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Zusammenfassung

Durch die Digitale Transformation sind Softwaresysteme zu einem unverzichtbaren Bestandteil
unserer Gesellschaft und Berufsleben geworden. Fast in allen Bereichen des Alltags werden
vermehrt verteilte Softwaresysteme eingesetzt, um unser Leben zu erleichtern oder um Geschäft-
sprozesse zu optimieren. Schon heute umfasst das Internet mehrere Millionen Softwareservices,
welche von Milliarden Menschen täglich genutzt werden. Da moderne verteilte Anwendungen
eine Vielzahl von Nutzern und Datentraffik verarbeiten, werden sie als massive-skalierbare
Softwaresysteme bezeichnet (engl. Ultra Large Scale Systems). Ein bedeutender Ansatz um
massive-skalierbare Softwaresysteme zu entwickeln ist der Architekturstil Representational State
Transfer (REST). Eines der prominentesten und wichtigsten Insantziierungen dieses Konzept ist
das Web, das momentan (wohl) größte massive-skalierbare Softwaresystem der Welt. Durch die
hohe Anzahl an Nutzern und die Wichtigkeit von Software für die Gesellschaft und Wirtschaft
ist neben der massiven Skalierbarkeit die Sicherheit ein essenzielles Qualitätsmerkmal für
REST-basierte Anwendungen.

Um Skalierbarkeit und Sicherheit gewährleisten zu können, verwenden Unternehmen vermehrt
Transport Layer Security (TLS) und intermediäre Systeme wie z.B. Caches. Mittlerweile hat
sich TLS zu einem festen Bestandteil von Webanwendung etabliert. Auch die Verwendung von
intermediären Systemen nimmt immer weiter zu. Content Delivery Networks (CDN), welche
ein weltweites Netz an Cachingeinheiten umfassen, können nicht nur die Skalierbarkeit erhöhen,
sondern sind auch ein effektiver Schutz gegen Distributed Denial of Service (DDoS) Angriffe.
Die Verwendung von TLS und intermediären Systemen ist daher eine Kernkomponente für
die Sicherheit und Skalierbarkeit moderne Softwaresysteme. Das Zusammenspiel zwischen
TLS und intermediären Systemen hat allerdings einen entschiedenen Nachteil. Intermediäre
Systeme müssen die TLS-Verbindung unterbrechen, um Nachrichten interpretieren zu können.
Diese Unterbrechung führt dazu, dass kein Ende-zu-Ende Schutz sichergestellt werden kann.
Zudem nutzen Unternehmen oft intermediäre Systeme oft von Drittanbietern. Daten, die von
einem solchen intermediären System verarbeitet werden, liegen somit außerhalb der Kontroll-
bereiche der Unternehmen und unter Umständen in einem Land mit unzulässigen rechtlichen
Rahmenbedingungen. Moderne Softwaresysteme sind jedoch auf TLS und intermediäre Systeme
angewiesen, damit Sicherheit und Skalierbarkeit gewährleistet werden kann. Allerdings muss
mit der Verwendung beider Technologien ein Sicherheitsrisiko eingegangen werden.

Diese kumulative Dissertation beschäftigt sich mit diesem Problem. Sie untersucht und erar-
beitet REST-basierte Ende-zu-Ende Sicherheitsmechanismen mit einem speziellen Fokus auf
Authentifikation und Caching. In den gesammelten Papern werden ausführliche Untersuchungen
über REST-basierte Authentifizierungsverfahren und Webcaching dargelegt. Die Ergebnisse
zeigen neue Erkenntnisse über die Wechselwirkung zwischen Sicherheit und Skalierbarkeit.
Es wird eine neuartige Klasse von Angriffen vorgestellt, welche Cachingsysteme ausnutzt,
um die Verfügbarkeit jeglicher Ressourcen einer Webanwendung zu unterbinden. Mehrere
Millionen Webseiten waren von diesen Angriffen betroffen. Mithilfe der Erkenntnisse aus
den Untersuchungen konnten Gegenmaßnahmen erarbeitet und in Zusammenarbeit mit den
betroffenen Organisationen implementiert werden. Basierend auf dem Wissen über Authen-
tifizierung und Webcaching wird ein Authentifizierungsverfahren für REST vorgestellt, welches
eine ganzheitlichen Ende-zu-Ende Authentizitäts- sowie Integritätsschutz gewährleistet und
zudem mit Webcachingsystemen kompatibel ist. Die empirischen Messungen zeigen, dass
ein vollständiger Ende-zu-Ende Schutz sichergestellt werden kann, ohne die Skalierbarkeit zu
beeinträchtigen.



Abstract

With the digital transformation, software systems have become an integral part of our society
and economy. In every part of our life, software systems are increasingly utilized to, e.g.,
simplify housework or to optimize business processes. All these applications are connected
to the Internet, which already includes millions of software services consumed by billions of
people. Applications which process such a magnitude of users and data traffic requires to be
highly scalable and are therefore denoted as Ultra Large Scale (ULS) systems. Roy Fielding has
defined one of the first approaches which allows designing modern ULS software systems. In
his doctoral thesis, Fielding introduced the architectural style Representational State Transfer
(REST) which builds the theoretical foundation of the web. At present, the web is considered
as the world’s largest ULS system. Due to a large number of users and the significance of
software for society and the economy, the security of ULS systems is another crucial quality
factor besides high scalability.

To ensure scalability and security, web-based ULS applications mostly use Transport Layer
Security (TLS) and intermediate systems such as caches. In recent years, TLS has been
established as an indispensable security component of protecting HTTP messages in transit.
The usage of intermediate systems has also become an essential ingredient in web applications
for providing scalability as well as security. Content Delivery Networks (CDNs), for instance,
operate a mesh of interconnected caching edge servers scattered around the world to speed
up the page loading time. This distributed network of worldwide caching units is also an
effective countermeasure for Distributed Denial of Service (DDoS) attacks, as the multitude of
caches can resist against a flood of requests. Because of these reasons, TLS and intermediate
systems are vital pillars for any modern REST-based ULS system. The interplay of TLS and
intermediate systems, however, has one major drawback. Each intermediary must terminate
the TLS connection to read and change traversing messages. Caches, e.g., require to interpret
certain message parts to infer the caching policy and the cached content. Such an interruption
leads to the issue that messages are not protected from end-to-end. Considering the fact that
many organizations use third-party intermediate systems, the full access to traversing messages
forces content providers and users to blindly trust intermediaries not to tamper or eavesdrop
sensitive content. This is a critical security risk that must be taken by every user and provider of
contemporary REST-based ULS applications.

This cumulative dissertation aims at addressing these issues. It studies end-to-end security
means with a special focus on authentication and caching. The included papers cover large-scale
investigations on REST-based authentication schemes and web caching. The findings show new
insight on the interference between security and scalability. The thesis introduces a new class of
attack that takes advantage of caches to sabotage all kinds of web resources. Millions of web
sites were affected by this threat. Together with the affected parties possible mitigations and
countermeasures have been discussed and deployed. With the knowledge from our studies in
REST-based authentication and web caching, CREHMA, a cache-aware authentication scheme
for high-scalable REST-based web applications is proposed. CREHMA provides end-to-end
message authenticity and integrity while being compatible with caches. Experiments show that
CREHMA ensures a comprehensive end-to-end security without the loss of scalability.
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Chapter 1
Introduction

Digital products and services have evolved as an integral part of society and the economy.
Modern technologies change the way we live and creates new approaches to optimize business
processes. This revolution –denoted as the digital transformation [GR15]– leads to a continuous
increase in the number of Internet-connected software-intensive systems as well as users of such
applications [Sch17]. By now, the Internet already includes millions of software services that
are used by billions of people [Boo18]. Emerging trends, including the Internet of Things (IoT)
[Car+18] and Cyber-Physical Systems (CPS) [Raj+10] additionally enrich the sheer magnitude
of software services and human users with millions of interconnected devices. In this respect,
the term Ultra Large Scale (ULS) [Fei+06] systems has evolved as a new generation of modern
distributed software systems covering unprecedented volumes of transferred data, numbers of
different software and hardware as well as human participants.

Roy Fielding has introduced one of the first approaches for implementing ULS systems [Xu+08].
In his doctoral thesis, Fielding defines the architectural style Representational State Transfer
(REST) [Fie00]. To ensure scalability, REST proposes a set of architectural constraints. Ac-
cording to REST, high-scalable software systems must be layered. This means, besides client
and server, software architectures must be composed of intermediate systems (also known as
middleboxes [CB02]), such as caches, load balancers, message routers or Web Application
Firewalls (WAF). The usage of intermediaries ensures scalability, as data traffic and workload
load can be outsourced to other components. Due to the utilization of intermediate systems,
communication in REST-based systems must be stateless and messages need to be cacheable.
Stateless communication means that request messages must be self-descriptive in the sense that
they contain all of the necessary information so that middleboxes and endpoints understand the
content without the need to store any state. As state information does not have to be stored,
servers can quickly free resources after processing a request and use the available capacity
to process other messages. Caching ensures scalability as well. Cacheable messages can be
stored and reused by intermediate systems without the need to communicate with the origin
server. This eliminates interactions and reduces network traffic as well as the end user-perceived
latency.

The most prominent instantiation of REST is the web, the world’s largest distributed system
to date. The core technology of the web is Hypertext Transfer Protocol (HTTP) [FR14b], a
REST-ful application layer protocol. Due to the benefits of REST and its architectural principles,
it is applied in many other areas of distributed computing. This includes, e.g., IoT or CPS. As
devices in IoT and CPS are constrained in computation power and network bandwidth, the
Constraint Application Protocol (CoAP) [SHB14] has been standardized as an HTTP-based
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transfer protocol for high-scalable resource-restricted environments. Other application domains
in which REST gets adopted are Service-Oriented Architectures (SOA) [Erl+13], Microservices
[New15], Cloud Computing [EPM13a], Smart-* [PTG14] and Industry 4.0 [WSJ17] applications.
Moreover, the fifth generation of mobile communication systems (5G) utilizes REST-based web
technologies for implementing the Service-Based Architecture (SBA) covering core network
functions [Mao+]. As these application domains of REST represent vital pillars of the modern
economy and society, all of them are considered as mission-critical ULS systems. The security
of such systems is, therefore, of paramount importance.

This thesis aims at studying the security of REST-based ULS systems with a special focus
on authentication and caching. In particular, it explores available REST-based authentication
schemes and the compliance of web caching systems. Based on the discovered compliance
issues, this work introduces and evaluates a novel attack vector that exploits web caches to
conduct denial of service attacks. With the knowledge of authentication and web caching,
an authentication scheme is proposed that ensures end-to-end authenticity and integrity while
enabling content providers to enjoy the benefits of caching.

1.1 List of Publications

During the research on the security of REST-based ULS systems, fourteen peer-reviewed
research papers have been published. Six of these publications listed below are part of this
thesis.

1. L. Lo Iacono, H. V. Nguyen, and P. L. Gorski. On the Need for a General REST-Security
Framework. In: Future Internet 11.3 (2019). URL: https://doi.org/10.3390/fi11030056

2. H. V. Nguyen, J. Tolsdorf, and L. Lo Iacono. On the Security Expressiveness of REST-
Based API Definition Languages. In: International Conference on Trust and Privacy in
Digital Business (TrustBus). 2017. URL: https://doi.org/10.1007/978-3-319-64483-7_14

3. H. V. Nguyen, L. Lo Iacono, and H. Federrath. Systematic Analysis of Web Browser
Caches. In: 2nd International conference on Web Studies (WS). 2018. URL: https :
//doi.org/10.1145/3240431.3240443

4. H. V. Nguyen, L. Lo Iacono, and H. Federrath. Mind the Cache: Large-Scale Analysis of
Web Caching. In: 34rd ACM/SIGAPP Symposium on Applied Computing (SAC). 2019.
URL: https://doi.org/10.1145/3297280.3297526

5. H. V. Nguyen, L. Lo Iacono, and H. Federrath. Your Cache Has Fallen: Cache-Poisoned
Denial-of-Service Attack. In: 26th ACM Conference on Computer and Communications
Security (CCS). 2019. URL: https://doi.org/10.1145/3319535.3354215

6. H. V. Nguyen and L. Lo Iacono. CREHMA: Cache-ware REST-ful Authentication Scheme.
In: 10th ACM Conference on Data and Application Security and Privacy (CODASPY).
2020. URL: https://doi.org/10.1145/3374664.3375750

2

https://doi.org/10.3390/fi11030056
https://doi.org/10.1007/978-3-319-64483-7_14
https://doi.org/10.1145/3240431.3240443
https://doi.org/10.1145/3240431.3240443
https://doi.org/10.1145/3297280.3297526
https://doi.org/10.1145/3319535.3354215
https://doi.org/10.1145/3374664.3375750


1.1.1 Comments on my Participation

Paper 1 This publication is co-authored by Luigi Lo Iacono and Peter Leo Gorski. I was
responsible for writing, structuring, visualization, designing the methodology, formal as well as
practical analysis and discussing the study results. Luigi Lo Iacono and Peter Leo Gorski took
part in writing, structuring, visualization, reviewing and editing the paper.

Paper 2 In this paper, I was mainly responsible for writing, structuring, visualization, defining
the methodology and criteria for assessing the related work. Jan Tolsdorf conducted the related
work analysis and wrote a draft version of the paper. Luigi Lo Iacono revised and refined the
paper.

Paper 3 and Paper 4 I was the main author of both papers. I developed the methodology based
on an in-depth literature review and I was responsible for visualization and structuring the paper.
Moreover, I conducted the practical evaluation and discussed the results. Luigi Lo Iacono and
Hannes Federrath provided feedback and refined the papers.

Paper 5 In this paper, I was mainly responsible for discovering the presented attack. I designed
and implemented the methodology to analyze the practicability of the introduced vulnerability.
To mitigate this threat, I worked together with affected parties and recommended countermea-
sures based on the cooperation. Luigi Lo Iacono helped me in the responsible disclosure process.
He and Hannes Federrath also revised the paper and provided feedback.

Paper 6 I was the main author of this work and conducted the related work analysis. Moreover,
I defined the methodology and preformed all empirical evaluations in this paper. Luigi Lo Iacono
revised and edited the paper and provided feedback.

1.1.2 Other Publications

The following four papers are not included in thesis, since their contributions are summarized
and extended by Paper 1 (Journal paper).

• P. L. Gorski, L. Lo Iacono, H. V. Nguyen, and D. B. Torkian. Service Security Revisited.
In: 11th IEEE International Conference on Services Computing (SCC). 2014, pp. 464–471.
URL: https://doi.org/10.1109/SCC.2014.68

• L. Lo Iacono and H. V. Nguyen. Authentication Scheme for REST. in: International
Conference on Future Network Systems and Security (FNSS). Springer International
Publishing, 2015. URL: https://doi.org/10.1007/978-3-319-19210-9_8

• H. V. Nguyen and L. Lo Iacono. REST-ful CoAP Message Authentication. In: In-
ternational Workshop on Secure Internet of Things (SIoT), in conjunction with the Eu-
ropean Symposium on Research in Computer Security (ESORICS). 2015. URL: https:
//dx.doi.org/10.1109/SIOT.2015.8

• H. V. Nguyen and L. Lo Iacono. RESTful IoT Authentication Protocols. In: Mobile
Security and Privacy - Advances, Challenges and Future Research Directions. 1st ed.
Advanced Topics in Information Security. Elsevier/Syngress, 2016, pp. 217–234. URL:
https://doi.org/10.1016/B978-0-12-804629-6.00010-9

Furthermore, I contributed to the following four research papers that are not included in this
thesis:

3

https://doi.org/10.1109/SCC.2014.68
https://doi.org/10.1007/978-3-319-19210-9_8
https://dx.doi.org/10.1109/SIOT.2015.8
https://dx.doi.org/10.1109/SIOT.2015.8
https://doi.org/10.1016/B978-0-12-804629-6.00010-9


• L. Lo Iacono, H. V. Nguyen, T. Hirsch, M. Baiers, and S. Möller. UI-Dressing to Detect
Phishing. In: IEEE 6th International Symposium on Cyberspace Safety and Security
(CSS). 2014. URL: https://dx.doi.org/10.1109/HPCC.2014.126

• P. L. Gorski, L. Lo Iacono, H. V. Nguyen, and D. B. Torkian. SOA-Readiness of REST. in:
3rd European Conference on Service-Oriented and Cloud Computing (ESOCC). Springer
International Publishing, 2014. URL: https://doi.org/10.1007/978-3-662-44879-3_6

• L. Lo Iacono and H. V. Nguyen. Towards Conformance Testing of REST-based Web
Services. In: 11th International Conference on Web Information Systems and Technologies
(WEBIST). 2015. URL: https://doi.org/10.5220/0005412202170227

• H. C. Rudolph, A. Kunz, L. Lo Iacono, and H. V. Nguyen. Security Challenges of the
3GPP 5G Service Based Architecture. In: IEEE Communications Standards Magazine 3.1
(2019), pp. 60–65. URL: https://doi.org/10.1109/MCOMSTD.2019.1800034

They all deal with topics related to REST and the security of REST-based systems.

1.2 Problem Statement

With the rise of digital technologies in every part of our life, software systems are increasingly
becoming the target of financially and politically motivated attacks. A recent security report of
Akamai observed eight billion attacks on web applications during November 2017 and December
2019 [Her+]. Such an observation should alarm every organization to consider security as an
indispensable part of every software development and deployment process. Projects such as Let’s
Encrypt and recent actions of major web browser vendors have already made efforts towards this
direction [Aas+19; Sch18]. Thanks to both initiatives Transport Layer Security (TLS) [Res18]
has been established as an obligatory protection means for ensuring confidentiality, integrity,
and authenticity of HTTP messages in transit. In addition to TLS, many content providers rely
on intermediate systems as complementary safeguards for threats that are outside the scope
of transport layer protection means. Besides providing scalability, caches ensure an increased
availability as they can satisfy requests when the origin server is down for some reason. Content
Delivery Networks (CDNs), which operate a worldwide mesh of interconnected caching edge
servers, cannot only speed up the page loading time but are also an effective countermeasure
against Distributed Denial of Service (DDoS) attacks [Gil+16]. Many CDNs also include WAFs
for filtering malicious requests such as Cross-Site Scripting (XSS) or SQL injection attacks.

Recent studies observed tremendous growth in the usage of protection means. In recent years,
content providers are increasingly using TLS and caches to optimize the security and scalability
of web applications. According to Mozilla, the average volume of TLS-encrypted traffic in
the web has surpassed the amount of unencrypted data [Cal+19; Fel+17]. Guo et al. observe
that 74% of the Alexa top 1K websites utilize CDNs [Guo+18]. Both observations highlight
that TLS and intermediate systems have been recognized as a cornerstone of security and
scalability, respectively. However, the utilization of transport security means, in conjunction
with intermediate systems has one major drawback. To fulfill their duties such as caching
messages or filter malicious content, intermediate systems require read access and write access
to traversing messages. To do so, the secure connection provided by TLS must be terminated
and renegotiated by each intermediary. This means the security of traversing messages does
not reach from end-to-end and intermediate systems have full access to the content. Content
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providers, therefore, must blindly trust middleboxes to not to tamper or eavesdrop the traversing
content. In addition to this, content providers and users have to consider that messages often
traverse multiple intermediate systems that are operated by third-party services. Both parties
must not expect that all of them can be fully trusted. Moreover, the deployment of TLS as the
only pillar is by far not sufficient [Cal+19] as many attacks on TLS have been revealed recently
[HSS15].

Man-in-the-middle attacks such as tampering or eavesdropping content are, however, not the
only serious threat in layered systems. Web cache poisoning attacks, for instance, are becoming
a severe threat for REST-based ULS systems likewise. This kind of vulnerability belongs to
the semantic gap attacks which exploit the disparity of two or more parties in interpreting the
same object. Such a gap mainly occur in layered systems. Here, the likelihood that components
parse the same message differently is very high, as endpoints and intermediate systems are
implemented for other purposes but also with different programming environments. In a web
cache poisoning attack, a malicious client sends a malformed request which confuses the cache
and server so that a harmful response is injected into the cache. Benign clients retrieving the
target resource receive the malicious response instead of the genuine one. Chen et al. and James
Kettle demonstrated that millions of websites were be affected by web cache poisoning attacks
[Che+16; Ket19a; Ket18c]. The researchers showed that even a flawless TLS connection and
fully trusted intermediate systems with a WAF as well as DDoS protection cannot avoid this
threat. To mitigate man-in-the-middle as well as web cache poisoning attacks, software systems
require additional security approaches to TLS, WAF, and DDoS protection.

1.3 Related Work

The issue that TLS is mandatory but not sufficient is a known research problem [Cal+19]. Paper
1 shows that many attempts have been published to address this shortcoming. HTTP signatures
schemes have been the first approach which aims to provide end-to-end security in layered
systems. Here, the whole message is protected by concatenating the header and a body to a
string, which is digitally signed. The signature value in conjunction with meta information is
then included in a new header entry. Based on this header, the verifying endpoint can validate
the authenticity and integrity of the message. Amazon, Google, Hewlett-Packard (HP), and
Microsoft, for instance, use HTTP signature schemes as an authentication scheme for API
requests [Ama19b; Goo17; Mic17; Hew14]. HTTP signatures schemes have not been widely
used as other protection means such as TLS, WAFs, or DDoS defenses. However, there is
a growing interest in adopting HTTP signature schemes as an IETF standard [Run19; CS19;
BRS19]. Similar efforts in promoting HTTP signature schemes have also been made by academia
[Ser+12; LJK15]. This also true for CoAP. As with HTTP, a set of CoAP signature schemes
have been presented by standardization bodies as well as academia [GMS13; Sel+18].

The bunch of available work in signature schemes for HTTP and CoAP emphasizes the huge
demand for end-to-end protection means. However, in state-of-the-art analysis in Paper 1 shows
that signature schemes are very diverse even though they follow the same objective. Moreover,
there are only signature schemes available for HTTP and CoAP. In recent years, REST has been
established as a universal approach to design ULS systems for various application domains.
Therefore, it is plausible to believe that more REST-based protocols will be specified in the
future. The Remote APDU Call Secure (RACS) [Uri19], for instance, is a REST-based protocol
for microcontrollers, which is currently in the standardization process. No end-to-end security
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schemes for RACS are available so far. The state-of-the-art analysis in Paper 1 also reveals that
current HTTP and CoAP signature schemes still contain too many vulnerabilities. Amazon,
Google, HP, and Microsoft, for instance, only protect the request message. The response message
is unprotected. Also, many HTTP and CoAP signature schemes do not include all security-
critical headers in the signature process, which opens the door for, e.g., man-in-the-middle
attacks on the response body and caching policy. Another issue related to caching is the fact
that available end-to-end security schemes barely support web caching systems. As with an
attacker, caches change and replay messages. Unlike the malicious man-in-the-middle, caches
intervene in the message exchange to optimize the scalability. Such a legitimate intervention
is not in conformance with many HTTP and CoAP signatures schemes as they are designed to
classify any change or reuse of a signed message as a malicious modification or replay attack.
As a consequence, the caching of frequently requested content to optimize scalability must be
disabled when end-to-end security is required. On the contrary, REST-based ULS systems which
require caches to deliver high-quality content to millions of users are forced to omit end-to-end
security schemes.

