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1. Zusammenfassung 
 

Darmkrebs stellt den am zweithäufigsten diagnostizierten Krebs dar und ist damit ein 

Hauptgrund für krebsverursachte Tode in der Welt. Bemerkenswert ist, dass sich in den 

vergangenen Jahrzehnten die Überlebensrate kaum geändert hat. Speziell in späteren 

Krebsstadien sinkt die 5-Jahres-Überlebensrate auf unter 10% [1,2]. Besonders die Erforschung 

der Pathogenese von Darmkrebs ist essenziell, um Früherkennungstests sowie neue 

Therapieansätze zu entwickeln. Hierbei spielen Fortschritte auf dem Gebiet der Proteomik, der 

Erforschung der Proteinzusammensetzung einer Zelle, eine entscheidende Rolle [2,3]. Das 

Hauptziel der Dissertation umfasste die Erforschung des Proteoms von Darmkrebs in 

verschiedenen Stadien, um potenziell signifikante Proteine herauszustellen. Das dabei 

identifizierte Protein-Panel sollte als Grundlage dienen, um mögliche neue pathogene Muster 

von Darmkrebs aufzudecken. 

 

Die ausgewählte Strategie für die Erkennung von darmkrebsassoziierten Proteinen basierte im 

Kern auf einer labelfreien LC-MS/MS Methode inklusive data-independent acquisition (DIA). 

Zunächst wurde eine bioinformatische Pipeline entwickelt, um die hohe Informationsdichte der 

DIA-generierten MS2-Spektren bestmöglich zu nutzen. Dabei wurden mehrere datenbank-

basierte Suchmaschinen für die Interpretation von MS2-Spektren kombiniert und die 

Ergebnisse in den jeweiligen Bibliotheken für eine darauffolgende Analyse der DIA-

generierten Daten zusammengefügt. Der Einfluss einzelner Suchmaschinen oder mehrerer 

kombinierter Suchmaschinen auf die Analyse der DIA-Spektren wurde hinsichtlich der Größe 

der Bibliothek, der Konsistenz in der Datenanalyse, der Quantifizierungsleistung sowie der 

Identifizierung statistisch relevanter Proteine bewertet. Darüber hinaus wurden die 

bioinformatische Analysezeit und der Datenspeicherplatzbedarf einzelner Daten-

analyseabläufe verglichen und in eine Gesamtevaluierung miteinbezogen. Als Input für die 

entwickelte Proteomik-Pipeline wurden einerseits data-dependent acquisition (DDA) 

Messungen von Darmkrebsgewebeproben, die vorher mittels HpH-reversed phase fraktioniert 

wurden, gewählt. Dieser Ansatz wurde als „DDA-based“ bezeichnet. Andererseits wurden die 

DIA-Messungen direkt als Input für die bioinformatische Pipeline ohne die Verwendung von 

DDA-generierten Daten benutzt. Diese Strategie wurde „DDA-free“ genannt.  
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Der „DDA-based” Ansatz zeigte, dass die Identifikationsrate auf der Ebene der Bibliothek 

steigt, wenn mehrere Suchmaschinen kombiniert werden. Außerdem ging die Formation einer 

binären Kombination aus Suchmaschinen sowohl mit einem Anstieg der Analysezeit als auch 

mit einem erhöhten Bedarf an Speicherplatz einher. Des Weiteren wies die DIA-Analyse darauf 

hin, dass eine erhöhte Informationsdichte in der Bibliothek keine bessere Quantifizierung der 

DIA-Daten garantiert. Die Resultate deuteten an, dass insbesondere die Retentionszeit und die 

Qualität der Bibliothekseinträge hinsichtlich der Signalintensität von essenzieller Bedeutung 

sind. Zudem demonstrierte die statistische Evaluierung, dass es wesentliche Unterschiede bei 

der Identifizierung signifikanter Proteine gibt, wenn unterschiedliche Suchmaschinen oder 

Kombinationen an Suchmaschinen verwendet werden für den Datenanalyseprozess.  

 

Ähnliche Resultate wurden bei der „DDA-free” Strategie erzielt. In den meisten Fällen stieg 

die Identifikationsrate bei der Verwendung mehrerer Suchmaschinen auf Bibliotheksebene an. 

Außerdem zog die Kombination mehrerer Suchmaschinen einen erheblichen Anstieg der 

Analysezeit und des Datenspeicherbedarfs nach sich. Zudem wurde gezeigt, dass es keinen 

proportionalen Zusammenhang zwischen der Informationsdichte der Bibliothek und der 

Sensitivität der DIA-Analyse gibt. Darüber hinaus wurde bestätigt, dass die Auswahl der 

Bibliothek einen zentralen Einfluss auf die Identifizierung signifikanter Proteine hat. Im 

Vergleich beider Ansätze schnitt die „DDA-based“ Strategie hinsichtlich einer höheren 

Identifikationsrate auf Bibliotheksebene sowie bei der Analysezeit und dem Speicherbedarf 

besser ab. Im Gegensatz dazu erreichte die „DDA-free“ Methode eine höhere Anzahl an 

Quantifizierungsergebnissen der DIA-Daten.  

 

Die Untersuchung der biologischen Bedeutung wurde für diejenigen statistisch signifikanten 

Proteine durchgeführt, die in beiden Analysestrategien identifiziert wurden. Die Analyse 

biologischer Prozesse und Netzwerke wies Korrelationen verschiedener detektierter Proteine in 

Entzündungsprozessen, in der Immunabwehr sowie der Aufrechterhaltung des zellulären 

Redoxgleichgewichts auf. Eine darauffolgende Literaturrecherche offenbarte mehrere 

Verbindungen der identifizierten Proteine zu bereits publizierten Resultaten im Kontext von 

Darmkrebs. Insgesamt stellen diese ermittelten Proteine eine exzellente Ausgangslage dar, um 

in Folgestudien mögliche neue pathogene Mechanismen von Darmkrebs zu untersuchen.  
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2. Abstract 
 

Deciphering pathogenic mechanisms of colorectal cancer (CRC) is essential for understanding 

the development and the progression of the malignancy, as well as to establish detection in early 

stages and possible treatments [1-3]. The main aim of the thesis was to highlight significant 

proteins and elucidate potential pathogenic patterns by comparing the protein profile of CRC 

samples in different stages. To elaborate, the thesis aimed at identifying a promising protein 

panel which can be used as a valuable starting point for further research to decipher the 

pathogenesis of CRC. Here, the method of choice for the detection of CRC-associated protein 

profiles was a label-free LC-MS/MS strategy with data-independent acquisition (DIA).  

First, a bioinformatic analysis workflow was implemented to exploit the high information input 

of the acquired digital DIA maps. The developed proteomic pipeline combined the results of 

multiple search engines to construct the corresponding libraries and to examine the influence 

of each generated library on the extraction of the DIA data. Moreover, two different data inputs 

were used for the bioinformatic workflow and the corresponding results were compared: Pre-

fractionated data-dependent acquisition (DDA) measurements for the so called “DDA-based” 

analysis workflow and the DIA data for the analysis strategy termed “DDA-free”. 

 

The DDA-based data analysis workflow demonstrated that the library input was increased by 

combining the results of multiple search engines. Furthermore, adding the results of a search 

engine to form a binary combination enhanced both analysis time and storage size. Besides, the 

DIA analysis indicated that there is no direct correlation between the increase of the library and 

the SWATH quantification performance. Further investigation suggested that the quality of 

library input regarding signal intensity and the retention time variability of the transitions are 

key characteristics in DIA data extraction. In addition, statistical evaluation showed that no 

database search engine combination achieved the detection of all possible statistically 

significant proteins. 

 

The DDA-free data analysis strategy displayed similar results. Firstly, it demonstrated that in 

most cases merging the findings of one search engine to another search tool increased the 

identification rate on library-level. Secondly, combining multiple search engines had a 

significant impact on the analysis time and storage size. Further analysis indicated that an 

enhanced library input is not necessarily proportional to an improved performance of the DIA 
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analysis. Results showed that especially the quality of the library input regarding signal 

intensity and the retention time variability of the transitions have a substantial impact on the 

SWATH quantification performance. In addition, no database search engine combination with 

its corresponding library was able to identify all possible statistically significant proteins. 

Hence, the results suggested that the choice of library has a crucial influence on the detection 

of statistically significant proteins.  

 

A comparison of the two data analysis strategies demonstrated that the DDA-free strategy 

achieved a smaller library input in comparison to the DDA-based strategy. On the other hand, 

the DDA-free approach obtained a better SWATH quantification performance and identified 

more statistically significant proteins. These results indicated that the quality of the library input 

is more significant than the total number of entries. Furthermore, experimental and 

computational requirements varied tremendously between the two data analysis strategies. The 

DDA-free approach had higher computational demands and the DDA-based strategy included 

higher experimental costs. 

 

Statistically significant proteins which were identified in both data analysis strategies were 

submitted to biological inference. The pathway and network analysis demonstrated enriched 

biological paths in inflammation processes, immune responses, and maintenance of the cellular 

redox environment. In addition, literature mining revealed that the detected proteins had a 

previously described correlation to CRC. As a conclusion, the applied method including the 

data analysis strategy led to the discovery of a promising protein panel which serves as a 

valuable starting point for further studies in the ongoing research area of CRC. 
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3. Introduction 

3.1 Colorectal cancer 

 

Colorectal cancer (CRC) is the second most frequently diagnosed cancer and a major cause of 

cancer-related deaths in the world. In the past decades CRC survival rates have barely changed. 

After the development of metastasis, the 5-year survival rate is less than 10%, whereas it 

increases up to 90%, if CRC is detected early [1,2]. 

 

The development and progress of CRC is classified into five stages (Fig. 1). First, an adenoma, 

a benign precursor lesion, is formed (stage 0). After progression to a localized colon carcinoma 

(stage I and II), a CRC lymph node metastasis (stage III) is developed resulting ultimately in a 

spread to distant organs (stage IV) [4,5].  

 

 

Fig. 1: Stages of colorectal cancer progression [5]. 

 

The process from a benign adenoma into cancer has an estimated duration of ten years and is 

often based on multiple genomic mutations. Frequent genetic alterations involve inactivation 

of tumor suppressor genes such as TP53 or activating mutations in oncogenic pathways 

including KRAS and BRAF. The major causes for the genomic instability are the multiplication, 

deletion or translocation of whole chromosomes or of chromosome arms known as 

chromosomal instability (CIN). An additional reason is a defective DNA mismatch repair 
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machinery within nucleotide repeat sequences, called microsatellites, resulting in a so-called 

microsatellite instability (MSI). The vast difference in genetic alterations manifests itself in a 

heterogenic protein profile [4-6].  

 

Up to date, the common clinically utilized screening strategies for early detection of CRC are 

the fecal occult blood test (FOBT) and colonoscopy. FOBT is successfully employed to reduce 

CRC mortality and is a simple, inexpensive, and non-invasive method. On the downside, it 

shows relatively low specificity, as well as poor sensitivity for the detection of CRC especially 

in early stages. Therefore, a follow-up detection by endoscope is often required. Colonoscopy 

presents a more reliable detection rate but is accompanied by inconvenience and invasiveness 

for the patient. Advances in genomics, the study of genes, or proteomics, the large-scale 

research of proteins, are the basis for further improving the understanding of pathogenesis of 

CRC and the development of new detection tests. The identification of genes or proteins that 

are characteristic for CRC are essential for progress in diagnosing CRC [2,3]. 

 

3.2 Role of biomarkers in CRC research 

 

An important source for deciphering molecular mechanisms of CRC are biological markers or 

biomarkers [7]. The National Institutes of Health Biomarkers Definitions Working Group 

defined a biomarker as “a characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes, or pharmacologic responses to 

a therapeutic intervention” [8]. In general, biomarkers can be categorized into four groups –            

(1) diagnostic markers for early detection; (2) prognostic markers as indicators for the 

progression of the disease; (3) predictive markers for anticipating treatment response;                           

(4) surveillance markers for monitoring disease recurrence [4,5]. In addition, the process from 

basic research via translational methods to clinical approval of biomarkers can be divided in a 

simplified way into three steps: discovery, verification, and validation (Fig. 2) [9]. 
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Fig. 2: From initial biomarker discovery into clinical implementation in three steps – discovery, 

verification, and validation. Circle sizes indicate proportion of outputs for the given step. Arrows contain major 

challenges to get to the next level. 

 

While there is a plethora of methods for the discovery of potential biomarkers based on different 

high-throughput OMICs approaches, such as genomics or proteomics, measurement 

inconsistency and a lack of reproducibility across platforms and laboratories remain an obstacle 

in the verification process of the results [3,4]. Additional challenges arise before a successful 

validation. The availability and measurements of large sample cohorts including a high 

diagnostic accuracy, robustness of sample processing, and standardized data analysis 

procedures present a huge barrier for implementing validated clinical assays. The difficulties 

from initial discovery to a validated biomarker are reflected in an estimated success rate of 0.1% 

for clinical translation [3,4,9].  

 

The clinical importance of CRC biomarkers in the context of pathogenesis and 5-year survival 

rate is shown in Fig. 3. Especially diagnostic biomarkers for the detection of progressive 

adenomas and early stage cancer have a significant clinical need, because the 5-year survival 

rate lies approximately at 90% [10,11]. 
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Fig. 3: Types of biomarkers in connection with CRC development and 5-year survival rate [%]. Figure 

adapted from Jimenez et. al. [10]. 

 

A prominent biomarker for CRC is the protein carcinoembryonic antigen (CEA). Originally 

considered specific for CRC, elevated CEA levels were also found in gastric and pancreatic 

cancers. Thus, the applicability of CEA as diagnostic marker for CRC is diminutive. However, 

it remains the marker of choice to monitor disease recurrence. Furthermore, determining the 

CEA level is well established in clinical routine work [12]. Potential molecular prognostic 

biomarkers include adenomatous polyposis coli (APC) and S100A2 protein. Mutation of APC 

is predicted as an indicator for the progression of CRC and high expression of S100A2 is 

correlated with tumor growth. Both biomarkers provide the potential of evaluating the 

development of the disease. Nonetheless, adequate validation is still necessary [7]. A possible 

predictive biomarker for CRC is the detection of KRAS mutations. Being part of epidermal 

growth factor receptor (EGFR) signaling pathways, discovering these mutations can be 

exploited to anticipate the response to anti-EGFR antibody-based therapies [7,12]. Recently, a 

promising diagnostic biomarker for early detection has been identified – microtubule associated 

protein RB/EB family member 1 (MAPRE1). In several studies MAPRE1 was differentially 

expressed in early neoplasm samples in comparison to healthy controls. Again, further 

validation of the findings is necessary emphasizing the discrepancy between discovery of 

potential biomarkers and validation with the final goal of broad clinical applicability [13]. 
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However, many efforts have been made to improve the translational process [9]. In particular, 

multidisciplinary research approaches focus not on single biomarkers, but rather on biomarker 

panels by considering the vast heterogeneity of CRC. These strategies have the prospect of 

enhancing the sensitivity, specificity, and hence the diagnostic value of clinical assays. For 

example, a protein biomarker panel, which reflects the physiological state of the cell and the 

phenotype of the disease, in combination with genomics data has the potential to provide 

advancements in the translational process [9,13]. Moreover, expertise in bioinformatics big data 

analysis grows and highly reproducible pipelines are under development. In the future, further 

optimization in sample processing, detection methods, and computational strategies will 

gradually close the gap between initial biomarker discovery and a successful clinical translation 

to meet the need for CRC biomarkers [3,9,13].  

 

3.3 Proteomics 

 

Proteomics is primarily based on mass spectrometry (MS) and the corresponding methods have 

been widely applied to get new insights into biological mechanisms by deciphering the 

proteome and highlighting the role of proteins in cellular interaction networks and elucidate 

expression patterns in diseases [14,15]. 

 

In top-down proteomics the protein is investigated as an intact entity, which has the advantage 

of a detailed study and characterization of the molecular composition [16]. The different 

molecular forms at the genetic, transcriptional, or post-translational level of the same protein 

are called proteoform [17]. While maintaining the intramolecular complexity of the proteoform 

during analysis, common challenges arise from the lack of intact fractionation methods that are 

compatible with tandem MS. However, several efforts have been made to overcome limitations 

and difficulties to advance and exploit the potential of analyzing intact proteins [16-18].  

 

In bottom-up proteomics, proteins are digested into peptides using trypsin or other proteases 

prior to the analysis via liquid chromatography and tandem MS [16]. The most widespread 

workflows can be categorized into three approaches – data-dependent, targeted, and data-

independent proteomics (Fig. 4) [19]. 
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Fig. 4: Bottom-up proteomics – MS instrumental principles of DDA-based, targeted, and DIA-based 

proteomics [20]. 

