the time derivative of Oy (t) and using
the Schrédinger equation, we can find the equation of motion for O (t):

idOZ ® _ [On(0), 1. (2.89)
There is a third picture, used to describe interactions, called the interaction
picture (IP). In this scenario, the Hamiltonian, H, is spht up into an unper-
turbed part Ho and a perturbation H ' e, H= HO + H'. In the interaction
picture, both the states and the operators evolve in time. The operators Or
evolve in time using only the free Hamiltonian Hy, i.e., O7(t) = eiflotQe~itot,
The inclusion of H' is what gives the wave functions a time dependence, in
the following manner:

(O(t)) = (T()IO[¥ (1)) = (U1 (t)|e 0 O™ 0 W (1))
= (U1(1)|O1())| W1 (t)), (2.90)
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where we defined |W;(t)) = e!0f|W(t)), with [¥(t)) being the wave function
in the Schrodinger picture. We can then use the Schrodinger equation to
obtain the equation of motion for |¥;(t)):

i—|Wr(t)) = """ (= Ho +z—)l‘1!( )
= ¢/l (—Hy + H)|W(t))
= tHot [l o= HOt @ (1)) = H (1)W1 (t)). (2.91)

For evolving a state in time in the IP, we need a time-evolution operator
in the IP, Us(t,to), so that |¥(t)) = Us(t,to)|¥r(to)). From |¥;(t)) =
eot| U (t)) and Eq. (2.91), Uy(t,ty) obeys

dU(t, ¢ A
A1) _ g0t 10). (292)

This can be solved for ﬁ;(t,to) self-consistently, similar to what we did
before, yielding

0 tn 1
Ur(t, to) Z —i) /dt1 / dt, H(t1)...H (t,)
_ e i W HE) (2.93)

This expression will prove very useful for the perturbative expansion of the
transition rate between two states in the following section.

2.4.2 Fermi’s golden rule

With the formalism from Sec. 2.4.1, we may proceed by calculating Fermi’s
golden rule, which calculates the rate, I'py, of a certain transition occuring
between two states |I) and |F), induced by a perturbation H 7(t), and ap-
proximated to first order. To set up our transition, we start by considering
our unperturbed Hamiltonian Hy. We assume that this Hamiltonian has a
complete set of eigenstates |n), such that Hy|n) = E,|n). In addition, we
assume that the initial state, |¥(tp)) at to — —oo is one of these eigenstates,
ie.

lim  [W(to)) = |I), (2.94)

to——o0

with (I|n) = d;,. Long after the transition has occurred, for times ¢t — oo,
we assume that the state finds itself in another eigenstate of Hy, i.e.,

lim |[U(t)) = |F), (2.95)

t—o00
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with (F|n) = 0p,, and (F|I) = 0. We impose that the transition between the
states occurred because of the perturbation Hamiltonian H'. The pertur-
bation may be explicitly time dependent, but this scenario will not be con-
sidered here. We proceed by employing the interaction picture. As before,
we define Hj(t) = etHot [f'e="Hot which obeys Eq. (2.91). In the interaction
picture, the wave function may be expanded in the basis of eigenstates of
Hy, [®(t)) = 3, cn(t)|n), where all time dependence has been attributed
to the expansion coefficients. Physically, |c,(t)|? denotes the probability of
finding the state |¥(¢)) in the eigenstate |n). Therefore, the probability
of a transition occuring from the initial state |I) to the final state |F') is
Prr = |ep(t)[2. The time-evolution operator Us(t, o) allows us to identify
these coefficients as

|F) = Uy (t,to)|1)
= Z ‘n><n|ﬁ1(t,to)|[>, (2.96)

where we used the completeness of the eigenstates |n). This identifies the
coefficients as ¢, (t) = (n|Ur(¢,%9)|I) and allows for their perturbative ex-
pansion using Eq. (2.93):

en(t) = bur — i / dt' (n B ()| 1) + (—i)? /t at /t A" (| BB ) +

to

=@ + @) + D () + ..., (2.97)

where (™ (t) o< O[(H')™]. Setting n = F in the above equation yields
us the coefficient we are interested in. This also immediately reveals that
c%o) (t) =0 as 6p; = 0. We will proceed further by restricting ourselves to

the first order coefficient and omitting higher order corrections, i.e., Pr; =
ler(t)])? ~ \cg)(t)\Q, yielding

t
W (1) = —i / dt' (F|H(t)]1)
0]
t .
= —i / dt' (F|e"’o! e 0! 1)
to

t
= —i / dt' (F|H'|I) e Fr=Ent (2.98)

to

where Fr and E are the eigenvalues associated with |F) and |I), respec-
tively. To proceed, we consider the limit t — oo:

[ee) ) ,
lim cg)(t) = —i/ dt/<F‘H|I>e’L(EF—EI)t
0

t—o0

= —2ni (F|H|I) §(Er — Er) = Spr, (2.99)
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where we defined the probability amplitude Sr;. To calculate Pp; = |Spr|?
we use the expression:

T/2 ‘
6(Ep — Ep))? = 6(Ep — Ey) lim At iEr—E

1 2sin[(Er — E1)T/2]

:5(EF_EI)TIEEO% (Er — )

T
=§(Er — EI)Tlim —, (2.100)
which in turn gives

Prr = |SF1)?

= lim o T|(F|H'|I)|*6(Er — Ey). (2.101)
—00

The limit 7" — oo may seem worrisome, but in reality, Eq. (2.100) is already
well applicable for times T >> (Er — E7)~!. Nevertheless, we may obtain
a rate from Eq. (2.101) as I'p; = Pp;/T, yielding

Tpp = 2n|(F|H'|I)*6(Er — Ey), (2.102)

which is referred to as Fermi’s golden rule.

2.4.3 Electron-impact ionization cross section

In what follows, we will use the obtained rate from Fermi’s golden rule to
derive the cross section for electron-impact ionization. The cross section
provides an estimate for how likely a considered scattering process is to
occur. Classically, the cross section is the two-dimensional area of an object
projected onto the plane perpendicular to the direction of the incoming
projectile. 'When considering the quantum regime however, some aspects
that do not occur classically due to the wave nature of quantum particles
need to be taken into account. The rate, I', at which a certain scattering
process occurs is proportional to how many incident particles interact with
the system. The latter is expressed through the luminosity, L, which is
the number of incident particles passing per unit area per unit time. The
proportionality constant, o, therefore has the unit of area, and is called the
cross section, so that I' = ¢ L. One can see that the luminosity and the rate
have unchanging definitions with respect to what physical process is being
considered, and, moreover, they are easily discernible in experiments. The
physics behind the scattering process is confined to the cross section o.

If one intends to know what the resulting direction of the projectile is
after the interaction, one calculates the cross section per unit solid angle,
called the differential cross section (DCS), denoted do/df). In the case of
inelastic scattering, one may, in addition, resolve the energy transfer during
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the interaction, thereby defining the cross section per unit solid angle and
per unit energy, called the doubly differential cross section (DDCS), denoted
by d%0/(dQdEyy; ), where Eoy is the outgoing energy of the projectile after
the scattering. From this definition we have:

2m +1 d20'
= [ dEyy d d(cos ) ———. 2.1
o / t/o qb/l (cos )deEout (2.103)

The integration limits of the energy integral are dependent on which process
is under consideration (e.g., excitations or ionizations). The DDCS can be
written as the number of particles scattered per unit time into a solid angle
dQ) in the direction 7 = r/r, with energies between Foy and Egyy + dEoyt,
divided by the number of incoming particles per unit time and per unit
area along the incident direction, with momentum q;, and energy Ej,. This
implies:

d20' _ Jout(ra Qout» Eout) : fTQdeEout ’ (2'104)

Jin(qim Ein)
where qout is the momentum of the scattered particle, and Ji, and Jqyt de-
note the current density of the incident and scattered particles, respectively,
with units of number of particles per unit time per unit area. In the quan-
tum regime, the numerator of Eq. (2.104) is the number of particles that
are scattered, per unit time, into a group of states in a phase-space volume
of d®qout around qgout. This number of states dn that have a momentum
with a magnitude in the range [qout, Qout + dQout] is equal to the momentum
space volume d3gy,; divided by the average volume occupied by a single
state, (27)3/V, with V being the volume to which the wave functions of the
considered particles is normalized. Thus:
dn = d* o s

(2m)?

- qiutdqoutm#. (2.105)
The number of particles being scattered per unit time is the number of
incident particles Ny, times the rate, I'pr(qin — Qout), that corresponds
to a transition from state |I,qi,) to a state |F,qou) with an exchange in
momentum qijn — qout. However, for a statistical ensemble, this needs to
be multiplied by the probability, Pr, of finding target in the initial |I), and
summed over all possible initial states. For a canonical ensemble at thermal
equilibrium, this probability is given by Py = e #¥1/Z with Z = 3~ ;e PF7,
and (3 the reciprocal temperature of the system (see Sec. 2.5.1). With this,
the numerator of Eq. (2.104) is given by:

%4
Nin—(2ﬂ_)3 Z PiT pr(din = Qout) Gt @2 Gout (2.106)
7
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which explicitly shows that the DDCS can be obtained from the rate I'pr(qin —
qout)-

Let us now consider the process of electron-impact ionization. We will
start by calculating the rate of this process, I'p;(din — Qout), by using
Fermi’s golden rule [Eq. (2.102)]. We assume that before scattering, the
incident electron and the target system do not interact, such that

11, qin) = |[I)|din), and |F, dout) = |[F)|dout ) (2.107)

where |I) and |F) describe the initial and final system of the many-electron
target system, which are eigenstates of the unperturbed Hamiltonian, as-
sumed to be the Hartree-Fock-Slater (HFS) Hamiltonian [Eq. (2.81)]. The
initial and the final state of the projectile electron (referred to as the incom-
ing or incident electron and the scattered or outgoing electron, respectively)
are modeled as plane waves, denoted by |qin) and |geut), with corresponding
energies Fi, = g2, /2 and Eoyt = q2;/2. Their description as plane waves is
justified due to the following reason. The interaction Hamiltonian, treated
as a perturbation which induces the ionization, describes the Coulomb inter-
action between a single incoming electron, at position x, and the electrons
in the target. It is given in second quantization by:

2 . 3$/”TX n
1= [ i) i)
:/d%, n(_ i’\’ (2.108)

|x

where we used the expression for the electron density operator n(x') =
Yf(x')p(x'). Treating the Coulomb interaction between the many-electron
target and the incident electron as a perturbation is equivalent to impos-
ing that our incident electron has a large kinetic energy compared to this
interaction potential energy. Working under this assumption justifies the
approximation of modeling the incoming electron as a plane wave. Hav-
ing modeled the outgoing electron as a plane wave as well implies that the
energy transfer during the ionization process is assumed to be small in com-
parison to the kinetic energy of the incoming electron. As a result, our rate

T rr(Qin — Qout) is given by:

11F1(qin - qout) = 27T5((EF + Eout) - (EI + Ein))

~ 2
n
(F| qout\/d3 ' \ aim)| )| - (2.109)

By writing out the plane waves |qi,) = €% ¥ /\/V and |qout) = €9t /\/V
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and defining Q = qin — qout and w = iy — Foyt, this becomes

27
Lrr(din = Qout) = W(S(EF —Er—w)

~ / 2
% <F|/ d3ﬂf/ d3.’L'/ T'L(X )/ elQX|I>
1% 1% x — /|

Let us focus on the integral inside the matrix element, i.e.,

/dB /dB , n(x iQ-x:/ dgx/ﬁ(xl)eiQ'xl/ dgxeiQ'(x—x).
Ix — x| v v x — x|

Performing the integral over d3z results in 47/Q?, as

Q- (x—x') iQ~(x7x’)
3 € 3 /
f e = e

iQ-r
= [ @0
Vs r
00 1 )
:27r/ drr/ d(cos §)eiQreos?
0 -1
47 /OO
= — drsin(Qr
Q/ (@r)
= lim 4—7T/OO dr sin(Qr)e®”
a—0- Q@ Jo
47 Q 4
= — h =

Q a—0~ Q2—|—a2 @

This reduces the integral to:

3 3,/ ﬁ iQ-x:Z’L_7r 3. a (I IQX
/d /d \x—x’\ QQ/Vd x'n(x)e

- %ﬁ(—m 2‘; A1(Q).

Collecting all results, we have:

Z[ PIFFI(qin - qout)qgutdeQOut
Jln(qma Em)

— & N ZI PIFFI(qIIl - qout)QoutdeEout
(27T)3 " Ningin

d’c = v Nin

(2.110)

(2.111)

(2.112)

(2.113)

(2.114)

where we used Jin(Qin, Ein) = Ningin/V and dgous = dEout/qout- Proceeding
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further with the calculation of the DDCS, we have

dPo _ V2 qout
dQdEo (27)3 Gin

Z PIFFI qln I qout)

V qOut ZPI F_El_w)'(F|4_7TﬁT(Q)|I> 2
Qm V2 Q2

4 ou
= = dout ZPI‘ (Flaf(Q >‘ §(Ep — Ej—w).  (2.115)

In order to actually calculate the DDCS, we need to consider the initial and
final state, |I) and |F') of the many-electron system that acts as our target.
As they are eigenstates of the HFS Hamiltonian, we can assume that the
initial states, |I), being thermally averaged over, are Fock states:

Nel

1) = {Na}) = [ &hl0), (2.116)

p=1

where Ng denotes the number of electrons present in the initial state. If
we neglect all correlations between the ejected electron and the remaining
electrons in the parent ion, we may approximate the final state as

|F) = cher[{Na}). (2.117)

Thus, the matrix element is transformed into

(Pl (@Q)E) = (Naeler [ o) @ (Na))

= {ople" ¥ |pg) ({Nar}lehepeleg {Na}), (2.118)
p,q

where we expanded the density operator with respect to our spin orbitals
as n(x) = >, go;r,(x)goq(x)é;r,éq. We can see that the matrix element with
respect to Fock states will only be nonzero only if: (i) I = ¢, resulting in
F = p, or (ii) if I # q, resulting in p = ¢ and I = F. This last case we are
not considering here. Therefore,

(FIt Q) =Y (erle¥™|or) ({Na}ehereher {Na})
I,F

= (erle ¥ |or) ({Na}ir (1 — ap)[{Nat}),  (2.119)
I,F

where we used the anticommutation relations between ¢ and ¢ [Eq. (2.60)].
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This expresses the DDCS in Eq. (2.115) with respect to the spin orbitals as

o 4 qout Lt 2
W~ Q1 g 211 (PN QD) 6(Er — Er —w)
4 QOU Ne Ne
= 0l 2 Pivgy yonp (1= i)
o {Nel} I7F

x [(erle @ o) |* 8(er — 1 — w)

4 ou = — 1Q-x
= 4q : E nI(l—nF)|(<pF|eQ \¢1>|25(5F—51—w),
Q Gin IF

(2.120)

where we defined the eigenvalue of the density operator with respect to the
Fock state |[{Ng}) as n{Net} and the energy eigenvalues of the spin orbitals
are denoted as €. The average number of particles in spin orbital ¢, is
denoted by 7 and calculated as vay B Nel}n{Nel}.

At this point, the reader has been made familiar with all of the theoretical
background used for the work done in Chapter 3.

2.5 Temperature and environment

The final elements to be included in our theoretical framework are the con-
cept of temperature in the quantum theory of a many-electron system, as
well as the effects of a periodic crystal structure.

2.5.1 Temperature in quantum mechanics

When discussing many-particle systems, it is natural to consider the temper-
ature, T, (or its reciprocal § = 1/T'). At zero temperature, a physical system
occupies its lowest allowed energy configuration. As the temperatures is in-
creased, more and more energy is introduced into the system. How this
energy is distributed among the particles is characterized by a temperature-
dependent probability function, P(FE;, 3), denoting the probability for given
particle having an energy FE; at temperature (.

Let us consider a system of N particles, where N is considered to be
“large, i.e., as typically found in macroscopic systems. This system has a
total energy El,, which, at thermal equilibrium, is a fixed constant. The
fundamental assumption of statistical mechanics is that in thermal equilib-
rium every configuration with the same total energy Fi. is equally probable.
As a trivial example, consider two particles that can have an energy asso-
ciated to them of either 0 or 1 (in arbitrary units). The asumption is then
that if the total energy is 1, that the configurations (0,1) and (1,0) are
equally probable. In our N-particle system (Z]O’;l n; = N for n; € {0,1}
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if the particles are fermions), let us consider a particle that is in a state
with energy E; (n; = 1). The total energy is Eyor = )2 n;Fj. Let Q(E)
define the number of accessible microstates such that the total energy is E.
In our previous example, we have (0) = Q(2) = 1 and Q(1) = 2. The
number of microstates for the system minus the particle under considera-
tion is Q(Eyt — F;). However, since that particle is definitely in the state
with energy E;, the number of available microstates for the total system is
also Q(FEiot — F;). Now, as all these microstates have the same probability
associated to them, we find that the probability of finding our one particle
in the state with energy FE; is

P, ~ By — Ei) = CQ(Eyoy — Ey), (2.121)

for some proportionality constant C. Using the fact that E; << FEio (be-
cause N is large), we can expand P; around Ei.. However, as we expect P;
to vary rapidly when changing E;, it is better instead to vary In P;:

0lnQ

InP,=InC+1InQ(Fi) — 35 | p_p
=Litot

Ei+.; (2.122)

The quantity 01ln Q/0FE|g—pg,,, = [ defines the temperature 3 = 1/T. Defin-
ing another constant A = CQ(F}), we have for P;

P = Ae PFi, (2.123)
To find A, we simply impose that the probability distribution is normalized,
ie., >, P =1, yielding the fundamental result:
e—PBE; e~ BE;

K3

where Z is called the canonical partition function. Recall that this expression
was mentioned briefly in Sec 2.4.3 for Eq. (2.106). Note that if E; is the

energy eigenvalue associated with a Hamiltonian H, with the eigenfunction
|1/}Z>7 then

Z2=3 " (wile™|yi) = Trle "] (2.125)

The expectation value of some operator O with respect to the state |¢;) can
then be thermally weighted as

. L1 . R D
(O)p = EZ:PZO =7 > (Wil Olgpiye PP = Zﬁ[oe*ﬁff]. (2.126)

%

For completeness, we mention that the statistical ensembles under considera-
tion in this work are canonical ensembles, i.e., where the number of particles
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remains fixed in the system, but an exchange in energy with an external heat
bath allows for the consideration of temperature.

As an example, let us consider a system with N identical fermions at
thermal equilibrium. We assume they are all described by single-particle
states, with eigenvalues ¢;, i € {1,...,00}. Let us determine the thermally
averaged expectation value for the amount of fermions in a given single-
particle state with energy ¢;, called n;, with n; being the occupancy of the
i-th state, i.e., n; € {0,1}. These satisfy the constraint that the total number
of fermions is N = E;’il n;. The total system can be in any configuration
S, that satisfies this constraint, and has a total energy Fg = Z;; n;e;.
The probability of finding the system in the total state S is thus

e~ BEs
T
-1
o (e}
= [Je "= S JLe | (2.127)
j=1 ni,nz,... j=1

where

1

1
dYoo=> (2.128)

n1,n2,...  n1=0n2=0
Then, by definition:
n; = Z n; Pg
S

-1

e} e}
(S e ] [ X e
J=1 J=1

n1,N2,... ni,ng,... j=

1 1 o) 1 1 o9
_ niefﬁnisi Z H efﬁnjsj Z efﬁnisi Z H efﬁnjsj
n; =0 ni,ng,... /n; j=1 n; =0 ni,na,.../n; j=1
J#i J#i
1 1 -1
= ( nie_ﬁ”iEiZi(N - nz)> (Z 6_’6ni6iZi(N - nz)>
n; =0 n;=0

0+ e Pz (N-1)
~ Zi(N) + e Pz (N - 1)
1

" Z(N)/Zi(N = D)]e P + 1’ (2.129)

where > /n; 18 understood to exclude the contribution of n; in the

ni,n2,.

-1
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sums, and we defined

1 o)
Zi(N=—ni)= > J[e . (2.130)

n1,n2,.../n; j=1
JFi

Again, we will use a Taylor expansion so that
ON

The term 01ln Z;(N)/ON = —fu is what defines the chemical potential f.
One can see that it encompasses the effect of adding or removing a single
electron to or from the system to the partition function. Thus we find
Zi(N)/Z;(N — 1) = e P*, resulting in

1

InZ;(N — 1) = In Z;(N) — (2.131)

n; = (2.132)
which is referred to as the Fermi-Dirac factor. From Eq. (2.132) we can
deduce that p represents the energy under which all energy levels have an
occupation number of at least 0.5.

2.5.2 Bloch’s theorem

The many-electron systems considered in this thesis are both single isolated
atoms, as well as crystalline solids. A particularly useful theorem to deal
with systems exhibiting a crystal structure is Bloch’s theorem. This theorem
does assume that correlation effects may be (largely) neglected, which is not
always an obvious assumption in the context of solids.