This thesis aims to address these issues. The goal of this work is to enhance security while
retaining the cacheability in REST-based ULS systems. To do so, the limitations of available
end-to-end authentication schemes as well as the interference between caching and security
approaches need to be well-studied in order to understand the challenges in developing robust
and stable protection means for REST-based ULS systems.

1.4 Research Questions and Contributions

This dissertation focuses on answering the following research question to address the discussed
issues and challenges.

RQ1: How can we define REST security components that are generally valid for any REST-
compliant technologies?

RQ2: How can we design a methodology to derive a comprehensive end-to-end authentication
scheme that is in alignment with the principles of REST?

RQ3: To what extend do caches affect the scalability and authentication of REST-based sys-
tems?

To answer the three research questions, several research methods and empirical studies have
been conducted and analyzed. The major results and findings are grouped into four major
contributions, which are briefly recapped below.

Analysis of available work in security for REST-based systems (Paper 1 and 2)

As initial work to study the security of REST-based ULS systems, this thesis conducts a large-
scale analysis of REST-based authentication schemes (see Paper 1). Based on a threat model
and a policy on assets to be protected, 21 security mechanisms have been evaluated. The study
points out that existing REST-based authentication schemes contain many vulnerabilities. Many
end-to-end authentication schemes protect the request only. Other protection means which
consider requests and responses do not protect security-critical message headers. Such an
omission opens the door for man-in-the-middle attacks even though the message is protected.
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In the second state-of-the art analysis in Paper 2, this thesis provides an evaluation of the
expressiveness of REST-based service description languages in terms of specifying security
mechanisms. Service description languages are essential auxiliaries for robust and stable
machine-to-machine communication. ULS application domains such as IoT, CPS, SOA, Cloud
Computing, and Smart-* are greatly relying on this paradigm. The investigation found out
that available service description languages are limited in terms of describing REST-based
security schemes. The languages are constrained in describing a fixed set of authentication
and authorization schemes. Moreover, almost all do not provide any native options to add
further protection means. Only one approach allows extending the description language by other
security schemes.

General REST-Security Framework (Paper 1)

Based on the vulnerabilities and limitations found in the related work analysis on authentication
schemes, this dissertation discusses the need for a more methodical and REST-compliant
approach to security. Therefore, a methodology is proposed that aims to design REST-Security
mechanisms based on the same abstraction level as REST itself (see Paper 1). In particular,
the framework is designed as a general guideline that is not bound to any specific technology.
This security guideline then can be adapted to any suitable REST-ful technologies, e.g., HTTP
and CoAP, so that any implementation is based on the same security baseline. Following
this approach, this thesis proposes REST Message Authentication (REMA), a generic security
scheme that provides end-to-end message integrity and authenticity for REST-based systems.
REMA then serves a guideline for deriving concrete signature schemes for REST-ful application
layer protocols, including HTTP and CoAP. As a result, Paper 1 introduces REST-ful HTTP
Message Authentication (REHMA) and REST-ful CoAP Message Authentication (RECMA).

REHMA and RECMA ensure end-to-end authenticity and integrity but do not provide any confi-
dentiality protection for REST messages. End-to-end message confidentiality is of paramount
importance for ULS systems as it ensures that sensitive information is not disclosed to malicious
or unauthorized intermediate systems. However, simply encrypting the whole message with the
aim that only the client and server can read the content does not comply with the REST princi-
ples. REST requires messages to be self-descriptive across all intermediate layers and endpoints
to enable stateless communication. The plain encryption of the whole message destroys the
self-descriptiveness. To develop end-to-end confidentiality schemes which are in alignment with
REST principles, the thesis discusses challenges and initial steps towards the development of a
REST message confidentiality scheme based on same methodology for deriving REHMA and
RECMA.

Large-scale analysis of web caching and Cache-Poisoned Denial of Service (Paper 3, 4
and 5)

As mentioned above, REST constraints messages need to be self-descriptive in order to enable
intermediate processing and stateless communication [Fie00]. Intermediate systems such as
caches strongly depend on the self-descriptiveness of messages as they need to interpret certain
message parts in order to identify reusable content. To develop security schemes which are in
conformance with the REST principles, the knowledge on intermediate systems and caches in
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particular need to be well-understood in order to avoid conflicts between security and scalability-
enabling technologies.

To study the impact of intermediate systems on the security and scalability of REST-based
systems, this thesis provides a large-scale study on web caching. Paper 3 conducts an in-depth
literature review on web caching. Based on this knowledge, we proposed a test framework
including 415 test cases and a cache testing tool. The whole test suite with all test cases as well
as the cache testing tool can be freely downloaded as open-source software. More details about
the test framework are included in the Appendix A. With the test suite and testing tool, Paper 3
analyzes the four web browser caches of Chrome, Safari, Firefox and Microsoft Edge. Paper 4
evaluates 6 proxy caches and a CDN. Both papers found many inconsistencies among the caches
as well as many non-conformances, which may lead to potential vulnerabilities.

Further investigations have been conducted to study whether the detected malfunctions can be
exploited to perform practical attacks on real-world ULS systems. Paper 5 presents a novel
class of web cache poisoning attacks. The discovered attack has been coined as Cache-Poisoned
Denial of Service (CPDoS). With CPDoS, malicious clients can sabotage the access to all kinds
of resources. An empirical analysis of real-world caches shows that millions of web sites were
affected. All findings have been reported to the respective parties. Moreover, Paper 5 discusses
countermeasures which have been elaborated in cooperation with affected vendors and other
researchers.

Designing a Cache-ware REST-ful HTTP Message Authentication Scheme (Paper 6)

The knowledge gained from the studies on web caching led to the conclusion that available
HTTP and CoAP signatures do not comply with the caching principles of REST. This also
includes REHMA and RECMA. As a result, Paper 6 extends REHMA to make it cache-
ware (see Paper 6). This extension has been coined as Cache-ware REST-ful HTTP Message
Authentication (CREHMA). With the prototype implementation of CREHMA, Paper 6 evaluates
its compatibility with existing web caches, its performance, and its security. Several reference
implementations of CREHMA have developed and can be downloaded as open-source software.
More details about the reference implementations are included in the Appendix B.

1.5 Thesis Structure and Research Methodologies

This cumulative thesis is organized into eight chapters. The core of this thesis are the Chapters 2
to 7. Each of these chapters includes one research paper. This section briefly summarizes the
goals and research methodology of these papers.

Paper 1 included in Chapter 2 is a consolidated journal article which is based on four publications
([Gor+14a; LN15a; NL15; NL16]). The goal of this article is to emphasizes the need for a
general REST-Security framework as well as to address the first two research questions RQ1
and RQ2. The contribution starts by discussing REST-Security specifics as well as demands.
It takes the SOAP Web Services security stack (WS-Security) [Nad+06] as a role model and
argues that REST-based systems require a similar security stack. To build a REST security
stack, this chapter proposes the design of REST-Security components that is based on the same
abstraction level as REST itself. As with REST, REST-Security components are defined as a
generic guideline including general policies on security-critical assets as well as algorithms for
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protecting them. This generic guideline then serves as a methodical framework which can be
adopted in any REST-based technologies including HTTP and CoAP. To reinforce the need for a
general REST-Security framework, Chapter 2 presents an in-depth related work analysis on 21
available authentication schemes for HTTP and CoAP. The criteria to assess the authentication
schemes are based on a threat model and a list of to be protected message elements. The analysis
points out the limitation and vulnerabilities of current REST-based security means. For instance,
many HTTP signature schemes only protect the request message or do not sign mission-critical
header fields. The evaluation also observes that available HTTP and CoAP signature schemes
are very diverse, although they follow the same objective. All these findings highlight the need
for a more methodical and unified approach, which is mandatory to meet the requirements of a
stable and reliable modern software system. As a result, this publication proposes the general
authentication scheme REMA, a guideline containing policies and algorithms for ensuring end-
to-end authenticity and integrity of REST messages. In the next step, REMA serves as a generic
framework for deriving REHMA and RECMA, which provides end-to-end authenticity and
integrity for HTTP and CoAP messages. The evaluation of REHMA and RECMA shows that
both schemes outperform available HTTP and CoAP signature schemes in terms of security.

Based on the same methodology of implementing REHMA and RECMA, Chapter 2 also dis-
cusses the requirements and challenges for developing a REST message confidentiality scheme.
Likewise, such a scheme should provide a general guideline containing a policy on to be pro-
tected elements as well as algorithms describing how to ensure confidentiality. End-to-end
message confidentiality in REST-based systems must be developed under very specific require-
ments, as REST requires messages to be self-descriptive. The message self-descriptiveness
is affected when the full content of the message is encrypted. A REST-compliant message
confidentiality scheme, therefore, must protect REST messages from unauthorized disclosure
while retaining the self-descriptiveness. Hence, a policy of a REST message confidentiality
scheme must define what message parts are accessible and what message parts must be kept
secret to what class of intermediate system. With such a policy, intermediate systems such as
caches can get write and read access to message elements containing caching information while
remaining message parts comprising sensitive information for other proposes remain encrypted.
As intermediate systems are vital components for the security and scalability of REST-based
systems, the outlook of this chapter requires to study intermediate systems in further work. Such
studies aim to understand the characteristics and interference of intermediate systems to security
and scalability. This knowledge then allows specifying a well-defined read access policy for the
REST message confidentiality scheme.

Chapter 3 provides an empirical analysis of fifteen REST-based service description languages.
Service description languages have been established as a popular and vital approach for machine-
to-machine communication and automatic code generation. The goal of this evaluation is to
study the ability of REST-based service description languages to describe security schemes. As
with the state-of-the-art analysis of REST-based authentication schemes, this chapter reveals
many limitations. For instance, it highlights that only seven of the fifteen analyzed REST-based
service description languages supports the definition of security schemes by default. Moreover,
the supported security schemes are mostly constrained to authentication and authorization
schemes. None of the approaches support HTTP signature schemes by default. Only one service
description language provides an extension that allows describing other protection means.
Another important observation is that all analyzed REST-based service description languages
are only dedicated to HTTP-based application. None of the approaches consider CoAP. Overall,
the chapter emphasizes the huge demand for REST-based API description languages as many
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specifications exist. However, due to the detected shortcomings, this work also argues that
much research is still required to establish such a language as a reliable approach for describing
REST-based security schemes.

Chapter 4 and 5 address the task mentioned in the outlook of Chapter 2 which requires to study
intermediate systems to understand their interference to security and scalability. The main goal
of both publications is to answer RQ3. Both chapters present a large-scale analysis of web
caching. Chapter 4 provides a testing methodology based on the HTTP caching RFC 7234
[FNR14] and an in-depth literature review. This methodology allows deriving a comprehensive
test suite containing 415 test cases for analyzing the caching behavior as well as the compliance
of the web caching system to RFC 7234. With this test suite, eleven popular and widely-used
web caching systems have been systematically analyzed. Chapter 4 focuses on the four web
browser caches of Chrome, Firefox and Safari, and Microsoft Edge. Chapter 5 analyzes proxy
caches and a CDN. Both studies reveal many non-compliances and inconsistencies, which may
lead to malfunctions with serve consequences to security as well as scalability.

The discovered issues of Chapter 4 and 5 build the foundation for Chapter 6. This work
reinforces the investigation in web caching issues and aims at getting more insight to answer
RQ3. During further research on web caching systems, a new class of web cache poisoning
attacks has been found. The Cache-Poisoned Denial of Service (CPDoS) attack affects the
availability of web applications by injecting an error page or useless content into the cache.
Benign clients who intend to invoke the target resource, receive a defective response instead of
the genuine content. As with other web cache poisoning attacks, CPDoS exploits the semantic
gap in the handling of request headers. In particular, it sends a request with an erroneous
header, which is forwarded by the cache without any issues. On the server-side, this request
provokes, however, an error page which is cached and reused by the intermediary to satisfy
further requests of other clients. Chapter 6 presents three variations of CPDoS and evaluates the
practicability of these attack vectors to real-world systems. The HTTP Header Oversize (HHO)
attack takes advantage of the different request header size limits between the cache and origin
server. The HTTP Meta Character (HMC) attack is similar to HMO. It exploits the semantic gap
in handling meta characters. The HTTP Method Override (HMO) attack utilizes the so-called
method overriding headers to initiate a cacheable error page on the origin server. An analysis
on request header size limits, meta character handling, and method overriding header support
with fifteen web caches, reveals that millions of real-world websites are vulnerable to CPDoS.
All findings have been reported to the respective parties. Based on the feedback of the cache
vendors, Chapter 6 provides details on the countermeasures which also have been discussed
with other researchers.

Caches have a significant impact on the security and scalability of REST-based systems. When
used properly, web caching systems provide increased scalability and availability. Caches can,
however, also be exploited to massively impair the scalability and availability as shown by
CPDoS and many other web caching attacks. The consideration of caches in security schemes
is, therefore, of paramount importance in order to be in alignment with the REST principles but
also to mitigate cache-related vulnerabilities. Chapter 7 extends REHMA which was proposed
in Chapter 2 and introduces Cache-aware REST-ful HTTP Message Scheme (CREHMA). Such
an extension is required, since available HTTP signature schemes do not support caches. The
omission of caches in available signature schemes forces to disable caching when end-to-end
security is required. Content providers can use CREHMA with the same security baseline of
REHMA, but with the addition that they can still enjoy the benefits of caching. The contribution
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of Chapter 7 starts with augmenting the threat model of Chapter 2 based on the knowledge of
the studies in web caching. Moreover, the chapter points out the limitation and vulnerabilities of
available HTTP signature schemes related to caching. The extended threat model and related
work analysis then build the basis to derive CREHMA. To make CREHMA cache-enabled,
Chapter 7 appends cache-related headers to the list of to be protected messages elements defined
in Chapter 2. Moreover, the signature and verification algorithm of REHMA have been adapted
to consider caches. In the next step, prototype implementations of CREHMA with distinct
programming languages have been developed to evaluate the compatibility, performance, and
security. The compatibility evaluation shows that CREHMA can be used with all kinds of
real-world caches without the need to change the source code of the intermediary. Regarding
the performance, Chapter 7 demonstrates that CREHMA barely affects latency in comparison
with message exchanges without end-to-end protection. In the security analysis, Chapter 7
additionally highlights that CREHMA thwarts the same attack vectors of REHMA but also can
detect web cache poisoning attacks such as HTTP Request Smuggling [Lin+05], Host of Trouble
[Che+16] and HTTP Response Splitting [Kle04]. The reference implementation of CREHMA
in distinct programming languages are published as free and open-source software, which can
be downloaded via GitHub. More details on the reference implementation of CREHMA can
found in the Appendix B.

Chapter 8 concludes this thesis with a reflection on the contribution as well as an outlook on
challenges and further work in the security for REST-based ULS systems.
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2.1 Introduction

Representational State Transfer (REST) [Fie00] is an architectural style for designing distributed
services systems that scale at large. This is achieved by a set of defined architectural constraints.
REST-based systems have to be, e.g., stateless and cacheable in order to ensure the propagated
scalability. The uniform interface is another important constraint, which provides simplicity of
interfaces and performance of components’ interaction. The benefits coming along by adhering
to these constraints are amongst the main driving forces for the increasing adoption of service
systems based on REST.

Currently only a limited set of technologies exists, which can serve as a foundation for imple-
menting REST-based systems. HTTP [FR14b] is by far the most dominant choice. This fact
is the source for many misinterpretations in which REST is often equated with HTTP. Conse-
quences emerging from this reasoning are manifold. One related to security is the adoption
of transport-oriented protection only, as common for conventional Web-based applications by
means of TLS [Res18]. This is by far not sufficient as an exclusive safeguard for REST-based
services, since they are constrained to be layered. Hence, these systems consists of interme-
diaries, which perform functions on the data path between a source host and destination host,
most commonly on the OSI application layer [CB02]. Examples of such intermediate systems
include caches, load-balancers, message routers, interceptors and proxies. In order to be able
to perform their tasks, intermediate systems need to terminate transport security, which as
a result does not reach from end to end. This remains opaque to the user and the obtained
security level depends on many more stakeholder than the two endpoints. Durumeric et al.
[Dur+17] revealed that many current security interceptors struggle with the implementation of
transport-oriented security protocols, as they build intermediate systems that decrease security
or even provide implementations that are severely broken. Also, transport-oriented security is
not designed to fulfill the security requirements of Ultra Large Scale (ULS) [Fei+06] systems
and distributed service-oriented applications in general. The various entities involved in chained
processing steps require adopting more fine-grained and message-related security means such as
partial encryption and signature as, e.g., provided by the WS-Security [Nad+06] standard for
SOAP-based Web Services [Gud+07].

Moreover, different protocols following the REST principles are starting to emerge in domains
other than the Web or the Cloud. For implementing IoT services, for instance, CoAP [SHB14]
is taking root as REST-compliant protocol. DTLS [RM12], the UDP-based flavor of TLS, is
applicable as transport-oriented security measure here likewise. Again, the REST inherent
constraint of composing systems out of layers, in many cases prohibits the adoption of transport-
oriented security as single line of protection. Especially in the IoT domain, most of the use cases
comprise high security demands, asking for more elaborated and pluralistic safeguards.

The limited protection of transport-oriented security in REST-based systems has already been
addressed by several research and development approaches as will be discussed thoroughly in
Section 2.5. From these, some REST message security technologies have emerged that can
be used in conjunction with transport security. Still, these approaches are available for certain
technologies only, mainly HTTP and CoAP until now. As REST defines an abstract concept, its
implementations are not restricted to these two particular technologies, though. Since REST
has been established as an important paradigm for building large-scale distributed systems,
more REST-ful protocols are expected to evolve prospectively. The Remote APDU Call Secure
(RACS) [Uri19] protocol is one example. It is an emerging REST-ful protocol for accessing
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smartcards. Beside transport-oriented security no further protection means have been proposed
for the RACS draft standard so far.

From these basic observations, the need for a general REST-Security framework gets apparent.
The objective of this paper is to close this gap while providing the following contributions.
First, this paper analyses the actual security demands of REST-based systems thoroughly and
emphasizes the specific REST characteristics that necessitate a dedicated REST-Security, which
needs to be defined at the same abstraction layer as REST itself and independent from any
concrete technology in the first place. Then, a comprehensive consolidated review of the current
state of the art in respect to REST-Security is provided. Finally, the paper contributes a general
REST-Security framework alongside with a methodology on how to instantiate it for a particular
REST-conformance technology stack in order to facilitate the protection of REST-based service
systems of any kind by consistent and comprehensive protection means. Available as well
as upcoming REST-ful technologies will benefit from the introduced methodology and the
proposed general REST-Security framework at its core.

For this purpose, the remaining of this paper is organized as follows. The foundations in respect
to the architectural style REST are laid in Section 2.2. The methodology for deriving the
envisioned general REST-Security framework is laid in Section 2.3. The subsequent sections
follow this methodology accordingly, starting with capturing the demand in terms of required
service security technologies in Section 2.4. Due to the lack of a widespread adoption of REST
other than the Web—but without the loss of generality—the security demands and specific
requirements are analyzed based on the Web Services security stack. In Section 2.5 the related
work and current practice is presented and assessed. A general security framework that reflects
the particular characteristics and properties of REST is introduced in Section 2.6. Based on
this approach, Section 2.7 proposes an adoption of the framework to two prevalent concrete
REST-based protocols, HTTP and CoAP. An experimental evaluation of these schemes against
the related work based on prototype test-beds is given in Section 7.7. The paper concludes in
Section 2.9 and provides a brief discussion on future research and development demands.

2.2 REST Foundations

Besides the dissertation of Roy Fielding [Fie00] there does neither exist a definition nor a unified
understanding of the term REST and its underlying principles and concepts. Often enough it is
mistaken as being a standard composed of its underlying foundations HTTP and URI [BFM05].
The source for this diffuse view on REST lies mainly in the fact that the two aforementioned
standards have been the only notable technology choice for implementing REST-based service
systems ever since. For the purpose of this paper it is henceforth demanding that the term REST
is defined unambiguously.

The aim of REST is to provide a guideline for designing distributed systems that possess certain
traits including performance, scalability, and simplicity. These architectural properties are
realized by applying specific constraints to components, interfaces, and data elements. These
constraints are subsequently introduced with the guidance of Figure 2.1.

REST is constrained to the client-server model in conjunction with the request-response com-
munication flow. A REST client performs some kind of action on a targeted resource by issuing
a request. For this, the request must contain a resource identifier and the action to apply to the
addressed resource. Depending on the action, the request and response messages may contain
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additional meta data elements, which are categorized in resource data, resource meta data,
representation data, representation meta data, and control data. The set of available actions in
conjunction with a unique scheme for identifying resources as well as the additional meta data is
known as the uniform interface since it is consistent for all managed and provided resources.

Request
• Actions
• Resource Identifier
• [Resource Representation]
• [Caching]
• [Authentication]
• [Session]
• [Size]
• [Media	Type]
• ...

Uniform	Interface
(Request	Processing)
• Create
• Read
• Update
• Delete
• ...

Response
•Meaning
• [Resource Representation]
• [Resource Identifier]
• [Caching]
• [Authentication]
• [Session]
• [Size]
• [Media	Type]
• ...

Resource
Processing

State	Change

Resources
• users
• products
• locations
• pictures
• videos
• news
•messages
• documents
• events
• devices
• sensors
• …

REST	Client REST	Server

Intermediate	Systems
(Middleboxes)

Figure 2.1: Overview of the REST constraints and principles (on the basis of [Gor+14a])

Since REST-based systems are constrained to be stateless, messages need to contain all required
data elements in order to relieve the server from maintaining state for each client. As REST
messages embody all required data elements, which are predefined and standardized by the
uniform interface, their semantics are visible and are hence self-descriptive for all intermediaries
and endpoints so that all components in a REST architecture can understand the intention of
a message without knowing each other in advance. In a request to read access a resource,
for instance, the request contains the resource identifier along with representation meta data
to signal in what data format the resource should be delivered from the server to the client.
Moreover, a request can include further meta data required by intermediaries including state
and caching information. The according response provides information on its meaning and in
case it denotes that the addressed resource is available, it is contained in the message body in
the requested representation. Once a response is received, it transfers the receiving client into
a new state. In another setting, in which the request triggers the creation of a new resource,
the request contains the resource in the request message body in some representation. The
response then gives feedback on the resource state and whether it has successfully created or
not. Again, further meta data elements can be included in addition, providing information on the
authentication, the session and the freshness of a resource in respect to caching. Moreover, the
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meta data elements as well as the resource representation of the response may contain further
resource identifier—i.e. hyperlinks. Based on these resource identifiers and their description,
a client is able explore other resources and transfer its state by starting a new request with a
distinct resource identifier and meta information. This REST property is known as Hypermedia
As The Engine Of Application State (HATEOAS).