 

Data-dependent acquisition (DDA) based proteomics is a universally and successfully applied 

approach with the goal of a complete coverage of the proteome identifying thousands of 

proteins in complex samples [19]. To elaborate, DDA involves a survey scan followed by the 

generation of MS/MS data. During the survey scan an automatic selection of precursor ions 

above a pre-set abundance threshold and fragmentation of the selected precursor ions takes 

place resulting in a MS/MS full scan on the product ions. So, the selection of which ions get 

fragmented is dependent upon some criteria previously set. In a typical LC-MS/MS experiment, 

the acquisition of tandem MS data is triggered by the precursor ion intensity. Over the course 

of the entire LC run, MS/MS data is generated from the most abundant precursors. Additional 

optimization is achieved by omitting the re-sampling of the same precursor ion via dynamic 

exclusion filtering [19,20]. A resulting drawback is that precursors within the excluded mass 

range, which are not previously selected but eluting at similar times, are not subjected to 

fragmentation. Moreover, the intensity-based selection of precursor ions follows heuristic 

principles. Consequently, the run-to-run reproducibility suffers. DDA-based proteomics is 

prone to irreproducible protein identification and quantification across large sample cohorts 

undermining the potential of achieving a great protein depth per run [19-21]. 
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Targeted strategies, such as selected reaction monitoring (SRM), are widely performed in a 

clinical context because of an enhanced reproducibility and accuracy. SRM is usually 

performed on triple quadrupole (QQQ) instruments. Precursor ions of a specific peptide are 

selected in the first quadrupole (Q1). After fragmentation in the second quadrupole (Q2), a 

specific fragment ion from the target peptide is filtered in the third quadrupole (Q3) and guided 

to the detector. Precise quantification is based on chromatographic traces representing intensity 

profiles of the fragment ion signals over time [20,22,23]. The method always measures 

predetermined pairs of peptide precursors and corresponding fragment ions, which is termed as 

transition. Hence, for establishing targeted strategies prior knowledge about the protein of 

interest is necessary involving information about the precursor m/z ratio and product m/z ratio 

of proteotypic peptides. This targeted fashion achieves high reproducibility across large sample 

cohorts but comes at the cost of low proteome coverage because of a limited number of 

targetable proteins per MS injection. A typical application of SRM is restricted to the targeted 

measurement of up to 100 proteins per run [22,23].  

 

Recent advances in MS instrumentation, which include new hybrid instruments like the 

quadrupole-TOF (Q-TOF) or the Q-Orbitrap set of instruments, gave rise to the development 

of data-independent acquisition (DIA) – a possibility to combine the advantages of DDA-based 

proteomics to detect a high number of analytes with the favorable dynamic range, sample 

throughput, and reproducibility of  SRM (Fig. 5) [24-26]. 

 

 

Fig. 5: Comparison of technical advantages and disadvantages of DDA, SRM, and SWATH-MS by 

performance profiles [20]. 

 

DDA SRM/MRM SWATH-MS 
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In DIA a fragmentation of all precursors at the same time within a certain m/z range is 

performed. In this case the fragmentation is independent of any characteristics of the precursor 

ions. As a result, complex tandem MS spectra are generated representing a digital map for the 

corresponding samples [20,27].  Deconvolution of the MS2 space and the complexity of data 

analysis remain bioinformatic challenges for DIA methods (Fig. 5) [20,28]. In contrast, for 

DDA-based proteomics and targeted approaches multiple pipelines and software tools are 

available and implemented in the proteomic community [29-31]. However, the promise of DIA 

to combine high reproducibility with great protein coverage drives research to the development 

and improvement of DIA-based methods [28]. 

 

3.4 SWATH-MS 

 

All DIA-based methods rely on the same principle of continuously acquiring fragment ion 

spectra in an unbiased fashion [19]. Since the year 2000, in which Masselon et al. presented a 

proof of principle experiment for the simultaneous MS/MS analysis of multiple peptides and 

further development by Venable et al. in 2004 by the application of sequential precursor 

windows in tandem MS, several DIA strategies rest on the use of different types of mass 

spectrometer, distinct acquisition settings, and parameter optimizations, as well as analysis 

workflows [28,32,33]. Initially, DIA-generated data was directly submitted to DDA analysis 

tools due to a lack of specific software and data analysis pipelines for DIA data [34]. In 2012, 

Gillet et al. presented a new method called SWATH-MS, which combined unbiased DIA with 

a novel targeted data extraction strategy [27]. In this case, sequential windowed acquisition of 

all theoretical mass spectra (SWATH) is achieved by repeatedly cycling through 32 consecutive 

25-Da precursor isolation windows resulting in a data set, which is continuous in retention time 

dimension and fragment ion intensity. The digital fragmentation ion maps are then mined by 

using information provided by a spectral library. The idea is that each peptide in the highly 

convoluted SWATH data can be uniquely identified by so called peptide query parameters 

(PQPs) in the spectral library. The peptide-specific information of the spectral library covers 

precursor and fragment ion signals, relative intensities, ion types and chromatographic 

parameters [27,28]. 
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Since the development of SWATH-MS with targeted data extraction, many efforts have been 

made to ensure a high-quality and comprehensive library. For generation of prior knowledge 

and collecting the needed PQPs for the targeted data extraction several sample input types are 

utilized (Fig. 6) [28]. 

 

 

Fig. 6: Overview of input samples for generating a spectral library with peptide query parameters [28]. 

 

Usually DDA measurements of the same sample and on the same instrument are performed to 

acquire the PQPs. The coverage of single-shot DDA analysis is often lower than the 

corresponding SWATH-MS data. Therefore, repeated DDA analysis can be beneficial to 

increase sensitivity [24,28]. An additional approach for enhancing the information content of a 

spectral library is based on sample fractionation prior to DDA analysis [35,36]. Here, different 

fractionation strategies can be applied for further improvement [37]. Tandem MS spectra for 

library generation can also be derived from chemically synthesized peptides, which already 
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have proven their implementation as a valuable source of prior information e.g. in SRM 

assays [28]. Further extension of this idea has led to the development of synthetic full-length 

proteins by recombinant methods [38]. Another possible strategy relies on publicly available 

spectral libraries on an organism-scale [39]. In this context, important considerations about the 

transfer of information between instrument types and between laboratories, as well as 

appropriate global error rate control is required [20,39]. In principle, hybrid libraries of several 

approaches are also possible. In 2015 Schubert et al. generated a library consisting of 

endogenous samples and synthetic peptides [40]. The development and research regarding 

library generation for targeted data analysis is still ongoing, always optimizing for increased 

sensitivity and selectivity for an improved data mining of DIA measurements [28,34]. 

 

As a result of advancement in data analysis tools and technical improvements, proteomic 

researchers are able to perform SWATH-MS in a routine fashion to generate valuable biological 

insights [41]. In 2017, Yanzhang Luo et al. described the identification of carbonic anhydrase 2 

(CA2) as a potential diagnostic biomarker for nasopharyngeal carcinoma by SWATH-based 

proteomics, which emphasizes the applicability of the DIA approach for clinical research [42]. 

However, to grasp a deeper understanding of potential challenges in SWATH-MS and the 

bioinformatic connection between DDA and DIA, a closer look on data analysis strategies and 

software tools in MS is beneficial [28,43]. 

 

3.5 Data analysis in bottom-up proteomics 

 

In bottom-up proteomics the direct connectivity between proteins and experimental acquired 

spectra is lost. The proteins are digested by proteases into peptides, which are then analyzed via 

MS. The bioinformatic challenge is to reassemble peptides from the MS-based spectra and in a 

consecutive step to the related proteins. There are two basic strategies for the bioinformatic 

inference from the acquired spectra back to the protein: spectrum-centric and peptide-centric 

analysis (Fig. 7A; 7B) [44,45]. 

 

In spectrum-centric analysis, the query unit is a MS/MS spectrum. The approach assumes that 

each spectrum is generated from at least one peptide and the goal is to identify a peptide for 
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each spectrum, which best explains the data. The resulting assigned peptide-spectrum matches 

(PSMs) are subjected to statistical evaluation [44,45]. Especially, DDA measurements are 

analyzed by this concept [46]. On the other hand, peptide-centric analysis takes the peptides of 

interest as query units and looks for corresponding signals of each peptide in the MS/MS data. 

The underlying assumption is that each peptide elutes once during liquid chromatography. 

Statistical evaluation relies on the competition between candidate spectra from the acquired 

data for the best scoring evidence of detection. This approach is applicable for targeted 

strategies including SRM and DIA [44,45]. 

 

 

Fig. 7: Bioinformatic strategies for the analysis of  tandem MS-data: spectrum-centric (A) and                           

peptide-centric analysis (B) [44]. 

 

3.5.1 Data analysis in DDA 

 

Large-scale shotgun proteomics is generally analyzed in a spectrum-centric manner [45]. After 

spectral processing of the raw MS data, the core element of the bioinformatic analysis is the 

peptide identification step. Acquired MS/MS spectra are interpreted by database searching, 

spectral library searching, or de novo sequencing. Statistical assessment and validation of 

peptide identification with the consecutive process of protein inference complete the data 

analysis workflow [47]. 
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3.5.1.1 De novo sequencing 

 

De novo spectrum identification is based on computationally inferring the sequence or partial 

sequence of peptides directly from the experimental tandem MS spectra by considering all 

possible amino acid combinations [48]. Hence, de novo methods avoid the necessity of a 

reference database, which makes it a powerful approach for the analysis of organisms with 

unsequenced or only partially sequenced genomes. On the downside, the computational 

expense is large and high-quality spectra are required for an effective analysis [47].  

Nevertheless, great efforts have been made to establish de novo methods into daily data analysis 

routine for large scale proteomic data sets. Over twenty sequencing programs have been 

developed involving Lutefisk, PepNovo, and Twister [49-52]. 

 

3.5.1.2 Spectral library searching 

 

Spectral library searching achieves peptide identification by comparison of the query MS/MS 

spectrum to a library of previously identified reference spectra [53]. The similarity of the 

spectra is mainly analyzed via a dot product scoring scheme [54]. A high-quality reference 

spectral library is a crucial prerequisite, because false positives can undermine the analysis [53]. 

Another drawback is that the peptide identification is limited to the content of the library [46]. 

However, spectral library search tools such as SpectraST and Bibliospec have the potential to 

exceed the performance of database search engines regarding speed and peptide identification 

rate [47,53,55]. 

 

3.5.1.3 Database searching 

 

The dominant applied method for assigning peptides to tandem mass spectra is sequence 

database searching. Important steps contain preprocessing of the spectra, peptide identification, 

and error rate control [47]. 
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3.5.1.3.1 Preprocessing 

 

Spectral processing of the raw data has a direct impact of the peptide identification in terms of 

accuracy and specificity. The general goal is to detect and eliminate inconsistencies during MS 

acquisition [56]. Essential actions cover joining of redundant spectra, exclusion of low-quality 

spectra, and recognition of “chimeric” spectra, which are generated by two or more coeluting 

peptides. Applying and optimizing spectral processing steps can greatly enhance the outcome 

of peptide identification [47,56,57]. 

 

3.5.1.3.2 Peptide identification 

 

All database search engines rely on the same principle. For a given spectrum S, a peptide 

database P, a precursor mass m, and a precursor mass tolerance δ, the algorithm defines 

candidate peptides C, which need to be part of the database P and the difference of the 

calculated mass m(p) of the peptide p and the corresponding precursor mass m has to be smaller 

than the precursor mass tolerance δ (Eq. 1) [46]. 

                                       𝐶(𝑚, 𝑃, 𝛿) =  {𝑝: 𝑝 ∈ 𝑃; |𝑚(𝑝) − 𝑚| < 𝛿}                     (Eq. 1) 

In the next step, a so-called scoring function Ξ(;) generates a theoretical fragmentation spectrum 

for each candidate peptide and compares it against the experimental acquired tandem mass 

spectrum. The likelihood of the peptide sequence match is scored and the peptide with the 

highest score is reported by the search tool (Eq. 2) [46,47]. 

                                                               arg max Ξ (𝑆, 𝑝)
𝑝∈𝐶(𝑚,𝑃,𝛿)

                                               (Eq. 2) 

 

3.5.1.3.3 Scoring functions 

 

A multitude of database search engines has been developed, which mainly differ on the level 

of scoring function to infer theoretical spectra and to determine the degree of similarity between 

theoretical and experimental spectrum [58]. Primarily, scoring functions can be categorized into 

three different strategies: descriptive, interpretative, and stochastic modeling [59]. 
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Descriptive models first use mechanistic predictions of fragmentation patterns of peptides for 

the generation of theoretical spectra and then assess the quality of a peptide spectrum match via 

a cross-correlation score [58,59]. Common database search engines such as SEQUEST, Comet, 

and X!Tandem achieve good sensitivity and applicability to different types of mass 

spectrometers and data sets [60-62]. 

 

Interpretative strategies infer the identification of peptides by extracting parts of the fragment 

ion series of a spectrum and using that partial sequence for the database search [59]. The 

extracted amino acid sequence is in the middle of masses of unknown composition, which gives 

the algorithm a broader flexibility [58]. Thus, powerful search tools such as TagRecon or            

MS-GF+ have been developed to identify mutations or to deal with the development of 

enhanced and novel MS techniques [63,64]. 

 

The stochastic approach relies on probability algorithms, which model theoretical spectra using 

training sets of spectra of known sequence identity [58]. The data mining process often utilizes 

machine learning algorithms for specific data sets offering the potential for an instrument 

tailored database search. A representative of a stochastic based search tool is SCOPE [59,65]. 

 

However, the assigned score of a database search tool for a PSM is either based on an arbitrary 

scale or converted to a statistical equivalent such as p value or expectation value. In each case 

further processing for statistical validation and an effective global error rate control for large-

scale studies is required [47]. In addition, it is noteworthy that several studies have been 

performed, in which multiple search engines have been coupled to achieve a higher 

identification rate [66,67]. Especially beneficial to maximize the outcome of each proteomic 

dataset is to utilize search engines with distinct scoring function principles [66]. 
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3.5.1.3.4 Postprocessing and protein inference 

 

The foundation for reproducible results across platforms and datasets is an accurate error rate 

estimation. State-of-the-art tools for postprocessing scores of PSMs from different search tools 

include Percolator and PeptideProphet. Both convert search engines scores into probabilities 

and then compute a threshold to remove uncertain assignments [68-70]. The most common 

approach rests on estimating a false discovery rate (FDR), which is defined as the expected 

proportion of incorrect PSMs among all accepted PSMs [47]. Firstly, a global FDR is 

determined via a target-decoy database strategy, in which experimental tandem MS spectra are 

additionally searched against a database of proteins with reversed, randomized or shuffled 

sequences [47,71]. The number of matches from the decoy database presents an accurate 

estimate of false positives [68]. Secondly, a posterior probability for individual PSMs that 

estimate the correctness of the assignment is calculated and used to compute a baseline measure 

to differentiate between correct and incorrect identifications [47]. 

 

For protein inference, PSMs are grouped to their corresponding protein by performing 

additional evaluation of posterior probabilities and FDR estimation on protein-level [47]. 

Several programs have been developed to ensure an accurate transition from peptide-level FDR 

to protein-level error estimation, for example iProphet and MAYU [72,73]. Furthermore, there 

is a multitude of programs available for protein inference such as FIDO and ProteinProphet, 

which have been evaluated and benchmarked [74-76]. 

 

3.5.2 Data analysis in DIA 

 

In DIA, MS/MS spectra are systematically acquired regardless of intensity. Parallel 

fragmentation of all detectable ions within a predefined m/z range generate complex digital 

maps of the MS2 space. Hence, to exploit the high information content of DIA data 

sophisticated data analysis workflows and software are essential [34,44]. Most dominant 

analysis strategies employ a peptide-centric approach with the use of a spectral library [43]. 

Analysis pipelines cover open-source software such as Skyline and OpenSWATH or 

commercially available programs like Spectronaut [24,77,78]. Additionally, the development 
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of spectrum-centric based software e.g. DIA-Umpire or Group-DIA, which do not necessarily 

rely on prior library generation, attract the attention of the research community [79-81]. 

 

3.5.2.1 SWATH-MS data analysis 

 

A typical data analysis workflow for SWATH-MS data consists of library generation, DIA data 

extraction, probability assignment and validation, as well as quantification to infer statistical 

significance (Fig. 8) [28]. 

 

 

Fig. 8: Data analysis steps for SWATH-MS. 

 

Quality and coverage of spectral reference libraries for peptide identification are of great value 

for targeted analysis [43]. While there is a multitude of possible input samples for assay libraries 

(see section 3.4), commonly DDA measurements performed under similar conditions and on 

the same instruments are employed assuring that the acquired MS/MS spectra resemble the 

relative fragment ion intensities in the SWATH-MS maps in a best possible way [28,43]. 

Moreover, several efforts have been made to improve the DIA extracting process including the 

optimization of retention time prediction with the use of indexed retention time peptides (iRTs) 

and further alignment via transfer of identification confidence for reproducible protein 

quantification (TRIC) [82,83]. However, the general fact, that only information about peptides, 

which are included in the library, can be used for DIA data extraction impacts considerations 

about both quality and coverage of spectral libraries. In terms of quality this stresses the 
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importance of reliable and accurate FDR control in order to avoid error propagation into DIA 

analysis [43]. Therefore, a bioinformatic link between DDA and DIA is based on the FDR 

control for library generation. Software like MAYU ensures an accurate estimation of the FDR 

on PSM-, peptide-, and protein-level in large-scale DDA data sets and thus is crucial so that 

only high-quality spectra with high-confidence peptide assignments enter the library [43,73].  