The starting point for deriving Bloch’s theorem is the Schrodinger equa-
tion in three dimensions:

Au(r) = [—%W + V(r)] W(r) = Bu(r), (2.133)

where 1)(r) represents a single-electron wave function. Given the eigenvalues
E, and eigenfunctions t,(r) of H, Eq. (2.133) simply becomes H,(r) =
E, ), (r). Next, let us assume the electron is located in a crystal, which is
comprised of primitive unit cells characterized by primitive lattice vectors
a;, with ¢ € {1,2,3}. The volume of one such unit cell is therefore Q =
|a; - (a2 x ag)|. The entire crystal is thus made up of copies of these primitive
unit cells, translated over lattice vectors R; = nija; + neas + nzas, with
l = (n1,n2,n3) and n; integers. Therefore, a translation over R; leaves the
lattice invariant. The translation operator over a lattice vector R; is defined
as:

TR, ¥n(r) = ¥n(r + Ry). (2.134)
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As the crystal lattice is fixed, the Hamiltonian H is invariant under symme-
try operations of the crystal, which includes Tx,. Therefore:

Tw,[Hpn(r)] = H[TR,n(r)]. (2.135)
However, it also true that:

TR, [Hpn (v)] = T, [Enthn(r)]
= En[TRﬂ/}n(r)]v (2'136)

from which it follows that ), (r) and TR,y (r) are simultaneous eigenfunc-
tions of H with the same eigenvale F,.
We need now to distinguish different cases:

e F, is non-degenerate. Then it only has one associated eigenfunction
P (r). Since 1, (r) and TR,y (r) are simultaneous eigenfunctions, this
implies that the two must be proportional to each other with an overall
factor, A\(D:

T, Yn(r) = AV, (x). (2.137)

From the fact that |TR,%n(r)|? = [, (r)[?, we get that [A\D > = 1. We
can thus write it as A = e’®. Note that A!) is the eigenvalue of the
operator TRl. Next, as TRl is a symmetry operator, it is an element
of the (abelian) symmetry group, obeying the respective group prop-
erties. In particular, two lattice vectors R; and R, can be combined
to form a third lattice vector, R, = R; + R,,. This implies that the
operator T R, = T RZT R,, has an eigenvalue e’ = e¢ilertam)  Because
of this close connection between «; and Ry, it is natural, and conve-
nient, to express ¢ in terms of R; by multiplication of some vector k,

universal to all oy, i.e., oy = k- Ry.

o I, is f-fold degenerate. Then FE, has f orthogonal eigenfunctions
(1), with k € {1, ..., f}, and TR, ¥n » can be represented as a linear
combination of 1, , :

/
Trne = > M b (x). (2.138)
k=1

Again, from TRITRm = TRP, it follows that Z£':1 AW )\SZ),, = )\,(52,,.

Since all translations form a group, its matrix represggtation (the co-
efficients )\g’)n,) also forms a group. We can then use the following
two lemmas from group theory: 1) an equivalent matrix representa-
tion can be made from a linear combination of the v, .(r)’s, which
just states that the basis chosen to represent the matrix form of TRZ
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is not unique, and 2) among all equivalent matrix representations of
an abelian group, one can always find one so that the matrix is in
diagonal form:

f
Tlen,n = Z )\g)n/dn,n’l/)n,n’(r)
k=1
= A w(x). (2.139)

From then on, similar reasoning can be followed, to argue that |/\,({l7),§ |2 =
1, and thus /\,(i)ﬁ = etkn Ry

The important conclusion is that for every eigensolution of the Hamiltonian,
¥y, (r), one can always find a vector k, such that 1, (r) is also an eigenfunction
of TRZ, with eigenvalue e’ Bt Thus, the translational invariance arising from
the crystal structure allows for ¢, (r) to be classified by k: 1, (r) — ¢y, k().

Note that the only assumption made was that 1, is an energy eigenstate
of a Hamiltonian which is invariant under the symmetry operations of a
crystal (with eigenvalue E,, = E, (k) = E,x; where n is referred to as a

band index). From that we could conclude:

TR n(r) = st + Ry) = e Righ y (r). (2.140)

This illustrates the fundamental result that the behavior of the wave function
in any unit cell, and therefore throughout all of space, is captured by the
wave function contained within some single reference unit cell. Subsequently,
from this result, we can prove that v, k(r) can be written as a Bloch wave,
which is defined as:

Prsc(r) = %eikmn,ka), (2.141)

where fi,, k(r + R;) = pin k(r) is a lattice periodic function, and the volume
V' was introduced to impose periodic boundary conditions. The proof goes
as follows:

finx(r + Ry) = VVe REHRIy, | (r + Ry)
— \/Vef’ikfef’ik'Rl eik'Rl wn k(r)
= VVe T, (1)
— (). (2.142)
We may subsequently conclude Bloch’s theorem: The non-degenerate so-
lutions of the Schrodinger equation, as well as a suitably chosen linear

combination of degenerate solutions (to make the A-matrix diagonal) are
simultaneous eigenfunctions of all translation operators, as well as of the
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Hamiltonian. They can then be written in the form given in Eq. (2.141).
Finally, the physical interpretation of the vector k is that it is the electron’s
wave vector. This can be seen by considering Eq. (2.141) with an ”empty
lattice”, i.e., setting u equal to a constant. Then the electron’s wavefunction
is o e’ i.e., a plane wave, from which it follows that k must be interpreted
as the electron’s wave vector.

The usefulness of the Bloch theorem becomes clear by realizing that any
periodic function can be expressed as a Fourier series, i.e.,

pne(t) =D v 1 (K ) e (2.143a)
1 A
Ok (Kim) = 9 /Q Bre Em Ty (r), (2.143b)

where v, x(K,,) is a Fourier coefficient and the vectors K, are reciprocal
lattice vectors. They have the property that K,, - R; = 27N, with N
being an integer, which is a consequence of the periodicity of pu, k(r). The
reciprocal space (k space) associated with the real-space lattice is itself a
lattice. The equivalent of the primitive unit cell in reciprocal space is called
the first Brillouin zone. Due to the periodicity exhibited by the lattice in
k space, k-dependent quantities that extend beyond the first Brillouin zone
may be captured through higher-lying bands within the same first Brillouin
zone.

This concludes the elaboration on the employed theoretical framework.
With the elements explained in this chapter, the reader should have a com-
fortable theoretical foundation from which the original work in the upcoming
chapters is based on.



Chapter 3

Ab nitio calculation of
electron-impact-ionization
cross sections for ions in
exotic electron configurations

This Chapter reflects the work done in the article [1], of which I am the first
author, and has been included verbatim:

BEKX, SON, SANTRA, ZI1AJA, Phys. Rev. A 98, 022701 (2018).

Copyright (2018) by the American Physical Society. Reproduced with per-
mission of the American Physical Society for the purpose of this thesis.

Abstract

Atomic or molecular assemblies irradiated with intense hard x-ray pulses,
such as those emitted from x-ray free-electron lasers (XFELSs), are subject
to a strong ionization, which also releases electrons from atomic inner shells.
The resulting core-hole states relax via various channels, including fluores-
cence and Auger decay. The latter is the predominant relaxation channel
for light elements and typically occurs on a time scale of 1-10 fs. In dense
samples, the core-hole ions may already undergo electron-impact ionizations
during this time due to the abundance of highly energetic photoelectrons and
Auger electrons. In this study we perform an ab initio calculation of the
electron-impact-ionization cross sections of ions with an arbitrary electronic
configuration at zero temperature. This allows us to evaluate and compare
impact-ionization cross sections for ions in ground and “exotic” electronic
states (e.g., with a few core holes), which may be formed during their inter-
action with intense x-ray pulses. We show that the impact-ionization cross
sections for ions of the same charge, but with varying electronic configura-

43
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tions, may significantly differ. This finding has to be taken into account in
any modeling tool treating the relaxation of atoms after high-energy-impact
collision, e.g., simulations dedicated for coherent x-ray diffraction imaging of
nanocrystals and single biological macromolecules, or laser-created plasma
studies. Our computationally efficient ab initio calculation scheme can be
easily incorporated in such simulation schemes.

3.1 Introduction

Within the last decade, the advent of x-ray free-electron lasers (XFELs) [10-
12,14, 15] has provided novel insights for the study of x-ray—matter interac-
tions. Applications of this knowledge range over various different scientific
fields, including atomic and molecular physics [17-20], astrophysics [30],
plasma physics [34], and structural biology [21-25].

In particular, XFELs provide ultrashort and ultraintense pulses of x rays,
shaping new avenues in x-ray crystallography [31,32]. Three-dimensional de-
termination of biomolecular structures is vital for studying biological func-
tions of these macromolecules. Molecular structures of biomolecules are
reconstructed from x-ray scattering patterns. In order to ensure a suffi-
ciently strong scattering signal, the patterns are typically obtained from
coherent diffraction on a crystal formed from the macromolecule. How-
ever, growing the high-quality crystals is a difficult and sometimes even
an impossible task [78]. Instead, the high fluence from the XFEL can be
exploited in order to generate a sufficiently strong scattering signal from
nanocrystals [22] and single bioparticles [23]. At the same time, such a high
fluence induces a rapidly progressing damage of the sample. In order to
overcome this issue, the XFEL pulse duration should be sufficiently short
(<10 fs) to outrun the nuclear damage. This scheme is called “diffraction
before destruction.” However, currently available XFEL pulses are not short
enough to elude electronic motion and the subsequently induced electronic
damage [38]. Therefore, quantitative understanding of the radiation dam-
age mechanisms, as well as their proper treatment and incorporation into
simulations, is vital for the accuracy of the structure determination from
experimental data [38-43]. Such incorporation of radiation damage into
photon—matter interaction studies has been done, e.g., with the molecu-
lar dynamics code XMDYN [79,80]. Based on a combination of atomistic
calculation and classical molecular dynamics, XMDYN provides microscopic
simulations of x-ray-induced dynamics of clusters [81], nanocrystals [42], and
solid-density matter [82] in connection with x-ray molecular imaging [83].

While interacting with the imaged sample, hard x rays predominantly
excite inner-shell electrons. The resulting core-hole states can decay via
various paths, including fluorescence and Auger decay. The latter is the
predominant relaxation channel for light elements, and typically takes place



3.1. INTRODUCTION 45

within 1-10 fs [43, 84] after a photoionizing event. At this timescale, in
materials dense enough, the core-hole ions may also undergo electron-impact
ionization, due to the abundance of highly energetic photoelectrons and
Auger electrons.

The importance of impact ionization in radiation damage has been demon-
strated not only in connection with x-ray imaging [37,38], but also for elec-
tron diffraction [85,86] and plasma studies [34,87]. This ionization process
has been extensively studied over many years [44-47]. The accuracy of theo-
retical methods used for the determination of the electron-impact-ionization
cross sections depends both on the wave-function description used to de-
scribe the incoming and outgoing electrons, as well as on the collision theory
employed. A concise overview can be found in Refs. [48] and [49]. Semiem-
pirical approaches and simplified formulas are also frequently used to de-
termine electron-impact-ionization cross sections, such as the semiempirical
formula by Lotz [88-91] and the binary-encounter-Bethe (BEB) formula [92].
The latter method has also been extended to the relativistic regime [93,94].

Here, we intend to describe electron-impact ionization of an ion with
any excited electronic configuration which may occur as the result of its
exposure to high-intensity x rays. Such cases are not accounted for accu-
rately in semiempirical formulas due to the lack of experimental data on
the electron-impact ionization of excited ions. In this paper, we provide an
ab initio calculation of the electron-impact-ionization cross sections for such
ions at zero temperature. In our framework, the impact electron before and
after the scattering process is modeled as a plane wave. The target ion, as
well as the ejected electron after the scattering process, is treated within
a Hartree-Fock-Slater framework, with free states approximated by a dis-
crete pseudocontinuum. With this approach, it is assumed that the outgoing
scattered electron and the ejected electron are distinguishable.

The paper is structured as follows: In Sec. 3.2 we extend the electronic
structure calculation code, XATOM [43,79,95], in order to implement the dou-
bly differential electron-impact-ionization cross section (DDCS) within this
scheme. From the DDCS, singly differential (DCS) and total cross sections
(CS) are obtained. In Sec. 3.3 we calculate the DDCS for an incoming elec-
tron of 1 keV energy interacting with a double core-hole (1s~2) carbon (+2)
ion, as well as the angle- and energy-resolved DCS for the same system. For
the total cross-section studies, we consider various electronic configurations
of carbon (+), carbon (+2), and sulfur (+8) ions, including their ground
states. The results are compared with the available experimental data and
other theory models (Lotz and BEB schemes). The section is concluded
with a discussion. Section 3.4 provides a conclusion and an outlook.
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3.2 Theoretical and numerical framework

We start with a clarification of terminology. While discussing the process of
electron-impact ionization, we consider the incoming electron, which, after
the scattering process, becomes the outgoing (scattered) electron, and the
electron ejected from the system.

Throughout this paper, atomic units are employed, i.e., m¢ = e = h =
4dmeg = 1, unless specified otherwise.

3.2.1 xatom toolkit

In order to calculate electron-impact-ionization cross sections, we build our
implementation on the preexisting XATOM toolkit [43,79,95]. This toolkit
treats x-ray—atom interactions in an ab initio framework, employing nonrel-
ativistic quantum electrodynamics and perturbation theory. XATOM is capa-
ble of calculating rates and cross sections of x-ray-induced processes, includ-
ing photoionization, Auger decay, x-ray fluorescence, elastic x-ray scatter-
ing, and Compton scattering [96,97]. It incorporates a Hartree-Fock-Slater
(HFS) description of the many-electron system, which is an independent-
particle approximation with a mean-field Hamiltonian:

n(x’)

[x — x|

N 1 VA
HHFS = —§V2 - m + /d3$/ + Vexc(x)u (3'1)

where the exchange potential Vey(x) at zero temperature is of the form [98]

313

Vexe(x) = 3 [;n(x)} 1/37 (3:2)

and n(x) = Y 7 @Z(X)%(X) is the electron density, with ¢;(x) denoting a
single-particle spin-orbital wave function. Furthermore, the Latter tail cor-
rection is applied to this potential to ensure proper fall-off asymptotics [99].
Finally, the central-field approximation is made, imposing spherical symme-
try. This enables us to write the solution of the Schrodinger equation in the
form

U (T O
) = 221 ) (G111 (53)

with n, I, m, and s the principal, azimuthal, magnetic, and spin quan-
tum number of the electron with the associated wave function ,ms(x),
respectively. Using this ansatz, XATOM subsequently solves the Schrédinger
equation in a self-consistent way.

XATOM calculations involve numerous computational input parameters.
In particular, the radial coordinate r in Eq. (3.3) is defined with the general-
ized pseudospectral method on a nonuniform grid [100], with the number of
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radial grid points NV, the maximum radius Ry, and the mapping parame-
ter L, which determines the density distribution of radial grid points [100].
The larger L becomes, the more radial grid points are pushed towards higher
values of r. There is also a cutoff parameter imposed on the azimuthal quan-
tum number [, called l,,4,. We used N = 200, L = 10 a.u., R4 = 80 a.u.,
and 4. = 35 for all computations, unless specified otherwise.

3.2.2 Doubly differential electron-impact-ionization cross sec
tion

The expression for the doubly differential cross section (DDCS) for the in-
elastic scattering of an electron with a many-electron system is derived in
Ref. [101]. The derivation is performed using the Born approximation, which
assumes that both the incoming electron and the outgoing scattered electron
have a high enough energy to be described by a plane wave. It takes on the
form

d*o 4 Gou A e
a0 dE :@q.tZPI‘/d3$<F|n(X)|I>62QX 5(E[—Ep+w)
Qout ¢4out Gin IF
4 gou N 2
= G S PR QID| 0(Er B tw), (34)
in g

where f(x) = ¥ (x)ih(x) is the electron density operator, with ¥ (x) being
a fermionic field operator. The initial and final momenta of the incom-
ing electron are denoted by qiy and qout, Q is their respective difference,
Q = Qin — Qouts ¢in = |qin|7 qout = |q0ut‘> and @ = ‘Q‘ The energies of the
incoming and scattered electron are denoted as Ej, and FEgy,, respectively.
|I) and |F') represent the initial and final wave functions of the target system
under consideration, and E; and Er denote their respective energies. Fur-
thermore, Py refers to the probability of finding the system in state |I) before
the scattering. Finally, w denotes the energy transfer Fi, — Foy from the
incoming electron. The 1/Q* dependence is a consequence of the Coulomb
interaction between the projectile and the target, and exhibits an angular
dependence, Q* = [q?n + 24 — 2¢inGout cos(@)] , where 6 denotes the angle
between the direction of the incoming and scattered electron. Azimuthal
symmetry is always assumed.

In order to implement Eq. (3.4) into the HFS framework of XATOM, we
introduce a complete orthonormal basis set of spin orbitals |¢,) of the target,
with orbital energy ¢, and associated fermionic creation and annihilation
operators é;r, and ¢, respectively. The index p contains both spatial and spin
quantum numbers. The field operator is expanded in this basis as @@(x) =
Ep ©p(x) ép. Within an independent-electron model, we approximate our
initial state |I) as a single Fock state composed of the aforementioned spin
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orbitals:

Ney

1) ~ |{Na}) = [T é0), (3.5)

p=1

where N.; denotes the number of electrons present in the initial state, and
|0) is the vacuum state. Furthermore, we neglect all correlations between an
electron eventually ejected during the collision and the electrons yet present
in the parent ion. Within this approximation, we can write our final state
as

|F) ~ e [{Ner}). (3.6)

After invoking these relations, we use the Condon rules [84], which allow
for matrix elements with respect to Fock states to be reduced to matrix
elements with respect to the spin orbitals. This enables us to transform
Eq. (3.4) into the following form:

d20 4 dout (N} (N}
90 AR . — P nilNetr (1 _ pilNe
dQQOut dEout Q4 Qin {NZZ} {Nei} ; 7 ( f )

x [(op|e’¥*| i) [*6(es — e + w)
4 qout _ _

= — ni (1 —n
Q4 Gin sz: Z( f)

2

X dei —ef +w), (3.7)

[ ol e i)

;-{Nd} is the eigenvalue of the number operator n; = éjéi, which is

equal to 0 or 1 due to its fermionic nature. The superscript refers to the
state on which the operator is acting on (in this case |{Ng})). The matrix

element is calculated with respect to the spin orbitals ¢; r(x), with the or-

bital energies ¢; ;. Furthermore, we use the fact that ) (N} Py Nel}nl{N"‘l}

represents the average number of particles in the orbital ¢; and is thus de-
noted by 7;. At zero temperature (T = 0), we have n; = Ny, 1,/ {2(2l; + 1)},
with N, ;, denoting the number of electrons in subshell (n;,[;). Likewise,
ng = Nns1,/{2(2ly +1)}. For bound final states, Ny, , is the number of
electrons in the final state characterized by the quantum numbers (ng,ly).

where n

In what follows we will apply Eq. (3.7) only to describe direct electron-
impact ionization, i.e., a bound-to-free transition that ends up with the
ejection of a bound electron into the continuum. We will not consider here
the indirect excitation-autoionization channel-—when an electron excitation
is followed by a relaxation of the excited atom by ejecting an electron.
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We proceed by implementing the ansatz from Eq. (3.3) for the spin
orbitals ¢; (x), which gives the following final expression for the DDCS,

d20' 4 Gout free occ.
v = Hou S(E B e 4e
quoutdEOut Q4 Qm Tgl:f; ( out in nz,lz f)
li+ls
Nn !
N, ; |1 — " 9L & 1
;0 |2
x ‘Rﬁfvlf,m,li(Q)leom‘ ) (3.8)

where we explicitly denoted the orbital energy of the subshell (n;, ;) as ey, 4,
and where

I B Rimaz _
RE | 0(Q) = / 01t 1, ()7 L@ )t (7). (3.9)

Here, j(Qr) is a spherical Bessel function, and Cll foOLo is a Clebsch-Gordan
coefficient, which, due to the fact that m; = m; = M = 0, has the property
that I; + [y + L is an even integer in order to give a nonzero contribution.
As we consider only ionization processes at zero temperature, we can set
N, oy = 0. Note that the sum Zg;ezf only accounts for the situation when
the ejected electron is free after the scattering process, i.e., when the system
becomes ionized.

Let us consider the sum over the unoccupied final states. According to
Eq. (3.8), these final states can be labeled with quantum numbers n¢ and /.
However, since we are considering bound-to-free transitions, the final states
lie in the continuous part of the energy spectrum and cannot be labeled by
the discrete number ny. Instead, this label is replaced by the continuous

parameter 7. The term Zg;elf should thus be read as 37 [ degpi;(ep),
where p;, (e7) denotes the density of final states in between ey and ey + dey,
for a single discrete value of [¢. For energy-normalized wave functions py, (ef)
reduces to unity, so we will omit it henceforth.

