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The title page shows an ensemble of eight superposed conformations of the macrocy-
clic compound tetraicosamethylbambus[12]uril (PubChem ID 53233270), generated 
with Conformator (the algorithm developed for this thesis). The figure was generated 
with MOE;41 hydrogens are not depicted.  
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Kurzfassung 
Die systematische Suche nach neuen Wirkstoffen für die Medizin ist teuer und zeit-
aufwändig. In zunehmendem Maße wird sie durch computergestütztes Wirkstoffde-
sign unterstützt. Anwendungen wie Docking, Pharmakophormodelle, die Suche in 3D-
Datenbanken und die Erstellung von 3D-QSAR-Modellen sind dabei auf Ensembles 
von Konformationen angewiesen, um die Flexibilität kleiner Moleküle angemessen zu 
berücksichtigen. Bei der Konformations-Ensemble-Generierung handelt es sich um 
ein komplexes Problem, da die Anzahl der Freiheitsgrade selbst bei kleinen Molekülen 
sehr groß sein kann. Aufgrund seiner zentralen Bedeutung für das computergestützte 
Wirkstoffdesign ist die Konformations-Ensemble-Generierung seit mehr als drei Jahr-
zehnten Gegenstand intensiver Forschung. Im Lauf der Jahre wurden viele Algorith-
men zur Konformations-Ensemble-Generierung entwickelt, die Qualität und der Um-
fang der Benchmarking-Datensätze für ihre Validierung nahmen allerdings nur lang-
sam zu. 
In der hier präsentierten Arbeit wird eine Methode für die vollautomatische Zusam-
menstellung großer, qualitativ hochwertiger Datensätze vorgestellt. Sie bewertet die 
Gültigkeit und Genauigkeit der 3D-Strukturen kleiner Moleküle anhand einer Reihe 
von Kriterien, einschließlich ihrer physikochemischen und strukturellen Eigenschaf-
ten aber besonders daran, inwieweit sie der experimentell bestimmten Elektronen-
dichte gerecht werden. Die Methode wurde verwendet, um proteingebundene Konfor-
mationen von Liganden in über 350.000 per Röntgenkristallstrukturanalyse generier-
ten Proteinstrukturmodellen aus der größten öffentlich zugänglichen Proteindatenbank 
zu filtern und zu bewerten. Das Ergebnis war der Sperrylite-Datensatz aus 10.936 
hochwertigen Strukturen von 4.548 verschiedenen Molekülen. Er wurde verwendet, 
um die Variabilität der bioaktiven Konformationen kleiner Moleküle näher zu analy-
sieren. Der Platinum-Datensatz enthält für jedes der 4.548 Moleküle im Sperrylite-
Datensatz die Konformation aus dem bestbewerteten Proteinstrukturmodell. Das “Pla-
tinum Diverse Dataset” wiederum besteht aus 2.859 Strukturen von Konformationen 
verschiedenartiger Moleküle aus dem Platinum-Datensatz. Neben seiner hohen Qua-
lität und bemerkenswerten Größe, verhindert es so systematische Fehler, die durch die 
Häufung einiger weniger Arten von Molekülen auftreten könnten. Alle drei Datens-
ätze sind öffentlich frei verfügbar. Das Platinum Diverse Dataset ist dabei der erste 
Datensatz dieser Art, der qualitativ hochwertig und gleichzeitig groß genug ist, um 
Benchmark-Studien mit Algorithmen zur Konformations-Ensemble-Generierung 
durchzuführen, die relevante Aussagen zur statistischen Signifikanz von Unterschie-
den in der Leistung der verschiedenen Algorithmen ermöglichen. Im Rahmen dieser 
Arbeit wurde dieser Datensatz verwendet, um die bislang umfassendste Benchmark-
Studie zur Konformations-Ensemble-Generierung durchzuführen. Die Leistung von 
sieben frei verfügbaren und acht kommerziellen Algorithmen wurde miteinander ver-
glichen. Die Analyse zeigte, dass kommerzielle Algorithmen eine signifikant höhere 
Genauigkeit erzielten. Außerdem wurde deutlich, dass kommerzielle Algorithmen 
deutlich weniger geometrische Fehler in Molekülen produzierten. 



Die in dieser Arbeit gewonnenen Erkenntnisse und Erfahrungen wurden für die Ent-
wicklung von Conformator verwendet, einem neuen wissensbasierten Algorithmus 
zur Erzeugung von Ensembles von Konformationen. Conformator ist für nichtkom-
merzielle Zwecke und zum Einsatz in der akademischen Forschung frei verfügbar. Die 
von Conformator generierten Ensembles erreichen eine signifikant höhere Genauig-
keit als die aller getesteten frei verfügbaren Algorithmen und es konnte kein signifi-
kanter Unterschied zum leistungsstärksten kommerziellen Algorithmus festgestellt 
werden. Conformator ist in der Lage, in kurzer Zeit fehlerfreie Ensembles von Kon-
formationen mit sehr hoher Genauigkeit für kleine Moleküle und Makrozyklen zu pro-
duzieren und schließt damit die Lücke zwischen kommerziellen und frei verfügbaren 
Algorithmen.  
 

  



Abstract 
The systematic search for new drugs is expensive and time-consuming. The process 
of drug discovery is more and more supported by computer aided drug design. Appli-
cations such as docking, pharmacophore search, 3D database searching and the crea-
tion of 3D-QSAR models are dependent on conformational ensembles to adequately 
represent the flexibility of small molecules. The generation of conformational ensem-
bles is a complex problem because of the high number of degrees of freedom, even in 
small molecules. Because of its importance to the field, conformer ensemble genera-
tion has been the subject of intensive research for more than three decades. While there 
have been many intriguing ideas for algorithms for conformer ensemble generation, 
the quality and size of the benchmarking datasets to test their validity have improved 
very slowly. 
To compile a large dataset of high-quality protein-bound ligand conformations from 
X-ray structural data, a fully automated cheminformatics pipeline for their selection 
and extraction was developed during this thesis. The pipeline evaluates the validity 
and accuracy of the 3D structures of small molecules according to multiple criteria, 
including their physicochemical and structural properties and, most importantly, their 
fit to the experimentally determined electron density. Extracted from a total of over 
350,000 structures of co-crystallized ligands stored in the Protein Data Bank, the re-
sulting Sperrylite and Platinum datasets are the largest publicly available datasets of 
such high quality. The Sperrylite Dataset consists of 10,936 high-quality structures of 
4,548 unique ligands. It was utilized to assess the variability of the bioactive confor-
mations of small molecules. The Platinum Dataset contains the 4,548 unique protein-
bound ligands with the smallest diffraction-component precision index in the Sperry-
lite Dataset. The Platinum Diverse Dataset is a diversified subset of the Platinum Da-
taset of 2,859 compounds. In addition to its high quality and remarkable size, the Plat-
inum Diverse Dataset is unbiased, diverse, and easily updatable. The Platinum Diverse 
Dataset is the first publicly available dataset from X-ray structural data in the Protein 
Data Bank of adequately high quality and sufficient size for thorough benchmark stud-
ies of conformer ensemble generators, which allow statements on the statistical signif-
icance of differences in performance between algorithms. In the course of this thesis, 
the Platinum Diverse Dataset was utilized to conduct the most comprehensive bench-
mark study of conformer ensemble generators to date. The performance of seven freely 
available and eight commercial conformer ensemble generators were compared to 
each other. The tests showed that commercial algorithms generally obtain higher ac-
curacy and robustness with respect to input formats and molecular geometries. 
The findings and experience gained during the benchmarking studies and the analysis 
of the variability of bioactive conformations was used for the development of Con-
formator, a new knowledge-based algorithm for generating conformer ensembles. 
Conformator is freely available for noncommercial use and academic research. The 
conformer ensembles generated by Conformator are significantly more accurate than 



those of all free tools tested, and there is no significant difference to the best perform-
ing commercial algorithm. It could be demonstrated that Conformator, with its high 
accuracy and speed, as well as its robustness with respect to input formats, molecular 
geometries, and its handling of macrocycles, effectively closes the gap between com-
mercial and freely available algorithms. 

  



Contents 
 
1 Introduction 1 

1.1 Conformer Generation - Relevance to Drug Discovery 6 
1.2 State of the Art in Conformer Ensemble Generation 7 
1.3 Conflict of Objectives 13 
1.4 Definitions 14 

2 Development of a Method for the Automated Generation of High-Quality 
Benchmark Datasets 15 

2.1 Sources for Data on Small Molecule Conformations 15 
2.2 Evaluation Studies 17 
2.3 Sperrylite and Platinum Datasets 23 

2.3.1 Dataset Compilation 23 
2.3.2 Analysis of the Sperrylite and Platinum Datasets 25 
2.3.3 Usage and Analysis of the Platinum Datasets by Others 28 

3 Development of a Novel Method for the Generation of Conformer  
Ensembles 31 

3.1 Conformator 31 
3.2 Benchmarking Conformer Ensemble Generators 34 

3.2.1 Measures of Similarity 35 
3.2.2 Validation Tool 36 
3.2.3 Conformer Ensemble Generation 37 
3.2.4 Hardware Setup 38 

4 Statistical Analysis and Additional Methods 39 

5 Conclusions and Further Directions 41 
5.1 Improvement of Benchmark Datasets 41 
5.2 Future Development of Conformator 43 

References 50 

Bibliography of this Dissertation’s Publications 70 
Publications Related to This Cumulative Thesis 70 
Further Authored Publications 70 

Abbreviations 71 

Appendix A   Publication and congress contributions 74 
A.1 Contributions to Publications of the Cumulative Dissertation 74 
A.2 Contributions to Further Publications 76 
A.3 Conference Contributions 79 

Appendix B   Software Architecture and Application 79 
B.1 Libraries and Functions of Conformator 80 
B.2 Conformator User Guide 82 



B.3 Conformer Generation with RDKit 84 
B.4 Conformer Generation with MOE 85 

Appendix C   Journal Articles 90 
C.1 Published Journal Articles 90 
C.2 Supporting Information of Published Journal Articles 144 

 
  



Structure of This Thesis 

This thesis gives an introduction to two closely linked topics in the field of drug dis-
covery and cheminformatics, it describes the flexibility of small molecules in general 
and conformer ensemble generation, as a way to represent this flexibility, in particular. 
After the concepts of molecular flexibility and conformer generation are introduced, 
the relevance to the field is outlined. The thesis then goes on to describe the state of 
the art in conformer ensemble generation, giving an overview of the wide variety in 
approaches and popular algorithms. The first part of the thesis is concluded with a 
brief outline of the conflict of objectives in conformer ensemble generation. 
The aim of this thesis was to analyze the flexibility of protein-bound conformations of 
small molecules and their representation by conformer ensemble generators and make 
progress in this field, if necessary and possible. The performance of conformer ensem-
ble generators is commonly evaluated by comparing their ability to reproduce experi-
mentally determined ligand conformations. The second part of this thesis therefore 
describes sources for data on small molecule conformations and goes into detail about 
evaluation studies on conformer ensemble generators that were done in the past. The 
latter reveals a clear lack of quality and size of the datasets used for the evaluation 
studies. In most cases the datasets were too small to obtain results of any statistical 
value. 
In order to remedy this situation and to evaluate the state of the art in conformer en-
semble generation in a manner that is statistically accurate and meaningful, a new large 
dataset of high-quality structures of protein-bound ligand conformations had to be 
compiled. To this end, a fully automated cheminformatics pipeline was developed that 
automatically evaluates the validity and accuracy of the 3D structures of small mole-
cules according to numerous criteria, including their fit to the electron density. The 
cheminformatics pipeline is described in detail in ref D1. With it more than 350,000 
crystal structures from the PDB were filtered, resulting in the Sperrylite and Platinum 
datasets. The Sperrylite Dataset is a complete collection of 10,936 high-quality con-
formations of protein-bound ligands (with up to 16 rotatable bonds) in the PDB. The 
Platinum Dataset consists of the 4,548 unique protein-bound ligands in the Sperrylite 
Dataset. A diversified subset of 2,859 structures, the Platinum Diverse Dataset, is by 
far the most suitable publicly available dataset for benchmarking conformer ensemble 
generators to date. The evaluation studies conducted with the Platinum Diverse Da-
taset, presented in ref D1 and D2, constitute the most comprehensive benchmark study 
of conformer ensemble generators so far. The performance of seven freely available 
and eight commercial conformer ensemble generators were compared to each other, 
including different ensemble sizes and, in some cases, various force fields. The tests 
showed significant differences in the performance of the tested algorithms and re-
vealed that the commercial conformer ensemble generators generally obtain higher 
accuracy and robustness with respect to input formats and molecular geometries. 



Based on the Sperrylite Dataset the variability of the bioactive conformations of 91 
small molecules, each represented by a minimum of ten structures, was analyzed. Sur-
prisingly, the variability was found to be largely independent of the number of rotata-
ble bonds. A clear trend for the formation of few clusters of highly similar conformers 
was observed for a representative subset of 17 approved drugs and cofactors. Ligands 
were regularly found to adopt similar conformations, even when bound to vastly dif-
ferent proteins. The publication of this analysis, ref D3, also serves as a general over-
view and introduction to the topic of diversity of conformations of protein-bound lig-
ands. 
The knowledge gained during these studies was utilized to develop a new knowledge-
based algorithm for generating conformer ensembles, named Conformator. It is freely 
available for non-commercial use and academic research and is described in detail in 
ref D4. The conformer ensembles generated by Conformator are significantly more 
accurate than those of all free tools tested. In fact, with the help of the Platinum Di-
verse Dataset it could be demonstrated that there is no significant difference in the 
accuracy of Conformator and the best performing commercial algorithm. Effectively 
closing the previously identified gap between commercial and freely available algo-
rithms. Additionally, Conformator stands out with its speed, its robustness with respect 
to input formats, molecular geometries, and a novel algorithm for macrocycle con-
former generation. 
The present manuscript contains an appendix with reprints of the four publications that 
form the core of this thesis. Additionally, the appendix includes the supporting infor-
mation of these publications, as well as a description of the architecture and applica-
tion of the developed software. The bibliography is accompanied by statements of au-
thorship. 
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1 Introduction 
 

1 
Introduction 

 
Many diseases which were life threatening half a century ago can be treated today, but 
countless diseases remain without a cure. Prominent examples include aging-associ-
ated diseases like cancer, autoimmune disease like multiple sclerosis and systemic lu-
pus erythematosus (SLE) and re-emerging diseases that were thought to have been 
eradicated, like tuberculosis or malaria. An additional complication is the development 
of tolerance and resistance in bacteria, viruses and parasites against currently available 
drugs.5,6 In view of the worldwide burden of diseases the discovery and development 
of new drugs remains absolutely necessary.  
The systematic search for new drugs that are effective and safe, is expensive and time-
consuming. Depending upon the therapy, the developing firm, the type of estimate and 
the expenditures included in the calculation (e.g. cost of failed developments) esti-
mates for the cost of the development of a new drug range from US$ 0.5 billion to 
more than US$ 2.5 billion.7–11 Classical approaches in drug discovery depend on 
screening large compound collections to identify potential candidates and their step-
wise synthesis. Increasingly the drug discovery process is facilitated or sped up by 
computer-based techniques.7,12,13 Only the most promising compounds found in com-
putational experiments are tested in vitro or in vivo and, if successful, progress to 
clinical trials.
The macromolecule inherently associated with a specific disease process is almost al-
ways a protein. When a drug exists or is sought that interacts with it, the macromole-
cule is termed a drug target. Human drug targets mainly belong to four protein fami-
lies: receptors, enzymes, transporters and ion channels.14–17 Hence, the interactions 
between proteins and small molecules is of great scientific and medical interest. It is 
a central issue in drug design. Small molecules that can bind to macromolecules and 
form complexes with them are called ligands. In most cases a ligand is sought that 
specifically binds to a protein of interest. The area of interaction is usually a groove in 
the protein and is called binding pocket. The binding pocket where catalysis occurs in 
an enzyme is its active site. Binding a ligand can change the three-dimensional struc-
ture of the protein, or block the active site, thereby affecting its function. However, it 
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is especially the smaller and more flexible ligand that changes its three-dimensional 
structure in order to bind a macromolecule.18  
The binding of a small ligand and a protein depends on the compatibility of their 
shapes (at the binding pocket), their specific interactions and solvent effects.19–21 They 
usually interact via hydrogen bonds, ionic bonds, hydrophobic effects and van der 
Waals (vdW) forces. Covalent bonding between a ligand and a protein is also observed 
but is left out in many studies and programs because it is complicated by the reaction 
between the ligand and the receptor. Which interactions can take place between ligand 
and protein is determined by the atoms forming the binding pocket and the atomic 
makeup of the ligand and to a considerable degree by the flexibility of both molecules.  

The conformation of a molecule is the arrangement of its atoms in three-dimensional 
space. Multiple conformations of the same molecule can be converted into each other 
by rotations about single bonds. The angle that exists in a chain of four atoms (A-B-
C-D) between the plane passing through the first three atoms (A-B-C) and the plane 
passing through the last three atoms (B-C-D) is called torsion angle or dihedral angle 
(Figure 1). It can take values between 180° and -180°. 
 

 
Figure 1: 3D model of a conformation of n-butane, the torsion angle ψ is defined by 4 con-
secutive covalently bound atoms (A-B-C-D) between the planes spanned by the first three 
atoms (A-B-C) and the last three atoms (B-C-D). Figure was generated using TorsionAna-
lyzer.22 
 

Although the rotations about a single bond are often called “free“, they have to over-
come an energy barrier between different conformations and there is usually an energy 
difference between diverse conformations. Conformations can therefore be regarded 
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as points on a continuous energy landscape. For example, if the rotations of the termi-
nal methyl groups are ignored (as is common practice), the relative energies of the 
simple molecule n-butane are a function of the central torsion angle. The global energy 
minimum (anti conformation), a local energy minimum (gauche conformation) and a 
transition state between the two, an eclipsed conformation that represents a local en-
ergy maximum, are depicted in Figure 2. All possible conformations of a molecule 
form its conformational space. Conformations that correspond to local minima on the 
potential energy surface are called conformers.23  
 

 
Figure 2: 3D models (top, with the torsion angle ψ) and Newman projections (bottom) of 
n-butane conformations. The anti (A, 180°) and gauche (C, 60°) conformations are connected 
by a rotation about the central single bond, passing the eclipsed conformation (B, 120°). The 
anti conformation is the lowest energy conformation of n-butane, since here the steric repul-
sion of the methyl groups is minimized. While there is significant steric repulsion between the 
two methyl groups in the gauche conformation, it is still lower in energy than the eclipsed 
conformation.24,25 An energy maximum is reached at a torsion angle of 0° when the methyl 
groups are in an eclipsed position (cis conformation, not depicted). Figures were generated 
using TorsionAnalyzer.22 

 
Rings and steric hindrances can restrict the rotation about single bonds. Steric hin-
drances occur when more bulky groups limit rotation. Rings change conformations by 
coupled rotations about several single bonds. A process often involving minor defor-
mations of bond angles. For cyclohexane, the most stable conformation is called chair 
conformation, because of its folded shape. A “ring flip” inverts the ring and rapidly 
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converts it to a different chair conformation. In this process it passes through different, 
less stable conformations of higher energy.26  
Molecules indeed have a preferred conformation, but it cannot be assumed that this 
conformation is constantly present, as was first shown by D. H. R. Barton in 1950.27 
The conformation of a molecule constantly changes within certain limits as long as 
the energy barrier between the different conformations is small. This applies both for 
the conformation of proteins as well as that of ligands. The protein-ligand complex 
resulting from the binding process is a dynamic system and is subject to constant small 
or large changes. On the one hand two conformations of a molecule may differ by only 
a small rotation about a single bond, on the other hand transporter proteins can undergo 
large conformational changes to transfer molecules across a membrane.28,29 Hence, 
conformational changes range from a fraction of Å to nm and happen in time frames 
of ns to s. Apart from the surrounding molecules, they can be influenced by tempera-
ture, pH, light and many other factors.30 The ligand is usually very flexible in solution 
and is upon binding often forced into a strained (energetically unusual) confor-
mation.31,32 The amount of distortion of a molecule from its relaxed state is called 
strain energy. 
The number of theoretically possible conformations of a given molecule is a function 
of the number of rotatable bonds, flexible rings, and atom angles. To a certain extent 
it also depends on the specific types of atoms and their arrangement (e.g. atom angles 
and intramolecular steric hindrances). Another factor is the minimum measurable dif-
ference or the (arbitrary) cutoff where two conformations are considered different. The 
theoretical number of spatial states of a molecule with at least one rotatable bond is 
therefore almost infinite.33 However, most of the theoretically possible conformations 
of a molecule are energetically unfavorable, are only occupied for a very short time 
and are generally not observed experimentally.34 In practice, for computational chem-
istry only realistically measurable distances are of interest. Other limitations are use-
ful, e.g. restricting rotations to a few energetically very favorable torsion angles. Even 
then, the number of conformations to be considered is relatively large because their 
number rapidly increases with the number of rotatable bonds, this is termed a combi-
natorial explosion. For example, if only three angles per rotatable bond are allowed 
for a molecule with ten rotatable bonds 59,049 conformations are possible, allowing 
five angles per bond already leads to 9,765,625 theoretically possible conformations 
(without taking steric hindrance into account). The conformation of a small molecule 
bound to a protein often differs from the conformations found in solution, gas phase 
or small-molecule crystal structures.31,35,36 In many cases it also does not correspond 
to the global energy minimum or even any local energy minimum.18,31,35,37,38 Large 
collections of solid-state structures like the Protein Data Bank (PDB)39 managed by 
the Research Collaboratory for Structural Bioinformatics (RCSB) and the Cambridge 
Structural Database (CSD)40 offered by the Cambridge Crystallographic Data Center 
(CCDC), demonstrate that drug-like molecules can adopt a variety of conformations, 
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even in the crystalline state.39,40 An example of the conformational diversity of a single 
molecule found in crystal structures from the PDB is shown in Figure 3. 
 

 
Figure 3: 218 superposed conformers of adenosine triphosphate (ATP) from crystal structures 
in the PDB. ATP is the most important molecule for intracellular transport and storage of 
chemical energy and takes part in many metabolic processes. As such it was cocrystallized 
quite often over the last decades. ATP is very flexible with eight rotatable bonds but is mostly 
found in elongated conformations. Figure was generated using MOE;41 hydrogens are not de-
picted. Reprinted with permission from (Friedrich et al., 2018).3 Copyright 2018 Frontiers in 
Chemistry.
 

Of all these conformations one is usually only interested in the bioactive conformation 
that binds to a specific protein. This conformation is often only stable while binding 
but is maintained within relatively narrow limits. The deciding factors in the binding 
of small molecules to proteins are interacting functional groups of both molecules, the 
displacement of water molecules, the reduction of the entropic degrees of freedom of 
both molecules and the mutual correspondence of their surfaces. Changes in the con-
formation of a molecule alter the accessibility of its functional groups and its surface. 
Therefore, different conformations of the same molecule can bind to different proteins 
and the flexibility of a molecule has a particularly strong influence on the number and 
variety of proteins it can bind to.42 For example, the flexibility of an odorant affects 
by how many different olfactory receptors it can be detected.43 

For many small molecules no experimental data on their bioactive conformation 
bound to a macromolecule of interest are available and therefore must be predicted. 
Conformer ensembles are collections of different conformers that are used to represent 
the flexibility of small molecules (Figure 4) and can be used to predict the protein-
bound conformation. The prediction of protein-bound ligand conformations is of enor-
mous importance to drug discovery, especially because the bioactive conformation can 
differ substantially from the low energy conformation that we observe in the gas phase 
or in solvent. Thus, conformer ensemble generation by algorithms is necessary for 
understanding the chemistry of small molecules and to infer possible biological roles 
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of drug candidates, including their druggable targets, mode of action (MoA) and af-
finity, as well as off-target effects.44,45 

 

Figure 4: 3D model of a conformer ensemble of n-butane, consisting of 15 superposed con-
formers. Ensemble generated with Conformator,4 the torsion angle ψ at 180°, 60° and 60° 
(“peak angles”), each with tolerances of 20° and 30° in both rotation directions, as defined by 
the torsion angle library.46 Figure was generated using MOE.41 

 

1.1 Conformer Generation - Relevance to Drug Discovery 
Detailed and correct information of protein-bound ligand conformations is an essential 
precondition for many analyses in computational chemistry, that rely on the applica-
tion of 3D computational approaches such as docking, 3D-QSAR (quantitative struc-
ture-activity relationship) and pharmacophore modeling, virtual screening or shape-
based similarity searches.34 Depending on the use case the necessary conformations 
can either be generated on-the-fly or calculated in advance and stored in databases. 
Molecular docking algorithms attempt to predict protein-ligand complexes to discover 
potential ligands or gain further insight into known interactions. Relevant results of 
docking studies are the conformation of a ligand, the relative orientation in which it 
binds to the protein (binding mode) and intermolecular interactions (e.g. hydrogen 
bonds and hydrophobic contacts).47,48 Molecular docking algorithms also address the 
challenging task of quantifying the binding affinity of the ligand, which is an important 
optimization parameter in drug design. Molecular docking has proven to be an effec-
tive instrument in drug discovery.49 Changes in protein conformation upon ligand 
binding range from small local adjustments to large-scale rearrangements.50,51 While 
ligand flexibility is usually taken into consideration by using conformer ensembles, 
protein flexibility is often ignored and remains challenging for docking algorithms. 
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Nevertheless, various attempts were made to model the flexibility of the protein while 
docking.52–55 Docking is the fundamental technique in structure-based virtual screen-
ing. In a classical virtual screening protocol docking is employed to distinguish be-
tween biologically active and inactive compounds. Like for many computational ap-
proaches large ring structures (macrocycles) are difficult to address with molecular 
docking.56  
QSAR models in cheminformatics aim to describe a correlation between a collection 
of molecular descriptors or physico-chemical properties and bioactivity of the com-
pounds.57,58 3D-QSAR utilizes molecular descriptors generated from 3D molecular 
structures. One of its biggest challenges is that the bioactive conformation of a com-
pound is usually unknown. Most proposed solutions add one or multiple dimensions 
to map variations in conformation, orientation, solvent effects or adaptation to a re-
ceptor.59–61 It is not uncommon for QSAR models to be based on questionable chem-
ical structures.62 3D- and 4D-QSAR applications may derive molecular descriptors 
from conformer ensembles of ligands or protein-ligand complexes for creating more 
robust models.61,63,64

Pharmacophore models describe the requirements that are necessary for a ligand to 
bind to a target protein in a particular mode. The ligand-receptor interaction can be 
represented by steric and electronic pharmacophores features that include information 
from the ligand and the amino acids surrounding it in the binding pocket.65,66 Molec-
ular shape or size can be taken into account through exclusion volumes. A pharmaco-
phore may also only describe a small fragment of a molecule and different conformers 
of the same molecule may fit the pharmacophore restraints. To take flexibility into 
account pharmacophore models can be derived from conformer ensembles or be made 
flexible.65,67  
3D virtual screening and shape-based similarity searches in molecular databases for 
target prediction and investigation of polypharmacology can include or support dock-
ing, 3D-QSAR and pharmacophores. They usually rely on conformer ensembles to 
sample the conformational space. Most of the time the main goal of 3D similarity 
searches is to significantly reduce the search space for consecutive experiments. Pure 
shape-based methods allow for so-called scaffold hopping, where compounds with 
different core structures but similar bioactivity are sought. 

 

1.2 State of the Art in Conformer Ensemble Generation 

Because of its importance to the field of computational drug discovery and cheminfor-
matics many algorithms have been developed that sample the low energy conforma-
tional space of (small) drug-like molecules and compose conformer ensembles. Since 
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the 1970s, a variety of attempts have been made to use conformer ensembles to de-
scribe the flexibility of small molecules. However, there is still no consensus on the 
best strategy for conformer ensemble generation. Therefore, a manifold of methods is 
used today, including evolutionary algorithms, molecular dynamics simulations, geo-
metric distance and knowledge-based approaches, as well as random and systematic 
searches. Furthermore, there exist mixtures of these approaches, e.g. it is common 
practice to evaluate or minimize randomly generated conformations with short molec-
ular dynamics simulations. 
For conformer ensemble generation the torsion angles in a molecule are in many cases 
considered to be independent of each other. This simplification allows programs an 
incremental buildup of conformations or the combination of conformations of parts of 
a molecule. As already mentioned, rings can also adopt different conformations, as 
they are flexible as well. However, their bonds cannot be considered independent of 
each other and rings are therefore usually treated as a unit. 

There are two main categories of approaches for conformer ensemble generation: sys-
tematic and stochastic search algorithms. Systematic searches change torsion angles 
of all rotatable bonds by a set amount. Stochastic searches use random algorithms such 
as distance geometry, Monte Carlo simulations and genetic algorithms to sample tor-
sion angles. There exist hybrid forms and both approaches principally face the same 
challenges. The main problem in conformer ensemble generation is that the confor-
mational space grows roughly exponentially with increasing degrees of freedom. The 
number of degrees of freedom in a molecule depends mainly on the number of rotata-
ble bonds and flexible rings and, to a lesser extent, on possible bond lengths and bond 
angles. These depend on the atom types involved and their chemical environment. 
There are simply too many potential conformations for any kind of real exhaustive 
search, especially for large molecules but in theory even for the smallest molecule 
with one rotatable bond an almost infinite number of conformations is possible. Pos-
sible solutions include reasonable minimum interconformer differences, restriction to 
low energy conformations and the rigid rotor approximation, where the molecule is 
considered rigid, with fixed bond lengths and bond angles. With few exceptions (e.g. 
in some acyclic bonds), this assumption is considered not harmful.68,69 Due to these 
restrictions, it is possible to estimate the conformational space of a molecule and to 
sample it for conformer ensemble generation.70,71 
Additionally, it is frequent practice in conformer generation to limit the application 
domain to covalent bonds and to limit the allowed atom types, e.g. exclude metals and 
neglect ionic bonding. Also, usually only non-covalently bound ligands are processed. 
Statistically derived data from databases (like PDB or CSD) can be utilized to deter-
mine the most common angles between different atom types. Another way to greatly 
reduce the search space, is the use of fixed precomputed parts of molecules that are 
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not especially flexible and occur often. An example for this practice are libraries of 
small ring conformations.  
Another common theme is the clustering of generated conformations. To generate a 
conformer ensemble of small enough size, identical and similar conformations are 
identified and removed. Many different distance measures are used for clustering but 
by far the most common measure is the minimum heavy-atom root-mean-square de-
viation (RMSD). More often than not, clustering and force field minimization are the 
most time-consuming steps in conformer ensemble generation. 
Quantum chemical (QC) computations can be used to explore large parts of the con-
formational and the reactional space.72 Ab initio methods, like the Hartree-Fock 
method, are derived directly from theoretical principles of quantum mechanics (QM), 
without including experimental data.73 Semiempirical QC methods, derived from ei-
ther Hartree-Fock or density functional theory by applying systematic approximations, 
are faster and much more computationally efficient than ab initio calculations.74 Den-
sity functional theory (DFT) can be applied as an ab initio or semiempirical method to 
investigate the ground state (lowest-energy state) of quantum-mechanical systems.75 
More traditional DFT approaches are known in the field of cheminformatics for their 
long runtimes, high computational cost and the very limited number of atoms they can 
handle, but more recent methods (e.g. GFN2-xTB) can handle up to 1000 atoms in a 
relatively short time.76 These methods are usually applied to gain a deeper understand-
ing of one or few molecules but can also be utilized for conformer ensemble genera-
tion.77,78 In this case the conformer ensemble is compiled from significantly populated 
minimum energy structures. 
Originally the generation of conformer ensembles took a long time and depending on 
the complexity of the molecule, the conformer generation method and the desired ac-
curacy still results in significant runtimes. Therefore, many programs that use con-
former ensembles require precalculated ensembles. Multiple modern conformer gen-
eration algorithms are fast enough that it is possible to deal with the flexibility of small 
molecules for some applications on the fly instead of storing conformer ensembles in 
a database.  

As stated above, many algorithms have been developed for conformer ensemble gen-
eration. Brief descriptions of the algorithms used in the benchmark studies of this work 
can be found in ref D1 and D2. The following section and Table 1 give a short and 
general overview of available algorithms, for more detailed descriptions of the indi-
vidual algorithms please refer to the associated publications. 
All conformer ensemble generators use knowledge about atoms, bonds, and molecules 
to some degree. An algorithm is termed “knowledge-based” when it makes intensive 
use of experimentally or theoretically obtained knowledge of conformations. In most 
cases, experimentally derived knowledge is used to keep the number of conformations 
in the ensemble as low as possible without losing too much useful information. Either 
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rules for the construction of conformations are defined or templates for parts of mole-
cules are stored in libraries. Most commonly, the latter is used in the form of prede-
fined libraries of torsional angles and ring conformations. Examples of knowledge-
based conformer ensemble generators that utilize a torsion angle library and a library 
of ring conformations are the latest algorithm in RDKit79 termed Experimental-Tor-
sion basic Knowledge Distance Geometry (ETKDG)80 and CONFECT81, as well as 
the algorithm developed in this work, Conformator.4 The torsion angle library stores 
typical torsion angles for specific patterns of rotatable bonds. The torsion libraries 
used in CONFECT and Conformator contain hundreds of rules derived from the CSD 
encoded as SMARTS patterns. For each bond defined by these patterns they provide 
the most frequently occurring torsion angles (“peaks”) and the two most frequently 
occurring deviations (“tolerances”) from the peak angles (cf. Figure 4). 22,46 Similar 
knowledge-based approaches can also be found in the programs ROTATE,82 MI-
MUMBA,83 iCon (Inte:Ligand)84 and OMEGA (OpenEye).85,86 The OMEGA algo-
rithm generates energetically accessible combinations of molecular fragment tem-
plates and scores them with a modified version of the MMFF94s force field.84,87 Most 
conformer ensemble generators are also to some extent graph-based, Frog2 is classi-
fied as graph-based, because it is particularly dependent on the decomposition of the 
molecular graph.88,89 
Random search algorithms involve random changes to coordinates of the atoms or 
torsional angles. The resulting conformation is usually optimized, compared with the 
rest of the ensemble and kept if it is dissimilar enough. Both, the Molecular Operating 
Environment (MOE, Chemical Computing Group)90 and MacroModel (Schrödinger)91 
are able to do a random search. Apart from the use of chemical knowledge, the most 
common approach to generate coordinates of conformations is distance geometry. 
Here, the description of a molecule consists of a list of distance and chirality con-
straints. These function as lower and upper bounds on the distances between pairs of 
atoms and the chirality of its rigid quadruples of atoms.92,93 Distance geometry algo-
rithms generate conformations from the distance bounds matrix of the molecule based 
on the connection table and a set of rules. They randomly generate distance matrices 
which satisfy these bounds and produce 3D coordinates from the resulting distances. 
This process is often called embedding. Different random distance matrices result in 
different conformers that form the ensemble. Examples of distance geometry ap-
proaches for conformer ensemble generation are DG-AMMOS94,95 and the distance 
geometry algorithm in RDKit (RDKit DG).79 A special case of distance geometry are 
“self-organizing” algorithms, like stochastic proximity embedding (SPE)96 and self-
organizing superimposition (SOS).97 A detailed introduction to distance geometry and 
its principles for generating conformations can be found in ref 98. 
Other methods for conformer generation, like molecular dynamics (MD) simulations 
or evolutionary algorithms are less frequently used. The LowModeMD method, one 
of the conformer ensemble generators in MOE and Frog2 use MD simulations for the 
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generation of conformer ensembles. Evolutionary algorithms, also called genetic al-
gorithms (GA), are based on the basic principles of biological evolution. They gener-
ate a random ensemble (population) of possible solutions, i.e. conformations, and eval-
uate them through a fitness function. The best rating conformations are changed ran-
domly (mutation) or combined (recombination), while the rest is discarded (selection). 
Thus, the ensemble changes over time and develops to better solutions. Approaches 
that apply evolutionary algorithms are e.g. Balloon99 and Cyndi.94 
Conformer ensemble generators that perform a systematic search assign each rotatable 
bond of a ligand an angle between 0° and 360° at regular distances. If this distance 
would be chosen small enough all possible conformations of a molecule could be cre-
ated. However, this is generally not useful because too large ensembles are created, 
which cannot be generated or processed by downstream tools in any reasonable time 
frame. Examples of conformer ensemble generators that are able to perform a system-
atic search are Catalyst,70,100 CAESAR (part of the Catalyst Component Collection)101 
and MOE. 
Molecular mechanics (MM) calculations with classical force fields attempt to repre-
sent the potential energy of a molecule with simple functions. Many conformer en-
semble generators minimize computed conformations with a force field to avoid steric 
clashes and high strain in the structures. The reliability of these force field methods 
for conformer generation remains a matter of debate.80,102 
 
TABLE 1. Overview of some widely used conformer ensemble generators 
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In recent years, the exploration of macrocycles for drug discovery has emerged as one 
of the most actively pursued research fields in cheminformatics.103–106 This is a rela-
tively new development, because macrocycles with their structural complexity do not 
fit the usual paradigm of “drug-likeness” and are difficult to synthesize. Indeed, it is 
not unlikely for a macrocyclic compound to violate most of the criteria of the famous 
Lipinski’s rule of five or similar systems.107,108  
The most common source of macrocycles are natural products, in fact the more than 
100 marketed macrocycle drugs are almost exclusively derived from natural prod-
ucts.103 It could be shown that a large number of natural products are readily obtainable 
and that they are highly diverse and populate regions of chemical space that are of 
high relevance to drug discovery.109 Marketed macrocyclic drugs include e.g. the gas-
trointestinal prokinetic agent ulimorelin (TZP-101)110 and the antibiotic murepavadin 
(POL7080)111 (Figure 5). Macrocyclic drugs often function differently than small mol-
ecule drugs and can interact with target proteins that are highly challenging for smaller 
molecules. Macrocycles interact with a broad spectrum of targets, including ATPases, 
kinases, GPCRs and proteases.105  
There is no universally accepted precise definition of macrocycles. Concepts differ in 
the number of atoms required and meaning either a cyclic molecule or a macromolec-
ular cyclic part of a molecule. In this thesis and the accompanying publications mac-
rocycles are defined as compounds including at least one ring formed by 10 or more 
atoms. Macrocycles are particularly hard to handle for conformer ensemble genera-
tors, since they are by definition large and often contain many coupled rotatable bonds, 
leading to a mix of high flexibility and various conformational restrictions. Because 
of this, most algorithms for conformer ensemble generation (and many other applica-
tions) will skip macrocycles completely.  
As part of this thesis, a new knowledge-based conformer ensemble generator was de-
veloped, called Conformator. One of the major conceptual advancements of Con-
formator include a novel approach to sampling the conformational space of macrocy-
cles. It also features a new clustering algorithm for the assembly of conformer ensem-
bles and an extended set of rules for sampling torsion angles. Conformator further 
stands out by its robustness with respect to molecular geometries and input formats. 
In the course of this thesis the most comprehensive benchmark study of conformer 
ensemble generators to date was conducted. The knowledge gained during these stud-
ies was taken into account during the development of Conformator. As a result, Con-
formator provides significantly higher accuracy in the reproduction of bioactive con-
formations from crystal structures than all freely available tools tested and is on par 
with the best performing commercial algorithm. 
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Figure 5: 3D models of two examples for macrocyclic drugs, the gastrointestinal prokinetic 
agent ulimorelin (A) and the antibiotic murepavadin (B). Figures were generated using 
MOE.41 

 

1.3 Conflict of Objectives 
The goal in the generation of conformer ensembles for computer-aided drug design is 
to quickly provide a small conformer ensemble (meaning a low number of structures), 
which widely covers the conformational space and accurately reproduces the protein-
bound ligand conformations. This creates a conflict of objectives in conformer ensem-
ble generation between accuracy, ensemble size and computing time. Accuracy of a 
conformer ensemble is usually measured as the minimum root-mean-square deviation 
(RMSD) in Å between the experimentally determined bioactive conformation and any 
computed conformers of an ensemble. The ensemble size is equal to the number of 
structures contained in the ensemble. 
Different algorithms put varying priorities on each of these parameters, and thus the 
algorithm applied should depend on the specific use case. A highly sophisticated and 
computationally expensive algorithm that generates potentially large ensembles of 
high-quality conformers, should be selected if top priority is given to accuracy. 
Smaller ensembles, especially those containing fewer irrelevant conformations, are of 
high interest for most downstream applications. The runtime of many downstream ap-
plications grows exponentially with the number of conformers to process, because of 
this, many conformer ensemble generators reject too similar conformers or those of 
extremely high energy by default. However, smaller ensembles generally result in a 
loss of shape diversity and increase the chance to “miss” the desired bioactive con-
former. If a loss of quality is acceptable, e.g. if a large number of molecules are to be 
screened, especially if they are to be screened repeatedly, a smaller ensemble size is 
recommended. When time is of the essence, computationally efficient algorithms are 
preferable, even though this choice can be accompanied by further loss of quality. 
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Theoretically, there exists a runtime-quality trade-off. With high runtimes ensembles 
of high accuracy and well-adjusted size could be generated. And this is true, to a cer-
tain extent, e.g. force field minimization costs time and without it the quality of the 
ensemble decreases. However, in reality and if we view the algorithms as a whole 
(including e.g. force field minimization and clustering), the accuracy and ensemble 
size are largely dependent on the algorithm used and no amount of additional runtime 
would better the quality of the conformer ensemble substantially. Examples of this can 
be found in comparisons done for this work. The performance of ConfGenX112 was 
tested with the OPLS_2005 (optimized potentials for liquid simulations) and OPLS3 
force fields113 and the new cluster algorithm developed for Conformator was com-
pared to the K-Medoids cluster algorithm.2,4 Additionally the best performing algo-
rithms in terms of accuracy and ensemble size were found to be among the fastest 
algorithms. 
Another possible metric for the performance of a conformer ensemble generator is the 
performance of downstream applications that depend on their input. This however is 
problematic for multiple reasons. Cappel et al. found virtual screening results to be 
insensitive to the conformer ensemble generator used. As a consequence algorithms 
that generate smaller conformer ensembles might be preferred for virtual screening, 
but for 3D-QSAR modeling they found that models based on larger ensembles and 
with energy optimization performed better.114 Others have found the opposite to be 
true for their 3D-QSAR models.115 Overall this might indicate that these performance 
tests are (at least sometimes) dominated by special characteristics of the downstream 
application. 
 