For example, Bibliospec, which is implemented into Skyline, uses the cut-off score for a 

specified FDR reported by MAYU for library generation [43,55]. Regarding coverage of a 

spectral library, studies have shown that prefractionation prior to DDA measurements can 

enhance the information input in a subsequent library for DIA analysis [36,37]. Furthermore, it 

is recommended to use multiple search engines in an orthogonal way to increase the peptide 

identification rate. In summary, if DDA measurements are applied for library generation, DIA 

analysis cannot be implemented without making considerations about DDA analysis. Both 

coverage and quality of a library is greatly influenced on DDA level [43]. 

 

After library generation, chromatogram extraction of the DIA data including assigning peak 

groups and validation are the next steps in targeted SWATH-MS analysis [34]. First, precursor 

and fragment ion chromatograms for the peptides of interest are extracted with information of 

predefined PQPs stored in the library. In this context, the selectivity of extraction is influenced 

in retention time and mass tolerance dimension. A retention time window centered around the 

expected elution time is chosen with the aim of reducing the size as much as possible to enhance 

the accuracy of the extraction process. In addition, the width of ion extraction directly impacts 

selectivity of the chromatographic elution profile and thus optimization of the extraction width 

during the data analysis process is beneficial to increase identification rate and to improve 

peptide-centric scoring in a subsequent validation step [28]. Commonly, probability assignment 

of peak groups relies on a target-decoy approach. After generating decoy peptides with a 

reversed, shuffled or randomized sequence, fragment ion chromatograms are extracted next to 

target peptides [34]. Programs like mProphet, which is implemented into Skyline, or PyProphet, 

which is available in the OpenSWATH environment, calculate for target and decoy peptides 

several chromatogram- and spectrum-based scores [84,85]. All scores are combined into a 

discriminant score by a super-vised learning strategy. Subsequently, the distribution of peptide 

precursor count and corresponding discriminant score for both target and decoy peptides are 

used for FDR calculation [28,34]. In addition, Skyline has implemented another score to access 
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the similarity of peptide fragmentation patterns, which is referred to as dot product (dotP) and 

is based on a geometrical distance measure including a normalized spectral contrast angle [86]. 

 

Thorough peptide and protein quantification is the last step of SWATH-MS analysis [79]. 

Statistical strategies cover basic data processing steps, statistical modeling and inference of 

protein abundance [28]. First, peak intensities of peptides are transformed e.g. by normalization 

in order to prevent inter-run variation [87]. Recently, Narasimhan et. al studied and stressed the 

importance of the impact of normalization methods in SWATH-MS data analysis [88]. Next, 

the peak intensities are summed or averaged to infer the protein abundance of correlating 

peptides [87]. Again, several strategies and software have been developed [34]. For example, 

MSstats, which is integrated as Add-on in Skyline, employs a family of linear-mixed models 

for relative quantification of proteins and peptides [87]. Another option is Perseus, which offers 

several statistical tools for analyzing OMICs data including normalization, pattern recognition, 

as well as multiple hypothesis testing [89]. 

 

3.5.2.2 Alternative data analysis strategies  

 

Spectrum-centric strategies such as DIA-Umpire or Group-DIA combine information of 

precursor and fragment ions of DIA data to generate pseudo-MS/MS spectra, which can be 

searched by conventional database search tools. Hence, prior to DIA analysis neither additional 

DDA measurements nor sample amounts are needed to generate a library [80,81]. DIA-Umpire 

performs a signal processing algorithm, which aims at detecting all possible MS1 peptide 

precursor ions and MS2 fragment ions (Fig. 9). For each monoisotopic peak of a precursor and 

fragment peak a Pearson correlation is calculated to build precursor-fragment groups. These 

co-eluting precursor and fragment ions form pseudo-tandem MS/MS spectra [80]. 
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Fig. 9: DIA-Umpire signal processing to generate pseudo-MS/MS spectra directly from DIA data [80]. 

 

A recent study has demonstrated the applicability of spectrum-centric approaches for DIA data 

analysis and compared the performance to other widely used software methods. Results show 

that while peptide-centric analysis workflows exceed spectrum-centric strategies for low-

quality spectra, similar results are achieved for high-quality spectra [90]. Thus, as instrument 

performance and corresponding measurement selectivity and sensitivity improve, generation of 

prior knowledge via DDA measurements for DIA analysis might become less significant [28]. 
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4. Aim of the Thesis 
 

Colorectal cancer (CRC) remains a major cause of cancer-related deaths in the world and in the 

past decades CRC survival rates have barely changed. Elucidating the development of CRC on 

molecular level from a benign precursor lesion in stage I to tumor metastasis in stage IV is of 

utmost importance [1,2]. In addition, the rise of new MS-based strategies, especially data-

independent methods, which combine the potential of a great protein depth and outstanding 

consistency across large sample cohorts, open up new opportunities to decipher pathological 

patterns [20,79]. 

 

The main goal of the thesis was to highlight significant proteins and elucidate potential 

biological patterns in the sense of systems biology by comparing the protein profile of CRC 

samples in different stages. Hence, the thesis aimed at identifying a promising protein panel 

which can be used as a valuable starting point for further research to decipher the pathogenesis 

of CRC. The approach was based on the hypothesis that detection and classification of CRC in 

the future will be much more precise if the diagnostic target is not limited to one single protein 

but to a protein panel containing many proteins. Furthermore, the assumption included that 

despite a vast cancer heterogeneity different individual CRC will always have some proteins in 

common. All individual cancer cells must share a special inventory of proteins to survive in a 

healthy environment, which attacks them. The given hypothesis was based on several studies 

regarding cancer research published by the Schlüter group [91-93].  
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5. Workflow 
 

The method of choice for a detection of CRC-associated protein profiles was a label-free LC-

MS/MS strategy with data-independent acquisition (DIA). Overall, the strategy focused on 

creating a bioinformatic analysis workflow to exploit the high information input of the acquired 

digital DIA maps. To elaborate, the idea aimed at boosting the identification rate on library-

level and subsequently the sensitivity of the DIA analysis by combining pre-fractionated DDA 

measurements with a data analysis including multiple search engines. Moreover, an approach 

included alternative strategies for DIA data analysis, which only require DIA measurements, to 

investigate potential merits in comparison with the first approach.  

Consequently, the PhD thesis was divided into five main parts (Fig. 10). The first part was the 

development of an analysis workflow for library-based DIA data mining including a script for 

combining multiple search engines for peptide identification. The second part was based on 

using DDA spectra as input for the developed analysis workflow and depicted as “DDA-based” 

analysis. The benefits of using multiple search engine combinations were evaluated by several 

criteria such as analysis time, storage size, library size, and extraction of statistically significant 

hits. In the third part the same analysis procedure and evaluating scheme was performed only 

taking pseudo-MS/MS data directly generated by the DIA data without the need of DDA 

measurements, represented as “DDA-free” analysis. Importantly, the developed bioinformatic 

workflow was in its main structure applicable for both strategies in order to be as consistent as 

possible to ensure comparability. In part four both ways were compared and potential 

advantages and disadvantages discussed. Lastly, biological inference of potential significant 

proteins regarding CRC were addressed. 

 

 

Fig. 10: Workflow of the PhD thesis – the developed analysis script in step one builds the framework for both 

DDA-based and DDA-free analysis prior to evaluation and comparison of both approaches in step four, as well 

as biological inference of significant patterns for CRC in step five. 
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6. Part I - Development of a DIA data analysis workflow 
 

The foundation of the PhD thesis was the development of a DIA data analysis workflow, which 

guaranteed a high degree of reproducibility and the possibility of reiteratively processing the 

data. In addition, it needed to provide a certain flexibility in terms of using DDA spectra or 

pseudo-MS/MS spectra for a DDA-based or DDA-free analysis, respectively. 

 

In general, the data analysis for the library-based approach can be divided in a simplified way 

into three main processes (see details starting from section 3.5.2): 

 

1. Peptide Identification – generating prior knowledge 

2. Library Generation 

3. DIA Analysis 

 

For peptide identification an adjustable, automated user-specified batch script was created. 

Library generation and DIA analysis were performed with Skyline and further statistical 

analysis was employed with the statistical software R. To understand possible benefits of using 

multiple search engines on the peptide identification level and to illustrate the influence on 

potential significant hits after statistical analysis on DIA level, it is crucial to elucidate the 

different parts of the data analysis workflow in detail. Therefore, in the following chapters the 

information flow will be described and important considerations will be highlighted. 

 

6.1 Peptide identification – generating prior knowledge 

 

The peptide identification covered preprocessing of the data, database search, and validation. 

In essence, the script combined programs for individual steps in a consecutive manner. Only 

open source software was implemented for the developed, automated analysis script for peptide 

identification. Integrating open-source software into a self-designed script had several merits 

such as transparency, repeatability, and adjustability. Especially the flexibility while 

maintaining a constant frame for data analysis was essential to perform and compare the DDA-

based and DDA-free approach. The script for peptide identification for both DDA-based 

analysis and DDA-free analysis is shown in Fig. 11A and 11B.  
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Fig. 11: Automated analysis script for DDA-based (A) and DDA-free (B) analysis.  

 

First, MSConvert preprocesses the raw-files and gives an open-source format as output. The 

second step is the core of the automated script. It includes the database search of the 

preprocessed files with the database search engines Comet, X!Tandem, and MS-GF+. All of 

them differ primarily on the level of scoring function (for details see 3.5.1.3.3). It is important 

to note, that each database search engine runs individually and in a consecutive manner. After 

the individual validation step of the PSMs of Comet, X!Tandem, and MS-GF+ with 

PeptideProphet, the combination of individual database search engine results takes place with 

iProphet. To elaborate, the different individual database specific results, results of two database 

search engines and the PSMs of all three search tools are combined and reevaluated, 

respectively. Lastly, MAYU is employed for a robust FDR estimation for the corresponding 

results. An overview about possible combinations of search engines, abbreviations, as well as 

a corresponding color code is presented in Fig. 12. 
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Fig. 12: Combinations of different database search engines for rescoring and validation with 

corresponding abbreviation and color code. 

 

In total seven combinations are compared and used for further processing. In terms of flexibility 

the script allows individual parts of the processing pipeline to be altered, while maintaining the 

rest of the script. Therefore, a DDA-free, open-source DIA tool such as DIA-Umpire can be 

added to the script and the rest of the pipeline with all other individual programs stays constant 

(Fig. 11B). DIA-Umpire generates pseudo-MS/MS spectra directly from DIA data, which can 

subsequently be directed to database search (see details in 3.5.2.2). The database search engine 

step, as well as the validation steps remains the same. Hence, in theory other parts or rather 

other programs of the peptide identification step could be altered and the influence of the change 

on DIA analysis could be investigated. 

 

6.2 Library generation and DIA analysis 

 

Both library generation and further DIA analysis was performed with Skyline. To understand 

how the library size and content with identified PSMs for a given database search engine 

combination influences results, the in Skyline performed steps are presented in Fig. 13.  
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Fig. 13: Skyline analysis workflow for the database search engine combinations in detail. 

 

For each database search engine combination, the same procedure is applied. It starts with the 

library generation based on the previously validated PSMs. In this context the minimum cut-

off score reported by MAYU is used at which the protein FDR is under a specific threshold 

such as FDR < 1%. A fasta-file is imported in order to define the targets (Level 1) and duplicated 

peptides are removed (Level 2). Before extracting the DIA data, at least two peptides per protein 

are defined (Level 3). To ensure high quality data for further analysis all results with a                  

dotP < 0.8 are removed (Level 4). For the last level only proteins with at least two peptides are 

included (Level 5). After exporting the results of Skyline, statistical downstream analysis is 

performed with MSstats and R. 
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7. Part II - DDA-based Analysis 

7.1 Results 

 

The seven database search engine combinations will be compared under different aspects such 

as library size, analysis time, file storage size, DIA data extraction, as well as the ability to 

identify statistically significant proteins.  

 

7.1.1 Library size 

 

First, the library size of the different combinations in terms of the absolute number of identified 

precursors (Fig. 14) and peptides (Fig. 15) is compared. The library building was performed at 

different error rates including an FDR of 0%, 0.5%, 1%, 1.5%, and 2%.  

 

In Skyline only the best spectrum is chosen for a corresponding precursor from the total number 

of matched spectra of all DDA files. The number of precursors for the different database search 

engine combinations is shown in Fig. 14. On precursor-level the combination MT slightly 

outperforms the combination of all database search engines CMT. Both excel the other 

possibilities. The combinations CT, MT, and T obtain similar results, followed by M. The single 

variant C ranks last. 
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Fig. 14: Library Size - Number of precursors [abs.] at error rates {0, 0.5, 1, 1.5, 2}% for the different 

database search engines and combinations. 

 

In essence, Fig. 14 indicates that starting with a specific single database search engine, the 

combination with results of one additional search engines always yields an increase. The step 

from a binary combination to a triple combination, however, is only beneficial for CM and CT 

and not for MT. Furthermore, the performance of a specific single database search engine can 

be close or even better in comparison with a binary variant, which includes two other search 

engines. For instance, T performs similar on an FDR of 1% than the combination CM. Hence, 

combining the results of multiple search engines is not always directly linked to an increase of 

the library size on precursor-level.  

 

In the library precursors are assigned to specific peptides. In general, a peptide can contain a 

single precursor or multiple precursors. The number of peptides for the different database search 

engine combinations is presented in Fig. 15. The highest result on peptide-level is achieved by 

MT and second highest is CMT. The other possibilities are outperformed. To elaborate, the 

achieved number of peptides at an error rate of 0.5% by MT and CMT is higher than the 

obtained results at an error rate of 2% of any other option, respectively. Furthermore, the single 
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database search engine T and CT have similar outcomes and close behind lies CM. The single 

variant M has a higher number of peptides than C, which ranks last. 

 

 

Fig. 15: Library Size - Number of peptides [abs.] at error rates {0, 0.5, 1, 1.5, 2}% for the different 

database search engines and combinations. 

 

Basically, Fig. 15 shows that the behavior on peptide-level is similar to the precursor-level. The 

performance of a specific individual database search engine is enhanced by adding results of 

one further search engine. Moreover, a single variant can perform better than a binary 

combination as well as a binary combination can outperform the triple combination. The results 

indicate that combining the outcomes of multiple search engines does not necessarily result in 

an increase of the library size on peptide-level. 

 

7.1.2 Analysis time and file storage size 

 

Next, analysis time (Fig. 16) and file storage size (Fig. 17) are compared. The analysis time is 

the sum of the analysis time of steps two and three of the automated workflow (see Fig. 11A). 

The shortest time is accomplished by T with 0.53 h. In addition, C achieves a time under one 

hour as well with 0.86 h. The highest outcome of a single engine is obtained by M with 2.11 h, 
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even higher as the database search engine combination CT with 1.92 h. The combination of all 

three database search engines needs 3.44 h, followed by MT with 3.23 h and CM with 2.98 h. 

 

 

Fig. 16: Analysis time [h] for the different database search engine combinations. 

 

On the one hand, Fig. 16 shows that adding a search engine result to a specific search engine 

always increases the analysis time. For example, if C is combined with T the analysis time goes 

up from 0.86 h to 1.92 h. And if C is combined with T and M, it increases to 3.44 h. On the 

other hand, a generalization that the combination of multiple search engines will always directly 

lead to an increased analysis time in comparison with any single search engines is not possible. 

The analysis of M and corresponding combinations takes the longest. In comparison both C and 

T need relatively short times. As a result, the combination CT has a smaller analysis time than 

the single search tool M.  

 

The file storage size covers the sum of every file generated starting from the peptide 

identification step and ends after the statistical validation step with MAYU (see Fig. 11A). In 

detail, CMT requires 3.97 GB storage size. The binary combinations CM and CT obtain results 

of 3.18 GB and 3.16 GB, respectively. Next in the order is the single database search engine C 
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with 2.37 GB. The combination MT needs a file storage size of 1.94 GB and the smallest 

requirements include M with 1.11 GB and T with 1.10 GB.   

 

 

Fig. 17: Storage size of files [GB] for the different database search engine combinations. 

 

The results in Fig. 17 indicate, that adding results of search engines to a specific single search 

tool always yields an enhanced storage size. In contrast, an excellent performance of single 

search engines and their combination can result into the fact that a single search tool requires 

more space than a binary combination. For example, the combination MT outperforms C.  

 

7.1.3 Data Mining – downstream analysis & SWATH quantification performance 

 

In the following chapter, the downstream analysis in Skyline (see Fig. 13) and its effect on 

protein- and peptide-level for the corresponding libraries generated with an FDR < 1% will be 

examined. In brief, Level 1 refers to the target definition, Level 2 is based on removing 

duplicates, Level 3 restricts further analysis to two peptides per protein prior to DIA-data 

import, Level 4 removes peptides with a dotP < 0.8, and lastly on Level 5 again a restriction for 

two peptides per protein is performed. The development will be displayed in absolute numbers 

across the downstream analysis. In this context, the SWATH quantification performance is of 
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special interest, which refers to high quality assignments based on a dotP < 0.8 after the DIA 

data extraction (transition from Level 3 to Level 4). For further illustration of the impact of 

individual filter steps and to investigate the benefit of combining multiple search engines, the 

development of the ranking order based on the performance of individual database search 

engine combinations will be presented. In addition, the similarity of identifications by different 

search engines will be investigated.  