Conventionally, XATOM calculates the discrete bound states wu,;(r) and
the continuous free states ug(r) in two different ways. The bound states are
calculated with the generalized pseudospectral method on a nonuniform ra-
dial grid [100], whereas the free states are determined by numerically solving
the radial Schrodinger equation for a given e using a fourth-order Runge-
Kutta method on a uniform grid [102]. However, due to the implementation
of both a uniform and a nonuniform grid, transitions from initial bound
states to final free states require an interpolation between the two grids.
This interpolation has to occur for every ¢ in the wide range of the energy
spectrum and is, therefore, computationally expensive. As we are exclusively
interested in bound-to-free transitions for impact ionization, we overcome
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this difficulty by working only with the nonuniform grid and by approximat-
ing free states with a discrete nonuniform continuum: a pseudocontinuum.
The latter step will be discussed in detail in the next section.

3.2.3 Implementation of pseudocontinuum for DDCS calcu-
lation

Recall that the DDCS in the HF'S framework of XATOM takes on the follow-
ing form in Eq. (3.8):
d20 4 Jout =
- desd(es — E E;
g @B Q qin nz Z/ 7 0067 = enuti + Boue = Fin)
l; Jrlf 9
1,0

X an Z 2L + 1 ‘Rsf lf, nz,lz(Q)ClifOLo

occ.

4 gou i
= Grt X [ oy —aEe. o

where we have defined AEMili) = B, — out + €n; 1, and

l+lf
10

niylz 2
fa(f’lf '= n“l Z 2L+ 1 ‘Ré‘f ly, nz,ll(Q)C[if()Lo . (311)

In order to calculate the DDCS, we need to evaluate £y and f a?ll’fl). As
previously discussed, we calculate only discrete Values of these quantities,
which then define the pseudospectrum &, and f (n“ ', with ny denoting a
discrete index, running from 1 to a certain finite 1nteger number N. The
question then arises as to how one can impose the proper energy normal-
ization on the wave functions that comprise the obtained spectrum. To
solve this issue, we assume that the calculated pseudospectrum is dense
enough so that we can use local information on wave functions wu,, 1y and
unf+1,zf, which have the corresponding energies &,,, and ep,41 satisfying

; <&y <ényy1, similar to what was done in Refs. [103] and [104].

Our task is then to calculate an expression of the form f (nirls) (AEMk)) =

[desé(er — AEMili)) fs(;“l’ ) by using a discrete pseudospectrum consisting

of £, and f n“ ). Let us first integrate the function f( ioki) up to a cutoff

value AEMil 1). The reason for this action will become apparent at the end
of the explanation. Using our pseudospectrum, we can approximate this
integral by the sum

AE™M4:l;) ~
/ de g f"“ Z f(”“ = [y, (AEM), (3.12)

ny=1
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where &, < AEMl) < ¢ F (AE(”i’li)) is a histogram, where each

(”u 1)‘

value represents a partial, cumulative sum of f The derivative of

f(AE(”“ i)) with respect to AE™4) given by

[ (AEM) Z L5 3(en, — AEMH), (3.13)
ng= 1

provides a discretized approximation of the quantity fl (mi.ls (AE(”“ 1)) =

[degé(ep — AEM! 1))f(7;“ ) However, F’ (AE™i4)) suffers from the same
d-singularity problem. In order to overcome this issue, we connect the neigh-
boring midpoints of the histogram values of E] f(AE(”i’li)), constructing a
piecewise linear function Fj f(AE(”i’li)). The derivative of this function,
Fl’f (AE™M4)) will be a histogram and contains no § functions. It can be

shown [103,104] that, with the increasing N, the function Fl’f (AE™i4)) con-
verges to the correct value of f(n“ Y(AEML)) = [deg (5(5f—AE(”i’li))f(m’li).

efly
Using the method above, the DDCS is calculated by
d*o 4 Gout & s (n4,l

- ki) , 3.14

dQCIouchout Q4 {in Z Z Z fnf ( )

n;,l; lf Onyg=1

where m is defined so as to uphold the relation ¢, < AEmili) < Em+1, and
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With the calculated DDCS, we also have access to the singly differential
cross sections, both angle- and energy-resolved, as well as to the total cross
section (CS). In what follows we shall call the energy-resolved cross section
DCSEg, whereas we define the DCSy to be the angle-resolved cross section,
integrated over the azimuthal angle ¢, ie., DCSy = 0% do (do/dQq,,,)-
This integration can be immediately evaluated as the DDCS exhibits no
dependence on ¢. The upper limit of the energy integral, needed for the CS
and DCSy, is chosen such that for each channel (n;,[;), only ionization is
considered. These calculations that involve an energy integral can also be
evaluated immediately due to the presence of the ¢ function, negating the
need for the machinery outlined above. Otherwise, when an explicit integral
evaluation is needed, we employ nonuniform Gaussian quadrature.

3.2.4 BEB and Lotz models

Here we provide a short description of the BEB [92] and Lotz [91] models,
as they will be compared to our results in Sec. 3.3. The binary-encounter-
Bethe method [92] provides a simplified formula based on a binary collision
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theory for direct electron-impact ionization. The BEB cross section (opgp)
is orbital specific. It depends on the orbital binding energy B, the orbital
kinetic energy U, the electron occupation number N, and the dipole con-
stant (. The BEB cross section for each orbital is given by the following

expression [105]:
B S Qnt 1 1
OBEB Tt )/n | 2 2

+(2—Q)<1_%_tli—tl”, (3.16)

where T is the energy of the incoming electron, t = T'/B, uw = U/B, S =
4ra3N(R/B)?, ag = 0.52918 A, R = 13.6057 eV, and n is the principal
quantum number of the orbital. In an ad hoc fashion, n is set to be 1 if
n < 3. The dipole constant @ is defined in terms of the continuum dipole
oscillator strength and the kinetic energy of the ejected electron. In most
cases, (J is set to be equal to 1. The total cross section is a sum of these
orbital contributions.

For some neutral atoms and ground-state ions, the orbital parameter B,
required for evaluating Eq. (3.16), is available in the NIST database [105].
However, for most elements, the experimental data required for the input
of the BEB formula are scarce, and in the case of exotic core-hole config-
urations of ions, they are mostly absent. In the former case, it is advised
to use theoretically computed values instead [105], and we adopted this
to the latter case as well. Therefore, we use B and U, which is a purely
theoretical quantity, as obtained from the Hartree-Fock-Slater calculation
performed with XATOM. Note that this implementation of the BEB formula
using XATOM-evaluated atomic parameters has been used in XMDYN simula-
tions [79,106]. Note further that the BEB formula makes no mention of the
wave functions of the electrons within the target. Any contribution arising
from a transition matrix element is therefore not accounted for. An incom-
ing electron will distinguish two different systems with the same number of
bound electrons only through a difference in the parameters B and U. How
well this captures the difference in impact ionization for two ions with the
same charge but of different electronic configuration is unknown.

The semiempirical formula provided by Lotz [91] for the total electron-
impact-ionization cross section takes the following form:

N
In(E/P;
s = 3 it (1 byexp [ei(B/ Py~ 1),
i=1 !

for E > P, (3.17)

where the sum over ¢ runs over all N subshells, F is the energy of the incom-
ing electron, P; denotes the absolute value of the orbital energy of the ith
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subshell, and ¢; is the equivalent number of electrons present per subshell.
The constants a;, b;, and ¢; are orbital specific. Their values are listed in
Ref. [91]. For the exotic electronic configurations, we used orbital energy val-
ues obtained from XATOM calculations. We also note that a formula similar
to Eq. (3.17), taking into account inner-shell excitations and autoionization,
has been obtained in Ref. [107]. The Lotz formula in Eq. (3.17) is the re-
sult of a best-fit approximation using all single-electron impact-ionization
cross-section data available at the time it was proposed [88-91]. As these
data were obtained from ground-state ions and atoms, one cannot expect
Eq. (3.17) to yield well-established results for ions with exotic electronic
configurations.

We would like to emphasize that the use of the BEB and Lotz formulas
for ions with exotic electronic configurations is not standard practice, as nei-
ther of them was designed to handle these cases. However, it is still done, in
part, because both the BEB and Lotz formulas are computationally efficient.
In Sec. 3.3.2, we test these formulas with exotic electronic configurations by
comparing their predictions with our ab initio calculations.

3.3 Results

Below we show electron-impact-ionization cross sections obtained for several
electronic configurations of carbon and sulfur ions. These specific elements
were selected due to their abundance in proteins and in biomolecules. In par-
ticular, we considered C*, and C?* ions with different electronic configura-
tions: (i) with the hole(s) in the innermost shell (1s! 252 2p? and 1s° 252 2p?)
and (ii) with the hole(s) in the outermost valence shell (1s?2s?2p! and
1522522pY). For the sulfur ion, we removed eight electrons in order to
show that the difference in cross sections obtained for two different elec-
tronic configurations of the same net charge is amplified for higher charge
states. We considered either all holes in inner shells, or in valence shells
(159 25%2p? 352 3p* and 152 252 2p* 359 3pY).

3.3.1 Doubly and singly differential electron-impact-ionization
cross section

In Fig. 3.1 we show a contour plot of the DDCS (Mb eV~!deg™! in a log-
arithmic scale) of a double core-hole (1s72) C?* ion colliding with a 1-keV
electron. The x and y axes show the scattering angle and the outgoing en-
ergy of the scattered electron, respectively. On the left panel, the DCSg is
plotted after the numerical integration over 6. To obtain converged results,
this angular integration requires 50 angular grid points. The DCSy is plot-
ted on the bottom panel. For the scattering-angle-resolved cross section, we
only show the range from 0° to 60°, as the DDCS is almost negligible for
# > 60°. For the outgoing energy, we show the range from 800 to 1000 eV,
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Figure 3.1: A contour plot depicting the doubly differential electron-impact-
ionization cross section [Mb eV~! deg™!] of a double core-hole C?>* ion, on
a logyg scale. The incident energy of the electron is 1 keV. The x axis shows
the scattering angle 6 from 0° to 60°, and the y axis shows the energy of the
scattered electron Fg,y from 800 to 1000 eV. The DCSy is plotted in blue
and has units of Mb deg~!. The DCSg is plotted in red and has units of Mb
eV~!. The white area on the top indicates the region of zero cross section
below the 2p edge (50.7 eV).

in which the cross section is the largest. In total, about 12 200 data points
were calculated, which took ~ 31 min on one Intel Xeon E5-1620 CPU, cor-
responding on average to about 6.4 data points calculated per second. We
note that DCSy calculations were much faster (~49 s for the whole range)
because there was no need to numerically evaluate the energy integral. We
used N = 400 for the number of radial grid points for all plots in Fig. 3.1.
The DDCS plotted in Fig. 3.1 was multiplied by a factor of 27, stemming
from an integration over the azimuthal angle ¢.

Figure 3.1 shows the presence of the ionization thresholds in the double
core-hole C27 ion, both in the DDCS and in the DCSg (calculated to be at
50.7 and 56.5 eV for the 2p and 2s edge, respectively). The DDCS and DCSy
reveal a high preference for low scattering angles, which is a consequence of
the Coulomb factor 1/Q* in Eq. (3.8).
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Figure 3.2: Total electron-impact-ionization cross section as a function of
incoming electron energy in eV for C* with (a) one valence hole (2p~1)
and (b) one core hole (1s7!). The xATOM label denotes the present ab
initio calculations, in comparison with the BEB method [92] and the Lotz
method [91]. For the ground-state C* ion, the predictions are also compared
with experimental data (Aitken et al., 1971 [110], Lennon et al., 1988 [108],
and Suno and Kato, 2006 [109]).

3.3.2 Total electron-impact-ionization cross section

In this section, we consider the total electron-impact-ionization cross sec-
tions for CT, C%*, and S®F, and compare our ab initio calculations for the
ground-state ions to the experimental predictions [108-111], as well as to
the Lotz [91] and BEB models [92]. The experimental data in Ref. [108]
were provided with error bars, shown as a shaded orange area in the fol-
lowing figures. Additionally, for the carbon ions, a more recent review [109]
was available, providing an additional set of recommended data. Figure 3.2
shows the electron-impact-ionization cross section for C*: (a) when the hole
is in the valence shell and (b) when it is in the core shell. Figure 3.2(a) shows
that our ab initio calculation (XATOM) is comparable to the results obtained
from the Lotz and BEB models. In comparison with the experimental data,
our result follows the quantitative trend of the data adequately. Both the
initial rise at low incoming energies and the later decrease at higher incoming
energies are captured quite well by the XATOM result. Only in the interme-
diate region, where the peak is located, our result overestimates the cross
section with respect to the experimental values before falling back into the
proper range of values. Of course, improved results are expected for higher
incoming electron energies due to the plane-wave formalism employed in the
description of the incoming electron. Comparing with Fig. 3.2(b), we can
observe that both Lotz and BEB results differ slightly for both the core-hole
and the valence-hole cases, similarly as the XATOM results. The CPU run-
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Figure 3.3: Total electron-impact-ionization cross section as a function of
incoming electron energy in eV for C** with (a) two valence holes (2p~2)
and (b) two core holes (1s72). For the ground-state configuration (a), three
experimental data sets (Woodruff et al., 1978 [111], Lennon et al., 1988 [108],
and Suno and Kato., 2006 [109]) are compared with theory predictions.

time for a single total cross-section calculation with XATOM is dependent on
the incoming electron energy; it was 10.5 s on average.

Figure 3.3 shows the total electron-impact-ionization cross section for
C?* with (a) two valence holes and (b) two core holes. Figures 3.3(a)
and 3.3(b) demonstrate that for higher ion charges the difference in cross
sections calculated for the distinct electronic configurations becomes more
pronounced. In particular, Fig. 3.3(a) shows a similar trend as in Fig. 3.2(a),
where the XATOM result was comparable to both Lotz and BEB models.
Also, the XATOM result shows a similar kind of relation with the experimen-
tal data: the initial rise and later decrease of the data are reproduced quite
accurately by XATOM, whereas it overestimates the values around the peak.
Similarly, Fig. 3.3(b) again shows that both Lotz and BEB results differ
slightly for the core-hole and the valence-hole cases. However, the XATOM
result predicts a relatively large difference in cross sections for these cases.

Figure 3.4 shows the S®F case: (a) with eight outer holes (2p~23s723p*)
and (b) with eight inner holes (1s=22s722p~*). For the ground-state configu-
ration in Fig. 3.4(a), a trend similar to the carbon cases can be identified. By
comparing Figs. 3.4(a) and 3.4(b), a large difference between total cross sec-
tion for distinct electronic configurations becomes visible. We note that the
positions of the maximum of the total cross section predicted with XATOM
resemble the experimental ones more closely than those predicted with the
Lotz and BEB models for all three cases considered. We have restricted
the incoming electron energy to a maximum of 10 keV. At higher electron
energies, relativistic effects [93,94] become increasingly important. These
are currently not incorporated in our approach.
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Figure 3.4: Total electron-impact-ionization cross section as a function
of incoming electron energy in eV for S8t with (a) eight outer holes
(2p~235723p~*) and (b) eight inner holes (15722572 2p~4). For the ground-
state configuration (a), the experimental data set from [108] is shown.

We conclude this section with an error estimate of our approach. As
mentioned in Sec. 3.2.2, the incoming electron is described in a plane-wave
formalism, which is an increasingly accurate description for higher incoming
electron energies. Therefore, we will perform our error estimate as follows:
We choose two values of the incoming energy, one for the representation of
low incoming energies and the other for high energies. We chose 100 ¢V and
1 keV, respectively, for C* and C?*, whereas for S®* we chose 1 and 10 keV
for the low and high incoming energy regime, respectively. At these points,
we compare the values of the impact-ionization cross section for the ground-
state ions between XATOM and the experimental dataset of Lennon [108]
in order to obtain an upper limit for the percentage error estimate for the
XATOM result. We chose this dataset to have a consistent comparison for all
systems. At 100 eV, the error estimates for C* and C?* are 18% and 24%,
respectively, whereas at 1 keV they are 6.2% and 1.2%, respectively. The
error estimates for S®F are 25% at 1 keV and 14% at 10 keV. We argue that,
since XATOM treats ground-state ions and exotic ions within a consistent
ab initio framework, we expect at most the same percentage errors for the
core-hole ions as for the ground-state ones.

3.3.3 Discussion

Below we discuss the observed trends in impact-ionization cross sections
when comparing ground-state ions to their core-hole variants. Figures 3.2,
3.3, and 3.4 show that the impact-ionization cross section calculated by
XATOM is larger for the core-hole configurations than for the ground-state
ions. The magnitude of the difference depends on both the ion charge and
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the energy of the incoming electron. The Lotz result does not follow this
trend generally. As observed in Figs. 3.2(a) and 3.2(b), the Lotz result shows
that the core-hole ion has a smaller cross section than the ground-state ion.
We attribute this to the inapplicability of the Lotz formula for ions with
exotic electronic configurations, as already discussed in Sec. 3.2.4. On the
other hand, the BEB result does follow the trend of the XATOM result in
all cases considered, albeit to a smaller extent. We argue that the physical
reason behind this trend is a combination of two mutually competing factors
in the core-hole ions. On the one hand, there are more valence electrons
to interact with, which increases the cross sections. On the other hand,
this effect is partly compensated by the change in orbital size due to the
increased positive charge seen by valence electrons and results in a slight
decrease of the cross sections. We will first make our arguments for the
XATOM calculations, after which we will show why the BEB result follows
the same trend.

The contribution to the total impact-ionization cross section from core-
shell electrons calculated by XATOM was observed to be very small as com-
pared to the contribution from valence-shell electrons, which is consistent
with previous works [92]. For the purposes of this discussion, the contribu-
tion of core shells can be neglected. Now consider the example of C?*. The
ground-state ion has two electrons left in the 2s valence shell. In contrast, its
double core-hole variant has four valence electrons which will contribute to
the impact-ionization cross section, and so we would expect to see the cross
section for the double core-hole case to be approximately double the one for
the ground-state ion. This is indeed the case for incoming energies above 1
keV, as shown in Fig. 3.3. A similar conclusion can be drawn for C*, only
now the cross section for the single valence-hole and single core-hole ions
should not differ by a factor of 2 but by a factor of 4/3, since we move from
a case with three valence electrons to one with four. This is again observed
in Fig. 3.2 for the energies beyond 1 keV. As for S®F, the eight-core-hole ion
has six more valence electrons than its eight-valence-hole variant. The cross
sections for the two S8t variants never differ by as much as a factor of 6 for
the incoming energies considered, as is seen in Fig. 3.4. Instead, a factor of
3.5 can be deduced at most.

This leaves us to find some features of the core-hole variants of S3+, C2*,
and CT, which compensate the effect of the increase in cross section due to
the presence of more valence electrons, and which manifest themselves more
for lower energies in the case of the carbon ions. To this end, note that
the argument based on counting valence electrons assumes that the contri-
butions to the cross section of the valence shells in the core-hole variants
are roughly the same. However, for both C* and C?*, we observed that
the contribution from the 2s shell is smaller for the core-hole ion variant
as compared to the ground-state ion, the difference of which diminishes for
higher incoming energies. Since the configurations of S** we considered have
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no orbitals which contain the same amount of electrons, such a comparison
is less meaningful for S¥+. We attribute this to the decreased size of the
valence orbitals in the core-hole variants caused by the increased positive
charge they experience from the nucleus, as there is no screening effect from
core electrons. To understand why a smaller orbital leads to a diminished
contribution in the cross section, let us consider the transition matrix ele-
ment in the expression for the impact-ionization cross section in Eq. (3.7).
Also, we will separately consider low incoming energies (of the order of 100
eV) and high ones (1 keV or higher) in what follows.

Let us start with the regime of low incoming electron energies (take
Ej, = 100 eV) and consider the matrix element (¢ ;[e?Q*|p;). For an elec-
tron of 100 eV, the de Broglie wavelength is of the order of 1 A. Since the
ejected electron energy is less than the incoming electron energy, the de
Broglie wavelength of the ejected electron will be larger than 1 A. However,
this is much larger than the spatial extent of the initial orbitals we are con-
sidering. Therefore, when performing the integration of (¢¢|e!@%|p;), we
can largely consider (¢¢| to be a constant. What remains is an integra-
tion over e!@Xy;(x), which is simply the Fourier component of the initial
orbital associated with Q, denoting the momentum transfer from the incom-
ing electron. Effectively, we are considering the momentum distribution of
the initial orbital |p;), evaluated at the momentum transfer Q. However,
not all values of Q are considered. Since Q = qin — qout, and, for our incom-
ing electron, q;, is of the order of /2E;,, Q will not sample many points
in the momentum distribution of |p;) for low energies. Combining this with
the fact that smaller initial orbitals will have a more spread out momentum
distribution leads to a smaller transition matrix element, thus diminishing
the contribution to the impact-ionization cross section.