REST

REST-ful HTTP REST-ful CoAP REST-ful X

Web	Services,	 Cloud Services,
Smart-*	 Services, Industry 4.0	
Services,	 ...

IoT Services,	Smart-*	 Services,
Industry 4.0	Services,	...

Figure 2.2: Instantiation of the general REST architecture style to specific REST-ful protocols

The principles and constraints representing REST are fairly abstract making it adoptable in any
environment that contains technologies suitable for implementing the REST constraints. This
coherence is illustrated by Figure 2.2. HTTP is one protocol that is in conformance with the
REST constraints and principles as it is based on the client-server model and the interaction is
stateless. Moreover, it specifies a uniform interface, which specifies a set of predefined request
actions, i.e. the HTTP methods, and a set of additional meta data for transferring different
resource representation or controlling the cache behavior for example. Additionally, HTTP
uses a resource identifier syntax, i.e. the URI standard [BFM05], for addressing resources.
An instantiation on the technological basis of HTTP results in REST-ful HTTP [LN15b], the
foundation for building REST-based Web, Micro or Cloud services, which in turn are used to
build Smart-* and Industry 4.0 applications. More specifically, the fifth generation of mobile
communication systems (5G), e.g., adopts REST-ful HTTP for implementing a Service-based
Architecture (SBA) providing core network functions as REST-ful services [Mao+]. Another
evolving application domain of REST can be found in the Internet of Things (IoT) [Car+18].
Here, the REST-conformance Constraint Application Protocol (CoAP) [SHB14] is used to
implement distributed service systems consisting of a large number of resource-restricted nodes
[BCS12]. CoAP adopts most of the HTTP characteristics. It utilizes the same request actions
and the URI standard for specifying the uniform interface. Also, CoAP defines similar meta
data for transferring and controlling the cache behavior. The main difference between CoAP
and HTTP lies in the fact that CoAP is a binary protocol, whereas HTTP is text-based. Other
technical instantiations of REST are equally possible and might appear in the future such as the
Remote APDU Call Secure (RACS) [Uri19] protocol, which is still being standardized. This
abstraction hierarchy is an important fact to consider carefully when researching on REST or
REST-Security.
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2.3 Methodology

To derive a general framework for REST-Security, the methodology depicted in Figure 2.3 has
been applied. In a first phase (see Section 2.4 for details), the specific needs of REST-based
systems in terms of security have been derived by analyzing available standards and academic
work in related domains and contrasting them with characteristics of REST-compliant systems.
Moreover, a common and realistic threat model is defined and used as a basis for the subsequent
phases.

Section		2.4 Section	2.5	

Section	2.8	 Sections	2.6	
and	2.7

	 	

REST-Security
Demands/Specif cs Threat Model

Vulnerability
Analysis

Related Work on"
REST-Security

HTTP CoAP

Generalization/
Hardening

General
REST-Security

Evaluation

Figure 2.3: Adopted methodology to derive a general framework for REST-Security

To obtain an in-depth understanding on how REST messages are protected by available means,
a comprehensive study of schemes introduced in literature as well as deployed in practice has
been executed (see Section 2.5 for details). 21 approaches have been identified in total and all of
them have been evaluated in respect to the specific security demands of REST-based systems
and the determined threat model.

As none of the analyzed REST message security schemes fulfills all necessary requirements and
is free of vulnerabilities in the given threat model, a new approach to REST-Security has been
developed in an adjacent activity (see Sections 2.6 and 2.7). Governed by the main outcomes of
the previous studies, the generalization as well as hardening of the proposed schemes have been
the goal. To be able to get a proof-of-concept, particular entities of the general REST-Security
framework have been instantiated. As most of the available related work is focusing on REST
message authentication, the implemented instantiations of our framework do so as well for
HTTP and CoAP.

To evaluate the derived and introduced general REST-Security framework and more specifically
its particular instantiations have been examined in experimental test-beds using prototypes (see
Section 7.7 for details). For this purpose, implementations of the related schemes—as far as
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openly accessible—have been integrated in experimental test environments. For comprehen-
sibility reasons the source codes of the introduced scheme REHMA and RECMA have been
published and made available in the public domain.

2.4 REST-Security Demands and Specifics

When considering REST for the design of service systems of any kind, the general security
demands of SOA [KC08] apply. The ability of REST-based systems to also comply with the
SOA principles has been analyzed and shown in [Gor+14b]. As SOAP-based Web Services
have been and still are a dominant technology stack for implementing SOA-based systems, the
evolved security stack for SOAP-based Web Services can serve as reference [Gor+14a].

2.4.1 SOAP-based Web Services Security Stack

The SOAP-based Web Services technology stack includes an extensive set of security standards
(see Figure 2.4) [Gor+14a].
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Figure 2.4: Security stack for SOAP-based Web Services [Gor+14a]

SOAP uses XML [Bra+08] as platform-independent and extensible data description language
for defining the structure and semantics of the protocol messages. To ensure basic security
services for SOAP messages such as confidentiality and integrity, the WS-Security [Nad+06]
specification has been standardized, which is based on XML Encryption [Ima+13] and XML
Signature [Bar+08]. Upon these foundations, further reaching security concepts are provided.
The fundamental condition for any security systems is trust. WS-Trust [Nad+07] introduces
a standard based upon WS-Security for establishing and broking trust relationships between
service endpoints. WS-Federation [GN09] extends WS-Trust in order to federate heterogeneous
security realms. It provides authorization management across organizational and trust boundaries.
The authorization management within those realms is described in WS-Authorization. Privacy
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constraints are covered by the WS-Privacy specification. It allows handling privacy preferences
and policies between client and server. Secure communication, trust, federation, authorization
and privacy need a mechanism to negotiate and handle security policies. WS-SecurityPolicy
[Nad+12] specifies how constraints and requirements in terms of security are defined for SOAP
messages. It is a framework, which allows Web Services to express their security demands as
a set of so-called policy assertions. WS-SecureConversation [Nad+09] expands the security
mechanisms for a conversation between two communication partners. This OASIS standard
defines how a secure exchange of multiple messages has to be established in terms of a session
[RR04].

2.4.2 REST-ful Services Security Stack

REST-based services require a comparable set of technologies in order to enable developers to
implement message-oriented security mechanisms as required by the surrounding application
context.

The currently available security stack is, however, rather scarce in comparison to the SOAP-based
Web Services security stack (see Figure 2.5) [Gor+14a].
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Figure 2.5: Desired security stack for REST-based Web Services [Gor+14a]

Even the fundamental message security layer is not available completely (visualized by the
dashed area) [Gor+14a; LN15a]. Some standards related to the authorization of service invo-
cations such as OAuth [Har12] and drafts on identity federation [Hed+18] are at hand, but the
rest of the higher order security concepts including trust, secure conversation and so forth are
lacking entirely. Still, the depicted security stack for REST-based services is a necessity and
thus needs to be developed.
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2.4.3 REST-Security Specifics

Although both security stacks have their similarities, the plain adoption of WS-Security to REST
and instantiations of REST is not feasible in a straightaway manner. The specifics of REST have
to be considered carefully in order to obtain a suitable and seamless security for REST-based
services.

What needs to be taken into account first is the abstraction layer of REST and its instantiations.
REST itself is a very general concept and needs to be handled accordingly. Thus, a simple
mapping of the concrete WS-Security technologies to construct REST-Security is not feasible,
since both reside on different abstraction layers. Since REST represents an abstract model,
security components for this architectural style need to be considered and defined on the same
abstraction layer as well. Consequently, REST-Security needs to be a general framework
composed of definitions, structures and rules on how to protect REST-based systems. The term
general in this context has to be understood as generic in the sense that the schemes contained in
the REST-Security framework are not bound to a specific REST-based technology or protocol
only, but are applicable to any REST-ful technology. Such a general REST-Security framework
would then support a guided adoption and implementation to any concrete REST-ful protocol
(see Figure 2.6).

General 
REST-Security

Framework

REST-ful HTTP 
Security Framework

REST-ful CoAP
Security Framework

REST-ful X 
Security Framewok

Web Service security stack, ... IoT Service security stack, ...

Figure 2.6: Instantiation of the general REST-Security framework to specific REST-ful
protocols

Another REST specific is that there is no self-contained REST message, but the relevant data
items are scattered around the service protocol and the service payload (see Figure 2.7). SOAP
messages, in contrast, are a self-contained XML structure. Both, the meta data as well as the
payload in form of a service operation or its corresponding result are enclosed in one XML
document. Thus, with the application of security mechanisms based on the technologies shown
in Figure 2.4, both message parts can be covered. This is, however, not the case for REST
messages. Referring again to REST-ful HTTP as an example, the meta data is included in the
HTTP header, whereas the resource representation is inside the HTTP body. Since both parts are
disjoint for many reasons, distinct security mechanisms need to be applied in a balanced manner.
If this is not being recognized, novel vulnerabilities might be exploitable in the future.

Table 2.1 shows a set of possible attack vectors, which can be applied to REST-ful HTTP
messages that do carry a protected body only. The assumed attacker model is a common man-
in-the-middle (MITM) attack, in which an intruder is able to tamper the whole HTTP request
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Figure 2.7: Comparison of the SOAP-based service message structure with a REST service
message structure exemplified by a REST-ful HTTP instantiation

and response messages due to exploited transport security vulnerabilities or a compromised
intermediate system. Attack #1 is based on a GET request that does not contain a resource

# Original REST-ful HTTP message Tampered REST-ful HTTP message
1 GET /resources HTTP/1.1

Host: example.org
Accept: application/json
Content-Length: 0
Connection: keep-alive

DELETE /resources HTTP/1.1
Host: example.org
Accept: application/json
Content-Length: 0
Connection: keep-alive

2 GET /resources HTTP/1.1
Host: example.org
Accept: application/json
Content-Length: 0
Connection: keep-alive

GET /evilresources HTTP/1.1
Host: attacker.org
Accept: application/json
Content-Length: 0
Connection: keep-alive

3 PUT /resources/3 HTTP/1.1
Host: example.org
Content-Length: 100
Content-Type: application/jose+json
Connection: keep-alive

<protected body>

DELETE /resources/3 HTTP/1.1
Host: example.org
Content-Length: 0
Content-Type: application/jose+json
Connection: keep-alive

<protected body>
4 POST /resources HTTP/1.1

Host: example.org
Content-Length: 100
Content-Type: application/jose+json
Connection: keep-alive

<protected body>

POST /resources HTTP/1.1
Host: example.org
Content-Length: 120
Content-Type: application/jose+json
Connection: keep-alive

<replaced malicious protected body>
5 HTTP/1.1 201 Created

Content-Length: 0
Connection: keep-alive
Location: http://example.org/resources/4

HTTP/1.1 201 Created
Content-Length: 0
Connection: keep-alive
Location: http://attacker.org/resources/4

6 HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 100
Content-Type: application/xml

<protected body>

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 100
Content-Type: application/xml
Cache-Control: max-age=7200

<protected body>

Table 2.1: Possible attack vectors on unauthenticated REST-ful HTTP messages

representation. Thus, the whole HTTP message remains unprotected providing the surface for a
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malicious twist of the GET method by, e.g., the DELETE method. The second attack tampers the
resource path and the Host header with the aim of redirecting a client to the attacker’s resource.
The attack in row 3 emphasizes that even if a message includes a protected body, an attacker is
still able to spoof the unsecured header. In the provided case, the attacker can manipulate the
HTTP method and the Content-Length header in order to construct a valid DELETE request.
Moreover, a malicious replacement of a resource representation is also feasible as shown in row 4.
Here, an adversary can substitute a resource representation with its own resource representation.
Similar attacks are also possible on responses. Row 5 depicts an example, where the Location
header is changed in order to forward a client to a malicious resource. The attack in row 6
presents a deception of the cache behavior. This manipulation misleads the client or proxy to
save the response for two hours. As a consequence, any further requests in the next two hours
to this resource will be replied by the cache and not by the origin server so that the client can
no longer notice a change of the actual resource state. These possible attack vectors can be
transferred analogously to REST-ful CoAP messages that are described in [NL15]. Note, that
Table 2.1 lists a set of potential attacks vectors, which the authors identified and considered
critical. This is not a exhaustive list yet. Future work may uncover additional attack vectors that
will provide more arguments for appropriate message-level safeguards.

2.5 Related Work Analysis

The argued need for a general REST-Security framework is further examined by an analysis
of the current practice and the available research. The analysis captures the correct security
mechanisms and evaluates them according to the specific of REST-based systems and the
attacker model given in the previous section. The related work has evolved so far in a relevant
manner on REST-ful HTTP and REST-ful CoAP only. Moreover, most of the available work has
been conducted in relation to basic service message security with a focus on authentication and
authorization. Thus, the subsequent analyses are driven by these prerequisites [LN15a].

Note, that in comparison to [PCA16] the related work analysis focuses on approaches protecting
the specifics of the uniform interface of REST-based systems in general. Security techniques
targeting a specific application domain are not considered. That is, protection means referring to
vulnerabilities of conventional Web applications such as cross-site scripting (XSS), cross-site
request forgery (CSRF) or SQL injection are therefore out of scope.

2.5.1 HTTP Basic and HTTP Digest Authentication

HTTP Basic [Res15] and HTTP Digest Authentication [SAB15b] have been the two first
standards for authenticating HTTP requests. Both schemes require a username and a password
for the authentication process. If a client tries to access a resource, which is protected by
one of these mechanisms, the server returns an error response message including the WWW-
Authenticate header containing the name of the mechanism, i.e. Basic or Digest, and a realm
which is a description of the secured resource. In case of Basic Authentication, the client must
authenticate itself by sending the former request with an Authorization header, which includes
the base64-encoded username and the password. The, i.e, plain-text transfer of username and
password transfer is the main downside of this approach. To protect this sensitive information
in transit, TLS must be applied additionally. If transport-oriented security is not available, the
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hole message remains unprotected and password eavesdropping as well as any kind of request
manipulations including the ones in Table 2.1 are feasible.

HTTP Digest Authentication provides a slightly improved approach, as it does not transfer
the credentials in clear-text. Here, the username and the password are hashed. Besides the
username and password the hash computation includes the URL path, the HTTP method, a
client- as well as a server-generated nonce, a sequence number and optionally a quality of
protection description. Since this scheme considers the HTTP method and the URL path in the
hash calculation, a manipulation of these request message elements is not feasible. However, an
attacker can still perform malicious changes of other message entities such as distinct headers
and the body.

The other main drawback of both authentication mechanisms is that the request can be authen-
ticated only. Servers are not able to authenticate their responses opening the door for MITM
attacks.

2.5.2 API-key

API-keys are randomly generated strings, which are negotiated out-of-band between client and
server. An API-key is added to the URL or header of every request. According to an analysis of
the Web API directory ProgrammableWeb, API-keys are currently the most used authentication
mechanism in REST-based Web Services [NTL17].

API-keys share the same drawbacks as HTTP Basic Authentication. The API-Key is transferred
to the server in plain-text. Thus, the credentials are only protected during transit if transport-
oriented security means such as TLS are being used.

2.5.3 HOBA

The experimental RFC HTTP Origin-Bound Authentication (HOBA) [FHT15] is a challenge
response HTTP authentication method based on digital signatures. If a distinct resource is
protected by HOBA and accessed without authentication, the server returns an error response
including the WWW-Authenticate header. This header contains a challenge string, an expiration
date and an optional realm. To access this protected resource, the client needs to create a
signature covering a client-side generated nonce, the base URL of the request, the signature
algorithm name, the optional realm, the key identifier and the challenge string. The resulting
signature value must then be included in the Authorization header together with the key identifier,
the challenge string and the nonce.

HOBA does not ensure the integrity of HTTP requests. To do so, each data transfer in HOBA
must be protected by TLS. If transport-oriented security is not present, any malicious change
of the request can be performed. As with HTTP Basic, Digest and API-keys, Authentication,
HOBA considers the authentication of requests only and does not provide the option to protect
responses.
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2.5.4 HTTP SCRAM

Salted Challenge Response HTTP Authentication Mechanism (HTTP SCRAM) [Mel16] is
another experimental RFC. The authentication process is structured in two steps. In the first one,
the client sends a request containing an HMAC signature algorithm name, the username and
a self-generated nonce. The server replies with the client-generated nonce concatenated with
a server-generated nonce, a salt and a sequence number. Based on this information, the client
performs the second authentication step. It computes an HMAC signature composed of the
password, the salt and the sequence number. To access the HTTP SCRAM protected resource,
the calculated signature value is embedded in the Authorization header including the client-
generated nonce concatenated with the server-generated nonce and an HTTP SCRAM-specific
description. Once the server receives this request, it verifies the signature and the concatenated
nonces. If both values pass the verification process, the server returns the desired response to the
client. The response contains a signature value as well which is created by means of the client’s
password, the salt and the sequence number, so that the client can proof the authenticity of the
responding server.

Unlike HOBA, API-keys as well as HTTP Basic and Digest, HTTP SCRAM provides the
option to authenticate requests as well as responses. However, this approach does not guarantee
the integrity of the whole message, as the signature does not cover the body and most of the
headers.

2.5.5 Mutual Authentication Protocol for HTTP

The experimental RFC Mutual Authentication Protocol for HTTP [Oiw+17a] is an approach
for authenticating requests and responses without sending the user’s password in plain-text. To
transfer the password in a confidential manner, the client as well as the server generates a key
exchange value each. The generated exchange value of the client is sent via a request to server
and the generated exchange value of the server is returned to client by a response.

Based on these client- and server-generated key exchange values, a session secret is calculated.
The client as well as the server use this session secret to create a verification value. Included
within the Authorization request header of the request or the Authentication-Info response
header, the verification value serves as a parameter for the server and the client respectively for
validating the authenticity of the communication partner’s received messages.

The procedure for computing the verification value, the key exchange value and the session
secret is not specified in [Oiw+17a]. A description of algorithms for computing the credentials
is provided in a separate specification [Oiw+17b]. Here, the key exchange values are randomly
generated. The session secret is a SHA-256 or SHA-512 hash calculated from the key exchange
values of the client and the server as well as the user’s password. Alternatively, the session
secret can be calculated via elliptic curve digital signatures, which integrates the key exchange
values and the password in the computation process as well. Both verification values are hashes
or digital signatures based on the key exchange values and the session secret.

As the name implies, this approach provide a mutual authentication protocol for clients and
servers to verify the authenticity of requests and responses. However, only authenticity can be
ensured by this specification. Similar to HOBA and HTTP SCRAM, neither the client nor the
server can validate whether other headers or the message body has been manipulated.
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2.5.6 De Backere et al.

De Backere et al. [De +14] present security mechanisms for REST-based Web Services focusing
on mobile clients. Their protection scheme requires the client to authenticate with the username
and the password before retrieving any resources. If the authentication process is successful, the
server returns a symmetric key as well as a token representing the key identifier and a timestamp
for avoiding replay attacks. Based on these three credentials, a client can send authenticated
requests. This is realized by embedding the token and timestamp within the request. The
next step signs the request body with the symmetric key. Optionally, the same symmetric
key can also be used for encrypting the request body. To protect the response, the server can
utilize the generated symmetric key for authenticating and encrypting the body of the responses.
Alternatively, the approach of De Backere et al. provides the option to sign the response body
with the server’s private key.

The advantage of this approach is the consideration of authenticity, integrity and confidentiality
of HTTP requests and responses. However, only the message body is protected by this scheme.
The header is left unprotected. Another drawback is a missing description defining whether
the token, the timestamp and the computed signature value must be included in the header or
body.

2.5.7 Peng et al.

Peng et al. [PLH09] present an academic approach which is based on HTTP Basic and HTTP
Digest Authentication (see Section 2.5.1). This scheme requires the client to compute two
hashes, which are then added to the HTTP header. The first hash is calculated on the basis of a
server-generated nonce, a timestamp and a password. The second one is a hash of the username,
the realm, the server-generated as well as client-generated nonce, the sequence number, the
corresponding HTTP method and the URL path. Both computed hashes including the nonces,
the timestamp, the sequence number and the realm are stored in new defined headers before
sending the message to the server.

The authentication mechanism of Peng et al. only considers the HTTP method and the URL
path in the hash calculations. Other header entries and the body are not secured. Moreover, the
approach offers neither an authentication nor an integrity protection of the response.

2.5.8 FOAF+SSL/WebID

The Friend-of-a-Friend project (FOAF) [BM14] project aims to define a specification for linking
people and information on the Web. In FOAF people, agents, groups and their relations can
be described in a machine-readable manner. FOAF+SSL [Sto+09], also known as WebID
[SH13], extends FOAF by authentication. The trust model of FOAF+SSL is based on the Web
of Trust (WOT) [KR97] where each entity acts as a trusted third party. Each WebID certificate
contains a link to a corresponding FOAF description, in which a entity and its relations to other
entities are defined. Based on this description and references a WOT can be built. As the name
FOAF+SSL implies, the WebID certificate is used to establish a TLS connection likewise. Doing
so, authenticity, confidentiality and integrity can be ensured in the transport layer.
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FOAF+SSL does not provide any safeguards for the application layer. The security is based on
TLS and WOT only. Thus, systems using FOAF+SSL for authentication are still vulnerable for
the attacks described in Table 2.1.

2.5.9 Google, Hewlett Packard and Microsoft

The cloud storage services of Google [Goo17], Hewlett Packard (HP) [Hew14] and Microsoft
[Mic17] utilize an enhanced API-keys mechanism that prevents eavesdropping the key in transit.
Instead of simply including the API-key directly to the URL or HTTP header, clients signs the
request. Conceptually, the core signing process of all three operating cloud storage services is
equal. A string to be signed is constructed by concatenating the HTTP method with the resource
path including the query (unless HP, which makes use of the resource path only) and a fixed
set of headers. Independent of the exact composition of these sets, only the timestamp entry is
mandatory. All other specified headers—including for instance the Content-Type or Content-
MD5 entries—are optional. The concatenated string is signed by the API-key. The signature
value is enriched with further signature-related meta data such as the signature algorithm name
and a key identifier. This generated authentication information is finally inserted into the
Authorization header. Google supports an alternative option, which allows incorporating the
authentication information inside the query part of the URL.

The defined sets of headers to be considered by each of these provider-proprietary approaches
do not consider all security-relevant message elements (see Table 2.1). Missing entries include,
for instance, the Host and the Connection header. These omissions enable an adversary, e.g., to
redirect the message to another system or to manipulate the connection management. Moreover,
the providers do not stringently require considering a hash of the body in signature computation.
Clients may create the Content-MD5 header to integrate a hash of the body in the signature, but
they do not have to. Integrating a hash value covering the body’s resource representation into
the string to be signed is a vital requirement in order to provide the integrity of the whole REST
message. Ignoring this opens the door for spoofing the resource representation. The last but
not least observed issue is the lack of mutual authentication, due to leaving the response out of
the protection sphere. Thus, a client cannot proof the authenticity of a response providing the
surface for MITM attacks.