1.4 Definitions 
Some terms that are widely used in the field of cheminformatics are often not clearly 
defined. In this thesis “high-quality structures” refers to any structures matching the 
quality criteria defined in ref D1. Unless stated otherwise, this term only refers to the 
quality of the protein-bound ligand, not the overall structure of the protein-ligand com-
plex. Accuracy of a conformer ensemble was defined as the minimum RMSD in Å 
measured between the experimentally determined protein-bound conformation and 
any conformer of the computed ensemble. Intramolecular clashes are defined as over-
laps of more than 30 % of the van der Waals radii of 1−4-connected (or more distant) 
heavy atom pairs that are not part of the same ring system. 
As introduced above, macrocycles are defined as compounds that include at least one 
ring formed by 10 or more atoms. Three-letter codes in italics refer to PDB ligand 
identifiers and four-letter codes refer to PDB entries.
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2.1 Sources for Data on Small Molecule Conformations 
The conformation of small molecules can experimentally be determined in a protein-
ligand complex or a small-molecule crystal structure. Two major methods provide 
three-dimensional structures of protein-ligand complexes close to or at atomic resolu-
tion, X-ray diffraction and nuclear magnetic resonance (NMR) spectroscopy. Further 
methods like cryogenic electron microscopy (cryo-EM) exist but are less frequently 
used. Small-molecule crystal structures are determined by X-ray and neutron diffrac-
tion analyses.

Three-dimensional X-ray crystal structures are a main source of our understanding of 
molecular interactions between proteins and ligands, as well as the relationship be-
tween structure and biological function overall. X-ray crystal structures of protein-
ligand complexes have been produced since the late 1950s.116 Here, a crystal of tightly 
packed molecules is rotated through an X-ray beam to obtain an X-ray diffraction pat-
tern. The patterns mainly consist of arrays of spots at regular distances called reflec-
tions. From the obtained diffraction patterns, the amplitude, and the phase of the 
X-rays in each reflection an electron density map can be computed. The amplitudes 
are usually obtained by measuring the reflection intensities, the phases by isomor-
phous or molecular replacement. The electron density map is interpreted to generate a 
3D model of the molecular structure.117 It has to be emphasized that the X-ray diffrac-
tion experiment is the last experimental step when a 3D structure of a protein is deter-
mined. The electron density maps contain only approximate positions of the corre-
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sponding atoms in the crystal. The quality of X-ray crystal structures ultimately de-
pends on the quality and quantity of the underlying experimentally determined dif-
fraction data.118–120 
Crystals of protein-ligand complexes can be hard to obtain, since the crystallization 
process is complicated, the resulting crystals can have cracks, show unfavorable mor-
phologies or simply be too small. Additionally the mechanisms behind organic crys-
tallization are not well-understood.121 Size and purity of a crystal are directly corre-
lated with the quality of an X-ray structure determination.122 Optimization of crystal-
lization conditions is therefore the first and most important step on the way to obtain-
ing a new high-quality crystal structure. The process is considered by many in the field 
a “form of art” that even after intensive training requires a certain amount of “luck”. 
Many X-ray crystal structures today are cooled down to cryogenic temperatures to 
slow radiation damage during data collection, but it has been shown that this technique 
introduces bias to the conformational distribution of the protein and leads to smaller, 
over-packed models.123 

Methods for determination of the structure and dynamics of small- to medium-sized 
organic molecules by NMR were developed since the late 1960s.124 But the first pub-
lication of an NMR structure did not take place until 1985.125 NMR is based on the 
resonant interaction between the magnetic moment of atomic nuclei. One of the main 
advantages of NMR spectroscopy compared to X-ray crystallography is that it does 
not necessarily require the protein in crystallized form. NMR provides structural in-
formation on the local conformation and distances between neighboring atoms but also 
on the dynamics and chemical kinetics of these systems at the atomic level.126,127 NMR 
made it possible to determine molecular conformation in solution and to study confor-
mational exchanges.128,129 

Cryo-EM is often discussed as a promising alternative to X-ray crystallography, espe-
cially since the Nobel Prize in Chemistry was awarded to Jacques Dubochet, Joachim 
Frank and Richard Henderson "for developing cryo-electron microscopy for the high-
resolution structure determination of biomolecules in solution" in 2017.130 Cryo-EM 
can be used to determine the structure of protein-ligand complexes that are very hard 
to crystallize or not at all, including highly dynamical systems.131 In X-ray crystallog-
raphy the protein is usually forced into one conformation, cryo-EM allows for the 
mapping of molecules in different conformations. Already hundreds of cryo-EM struc-
tures have been published, but the main challenge for the method remains the valida-
tion of their quality.132,133 

Neutron diffraction analysis applies neutron scattering to determine structures similar 
to X-ray diffraction. Both methods complement each other because of the different 
scattering properties of neutrons and X-rays, but only very few structures were solved 
by neutron diffraction so far.134,135 X-ray crystallography is still by far the most used 
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method for determining protein structures. The largest publicly available collection of 
protein structures, the PDB, contains over 130,000 X-ray crystal structures of proteins, 
over 11,000 NMR structures and more than 3,000 that were determined with cryo-EM 
(as of January 2020). The CSD is a large repository for small-molecule crystal struc-
tures and contains more than one million 3D structures from X-ray and neutron dif-
fraction analyses. 
 

2.2 Evaluation Studies 
Due to the importance of conformer ensembles to the field of computer-aided drug 
design many algorithms for their generation have been developed. Most evaluation 
studies compared a new algorithm to one or two established algorithms, therefore there 
is a similar number of evaluation studies and algorithms. Usually conformer ensemble 
generators have been tested for their ability to reproduce experimentally determined 
bioactive conformations from crystal structures of protein-ligand complexes. In rare 
cases ensembles have been tested for their coverage of bioactive conformational space 
while keeping computational efficiency in mind.80,136 In very few evaluation studies 
conformer ensembles were systematically checked for geometrical errors. 
For more than 30 years conformer ensemble generators have been developed and com-
pared.137 Many studies only analyzed the conformational space of a single molecule 
of interest. Dataset size, i.e. the number of molecular structures in a dataset, increased 
over the years but generally small datasets were used to make statements on the sta-
tistical significance of differences in performance between algorithms. In most cases, 
the level of statistical significance of the results, the uncertainty of the 3D coordinates 
in the underlying data and, above all, the minimum number of data points required for 
accurate conclusions were ignored. 

Evaluation studies of conformer ensemble generators originally used more or less ran-
domly chosen CSD or PDB structures. Over time manual curation of datasets by ex-
perts became more common, to ensure some level of quality. Nearly all of these studies 
used different datasets and different algorithms for comparison, rendering it impossi-
ble to compare different studies directly. A list of datasets used for evaluation of con-
former ensemble generators can be found in Table 2. For most datasets, the resolution 
of the X-ray structures served as an important or even exclusive quality criterion for 
selection of the molecules. However, this approach is not appropriate, since resolution 
is not a measure of the quality of a model but the quantity of the underlying data.118,138 
It also provides no information about the completeness, reproducibility or signal-to-
noise ratio of the data on which it is based. Nevertheless, filtering crystal structures 
for resolution is useful, since it indicates the quantity of data gathered and only models 
with a resolution of at least 2.7 Å can have a ratio of experimental data points to pa-
rameters greater than 1.85 
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TABLE 2. Overview of datasets used for validation of conformer ensemble generatorsa  

Dataset name CSD PDB NofMCb Year Reference 

Ghose et al. 76   1993 139 
Boström  32  2001 35 
Original GOLD (Nissink et al.)  134  2002 140 
Diller and Merz  65  2002 141 
Boström et al.  36  2003 142 
Perola and Charifson  100  2004 31 
Kirchmair et al.  510  2005 143 
Izrailev et al.  68  2006 144 
Kirchmair et al. (expanded set)  778 12 2006 145 
Liu et al.  329  2006 94 
Agrafiotis et al.  59  2006 146 
Astex Diverse Set (Hartshorn et al.)  85  2007 147 
Li et al.  918  2007 101 
Vernalis (Chen and Foloppe)  256  2008 148 
Bonnet et al.  19 19 2009 149 
Bai et al.  742  2010 150 
Hawkins et al. 480 197  2010 85 
Ebejer et al. 469 239 9 2012 151 
Iridium-HT (Warren et al.)  121 1 2012 152 
Chen and Foloppe  333 30 2013 153 
Shelley (Watts et al.) 83 67 150 2014 154 
Riniker and Landrum 1,290 238 24 2015 80 
Prime-MCS (Sindhikara et al.) 60 148 208 2017 155 
Platinum Diverse (Friedrich et al.)  2,859 29 2017 1,2 

aMost of the datasets are derived from PDB structures, some include structures from the CSD; 
the Prime-MCS dataset includes 18 structures downloaded from the Biologically Interesting 
Molecule Reference Dictionary (BIRD).156 BIRD is a subset of the PDB and the structures 
were counted as such. The set by Perola and Charifson includes 50 structures from the publicly 
unavailable Vertex structure collection (not included in the table).40 
bNumber of macrocycles as defined by the associated publication, which is sometimes not 
identical to the definition used in this thesis (compounds including at least one ring formed by 
10 or more atoms) and only appearing in the table when explicitly addressed by the authors or 
otherwise known.  
 
 
In 1990, Saunders et al. analyzed conformer ensemble generators for their ability to 
generate large ring structures on cycloheptadecane.137 They tested systematic and ran-
dom search methods, as well as molecular dynamics and a distance geometry method. 
Rings were “frozen” in their original X-ray conformations during the conformational 
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searches, to keep computation time at reasonable levels. The authors concluded that 
cycloheptadecane was lying close to the boundary of what could be adequately ad-
dressed with the methods and computational resources at that time. 
Inspired by this and similar publications Ghose et al. were the first to acknowledge a 
general lack of a “standardized set of molecules” for the validation of conformer en-
semble generators.139 Their attempt to provide such a dataset consisted of 76 mole-
cules from the CSD that had previously been used by other groups to evaluate the 
performance of force fields.157,158 Seventy-two of these 76 molecules were used for 
the validation of the Sybyl search method by Judson et al.159 From the already small 
set of molecules three were removed because they had no torsion angles outside of 
rings and one for lack of force field parameters. Jaeger et al. validated the algorithm 
termed conformational energy downward driver (CEDD) on 74 molecules from the 
dataset by Ghose et al.160 For their method to consider rings in the conformations these 
had to be supplied as starting points. Shortly after, the group compared the perfor-
mance of Sybyl and MacroModel91 on the same dataset.161 Again ring conformations 
were omitted from the search in conformer generation.  
The first evaluation of multiple conformer ensemble generators in the 21st century 
was conducted by J. Boström in 2001, comparing Catalyst, Confort,162 Flo99,163 Mac-
roModel and OMEGA for their ability to reproduce bioactive conformations on 32 
protein-bound ligand structures.35 For the selection of structures a cutoff for resolution 
of 2.0 Å was applied as the primary quality criterion. The performance of OMEGA 
was tested on a set of 36 ligands in a follow-up study by Boström et al. two years 
later.142 
Diller and Merz investigated 65 protein-ligand complexes from the PDB to find 3D-
descriptors that separate random conformations from active conformations. They 
found bioactive conformations trending towards more extended conformations than 
randomly generated ones. Extended conformations have more solvent accessible, sur-
face area and fewer internal interactions.141  
Perola and Charifson studied conformational changes of drug-like molecules upon 
binding to proteins and compared the performance of a Monte Carlo conformational 
search published by Abagyan and Totrov164 to that of Catalyst and MacroModel.31 
They highlighted that the usefulness of studies is limited by the size and composition 
of the datasets used. Their dataset consisted of 150 compounds from protein-ligand 
complexes with known binding affinities and a focus on pharmaceutically relevant 
structures. Perola and Charifson selected 100 structures with available binding con-
stants from the PDB with a resolution of less than 3 Å and 50 structures from the 
Vertex structure collection. They concluded qualitatively that ligands tend to bind in 
an extended conformation, even when a folded conformation is more stable in solu-
tion. The authors discuss this characteristic as a potential criterion for the assessment 
of the biological relevance of generated conformations.  
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Izrailev et al. tested a simple heuristic to bias conformational sampling toward more 
extended or more compact conformations on a slightly updated version of the dataset 
by Diller and Merz, now containing 68 structures. They concluded that the heuristic 
significantly improved the chances of finding bioactive conformations.144 
In 2005 Kirchmair et al. published the first study of a conformer ensemble generator 
(Catalyst) with a benchmark dataset of several hundred protein-bound ligand confor-
mations extracted from the PDB.143 For a comparison of OMEGA (version 2.0 at the 
time) and Catalyst Kirchmair et al. manually expanded the dataset to a size of 778 drug 
molecules and pharmacologically relevant structures.145 For both datasets the resolu-
tion of the crystal structure was used as the primary quality criterion. 
The conformer ensemble generator CAESAR, that is part of the Catalyst Component 
Collection, was validated and compared to different settings of Catalyst on a related 
dataset containing 918 molecules extracted from the PDB.101 A subset of this dataset 
(742 structures) was later used to compare multiple molecular force fields for the evo-
lutionary algorithm Cyndi.150 Cyndi was also compared to Balloon (version 
0.6.6.4641) and Catalyst at different settings on a combined dataset of a subset of the 
Astex dataset and the subset used by Izrailev et al. containing 329 structures extracted 
from the PDB.94 
Chen and Foloppe compiled the Vernalis test set of 256 chemically diverse drug-like 
ligands, including the 32 structures from the original Boström set (resolution < 2 Å), 
94 of the 100 publicly available structures from the set of Perola and Charifson (reso-
lution < 3 Å) that are not in the first set and 130 additional structures extracted from 
the PDB (resolution < 2.5 Å).148 The complete set was utilized to compare three algo-
rithms from MOE, Systematic Search, Stochastic Search, and Conformation Import to 
Catalyst. They analyzed the coverage and diversity of the conformational space cov-
ered by the ensembles with pharmacophores and concluded that both algorithms were 
well suited for their intended task and that MOE performed at least as well as Catalyst. 
Chen and Foloppe later benchmarked different low-mode based approaches from 
MacroModel against Stochastic Search and LowModeMD from MOE.153 They also 
investigated different force fields and different settings for some of the algorithms. 
This time the authors explored three different datasets of X-ray structures from the 
PDB: 253 drug-like ligands from the Vernalis test set, a set of 50 diverse and more 
flexible compounds with 12 to 20 rotatable bonds and 30 macrocycles (defined as a 
ring of at least 9 atoms) with 9 to 30 rotatable bonds in the cycle. Both the flexible and 
the macrocycle set were clustered and filtered with multiple criteria, including a max-
imum resolution of 2 Å. The authors concluded that compared to the default settings 
much better results can be obtained by adopting enhanced search parameters, regard-
ing the energy window, the maximum ensemble size, and the maximum total number 
of iterations. For MOE they found much better performance with the generalized Born 
(GB) model165 over the distance-dependent dielectric constant (Diel) in the treatment 
of solvation.  
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Bonnet et al. compared the performance of Catalyst, CAESAR, MacroModel, MOE, 
Omega, Rubicon and the two self-organizing algorithms SPE and SOS.149 To investi-
gate the effect of ring size on the performance of the different algorithms they com-
piled a dataset of 19 structures: eight cyclopeptides, five cyclodextrins and six natu-
rally occurring macrocycles with known biological activity. They found the three dis-
tance geometry methods (SOS, SPE, and Rubicon) to be the most robust and univer-
sally applicable, and SOS to be preferable over SPE for its superior speed.  
OMEGA was tested on a dataset of 480 druglike molecules from the CSD and 197 
ligands from the PDB.85 Notably Hawkins et al. gathered data from different datasets 
and filtered them with a set of quality criteria, including the real-space R-value 
(RSR),166 the real-space correlation coefficient (RSCC),167 the occupancy-weighted 
B-factor (OWAB) and the diffraction-component precision index (DPI; Goto). 168,169 
The dataset curation approach was later refined by Warren et al. and used to select the 
121 high-quality structures for the dataset Iridium-HT.152 Both publications inspired 
the development of the automated dataset generation process in this thesis.  
Ebejer et al. examined the performance of the four freely available algorithms Balloon, 
Confab, Frog2, and RDKit DG against MOE on a dataset of 708 drug-like mole-
cules.151 469 structures were taken from the CSD based on the work of Hawkins et al. 
and 239 structures from the PDB, with 85 of those being from the Astex Diverse Set.147 
The authors found an overall trend of increasing RMSD with an increasing number of 
rotatable bonds, and that RDKit DG and Confab performed statistically better than the 
other methods. They also found Confab to be more suitable for molecules with a large 
number of rotatable bonds.  
Riniker and Landrum used two datasets to test how well conformations from crystal 
structures can be reproduced by generated ensembles of the older purely distance ge-
ometry method (RDKit DG) and ETKDG, using RMSD and TFD. Additionally, they 
examined the different force fields for conformer minimization in RDKit, the Univer-
sal Force Field (UFF) and the Merck Molecular Force Field (MMFF), as well as the 
diversity of the generated ensembles. The first set consisted of 1,290 distinct small 
molecules from the CSD of which 469 were used before by Ebejer et al. and 821 ad-
ditional structures from the CSD were extracted following the same procedure as de-
scribed by Hawkins et al. Their second test set consisted of 238 crystal structures of 
drug-like molecules bound to proteins from the PDB, 79 of those were taken from the 
Astex Diverse Set. Like Ebejer et al. they found the same overall trend of increase of 
RMSD with an increase in the number of rotatable bonds. They concluded that 
ETKDG outperformed the older method, but also found different results for the two 
datasets and remarked that “in order to rule out effects from the smaller size of the 
PDB data set, the comparison should be repeated with a larger data set of biologically 
active conformations”.80 
Watts et al. compiled a set of 150 macrocycles (the “Shelley Set”) for a benchmark 
study of MacroModel, with 67 ligands from the PDB and 83 ligands from the CSD.154 
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The set contains a larger fraction of peptidic macrocycles. The authors analyzed mean 
and median RMSD values for the ring atoms only and found overall good performance 
of MacroModel. However, especially for larger ring structures they observed larger 
RMSD values and elaborate on ideas for improving the performance of conformer 
ensemble generators.
A similar dataset was used for the validation of a novel algorithm for macrocycle con-
former ensemble generation, Prime macrocycle conformational sampling (Prime-
MCS) by Sindhikara et al.155 It was compared to MOE (LowModeMD) and Macro-
Model (Baseline Search). The Prime-MCS dataset includes 208 molecular structures: 
60 structures from the CSD, 130 obtained from crystal structures in the PDB and 18 
structures downloaded from the Biologically Interesting Molecule Reference Diction-
ary (BIRD),156 which is a subset of the PDB. The authors evaluated the algorithms in 
terms of accuracy, diversity of the ensembles and computational speed and concluded 
that Prime-MCS was the fastest and produced the most accurate and diverse ensembles 
of the methods tested. 
The performance of the recently developed macrocycle generation for OMEGA was 
tested by Poongavanam et al. on a test set of the 60 available conformations in the 
PDB (resolution < 3 Å) and CSD of 10 flexible molecules, including 8 macrocycles. 
For roxithromycin the authors generated 9 conformations by NMR spectroscopy and 
compared those to the ensembles generated by the conformer ensemble generators. 
They concluded that OMEGA performed “somewhat better than MOE and Macro-
Model” on these compounds.170 
 
During the first three decades of intensive research on conformer ensemble algorithms 
the quality and size of the benchmarking datasets had improved substantially but was 
still not at a point where sound statistical analysis of multiple algorithms was possible. 
In the course of this thesis the most comprehensive benchmark study of conformer 
ensemble generators to date was conducted on a dataset of 2,859 diverse and unique 
high-quality protein-bound ligand conformations from the PDB. Overall 16 algorithms 
were benchmarked, seven freely available and eight commercial conformer ensemble 
generators were compared to each other and later to the algorithm developed during 
this work.1,2,4 For this purpose a fully automated cheminformatics pipeline for the se-
lection and extraction of high-quality protein-bound ligand conformations from X-ray 
structural data was developed. The pipeline evaluates the validity and accuracy of the 
3D structures of small molecules according to multiple criteria, including their fit to 
the electron density. 
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2.3 Sperrylite and Platinum Datasets 

For the comparison of the performance of multiple conformer ensemble generators a 
large dataset of high-quality structures of protein-bound ligand conformations was es-
sential for statistically meaningful results. To this end the Sperrylite and Platinum Da-
tasets were compiled. The goal was to assemble a complete collection of all high-
quality structures of small molecules (up to 16 rotatable bonds) in the PDB and to 
create a subset suitable for conformer ensemble generator benchmark studies. 
 

2.3.1 Dataset Compilation 

The workflow for the compilation of the Sperrylite and Platinum Datasets is described 
in ref D1 with some small improvements described in ref D2. A simplified overview 
of the cheminformatics pipeline for selecting high-quality X-ray structures of protein-
bound ligand conformations from the PDB is depicted in Figure 6. Filtering over 
350,000 ligand conformations from the PDB with the Platinum quality criteria resulted 
in the Sperrylite Dataset. The definition of these selection criteria was in line with 
those of the Iridium-HT dataset. The criteria included the fit of the 3D structure to the 
electron density, as well as physicochemical and structural properties.  
After a simple query to the PDB web service,171 all further steps were fully automated 
using shell and Python scripts. The sequence of the individual steps was optimized for 
short runtimes and can be found in Figure 1 of ref D1. Lists of “unwanted ligands” 
and “organo-metallic complexes” were obtained from the sc-PDB and used as filters 
to remove those compounds.172 DPI values were calculated with DPICalc173 according 
to the definition by Goto.169 RDKit was used for Butina clustering,174 computing ca-
nonical SMILES and structural similarity, as well as the number of rotatable bonds 
and heavy atoms. Only ligands with a minimum of 10 heavy atoms and 1 to 16 rotat-
able bonds were selected for the dataset. 
The electron density support of the atom positions of all ligands was examined on 
electron density maps downloaded from the Uppsala Electron Density Server 
(EDS).175 The automation of the evaluation of the fit to the electron density was made 
possible through the recently developed Electron Density score for Multiple Atoms 
(EDIAm).176 The EDIAm of the complete molecule results from the combination of the 
scores for its individual atoms (Electron Density scores for Individual Atoms, EDIA). 
EDIA was originally developed for the analysis of electron density around water mol-
ecules by Nittinger et al.177 Only ligands with EDIAm greater than 0.8 were incorpo-
rated into the dataset.  
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Figure 6: Simplified outline of the cheminformatics pipeline for selecting high-quality X-ray 
structures of protein-bound ligand conformations from the PDB and the resulting Sperrylite 
and Platinum datasets (green). Numbers of ligands that passed each collection of filtering steps 
(and which constitute the three datasets) are reported on the right of the arrows. The sequence 
of the individual steps that was optimized for short runtimes can be found in ref D1. 
 
The Sperrylite Dataset resulting from the filtering process is a complete set of 10,936 
high-quality structures of 4,548 unique protein-bound ligands.3 The stereochemistry 
of the compounds was checked by generating isomeric smiles with UNICON.178 To 
identify the approved drugs present in the Sperrylite Dataset the ligands were com-
pared to the Approved Drugs subset of DrugBank.179 Ninety-one ligands in the Sper-
rylite Dataset are represented by at least 10 structures, and these served as the basis of 
the analysis of the diversity of protein-bound conformations of small-molecule drugs 
and cofactors in ref D3.  
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The Platinum Dataset is a subset of the Sperrylite Dataset and consists of the 4,548 
unique protein-bound ligands with the smallest DPI (Figure 6). Note that maximum 
DPI of 0.42 Å was allowed during the compilation of the Sperrylite and Platinum da-
tasets, following the work of Hawkins et al.,85 which leads to a maximum average 
positional uncertainty of 0.6 Å in the structures.168 For each ligand with the same PDB 
ligand ID only the isomer with the most occurrences was kept from the Sperrylite 
Dataset to compile the Platinum Dataset. At the time DPI was used to select one con-
formation for the Platinum Dataset of each molecule from the Sperrylite Dataset, 
mainly because it was a well-established value in the literature for similar cases. As a 
global structure quality measure, it is not perfectly suited for this task. Today the 
EDIAm should be used instead. This also allows proper prioritization between multiple 
ligands in different binding pockets of the same protein-ligand complex.  
The Platinum Diverse Dataset in turn is a subset of the Platinum Dataset selected by 
Butina clustering with ECFP6-like Morgan fingerprints and a Tanimoto similarity cut-
off of 0.5 (computed with RDKit). Because of this, the Platinum Diverse Dataset is 
the least biased of the generated datasets since it does not contain accumulations of 
similar compounds. If it is slightly biased, then by special interest in certain molecules 
(e.g. HIV proteases) by the scientific community and industry. And since it is com-
piled from X-ray structures from the PDB it is also biased by ease of crystallization. 
Nevertheless, this is true for all datasets of protein-ligand structures and the Platinum 
Diverse Dataset is by far the most suitable dataset for benchmarking conformer en-
semble generators to date. 

There exists a large overlap of 2,763 compounds between the Platinum Diverse Da-
taset 2016_01 (2,912 compounds, used in ref D1) and the Platinum Diverse Dataset 
2017_01 (2,859 compounds, used in ref D2 and D4). Identical mean and median 
RMSD values with both versions of the Platinum Diverse Dataset were obtained for 
the RDKit DG algorithm, further indicating that the results produced with both da-
tasets can be directly compared. 
 

2.3.2 Analysis of the Sperrylite and Platinum Datasets 

Ref D3 focuses on the analysis of the bioactive conformational space of a representa-
tive set of 17 approved drugs and cofactors extracted from the Sperrylite Dataset. As 
such it analyzed a part of the Sperrylite Dataset in great detail, but it can also serve as 
a general overview and introduction to the topic of diversity of conformations of pro-
tein-bound ligands. 
The Platinum Dataset was analyzed with StructureProfiler, detailed results can be 
found in the supporting information of ref 180. StructureProfiler is a software tool for 
automated profiling of X-ray protein structures based on customizable criteria cata-
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logues. These criteria include B factor checks, the search for uncommon torsion an-
gles, an inhouse intra- and intermolecular clash criterion and the EDIAm to check the 
electron density support. One of the preconfigured criteria catalogues is the Platinum 
set of criteria. With this option StructureProfiler contains most of the steps in the work-
flow for generating the Platinum Dataset from a complete list of PDB structures, in-
cluding DPI (Goto), R-factors and EDIAm. StructureProfiler, like Conformator, is part 
of the NAOMI ChemBio Suite.181 StructureProfiler also includes dataset configura-
tions for the Astex and Iridium datasets, as well as the option to combine all three test 
set criteria. When tested with these combined criteria, intermolecular clashes with lig-
ands not detected by NAOMI were found for 19 ligands and intramolecular clashes 
were reported for the ligands VVV from the PDB complex 3nhf and 1T4 from complex 
4kky ligands respectively (Figure 7). These can be attributed to the different clash 
criteria of the Astex and Platinum datasets. For 240 of the 4626 structures in the Plat-
inum Dataset EDIAm violations were detected. They can be attributed to the fact that 
EDIAm was updated in the meantime and that electron density maps are now retrieved 
from the PDBe182 instead of the Uppsala Electron Density server (EDS).175 

 

Figure 7: The ligands VVV in the PDB complex 3nhf (A) and 1T4 in the PDB complex 4kky 
(B). Distance values indicate intramolecular clashes according to the Astex Diverse Set clash 
criterion. Figures were generated using the ProteinsPlus Server;183 hydrogens are not depicted. 

Manual inspection of structures in the Platinum dataset revealed ligands closely inter-
acting with metal ions. The PDB and NAOMI treat these metal ions as separate com-
ponents and thus the molecules interacting with them are not filtered out during dataset 
generation, but they could be considered part of the ligand in some cases.184 Examples 
include the ligands ECA in the PDB complex 2xv1 and SE8 in 3mwf, each wrapping 
around an Fe3+ ion (Figure 8). Both occupy somewhat unusual conformations that are 
unlikely but possible to be produced by conformer ensemble generators. 
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Figure 8: The ligands ECA in the PDB complex 2xv1 (A) and SE8 in the PDB complex 3mwf 
(B) closely interact with an Fe3+ ion (brown). Because of this they occupy somewhat unusual 
conformations that are less likely to be produced by conformer ensemble generators. Figures 
were generated using the ProteinsPlus Server;183 hydrogens are not depicted. 

Systematic differences between the solid phase and the gas phase cannot always be 
excluded. An example of this is the preference of biphenyl (BNL) for a coplanar ge-
ometry when crystallized and a torsion angle of 44° in gas phase.185 In the Platinum 
Dataset however a structure of biphenyl from the PDB complex 3gzx (biphenyl diox-
ygenase) is found with a dihedral angle of 124°, well supported by the electron density 
(EDIAm of 0.81) and in 4.5 Å distance from an Fe2+ ion.186  

Three-membered rings lead to different and strained geometries in molecular struc-
tures. For example, each of the three carbon atoms in cyclopropane is connected to 
four other atoms, but instead of an sp3 hybridization a tetrahedral geometry is present. 
Each inner bond angle amounts to 60° in place of the energetically most stable 109.5°, 
but in the “bent bonds” model the interorbital angle is described with, it is 104°.187 
The torsion angle of the hydrogen atoms at neighboring carbons is nearly 0°. The tor-
sion angles involving three-membered rings are not explicitly considered by the tor-
sion library, although they are part of the overall statistic. The number of three-mem-
bered rings in the Platinum Dataset is 147, in the Platinum Diverse Dataset it is 110. 
Only 27 of those in the Platinum Dataset and 22 of those in the Platinum Diverse 
Dataset are non-terminal three-membered rings, only these are of higher interest for 
conformer generation. 

The Platinum Diverse Dataset was further analyzed with NP-Scout, a machine learn-
ing approach that quantifies natural product-likeness of small molecules.188 Out of the 
2,859 structures 127 (4.4 %), including nine macrocycles, were assigned a natural 
product class probability of 1.0, and therefore likely are natural products. Of the 463 
structures (16.2 %) that were assigned a probability of at least 0.8 to be natural prod-
ucts, 15 were macrocyclic compounds. 
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2.3.3 Usage and Analysis of the Platinum Datasets by Others 
In addition to the analysis of the Platinum datasets in ref D1 and later with Struc-
tureProfiler, the Platinum datasets were already used for a number of benchmark stud-
ies by other groups and were analyzed further in the process. 
Cole et al. used the Platinum Diverse Dataset (2,859 structures) for evaluation of a 
new knowledge-based conformer ensemble generator based on CSD data.184 To avoid 
bias they used the Platinum dataset for evaluation only and not for training of the al-
gorithm. Conformer generation was carried out with the maximum number of con-
formers set to 50 and 250 for easy comparison with results obtained in ref D1 and D2, 
that are part of this thesis. They were provided with the initial 3D inputs that were 
used in ref D2 by the author of this thesis. Cole et al. reproduced the evaluation of the 
ETKDG conformer generator and found small differences in mean and median 
RMSD. These differences can be attributed to the use of an analogous but slightly 
different algorithm for computation of RMSD values. Additionally, they analyzed the 
structures in the Platinum dataset with the knowledge-based library of molecular ge-
ometry derived from the CSD called Mogul.189  
Jain et al. compared the performance of seven modes of ForceGen (version 4.4) di-
rectly to the results obtained in ref D2 on the Platinum Diverse Dataset.190 The authors 
focused on speed and parallelization of their method that relies on a modified version 
of the MMFF94s force field.87 They concluded that ForceGen was as accurate as 
OMEGA and faster than all other methods in the comparison, however, without repro-
ducing runtimes or RMSD values for any of the other algorithms with their hardware 
setup. Jain et al. also explored conformer ensemble generation for macrocycles with 
ForceGen on the 29 macrocyclic ligands (about 1 %) of the Platinum Diverse Dataset. 
They pointed out that these macrocyclic compounds were less complex than those in 
macrocycle-focused datasets. 
Wahl et al. benchmarked randomly generated conformers minimized with the 
MMFF94s force field against conformers minimized with the MM2-derived force 
field191 implemented in the open-source software DataWarrior192 and the OPLS3 force 
field on the structures in the Platinum Diverse Dataset.193 Only 2,581 of the 2,859 
molecules from the dataset could successfully be processed by all three force fields. 
This was due to the large failure rate of the MM2 force field of 9.7 %. The MMFF94s 
and OPLS3 force fields had a failure rate of 0.8 % each. They concluded that the con-
formers minimized with the MMFF94s are of similar accuracy to those minimized 
with the OPLS3 force field and that it represents a clear improvement over the MM2 
force field for this task.  
Yoshikawa and Hutchison analyzed the Platinum Dataset and divided the 4,548 com-
pounds into 9,741 fragments with at least five atoms.194 They found 7,852 (80.6 %) of 
these fragments in a rigid fragment database generated from the Crystallography Open 
Database (COD).195 They used the coordinates of fragments from COD, Ligand 
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Expo196 and the Platinum Dataset for implementing a fragment-based coordinate gen-
eration in the open source cheminformatics toolkit Open Babel. Yoshikawa and 
Hutchison also employed the Platinum Dataset to benchmark their new approach for 
coordinate generation and to compare its performance to that of the former version in 
Open Babel and to that of RDKit (release 2018.09.1) with the ETKDG method. To 
avoid bias only COD fragments were used for training in these tests. They found their 
method to be twice as fast as the old implementation and resulting in a greatly in-
creased success rate, but also found RDKit ETKDG to be slightly more accurate. 
Chan et al. used a bivariate von Mises distribution to analyze correlated torsions in 
small molecules.197 To benchmark the performance of their new method, Bayesian 
Optimization with Knowledge-based Expected Improvement (BOKEI), they assem-
bled a dataset of 533 unique molecules from the Platinum Dataset and the dataset as-
sembled by Ebejer et al.151 They also used their new tool to analyze the COD, 
ChEMBL 25198 and the Platinum Dataset for the number of molecules with the pres-
ence of correlated torsions. They found 9.2 % of the 4,548 compounds in the Platinum 
Dataset, 13.5 % of the 110,623 compounds in the COD and 14.6 % of the 1,870,461 
molecules in ChEMBL 25 to contain correlated torsions. 
Wang et al. recently improved the conformer generation of RDKit ETKDG for mole-
cules containing small or large aliphatic (i.e., non-aromatic) rings.199 They added ad-
ditional torsional-angle potentials to describe small aliphatic rings and revised the po-
tentials for acyclic bonds to now also facilitate the sampling of macrocycles. In addi-
tion, recently updated vdW radii matching those in the Blue Obelisk data repository,200 
were utilized in the calculation of the distance bounds matrix. To restrict the enormous 
search space of macrocycles and bias it towards conformations found in experimen-
tally derived structures, they introduced different heuristics based on elliptical geom-
etry and customizable Coulombic interactions. The authors demonstrated the perfor-
mance of the new algorithm on datasets of diverse macrocycles and cyclic peptides. 
Two datasets were used to test structures with small rings; 600 molecules from the 
CSD and 1,401 molecules from the Platinum Diverse Dataset with at least one ali-
phatic ring of a maximum size of eight and with a molecular weight below 600 g/mol. 
For the evaluation of the macrocycle conformer generation a dataset of 636 experi-
mental structures for 482 unique single-macrocycle molecules was assembled based 
on the work by Hawkins et al. by filtering multiple datasets for structures with a single 
large ring; with 40 structures from BIRD, 262 from the CSD, 53 from the LigandExpo 
2016, 261 from the Prime-MCS dataset by Sindhikara et al. and 19 from the most 
recent D3R Grand Challenge 4.201 Additionally the NMR structure of a cyclic 
decapeptide was investigated. The authors analyzed RMSD values for complete mol-
ecules and for macrocyclic ring structures only, and used the two-sided paired t-test to 
compare the two versions of the algorithm. They conclude that the additions improved 
the ability of the ETKDG conformer generator to efficiently sample relevant confor-
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mations of small and large rings, but that the effect is only detectable for small ensem-
ble sizes; on the structures in the Platinum Dataset it is visible for an ensemble size of 
10, but not for an ensemble size of 100.
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3.1 Conformator
A novel knowledge-based algorithm for generating conformer ensembles called Con-
formator was developed during this thesis. It is based on the software library NA-
OMI202 and the previously introduced CONFECT algorithm. Conformator is built on 
established concepts of incremental construction of conformers with a torsion driver 
at its core. These simple concepts are augmented by an elaborate algorithm for the 
assignment of torsion angles from a torsion angle library (revised and extended version 
by Guba et al.)46 to rotatable bonds. The algorithm is described in detail in ref D4. As 
part of Conformator a new clustering algorithm for the assembly of conformer ensem-
bles was developed. This cluster algorithm takes advantage of the fact that the list of 
initially generated conformers is partially presorted, to deduce individual RMSD 
thresholds for molecules and substantially reduce the number of necessary compari-
sons between pairs of conformers. The new clustering algorithm is based on sphere 
exclusion clustering,203 it is described in detail and with a visual representation in Fig-
ure S1 in the supporting information of ref D4. The performance of the new clustering 
algorithm implemented in Conformator was tested against the performance of the k-
medoids clustering algorithm (partitioning around medoids method)204,205 and proved 
to be more than ten times faster, while reaching the same accuracy. 
Conformator ensures chemically correct bond lengths and bond angles, as well as the 
planarity of conjugated systems (including rings) in its generated conformations. The 
algorithm offers two modes for conformer ensemble generation, “Fast” focuses on 
computational efficiency and “Best” on accuracy. In the validation study of Conforma-
tor was able to generate conformer ensembles for 99.9 % of all tested molecules. It 
showed remarkably high accuracy with no significant difference to the highest-ranked 
commercial algorithm OMEGA and significantly higher accuracy than the seven free 
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algorithms tested, including the RDKit algorithms. With a maximum ensemble size of 
250, Conformator reached a median RMSD of 0.47 Å to the 2859 protein-bound lig-
and conformations in the Platinum Diverse Dataset. The median runtimes of Con-
formator (Fast 1 s, Best 3 s) were also very similar to those of OMEGA (2 s). Interest-
ingly, OMEGA and Conformator performed best on different sets of molecules. 
OMEGA shows higher performance in sampling molecules with fewer than five ro-
tatable bonds, which account for more than half of all molecules of the Platinum Di-
verse Dataset, but Conformator performs better on molecules with five or more rotat-
able bonds. This reveals a potential for further development in both algorithms.  
Conformator is available as part of the NAOMI ChemBio Suite and as a standalone 
tool free for non-commercial use and academic research (at https://uhh.de/naomi). 
Conformator reads molecular structures from SMILES and InChI notations, as well as 
SD and MOL2 files. Note that NAOMI and with it Conformator is additionally able 
to process older standards of MOL files, but at the time of this thesis the corresponding 
parser was not tested thoroughly and hence it was not included in the published list of 
formats. 