At higher energies (for example, E;, = 1 keV), the energy transfer
from the incoming electron may be substantial, so we cannot assume the
de Broglie wavelength of the ejected electron to be constant when perform-
ing integration of the matrix element (¢ ¢|e’@|¢;). However, in such cases,
Q will include a much larger range of values to sample over. Additionally,
we can argue that the highly energetic ejected electron could equally well
be described as a plane wave with an associated momentum qgejec. Then the
transition matrix element will be an integral over e*(Q~dejec)*((x). From
here on, we can reuse the Fourier analysis argument from the low-energy
case. Again, a smaller initial orbital will lead to a spread in its momen-
tum distribution, but since Q will include a much larger range of values for
sampling, we can argue that the diminishing effect to the cross-section con-
tribution will be less present for higher energies. This last effect is not seen
in the S8 case, because the much stronger Coulomb interaction experienced
by the incoming electron, as compared to the C* and C?* cases, pushes the
validity of the plane-wave framework to higher energies than those that were
considered.
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Orbital kinetic energies U [eV]

1s 2s 2p 3s 3p
Ct (1s71) 478.9 67.6 63.8 - -
ct (2p7h 447.0 54.1 45.5 - -
C?F (1s72) 495.8 89.6 91.0 s -
C2* (2p72) 448.6 60.9 54.1 - -

S8* (1s7225722p~%)  3469.5 801.1  810.5  271.5  268.6
S8t (2p~23s723p~%) 33324 5827  567.1 1799  169.3

Table 3.1: The orbital kinetic energies in [eV] as calculated by XATOM for all
systems considered and used for the calculation of the BEB cross sections.

These two factors which we have discussed above are also captured, to a
different extent, by the BEB formula. First, the overall factor of N, denoting
the number of electrons present in the orbital considered, is contained in
Eq. (3.16). Second, the diminishing factor from the decreased orbital size is
captured by the orbital kinetic energy U in the denominator of Eq. (3.16).
We can relate the size of an orbital to the orbital kinetic energy as follows.
The orbital kinetic energy is related to the momentum distribution of the
target electron through U = (p?)/2, with p the momentum operator of
an electron in a certain subshell. This means U is associated to the second
moment of the momentum distribution, i.e., its width. As an orbital becomes
smaller and thus more localized, its momentum distribution will spread,
causing U to become larger and therefore decreasing the BEB cross section.
In order to justify the observed trend in Figs. 3.2 and 3.3, this would imply
that the orbital kinetic energies U of the core-hole variants should be larger
than those of the ground-state ions. Table 3.1 shows the values of U for each
shell of each system considered, as calculated by XxATOM. It shows, without
exception, that the orbital kinetic energies U of the core-hole variants are
indeed larger than those of the ground-state ions. Therefore, the qualitative
behavior of the BEB result follows that of our ab initio calculations.

3.4 Conclusion and outlook

To sum up, we have developed a versatile ab initio scheme for calculation of
direct electron-impact-ionization of ions in any electronic configuration at
zero temperature within the Hartree-Fock-Slater (HFS) framework. In par-
ticular, we have incorporated the known formula for the doubly differential
electron-impact-ionization cross section (DDCS) derived in Ref. [101] into
the HFS-based XATOM toolkit. Within the scheme, the incoming electron
and the scattered electron are treated using plane waves, the atomic system
under consideration with a HF'S approach, and the final state of the ejected
electron with a pseudocontinuum description. From the DDCS obtained,
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we have calculated singly differential cross sections, both angle and energy
resolved, as well as the total electron-impact-ionization cross section.

Our approach, derived in the first Born approximation, should work
accurately not only for the description of electron-impact ionization of cold
ions, but also for more complex systems like molecules, solids, and plasmas,
provided that the assumption of a weak scattering potential seen by the
impact electron is reliable, i.e., the average interaction energy between the
impact electron and the scatterer(s) is much lower than the kinetic energy
of the impact electron. Following this criterion, we expect that especially
in the condensed-matter systems, where the screening of ions diminishes
the effect of long-range Coulomb interaction between the incoming electron
and constituent ions, also the regime of lower electron-impact energies will
be accessible for the impact-ionization cross sections calculated with this
method.

The ab initio calculations can be easily incorporated in x-ray-induced
dynamics simulations treating the relaxation of atoms after high-energy-
impact collision and provide impact-ionization cross sections for any exotic
(multihole) configuration.

On the examples of ground-state carbon and sulfur ions, we have shown
that the results of our ab initio scheme for total electron-impact-ionization
cross section manage to reproduce the experimental data at high energies
of the incoming electron to a satisfactory degree, while resembling the over-
all trend of the data sets for all incoming energies considered. For the
exotic configurations, for which no experimental data are available, our
ab initio method enables us to perform cross-section calculations without
any difficulties. Our results indicate that there are significant differences in
impact-ionization cross sections between the core-hole (exotic) and valence-
hole (ground-state) configurations in ions of the same charge, which increase
with an increasing charge of the ions. Also, our results are, in general, com-
parable to those obtained with the BEB and Lotz models for core-hole config-
urations, using the input parameters calculated with XATOM. However, our
method indicates stronger differences between the impact-ionization cross
sections for core- and valence-hole configurations than the BEB and Lotz
models. The discrepancies observed increase with increasing charge of the
ions.

We expect that this finding can have a significant impact on any quan-
titative modeling studies treating the relaxation of atoms after high-energy-
impact collision, e.g., simulations for coherent x-ray diffraction imaging of
nanocrystals and single biological macromolecules, or studies of laser-created
plasmas. While we advocate the use of an ab initio method, the need for
repeated cross-section calculations in simulations of x-ray-driven complex
systems requires striking a balance between numerical accuracy and com-
putational efficiency. We believe that our implementation within XATOM
satisfies these requirements. For quantitative checks, further studies are re-
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quired in specific contexts. In particular, for dense samples, the inclusion
of finite temperature and treatment of the ion’s environment are necessary.
This development is already underway.



Chapter 4

Electronic-structure
calculations for
nonisothermal warm dense
matter

This Chapter reflects the work done in the article [3], of which I am the first
author, and has been included verbatim:

BEKX, SON, ZIAJA, SANTRA, Phys. Rev. Res. 2, 033061 (2020).
Copyright (2020) by the American Physical Society. Reproduced with per-
mission of the American Physical Society for the purpose of this thesis.

Abstract

Warm dense matter (WDM) is an exotic state of matter that is inherently
difficult to model theoretically, due to the fact that the thermal Coulomb
coupling and quantum effects are comparable in magnitude and must be
treated on equal footing, foregoing the employment of conventional methods
from either plasma physics or condensed-matter physics. Our work focuses
on describing electronic states present in a transient, nonisothermal WDM
state, where electrons become hot and ions remain cold, during the first
10-100 fs after the irradiation of a solid sample with an intense femtosecond
x-ray pulse. We present a methodology, combining the finite-temperature
Hartree-Fock-Slater approach with the Bloch-wave approach within a peri-
odic atomic lattice, implemented in a new toolkit, XCRYSTAL. In XCRYSTAL,
electronic states are represented in a hybrid basis comprising plane waves
and localized core orbitals on a radial pseudospectral grid. This hybrid ba-
sis ensures a high numerical efficiency as highly localized states need not be
described using plane waves. Additionally, these core orbitals are respon-
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sive to the presence of delocalized plasma electrons through an interwoven
optimization between inner-shell and outer-shell electronic states employed
in XCRYSTAL. Therefore, not only does XCRYSTAL model the plasma elec-
trons efficiently, it also allows for access to inner-shell modifications at high
electronic temperatures. To benchmark our method, we calculate K-shell
threshold energies of x-ray-excited solid-density aluminum as well as the
ionization potential depression and show their agreement with experiment.
In comparing our method with other theoretical models, we conclude that
the incorporation of optimized inner-shell orbitals is essential to obtain ac-
curate results, and we find that the inclusion of the full crystal structure
has a limited effect. Furthermore, we obtain temperature-dependent band
structure predictions at WDM conditions, up to temperatures of 100 eV,
which, to the best of our knowledge, are the first of their kind for this non-
isothermal system. We expect that our proposed methodology will aid in
the theoretical description of nonisothermal WDM, as well as advance the
understanding of this exotic state of matter.

4.1 Introduction

Warm dense matter (WDM) has gained significant interest because of its
abundant presence in a variety of physical systems. It is relevant to astro-
physics, specifically for the research of the interiors of stellar bodies [51,52]
and large planets [53-55], in the field of inertial confinement fusion [56-59],
and in laboratory experiments involving high-power laser sources, such as
those at the National Ignition Facility [112], LCLS [10], SACLA [11], PAL-
XFEL [14], FLASH [16], and the European XFEL [12].

WDM lies on the border between condensed-matter physics and plasma
physics [50]. It is characterized by temperatures of the order of 7' ~ 0.1—100
eV and densities ranging from 1073 to 10? g/cm3. The WDM regime is in-
herently challenging to describe theoretically because both thermal Coulomb
coupling and quantum-mechanical effects are then of a similar magnitude.
This implies that typical methods of conventional condensed-matter physics
and plasma physics are not trivially extended into the WDM regime, nor
can one justify the imposition that one effect is described as a small pertur-
bation of the other. However, WDM is now routinely being produced during
high-power-laser experiments, driving the need for a thorough understand-
ing of this regime. Additionally, with the advent of x-ray free-electron lasers
(XFELSs) over the last decade, a rejuvenated interest in WDM has been gar-
nered due to the ability of XFELSs to produce this state of matter transiently
and to probe it [34,60-62,113,114].

Over the years, various theoretical models and approaches have been
developed to describe WDM and its properties. Among them are the Ecker-
Kroll (EK) model [115], the Stewart-Pyatt (SP) model [116], the average-
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atom (AA) model [117-120] and its variation [121], finite-temperature den-
sity functional theory (DFT) [122-124], frequently in combination with ab-
initio molecular dynamics (QMD) [125-133], time-dependent DFT [134],
Monte Carlo molecular dynamics [82], quantum kinetic theory [135, 136],
and quantum Monte Carlo simulations [137,138]. A recent review highlight-
ing and analyzing the last two topics can be found in Ref. [139].

In the current study, we will focus on the description of WDM created by
an intense femtosecond XFEL pulse from solid aluminum (Al). Specifically,
we will limit ourselves to the description of the electronic states during the
first 10-100 fs after the x-ray exposure, which allows us to assume that the
ion lattice remains cold. This assumption is well justified as the heating of
electrons by the laser pulse occurs much faster than the transfer of energy
to ions through electron-ion coupling [64—70]. Additionally, the dense elec-
tronic environment created forces the electrons to rapidly thermalize (on the
order of a few fs to a few tens of fs) through electron-electron collisions and
impact-ionization processes [140]. These assumptions allow us to describe
the system as a hot, thermalized electron distribution embedded in a peri-
odic crystal lattice, constituted of parent ions. The system is modeled by
a muffin-tin potential, whereas the description of electronic states is done
using a finite-temperature Hartree-Fock-Slater approach. These states are
represented with respect to a hybrid basis consisting of plane waves and
localized core orbitals solved on a radial pseudospectral grid. A simultane-
ous interleaved optimization of inner-shell and outer-shell electronic states
accounts for inner-shell modifications at high electronic temperatures in an
efficient manner. Additionally, the periodicity of the system allows for the
implementation of the Bloch formalism [141], increasing computational effi-
ciency. A detailed description of the developed methodology is presented in
Sec. 4.2. The model has been implemented into a new toolkit, XCRYSTAL.

With the calculated electronic states, various characteristic properties
of the transient, nonisothermal WDM state become available for evaluation
and for comparison with experimental data. In order to benchmark XCRYS-
TAL, we will compare our model results to the data from the experiment
performed at the LCLS on x-ray excited solid Al [34,61,62]. Specifically,
the K-shell threshold energies were measured for this system. From them,
the ionization potential depression (IPD) was determined, i.e., the lower-
ing of the ionization potentials of atoms present in the system caused by
the dense and charged environment. It was used to check the predictive
capabilities of the widely-used EK and SP models [34,61,131]. The predic-
tions of the SP model were found to be unsatisfactory, and a modified EK
model [61,142] was proposed for fitting the data.

In what follows, we will provide XCRYSTAL predictions for the K-shell
threshold energy and IPD for Al, and compare them to experiment and the
aforementioned theoretical models. In addition, we will compare the results
from XCRYSTAL with those obtained from the AA model and the two-step
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HFS model, introduced in Ref. [121]. Because of the incorporation of the
periodic crystal structure within our model, it is possible with XCRYSTAL
to calculate the band structure of the system at very high electronic tem-
peratures (~100 eV). Let us also note that, even though band structure
calculations at finite temperatures have been performed before [143, 144],
it has never been done in the regime of such high temperatures for the
type of transient WDM state we are considering. Also, the WDM system
that we are interested in is strongly nonisothermal. It is characterized by
electronic temperatures far above room temperature (up to 10-100 eV or
10°-10% K) and ion temperatures close to room temperature. Therefore,
the finite-temperature band structure calculations that we obtain at these
conditions will be the first of their kind.

The paper is structured as follows: In Sec. 4.2 we outline the theory
framework. In the following Sec. 4.3, we provide the K-shell threshold ener-
gies and the IPD values for solid-density aluminum (Al) at electron tempera-
tures ranging from 0 to 100 eV. We then compare them with experiment and
various theoretical models. Finally, we present the temperature-dependent
band structure calculations of this system at various temperatures, and com-
ment on the trends observed. In Sec. 3.4 we provide conclusions and an
outlook.

4.2 Methodology

In this section we outline our theory framework. In particular, we describe
the treatment of electrons in our approach. We distinguish between (1) elec-
trons highly localized around an ion (core electrons) and (2) electrons delo-
calized within the unit cell (valence electrons). Worthy of note is that in our
framework we will update the core electrons to the presence of the plasma
electrons as opposed to keeping them frozen as is custom in low-temperature
condensed-matter calculations. Our approach consists of describing the elec-
tronic states as Bloch states, represented in a hybrid basis consisting of
plane waves and these updated localized core orbitals. Throughout this pa-
per, atomic units are employed, i.e., me = e = h = 4meg = 1. We also set
kp = 1. The unit of length will be given in units of the Bohr radius, ag, and
energies and temperatures will be given in electronvolts (eV).

4.2.1 Schrodinger equation for a periodic system

We consider a perfectly periodic crystal. The crystal lattice is defined by
the primitive lattice vectors aj, as, and ag, thus defining a primitive unit
cell volume Q2 = |a; - (ag X a3)|. In the independent-particle approximation,
the wave function of an electron in a periodic system can be represented as
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a Bloch wave:

(pn,k(r) = %ed{'r#n,k(r)v (41)
where a total volume V = N €2 is introduced to ensure periodic boundary
conditions, with N the number of primitive cells. Furthermore, k is the
wave vector of the electron, n is a band index, and p,k(r) is a lattice
periodic function, i.e., p, x(r + a;) = p,k(r), with ¢ = 1,2, and 3. Both
labels k and n specify an eigenstate of the effective one-electron (mean-field)
Hamiltonian, H = [—4V2 + V(r)], where V(r) is the mean-field potential
of the periodic system. Since p, k(r) is periodic, we can decompose it into
a Fourier series. In a Bravais lattice, this corresponds to a Fourier series
with respect to a sum over reciprocal lattice vectors K = 2?21 Gib;, with
0; being integer coefficients and b; being the reciprocal lattice basis vectors,
which obey b; - a; = 2m¢;;. The Fourier decomposition is thus

pnic(t) =Y Op (K )e™m ™, with
m

1 —1 T
i (Ko) = = /Q PreKn Ty (1), (4.2)

Q
where m = (1, B2, F3) runs over all reciprocal lattice vectors K,,, and the
latter integral is restricted to a unit cell. This implies that the wave function
is expanded in a plane-wave basis of the form

1 . "
Son,k(r) = W Zvn,k(Km)el(kJer) . (43)

After inserting Eq. (4.3) into the Schrédinger equation, IA{gon,k(r) = E, xonx(r),
we arrive at its representation in k space for a periodic system:
1 2
5k +K)? = Enge| vnac(Ki) + ) WK — K)o () =0, (4.4)
J

where i and j denote specific reciprocal lattice vectors and W(K) =
% Jo d®re ™ TV (r). So far, this representation is general as all that was
assumed to derive it was a perfect crystal structure. This allowed us to
use a lattice periodic potential V(r), decomposable in a Fourier series over
the reciprocal space, and to describe the electrons with a one-electron wave
function specified by Eq. (4.1). This implies that we neglect correlation
effects.

4.2.2 Hybrid basis

A direct attempt to solve Eq. (4.4) would be computationally extremely
costly as an accurate representation of the highly localized core states in a
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basis of plane waves would require the contribution of large wave vectors.
This would result in a very slow convergence of the solution. Many differ-
ent methods of overcoming this problem, typically involving the separation
of the localized core electrons from the delocalized valence electrons, have
been developed over the years. They include the utilization of Wannier
functions [145-147], pseudopotential methods [148,149], and the augmented
plane wave (APW) method [150-152].

Similar to the APW method, we intend to extend the basis of the plane
waves so as to include atomic orbitals. Naturally, we do not wish to include
all atomic orbitals in our hybrid basis. Only those that are highly localized,
i.e., for which the description using only plane waves is inefficient, are added
to this hybrid basis. We will refer to them as core orbitals. This provides
an ansatz for our wave functions in the form

Pnk(r) = % > (K EFTET LN () ne (), (4.5)

nc

where m runs from 1 to some cutoff index Nk, which represents the number
of valence bands. The index no denotes the band index of the core wave
functions, introduced as follows. Since ¢, k(r) is a Bloch function and the
first term of Eq. (4.5) is structured so as to be a Bloch function [like in
Eq. (4.3)], the core wave functions 1, k(r) must be Bloch functions. We
can construct them using the conventional atomic orbitals that are eigen-
solutions of the Hamiltonian, with one Bloch function per core orbital, per
atom in the unit cell. This implies that the general label n¢g includes infor-
mation regarding which atom in a unit cell we are considering, as well as the
electronic structure information, i.e., nc = (a,n,l,m, s), where a denotes an
atomic index, and n, I, m, and s denote the principal, azimuthal, magnetic,
and spin quantum number, respectively. Subsequently, nc runs from 1 to
the total number of core orbitals, N¢, in the unit cell. Suppose that ¢y, (r)
denotes an atomic orbital that is strongly localized (for a detailed explana-
tion of “strong localization” see Sec. 4.2.3) and can be considered as a core
orbital. Let Ry, denote the position of the nucleus in the Ith unit cell at
which the spatial orbital of the nc type is located: Ry, = R+ 1y, with
R/ being the lattice vector denoting the Ith unit cell, and r,,, = Ro .. The
associated atomic core orbital can then be written as ¢, (r — Ry ). Since
the unit cells are identical, the ¢, (r — Ry ) for all the unit cells I are de-
generate eigenfunctions of the mean-field Hamiltonian, as they all have the
exact same eigenvalue F, . as a consequence of the assumed strong local-
ization. Therefore, any linear combination of them is also an eigenfunction
of the same Hamiltonian. In particular, we can choose a linear combina-
tion such that the resulting wave function is a Bloch wave 1, x(r). We
can achieve this by considering the following linear combination of atomic
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spatial orbitals:
Unex(r) =N Z /M Rime Pne(r = Ripne)
I

— N,eXTN, Z efik-(rfRI,nc)gbnc (r—Rrn.)
I
= Naeik.runc,k(r% (46)

where N = N, N, is a normalization constant, with N, = 1/ VV and Ny =
VQ (see Appendix 4.A for the derivation). In order to prove that ¥, 1(r)
constructed above is indeed a Bloch wave, we must show that p, . k(r)
exhibits the same periodicity as the lattice. Let R denote some lattice
displacement:

fnex(r +R) =Ny Y e M0 RunctRg (v Ry, +R)
I

— Nb Z e_ik.(r_RJ’nc)qbnc (I‘ o RJ,’nc)
J
= :unc,k(r)v (47)

where we used the fact that all cells are identical, resulting in a periodic
behavior of the wave functions ¢y, (r — Ry ). Furthermore, we define the
index J such that R, = Ry, —R. Since I and J run over all unit cells,
they contain the same terms.

Having constructed our hybrid basis, we may insert our ansatz, Eq. (4.5),
into the Schrodinger equation. This immediately yields

1 , 1 .
D5k +Kn)?+ Y WK™ | ——uvy, 1o (K ) K TEm) T
2 - VV

m

+ Z Enc wn,k(nc)wn07k(r)

= Lnk % Z Un,k(Km)ei(k-i—Km).r + Z wn,k(nC)l/}nc,k(r) . (4.8)

nc

For the core wave functions, we used H Yo k(r) = Engtne k(r), where the
energy eigenvalue of the core electrons, F, ., is independent of k, because
these core electrons are highly localized. We subsequently project this onto
our hybrid basis and solve the Schrodinger equation through a matrix diag-
onalization.