2.5.10 Amazon

Another provider-proprietary approach deployed by the Amazon Simple Storage Service (S3)
requires service invocations over HTTP by to be signed [Ama19b]. As with the other three
commercial cloud storage services, S3 concatenates the HTTP method, the URL’s resource path
including the query and a set of headers to a string that is to be signed. The authentication
approach of Amazon offers, however, more flexibility as it allows protecting application-specific
headers. This is realized by a list that specifies the headers required to be appended before
signing or verifying the HTTP message. When this list is used, the request must contain at
least the Host header, a header containing a timestamp and the x-amz-sha256 header, which
stores a SHA-256 hash of the body. The list is then stored together with the signature value and
the remaining authentication information either within the Authorization header or in the URL.
Based on this list, the S3 service checks what headers are covered by the signature. If one of the
required headers is not contained in the list, the service rejects the request.
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The benefit of Amazon’s approach is the required hash of the body in the signature genera-
tion. Amazon sets, however, the Host header, the timestamp and the x-amz-sha256 header as
mandatory only. Consequently, further important meta information such as the Content-Length,
the Content-Type and the Connection header are not considered. Thus, an attacker is able
to manipulate the resource representation and the connection, if these headers have not been
signed. With the aid of the list, an adversary can extract what has been signed and what not. If
the Content-Length and Content-Type header are not in the list, a replacement of the resource
representation with another resource representation with the same hash value is feasible. Taking
the two aforementioned headers into account is crucial to mitigate such attacks. By this, the
attacker has to find a resource representation that has the same hash value, size and media type
as the actual body. Also Amazon’s HTTP authentication scheme suffers from not taking the
response into account.

2.5.11 Signing HTTP Messages

A standard dealing with the authentication of HTTP messages is the Signing HTTP Messages
draft of the IETF [CS19]. Similar to the discussed proprietary approaches, a signer has to
concatenate the HTTP method, the resource path including the query and a set of headers to a
string to be signed. The concatenation order of the headers is determined by the signer, which
creates a corresponding list. This list is embedded in the Authorization or the newly defined
Signature header together with the signature algorithm name, the key identifier and signature
value. Using this list, however, is not required. An absent list results in considering the Date
header in the signature generation only. Consequently, a present list must contain at least a Date
entry.

Besides this header, the proposal does not consider additional meta data relevant to ensure HTTP
message authentication. The client can optionally add more header entries to the signature string
if required and aware of the consequences of a too narrow protection sphere. Furthermore, the
draft does not require incorporating a hash of the body in the signature computation. Moreover,
it does not make clear, how a server needs to authenticate a response. Signing the response is
mentioned at the beginning of the draft, but in the rest of the specification it is not elaborated
any further.

2.5.12 OAuth

OAuth [Ham10; Har12] is an authorization framework for granting access to end users’ resources
for third party applications. Currently, two versions of OAuth have been published.

The OAuth v1 specification of the IETF [Ham10] has an inherent support for protecting a request
by a signature. The signature string is the concatenation of the HTTP method, the resource
path including the query, the Host header and a set of OAuth v1 specific parameters. The latter
parameters consist of a realm, a key identifier that is called consumer key, an OAuth token, a
timestamp and a nonce. OAuth v1 does not enable to add any other parameters or headers in the
signature. The authentication information is stored in the Authorization header. Like the other
approaches discussed so far, the authenticity of the request is considered solely. No means for
signing a response have been defined.
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In contrast to the first version, OAuth v2 does not include any security means on its own [Har12].
Instead, the security is merely based on TLS. If a message-oriented protection is yet required,
OAuth v2 can be augmented by either the OAuth MAC Tokens [RMT14] specification or by
the extension A Method for Signing an HTTP Requests for OAuth [RBT16]. The OAuth MAC
Tokens draft demands to sign the HTTP method, the resource path including the query and at
least the Host header. Further meta data can be considered by defining a list similar to some of
the previously discussed approaches. The resulting signature value has to be included into the
Authorization header.

The second OAuth v2 extension A Method for Signing an HTTP Requests for OAuth uses JSON
Web Signature (JWS) [JBS15] to guarantee the authenticity of HTTP messages. The JWS object
used in this specification owns a set of members, which contains the method, the host including
the port, the resource path, the query, the headers, an HMAC authenticator of the body and a
timestamp. Using JWS as the pillar can be a stable groundwork, since it is a well advanced
IETF draft for signing JSON objects [Bra17] that is already used in many applications. However,
the main drawback of this specification lies in the fact that all mentioned JSON members are
optional. Even though most of these elements are vital to guarantee the authenticity and integrity
of an HTTP message, none of them is set as mandatory for the signature. Also, this draft does
not state any information whether the JWS object is stored in a header or in the body.

The common problem of both OAuth versions is the tight coupling to the actual application
domain of these authorization frameworks. As a result, adopting these standards to other contexts
is not feasible in a straightforward manner. As with the other approaches, the major disadvantage
of the OAuth protocols is that they do not specify a protection of the response.

2.5.13 Serme et al.

Serme et al. [Ser+12] introduce the first approach addressing the protection of HTTP responses
by proposing a REST-ful HTTP message authentication protocol, which protects the request
as well as the response. Their approach introduces new headers containing the certificate ID,
the hash algorithm and the signature algorithm name. The input to the signature algorithm is a
concatenation of the body, the URL, the hash algorithm name, the signature algorithm name,
the certificate ID and a set of headers forming a string to be signed. The generated hash and
signature values are stored in separated, newly defined headers each. Moreover, Serme et al.
propose an encryption and decryption scheme for HTTP messages.

One drawback of [Ser+12] is the missing reference implementation. This paper provides two
pseudo code notations of the signature generation and verification schemes as well as another
two of the encryption and decryption schemes. These algorithms do not clearly state whether a
timestamp or the HTTP method are considered in the processing. Moreover, they do not specify
any order of the concatenation or some form of policy, which retains the order. Likewise, the
approach does not define what headers need to be obligatory protected. That is, it is not clear
whether all headers or a subset of them must be signed/encrypted.

2.5.14 Lee et al.

Lee at al. [LJK15] [LJK17] define a method for signing and encrypting HTTP messages. The
key pairs for performing the encryption, decryption and digital signatures are generated by a
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third party entity. Before a client and a server are starting to communicate with each other, both
parties must request two public points (p1, p2), representing the master public key, and a private
point (sQ) from a Private Key Generator (PKG). The PKG is the trusted third party service. Its
only task is to send the master public key and the private point.

Based on this master public key and the other endpoint’s URL, the client and the server can
compute the public key of their communication partner. The private point sQ is then used by
both parties to calculate their own private key respectively. Once the key pairs and the public key
of the counterpart is present, the client and the server can use the communication partner’s public
key to encrypt the HTTP message. Before starting the data transfer, the encrypted message is
signed by the private key of the corresponding endpoint.

The approach of Lee at al. ensures the authenticity, integrity and confidentiality of the whole
HTTP message. Moreover, requests as well as responses are protected by this scheme. However,
the encryption of the whole message with the aim that only the endpoints are able to decrypt and
interpret, violates the self-descriptive constraint of REST messages [Fie00]. That is, only the
client and the server can understand the intention of the message. Intermediate systems are not
able to process the fully encrypted and signed message, as they possess neither the corresponding
private key of the client nor the server. If an intermediary is not able to understand and process a
traversing message, it may reject forwarding the message or cancel the communication. Hence,
ensuring the confidentiality of REST messages requires to cope with special challenges in order
to be in conformance with the REST principles. Requirements for defining a confidentiality
scheme in REST are discussed in Section 2.6.3. Another shortcoming of this approach is a
missing time variant parameter in the signature process, which makes the scheme vulnerable to
replay attacks.

2.5.15 OSCORE

Object Security for CoAP (OSCORE) [Sel+18] is a draft standard providing encryption, integrity
and replay attack protection for CoAP messages. The CoAP message payload and a set of
security-relevant headers are protected by OSCORE. Still, some other security-critical header
entries including the Token Length, Message ID, Token and Max-Age option as well as the meta
information for the body length are left unprotected. The reason why leaving out the first four
meta data lies in the fact that these entries may be changed by intermediate nodes. However, not
considering these meta data elements opens the door for man-in-the-middle attacks. Possible
attack vectors can be spoofing the Message ID and Token in order to provoke a mismatch
between requests and responses. Also, sending the Max-Age option without any protection is
critical, as it has a similar functionality like the Cache-Control header in HTTP. When it gets
tampered, the freshness of the response is corrupted analogously to attack #6 in Table 2.1. On the
contrary, signing these header entries to avoid the aforementioned attacks prevents middleboxes
from changing these elements. Thus, leaving out these header entries from the protection sphere
and protecting these meta data elements induce issues on both sides. To resolve this problem,
an enhanced approach has to ensure the integrity of these header entries and it must allow
intermediate systems to modify the meta data elements simultaneously. Moreover, OSCORE
does not consider protecting the integrity of the body length meta information. The reason
behind this might be that no header for the body length is specified in the CoAP standard, as this
information must be extracted from the UDP packet. This omission enables the manipulation of
the body as manifested by attack #4 in Table 2.1.
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According to the specification, messages protected by OSCORE are not intended for being
cached. Each response is strictly bound to its corresponding request. Not supporting the option
to cache messages may lead to a low scalability and violates the cacheability principle, which is
one of the most vital REST constraints. Also, the OSCORE specification does not provide a
protection for acknowledgment and reset messages. As both messages are utilized to confirm
or reject a CoAP request or response, they must be secured as well. This prevents attacker
from replacing an acknowledgment message by a reset message or vice versa. Another issue of
OSCORE is a missing description that lists additional or application-specific header entries to
be signed and/or encrypted.

2.5.16 Granjal et al.

Granjal et al. [GMS13] propose a scheme that signs and/or encrypts CoAP messages. This
approach offers the options to encrypt a message, sign a message or sign as well as encrypt a
message. However, the authors do not provide any policy, which specifies a list on the to be
protected header entries. The proposed approach computes a signature and an encryption over
the entire CoAP message including the payload and all present header entries. The resulting
cipher-text and signature value are then stored in newly defined security headers which contain
information on the security context such as the key type, whether the message is encrypted,
signed or both and the destination. The latter information can refer to endpoints, i.e., client and
server, or intermediate systems. A CoAP message may include one or multiple instances of
these security header entries. Thus, the approach of Granjal et al allows to compute signatures
and cipher text for multiple endpoints and intermediaries which enables an intermediate system
to verify and decrypt traversing messages. However, the paper does not describe whether an
intermediary is able sign and decrypt a message itself. This is an important property of a
REST-ful security scheme in order to comply with the layered system constraint. This principle
enables intermediate systems to interpret and transform the content of a message. The ability of
intermediaries to sign and encrypt messages by themselves allows them to transform messages
or part of it and inform the endpoint that a distinct intermediary has processed certain message
elements. Moreover, encrypting and signing the entire message without obeying a policy, which
defines what headers are protected, violates the self-descriptive constraint. This prevents certain
intermediate nodes from accessing and modifying a message. That is, the signature of the
message is invalid if an intermediary changes the message, as no policy for describing the
modification exists. The other drawback is that a completely encrypted message is not accessible
by intermediate systems not possessing the required decryption key. Both scenarios may occur,
as a lot of intermediaries are either transparent or reside outside organizational boundaries of the
client and the server.

2.5.17 Consolidated Review of Analysis Results

The obtained insights from the conducted analyzes of the available related work are summarized
in Table 2.2 and Table 2.3 . Note, that only approaches are listed, which ensure authenticity and
integrity of distinct message elements. The schemes proposed in [Res15; SAB15b], [FHT15],
[Mel16], [Oiw+17a], [De +14], [Sto+09], [SH13], [Gra+11] and API-keys are omitted for
readability reasons, since they do not provide any integrity protection for headers.
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Legend:  mandatory signed,# not signed,G# optionally signed, � not specified, - not required
message elements to be signed Amazon [Ama19b] Google [Goo17]

Request Response Request Response
C R U D C R U D C R U D C R U D

URI     - - - -     - - - -
Version number - - - - - - - - - - - - - - - -
Method     - - - -     - - - -
Status code - - - - # # # # - - - - # # # #
Connection G# G# G# G# # # # # # # # # # # # #
Cache-Control G# G# G# G# # # # # # # # # # # # #
Location - - - - # - - - - - - - # - - -
Accept - G# - - - - - - - # - - - - - -
Content-Type G# - G# - - # - - G# - G# - - # - -
Content-Length G# - G# - - # - - # - # - - # - -
Transfer-Encoding G# - G# - - # - - # - # - - # - -
Host     - - - - # # # # - - - -
Hash of body     # # # # G# G# G# G# # # # #
Time variant parameter     # # # #     # # # #
message elements to be signed Microsoft [Mic17] HP [Hew14]

Request Response Request Response
C R U D C R U D C R U D C R U D

URI     - - - -     - - - -
Version number - - - - - - - - # # # # # # # #
Method     - - - -     - - - -
Status code - - - - # # # # - - - - # # # #
Connection # # # # # # # # # # # # # # # #
Cache-Control # # # # # # # # # # # # # # # #
Location - - - - # - - - - - - - # - - -
Accept - # - - - - - - - # - - - - - -
Content-Type G# - G# - - # - - G# - G# - - # - -
Content-Length G# - G# - - # - - # - # - - # - -
Transfer-Encoding # - # - - # - - # - # - - # - -
Host # # # # - - - - # # # # - - - -
Hash of body G# G# G# G# # # # # G# G# G# G# # # # #
Time variant parameter     # # # #     # # # #
message elements to be signed OAuth v2 MAC Tokens [RMT14] Signing an HTTP Request ... [RBT16]

Request Response Request Response
C R U D C R U D C R U D C R U D

URI     - - - - G# G# G# G# - - - -
Version number # # # # # # # # # # # # # # # #
Method     - - - - G# G# G# G# - - - -
Status Code - - - - # # # # - - - - # # # #
Connection G# G# G# G# # # # # G# G# G# G# # # # #
Cache-Control G# G# G# G# # # # # G# G# G# G# # # # #
Location - - - - # - - - - - - - # - -
Accept - G# - - - - - - - G# - - - - -
Content-Type G# - G# - - # - - G# - G# - - # - -
Content-Length G# - G# - - # - - G# - G# - - # - -
Transfer-Encoding G# - G# - # - - G# - G# - # - -
Host     - - - - G# G# G# G# - - - -
Hash of body G# G# G# G# # # # # G# G# G# G# # # # #
time variant parameter     # # # # G# G# G# G# # # # #
message elements to be signed Signing HTTP Messages [CS19] OAuth v1 [Ham10]

Request Response Request Response
C R U D C R U D C R U D C R U D

URI     - - - -     - - - -
Version number # # # # # # # # # # # # # # # #
Method     - - - -     - - - -
Status code - - - - � � � � - - - - # # # #
Connection G# G# G# G# � � � � # # # # # # # #
Cache-Control G# G# G# G# � � � � # # # # # # # #
Location - - - - � - - - - - - - # - - -
Accept - G# - - - - - - - # - - - - - -
Content-Type G# - G# - - � - - # - # - - # - -
Content-Length G# - G# - - � - - # - # - - # - -
Transfer-Encoding G# - G# - - � - - # - # - - # - -
Host G# G# G# G# - - - -     - - - -
Hash of body G# G# G# G# � � � � # # # # # # # #
Time variant parameter     � � � �     # # # #
message elements to be signed Serme et al. [Ser+12] HTTP Digest Authentication [SAB15b]

Request Response Request Response
C R U D C R U D C R U D C R U D

URI     - - - -     - - - -
Version number # # # # # # # # # # # # # # # #
Method � � � � - - - -     - - - -
Status code - - - - � � � � - - - - # # # #
Connection � � � � � � � � # # # # # # # #
Cache-Control � � � � � � � � # # # # # # # #
Location - - - - � - - - - - - - # - - -
Accept - � - - - - - - - # - - - - - -
Content-Type � - � - - � - - # - # - - # - -
Content-Length � - � - - � - - # - # - - # - -
Transfer-Encoding � - � - - � - - # - # - - # - -
Host � � � � - - - - # # # # - - - -
Hash of body         # # # # # # # #
Time variant parameter � � � � � � � � # # # # # # # #
message elements to be signed Peng et al. [PLH09] Lee et al. [LJK15; LJK17]

Request Response Request Response
C R U D C R U D C R U D C R U D

URI     - - - - � � � � - - - -
Version number # # # # # # # # � � � � � � � �
Method     - - - - � � � � - - - -
Status code - - - - # # # # - - - - � � � �
Connection # # # # # # # # � � � � � � � �
Cache-Control # # # # # # # # � � � � � � � �
Location - - - - # - - - - - - - � - - -
Accept - # - - - - - - - � - - - - - -
Content-Type # - # - - # - - � - � - - � - -
Content-Length # - # - - # - - � - � - - � - -
Transfer-Encoding # - # - - # - - � - � - - � - -
Host # # # # - - - - � � � � - - - -
Hash of body # # # # # # # # � � � � � � � �
Time variant parameter     # # # # � � � � � � � �

Table 2.2: Analysis of related work in HTTP message authenticity and integrity
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Legend:  mandatory signed,# not signed,G# optionally signed, � not specified, - not required
CoAP message elements to be signed OSCORE [Sel+18] Granjal et al. [GMS13]

Request Response Request Response
C R U D C R U D C R U D C R U D

Version number                 
Type                 
Token Length # # # # # # # #         
Code (method code, response code)                 
Message ID # # # # # # # #         
Token # # # # # # # #         
Uri-Host, Uri-Port, Uri-Path     - - - -     - - - -
Max-Age # # # # # # # #         
Location-Path, Location-Query - - - - - - - - - - - -     
Accept     - - - -     - - - -
Content-Format                 
Body length (Payload-Length) # # # # # # # # � � � � � � � �
Body                 
Time variant parameter                 

Table 2.3: Analysis of related work in CoAP message authenticity and integrity

The related work analysis reveal that a lot of REST-based HTTP and Coap message authentica-
tion attempts have been evolved so far. However, none of the examined approaches targets the
same abstraction layer as REST. Also, the evaluated mechanisms contain many vulnerabilities
or are not in conformance with the REST constraints.

The concrete adoptions to Web, Cloud and IoT services are very diverse, emphasizing the need
for a more methodical approach to REST message authentication and to REST-Security in
general. Moreover, due to the lack of a general REST-Security framework, the same situation
can be expected to take place in any other appearing implementation domain, in which REST
gets adopted. All this emphasizes the need for a more advanced and elaborated security for
REST-based service systems.

2.6 Towards a General REST-Security Framework

The previous sections motivated and highlighted the need for a general REST-Security frame-
work. The available approaches provide security solutions for REST-ful HTTP and REST-ful
CoAP only and do not offer any concepts residing on the same abstraction layer as REST itself.
Moreover, the introduced and discussed specifics of REST-based services of any kind made
apparent, that the application of the available standards, technologies and research is neither
developed in a manner that suits REST nor evolved enough in maturity for an adoption in
security-sensitive or mission-critical environments.

This section, therefore, proposes a methodology for defining general REST-Security framework
components. It starts by developing a generic authentication scheme for REST messages. This
security concept marks an initial step towards a REST message security, which forms the vital
foundation for the general REST-Security framework. However, before being able to design any
security schemes for REST, the specifics and constraints of the architectural style require to be
addressed first.

The REST message elements as well as the resource identifier forming the uniform interface can
be implemented by different standards and are equally important for the message processing.
Hence, a REST-Security scheme needs to consider them all in order to avoid otherwise possible
vulnerabilities (see Section 2.4.3). Such security specifications must be defined on the same
abstraction layer as REST itself, so that they can be applied to any concrete protocol instantiation
in a methodical manner (see Figure 2.8). To do so, a formal description of REST messages and
an identification of security relevant parts in such messages need to be at hand [LN15a].
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Figure 2.8: General REST message security and its instantiation to concrete REST-ful proto-
cols

2.6.1 Formal Description of REST Messages

Since REST is constrained to the client-server model in conjunction with the request-response
model, it is always the client issuing a request message to which the server replies with a
corresponding response. The request message space is denoted by Rc and the response message
space is referred to as Rs respectively. The whole REST message space R is henceforth

R := Rc∪Rs. (2.1)

The meta data space M is composed of the set of resource meta data Mr, the set of resource
representation meta data Mb and the set of control data Mc:

M := Mr∪Mb∪Mc. (2.2)

The control data set Mc consists of the set of request actions Mca, the set of response meanings
Mcm, the set of message parameterisation Mcp and the set of data to overwrite the default
processing of a message Mco:

Mc := Mca∪Mcm∪Mcp∪Mco. (2.3)

A REST message r ∈ R consists of two parts: a header h containing meta data and a body b
comprising a resource representation. With H denoting the header and B the body space, the
structure of a REST message is defined as

r := h||delimiter||b,{(r,h,b) : r ∈ R∧h ∈ H ∧ (b ∈ B∨b ∈ /0)}, (2.4)

where delimiter is a set of characters separating the header from the body and || representing
the concatenation operation. Note, that the actual embodiment of the delimiter depends on the
concrete implementation of the uniform interface, i.e., the service protocol. In case of a binary
protocol, the delimiter set might even be empty. For the sake of readability but without the loss
of generality, the following explanations will focus on text-based protocols only, since these
protocols include additional challenges in terms of the ordering, normalization and separation of
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headers. To obtain an according description for binary protocols, these aspects can simply be
omitted.

A header h holds a subset Ṁ ⊂M of the meta data entities:

h :=

{
(Ṁ, i), if r ∈ Rc,

(Ṁ), if r ∈ Rs.
(2.5)

If h is part of a request message, it additionally includes a resource identifier i ∈ I, where I
defines the set of resource identifiers. The constitution of h can further be concretized by the
following policy:

• A message r ∈ R comprising a resource representation must include at least the two
resource representation meta data entities mbl ∈Mb and mbt ∈Mb describing the length
and the media type of the contained resource representation respectively.

• A request r ∈Rc must contain at least one control data element mca ∈Mca and one resource
identifier i describing the action and the target of the action respectively.

• A response r ∈ Rs must contain one control data element mcm ∈ Mcm expressing the
meaning of the response.

On the basis of this formal description, the following subsections introduce two generic schemes
for ensuring the authenticity, integrity and non-repudiation of REST messages.

2.6.2 REST Message Authentication (REMA)

Following the introduced methodology and the results obtained from the related work analysis,
the general REST Message Authentication (REMA) can be instantiated to REST-ful protocols
of any kind (see Figure 2.9).

REST	
Message	AuthN

REST-ful HTTP	
Message	AuthN

REST-ful CoAP
Message	AuthN

REST-ful X	
Message	AuthN

Figure 2.9: General REST message authentication and its instantiation to concrete REST-ful
protocols

In order to illustrate the methodology, a REST-ful HTTP Message Authentication (REHMA, see
Section 2.7.1) and a REST-ful CoAP Message Authentication (RECMA, see Section 2.7.2) are
derived from the general framework subsequently.
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Message Parts to be Authenticated

The listed headers in the policy of Section 2.6.1 are crucial for the intended message processing
and therefore need to be protected. In the following, the set of header entries containing the
security-relevant and to be protected headers is denoted as h̃. Note, that h̃ varies depending on
whether it is part of a request or response, the action of the request, the meaning of the response
and whether the message contains a resource representation or not. The variability of h̃ can
be especially substantiated by the request actions. Depending on the objective of the action, h̃
requires a different set of meta data.