 

7.1.3.1 Downstream analysis on protein-Level 

 

The development of the absolute number of proteins for the respective database search engine 

combination is presented in Fig. 18. Starting in the range between 5000 and 5500 protein 

identifications on Level 1, the number drops about 20% on Level 2 and 40% to approximately 

3000 proteins on Level 3. The biggest loss of proteins happens from Level 3 to Level 4 to 

around 200 proteins per database search engine. This corresponds to a decline of nearly 95% 

relative to Level 1. The last filtering step leads to around 100 proteins. Hence, the total number 

of detected proteins descends around 98% from Level 1 to Level 5 for every search tool. 

 

 

Fig. 18: Development of the number of ProteinIDs [abs.] during downstream analysis for the different 

database search engine combinations. 
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To further evaluate the consistency of the filtering steps, the ranking based on protein 

identifications is depicted in Fig. 19. The best performing option has the highest number of 

identifications and ranks first for a given level. If database search engines achieve the same 

ranking for an analysis level, the following rank is omitted. However, the ranking remains 

constant from Level 1 to Level 2 with MT ranking first and C ranking last. While the change to 

the next level introduces small changes, the filtering from Level 3 to Level 4 affects the ranking 

drastically. Both MT and CMT drop down to rank 5 and C attains rank 3. The next step to 

Level 5 goes along with small changes resulting into a leading performance of C and CT, which 

rank place 7 and 6 at Level 1, respectively. 

 

 

Fig. 19: Ranking based on the achieved number of ProteinIDs for the different database search engine 

combinations during downstream analysis. Libraries generated with an FDR < 1%. 

 

7.1.3.2 Downstream analysis on peptide-level 

 

The influence of the downstream analysis on peptide-level in terms of absolute numbers is 

shown in Fig. 20. The initial number of peptides drops from around 24000 to 400 

identifications. This correlates with a decrease of 98% from Level 1 to Level 5. Especially the 
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transition from Level 3 to Level 4 contributes to the drastic reduction in identifications for each 

database search engine. 

 

 

Fig. 20: Development of the number of PeptideIDs [abs.] during downstream analysis for the different 

database search engine combinations. 

 

The ranking based on protein identifications is shown in Fig. 21. While the order stays mainly 

constant from Level 1 to Level 3 with CMT and MT at the top and CT and C at the bottom, the 

transition from Level 3 to Level 4 changes the ranking significantly. The options C and CT 

improve their performance and CMT and MT decline to rank 5 and 6, respectively. 
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Fig. 21: Ranking based on the achieved number of PeptideIDs for the different database search engine 

combinations during downstream analysis. Libraries generated with an FDR < 1%. 

 

7.1.3.3 Analysis of the influence of signal intensity and retention time variation on 

SWATH quantification performance  

 

The previous reported results demonstrate a drastic decline of identifications from Level 3 to 

Level 4. To evaluate the DIA extraction further, the assigned signal intensity of the transitions 

stored in the library, as well as the coefficient of variation (CV) of the retention time of 

transitions are compared between Level 3 and Level 4. In brief, the DIA data is imported on 

Level 3 and then low-quality data (dotP < 0.8) is excluded leading to Level 4. First, the signal 

intensities of transitions in the library are extracted for the assignments, which are present at 

Level 3. Second, the same procedure is applied for Level 4. Next, the extracted library signal 

intensities are averaged per precursor, respectively.  

 

The corresponding averaged transition signal intensities extracted from the library, which have 

a protein assignment on Level 3 are displayed in Fig. 22 and consecutively the averaged 

transition signal intensities extracted from the library, which have a protein assignment on 

Level 4 are shown in Fig. 23. Both comparisons are presented via boxplots. Note, that outliers 

are not displayed to achieve a better overview. 
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Fig. 22: Averaged transition intensities for different database search engine combinations, which are 

stored in the library and assigned to proteins on data analysis Level 3. Outliers are not shown. 

 

 

Fig. 23: Averaged transition intensities for different database search engine combinations, which are 

stored in the library and assigned to proteins on data analysis Level 4. Outliers are not shown. 
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In Fig. 22 the transitions, which are stored in the library and assigned on Level 3, display a 

median signal intensity from the lowest value 3.79e+05 for T to the highest median 4.53e+05 

of M and CT. In contrast, Fig. 23 shows that on Level 4 the median ranges between 7.40e+04 

for T to a value of 8.26e+04 for M. This comparison suggests that especially precursors with 

low signal intensities correspond to a dotP < 0.8 and are removed from Level 3 to Level 4.  

 

Furthermore, the CV of retention times for each transition is determined and averaged per 

precursor for each database search engine combination. The results for Level 3 are displayed in 

Fig. 24 and for Level 4 in Fig. 25.  

 

 

Fig. 24: CV of retention times [%] per precursor for different database search engine combinations on 

Level 3. Outliers are not shown. 
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Fig. 25: CV of retention times [%] per precursor for different database search engine combinations on 

Level 4. Outliers are not shown. 

 

While the median of the CV of the retention times on Level 3 is approximately 21% across 

every database search engine (Fig. 24), the median on Level 4 is leveling off at 7% for each 

search tool option (Fig. 25). The comparison between Level 3 and Level 4 indicates that low 

CVs of retention times correlate with high-quality DIA data extraction.  

 

To sum up, the findings insinuate that both low-abundant transitions and a high retention time 

variability are prone to low-quality DIA data extraction. 

 

7.1.4 Analysis of the consistency of detecting statistically significant proteins 

 

This chapter focuses on the consistency of detecting statistically significant proteins across the 

database search engine combinations. Biological inference with concentration on the identity 

of individual proteins and possible biological patterns is performed in “Part V – Biological 

Inference”. However, to evaluate the consistency the total number of statistically significant 

proteins in stage-wise comparisons is determined and the similarity between the findings is 

studied. A detailed view via volcano plots for each stage-wise comparison for the corresponding 
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database search engine combinations is presented in the appendix (Fig. 56 - Fig. 79). An FDR 

of max. 5% is applied as cut-off to determine statistical significance.  

 

Furthermore, it is important to note that after the data analysis workflow in Skyline (“Level 5 

– Refined”; Fig. 13) the number of proteins, which are subjected to statistical analysis, differs 

among the database search engine combinations. An overview of the number of proteins for the 

corresponding database search engines on Level 5 is presented in Fig. 26. The single variant C 

obtains 116 proteins, as well as the combination CT. Next in the ranking is CM with 114 

proteins, followed by M with 111. Both the combination of all three database search engines 

CMT and MT achieve 109 proteins. The single database search engine T has 108 proteins which 

are submitted for further statistical analysis. 

 

 

Fig. 26: Number of proteins [abs.] after Skyline analysis for the different database search engine 

combinations. 

 

To examine the similarity of results in detail, the coverage of proteins after Skyline analysis is 

presented in Fig. 27. Every protein of each database search engine combination is combined, 

the duplicated proteins are removed, and the total number of unique elements is determined 

(122 proteins). The coverage of proteins of a database search engine displays the proportion of 
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detected proteins in comparison with the number of total unique elements. It is important to 

note that the same percentage of coverage does not necessarily imply that the same proteins are 

present; it only indicates that the absolute number of proteins is the same.  

 

Analogous to the absolute number of proteins C and CT perform best and achieve a coverage 

of 95%. Next in the ranking is M the 91%, closely followed by T, MT and CMT with 89%. The 

results of Fig. 27 show that mainly the same proteins are present for statistical analysis of the 

different database search engines. Furthermore, none of the possibilities achieves 100%.  

 

 

Fig. 27: Coverage of proteins [%] after Skyline analysis for the different database search engine 

combinations. 

 

Next, for each stage-wise comparison and respective database search engine the absolute 

number of statistically significant proteins and the corresponding coverage is shown in table 1. 

Note, that statistically significant findings are only detected for the stage-wise comparisons 

SI vs. SIV, SII vs. SIII, and SII vs. SIV. Additionally, the total number of statistically 

significant proteins for the different database search engine combinations are summed up for 

all stage-wise comparisons (depicted as “Total” in table 1). In detail, the findings of each stage-

wise comparison for a corresponding database search engine are combined and duplicated 
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proteins are removed. To elaborate, if for a specific database search engine a protein is 

statistically significant in the comparison between SI vs. SIV and for example in the comparison 

between SII vs. SIII, it will be counted as one. For the corresponding coverage all detected 

statistically significant proteins are combined and duplicates removed resulting in 22 unique 

proteins across each stage-wise comparison and each database search engine. 

 

Table 1: Number of statistically significant hits (FDR < 5%) and coverage for stage-wise comparisons and 

the respective database search engine. 

Database  

search engines 

SI vs. SIV 

ProteinIDs [abs.]/ 

Coverage [%] 

SII vs. SIII 

ProteinIDs [abs.]/ 

Coverage [%] 

SII vs. SIV 

ProteinIDs [abs.]/ 

Coverage [%] 

Total a) 

ProteinIDs [abs.]/ 

Coverage [%] 

C 7/70 11/79 3/75 18/82 

M 8/80 8/57 3/75 15/68 

T 6/60 12/86 3/75 18/82 

CM 8/80 11/79 3/75 18/82 

CT 10/100 10/71 4/100 18/82 

MT 7/70 9/64 3/75 16/73 

CMT 10/100 9/64 4/100 17/77 
a) "Total" refers to the combination of statistically significant protein of each stage-wise comparison for a 

respective database search engine excluding duplicate proteins. 

 

Table 1 shows that in the stage-wise comparison SI vs. SIV and SII vs. SIV the database search 

engines CT and CMT achieve a coverage of 100% with detecting 10 and 4 statistically 

significant proteins for the respective comparison. For SII vs. SIII no database search engine 

combination is able to identify all statistically significant hits. The closest search tool is T with 

12 significant findings corresponding to a coverage of 86%. In addition, no database search 

engine detects the total number of statistically significant proteins. The search engines C, T, 

CM, and CT all obtain 18 proteins, which refers to a coverage of 82%. Hence, no search engine 

is able to cover all statistically significant hits. 

 

In total, the results of the stage-wise comparisons demonstrate an inherently consistency of 

detecting statistically significant proteins. However, the question about why a certain database 

search engine combination performs better than the other and if there is a possible connectivity 

between the library size and statistically significant hits will be addressed in the next chapter.  
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7.2 Discussion 

 

In the following chapter, all previously presented results regarding library size, analysis time, 

data storage size, downstream analysis, and statistically significant hits will be evaluated and 

discussed in a more detailed fashion. Moreover, individual categories will be put into context 

to one another to highlight possible dependencies and examine potential benefits of combining 

the results of multiple database search engines. 

 

7.2.1 Library size, analysis time, and storage size 

 

Regarding the library size the performance on peptide- and precursor-level of a specific 

individual database search engine is enhanced by adding results of one further search engine. 

Moreover, a single variant can perform better than a binary combination. In addition, a binary 

combination can outperform the triple combination. In general, the performance on peptide- 

and precursor-level depend among other factors mainly on the performance as single database 

search tool and the complementarity between database search engines within combinations. 

Complementarity refers to the fact that the overlap between sets of spectra of different database 

search engines is significantly less, if the search tools employ different scoring strategies. 

Combining database search engines relying on distinct scoring functions is most beneficial to 

increase the identification rate (see 3.5.1.3.3) [66]. Both the search engines C and T apply a 

descriptive model to access peptide spectrum matches. The search tool M is based on an 

interpretative strategy. In theory, CM and MT should outperform CT. Nevertheless, because T 

performs significantly better than C and M as an individual search tool, the combination 

between CT and T on its own is better than the combination CM. However, the binary 

combination MT performs best on precursor- and peptide-level regarding the library size. 

Furthermore, it is observed that adding the results of one database search engine to another 

search tool always increases the identification rate on library-level. In addition, it is important 

to mention that it is has been reported that different database search tools perform best on 

distinct datasets and conditions [66]. Thus, the findings do not serve to generalize the individual 

performance of the used database search engines. 

 

In terms of analysis time and storage size, the single variant T performs best. Between the binary 

combinations, CM ranks last. If the analysis time is valued more, CT achieves better results 
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than MT. If the focus is on storage size, MT is favored. It is clear, that an enhanced number of 

utilized search tools goes along with an increased analysis time and storage space. Nevertheless, 

with the development of cloud based computing and the opportunity to store files, as well as to 

process several search files at a time, additional computational resources will become less 

important [66]. However, a favorable tradeoff between identification rate, storage size and 

analysis time is accomplished by the single search engine T. In regard to identifications T gets 

to the range of the binary combinations CM and MT. Moreover, in terms of analysis time and 

storage size T performs best out of all combinations. With the aim in mind to enhance the 

identification rate on library-level, the combination MT ranks first. The increase on peptide- 

and precursor-level regarding identifications trumps the enhanced analysis time. 

 

7.2.2 SWATH quantification performance and reproducibility of the detection of 

statistically significant proteins 

 

The impact of the downstream analysis on protein- and peptide-level for each database search 

engine was investigated. After performing all filtering steps in the downstream analysis up to 

98% of the determined identifications are excluded, respectively. The biggest decrease is based 

on a poor SWATH quantification performance. In the transition from Level 3 to Level 4, in 

which all proteins that obtain a dotP < 0.8 are removed, only 2% remain and display high-

quality assignments. Additional data mining insinuated that both low-abundant transitions and 

a high retention time variability are prone to low-quality DIA data extraction. Moreover, this 

transition alters the performance-based ranking of the different database search engine 

combinations. In detail, while MT achieves the highest results on library-level and after target 

import (Level 1), the performance declines to rank 5 on Level 5. Hence, the gained information 

input on library-level of MT is not only drastically reduced, but also results into a lower 

performance in comparison with other database search engine combinations. As a conclusion, 

the results indicate that for DIA data extraction the quality of the information input of the library 

is more important than the mere total number of identifications stored in the library. To sum 

up, while combining multiple database search engines enhances the sensitivity on library-level 

it does not guarantee an adequate DIA data extraction. By comparing the different database 

search engines, it is obvious that the increase on library-level is not proportional to the absolute 

number of proteins and peptides extracted from the DIA data. However, to connect a certain 

library spectrum of a specific database search engine to an achieved dotP for a corresponding 
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protein and examine its influence on the downstream analysis in the context of the whole 

composition of the library input is beyond the scope of this project. Again, it is noteworthy, that 

all made considerations are primarily limited to this dataset.  

 

The results of the statistical analysis show an inherent consistency for all database search 

engines. Best performing combination regarding the coverage of the most statistically 

significant hits is CT. The most promising combination on library-level MT is ranged at the 

bottom of the ranking. It is clear, that subtle changes on product-, precursor-, peptide-, and 

protein-level lead to distinct results. As a result, the choice of library directly impacts the 

detection of statistically significant proteins. In addition, the results of the statistical analysis 

demonstrate that no database search engine obtains a total coverage of 100% of statistically 

significant findings. In other terms, performing an analysis only based on a single database 

search engine and the resulting library will not exploit the total amount of information given by 

DIA data. In addition, if several database search engines and the resulting library lead to 

detecting the same statistically significant protein, it adds confidence and verifies the findings. 

 

7.3 Conclusion 

 

The DDA-based data analysis workflow aimed at boosting the identification rate on library-

level and subsequently the sensitivity of the DIA analysis by combining the results of multiple 

database search engines for library generation. An overview of the benefits and drawbacks of 

every database search engine combination is provided in table 2.  

 

In all cases the identification rate on library-level was increased by combining results of one 

search engine to another to form a binary combination. Merging the results of search engines 

was correlated with an increased analysis time and storage size. In terms of the library size, the 

combination MT excelled the other possibilities. Remarkably, the increase of the library input 

was not proportional to the extracted protein and peptides. Regarding the number of extracted 

high-quality assignments the option CT ranked first. As a result, an increased identification rate 

on library-level did not guarantee an enhanced sensitivity of the DIA analysis. Further 

investigation directed the attention on the retention time variability of the transitions and the 

quality of library input regarding signal intensity to improve the DIA data extraction. Moreover, 

statistical evaluation has demonstrated that no option covers the total amount of statistically 
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significant proteins. The database search engine combination CT obtained the most statistically 

significant results based on an FDR threshold of max. 5%. 

 

Table 2: Overview of merits and drawbacks of each database search engine combination. 

Categories C M T CM CT MT CMT 

Analysis time ++ + ++ - + - - 

Storage size + ++ ++ - - + - 

Number of precursors in Library (FDR < 1%) - + + + + ++ ++ 

Number of peptides in Library (FDR < 1%) - + + + + ++ ++ 

Number of extracted proteins (FDR < 1%) a) ++ + - + ++ - - 

Extraction of statistically significant proteins + - + + + - + 
a) Refers to Level 5 – after all filtering steps are performed (see Fig. 13). 

 

As a conclusion, it is recommendable to use the results of two database search engines and run 

the total analysis both for the search tools individually and their binary combination. In this 

manner, the chances to extract valuable information provided by the DIA data is increased, it 

adds certainty to the findings, and thus enhances the probability to achieve the main goal of the 

thesis – elucidating biological significant proteins and pathogenic patterns for CRC in the sense 

of systems biology. 
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8. Part III - DDA-free Analysis 

8.1 Results 

 

After applying the data analysis based on the DDA-free approach, the seven database search 

engine combinations will be compared in different aspects – library size, analysis time, file 

storage size, consistency of the data analysis, DIA data extraction and reproducibility in 

identifying statistically significant proteins. 