Performing a projection onto the plane-wave part of our basis, we calcu-
late <k+Ki|fI |on k). Keeping in mind the proper normalization of our plane
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waves, (r|k) = ¢’*T/\/V, and using fV d3retKi—Kj)r — V'é;5, this yields

%(k + Ki)QUmk(Ki) + Z Umk(K]’)W(KZ' - Kj)

+ Z Encwn,k(nC) <k + Kz‘W)nc,k>

nc

= En,k Un,k(Ki) + Zwmk(nc)(k + Ki‘¢nc,k> s for 1 = 1, ceny NK.
nc

(4.9)

Performing a projection onto the core-wave-function part of our basis, we
calculate (¢, k|H|¢nx). By using the fact that 1, x is an eigenstate of
the Hamiltonian H, with the eigenvalue E,,,, we find that (¢, k| H |¢n k) =

E”C <1/}TZC k | wn,k> , Or

Ene [0nx(Ki) (Ve klk + Ki) + wp x(ne)]
= Ep x [on x(Ki) (Yo x [k + Ki) +wpx(ne)], fori=1,...,Nkg. (4.10)

We can combine these equations into a generalized eigenvalue equation,
similar to the Roothaan-Hall equations [153,154] of the form FC = SCA,
where A = diag(E), k). The nth column of C is

Un,k(Kl)
Un,k(KQ)

Un,k(KNK)
©.=| - | (4.11)
wn,k(nC = 1)
wn,k(nC = 2)

wp x(nc = Ng¢)
and F and S are
5 (k +Ki)26i; + W(Ki — K;) | Eno=i(k + Kilthne—jx)

F = . (4.12)
Ene—i{tne=ixlk + K;) Ep—idij
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0ij (k + K;|[¢no—jx)

, (4.13)
(Une=ixlk +Kj) 0ij

with ¢ and j denoting rows and columns, respectively. Note that we have
one such equation FC = SCA per k point. It should come as no surprise
to encounter equations similar to the Roothaan-Hall equations as these are
a representation of the Hartree-Fock equations in a nonorthonormal basis,
precisely as we have done with our hybrid basis consisting of plane waves
and atomic orbitals.

Note that the theory developed in Sec. 4.2.2 assumed nothing more than
a periodic potential V(r), and a one-electron description for the electron
wave function under consideration, with the ansatz given in Eq. (4.5). At
this point we would like to emphasize that, even though we will not consider
it in this work, it is possible to include molecular dynamics in this frame-
work, so as to extend the applicability of XCRYSTAL to beyond the timescale
of ~100 fs after x-ray irradiation. Conceptually, we need not take the as-
sumption of periodicity to imply the use of a crystallographic unit cell as is
done in this work. A larger supercell containing many more atoms could be
employed. However, this would cause the Brillouin zone to shrink, rendering
the matrices that must be diagonalized much larger. Under these conditions,
employing the Bloch theorem in combination with a plane-wave basis may
no longer be the most efficient approach. We leave this development and
investigation for a future endeavor.

4.2.3 Calculation of atomic orbitals

In order to calculate the atomic orbitals needed for the construction of
Ynex(r), we used the XATOM toolkit [43,79,95]. This toolkit describes
an isolated many-electron atom in a Hartree-Fock-Slater (HFS) framework.
This is an independent-particle approximation with a mean-field Hamilto-
nian of the form

~ 1
Hyrs = —§V2 + V(I‘),
loo 2 3., p(r')
_ iy 2 (r), 4.14
2v ‘r‘ + /d r |I' _ r,‘ + ‘/;3 C(r) ( )

where Z is the nuclear charge. The exchange potential Vi (r) is assumed
to be of the form [98]

Voue®) = =5 | 2ot0) " (115)
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with p(r) = Y7 gbj(r)(bi(r) being the electron density, and ¢;(r) denoting
a single-particle spin-orbital wave function. In addition, XATOM imposes
spherical symmetry, assuming the solution of the Schrodinger equation to
be of the form

ume®) = "33 (0) (172 (4.16)
r s,—1/2

with n, [, m, and s being the principal, azimuthal, magnetic, and spin quan-
tum numbers of the electron with the associated wave function ¢,pm,s(r),
respectively. A spherical averaging is done on the electronic density. This
implies that both the electronic density and potential are spherically sym-
metric, such that p(r) = p(r) and V(r) = V(r). Subsequently, XATOM
solves the Schrodinger equation in a self-consistent way. There are numer-
ous computational input parameters required in XATOM calculations [43],
the most relevant of which are the following. The radial coordinate r
in Eq. (4.16) is defined with the generalized pseudospectral method on a
nonuniform grid [100]. This grid is characterized by the number of radial
grid points N,., the maximum radius, 7,42, and the mapping parameter L,
which determines the density distribution of radial points [100]. A larger L
invokes that more radial grid points are being pushed towards higher values
of r. For the computations of the atomic orbitals presented further, we used
N, = 200, L = 10, and 74z = 5.0 ag, unless specified otherwise. Since
XATOM calculates the atomic orbitals in an isolated-atom description, these
orbitals will not be accurate representations of orbitals in a charged and
dense environment of atoms. We show how we adapt the core orbitals to
the environment in Sec. 4.2.6. Let us continue by explaining exactly how we
define the core atomic orbitals ¢, (r) in the framework of XCRYSTAL.

As we intend to work with the atomic orbitals provided by XATOM, which
are calculated in a sphere of size 4., we also construct spheres around the
constituent atoms located within our unit cell. The radius of the sphere for
atom a will be denoted by 7s(a). In order to be able to maximally exploit
spherical symmetry, we assume the spheres to be touching each other. The
values of r5(a) are then dependent on the crystal geometry. From all orbitals
obtained with XATOM, we include only those orbitals into our hybrid basis
which are localized within the touching spheres. Thus, we define our core
orbitals as those that satisfy

rc(a)
1— / dr\ua7nl(r)|2
0

where d¢c is a cutoff parameter set to 10™2 for all calculations shown in
this work. This implies that at least 99.9% of the norm of the core or-
bitals of atom a is confined to the sphere of radius rc(a). The radius
0 < re(a) < rs(a) is a model-dependent parameter. The reason for the

< bc. (4.17)
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inclusion of r¢(a) is that in the upcoming Sec. 4.2.4, we assume a model
to describe our periodic crystal where we disembark from static, touching
spheres.

4.2.4 Construction of the crystal potential

Having conceptualized touching spheres of radii rs(a) around our atoms, we
may describe our system using a muffin-tin-type potential [121,150,151]. In-
side of the spheres, a spherically symmetric potential V;,(Jr—Ry|) is assumed,
where R, is the position vector of the ath atom. Outside of the spheres,
in the interstitial region, the potential becomes a constant, V. Typically,
this potential is set to zero [117,150, 151, 155-157]. However, we will fol-
low Ref. [121] in explicitly calculating V. In Ref. [121], V} is the potential
value at the Wigner-Seitz radius and denotes the energy value above which
the continuum of states starts. In our framework, we do not have a similar
physical meaning behind V. What remains true is that a continuum of de-
localized states will be present at energies above [y in XCRYSTAL. However,
there may also be some delocalized states below Vj, evidently referring to
states that are somewhat localized, yet not enough to be considered core
orbitals as they do not satisfy Eq. (4.17). To determine the value of Vj,
we require the value of the potential on the boundaries of the spheres to
be equal. We know that the potentials in the spheres are ~ C'/r for some
C < 0. Therefore, for all our touching spheres, we assign Vo = min{V,(rs)}
and proceed by shrinking all spheres to a radius ry (a) so that V,(ry) = Vj.
In this framework, this implies that in rc¢(a) = ry(a) in Eq. (4.17).

The reason for adopting the muffin-tin potential into our framework is
two fold: (1) the implementation of a spherically symmetric potential inside
of a sphere can be accurately captured by the available XATOM toolkit, and
(2) the muffin-tin potential simplifies the evaluation of the Fourier transform
W(K) = § [d®re ™ TV(r) in Eq. (4.12), reducing a three-dimensional
integral to a one-dimensional one:

1 ,
W(K) = ﬁ/ﬂd?)re_ZK'rV(r)
1 —K-R / 3 —iK-(r—Ra)
- e KRa d(r — Rg|)e ™"V (Ir — R,
a za: - (] ) (1 )
+ Vo l / dBTGfiK-r - l Z efiK-Ra
Q /g Q2

« / d3(\r o Ra|)6—iK~(r—Ra):|
Sph,a
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The inclusion of the muffin-tin crystal potential into Eq. (4.18) allowed us to
split up the integral over the unit cell into two parts: the atomic region and
the interstitial region, as schematically illustrated in Fig. 4.1. In the atomic

Spherically symmetric Constant
atomic potential interstitial
potential V,

Figure 4.1: Schematic illustration of the calculation setup in XCRYSTAL.

region, the integral is represented as a sum of spherical integrals (in one
dimension), whereas in the interstitial region the integral can be evaluated
analytically. The latter is highly beneficial for computational efficiency. The
spherically symmetric atomic potential V,(r), used in Eq. (4.18), is given by

Vi) = Za ¢ /S - B P 3 [ﬁp(r)] 1/3, (4.19)

r r—r/| 2|«

Given the limitations on accuracy imposed by the simple muffin-tin ap-
proximation, using a higher quality exchange-correlation functional than
the one alluded to in Egs. (4.15) and (4.19) is not warranted. We have
made the assumption that the electronic density p is also spherically sym-
metric inside of the spheres. The respective spherical averaging was done
as p(r) = [dQp(r)/ [ dQr and may be evaluated analytically. Note that
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the assumption of a spherically averaged electronic density may be a poor
approximation for capturing the electronic behavior at low temperatures for
materials that exhibit directional bonding. However, we may expect any
directional dependencies to be suppressed once the electronic temperature
exceeds the zero-temperature band gap, allowing for thermal excitations.
This will make the approximation of a spherically averaged electronic den-
sity less crude at these temperatures.

4.2.5 Electronic density at finite temperature

Within a finite-temperature HFS framework, the temperature is introduced
assuming Fermi-Dirac occupation of the electronic orbitals [158]. Therefore,
at temperature T and chemical potential u, the electron density p(r) is
calculated as lp(r)|?7ip(1, T), with p being a spin-orbital index, ¢, the
electron wave function, and n,(u,T) a Fermi statistical weight. For the
atomic core orbitals, the index p = n¢ (as defined in Sec. 4.2.2), and for the
delocalized valence orbitals p = (n,k,s). We assume a degeneracy in the
energies with regard to the spin quantum number, so a sum over the spins
s will simply lead to a factor of 2. The Fermi weight at T is

_ 1
np(:uv T) = B

e (4.20)

where ¢, is the energy eigenvalue associated with ¢,, 8 = 1/T, and p is the
chemical potential of the system. The chemical potential is calculated by
imposing charge neutrality on our unit cell. To find ©, we must solve

; Za=)_ Uﬂ dSTlS@p(r)\Q} np(p, T') = 0,

S Z, - Ni S (1, T) = 0, (4.21)

ell »

where we used the fact that ¢, (r) is normalized to 1 in the total volume V.
Since |pp(r)|? is a periodic function, ¢,(r) is normalized to 1/Neey in the
unit cell 2.

4.2.6 Self-consistent-field method

In the self-consistent-field (SCF) method, we start with an initial guess for
the spherically symmetric electronic density p(r). The initial guess can be
based, for example, on the converged XATOM result for the initial atomic
orbitals. This is the typical start for calculations at zero temperature. At
nonzero temperatures, we may use the density calculated at a lower temper-
ature, or even extrapolate the results from several lower-temperature runs.

With the initial density, we construct the potentials V,(r) as in Eq. (4.19),
and perform the sphere shrinking in order to calculate V{ (explained in
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Sec. 4.2.4). At this point, instead of keeping our core orbitals fixed, we use
the newly obtained muffin-tin potential in a single XATOM diagonalization
in order to update the atomic core orbitals. Therefore, during the SCF it-
eration, the core orbitals, which are incorporated in our hybrid basis, are
always updated to the presence of valence electrons, in contrast to the con-
ventional low-temperature condensed-matter calculations where frozen core
orbitals are typically used. We do expect that in dense plasmas the core
orbitals strongly react to the presence of plasma electrons, throughout the
entire unit cell. After this core-orbital update, we proceed by using our
previously obtained muffin-tin potential and Eq. (4.18) to obtain W (K). It
is then utilized in the Fock matrix F in Eq. (4.12). Therein the quantities
referring to the core orbitals, E,, and ¢, k(r), are the results from the
updated core orbitals. Subsequently, the equation FC = SCA is solved to
obtain {A, C}.

From the solutions obtained for the core orbitals and the valence orbitals,
we calculate the new electronic density p(r) = peore(r) + pyvai(r), which is
spherically averaged analytically. With this electronic density, we construct
a new potential V,(r) and update Vj, thereby closing the loop in the SCF
method. The whole procedure is repeated until the result converges. Fur-
ther discussion on the scheme used to accelerate the SCF convergence can
be found in Appendix 4.B. An illustration depicting the SCF algorithm
employed is shown in Fig. 4.2.

4.2.7 Numerical parameters for crystal calculations

In addition to the computational parameters related to atomic calculations,
there is a couple of numerical parameters utilized in XCRYSTAL, which are
related to the crystal structure. They are (1) the cutoff on the number of
reciprocal lattice vectors used and (2) the numerical grid defined for the
momentum vectors in the first Brillouin zone (BZ).

The sum over reciprocal lattice vectors K;, used in the Fourier series
should in principle be infinite and include all possible vectors {K;}. For
practical purposes, a cutoff on the number of reciprocal lattice vectors, de-
noted by Nk (in Sec. 4.2.2), is indirectly imposed through a cutoff on the
norm of the vectors, denoted by |K|nax. As can be seen from the coupling
term W (K; — K;) in the Fock matrix F in Eq. (4.12), the quantity |K|mnax
determines the energy cutoff for the bands. At T'= 0 eV we may expect to
achieve convergence with a relatively low |K|pax, as the absence of thermal
excitations implies that higher-lying bands will remain unoccupied. How-
ever, by increasing the temperature, the number of thermal excitations will
rise, and a higher cutoff on |K|nax will be necessary to attain convergence.
As one increases |K|pnax, additional plane waves are added to our hybrid
basis with increasingly higher momenta. It may occur that these are high
enough so as to describe the atomic core orbitals in our basis, and a linear
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Figure 4.2: Schematic illustration of the algorithm used in XCRYSTAL.

No

dependency will ensue. In this case, a simple rank reduction is used on the
matrices F', S, and C to remove this linear dependency. For consistency be-
tween results at various temperatures, all XCRYSTAL calculations were done
using |K|max = 6.0 a; ! which corresponds to Nx = 1647 valence bands.
The second parameter of interest defines the numerical grid defined for
the momentum vectors in the first Brillouin zone and affects the sum over
momentum vectors k. Because of our employed Bloch formalism, the sums
over k are restricted to the momentum vectors confined within the first
Brillouin zone (BZ) of the reciprocal lattice. However, contrary to the re-
ciprocal lattice vectors {K;}, the vectors k in the first BZ constitute an
uncountable set. Therefore, a sum over vectors k is performed as an inte-
gral: Z V(2r)~3 J BZ d3k To perform this integral numerically, a grid
is defined 1n81de the first BZ. Through a dedicated analysis, we have found
a k grid of 7 x 7 x 7 to be sufficient for achieving convergence. A more
elaborate discussion on the employed BZ will be given in Sec. 4.3.

4.3 Results

In this section we show results obtained with XCRYSTAL for x-ray-excited
solid Al, investigated experimentally in Refs. [34,61]. This experiment was
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conducted at the LCLS [34,61] for solid Al at a density of 2.7 g/cm3. The
sample reached electronic temperatures in the range of T' = 10-80 eV. The
K« fluorescence signal was measured as a function of the incoming photon
energy. After comparing the results calculated by XCRYSTAL to experiment,
we will show band structure plots of this system. At zero temperature,
these can be compared to known, well-established result [159,160], whereas
the band diagrams at higher temperatures will be of interest with regard
to how they evolve as temperature is increased to values characteristic of
WDM conditions (up to 100 eV or 10° K). To the best of our knowledge,
these temperature-dependent electronic band structures at such high tem-
peratures are the first of their kind for this nonisothermal, transient WDM
state.

The Al crystal has a face-centered-cubic (FCC) structure, for which the
primitive unit cell can be constructed from the primitive lattice vectors
a; = a(1/2,0,1/2), az = a(0,1/2,1/2), a3 = a(1/2,1/2,0), where a =
404.95x1072 m = 7.652 ag is the lattice constant of Al. The first Brillouin
zone (BZ) is a truncated octahedron. Due to the implementation of the
Bloch formalism, every sum over momentum vectors k can be limited to
this first Brillouin zone. However, for modeling this system in XCRYSTAL,
it was numerically more efficient to define the unit cell to be cubic, with
lattice vectors a; = a(1,0,0), ag = a(0,1,0), ag = a(0,0,1), and four Al
atoms placed on the positions a(0,0,0), a(1/2,0,1/2), a(0,1/2,1/2), and
a(1/2,1/2,0), similar to what was done by Vinko et al. in Ref. [131]. In this
manner, any sum over k can be evaluated using a simple linear grid in the
cubic BZ. However, our real-space unit cell has a larger volume than the
primitive unit cell of FCC. This implies that the volume of our cubic BZ is
smaller than the first BZ of FCC. At first glance, this seems to imply we
have lost information on k points that lie outside of our cubic BZ but are
located inside the first BZ of FCC. However, our employed periodic Bloch
formalism ensures that this is not the case: the k-dependent quantities, such
as E, k, that lie in the first BZ of FCC, but outside of our cubic BZ are then
shifted to a higher band, n. This effect will reveal itself explicitly in the
band structure plots shown in Sec. 4.3.2.

The geometry of the defined crystal structure implies a radius of the
touching spheres ry = 2.706 ag for all atoms. Due to the high level of
symmetry, we found that ry(a) = rs = 2.706 ag for all atoms, and for all
temperatures considered. Thereby, in Eq. (4.17), r¢(a) = rs, which defines
the 1s, 2s, and 2p orbitals as the core orbitals. Note that through the
use of thermal occupation numbers with a well-defined chemical potential
and temperature in xcrystal as was mentioned in Sec. 4.2.5, we assume the
electrons to be in perfect thermal equilibrium for the conditions in the LCLS
experiment, which is merely an approximation.
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4.3.1 K-shell thresholds and ionization potential depression

The LCLS experiment described in Refs. [34,61] provides the data on the
K-shell threshold energy. The K-shell threshold energy refers to the energy
that is required for the formation of a K-shell (1s) hole. From the spectrally
resolved K a-emission spectrum in Ref. [34], they could deduce this quantity
by observing at which XFEL-photon energy the emission peak started. Ad-
ditionally, each separate emission peak observed indicates a specific charge
state Q of an Al ion, which this peak refers to. Therefore, we will consider
the K-shell threshold energy as a function of charge state (). In addition
to a comparison with this experiment, we will compare the result of XCRYS-
TAL with the results from the AA model and the two-step-HFS model, both
shown in Ref. [121]. As such, we will first elaborate on how the K-shell
threshold energy and the charge state () are defined in these three models.

In the AA model, a thermal averaging is employed, so an integer value
of @ corresponding to a specific electronic configuration cannot be obtained.
Instead, an average charge Qaa = Z — N/*(B, u) is obtained, with Z the
charge of the neutral Al atom and N,ﬁA(ﬁ , it) the number of bound electrons.
In Ref. [121] a muffin-tin potential is also employed, albeit with Wigner-Seitz
spheres, and the flat potential provides a clear energetic distinction between
bound orbitals and the continuum. Therefore, le‘A(B, w) is calculated as
the sum over the thermal occupations of orbitals with energies below the
flat potential [see Eq. (4.22a)]. The K-shell threshold energy is calculated
as the energy difference between the 1s orbital and the lowest-lying orbital
above the flat potential. To be complete, there are two subtleties: (1) if the
chemical potential p is larger than the flat potential, the K-shell threshold
energy is calculated as p — €15 to make sure the orbital being excited into
is vacant, and (2) at higher temperatures, the 3p orbital drops below the
flat potential and a 1s electron can be excited into it. In this case, the K-
shell threshold energy is €3, — €15. This definition for the K-shell threshold
energy is also used in the two-step-HFS method [121]. However, the two-
step-HF'S model is capable of specifying integer charge states, as it uses an
AA calculation in its first step to define a thermal grand-canonical ensemble
and proceeds in its second step by working with the most likely electronic
configuration for a specific integer charge state ). In contrast to this, but
similar to the AA model, XCRYSTAL also works with a thermally averaged,
and atom-specific, charge state Qxcry(a). However, our flat potential Vj
does not share the same physical interpretation as the flat potential used
in Ref. [121], as delocalized states can be found below Vj in XCRYSTAL.
Therefore, we calculate Qxcry(a) = Z(a) — NF® (8, u, a), with the number
of bound electrons of atom a, Ny (63, 1, a), calculated as the sum of the
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Figure 4.3: (a) K-shell threshold for Al as a function of the charge state,
calculated using XCRYSTAL. A comparison is shown with the two-step-HFS
result and the average-atom result from Ref. [121], as well as with the ex-
perimental data from Ref. [61]. Calculations using an isolated Al ion are
labeled as “Unscreened HFS.” (b) K-shell threshold for Al as a function of
the charge state, calculated using XCRYSTAL, the two-step-HF'S result [121],
and the average-atom result with @ defined as in XCRYSTAL [Eq. (4.22b)].
The experimental data from Ref. [61] is shown as well.

thermal occupations of the core orbitals (1s, 2s, and 2p). In summary,

EPSVOAA 1
AA _ L
N2 (B, ) = Ep: T 1 A (4220)
1
NEW (3, 1, a) = Z =Y for XCRYSTAL, (4.22b)
P:( 7l7m75
n=1,2

where VOAA is the flat potential in the AA model and p = (n,l,m,s) for
a fixed a. Due to the translational symmetry in the crystal, we found the
average charge Qxcry(a) for each ion to be the same, for a given tempera-
ture 7. The Ko« fluorescence energies employed in Refs. [34,61] to assign
atomic charges to spectroscopic features are sensitive primarily to K- and
L-shell occupation numbers. The choice made in Eq. (4.22b) is consistent
with this property. As for the K-shell threshold energy, it refers to the en-
ergy that is required for the formation of a K-shell (1s) hole by exciting a
1s electron into the lowest-lying, vacant, delocalized valence orbital. In the
convention employed here, the K-threshold corresponds to the energy differ-
ence between the 1s orbital and the lowest-lying orbital that has a thermal
occupation of < 0.5 and that is associated with a nonzero bandwidth. Note
that this definition is equivalent to the one employed in Ref. [121].