The following rules extend the policy of Section 2.6.1 and define additional security-relevant and
mandatory headers to be authenticated and integrity protected for service protocols supporting
CRUD actions. The combined rules are henceforth denoted as the REMA policy.

• A read request must contain at least one resource representation meta data element
mbr ∈Mb describing the desired media type being requested. Moreover, this request must
not include a resource representation.

• A creation request must contain a resource representation.

• An update request must contain a complete or partial resource representation.

• A delete request does not require any additional prerequisite headers until further require-
ments. Moreover, this request must not include a resource representation.

Further extension of the REMA policy in terms of additional security-relevant header entries
contained in h̃ are a matter of the technical instantiation of REST and the application domain.
Based on these abstract notations, a general signature generation and verification scheme for
REST messages can be defined.

REST Message Signature Generation

Algorithm 1 defines a general method for ensuring the authenticity and integrity of REST
messages by generating a digital signature over the body and security-vital header entries as
defined above. Note, that error conditions are not made explicit for readability reasons. Each
error will cancel the signature generation process with an according error message.

As input, the signature generation algorithm requires a REST message r, a signature generation
key k and a description desc. The latter parameter contains application-specific headers, which
are to be appended to h̃. After obtaining the body b and the header h from the message r,
the function in line 3 checks by means of the REMA policy that all required header entries
are included in h and if so, constructs h̃ out of them. Then eventually specified additional
headers in desc are appended to h̃. In order to avoid replay attacks, the signature generation
algorithm creates of a fresh time-variant parameter tvp. This parameter is the first element to
be assigned to the tbs variable, which is gradually filled with the data to be signed. These two
steps must not be omitted even when a concrete instantiation of this scheme already includes a
time-variant parameter in h̃, since between message generation and signature generation might
exist a considerable time spread. All headers contained in h̃ are normalized and concatenated to
tbs. In order to tie the resource representation b to h̃ inducing the integrity of the conjunction of
security-relevant header entries and body, it needs to be appended to tbs as well. The resource
representation b is therefore hashed by a cryptographic hash function and the resulting hash
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value is attached to tbs. Note, that in case a message does have an empty resource representation,
a hash of an empty body is computed and added to tbs. The next statement signs the crafted tbs
with a signature generation key k. Algorithm 1 outputs the generated signature value sv and the
time-variant parameter tvp.

Algorithm 1 REST Message Signature Generation [LN15a]
Input: REST message r, description desc of the application-specific header entries to be

signed, signature generation key k
Output: Signature value sv, time-variant parameter tvp

1: b← getBody(r)
2: h← getHeader(r)
3: h̃← getT bsHeaders(h)
4: h̃← h̃‖getT bsHeaders(h,desc)
5: tvp← generateTimeVariantParameter()
6: tbs← tvp
7: i← 0
8: while i < |h̃| do
9: tbs← tbs‖delimiter‖normalize(h̃i)

10: i← i+1
11: end while
12: tbs← tbs‖delimiter‖hash(b)
13: sv← sign(k, tbs)

With these two outputs, an authentication control data element mcpa ∈Mcp can be generated,
containing the signature algorithm name sig, the hash algorithm name hash, a key identifier
kid, the time-variant parameter tvp, the signature value sv and the presence of additional header
entries given by desc in the specified order. This control data element mcpa needs ultimately to
be embedded into the respective message r. Since resource representations can vary, mcpa must
be integrated into the header h of the message r in order to remain data format independent.

REST Message Signature Verification

Algorithm 2 specifies the signature verification procedure for REST messages signed by Algo-
rithm 1. The signature verification algorithm requires a signed REST message r as input and it
returns a boolean value expressing the signature validation result. From the signed message r the
required parts are extracted, including the message body b and the message header h. From h the
authentication control data header mcpa is obtained next containing the concatenated values sig,
hash, kid, tvp, sv and desc. After building h̃ in line 5, the next statement appends the additional
header entries defined in desc to h̃ in order of appearance. Then the headers in h̃ are iterated in
the same manner—and especially the same order—as during the signature generation process
to build tbs. With tbs and the signature verification key identifier kid, the verification of the
signature value sv can be performed. The boolean verification result is assigned to the variable
valid, which represents the output of the signature verification procedure.

36



Algorithm 2 REST Message Signature Verification [LN15a]
Input: Signed REST message r
Output: Boolean signature verification result valid

1: b← getBody(r)
2: h← getHeader(r)
3: mcpa← getAuthenticationControlData(h)
4: (sig,hash,kid, tvp,sv,desc)← split(mcpa)
5: h̃← getT bsHeaders(h)
6: h̃← h̃‖getT bsHeaders(h,desc)
7: tbs← tvp
8: i← 0
9: while i < |h̃| do

10: tbs← tbs‖delimiter‖normalize(h̃i)
11: i← i+1
12: end while
13: tbs← tbs‖delimiter‖hash(b)
14: veri f y← getVeri f icationAlgorithm(sig)
15: valid← veri f y(kid, tbs,sv)

2.6.3 REST Message Confidentiality (REMC)

In layered systems such as constrained by REST, confidentiality is of specific importance, since
intermediate systems otherwise have plain-text access to traversing messages and those systems
most commonly reside outside organizational boundaries of service providers and consumers. To
prevent intermediaries from accessing sensitive message parts, the encryption of REST messages
is a required foundational REST message security building block.

REMA ensures the authenticity, integrity and—when using asymmetric digital signatures in
conjunction with a suitable PKI—non-repudiation of REST-ful protocol messages. In order to
approach a comprehensive REST message security, the confidentiality must be taken into account
as well. Following the introduced methodology of this paper, a REST message confidentiality
scheme has to define a general policy and algorithms for protecting REST messages from
unauthorized data disclosure. Such a scheme then serves as a guideline for adapting and
implementing confidentiality services for concrete REST-ful technologies including HTTP,
CoAP and prospective ones (see Figure 2.10).

In contrast to REMA, we do not specify the complete REMC framework, as this is not required
to proof the proposed concept. REMA is sufficient and more suitable for this purpose, since
there is much more related work available that can be used for evaluation. Still, we want to
briefly discuss the requirements and challenges REST message confidentiality framework needs
to tackle.

Encrypting the whole REST message—so that only the endpoints can read and interpret the
intention of it—does not conform with the self-descriptive messages and layered systems
constraint, though. As mentioned before, the both principles require that the semantics of REST
messages have to be visible to intermediaries for enabling intermediate processing [Fie00]. This
means, the key challenge of a REST message confidentiality scheme is to shield REST message
from unauthorized data disclosure while retaining the self-descriptiveness for endpoints and
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Figure 2.10: General REST message confidentiality and its instantiation to concrete REST-ful
protocols

authorized intermediate systems. Hence, distinct message elements, which are required for a
particular intermediary in order to render the message self-describing, must remain accessible
for this respective intermediary. Consequently, a general policy for encrypting REST messages
need to consider and specify what message parts are required to be accessible for which class of
intermediaries.

This is especially true for caches, which must be able to read required message elements in
order to store responses. As cacheability represents one of the core REST constraints for
ensuring scalability, encrypted REST messages must therefore still provide the option to be
cacheable. This aspect is, e.g., neglected by OSCORE [Sel+18] and [LJK15; LJK17]. The
first approach does not consider cacheability of messages protected by OSCORE. The latter
mechanism encrypts a REST message as a whole inducing so that an intermediate cache system
is not able to interpret and store the message.

The body of a REST message is special in this context. In some cases it may contain a
resource representation in others it does not. As XML, JSON and CBOR [BH13] are prevalent
data formats for the resource representation in REST-based service systems, such a resource
representation might already been encrypted by an according data encryption technology,
such as XML Encryption [Ima+13], JSON Web Encryption [JH15] and CBOR Encryption
[Bor17] respectively. Independent of an existing application-controlled resource representation
encryption, the REST layer needs to incorporate own mechanisms for ensuring the confidentiality
of the body. This is especially important for resource representations which do not include an
encryption scheme such as HTML [Hic+14], YAML [BEN09] or CSV [Sha05]. As discussed
before, the access to the body can then be granted to classes of intermediaries requiring it.

All these aspects will be elaborated in future work in order to develop a REST message
confidentiality scheme that is in conformance with the architectural principles and constraints
of REST. Combining such a REST-ful message confidentiality with the introduced REST-ful
message authentication provides the fundamental layer of the REST-Security stack depicted in
Figure 2.5.
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2.7 Implementation of REST Message Authentication

To proof the proposed conceptual approach, we introduce two distinct instantiations of the
general REST message authentication framework REMA, one for HTTP (see Section 2.7.1) and
one for CoAP (see Section 2.7.2). Both concrete REST-ful message authentication schemes
are intended to evaluate the coherent security construction in both distinct protocols and the
robustness against the observed vulnerabilities contained in the current state of the art.

2.7.1 REST-ful HTTP Message Authentication (REHMA)

This section introduces the REST-ful HTTP instantiation of REMA denoted as REST-ful HTTP
Message Authentication (REHMA). The following table emphasizes the instantiation of the
generic REST message signature generation algorithm of [LN15a] as presented in Section 2.6.2
for HTTP requests and responses. This implementation uses string concatenation to build the
string to be signed (tbs), which consists of a time-variant parameter (tvp), security-relevant
header entries and the hash of the body. Note that for the specific instantiation to HTTP, the
delimiter becomes the newline character ’\n’ and the binary hash value needs to be text-encoded
by making use of a Base64URL transformation [Jos06].

tbs string template for HTTP request tbs string template for HTTP response
tvp + "\n" +
UpperCase(Method) + "\n" +
RequestTarget + "\n" +
UpperCase(Version) + "\n" +
LowerCase(Header0) + "\n" +
...
LowerCase(HeaderN) + "\n" +
Base64URL(hash(Body))

tvp + "\n" +
UpperCase(Version) + "\n" +
StatusCode + "\n" +
LowerCase(Header0) + "\n" +
LowerCase(Header1) + "\n" +
...
LowerCase(HeaderN) + "\n" +
Base64URL(hash(Body))

Assume, that the following example request and response messages require to be authenticated.

Example HTTP request message Example HTTP response message
GET /courses HTTP/1.1
Host: example.org
Accept: application/json
Connection: keep-alive
Cache-Control: max-age=3600

HTTP/1.1 200 OK
Content-Length: 19
Content-Type: application/json
Server: Apache
Connection: keep-alive
Cache-Control: max-age=3600
Transfer-Encoding: gzip

{"REST":"Security"}

Based on the definitions, rules and policies specified in [LN15a] and the templates shown in
the previous table, the tbs strings are constructed for the request message as shown in the left
column of the following table respectively for the response message as shown on the right:

tbs string of example HTTP request message tbs string of example HTTP response message
2014-11-21T15:26:43.483Z
GET
/courses
HTTP/1.1
application/json
max-age=3600
keep-alive
example.org
47DEQpj8HBSa...km5NMpJWZG3hSuFU

2014-11-21T15:26:45.351Z
HTTP/1.1
200
max-age=3600
keep-alive
19
application/json
max-age=3600
gzip
mIxp6LC6E2cl...zHQQBHU_PI9zWBG8

39



The elements of the HTTP start line of the request and response respectively are added to tbs
according to their predefined positions. The security-relevant header values are concatenated in
alphabetical order of the header names. Note, that the construction of tbs does not include the
Server header, since this meta data is—from an authenticity viewpoint—not a crucial information
for the message processing.

The next step encodes the constructed tbs to UTF8 and signs the string with a key k. Since header
entries in HTTP must be text, a transformation of the binary signature value to a text-based
equivalent is required. This implementation uses a URL-safe Base64 transformation.

sv = Base64URL(sign(k,UTF8(tbs)))

The final step integrates the resulting text-encoded signature value sv along with the correspond-
ing signature meta data to the newly defined Signature header.

Authenticated example HTTP request Authenticated example HTTP response
GET /courses HTTP/1.1
Host: example.org
Accept: application/json
Connection: keep-alive
Cache-Control: max-age=3600
Signature: sig=RSA/SHA256,
↪→hash=SHA256,
↪→kid=https://myid.org/cert,
↪→tvp=2014-11-21T15:26:43.483Z,
↪→addHeaders=null,
↪→sigValue=<sv>

HTTP/1.1 200 OK
Content-Length: 19
Content-Type: application/json
Server: Apache
Connection: keep-alive
Cache-Control: max-age=3600
Signature: sig=RSA/SHA256,
↪→hash=SHA256,
↪→kid=https://example.org/crt,
↪→tvp=2014-11-21T15:26:45.351Z,
↪→addHeaders=null,
↪→sigValue=<sv>

{"REST":"Security"}

Since both messages do not consider additional as well as application-specific headers to be
protected by the signature, the addHeaders parameter within the Signature header, contains
the value null. If further headers to be signed are required, a list containing the header names
separated by a semicolon must be included. REHMA protects all HTTP messages against the
attack vectors of Table 2.1. A Java implementation of REHMA is available at: https://das.th-
koeln.de/developments/jrehma.

2.7.2 REST-ful CoAP Message Authentication (RECMA)

This section introduces the REST-ful CoAP instantiation of REMA denoted as REST-ful CoAP
Message Authentication (RECMA). The following table shows the adoption of the REST-ful
message signature algorithm defined in Section 2.6.2 for CoAP. It contains two templates, each
constructing a byte concatenation (symbolized by ‖) of a sequence of all security-relevant
message elements including a time-variant parameter (tvp). The resulting concatenation is trans-
formed into a byte array that is the tbs variable for CoAP. The implementation considers signing
request and response messages as well as acknowledgment (T=0x02) and reset (T=0x03)
messages. The template contained in the left column describes the construction rules of tbs
for requests as well as responses and the template contained in the right column defines the
construction of tbs for reset and acknowledgment messages.
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tbs constructing template for CoAP request and response tbs constructing template for CoAP ACK and RST
tvp
‖Version
‖Type
‖TokenLength
‖Code
‖MessageID
‖Token
‖Options0
...
‖OptionsN
‖hash(Body)

tvp
‖Version
‖Type
‖TokenLength
‖Code
‖MessageID

Assume, that the following two example messages require to be authenticated. The message on
the right is a POST request represented by the code value 0x02 (C=0x02), which requires a
confirmation by the server, whether the message has successfully been received. Confirmable
messages are denoted by the message type value 0x00 (T=0x00). Moreover, the example
request contains the protocol version number 0x01 (V=0x01), the message identifier 0x01
(MID=0x01) and the token value 0x0A that has a length of one byte (TKL=0x01). The left
example message is an acknowledgment message for the POST request specified on the left.
It confirms the reception (T=0x02) of a request identified by MID=0x01. The delimiter to
separate the header form the body in all CoAP messages is 0xFF.

Example CoAP request message Example CoAP ACK message
V=0x01,T=0x00,TKL=0x01,C=0x02,MID=0x01
Token: 0x0A
Uri-Path: 0x6974656D73 # items
Content-Format: 0x32
Payload-Length: 0xF
0xFF
{"item":"pork"}

V=0x01,T=0x02,TKL=0x00,C=0x00,MID=0x01
0xFF

According to the previous table and the requirements defined by [NL15] and [NL16], the tbs for
both messages are constructed as follows:

tbs of example CoAP request message tbs of example CoAP ACK message
0x14D14486B51 #tvp
‖0x01 #Version
‖0x00 #Type
‖0x01 #TokenLength
‖0x02 #Code
‖0x01 #Message-ID
‖0x0A #Token
‖0x00 #Uri-Host(3)
‖0x00 #Uri-Port(7)
‖hash(0x6974656D73) #Uri-Path(11)
‖0x32 #Content-Format(12)
‖0x00 #Max-Age(14)
‖0x00 #Uri-Query(15)
‖0x0F #Payload-Length (65001)
‖hash(UTF8({"item":"pork"})) #Body

0x14D14486B57 #tvp
‖0x01 #Version
‖0x02 #Type
‖0x00 #TokenLength
‖0x00 #Code
‖0x01 #Message-ID

The concatenation order of the CoAP start header items and the token follows the order of the
predefined positions stated in the CoAP specification. The CoAP options are added in numerical
order of the option numbers. Once, the construction of tbs for the two messages is finished, it is
signed with the signature key k.

sv = sign(k, tbs)
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The last step incorporates the resulting signature value sv and the corresponding signature
meta data to newly introduced CoAP options, which are Signature-Value, Signature-Algorithm,
Hash-Algorithm, TVP and a Key-ID.

Signed CoAP request message Signed CoAP ACK message
V=0x01,T=0x00,TKL=0x01,C=0x02,MID=0x01
Token: 0x0A
Uri-Path: "items"
Content-Format: 0x32
Payload-Length: 0x0F
Signatur-Algorithm: 0x01
Hash-Algorithm: 0x01
TVP: 0x14D14486B51
Signatur-Value: <sv>
Key-ID: <kid>
0xFF
{"item":"pork"}

V=0x01,T=0x02,TKL=0x00,C=0x00,MID=0x01
Signatur-Algorithm: 0x01
Hash-Algorithm: 0x01
TVP: 0x14D14486B57
Signatur-Value: <sv>
Key-Id: <kid>
0xFF

Both messages use numbers to declare the signature and hash algorithm name. Here, the number
0x01 within the Signature-Algorithm option represents an HMAC-SHA256 signature and
the same number defines a SHA256 hash for the Hash-Algorithm option. A description on
the additional and application-specific header entries is not present in both messages, since
an acknowledgment must not contain further options besides the options for the signature
description and the request does not intend to include additional header entries.

As the CoAP standard does not define a meta data element for defining the length of the body,
RECMA uses the Payload-Length option to declare the size of the body [LS14]. Even though
this option is not a standardized header, i.e., it is only a proposed draft specification, it is still
considered in the authentication process of RECMA to detect attacks that try to forge the body
similar to attack #4 in Table 2.1. Moreover, RECMA utilizes this option to comply with the
self-descriptive messages constraint that requires to be transport independent [Fie00]. RECMA
foils all attack vectors presented by [NL15]. A Java implementation of RECMA is available at:
https://das.th-koeln.de/developments/jrecma.

2.8 Evaluation and Discussion

The proposed REST message authentication scheme and the requirements defined for implement-
ing REST message confidentiality are the first steps towards a general REST-Security framework.
The REMA-Policy defines mandatory message elements for requests and responses, which need
to be available in order to render a message self-descriptive. As these message entities are manda-
tory, they are also security-critical. Hence message elements defined in the REMA-Policy must
be signed in order to be protected against malicious modifications. REHMA [LN15a] as well as
RECMA [NL15] apply the REMA-Policy as a security-baseline for identifying corresponding
mandatory and security-critical HTTP and CoAP message elements respectively. Moreover,
the policy on the to be signed message elements in REHMA and RECMA are extended by
protocol-specific mandatory header entries which are required for the self-descriptiveness of
HTTP and CoAP messages.

The concrete adoption of the REST message authentication scheme in HTTP and CoAP are
therefore not vulnerable to the attacks defined in Table 2.1 as well as the threats detected by
the related work analysis, since all essential and security-critical message elements are signed
(see Table 2.4). Note, that the to be signed message elements defined in REMA, REHMA
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and RECMA protect against attacks which are generally-valid for all REST-based applications
implemented with HTTP, CoAP other REST-based protocols. If another REST-based protocol
or a distinct application domain utilize additional security-critical header entries, these elements
must be added either to the policy of the concrete adoption or to the list of application-specific
header entries included in desc in order to thwart protocol- or application-specific man-in-the-
middle attacks.

Legend:  mandatory signed, # not signed, G# optionally signed, � not specified, - not required
message elements to be signed REHMA [LN15a]

Request Response
C R U D C R U D

URI     - - - -
Version number         
Method     - - - -
Status code - - - -     
Connection         
Cache-Control         
Location - - - -  - - -
Accept -  - - -  - -
Content-Type  -  -  -  -
Content-Length  -  -  -  -
Transfer-Encoding  -  -  -  -
Host  -  - - - - -
Hash of body         
Time variant parameter         
message elements to be signed RECMA [NL15]

Request Response
C R U D C R U D

Version number         
Type         
Token Length         
Code (method code, response code)         
Message ID         
Token         
Uri-Host, Uri-Port, Uri-Path     - - - -
Max-Age         
Location-Path, Location-Query - - - - - - - -
Accept     - - - -
Content-Format         
Body length (Payload-Length)         
Hash of body         
Time variant parameter         

Table 2.4: To be signed message elements by REHMA and RECMA

Table 2.4 illustrates the message elements signed by REHMA and RECMA. As the REMA-
Policy as well as the corresponding adoptions in REHMA and RECMA cover all the to be signed
header in order to avoid the documented vulnerabilities (see Section 2.4, Table 2.2 and Table 2.3),
it can also be utilized as an analytical framework for the evaluation and enhancement of related
work in HTTP/CoAP signature schemes. For instance, REHMA may serve as a guideline for
adding the missing to be signed message elements of the HTTP signature schemes required
by the cloud storage services of Amazon [Ama19b], Microsoft [Mic17], Google [Goo17] and
HP [Hew14]. The signature schemes of these cloud storage providers will benefit from the
security specification of REHMA, as it will increase the level of security. This is especially
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important as many companies use the cloud storage services of Amazon, Microsoft, Google and
HP in production.

This paper shows that a general REST-Security scheme builds the basis for generally-valid
policies and requirements. By means of this common foundation, REST-ful security technologies
can be implemented based on the same security-baseline. This methodology has been conducted
for the REST message authentication. The implementation of REMA in HTTP and CoAP
shows an increasement of the level of security, as the documented vulnerabilities can be avoided.
Other or future REST-based protocols such as RACS [Uri19] can use the same methodology
for defining security schemes. An adoption of REHMA in RACS is proposed in [NL16]. The
reader is henceforth referred to this paper for further details.

2.9 Conclusion and Outlook

REST is an established approach for designing distributed applications and service systems
that scale at large. This is especially true for the Web while other domains are following
likewise. At the same time, the areas of adoption increase in criticality, making the need for
appropriate security measures a necessity. The application of transport-oriented security is by far
not sufficient and needs to be supplemented by adjacent message-oriented security mechanisms.
In the latter respect, REST behaves very specific in comparison to existing approaches such as
SOAP in the Web Services domain. This renders a straightforward adoption of available schemes
and technologies from this domain infeasible. This is due to REST being an abstract architectural
style on the one hand, that can be applied to many distinct technologies and environments. On
the other hand, the particularities of REST demand for tailored approaches and schemes in order
to not contradict with the REST constraints.