 

Figure 9: 3D models of the three molecules in the Platinum Diverse Dataset, for which Con-
formator cannot generate coordinates from 2D input; SAW (A), HUX (B) and TSA (C). Figures 
were generated using MOE.41 

When given 2D input (SMILES) only, Conformator failed to produce ensembles for 
three out of the 2859 molecules in the Platinum Diverse Dataset. These three mole-
cules contain small, bridged ring systems (Figure 9). The three molecules can be suc-
cessfully processed, if valid input coordinates are given and the option to generate new 
3D coordinates is not set. 
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Intensive testing of Conformator was done only for molecules with up to 16 rotatable 
bonds. Thus, most larger compounds might be outside the applicability domain of the 
model. For a small sample size (e.g. cut macrocyclic structures) Conformator success-
fully produced ensembles for molecules with up to 36 rotatable bonds. The most ex-
treme test case (suggested by a reviewer of ref D4) was antiamoebin I with 56 rotatable 
bonds. It proved to be too large for the underlying model (and some common computer 
systems). There are 27⋅1021 theoretically possible conformations in the underlying 
model for antiamoebin I. In cases like this Conformator still produces an ensemble (on 
systems with at least 16 GB of RAM) but is not able to properly execute its described 
workflow. A warning is given to the user that the input molecule is highly flexible and 
that insufficient sampling is to be expected. And while the general workflow and al-
gorithms (especially the reduction of the rotatable bond angles) can handle input of 
arbitrary size in theory, it is not advised to use the program for molecules with more 
than 16 rotatable bonds. Not only because of the technical limitations but also because 
the theoretical support for representing the flexibility of larger molecules with con-
former ensembles produced by torsion driving is questionable. 
One of the key features of Conformator is its ability to generate conformer ensembles 
for macrocyclic structures. The macrocycle conformer generation algorithm of Con-
formator is described in detail in ref D4 and a visual representation can be found in 
Figure S2 in the supporting information. Instead of processing individual rings, the 
concept of unique ring families (URFs)206,207 is utilized to consider one ring family at 
a time. All macrocyclic URFs in a ring system are iteratively cut at single bonds (out-
side of small rings) until no macrocycle remains in the resulting ring system. It is 
ensured that during this process the molecule remains connected. The open ring struc-
ture is then, in an intermediate step, handled with Conformator’s standard algorithm 
for conformer generation. The resulting conformations are clustered and the cut bonds 
are reintroduced to close the macrocycle conformations again. Therefore the confor-
mations used as starting points for cyclization and subsequent minimization are al-
ready valid (with the exception of the part where the macrocyclic bond has to be rein-
troduced), in a stark contrast to DG approaches, which usually start from randomly 
generated coordinates. Ref D4 introduced the macrocyclic optimization score (MCOS) 
that is used to reconstruct the macrocycle. It includes several well-known components 
from common force fields and some components specific to the optimization of mac-
rocycles. The composition and calculation of the MCOS are described in the associ-
ated publication and formulas and graphs of its terms are provided in the Figures 
S3−S9 of the supporting information. To reduce the number of parameters in the op-
timization down to at most one bond angle per atom and one torsion angle per bond in 
the optimization, it is performed employing internal coordinates (the torsion angles 
and bond angles in the macrocycles). The optimization of the closed macrocycles is 
based on a modified reimplementation of the BFGS-B algorithm,208,209 inspired by 
recent work on the refinement of water placement in protein crystal structures.177 The 
main reasoning behind Conformator’s macrocycle conformer generation algorithm 
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was to minimize the number of interfaces between cut parts of the molecule. This is 
nearly the opposite approach to the solution offered by Bonnet et al. where the number 
of interfaces between separate components is close to the theoretical maximum.149

Conformator’s capabilities to produce ensembles for molecules with multiple macro-
cycles were tested on the 49 macrocyclic structures in the Sperrylite Dataset and for 
structures obtained from the BIRD library.4,210 The tests clearly showed that the con-
former ensemble generation for molecules with multiple macrocycles is able to gen-
erate conformer ensembles for a large variety of macrocyclic systems. However, no 
meaningful statistics on the accuracy of reproduction was possible, since the available 
pool of high-quality structures of protein bound macrocycles was too small, e.g. most 
of the structures in BIRD do not meet the quality criteria of the Platinum datasets. 

Known information about bond lengths, bond angles, clashes and planarity was used 
to check for geometrical errors in conformations that were candidates for the Platinum 
Datasets. The same geometry checks are implemented in the previously mentioned 
StructureProfiler and the corresponding NAOMI library. They are used to filter mac-
rocycle conformations in Conformator. The same checks for geometrical errors were 
also performed on conformers generated with Conformator for all molecules in the 
Platinum Diverse Dataset (2856 structures) with a maximum ensemble size of 250 and 
revealed no detectable wrong geometries left in Conformator output. When generating 
conformer ensembles for large and more complex molecules than those in the Plati-
num Diverse Dataset, small geometrical errors can be allowed, if otherwise no confor-
mation could be generated. 
Optionally Conformator can consider hydrogen clashes during the conformer genera-
tion and clustering. In this case the hydrogen clashes are also used during conformer 
generation and in the RMSD clustering of macrocycles. By default, hydrogen clashes 
are not utilized.  
 

3.2 Benchmarking Conformer Ensemble Generators 
Accuracy of a conformer ensemble was defined in the benchmark studies, like in most 
evaluations of conformer ensemble generators, as the minimum RMSD in Å measured 
between the experimentally determined protein-bound conformation and any con-
former of the computed ensemble. Conformer ensemble generators usually are de-
signed to generate diverse ensembles, because of this accuracy is, to some extent, a 
function of ensemble size.211 The chance for one of the conformers in the ensemble to 
closely resemble the experimentally observed conformation generally increases with 
the number of conformers generated.  
Two benchmark studies that directly compare the performance of seven free and eight 
commercial conformer ensemble generators were conducted with the Platinum Di-
verse Dataset during the development phase of Conformator.1,2 The freely available 
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algorithms benchmarked were the RDKit DG and ETKDG algorithms, Confab,212 
Frog2, Multiconf-DOCK213 and the Balloon DG and GA algorithms.214 The eight 
commercial algorithms were ConfGen,215 ConfGenX, cxcalc,216 iCon, MOE LowMo-
deMD, MOE Stochastic, MOE Conformation Import and OMEGA were benchmarked 
against RDKit DG the best performing free algorithm.  
The benchmark studies showed that the distance geometry approach of RDKit and its 
knowledge-based counterpart, ETKDG, were the best freely available conformer gen-
erators at the time. OMEGA proved to be the leading commercial algorithm. The tests 
also showed that commercial algorithms generally obtain higher accuracy and robust-
ness with respect to input formats and molecular geometries.  
 

3.2.1 Measures of Similarity  
Quantifying the similarity between molecules or conformations of the same molecule 
is a non-trivial task. While many measures for molecular similarity exist, the RMSD 
is the de facto standard for comparison of conformations and thus in benchmarks of 
conformer ensemble generators. RMSD is generally regarded as an objective, univer-
sal and intuitive function, but RMSD results should always be viewed in context and 
with its disadvantages in mind. The RMSD is not normalized, which can result in very 
high RMSD values for highly flexible molecules. This is not a problem when compar-
ing the RMSD of conformers of the same molecule, but it is a frequent practice to 
combine the RMSD values of very different molecules to calculate mean or median 
values. Then the lack of normalization can severely skew results, especially for small 
dataset sizes. Another important limitation of the RMSD is that it is context-free and 
thus neglects potential interactions. Many algorithms for RMSD calculation exist and 
they usually differ because of different handling of symmetries in molecular struc-
tures.  
RMSD values for this work were calculated with NAOMI, which determines the 
RMSD based on the best superposition of a pair of conformers, taking into account 
molecular symmetry via complete automorphism enumeration. Conformator offers the 
possibility to calculate the minimum pairwise RMSD between a generated conformer 
and the input conformer, and the minimum pairwise RMSD between any generated 
conformers. (The user is advised to use these options only if necessary, since they may 
lead to substantially longer runtimes.) 
There exist a large number of alternatives to RMSD, e.g. PubChem3D217 (an extension 
to PubChem) and the shape-optimized similarity search tool ROCS218 primarily uti-
lizes shape-Tanimoto (ST), color-Tanimoto (CT), and TanimotoCombo (TC).217 TC 
measures the complementarity in shape and distribution of chemical features in 3D. 
The Generally Applicable Replacement for rmsD (GARD) evaluates the alignment 
between the atoms of a reference structure and the atoms of a conformation.219 GARD 
weights atomic contributions by their relative importance to binding. This weighting 
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is based on statistics by Andrews et al.220 and is customizable, but this is also a weak-
ness of the approach, since whether a functional group is important for binding always 
heavily depends on the specific protein and the ligand.  
Torsion Fingerprint Deviation (TFD) is another measure for the comparison of small-
molecule conformations.221 The computation of TFD is much faster than that of 
RMSD, since no superposition of the structures has to be determined. In addition to 
the RMSD values, TFD calculations were carried out for all experiments with con-
former ensembles in this work. RMSD and TFD values are usually correlated and no 
relevant difference was found between the two for any of the direct comparisons of 
performance of conformer ensemble algorithms. Thus overall, the results obtained by 
TFD comparisons confirmed all results found by comparison of RMSDs. 
 

3.2.2 Validation Tool 
To validate the results of various conformer ensemble generators a validation tool was 
developed (see Figure 10). The goal was to make the conditions for comparing the 
different programs as uniform as possible. The input parameters for the tool are the 
conformer ensemble generator to be used, the desired maximum ensemble size and 
the data set to be read. The crystal structure of each molecule of the data set is indi-
vidually loaded and used, on the one hand, at the end of the validation for the compar-
ison with this same original structure. On the other hand, it was used after erasing and 
re-calculating the 3D coordinates as input for the conformer ensemble generator. This 
approach ensured that each of the algorithms started the ensemble generation with the 
same conformation of the molecule and was necessary because many of the tested 
conformer ensemble generators need 3D structures as input. The conformer ensemble 
generator was called with the input parameters and the newly calculated 3D coordi-
nates. For most conformer ensemble generators, including Conformator, the maximum 
ensemble size should not be considered a hard limit that the algorithm must meet, but 
a maximum value that may be reached in certain cases. 
Conformator and OMEGA were benchmarked with both 3D structures and SMILES 
as input. No difference was found between the results for both algorithms, which can 
be seen as proof that in both algorithms the 3D information given by the input is really 
not used.  
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Figure 10: Workflow for benchmarking conformer ensemble generators. Reprinted with per-
mission from (Friedrich et al., 2017).1 Copyright 2017 American Chemical Society. 
 

3.2.3 Conformer Ensemble Generation 

Conformer ensembles were generated with standard 3D conformation computed for 
each molecule with NAOMI from its SMILES notation as input. All conformer en-
semble generators tested were started with the validation tool described above. With 
the exception of MOE and RDKit no further scripts were needed. As suggested in the 
RDKIT User Manual a Python script was written for conformer generation with RDKit 
DG and RDKit ETKDG. The Python script used is included in the Appendix (see Ap-
pendix B3). Functions of MOE can be accessed in the graphical user interface (GUI) 
or via the built-in programming language Scientific Vector Language (SVL). The 
SVL-script used to call the function “ConfSearch” from the command-line is shown 
in the Appendix (see Appendix B4). Non-default settings used for conformer ensemble 
generation with freely available algorithms were described in ref D1 and with com-
mercial algorithms in ref D2. 
Confab requires a 3D input structure with reasonable bond lengths and angles since 
the algorithm does not currently explore ring conformations. This is an unfair ad-
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vantage in the tests, especially for larger rings and ring systems. However, since Con-
fab performed poorly in comparison to most other algorithms this fact was not empha-
sized. 
 

3.2.4 Hardware Setup 
All calculations for this thesis were performed single-threaded on Linux workstations 
equipped with Intel Xeon processors (2.2−2.7 GHz) and 126 GB of main memory 
running openSUSE 42.2, with the exception of ref D1, here the same workstations 
were running openSUSE 13.1 at the time of the study.
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A thorough statistical analysis was a central part of the three publications that include 
benchmarks of conformer ensemble generators for this thesis, i.e. ref D1, D2 and D4. 
The summarized results and methods of the statistical analysis can be found in the 
associated publications, and detailed results in the supporting information. This sets 
the work apart from most publications in the field, since it has been, unfortunately, 
common practice to claim “significant” results, while ignoring errors in crystal struc-
tures, bias in the datasets used and the minimum number of data points required (i.e. 
dataset size). Some authors at least noted that small dataset size was an issue, but the 
common reaction was to add another small number of structures and again declare 
significant differences in performance in the results, without any form of statistical 
analysis. 
A notable exception to these practices is the work by Hawkins at al. for the evaluation 
of OMEGA and related work.85,119,222 The authors noticed the same general trend in 
the scientific community in this field and stated: “The usual practice in this area has 
been to compare an aggregate statistic such as mean or median results, from a number 
of different tools or parameter sets and to declare one superior, without any account 
of the errors in these terms.”85

As described earlier, during this thesis the Platinum Diverse Dataset was compiled and 
used for benchmarking studies of conformer ensemble generators. The dataset is of 
adequately high quality and sufficient size for a statistical evaluation. For the compar-
ison of the performance of the different algorithms for conformer ensemble generation 
pairwise Mann−Whitney U tests were carried out to test for statistical significance at 
α = 0.05 and α = 0.01, with the Holm−Bonferroni method223 applied to control the 
familywise error rate (FWER). The p-values were reported for pairwise comparisons 
at maximum ensemble sizes 250 and 50, for the free algorithms in Table S1 of the 
supporting information of ref D1, for the commercial algorithms (including different 
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force fields and clustering algorithms) in additional text files ci7b00505_si_002 and 
ci7b00505_si_003 of the supporting information of ref D2. For comparisons to Con-
formator please refer to Table S2 and S3 of the supporting information of ref D4. 

All RMSDs reported in this work (including ref D1–4) were calculated with NAOMI, 
which takes molecular symmetry into account via complete automorphism enumera-
tion. It was used to calculate the minimum heavy-atom RMSD between the reference 
structure and any of the computed conformers of an ensemble and the minimum 
heavy-atom RMSD for the best superposition of each pair of conformers. 
It is meaningless to compute or compare RMSD values with greater precision than the 
accuracy of the underlying experimental data, e.g. when comparing generated con-
formers with experimentally determined structures. DPI values for all complex struc-
tures were calculated with DPICalc173 according to the definition by Goto.169 Follow-
ing the work of Hawkins et al.,85 a maximum DPI of 0.42 Å was allowed during the 
compilation of the Sperrylite and Platinum datasets. This leads to maximum average 
positional uncertainty of 0.6 Å in the structures.168 The ligand structures in the com-
plexes were assumed to have average positional uncertainty in the complex structures, 
but the real uncertainty for the position of the ligand atoms should be even lower, 
especially when considering the EDIAm calculations. Nevertheless, an RMSD value 
of 0.6 Å was used as an important threshold in the comparisons of success rates of the 
different conformer ensemble generators in representing protein-bound ligand confor-
mations. 

NAOMI was also used to detect anomalous geometries in the datasets and in generated 
conformers. The deviation of atom angles and bond angles from known optimal values 
as well as the divergence from planarity of aromatic rings and ring systems of up to 6 
bonds per relevant cycle was measured. 

In the dataset generation and for analysis of conformer ensembles the number of ro-
tatable bonds was calculated with RDKit.224 The default setting was used, that does 
not consider amide and ester bonds as rotatable. 

NCBI BLAST (basic local alignment search tool)225–227 was used to calculate the all-
against-all sequence identity of proteins and the sequence identity of individual pairs 
of proteins was measured with MOE90 based on sequence and structural alignments. 
R228 was utilized to generate principal component analysis (PCA)-derived score plots 
of the alignments with the minimum median RMSDs were generated with R for each 
ligand in ref D3. 

Runtime measurements for each tested algorithm and each molecule in the Platinum 
Dataset were conducted while processing SD files containing single molecules. The 
resulting runtimes were rounded to full seconds. In repeated runtime experiments de-
viations of less than 5 % were observed.
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5.1 Improvement of Benchmark Datasets 
Data quality is of high importance in all scientific fields because low data quality leads 
to invalid conclusions. Many analyses in cheminformatics, including the evaluation of 
conformer ensemble generators, heavily depend on atomic resolution 3D structures 
from X-ray crystallography. The reliability of the crystallographic model is directly 
affected by the quality of collected X-ray diffraction data. The high quality of the 
structures contained in the Sperrylite and Platinum datasets is ensured by a multitude 
of criteria, including global and local fit of the crystallographic model to the X-ray 
diffraction data. On the one hand, data quality is of extreme importance for bench-
marking conformer ensemble generators, e.g. RMSD values can only be reported with 
high precision if the structures for comparison are of high quality. On the other hand, 
dataset size is the essential prerequisite for assuring statistical significance and for 
detecting more subtle differences in the performance of different algorithms. The 
Sperrylite and Platinum datasets derived for this thesis with the described cheminfor-
matics pipeline are the largest publicly available datasets of such high quality. The 
Sperrylite Dataset is a complete set of 10,936 high-quality structures of 4,548 unique 
protein-bound ligands filtered from more than 350,000 crystal structures in the PDB. 
Its subset the Platinum Dataset consists of precisely these 4,548 unique protein-bound 
ligands, each of them the conformer (of the same molecule) with the smallest DPI. 
The Platinum Diverse Dataset is a diversified subset of the Platinum Dataset and still 
includes 2,859 compounds.
 
In the compilation of the next version of the datasets the quality of the Platinum Da-
taset can be enhanced by using a more appropriate measure to select the conformer for 
each molecule from the Sperrylite Dataset. Here, the EDIAm should be used instead of 
the DPI to select the best conformer, since the DPI is a global structure quality measure 
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and the EDIAm allows checking the local electron density fit of each ligand. Conse-
quently, the EDIAm would also allow proper prioritization between multiple confor-
mations of the same ligand in different binding pockets of the same protein-ligand 
complex. 
Another way to elevate the quality of the Platinum Dataset, especially for applications 
which exceed the scope of pure benchmarking of conformer ensemble generators, is 
further filtering of molecules. A class of molecules that was previously neglected in 
the dataset compilation is sugars. A preliminary investigation revealed that there are 
at least 45 sugar-like structures in the Platinum Diverse Dataset. The recently devel-
oped algorithm SugarBuster109 for the removal of sugars and sugar-like moieties could 
be applied to generate another Platinum Dataset without these compounds. (The first 
executable version of SugarBuster was developed by the author of this thesis, based 
on work by K. Sommer. SugarBuster was later refined, completed, and applied by M. 
Garcia de Lomana.) While some sugars and sugar-like compounds might propose in-
teresting challenges to conformer ensemble generators, they are generally not of great 
interest for drug discovery. 
False positive results in high-throughput screenings are still one of the main problems 
in the early stages of drug discovery. Assay interference is typically caused by aggre-
gators, reactive compounds, or so-called pan-assay interference compounds 
(PAINS).229 Many of these compounds are so-called "frequent hitters", because they 
interact with a wide variety of target proteins or interfere with the detection method.  
Hit Dexter is a machine learning approach that predicts frequent hitters and allows to 
filter potential PAINS, compounds with undesirable fragments and potential aggrega-
tors from the dataset.230 Together with an analysis of drug-likeness, like the compari-
son of the Platinum datasets with the Approved Drugs subset of DrugBank in ref D1, 
Hit Dexter and SugarBuster could be applied to generate a subset of ligands that is 
even more focused on compounds of interest for drug discovery.  
For now the Platinum Diverse Dataset (2,859 compounds) in particular can serve as a 
standardized set of molecules for the validation of conformer ensemble generators. 
With this dataset there finally exists an unbiased, diverse, updatable dataset of ade-
quately high quality and sufficient size for this task. After more than 30 years of con-
former ensemble generator validations, this is a very valuable result in its own right. 
For macrocyclic conformations the situation is entirely different. At the time of the 
compilation of the Sperrylite Dataset (February 2017) there were only 760 crystal X-
ray structures containing macrocycles in the PDB and only 49 of them adhered to the 
Platinum quality criteria. These 49 conformations of macrocycles in the Sperrylite 
Dataset were of 36 unique molecules that are part of the Platinum Dataset. In light of 
the high interest in these compounds for drug discovery, there is a clear need for a 
large and high-quality benchmark dataset of macrocyclic structures. In many ways the 
size of macrocycle datasets is nowadays similar to that of the drug-like datasets of 
small ligands two decades ago, but the PDB is rapidly growing, new structures are of 
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higher quality overall and tools like StructureProfiler greatly simplify quality checks 
of large compound collections. The logical next step is to apply the Platinum quality 
criteria to the 636 macrocyclic structures (482 unique molecules) assembled by Wang 
et al. Additionally, the PDB is rapidly growing and the interest in macrocyclic com-
pounds is continuously high, which will lead to a steep increase in the number of X-
ray structures containing them. Thus, the next version of the Sperrylite Dataset could 
allow for a thorough investigation of macrocycle conformer generation. 
 

5.2 Future Development of Conformator 
The development of the new knowledge-based algorithm for generating conformer 
ensembles called Conformator benefited greatly from the findings and experience 
gained during the benchmarking studies and the analysis of the variability of bioactive 
conformations. It could be shown that Conformator is accurate and effective with sig-
nificantly higher performance than all non-commercial tools, including the RDKit al-
gorithms, and has extremely similar performance (no significant difference) to the 
highest performing commercial algorithm, OMEGA. Conformator further stands out 
with its handling of macrocycles, as well as robustness with respect to input formats 
and molecular geometries. Despite the substantial improvement in performance com-
pared to its predecessors, some additions and refinements for Conformator that might 
be implemented in the future are presented in the following paragraphs. 

Conformator is designed to handle both 2D and 3D input, it showed a 100 % success 
rate for 3D input and a 99.9 % success rate for 2D input of the molecules in the Plati-
num Diverse Dataset. For a few small, bridged ring systems (three out of the 2856 
structures in the Platinum Diverse Dataset with the PDB IDs HUX, SAW and TSA) 
Conformator cannot generate coordinates from 2D input at this point. In these rare 
cases, the algorithm for macrocycle conformer generation could provide effective so-
lutions. Small bridged ring systems where no coordinates can be generated by the 
standard algorithm would be cut and reconnected after conformer generation. A proof 
of concept test was successfully conducted on a single molecule (TSA). For general 
applicability, a special minimization for these cases (similar to the macrocycle mini-
mization procedure described in D4) might be necessary, considering ring strain and 
abnormal angles of bonds to neighboring atoms. This could be supported or replaced 
by an update of the small ring assembler and the small ring template library in NA-
OMI. Even then, a generalized version of the macrocycle conformer generation pro-
cedure might be used as a fallback mode in case the template library approach fails. 
This would lead to a 100 % success rate of Conformator even for the 2D input of the 
Platinum Diverse Dataset. 
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The present macrocycle conformer generation procedure could be fine-tuned for im-
proved results or shorter runtimes. At the moment a relatively rough selection is ob-
tained during pre-selection of ring-like (cut) macrocycle conformers. Additionally, 
further rules could be implemented to determine which bond to cut when. Currently, 
the first bond that fits the priority rule system is cut, prioritizing carbon−carbon and 
then carbon-incident bonds, first outside then inside of conjugated systems. Also, 
bonds that are not adjacent to small rings are favored, but optimizing the selection 
process could include searching for a bond that is as far away as possible from more 
rigid parts (rings, branches) of the molecule. This might ease the search for solutions 
in the optimization process. Additionally, the maximum number of macrocycle con-
formers before and after internal clustering could be more precisely adapted to the 
respective molecule (e.g. number of rotatable bonds, atom types).  
Conformers of macrocycles that were generated and optimized by the macrocycle con-
former generation procedure (without geometrical errors detected) could be saved as 
templates, so they do not have to be calculated again. This would lead to a massive 
speed-up for the few molecules that are responsible for a large portion of the overall 
runtime when generating conformer ensembles for the complete Platinum Dataset re-
peatedly. However, it is questionable whether these templates would generally be use-
ful since the chemical complexity of the macrocycle also increases (almost exponen-
tially) with the ring size. 

Another approach that mainly benefits macrocycle conformer generation but could 
also be useful for other, particularly flexible, molecules, is the biasing of the ensemble 
for specific boundary conditions. The user might e.g. wish for particularly round mac-
rocycles or might want to target a specific binding pocket or shape. An extreme ex-
ample is the binding of the macrocyclic ligand 1P1 in the minor-groove of a DNA 
duplex, in the complex structure 3i5l from the PDB (Figure 11).231 The resulting con-
formation is particularly challenging for conformer ensemble generation. It is theo-
rized to disrupt the transcription factor-DNA interface and thus influence gene expres-
sion. Since many human diseases are caused by dysregulated gene expression, this 
form of DNA modulation is a very interesting application for macrocyclic drugs.232 
The biasing of the conformational search can be implemented in Conformator on the 
basis of the clash handling during conformer generation. Here, whole branches of the 
search tree can be rejected early in the process, leading to a more thorough investiga-
tion of other regions of the conformational space of the molecule. Exclusion volumes 
(space that is not allowed to be occupied by parts of the molecule) could simply be 
implemented as “overly large atoms”, e.g. in the middle of macrocycles or surrounding 
the ensemble to mimic a binding pocket. However, it should be noted that, similar 
effects might also be achieved by guiding the conformer generation along a circle or 
implementing eccentricity constraints as recently described by Wang et al.199 This 
would also lead to significantly fewer structures that have to be optimized. 
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Overall, it is an interesting approach to combine exclusion volumes and other concepts 
of pharmacophore modeling with conformer ensemble generation, not only for mac-
rocycles but for all molecules. Conformator could be expanded to a pharmacophore-
guided conformation generation, that compiles ensembles for specific binding pock-
ets. Similar approaches are being pursued in the development of flexible 3D pharma-
cophores and have already shown promising results in multiple applications.65–67 

 

 
Figure 11: The macrocyclic ligand 1P1 bound in the minor-groove of a DNA duplex of the 
PDB complex 3i5l (A); and the same ligand conformation (green carbon atoms) superposed 
with the best fitting conformation generated by Conformator with standard settings (orange 
carbon atoms). The twisted conformation is extremely challenging to reproduce; the RMSD 
between the two conformations is nearly 4 Å. The figure was generated with MOE;41 hydro-
gens are not depicted. 
 
The user of conformer ensemble generators does not always care for ensembles 
smaller than the defined maximum ensemble size. Another quality level could easily 
be implemented in Conformator using already-generated conformations for filling out 
gaps (the largest differences in RMSD between conformers in the ensemble) as opti-
mally as possible until the maximum ensemble size is reached. This maximizes accu-
racy for cases where smaller ensemble sizes than the maximum ensemble size are not 
desired. Additional conformations could be generated, if the maximum ensemble size 
is not reached, by finer sampling of torsional angles. Finer sampling of the conforma-
tional space might also allow to avoid small clashes that are currently allowed if oth-
erwise no conformation could be generated. These intramolecular clashes, however, 
might be better handled by post-optimization of the generated conformations with the 
optimization procedure originally developed for macrocycle conformer generation. 
Note that the detection and handling of clashes is heavily dependent on their definition. 
While Conformator allows overlaps of up to 30 % of the van der Waals radii of 1−4-
connected (or more distant) heavy atom pairs that are not part of the same ring system, 
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other definitions are much more strict (cf. 2.3.2 Analysis of the Sperrylite and Plati-
num Datasets). An additional option can be implemented into Conformator that gives 
the user the choice between different clash definitions. 

For current and future benchmark studies of conformer ensemble generators standard-
ization is highly important. Only if the same dataset and performance measures are 
used, results can directly be compared. While this thesis standardized the benchmark 
of conformer ensemble generators and the creation of large high-quality benchmark 
datasets, it did not standardize the calculation of the RMSD to the same degree. RMSD 
results calculated with different algorithms for the same comparison of molecular 
structures can differ quite severely, most likely through different handling and defini-
tion of symmetries. Therefore, it is imperative that in the near future a thorough inves-
tigation into the RMSD calculation is conducted and its measurement standardized. 
For now the RMSD calculation options implemented in Conformator offer one way to 
compare RMSD values calculated with other methods in future benchmark studies. 

In Conformator the flexibility of a molecule is estimated based on the maximum num-
ber of possible conformations resulting from the enumeration of all torsion angle val-
ues stored in the library, without the consideration of potential clashes. This value is 
multiplied by a factor (10 for the mode “Fast” and 20 for the mode “Best”) and the 
result used as the maximum number of candidate conformers to generate before clus-
tering. At the moment this value is computed repeatedly throughout an angle removal 
procedure that iteratively removes angles from rotatable bonds. The number of rotat-
able bonds, torsion angles (peaks and tolerances) for each bond and ring templates for 
small rings is known, as well as the maximum number of conformers for clustering 
and the maximum number of conformers in the final ensemble. Hence there might be 
a way to calculate (or at least closely estimate) which rotatable bonds will keep how 
many (and thus which) torsion angles, to reduce the number of necessary calculations 
and speed up Conformator even further. 

The novel clustering algorithm implemented in Conformator for the compilation of 
representative conformer ensembles exploits the partial presorting of consecutively 
generated conformers and allows for high speed, without significant loss of accuracy. 
On the one hand, the new clustering algorithm should be compared to further cluster-
ing algorithms in addition to the already tested K-Medoids algorithm, to ensure it is 
the most effective for this use case; possible candidates include the Jarvis-Patrick (with 
fuzzy similarity measure) and the X-Means algorithm.233,234 On the other hand, it could 
be interesting to look for further applications of the new clustering algorithm. 
The clustering procedure in Conformator might be further sped up by implementing 
different search algorithms for the ideal cluster radius (e.g. binary search), instead of 
the iterative process described in the supporting information of D4. The clustering 
algorithm is hard to speed up by parallelization, because it relies on the fact that the 
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list of initially generated conformers is partially presorted to avoid unnecessary RMSD 
calculations. Still, it might be beneficial to implement a parallelized version of the 
clustering algorithm to evaluate the acceleration of the algorithm. Parallelization 
might be useful outside of the clustering procedure for parts of molecules, when com-
puting conformer ensembles of large and flexible molecules or molecules with multi-
ple macrocyclic systems. Usually conformer ensemble generation is already heavily 
parallelized on the molecule level, meaning single molecules of potentially large da-
tabases being processed in parallel. 
More appropriate handling of specific groups of molecules depending on their indi-
vidual properties could be implemented in Conformator. Different machine learning 
methods might be applied to determine chemical patterns that correspond to certain 
settings of internal options of the algorithm. These options could include the maximum 
number of conformers to generate before clustering, the initial radius and the increase 
of the radius for the next round of clustering or different clash tolerances (maximum 
overlap of van der Waals radii or when to take hydrogen clashes into account). This 
could happen on different levels, e.g. for classes of molecules or specific to types of 
rotatable bonds, similar to the torsion library already in use. For the classification of 
molecules, simple descriptors like the number of atoms, rotatable bonds, or rings 
might be sufficient. 
The steadily growing computational power of widespread computer systems will over 
time enable scientists to work with larger ensembles. This might only be possible for 
molecules with a certain number of rotatable bonds (the problem of combinatorial ex-
plosion remains) and brings with it a danger of worsening the signal-to-noise ratio by 
burying the relevant conformations, leading to more false-positive results. 

Since OMEGA and Conformator perform best on different sets of molecules, these 
differences should be further analyzed. It is possible that OMEGA performs particu-
larly well on the smallest molecules in the Platinum Diverse Dataset because it uses 
PDB-derived information for biasing torsion angles.  
In the same line, it might be an interesting approach to include all known high-quality 
conformations of the molecule in question from the Sperrylite dataset into the output 
ensemble. While it is impossible to test the complete version of this approach that 
includes all high-quality conformations, a benchmark would still be possible by split-
ting the Sperrylite dataset with a date cutoff (e.g. cutoff 2015) into an “output set” 
(conformations the algorithm is allowed to use as output) and a test set. An RMSD 
cutoff for too-similar conformers should be defined and clustering used to reduce large 
ensembles, keeping the database size small enough for a desired maximum size. Note 
that the objective of this approach is not to artificially dominate benchmark studies of 
conformer ensemble generators but to produce scientifically valuable assistance to 
downstream programs and users that lack the time or expertise to compile the relevant 
conformations. 
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Manual examination of structures in the Platinum dataset revealed that some of the 
compounds interact closely with metal ions, leading to unusual conformations. In fu-
ture versions of the Platinum Dataset these could be regarded as “part of the ligand” 
(as suggested by Cole et al. in ref 184) and filtered out or included in a separate dataset. 
Usually conformer ensemble generators skip compounds with metals. NAOMI could 
be extended to handle these cases more precisely in the future, the recently released 
tool METAlizer can already be used to predict and visualize the coordination geometry 
of metals in metalloproteins.183,235 On the one hand, Conformer ensemble generation 
considering metal ions might be possible on this basis. On the other hand, these cases 
may be easier handled through the introduction of exclusion volumes as described 
earlier for the pharmacophore-guided conformer ensemble generation. 

A general solution to the problem posed by conformer ensemble generation greatly 
depends on the exact definition of the problem. For instance, the accuracy needed, the 
time frame, what level of information aggregation is appropriate and the specific use 
case (e.g. downstream programs involved) have to be defined. To solve the problem 
to a degree that is mostly independent of the exact problem definition, it might be 
necessary to abandon the “classical model of physics” behind conformer ensemble 
generation today. A closer look at a complete ensemble (e.g. the ensemble of n-butane 
in Figure 4) reveals two false assumptions: It implies that all visible conformations are 
equivalent and that the empty areas between conformations are unreachable. These 
problems could be eliminated if the location of atoms around rotatable bonds in a con-
formational ensemble were treated as probability density distributions. Computation-
ally very expensive, accurate quantum chemistry calculations, that scale steeply and 
non-linearly with molecular size, might be excessive (for large datasets). Most infor-
mation known about the continuous probability distribution around each torsional an-
gle could be used in a simpler way. A more advanced conformer ensemble generator 
might define the movement between torsion angle peaks (defined in the torsion angle 
library) as density distributions. These could directly correspond to distributions found 
in the torsion library. In fact, a continuous torsion angle potential based solely on tor-
sion angle peaks from the torsion angle library is already in use for the rebuilding of 
macrocycles by numerical optimization in Conformator (using the von Mises function 
as the kernel for curve approximation with a tailored equation for kappa).4,236 
The success of the attempted advancement would require considerable adjustments 
and improvements to downstream programs. Even with this approach, classical con-
former ensembles might stay useful for a very long time, for quick and rough compu-
tations as well as communication of (intermediate) results, simple visualization for the 
user and for teaching. 

For now, Conformator, with its high accuracy and speed, its robustness with respect 
to input formats, molecular geometries, and its handling of macrocycles, represents a 
clear step in the right direction for describing the flexibility of small molecules with 
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conformer ensembles. It completely closes the previously identified gap between com-
mercial and freely available algorithms. The Sperrylite and Platinum datasets may 
serve as freely available datasets for future research and their compilation as an exem-
plary model for the generation of large high-quality datasets that enable statistically 
meaningful benchmarking results.
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Appendix A   Publication and congress contributions 

Publication and congress contributions 

A.1 Contributions to Publications of the Cumulative Dis-
sertation 
The following overview summarizes the authors' contributions to the individual pub-
lications of this cumulative dissertation. 
 

[D1]  Friedrich, N.-O.; Meyder, A.; de Bruyn Kops, C.; Sommer, K.; 
Flachsenberg, F.; Rarey, M.; Kirchmair, J. High-Quality Dataset of Protein-
Bound Ligand Conformations and Its Application to Benchmarking Conformer 
Ensemble Generators. J. Chem. Inf. Model. 2017, 57 (3), 529–539. 

 
This work reports on a novel fully automated cheminformatics pipeline for compiling 
high-quality datasets of protein-bound ligand conformations determined by X-ray 
crystallography and the application of the resulting datasets to benchmarking seven 
freely available conformer ensemble generators. The work represents a significant 
leap in the development and validation of conformer ensemble generators and related 
technologies, which the field has been working towards for more than two decades. 
N.-O. Friedrich developed the concept for the different filtering methods and the au-
tomated extraction of high-quality structures from the PDB by a fully automated, elab-
orate cheminformatics pipeline and implemented it. The cheminformatics pipeline 
evaluates the support of individual atom coordinates by the measured electron density 
with the EDIAm, that was developed and provided as a command line tool by A. Mey-
der. With this cheminformatics pipeline N.-O. Friedrich compiled a complete set of 
high-quality structures of protein-bound ligand conformations from the PDB, the 
Sperrylite Dataset, and the subsets thereof, the Platinum Dataset and the Platinum Di-
verse Dataset. N.-O. Friedrich furthermore developed and implemented the validation 
tool, conducted the computational studies for the benchmarking of the different con-
former ensemble generators and analyzed the results. This included examination of 
geometrical errors in the generated ensembles. C. de Bruyn Kops developed the con-
cept for statistical analysis of the performance tests, verified the results and contrib-
uted to the manuscript. K. Sommer and F. Flachsenberg supported the implementation 
of the validation tool and contributed to the manuscript. The work was supervised by 
J. Kirchmair and M. Rarey. 
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[D2]  Friedrich, N.-O.; de Bruyn Kops, C.; Flachsenberg, F.; Sommer, K.; 
Rarey, M.; Kirchmair, J. Benchmarking Commercial Conformer Ensemble Gen-
erators. J. Chem. Inf. Model. 2017, 57 (11), 2719–2728. 
 

This publication compares the performance of eight commercial conformer ensemble 
generators and the results from ref D1. It also reports on minor improvements to the 
data extraction pipeline and the compilation of an updated version of the dataset based 
on a more recent version of the PDB, as well as different application scenarios and 
parametrization of algorithms for best performance. N.-O. Friedrich wrote the manu-
script, developed and implemented the improvements to the cheminformatics pipeline 
for the compilation of the latest version of the Sperrylite and Platinum datasets. N.-O. 
Friedrich also conducted the computational studies for the benchmarking of the dif-
ferent conformer ensemble generators and analyzed the results, including identifica-
tion of geometrical errors and a statistical analysis. C. de Bruyn Kops verified the 
results of the statistical analysis of the performance tests and contributed to the man-
uscript. K. Sommer and F. Flachsenberg supported the implementation of the improve-
ments to the cheminformatics pipeline and contributed to the manuscript. The work 
was supervised by J. Kirchmair. 

 
[D3]  Friedrich, N.-O.; Simsir, M.; Kirchmair, J. How Diverse Are the 
Protein-Bound Conformations of Small-Molecule Drugs and Cofactors? Front 
Chem 2018, 6, 68. 
 