 

8.1.1 Library size 

 

Initially, the different database search engine options are compared regarding the absolute 

number of precursors (Fig. 28) and peptides (Fig. 29) stored in the library. The library 

generation was carried out at various error rates including an FDR of 0%, 0.5%, 1%, 1.5%, 

and 2%.  

 

The number of precursors for the different database search engine combinations is presented in 

Fig. 28. At an FDR of 1% the single variant T performs best, closely followed by the binary 

option CT and the combination CMT. Next in the ranking is MT. While M performs worse, C 

and CM obtain similar results. 
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Fig. 28: Library Size - Number of precursors [abs.] at error rates {0, 0.5, 1, 1.5, 2}% for the different 

database search engines and combinations. 

 

The results presented in Fig. 28 show a significant difference between the single search engines. 

Especially, T excels and M performs significantly worse than the other possibilities. Adding 

results to C or M to form a binary combination always yields an enhancement of the library size 

on precursor-level. Further combination to a triple combination does not assure a growth of 

library input. It is only advantageous for CM and MT but not for CT. As a result, a single variant 

can outperform a binary combination and a binary combination can perform better than the 

triple combination. Hence, joining the results of multiple search engines is not always 

connected to an increase of the library size. 

 

The number of peptides for the different database search engine combinations is presented in 

Fig. 29. The results on peptide-level are in accordance with the outcomes on precursor-level. 

Again, T excels every other option at an FDR of 1%. The combinations MT and CMT are close 

behind. The binary combination MT is next in the ranking. Moreover, the single database search 

engine C and CM have similar outcomes and M performs worse. 

 



Part III – DDA-free Analysis 

58 

 

 

 

Fig. 29: Library Size - Number of peptides [abs.] at error rates {0, 0.5, 1, 1.5, 2}% for the different 

database search engines and combinations. 

 

In essence, Fig. 29 indicates that the performance of a specific individual database search engine 

is enhanced by adding results of one further search engine. Only the single variant T 

outperforms every other option contributing to the fact that a single search engine can achieve 

a higher library input than a binary combination. The findings show that combining the 

outcomes of multiple search engines is not necessarily beneficial regarding an increase of the 

library size. 

 

8.1.2 Analysis time and file storage size 

 

In the following chapter, analysis time (Fig. 30) and file storage size (Fig. 31) are analyzed. 

The analysis time is the sum of the analysis time of step two and three of the automated 

workflow including the DIA-Umpire module (see Fig. 11B). Hence, in comparison to the DDA-

based analysis, now the generation of pseudo-MS/MS spectra contributes to the analysis time. 

 

The data analysis of the single engines M and T both need approximately 63.0 h, performing 

best in comparison with all other possibilities. Next, in the ranking is C with 75.4 h. The binary 
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combination MT obtains a time of 96.8 h, CM lasts 105 h and CT needs 113 h. The triple 

combination CMT takes the longest time with 145 h.  

 

 

Fig. 30: Analysis time [h] for the different database search engine combinations. 

 

The analysis times in Fig. 30 display that combining the results of multiple search engines 

always leads to an increase in analysis time. From a single search engine, the analysis time 

increases up to 65% to a binary option and around 100% to the triple combination. In addition, 

the step from a binary combination to CMT leads to a growth around 45%. Hence, merging 

results of multiple search engines has a significant effect on the analysis time.  

 

The file storage size sums up each generated file from step two and three of the automated 

workflow including the generation of pseudo-MS/MS spectra by DIA-Umpire (see Fig. 11B). 

The triple combination CMT needs 95.4 GB storage size. The binary options CM and CT 

require 75.6 GB and 85.2 GB, respectively. Moreover, the single variant C has 64.4 GB, closely 

followed by MT with 62.8 GB. Next in the ranking is T with 52.5 GB and the smallest 

requirement is achieved by M with 42.4 GB. 
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Fig. 31: Storage size of files [GB] for the different database search engine combinations. 

 

From Fig. 31 it is obvious that adding results of search engines to a specific search tool always 

leads to an increased memory requirement. On the other hand, an outstanding achievement of 

two individual search tools can lead to the outcome that their binary option performs better than 

a different single search tool. For example, the combination MT requires less storage size than 

the single search engine C.  

 

8.1.3 Data Mining – downstream analysis & SWATH quantification performance 

 

In this chapter, the data analysis in Skyline (see Fig. 13) and the influence on protein- and 

peptide-level for the respective libraries (FDR < 1%) will be investigated. In brief, Level 1 

includes the target definition, for Level 2 duplicated peptides are removed, Level 3 limits further 

analysis to two peptides per protein prior to DIA-data import, Level 4 filters peptides with a 

dotP < 0.8, and on Level 5 again a restriction for two peptides per protein is carried out. The 

development will be examined in absolute numbers of the identifications. Furthermore, the 

SWATH quantification performance is of particular interest, which refers to DIA data 

extraction and quality refinement based on a dotP < 0.8. In order to illustrate the impact of 

individual filter steps and to highlight potential advantages of joining multiple database search 
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engines, the development of the ranking of individual database search engine combinations in 

terms of the achieved number of absolute identifications will be displayed. Moreover, the 

similarity of the findings by different search engines will be studied and the consistency of the 

data analysis will be evaluated.  

 

8.1.3.1 Downstream analysis on protein-level 

 

The dependency of the downstream analysis on the absolute number of proteins for the 

respective database search engine combination is shown in Fig. 32. 

 

Every search engine option achieves around 3000 protein identifications on Level 1, except M 

with approximately 2000. During the data analysis the results decline about 90% from Level 1 

to Level 5 resulting into approximately 300 proteins for each database search engine 

combination. The highest decrease occurs in the transition from Level 3 to Level 4. 

 

 

Fig. 32: Development of the number of ProteinIDs [abs.] during downstream analysis for the different 

database search engine combinations. 
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Moreover, the influence of the downstream analysis on the number of identifications per 

database search combination is studied (Fig. 33). A ranking is determined for each analysis 

level, in which the best performing possibility has the highest number of identifications and 

ranks first for an individual level. If database search engines obtain the same ranking for an 

analysis level, the following rank is omitted. However, the first transition from Level 1 to 

Level 2 has no impact on the ranking, in which CT ranks first and M ranks last. While the 

following filter step from Level 2 to Level 3 results into small alterations, the next steps 

introduce significant changes. For example, CT declines to rank 6 at Level 5 and MT ranks first 

starting at rank 5 at Level 1.  

 

 

Fig. 33: Ranking based on the achieved number of ProteinIDs for the different database search engine 

combinations during downstream analysis. Libraries generated with an FDR < 1%. 

 

8.1.3.2 Downstream analysis on peptide-level 

 

Next, the impact of the downstream analysis on peptide-level is examined. The development of 

peptide identifications is presented in Fig. 34. In accordance with previous findings on protein-

level, peptide identifications decline to 90% beginning with around 20000 identifications on 
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Level 1 and resulting to nearly 1500 results at Level 5 for the different database search engine 

combinations. Again, the highest decrease corresponds to the transition from Level 3 to Level 4. 

 

 

Fig. 34: Development of the number of PeptideIDs [abs.] during downstream analysis for the different 

database search engine combinations. 

 

The development of the performance-based ranking on peptide-level, which is presented in 

Fig. 35, reflects similar behavior as on protein-level. In detail, on peptide-level the order stays 

constant from Level 1 to Level 3. The transition from Level 3 to Level 4 changes the ranking 

considerably. Best performing combinations such as T and CT decline to lower ranks. In 

contrast, MT and M improve their performance from rank 6 and 7 on Level 1 to rank 1 and 2 

on Level 5, respectively. Moreover, each other combination also changes the rank from the 

filter step Level 3 to Level 4. 
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Fig. 35: Ranking based on the achieved number of PeptideIDs for the different database search engine 

combinations during downstream analysis. Libraries generated with an FDR < 1%. 

 

8.1.3.3 Analysis of the influence of signal intensity and retention time variation on 

SWATH quantification performance  

 

Previous findings show that in the transition from Level 3 to Level 4 nearly 90% of the results 

are excluded. For further evaluation of the quality of the DIA data extraction, the assigned 

signal intensity of the transitions stored in the library, as well as the CV of the retention time of 

transitions are compared between Level 3 and Level 4. In short, the DIA data is imported on 

Level 3 and then low-quality data (dotP < 0.8) is excluded leading to Level 4. At Level 3 and 

at Level 4, for each assignment the signal intensities of the corresponding transitions in the 

library are extracted, respectively. Next, the extracted transition signal intensities are averaged 

per precursor.  

 

The corresponding averaged transition signal intensities extracted from the library, which have 

a protein assignment on Level 3 are displayed in Fig. 36. Subsequently, the averaged transition 

signal intensities extracted from the library, which have a protein assignment on Level 4 are 

shown in Fig. 37. Both comparisons are displayed via boxplots. Note, that outliers are not 

presented to achieve a better overview. 
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Fig. 36: Averaged transition intensities for different database search engine combinations, which are 

stored in the library and assigned to proteins on data analysis Level 3. Outliers are not shown. 

 

 

Fig. 37: Averaged transition intensities for different database search engine combinations, which are 

stored in the library and assigned to proteins on data analysis Level 4. Outliers are not shown. 
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In Fig. 36 the median of the averaged library intensities assigned to proteins on Level 3 lies 

within the range 1.59e+05 and 2.78e+05 across the database search tools. In comparison, the 

transitions of the different database search tools, which are stored in the library and assigned 

on Level 4, have a median signal intensity between 8.34e+05 and 9.65e+05 (Fig. 37). The 

results indicate that mainly precursors with high signal intensities achieve a dotP > 0.8 and thus 

correlate with a high-quality DIA data extraction.  

 

Moreover, the CV of retention times for each transition was extracted and averaged per 

precursor for each database search engine combination. The outcomes for Level 3 are shown in 

Fig. 38 and for Level 4 in Fig. 39.  

 

 

Fig. 38: CV of retention times [%] per precursor for different database search engine combinations on 

Level 3. Outliers are not shown. 
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Fig. 39: CV of retention times [%] per precursor for different database search engine combinations on 

Level 4. Outliers are not shown. 

 

The median of the CV of the retention times on Level 3 is leveling off at 18% for each database 

search engine expanding to around 43% at the upper hinge of the boxplot (Fig. 38). In contrast, 

the median of the CV on Level 4 is approximately 6% across every database base search 

combination with values of the upper hinge of the boxplot around 23% (Fig. 39). The 

comparison between Level 3 and Level 4 suggests that especially high CVs of retention times 

are prone to low-quality DIA data extraction. 

 

In total, the results indicate that transitions with high signal intensities and low retention time 

variability across samples correlate with an efficient SWATH quantification performance. 

 

8.1.4 Analysis of the consistency of detecting statistically significant proteins 

 

In the following chapter, the consistency of determining statistically significant proteins across 

all database search engine combinations is investigated. In detail, the total number of 

statistically significant proteins in stage-wise comparisons and the similarity between the results 

is examined. A detailed view via volcano plots for each stage-wise comparison for the 
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respective search tools is presented in the appendix (Fig. 80 - Fig. 103). Proteins with an FDR 

of max. 5% are considered as statistically significant. Note, that biological inference with 

concentration on the identity of individual proteins and possible biological patterns is 

performed in “Part V – Biological Inference”.  

 

Since the number of protein identifications differs after DIA analysis (“Level 5 – Refined”; 

Fig. 13) for the different search tool combinations, an overview for the detected proteins is 

presented in Fig. 40. Note, that the number of statistically analyzed proteins is relatively low 

because of a poor SWATH quantification performance as presented in the previous chapter. 

However, the binary combination MT achieves 334 protein identifications. Next in the ranking 

is C with 328 findings, closely followed by CM. The single search tools M and T obtain similar 

results with 322 and 320, respectively. Last rank CT with 312 and CMT with 306 protein 

identifications. 

 

 

Fig. 40: Number of proteins [abs.] after Skyline analysis for the different database search engine 

combinations. 

 

The coverage of proteins after the downstream analysis in Skyline is shown in Fig. 41 to study 

the similarity of the findings in detail. The ranking behaves according to the absolute numbers 
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of proteins with MT performing best with 81% and CMT ranking last with 75%. However, the 

overall coverage levels off around 80% and no database search engine combination covers all 

potentially present proteins at Level 5.   

 

 

Fig. 41: Coverage of proteins [%] after Skyline analysis for the different database search engine 

combinations. 

 

A detailed overview of the stage-wise comparisons, which show the number of the statistically 

significant hits and the resulting coverage for a specific search tool, are presented in table 3. 

Note, that statistically significant hits were only identified for the comparisons SI vs. SIV, 

SII vs. SIII, as well as SII vs. SIV. Furthermore, the total number of statistically significant hits 

for a given database search engine is determined (displayed as “Total” in table 3). 
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Table 3: Number of statistically significant hits (FDR < 5%) and coverage for stage-wise comparisons and 

the respective database search engine. 

Database 

search engines 

SI vs. SIV 

ProteinIDs [abs.]/ 

Coverage [%] 

SII vs. SIII 

ProteinIDs [abs.]/ 

Coverage [%] 

SII vs. SIV 

ProteinIDs [abs.]/ 

Coverage [%] 

Total a) 

ProteinIDs [abs.]/ 

Coverage [%] 

C 5/38 37/47 2/67 42/48 

M 9/69 58/74 0/0 65/74 

T 3/23 41/53 0/0 44/50 

CM 5/38 52/67 0/0 56/64 

CT 6/46 51/65 2/67 57/65 

MT 5/38 27/35 0/0 32/36 

CMT 11/85 36/46 0/0 45/51 
a) "Total" refers to the combination of statistically significant protein of each stage-wise comparison for a 

respective database search engine excluding duplicate entries. 

 

In the comparison SI vs. SIV the search tool combination CMT performs best with 11 

significant hits corresponding to a coverage of 85%. Least detections are obtained by T with 3 

hits. Therefore, the range of coverage for individual database search engines is within 23% and 

85%. This high discrepancy in the identification rate of statistically significant proteins is also 

shown in the comparison SII vs. SIII. Best performing search engine is M with 58 hits 

corresponding to 74% coverage. In contrast, the search tool combination MT obtains 27 

significant findings, which correlates with a coverage of 35%. Interestingly, for the comparison 

SII vs. SIV only C and CT detect significant hits. In detail, both identify 2 statistically 

significant proteins, which corresponds in both cases to a coverage of 67%. Considering the 

sum of the statistically significant hits, the search tool M performs best with 65 hits and the 

binary combinations MT worse with 32 findings.  

 

In total, the results of the stage-wise comparisons show partially major differences in detecting 

statistically significant proteins. No search tool is able to identify all statistically significant 

hits. The question about why a certain database search engine combination performs better than 

the other and if there is a possible connectivity between the library size and the detection of 

statistically significant proteins will be discussed in the next chapter.  
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8.2 Discussion 

 

In this chapter, the previous shown results in terms of library size, analysis time, data storage 

size, downstream analysis and statistically significant proteins will be further examined and 

evaluated. In addition, potential correlations between categories will be studied to highlight 

potential dependencies and investigate advantages of combining the results of multiple database 

search engines. 

 

8.2.1 Library size, analysis time, and storage size 

 

The analysis of the library size shows that a single search engine can obtain a higher library 

input than a binary combination, as well as a binary combination can outperform the triple 

combination CMT. Hence, merging the outcomes of multiple search engines does not 

necessarily enhances the library size. The performance on peptide- and precursor-level are 

influenced among other factors mainly by the performance as single database search tool and 

the complementarity between database search engines within combinations. As previously 

stated, the scoring functions of the search tools C and T are based on a descriptive model. In 

contrast, the search engine M applies an interpretative method. Since the overlap between sets 

of identified spectra by search engines is known to be less, if the search tools use different 

scoring strategies, CM and MT should outperform CT. However, the single search tool T excels 

all other options. As a result, CT performs better than CM and MT. For the single variants M 

and C the performance is always enhanced by adding results of one further search engine. 

Moreover, it is noteworthy that the determined performances of the database search engines are 

primarily limited to the present dataset. 

 

Regarding the analysis time and storage size the single search tool M ranks first, closely 

followed by T. Moreover, combining the outcomes of search engines always results in a 

significant increase in analysis time. In detail, starting from a single search engine, the analysis 

time increases up to 65% to a binary option and around 100% to the triple combination. In 

addition, it is obvious that joining results of search engines to a specific search tool invariably 

leads to an increased memory requirement. While the triple combination needs around 95 GB, 

the single search tool T only requires 52 GB. Both the high analysis time and file storage size 

are mainly based on using all 70 DIA files for the data analysis. Additional investigation on the 

impact of the amount of DIA files on the library size and on further data analysis is desirable 
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because it may reduce the computational costs. However, the single search tool T excels in 

terms of the library input all other options. In addition, since merging results increases the 

analysis time and memory space significantly, T is considered as valuable choice for this dataset 

within the DDA-free analysis. 