In Fig. 4.3(a), we plot the K-shell threshold energy as a function of



4.3. RESULTS 81

charge state @) calculated with XCRYSTAL and compare it to the experimental
data [61], as well as to the theoretical models mentioned previously [121].
For both the AA model and the XCRYSTAL result, the average charge Q
for each method, as defined previously, is portrayed on the x axis. The Q
values shown correspond to a temperature range of 10-90 eV and 10-70 eV
for the AA model and XCRYSTAL, respectively. The XCRYSTAL results were
shifted by +20.92 eV, similar to what was done in Ref. [121]. This shift
corresponds to the difference between the ionization potential calculated at
T = 0 eV with XCRYSTAL (1538.68 €V) and the experimentally estimated
binding energy (1559.60 eV) [161]. As shown in Fig. 4.3(a), XCRYSTAL is
capable of reproducing the result for the K-shell threshold energy for all
charge states considered.

The improvement of the XCRYSTAL result with respect to the AA result
alone seemingly implies that this improvement is due to the incorporation of
the full crystal structure in XCRYSTAL. However, the two-step-HFS model
does not take the crystal structure into account and yet shows excellent
agreement with experiment as well, through its individual configuration op-
timization. To shed some light on how large the effects of incorporating a
full crystal structure are, we may dismiss their inclusion in XCRYSTAL. This
simply amounts to an AA calculation, where the average charge is calcu-
lated as Qxcry, i-€., the thermal occupations of the 1s, 2s, and 2p orbitals
subtracted from the nuclear charge of Al. We show this result in Fig. 4.3(b).
The temperature range for the AA result shown in Fig. 4.3(b) is 10-80 eV.
Comparing the AA result between Fig. 4.3(a) and Fig. 4.3(b), we conclude
that the discrepancy between experiment and the AA method shown in
Ref. [121] is not so much a limitation of the applicability of the AA model,
but rather a consequence of the definition of Qaa used in Ref. [121].

To further strengthen this claim, we may consider Qaa and Qxcry(a)
for a single Al ion as a function of the electronic temperature, depicted in
Fig. 4.4. Initially, Qa4 increases with rising temperature as the bound or-
bitals are being partially thermally vacated. However, as the temperature
increases, the previously unbound 3s and 3p orbitals fall below the flat po-
tential VA [121] and count as bound states. This causes a sudden large
contribution to the number of bound electrons, thereby decreasing the aver-
age charge Qaa below what one would expect if such a sudden addition of
new bound orbitals had not taken place. The discontinuities at T" = 20 eV
(Qaa ~ 3.0) and T = 58 eV (Qaa ~ 5.5) shown in Fig. 4.4 directly result in
the bumps for the K-shell threshold energy in Fig. 4.3(a), seen at these same
values of Q. In contrast, Qxcry does not exhibit these sudden drops. The
increase in average charge arises solely from gradually thermally vacating
the core orbitals. This analysis, along with the results shown in Fig. 4.3(b),
leads us to the conclusion that both the incorporation of the entire crys-
tal structure, as well as individual configuration optimization, amount to
a fairly limited effect overall. The property shared by the AA model, the
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Figure 4.4: Average charge Q versus the electronic temperature T obtained
for the average-atom model and for XCRYSTAL.

two-step-HF'S approach and XCRYSTAL is the optimization of core orbitals,
to which we attribute the success of the three models.

We note that the work performed by Vinko et al. [131] seemingly con-
tradicts this conclusion. Vinko et al. show an excellent agreement with
the experiment of Ref. [61]. They used a plane-wave DFT calculation with
a frozen-core pseudopotential determined at a fixed configuration and ob-
tained values for the K-shell threshold energy using a ASCF scheme. The
agreement with experiment was rationalized through their incorporation of
a full three-dimensional electronic structure for the valence states and a lack
of any spherical averaging. However, as both XCRYSTAL and the two-step-
HFS model are able to adequately reproduce the experimental results of
Ref. [61], which do incorporate both spherical and thermal averaging, we
disagree with this proposed justification. The fact that Vinko et al. em-
ployed a frozen-core pseudopotential apparently contradicts our conclusion
that core-orbital optimization is of vital importance. However, they do in-
directly account for responsive core orbitals through their employment of
a ASCF scheme to calculate the K-shell threshold energy. Explicitly, they
calculate the difference in total free energy between a system with and with-
out a single K-shell hole, accompanied by an additional number of L-shell
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holes. Therefore, despite the 1s orbital being frozen in both configurations,
their energies differ, resulting in an indirect response from the 1s core orbital
to the K-shell threshold energy.

In order to illustrate the efficiency of our hybrid-basis approach, we
compare numerical parameters of XCRYSTAL with the work done by Vinko
et al. [131]. They considered high-energy bands with energies up to at least
ten times the considered electronic temperature. Because of the high com-
putational cost, they were incapable of making all temperature calculations
with a single fixed Nk (see Sec. 4.2.2); instead the number of bands ranged
from ~160 bands at T' = 10 eV to ~5000 bands at T' = 100 eV. The compu-
tational expense in the latter case was reported to exceed ~190 CPU days
for a four-atom supercell containing 25 electrons. One should note that this
cell did not contain all the electrons of a charge-neutral system containing
four Al atoms, 4 x Z(Al) = 52, because of the employed pseudopotential
formalism which used frozen, and not completely filled, core orbitals. In
contrast, using XCRYSTAL we performed full all-electron calculations with
52 electrons. All calculations were consistently done with |K|max = 6.0 ag L
corresponding to Ng = 1647 bands. We found that this number of bands
(1647 < ~5000) was sufficient to obtain converged XCRYSTAL results. Every
temperature run could be completed within 72 CPU days for a four-atom
unit cell containing 52 electrons. Additional parallelization of XCRYSTAL
further reduced the calculation time to ~18 days with four CPU cores.

Finally, we present our result for the IPD of this system. For the 1s
orbital, this is defined as the difference between the result from the HFS
calculation for an unscreened (isolated ion) and the K-shell threshold en-
ergy [from Fig. 4.3(a)]. Defining the ionization potentials for the 2s and
2p orbitals in the analogous way as we did for our K-shell threshold, we
can obtain IPD values for these orbitals as well. These values are shown in
Fig. 4.5(a). The XCRYSTAL result was interpolated onto integer values of the
charge state (). Despite the ability of XCRYSTAL to calculate orbital-specific
IPD values, Fig. 4.5(a) illustrates that the differences between the IPDs of
different orbitals are minimal, in agreement with the observation of Son et
al. [121]. Figure 4.5(b) shows the IPD values for the 2p orbital calculated
with XCRYSTAL, comparing them with the two-step-HFS result [121], and
the results from the modified-EK and the SP models, taken from Ref. [61].
We can see that XCRYSTAL reflects a similar trend as the two-step-HF'S
model, but lies closer to the IPD values determined from the modified-EK
model as @ is increased.

4.3.2 Band structure at WDM temperatures

We proceed with calculations of the temperature-dependent band structure
for Al at WDM conditions. We start with the discussion of Al at T' =0 eV.
In Fig. 4.6 we present the first 10 energy bands of a nonzero bandwidth at T’
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Figure 4.5: Tonization potential depression calculated for x-ray-excited solid
Al as a function of charge state. (a) Result from XCRYSTAL obtained for all
core orbitals of aluminum. (b) Comparison between the XCRYSTAL result
for the 2p orbital, the two-step HFS model result [121], the result from the
modified-EK model, and the result from the SP model, taken from Ref. [61].
The result from XCRYSTAL has been interpolated onto integer values of Q).

= 0 eV, along the path I'-X-W-L-I"-K-X in the BZ. This path was chosen for
the comparison of our predictions with Refs. [159,160]. The energy axis on
the left is given in Rydbergs (Ry) and was shifted by +1.54 Ry (4+20.98 V),
in order to adjust the energy at the I' point to the energy of the lowest delo-
calized state, Ein deloc- An unshifted energy axis (in eV) is presented on the
right. As was previously mentioned in Sec. 4.3, our choice of a cubic unit
cell implies that k-dependent quantities, such as the energies FE), x shown
in Fig. 4.6, that lie in the first BZ of FCC, but outside of our cubic BZ,
are shifted to a higher band, n. Therefore, the result from any XCRYSTAL
calculation shows many more bands as compared to conventional methods.
This is simply a consequence of having chosen a cubic unit cell. Both the
blue lines and the red lines presented in Fig. 4.6 are the result from the
same XCRYSTAL calculation. The blue lines show the result as calculated
using XCRYSTAL, whereas the red line traces out the bands which would
be obtained for the conventional primitive unit cell. One can see excellent
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Figure 4.6: Band structure of aluminum at 7" = 0 eV along the path I'-X-W-
L-T'-K-X calculated using XCRYSTAL. The blue line represents the XCRYSTAL
result, and the red line traces out the lines that would be obtained when
using the conventional primitive FCC unit cell, to help guide the eye for
comparison with Refs. [159, 160]. The horizontal black line indicates the
Fermi energy. The energy axis on the left is given in Rydbergs (Ry) and
was shifted by +1.54 Ry (+20.98 e¢V), so that the energy at the I' point
starts at the origin. An unshifted energy axis given in eV is presented on
the right.

agreement with the well-known results of Refs. [159,160]. The solid black
line denotes our value for the Fermi energy ep, calculated as the chemical
potential p at T' = 0 eV, with a predicted value of —10.12 eV. Keeping the
shift of Erin deloc (=—20.98 V) in mind, the Fermi energy is calculated rela-
tive to the bottom of the conduction band, as ep = p— Eyin deloc- It is found
to be 0.8 Ry = 10.86 eV, whereas the experimental value is 11.7 €V [77]. The
value for the constant potential Vj at T'= 0 eV is —18.34 eV, which is above
the energy value of the lowest-lying delocalized energy band at Epin deloc-
This indicates that the bands in Fig. 4.6 with an (unshifted) energy below Vj
= —18.34 eV correspond to electronic states in which the electron is quasi-
bound and tunnels between atomic sites. They are not localized enough
to be considered part of the core orbitals [cf. Eq. (4.17)]. Between each
symmetry point (I, X, W, etc.) in Fig. 4.6, there are 50 k points shown,
which is the value we shall retain for the remaining band structure plots.
We do not perform an entire XCRYSTAL run with such a fine k grid, instead
taking the converged electronic density from the run with the parameters
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mentioned previously (Sec. 4.2.7), and performing a single XCRYSTAL matrix
diagonalization in the hybrid basis.

In Fig. 4.7, we show the first 30 energy bands with a nonzero bandwidth
at temperatures of T' = 25, 50, 75, and 100 eV. For these plots, we traced
out the path I'-X-W-L-I'-K-W-U-X to cover all lines of high symmetry in
the BZ. In addition to the interesting observation that at 7' = 75 eV there
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Figure 4.7: Band structure of the first 30 delocalized energy bands of alu-
minum at temperatures T = 25, 50, 75, and 100 eV, along the path I'-
X-W-L-T-K-W-U-X, calculated with XCRYSTAL. The black line denotes the
constant potential V. The colors are there to aid in grouping together those
bands that separate from the rest for higher temperatures. The energies on
the y axis are given in eV.

appear to be no orbital states present directly above Vj, we can perceive
three general features in Fig. 4.7 as the electronic temperature rises: (1) all
energy bands are lowered, (2) two band gaps start to form and progressively
separate, and (3) the bandwidths become smaller. The conclusion is that
with the increasing temperature, we observe a formation of quasi-atomic 3s
and 3p lines, that was also reported in Ref. [131].

The physical mechanism behind this observation is the following: As
the temperature rises, thermal excitations start to generate partial vacan-
cies within the bound 1s, 2s, and 2p orbitals. This causes the nucleus to
experience less screening, which in turn makes its potential V(r) more at-
tractive, thereby dragging down all energies. In addition, it is apparent that
with increasing electronic temperatures, the bands start to lose their width
and their delocalized character, thereby exhibiting features of a more atomic



4.4. CONCLUSION AND OUTLOOK 87

nature.

4.4 Conclusion and outlook

In this work, we have developed an ab initio method for calculating quantum
states of hot thermalized electrons confined to a cold ionic crystal lattice.
It has been implemented into a new toolkit, XCRYSTAL. Using a mean-field
HFS approach in combination with the Bloch formalism, we constructed a
hybrid basis consisting of both plane waves and localized atomic orbitals,
with respect to which we represented the electronic states in this type of
transient WDM system. Allowing for an interwoven optimization between
core and valence electrons, we accurately reproduced the experimental data
obtained from the LCLS experiment [34,61] on Al plasmas in WDM con-
ditions, in a highly efficient manner. Additionally, our model allowed for
the calculation of band structures at various temperatures, 7' ~ 0-100 eV.
We concluded that the incorporation of the full crystal structure had only
a minor effect on the results calculated for comparison with Refs. [34, 61]
and argued that the role of optimized core orbitals is vital in describing
these types of systems. In addition, the band structure of Al was shown
to be in good agreement with previous work at zero temperature [159,160].
The computationally efficient scheme in XCRYSTAL facilitated the calcula-
tion of the band structure to temperatures and densities typical for WDM
conditions.

The new tool XCRYSTAL provides not only the calculation of bands and
energy levels but gives full access to the electronic wave functions in a ther-
malized electron plasma at a certain temperature. This will enable us in
the future to model atomic processes in a dense plasma environment, which
is critical for a proper description of WDM formation. Until now, the re-
spective cross sections and rates were adapted from isolated-atom models
(see, e.g., Ref. [1]). In particular, XCRYSTAL enables access to the evaluation
of the electron-impact-ionization cross section in solid-density plasmas, also
measured experimentally [87]. It is the ultimate goal of XCRYSTAL to provide
fast and accurate data of WDM properties for electronic Monte Carlo sim-
ulations of WDM, so as to contribute to the description of matter exposed
to high-intensity x-ray pulses, in a similar manner the codes XATOM [43,79],
XMDYN [79,80], and XMOLECULE [162,163] do. The inclusion of molecular
dynamics is conceptually possible as was mentioned in Sec 4.2.2. For ap-
plication of this work in an astrophysical context, it is conceivable that the
inclusion of the effects of an external magnetic field will be necessary [164].
It would be possible to perturbatively treat the effect of an external mag-
netic field through an interaction Hamiltonian in XCRYSTAL. For magnetic
fields that are nonperturbatively strong, their inclusion would break some of
the symmetries being exploited in XCRYSTAL. We believe that the present
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work will pave the way for a more accurate theoretical description of non-
isothermal WDM, and will significantly advance the understanding of this
extreme state of matter.

4.A Normalization of core Bloch waves

In this appendix, we will derive the normalization of the core Bloch wave
functions v, x(r) as defined in Eq. (4.6), from the normalization of the
total electronic wave function ¢, k(r). The wave functions ¢, k(r) are Bloch
functions [see Eq. (4.1)]. These wave functions are orthonormal within the
entire crystal volume, (¥, k|@n’ k) = Onn/dk k. Therefore, we have

(nsclon ) = /V @B (1) p 10 (1)

1

=V /V dBre ™ 4 (1) Ty g (r)

1 . 1
_ v Z /Q d37ﬂ€71k-(r+R)#:7k(r + R)ezk '(r+R)Mn’,k’(r +R)
R

1 —i(k—k’)- —i(k—k')-r *
= ORI e T )
R

N, cell

= el /Q e 0T (1)1 0 (1)

1 : /
= ﬁék,k’ / d3reik—k )'rufhk(r)/,tn,7k/(r)
Q

= 5nn’6k,k’a (423>

where R denotes a lattice translation vector. We used (1/Neen1) > g e~ ik—K)R

= 0k and V = Ncf2. This implies that we normalize the fi, x(r) within
the unit cell volume 2 as

[ st = 2. (4.24)

For core electrons, we know a priori that our atomic orbital wave func-

tions obey <¢nc|¢n’c ) = 6 ., . However, for consistency, we should also
c'c

normalize p,, k(r) to 2, with respect to a unit cell volume €, just as was

the case for p, x(r). This is why the factor factor N in Eq. (4.6) was split
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up as N = NyNp. Imposing the preferred normalization, we find

Q= / d37“#:c,k(r)#nc,k(r) = Nb2/ d3re (r—rng) g=ik-(r—rnc)
Q Q
X ¢Zc (I‘ - rnc)(bnc (I‘ - rnc)
= Nb2 /Q d3r¢;c(r - rnc)¢nc (I‘ - rnc)
= N2, (4.25)
revealing that N, = v/Q. Furthermore, the ne k() are orthogonal to each
other, but only for k = k’:
—ik’-(r—r_, )

/d3?”u:;c k(T g (x) = Q/ dPre® T—Tnc)e el
Q ’ c Q

X (b;kzc (I‘ - rnc)gbn/c (I' - rn/c)
_ Qi K) T / Preilek)r
Q

X (b;kzc (I‘ - rnc)gbn/c (I' - rn/c)v (4'26)
which is equal to Qénc,nrc only if k = k/. In the second line, we used the fact
that the nc label on r,, depends only on which atom we are considering,
and unless we are considering the same atom, the integrand will be zero for
all values of r within the unit cell because we are assuming nonoverlapping
spheres.

Let us now derive N, for a proper normalization of 1, k(r):

77b7z(;,k(1') = Naeik.rﬂnc,k(r) and <¢nc,k|wn/c,k’> = 5ncn/05k,k’u (427)
which yields

Uil 1) = /V 1 (0 (1)
= N2 [ e () )

= N? Z / dgre*ik'(”R)u;C,k(r + R)eik/'(r+R)un/C7k/(r +R)
R /©

= NEY e RO [ e RO (1) ()
R

— Nean N2 30 /Q e 0Ty () ()

= ceHNc%Q(Sncn’cdk,k’a (428)

showing that N, = 1/ VV. To summarize, the total wave function has the
Bloch-wave form:

1 .. P
Onx(r) = \/—Velk “unk(r), satisfying (pnklen k) = O dki, (4.29)
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and we use the following ansatz with a hybrid basis:
Pole) = <= 37 0ad KT S e ale). (430)
4 nc
Here the core wave functions 1, k(r) are given by

Ik e
Yo k(r) = W@ KT e x(r), satisfying (Yne kl¥nz, k) = Onent, Ok
(4.31)

which are also represented as a Bloch wave, with the periodic function

e k(r) = \/ﬁz em I Rinc)g  (r—Rpn.). (4.32)
i

Note that p, x and jip,, k are normalized to (2 with respect to the unit cell
Q.

4.B Accelerating SCF convergence

In this appendix, we will elaborate on a new scheme for improving SCF
convergence, which proved very successful for our computational framework.

The convergence of the SCF method is generally rather slow. Therefore,
much effort has been invested into methods improving it [160]. A simple
example of such a method is linear mizing, described in Ref. [160]. In an
attempt to steer the convergence, one uses the information from the previous
iterations, i.e., instead of using the potential V;(r) in the ith SCF iteration,
one uses VM (r) = aV;(r) + (1 — a)VM, (r) with a free parameter « € [0, 1].
We distinguish here between the potential V;(r) obtained from the electronic
density using Eq. (4.19), and the "mixed” potential V; (1) obtained from
performing the linear mixing. A different quantity, such as the electron
density p, may also be used in the mixing [160]. Building on this notion
of steering convergence, we have developed a method that adjusts the «
parameter per iteration, using the information from all previous iterations.
In this way, we are working with a@ — «;.