This publication focuses on the analysis of the bioactive conformational space of a 
representative set of 17 approved drugs and cofactors extracted from the Sperrylite 
Dataset and analyzes this part of the Sperrylite Dataset in great detail. It also provides 
a general overview and introduction to the topic of diversity of conformations of pro-
tein-bound ligands. J. Kirchmair and N.-O. Friedrich conceived this work. N.-O. Frie-
drich wrote the manuscript, developed and implemented the cheminformatics pipeline 
for the compilation of the Sperrylite Dataset described in ref D1 (and some improve-
ments in D2). M. Simsir and N.-O. Friedrich conducted the computational studies. M. 
Simsir analyzed conformational ensembles generated by OMEGA and a prototype of 
Conformator (developed and implemented in NAOMI by N.-O. Friedrich) with re-
spect to diversity, energy differences and completeness during her Master thesis, su-
pervised by J. Kirchmair and N.-O. Friedrich. Based on this work N.-O. Friedrich 
compiled the dataset and the subsets and analyzed the bioactive conformational space 
of the approved drugs and cofactors. M. Simsir generated and investigated the con-
former ensembles and their superpositions and contributed the score plots of the align-
ments with the minimum median RMSDs derived from principal component analysis. 
N.-O. Friedrich implemented the algorithm to compare the best superposition of each 
pair of conformers and select the minimum heavy-atom RMSD ensemble, based on 
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the RMSD calculator in NAOMI. N.-O. Friedrich generated and investigated the align-
ments of bioactive ligand conformers, the alignments and all-against-all sequence 
identity of protein structures and individual pairs, as well as the interactions of proteins 
and ligands in the complexes. N.-O. Friedrich wrote the manuscript; J. Kirchmair and 
M. Simsir contributed to the interpretation of the data and the writing of the manu-
script. The work was supervised by J. Kirchmair.  

 
[D4]  Friedrich, N.-O.; Flachsenberg, F.; Meyder, A.; Sommer, K.; Kirch-
mair, J.; Rarey, M. Conformator: A Novel Method for the Generation of Con-
former Ensembles. J. Chem. Inf. Model. 2019, 59 (2), 731–742. 
 

In this publication the algorithm and evaluation of the novel conformer ensemble gen-
eration method Conformator are presented. N.-O. Friedrich wrote the manuscript, de-
veloped and implemented Conformator (in NAOMI), conducted the computational 
studies and analyzed the results. For Conformator N.-O. Friedrich developed, among 
other things, a new efficient clustering algorithm, an extended set of rules for sampling 
torsion angles and a novel approach to sampling the conformational space of macro-
cycles. N.-O. Friedrich and F. Flachsenberg developed the concept for conformer en-
semble generation of macrocycles. F. Flachsenberg contributed to the implementation 
of Conformator, especially the integration into NAOMI and the macrocycle minimi-
zation. F. Flachensberg also developed the macrocyclic optimization score introduced 
in this work and contributed to the manuscript. A. Meyder supported the development 
of the checks for geometrical errors. K. Sommer helped in the development and im-
plementation of Conformator, especially with the handling of different file formats, 
treatment of special cases in the conformer generation and by supplying a template for 
the user interface of the command line tool. The work was supervised by J. Kirchmair 
and M. Rarey.
 

 

A.2 Contributions to Further Publications 
This overview describes the contributions of the author of this dissertation to further 
publications. 
 

(178)  Sommer, K.; Friedrich, N.-O.; Bietz, S.; Hilbig, M.; Inhester, T.; 
Rarey, M. UNICON: A Powerful and Easy-to-Use Compound Library Converter. 
J. Chem. Inf. Model. 2016, 56 (6), 1105–1111. 
 

UNICON is a command-line tool for file conversion between standard formats com-
monly used in cheminformatics. It allows conversion between SDF, MOL2, SMILES, 
and PDB files via the generation of 2D structure coordinates and generation of 3D 
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structures. It also facilitates the enumeration of tautomeric forms, protonation states 
and conformer ensembles. The conformer ensemble generation in UNICON is per-
formed by a prototype of the conformer ensemble generator Conformator developed 
and implemented by N.-O. Friedrich during his master's thesis. The enhancements in 
the conformation ensemble generation process over the previously introduced CON-
FECT algorithm are shown in Table S2 of the supporting information of ref 178. N.-
O. Friedrich intensively tested the command line tool during different stages of devel-
opment on thousands of molecules and was involved in evaluating the results. K. Som-
mer developed the concept of UNICON, implemented it into NAOMI and wrote the 
manuscript. N.-O. Friedrich, S. Bietz, M. Hilbig and T. Inhester contributed to the 
manuscript. M. Rarey supervised this work. 

 
(237)  de Bruyn Kops, Ch.; Friedrich, N.-O.; Kirchmair, J. Alignment-Based 
Prediction of Sites of Metabolism. Journal of Chemical Information and Model-
ing. 2017, pp 1258–1264. 
 

This work presents a detailed analysis of the breadth of applicability of alignment-
based site of metabolism prediction and discusses the transfer of the approach from a 
structure- to ligand-based method and an extension of the applicability domain. It also 
analyzes the effect of molecular similarity of the query and reference molecules on the 
prediction capability of the approach. The work combines the alignment-based method 
with a leading chemical reactivity model. 
C. de Bruyn Kops wrote the manuscript, developed and conducted all the experiments. 
N.-O. Friedrich contributed to the conformer generation, the concept development and 
to the design of the experiments. The work was supervised by J. Kirchmair. 

 
(230)  Stork, C.; Wagner, J.; Friedrich, N.-O.; de Bruyn Kops, C.; Šícho, M.; 
Kirchmair, J. Hit Dexter: A Machine-Learning Model for the Prediction of Fre-
quent Hitters. ChemMedChem 2018, 13 (6), 564–571. 
 

Hit Dexter is a machine learning approach that predicts frequent hitters, to allow fil-
tering of potential PAINS and aggregators, as well as compounds with undesirable 
fragments. C. Stork wrote the manuscript, developed and conducted the experiments. 
N.-O. Friedrich contributed to concept development and to the design of the experi-
ments. J. Wagner contributed to the development of a prototype of the machine-learn-
ing model throughout his master thesis, supervised by J. Kirchmair and N.-O. Frie-
drich. C. de Bruyn Kops, M. Šícho, N.-O. Friedrich and J. Kirchmair contributed to 
the manuscript. The work was supervised by J. Kirchmair. 
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(109)  Chen, Y.; Garcia de Lomana, M.; Friedrich, N.-O.; Kirchmair, J. 
Characterization of the Chemical Space of Known and Readily Obtainable Nat-
ural Products. J. Chem. Inf. Model. 2018, 58 (8), 1518–1532. 
 

This publication assesses the readily available product space for natural products and 
devises a rule-based approach for the automated classification of natural products. For 
this work comprehensive data sets of known and readily obtainable natural products 
were compiled from 18 virtual databases (including the Dictionary of Natural Prod-
ucts), nine physical libraries, and the Protein Data Bank (PDB). The algorithm Sugar-
Buster was deployed for the removal of sugars and sugar-like moieties, which are gen-
erally not of interest for drug discovery, from the natural products. The first executable 
version of SugarBuster was developed and implemented (in NAOMI) by N.-O. Frie-
drich, based on work by K. Sommer. SugarBuster was later refined, completed, and 
applied by M. Garcia de Lomana during her Master thesis. Y. Chen wrote the manu-
script, developed and conducted the experiments. N.-O. Friedrich contributed to con-
cept development and to the design and execution of the experiments. The work was 
supervised by J. Kirchmair. 

 
(180)  Meyder, A.; Kampen, S.; Sieg, J.; Fährrolfes, R.; Friedrich, N.-O.; 
Flachsenberg, F.; Rarey, M. StructureProfiler: An All-in-One Tool for 3D Protein 
Structure Profiling. Bioinformatics. 2019, pp 874–876. 
 

StructureProfiler is a command line tool for automated profiling of X-ray protein 
structures based on customizable criteria catalogues. Its “Platinum set of criteria” in-
clude most of the steps in the workflow (developed by N.-O. Friedrich and described 
in ref D1) for generating the Sperrylite and Platinum datasets. A. Meyder wrote the 
manuscript, developed and implemented StructureProfiler (in NAOMI). N.-O. Frie-
drich intensively tested the command line tool during different stages of development 
on hundreds of thousands of molecules and analyzed exceptions, oddities and special 
cases. This included EDIAm violations, as well as inter- and intramolecular clashes 
detected in structures of the Platinum Dataset. M. Rarey supervised this work.
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A.3 Conference Contributions 

This section lists the author’s oral presentations and posters presented at national and 
international conferences. 

Poster: N.-O. Friedrich, S. Sommer, M. Rarey, J. Kirchmair. A new benchmarking 
dataset for conformer ensemble generators. 11th German Conference on 
Chemoinformatics (GCC), 2015, Fulda, Germany 

Talk: J. Kirchmair, N.-O. Friedrich, A. Meyder, K. Sommer, M. Rarey. Method 
for the automated compilation of datasets of accurate protein-bound ligand 
structures. 12th German Conference on Chemoinformatics (GCC), 2016, 
Fulda, Germany 

Poster: N.-O. Friedrich, J. Wagner, J. Kirchmair. Prediction of compound promis-
cuity using machine learning algorithms. 12th German Conference on 
Chemoinformatics (GCC), 2016, Fulda, Germany 

Poster: K. Sommer, N.-O. Friedrich, S. Bietz, M. Hilbig, T. Inhester, M. Rarey. An 
easy-to-use software tool for compound library conversion and isomeric 
enumeration, Seventh Joint Sheffield Conference on Chemoinformatics, 
2016, Sheffield, GBA 

Poster: N.-O. Friedrich, A. Meyder, C. de Bruyn Kops, M. Rarey, J. Kirchmair. 
Benchmarking Commercial Conformer Ensemble Generators. Vienna Sum-
mer School on Drug Design, 2017, Vienna, Austria 

Poster: C. de Bruyn Kops, N.-O. Friedrich, Kirchmair. Prediction of Xenobiotic 
Sites of Metabolism: Exploring an Alignment-Based Approach. Vienna 
Summer School on Drug Design, 2017, Vienna, Austria 

Poster: N.-O. Friedrich, A. Meyder, C. de Bruyn Kops, M. Rarey, J. Kirchmair. 
Benchmarking Commercial Conformer Ensemble Generators. 31st Molec-
ular Modelling Workshop (MMWS), 2017, Erlangen, Germany 

Talk: N.-O. Friedrich, M. Simsir, A. Meyder, K. Sommer, C. de Bruyn Kops, M. 
Rarey, J. Kirchmair. Assessment of the diversity of protein-bound ligand 
conformations and their representation with conformer ensembles. 32nd 
Molecular Modelling Workshop (MMWS), 2018, Erlangen, Germany 
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Appendix B   Software Architecture and Application 

Software Architecture and Application 
In this chapter, the software architecture, and the application of the conformer ensem-
ble generator Conformator are presented. The program was developed for the NAOMI 
software library and implemented in C ++. Figure B1 shows the most relevant parts of 
the implementation of Conformator and existing basic libraries of the NAOMI plat-
form as well as newly developed classes and functions. The complete workflow of 
Conformator when generating an ensemble for a molecule with a macrocyclic system 
is depicted in Figure S2 in the supporting information of ref D4. The figure roughly 
follows the workflow of the actual program and can be used as a reference point for 
clarity. 

B.1 Libraries and Functions of Conformator 

 
Figure B1: Simplified overview of the implementation of the conformer ensemble generator 
Conformator and existing basic libraries (yellow) in the NAOMI platform. The newly devel-
oped classes and functions (green) are part of the Coordinates3d library. 
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The main class of the Conformator algorithm ConformationGenerator is part of the 
NAOMI library that deals with 3D coordinates (Coordinates3d); it includes methods 
for general conformer generation (generateConformations), macrocycle conformer 
generation (MacrocycleConformerGenerator) and clustering of conformations (Con-
formationClustering). Precomputed, force field-optimized templates of small rings are 
used for sampling ring conformations (RingConformationGenerator). Conformers 
with geometrical errors are detected (GeometryCheckUtils) and discarded. (RingCon-
formationGenerator and GeometryCheckUtils are also part of the Coordinates3d li-
brary and not depicted in Figure B1). 

generateConformations: Generates conformations for a given molecule. The method 
uses the torsion library to generate torsion data (TorsionLib) for the component tree 
of the molecule (ComponentTreeLib). The result of this method can be influenced by 
the quality level and the maxim number of conformations to be returned. The quality 
level does influence the clustering of the conformations (e.g. maximum number of 
conformations to generate before initial clustering, RMSD starting threshold and en-
largement per round in Å, cf. supporting information ref D4). If standard parameters 
are used, it resets the initial coordinates of the molecule. (New coordinates are gener-
ated with CoordinateGenerator.) The function also performs Platinum geometry and 
planarity checks for ring systems (including macrocycles). 

ConformationClustering: Clusters conformations by RMSD to form the ensemble. The 
method calls functions from the Clustering library with the corresponding template 
arguments. The clustering method is a special case of sphere exclusion clustering and 
strongly depends on the order of input conformations. The cluster threshold is in-
creased between iterations. Conformations that are no cluster centers are deleted. The 
cluster algorithm is described in detail and with a visual representation in Figure S1 in 
the supporting information of ref D4. 

MacrocycleConformationGenerator: Generates conformations for macrocycles (rings 
formed by 10 or more atoms; definition is adjustable). Utilizes a special procedure to 
cut macrocycles (splitter) and a local optimization algorithm (optimizer) or the re-
building of the macrocycles after conformer generation. The splitter function slices 
macrocycles by cutting bonds until no macrocycles are left. Conformations are then 
generated for these structures (without macrocycles) with the standard conformer gen-
eration procedure. The resulting conformations serve as starting points for the optimi-
zation. The tailored optimizer utilizes simplified force field terms for bond distortion, 
angle bending, and torsion energy to evaluate the deviations of molecular geometries 
from the ideal values and to assess steric clashes. The macrocycle conformer genera-
tion algorithm of Conformator is described in detail in ref D4 and a visual representa-
tion can be found in Figure S2 in the supporting information.
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B.2 Conformator User Guide 
This section explains the usage and basic program options of Conformator, the con-
former ensemble generator developed for this thesis. Conformator is available as a 
standalone command-line tool within the NAOMI ChemBio Suite (from 
https://uhh.de/naomi). Conformator is a straightforward command line tool, with no 
setup required and can be easily implemented into a cheminformatics pipeline.  
 
Conformator can be called in the following manner implicitly using the default values 
for conformer generation: 
 
conformator.exe -i inputfile.smi -o outputfile.sdf 

 
or with explicit configuration parameters, e.g. with quality level “Fast” (instead of the 
standard “Best”) and a maximum ensemble size of 50 (instead of the standard 250): 
 
conformator.exe -i inputfile.smi -o outputfile.sdf -q 1 -n 50 

 
From a file with multiple molecules a range of molecules to be processed can be spec-
ified, e.g. to only process molecules 3 to 8: 
 
conformator.exe -i inputfile.smi -o outputfile.sdf -f 3 -t 8 

 
It is also possible to include hydrogen atoms in the clash calculations (--hydrogens) 
and to keep initial coordinates as starting point for conformer generation (--keep3d). 
 
Command line option   Description 
-h [--help]     Show command line options 
-v [ --verbosity ] arg (=3)   Set verbosity level 

(0 = Quiet, 1 = One-line-summary, 2 = Errors, 3 
= Warnings, 4 = Info)a 

-i [ --input ] arg    Input file (sdf, mol2, smi, inchi), suffix is  
required. 

-o [ --output ] arg (=temp.sdf)   Output file, suffix is required. 
-n [ --nOfConfs ] arg (=250)   Set maximum number of conformations to be  

generated. 
-q [ --quality ] arg (=2)  Set quality level (1 = Fast, 2 = Best) 
-f [ --from ] arg (=1)    Position of first entry in the calculation  

[start:1]. 
-t [ --to ] arg (=4294967295)  Position of last entry in the calculation. 
--hydrogens     Consider hydrogen clashes during 

conformation generation. 
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--keep3d     Keep initial 3D coordinates for molecule as 
starting point for conformation generation. 

--macrocycle_size arg (=10)   Define minimum size of macrocycles (<= 10) 
--rmsd_input     Calculate the minimum RMSD of the closest 

ensemble member to the input structure.b 

--rmsd_ensemble   Calculate the minimum RMSD of the closest 
ensemble members to each other.b 

 
a One-line-summary prints a single line per molecule to standard out that reports on: 
 
<infile id> <name> <nof conf> <stereo> [Error Message | ok] 
 
Where 'stereo' can be: Absolute stereochemistry detected and preserved (INPUT), 
Ambiguous stereochemistry detected; single stereochemistry assigned (PURE) and 
Ambiguous stereochemistry detected; stereo centers enumerated in macrocycle 
(RACEMATE). 
Info additionally includes debug output and the list of unambiguous SMILES ("US-
MILES") corresponding to the conformers generated. 
 
b Due to symmetry correction, calculating the minimum pairwise RMSD between a 
generated conformer and the input conformer (--rmsd_input), or even the minimum 
pairwise RMSD between any generated conformers (--rmsd_ensemble), may lead to 
substantially longer runtimes.
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B.3 Conformer Generation with RDKit 
The following contains the simple python code that was used for conformer generation 
with RDKit. It is directly based on the recommendations and examples in the RDKit 
Cookbook (http://www.rdkit.org/docs/Cookbook.html).  
 
#!/usr/bin/python 
import os 
import subprocess 
import sys 
import getopt 
 
#Created on: June 25, 2015 
#Author: Nils-Ole Friedrich 
#RDKit conformer ensemble generation 
 
def main(argv): 
   inputfile = '' 
   outputfile = '' 
   nofConfs = 0 
   try: 
   opts, args =  

getopt.getopt(argv,"hi:o:q:n:", 
["ifile=","ofile=","nconfs="]) 

   except getopt.GetoptError: 
   print 'rdkit_generate_conformers.py -i <inputfile> -o  

<outputfile> -n <nofConfs>' 
   sys.exit(2) 
   for opt, arg in opts: 
   if opt == '-h': 
      print 'rdkit_generate_conformers.py -i <inputfile> -o  

<outputfile> -n <nofConfs>' 
      sys.exit() 
   elif opt in ("-i", "--ifile"): 
      inputfile = arg 
   elif opt in ("-o", "--ofile"): 
      outputfile = arg 
   elif opt in ("-n", "--nconfs"): 
      nofConfs = int(arg) 
   print 'Input file: ', inputfile 
   print 'Output file: ', outputfile 
   print 'nofConfs: ', nofConfs 
 
   molname=os.path.basename(inputfile) 
   os.path.splitext(molname) 
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   molname = os.path.splitext(molname)[0] 
   print 'Input molecule: ', molname 
 
   from rdkit import Chem 
   from rdkit.Chem import AllChem 
   m = Chem.MolFromMolFile(inputfile) 
   m2 = Chem.AddHs(m) 
   print 'generating conformers, no pruning, but optimization  

with universal force field' 
 
#no clustering (pruning) but optimization with universal force 
#field 
   conformers =  

AllChem.EmbedMultipleConfs(m2, numConfs=nofConfs) 
 
#with clustering (pruning) and optimization with universal 
#force field 
#conformers =  

#AllChem.EmbedMultipleConfs(m2, numConfs=nofConfs,  
#pruneRmsThresh=1.0) 

#print 'generating conformers, with pruning (1 A) and  
#optimization with universal force field' 
 
   print 'optimization and writing to file' 
   with open(outputfile, "a") as myoutfile: 
  w = Chem.SDWriter(myoutfile) 
  for id in conformers: AllChem.UFFOptimizeMolecule(m2,  

confId=id) 
  for id in conformers: w.write(m2, confId=id) 
  w.flush() 
   print 'generation done' 
 
if __name__ == "__main__": 
  main(sys.argv[1:]) 
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B.4 Conformer Generation with MOE  

The following contains the SVL code used for conformer generation with MOE. The 
different conformer generation algorithms in MOE (Stochastic, LowModeMD and 
Systematic) are implemented as different “quality levels”. The code was run in batch 
mode, as described in the usage section of the comments. 
 
// 
//moe_confsearch.svl computes conformations for an SD file 
// 
//    created: 20.05.2014 
//    last update: 22.03.2016 
// 
//    author: Nils-Ole Friedrich 
//     
// Description: 
//    Given an SD file token the function imports 
//    the SD file, computes conformations and exports the 
//    results back to another SD file 
// 
// Usage: 
//    (1) Load thus function; 
//    (2) At the SVL command line, enter: 
// 
// svl> moe_confsearch  
//  ['input_sd_filename','output_sd_filename',  
//  'pure_filename', 'number_of_conformations',  
//  'algorithm'] 
// 
//    Alternately, this file can be run from batch mode 
// 
//    moebatch 
//   -exec "run['moe_confsearch', 
//    ['input_sd_filename', 
//    'output_sd_filename', 
//    'pure_filename', 
//    'number_of_conformations', 
//    'algorithm']]" -exit 
// 
 
 
#set main 'cs' 
 
const SD_OPTIONS = [ 

append:      1,  //1 to append all new records 
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     add_hydrogens: 1, //1 to add hydrogens to molecules 
     start_entry:     1,    //range of entries to import 
     end_entry:     [],    //if null then import all entries 
     file_field:     0,   //if true write field w. file name 
    no_fields:     0 //import mol field only 
]; 
 
function  db_ImportSD, ConfSearch, db_ExportSD,  

    db_ComputeCompound; 
 
function cs [sdfile, outfile, purefilename, nofconf, algo] 
 

local options = SD_OPTIONS; 
 
 if not length outfile then 
      outfile = tok_cat [fbase sdfile, '_out.sdf']; 
 endif 
 
 //algo to qualitylevel 
 local qualitylevel = '1'; 
     
 write ['{}', tok_cat ['qualitylevel: ',qualitylevel, 

 '\n']]; 
 write ['{}', tok_cat ['algo: ',algo, '\n']]; 
     
 if(algo == 'LowModeMD') then 
    qualitylevel = '2'; 
 endif 
 if(algo == 'Systematic')then 
    qualitylevel = '3'; 
 endif 
     
// create temp MOE database 
 local dbfile = tok_cat ['/output/moe_',  

qualitylevel,'_',nofconf,'/', 
purefilename, 'temp.mdb']; 

 local mdb = db_Open [dbfile, 'create']; 
 db_Close mdb; 
 
// import SD file 
 write ['{}', tok_cat['Importing ', sdfile, ';...\n']]; 
 db_ImportSD [dbfile, sdfile, 'mol', [], [], [],  

  options]; 
     
 local ensembleoutfile = tok_cat ['/output/moe_',  

qualitylevel,'_',nofconf,'/',  
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purefilename, 'csearch_ensemble.mdb']; 
 
     
//ConfSearch call     
 
 write ['{}', tok_cat ['Computing Conformations on ',  

sdfile, ';...\n']]; 
 
 ConfSearch [ 
     infile      : dbfile // '' for current system 
 ,   infile_data : 1        // copy source data fields? 
 ,   infile_esel : 0       // selected entries only? 
 ,   outfile     : ensembleoutfile // output database 
 ,   dbview      : 0        // open output mdb in viewer? 
 ,   dbappend    : 0     // append to existing mdb? 
 ,   method      : algo // the algorithm to use  

// 'LowModeMD' | 'Stochastic'  
// | 'Systematic' 

 ,   cutoff      : 7.0     // the strain energy 
// cutoff, default 7.0 

 ,   cutoff_chi  : 1       // strain within stereo class  
 ,   maxconf     : nofconf  // max number of conf 

// originally 10000 
 ,   maxfail     : 100  // stochastic failure limit,  

// orig. 100 
 ,   maxit       : 1000    // iteration limit,  

//orig. 10000 
 ,   gtest       : 0.005   // energy gradient test, 

//default 0.005 
 ,   mm_maxit    : 500      // minimization iteratio 

//limit, originally 500 
 ,   rmsd        : 0.25    // rmsd tolerance for  

//duplicates, orig. 0.25 
 ,   rmsd_H      : 0      // include H/LP in rmsd calc? 
 ,   free_shape  : 0       // unfixed atoms only in  

// shape? default 0 
 ,   pot_charge  : 0       // re-calculate partial  

// charges? default 1 
 ,   invert_sp3  : 0       // invert sp3 stereo centers?  

// default 0 
 ,   rot_amide   : 0      // rotate amide bonds? 
 ,   rot_double  : 0       // rotate double bonds? 
 ,   chair_only  : 1     // chair conformations only? 
 ,   verbose     : 1      // write to SVL Commands  

// window? 
 ]; 
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// compute mol names, does not work in more recent versions 
 //db_EnsureField [dbfile, 'name', 'char']; 
   // db_ComputeCompound [dbfile,'mol', 'name']; 
     
 local ensemblefile = ensembleoutfile; 
 local ensemblemdb = db_Open [ensemblefile]; 
 db_Close ensemblemdb; 
 
// export ensemble to output SD file 
 write ['{}', tok_cat ['Exporting ', ensemblefile, ' to  

', outfile,'...\n']]; 
 db_ExportSD[ 
      ensemblefile, 
      outfile, 
      first db_Fields ensemblefile, 
      db_Entries ensemblefile 
 ]; 
     
// delete temp MOE mdb files 
 fdelete dbfile; 
 fdelete ensemblefile; 
 
 write ['{}', tok_cat ['Finished conformational search on  

',sdfile, '\n']]; 
endfunction 
 

  



 
 
 
 
 

APPENDIX C.1 
 
 

90 
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ABSTRACT: We developed a cheminformatics pipeline for
the fully automated selection and extraction of high-quality
protein-bound ligand conformations from X-ray structural
data. The pipeline evaluates the validity and accuracy of the 3D
structures of small molecules according to multiple criteria,
including their fit to the electron density and their
physicochemical and structural properties. Using this ap-
proach, we compiled two high-quality datasets from the
Protein Data Bank (PDB): a comprehensive dataset and a
diversified subset of 4626 and 2912 structures, respectively.
The datasets were applied to benchmarking seven freely available conformer ensemble generators: Balloon (two different
algorithms), the RDKit standard conformer ensemble generator, the Experimental-Torsion basic Knowledge Distance Geometry
(ETKDG) algorithm, Confab, Frog2 and Multiconf-DOCK. Substantial differences in the performance of the individual
algorithms were observed, with RDKit and ETKDG generally achieving a favorable balance of accuracy, ensemble size and
runtime. The Platinum datasets are available for download from http://www.zbh.uni-hamburg.de/platinum_dataset.

■ INTRODUCTION

Three-dimensional approaches in computer-aided molecular
design such as ligand docking, pharmacophore modeling and
3D QSAR rely on the accurate representation of the protein-
bound conformations of small molecules. A common approach
to covering the conformational space is to compute ensembles
of representative conformers. Given its importance to the field,
conformer ensemble generation is a well-studied problem1 that
continues to be a current, relevant and challenging topic in
cheminformatics.
Algorithms for conformer ensemble generation can be

divided into two main broad categories: systematic and
stochastic approaches. A large variety of methods are available
today, including simulations, evolutionary algorithms, geo-
metric distance- and knowledge-based approaches, as well as
random and systematic searches. Furthermore, combined
approaches exist, e.g., it is common practice to check or
evaluate randomly generated conformations with force field
simulations.2,3 Computational efficacy varies dramatically
among the various algorithms available to date.4

The geometric deviation between the experimentally
determined bioactive ligand conformation(s) and the best
matching, computed conformer is generally expected to
correlate with ensemble size and computational cost. Naturally,
large conformer ensembles are more likely to include accurate
representations of protein-bound ligand conformations. How-
ever, they come at increased computational cost during
generation and, more importantly, in downstream applications
(e.g., 3D virtual screening). The ultimate goal is a computa-

tionally efficient algorithm, capable of producing conforma-
tional ensembles of small size that accurately represent protein-
bound ligand conformations.
A wide variety of algorithms for conformer ensemble

generation are available today, among them freely available
tools such as Balloon,5 RDKit,6 Confab,3 Frog27 and Multiconf-
DOCK.8 Several benchmarking studies of conformer ensemble
generators have been published in recent years. Most are not
comparable to each other because of the different datasets
(Table 1) and protocols used. One of the earliest works
compared Catalyst,9,10 Confort,11 Flo99,12 MacroModel13 and
OMEGA14 for their ability to reproduce bioactive conforma-
tions.15 The dataset consisted of 32 ligands, and a cutoff for
resolution of 2.0 Å was applied as the primary quality criterion
for selection. However, resolution is not a measure of the
quality of a model but the quantity of the underlying data16 and
therefore not appropriate as an exclusive quality criterion. A
follow-up study examined the performance of OMEGA on a set
of 36 ligands.17

Kirchmair et al.18,19 published the first studies that employed
datasets of several hundred structures of protein-bound ligand
conformations extracted from the PDB20 to test conformer
ensemble generators, in this case two algorithms implemented
in the pharmacophore modeling tool Catalyst and OMEGA.
Again, the resolution of the X-ray structures served as the
primary quality criterion for data selection. A related set of 918
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molecules was extracted from the PDB for the validation of
CAESAR,21 and a subset thereof was later used in a
comparative analysis of methods based on molecular force
fields and multiple empirical criteria.22

Hartshorn et al.23 defined a high-quality dataset of 85
structures of proteins cocrystallized with drug-like compounds,
which they designed for benchmarking ligand docking
algorithms. Later, this dataset was used for comparing the
performance of Frog and OMEGA.7 There are also several
studies in which different datasets were merged in order to
improve coverage of the (mostly drug-like) chemical space. For
example, Chen and Foloppe24 combined three sets of
compounds to come up with a diverse set of 130 ligand
structures to compare the conformer ensemble generators
implemented in MOE25 and Catalyst. Recently, this dataset was
also used for comparing the performance of Confgen, MOE,
OMEGA and RDKit to BCL::Conf.26 A significant push toward
larger-sized, high-quality datasets of protein-bound ligand
conformations came from Hawkins et al.14 They systematically
analyzed the insufficiencies of current approaches and defined a
panel of stringent quality criteria to come up with a
benchmarking dataset of 197 ligand structures extracted from
the PDB. These criteria included the real-space correlation
coefficient (RSCC),27 real-space R-value (RSR)28 and the
diffraction-component precision index (DPI).29 The RSR is
used to detect parts of the structures where the calculated and
observed electron density maps disagree. The RSCC is the
correlation coefficient between those two electron density
maps.27 Both RSR and RSCC are based on matching electron
density shapes. Thus, well-shaped but weak electron density
can result in a misleading positive score.30 The DPI is a global
precision estimate of structure model and data quality. It takes
Rfree into account for estimating the uncertainty of atomic
coordinates obtained by structural refinement of protein
diffraction data. This benchmarking dataset was used to analyze
the performance of OMEGA14 and served as a basis for further
benchmarking datasets and comparative studies.4,31 The
highest-grade dataset published so far is Iridium-HT.32 It
comprises 121 high-quality structures, manually selected
according to a set of stringent criteria. In addition to established

criteria (e.g., R-factor), many additional parameters were taken
into account, including the completeness of the electron
density in the active site. A significant effort was made in
manually assigning the correct ligand topology, stereo-
chemistry, ionization and tautomeric states, etc. The dataset
was used, e.g., to evaluate the performance of the conformer
ensemble generator CONFECT.33

Because of the significant effort involved in detecting high-
quality structures of protein-bound ligands, the currently
available datasets are small and therefore limit statistical
analysis. In this study, we report on the development of a
new cheminformatics pipeline for the fully automated
compilation of high-quality datasets from the PDB. This
approach not only allows for the effective compilation of large,
customized datasets but also enables frequent updating. The
dataset was applied to the assessment of the performance of
seven current, freely available conformer ensemble generators:
Balloon (two different algorithms), RDKit (two different
algorithms), Confab, Frog2 and Multiconf-DOCK.

■ METHODS
Dataset Compilation. In the first step (Figure 1, step 1),

the PDB web service37 was queried for any entries matching the
following criteria: (i) the electron density map is available from
the Uppsala Electron Density server (EDS),38,39 (ii) a free (i.e.,
noncovalently bound) ligand is present, (iii) Rwork is lower than
0.4 and (iv) Rfree is lower than 0.45. The definition of these
criteria is in line with those of the Iridium-HT dataset.32 All
further steps were fully automated using shell and Python
scripts. RDKit40 was used for computing canonical SMILES,
the number of rotatable bonds, number of heavy atoms and
structural similarity, and for clustering.
Common buffer compounds, crystallization agents and

metal−organic compounds were discarded (step 2) based on
the lists of “unwanted ligands” and “organo-metallic complexes”
obtained from the sc-PDB41 and identified by their HET codes.
Ligands lighter than 130 u and heavier than 600 u (step 3),
structures originating from crystal structures with resolution of
less than 2.5 Å (step 4) and covalently bound ligands were
discarded (step 5) based on information available from the
PDB ligand summary. Only molecules consisting of H, C, N, O,
F, Si, P, S, Cl, Br and I were retained (step 6). Twenty more
entries were removed; four of them lacked the required
information from the PDB and 16 contained uncommon
chemical bonds. Next, ligands with a minimum of 10 heavy
atoms (step 7) and 1 to 16 rotatable bonds were selected (step
8).
All 24 550 PDB structures matching the above criteria were

downloaded from the PDB website and the DPI was calculated
with DPICalc42 according to the definition by Goto.43

Following the work of Hawkins et al.,14 a maximum DPI of
0.42 Å was allowed (step 9), which leads to a maximum average
positional uncertainty of 0.6 Å in the remaining structures.29 To
eliminate ligands with alternative conformations, only struc-
tures with occupancy equal to 1 for all atoms were selected
(step 10).
The electron density of all ligands was examined with the

Electron Density score for Multiple Atoms (EDIAm),
44,45 which

results from the combination of the respective scores for the
individual atoms (Electron Density scores for Individual Atoms,
EDIA). Only ligands with EDIAm greater than 0.8 were
incorporated into the dataset (step 11). Electron density maps
required for computing EDIAm values were downloaded from

Table 1. Overview of Datasets Used for Benchmarking
Conformer Ensemble Generatorsa

Dataset name CSD PDB Others Year Reference

Boström 32 2001 15
Original GOLD Validation
(Nissink et al.)

134 2002 35

Boström et al. 36 2003 17
Perola and Charifson 100 50 2004 36
Kirchmair et al. 510 2005 18
Kirchmair et al. 778 2006 19
Astex diverse
(Hartshorn et al.)

85 2007 23

Li et al. 918 2007 21
Vernalis 130 2008 24
Bai et al. 742 2010 22
Hawkins et al. 480 197 2010 14
Ebejer et al. 469 239 2012 4
Iridium-HT (Warren et al.) 121 2012 32
Riniker and Landrum 1290 238 2015 31
aMost of the datasets are derived from PDB structures; a few also
include structures from the Cambridge Structural Database (CSD) or
publically unavailable structures (“others”).34
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the EDS. The most likely protonation states and hydrogen
coordinates of the ligands were determined in the protein
binding pocket with Protoss46 (step 12). In total, 148 nucleic
acids or other molecules were discarded during that process.
RDKit was used to generate canonical SMILES of the
remaining molecules. For 182 structures, this was not possible.
The dataset was checked for molecules with geometric errors

using the software library NAOMI.47 Any molecules having at
least one bond that differs by more than 0.2 Å from its ideal
value48 were removed from the dataset (step 13). Also,
molecules having at least one atom angle differing by more than
12° from the VSEPR angle (16° in the case of oxygen, sulfur
and phosphorus) were removed from the dataset. Corrections

were made for cases like the smaller C−N−O angles in oximes
that are mostly between 110° and 114°.49

Duplicates among the remaining 12 409 ligands were
removed based on canonical SMILES (considering heavy
atoms only), preserving the structure with the best DPI value
(step 14). The remaining 5306 structures were checked for
topological correctness by comparing the chemical structure
computed with Protoss with those deposited in Ligand Expo:50

The chemical structure of a ligand was deemed correct if the
canonical SMILES representations from both sources were
identical after canonization with RDKit (step 15). This was the
case for 4626 ligands, and these constitute the Platinum
benchmarking dataset. A diverse subset of 2912 structures (the
Platinum Diverse Dataset) was selected by Butina clustering51

with ECFP6-like Morgan fingerprints and a Tanimoto similarity
cutoff of 0.5 (computed with RDKit).

Conformer Ensemble Generation. Conformer ensembles
were generated with Balloon,52 RDKit,42 Confab53 and
Multiconf-DOCK.54 The conformer ensemble generators
were fed with a standard 3D conformation computed for
each molecule with NAOMI from its SMILES notation.
Ensembles comprising a maximum of 10, 50, 250 or 500
conformers were generated with default parameters. For the
Balloon Genetic Algorithm (GA), the interconformer RMSD
limit was set to 0.0 Å, whereas for Confab an RMSD cutoff of
0.0 Å and for Multiconf-DOCK an RMSD window of 0.0 Å
were used to produce ensembles that are as close to the
maximum allowed ensemble size as possible. For Frog2, force
field minimization for each conformer was enabled for the
generation of ensembles with a maximum of 250 or 500
conformers (the default algorithm minimizes high energy
conformers only). RDKit supports the minimization of
conformers with the MMFF and UFF.6 In this work, the latter
was used for all ensemble sizes.

Statistical Analysis. Reported RMSDs were calculated with
NAOMI as the minimum heavy atom RMSDs measured
between the reference structure and any of the computed
conformers of an ensemble, considering symmetry. The
significance of differences in the performance of conformer
generators was determined by pairwise Mann−Whitney U tests.
The significance level for each Mann−Whitney U test was
adjusted according to the Bonferroni procedure for controlling
the family wise error rate (FWER). Repeated runtime tests
showed deviations of less than 5%.

Hardware Setup. All calculations were performed on Linux
workstations running openSUSE 13.1 and equipped with Intel
Xeon processors (2.2 to 2.7 GHz) and 126 GB of main
memory.

■ RESULTS
Platinum Benchmarking Datasets. Two high-quality

datasets for benchmarking conformer ensemble generators
were compiled using a fully automated cheminformatics
pipeline: the Platinum and Platinum Diverse datasets,
consisting of 4626 and 2912 high-quality structures, respec-
tively. The cheminformatics pipeline for dataset compilation
consists of a cascade of filtering steps (Figure 1) that remove
unwanted molecules (e.g., crystallization agents or organo-
metallic complexes) and molecules not relevant to drug
discovery (e.g., very small or large molecules, highly flexible
molecules, molecules with uncommon atom types), structures
with topological or geometrical errors and structures of low
quality (e.g., with low resolution, high DPI or low EDIAm). The

Figure 1. Overview of the cheminformatics pipeline for selecting high-
quality X-ray structures of protein-bound ligand conformations from
the PDB. The numbers of ligands that passed each filtering step are
reported on the right. The sequence of the individual steps (indicated
on the left) was optimized for short runtimes.
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EDIA is a fully automated scoring approach that evaluates the
support of an atom by the electron density. It is based on the
work of Nittinger et al.55 and freely available via the
ProteinsPlus Server.45 Previously, the compilation of datasets
(e.g., the Astex, Iridium and PDBbind core set 201356 datasets)
required the manual inspection of electron density maps due to
the limitations of the RSCC and other density correlation
scores.55,57 The EDIA considers inappropriate electron density
contours and electron density sphere clashes of noncovalently
bound atoms by analyzing the 2fo-fc electron density map. By
combining a shape and an intensity match to compute the
EDIA, the program reliably marks outliers in contrast to, e.g.,
the RSCC. For the quality assessment of a set of atoms, such as
those comprising a ligand, the EDIA scores are combined with
the help of the power mean to compute the EDIAm. The
scoring range of EDIA from 0 to 0.4 marks a structure as badly
supported, 0.4 to 0.8 as mediocre supported and 0.8 to 1.2 as
well supported by the experimental data.
Physicochemical Properties of the Platinum Datasets.

The distributions of computed physicochemical properties

among compounds of the Platinum datasets were compared
with those of the compounds present in the Approved Drugs
subset of DrugBank.58 These distributions are very similar
among the three datasets (Figure 2) and also the averages are
within small margins (Table 2). Thus, the Platinum datasets are
representative of drug-like molecules.