 

8.2.2 SWATH quantification performance and reproducibility of the detection of 

statistically significant proteins 

 

By performing the downstream analysis only 10% of high-quality identifications remain. 

Especially the DIA extraction and the subsequent removal of low-quality assignments result 

into a decline of nearly 90%. Further data mining suggests that high-abundant transitions and a 

low retention time variability are key characteristics to achieve a high-quality DIA data 

extraction and ensure an efficient SWATH extraction performance. In addition, the 

performance-based ranking of the different database search engine combinations is altered by 

this transition. For example, the single search tool T performs best on library-level and only 

ranks 5th on Level 5. As a conclusion, enhancing the information input on library-level does not 

necessarily correlate with an adequate DIA data extraction. However, further examining the 

influence of a specific library spectrum of a certain database search engine on a dotP for a given 

assignment and on the data analysis considering the whole information input of the 

corresponding library is beyond the scope of this project. Note, that the discussion is mainly 

restricted to this dataset. 

 

The detection of statistically significant proteins varies across the database search engine 

combinations. Since the identification of proteins on Level 5 inherits a relatively high variation 

with a coverage around 80% for the database search engine combinations, the identification of 

statistically significant proteins is more likely to differ. Hence, the generated library and its 

input for a specific search tool impacts the downstream analysis and consequently the last data 

analysis level determines statistical inference. These correlations emphasize the importance of 

the library choice. Furthermore, the results of the statistical analysis show the limitations of 

only using a specific library. No database search engine combination and the resulting library 

covers the detection of all statistically significant proteins. Another advantage of performing an 

analysis with more than one library is the fact that detection of the same statistically significant 

proteins, enhances confidence and verifies the results. 
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8.3 Conclusion 

 

The objective of the DDA-free analysis was to enhance the identification rate on library-level 

by combining the results of multiple database search engines for library generation to extract 

the information of DIA data without the necessity of acquiring DDA data. An overview of 

advantages and disadvantages of each database search engine combination is shown in table 4.  

 

In most of the cases merging the results of one specific search tool to a second tool enhanced 

the identification rate on library-level. Only the single search engine T excelled. In this case, 

adding results from another engine had no further benefits for library generation. Since for the 

library generation all 70 DIA files were used, combining results had a significant impact on the 

analysis time and storage size. Further investigation on how many DIA files are necessary to 

achieve similar results may reduce the computational costs. In addition, the DIA analysis 

showed that the increase of the library information is not proportional to SWATH quantification 

performance. The quality of library input regarding signal intensity and the retention time 

variability of the transitions played a key role. Moreover, the choice of library directly impacted 

the detection of statistically significant proteins. No database search engine combination 

covered the identification of all possible statistically significant proteins (FDR < 5%).  

 

Table 4: Overview of merits and drawbacks of each database search engine combination. 

Categories C M T CM CT MT CMT 

Analysis time + ++ ++ - - - -- 

Storage size + ++ ++ - - + -- 

Number of precursors in Library (FDR < 1%) - -- ++ - ++ + ++ 

Number of peptides in Library (FDR < 1%) - -- ++ - ++ + ++ 

Number of extracted proteins (FDR < 1%) a) + - - + - ++ -- 

Extraction of statistically significant proteins - ++ - + + -- - 
a) Refers to Level 5 – after all filtering steps are performed (see Fig. 13). 

 

While there is no warranty for an increase on library size by combining multiple search engines, 

it is still recommendable to use the results of two database search engines and run the total 

analysis both for the search tools individually and their combination in order to exploit the 

valuable information provided by the DIA data. It not only adds certainty to the determined 

results but also increases the chance to identify statistically significant proteins and highlight 

potential pathogenic patterns for CRC. 
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9. Part IV – Comparison: DDA-based vs. DDA-free Analysis 

9.1 Results 

 

In this chapter, the two applied data analysis strategies DDA-based and DDA-free will be 

compared as a whole regarding library size, computational costs, SWATH quantification 

performance, and the extraction of statistically significant proteins. 

 

9.1.1 Library size 

 

The library size for the respective data analysis strategy is examined on precursor- and peptide-

level (Fig. 42 and Fig. 43). To elaborate, quartiles are calculated based on the achieved number 

of identifications across each database search tool at an FDR < 1% for the corresponding data 

analysis strategy and then visualized via boxplots. 

 

 

Fig. 42: Library Size – number of precursors [abs.] at an FDR < 1% for different data analysis strategies: 

DDA-based vs. DDA-free. 
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Fig. 43: Library Size – number of peptides [abs.] at an FDR < 1% for different data analysis strategies: 

DDA-based vs. DDA-free. 

 

Both on precursor- and on peptide-level the DDA-based approach obtains a higher library input. 

The median number of precursor identifications for the DDA-based strategy is 25588 in 

comparison with 23668 for the DDA-free data analysis (Fig. 42). On peptide-level the DDA-

based data analysis obtains a median of 22642 hits and the DDA-free strategy 19360 

identifications (Fig. 43). Additionally, both Fig. 42 and Fig. 43 show a higher variability for the 

DDA-free approach. 

 

9.1.2 Analysis time and file storage size 

 

The computational costs of the different data analysis approaches are evaluated regarding 

analysis time and file storage size (Fig. 44 and Fig. 45). Both characteristics correspond to a 

data analysis with an FDR < 1%. For the obtained values by different database search 

combinations quartiles are computed per data analysis strategy and displayed via boxplots, 

respectively. 
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Fig. 44: Analysis time [h] for different data analysis strategies: DDA-based vs. DDA-free. 

 

 

Fig. 45: File storage size [GB] for different data analysis strategies: DDA-based vs. DDA-free. 
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The median data analysis time of the DDA-based strategy is significantly lower with 2.11 h 

than then the needed time for the DDA-free approach with 96.8 h (Fig. 44). In addition, the 

median memory requirement of the files of the DDA-based data analysis with 2.36 GB 

outperforms the DDA-free path with 64.4 GB (Fig. 45). Moreover, the DDA-free strategy 

depicts a higher variability both in the analysis of the time and storage size.  

 

9.1.3 SWATH quantification performance on protein- and peptide-level 

 

The SWATH quantification performance of the different data analysis approaches is evaluated 

by comparing Level 3 and Level 4 on protein- and peptide-level. This transition corresponds to 

a removal of low-quality assignments with a dotP < 0.8 (for details see Fig. 13). On both Level 3 

and Level 4 the obtained number of identifications by the different database search engine 

combinations is used to calculate quartiles per data analysis strategy. The results on protein-

level are displayed via boxplots for Level 3 in Fig. 46 and for Level 4 in Fig. 47. The outcomes 

on peptide-level are shown in Fig. 48 and Fig. 49, respectively. 

 

 

Fig. 46: Number of ProteinIDs [abs.] at Level 3 for different data analysis strategies:                                        

DDA-based vs. DDA-free. 
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Fig. 47: Number of ProteinIDs [abs.] at Level 4 for different data analysis strategies:                                     

DDA-based vs. DDA-free. 

 

The DDA-based path achieves a median of 2938 protein identifications on Level 3 in 

comparison to 1672 identifications for the DDA-free analysis (Fig. 46). On Level 4 for the 

DDA-based strategy 278 high-quality assignments and for the DDA-free approach 601 protein 

identifications remain (Fig. 47). 

 

Similar behavior is displayed on peptide-level (Fig. 48 and Fig. 49). While the DDA-based 

strategy achieves more peptide identifications on Level 3 with a median of 17631 than the 

DDA-free path with 13835, the performance changes on Level 4. The DDA-free approach 

obtains a median of 1868 high-quality assignments and the DDA-based analysis achieves 547 

peptide identifications. 
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Fig. 48: Number of PeptideIDs [abs.] at data analysis Level 3 for different data analysis strategies:                 

DDA-based vs. DDA-free. 

 

 

Fig. 49: Number of PeptideIDs [abs.] at data analysis Level 4 for different data analysis strategies:                

DDA-based vs. DDA-free. 
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9.1.4 Analysis of the influence of signal intensity and retention time variation on 

SWATH quantification performance 

 

To further investigate the differences in the SWATH quantification performance for the data 

analysis strategies the influence of the signal intensities in the library and the CV of the retention 

times on the downstream analysis are examined.  

 

For each data analysis approach the DIA data is imported on Level 3 and subsequently low-

quality data (dotP < 0.8) is removed resulting into Level 4. At Level 3 and at Level 4, for each 

assignment the averaged signal intensities of the corresponding precursor in the library are 

extracted for a specific search tool. Next, quartiles are computed based on the determined 

precursor intensities of each database search engine per data analysis strategy. The resulting 

boxplots for Level 3 are shown in Fig. 50 and for Level 4 in Fig. 51. 

 

 

Fig. 50: Precursor intensities stored in the library  

for different data analysis strategies at data analysis Level 3:  

DDA-based vs. DDA-free.  
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Fig. 51: Precursor intensities stored in the library 

for different data analysis strategies at data analysis Level 4: 

 DDA-based vs. DDA-free.  

 

In Fig. 50 the precursor intensity for Level 3 is presented, which includes a median precursor 

intensity for the DDA-based strategy of 8.11e+04 and 1.95e+05 for the DDA-free path. While 

both analysis strategies obtain higher intensity values on Level 4 (Fig. 51), the DDA-free 

strategy has again a higher median signal intensity of 8.75e+05 in comparison with the DDA-

based approach with a median signal intensity of 4.19e+05. 

 

Furthermore, the CV of retention times of the precursors for each data analysis strategy is 

presented in Fig. 52 for Level 3 and in Fig. 53 for Level 4. The results of each database search 

engines per analysis strategy is used to calculate quartiles, which are subsequently visualized 

via boxplots. 
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Fig. 52: CV of retention times [%] at data analysis Level 3 for different data analysis strategies:                      

DDA-based vs. DDA-free.  

 

 

Fig. 53: CV of retention times [%] at data analysis Level 4 for different data analysis strategies: DDA-

based vs. DDA-free.  
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On Level 3 the DDA-based analysis path displays a median CV around 21% and the DDA-free 

strategy about 17% (Fig. 52). For both approaches the CV decreases on Level 4. In detail, the 

DDA-based median CV declines to 7% and for the DDA-free approach to 6% (Fig. 53). 

 

9.1.5 Extraction of statistically significant proteins 

 

In this chapter, both the DDA-based and DDA-free data analysis will be compared regarding 

the detection of significant outcomes. In addition, the similarity of the findings will be 

investigated.  

 

First, the total number of statistically significant proteins is determined per data analysis 

strategy (Fig. 54). To clarify, the total amount of significant findings per database search 

engines is used to calculate quartiles for the respective data analysis approach. The results are 

presented via boxplots. Note, that proteins are considered statistically significant with an FDR 

threshold of max. 5%.  

 

 

Fig. 54: Number of statistically significant proteins [abs.] for different data analysis strategies:                      

DDA-based vs. DDA-free.  
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The DDA-based strategy achieves a median number of 18 statistically significant proteins and 

the DDA-free approach obtains a median of 45 significant hits (Fig. 54). Furthermore, the 

DDA-free approach varies more in terms of detecting significant findings. 

 

Next, the similarity between the different data analysis strategies is examined (Fig. 55). To 

elaborate, the DDA-based strategy obtains 22 unique proteins (see table 1) and the DDA-free 

analysis achieves 88 unique hits (see table 3). In the next step, these identifications are 

compared. The Venn diagram displays 7 (7.4%) specific identifications for the DDA-based path 

and 73 (76.8%) for the DDA-free approach. Moreover, 15 (15.8%) statistically significant 

proteins are detected by both data analysis strategies.  

 

 

Fig. 55: Venn Diagram of the statistically significant proteins corresponding to different data analysis 

strategies: DDA-based vs. DDA-free.  
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9.2 Discussion 

 

In the following chapter, all previously demonstrated results regarding library size, analysis 

time, data storage size, and extraction of statistically significant hits will be evaluated and 

individual characteristics will be correlated in order to highlight possible dependencies and 

examine potential benefits of a specific data analysis strategy. 

 

On the one hand, the DDA-based data analysis strategy outperforms the DDA-free path 

significantly on peptide- and precursor-level regarding the library size. As an example, if DDA 

data is used for library generation around 3000 more peptides are stored in the library in 

comparison with the DDA-free approach. On the other hand, the SWATH quantification 

performance for the DDA-free strategy is significantly better than for the DDA-based approach. 

Note, that the SWATH quantification performance of both strategies is low, only that the DDA-

free strategy performs better relative to the DDA-based path. However, the CV of retention 

times across samples is lower and the stored precursor intensities are higher for the DDA-free 

strategy. In other terms, while the overall library input of the DDA-free approach is lower, the 

quality of the input is higher in comparison with the DDA-based strategy. Potential reasons 

stem from the fact that the DIA-Umpire module performs a signal processing algorithm, which 

calculates for each monoisotopic peak of a precursor and fragment peak a Pearson correlation 

primarily based on LC elution peaks and retention times to build precursor-fragment groups. 

These co-eluting precursor and fragment ions form pseudo-tandem MS/MS spectra, which are 

subsequently used for database search (see chapter 3.5.2.2). Hence, the constructed pseudo-

MS/MS spectra might include information, which resemble the acquired DIA spectra of the 

samples in a better way. However, in addition, the DDA-free strategy obtains more statistically 

significant proteins. In detail, only 7.4% of all possible statistically significant hits are not 

identified by the DDA-free approach. Again, it is noteworthy that all made considerations are 

mainly based on the applied dataset. 

 

Another important aspect are the significant differences regarding the computational costs. In 

both analysis time and file storage requirement the DDA-based strategy excels the DDA-free 

approach. As previously discussed in chapter 8.2, the vast computational costs of the DDA-free 

path are based on performing an extra analysis step with DIA-Umpire and using all 70 DIA 

files for the pipeline. In contrast, for the DDA-based strategy 26 DDA-files are utilized. 

However, further optimization of the analysis time and file requirements for the DDA-free 
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strategy might reduce the computational costs and thus minimize the differences between both 

data analysis strategies. Additionally, it is important to mention, that for the DDA-based 

approach experimental costs including sample amount, measurement time, chemicals, 

fractionation procedure etc. are significantly higher in comparison to the DDA-free strategy, 

which is experimentally only based on the DIA measurements and the respective sample 

preparation. 

 

9.3 Conclusion 

 

The aim of both data analysis strategies was to increase the library input for subsequently 

extracting the information of the DIA data in a best possible way.  

 

An overview of advantages and disadvantages of each data analysis strategy, in which both 

approaches are compared relative to each other, is presented in table 5. The DDA-based strategy 

outperforms the DDA-free path in terms of library size. In contrast, the DDA-free approach 

achieves a better SWATH quantification performance and extracts more statistically significant 

proteins. In other terms, the total library size is smaller, but the quality of the input is higher for 

the DDA-free approach in comparison with the DDA-based strategy. In this context, for both 

strategies a key characteristic is retention time variability across runs, as well as the signal 

intensity of the transitions. Further post-measurement optimization regarding retention time 

alignment might improve the SWATH quantification performance including common internal 

retention time standards (CiRTs) or DIAlignR [94,95]. However, in addition, experimental and 

computational costs differ between the two data analysis strategies. While the DDA-free 

approach obtains considerably higher computational costs, experimental requirements are 

lower in comparison with the DDA-based strategy. Furthermore, the DDA-free strategy 

achieves a better extraction of valuable information of the DIA data. 
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Table 5: Overview of merits and drawbacks of each data analysis strategy. 

Categories DDA-based DDA-free 

Library size + - 

Analysis time ++ -- 

Storage size ++ -- 

SWATH quantification performance - + 

Extraction of statistically significant proteins - + 

Experimental costs - + 

 

Considering each aspect of the comparison, the DDA-free strategy is viewed as a valuable 

option to exploit the high information provided by the DIA data especially in a setting in which 

sample amounts and measurement time are limiting resources. In addition, based on applying 

both data analysis strategies including thorough data mining the identified findings have a high 

verified quality. In total 15 statistically significant proteins are identified by both strategies and 

are submitted to biological inference in the next chapter to evaluate the potential to serve as 

target proteins for further research in the area of CRC. 
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10. Part V – Biological Inference  

10.1 Results 

 

With the aim in mind to elucidate potential pathogenic patterns for CRC in the sense of systems 

biology the following chapter focuses on the biological inference of the determined statistically 

significant proteins. Only the findings which are verified by each data analysis strategy are 

directed to biological inference to provide a high degree of authenticity. An overview of the 

identified proteins is displayed in table 6. First, the identified proteins are subjected to a network 

and pathway analysis. Subsequently a literature search of the hits in the context of CRC will be 

performed. Both network analysis and literature mining are essential to check the plausibility 

of the results and elaborate their potential for further studies. 

 

Table 6: Statistically significant proteins which are identified both by the DDA-based and DDA-free data 

analysis strategy. 