The introduced methodology marks an important step towards a structured and controlled
procedure for developing appropriate security means for REST-based service systems and
applications. The practical applicability of the introduced methodology has been proven by an
adoption of it to authentication. The introduced generic REST message authentication scheme
has then been instantiated to the REST-ful protocols HTTP and CoAP. A comparison with the
current state of the art revealed that the available technologies are inhomogeneous and contain
many vulnerabilities or do not comply with the REST constraints. This further emphasizes
the need for a general and methodical approach towards REST-Security as has been proposed
by this paper. Finally, an initial attempt towards REST message confidentiality is introduced
discussing requirements and specifics to be considered while developing the complete picture of
a general REST message security framework.

More research and development efforts in REST-ful message security are required in order
to reach the necessary understanding of an adequate REST-Security defined at the proper
abstraction layer while considering the specifics of REST. This is especially essential, since
message security for REST-based service systems builds the foundation of many high-level
security components (see Figure 2.5). Moreover, a stable and robust REST-Security cannot only
set the scene for a mature service security stack, but it can also enhance available REST-based
security technologies including OAuth [Har12] and OpenID Connect [Sak+14], which still
suffer from many vulnerabilities [YM13; SB12].

Future work will focus on elaborating the REST-Security framework in the light of aspects such
as performance and scalability. This includes the cacheablity of protected REST-ful messages.
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Moreover, concepts that enable intermediate systems transforming signed and encrypted REST
messages will be studied as well. This is an important feature in a REST-ful architecture,
since transforming the content of a message is an essential property of the layered system
constraint.
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3.1 Introduction

The Service-Oriented Architecture (SOA) [Erl07] paradigm defines an architectural principle for
implementing interconnected software systems via service orchestration or service choreography
respectively. Contemporary business applications [LRS02] are greatly relying on this paradigm.
It provides the foundation for a dynamic process management, in which service consumers and
service provides are able to discover and bind themselves without knowing each other in advance.
In this context, the service description –also known as the service contract– plays a central role
when it comes to selecting and invoking services properly [LRS02]. Such service invocations
commonly involve the exchange of sensitive information across organizational boundaries and
multiple distinct enterprises. The protection of such services and the incorporated datasets is
henceforth a necessity, rendering tailored security safeguards mandatory for SOA-based business
systems.

Distributed systems following the SOA principles have been most commonly realized by SOAP-
based web services [Gud+07]. Here, a service contract is defined by means of the Web Service
Description Language (WSDL) [Chr+00]. To declare security, the standardization body OASIS
maintains the WS-SecurityPolicy specification [Nad+12]. This security framework includes
extensions for describing security requirements and policies in WSDL. As WSDL and the
extensions in terms of protection means provided by WS-SecurityPolicy represent a machine-
readable data format for describing protected SOAP services, the interface definition language
is often used by developers for automatic code generation. This facilitates the proper invocation
of services as well as implementation of security properties. On the other hand, it reduces the
likelihood of developers for making programming mistakes.

Over the last years, web services have been deployed following the architectural style Represen-
tational State Transfer (REST) [Fie00]. One measure of how the architectural style influences
contemporary service systems is an analysis of the platform ProgrammableWeb which has been
conducted by the authors of this paper. This evaluation reveals that around 76% of 15,000
analyzed APIs are REST-based. In contrast to SOAP, the widespread usage of web services
following the REST principles is, however, lacking on a standardized language for defining
the service contract and security policies in particular. The missing technical foundation for
describing REST-based web services in a machine-readable form, hinders the automatic dis-
covery of services. Moreover, it increases the effort of implementing and testing the service
invocations as automatic code generation is not supported. This induces a higher probability of
producing insecure code as exemplified by Sun and Beznosov [SB12] in terms of the widely
adopted authorization framework OAuth [Har12].

With the aim of establishing a REST-based counterpart to WSDL, several description languages
for REST-based web services have been proposed. However, the languages’ abilities to de-
scribe REST-based web services are very diverse. This paper analyzes the currently available
description languages with the focus on the ability to declare required security policies and
protection means. Section 3.2 lays the foundation for a basic understanding of the architectural
style REST and thereby briefly recaps its key properties and constraints. Even though REST is
still missing a standardized and mature security framework, a set of security mechanisms have
become well-established and are presented in the Section 3.3. Based on this background, Section
3.4 evaluates the features and abilities of available service description languages for REST-based
web services in respect to their security expressiveness. The findings are discussed in Section
3.5 and Section 3.6 concludes this paper with an outlook on future research challenges.
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3.2 Representational State Transfer (REST)

REST [Fie00] is a guideline for designing distributed systems. Adhering to the architectural
constraints recommended by REST results in applications that are easy to use, maintain and
scale. To ensure scalability the communication in REST must be stateless, cacheable and layered.
Simplicity is realized by a uniform interface. This constraint governs that components within
a REST architecture must communicate through a set of predefined actions enriched by meta
data. The communication in REST is resource-oriented, meaning that each request targets
a resource. In the context of REST, a resource can be any kind of information which maps
to a static or varying set of values. Depending on the client’s preference, a resource can be
delivered in different resource representation. Moreover, each request must be self-contained,
i.e., messages must include all required data elements describing the intention of the message,
so that its semantic is self-explaining for every component within a REST architecture. This
includes a resource identifier and action describing the target and intention of the request as well
as further information including the state and resource representation meta data. The returned
response may contain further resource identifiers which are embedded in the meta data and/or
resource representation. These resource identifiers (links) and their description serve as a service
description for clients to perform further requests to other resources. This property is known as
Hypermedia As The Engine of Application State (HATEOAS).

The architectural principles of REST are fairly abstract and can be adopted with any suitable set
of technologies. One technology which conforms to the REST principles is HTTP, since it is
stateless, cacheable and contains a uniform interface which includes standard actions (methods)
and meta data to express, e.g., the state and the cacheability. Moreover, HTTP is designed to
transfer and obtain different resource representations including HTML [Hic+14], XML [Bra+08]
or JSON [Bra17]. HTTP represents the key technology of the web which is (arguably) the largest
distributed system of the world [Fie00]. By this, REST has proven of being an architectural style
for building distributed systems that scale at large. Due to this and the other given arguments,
REST gets adopted meanwhile in many other domains than the initial web applications. Among
them are many driving environments for business applications including the Cloud and IoT
systems [SHB14; LN15b]. Consequently, security mechanisms for protecting REST-based
application and services are becoming increasingly important.

3.3 Security Schemes for REST-based Web Services

Only few standardized security technologies do exist for REST-based web services. The HTTP
Basic and Digest Authentication [Res15; SAB15b] are the first two security schemes which have
been published for web applications. HTTP Basic Authentication represents a login process to
restricted resources via username and password embedded in a specifically defined Authorization
header field. HTTP Digest Authentication requires a username and password as well, but does
not transfer the cleartext password in the message header. Instead it deploys a challenge response
scheme in form of a random number and a hash. The OAuth framework [Ham10; Har12] is a
standardized protocol for authorizing third party applications for accessing resources of end
users. Two versions of OAuth have been proposed so far. OAuth provides a set of flows for
retrieving tokens from an authorization server. Based on these tokens client are able to invoke
information of end users from a resource server. OpenID Connect [Sak+14] extends OAuth
by means of a standardized authentication. This specification enables the option for clients to
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validate the identity of end-users. Many identity providers apply OpenID Connect as a technical
baseline. Beside HTTP Basic/Digest Authentication, OAuth and OpenID Connect, API-Keys
are commonly used for authenticate requests. Usually, these keys are random generated tokens
which must be saved by the service consumer and service provider. In each authenticated request,
this API-Key must be included in the URL or in an HTTP header field.

These security schemes, however, merely provide authentication and authorization. Confiden-
tiality, integrity and non-repudiation have not been covered by current standards yet. To protect
the confidentiality and integrity of the communication, many REST-based web services utilize
Transport Layer Security (TLS) [Res18]. As TLS only ensures transport-oriented security
which does not provide an end-to-end protection in layered systems, many approaches targeting
additional safeguards on the application layer have been published in the recent years. These
approaches propose, e.g., HTTP message signature schemes protecting for the whole HTTP
message [LN15a]. This kind of authenticity and integrity protection is applied by the cloud
storage services of Amazon [Ama19b], Google [Goo17], HP [Hew14] and Microsoft [Mic17] as
a complementary shield to TLS.

To gain an overview on the usage of protection schemes of other service providers, 11,500
REST-based web APIs listed in the web API directory ProgrammableWeb have been analyzed.
The analysis reveals that 5,248 of the 11,500 REST-based web APIs require one or multiple
authentication scheme for accessing their service. Table 3.1 gives an overview on the usage of
authentication schemes of REST-based web APIs requiring authentication.

Authentication Mechanisms Total Percentage of APIs using
Authentication

API-Keys 2711 52%
Unspecified 844 16%
Token 819 16%
HTTP Basic Authentication [Res15] 741 14%
OAuth 2 [Har12] 606 12%
OAuth 1 [Ham10] 173 3%
App ID 163 3%
Other/Custom 132 3%
Shared Secret 99 2%

Only mechanisms with a usage ≥ 1% are considered. APIs may support multiple authentication
schemes.

Table 3.1: AuthN schemes used by listed REST-based APIs in ProgrammableWeb

The directory distinguishes twelve authentication schemes from which service providers can
select a subset to declare the protection scheme deployed for their API. Table 3.1 shows the
most relevant ones which are sorted according their frequency of utilization. One observation is
that the most frequently applied protection mechanisms are the ones which are not standardized.
As no further security mechanism description apart from the name is specified by an API entry
within the ProgrammableWeb directory, the actual security schemes declared as Unspecified,
Token, Other/Custom and Shared Secret remain opaque for the user at the first glance. In most
cases, users have to visit the web page of the API operated by the service provider in order
to get further human-readable only information on the protection mechanism and details on
implementing the client counterpart to it. Such security schemes can be any kind of safeguards
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ranging from proprietary approaches to not yet standardized technologies such as the HTTP
message signature.

This current situation shows that the description of diverse security policies in a machine-
readable form can be a great benefit for assisting developers in building security mechanisms
properly.

Thus, the following section evaluates available REST-based web services description languages
with a special focus on their ability to express standard and custom security mechanisms.

3.4 Description Languages for REST-based Web Services

The previous section highlights the need for describing security policies in machine-readable
manner in order to aid developers in implementing secure code. Moreover, the definition of
security policies must be extensible as many service providers utilize custom or not standardized
security schemes. This section therefore analyzes available service description language for
REST-based Web Services according to the following criteria:

1. The ability to describe security schemes via native service description elements

2. The set of security schemes which can be defined by default

3. The ability to extend the default set of security schemes

4. The approach for defining the semantics of not natively supported security schemes

5. Available work extending the service description language with additional security de-
scription elements

3.4.1 WSDL

The XML-based Web Service Description Language 2.0 (WSDL 2.0) [Chi+07] is a W3C
Recommendation. In conjunction with the introduced HTTP adjunction [Lew+07] it has been
the first approach providing a description language for REST-based web services. In contrast to
its predecessor WSDL 1.1 [Chr+00], it offers a more general way of describing web services
and it is not limited to SOAP anymore.

WSDL 2.0 considers the integration of security schemes. However only HTTP Basic and Digest
Authentication are natively supported. Not supported security schemes can be integrated via the
definition of new XML schema definitions. The drawback of WSDL 2.0 is the fact that it has
not been widely accepted by developers for describing REST-based web services [Ver+14]. This
might be the reason why no specification updates and XML schema definitions for REST-based
security mechanisms have been presented so far.
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3.4.2 WADL

Web Application Description Language (WADL) [Hea09] is another XML-based interface
definition language for REST-based web services.

WADL does not consider a native support for security mechanisms. But the description of
security schemes is extensible via XML schema definitions and distinct child nodes for defining
meta information such as header field as well as URL parameters. As with WSDL 2.0, WADL
suffers from the problem that it is not widely adopted in the REST community [Ver+14]. Hence,
neither XML schema definitions nor well-defined specification on security scheme do exist for
WADL to date.

3.4.3 RSDL

RESTful Service Description Language (RSDL) [Rob+13] is an additional XML-based technol-
ogy for defining REST-based web APIs.

The support of authentication schemes is provided by using the authentication element, which,
however, is not defined any further. The RSDL specification shows only one example on
describing HTTP Basic or Digest Authentication via the authentication element. As RSDL
utilizes XML and XML schema, standard as well as custom security schemes can be integrated
by defining new XML schema definitions. Unfortunately, it seems that the RSDL specification
is not maintained anymore. The last version of RSDL stems from a paper [Rob+13] in 2013.
Since then, no further work on this approach has been published. Therefore, there is a lack of
XML schema definitions and tools for standardized and custom security mechanisms.

3.4.4 RADL

Similar to RSDL, RESTful API Description Language (RADL) [RSZ16] defines a documenta-
tion technology for REST-based web services which is based on XML as well.

Authentication mechanisms can be defined by an authentication element likewise. As with
RSDL, the RADL specification does not specify the description of standard security mechanisms
in the current version. Since RADL applies XML and supports XML schema, the missing
security mechanisms can be included via XML schema definitions. As the current state of RADL
is still a draft, a set of aspects are not completely defined. This is especially true for security
schemes. Here, no XML schema definitions and examples about the definition on available
security technologies are specified so far.

3.4.5 REST Chart

Another XML-based description language is REST Chart [LC11]. The aim of REST-Chart is to
specify a REST-based web API over transitions which contain two input and one or multiple
output elements. First input element defines the link to be invoked and the second one specifies
required HTTP methods, meta data and an optional resource representation. The output elements
describe resulting status codes of responses in conjunction with an optional embedded resource
representation.

51



REST Chart does not provide a native support for security schemes. However, protection
mechanisms can be specified via the aforementioned transitions. In case of a login process, the
first input element contains link which refers to authentication endpoint. The other input element
includes a control child element which specifies the HTTP method to start the transition. If the
POST method is used, the input element may include a representation element which defines
required media type and the schema of the credentials. The output indicates possible returning
status codes and resource representations of responses. As REST chart does not specify an
option for defining required header fields, this is the only way of describing a security process in
the current state of REST Chart. The input element may include meta data nodes, but beside
the fact that the meta data element can contain any kind of text-based XML attributes, the meta
data element is not defined any further. Hence, the ability to describe an authentication scheme,
which consider header fields for expressing the credentials, is therefore limited. Since REST
Chart utilizes XML and therefore supports XML schema, this missing functionality can be
included by new XML schema definitions. However, no specification and tools for such an
extension have been proposed so far.

3.4.6 OAS / Swagger

The OpenAPI Specification (OAS) [Ope16], formerly known as Swagger [Sma16], represents
a REST-based web service description languages which is not based on XML. The approach
utilizes YAML [BEN09] or JSON [Bra17] as the technical foundation.

OAS provides a native description of security schemes. Security mechanisms are defined by
the Security Definition Object which consists of multiple Security Scheme Objects. OAS
supports HTTP Basic Authentication, API-Keys and OAuth 2.0 natively. Extensibility of not yet
supported security mechanisms is, however, limited. Natively supported security schemes can
only be extended by additional Security Scheme Object attributes. The integration of Security
Scheme Objects defining new security schemes is not considered yet. Also, no work is available
so far, which defines a definition approach for not supported security mechanisms.

The main strength of OAS is the wide range of tool support. Many technologies do exist for
automatic testing and code generation which makes OAS well-established by developers.

3.4.7 RAML

RESTful API Modeling Language (RAML) [RAM16] is another YAML-based description
language for REST-based web services.

As with OAS, the RAML specification considers the integration of security mechanisms. This is
realized by the securitySchemes element which comprise one or multiple security schemes. Each
security scheme must contain a type attribute which is the identifier of the mechanism. RAML
natively supports the types OAuth 1.0, OAuth 2.0, Basic Authentication, Digest Authentication
and Pass Through. API-Keys are not supported by default. Custom or not defined security
schemes can be described via the x-<other> type, where <other> represents the placeholder for
the security mechanism name. In the current version, RAML does not provide the option for
appending a semantic description of security schemes with x-<other> types. This shortcoming
restricts the definition of custom and not specified safeguards which might be the reason why no
work on describing other security schemes have been published so far.
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Similar to OAS, RAML promotes a lot of tools for, e.g., testing and automatic code generation.
Therefore, this approach is also widely used by developers.

3.4.8 API Blueprint

API Blueprint [Blu16] is another widely used description language for REST-based web services
alongside OAS and RAML. The syntax of this approach is based on MSON [Api16], which
itself is based on Markdown [Leo16].

The authors of API Blueprint attempt to establish the description language as an RFC. Here, an
authentication framework in draft status is proposed. This draft depicts the general definition on
authentication schemes as well as a description on concrete mechanisms including HTTP Basic
Authentication and OAuth. Using this authentication framework, other authentication schemes
can be included to an API Blueprint service description. Furthermore, API Blueprint’s approach
to utilize MSON for its description is different to previous concepts. As Markdown represents
definition syntax for producing human-readable content such as HTML or readme documents,
and MSON introduces conversion of Markdown to JSON or XML documents, API Blueprint
may also addresses machine-readability of security extensions to some extent. However, it does
not cover the complexity of describing the semantics of new defined elements such as provided
by JSON or XML schema definitions.

As with OAS and RAML, developers using API Blueprint benefits from a set of tools which aid
them in testing and implementing REST-based web services.

3.4.9 OData

OData [Han+16b] is an OASIS standard for describing REST-based web services. OData
services are defined via an Entity Data Model (EDM). This model contains vocabularies for
specifying the data model of the resource representation and their relationships. Additionally, the
EDM includes elements for describing actions and URL queries and paths. A service description
in OData can be defined either in JSON [Han+16a] or in ATOM [Har+13]. The specification
of the standard vocabulary is however defined in XML Schema. Similar to RAML, OAS and
API Blueprint, OData provide a lot of libraries, SDKs and tools for implementing and testing
services. Moreover, many service providers, among them also services of, e.g., Micrsoft, IBM
and SAP offer their service description via OData.

The OData specification recommends to use HTTP Basic authentication over TLS for securing
REST-based OData services. Apart from the aforementioned authentication scheme no other
security mechanisms are recommended or provided. To complement OData service descriptions
with additional security policies, new XML Schema definitions can be used to extend OData.
At the moment, no further security specification or work on integrating security in OData
description do exist so far.

3.4.10 I/O Docs

I/O Docs [TIB15] is a JSON-based approach for documenting REST-based web services.
Currently, the specification of I/O Docs is only based on examples. A general definition on
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the I/O Docs elements is not defined yet. Also, no description on the definition of new service
description elements does exist so far. This is especially true for defining security schemes. Only
examples are available which show the definition on authentication schemes. Examples exist
for HTTP Basic Authentication and OAuth, but other security mechanisms are not described.
As with many aforementioned description languages, I/O Docs suffers from the low frequency
of usage. This might be the reason why no extensions, tools and updates have been proposed
recently.

3.4.11 hRESTS and RDFa

HTML for RESTful Servies (hRESTS) [KGV08] offers another approach as the aforementioned
description languages. Instead of defining a new data format for describing REST-based web
services, hREST augments HTML by including new HTML elements. The aim of this approach
is to enrich HTML with machine-readable HTML elements, without modifying the visualization
of the web page. These HTML elements provide additional information which can be processed
by a machine-driven process. This has the advantage that a returned HTML contains human-
and machine-readable description simultaneously. The semantics of new HTML elements for
hRESTS is extensible via ontologies.

Resource Description Framework (RDF) is a model for describing machine-readable linked data
structures and web APIs. The semantics of RDF elements and their relationships are defined by
ontologies likewise. An RDF model can be implemented in various data formats such as XML.
Resource Description Framework in Attributes (RDFa) [ABM15] defines an adoption of RDF in
HTML attributes. As with hRESTS, the goal of RDFa is to enhance the machine-readability of
HTML.

Neither hRESTS nor RDFa provide a native support for security mechanisms. However, protec-
tion means can be incorporated via ontologies. Maleshkova et al. [Mal+10] propose an approach
on defining a new ontology for authentication schemes. The authentication ontology of [Mal+10]
comprises limitation, tough, as it is composed of three classes only. These classes define the
authentication mechanisms name, the credentials form (e.g. API-Key, username and password or
OAuth token) and the transmission medium which specifies whether the credentials are include
in the header or in the URL. Following this concept, the definition more complex security
mechanisms such as the HTTP message signatures can not be implemented in straightforward
manner, as no ontology element for describing a signature other cryptographic mechanisms is
specified. To do so, the authentication ontology of [Mal+10] must be redesigned by including
security services and additional security definition elements. Beside this publication, no other
security-related work has been presented so far.

3.4.12 ReLL

Resource Linking Language (ReLL) [AW10] is a REST-based web services description language
that extends the vocabulary of RDF. ReLL utilizes XML to represent the RDF model.

ReLL does not consider a built-in support for security schemes. As it uses RDF, new elements
and vocabularies can be added via ontologies in order to specify security schemes. Such an
approach is presented by Bellido and Alarcon [BAS12]. Here, the authors introduce an example
description on defining OAuth in ReLL. Both authors continue the work on defining security
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schemes in [SAB15a] in which they propose ReLL-S, an ontology for describing security con-
straints and schemes. This ontology is more comprehensive than the ontology of [Mal+10]. It
consists of a set of security goals which includes confidentiality, integrity, authentication and au-
thorization. The security goals contain subclasses which defines cryptographic mechanisms (e.g.
encryption and digital signatures) and authentication as well as authorization protocols. These
subclasses include further subsubclasses referring to concrete security schemes such as OAuth,
HTTP Basic/Digest Authentication as well as cryptographic algorithms such as AES, RSA or
SHA. With the elements of ReLL-S, [SAB15a] introduces the definition of API-Keys, a simple
username and password authentication, HTTP Basic/Digest Authentication, OpenID [RR06]
as well as OAuth. As this ontology contains a comprehensive set of security elements, further
security mechanisms can be deduced and included to a ReLL service description.

3.4.13 SERIN

Semantic RESTful Interface (SERIN) [de +13] is another description language for REST-based
web services which is based on RDF. As with ReLL, SERIN also applies XML as the data
format.

SERIN does not support any vocabulary for describing security policies by default. As SERIN
is based on RDF, protection elements can be extended by introducing a new ontology. However,
such extensions have not been proposed yet.

3.4.14 Hydra

Hypermedia-Driven API (Hydra) [Lan13; M L17] represents a W3C community group which
attempts to establish a vocabulary for defining the semantic of linked data and web APIs. This
approach is based on JSON for linked data (JSON-LD) [M S14], a specification for defining
machine-readable semantics of data and links included in JSON. The vocabulary of JSON-LD
elements is defined by the Schema.org community. Hydra extends the vocabulary of JSON-LD
by defining elements and a schema for describing REST-based web services properties such
as entry points, supported HTTP methods, URL query parameters and the meaning of status
codes. The current version of Hydra does not consider the integration security mechanisms
yet. As the specification of Hydra is an early stage, the description of security properties may
be considered in future work. Currently, no external work which approaches to resolve this
shortcoming does exist so far. For the time being, the semantics of security mechanisms can be
described by defining new JSON-LD vocabularies.