Using the information from previous iterations, we impose for the ith
SCF iteration that

VM) =" wmVin(r), (4.33)
m=1

with weights {wy,}, which are normalized to 1, i.e., Zin:l Wy, = 1. It is
intuitively understandable that we expect the weight w; associated with
the ith iteration to be larger if the error associated with that iteration is
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smaller. With that in mind, we define ¢; = ||e;|| ™!, for some suitably defined
error vector e;. It is related to w; through the normalization condition

Y om=1Wm = 1:

W = = = k. (4.34)
Zm:l Cm
Note that as more SCF iterations are being considered, a specific ¢, will
remain unchanged, whereas k,,,, and therefore w,,, will be updated for every
iteration. We can easily combine this into the following adaptive linear
mixing scheme:

VM) = wnVin(r) = ki Y emVin(r)
m=1 m=1
i—1
= kic;Vi(r) + k; Z cmVim ()
m=1

k;
= k‘ZCZVZ(’I”) + % V/‘fl (’I”) (4.35)
1—1

From this, we can identify «; = k;c; = w;. We can also easily show that
ki/ki1 = 1 — «;, by using (k;_1)™' + ¢ = (k;)~'. Multiplying both
sides of this equation by k;, we get a; + (1 — a;) = 1, as expected. In
the implementation of XCRYSTAL, we defined the error vector to be e; =
|Vi(r) — Vic1(r)|/Vizi(r). For the first iteration, no mixing is done as the
error vector cannot be defined yet. To demonstrate how the new adap-
tive linear mixing scheme works for our particular framework, we compare
the performance of the adaptive linear mixing to static linear mixing, with
two different mixing parameters «, in Fig. 4.8. It illustrates not only that
the adaptive linear mixing is useful for speeding up the convergence, but
that its application is necessary for high-temperature cases to achieve con-
vergence. The static linear mixing shown in Fig. 4.8 exhibits an exponen-
tial behavior with increasing temperatures and eventually fails to converge
within a convergence criterion of 107¢ % for T > 35 eV (a = 0.6) and
T > 15 eV (a = 1.0). We used a relative difference of the total, Fermi-
Dirac-weighted energy of the system Emk E, xnn between iterations as
the SCF-convergence parameter, achieving convergence if this relative dif-
ference was smaller than 1076 %.
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Figure 4.8: The number of SCF iterations necessary to reach convergence
(with a convergence criterion of 107 %) using static linear mixing with
a =1 and a = 0.6 as well as our adaptive linear mixing for Al plasma
calculations at various electronic temperatures. For this plot, |K|max =
4.0 ag' (N = 461) is used.



Chapter 5

Electron-impact-ionization
cross section for
nonisothermal warm dense
matter

In Chapter 3, we investigated the effect of the electronic configuration of an
ion on the electron-impact-ionization cross section. In Chapter 4, we devel-
oped a computationally efficient way of computing the electronic states for
a transient nonisothermal state of warm dense matter. In this Chapter, we
combine these two topics by deriving the theoretical framework needed to
calculate the electron-impact-ionization cross section within transient non-
isothermal warm dense matter.

5.1 Theoretical derivation

To calculate the electron-impact-ionization cross section within WDM, we
follow the derivation of the DDCS up to Eq. (2.120), or equivalently up
to Eq. (3.7). However, instead of filling in the representation of the spin
orbitals with respect to spherical harmonics, as was done in Eq. (2.82), or
equivalently in Eq. (3.3), we fill in the XCRYSTAL ansatz for the spin orbitals
[Eq. (4.5)]. Specifically filling in

() = % 3 vk (K )KL S 0 (00 k(x), (5.1)

no

93
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as ¢y and @p into

d2 4 4 QOut

n(l—mn ' x dep—er—w
ddEos Q% g Z 1 F) [(erl Isozl € — €1 —w)

4 Gout

= — S(Q,w), 5.2
15 (Qu) 6:2)
where the structure factor S(Q,w) was factored out:
S(Qw) =Y mu(l =) {orle®™en)[ der — e —w).  (5.3)
IF

This term is useful to factor out, because it is not specific to Coulomb scat-
tering. It encapsulates the response of a many-electron system (described
using spin orbitals) to an interaction Hamiltonian proportional to the elec-
tron density 7(x), or, more accurately, the Fourier transform thereof.

Note that this implies that we are still treating the incoming and outgo-
ing electron as a plane wave, as was done in Chapter 3. However, directly
filling in Eq. (5.1) into Eq. (5.3) would result in taking the square of a three-
dimensional integral of four terms. It is much easier to express ¢, k(r) in
terms of plane waves alone, but in a way to not exclude the updated core
orbitals. We may achieve this as follows:

Pn, k \/— Z Un, k Z(k+K T+ Z Wn, k nC ¢nc,

1 K
% Z (’Un,k )+ ank ne) v (K‘)> ¢! K)

’L(k+K )r (54)

\/—Zvnk

where Eq. (4.31) was used to expand ¢, x as a Bloch wave, which was
subsequently Fourier decomposed, i.e.,

1 core
e alr) = =™ e fZ ek T (5.5)

In order to work in terms of the pure plane-wave coefficient o, x(K;), we
must find v;7 (K;). We emphasize that, in spite of the fact that Eq (5.4)
seems to suggest we are working in a pure plane-wave basis, as was done in
Sec. 4.2.1, the information regarding the core orbitals and the hybrid basis
is not lost. It has simply been absorbed into the new Fourier coefficient,
Unkx(K;), with respect to plane waves. Therefore, the cutoff Nk involved
in the sum over reciprocal lattice vectors in Eq (5.4) will be the same as
the from the original ansatz [Eq. (5.1)], used in Chapter 4. In order to
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find vgocr?k(Ki), we can simply equate the Fourier decomposition of i, k(r)
with the expression we found for it in terms of the core orbitals [Eq. (4.32)].
Being restricted to a single unit cell, this yields:

Z Ucore zK ro_ \/ﬁefik-(rfra)qxlc (I‘ _ ra)' (56)

Taking an inverse Fourier transformation reveals that vp”q (Kj;) = (k +

K;|tn, k), such that

T i (Ki) = v (Ki) + > wnae(ne) (k + Kilthne, i) (5.7)

nc
which shows that o, x(K;) can be calculated using quantities readily at our

disposal after an XCRYSTAL run.

We proceed by utilizing the ansatz for ¢, k(r) [Eq. (5.4)] in order to
calculate the structure factor S(Q,w) [Eq. (5.3)]. The subscripts I and F'
are now turned into {n;,k;,s;} and {ng, k¢, sy}, respectively. The matrix
element can be expressed simply as:

(e r) = / Prh(£)e o (r)
sz,s
= f Z nf kf Kb 'Un,“ z(Ka)

" /V d3T€i(ki+Ka+Q*kf*Kb)'r. (5.8)

This turns S(Q,w) into:

- ) N
W)= D D k(1= Tm i)

ni,nf ki,kf Si,Sf

X 5(Eni7ki — Enf,kf + w) (59)
x| Z Q_];;fykf (K)n, k, (Ka) / dgrei(kierKabJrQ).rPa
a,b v

where w = FEi, — Eoy and iy = 1/(ePEnsc=1) 4 1), Also denoted are
ki; = k; —ky and K4, = K, — K. We can proceed by performing the sums
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over s; and sy, resulting in an overall factor of 2,

S(Qaw) = % Z Z T_Lni,ki(l - T_Lnf,kf)

ng,nyg ki,kf
X(S(E —Enkaf—l—w)

n;i,k;

x \Zﬁzf,kab)m,ki(Ka) /V dBreiir tRat Q) 2

:2<(27T > Z Z"” 1, (1= 7o i)

ng,nyg kz,kf
X 5(Eni,ki - Enf,kf +w) (510)

X ‘ Z 2_j;kl,f,kf (Kb)@ni,ki (Ka)6(3) (klf + Kab + Q)|2
a,b

Let us concern ourselves with thelast term, which we may expand as follows:

| Z@:Lkaf (Kb)@ni,ki (Ka)6(3) (klf + Kab + (Q)‘2

a,b
= ZZ nw z Unf kf(Kb) ng, kf(KB)vn“ Z(KA)
a,b A,B
x 6@ (kip + Koy + Q)0 (ki + Kup + Q) (5.11)

The two delta functions imply that each term is zero, unless Ky, = Kp.
Therefore, we may rewrite this as:

8 (kif +Kap + Q)0 (ks + Kup + Q)
= [5(3) (kif + Koy + Q)]QéKab,KAB' (5'12)

We evaluate the squared delta function using the expression

/ d3xeiQ'x(5(3)(Q)
14

§9(Q). (5.13)

5@ = Jim

V—oo (27‘(’)3

— 1
Voo (27)3

for some vector Q. This reduces Eq. (5.11) to

a,b
v
= gy 200 + K Q)0 g (Ko, (K)
a,b
X Z@tf,kf(KB)’Um, (KA4)0K . K aps (5.14)
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which gives a final result of for the DDCS:

d*c 4 Gout
_— = — S 5.15
10 QY gy T (5.15)
where
S _ o2’ i 16, (1 — 72 S(E E

ninf ki ky
X Z (5(3) (sz + Kab + Q)@;ku,ki (Ka)anf’kf (Kb)
a,b

XY 0 e, (KB)0n, e, (K)OK K as- (5.16)
A,B
Expressing the sums over k as Y, = (V/(27)3) [ d®k gives

\%4 _ _
S(va) = QW Z /BZ d3kid3kfnm,ki(1 - nnf,kf)(s(Eni,ki - Enf,kf +w)

ni,nys

x> 03 (kif + Kap + Q)5 1, (Ka) O e, (Ko)
a,b

x Z@Zf,kf (KB)@nmki (KA)0K 1 K - (5.17)
A,B

Note that the fact that the DDCS is proportional to V' makes physical
sense. After all, it describes how probable it is for an incoming electron to
undergo Coulomb scattering with a lattice of a volume V', which we consider
in the limit V' — oo. It makes sense that in this limit, this probability also
approaches co. In light of this, it is more physically justified to consider the
DDCS per unit volume and omit the factor V in S(Q,w).

5.2 Towards practical implementation

The goal of this section is to provide a detailed analysis on how to practi-
cally implement the structure factor S(Q,w) in Eq. (5.17) into the XCRYSTAL
code, so as to determine the DDCS, and, by extension, the total cross section
for electron-impact ionization in WDM. The starting point for the calcula-
tion of the structure factor S(Q,w) in Eq. (5.17) is a converged XCRYSTAL
run, that provides us with energies E, ), occupation numbers 7, k, and
Fourier coeflicients v, x(K) and w, x(nc), from which we can construct
Up k(K). All of these quantities will be defined on predetermined, finite
grids for k and K, and with them, we have everything needed to calcu-
late S(Q,w). Let us begin by considering how the continuum states being
ionized into are treated as a pseudocontinuum in XCRYSTAL.
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5.2.1 Pseudocontinuum in xcrystal

Before delving into a discussion on the implementation of a pseudocontin-
uum in XCRYSTAL, let us be reminded of the need for a pseudocontinuum
by considering its implementation in XATOM.

Recall from Sec. 3.2.2 that, in principle, XATOM does have the ability
to treat true continuum wave functions, ue,(r). Picking an energy value
e > 0 in the continuum, the radial Schrédinger equation [Eq. (2.83)] can
be numerically integrated outward from r = 0, without imposing any sort
of spatial confinement on the corresponding wave function. Conversely, dis-
cretized orbitals uy, 1, (r) (along with a discretized set of eigenvalues ¢, ;)
were obtained through the diagonalization of the Hamiltonian in a sphere.
This implied that the radial wave function, u(r), was confined within the
space between r = 0 and 7 = Rpax, i.e., u(0) = u(Rpax) = 0. As we
considered transitions between bound and free orbitals, and both methods
are calculated on different kinds of radial grids, we avoided computation-
ally costly interpolations between both grids by describing the continuum
states as part of the discretized spectrum. The fact that we confined the
wave functions to a sphere of radius Ryax led to the discretization of the
continuum. Thereby, the continuum states were treated using a discretized
pseudocontinuum. In contrast, we never imposed spatial restrictions on the
Bloch wave functions of XCRYSTAL. The hybrid basis used in XCRYSTAL is
a continuum basis, because of the incorporation of the k-space plane waves.
Therefore, when we diagonalize the Hamiltonian in k-space, we work with
a true continuum, because, in principle, we can pick any point in k-space
and solve for the eigenvalues and eigenfunctions. Practically, however, we
cannot perform this diagonalization for all k-points, and thus, a discretiza-
tion of the grid in k-space is necessary. This discretization imposes periodic
boundary conditions on the wave functions in real space within the volume V'
and therefore leads to the implementation of a pseudocontinuum in XCRYS-
TAL. Note that this diagonalization-based method of obtaining eigenvalues
and eigenfunctions, for both bound and continuum wave functions, is a key
element of the methodology which is shared by both XATOM and XCRYSTAL.

The requirement for a pseudocontinuum arises in XCRYSTAL when we
consider the two delta-distribution functions that guarantee energy- and
momentum-conservation in Eq. (5.17). In principle, the (Q,w)-grid, on
which S(Q,w) is defined, forms an infinite and uncountable set. The delta
functions will impose the restrictions w = Ey,, , — En, i, and Q = —k;5 —
K. Even after implementing these restrictions, the resulting (Q, w)-grid is
in principle still infinite and uncountable, because the wave vectors k also
constitute an infinite and uncountable set. In practice, however, this (Q,w)-
grid will actually be finite, and therefore countable, because the numerically
implemented k-grid is finite, as was mentioned earlier in this section. There-
fore, a (Q,w)-point that denotes a transition to (or from) a free continuum
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state will be handled using a discrete pseudocontinuum. This scenario is very
similar to what we encountered in Eq. (3.8), where we also dealt with the
implementation of a pseudocontinuum in an energy-conserving delta func-
tion in XATOM, which was treated with the histogram method explained
in Sec. 3.2.3. Fortunately, we will not have to invoke this method here,
on account of the different normalization imposed on the electronic wave
functions in XATOM and XCRYSTAL, for the following reason.

Recall from Sec. 3.2.2 that we worked with final-energy states, ue (1),
that are part of the continuum, which, for brevity, we will denote here
as |¢). Continuum wave functions are not L? normalizable, because, in
order to define a continuum, there can be no spatial confinement. In-
stead, continuum wave functions are delta-orthonormalized, which implies
(ele’) = d(e — €’). However, in XATOM we approximated the continuum by
means of a pseudocontinuum, using a finite and countable set of final-energy
states up, 1, (r). These were calculated by XATOM within a sphere of radius
Rpax, and normalized therein. Therefore, the continuum states, which are
not L2-integrable and have instead been delta-function normalized, and the
pseudocontinuum states, which are ordinarily L? normalized with respect to
a sphere, have been normalized in different fashions. The histogram method
detailed in Sec. 3.2.3 was invoked to ensure that the numerical integration
over the pseudocontinuum was equivalent to the integration over the con-
tinuum, keeping the different normalizations in mind. In contrast, the wave
functions employed in XCRYSTAL, ¢, k(r) [Eq. (4.5)], are normalized in a
total volume V', for which we take the implicit limit V' — oco. Therefore,
despite the fact that we are also discretizing the continuum in XCRYSTAL,
which was solely a consequence from having need for a discretized k-grid
so as to practically implement integrations over k, the normalization of
the continuum states and the pseudocontinuum states is one and the same.
Therefore, there is no need to invoke the histogram method in XCRYSTAL.

5.2.2 Structure factor on the coarse-grained (Q,w)-grid

In principle, it is possible with XCRYSTAL to calculate S(Q,w) directly. The
delta-functions in Eq. (5.17) impose that a specific set of reciprocal lattice
vectors {(Kg, Ky, K4, Kp)} and a specific set of quantum numbers {(n, k)}
will yield nonzero contributions to the structure factor. With the converged
electronic density p(r) from a run with XCRYSTAL, it is possible to obtain
the values of E, k, N, k, and 0y, k(K) for any such sets from a single diag-
onalization of the Hamiltonian in XCRYSTAL. In fact, a similar scheme was
used to obtain the band structure plots in Sec. 4.3.2. However, due to the
many summations present in the expression for S(Q,w) [Eq. (5.17)], it will
be more computationally efficient to use the predetermined k- and K-grids
from the XCRYSTAL run. In order to reconcile the use of these predeter-
mined grids with the restrictions that are imposed by the delta functions
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in Eq. (5.17), we will eliminate these delta-functions, by working with a
coarse-grained, binned (Q, w)-grid, as follows.

Let us define the m-th bin as corresponding to some range (Q(m) +
AQM™ /2, w(™ £ Aw™ /2) to which we associate a single value of S(Q(™), w (™).
This coarse-graining allows us to integrate over a single bin, thereby remov-
ing the delta functions, and resulting in an overall factor of AQ™ Aw(™) =
AU The integration over the m-th bin is performed by integrating over
those values of (Q,w) in the range (Q™ + AQ™) /2, w(™ + Aw(™ /2) such
that they belong to the m-th bin. If we introduce the notation for the bin
integration over the m-th bin as

Q(M)+AQ(M)/2 uJ(m)JrAw(M)/g
/ d3de:/ d3Q/ dw, (5.18)
(m) QM —AQ(™) /2 wm) —Aw(m) /2

then we have:
/ BQdwS(Q,w) = AM QM wim), (5.19)
(m)

Therefore we may assign a bin-averaged value of S(Q,w) for each bin. For
the m-th bin, the averaged value, S(Q(™,w(™)) takes on the form
2 1

m) (m)y _ Skid® Ky n
Q) = Gz 3, b0 )
ni,nyf

w(m)JrAw(m)/Z
X / dwa(Eni,ki — Enf,kf + w)
w(m)wa(m)/Z

QM AQU™ /2
X E /
a,b

X @;iyki (Ka)@nf,kf (Kb)

XY 0 e, (KB) O, e, (K 4) 0K,y K - (5.20)
A,B

Q5P (kif + Ko + Q)
QM —AQ(mM) /2

The (Q, w)-integrations may be performed explicitly, resulting in

m) (m 2 1 37. 137, = 7
SQl) = i 3 [, a1 =)

ni,ng

E B, . —wm
X rect ( WaLY; i K >

Aw(m)

—kif — Kqp — Q™
X Zrect(?’) ( / am
o AQ( )

x ZTj:,f,kf(KB)@niyki(KA)dKavaAB7 (5.21)
A,B
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where the rectangular function is defined as

0, if[t|>1/2
rect(t) = { 1/2, if [¢| = 1/2 (5.22)
1, il <1/2.

This value of S is assigned to all (Q,w) values that belong to the m-th bin.
In this way, we have done away with the explicit implementation of delta
functions in a pseudocontinuum by effectively averaging over any given bin
m referring to the range (Q(™ + AQ(™ /2,w(™ + Aw(™ /2), to which a
value of S(Q(™,w(™) is assigned.

The binned grid for (Q,w) is practically constructed as follows. The
energy- and momentum-conserving delta functions in Eq. (5.17) imply that
for any given n;, ki, ny, and ky, the energy transfer isw = Ey,, , — Ep, j, and
given an additional a and b, the momentum transfer is Q = —(k;y + Kgp).
Therefore, we may extract the extent of the binned w-grid by calculating

M(w)

m(w) = min(w) = min(E,, k) — max(E,

max(w) = max(E, k) — min(E, k)
W, (5.23)

)

and similarly, we may obtain the extent of the vector components of Q,
M(Ql) and m(Ql) for i € {xaya Z}

M(Q;) = max(Q;) = max(k;) — min(k;) + max(K;) — min(K;)
m(Q;) = min(Q;) = min(k;) — max(k;) + min(K;) — max(K;). (5.24)

Knowing the extent of our (Q,w)-grid in each of its four dimensions, we
subdivide each of these into Ng., Ngy, Ng., and N, bins. We are free
to choose this subdivision as we see fit. For instance, we can define linear
grids with increments A (q ) = (M(q.w) —M(Q.w))/N(Q.w), Where all bins per
dimension are of equal size. However, inspired by Fig. 3.1 for the DDCS at
zero temperature, we anticipate that the contributions to the structure factor
from small energy transfers w will dominate. It will therefore be imperative
to have a higher density of grid points near smaller values of w. A similar
behavior is expected for each of the vector components of Q. Therefore, we
will continue with the general assumption that each dimension has its own
increment per bin m: AQ;(Bm), Ang), Ang), and Aw(™ . As mentioned
previously, this m-th bin corresponds to the range (Q(™ + AQ(™) /2, (™) +
Aw™ /2), where AQ™ = AQY™ AQI™ AQU™.

Having access to all quantities needed for calculating S(Q,w) and having
defined our binned coarse-grained (Q,w)-grid, we may proceed by calculat-
ing S(Q),w(™), by looping over n;, k;, ng, kg, a, b, A and B. In the
inner-most loop we know which w (= Ep; x, — En, k;) and Q (= —k;y — Kap)
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we are considering, and therefore, to which bin the current contribution
belongs to. That contribution is given explicitly by

A (ki) w(k s )i, ke, (1 — Tin, k)
X 05, 1o, (Ka) O e (Ko)T e, (K )0, e, (K ), (5.25)

where w(k) is 1/8, 1/4, 1/2, 1 if k is a corner, edge, boundary, or interior
point of the first BZ, respectively, and

. 2 1
A = (QW)BWAkZAkf, (5.26)

with Ak; = Ak being the increment of the k-grid. The inclusion of the
weights w(k) accounts for the numerical integrations over k, in this case
using the trapezoidal method. The final result will be the structure fac-
tor from Eq. (5.21) on the coarse-grained (Q,w)-grid. However, similar to
conventional solid-state calculations, this implementation has a high com-
putational cost. In the following section we propose and discuss methods
towards achieving realistic computations times for calculating the structure
factor.