Performance of Freely Available Conformer Ensemble
Generators. The Platinum datasets were used for benchmark-
ing seven freely available algorithms for conformer ensemble
generation: Balloon (the distance geometry and genetic
algorithm), the standard conformer ensemble generator
implemented in RDKit and the Experimental-Torsion basic
Knowledge Distance Geometry (ETKDG) recently introduced
to RDKit,31 as well as Confab, Frog2 and Multiconf-DOCK.
Balloon generates one initial conformer by distance geometry

and uses a multiobjective genetic algorithm (Balloon GA) to
generate the ensemble. Torsion angles, stereochemistry of
double bonds, tetrahedral chiral centers and ring conformations
are modified. A postprocessing step with an MMFF94-like force
field releases strain and removes duplicates and strained

Figure 2. Distributions of molecular properties calculated for the Platinum datasets and the Approved Drugs subset of DrugBank.
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structures. Optionally, the ensemble can be generated by
distance geometry only (Balloon DG).5

The standard conformer ensemble generator implemented in
RDKit follows a distance geometry approach.59 Based on a set
of rules and the connection table of the molecule, the algorithm
computes a distance bounds matrix. Random distance matrices
that satisfy these bounds are used to produce atom coordinates.
The resulting conformers are optionally minimized with a force
field.
ETKDG is a recently developed conformer ensemble

generator that was implemented in RDKit. It is based on a
distance geometry approach that uses torsional-angle prefer-
ences obtained from small-molecule crystallographic data.
Importantly, it also uses a chemical knowledge component
that replaces force field minimization.31

Confab is a knowledge-based tool for conformer ensemble
generation. It generates all conformers described by a set of
torsion rules during a systematic search by changing torsion
angles. Confab requires molecules to have at least one rotatable
bond. The algorithm normally aims at building a maximum of
one million conformers for a given molecule.
Frog2 is a graph-based approach in which the nodes are

rings, interconnecting linkers or appendices of rings. It uses
DG-AMMOS60 to generate rings missing from the ring library.
It does not address ring flexibility but includes an option for
minimizing the energy of the generated conformers using
AMMOS.61 Frog2 depends on the Open Babel software
package62,63 for minimization and data conversion.7

Multiconf-DOCK8 is based on an implementation of a
systematic search for ligand flexibility in the program DOCK
5.64,65 It extends multiple possible anchor segments incremen-
tally and generates conformations by rotating all single,
nonterminal, acyclic bonds in specified increments. The user
can define an RMSD cutoff as well as an energy threshold
relative to the initial single conformation. Multiconf-DOCK
uses the Amber force field66 in DOCK 5 to select low-energy
conformers.
The performance of the individual algorithms was evaluated

with respect to three key parameters: accuracy, ensemble size
and computing time. An overview of the benchmarking
workflow is provided in Figure 3. Ensembles consisting of a
maximum of 10, 50, 250 and 500 conformers were generated.
The small ensemble sizes represent use cases where speed is of
essence, whereas the larger ensemble sizes represent scenarios
where the accurate representation of protein-bound ligand
conformations is the overriding priority.

Accuracy and Success Rates. Conformer ensemble
generators are commonly evaluated with respect to their
capability of reproducing the experimentally determined
conformations of small molecules, primarily protein-bound
ligand conformations as observed in crystal structures. The
term “accuracy of a conformational ensemble” usually refers to
the RMSD [Å], calculated for the best-fitting conformer of an
ensemble compared to the experimentally observed conformer.
The RMSD depends on the size of the molecule and is not
normalized. Despite these limitations, the RMSD remains the
de facto standard in benchmarking conformer ensemble
generators. It is regarded as an objective, universal and intuitive
function. RMSDs were calculated with NAOMI, which
determines the minimum RMSD of each molecular pair by
superposing them and enumerating all automorphisms
(corresponding to chemical symmetries).
The seven algorithms were tested on the Platinum datasets.

We found that the results obtained with both datasets were very
similar. Hence, for the sake of clarity, we decided to report only
the results obtained for the Platinum Diverse Dataset as the
most representative data source. For the same reasons we focus
our discussion on ensembles with a maximum of 250
conformers. The results for all investigated ensemble sizes are
reported in Table 3 and Figure 4 for the Platinum Diverse
Dataset.
Significant differences in the accuracy of the tested

algorithms were observed (Table S1). For example, ensembles
with a maximum of 250 conformers achieved mean RMSDs
between 0.63 and 0.92 Å (median between 0.52 and 0.77 Å).
The algorithms cluster in three groups with respect to accuracy.
The top-performing group consists of Balloon GA, RDKit and
ETKDG. These algorithms reproduced more than 80% of all
protein-bound ligand conformations with an RMSD of less
than 1 Å (Table 4). These top performers are followed by

Table 2. Arithmetic Mean and Standard Deviation
Computed for Physicochemical Properties for the Platinum
Datasets and the Approved Drugs Subset of DrugBanka

Platinum
Platinum
Diverse

Approved Drugs of
DrugBank

MW [Da] 351 ± 113 343 ± 114 386 ± 290
log P 1.8 ± 2.7 2.1 ± 2.4 2.1 ± 3.3
N_HBAs 3.4 ± 2.2 3.2 ± 2.0 4.7 ± 6.1
N_HBDs 1.9 ± 1.6 1.7 ± 1.5 2.7 ± 4.6
N_rot_bonds 5.1 ± 3.0 4.7 ± 2.9 5.8 ± 7.5
N_rings 2.8 ± 1.4 2.9 ± 1.5 2.8 ± 2.0

aMolecular weight (MW), log P, number of hydrogen bond acceptors
(N_HBAs), hydrogen bond donors (N_HBDs), rotational bonds
(N_rot_bonds) and rings (N_rings) computed with MOE.25

Figure 3. Workflow for benchmarking conformer ensemble
generators.
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Multiconf-DOCK and Frog2, of which more than 63% of
ensembles satisfied the RMSD criterion. The third group is
composed of Balloon DG and Confab, which produced
ensembles for 56% and 57% of the ligands in this test,
respectively. Confab did not produce any ensembles for a
significant number of molecules.
Accuracy is a function of maximum ensemble size. For very

small ensembles (maximum 10 conformers per ensemble), only

17 to 53% of the protein-bound ligand conformations were
reproduced with RMSDs of less than 1 Å. With these very small
ensembles, Frog2 performed substantially worse than for larger
ensemble sizes (see Figures S1−S3). Ensembles consisting of a
maximum of 50 conformers showed success rates of 45 to 67%
with this criterion and hence nearly achieve the performance
observed with ensembles of a maximum of 250 conformers (i.e.,
56 to 78%). Going beyond a maximum ensemble size of 250

Table 3. Arithmetic Mean and Median RMSD in Å Obtained for the Platinum Diverse Dataseta

10 50 250 500

Maximum ensemble size Mean Median Mean Median Mean Median Mean Median

Balloon DG 1.10 0.97 1.00 0.86 0.92 0.77 0.89 0.74
Balloon GA 1.22 1.10 0.90 0.80 0.72 0.63 0.67 0.58
RDKit 1.00 0.89 0.77 0.64 0.63 0.52 0.59 0.48
ETKDG 0.98 0.87 0.77 0.66 0.63 0.54 0.59 0.51
Confab 0.81 0.70 0.72 0.61 0.65 0.53 0.64 0.52
Frog2 1.18 1.19 0.93 0.85 0.75 0.65 0.77 0.67
Multiconf-DOCK 0.99 0.89 0.84 0.72 0.80 0.69 0.80 0.69

aNote that Confab did not produce ensembles for a large number of molecules (Table 7); therefore, its performance should not be directly
compared to that of any of the other tools. This is also true for Frog2 with a maximum ensemble size of 10. Interquartile ranges are provided in
Table S2.

Figure 4. Percentage of protein-bound ligand conformations of the Platinum Diverse Dataset that are reproduced by the different conformer
ensemble generators vs accuracy, ensemble size and runtime. Maximum ensemble size (a) 50 and (b) 250 conformations. Steeper curves indicate
better performance with respect to all three criteria. The graphs reporting the ensemble sizes for Balloon DG, RDKit and ETKD overlap because all
these algorithms fully exploit the maximum allowed ensemble size.

Table 4. Fraction of Structures of the Platinum Diverse Dataset Successfully Reproduced within a Specified RMSD Threshold

Maximum ensemble size 50 250

Minimum accuracy [Å] 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

Balloon DG 0.29 0.57 0.77 0.92 0.33 0.62 0.81 0.92
Balloon GA 0.30 0.72 0.90 0.97 0.43 0.84 0.96 0.99
RDKit 0.39 0.71 0.89 0.96 0.48 0.82 0.95 0.98
ETKDG 0.36 0.72 0.91 0.97 0.45 0.83 0.95 0.99
Confab 0.28 0.48 0.59 0.63 0.36 0.61 0.70 0.74
Frog2 0.23 0.56 0.79 0.89 0.33 0.68 0.86 0.92
Multiconf-DOCK 0.32 0.68 0.87 0.96 0.34 0.71 0.89 0.97
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conformers does not yield substantial improvements for ligands
with less than 12 rotatable bonds (see Figure S3).
Accuracy is also a function of molecular flexibility, which is in

part reflected by the number of rotatable bonds in a molecule.
Success rates drop substantially with increasing number of
rotatable bonds (Figure 5). For example, at an RMSD cutoff of
1 Å, success rates of RDKit decreased by eight percentage
points between molecules with two and eight rotatable bonds.
The drop in performance is 16 percentage points for an RMSD
cutoff of 0.6 Å, which is the guaranteed maximum positional
uncertainty of any molecules in the Platinum datasets because
of the DPI filter (see the Methods section). For highly flexible
molecules (number of rotatable bonds greater than 8), no
further drop in the success rates of any of the algorithms is
observed.
Conformer Ensemble Size. Success rates and accuracy

depend on ensemble size: The larger the ensembles, the higher

the chance of one of the conformations fitting closely to the
experimentally determined ligand conformation. For example,
for RDKit the mean RMSDs improve from 1.0 to 0.59 Å
(median 0.89 to 0.48 Å) by increasing the maximum number of
conformers per ensemble from 10 to 500 (as measured for the
Platinum Diverse Dataset; Table 3).
Although Balloon DG, Balloon GA, RDKit and ETKDG

largely fill up the ensembles to the defined threshold, the size of
the ensembles generated with Frog2, Confab and Multiconf-
DOCK strongly depends on the input molecule. Which of the
second group of algorithms produces the smallest ensembles
depends on the maximum ensemble size: Confab with
maximum ensemble sizes of 10, 50 and 250 (6, 20 and 66 on
average, respectively) and Multiconf-DOCK with a maximum
ensemble size of 500 (80 on average). Frog2, on the contrary,
generates large ensembles (176 conformers on average with a
maximum ensemble size of 250; Table 5). For some conformer

Figure 5. Percentage of molecules of the Platinum Diverse Dataset that were reproduced by the tested tools with RMSD smaller than 0.6 Å (left)
and smaller than 1 Å (right) as a function of the number of rotatable bonds. The maximum ensemble size was set to 50.

Table 5. Arithmetic Mean and Median Ensemble Sizes Measured for the Platinum Diverse Dataseta

10 50 250 500

Maximum ensemble size mean median mean median mean median mean median

Balloon DG 10 10 50 50 249 250 498 500
Balloon GA 9 10 49 50 244 250 487 500
RDKit 10 10 50 50 250 250 500 500
ETKDG 10 10 50 50 250 250 500 500
Confab 6 6 20 17 65 48 109 70
Frog2 9 10 42 50 176 250 300 381
Multiconf-DOCK 9 10 36 50 78 57 80 57

aNote that Confab did not produce ensembles for a large number of molecules (Table 7); therefore, its performance should not be directly
compared to that of any of the other tools. This is also true for Frog2 with a maximum ensemble size of 10. Interquartile ranges are provided in
Table S3.

Table 6. Arithmetic Mean and Median Runtimes in Seconds Measured for the Platinum Diverse Dataseta

10 50 250 500

Maximum ensemble size mean median mean median mean median mean median

Balloon DG 6 5 27 24 132 117 260 230
Balloon GA 4 3 19 17 105 98 256 234
RDKit 1 1 5 4 22 18 42 34
ETKDG 1 1 4 3 16 12 32 23
Confab <1 <1 <1 <1 <1 <1 <1 <1
Frog2 3 2 3 1 128 67 501 295
Multiconf-DOCK 5 1 8 2 15 3 15 3

aNote that Confab did not produce ensembles for a large number of molecules (Table 7); therefore, its performance should not be directly
compared to that of any of the other tools. This is also true for Frog2 with a maximum ensemble size of 10. Interquartile ranges are provided in
Table S4.
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ensemble generators (e.g., Balloon), the maximum ensemble
size defined by the input parameters is not a hard limit. For the
sake of comparability, we removed all supernumerary con-
formers that were generated after the maximum ensemble size
was reached.
Runtime. The largest difference among the tested

algorithms was observed for their runtimes (Table 6). Confab
was measured as the fastest algorithm by far, with mean
runtimes well below 1 s per conformer ensemble. Note that this
algorithm, however, did not produce ensembles for a
substantial subset of the test molecules. Apart from Confab,
ETKDG and RDKit were fastest in producing ensembles with a
maximum of 10 (ETKDG 1 s, RDKit 1 s) and 50 (ETKDG 4 s,
RDKit 5 s) conformers, and Multiconf-DOCK was the fastest
algorithm for generating large ensembles with a maximum of
250 and 500 conformers (15 s per ensemble).
Balloon DG was the slowest algorithm in most tests, with a

mean runtime of 132 s for ensembles with a maximum of 250
conformers. Frog2 was in general very fast, with a mean
runtime of 3 s per molecule for ensembles of up to 50
conformers. However, with force field minimization enabled (in
this study, this was enabled for ensembles with a maximum of
250 and 500 conformers), computing times increased
substantially to an average of 128 s for ensembles with a
maximum of 250 conformers. In some extreme cases,
computing time increased to nearly 2500 s for a single
ensemble with a maximum of 250 conformers.
Processing Failures. With the exception of Frog2 and

Confab, all tested algorithms produced ensembles for more
than 99% of all molecules in the Platinum Diverse Dataset
(Table 7). Frog2 uses the Open Babel software package. In our

tests, Frog2 produced best results in combination with Open
Babel version 2.3.0, which was used in this study. This
algorithm produced ensembles for up to 93% of all molecules
(with maximum ensemble sizes between 50 and 500).
Depending on the maximum ensemble size used, Confab
generated ensembles for 53 to 79% of all molecules of the
Platinum Diverse Dataset. Molecules with processing failures
were not included in the calculation of mean and median
accuracy, ensemble size and runtime.
Overall Performance. Ensembles generated with RDKit

and ETKDG were of comparable quality on average, but
differences in RMSDs of up to 2 Å (at maximum ensemble size
250) were observed for individual molecules (see Figure S4).
Because ETKDG is up to 25% faster than the original algorithm
implemented in RDKit, it is expected that ETKDG will become
the default ensemble generator in this cheminformatics toolkit.
Only weak correlations were observed between accuracy and

runtime: Frog2 showed the lowest correlation with an R2 of
0.20 and RDKit the strongest with an R2 of 0.42 (as measured

for the Platinum Diverse Dataset and ensembles with a
maximum of 250 conformers; see Figure S5). No correlation
was observed for ensemble size and accuracy for any of the
investigated algorithms (Figure S6).
Multiconf-DOCK benefits less from larger maximum

ensemble sizes than the other algorithms: We measured a
mean RMSD of 1.0 and 0.8 Å for ensembles with a maximum
of 10 and 500 conformers, respectively (for the Platinum
Diverse Dataset). One of the reasons for this difference is that
Multiconf-DOCK does not exploit the maximum allowed
number of conformers per ensemble. Confab produces small
ensembles of high quality, faster than all other algorithms, but
fails to process a substantial number of molecules of the
Platinum Diverse Dataset.
We performed pairwise Mann−Whitney U tests on the

complete set of RMSD values to compare the performance of
the conformer generators. The significance level for each
Mann−Whitney U test was adjusted to α/N according to the
Bonferroni procedure for controlling the FWER, where N is the
number of tests. This adjustment ensures that the FWER is less
than α. Because 21 pairwise comparisons of the conformer
generators were carried out, the significance level of each
individual test was 0.0024 and 0.00048 for α = 0.05 and α =
0.01, respectively (Table S1). Controlling the FWER is
important because the chance of making at least one Type 1
error (i.e., false positive prediction) increases with the number
of statistical tests performed on the data. With 21 tests, as in
this study, there is a 65.9% chance of making at least one Type
1 error at α = 0.05 unless the significance level for the
individual tests is adjusted.
As hypothesized based on the accumulation curves presented

in Figure 4, RDKit performs significantly better than Balloon
GA, Balloon DG, Frog2 and Multiconf-DOCK according to the
Mann−Whitney U test (p < 0.00048; Table S1), because the
null hypothesis was rejected and RDKit tends to have lower
RMSD values. In addition, nearly all differences in accuracy are
significant at α = 0.01, with the exception of the following pairs:
RDKit vs ETKDG, RDKit vs Confab, ETKDG vs Confab, and
Frog2 vs Multiconf-DOCK. Any statistically significant results
for Confab, however, should be considered in the context of its
low success rates (Table 7).
We observed some geometrical errors regarding bond length,

bond angles and planarity of aromatic rings in individual
conformers of the ensembles from each tool, except Multiconf-
DOCK and Confab. For example, the planarity of aromatic
rings was severely disturbed in conformers of PDB Ligand ID
JD5 by Balloon DG, FHC by Balloon GA and XMM by RDKit
(Figure 6). A few conformers generated by RDKit for XMM
also contained carbon−carbon single bonds of 1.15 instead of
1.52 Å. Large strain in the angle of an sp3-hybridized carbon
(i.e., 125.9° instead of 109.5°) was observed for a conformer of
ZBF generated by ETKDG. Frog2 significantly changed the
bond lengths of carbon−nitrogen triple bonds (i.e., 1.46 Å
instead of 1.14 Å) for ligand 264 from 2RBN.

■ CONCLUSIONS
In this work, we report on a new cheminformatics pipeline for
compiling high-quality datasets of protein-bound ligand
conformations determined by X-ray crystallography. To the
best of our knowledge, the two Platinum datasets derived with
this pipeline are the largest publically available datasets of such
high quality. Dataset size is of key importance to assuring
statistical significance in detecting more subtle differences

Table 7. Percentage of Successfully Processed Molecules for
the Platinum Diverse Dataset

Maximum ensemble size 10 50 250 500

Balloon DG 99 99 99 99
Balloon GA 100 100 100 100
RDKit 99 100 100 100
ETKDG 100 100 100 100
Confab 53 65 75 79
Frog2 89 93 93 92
Multiconf-DOCK 100 100 100 100

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.6b00613
J. Chem. Inf. Model. 2017, 57, 529−539

536

http://dx.doi.org/10.1021/acs.jcim.6b00613


among the various algorithms, a fact which has recently been
highlighted by Riniker et al. in a comparative study.31 The
Iridium-HT (121 molecules) and Hawkins datasets (197
molecules) are comparable in quality to the Platinum datasets.
Our analysis of the sufficient sample size for a 99% confidence
level and 5% margin of error showed that the minimum
required sample size is 663 molecules. This minimum sample
size is calculated for very large or unknown population size
based on the standard deviation, confidence level and margin of
error. Lowering the confidence level to 95% results in a
necessary sample size of 384 structures. Hence, neither dataset
nor any combination of the two could include enough
structures for a direct comparison, let alone the same level of
confidence that can be reached with the Platinum datasets.
The automated compilation procedure is based entirely on

objective measures with no expert biases involved, which is not
the case for any of the previously available datasets. The vast
majority of compounds in the Platinum datasets are drug-like,
which makes them particularly useful for testing methods

employed in drug discovery. In addition, the automated
procedure allows us to provide regular updates based on the
latest data from the PDB.
The two datasets were presented and applied to benchmark-

ing seven freely available conformer ensemble generators. We
found significant differences in the performance of the tested
algorithms. Overall, RDKit and ETKDG emerged as preferred
algorithms under most tested scenarios. Some other algorithms
were found to perform particularly well in more specific use
cases (e.g., scenarios where very large conformer ensembles are
needed or where speed is of essence). Confab and Frog2 did
not produce ensembles for a substantial number of molecules.
Also, we detected errors in the assignment of bond lengths,
bond angles and the planarity of rings for Balloon DG, Balloon
GA, RDKit, ETKDG and Frog2.
We hope that the Platinum datasets will find widespread

application in the scientific community and help advance the
development of conformer ensemble generators and related
technologies.
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Figure 6. Examples of geometrical errors introduced by conformer
ensemble generators. Input conformations are depicted on the left and
computed conformers on the right. (a) Disturbed aromatic ring
geometries observed with Balloon DG (JD5 from 4NFK) and (b)
Balloon GA (FHC from 2OPA), (c) disturbed aromatic ring and a
bond of wrong length observed with RDKit (XMM from 2JE7), (d)
large strain in the angle of an sp3-hybridized carbon observed with
ETKDG (ZBF from 4OPN) and (e) bond of wrong length observed
with Frog2 (264 from 2RBN).
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ABSTRACT: We assess and compare the performance of eight
commercial conformer ensemble generators (ConfGen,
ConfGenX, cxcalc, iCon, MOE LowModeMD, MOE Stochastic,
MOE Conformation Import, and OMEGA) and one leading free
algorithm, the distance geometry algorithm implemented in
RDKit. The comparative study is based on a new version of the
Platinum Diverse Dataset, a high-quality benchmarking dataset
of 2859 protein-bound ligand conformations extracted from the
PDB. Differences in the performance of commercial algorithms
are much smaller than those observed for free algorithms in our
previous study (J. Chem. Inf. Model. 2017, 57, 529−539). For
commercial algorithms, the median minimum root-mean-square
deviations measured between protein-bound ligand conforma-
tions and ensembles of a maximum of 250 conformers are between 0.46 and 0.61 Å. Commercial conformer ensemble generators
are characterized by their high robustness, with at least 99% of all input molecules successfully processed and few or even no
substantial geometrical errors detectable in their output conformations. The RDKit distance geometry algorithm (with
minimization enabled) appears to be a good free alternative since its performance is comparable to that of the midranked
commercial algorithms. Based on a statistical analysis, we elaborate on which algorithms to use and how to parametrize them for
best performance in different application scenarios.

■ INTRODUCTION
Knowledge of protein-bound ligand conformations is an
essential precondition for the application of 3D computational
approaches such as docking and pharmacophore modeling. In
most cases, experimental data on the bioactive conformations
of small molecules bound to a biomacromolecule of interest are
not available and must therefore be predicted. The most
common approach to computing protein-bound ligand
conformations is to sample their low-energy conformational
space and generate representative conformer ensembles.
Conformer ensemble generation is a well-studied problem,
and modern algorithms are generally able to represent the
bioactive conformations of drug-like molecules with adequate
accuracy for virtual screening and further applications in
cheminformatics.1−7 One major challenge in the development
of algorithms for conformer ensemble generation is the conflict
of objectives between accuracy (generally measured as the
minimum root-mean-square deviation (RMSD) in Å between
the experimentally determined bioactive conformation and any
computed conformers of an ensemble), ensemble size, and
computing time. Depending on the specific application
scenario, varying emphasis may be put on each of these
parameters. For example, if accuracy is the primary objective,
one would preferably choose a sophisticated and possibly
computationally expensive algorithm that generates large
ensembles of high-quality conformers. However, if large
numbers of molecules are to be screened repeatedly, smaller

ensembles may be preferred to reduce the number of molecular
representations that need to be screened. If time is of essence,
computationally efficient approaches would be preferred even
though this choice usually coincides with cutbacks on quality.
The ultimate goal is of course to have a computationally
efficient algorithm accurately reproducing protein-bound ligand
conformations with small ensembles.
During the last 20 years, not only the performance of the

algorithms but also the quality of the benchmarking datasets
and statistical analysis has improved substantially.8,9 Bench-
marking datasets, formerly compiled by taking into account the
quality of the X-ray structures based almost exclusively on
resolution, are now selected based on multiple criteria such as
the real-space correlation coefficient (RSCC),10 the real-space
R-value (RSR),11 and the diffraction-component precision
index12 (DPI).9 Recently, we introduced the Platinum Dataset
as the largest collection of high-quality protein-bound ligand
conformations to date.8 This dataset contains 4626 structures
extracted from a total of over 347k structures of co-crystallized
ligands stored in the PDB. The fully automated compilation
pipeline included, apart from established filters and checks (e.g.,
removal of “unwanted ligands” such as crystallization agents
and removal of structures of low resolution or high DPI),
several new components, such as a method for the accurate
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derivation and cross-checking of ligand topology and a novel
approach for scoring the support of the atom positions in a
molecule based on the electron density maps (EDIA).13

A representative subset of the Platinum Dataset (the
Platinum Diverse Dataset),8 which resulted from a clustering
procedure to reduce any bias by the accumulation of certain
molecular scaffolds in the dataset, was used in a previous study
for benchmarking seven freely available conformer ensemble
generators: Balloon (two different algorithms),14 the standard
distance geometry (DG)15 and the experimental-torsion basic
knowledge distance geometry5 (ETKDG) algorithms imple-
mented in RDKit, Confab,16 Frog2,17 and Multiconf-DOCK.18

Significant differences in the performance of the individual
algorithms became apparent, with the RDKit DG and ETKDG
algorithms emerging as the best performing methods under
most tested scenarios. For example, both algorithms were able
to reproduce the bioactive conformations of more than 80% of
all tested molecules with RMSDs below 1 Å. On the other
hand, it also became apparent that some free algorithms did not
produce ensembles for a large number of molecules and that
some calculated conformers had geometric errors (e.g., wrong
bond lengths, wrong bond angles, or planarity errors in rings).
In this follow-up work, we extend our benchmarking studies

to eight commercial conformer ensemble generators and
compare their performance with that of the standard DG
algorithm implemented in RDKit. We also analyze the influence
of force fields and conformer clustering procedures within some
of the conformer ensemble generators on the quality of
conformer ensembles.

■ RESULTS
Benchmarking Dataset. The Platinum benchmarking

dataset presented in our previous study8 was updated based
on a more recent version of the PDB19 (Table 1). Minor
improvements to the data extraction pipeline were also made,
such as the implementation of a revised version of EDIA13 and
additional quality checks for structural data (see Methods for
details). The revised Platinum dataset consists of 4548
structures. Benchmarking was performed on a diversified
subset of 2859 structures (“Platinum Diverse Dataset”).

Accuracy tests with the RDKit DG algorithm yielded identical
mean and median RMSD values with both versions of the
Platinum Diverse Dataset, indicating that the results obtained
with both datasets can be directly compared.

Commercial Conformer Ensemble Generators. The
eight commercial conformer ensemble generators evaluated in
this work are briefly introduced here. ConfGenX20 (Schrö-
dinger) is a further development of ConfGen,21,22 a knowledge-
based method that combines empirically derived heuristics and
physics-based force field calculations. Cxcalc23 (ChemAxon) is
based on a fragment fusion method that uses the Dreiding force
field24 for calculation and optimization of conformers. The
conformer ensemble generator iCon25 is a systematic, knowl-
edge-based search algorithm implemented in LigandScout
(Inte:Ligand)26 that uses a modified version of the
MMFF94s27 force field for refinement. The stochastic
conformational search algorithm implemented in MOE
(Molecular Operating Environment by Chemical Computing
Group),28 “MOE Stochastic”, randomly rotates all bonds and
performs an all-atom energy minimization to generate
conformations. In contrast to the other methods included in
this comparison, MOE Stochastic automatically generates
enantiomers by also randomly inverting tetrahedral centers.
The MOE LowModeMD method uses a fast, implicit
vibrational analysis method in combination with a short
molecular dynamics simulation to produce conformer ensem-
bles.29 A third algorithm implemented in MOE, the
Conformation Import (“MOE Import”), breaks molecules
into fragments and uses conformations from a standard library
to assign torsional angles to common fragments. New
fragments are generated using the MOE Stochastic approach
described above. The program OMEGA (OpenEye)2,30 also
makes extensive use of fragment templates. The OMEGA
algorithm attempts to generate energetically accessible
combinations of the template conformations and uses a
modified version of MMFF94s for scoring.

Accuracy with Default Parameter Sets Supplied by the
Developers. The performance of conformer ensemble gen-
erators was measured for ensembles with a maximum of 50 and
250 conformers, and their accuracy was defined as the
minimum RMSD in Å measured between the experimentally
determined protein-bound conformation and any conformer of
the computed ensemble. Unless stated otherwise, all RMSD
values mentioned hereafter refer to the minimum RMSD
calculated for a maximum ensemble size of 250. A complete
overview of results (both median and mean RMSD values) is
provided in Table 2. The results of the Mann−Whitney U test
that was used to test for statistical significance are provided in
the Supporting Information.
In a first experiment, we tested the performance of all

algorithms with the default parameter sets supplied by the
developers of the individual conformer ensemble generators
(Figure 1). For ensembles with a maximum of 250 conformers,
the eight commercial conformer ensemble generators were able
to represent the bioactive conformations with median RMSDs
between 0.46 and 0.61 Å over all ligands in the dataset.
OMEGA obtained the highest accuracy for ensembles with a

maximum of 250 conformers (median RMSD 0.46 Å).
However, at a maximum ensemble size of 250 OMEGA’s
ensembles were not significantly more accurate than those
obtained with ConfGenX (median RMSD 0.49 Å), iCon
(median RMSD 0.47 Å), and MOE LowModeMD (median
RMSD 0.50 Å). The highest RMSDs were measured for cxcalc

Table 1. Comparison of Platinum Dataset Versions

Platinum Dataset
2016_01 (used in

ref 8)

Platinum Dataset
2017_01 (this

work)

Data extracted from the PDB on February 12, 2016 February 16, 2017
Total no. of co-crystallized ligands
in the PDBa

347671 350454

No. of compounds - Platinum
Dataset

4626 4548

No. of compounds - Platinum
Diverse Dataset

2912 2859

Compounds present in both
versions of the Platinum Diverse
Dataset

2763

Compounds removed from the
2016_01 Platinum Dataset

170b

Compounds added to the
2017_01 Platinum Dataset

92

aWith PDB advanced search query (i) “has external EDS link”, (ii)
“has free ligands”, (iii) “experimental method is X-ray” and “has
experimental data”, (iv) has Rwork below 0.4, and (v) Rfree below 0.45.
bMost of these structures were removed by the revised version of
EDIA.
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(median RMSD 0.61 Å). There was also no significant
difference observed between MOE LowModeMD (median
RMSD 0.50 Å) and MOE Stochastic (median RMSD 0.52 Å).
OMEGA additionally obtained the highest accuracy for small
ensembles with a maximum of 50 conformers and was
significantly more accurate at this ensemble size than all
algorithms except for ConfGenX.
In comparison to the accuracy achieved with the RDKit DG

algorithm (default configuration, i.e., with UFF enabled and
clustering disabled), the commercial algorithms could be
divided into three contrasting groups. OMEGA and ConfGenX
obtained significantly higher accuracy than RDKit. MOE
Stochastic, MOE LowModeMD, MOE Import, and iCon did
not perform significantly better or worse than RDKit in terms

of accuracy. ConfGen and cxcalc were significantly less accurate
than RDKit.
For ConfGen and iCon we also tested alternative ensemble

generation modes. ConfGen obtained a significantly lower
accuracy in the “fast” mode (median RMSD 0.83 Å) as
compared to the default (i.e., “comprehensive”) mode (median
RMSD 0.60 Å). Ensembles generated with the iCon “best”
mode (median RMSD 0.47 Å) showed no significant difference
in accuracy compared to the default (i.e., “fast”) mode (median
RMSD 0.47 Å).
Another way to measure the accuracy of conformer ensemble

generators is their success rates in representing protein-bound
ligand conformations below a certain RMSD threshold.
Commonly used RMSD thresholds are 0.5, 1.0, 1.5, and 2.0
Å, and success rates for all tested algorithms and parameter sets

Table 2. Arithmetic Mean and Median RMSD in Å Obtained for the Platinum Diverse Dataseta

aThe values of the best-performing algorithms per column are marked in bold. Algorithm performance is indicated by a color gradient, ranging from
dark red (worst performance among all algorithms) via white to dark green (best performance among all algorithms). bParameter sets and search
modes offered by the various conformer ensemble generators. cClustering of conformers by RMSD. dMMFF94 variants with altered out of plane
bending parameters for conjugated nitrogens. eMMFF94 variant that includes all MMFF94s terms except Coulomb interactions.
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for these thresholds are reported in Table 3. Our analysis
focuses on two relevant RMSD thresholds: 0.6 Å, which is the
maximum positional uncertainty for atoms in the Platinum
Dataset, and 1.0 Å, below which docking poses are generally
considered to adequately represent ligand binding modes.
At an RMSD threshold of 0.6 Å, for ligands with up to three

rotatable bonds, OMEGA had the highest success rate of 96%
(Figure 2a), closely followed by iCon (91%) and ConfGenX
(90%). The lowest success rates for ligands with up to three
rotatable bonds were measured for MOE Import (79%). The
success rates sank drastically for ligands with up to 16 rotatable
bonds. The smallest impact was found for iCon (66%) and
OMEGA (64%), while cxcalc had the lowest success rate of
49%.
With an RMSD cutoff of 1.0 Å applied, all eight commercial

ensemble generators had success rates above 70% for the tested
molecules, even for those molecules with up to 16 rotatable
bonds (Figure 2b; Table 3). For molecules with up to three
rotatable bonds, the success rates of all conformer ensemble
generators were >96%, with the exception of MOE Low-
ModeMD (default; 86%) and Conformation Import (93%).
The smallest impact of the number of rotatable bonds on

accuracy was observed for MOE LowModeMD (default),
whose success rate dropped only to 84% at 16 rotatable bonds.
The largest effect of the number of rotatable bonds was
measured for cxcalc, whose success rate for molecules with
three rotatable bond decreased from 95% to 72% at 16
rotatable bonds.
Accuracy with Conformer Clustering Procedures Disabled.

Most conformer ensemble generators include a clustering
procedure for the assembly of small, diverse ensembles.
Although small ensembles are generally favorable in practice,
when comparing their accuracy directly, these algorithms may
be at a disadvantage over algorithms that fully exploit the
maximum allowed ensemble size. For this reason, in the second
experiment, and in analogy to our previous benchmarking
study,8 we disabled the clustering procedures in an attempt to
maximize the accuracy of ensembles by forcing the algorithms

to produce ensembles that exploit the allowed ensemble size.
For iCon and OMEGA, deactivation of clustering procedures
did not result in significant changes in performance, with
median RMSD values of 0.46 and 0.43 Å (mean RMSDs 0.64
and 0.59 Å), respectively, as compared to 0.47 and 0.46 Å
(mean RMSDs 0.60 and 0.57 Å), respectively, with clustering
enabled (Table 2 and Figure S1). For the MOE Stochastic and
LowModeMD algorithms, the median RMSDs increased
significantly from 0.52 to 0.63 Å and from 0.50 to 0.66 Å,
respectively, when clustering was disabled. These results also
indicate that commercial generators are generally more accurate
than free ones, which in our previous study obtained median
RMSDs between 0.52 and 0.77 Å (mean RMSDs 0.63 to 0.92
Å) with clustering disabled.
Overall, the clustering procedures implemented in commer-

cial conformer ensemble generators appear to be capable of
producing small and, at the same time, accurate ensembles.
Hence the recommendation based on these findings is to
enable built-in clustering when using any of these conformer
ensemble generators. The further discussion therefore focuses
on results generated with conformer ensemble generators run
with the default parameter sets supplied by the developers.

Accuracy of Conformer Ensemble Generators When Used
in Combination with Different Force Fields. Force fields are
used in conformer generation to improve initial coordinates,
minimize generated conformers, or cluster them based on
energy difference. Recently, the latest version of the OPLS
force field, OPLS3, was released,31 which includes nearly an
order of magnitude more stretch, bend, and torsion parameters
compared to MMFF32 and OPLS_2005. OPLS3 was reported
to improve protein−ligand binding predictions by 30% over
earlier variants of the OPLS force field, without empirical fitting
to protein−ligand binding data.31 This prompted us to assess
the influence of the optional geometry optimization with
OPLS_2005 and OPLS3 on the performance of ConfGenX.
However, the performance with OPLS3 (median RMSD 0.44
Å) was not significantly higher than with OPLS_2005 (median
RMSD 0.46 Å). ConfGenX with the additional minimization by

Figure 1. Percentage of protein-bound ligand conformations of the Platinum Diverse Dataset reproduced by the different algorithms within a certain
accuracy (left), ensemble size (middle), and runtime per molecule (right) at maximum ensemble sizes (a) 50 and (b) 250 conformers. All
commercial algorithms were run with default parameters.
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the OPLS3 force field reached the same conformation
reproducibility as OMEGA with default parameters for the
thresholds of 0.5 and 1.0 Å (56 and 87%, respectively; Table 3).
Note that for individual test molecules, the minimum RMSDs
for ensembles generated with ConfGenX (OPLS3 force field)
and OMEGA differed by up to 2.5 Å (Figure S2).
Conformer Ensemble Size. The size of conformer

ensembles is an important factor for accuracy, data size, and
speed of downstream processes. When used with default
settings, the size of the ensembles generated with the tested
algorithms varies substantially (Table 4). In this section, all
median values reported denote the median number of
conformers per ensemble. MOE Stochastic produced the

smallest ensembles (median 34), followed by MOE Low-
ModeMD (median 39), ConfGen (median 63), OMEGA
(median 74), ConfGenX with OPLS_2005 or OPLS3 (median
82 and 77, respectively; Figure 3), and iCon (median 90).
MOE Import, cxcalc, and the RDKit DG algorithm produced
the largest ensembles (median 250).

Runtime. In this section, all median values reported denote
the median calculation time of conformer ensembles in
seconds. The range of runtimes observed for both commercial
and freely available conformer ensemble generators is between
1 and 110 s. OMEGA was the fastest of all tested algorithms,
with a median runtime of 2 s per molecule (Table 5), and was
also the only ensemble generator faster than the DG algorithm

Table 3. Percentage of Structures of the Platinum Diverse Dataset Successfully Reproduced within a Specified RMSD
Thresholda

aThe values of the best-performing algorithms per column are marked in bold. Algorithm performance is indicated by a color gradient, ranging from
dark red (worst performance among all algorithms) via white to dark green (best performance among all algorithms). bParameter sets and search
modes offered by the various conformer ensemble generators. cClustering of conformers by RMSD. dMMFF94 variants with altered out of plane
bending parameters for conjugated nitrogens. eMMFF94 variant that includes all MMFF94s terms except Coulomb interactions.
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implemented in RDKit without force field minimization.
OMEGA was followed by iCon with a median runtime of 5
s. ConfGen was slightly faster than ConfGenX, with a median
runtime of 11 s compared to the median runtime of 13 s of
ConfGenX. MOE Import (median 66 s) was of similar speed
than MOE Stochastic (median 61 s). Both MOE Import and
MOE Stochastic were much faster than MOE LowModeMD
(median 106 s) but still substantially slower than all other
tested algorithms. Note that MOE LowModeMD is not
intended to be a high-throughput method.29

The ConfGen modes “fast” and “comprehensive” (default)
had very similar runtimes, with median values of 10 and 11 s,
respectively. The same was observed for the iCon modes “best”
(median 5 s) and “fast” (default; median 5 s). ConfGenX was
slower with force fields OPLS_2005 (median 35 s) and OPLS3

(median 21 s) than without them (default; median 13 s). All
Schrödinger algorithms except ConfGen (default) show a
characteristic staircase pattern in runtime plots. A reason for
this behavior could not be determined.
For all of the algorithms with a clustering option, the effect of

disabling clustering on the runtime was not substantial enough
to justify the loss in accuracy or increase in ensemble size.

Processing Failures. All conformer ensemble generators
were able to process 99−100% of the molecules of the
Platinum Diverse Dataset. These rates are mostly higher than
those of the previously tested free conformer ensemble
generators, for which success rates between 75 and 100% for
a maximum ensemble size of 250 were observed (RDKit DG
algorithm with minimization enabled: 100%).8

Figure 2. Percentage of molecules of the Platinum Diverse Dataset reproduced by the tested algorithms (default settings) with RMSD (a) ≤0.6 Å
and (b) ≤1 Å as a function of the number of rotatable bonds. The maximum ensemble size was set to 250.