3.4.15 RESTdesc

RESTdesc [Ver+12] is an academic approach that utilizes Notation3 (N3) [T B11] for describing
REST-based web APIs. N3 is an extension of RDF.

The current status of RESTdesc does not consider the description of security mechanisms. As
with RDFa and hRESTS, missing security schemes can be extended by the integration of new
RDF ontologies. However, such extensions have not been published so far.
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3.5 Discussion

The analysis of the previous section highlights that a lot of approaches to describe a service
contract for REST-based web services have evolved over time. This already emphasizes the
huge demand of such technologies. Still to date, there is no standardized language available
for developers. This situation allows, nonetheless, to analyze the current proposals in order to
conclude whether there are already mature and comprehensive technologies available which
could serve as a basis for a standard or if there still exist research challenges that need to be
solved first.

Description
Language

Native support
for security
mechanisms

Natively
supported

security schemes

Extension
approach

Available security
extensions

WSDL 2.0
[Chi+07; Lew+07]

AuthN HTTP Basic
& Digest

XML Schema -

WADL [Hea09] - - XML Schema -
RSDL [Rob+13] AuthN - XML Schema -
RADL [RSZ16] AuthN - XML Schema -

REST-Chart
[LC11]

- - XML Schema

OAS [Ope16;
Sma16]

AuthN, AuthZ HTTP Basic,
OAuth 2,

OpenId Connect

- -

RAML [RAM16] AuthN, AuthZ HTTP Basic &
Digest, OAuth 1 &

2, Pass Through

x-<other> type -

OData [Han+16b] - - XML Schema -
I/O Docs [TIB15] AuthN, AuthZ API-Key,

OAuth 1 & 2
- -

API Blueprint
[Blu16]

AuthN, AuthZ HTTP Basic,
OAuth 2

- -

hRESTS [KGV08]
& RDFa [ABM15]

- - RDF Ontology [Mal+10]

ReLL [AW10] - - RDF Ontology [BAS12; SAB15a]
SERIN [de +13] - - RDF Ontology -
Hydra [M L17] - - JSON-LD Schema -

RESTdesc
[Ver+12]

- - RDF Ontology -

Table 3.2: Security Expressiveness of REST-based API Definition Languages

Table 3.2 summarizes the available service description languages according to the five criteria
defined in the previous section. Seven of the fifteen analyzed approaches consider the integration
of security mechanisms. But only five evaluated technologies provide a native support for a set
of standard security mechanisms. Most approaches offer the option to integrate missing security
schemes by including or extending new schema and ontologies. Unfortunately, such security
extensions are only available for hRESTS, RDFa and ReLL so far [Mal+10; BAS12; SAB15a].
The other technologies lack on further specification and work which extends these technologies
by missing or additional security schemes. RAML and OAS support the description of many
standardized security mechanisms. Driven by the global players of web technologies, both
languages also provide a set of diverse tools for automatic code generation, testing and building
REST-based applications and APIs. However, RAML and OAS do not provide the option for
describing the semantics of other security schemes. This is also true for I/O Docs and API
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Blueprint. The former technology does not define a specification aspect for describing extensions.
API Blueprint lacks on the functionality for defining the semantics of new service description
elements due to the usage of Markdown. WSDL 2.0, WADL, RDSL, RADL, REST-Chart,
OData, SERIN and RESTdesc provide only a definition for few authentication schemes or no
security mechanisms. Missing security definition can, however, be included by XML schema
definitions or ontologies. Such extensions have not been present so far, though.

Moreover, almost all API definition languages only consider authentication and authorization.
Description elements for defining confidentiality, non-repudiation, integrity and further security
mechanisms are not supported by default. Only ReLL-S, the extension of ReLL, supports all
aforementioned security services except non-repudiation. However, for ReLL and ReLL-S, no
tools which support developers in implementing REST-based web applications do exist so far.

Also, no analyzed technology provides a description on the invocation properties of TLS. All
approaches are only able to describe whether TLS is used or not. Properties such as supported
cipher suites or the TLS version is not specified by any approach at all. As it has been shown that
the implementation of transport-oriented security can cause many critical vulnerabilities [Fah+12;
Geo+12] due to the high complexity, such a description could serve as basis for automatic code
generation and testing. This set of tooling could assist developers in implementing proper TLS
connections and may reduce the likelihood to make programming mistake.

Another missing aspect of all evaluated service description languages is the absent ability for
describing security policies for the resource representation. A demand for such a security
description is, for instance, needed in some OAuth and OpenID Connect environments, where
JavaScript Object Signing and Encryption (JOSE) [IET17] is utilized for securing the tokens
and other sensitive information. All service description languages supporting the description
of resource representations only provide the declaration of the media type. These approaches
can merely define that a resource representation embodies the media type application/jose+json,
but the context and the semantics of the security policies can not be specified by any service
description technology.

An additional shortcoming of all analyzed service descriptions is that they only provide a
definition on REST-based services which use HTTP as the transfer protocol. None of them
considers the description of services that utilize CoAP [SHB14], RACS [Uri19] or other REST-
based protocols.

3.6 Conclusion and Outlook

Overall, the security expressiveness of the available REST-based web service description lan-
guages is still at its beginning. Besides authentication and authorization, there are no further
security capabilities expressible by default and even these very basic protections are not provided
by all of the analyzed languages (see Table 3.2). ReLL in conjunction with ReLL-S is the only
approach which consider the integration of all standardized authentication and authorization
schemes. Also, the ontology of ReLL-S provides service description elements for all security
mechanisms except non-repudiation. The other evaluated service description technologies lack
on a native definition of standard protection means or have restrictions in terms of extend-
ing and defining security mechanisms. Moreover, none of the evaluated approach provide a
comprehensive description on TLS and the protection of the resource representation.
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One reason for this current situation may lie in a lacking overall REST-Security framework
[Gor+14a]. As current research activities are enhancing this field [LN15a; NL15; NL16],
new REST-Security components may be evolved in the future. Hence, REST-based service
description languages need to cope with this by an increased extensibility in respect to security-
related expressiveness.

This shows that a bunch of research and development challenges still exist in order to find a
service description language and a security policy framework for REST-based systems which
can serve as a standard such as WSDL and WS-SecurityPolicy for the SOAP domain. As
many service definition technologies have been proposed, further work will therefore focus on
enhancing available languages in terms of security expressiveness and extensibility, instead of
proposing a new approach. Also, future studies will analyze REST-based service description
languages for other REST-based protocols including CoAP and RACS.
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4.1 Introduction

The web can be considered as the world’s largest distributed system. Its ability to scale at large
has been its formula of success ever since. To obtain high scalability, web caching systems are
applied—among others—for optimizing network performance. A web cache is a subsystem
for coordinating the transparent storage and retrieval of recyclable HTTP responses. By this,
a web caching system potentially reduces three quantities: the number of requests that reach
the origin server, the amount of network traffic resulting from document requests, and the
latency that an end-user experiences in retrieving a document [Wan99]. Moreover, when serving
recurring requests on behalf of an origin server that is not responding for some reasons, caches
contribute to an increased availability of web-based services. Web caching systems can occur in
various locations between the path from client to server. They can be implemented either as an
external middlebox between the client and server application or as middleware which is included
as an internal component in the client and server application. For instance, the web browsers
Chrome, Firefox, Safari or Edge include a client-internal cache which store and reuses frequently
requested web resources such as HTML documents, Javascript files, images or stylesheets.

For web developers and vendors of web browsers, the knowledge of and compliance with
caching standards is crucial in many respects. Disobeying the standardized requirements and
control directives impairs scalability and performance. Also, ignoring caching policies may
induce security and privacy issues, if sensitive information are cached and reused although being
prohibited. To prevent issues stemming from inappropriate web caching, one need to have a deep
understanding of the current state of play. In Section 4.2 we therefore briefly recap key aspects
of web caching. Based on these foundations, in Section 4.3 we give insights on web browser
caches and the consequences of caching misbehavior. With the aim to detect compliance issues
in web browser caches, we mandate for proper test tools that are currently lacking, as the related
work review in Section 4.4 manifests. As a first contribution, we introduce a methodology
for deriving meaningful test cases for auditing cache systems in Section 4.5. Following the
proposed methodology, we were able to define 397 tests, which we compile to a general cache
testing suite (see Section 4.6). With the purpose to evaluate the proposed approach and obtain a
systematic analysis of available web browser caching systems, we conduct an empirical study of
client-internal web caches residing in Chrome, Firefox, Safari and Edge. The main results are
discussed in Section 4.7. Overall, they do affirm the relevance of appropriate cache testing tools
supporting developers of caching components as well as developers instrumenting them in their
web applications. We conclude this paper in Section 7.8 with an outlook on challenges in web
caching.

4.2 Web Caching Foundations

The world’s largest distributed software system builds on HTTP [FR14c] as its fundamental
communication technology for connecting web clients and servers. Between these two endpoints,
various transparent intermediate systems such as caches may exist, performing specific tasks
with the goal to optimize certain properties of the application.

RFC 7234 [FNR14] specifies web caching requirements, concepts and control directives in order
to improve performance and resource utilization. Although caching in the web is optional, it can
be assumed that reusing a cached HTTP response is the default behavior when no other policy
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prevents it. Rather than mandating to store and reuse particular HTTP responses, the semantics
of the headers specified in RFC 7234 are focused on preventing a cache from either storing a
non-reusable response or reusing a stored response inappropriately. To lay the ground for the
subsequent discussions, we summarize the core concepts and directives of RFC 7234 in the
following.

4.2.1 Explicit Caching

Caching systems entail the inherent risk that clients are provided with stale resources, i.e.,
resources which are out of date with respect to their master copies on the origin server. To hinder
caches from reusing stale responses, the web caching standard defines a set of server-side and
client-side control directives as well as headers for declaring explicit caching requirements.

RFC 7234 provides two conceptual approaches for ensuring the freshness of a cached resource.
One is the server explicitly specifies the freshness lifetime of a resource, i.e. the time span
between the generation of a response and its expiration time. An expired response is considered
as stale. The other approach requires the caching system to check back with the origin server
whether a cached resource is still fresh. This second approach is known as freshness validation
or conditional request.

Explicit Freshness Lifetime

The conceptual message flow when applying the freshness lifetime is shown in Figure 4.1. When
a request issued to a particular server traverses a caching intermediary, the cache checks whether
it contains a fresh copy of the the requested resource. If it does not, it forwards the request to the
server. The response from the server defines a freshness lifetime advising the cache to handle
subsequent requests to this resource by its own for the specified amount of time. Thus, recurring
requests are served by the caching system for the specified amount of time without requiring
any further intervention with the origin server.

For explicitly declaring a freshness lifetime, RFC 7234 provides the Expires or Cache-Con-
trol headers. The Expires header specifies the absolute expiration time in form of a date
whose format is defined in [FR14c]. The Cache-Control header field provides the max-age
directive by which the relative freshness lifetime can be specified in seconds. For instance,
Cache-Control: max-age=60 within a response header defines that the corresponding
response is fresh for 60 seconds.

Both declarations are recognized by all types of caches including shared and private ones. A
shared cache stores and recycles responses for multiple users, while a private cache must only
return stored responses to one single user. Content distribution networks (CDNs), forward
and reverse proxies are typically shared caches. A prominent representative of the private
cache family is the web browser cache. The s-maxage directive has the same functionality as
max-age, with difference that it is intended for shared caches only. If the Cache-Control
header field comprises max-age and s-maxage simultaneously, a shared cache has to consider
the s-maxage directives while a private cache has to honor the value of max-age.
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Figure 4.1: Functional principle of web caching with freshness lifetime. The response from
the origin server contains meta data declaring the amount of time the response is
allowed to be replayed by caches without any further server intervention.

Explicit Freshness Validation

Beside the freshness lifetime, a cache can also infer the freshness of a response by a validation
process (see Figure 4.2). A request for triggering a freshness validation is also known as
conditional request [FR14a]. When a request issued to a particular web server traverses a web
caching intermediary, the cache checks whether it contains a copy of the the demanded resource.
If it does not, it forwards the request to the origin server in order to obtain the resource. The
response from the server contains some kind of validation token identifying the version of the
resource. For each subsequent request to this cached response the cache asks the origin server
whether the resource is still up-to-date by adding the validation token to the request. In case the
cached response is still valid, the server responds with the status code 304 Not Modified.
Note, that the response body is empty as the cache is already in possession of a valid copy. If
the validation request is unsuccessful, meaning that the requested resource has changed in the
meantime, the origin server sends a response with the status code 200 Ok and a body holding
the updated resource representation.

Origin servers can force caches to validate the freshness by including the Cache-Control
header with the value no-cache or must-revalidate. The difference between those two
directives lies in the fact that no-cache dictates a cache to validate the freshness of each
request, while must-revalidate requires a verification only if the response exceeds the
freshness lifetime. The must-revalidate directives also prohibits a cache from returning
stale responses.

RFC 7234 define two types of validation tokens: (1) an opaque entity tag represented by the
ETag header field and (2) a time-variant parameter that can be retrieved form the Date or
Last-Modified header. If a response does not comprise the ETag, Last-Modified or
Date header, a conditional request may contain a self-defined timestamp derived from a cache-
internal clock. A freshness validation request intending to verify with an opaque token must
contain the If-None-Match header comprising one or multiple entity tags. Freshness valida-
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Figure 4.2: Functional principle of web caching with freshness validation. The response of the
server contains meta data declaring that the freshness of the response needs to be
validated.

tion requests based on a time-variant token require to append the If-Modified-Since
header including either a self-defined timestamp or the timestamp value of the Date or
Last-Modified header. A successful freshness validation requests results in a response with
a 304 Not Modified status code. Here, a cache returns a stored response to the client, but
must update the header fields of the reused response with those of the response obtained for its
validation request.

Delivering Stale Resources

In certain circumstances, such as in cases of error or unavailability of the origin server, a cache
may deliver stale responses instead of an error message. RFC 7234 allows to return stale
responses, if the Cache-Control header of the resource in question does neither contain a
no-cache nor a must-revalidate directive. If this is the case and a cache returns a stale
response, it has to include the Warning header to the stale response informing the client about
the expired content.

Disabling Caching

If a origin server intends to prohibit all caches from storing a response, the endpoint must
include no-store in the Cache-Control header field. To prevent shared caches from
storing responses, origin servers have to add private to the Cache-Control header field.
The private directive can also be used to prohibit shared caching systems from storing
sensitive header fields such as Set-Cookie. Here, the private directive may contain values
(e.g. private="Set-Cookie,Server") in form of header field names declaring that a
shared is allowed to store this response but must remove the header fields listed in the private
directive.
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4.2.2 Implicit Caching

If a response does not contain any explicit caching requirements declared by the Cache-Control
or Expires header, a cache may either calculate an implicit freshness lifetime by using heuris-
tics or perform a implicit freshness validation.

A cache may derive an expiration time based on the Last-Modified or Date header field
if present. An implicit freshness lifetime can also be defined by using heuristics or predefined
fixed value. RFC 7234 allows only to determine a implicit freshness lifetime if no explicit
expiration time is set and distinct precondition are given. One requirement for calculating a
heuristic freshness lifetime is a response with status code 200 Ok to a GET request. Other
status codes allowing the determination of implicit freshness lifetime can be found in Section
6.1 of RFC 7231 [FR14c].

Besides the determination of heuristic freshness lifetime values for responses without any
explicit caching requirements, a cache may proactively initiate an implicit validation pro-
cess if it notices that clients recurrently execute equivalent requests. This can be done by
transforming the clients’ requests to conditional requests containing the If-None-Match or
If-Unmodified-Since header field. That is, the cache receives a request from the client
which does not contain any conditions. The cache owns a suitable stored response which can
be reused for satisfy the client’s request. This cached response has neither any explicit caching
requirements nor any explicit freshness lifetime definitions. The only cache-related information
of this response is a validation token, i.e. the ETag, Last-Modified or Date header field.
Instead of recycling this response directly, the intermediary proactively converts the client’s
request into conditional request including one of the validation tokens and send it to the server.
Such a behavior is considered as implicit, since the cache performs a validation by it’s own
choice. The client and server do not tell the cache to do this. In contrast, an explicit validation
means that the origin server forces the cache to perform an validation before reusing the stored
response. In other words, the web caching system must perform a validation of the response.

4.2.3 Client-originated Caching Policies

RFC 7234 also defines cache control directives for the client. As with the cache, a client
can include the If-None-Match or If-Modified-Since header field to the request for
starting a conditional request. Also, a client may use the max-age, no-store or no-cache
directives with the Cache-Control header field in a request for declaring explicit caching
requirements. Additionally, with the max-stale directive a client can specify that it is
willing to accept a request with a maximum staleness. The min-fresh parameter allows a
client to declare that it wants a response that remains fresh for at least the defined number of
seconds. If a client only wishes to obtain a stored response from a cache, it can include the
only-if-cached directive in the Cache-Control header field. In this case, a cache can
either return a stored response or it can reply with the status code 504 Gate Timeout, if
the cache does not possess a suitable response.

4.2.4 Defining new Cache Keys

The cache keys represent the indexes for mapping a request to stored response. By default,
caches use the HTTP method and the URL as cache keys in order to determine whether it
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possesses a valid response for the client. A server can also add further request header fields as
additional cache keys. To do so, the service provider needs to include the Vary header field
containing a comma separated list of header field names to be considered as additional cache
keys (e.g. Vary: Accept, Accept-Language).

4.2.5 Invalidation of Freshness

The invalidation of freshness defines an action which prohibits the reuse of responses even
though its freshness lifetime has not expired. RFC 7234 forces caches to invalidate a response
freshness if the result of a request to a recurring URL is not a error response and embodies an
unsafe HTTP method including PUT, POST, PATCH or DELETE. The standard defines the
status code classes 4xx and 5xx as errors.

4.2.6 Partial Content

Beside ensuring scalability and performance, caching systems may include other services. The
retrieval of a partial content of stored responses is, e.g., another core topic of RFC 7234 and can
be used for optimizing the performance likewise. If the transfer of a response is interrupted for
some reasons and a client has not received the whole content, it may perform a range request
retrieving only the missing bytes of the response instead of invoking the whole transmission
again. If a cache supports partial content retrieval, it can handle such requests without invoking
the origin server.

4.2.7 Security

The HTTP caching specification disallow a cache to store a response to a request containing the
Authorization header field unless the origin server explicitly allows it with a corresponding
header field value. A origin server can also prohibit a shared cache from storing a response
by adding the the control directive private to the Cache-Control header. This header
field only permit private caches to store and reuse the corresponding response. Moreover, the
web caching standard discusses privacy issues and security issues such as knows attack vectors
including cache poisoning which need to be considered by developers or providers applying
caching.

4.3 Web Browser Caches

A conventional web browser contains multiple caching subsystems: a cache storing HTTP
messages, the AppCache [W3C17] and the localStorage also known as Web Storage [Hic16].
The AppCache is used to store web resources but it is designed to cache web pages for offline
usage. The to be cached files are specified by a manifest document and not by HTTP control
directives. The localStorage is a key-value database which provides an Javascript API for the
storage of data. As with AppCache it is not considered to store HTTP messages based on HTTP
control directives. Note, that in this paper the AppCache as well as localStorage are out of scope.
Therefore, all description related to caching in this paper only refers to the web browser cache
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which stores HTTP messages based on HTTP control directives according to the specifications
in RFC 7234.

According to a pilot study which we will discuss in more detail in Section 4.5, web browsers
reuse stored responses from the internal caching systems when the request is executed via the
XMLHttpRequest API [WHA18] and the HTML tags <script>, <img>, <a> or <link>. One
exception where the web browser never utilizes the cache, is when a user explicitly reloads a
web page with the corresponding buttons. In case of entering a URL in URL bar, the analyzed
web browser however show an inhomogeneous behavior. While Firefox and Edge still strive
to reuse cached content if fresh responses are available, Chrome and Safari always bypass the
internal cache and fetch a new response. This diversity needs to be take into account by web
developers which consider caching in the business logic. To investigate further peculiarities and
diversities of web browser caches, web developers require testing tools. Besides the detection
of disparities, there is also a need for testing tools for identifying misbehavior of caching
systems. Caches which do not work properly may induce malfunctions, leading to a loss of
scalability, efficiency and performance. One intuitive example is when caches either ignore or
miss freshness lifetime policies. That is, caches do not leverage possible performance gain as
they forward each request to the origin server and do not store or reuse responses for recurring
requests. A cache malfunction can also be the wrong reuse of responses for equivalent requests.
This means a cache reuses stale content or response which is not returned if the client would had
communicated with origin server directly.

4.4 Related Work

The misuse of complex systems often results in faulty software as described in Section 4.3.
Especially in terms of Security API misuse the consequences can be severe [SB12; Fah+12;
LG17]. In this context, the availability of meaningful tools and documentation is understood as
crucial foundation for developers [GS16; GL16; Kru+17]. In this paper we aim at exploring the
situation in respect to web caching.

As caching is a vital requirement for providing scalability and performance in web-based
systems, a lot of tools and plugins evaluating web browser caching facets are available. The
browser-native developer tools provide information on whether a resource is retrieved from
the origin or the cache. Moreover, Firefox provides access to the HTTP responses stored in
the cache when entering about:cache in the URL bar. Likewise, there exists several web
browser plugins such as CacheViewer [Ben15] and ChromeCacheView [Nir18] which allow to
inspect the cached web resources. These tools are only for analyzing what HTTP messages and
how long the content is stored in web browser’s cache. None of these approaches consider to
investigate whether a cache stores and reuse HTTP message in compliance with RFC 7234. The
next section introduces such an approach for analyzing whether a cache behaves according to
the requirements defined by RFC 7234.

4.5 Test Methodology

The main objective of our test methodology is to find a meaningful test suite containing a
comprehensive collection of structured test cases for analyzing web caching systems in regards
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to non-conformance, misconfiguration, malfunction and potential vulnerabilities. Note, that
our methodology does not aim to evaluate the performance of web caching systems. Also, the
aim of our approach is not to conduct a security analysis of web-based systems which support
caching. For this purpose, penetration testing tools are more suitable. Likewise, our test suite is
not considered to analyze whether a cache is compromised or already poisoned with malicious
content.

The first step towards a systematic analysis of web browser caches is a deep understanding
of the web caching foundations which is laid down in Section 4.2. This section covers and
summarizes the core aspects of RFC 7234. Based on Section 4.2 we develop our test suite
covering all aspects defined in the web caching foundations and works addressing web caching
issues. The subsections of Section 4.2 build the structure and topics of our test suite as shown
by the subsequent list.

1. Explicit caching controlled by server

2. Implicit caching

3. Client-originated caching policies

4. Cache key adaptation

5. Invalidation of freshness

6. Partial content

7. Security

8. Other

We use this structure as a baseline for inferring and classifying test cases in a methodical manner.
To do so, we perform an in-depth review of RFC 7234 as well as available literature describing
caching issues and extract cache requirements, cache behaviors as well as cache malfunctions.
Based on this gathered information we infer test cases and group them into the topics of our
test suite. With this strategy we ensure that our test suit covers all test cases for analyzing all
requirements and cache behaviors described in RFC 7234. As the test case collection covers
all facets of the web caching standard, malfunctions issues related to conformance disobey can
be detected. On the basis of this methodology we were able to identify 397 test cases covering
constructive as well as destructive tests.