5.2.3 Optimization of the algorithm

Despite the previous section providing a relatively straightforward recipe for
the calculation of the binned structure factor from Eq. (5.21), note that this
calculation involves a heavily-nested loop structure of the following kind:

do ni = 1, N_hyb
do nf = 1, N_hyb
do ki =
do kf =1, N_k

where Ny, = Nk + >, Nco(a) was defined. This loop structure implies
Nf“(leN}?yb iterations. As a hands-on example, we will consistently use the
example of the Al system, with the parameters used in Chapter 4 (Ng =
1647, Ny = 73, and Y, No(a) = 20) throughout this section. For this
set of parameters, the loop structure amounts to ~2.41x10%* iterations. In
order to relate the number of iterations to an estimate for the elapsed CPU
time, the calculation of the structure factor with the aforementioned brute-
force loop structure was implemented into XCRYSTAL. It was found that
1 second corresponds to ~2.5x10% iterations. Therefore, the calculation of
the structure factor for the Al system considered in Chapter 4 would take
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~3x108 years. For practical purposes, this calculation must be refined and
optimized extensively. To get the realistic computation time to the order
of about a month or less, the number of iterations must be decreased by a
factor of ~ 109 — 10'°.

The first thing we can do to reduce the computational effort is to use
the restriction imposed by dk,, K, in Eq. (5.21) to our advantage. The
reciprocal lattice vectors that satisfy this restriction will not change for
different values of n;, ny, k; and k; and can therefore be precalculated.
Going over the quadruple (a,b, A, B) loop and determining which vectors
satisfy K, — K = K4 —Kp will result in Né(b)AB << Nf‘g values of (a, b, A, B)
that will yield a nonzero contribution to Eq. (5.21). The superscript (0) is
introduced, because we can further reduce this number by making a few
refinements. The first refinement, resulting in the number N (521)4 5 <N, (5234 B
comes from the realization that if we know that K, — K, = K4 — Kpg, then
we also know that Ky — K, = Kg—K 4, which therefore does not have to be

explicitly considered in the loops. Naively, this would mean that N(E& B~

N 521)4 /2. However, this accounts for the cases a = b = A = B twice. One
could simply remove the overcounting by a few well-placed if-statements and
continue working with N (511)1)4 p- However, an overuse of if-statements may
be computationally costly, especially when placed in multiply-nested loops.
Therefore, a further refinement can be made that remedies this overcounting
without the use of if-statements. Define Ny ap = Néi)‘l g < Né;% p by simply
removing the contributions of @ = b = A = B. The contributions for these
cases may be added through a separate, double loop over Nk. Thus, the
quadruple loop over a, b, A, and B can be carried out by one loop over
Ngapap and one double loop over Nk. Explicitly, the loop structure involved

in the determination of Ny ,4p takes on the form

do a =1, N_K -1
do b = a + 1, N_K
do A =1, N_K -1
do B = A + 1, N_K

which takes (z:l-]\inl(NK—i))2 = (Nk(Nk—1)/2)? iterations and the double

loop over Nk is done as

~—

do i =1, N_K -1
do j =i + 1, N_K
where the contributions from ¢ = j and from i = Nx (e =b= A = B = Nk)
must be added explicitly after performing these loops, thus resulting in
Nk (Nk —1)/2+ Nk = Nk(Nk +1)/2 operations. This restricts the initial
NﬁNﬁNﬁyb iterations to

Ni(Ng — 1)?
4

Nk (N + 1)

tor —
#iter 5

+ <NabAB + > NIEN}?ym (527)
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where the first term accounts for the precalculation of Ny ap. For the pa-
rameters used in Chapter 4, yielding Ngap = 360,614,455, this scheme
reduces the number of iterations by a factor of ~20,000, from ~2.41x10%*
to ~1.21x10%°, and the computation time from ~3x10% years to ~15,000
years. Despite being a dramatic reduction, it is not enough for practical
implementation.

The second way to reduce the time-costly loop structure of Eq. (5.21) is
by removing redundant iterations in the loops over n;, ny, k; and ky. For
practical purposes, it makes sense to alter the hierarchy of these loops such
that the first two address initial states, and the latter two final states, i.e.,
n;, ki, ny, and ky. In the inner-most of these four loops, we have access to
the quantities labeled by both (n;, k;) and (ny, k). However, we need not go
over all possible values for (n, k) twice, for if we know the contribution from
{I = (ns, ki); F = (ng, ky)}, we immediately have access to the contribution
from {I = (ny,ks); F' = (n;, k;)}. Additionally, we may skip the case when
n; = ny and k; = ky, as in this case there is no transition. Explicitly, this
behavior is captured by the following loop structure

do I = 1, N_hyb * N_k
if (I .eq. N_hyb * N_k) cycle
ni = mod( I - 1, N_hyb ) + 1
ki = ( I - ni ) / N_hyb + 1
do J = I + 1, N_hyb * N_k
nf mod( J - 1, N_hyb ) + 1
kf = ( J - nf ) / N_hyb + 1

and containts Npyp Nk (Nnyb Nk — 1)/2 operations, thus only resulting in a
decrease of a factor of 2. The number of iteration is nonetheless reduced to

NZ (Ng — 1)? Ng(Nk +1
Fiter = —K( ff ) + <NabAB—|—7K( 2K ))
N Niyb (N Ny, — 1

The third way to reduce the runtime of the calculation of Eq. (5.21) is by
limiting ourselves only to electron-impact ionization. Thus far, Eq. (5.21)
describes a transition occurring between an electron in a state (n;, k;) and an
electron in a state (nys, kf), e.g., excitation, or ionization. Limiting ourselves
to ionization alone allows us to consider only those scenarios subject to
the simple restriction Ey, x, < p < Ej, k,. The obvious drawback is, of
course, the fact that we lose all information on, for instance, the process of
excitation. Another complication is that the most efficient implementation
of this restriction is incompatible with the previous runtime reduction of
swapping {I = (ns, k;); F = (ng, ky)} and {I = (ng,kf); F = (ng, k) } in
the same loop. This is because it would be best to place the restrictions

Enx; < pand p < By, i, separately in the (ns, ki) and the (ny,kr) loops,
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respectively. So, if we choose to limit ourselves to ionization alone, we must
omit the previous restriction, and regain a factor of two in the number of
iterations. However, the second term in Eq. (5.27) would be multiplied by
a factor of AE(1 — AFE), where AFE is the amount of states that satisfy
E,, x; < p divided by the total number of energy states. So

NE(Ng —1)? Nk (Nkg +1
#iter = —K( if ) + <NabAB + 71(( 2K )>
x NENELAE(1 — AE). (5.29)

As the temperature increases, AFE will inevitably decrease as the chemi-
cal potential decreases and thermal excitations cause fewer electrons to be
considered as bound. Therefore, AE will be largest at T' = 0 eV. For the
parameters used in Chapter 4, AE ~ 0.012 at T" = 0 eV, which brings the
number of iterations down to ~1.40x10'®, giving an estimated runtime of
~178 years, which is a factor of ~2000 shy from our goal of a computational
time of 1 month.

Finally, the loop structure is perfectly compatible with the implemen-
tation of parallelization. For parallelization, the best case scenario exhibits
a linear scaling between the runtime and the number of processors used.
Having access to around 50 processors, we can reduce the runtime by an-
other factor of ~50, to the result of ~3.5 years. To obtain our aspired goal,
another speed-up by another factor of ~40 would be needed. However, we
would like to emphasize that the methods outlined in this section do result in
a factor of ~107 in speed-up for the parameters used for Al from Chapter 4.

All methods outlined above are generally applicable. We may proceed
with further optimization for specific cases. For example, if a system exhibits
a high level of symmetry in its first Brillouin zone, we may exploit those
symmetries to reduce the k-grid needed in numerical integrations. Further
optimization is a currently ongoing process and the author is confident the
computation time for the structure factor can be brought well within reach
of our aspired goal. Let us conclude with a discussion on the practical
implementation of calculating the electron-impact ionization cross section
using the binned structure factor.

5.2.4 Cross section

Recall that the DDCS is given in terms of the structure factor as

dQU 4 Jout
g —S 7(,()’ 530
By QP g &) (5.30)

from which the cross section can be obtained as [Eq. (2.103)]:

2T +1 dZJ
= [ dE,, d d ) ——. 31
o / t/o gf)/—l (cos )deEout (5.31)
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Recall also that in Chapter 3, we considered ¢ as a function of the incoming
electron energy Ej, and that there was no explicit dependence on the direc-
tion of Q, as we were free to orient our reference system such that Q = Qout-
In XCRYSTAL, we no longer have this freedom as we are working with a pre-
determined k-grid. Therefore, the cross section calculated by XCRYSTAL
contains more information than the cross section calculated by XATOM, as
directional dependencies of the cross section can be calculated and exam-
ined. However, in order to compare with the cross-section results obtained
in Chapter 3, this directional dependence must be removed. To do so, the
structure factor S(Q,w) will be averaged over the incoming directions, Giy.

The angular averaging is relatively straightforward. Starting with a cho-
sen value of Fy,, we start by defining an angular grid for qin, = (v2FEin, Oin, ®in)-
Energy- and momentum-conservation impose that Eo, = Ej, — w, and
dout = din — Q. Therefore, for every value in the (6, ¢in)-grid, we can
determine those values of Q and w on the binned grid that will provide
a contribution to the cross section from the corresponding S(Q,w). Sub-
sequently, a numerical averaging can be performed to obtain a value for
the DDCS as a function of Ej,, Eout, and qout, which we may numerically
integrate, as per Eq. (5.31) to obtain o(FEj,). Moreover, the calculation
of S(Q,w) does not have to be repeated for a new value of Ej,. Choos-
ing a value for Ej,, the binned (Q,w)-grid determines which energy- and
momentum-transfers are available, and the calculation of S(Q,w) needs to
be completed only once.



Chapter 6

Summary and outlook

In this dissertation, I have developed a new framework that allows for the
calculation of the electron-impact ionization cross section in transient states
of nonisothermal warm dense matter.

Electron-impact ionization

In Chapter 3, I calculated the doubly-differential cross section for electron-
impact ionization of single ions at zero temperature from first principles, in
a Hartree-Fock-Slater (HFS) framework. This expression was subsequently
implemented in a computationally efficient way into the pre-existing simu-
lation toolkit XATOM.

Applying this formula to a single C2* ion, the observation was made
that the electron-impact ionization favors small energy transfers between
the incoming electron and the ejected electron, as well as small scattering
angles for the incoming electron. From the doubly-differential cross section
I subsequently calculated the singly-differential cross sections, both energy-
and angle-resolved, as well as the total electron-impact ionization cross sec-
tion. The expression for the latter was applied to the ions C*, C?*, and
S8*. For the ground-state variations of these ions, where the holes find
themselves in the outer-most electronic shells, a comparison could be made
between these predictions for the cross section with experiments, as well
as with the frequently used Lotz and BEB methods. The comparison with
experiment revealed that the result calculated with XATOM adequately re-
produced the trends observed in the cross section as a function of incoming
electron energy. The calculated cross section was particularly accurate for
high incoming energies, consistent with the description of the incoming elec-
tron as a plane wave. This approximation however led to an overestimate
of the predicted cross section for lower incoming energies.

The ability of XATOM to specifiy an explicit electronic configuration for
an ion of a given charge state allowed me to subsequently calculate the

107
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electron-impact ionization cross section at different electronic configurations
for the same ions CT, C?*, and S®*. These exotic electronic configurations
are expected to be prevalent during the ultrafast interaction between sam-
ples and XFEL pulses. The dense electron environment in these experiments
allows for the possibility of electron-impact ionization to occur before the
exotic ion relaxes to the ground-state configuration. Therefore, the question
arises whether or not the electronic configuration matters for the calcula-
tion of the electron-impact ionization cross section. It is found that this does
indeed matter by comparing ground-state ion configurations to the config-
urations with holes in the inner-most shells. Specifically, the cross sections
for the exotic ions were found to be larger than their ground-state counter-
parts, which becomes a less pronounced effect for higher incoming electron
energies. The relative difference becomes more prevalent both for lower in-
coming energies as well as in the cases where the exotic ion and ground-state
ion differ in configuration more significantly. The physical reasoning behind
this observation was argued to lie in the fact that the contribution of the
valence electrons to the electron-impact ionization cross section dominates,
which could be justified by analyzing the derived theoretical formula. This
effect is somewhat diminished due to an increased screening the electrons
in the exotic ion undergo from the nucleus. Additionally, since everything
was consistently calculated within the same framework of XATOM, the ar-
gument was made that the observed trends are accurate, even if the exact
calculation for the cross section can be expected to be at most as good as
the prediction for the ground-state ions. In view of this, the applicability of
the frequently used, semi-empirical Lotz method was scrutinized for these
exotic ions. The Lotz method did not provide a general trend with regards
to the difference in cross sections for both kinds of ions, in part due to the
absence of experimental data for exotic ions. Finally, it was concluded that
the BEB method did contain some predictibility in the calculation of the
cross section for exotic ions, despite an absence of the explicit calculation
of electronic structure, as it mimics the general trends predicted by XATOM,
which was justified through an inspection of the BEB formula.

Warm dense matter

In Chapter 4, I have developed a novel theoretical framework that allows
for the description of electrons present in a transient state of nonisothermal
warm dense matter (WDM), which was implemented in a new toolkit called
XCRYSTAL. This transient state of matter is expected to be present up to 100
fs after the irradiation of a solid sample by an XFEL, whereby the electrons
are characterized by temperatures within the WDM regime, assumed to be
in thermal equilibrium, and the ions form a cold static lattice. The purpose
of XCRYSTAL was to explicitly provide the electronic wave functions and
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energies in these systems, so that they could be used for the calculation of
matrix elements, such as the one present in the expression for the electron-
impact ionization cross section.

To exploit the periodicity of our system, the Bloch-wave formalism was
employed, which conventionally calculates electronic wave functions in re-
ciprocal (or k-) space using plane waves as a basis. The drawback of this
implementation is the necessity to use many contributions in k-space in or-
der to accurately describe localized atomic orbitals. There are numerous
ways to remedy this complication, the most relevant for this work being
the augmented plane-wave method. In this method, the system is modeled
by spheres centered around nuclei in which real-space atomic wave func-
tions are continuously matched to plane waves outside of the spheres. The
method used in XCRYSTAL is inspired by the augmented plane-wave method.
However, XCRYSTAL does away with the requirement for matching and as-
sumes the electronic wave function to be a linear combination of plane waves
and atomic orbitals everywhere, effectively employing a hybrid basis. Subse-
quently, the systems considered in this work were modeled using a muffin-tin
potential, though this assumption is not a necessary restriction for XCRYS-
TAL, and the electronic structure was modeled using a HFS-framework, much
like in XATOM. Emphasis must be put on the fact that XCRYSTAL allows for
the atomic orbitals that have been added to this hybrid basis to be updated
to the response of the delocalized electrons during the optimization of these
wave functions. Note that the strategy whereby all electronic states of in-
terest, be it occupied, bound, delocalized, or (pseudo)continuum states, are
calculated through the diagonalization of the Hamiltonian is a key character-
istic shared between the methodologies used in both XATOM and XCRYSTAL
in this work.

To benchmark the framework of XCRYSTAL, Al at WDM conditions was
considered, which could be compared to experiment. An accurate predic-
tion of the K-threshold energy of Al at these conditions could be made
using XCRYSTAL, and, in addition, predictions for the orbital-dependent
ionization potential depression were provided. From comparing the results
from XCRYSTAL with the average-atom model and the two-step HF'S model,
the conclusion was made that the explicit implementation of a crystallic
structure did not have a large effect on the predicted results, and the most
important contribution to the accuracy of predicted results was argued to
come from the interwoven optimization of the atomic orbitals in the hybrid
basis. In addition, I could justify the use of the average-atom method in
this WDM-context, which had previously been thought to be insufficiently
accurate for this regime, by providing a discussion on the definition of charge
for systems that include delocalized electrons.

Finally, using the implementation of a crystal structure in XCRYSTAL, the
first predictions for the electronic band structure as a function of tempera-
ture, for temperatures characteristic for the WDM regime, were provided.
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As the temperature increased, the observation could be made that all en-
ergies were dragged down to more negative values, band gaps started to
form, and bands were becoming less pronounced. This was justified by the
intuitive explanation that at higher temperatures, the potential seen by the
delocalized electrons becomes more attractive, as larger thermal excitations
of core orbitals led to a reduced screening effect seen from the nucleus. The
more attractive potential drags down the energies of the delocalized elec-
trons, and gave them more of a localized nature. This, in turn, explains
the formation of band gaps as these electrons start to exhibit atomic-like
behavior.

Electron-impact ionization in WDM

In Chapter 5, I combined the theoretical expression for the doubly-differential
cross section of electron-impact ionization from Chapter 3 with the ansatz
employed for the wave function of the electron used in XCRYSTAL from Chap-
ter 4. In this way, I derived the expression for the doubly-differential cross
section of electron-impact ionization in the transient states of nonisothermal
warm dense matter that were discussed in Chapter 4.

Despite the derivation being relatively straightforward, and the resulting
expression being intuitively understandable, the computational implemen-
tation of this expression is anything but trivial, due to the complicated
loop structure it requires. From the doubly-differential cross section, the
structure factor was factored out, as it is where all the important physics,
and also all the complications, reside. I presented an in-depth analysis on
the practical implementation of the structure factor using a coarse-grained
binned-grid method. An analysis is provided regarding the estimated CPU
runtime for the calculation of the structure factor, and it is found that with-
out extensive optimization, this time vastly exceeds the amount for practical
applications. Therefore, several approaches are outlined which can improve
the estimated runtime considerably. Further optimization, as well as the
practical implementation, of the structure factor is an ongoing process

Outlook

Having the new toolkit XCRYSTAL at our disposal, there are many differ-
ent avenues that may be considered to continue the work presented in this
dissertation.

An obvious first step in the continuation of this work is to complete
the optimization of the calculation of the structure factor S(Q,w), and to
calculate the electron-impact ionization cross section in the states of WDM
that were considered in this dissertation. An ab-initio prediction of this
cross section as a function of temperature would be the first of its kind.
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The calculation of the structure factor S(Q,w) will, however, not only
have merit in the study of electron-impact ionization. The cross section for
photoionization to first order is proportional to the same quantity S(Q,w).
The prefactor of (4/Q*) (incidentally the expression for the Rutherford scat-
tering cross section, i.e., elastic electron-electron scattering) in Eq. (5.2) is
then replaced by the Thomson scattering (elastic photon-electron scatter-
ing) cross section, which is given in atomic units by (see Refs. [84,101])
oty |€8oue Aot * EdtinsAin 2. Here, €q, are the polarization vectors of the
photon with momentum q, A € {1,2}, and the photonic momenta gy /qut
are related to the photonic frequencies wiy, /out DY Qin/out = Mwin/out- In fact,
the calculation of the photoionization cross section in WDM by using the
structure factor S(Q,w) derived in chapter 5 is expected to be more accurate
than the calculation of the electron-impact ionization cross section, because
the structure factor was derived under the assumption that the incoming
and outgoing projectile is modeled by a plane wave only. For electrons, this
will only be a decent approximation if the initial electron has a high incom-
ing energy and the energy transfer during scattering is rather small. For
a photon, using plane waves in its description is much less of a restrictive
approximation to make. In addition, considering solely the measurability of
these cross sections in the context of XFEL experiments, the photoionization
process is much more easy to distinguish. This is because the electrons will
undergo various cascading events after an ionization. Therefore, even if an
electron manages to escape the system in order to be measured, and if one
can discern that this electron is the product of the specific event of impact
ionization (as opposed to, e.g., Auger-Meitner decay), the energy of this
electron is still expected to be too low in order to be described accurately
as a plane wave. An ionizing photon will not suffer from this difficulty and
will be much more easy to identify. The calculation of the structure factor
S(Q,w) will therefore not only be applicable to the calculation of electron-
impact ionization cross sections, but to the calculation of photoionization
cross sections as well.

Furthermore, in this dissertation, only the effects of increasing the elec-
tronic temperature were considered on the electronic states. However, WDM
is not only characterized by its temperature, but also by its density. It
would therefore be interesting to simulate the trend the ionization potential
depression would follow as the density is increased at a fixed temperture
with XCRYSTAL, which may be compared to the results in Ref. [133], for
instance. To incorporate a change in density, one would simply scale the
lattice parameter that defines the unit cell. This option has already been
implemented in XCRYSTAL, but has not yet been explored.

Finally, there is the possibility of not only considering one-electron en-
ergies, such as the ones that were shown in the band structure plots, but
also total energies. By defining Fiox = Emk E, xNip k, Where B, i and 1y, i
denote the energy and thermal occupation number of the orbital denoted by
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the quantum numbers (n, k), we gain access to a zeroth-order calculation of
the total energy as a function of temperature, which can immediately reveal
information on the heat capacity of the system.
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