Table 4. Arithmetic Mean and Median Ensemble Sizes Obtained for the Platinum Diverse Dataset

Maximum ensemble size
50 [conformers per

ensemble]

Maximum ensemble size
250 [conformers per

ensemble]

Algorithm Modea Clusteringb Force field mean median mean median

ConfGen (default) comprehensive n/a none 34 50 100 63
ConfGen fast n/a none 13 10 12 8
ConfGenX (default) n/a n/a none 39 49 160 214
ConfGenX n/a n/a OPLS 2005 30 34 102 82
ConfGenX n/a n/a OPLS3 30 34 100 77
cxcalc (default) n/a enabled Dreiding 48 50 227 250
iCon (default) fast enabled MMFF94sd 35 50 123 90
iCon best enabled MMFF94sd 36 50 131 117
iCon fast disabled MMFF94sd 42 50 174 250
MOE Stochastic (default) n/a enabled MMFF94xd 30 34 77 34
MOE Stochastic n/a disabled MMFF94xd 50 50 237 250
MOE LowModeMD (default) n/a enabled MMFF94xd 31 39 88 39
MOE LowModeMD n/a disabled MMFF94xd 50 50 247 250
MOE Import (default) n/a enabled MMFF94xd 48 50 215 250
OMEGA (default) n/a enabled mmff94s_NoEstate 34 50 118 74
OMEGA n/a disabled mmff94s_NoEstate 42 50 172 250
RDKit DG (default) n/a disabled UFF 50 50 250 250
RDKit DG n/a disabled none 50 50 250 250
RDKit DG n/a disabled MMFF94 50 50 250 250
RDKit DG n/a enabled UFF 42 49 180 229
RDKit DG n/a enabled none 42 49 180 229
RDKit DG n/a enabled MMFF94 42 49 180 229

aParameter sets and search modes offered by the various conformer ensemble generators. bClustering of conformers by RMSD. dMMFF94 variants
with altered out of plane bending parameters for conjugated nitrogens. eMMFF94 variant that includes all MMFF94s terms except Coulomb
interactions.
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Anomalous Geometries Found in Output Conformers.
In our previous study, we observed geometrical errors (such as
wrong bond lengths, wrong bond angles, or out-of-plane errors
in aromatic systems) in conformers generated with several of
the free conformer ensemble generators (including the RDKit
DG algorithm with minimization enabled).8 In contrast, very
few problems in the geometry of conformers generated with
commercial algorithms were identified. Most errors observed
for ConfGen, ConfGenX, cxcalc, and the three MOE
algorithms were related to bond lengths (see Figure 4 for
examples). No geometrical errors were identified for con-
formers generated with iCon and OMEGA.

■ CONCLUSIONS

The race for the best-performing conformer ensemble
generator is much closer for commercial than for free
algorithms. Commercial ensemble generators are characterized
by their high robustness. All of the algorithms tested herein
successfully processed at least 99% of all input molecules. No
geometrical errors could be identified in conformations
generated with iCon and OMEGA, and only a few anomalous
geometries were identified for the other tested commercial
algorithms. This robustness of the commercial ensemble
generators is an important factor for their usability, in particular
in industry.
OMEGA emerged as the algorithm with top accuracy and

speed, while keeping ensemble sizes comparatively small.
ConfGenX reached the same level of accuracy at the cost of
larger ensembles and longer runtimes. These algorithms were
closely followed by iCon, which presented itself as an accurate
and fast alternative to the two algorithms. If ensemble size is of
the essence, the MOE algorithms could be first choice.
Nonetheless, the best free algorithm, the DG algorithm
implemented in RDKit (with minimization enabled), was
competitive with the commercial algorithms, landing in the
middle ranks in terms of accuracy, ensemble size, and runtime.
Note that most knowledge-based algorithms may have an

inherent advantage in this kind of benchmark as they use PDB-
derived libraries for biasing torsion angles.
The use of clustering procedures and force fields is

recommended for the commercial conformer ensemble
generators. Both generally lead to smaller ensembles and better
accuracy, at low additional computational cost. Most conformer
ensemble generators offer a wide range of customizable
functions and parameters that can lead to a further improve-
ment of their performance.
Overall, the benchmarking studies based on the Platinum

Dataset showed that there are several free and commercial
algorithms available today that allow the representation of
protein-bound ligand conformations with adequate accuracy for
most applications in computational drug discovery. In
particular, the robustness of the commercial algorithms, and
also of the RDKit DG algorithm, proved to be high.

■ METHODS

Data Set Compilation. The Platinum Dataset version
2017_01 was compiled according to the method described in
ref 8, with the following improvements:

(1) The dataset was compiled more recently from the PDB,
accessed February 16, 2017.

(2) A refined version of EDIA,13 which is accessible online.33

(3) A method (based on NAOMI)34 to filter ligands that are
wrongly annotated as “free” ligands in the PDB while
actually being covalently bound.

(4) Additional checks for out-of-plane errors of aromatic
rings and ring systems with six or fewer atoms per
relevant cycle were implemented in NAOMI: All triplets
of atoms in aromatic ring systems connected by bonds
were enumerated, and the out of plane angles for all
adjacent bonds within the same aromatic ring system
were subsequently calculated. Molecules with any out-of-
plane angles >20° were removed from the dataset.

Figure 3. Percentage of protein-bound ligand conformations of the Platinum Diverse Dataset reproduced by ConfGen and ConfGenX within a
certain accuracy (left), ensemble size (middle), and runtime (right) at maximum ensemble sizes (a) 50 and (b) 250. Ensembles generated with
ConfGen in default (i.e., “comprehensive”) and fast mode, ConfGenX in default mode, and with the force fields OPLS_2005 and OPLS3.
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A representative subset, the Platinum Diverse Dataset version
2017_01, was derived by following the clustering protocol
described in ref 8. Both datasets are available for download.35

Conformer Ensemble Generation. Standard 3D con-
formations generated from SMILES with NAOMI served as
input for conformer ensemble generation. Conformer ensem-
bles were calculated with the parameters described in the
Results section. Clustering was disabled for individual experi-
ments, by setting the RMSD cluster threshold for iCon, MOE
Stochastic, MOE LowModeMD, and OMEGA to 0.0 Å, and
the pruneRmsThresh for the RDKit DG algorithm to −1.0.
RMSD Calculations, Geometry Checks, and Runtime

Measurements. All RMSD values were calculated with
NAOMI, which selects the minimum heavy-atom RMSD for

the best superposition of each pair of conformers, taking into
account molecular symmetry via complete automorphism
enumeration.
Deviation from known optimal values of atom angles and

bond lengths as well as divergence from planarity of aromatic
rings and ring systems (up to 6 bonds per relevant cycle) were
measured with NAOMI. Runtimes were measured for SD files
containing single molecules and rounded to full seconds. The
deviations observed between repeated runtime experiments
were <5%.

Statistical Analysis. The Mann−Whitney U test was used
to test for statistical significance at α = 0.05 and α = 0.01, with
the Holm−Bonferroni method36 applied to control the family
wise error rate. The raw p-values and the p-values adjusted with

Table 5. Arithmetic Mean and Median Runtimes in Seconds Measured for the Platinum Diverse Dataseta

aThe values of the fastest algorithms per column are marked in bold. Algorithm performance is indicated by a color gradient, ranging from dark red
(longest runtime among all algorithms) via white to dark green (shortest runtime among all algorithms). bParameter sets and search modes offered
by the various conformer ensemble generators. cClustering of conformers by RMSD. dMMFF94 variants with altered out of plane bending
parameters for conjugated nitrogens. eMMFF94 variant that includes all MMFF94s terms except Coulomb interactions.
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the Holm−Bonferroni method are reported for all 253 pairwise
comparisons of the conformer ensemble generators (and their
different force fields and clustering algorithms) in the
Supporting Information.
Hardware Setup. All calculations were performed on Linux

workstations running openSUSE 13.1 and equipped with Intel
Xeon processors (2.2−2.7 GHz) and 126 GB of main memory.
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Knowledge of the bioactive conformations of small molecules or the ability to predict them
with theoretical methods is of key importance to the design of bioactive compounds such
as drugs, agrochemicals, and cosmetics. Using an elaborate cheminformatics pipeline,
which also evaluates the support of individual atom coordinates by themeasured electron
density, we compiled a complete set (“Sperrylite Dataset”) of high-quality structures of
protein-bound ligand conformations from the PDB. The Sperrylite Dataset consists of a
total of 10,936 high-quality structures of 4,548 unique ligands. Based on this dataset,
we assessed the variability of the bioactive conformations of 91 small molecules—each
represented by a minimum of ten structures—and found it to be largely independent
of the number of rotatable bonds. Sixty-nine molecules had at least two distinct
conformations (defined by an RMSD greater than 1 Å). For a representative subset of
17 approved drugs and cofactors we observed a clear trend for the formation of few
clusters of highly similar conformers. Even for proteins that share a very low sequence
identity, ligands were regularly found to adopt similar conformations. For cofactors, a
clear trend for extended conformations was measured, although in few cases also coiled
conformers were observed. The Sperrylite Dataset is available for download from http://
www.zbh.uni-hamburg.de/sperrylite_dataset.

Keywords: bioactive conformational space, protein-bound ligand conformation, conformational variability, PDB,

protein-ligand interaction, binding site, small-molecule drug, cofactor

INTRODUCTION

The protein-bound (“bioactive”) conformations of ligands can differ substantially from those
observed in solution, the gas phase and small-molecule crystal structures (Boström, 2001; Perola
and Charifson, 2004; Seeliger and de Groot, 2010). Bioactive conformations can be distributed over
large regions of the ligand’s conformational space and can have considerable strain energy (Nicklaus
et al., 1995; Boström et al., 1998; Boström, 2001; Perola and Charifson, 2004; Günther et al., 2006).
For the application of 3D computational approaches such as docking or de novo design methods in
drug discovery, the protein-bound conformations of small molecules need to be known or at least
determinable (Brameld et al., 2008).
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The Protein Data Bank (PDB) is the most comprehensive
resource of experimental structural data on biomacromolecules
and their interaction with small molecules (Berman et al.,
2000). Currently, the PDB contains more than 100k structures
of biomacromolecules that include a bound ligand. While the
structural data available from the PDB are extremely valuable for
the research of biomacromolecules and their interactions with
small molecules, these data represent only a very small fraction
of (known) interactions.

Sturm et al. (2012) investigated the relationship between the
promiscuity of drug-like molecules and the molecular properties
of ligands and their binding sites. In order to do so, they compiled
a dataset of more than 1,000 protein-ligand complexes in which
drug-like molecules are bound to at least two distinct proteins.
They identified two major drivers of ligand promiscuity: the
structural similarities of ligand binding sites (largely independent
of the similarities of the overall protein sequences or folds)
and the ability of ligands to adopt distinct binding modes for
different proteins. The latter is facilitated by the conformational
flexibility of ligands and/or the specific characteristics of their
pharmacophoric features. In related work, He et al. (2015),
analyzed the structures of 100 pharmaceutically relevant ligands
bound to at least two different proteins (to which they bind with
comparable in vitro affinities). Contrary to the common belief
that ligand flexibility and promiscuity are correlated, no evidence
for a distinct correlation was found within their dataset. In fact,
for 59 out of the 100 investigated ligands, no significant changes
between the conformers of ligands bound to different proteins
were observed.

The relative abundance of available structural data on
the conformation of protein-bound cofactors, and nucleotide
cofactors in particular, has made them a primary subject
of investigation. For example, Moodie and Thornton (1993)
analyzed 65 structures of nucleotides bound to proteins and
found them to bind predominantly in an extended conformation.
In more recent work, Stockwell and Thornton (2006) analyzed
the conformational variability of adenosine triphosphate (ATP),
nicotinamide adenine dinucleotide (NAD) and flavin adenine
dinucleotide (FAD) in a preprocessed set of more than 2,000
structures extracted from the PDB. Dym and Eisenberg (2001)
compiled a set of 150 structures of FAD bound to 32 non-
redundant flavoproteins. They found a clear correlation between
the FAD-family fold, the shape of the cofactor binding site and
the conformation of FAD. Bojovschi et al. (2012) investigated
the conformational diversity of ATP/Mg:ATP in motor proteins
based on a set of 159 X-ray structures extracted from the
PDB. They found that ATP adopts a wide range of different
conformations, with a preference for extended conformations
in tight binding pockets (e.g., F1-ATPase) and compact
conformations in motor proteins such as RNA polymerase
and DNA helicase. The incorporation of Mg2+ was found to
increase the conformational flexibility of ATP. They clustered the
conformations of the individual ligands based on the similarity
of their binding pockets and, in the case of ATP for example,
identified 27 clusters with a mean intercentroid RMSD of more
than 2 Å. The authors concluded that, within the individual
protein superfamilies, the investigated ligands generally bind

in a fairly conserved manner, although several exceptions were
identified. In the case of ATP, most structures were found to
have the ligand bound in an extended conformation. In few cases
however, a conformation bent such that the terminal phosphate
atoms are almost in van der Waals contact with the adenine
ring was observed. Stegemann and Klebe (2012) explored the
structural properties of six cofactors including an adenosine
diphosphate moiety bound to a variety of different proteins with
low sequence identity. They found that common binding pocket
patterns sometimes only recognize parts of the cofactor and
thereby induce similar conformations.

These and further studies have contributed substantially
to the understanding of protein-bound ligand conformations.
However, a major bottleneck is the limited quality (Liebeschuetz
et al., 2012; Reynolds, 2014), quantity and diversity of the
structural data that these studies are based on, in particular
with respect to the uncertainty of atom coordinates that is
inherent to crystallographic structures. Only recently, a robust
and fully automated method for the assessment of the support
of individual atom coordinates (as well as molecules) by the
measured electron density (EDIA) has become available (Meyder
et al., 2017). This allowed, for the first time, extraction of a
complete subset of high-quality structures of protein-bound
ligands from the PDB (Friedrich et al., 2017b). Prior to the
development of the EDIA method, time-consuming manual
inspection by human experts was required to assure the high
quality of structural data, which limited the size of available
datasets (see e.g., Warren et al., 2012).

In this work we assess the conformational variability of small
molecules based on a complete set of high-quality structures of
protein-bound ligands extracted from in the PDB, each of which
is represented by at least ten high-quality X-ray structures. In
total the conformational variability of 91 approved drugs and
cofactors represented by 4,574 protein-bound conformations was
assessed. The bioactive conformational space of 17 representative
molecules was studied in detail.

MATERIALS AND METHODS

Dataset Compilation
The Sperrylite Dataset was extracted from the PDB using a
workflow described previously (Friedrich et al., 2017a). It consists
of 10,936 conformers of 4,548 unique small molecules. Ninety-
one ligands in this dataset are represented by at least 10
structures, and these served as the basis of this analysis.

To ensure that all ligands with the same PDB ligand ID have
identical stereochemistry, their isomeric smiles (generated with
UNICON, Sommer et al., 2016) were compared in order to keep
only the isomer with the most occurrences. The Approved Drugs
subset of DrugBank (Wishart et al., 2017) was used to identify the
approved drugs present in the Sperrylite Dataset.

RMSD, Rotatable Bonds and Sequence
Identity Calculations
All RMSD values were calculated with NAOMI (Urbaczek
et al., 2011), which selects the minimum heavy-atom RMSD
for the best superposition of each pair of conformers, taking
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molecular symmetry into account via complete automorphism
enumeration.

The number of rotatable bonds was calculated with RDKit
(RDKit: Open-Source Cheminformatics, version 2015.09.1,
2015). The default definition was used, meaning that amide and
ester bonds were not counted as rotatable bonds.

All-against-all sequence identity was determined with NCBI
BLAST (Altschul et al., 1990; BLAST, version 2.2.31. https://
blast.ncbi.nlm.nih.gov (accessed Jan 14, 2018); Camacho et al.,
2009) and the sequence identity of individual pairs of proteins
was measured with the Molecular Operating Environment
(Molecular Operating Environment (MOE), version 2016.08;
Chemical Computing Group Inc.: Montreal, QC, 2016) based on
sequence and structural alignments.

Principal component analysis (PCA)-derived score plots
of the alignments with the minimum median RMSDs were
generated with R for each ligand.

Visualization
Visualization of the (i) alignments of ligand conformers (ii)
alignments of protein structures and (iii) interactions of
proteins and ligands were generated with Maestro (Schrödinger
Release 2016-2: Maestro, Schrödinger, LLC, New York, NY,
2016), MOE (Molecular Operating Environment (MOE), version
2016.08; Chemical Computing Group Inc.: Montreal, QC,
2016) and LigandScout (LigandScout, version 4.2; Inte:Ligand
GmbH: Vienna, Austria, 2017; Wolber and Langer, 2005),
respectively.

For the sake of clarity, all hydrogens, only polar hydrogens or
no hydrogens were included in the depictions on a case-by-case
basis to avoid overcrowded figures.

RESULTS

The Sperrylite Dataset is a collection of all high-quality X-ray
structures of small molecules bound to biomacromolecules that
are contained in the PDB. The dataset includes 10,936 structures
of 4,548 unique protein-bound ligands and was compiled with a
recently developed cheminformatics pipeline that automatically
(i) prepares the chemical structures of small molecules by taking
into account the protein environment (in order to determine,
e.g., the most likely tautomeric and protonation states); (ii)
removes undesirable molecules such as crystallization aids as
well as structures with topological and/or geometrical errors;
and (iii) rejects structures of low quality (Friedrich et al.,
2017a,b). Importantly, the procedure not only includes checks
for resolution and DPI (Cruickshank, 1999), but also employs the
recently developed EDIA method (Meyder et al., 2017) to assess
the support of individual atoms of a structure by the electron
density.

In this study the diversity of the protein-bound conformations
of all ligands represented by at least 10 high-quality structures
was investigated. This dataset consists of a total of 4,574
conformations of 91 unique ligands (an overview of all structures
is provided in Scheme S1), including more than 30 nucleotides
and 20 approved drugmolecules. In an all-against-all comparison
of the differences in conformation of each ligand as measured

by RMSD, 81 of the 91 ligands had at least one conformer with
an RMSD above 0.6 Å (which corresponds to the maximum
positional uncertainty for atoms in the Sperrylite Dataset), and
69 had at least one conformer above 1 Å, meaning that they are
clearly distinct. The correlation observed between the minimum
median RMSD measured for all pairs of conformations and
the number of rotatable bonds was (very) weak (R2 = 0.126;
Figure S1).

This work focuses on the analysis of the bioactive
conformational space of a representative set of 17 approved drugs
and cofactors (Tables 1, 2; note that there is an overlap between
cofactors and approved drugs). This set was compiled with the
objective to include the most relevant and best-represented small
molecules in a detailed analysis of individual ligands.

Definitions
In the following sections, “high-quality structures” refers to any
structures matching the quality criteria defined in previous work
(Friedrich et al., 2017b). Importantly, this term only refers to
the quality of the protein-bound ligand, not the overall structure
of the protein-ligand complex. Four-letter codes refer to PDB
entries and three-letter codes in italics refer to PDB ligand
identifiers.

Small-Molecule Drugs
Imatinib
Imatinib (STI) is an approved anti-cancer drug targeting Bcr-
Abl and several other tyrosine kinases. The drug binds to the
ATP-binding site, spanning almost the entire width of the protein
(Reddy and Aggarwal, 2012). Imatinib locks the protein in a
closed conformation, thus arresting the enzyme’s functionality.
The PDB lists 11 high-quality structures with imatinib, 10 thereof
with the drug bound to one of three different tyrosine kinases
(ABL1: 1IEP, 1OPJ, 3K5V, 3MS9, 3MSS, 3PYY; ABL2: 3GVU; c-
Src: 2OIQ, 3OEZ) or a synthetic construct of tyrosine kinase AS
(4CSV), a common ancestor of Src and Abl.

The accessible conformational space of imatinib, which has
seven rotatable bonds, is large. However, the conformations
observed for imatinib bound to any of these tyrosine kinases are
similar (Figures 1A,B), which is reflected by the low maximum
pairwise RMSD of just 0.3 Å and is in agreement with the
findings of He et al. (2015). This conformational similarity can
be explained by the highly conserved nature of the residues
that form the ligand binding sites of these tyrosine kinases (the
minimum pairwise sequence identity between these proteins is
45%; Figure 1D).

One high-quality structure of imatinib is a complex with
human quinone reductase 2 (3FW1). This enzyme exists as
a dimer with two active sites, each located in a deep pocket
at the interface between the monomers (Foster et al., 1999;
Winger et al., 2009). Quinone reductase 2 is structurally
dissimilar to protein kinases. Imatinib binds to the enzyme
active site in proximity to the isoalloxazine ring of the FAD
cofactor (Figure 1C), thereby adopting a distinct, “horseshoe-
like” conformation (Winger et al., 2009) that differs by at least 2.4
Å from any of the conformations observed with tyrosine kinases
(Figure 1A).
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TABLE 1 | Summary of approved drugs investigated in this work.

Name No. of PDB

entries

Protein names: No. of

high-quality conformers

No. of

Confs.a
Major observations

Imatinib (STI) 18 Tyrosine kinases: 10
Quinone reductase 2: 1

2 Conformers for different tyrosine kinases are similar, even for pairs
of proteins with low sequence identity. A distinct conformation is
observed in a complex with quinone reductase 2

Darunavir (017) 54 HIV-1 protease: 14 1 Conformers are highly similar, also those in complex with various
different mutants of this protein

Acetazolamide (AZM) 29 Carboanhydrases: 9
Endochitinase: 1

n.d.b It is likely that the ligand binds in a similar conformation to all
proteins covered by the dataset (the experimental data do not
allow a definitive conclusion)

Triclosan (TCL) 31 Enoyl-acyl carrier protein
reductases: 11

1 All conformers are highly similar. The median RMSD is 0.1 Å and
the maximum pairwise RMSD is below 0.6 Å

Ubenimex/bestatin (BES) 28 Aminopeptidases: 9
Leukotriene A-4 hydrolase: 2

3 Conformations observed for most (even distantly) related
aminopeptidases and human leukotriene A-4 hydrolases are
similar, with the exception of one conformation observed in
complex with human aminopeptidase N

Biotin (BTN) 99 Streptavidin: 24 Avidin: 7
Biotin-protein ligase: 6
Others: 6

3 Conformations observed among the different complexes with core
streptavidin are very similar. Two distinct conformers are observed
in complex with biotin-protein ligase and biotin carboxylase

Sapropterin (H4B) 472 Total: 188 2 All but three conformers are extremely similar to each other
(median RMSD smaller than 0.1 Å), even for distantly related
proteins

Cholic acid (CHD) 74 Cytochrome c oxidase: 2
Ferrochelatase: 2
Alcohol dehydrogenase: 1
Others: 8

4

Due to the rigid steroid scaffold, the conformations observed for
both ligands are all highly similar

Deoxycholic acid (DXC) 29 Cathepsin A: 11
Bet v1: 2
Others: 3

2

aNo. of distinct bioactive conformations.
bThe experimental data are insufficient to allow a definitive conclusion on the number of distinct bioactive conformations.

Note that imatinib is known to bind to spleen tyrosine kinase
(SYK) in an orientation that is different from that observed for
Bcr-Abl and other tyrosine kinases (Alton and Lunney, 2008).
A crystal structure of the imatinib-SYK complex exists (1XBB;
Atwell et al., 2004) but is not part of the Sperrylite Dataset because
of a poor electron density support of parts of the ligand facing
the bulk water phase (Figure S2). The conformer of imatinib
in complex with SYK has an RMSD of 2.5 Å to any of the
other kinase-bound conformers but is similar to the imatinib
conformation observed in the complex with quinone reductase
2 (RMSD= 1.3 Å).

Darunavir
Darunavir (017) is an antiretroviral drug approved for the
treatment and prevention of human immunodeficiency virus
(HIV) infections. The compound inhibits HIV-1 protease at
picomolar concentrations by forming strong polar interactions
with the target enzyme (King et al., 2004). Fourteen out of
the 54 available structures with darunavir are of high quality,
all of them being structures with darunavir bound to wild
type or mutant HIV-1 protease. The mutations observed in
the 14 high-quality structures introduce only subtle changes
to the shape and chemical properties of the ligand binding
environment. This is reflected in the high similarity of the
protein-bound conformations of darunavir, where, among the

high-quality structures, a maximum pairwise RMSD of just 0.2 Å
was measured (Figure S3).

Acetazolamide
Acetazolamide (AZM) is an inhibitor of carbonic anhydrase
and approved for the treatment of glaucoma, cardiac edema,
idiopathic intracranial hypertension, epilepsy, and altitude
sickness (Chakravarty and Kannan, 1994; Kaur et al., 2002).
Ten out of the 29 structures of acetazolamide listed in
the PDB are of high quality. Nine of these structures are
with acetazolamide bound to one of six different human
carbonic anhydrases (isoforms II, VII, IX, XII, XIII, and XIV,
represented by PDB entries 3V2J, 3ML5, 3IAI, 1JD0, 3CZV,
and 4LU3, respectively) or three different extremophilic bacteria
carbonic anhydrases (Sulfurihydrogenibium sp., Thermovibrio
ammonificans, and Sulfurihydrogenibium azorense, represented
by PDB entries 4G7A, 4UOV, and 4X5S, respectively). The
ligand binding pockets of all these carbonic anhydrase isozymes
are highly similar (Figure 2G) and so are the conformations
of acetazolamide observed for these complexes (Figure 2A).
The protein-ligand complexes are stabilized by hydrogen bonds
formed between the acetyl group of acetazolamide and the
binding pocket (Figure 2B), with one exception, which is a
complex with human carbonic anhydrase XII (1JD0). In that
structure, the acetyl group of the ligand is rotated by about
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TABLE 2 | Summary of cofactors and cofactor analogs investigated in this work.

Name No. of PDB

entries

Protein names: No. of

high-quality conformers

No. of

Confs.a
Major observations

Sinefungin (SFG) 70 Methyltransferase: 23
Others: 7

6 Three clusters of conformers are observed. The largest group includes
23 highly similar conformers and includes structures bound to proteins
that share low sequence identity. The maximum RMSD measured for
any of the sinefungin conformers is 3.6 Å

S-adenosylmethionine (SAM) 410 Methyltransferase: 92
Others: 31

24 A wide variety of conformations are observed, with a clear clustering
into three distinct groups of conformers. Within these groups, a large
number of similar conformers are observed, even when bound to
proteins sharing low sequence identity. The maximum pairwise RMSD is
3.3 Å

S-Adenosyl-L-Homocysteine
(SAH)

784 Methyltransferase: 284
RNA polymerase: 8
Others: 19

23

Glutathione (GSH) 360 Glutathione transferase: 46
Others: 28

16 Most of the conformers have a pairwise RMSD between 0.6 and 1.6 Å,
but the maximum pairwise RMSD is 3.6 Å

Adenosine monophosphate
(AMP)

575 Total: 171 36 A wide variety of different conformers is observed. One distinct,
extremely coiled conformer was observed in complex with an adenylate
kinase-related protein. The maximum pairwise RMSD is 2.5 Å

Adenosine diphosphate (ADP) 1,810 Total: 462 81 The conformers are similar to those observed for AMP, despite the
presence of an additional phosphate group. The median RMSD is 0.9 Å

Adenosine triphosphate (ATP) 1,079 Total: 218 76 ATP is observed in an extended conformation in most structures, but
some conformers are extremely bent. The median and the maximum
pairwise RMSDs are 1.6 and 3.9 Å, respectively

Flavin mononucleotide (FMN) 919 Total: 367 21 The overall median RMSD is 0.9. The all-against-all comparison
revealed four groups of conformers, with peaks in the RMSD distribution
at around 0.3, 1.2, 1.7, and 2.4 Å

aNo. of distinct bioactive conformations.

FIGURE 1 | (A) Ligand-based alignment of imatinib conformers observed in complex with three different tyrosine kinases (gray carbon atoms), human quinone
reductase 2 (3FW1; violet carbon atoms) and human spleen tyrosine kinase (1XBB; green carbon atoms). (B) Imatinib bound to ABL1 (3MS9) in an extended
conformation that is characteristic for the drug bound to tyrosine kinases. Red and green vectors indicate hydrogen bond donors and acceptors, respectively. Yellow
spheres mark hydrophobic moieties involved in interactions with the protein, and blue astral centers indicate charge interactions involving a positively charged group
on the ligand side. (C) Imatinib bound to human quinone reductase 2 in a conformation that is different from those characteristic of tyrosine kinases (3FW1; FAD with
green carbon atoms). (D) Alignment of the binding sites of human ABL1 (3K5V; red) and c-Src (2OIQ; green). Despite a sequence identity of only 45%, the ligand
binding sites of both proteins are almost identical.

140◦ as compared to any of the other structures (RMSD 0.9 Å;
Figure 2C). A second, distinct conformation of acetazolamide is
found in a complex with a different enzyme, endochitinase from
Saccharomyces cerevisiae (2UY4) with a fundamentally different
binding pocket. In that structure, the carbon-sulfur bond of the
ligand is rotated by 120◦ (Figure 2D). The moieties in question

are oriented toward the bulk water phase, freely rotatable, and
not engaged in directed interactions with the protein. Also, the
electron density maps do not allow a definitive conclusion on
the orientation of these moieties (Figures 2E,F). It is therefore
entirely possible that in reality all conformers of acetazolamide in
the Sperrylite Dataset are nearly identical.
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FIGURE 2 | (A) Ligand-based alignment of acetazolamide bound to different carbonic anhydrases (gray carbon atoms, except those of 1JD0, which are violet) and
endochitinase (2UY4; green). (B) The acetyl group of acetazolamide forms hydrogen bond interactions with some carbonic anhydrases such as isozyme VII (3ML5)
depicted here. (C) In a complex with human carbonic anhydrase XII (1JD0) the acetyl group of acetazolamide is rotated by about 140◦. (D) In a complex with
endochitinase (2UY4), the sulfonamide moiety of acetazolamide is rotated by about 120◦. The support of atom positions by the measured electron density can be
quantified by the EDIA score. For some of the atoms of the acetyl (E) and sulfonamide groups (F) of these structures the EDIA scores are below 0.8, meaning that
their exact position is uncertain. The 2Fo-Fc, Fo-Fc(–ve) and Fo-Fc(+ve) sigma maps are shown in blue, red and green, respectively. It can therefore not be excluded
that the acetyl group in (C) and the sulfonamide moiety in (D) are present in the same orientation that is observed in any of the other crystal structures.
(G) Superposed binding pockets of the nine human and three extremophilic bacterial carbonic anhydrases.

Triclosan
Triclosan (TCL) is an antibacterial and antifungal agent
inhibiting enoyl-acyl carrier protein reductases (ENR),
which are key enzymes in the fatty acid elongation cycle.
Its wide use as a disinfectant in cremes and consumer
products (e.g., soaps, toothpaste, detergents) is a controversial
topic nowadays (Buth et al., 2010; Carey and McNamara,
2014).

In all 31 structures of triclosan contained in the PDB, the
ligand is bound to an ENR. The conformers of triclosan observed
among the 11 high-quality structures with ENR I and ENR III
are very similar (median RMSD 0.1 Å; maximum pairwise RMSD
< 0.6 Å; Figure 3A). These include the structures of Plasmodium
falciparum ENR I (2O2Y) and Bacillus subtilis ENR III (3OID)
which, despite a sequence identity of just 14% and a highly
flexible binding site region (when in the unbound state), show

almost identical structural features in the presence of triclosan
(Kim et al., 2011).

In an X-ray structure of triclosan bound to Staphylococcus
aureus ENR I (3GR6; not included in the Sperrylite Dataset
because of low EDIA scores), the hydroxyl group of all four
instances of triclosan ismodeled in a different orientation (RMSD
1.4 Å measured to any of the other conformations present in the
dataset). The EDIA score for the oxygen atom of the hydroxyl
group of the four instances of this conformer is just 0.11–0.27,
and visual inspection of the electron density map confirms a lack
of support of this conformation (Figure 3B). The characteristic
hydrogen bonds formed between the phenolic hydroxyl group
of triclosan and Y156 as well as NAD(P) (Heath et al., 1999;
Levy et al., 1999; Figure 3C) are also missing in this model
(Figure 3D). All of these observations taken together indicate a
likely error in this structural model.
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FIGURE 3 | (A) Ligand-based alignment of eleven conformers of triclosan present in the Sperrylite Dataset bound to ENRs, including the drug-resistant G93V mutant
of ENR I (3PJF; violet carbon atoms) and an uncommon conformation observed in Staphylococcus aureus ENR I (3GR6; blue carbon atoms). The latter is not part of
the Sperrylite Dataset because of a lack of support of the structural model by the electron density, as shown in (B), with the 2Fo-Fc, Fo-Fc(–ve) and Fo-Fc(+ve) sigma
maps in blue, red and green, respectively. (C) Interaction of triclosan and NAD (green carbon atoms), including the characteristic hydrogen bond between both
molecules in the binding pocket of E. coli ENR I (1QG6). (D) Triclosan and NADP (green) bound to Staphylococcus aureus ENR I (3GR6). In this structural model, the
characteristic hydrogen bond is missing because of the unusual position of the hydroxyl group. However, this conformation of triclosan lacks support by the measured
electron density. (E) A G93V mutation in ENR I (green protein backbone; ligand with violet carbon atoms) induces a conformational shift of the flexible α-helical turn
located in the proximity of triclosan. The complex of the WT protein and triclosan (4M89) is shown with the protein backbone and ligand in blue.

The largest deviations between conformers of triclosan
within the Sperrylite Dataset were observed for the complex
with a triclosan-resistant G93V mutant (3PJF) of ENR I
from Escherichia coli. These deviations are related to small
conformational changes of a flexible α-helical turn in close
proximity to the ligand (Figure 3E), resulting in the weakening
of some edge-to-face aromatic interactions near the ligand (Singh
et al., 2011). The high-level resistance of this mutant is not caused
by a substantial loss in binding affinity of the drug but is a
consequence of the inability of the G93Vmutant to form the high
affinity ENR-NAD+-triclosan ternary complex that inhibits the
wild type (Heath et al., 1999).

Ubenimex, Bestatin
Ubenimex, also known as bestatin (BES), is a competitive
protease inhibitor under investigation for the treatment of
acute myelocytic leukemia and lymphedema (Tian et al.,
2017). The molecule inhibits aminopeptidases and has shown
immunomodulatory and host-mediated antitumor activities
(Urabe et al., 1993; Inoi et al., 1995; Sakuraya et al., 2000).
It has been approved in Japan as an adjunct to chemotherapy
agents against acute non-lymphocytic leukemia for decades
and has been reported to inhibit the growth of malaria
parasites (Plasmodium falciparum) in vitro (Nankya-Kitaka et al.,
1998).

Twenty-eight structures of bestatin are listed in the PDB.
All of the 11 high-quality structures are with bestatin bound to
aminopeptidases. The ligand conformations observed in eight
of these high-quality structures are very similar to each other
(maximum pairwise RMSD = 0.8 Å), even though the proteins
originate from three different bacteria (E. coli, Pseudomonas
putida and Vibrio proteolyticus), the unicellular protozoan
parasite Plasmodium falciparum and mouse, and their minimum
pairwise sequence identity is only 3.3%.

In contrast, the structure of bestatin bound to human
aminopeptidase N (4FYR) shows an extended ligand
conformation that has an RMSD of 2.0 Å to any of the ligand
conformers observed for the bacterial proteins (Figure 4A).
The conformations of the drug bound to human leukotriene
A-4 hydrolase differ only slightly from and have similar
binding modes to the characteristic conformation observed for
aminopeptidases mentioned above (RMSD = 1.0 Å for both
3FUH and 3FTX; Figures 4B–D).

Biotin
Biotin (BTN, vitamin B7) is a water-soluble coenzyme for
carboxylase enzymes and an approved drug for the treatment
of dietary shortage or imbalance. There are 99 crystal structures
including biotin listed in the PDB. The biotin conformers
observed for the 43 high-quality structures can be assigned
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FIGURE 4 | (A) Superposition of all eleven conformers of bestatin in the Sperrylite Dataset. The carbon atoms of the conformers in complex with human
aminopeptidase N (4FYR) and human leukotriene A-4 hydrolase (3FUH and 3FTX) are indicated in green, violet and cyan, respectively. The carbon atoms of all other
structures are shown in gray. (B) Typical conformer of bestatin bound to aminopeptidases N from E. coli (2HPT). (C) A conformation that differs slightly from the
characteristic conformation, observed in complex with human leukotriene A-4 hydrolase (3FUH shown here). (D) Uncommon, extended conformation of bestatin
observed in complex with the human aminopeptidase N (4FYR).

to three distinct groups, indicated by gray, green and violet
carbon atoms in Figure 5A. Twenty-four of the 43 structures
are complexes with core streptavidin from different bacteria
(both wild type and mutants). Streptavidin homotetramers have
a very high affinity for biotin, one of the strongest non-covalent
interactions known (Kd ≈ 10−14 to 10−16 M) (Laitinen et al.,
2006). The protein-ligand complex stands out by a high degree
of shape complementarity and an extensive network of hydrogen
bonds formed between both binding partners. One of the 24
structures of biotin bound to core streptavidin (4GD9) shows the
impact of the cutting of a binding loop on the conformation of the
bound ligand (Figure S4; Le Trong et al., 2013). Another structure
(2IZJ) shows subtle structural changes of the streptavidin-biotin
complex induced by a low pH that stabilizes intersubunit salt
bridges (Figure 5A; orange carbon atoms; Katz, 1997).

Six crystal structures of avidin from chicken (wild type and
mutants) and one of engineered avidin (2C4I) are also included
in the dataset. Avidin is loosely related to streptavidin, with
an equally high affinity to biotin and a very similar binding
site (Figure S4). As expected, biotin binds to this protein in
a conformation that is very similar to those predominantly
observed for complexes with streptavidin.

Biotin-protein ligase (1WPY, 2EJ9, 2EJF, 2DTH, 2FYK,
and 2ZGW) and biotin carboxylase (3G8C) share very low
structural similarity with streptavidin and with each other. The
conformations observed for biotin bound to biotin-protein ligase
(Figure 5A; violet carbon atoms) are virtually identical among
each other but differ by an RMSD of 1.1 Å from the predominant
conformation observed in the Sperrylite Dataset. In particular,
the angle of the alkyl chain leaving the ring system differs by
around 103◦ from that observed for biotin bound to streptavidin.
A third conformer of biotin is observed in complex with E. coli
biotin carboxylase (3G8C; Figure 5A; green carbon atoms), with

an RMSD of 0.9 Å measured against any of the streptavidin-
bound conformers. Despite substantial structural differences
observed among the various different biotin-binding proteins,
the non-covalent interactions formed between biotin and the
target protein are largely conserved (Figures 5B–D).

Sapropterin
Sapropterin (tetrahydrobiopterin, H4B) is an approved drug for
the treatment of tetrahydrobiopterin deficiency. It is an essential
cofactor for the synthesis of nitric oxide and the hydroxylation
of phenylalanine, tyrosine and tryptophan. The PDB counts 472
complexes with sapropterin, 188 of which are of high quality.

Of the high-quality conformers of sapropterin, all but three
are extremely similar to each other (median RMSD of less
than 0.1 Å; Figure S5A). All of these highly similar sapropterin
conformers are bound to nitric oxide synthase, from five different
species (human, rat, mouse, cattle and Bacillus subtilis). The
exceptions are the conformers bound to human phenylalanine
hydroxylase (1MMK, 1MMT and 1J8U), and differ by an
RMSD of 0.7 Å from the conformer in human nitric oxide
synthase (4D1N, Figure S5B). The sequence identity between
human phenylalanine hydroxylase and human nitric oxide
synthase is less than 15%. The slightly different conformer
bound to phenylalanine hydroxylase is stabilized by hydrophobic
interactions (Figure S5C).