UniProtID 
Protein 

names 

Gene 

 names   

P23396 40S ribosomal protein S3  RPS3 

P05387 60S acidic ribosomal protein P2  RPLP2 

P23526 Adenosylhomocysteinase  AHCY 

P04083 Annexin A1  ANXA1 

P23528 Cofilin-1 CFL1 

P01024 Complement C3  C3 

P04843 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1  RPN1 

P17931 Galectin-3  LGALS3 

P68871 Hemoglobin subunit beta  HBB 

P02042 Hemoglobin subunit delta  HBD 

P32119 Peroxiredoxin-2  PRDX2 

P30044 Peroxiredoxin-5 PRDX5 

P25815 Protein S100-P  S100P 

P10599 Thioredoxin  TXN 

P08670 Vimentin VIM 
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10.1.1 Pathway and network analysis  

 

Network and pathway analysis are based on the reactome pathway knowledgebase. In general, 

the database offers molecular insights about signal transduction, transport, metabolism, and 

further cellular processes [96,97]. In combination with Cytoscape, a biological network and 

analysis platform, the ReactomeFIViz app was used for a pathway enrichment analysis [98]. 

The results of the enrichment analysis for biological pathways within the reactome 

knowledgebase are presented in table 7. Only pathways which achieve an FDR < 5% and 

include at least 3 hit genes are elaborated further. 

 

The proteins cofilin-1 (CFL1), 40S ribosomal protein S3 (RPS3) and 60S acidic ribosomal 

protein P2 (RPLP2) are enriched in the pathway “Axon guidance”, which is the process induced 

by neurons to direct axons to a specific target. In detail, a growth cone situated at the tip of 

axons reacts to environmental signals and responds with attractive or repulsive movements [99]. 

Ribosomal proteins, as well as cofilin-1, have been reported to be guidance cues for this 

process [99,100]. Furthermore, studies are also indicating that cancer cells are able to stimulate 

neuronal growth towards the tumor and thus impact tumor growth and migration [101,102]. 

 

Moreover, the proteins 40S ribosomal protein S3 (RPS3), Dolichyl-diphosphooligosaccharide-

protein glycosyltransferase subunit 1 (RPN1) and 60S acidic ribosomal protein P2 (RPLP2) are 

enriched in the process “SRP-dependent cotranslational protein targeting to membrane”. In 

general, translation refers to protein synthesis from an mRNA sequence. Contranslational 

targeting involves the delivery of nascent proteins while the translating ribosome is still 

attached [103]. For example, proteins destined for the endoplasmic reticulum (ER) are 

submitted to the ER by a cytosolic signal recognition particle (SRP). In brief, the corresponding 

polypeptide is translocated into the ER while elongation of the translation continues [104]. As 

an example, Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 plays a 

role in the translocation process [105]. While ribosomal proteins have several crucial cellular 

functions in the process of cotranslation, they also have been reported to be overexpressed in 

the context of CRC [103,106]. 
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Table 7: Enrichment analysis for biological pathways within the reactome pathway database (FDR < 5%) [96,97]. 

Pathway 
Proteins in 

Pathway 

Proteins from              

Gene Set 
FDR < 5% Hit Genes 

Metabolism of amino acids and derivatives 273 3 3.85E-02 AHCY, RPS3, RPLP2 

Selenoamino acid metabolism 105 3 1.48E-02 AHCY, RPS3, RPLP2 

Signaling by interleukins 436 3 4.09E-02 ANXA1, CFL1, VIM 

Axon guidance 492 3 4.18E-02 CFL1, RPS3, RPLP2 

Neutrophil degranulation 423 3 4.09E-02 HBB, C3, LGALS3 

Innate immune system 998 5 3.85E-02 HBB, TXN, C3, LGALS3, CFL1 

SRP-dependent cotranslational protein targeting to membrane 103 3 1.48E-02 RPN1, RPS3, RPLP2 

RNA polymerase II transcription 885 4 4.75E-02 TXN, LGALS3, PRDX2, PRDX5 

Generic transcription pathway 764 4 4.09E-02 TXN, LGALS3, PRDX2, PRDX5 

Transcriptional regulation by TP53 339 3 3.85E-02 TXN, PRDX2, PRDX5 

Cellular responses to stress 327 3 3.85E-02 TXN, PRDX2, PRDX5 

TP53 regulates metabolic genes 81 3 1.41E-02 TXN, PRDX2, PRDX5 

Detoxification of reactive oxygen species 32 3 1.84E-03 TXN, PRDX2, PRDX5 
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The cellular metabolism of amino acids covers mainly their synthesis and catabolism. The 

pathway “Selenoamino acid metabolism” presents a process in this area. In general, selenium 

represents a vital trace element in humans and it is for example incorporated into 

selenocysteine, where it replaces the sulphur atom. [107] The proteins adenosylhomocysteinase 

(AHCY), 40S ribosomal protein S3 (RPS3) and 60S acidic ribosomal protein P2 (RPLP2) are 

involved in the translational apparatus for the generation of selenoamino acids [108,109]. In 

detail, a study showed that adenosylhomocysteinase participates in the hydrolysis of 

adenosylselenohomocysteine into adenosine and selenohomocysteine [108]. Additionally, the 

ribosomal proteins are part of the selenocysteine translation machinery including the formation 

of selenocysteinyl-tRNA [109]. 

 

Further enriched pathways are correlated with the immune system, such as the “Innate immune 

system”, “Neutrophil degranulation”, as well as “Signaling by interleukins”. In detail, the 

proteins hemoglobin subunit beta (HBB), complement component 3 (C3) and galectin-3 

(LGALS3) are involved in the process of neutrophil degranulation [110-112]. Neutrophils are a 

subtype of leukocytes and serve as first defensive line of the innate immune system [113]. In 

detail, the intrinsic granules of the neutrophils contain antimicrobial proteins, which are 

released via degranulation and function as potent response against intruders [114,115]. As an 

example, both complement component 3 and galectin-3 act as inflammatory mediators in the 

activation of neutrophils [111,112]. Another important molecule class for the immune system 

are interleukins, which are proteins that are involved in the intercellular communication 

between leukocytes [116]. As an example, the proteins cofilin-1, annexin A2, as well as 

vimentin interact with different types of interleukins and thus influence inflammatory 

responses [117-119]. 

 

The hit proteins galectin-3 (LGALS3), thioredoxin (TXN), peroxiredoxin-2 (PRDX2) and 

peroxiredoxin-5 (PRDX5) play a role in the pathway “RNA polymerase II transcription”, 

especially in the subcategory called “Generic transcription pathway”. In general, transcription 

is the process of gene expression via the synthesis of RNA from a DNA template and it can be 

divided into three major parts: initiation, elongation, and termination. Key players are the 

nuclear enzymes RNA polymerase I, II, and III. To elaborate, the RNA polymerase II 

transcribes primarily protein-coding genes and the activity as well as its regulation is crucial 

for the homeostasis of cells [120,121]. However, the enriched process “Generic transcription 
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pathway” includes mainly transcriptional regulation steps, in which transcription factors have 

a major impact as regulatory proteins [122]. For example, the transcription factor RUNX1 

interacts with the promoter region of the LGALS3 gene and upregulates the transcription for 

the carbohydrate binding protein galectin-3 [123]. Generally, galectin-3 is included in several 

molecular processes such as cell adhesion and proliferation. Moreover, enhanced levels of 

galectin-3 have been associated with breast cancer [123,124]. 

 

Additional enriched pathways, which are included in the “Generic transcription pathway”, are 

“Transcriptional regulation by TP53” and in particular “TP53 regulates metabolic genes”. The 

TP53 gene encodes a protein called p53, which is also a transcription factor and functions as 

tumor suppressor. It controls cell division and cell growth by preventing uncontrolled cell 

proliferation and thus has an impact on the metabolism of carbohydrates, nucleotides, protein 

synthesis, as well as aerobic respiration [125]. As an example, p53 regulates the mitochondrial 

oxygen utilization and hence supports the reduction of molecular oxygen [126]. Furthermore, 

the proteins thioredoxin, peroxiredoxin-2 and peroxiredoxin-5 contribute to the redox 

environment of the cell by protecting it against oxidative stress, which can lead to DNA damage 

and genomic instability [127,128]. All three above mentioned proteins are also enriched in the 

pathways “Cellular responses to stress” and “Detoxification of reactive oxygen species”. 

Especially noticeable is the fact that cancer cells often demonstrate an increased production of 

reactive oxygen species [128]. As a consequence, the redox cycle has been further investigated 

in many studies and differentially abundant levels of peroxiredoxin-2 and peroxiredoxin-5 have 

been detected in several cancers [128-130]. 

 

To sum up, in this chapter several molecular functions of the statistically significant proteins in 

the enriched pathway analysis are highlighted and potential correlations to cancer elaborated. 

In particular, the hit proteins are involved in inflammation processes, immune responses, 

transcription, translation, as well as maintenance of the cellular redox environment. Further 

evaluation and discussion of the results will be performed in chapter “10.2 Discussion”. 
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10.1.2 Literature research  

 

In the following chapter, a literature search of the hit proteins in the context of CRC is 

performed for additional interpretation. Of special interest is the determination of previously 

reported correlations between the proteins and CRC to evaluate the plausibility of the results 

and to examine possible identifications of proteins, which have no previous association to CRC. 

Here, a text mining R script called “OmixLitMiner”, which automatically executes a literature 

search based on PubMed Central® (https://www.ncbi.nlm.nih.gov/pubmed) for a given protein 

and keyword, is utilized [131]. In essence, the tool groups the proteins/genes into three main 

categories (1-3). Proteins/genes with category 1 are found in at least one review paper related 

to the searched context. For proteins/genes belonging to category 2 at least one publication is 

detected but no review paper. Category 3 is assigned to a protein/gene if no publication is 

discovered.  

 

First, the literature mining was carried out with OmixLitMiner for the hit proteins/genes and 

the keywords “colorectal cancer” in a first search run and “colon cancer” in a second iteration. 

The assigned categories for a specific protein in each search run were compared and the smaller 

appointed category chosen for further interpretation. Next, a manual literature search was 

performed for the proteins for which no publication was found (category 3) in order to provide 

a potentially more thorough search. Here, the same categorization scheme was applied. To 

clarify, if a review paper was found for the target protein with the category 3 assignment, the 

category was altered to category 1 and if the manual search showed at least one publication, it 

was changed to category 2. An overview of the results is shown in table 8.  
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Table 8: Literature mining with the tool OmixLitMiner and manual curation. The first OmixLitMiner search 

(Search I) included the keyword “colorectal cancer” and the second search (Search II) the keyword “colon cancer”. 

If the appointed categories differ, the smaller category is displayed under “final category”. Manual literature 

mining was carried out for proteins, which had a category 3 assignment after the OmixLitMiner searches. 

 

Hit 

Genes 

Search "Colorectal cancer" 

Category 

Search "Colon cancer" 

Category 

Final 

Category 

C3 2 2 2 

S100P 2 2 2 

PRDX2 2 2 2 

ANXA1 2 3 2a) 

VIM 2 3 2a) 

TXN 2 3 2a) 

LGALS3 2 3 2a) 

RPS3 3 3 2b) 

AHCY 3 3 2b) 

CFL1 3 3 2b) 

PRDX5 3 3 2b) 

HBB 3 3 2b) 

HBD 3 3 2b) 

RPN1 3 3 2b) 

RPLP2 3 3 2b) 

a) Final category displays the smaller category assignment of the two OmixLitMiner searches. 
b) Manually curated category assignments for previously appointed category 3 hits.  

 

After the combination of an automated literature search via the OmixLitMiner tool and manual 

literature mining for the 15 statistically significant findings, table 8 demonstrates that all hit 

proteins have been previously described in the literature with a context to CRC.  
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10.2 Discussion 

 

In the following chapter, the results of the biological inference regarding network and pathway 

analysis, as well as literature mining will be discussed, and potential merits and drawbacks 

examined. 

 

As previously explained, only statistically significant findings which were identified across 

multiple search engines and stage-wise comparisons in each data analysis strategy were 

examined further. Hence, the biological inference was conducted by disregarding differences 

in the identification of statistically significant hits per stage-wise comparisons. Considering 

details provided by the stage-wise comparisons might be beneficial to further decipher different 

mechanisms in the development of CRC. In addition, data mining including other biological 

factors such as age, gender or location of the colorectal carcinoma might be interesting aspects 

to study. However, since DIA data mining demonstrated clear differences in the identification 

of statistically significant proteins per generated library, the authenticity of the findings was 

valued more than the potential benefit of considering detailed biological aspects. Consequently, 

only the hits verified by both data analysis strategies were used for biological inference.  

  

In general, several tools for pathway and network analysis are available, such as STRING or 

DAVID [132,133]. Thereby, each tool uses different databases resulting into a distinction 

between the enriched pathways. Hence, each pathway and network analysis only serve as first 

indicator for establishing connections between the determined statistically significant proteins. 

However, the analysis via the reactome database shows several statistically enriched pathways 

(FDR < 5%). Crucial results include enrichment in inflammation processes, immune responses, 

transcription, translation, as well as maintenance of the cellular redox environment. 

 

To further gain insights about the statistically significant proteins a literature search was 

performed based on a combination of the tool OmixLitMiner and manual literature mining. A 

particularly vital aspect is the identification of prior reported connections between the proteins 

and CRC to evaluate the plausibility of the results. Thereby, the automated search with the tool 

provides a useful overview about the findings. Since the mining with OmixLitMiner is 

dependent on the chosen keyword, such as “colorectal cancer”, it is beneficial to apply several 

iterations with related terms, such as “colon cancer”, in order to broaden the search space and 

thus to provide a more detailed output. In addition, further manual literature mining discovered 

a connection of all hit proteins to CRC. As a result, literature mining indicates a high degree of 
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plausibility for the identified significant proteins. However, while the combination of 

OmixLitMiner and manual literature mining provides a powerful approach to find meaningful 

results in a rather fast manner, it is important to note, that even for the combined strategy there 

is no guarantee of finding each possible connection between the hit proteins and individual 

search terms. 

 

10.3 Conclusion 

 

After the data analysis via the DDA-free and DDA-based strategy, 15 statistically significant 

proteins were analyzed regarding biological inference in order to achieve the main goal of the 

thesis - elucidate potential biological patterns in the context of CRC and highlight possible 

research targets for future studies.  

 

The pathway and network analysis with the reactome database revealed many enriched 

biological paths (FDR < 5%) including inflammation processes, immune responses, as well as 

maintenance of the cellular redox environment. In addition, literature mining was performed to 

highlight potential research targets. After using the OmixLitMiner tool in combination with 

manual literature search, it was demonstrated that all the findings have a previous reported 

correlation to CRC, which adds plausibility to the results. After data analysis and biological 

inference all 15 hits display a high degree of authenticity. As a result, the here employed method 

including data analysis offers a promising strategy to detect a collection of significant proteins 

at once. Additionally, taking into account the vast heterogeneity of CRC, the identified protein 

panel is considered as a valuable starting point for a potential assay development to further 

unravel pathogenic mechanisms in CRC. 
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11. Concluding remarks & future perspectives 
 

The main goal of the thesis was to identify significant proteins and elucidate potential biological 

patterns regarding CRC by comparing the protein profile of CRC samples in different stages. 

Hence, the thesis aimed at identifying a promising protein panel which can be used as a valuable 

starting point for further research. The method of choice for the detection of CRC-associated 

protein profiles was a label-free LC-MS/MS strategy with DIA. In addition, the primary focus 

was set on implementing a bioinformatic analysis workflow to exploit the high information 

input of the acquired digital DIA maps. The developed proteomic pipeline combined the results 

of multiple search engines to construct the corresponding libraries. Subsequently, the impact of 

each generated library on the DIA data analysis was investigated. Two different inputs were 

chosen for the bioinformatic workflow and the respective outcomes were compared: Pre-

fractionated DDA measurements for the so called “DDA-based” analysis workflow and the 

DIA data for the termed “DDA-free” analysis strategy. 

 

As a result, the thesis can be viewed from two main angles – bioinformatic analysis and 

biological inference.  

 

Key element for both the DDA-based and DDA-free analysis is the importance of a specific-

tailored spectral library for an efficient DIA data extraction. The resemblance of the library 

input and the DIA data is especially dependent on transition intensity and retention time 

variation. As stated previously, it might be beneficial to investigate post-measurement retention 

time alignment with CiRTs or DIAlignR and its impact on DIA extraction. In addition, the 

bioinformatic analysis revealed the direct influence of a chosen library on identified statistically 

significant proteins. As a conclusion, both the DDA-based and DDA-free strategy indicate that 

it can be beneficial to use the results of two database search engines and apply the whole 

analysis workflow for the search tools individually and their binary combination. Consequently, 

not only are the chances increased to extract valuable information provided by the DIA data, 

but the findings are also verified and the prospects to generate reproducible results are 

improved. In any case, the bioinformatic analysis stresses the importance of thorough 

deliberation in the interpretation of the acquired proteomics results.  

 

The demonstrated differences in the DIA analysis impacted the analysis of the biological 

relevance. Only significant hits verified by both analysis strategies were directed to biological 
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inference, while disregarding potential valuable insights of the stage-wise comparisons. The 

authenticity of the statistically significant results was considered as most important. The 

findings are presented again in table 9 for a better overview. As mentioned previously, 

additional data mining including other biological factors such as gender, age, and location of 

the colorectal carcinoma might give further insights. However, the pathway and network 

analysis revealed enriched biological paths in inflammation processes, immune responses, and 

maintenance of the cellular redox environment. In addition, literature mining demonstrated that 

all identified proteins had a previously described association to CRC, which verified the 

findings and added plausibility. Hence, the applied method including the data analysis strategy 

provided the opportunity to discover a promising protein panel, which serves as a valuable 

starting point for a potential assay development in the ongoing research area of CRC. In this 

context, especially SRM-MS, which displays an excellent reproducibility and accuracy across 

large sample cohorts, is a valid method for further verifying the results and going the next step 

in the translation process from basic research to clinical utility [11].  