Cholic Acid
Cholic acid (CHD) is one of the major bile acids produced
from cholesterol in the liver. It is approved for the treatment of
bile acid synthesis disorders and as an adjunctive treatment of
peroxisomal disorders.

Thirteen of the 74 available crystal structures that include
cholic acid are of high quality. Twelve thereof are from eukaryotic
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FIGURE 5 | (A) Superposition of 43 structures of biotin (BTN) bound to core streptavidin (gray carbon atoms), E. coli biotin carboxylase (3G8C; green carbon atoms),
biotin-protein ligase (1WPY; violet carbon atoms), and streptavidin-biotin at low pH (2IZJ; orange carbon atoms). The binding modes observed for biotin in complex
with (B) core streptavidin from Streptomyces avidinii (3WYP), (C) biotin-protein ligase from Pyrococcus horikoshii (1WPY) and (D) E. coli biotin carboxylase (3G8C) are
very similar.

proteins, including alcohol dehydrogenase, ferrochelatase,
cytochrome c oxidase and bile acid-binding proteins; one
structure is of choloylglycine hydrolase from Clostridium
perfringens (2RLC).

Some pockets of cholic acid-binding proteins can
accommodate more than a single cholic acid molecule, as
observed e.g., in structures of the chicken liver basic fatty acid-
binding protein (1TW4) and the zebrafish liver bile acid-binding
proteins (2QO5).

Given the rigid scaffold of steroids it is not surprising that,
despite in part low sequence identity between the cholic acid-
binding proteins, the observed ligand conformations (i.e., those
bound to the deepest part of their respective binding pocket)
are highly similar (median RMSD = 0.6 Å; Figure 6A). The
maximum pairwise RMSD of 1.6 Å was measured between
the conformation of cholic acid in the crystal structure
of the G55R mutant of zebrafish liver bile acid-binding
protein (2QO6) and in human mitochondrial ferrochelatase
(3W1W).

Deoxycholic Acid
Deoxycholic acid (DXC), a metabolic byproduct of intestinal
bacteria, is a steroid acid commonly found in the bile of
mammals (Ridlon et al., 2016). Deoxycholic acid is a detergent
that disturbs the integrity of biological membranes and is used
to isolate membrane-associated proteins. Deoxycholic acid is
approved for submental fat reduction, as a safer and less invasive
alternative to surgical procedures for the treatment of lipomas
(Duncan and Rotunda, 2011) and for improvements of aesthetic
appearance.

Of the 29 entries deposited in the PDB, 18 are of high
quality. Eleven of those structures are deoxycholic acid bound
to cathepsin A and have a maximum pairwise RMSD of just 0.1
Å. Because of the rigid ligand core, deoxycholic acid also binds

to structurally distinct proteins in very similar conformations
(Figure 6B). Examples from the Sperrylite Dataset include two
structures of Betula pendula Bet v1 (a major pollen allergen;
4A81 and 4A84), a structure of subunits I and II of cytochrome
c oxidase (3DTU) from Rhodobacter sphaeroides, a structure of
choloylglycine hydrolase from Clostridium perfringens (2BJF), a
structure of the multidrug transporter MdfA (4ZP0) from E. coli,
and even a conformer of deoxycholic acid bound to the interface
of a dimer of the cell invasion protein SipD from Salmonella
enterica (3O01; Chatterjee et al., 2011) The maximum pairwise
RMSD (0.9 Å) was measured for the ligand conformers bound
to a K9E mutant of cathepsin A (4HAJ) and salmonella invasion
protein D (3O01), indicated by violet carbon atoms in Figure 6B.

Cofactors and Cofactor Analogs
The most abundant small molecules in the Sperrylite Dataset
are cofactors and their analogs. The cofactors represented by at
least 10 high-quality structures can roughly be grouped into three
categories: sinefungin and its analogs (S-adenosylmethionine,
SAM, and S-adenosylhomocysteine, SAH; Figure 7), adenosine
phosphates (AMP, ADP, ATP; Figure 8), and three cofactors
without analogs listed in the dataset (glutathione, flavin
mononucleotide and sapropterin). The RMSD distributions (all-
against-all comparisons) for the most relevant cofactors are
reported in Figure 9.

Sinefungin and Analogs

Sinefungin
Sinefungin (SFG), an analog of the cofactor substrate
SAM, inhibits a wide range of methyltransferases, thereby
interfering with DNA synthesis (Pugh et al., 1978). It is an
antifungal antibiotic and also a known effective inhibitor of the
transformation of chick embryo fibroblasts by the cancer-causing
Rous sarcoma virus (Vedel et al., 1978).

Frontiers in Chemistry | www.frontiersin.org 9 March 2018 | Volume 6 | Article 68

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Friedrich et al. Diversity of Protein-Bound Conformations of Small Molecules

FIGURE 6 | (A) Ligand-based alignment of 13 structures of cholic acid bound to different eukaryotic proteins and choloylglycine hydrolase from Clostridium

perfringens (2RLC; gray carbon atoms) and human mitochondrial ferrochelatase (3W1W; violet carbon atoms). (B) Ligand-based alignment of 16 structures of
deoxycholic acid bound to structurally distinct proteins, including salmonella invasion protein D (3O01; violet carbon atoms).

FIGURE 7 | Ligand-based alignment (left) and PCA-derived score plots (right) of (A,B) 30 structures of sinefungin bound to different methyltransferases (gray carbon
atoms; these and all further color definitions in this caption are referring to the left panels only), ribosomal RNA small subunit methyltransferase NEP1 (3BBH; violet
carbon atoms), tRNA (guanine-N(1)-)-methyltransferase (4YVH; green carbon atoms), SMYDs and SET7 lysine methyltransferase (3CBP, 3PDN, 3N71, 3QWW and
3RU0; cyan carbon atoms); (C,D) 123 structures of SAM bound to different methyltransferases (gray carbon atoms), tRNA(m1G37)methyltransferase (1UAK; violet
carbon atoms) and yeast ribosome synthesis factor Emg1 (2V3K; green carbon atoms); (E,F) 311 structures of SAH and (G,H) 74 conformers of glutathione (GSH).
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FIGURE 8 | Ligand-based alignment (left) and PCA-derived score plots (right) of (A,B) 171 conformers of AMP (conformer bound to adenylate kinase-related protein
from Sulfolobus solfataricus in (A) with violet carbon atoms; 3LW7), (C,D) 462 conformers of ADP, (E,F) 218 conformers of ATP, and (G,H) 367 conformers of FMN.

The PDB lists 70 structures of sinefungin, all of them
bound to methyltransferases. Thirty of these structures are of
high quality. The observed conformers of sinefungin can be
classified into three groups by an all-against-all comparison
of their RMSDs (Figure 9). The largest group (Figure 7A;
gray carbon atoms) includes 23 highly similar conformers (a
representative example is given in Figure 10A) with a median
RMSD of 0.5 Å, even though some of the proteins that these
sinefungin molecules are bound to share low sequence identity
(e.g., 30% for murine protein arginine N-methyltransferase 6
and the ribosomal protein L11 methyltransferase of Thermus
thermophilus).

The second largest group consists of sinefungin conformers
bound to the murine SET and MYND domains (SMYD) 1
(3N71) and 2 (3QWW), the human SMYD 3 (3PDN, 3RU0)
and the SET7 lysine methyltransferase (3CBP), with RMSDs

between 1.7 and 1.8 Å measured against the conformations
representing the largest group (Figure 7A; cyan carbon
atoms). Murine SMYD 1 (3N71) and human SET7 lysine
methyltransferase (3CBP) have less than 15% sequence
identity but bind sinefungin in very similar conformations
(RMSD 0.3 Å).

Distinct conformations of sinefungin are observed for
a complex with Haemophilus influenzae tRNA (guanine-
N(1)-)methyltransferase (4YVH; Figure 7A; green atoms)
and a complex with the ribosomal RNA small subunit
methyltransferase NEP1 (3BBH, Figure 7A; violet carbon
atoms, and Figure 10B) from Methanocaldococcus jannaschii,
with RMSDs measured to the most abundantly observed
conformation of 3.1 and 3.6 Å, respectively. In both cases the
ligand conformation is stabilized by a hydrogen bond formed
between the ligand’s carboxyl group and the protein backbone.
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S-Adenosylmethionine
SAM (SAM) is a cofactor that functions as a methyl donor
in methyltransferases. It is essential for the methylation of
proteins, DNA, lipids and small molecules. The bulk of SAM
is generated in the liver, but all mammalian cells use it as an
intermediate in the methionine-homocysteine cycle (Mato et al.,
2013). SAM is also involved in the synthesis of many other
endogenous metabolites. It has wide-ranging anti-inflammatory
activity (Pfalzer et al., 2014) and, since its synthesis is depressed
in chronic liver diseases, there has been considerable interest
in its therapeutic use (Anstee and Day, 2012; Guo et al., 2015).
S-adenosylmethionine is used as a drug for the treatment of
depression, liver disorders, fibromyalgia, and osteoarthritis.

Four hundred ten structures listed in the PDB contain
SAM. For example, almost all crystal structures of flavivirus

FIGURE 9 | Violin plot including box plots of the RMSD distributions of
high-quality, protein-bound conformations of sinefungin (SFG), SAM, SAH,
AMP, ADP, ATP, GSH and FMN. The width of each violin plot for a certain
RMSD value indicates how often the specific value occurs in the pairwise
comparison of all conformers.

methyltransferases contain SAM (because the molecule co-
purifies with the enzymes (Noble et al., 2014). There are
119 high-quality SAM-containing structures present in the
Sperrylite Dataset. Many of these conformers are similar, with
an overall median RMSD of 0.6 Å (Figures 7C,D). Even
conformers bound to proteins sharing a low sequence identity
(e.g., 19% in the case of Aeropyrum pernix fibrillarin, 4DF3,
and human NSUN5, 2B9E), have RMSDs of just 0.5 Å. The
all-against-all RMSD comparison shows a partitioning into
three groups that are mainly determined by the torsion angles
between the adenine and the ribose and to the torsion angles
including the sulfonium linkage (Figure 7). The highest RMSD
measured between any pair of SAM conformers is 3.3 Å, which
was measured for the ligand in complex with Haemophilus
influenzae tRNA(m1G37)methyltransferase (1UAK; Figure 7C;
violet carbon atoms) and with SAM methyltransferase from
Ruegeria pomeroyi (3IHT).

S-Adenosyl-L-homocysteine
The strong product inhibitor SAH (SAH) is released in all
SAM-dependent methyltransferase reactions (Tehlivets et al.,
2013). The ratio of SAM to SAH controls the activity of
methyltransferase enzymes (“methylation ratio”; Schatz et al.,
1977).

The PDB lists 784 structures including SAH, of which an
unusually high proportion (40%; 311 structures) is of high quality
(Figure 7). These represent a highly diverse set of proteins from
all three domains of organisms in nature. Most of the structures
are of human (73 structures) and Pyrococcus horikoshii (72
structures) proteins.

Many of the SAH conformations are highly similar, with
an overall median RMSD of 0.6 Å. The all-against-all RMSD
comparison shows three groups of conformations and an overall
spread very similar to that observed for SAM (Figure 9).
As shown in Figure 7, the conformations observed for SAM
and SAH are similar. Also, all conformations of sinefungin
are closely represented by at least one conformation of SAM
and SAH.

The largest difference observed among the SAH
conformations was measured between a coiled conformer
bound to Haemophilus influenzae tRNA (Guanine-N(1)-)-
methyltransferase (1UAL) and a mostly stretched conformer
bound to E. coli ribosomal RNA large subunit methyltransferase
L (3V97) with an RMSD of 3.2 Å.

FIGURE 10 | (A) A typical conformer of sinefungin bound to human histone-arginine methyltransferase CARM1 (2Y1W) and (B) the coiled conformer in the ribosomal
RNA small subunit methyltransferase NEP1 from Methanocaldococcus jannaschii (3BBH).
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Glutathione
The tripeptide glutathione (GSH; GSH) is a cofactor of
various different enzymes and a defensive reagent against toxic
xenobiotics. Of the 360 entries with glutathione listed in the PDB,
74 structures are of high quality. These high-quality structures
cover glutathione bound to 10 different proteins (Figures 7G,H).
Most of the GSH conformers have a pairwise RMSD between
0.6 and 1.6 Å (Figure 9). The two most distinct conformers of
glutathione observed in the Sperrylite Dataset are an unusually
stretched conformer bound to a putative branched-chain amino
acid ABC transporter from Chromobacterium violaceum (4PYR,
Figure 11A) and an extremely coiled conformer bound to
human mPGES-1 (4YL1, Figure 11B), with an RMSD of
3.6 Å. Nevertheless, their interaction patterns show similarities.
Glutathione transferases are represented by 46 high-quality
structures. These are mostly similar and have a median RMSD
of less than 0.5 Å (Figures 7G,H).

Adenosine Phosphates
ATP functions as the most important molecule for intracellular
storage and transport of chemical energy. It has many
crucial roles in metabolism and is also a neurotransmitter.
During metabolic processes, ATP is converted into
adenosine diphosphate (ADP) and, subsequently, adenosine
monophosphate (AMP), thereby releasing the stored energy.

Adenosine monophosphate
Out of the 575 complexes with AMP (AMP) found in the
PDB, 171 conformers are of high quality. AMP has four
rotatable bonds and the median RMSD measured between all

high-quality conformers is 0.8 Å. The all-against-all comparison
of AMP conformers results in a wide spread of the RMSD
values (Figure 9). The flexibility of the molecule is mostly
limited to the phosphate group (Figures 8A,B). The maximum
RMSD of 2.5 Å was measured between an extremely coiled
conformer bound to an adenylate kinase-related protein from
Sulfolobus solfataricus (3LW7; Figure 8A, violet carbon atoms;
Figure 12A) and the stretched conformer bound to NTPDase1
from Legionella pneumophila (4BRN; Figure 12B).

Adenosine diphosphate
Out of the 1,810 entries including ADP (ADP) in the PDB, 462
conformers are of high quality. Despite an additional phosphate
group and a total of six rotatable bonds, the conformational
space covered by ADP is very similar to that covered by
AMP (Figures 8C,D). This similarity is reflected in the median
RMSD of 0.9 Å between the conformers of ADP and a similar
overall spread in the all-against-all comparison (Figure 9).
The two most different ADP conformers in the Sperrylite
Dataset are those bound to tryptophanyl-tRNA synthetase from
Campylobacter jejuni (3TZL; Figure 13A) and an Stt7 homolog
from Micromonas algae (4IX6; Figure 13B), with an RMSD of
2.9 Å.

Adenosine triphosphate
Only 218 conformers out of the 1,079 structures of the PDB
containing ATP (ATP) were of high quality. In all structures of
ATP included in the Sperrylite Dataset, the N-glycosidic bond
is found in an anti-orientation. With its eight rotatable bonds
ATP is more flexible than the previously discussed adenosine

FIGURE 11 | (A) The most stretched conformer of glutathione bound to an ABC transporter from Chromobacterium violaceum (4PYR) and (B) an unusually coiled
conformer of glutathione bound to human mPGES-1 (4YL1).

FIGURE 12 | (A) Unusually coiled conformer of AMP bound to adenylate kinase-related protein of Sulfolobus solfataricus (3LW7) and (B) the most stretched
conformer in Legionella pneumophila NTPDase1 (4BRN).
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FIGURE 13 | The most distinct conformers of ADP in the Sperrylite Dataset are the coiled conformer from (A) tryptophanyl-tRNA synthetase from Campylobacter

jejuni (3TZL; sodium ion in light blue) and (B) the stretched conformer from a Stt7 homolog from Micromonas algae (4IX6).

phosphates. This results in a median RMSD of 1.6 Å among
the ATP structures of the Sperrylite dataset (as compared to
a median RMSD of 0.9 Å measured for ADP) and a distinct
spread of the RMSD values in the all-against-all comparison
(Figure 9). The maximum pairwise RMSD was 3.9 Å, measured
between ATP conformers from human lysyl-tRNA synthetase
(3BJU) and Drosophila melanogaster Wiskott-Aldrich syndrome
protein homology 2 (3MN6).

ATP is observed in an extended conformation in most
structures (Figures 8G,H), which is in agreement with earlier
studies (Moodie and Thornton, 1993; Stockwell and Thornton,
2006; Bojovschi et al., 2012; Stegemann and Klebe, 2012).
As reported also by Stockwell and Thornton (Stockwell and
Thornton, 2006), some conformers are bent to an extent
that the terminal phosphate atoms are almost in van der
Waals contact with the adenine ring. Examples of ATP in
bent conformations include complexes with the aspartyl-tRNA
synthetase from Pyrococcus kodakaraensis (1B8A; Figure S6) and
the ribonucleotide reductase protein R1 from E. coli (3R1R).

Flavin Mononucleotide
Flavin mononucleotide (FMN; FMN) is the prosthetic group
of various oxidoreductases (including NADH dehydrogenase),
as well as a cofactor in biological blue-light photoreceptors
(Froehlich et al., 2002; Schwerdtfeger and Linden, 2003). Blue-
light receptors in plants (phototropins), for example, employ
flavin mononucleotide as the chromophore for their light sensing
function (He, 2002).

Its frequent occurrence as a prosthetic group and a cofactor
result in flavin mononucleotide’s presence in 919 structures
deposited in the PDB, among which 367 conformers of
FMN are of high quality. Despite having seven rotatable
bonds, most structures show extended, similar conformations
(Figures 8G,H), with a median RMSD of 0.9 Å. The all-against-
all comparison reveals four groups of conformers, with peaks
observed in the RMSD distribution around 0.3, 1.2, 1.7, and
2.4 Å (Figure 9). These peaks correspond to an accumulation
of conformers with similar torsion angles of the side chain.
The maximum RMSD of 2.9 Å was observed between the
conformation of FMN in E. coli pyridoxine 5′-phosphate oxidase
(1JNW) and in human glycolate oxidase (2RDU), with the
sidechain bent into opposing directions.

CONCLUSIONS

The Sperrylite Dataset presented in this work is a complete
subset of high-quality conformations of protein-bound ligands
extracted from the PDB. This dataset resulted from a multi-step
data processing and filtering procedure that, most importantly,
also includes an automated approach for the evaluation of the
support of individual atom positions by the electron density.
The Sperrylite Dataset consists of a total of 10,936 high-quality
structures of 4,548 unique ligands. Ninety-one of those ligands
are each represented by a minimum of ten structures, and among
these only a (very) weak correlation was observed between the
number of rotatable bonds of amolecule and its overall variability
(measured as the minimum median RMSD; R2 = 0.126). Sixty-
nine out of the 91 ligands had at least two distinct conformations
(defined as RMSD above 1Å).

A representative subset of 17 approved drugs and cofactors
was analyzed in detail to determine the conformational variability
of protein-bound conformations of small molecules. For all of
the analyzed small-molecule drugs and some of the cofactors,
a clear trend for the formation of few clusters of highly similar
conformers was observed. Similar conformers were observed for
proteins with similar binding sites, mostly independent of the
overall protein sequence identity (which is in agreement with the
findings of, e.g., Sturm et al., 2012). A particularly interesting
example is imatinib, which was found to adopt highly similar
conformations when binding to different tyrosine kinases (even
to those sharing low overall sequence identity) but to adopt
a distinct conformation upon binding to quinone reductase 2.
For cofactors, a clear trend for extended conformations was
observed, which is in agreement with previous works (Moodie
and Thornton, 1993; Stockwell and Thornton, 2006; Bojovschi
et al., 2012; Stegemann and Klebe, 2012). A few cases of strongly
coiled conformers of cofactors were also observed. This result is
well in line with earlier reports (Stockwell and Thornton, 2006).

It is clear that the currently available structural data on
protein-bound ligands is still too limited to allow us to gain
a full understanding of the bioactive space of small molecules.
However, for several cofactors a large number of conformers
observed in complex with dozens of proteins are available to date
and provide valuable insight into the bioactive conformational
space and the prevalence of bioactive conformations of small
molecules. With an automated workflow for the extraction of
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high-quality ligand structures from the PDB in place, it is
expected that the ever increasing amount of data will allow a
more detailed understanding of, e.g., conformational preferences,
ligand promiscuity, or the relationship between the bioactive
conformational space of small molecules and the structural
diversity of binding pockets.
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ABSTRACT: Computer-aided drug design methods such as
docking, pharmacophore searching, 3D database searching,
and the creation of 3D-QSAR models need conformational
ensembles to handle the flexibility of small molecules. Here,
we present Conformator, an accurate and effective knowledge-
based algorithm for generating conformer ensembles. With
99.9% of all test molecules processed, Conformator stands out
by its robustness with respect to input formats, molecular
geometries, and the handling of macrocycles. With an
extended set of rules for sampling torsion angles, a novel
algorithm for macrocycle conformer generation, and a new
clustering algorithm for the assembly of conformer ensembles,
Conformator reaches a median minimum root-mean-square deviation (measured between protein-bound ligand conformations
and ensembles of a maximum of 250 conformers) of 0.47 Å with no significant difference to the highest-ranked commercial
algorithm OMEGA and significantly higher accuracy than seven free algorithms, including the RDKit DG algorithm.
Conformator is freely available for noncommercial use and academic research.

■ INTRODUCTION

Computational methods for 3D virtual screening, drug design,
and other applications depend on the ability of algorithms to
represent the conformations that small molecules adopt upon
binding to biomacromolecules. In particular, fast tools such as
pharmacophore-based and shape-focused screening engines
make use of precalculated, multiconformational databases
composed of compounds represented by (preferably small)
conformer ensembles.1−4

The generation of representative conformer ensembles of
small molecules poses significant challenges. Small molecules
can have a substantial number of conformational degrees of
freedom.5 Upon binding, they may adopt conformations that
are distinct from the low-energy conformations observed in the
gas phase and in solution, such as strained conformations
related to transition states.6−9 On top of that, what constitutes
the most appropriate algorithm for conformer ensemble
generation depends on the specific purpose of use: fast
algorithms may be preferred for sampling large molecular
libraries for use with, for example, coarse virtual screening
approaches such as pharmacophore models, whereas more
time-consuming but more accurate algorithms are generally
preferred for sampling small sets of molecules to be used e.g.
for 3D QSAR. In consequence, a large number of conformer
ensemble generators based on various algorithmic approaches

are available today. They are based, among others, on random
and systematic search algorithms, molecular dynamics (MD)
simulations, genetic algorithms (GA), distance geometry
(DG), and knowledge-based approaches.10 Two recent studies
from our laboratories11,12 directly compare the performance of
seven free (the RDKit DG algorithm13 and the Experimental-
Torsion basic Knowledge Distance Geometry algorithm
(ETKDG),14 Confab,15 Frog2,16 Multiconf-DOCK,17 and the
Balloon DG and GA algorithms18) and eight commercial
(ConfGen,19 ConfGenX,20 cxcalc,21 iCon,22 MOE Low-
ModeMD,23 MOE Stochastic, MOE Conformation Import,
and OMEGA24) conformer ensemble generators. These
studies were the first to employ comprehensive sets of high-
quality structures of protein-bound ligands for benchmarking.
In particular, a newly developed cheminformatics pipeline was
utilized for the fully automated extraction and curation of a
complete set of 10 936 high-quality structures of protein-
bound ligands (Sperrylite Dataset5) from a total of over 350k
ligand conformations (from structures deposited in the PDB).
The support of the individual atoms of all ligands by the
measured electron density was quantified by the electron
density score for individual atoms (EDIA25). On the basis of
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the Sperrylite Dataset, a diverse subset of 2859 high-quality
structures of unique ligands bound to their biomacromolecular
targets (Platinum Diverse Dataset12) was compiled and
provided to the scientific community for benchmarking. The
outcomes of these studies show that commercial algorithms
generally obtain accuracy and robustness higher than those of
their free counterparts. OMEGA was confirmed as the leading
commercial algorithm, with the distance geometry approach of
RDKit and its knowledge-based counterpart, ETKDG, as the
best-performing free alternatives.11,12 Importantly, for all of the
tested free algorithms, severe geometrical errors related to
wrong bond lengths and bond angles, as well as out-of-plane
errors, were detected in the generated conformations. In
contrast, for most of the tested commercial algorithms, only a
few instances of anomalous geometries were observed. For
OMEGA and iCon, no geometric errors were identified.
In this work, we introduce Conformator as a new conformer

ensemble generator that is free for noncommercial use and
academic research and which addresses several of the
limitations shared by most of the existing free algorithms.
Conformator is a knowledge-based conformer ensemble
generator that builds on concepts of the previously introduced
CONFECT algorithm.26 Major conceptual advancements of
Conformator over CONFECT include a novel approach to
sampling the conformational space of macrocycles, a new
efficient clustering algorithm, an extended set of rules for
sampling torsion angles, and capabilities for handling SMILES
and InChI input. Together with the revised and extended
torsion angle library of Guba et al.,27 these advancements make
Conformator a highly accurate and effective algorithm that
stands out by its robustness with respect to input formats,
molecular geometries, and the handling of macrocycles.

■ METHODS
Conformer Generation Algorithm. Conformator is a

conformer ensemble generator built on established concepts of
incremental construction of conformers. At its core, Con-
formator consists of a torsion driver enhanced by an elaborate
algorithm for the assignment of torsion angles to rotatable
bonds, plus a new clustering component that compiles
ensembles efficiently by taking advantage of the fact that the
lists of generated conformers are partially presorted. The
clustering algorithm minimizes the number of comparisons
between pairs of conformers that are required to effectively
derive individual root-mean-square deviation (RMSD) thresh-
olds for molecules and to compile the ensemble.
Conformator features two conformer ensemble generation

modes, “Fast” and “Best”. As their names suggest, the emphasis
of Fast is on computational efficiency, whereas that of Best is
on accuracy. Both modes include checks that ensure chemically
correct bond lengths and bond angles as well as the planarity of
conjugated systems including rings.
Conformator reads molecular structures from SD and

MOL2 files as well as from SMILES and InChI notations.
By default, Conformator generates a new set of 3D atom
coordinates as a starting point for conformation generation.
Thus, Conformator does not rely on input coordinates and
generates a canonicalized order of atoms and bonds (similar to
canonical SMILES).28 This representation serves as a unique
and independent starting point for conformer ensemble
generation (Figure 1).
After parsing, the molecule is compartmentalized at any

acyclic, nonterminal single bond that is not connected to a

methyl, trifluoromethyl, or nitrile group (following the concept
of rigid rotor approximation). Each of these single bonds are
assigned all torsion angle values of matching fragments
recorded in the torsion angle library developed by Schar̈fer
et al.29 and revised by Guba et al.27 As part of the construction
of conformers, optimal bond angles based on the Valence Shell
Electron Pair Repulsion (VSEPR) model are assigned.30,31

Bond lengths of acyclic adjacent atoms used in the
construction of conformers are calculated from the sum of
covalent radii. They are adjusted for different atom types,
taking into account the local molecular environment (e.g.,
delocalization). Details on the exact procedure and exceptions
are reported in ref 26.
Once all possible torsion angles have been assigned based on

this SMARTS pattern matching procedure,32 individual torsion
angle values are removed during an iterative process until the
maximum number of possible conformers (based on the
combination of all assigned torsion angles, neglecting potential
clashes) no longer exceeds the maximum number of generated
candidate conformers for clustering. The number of torsion
angles assigned to a rotatable bond depends on the bond’s
centricity in the molecule, the overall flexibility of the
molecule, and the sampling parameters defined by the user
(such as the maximum ensemble size). The centricity is
estimated from the topological distance of the rotatable bond

Figure 1. Schematic depiction of the conformer ensemble generation
approach followed by Conformator. The boxes show the major
algorithmic steps, including the loop for macrocycle conformer
generation.
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to the farthest atoms calculated on the molecular graph with
the Floyd−Warshall algorithm.33 Rotatable bonds located at
the center of a molecule are assigned more alternative torsion
angle values compared to rotatable bonds of terminal
fragments. This is because fragments close to the center of a
molecule are more likely to have a determinant effect on the
overall conformation. More specifically, fragments located at
the center of a molecule keep many if not all torsion angles
recorded for a specific SMARTS pattern in the torsion angle
library, whereas fragments located away from the center of the
molecule are assigned only a few of the most frequently
observed torsion angles. The overall aim of this procedure is
the reduction of the number of conformers to be generated
and analyzed during the clustering process (typically hundreds
of thousands or even millions of conformations) by two to
three orders of magnitude. The flexibility of a molecule is
estimated based on the maximum number of possible
conformations resulting from the enumeration of all torsion
angle values stored in the library (without the consideration of
potential clashes). The maximum number of generated
candidate conformers for clustering is the product of the
maximum allowed ensemble size (user-adaptable parameter; in
this study 50 or 250) and a factor of 10 (Fast) or 20 (Best).
Once all torsion angles for conformer enumeration have

been selected, the conformer generation process is initiated,
starting from the most central fragment and following a
standard incremental construction approach.34 Initially, a
depth-first search of the most likely torsion angles is carried
out to ensure that the most relevant torsion angles are
represented in the conformer ensemble and that the conformer
generation produces the conformers which are likely most
relevant. Provided that the number of conformers resulting
from this depth-first search does not exceed the maximum
number of candidate conformers for clustering, breadth-first
search (starting again from the most central fragment) is
carried out iteratively to explore all selected torsion angles and,
hence, generate additional candidate conformers.
During conformer generation, topological symmetry classes

of each heavy atom of the molecule are calculated in a
canonical way using a variant of the CANON algorithm.28 On
the basis of these, local symmetries are detected and
considered during torsion angle enumeration to avoid the
generation of duplicate conformers. Because local symmetry
detection depends on the used central fragment, not all
symmetries can be detected and a final symmetry clustering via
complete automorphism enumeration is performed to remove
similar conformers due to global symmetries.
Conformations for rings formed by up to nine heavy atoms

are calculated using conformations from a ring template library
embedded in NAOMI35 as described by Schar̈fer et al.26 Ring
systems are incrementally constructed from individual ring
conformers. Following the concept of unique ring families
(URFs) reported by Kolodzik et al.36 (a recent reimplementa-
tion by Flachsenberg et al.37 was used for Conformator), at
most one relevant cycle (RC) per URF is selected for ring
system conformation generation. Starting from the RC with
the highest connectivity, the remaining cycles are attached
while considering atom geometries according to VSEPR and
taking into account the available stereo information. Within a
tailored optimizer, simplified force field terms for bond
distortion, angle bending, and torsion energy are used for
evaluating the deviations of molecular geometries from the
ideal values and for assessing steric clashes. The tailored

optimizer subsequently relaxes the assembled ring system
conformation.
This optimizer is also used to generate additional low-energy

conformations based on initial template conformations to
generate an ensemble of ring system conformations. Rings
formed by more than nine atoms are handled by a new
algorithm for sampling the conformations of macrocycles (see
Conformer Generation for Macrocycles).
Conformations causing clashes are rejected as early as

possible during the incremental construction process. Intra-
molecular clashes are defined as overlaps of more than 30% of
the van der Waals radii of 1−4-connected (or more distant)
heavy atom pairs that are not part of the same ring system.
Alternatively, users can choose for Conformator to include
hydrogen atoms in the clash calculation.
The configuration of any defined stereogenic center is

preserved by the algorithm, whereas the configuration of any
undefined R/S-stereogenic center is arbitrarily chosen once per
molecule. Undefined E/Z-stereogenic centers are enumerated
(limited only by steric hindrances and the maximum ensemble
size). In the case of undefined stereogenic centers, the
macrocycle conformation generation (see section Conformer
Generation for Macrocycles) may produce a mix of stereo-
isomers (R/S and E/Z). Arbitrarily selecting one stereoisomer
could prevent the algorithm from finding any reasonable result,
especially in the case of E/Z isomers.

Clustering of Conformers. A new algorithm based on
sphere exclusion clustering38,39 was developed as part of
Conformator for the efficient assembly of conformer
ensembles (Algorithm S1, Figure S1). The clustering algorithm
is the final step of the conformer ensemble generation. It aims
to reduce the number of computationally expensive geometric
comparisons of pairs of conformers required for the assembly
of ensembles of a defined maximum size by exploiting the fact
that sequentially generated conformers are likely to be highly
similar to each other. To an outside observer, the list of
conformers generated by Conformator will appear to be the
result of a systematic search which explores valid torsion angles
for one rotatable bond after the other. Geometric deviations
between pairs of sequentially generated conformers are likely
small because they often differ only by one torsion angle. Large
deviations are less common and are often related to clashes
which, when occurring during early stages of the search, can
result in the rejection of whole branches of the search tree. The
number of comparisons (RMSD calculations) between con-
formers is heavily reduced by traversing the list of conformers
forward and the list of cluster centers backward. This increases
the probability of similar conformers being compared early.
When a similar enough conformer (defined by a RMSD
threshold) is identified, the conformer is removed from the list
of candidates and not compared to any further conformers.
During clustering, Conformator adjusts the minimum

RMSD distance between conformers and determines an
appropriate RMSD threshold for each individual molecule to
generate ensembles that do not exceed the maximum ensemble
size. This RMSD threshold depends on the maximum
ensemble size and quality level as well as the size and
flexibility of the molecule. The algorithm is heuristic but
deterministic, i.e., it produces the same result given the same
list of conformations (note that, unless the user requests that
input coordinates be used as a starting point for conformer
generation, the list of conformations generated during each run
is identical for a given molecule).
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Conformator does not rank conformers explicitly (although
the first conformers generated by the algorithm are more likely
based on the most commonly observed torsion angles). The
conformers of an ensemble of small size (e.g., 5 conformers)
will not necessarily be part of an ensemble of larger size (e.g.,
50 conformers) because for small ensembles Conformator may
prioritize conformers of high diversity over conformers with
more commonly observed torsion angles. It is also unlikely that
the first few conformers of an ensemble of larger size are those
that would be included in an ensemble of small size. For this
reason, to obtain ensembles of desired size, users are advised to
not extract individual conformers but to define an adequate
maximum ensemble size prior to ensemble generation.
The clustering algorithm (illustrated in Figure S1 and

reported as pseudo code in Algorithm S1) involves the
following key steps (with radius and increase having the values
0.1 and 0.05 Å for Best and 0.5 and 0.5 Å for Fast):

1. An empty list of cluster centers is created.
2. The first conformation becomes the first cluster center.
3. Each conformer in the list of conformers is compared to

the reversed list of cluster centers.
4. If the conformer is (a) similar to an existing cluster

center (RMSD smaller than radius), then the conformer
is immediately discarded, or (b) dissimilar to any of the
existing cluster centers, then the conformer is added to
the list of cluster centers.

5. If the number of cluster centers reaches the maximum
ensemble size, radius is increased as specified by the
increase parameter, and the clustering process is restarted
with an empty list of cluster centers and the list of
remaining conformers.

6. When all conformers are assigned to a cluster center and
the ensemble size is equal to or below the maximum
ensemble size, the list of cluster centers is reported as the
conformer ensemble.

Conformer Generation for Macrocycles. Conformers
for macrocyclic ring systems are generated using a novel
algorithm. First, all macrocycles are sliced by cutting bonds
until no macrocycles are left. Next, conformations are
generated for these structures without macrocycles, which
serve as starting points for the rebuilding of the macrocycles by
a local optimization algorithm. The following sections describe
these processes in detail. Schematics of the conformer
generation algorithm for macrocycles are provided in Figure
S2.
Preprocessing of Macrocyclic Structures for Conformer

Generation. In the following, all rings formed by more than
nine atoms are termed macrocycle; all others are termed small
rings. This distinction is necessary because conformations for
small rings are covered by the ring template library (see
Conformer Generation Algorithm). The concept of unique
ring families (URFs)36,37 is used to consider one ring family at
a time instead of processing individual rings. URFs are a
unique, chemically meaningful, and polynomial description of
the rings in a molecule.
First, all URFs of the molecule are identified.36,37 A URF is

called macrocyclic if it contains at least one ring with more
than nine atoms. All ring systems are processed independently.
All macrocyclic URFs in a ring system are iteratively cut at one
single bond outside of small rings until the resulting ring system
no longer contains any macrocycles. In case a molecule contains
exactly one macrocycle, this process results in the cutting of one

bond. By choosing exactly one bond to be cut during each
iteration, the molecule remains connected. The single bond to
be cut is chosen by prioritizing carbon−carbon and then
carbon-incident bonds. If no such bond exists, the same
priority rule is applied to bonds in conjugated systems. Bonds
that are not adjacent to small rings are favored in the selection
process. Double bonds, triple bonds, and bonds that are part of
small rings are not cut. Macrocycles consisting entirely of small
rings are incrementally constructed from individual ring
conformers. Following the cutting of a bond, new single
bonds equal in length to the original bond are introduced by
attaching two dummy atoms.

Generation of Conformers for Preprocessed Macrocyclic
Structures. Diverse conformations of the preprocessed macro-
cyclic structures are generated with Conformator’s standard
algorithm following the exact same procedure as described
above (see Conformer Generation Algorithm; Figure 1).

Rebuilding the Macrocycles by Numerical Optimization.
The conformations generated during the previous process are
used as starting points for a gradient-based numerical
optimization procedure that aims to reconstitute macrocycles
by superimposing the dummy atoms with the atoms they
replaced during the cutting step. Note that the initial
conformations already have valid geometries at this point,
obviously with the exception of the part where the macrocyclic
bond is to be reintroduced. The optimization is performed
employing internal coordinates, namely the torsion angles and
bond angles in the macrocycles. By this strategy, the number of
parameters is reduced down to at most one bond angle per
atom and one torsion angle per bond.
Local optimization is performed using a reimplementation of

the BFGS-B algorithm,40,41 which was modified to not allow
any atoms to move by more than 0.5 Å per iteration. This
modification, inspired by recent work on the refinement of the
positions of water molecules in protein crystal structures,42 was
made to increase the locality of the optimization method and
avoid unreasonably large changes in geometry. The local
optimization is performed only on the atoms of the macrocycle
(all other atoms of the molecule are not considered), and no
part of the macrocycle is fixed (except for individual atoms in
small rings, which are moved as a unit).
The here introduced macrocyclic optimization score

(MCOS, see eq 1) is used to reconstruct the macrocycle. It
includes several well-known components from common force
fields and some components specific to the optimization of
macrocycles. The formulas of the terms in eq 1 are provided in
the Figures S3−S9; the weights were determined empirically
and are provided in Table S1. Please note that the MCOS and
the individual score contributions are dimensionless and are
not genuine energy terms.

= + + +

+ +

+

w S w S w S w S

w S w S

w S
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where {i,j} is a cut bond and dummy(j) is the dummy atom
replacing atom j as a terminal atom adjacent to atom i.
Soverlay scores the distance between the dummy atoms and

the atoms in the original macrocycle they replaced. Ideally, this
distance should be close to 0 (see Figure S3). The overlay
score ensures that the bond angle and bond length across the
cut bond will be restored during local optimization. It also
supports the preservation of local stereochemistry.
The bond angle term Sangle uses a harmonic potential

(calculated on the angle cosine, see Figure S4) to account for
deviations from the ideal values (see Conformer Generation
Algorithm and ref 26). It is calculated only for bond angles
directly altered during optimization (i.e., angles involving
bonds along the macrocycle that are optimization parameters)
and the angles involving the cut bonds. During local
optimization, bond angles are box-constrained such that no
bond angle may be set to values greater than 179 degrees (if
the atom does not have linear VSEPR geometry) and smaller
than 0 degrees. This is to prevent unreasonable bond angle
changes or even inversions of the local stereochemistry as bond
angles usually stay rather close to the respective ideal values.
The bond angle constraints are further supported by the
penalty Slimit in the scoring function for bond angles in
macrocycles, which leads to a preference of bond angles
between 30 and 150 degrees (see Figure S5). Both terms Sangle
and Slimit are multiplied by a function (see Figure S7) that
reduces the scores to 0 in cases where any bond length
adjacent to the angle approaches 0 Å. This is necessary because
bond angles are not defined in cases where two defining atoms
are placed on top of each other.
In addition, the bond length term Sbond uses a harmonic

potential (see Figure S6) to account for deviations from ideal
values (see Conformer Generation Algorithm and ref 26. Only
the bond lengths of the cut bonds are scored.
The torsion angle score for bonds within (Storsion,conjugated)

and outside (Storsion) of conjugated systems is calculated using
the same torsion angle potential but different weights. The
(continuous) torsion angle potential is based solely on torsion
angle peaks recorded in a freely available torsion angle library
derived from the CSD.27 It uses the von Mises function as the
kernel for curve approximation43 with a tailored equation for
kappa. We estimate the curve width through connecting the
second peak tolerance and the peak score from the torsion
library with the measure of concentration of the von Mises
function (kappa). Due to the numerical optimization steps in
continuous torsion space, torsional angles may differ from the
angles stored in the torsion library (note that the angles start
from those stored in the torsion angle library).
The torsion angle potential is multiplied by a function (see

Figure S8) that reduces the torsion angle score to 0 in cases
where any bond angle along that torsion bond is either close to
0 or 180 deg (such bond angle values may be observed for cut
bonds where the bond angle is not directly modified and
therefore not subject to the box constraints). This is necessary
because the torsion angle, as a function of the four atom
coordinates, has a discontinuity when three consecutive atoms
are collinear. The torsion angle potential is furthermore
multiplied by the same function described above for Sangle and
Slimit that reduces the score to 0 in cases where bond lengths
are close to 0 Å (Figure S7).
To prevent intramolecular clashes, the clash term Sclash was

added to the MCOS. Sclash is a quadratic function that penalizes
van der Waals overlaps between 1 and 4-connected (or further

away) heavy atoms that exceed the threshold level of 30% (see
Figure S9).

Postprocessing and Filtering of Macrocyclic Structures for
Conformer Generation. Following the optimization proce-
dure, the cut bonds are reintroduced to close the macrocycle
conformations again, and the dummy atoms are removed. In
the rare event that the resulting macrocycle has assigned a
configuration that does not correspond to the conformation of
the input structure, the conformer is rejected. The geometry of
all atoms forming macrocycles is then checked and, if required,
optimized to resemble VSEPR geometries by adjusting the
position of the macrocycle substituents.
All macrocycle conformations are then checked for bond

lengths and angles that deviate strongly from the known
optimal value.26 The optimal values for bond length and bond
angles were the same as used for the optimization; for allowed
deviations see ref 44. Furthermore, the planarity of conjugated
macrocycles (e.g., protoporphyrin IX, PP9) is tested by
checking their bonds for torsion angles deviating from 0 or
180°. Because macrocycles can adopt highly strained
conformations a maximum deviation of 20 degrees of torsion
angles in conjugated macrocycles is allowed. Only in cases
where no (approximately) planar conjugated system can be
generated, nonplanar alternative conformations are considered.
Before utilizing the macrocycle conformations for ensemble

generation, the conformations are sorted by their final MCOS
and subjected to one iteration of clustering utilizing the
identical clustering algorithm (see Clustering of Conformers)
with an RMSD threshold of 0.1 Å. The sorting step prior to the
clustering step ensures that for each cluster the best-scored
conformation is selected.

Output Summary. In addition to any warnings and errors,
Conformator prints out a single-line summary for each
processed molecule. The summary includes information on
the name of the molecule, the number of generated
conformers, and stereochemistry. The user may request
additional output, such as the minimum pairwise RMSD
between a generated conformer and the input conformer, and
the minimum pairwise RMSD between any generated
conformers. Note that these options may lead to substantially
longer runtimes.

Benchmarking Conformer Ensemble Generators.
Preparation of the Benchmark Dataset for Computation.
The Platinum Diverse Dataset used for benchmarking
conformer ensemble generators is a representative subset of
the Platinum Dataset.45 Both datasets were compiled according
to the method described in ref 11, with the improvements
described in ref 12 and downloaded from ref 46.

Conformer Ensemble Generation. In our previous bench-
mark studies, standard 3D structures (SDF format) generated
from SMILES with NAOMI served as input for conformer
ensemble generation for the RDKit DG algorithm and
OMEGA. The same structures were used as input for
CONFECT26 in the present work. Conformator was
benchmarked with both SMILES and 3D structures as input.
Conformer ensembles were calculated with the parameters
described in the Results section and summarized in Table 1.

RMSD Calculations, Geometry Checks, and Runtime
Measurements. The RMSD between pairs of conformers
was calculated with NAOMI.35 NAOMI determines the
RMSD based on the best superposition of a pair of conformers,
taking into account molecular symmetry via complete
automorphism enumeration.
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NAOMI was also utilized to determine the deviation of atom
angles and bond lengths from known optimal values as well as
the divergence of aromatic rings and ring systems (up to six
bonds per relevant cycle) from planarity.44 Runtimes of
conformer ensemble generation were measured for SD files
containing single molecules.
Statistical Analysis. The Mann−Whitney U test was used

to test for statistical significance at α = 0.05 and α = 0.01, with
the Holm−Bonferroni method51 applied to control the
familywise error rate. The p-values are reported for pairwise
comparisons of the conformer ensemble generators at
maximum ensemble sizes 250 and 50 in the Supporting
Information (Tables S2 and S3).
Hardware Setup. All calculations were performed single-

threaded on Linux workstations running openSUSE 42.2 and
equipped with Intel Xeon processors (2.2−2.7 GHz) and 126
GB of main memory (Conformator typically uses less than 1
GB of memory).

■ RESULTS

Benchmarking Conformator. The accuracy and effi-
ciency of Conformator in representing protein-bound ligand
conformations was assessed using the same dataset45 and
following the same testing procedure12 previously applied to
the benchmarking of the commercial algorithms ConfGen,19

ConfGenX,20 cxcalc,21 iCon,22 MOE,23 and OMEGA.24 In a
second, earlier published study,11 we compared the perform-
ance of the free conformer ensemble generators Balloon (two
different algorithms),18 the RDKIT DG13 and ETKDG14

algorithms, Confab,15 Frog2,16 and Multiconf-DOCK.17 This
study also followed the identical testing protocol but utilized
an earlier version of the Platinum Diverse Dataset.52 We have
previously shown12 that the marginal differences in the
composition of both versions of the Platinum Dataset have
no significant impact on any study outcomes. This means that
all results presented in the current work can be directly
compared to the results reported in either of our previous
studies.
The following sections report on key performance figures

computed for Conformator and CONFECT, some of which
are summarized in Figure 2 and Table 2. In support of the
discussions, results obtained as part of our previous study with
the best-performing parameter sets (Table 1) for the RDKit
DG algorithm (the best-performing free algorithm) and
OMEGA (the best-performing commercial algorithm) are
recited in the figures and tables of the current work. Results of
the Mann−Whitney U test for statistical significance for
maximum ensemble sizes of 250 and 50 are provided in the
Supporting Information (Tables S2 and S3). In the following
sections, four-letter codes refer to PDB entries, and three-letter
codes in italics refer to PDB ligand identifiers.

Accuracy and Ensemble Size. This study, like most
benchmark studies (including ours11,12), defines the accuracy
of conformer ensemble generators by the minimum RMSD in
Å measured between the experimentally determined protein-
bound conformation and any conformer of the computed
ensemble. Accuracy is, to some extent, a function of ensemble

Table 1. Parameter Sets Applied to Conformer Ensemble
Generation

algorithm modea clusteringb force field

Conformator Best (default) RMSD n/MCOSc

Conformator Fast RMSD n/MCOSc

CONFECT 3d TFDe TrAmberf

RDKit DGg n/a RMSD UFF47

OMEGAg default RMSD mmff94s_NoEstath

aParameter sets and search modes supplied by the developers of the
respective algorithms. bDistance measure for clustering conformers to
form ensembles. Default values were applied. cMacrocycle Opti-
mization Score (MCOS). Only used for macrocycle optimization.
dSetting recommended by the developers.48 eTorsion fingerprint
distance.49 fTrAmber is a hybrid force field partly based on TAFF50

and used for resolving clashes by small rotations of torsion angles.
gBest-performing parameter set in our previous study.12 hMMFF94
variant that includes all MMFF94s terms except those for Coulomb
interactions.

Figure 2. Percentage of protein-bound ligand conformations of the Platinum Diverse Dataset reproduced by the different algorithms within a
certain accuracy (left), ensemble size (middle), and runtime per molecule (right) at maximum ensemble sizes (a) 50 and (b) 250 conformers.
Steeper curves indicate better performance with respect to all three criteria.
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size.53 This is because ensembles are generally designed to
consist of diverse conformers, which means that chances for
one of these conformers to closely resemble the experimentally
observed conformation generally increase with the number of
generated conformers. Unless stated otherwise, all results
presented in the following sections refer to ensembles with a
maximum of 250 conformers.
Conformator Best represented the protein-bound ligand

conformations with a median RMSD of 0.47 Å at a median
ensemble size of 187. Its accuracy was significantly better than
that of the RDKit DG algorithm (median RMSD 0.52 Å), even
though the RDKit DG algorithm produces larger ensembles
(median 229 conformers). The accuracy of Conformator Best
was also competitive with that of OMEGA (RMSD 0.47 vs
0.46 Å; difference not statistically significant) at, however, the
expense of a substantially larger median ensemble size (187 vs
74 conformers). Run at a maximum ensemble size of 250,
Conformator Best tends to produce larger ensembles than
OMEGA for molecules with four or fewer rotatable bonds

(Figure 3a). The opposite trend is observed for more flexible
molecules, for which OMEGA generally produces more
conformers than Conformator Best. Whereas only 0.8% of all
ensembles generated with Conformator Best consisted of the
maximum allowed number of conformers (i.e., 250), this figure
was 34% for OMEGA. The R2 for the correlation between the
number of rotatable bonds and the size of conformer
ensembles was 0.27 for Conformator Best. This weak
correlation is a result of the rules for sampling torsion angles
for rotatable bonds and of the clustering algorithm, both of
which bias the ensembles toward more diversity, meaning that
even if for a rotatable bond multiple preferred torsion angles
are known, few representative torsion angles are utilized to
comply with the maximum allowed ensemble size.
For a maximum ensemble size of 50 conformers,

Conformator Best produced smaller ensembles (median 42
conformers) than OMEGA (median 50 conformers) and the
RDKit DG algorithm (median 49 conformers). In this setup,
no statistically significant difference in the accuracy of
Conformator Best (median 0.58 Å) and OMEGA (median
0.51 Å) was observed (Table S3). Again, the accuracy of
Conformator Best was significantly higher than that of RDKit
DG (median 0.64 Å). At a maximum ensemble size of 50
conformers, Conformator Best generated larger ensembles
than OMEGA for molecules with less than four rotatable
bonds but smaller-sized ensembles for molecules with more
than four rotatable bonds (Figure 3b). Only 7% of all
conformers generated with Conformator Best, but 56% of all
conformers generated with OMEGA had the maximum
ensemble size of 50 conformers (Figure 2a).
At a maximum ensemble size of 250 conformers,

Conformator Fast reproduced the experimentally observed
conformations with equal accuracy as the RDKit DG algorithm
(median RMSD 0.53 vs 0.52 Å; difference not statistically
significant), despite much smaller ensembles (median 54 vs
229 conformers). CONFECT produced the smallest ensem-
bles but also was the least accurate among all tested algorithms
(median 38 conformers per ensemble; median RMSD 0.67 Å).
In addition, we quantified the accuracy of conformer

ensemble generators as the percentage of experimentally
observed conformations represented below RMSD thresholds
of 0.5, 1.0, 1.5, and 2.0 Å (Table 3). In this assessment,
Conformator Best and OMEGA showed comparable perform-
ance, with 53 and 56% of all experimental conformations
represented with an RMSD below 0.5 Å, and 97 and 96%
represented with an RMSD below 1.5 Å, respectively
(maximum ensemble size 250 conformers). The success rates

Table 2. Comparison of the Performance of Conformer
Ensemble Generators on the Platinum Diverse Dataseta

maximum ensemble size
50

maximum ensemble size
250

algorithm mean median mean median

RMSD (Å)
Conformator Best 0.68 0.58 0.57 0.47
Conformator Fast 0.75 0.66 0.64 0.53
CONFECT 0.92 0.74 0.78 0.67
RDKit DG 0.82 0.64 0.64 0.52
OMEGA 0.67 0.51 0.57 0.46

ensemble size
Conformator Best 38 42 166 187
Conformator Fast 20 19 70 54
CONFECT 18 15 50 38
RDKit DG 42 49 180 229
OMEGA 34 50 118 74

runtime (s)
Conformator Best 2 1 7 3
Conformator Fast 2 1 3 1
CONFECT 2 1 4 1
RDKit DG 4 3 18 14
OMEGA 2 2 3 2

aThe best values obtained for RMSD (considering statistical
significance), ensemble size, and runtime by any of the tested
algorithms are marked in bold.

Figure 3. Median ensemble size vs number of rotatable bonds for ensembles of a maximum of (a) 250 and (b) 50 conformers. Lower curves
indicate better performance with respect to ensemble size.
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of Conformator Fast were comparable with those of the RDKit
DG algorithm. For ensembles of a maximum of 50 conformers
at an RMSD threshold below 0.5 Å, the success rate of
OMEGA was higher than that of Conformator Best (49 vs
42%) and any other tested algorithm.
As a third way of assessing the accuracy of conformer

ensemble generators, we quantified the percentage of
molecules represented with an RMSD below 0.6 (the
maximum positional uncertainty for atoms in the Platinum
Dataset)11 and below 1.0 Å (below which docking poses are
commonly deemed sufficiently accurate) with respect to the
complexity of their conformational space, represented (in part)
by the number of rotatable bonds (Figure 4). At both RMSD
thresholds (maximum ensemble size 250 conformers),
Conformator Best performed comparably to OMEGA and
Conformator Fast comparably to the RDKit DG algorithm.
Both Conformator Best and OMEGA, however, performed
substantially better than Conformator Fast, the RDKit DG
algorithm, and CONFECT at both RMSD thresholds. The
success rates of representing experimental structures below an
RMSD of 0.6 Å were 63−96% for Conformator Best, 64−95%
for OMEGA, and 58−98% for the RDKit DG algorithm.
Likewise, the success rates of representing experimental
structures below an RMSD of 1.0 Å were 86−99% for
Conformator Best, 87−98% for OMEGA, and 82−99% for the
RDKit DG algorithm.
Among all tested algorithms, the accuracy of ensembles

generated with OMEGA was least dependent on the number
of rotatable bonds. At an RMSD cutoff of 0.6 Å, OMEGA
successfully represented 88% of all molecules with up to four
rotatable bonds and 71% of all molecules with up to eight
rotatable bonds. These figures were 89% and 69% for
Conformator Best, respectively.

The diversity of the ensembles generated with Conformator
strongly depends on the specific molecular structure in
question. In general, the diversity of ensembles increases
with the number of rotatable bonds. The R2 for the correlation
between the median pairwise RMSD of all conformers and the
number of rotatable bonds was 0.60 (default settings; Figure
S10). Two outliers were observed, which are the highly
symmetrical ligands B3P (Figure S10A) and 5MY (Figure
S10B), for which the symmetry-corrected RMSD was lower
than expected based on the number of rotatable bonds. The R2

for the correlation between the minimum pairwise RMSD and
the number of rotatable bonds was 0.50 (default settings;
Figure S11). Note that the RMSD also depends on the size of
the molecule and that the clustering threshold is not adjusted if
the initially generated conformer ensemble is smaller than the
maximum allowed ensemble size. Also, during each round of
clustering, the radius is incrementally increased by a defined
value (i.e., 0.1 Å for Fast and 0.05 Å for Best), for which reason
the maximum allowed ensemble size is often not reached.
For a subset of 987 molecules of the Platinum Diverse

Dataset (all of them have a maximum of six rotatable bonds),
we were able to generate complete conformer ensembles
without clustering and without a set maximum ensemble size
(maximum allowed runtime of 72 h per molecule; Table S4).
For 92% of all molecules in this subset (84% with default
settings), the complete ensembles included a conformer with
an RMSD lower than 0.5 Å and for 99% (98% with default
settings) a conformer with an RMSD lower than 1 Å. Use of
complete conformer ensembles instead of the (default)
ensembles of a maximum size of 250 improved the RMSD
by 0.5 Å or more in only 14 out of 987 cases. The maximum
ensemble size measured was 185 112 conformers; the mean
ensemble size 12 024. These results demonstrate the efficiency
of the clustering procedure implemented in Conformator.

Table 3. Percentage of Structures of the Platinum Diverse Dataset Successfully Reproduced within a Specified RMSD
Thresholda

algorithm maximum ensemble size 50 maximum ensemble size 250

RMSD threshold (Å)

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
Conformator Best 42 78 94 98 53 86 97 99
Conformator Fast 37 73 91 98 46 83 95 99
CONFECT 32 60 76 85 37 62 82 88
RDKit DG 38 71 89 96 47 82 95 98
OMEGA 49 80 92 97 56 87 96 99

aThe values of the best-performing algorithms per column are marked in bold.

Figure 4. Percentage of molecules of the Platinum Diverse Dataset reproduced by the tested algorithms with a maximum RMSD of (a) 0.6 and (b)
1.0 Å as a function of the maximum number of rotatable bonds. The maximum ensemble size was set to 250 conformers.
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Success Rates in Processing Molecules. With the
exception of CONFECT (success rate 93.4%), all ensemble
generators successfully produced ensembles for more than 99%
of all tested molecules (Conformator Best and Fast 100.0%;
OMEGA 99.6%; RDKit DG algorithm 99.9%). Conformator
and OMEGA are designed to handle both 2D and 3D input
and produce identical results with either type of information.
In the case of SMILES input, Conformator was able to
successfully process all molecules with the exception of three
molecules with small, bridged rings (i.e., HUX, SAW, TSA). If
valid input coordinates are given and the option to generate
new 3D coordinates is not set, these three molecules can also
be successfully processed by Conformator.
Runtimes. For ensembles consisting of a maximum of 250

conformers, the median runtimes for Conformator Fast and
Best were 1 and 3 s, respectively (for individual molecules,
repeated runtime measurements differed by less than 5%).
Hence Conformator was much faster than the RDKit DG
algorithm (median 14 s) and approximately as fast as OMEGA
(median 2 s). For ensembles consisting of a maximum of 50
conformers, no substantial differences in the median runtimes
were observed: calculations with Conformator Fast and Best
had a median runtime of 1 s, with OMEGA 2 s and with the
RDKit DG algorithm 3 s. Note that in previous tests,11 the
RDKit ETKDG and DG algorithms produced conformers of
comparable quality, with the ETKDG algorithm being 25%
faster.
Case Studies on the Reproduction of Experimentally

Observed Conformations of Macrocycles. In recent years,

macrocycles have emerged as one of the most promising
categories of drug candidates for multiple indications.54−57

Macrocyclic systems are restricted in their rotational and
conformational freedom. While this property is actively
exploited in the design of highly effective and specific
compounds, the interdependency of rotatable bonds and
other features such as bridged rings pose significant challenges
to conformer ensemble generation. New conformer ensemble
generators and extensions, in particular to commercial
algorithms, have recently been reported to specifically address
these issues.58−65

The dedicated algorithm for macrocycle conformer gen-
eration, which is part of Conformator, cuts all macrocycles and
generates conformers for these open ring structures with
Conformator’s standard algorithm. In contrast to DG
approaches (which usually start from random coordinates),
the conformers used as a starting point for cyclization are
already geometrically valid.
We tested the ability of Conformator to represent the

experimentally observed, protein-bound conformations of
macrocyclic compounds. For this purpose, we extracted from
the Sperrylite Dataset all 49 structures of compounds including
at least one ring formed by 10 or more atoms (29 of these
structures are also part of the Platinum Diverse Dataset). Seven
of the molecules included in this dataset are represented by
more than one experimental structure: latrunculin A (LAR; 6
conformers), 6-deoxyerythronolide B (DEB; 4 conformers),
and geldanamycin (GDM), LAB, LY4, PP9, and S1A (2
conformers). The dataset contains rings of eight different sizes

Figure 5. Sperrylite Dataset contains 49 protein-bound structures of compounds including at least one macrocycle formed by ten or more atoms.
(a) Distribution of the maximum ring sizes (number of atoms in a ring) of these macrocycles and their conformations. (b) Cumulative percentage
of these structures reproduced by Conformator below a defined maximum RMSD threshold (maximum ensemble size 250 conformers).

Figure 6. Visualization of structures of geldanamycin. (a) The conformer from the Sperrylite Dataset (GDM in 3C11; input for the validation of
Conformator), (b) 2D representation of geldanamycin, (c) an ensemble of conformers generated by Conformator Best and superposed with
original conformer (green carbon atoms), and (d) the closest conformer generated with Conformator Best and superposed with the original
conformer (green carbon atoms).
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(Figure 5a). It is dominated by 16 molecules (26 conformers)
with rings consisting of 12 atoms and 7 molecules (nine
conformers) with rings consisting of 16 atoms.
Conformator Best successfully processed all 49 macrocyclic

structures and obtained a median RMSD of 1.0 Å (Figure 5b).
The maximum RMSD measured was 2.3 Å for both structures
of geldanamycin (PDB complexes 3C11 and 4XDM; Figure 6).
Geldanamycin is a particularly challenging molecule. It consists
of 40 heavy atoms and a macrocycle formed by 19 atoms. Its
conformation is strongly bent and includes several torsion
angles that according to Conformator’s torsion angle library
are unlikely.
All further (47) macrocyclic structures were reproduced

with RMSD values of less than 2.0 Å. Conformator Best
reproduced the experimentally observed conformation of
macbecin (BC2; 2VWC) and valerjesomycin (VJ6; 4JQL),
both including macrocycles formed by 19 atoms, with RMSDs
of 1.9 and 0.8 Å, respectively. For 27 macrocyclic structures
(55%), Conformator Best generated at least one conformer
with an RMSD not higher than 1.0 Å. At a maximum ensemble
size of 250 conformers, the median size of ensembles
generated with Conformator Best for the 49 macrocycles was
197 conformers and the average runtime was 104 s (median 88
s) per molecule. Given the limited amount of high-quality
structural data on protein-bound macrocycles available to date,
no statistically sound conclusions can be drawn on which of
the two algorithms performs better.
Comparison of Conformator’s Clustering Algorithm

with k-Medoids Clustering. To assess the performance of
the new clustering algorithm implemented in Conformator, we
produced a version of Conformator Best with the new
clustering algorithm replaced by the k-medoids clustering
algorithm (the partitioning around medoids method).66,67

With a maximum of 25 iterations, Conformator in combination
with the k-medoids clustering algorithm reached median and
mean accuracy values identical to those of the original version
of Conformator (median RMSD 0.47 Å; mean RMSD 0.57 Å).
However, the median and mean runtimes were substantially
longer for the k-medoids clustering algorithm variant (14 and
272 s per molecule, respectively) as compared to the original
version of Conformator (median 3 s; mean 7 s per molecule,
respectively). The longest runtime observed for the k-medoids
clustering variant was 12.1 h as compared to 512 s for the
original version of Conformator. The ensembles generated by
the k-medoids clustering variant had a median ensemble size of
250 conformers (mean ensemble size 205) as compared to 187
conformers (mean ensemble size 166) for the original version
of Conformator. With k-medoids clustering, 58% of all
generated ensembles were of the maximum allowed size
(250), whereas this was the case for only 7% of all ensembles
generated with the original version of Conformator. The high
percentage of large ensembles generated by the k-medoids
clustering variant is not surprising because reaching the
maximum ensemble size is a defined objective of this clustering
algorithm.

■ CONCLUSION
Conformator is an efficient knowledge-based algorithm for the
generation of conformer ensembles of small molecules. One of
the key features of Conformator is its new clustering algorithm
for the compilation of representative conformer ensembles that
exploits the partial presorting of consecutively generated
conformers. Conformer ensembles generated with Conforma-

tor are independent of input geometries and formats because
the input coordinates are not considered; the new cluster
algorithm introduced here is deterministic, and the atom order
of the molecule is canonized prior to conformer generation.
Furthermore, we present a novel algorithm for the generation
of conformations for macrocyclic ring systems. The algorithm
is robust, widely applicable, and makes use of the sophisticated
technology for acyclic conformer generation. A novel numeric
optimizer working hand in hand with a differentiable scoring
function MCOS is responsible for low-energy conformations
even in complex, macrocyclic ring systems.
Conformator reaches a level of accuracy and efficiency that

is comparable to that of OMEGA. The new algorithm
performs particularly well with molecules composed of five
or more rotatable bonds, for which it reaches competitive
performance while keeping ensemble sizes low. OMEGA, on
the other hand, is still ahead in sampling molecules with fewer
than five rotatable bonds (which account for more than half of
all molecules of the benchmarking dataset), for which it
obtains the best accuracy among all tested algorithms even
with small ensembles. Preference for either algorithm will
depend on the specific application, such as the composition
and size of the molecular libraries to be processed. From the
outcomes of this study, however, it is clear that in direct
comparison with other free algorithms, Conformator obtains
very good performance and is the only algorithm for which no
significant geometric errors were detected in any of the
generated conformations. Conformator successfully processes
99.9% of all input structures, is capable of handling different
types of 2D and 3D input, and requires only moderate
computing resources. In contrast to many other approaches,
Conformator does not use any PDB data for deriving
geometric parameters like bond lengths, bond angles, torsion
angles, or ring conformations. Therefore, the performance
measured on the basis of the Platinum Dataset gives a realistic
picture of the algorithm’s practical performance.
Software availability: Conformator is free for noncommercial

use and academic research. It is part of the software tool
UNICON, a universal converter able to create 2D and 3D
conformations on the fly. Conformator and UNICON are
standalone command-line tools within the NAOMI ChemBio
Suite35 available from https://uhh.de/naomi.
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Figure S1. Percentage of protein-bound ligand conformations of the Platinum Diverse Dataset 
reproduced by the different tools within a certain accuracy (left), ensemble size (middle) and 
runtime (right) at maximum ensemble sizes a) 50 and b) 250. Clustering by RMSD deactivated 
for iCon, MOE Stochastic, MOE LowModeMD, OMEGA and the RDKit DG algorithm (UFF).  
  



 

 
Figure S2. Accuracy of conformer ensembles generated with ConfGenX vs. OMEGA for 
individual molecules of the Platinum Diverse Dataset. Maximum ensemble size 250 
conformations.  



 

1 

Supplementary Material 

How Diverse are the Protein-Bound Conformations of Small-
Molecule Drugs and Cofactors? 

Nils-Ole Friedrich, Méliné Simsir, Johannes Kirchmair* 

* Correspondence: J. Kirchmair 
           E-mail: kirchmair@zbh.uni-hamburg.de 
           Tel.: +49 (0)40 42838 7303 

 

 

Figure S1. Minimum median RMSD values plotted against the number of rotatable bonds.  
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(A) (B) 

Figure S2. (A) Weak electron density support for parts of imatinib bound to human SYK modeled 
in an uncommon orientation (1XBB; EDIAm = 0.21). (B) The EDIA score is indicated by a color 
gradient, ranging from dark red (no or poor electron density support) via magenta to blue (good 
electron density support). For single atoms, EDIA values above 0.8 mark well-supported atoms, 
values in the range of 0.4 to 0.8 atoms with medium support and values below 0.4 poorly-
supported atoms. For the EDIAm, the developers of the method concluded that only structures 
with a score higher than 0.8 should be considered as well supported by the electron density. 

 

 

Figure S3. Ligand-based alignment of all 14 conformers of darunavir present in the Sperrylite 
Dataset.
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Figure S4. (A) Superposition of all 34 high-quality core streptavidin structures (including 
tetramers) bound to biotin. The four high-quality structures of the streptavidin N49/G48 mutant 
from Streptomyces avidinii (4GD9) in green show the structural consequences of cutting a binding 
loop. (B) Ten high-quality core streptavidin structures superposed with the loosely-related crystal 
structure of engineered dual chain avidin (2C4I), in violet, (C) with very similar binding modes. In 
dual chain avidin, two circularly permuted chicken avidin monomers are fused into one 
polypeptide chain. 

 



 

4 

 

Figure S5. (A) Superposition of 188 high-quality structures of sapropterin. Sapropterin in the 
binding pocket of (B) human nitric oxide synthase (4D1N, hemoglobin in green) is missing a 
hydrophobic interaction present in (C) human phenylalanine hydroxylase (1MMK). 

 

 

Figure S6. Unusually bent conformer of ATP in the binding pocket of aspartyl-tRNA synthetase 
from Pyrococcus kodakaraensis (1B8A) interacting with three manganese atoms (light blue). 
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Scheme S1. Overview of all (91) small molecules represented by at least ten conformers in the 
Sperrylite Dataset.1  
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1 For each ligand (specified by the PDB three-letter ligand identifier) the number of conformers in 
the Sperrylite Dataset is reported. 
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Table S1. Empirically Determined Weights for the MCOS. 

Contribution  Weight 

woverlay 1.0 

wbond 1.0 

wangle 1.0 

wlimit 500.0 

wtorsion 0.1 

wtorsion,conjugated 1.0 

wclash 1.0 

 

  



 

Table S2. Mann-Whitney U Test Results of RMSD Values from Conformer Ensemble 
Generation for Platinum Diverse Dataset with a Maximum of 250 Conformers.a 

Conformer 
ensemble generator  

RDKit DG (UFF  
and clustering) 

OMEGA 
(default) 

Conformator 
Fast 

Conformator 
Best 

OMEGA (default) p < 0.001 -   

 Z -5.05 -   

 U 3747852 -   

Conformator Fast p 0.03 < 0.001 -  

 Z -1.85 -7.25 -  

 U 3959194 3614564 -  

Conformator Best p < 0.001 0.07 < 0.001 - 

 Z -6.03 -1.48 -8.09 - 

 U 3698854 3973330 3574312 - 

CONFECT p < 0.001 < 0.001 < 0.001 < 0.001 

 Z -7.15 -11.62 -5.69 -12.47 

 U 3387977 3116302 3478176 3076036 

aThe Mann-Whitney U test was used to test for statistical significance at α = 0.05 and α = 0.01, 
adjusted with the Holm−Bonferroni method to control the familywise error rate. Differences 
between Conformator Best and OMEGA, as well as Conformator Fast and the RDKit DG 
algorithm are not statistically significant (bold p values). 

 
  



 

Table S3. Mann-Whitney U Test Results of RMSD Values from Conformer Ensemble 
Generation for Platinum Diverse Dataset with a Maximum of 50 Conformers.a 

Conformer 
ensemble generator  

RDKit DG (UFF  
and clustering) 

OMEGA 
(default) 

Conformator 
Fast 

Conformator 
Best 

OMEGA (default) p < 0.001 -   

 Z -10.12 -   

 U 3399855 -   

Conformator Fast p 0.03 < 0.001 -  

 Z -1.94 -8.50 -  

 U 3917040 3537062 -  

Conformator Best p < 0.001 0.02 < 0.001 - 

 Z -7.89 -2.06 -6.18 - 

 U 3549130 3937297 3693374 - 

CONFECT p < 0.001 < 0.001 < 0.001 < 0.001 

 Z -3.78 -12.25 -5.47 -10.74 

 U 3550478 3075448 3487404 3174824 

aThe Mann−Whitney U test was used to test for statistical significance at α = 0.05 and α = 0.01, 
adjusted with the Holm−Bonferroni method to control the familywise error rate. Differences 
between Conformator Best and OMEGA, as well as Conformator Fast and the RDKit DG 
algorithm are not statistically significant (bold p values). 

 

 
  



 

Table S4. Percentage of Structures Successfully Reproduced within a Specified RMSD 
Threshold by Complete Sets of Conformersa  
Setting RMSD threshold [Å] 
 0.5 1.0 1.5 
completeb  92 99 100 

default 84 98 99 

a On a subset of the Platinum Diverse Dataset of 987 molecules (with a maximum of 6 rotatable 
bonds) 

b Conformator Best, no clustering, no maximum ensemble size, maximum runtime of 72 h per 
molecule 

  



 

Algorithm S1 RMSD-Clustering of Conformersa 

Input: List of conformers (Y)  //candidate conformers, partially presorted 
Input: quality_level    //1 = Fast, 2 = Best (default 2) 
Input: max_ensemble_size  //maximum ensemble size (default 250) 
Output: List of cluster centers (Z) //output conformer ensemble 
 
rmsd_threshold ← 0.1   //RMSD starting threshold in Å for Best (default) 
rmsd_increase ← 0.05   //RMSD threshold enlargement per round 
if (quality_level == 1) 
 rmsd_threshold ← 0.5  //RMSD starting threshold in Å for Fast 

rmsd_increase ← 0.5 
while (Z.size() > max_ensemble_size) //starting new clustering 
 Z.clear     //empty list of cluster centers 
 candidate_conformer ← Y.begin() //first conformation is the first cluster center 
 while (candidate_conformer != Y.end())  //starting new clustering round 

for (cluster_center = Z.end() to cluster_center Z.begin() //in reverse 
 rmsd = calculate_rmsd(candidate_conformer, cluster_center) 

if (rmsd < rmsd_threshold) 
   tooclose ← true 
   break  //no further comparisons 
 end for 

if (tooclose) 
  Y.erase(candidate_conformer) 

   //remove candidate conformer permanently 
 else 
  Z.push_back(candidate_conformer) 

   //add candidate as cluster center 
  candidate_conformer = Y.next() 
 if (Z.size() > max_ensemble_size) //too many cluster centers 
  break    //start new round (inner while loop) 
end while 
rmsd_threshold ← rmsd_threshold + rmsd_increase 

end while 
return Z  //output list of cluster centers as the conformer ensemble 

aNote that the representation with two separate lists (Y and Z) was chosen for didactic reasons. 
The algorithm should be implemented with a single array of conformers running in place with 
indices marking the current end of the cluster center set and the beginning of the unprocessed 
conformer list. 



 

 

Figure S1. Visualization of Conformator’s clustering algorithm by the example of the generation 
of an ensemble of four representative conformers starting from a set of ten candidate conformers. 
The green dots represent the candidate conformations. Their distances in 2D space is indicative 
of their RMSD. The increasing RMSD thresholds are illustrated by the red spheres. Arrows 
indicate the directions in which the lists of all remaining candidate conformers (Y, top list) and 
cluster centroids (Z, bottom list) are accessed. Crossed-out numbers indicate conformers that 
have been removed by the clustering algorithm from the list of candidate conformers. (a) 
Clustering starts from a list of ten candidate conformations generated with Conformator. 



 

Importantly, these lists are partially presorted, meaning that sequentially generated conformers 
are likely similar. (b) The first conformer (usually based on very likely torsion angles; see 
Conformer Generation Algorithm) in the list of candidate conformers is always the first cluster 
center. (c) The candidate conformers are compared to any of the existing cluster centers. If they 
are within the RMSD radius (like it is the case for conformer 2) they are removed from the list of 
candidate conformers. (d) Outliers such as conformer 3 become cluster centers. This behavior is 
desired as it assures that a sufficiently large part of the relevant conformational space is covered. 
(e) To take advantage of the fact that conformers generated sequentially with Conformator are 
likely similar, the list of cluster centers is reversed when comparing candidate conformers to 
existing cluster centers. While this has no effect on conformer 4 (it is compared against all 
cluster centers, is dissimilar to all of them and thus becomes a new cluster center), most 
candidate conformers can be excluded from extensive pairwise comparison, such as conformer 5, 
which is only compared to conformer 4 before it is removed. (f) Conformer 6 is defined as a new 
cluster center and conformer 7 is removed from the list of candidate conformers because it is too 
similar to conformer 4. Conformer 8 is sufficiently distant to any of the existing cluster centers 
and hence would become a new cluster center. However, this would exceed the maximum 
ensemble size (which is 4 in this example), for which reason (g) the clustering is repeated with 
larger RMSD threshold, an empty list of cluster centers and the list of remaining candidates (in 
other words, previously removed conformers are not considered again). Over several iterations 
this process determines an appropriate RMSD threshold for each individual molecule. The final 
threshold depends on the maximum ensemble size and quality level, as well as the size and 
flexibility of the molecule. (h) Conformers 1, 3 and 4 are again defined as cluster centers but the 
former cluster center “conformer 6” is removed since it is closer to conformer 1 than the 
increased distance value allows. (i) Conformer 8 is another cluster center and conformer 9 is 
removed from the list of candidate conformers. Conformer 10 would become the next cluster 
center but this would exceed the maximum ensemble size. (j) Once more the clustering process is 
restarted with a larger RMSD threshold, an empty list of cluster centers and the list of remaining 
candidate conformers. Conformers 1, 3, 4 and 8 are still far enough apart to become cluster 
centers but conformer 10 is now too similar to conformer 8 and removed. (k) Now all 
conformers have been successfully assigned to a cluster center and the ensemble size is equal to 
(or below) the maximum ensemble size. The final list of cluster centers is then reported as the 
conformer ensemble. 

 

 

 



 

 

Figure S2. Schematic representation of Conformator’s macrocycle conformer generation 
algorithm (for a detailed description see "Conformer Generation for Macrocycles" in the main 
text). 



 

 

 

Figure S3. MCOS function for the overlay score for the distance ! between the dummy atoms 
and the atoms in the original macrocycle they replaced. Ideally, this distance should be close to 
0. It ensures that the bond angle and bond length across the cut bond will be restored during local 
optimization and also supports the preservation of local stereochemistry. 
 

 
Figure S4. MCOS function for the bond angle score. It uses a harmonic potential that is 
calculated on the cosine of the bond angle !, to account for deviations from the ideal values !!. 
The bond angle score is calculated only for bond angles directly altered during optimization (i.e. 
angles that are optimization parameters) and the angles involving the cut bonds. 
 



 

 

 
Figure S5. MCOS penalty function for limiting bond angles ! to guide the optimization of bond 
angles in macrocycles away from 0 and 180 degrees (if the atom does not have linear VSEPR 
geometry). It leads to a preference of bond angles between 30 and 150 degrees. 
 

 
Figure S6. The MCOS bond length term uses a harmonic potential to account for deviations of 
the bond length ! from ideal values !!. Only the bond lengths of the cut bonds are scored. 
 



 

 
 

 
 

 
 

 

Figure S7. The MCOS distance factor by which the torsion angle potential, the bond angle 
potential and the bond angle limiter score are multiplied to reduce the respective score to 0 in 
cases where any bond length is close to 0 Å. This is necessary to ensure the continuity of the 
score contributions that depend on torsion angles or bond angles. It is a piecewise polynomial 
approximation to a plateau function that is twice continuously differentiable. The function !!!! 
was modeled by fixing function and derivative values at defined points and solving the system of 
equations for the coefficients of the polynomials (the coefficients are shown in the table). 
 
 
 



 

 
 

 
 

 
 

 

Figure S8. The MCOS bond angle factor by which the torsion angle potential is multiplied to 
reduce the torsion angle score to 0 in cases where any bond angle ! along that torsion bond is 
either close to 0 or 180 degrees. This is necessary because the torsion angle, as a function of the 
four atom coordinates, has a discontinuity when three consecutive atoms are collinear. It is a 
piecewise polynomial approximation to a plateau function that is twice continuously 
differentiable. The function !!!! was modeled by fixing function and derivative values at 
defined points and solving the system of equations for the coefficients of the polynomials (the 
coefficients are shown in the table). 
 
 



 

 

 
Figure S9. The MCOS clash score prevents intramolecular clashes. It is a quadratic function 
depending of the atomic distance ! and the sum of the van der Waals radii of the atoms !!"# and 
penalizes van der Waals overlaps between 1-4-connected (or further away) heavy atoms that 
exceed the threshold level of 30%.   



 

 
Figure S10. Median pairwise RMSD of all-against-all comparisons for each conformer ensemble 
generated for the Platinum Diverse Dataset with Conformator (default settings) plotted versus the 
number of rotatable bonds. The two labeled outliers are the highly symmetrical ligands B3P (A) 
and 5MY (B). The R2 for the correlation between median pairwise RMSD of all conformers and 
the number of rotatable bonds was 0.60. 
 

 
Figure S11. Minimum pairwise RMSD of all-against-all comparisons for each ensemble 
generated for the Platinum Diverse Dataset with Conformator (default settings) plotted versus the 
number of rotatable bonds. The R2 for the correlation between median pairwise RMSD of all 
conformers and the number of rotatable bonds was 0.50. 
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