 

Table 9: Protein panel as promising research targets in the context of CRC. 

UniProtID 
Protein 

names 

Gene 

 names   

P23396 40S ribosomal protein S3  RPS3 

P05387 60S acidic ribosomal protein P2  RPLP2 

P23526 Adenosylhomocysteinase  AHCY 

P04083 Annexin A1  ANXA1 

P23528 Cofilin-1 CFL1 

P01024 Complement C3  C3 

P04843 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1  RPN1 

P17931 Galectin-3  LGALS3 

P68871 Hemoglobin subunit beta  HBB 

P02042 Hemoglobin subunit delta  HBD 

P32119 Peroxiredoxin-2  PRDX2 

P30044 Peroxiredoxin-5 PRDX5 

P25815 Protein S100-P  S100P 

P10599 Thioredoxin  TXN 

P08670 Vimentin VIM 

 

 

As a conclusion, the applied DIA analysis with the developed proteomic pipeline is considered 

as a useful approach for discovering significant proteins and for providing the foundation for 

elucidating pathogenic patterns of CRC. In addition, the presented and evaluated proteomic 

pipeline offers further research studies an interesting method for balancing experimental against 
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computational costs. Especially in a clinical context, in which sample amounts, as well as 

measurement times represent limiting resources [3,134], the DDA-free analysis provides a 

promising strategy to generate meaningful results. Furthermore, it has been shown that the 

results in form of statistically significant proteins of the peptide-centric DIA data analysis are 

highly dependent on the used library, the applied filter settings during downstream analysis, 

and statistical considerations. Therefore, it can be beneficial to focus further research on the 

bioinformatic interplay of the different elements in DIA data analysis to achieve a higher level 

of reproducibility across proteomics results.  
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12. Materials and Methods 

12.1 Instruments and Methods 

 

All experimental procedures were conducted and all mass spectrometry raw data were provided 

by Niyusha Goudarzi Bozargomehri and Dr. Christoph Krisp. In total 70 human colorectal 

cancer (CRC) tissue samples were analyzed. In detail, 9 CRC samples were classified as stage I, 

16 samples as stage II, 28 samples as stage III, and 17 samples as stage IV. From each tissue, 

ten 10 µm thick slices were prepared and transferred into an Eppendorf tube and subsequently 

stored at -80 °C. 

 

12.1.1 Lysis, protein extraction, and in-solution proteolysis 

 

The tissue samples were lysed in 200 μL of a SDC buffer (1% w/v sodium deoxycholate in 

0.1 M triethylammonium bicarbonate) and sonicated for 10 seconds at 30% power. 

Subsequently, the samples were incubated at 98 °C for 5 min and the respective protein 

concentration was determined via a BCA Protein Assay (Pierce, Thermo Fisher Scientific). 

Next, SDC buffer was added to 20 μg of the lysate until a total volume of 100 μL was reached. 

In a following step, the disulfate bonds were reduced with 10 mM dithithreitol (DTT) at 60 °C 

for 30 min. Next, cycteine residues were alkylated in presence of 20 mM 2-iodoacetamide 

(IAA) at 37 °C for 30 min in the dark. The enzyme trypsin was added at a 1:50 ratio enzyme to 

protein and incubated at 37 °C overnight. The enzyme was inactivated and the SDC precipitated 

by the addition of 1 μL formic acid (FA) and a centrifugation was performed for 5 min at 

14000 g. The supernatant was collected and dried in a vacuum concentrator. 

 

12.1.2 HpH-reversed phase chromatography for spectral library generation 

 

Five microgram of each digested CRC samples of stages I and II, as well as the samples of 

stage III and stage IV were taken and combined together and the pH adjusted to 10.5 with a 

ammonium hydroxide solution. Next, peptides were separated within a 25 min gradient                        

(3 – 35% acetonitrile) with a flow rate of 200 µL/min on a monolith column (ProSwift™           

RP-4H, 1 mm x 250 mm, Thermo Fisher Scientific) using an HPLC system (Agilent 1200 

series, Agilent Technologies) with a two buffer system. Equilibration buffer: 5 mM ammonium 
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hydroxide (pH = 10.5), elution buffer 5 mM ammonium hydroxide in 90% acetonitrile. A 

fraction collector was used to collect 1 min fractions beginning from the first minute until 29 

fractions were collected. The collected fractions were combined according to the following 

scheme - fractions 1-3, 4-6, 7-9, 10+20, 11+21, 12+22, 13+23, 14+24, 15+25, 16+26, 17+27, 

18+28 and 19+29. As a result, 13 fractions were acquired per pool. In total, 26 samples were 

dried and then dissolved in 25 μL (0.1%) FA for MS analysis. 

 

12.1.3 LC method for DDA and DIA experiments 

 

For both DDA and DIA analysis the same LC set-up and parameters were used. Per MS 

measurement 1 μg of protein sample was injected. The flowrate was set to 0.25 μL/min. The 

gradient started with 98% buffer A (99.9% H20 and 0.1% FA) and 2% buffer B (100% ACN 

and 0.1% FA). The concentration of buffer B was increased to 30% within 60 min and 

subsequently enhanced to 95% within 1 min. The concentration stayed constant for 5 min and 

was decreased to 2% within 1 min. The concentration was held constant for 15 min before 

measuring the next sample. 

 

12.1.4 MS parameter for the DDA experiments 

 

Samples were analyzed on a Quadrupole Orbitrap hybrid mass spectrometer (QExactive, 

Thermo Fisher Scientific). The data were acquired in data-dependent mode. The analysis time 

was 75 min. Fullscan spectra were acquired in profile mode utilizing a resolution of 70000 with 

a scan range of 400 to 1300 m/z and an accumulation time of 120 ms. Fragment spectra were 

acquired applying a resolution of 17500 with an accumulation time of 60 ms. The dynamic 

exclusion for precursor ions was set to 20 ms. Ions were fragmented using higher energy 

collisional dissociation (HCD) with stepped normalized collision energy (25 and 28). Signals 

with a single charge or more than 5 charges were excluded from fragmentation. 
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12.1.5 MS parameter for the DIA experiments 

 

Samples were analyzed on a Quadrupole Orbitrap hybrid mass spectrometer (QExactive, 

Thermo Fisher Scientific). The data were acquired in data-independent mode. The analysis time 

was 75 min. Fullscan spectra were acquired in a scan range of 390 to 1210 m/z with a resolution 

of 70000 and an accumulation time of 55 ms. For MS2 acquisition a resolution of 17500 was 

used and a window size of 25 m/z was applied from 400 to 1200 m/z. Fragment ion spectra 

were accumulated for 100 ms and acquired with stepped normalized collision energy (27, 28, 

and 29). A detailed list of the applied DIA windows is shown in table 10. 

 

Table 10: DIA windows with start and end values. 

Start m/z End m/z Start m/z End m/z 

400.44 425.44 800.62 825.62 

425.45 450.45 825.63 850.63 

450.46 475.46 850.64 875.64 

475.47 500.47 875.65 900.65 

500.48 525.48 900.67 925.67 

525.49 550.49 925.68 950.68 

550.51 575.51 950.69 975.69 

575.52 600.52 975.70 1000.7 

600.53 625.53 1000.71 1025.71 

625.54 650.54 1025.72 1050.72 

650.55 675.55 1050.73 1075.73 

675.56 700.56 1075.74 1100.74 

700.57 725.57 1100.76 1125.76 

725.59 750.59 1125.77 1150.77 

750.60 775.60 1150.78 1175.78 

775.61 800.61 1175.79 1200.79 
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12.2 Data Analysis 

12.2.1 Peptide identification, library generation, and DIA analysis 

 

26 DDA raw-files and 70 DIA raw-files were used for the data analysis. DDA and DIA data 

were converted and centroided with MSConvert (version 3.0.9134). The DIA data was further 

processed with DIA-Umpire (version 2.0) to generate pseudo-MS/MS spectra, which were 

submitted to the database search. Peptide identification was performed with the database search 

engines Comet (version 2016.01 rev. 3), MS-GF+ (version 2018.01.30), and X!Tandem 

(version 2015.12.15) and a reviewed human FASTA database retrieved from UniProtKB in 

November 2018. Decoy entries were generated via the module DecoyDatabase (version 2.3.0) 

and appended to the FASTA file. Key search parameters included trypsin as enzyme and one 

allowed missed cleavage, a precursor mass tolerance of 10 ppm, as well as precursor charges 

from 2 to 5. Cystein carbamidomethylation was applied as fixed modification and oxidation on 

methionine was set as variable modification. Further validation of the assigned peptide-

spectrum matches was performed with PeptideProphet (version 5.1.0), iProphet (version 5.1.0) 

and MAYU (version 1.07). The design of an automated process up to library generation was 

accomplished via batch scripts. Library generation and the subsequent DIA analysis was 

applied with Skyline (version 19.1) including filter criteria such as a protein FDR < 1%, 

precursor charges from 2 to 4, ion charges from 1 to 3, as well as only using y- and b-ions. 

High-quality DIA data extraction was based on a dotP > 0.8 and at least 2 peptides per protein.  

 

12.2.2 Statistical analysis, network analysis, and literature mining 

 

For statistical analysis, the data was processed with MSstats (version 3.18.4). Normalization 

was performed based on equalized medians and the calculation of summed up Log-intensities 

relied on a Tukey-Median Polish. Further statistical analysis was applied in the R environment 

(version 3.6.0) including a Welch’s t-test and a subsequent Benjamin-Hochberg multiple 

hypothesis testing correction. Further data mining, as well as visualization was performed with 

self-written R scripts. Pathway and network analysis were applied with ReactomeFI in the 

cytoscape environment (version 3.7.0). Literature mining included the OmixLitMiner tool. 
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14. Appendix 

14.1 GHS classification of the chemicals 

 

No chemicals were used. 

 

14.2 DDA-based analysis - Volcano plots of stage-wise comparisons 

 

For each stage-wise comparison a Welch’s t-test and a Benjamin-Hochberg multiple hypothesis 

testing correction were performed (FDR < 5%). The results are displayed via volcano plots 

(Fig. 56 - Fig. 79). Statistically significant proteins are marked in red. 

 

14.2.1 Stage I vs. Stage II 

 

 

Fig. 56: Volcano plots for the comparison of Stage I and Stage II for C (left) and M (right). 
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Fig. 57: Volcano plots for the comparison of Stage I and Stage II for T (left) and the combination of 

CM (right). 

 

 

Fig. 58: Volcano plots for the comparison of Stage I and Stage II for the combination of CT (left) and the 

combination of MT (right). 
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Fig. 59: Volcano plot for the comparison of Stage I and Stage II for the combination of CMT . 

 

14.2.2 Stage I vs. Stage III 

 

 

Fig. 60: Volcano plots for the comparison of Stage I and Stage III for C (left) and M (right). 
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Fig. 61: Volcano plots for the comparison of Stage I and Stage III for T (left) and the combination of 

CM (right). 

 

 

Fig. 62: Volcano plots for the comparison of Stage I and Stage III for the combination of CT (left) and the 

combination of MT (right). 
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Fig. 63: Volcano plot for the comparison of Stage I and Stage III for the combination of CMT . 

 

14.2.3 Stage I vs. Stage IV 

 

 

Fig. 64: Volcano plots for the comparison of Stage I and Stage IV for C (left) and M (right). 
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Fig. 65: Volcano plots for the comparison of Stage I and Stage IV for T (left) and the combination of 

CM (right). 

 

 

Fig. 66: Volcano plots for the comparison of Stage I and Stage IV for the combination of CT (left) and the 

combination of MT (right). 
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Fig. 67: Volcano plot for the comparison of Stage I and Stage IV for the combination of CMT . 

 

14.2.4 Stage II vs. Stage III 

 

 

Fig. 68: Volcano plots for the comparison of Stage II and Stage III for C (left) and M (right). 
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Fig. 69: Volcano plots for the comparison of Stage II and Stage III for T (left) and the combination of 

CM (right). 

 

 

Fig. 70: Volcano plots for the comparison of Stage II and Stage III for the combination of CT (left) and 

the combination of MT (right). 
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Fig. 71: Volcano plot for the comparison of Stage II and Stage III for the combination of CMT . 

 

14.2.5 Stage II vs. Stage IV 

 

 

Fig. 72: Volcano plots for the comparison of Stage II and Stage IV for C (left) and M (right). 
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Fig. 73: Volcano plots for the comparison of Stage II and Stage IV for T (left) and the combination of 

CM (right). 

 

 

Fig. 74: Volcano plots for the comparison of Stage II and Stage IV for the combination of CT (left) and the 

combination of MT (right). 
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Fig. 75: Volcano plot for the comparison of Stage II and Stage IV for the combination of CMT . 

 

14.2.6 Stage III vs. Stage IV 

 

 

Fig. 76: Volcano plots for the comparison of Stage III and Stage IV for C (left) and M (right). 
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Fig. 77: Volcano plots for the comparison of Stage III and Stage IV for T (left) and the combination of 

CM (right). 

 

 

Fig. 78: Volcano plots for the comparison of Stage III and Stage IV for the combination of CT (left) and 

the combination of MT (right). 
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Fig. 79: Volcano plot for the comparison of Stage III and Stage IV for the combination of CMT . 
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14.3 DDA-free analysis - Volcano plots of stage-wise comparisons 

 

For each stage-wise comparison a Welch’s t-test and a Benjamin-Hochberg multiple hypothesis 

testing correction were performed (FDR < 5%). The results are displayed via volcano plots 

(Fig. 80 - Fig. 103). Statistically significant proteins are marked in red. 

 

14.3.1 Stage I vs. Stage II 
 

 

Fig. 80: Volcano plots for the comparison of Stage I and Stage II for C (left) and M (right). 

 

 

Fig. 81: Volcano plots for the comparison of Stage I and Stage II for T (left) and the combination of 

CM (right). 



Appendix 

126 

 

 

 

Fig. 82: Volcano plots for the comparison of Stage I and Stage II for the combination of CT (left) and the 

combination of MT (right). 

 

 

Fig. 83: Volcano plot for the comparison of Stage I and Stage II for the combination of CMT . 
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14.3.2 Stage I vs. Stage III 

 

 

Fig. 84: Volcano plots for the comparison of Stage I and Stage III for C (left) and M (right). 

 

 

Fig. 85: Volcano plots for the comparison of Stage I and Stage III for T (left) and the combination of 

CM (right). 
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Fig. 86: Volcano plots for the comparison of Stage I and Stage III for the combination of CT (left) and the 

combination of MT (right). 

 

 

Fig. 87: Volcano plot for the comparison of Stage I and Stage III for the combination of CMT . 
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14.3.3 Stage I vs. Stage IV 

 

 

Fig. 88: Volcano plots for the comparison of Stage I and Stage IV for C (left) and M (right). 

 

 

Fig. 89: Volcano plots for the comparison of Stage I and Stage IV for T (left) and the combination of 

CM (right). 
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Fig. 90: Volcano plots for the comparison of Stage I and Stage IV for the combination of CT (left) and the 

combination of MT (right). 

 

 

Fig. 91: Volcano plot for the comparison of Stage I and Stage IV for the combination of CMT . 
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14.3.4 Stage II vs. Stage III 

 

 

Fig. 92: Volcano plots for the comparison of Stage II and Stage III for C (left) and M (right). 

 

 

Fig. 93: Volcano plots for the comparison of Stage II and Stage III for T (left) and the combination of 

CM (right). 

 

 

 

 



Appendix 

132 

 

 

 

Fig. 94: Volcano plots for the comparison of Stage II and Stage III for the combination of CT (left) and 

the combination of MT (right). 

 

 

Fig. 95: Volcano plot for the comparison of Stage II and Stage III for the combination of CMT . 
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14.3.5 Stage II vs. Stage IV 

 

 

Fig. 96: Volcano plots for the comparison of Stage II and Stage IV for C (left) and M (right). 

 

 

Fig. 97: Volcano plots for the comparison of Stage II and Stage IV for T (left) and the combination of 

CM (right). 
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Fig. 98: Volcano plots for the comparison of Stage II and Stage IV for the combination of CT (left) and the 

combination of MT (right). 

 

 

Fig. 99: Volcano plot for the comparison of Stage II and Stage IV for the combination of CMT . 

 

 

 

 

 



Appendix 

135 

 

14.3.6 Stage III vs. Stage IV 

 

 

Fig. 100: Volcano plots for the comparison of Stage III and Stage IV for C (left) and M (right). 

 

 

Fig. 101: Volcano plots for the comparison of Stage III and Stage IV for T (left) and the combination of 

CM (right). 
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Fig. 102: Volcano plots for the comparison of Stage III and Stage IV for the combination of CT (left) and 

the combination of MT (right). 

 

 

Fig. 103: Volcano plot for the comparison of Stage III and Stage IV for the combination of CMT . 
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