In order to get a platform-independent test environment, we use XMLHttpRequests as all web
browser provide a standardized Javascript API for issuing such requests. Also, the XML-
HttpRequest API is the only platform-agnostic approach for executing the 397 test cases in an
automatized manner. Tools like Puppeteer [Goo18] and Selenium [Sel18] could be used for
web cache test. These instruments are, however, only implemented for desktop web browsers.
Mobile browsers cannot be analyzed with these tools. Also, there is no evidence that the headless
mode used by these tools behaves the same as using a web browser normally. Therefore, we use
XMLHttpRequest to analyze the caching behavior, as this approach can be implemented and
executed for all web browses including desktop and mobile. Another reason for the utilization of
XMLHttpRequests is fact that the XMLHttpRequest API provides the option to set self-defined
header fields. Adding header fields is, e.g., required to include requests header fields such as
Cache-Control which are needed for analyzing client-originated caching policies.
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To verify whether XMLHttpRequests can be utilized for obtaining a generally valid analysis of
web browser caches, we conducted a pilot study with Chorme, Firefox, Safari and Edge. The
study shows that all requests are satisfied by a fresh stored response unless the user explicitly
wishes to retrieve a new response. That is, Chrome, Firefox, Safari and Edge check back the
same internal cache when the request is executed via the XMLHttpRequest API and the HTML
tags <script>, <img>, <a> or <link>. The web browsers only omit the cache when a
user explicitly intends to update a web page by clicking the reload button or pushing the F5 key.
Safari and Chrome also bypass the cache when a user enters a URL in the URL bar. Note that
we conduct this study only for the desktop version of Chrome, Firefox, Safari and Edge, as we
require to utilize the native developer tools to obtain a reliable analysis on whether a response is
reused.

4.6 Implementation of Testing Tool

In order to make our collection of test cases easily adoptable we developed a test environment
providing a simple test case syntax that allows to extend our base test suite in a straightforward
manner. We provide the cache testing tool containing the 397 test cases as free software. It can
be downloaded from https://github.com/das-th-koeln/Cache-Testing-Tool.

4.6.1 Web Browser Cache Testing Tool

Figure 4.3 shows the architecture of our cache testing system. We designed it as functional black
box test with the test objective being the cache. The architecture consists of a cache testing
server which is accessed and controlled by the cache testing client. Both endpoints need to be
under control of the test environment. By constructing specific sequences of message flows, the
behavior of the caching system can be examined.
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Figure 4.3: Architecture of the automated web browser cache testing tool

We realized the cache testing client as a web application which consists of an input interface
where the test vectors can be defined and a Javascript-based test framework which executes the
requests as well as evaluates the responses. The input interface requires two mandatory input
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arguments: the host of the cache testing server and a set of test cases defined by our test case
syntax that is introduced in the following section.

The test procedure starts by transferring the provided test cases to the test framework, where each
test case is processed sequentially and converted into a corresponding request. This is done by a
request processor inside the framework. This request processor converts the request/response
definitions to requests according to test case syntax and sends them to the cache testing server.
The requests contain specific meta information in order to unambiguously distinguish whether a
response is originated by the tested cache or the server. Moreover, the test case syntax includes an
option to define the expected response—e.g. in terms of RFC 7234. By this, the test framework
can compare the obtained response with the expected response to automatically generate a test
report.

4.6.2 Test Case Syntax

The syntax of our proposed test case definition language is based on the command line tool
curl [Ste18]. Listing 4.1 shows an example. Each test case contains a descriptive title and is
composed of one or multiple commands. The statements are executed in the specified sequence.
Each command represents one request and its expected response. Mandatory elements of each
command are the HTTP request method and the URL of the targeted resource. By means of
optional parameter, various extensions to the issued request and expected response can be crafted.
This is mainly related to the HTTP headers. One remarkable parameter is the flag to specify the
expected response. This can be adopted to obtain automated reports showing deviations from
the defined baseline.

1 ## Descriptive title of test case
2 GET /rsc -c ’Accept:application/json;Cache-Control:no-store’
3 -s ’Cache-Control:max-age=10’
4 -p 5
5 -e ’ch:false;st:200’
6 GET /rsc -c ’Accept:application/json’
7 -s ’Cache-Control:max-age=10’
8 -p 10
9 -e ’ch:true;st:200’

Listing 4.1: Example cache test case defined using the introduced test case specification
syntax

The example test case giving in Listing 4.1 specifies two commands. The first one is defined
by the lines 2 to 5 and the second one by the lines 6 to 9. Both specified statements issue GET
requests and provide the targeted resource URL without the scheme and host. The test case
syntax allows to add one or more header fields to a request by the -c parameter flag. The first
command in the example adds two header fields to the request: (1) the Accept header field
with the value application/json and (2) the Cache-Control header field containing
the value no-store. The header fields are separated from each other using the semicolon
character as delimiter. Accordingly, by means of the -s parameter flag a set of header fields
can be specified that are added by the cache testing server to the generated response. The
-p parameter flag defines a pause in seconds which has to be waited before the testing client
executes the next command. Breaks between requests are crucial for analyzing the freshness
lifetime of a response for instance. Additionally, the -e parameter flag describes the to be
expected properties of the response. These expected properties can be either requirements of
the RFC 7234 or requirements of the own caching policy. If the resulting responses fulfill
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all expected properties, then the test case is considered as successful. If a response does not
embody one of the properties, than the web caching system may have a malfunction. In the first
request/response definition, the first expected property ch:false (see line 5) assumes that the
result is a fresh response created by the origin server and not a replayed one form the cache.
The second expected property of the received response requires that its status code is 200 Ok
(expressed by st:200).

Request Response
GET /rsc HTTP/1.1
Host: cache.example.org
Accept: application/json
Cache-Control: no-store
X-Response: Cache-Control:max-age=10
X-Id: 123

HTTP/1.1 200 Ok
Cache-Control: max-age=10
Content-Length: 11
Content-Type: application/json
Date: Tue, 27 Feb 2018 13:29:28 GMT
X-Id: 123

{"Id":"123"}

X

5 seconds later
GET /rsc HTTP/1.1
Host: cache.example.org
Accept: application/json
X-Response: Cache-Control:max-age=10
X-Id: 345

HTTP/1.1 200 Ok
Cache-Control: max-age=10
Content-Length: 11
Content-Type: application/json
Date: Tue, 27 Feb 2018 13:29:28 GMT
X-Id: 123

{"Id":"123"}

X

Table 4.1: Requests and responses produced by the example test case in Listing 4.1 while
executed by the web browser cache test system

Table 4.1 depicts the request/response flow executed by the cache testing tool following the
example test case specifications shown in Listing 4.1. The first request contains the GET method
and targets the URL path /rsc. It includes the Accept and Cache-Control header fields
asking to retrieve the addressed resource in application/json that must not be a stored
copy from a cache. The header fields provided with the -s parameter flag should be added to
the response and are therefore transferred to the cache test server in the X-Response header
field of the request. If a request reaches and is processed by the cache test server, it appends the
header fields contained in X-Response header field of the request to the response. In the given
example, the server includes the Cache-Control header field with a value of max-age=10.
Moreover, all requests comprise the X-Id header field which embodies a unique random id.
The cache testing server adds the request id in the X-Id header field of the generated response
as well as the response body (see response in row 2 of Table 4.1). The request id inside the
request and the response allows to distinguish whether a received response has been issued by a
caching system or the cache testing server. By means of the added X-Id header fields, one can
assess that the first response is sourced from the server as it contains the same X-Id header field
value as the triggering request. The second response instead is sourced from a cache (visualized
by the gray background), since it comprises the request id of the first request and not the one
from the triggering request. Finally, the cache testing server adds the Date header field to the
response representing the response creation time. Table 4.1 shows that both responses fulfill the
expected properties specified the statements in Listing 4.1. The first response comes from the
server and contains the status code 200 Ok while the second is recycled by the web caching
systems and comprises the status code 200 Ok likewise.

The whole test suite containing all 397 identified and specified test cases by means of the
proposed test methodology can be obtained from https://github.com/das-th-koeln/Cache-Testing-
Tool.
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4.7 Empirical Study

With the introduced automated web browser cache testing tool, we analyzed the client-internal
web browser caches of Chrome/Android v64, Chrome/Windows v64, Safari/Mac v11, Safari/I-
Pad v11, Edge/Windows v16 and Firefox/Windows v58.

Table 4.2 summarizes the most significant results. The full anonymized analysis results can be
accessed at https://cachetester.github.io/cachetest/?cache=browsercaches.

Chrome/Android Chrome/Windows Safari/Mac Safari/IPad Edge/Windows Firefox/Windows
Explicit Freshness Lifetime
max-age       
Expires       
max-age & Expires       
Implicit Freshness Lifetime
Last-Modified       
Date # # # # # #
Explicit Freshness Validation
ETag & no-cache       
Last-Modified & no-cache       
Date & no-cache # # # # # #
Implicit Freshness Validation
ETag       
Last-Modified # # # # # #
Date # # # # # #
Invalidation
PUT     H# H#
DELETE     # H#
POST     H# H#
PATCH # #   H# H#
Client-originated Policies
max-age   # # # #
max-stale # #   # #
no-store # # # #   
min-fresh # # # # #  
only-if-cached # # # # # #
no-cache # #     

Legend:  RFC 7432 compliant, # none RFC 7432 compliant, H# partially RFC 7432 compliant

Table 4.2: Results of the empirical analysis of web browser caches obtained by the automated
evaluation of 397 test cases focusing on the compliance to RFC 7432

Our study shows that all web browser caches comply with the freshness lifetime control directives
max-age and Expires. Also, max-age is preferred over the date value of the Expires
header field, if both definitions are present simultaneously. Web browsers also prefer the
explicit cache requirements over the implicit ones. Moreover, all web browsers calculate an
implicit freshness lifetime when a request contains a Last-Modified header field without
any freshness lifetime control directives. However, an implicit freshness lifetime is not calculated
based on the Date header field. As all web browser comply with all explicit freshness lifetime
requirements of RFC 7234, this proper caching behavior has no negative consequences in terms
of performance, security and privacy. The omission of the Date header for defining a implicit
freshness lifetime may impair the communication performance, as this parameter is not utilized
by the cache to save requests. Therefore, web developers must consider that the analyzed web
browsers only use the Last-Modified header for specifying a implicit freshness lifetime.

In terms of freshness validation, all web browser caches perform an implicit validation if a
response contains the ETag header field without any freshness lifetime header fields. An
implicit conditional request is not executed when a request include a Last-Modified
header field, as this date value is used by all browsers to define an implicit freshness life-
time. The Last-Modified header field is only used to perform a validation if the ori-
gin server requires to do it. This means a validation request with the time-variant valida-
tion of the Last-Modified header field is only done, if the origin server includes the
Cache-Control header field containing the no-cache directive. The analyzed web browser
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caches also initiate an explicit conditional request if the response contains the ETag and
Cache-Control header field including the no-cache directive. Although, all responses
contain the Date header field, which can also be used as validation token, none of the web
browsers perform a validation on it. Instead, they start a request without any condition to retrieve
a full response. The freshness validation with a conditional request instead of retrieving the
same full response with body on each request saves a lot of network traffic when used properly.
Web developers must be aware that the evaluated web browsers only use the Last-Modified
or the ETag header to perform a conditional request. The Date header field or a self-defined
timestamp is not considered.

Discrepancies have also been found out by the invalidation of response’s freshness. Edge does
not perform an invalidation for requests containing the DELETE method. This leads to Edge
returning cached responses although they do not exist anymore on the origin server. Chrome
does not consider PATCH as method for triggering an invalidation. Another noteworthy finding
is that Chrome and Safari are the only web browser which do not trigger an invalidation, if the
response resulting from a request with a supported unsafe method comprises an error code. Both
web browsers still return a cached response in this case. This behavior is in conformance with
the RFC 7234. Firefox and Edge, however, invalidate a response’s freshness even though the
result from a request with a unsafe method is unsuccessful. Ignoring unsafe methods as indicator
for invalidating a response freshness leads to misbehavior in the business logic. Resources which
have been removed or changed are not updated by the cache inducing that users obtain stale
responses. Especially, REST-based web services [RR08] are affected by this malfunction.

The client-originated caching policies and control directives are only partially supported by
the analyzed web browsers. Chrome does not support the client-side no-cache control
directive, as it does not perform a validation request when it is present. Instead Chrome
initiates a request without any condition causing the transmission of the full response. The
no-store directive is only honored by Edge and Firefox. The analyzed web browsers also
behave differently, when a request contains the Cache-Control header field with max-age
directive. Chrome and Firefox return a response according the max-age requirements of
the client, while the others ignore this header field value. This inhomogeneity is also shown
with the min-fresh and max-age directives. Firefox is the only browser which supports
min-fresh and max-stale. Safari honors max-stale but ignores min-fresh. Chrome
and Edge neglect both. None of the tested browsers support the only-if-cached directive.
Not honoring the explicit caching requirement of the request may induce the same consequences
as not considering the server-side ones. On the one hand, refusing the request’s caching
requirements in some cases is crucial for retaining the scalability. The client can use the
no-store or max-age=0 directive to force the cache to fetch each response from origin
server without considering stored contents. If a web browser supports both control directives,
these requests may reduce the scalability and increase the workload of the origin server as
each request is forwarded to the endpoint. To maintain the scalability, a cache can simply
ignore and disobey cache-related client header fields. On the other hand, disrespecting client-
side control directives which require to fetch a response from the origin server can lead to
users becoming victims of cache poisoning attacks such as the threats presented by Jia et
al. [Jia+15]. Client intending to circumvent this attack must add no-store or max-age=0 to
the Cache-Control header field which mandate the cache to fetch a new response from
the origin server. Such a circumvention is only possible, if web caching systems support and
honor the control directives of the client.

72



4.8 Conclusion

Web caching systems are an important intermediate component of contemporary distributed
systems. The knowledge of and compliance with caching standards are crucial prerequisite in
order to achieve high scalability and performance levels. The lack of informed decision making
by web developers can lead to more severe issues than a simple degradations in efficiency,
though, including privacy and security related concerns.

This paper provides a first systematic study of web browser caches. Our findings provide insights
on their behavior and conformance with relevant standards. The empirical analysis reveals
compliance discrepancies and diversities across web browser caches which need to be carefully
considered by developers. These uncovered non-conformances and their accompanying side
effects emphasize the need for meaningful tools for exploring the reliability and particularities
of web browser caches. Such a tooling has been proposed. Although this paper solely focuses
on web browser caches, the introduced cache testing approach can be generalized to analyze
other types of caches including e.g. proxies and CDNs. Also, many other stakeholders besides
web developers might benefit from the proposed cache testing tool including administrators,
test engineers, software operators, DevOps teams, researchers as well as developers of caching
systems and web browser vendors. The presented cache testing systems including the whole test
suite is available for download at https://github.com/das-th-koeln/Cache-Testing-Tool.

Further work will analyze other web caching systems and other web caching facets in respect
to security services. The aim is to propose robust protection means which do not impair the
scalability and performance of web-based systems.
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5.1 Introduction

As the world becomes more and more digitized, the interconnected software increases in size
often forming so-called ultra-large scale systems [Fei+06]. Caching plays a central role to enable
and ensure the scalability and performance of such systems. From an engineering viewpoint
this puts new demands on software developers, as they have to deal with caching components in
their systems.

At present, the web is arguably the world’s largest distributed system [Fie00]. The intense use of
caching is one main reason for its growth [Wan99; BO00a]. A web cache represents a subsystem
for coordinating the transparent storage and retrieval of recyclable HTTP responses [FNR14].
By this, a web caching system potentially reduces three quantities: the number of requests that
reach the origin server, the volume of network traffic resulting from document requests, and the
latency that an end-user experiences in retrieving a document. Moreover, when serving recurring
requests on behalf of an origin server that is not online for some reasons, caches contribute
to an increased availability of web-based services. In terms of security, caches do have two
faces, though. One is, that a decentralized scattering of multiple caches to distinct network
regions renders distributed denial of service attacks much more cumbersome and ineffective,
since such attacks will be out-weighted by the distributed caches. On the other side, connections
protected by transport security means such as transport layer security (TLS) [Res18] need to be
terminated by the caches in order to fulfill their duties. This breaks the confidentiality of the
data exchange.

The knowledge of and compliance with relevant caching standards and technologies are crucial
in many respects. Ignoring them affects scalability and performance benchmarks in the first
place. Non-adherence may induce further impacts, including mission critical side effects
in the application behavior, as it has been demonstrated, e.g., by the web cache deception
attack [Gil17]. Here, sensitive account information—not intended for caching—has been
publicly accessible via a cache. This vulnerability exploited a combination of a malfunctioning
cache and faulty web application. This example emphasizes the potential impacts of improper
caching in distributed systems. As the foundations of the web are the driving forces for many
contemporary software paradigms including e.g. SOA [Erl07], Cloud [EPM13b], REST [Fie00]
and Microservices [New15], the increasing general relevance of web caching in software
engineering becomes evident.

To prevent issues stemming from inappropriate web caching, one need to have a deep under-
standing of the current state of play. In Section 5.2 we therefore briefly recap key aspects of
web caching. Based on these foundations, in Section 5.3 we discuss consequences of caching
misbehavior and misuse respectively. With the aim to mitigate caching-induced malfunctions
in distributed software systems, we mandate for proper test tools that are currently lacking, as
the related work review in Section 5.4 manifests. In Section 5.5, we introduce our shared web
cache testing tool. By means of the introduced testing tool, we conduct an empirical study of
six proxy caches and one CDN with the purpose of evaluating the introduced approach and
obtain a systematic analysis of available shared caching systems. The main results are discussed
in Section 5.6. Overall, they do affirm the relevance of appropriate web cache testing tools to
support stakeholders interacting with web caches such as developers, integrators, administrators
and researchers. In Section 5.7 we conclude with an outlook on challenges in web caching
putting a special emphasize on security-related considerations.
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5.2 Web Caching

The caching of frequently used web resources in order to reduce network traffic and optimize
application performance is one of the main reasons of success of the web [Wan99]. Many
classes of web caching systems evolved over time and are utilized in various locations on the
path between client and server (see Figure 5.1). One major distinction point of caching systems
beside the location is the differentiation between private and shared caches. A private cache
stores and reuses stored responses only for one single user while a shared cache can return stored
responses for multiple users. Typical private caching systems are client-internal caches. The web
browser cache is a prominent example here. Backbone caches including e.g. content distribution
networks (CDNs) and client-side forward proxies as well as server-side reverse proxy caches are
usually utilized as shared caches as they replay stored resources for multiple web clients. Web
frameworks or content management systems often provide server-internal caching systems that
can be implemented as private or shared cache. For instance, the WordPress plugin WP Super
Cache1 or the Java-based cache Ehcache2 are able to store and reuse (dynamically generated)
contents. These types of caches can usually be used to serve multiple users as well as a particular
user.
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Figure 5.1: Different types of web caching systems classified by location and resource access
policy

The reliability of private and shared caches in terms of proper exchanging and storing content is
essential for a dependable caching environment. Therefore, all types of web caching systems are
required to ensure that clients are always provided with fresh and authentic copies of the original
response. To do so, the RFC 7234 [FNR14] defines policies and cache control mechanisms for
origin servers, web caching system vendors and clients.

1. https://wordpress.org/plugins/wp-super-cache/
2. http://www.ehcache.org/
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5.2.1 Freshness

How a particular response is cached is mainly governed by the origin of the resource, the server.
It decides whether a resource is cacheable at all and if so, under which circumstances it can
be delivered by a caching intermediate. To do so, the server explicitly expresses freshness
properties within the concerning response (see Section 5.2.1). In cases, in which the server did
not specify any caching requirements, the caching intermediate can assign policies by its own
(see Section 5.2.1).

Explicit Caching

For origin servers, there are two general approaches for explicitly ensuring the freshness of a
cached response. The first approach is to define an explicit freshness lifetime. The other strategy
is the explicit freshness validation also known as explicit conditional request.

An explicit freshness lifetime defines the time span, which allows a cache to reuse a stored
response. Here, a cache is able to satisfy recurring requests with the stored content without
requiring any server intervention. There are two control directives for defining the explicit
freshness lifetime. One is the Expires header which contains the absolute date of expi-
ration. The other is the max-age directive which includes the relative expiration time in
seconds. The max-age directive is included in the Cache-Control header. For instance,
Cache-Control: max-age=60 indicates that the corresponding response can be consid-
ered as fresh for the next 60 seconds. Both control directives are valid for private and shared
caches. The s-maxage keyword indicates the same instructions as max-age. The only
difference is that s-maxage is exclusively dedicated for shared caches. A cache which reuses
a stored copy based on the freshness lifetime must include the Age header to the replayed
response. The Age header indicates number of seconds since the response has been received by
the cache.

Another option to ensure the freshness is to validate the stored content with a conditional
request. In this case, the cache may own a suitable response. Still, it has to check back each
recurring request with the server in order to determine whether the stored response is still fresh.
If the validation request is successful, meaning that the stored content in the cache has not
changed in the meantime, the server replies with a response containing the status code 304
Not Modified. Note that this response does not include any content in the body. If a cache
receives such a message, it can replay the cached content to the client, but it must update the
header of the stored response with the header of the 304 Not Modified response. If the
validation request is unsuccessful, meaning that the requested resource has changed, the server
must return the 200 Ok status code containing the updated resource in the body. A cache
receiving this message must forward the response to the client. Simultaneously, it replaces the
stale response with the fresh one.

If a server intends to force a cache to validate the freshness of a stored content, it adds
the Cache-Control header to the response containing one of these values: no-cache,
must-revalidate or proxy-revalidate. The no-cache directive forces the cache
to validate the response’s freshness for each recurring request to the same resource while
must-revalidate only requires to verify the response when the freshness lifetime is expired.
Both instructions must be considered by shared as well as private caches. proxy-revalidate
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has the same functionality as must-revalidate, with the difference that it is only dedicated
for shared caches.

A conditional request always contains the If-None-Match or If-Modified-Since
header including a validation token as value. RFC 7234 defines two types of validation tokens:
an opaque entity tag and a time-variant parameter. The If-None-Match header must contain
one or multiple opaque validation tokens which are included in the ETag header of the cached
response. Conditional requests with the If-Modified-Since header contain an absolute
date which can be obtained from the Last-Modified or Date response header.

In some cases, a cache can also return a stale response to the client, if the server is not available
for any reasons. A stale response must include the Warning header informing the client
about the expired response. Caches are not allowed to replay a stale response if the expired
stored Cache-Control response header contains at least one of the following keywords:
no-cache, must-revalidate or proxy-revalidate.

Servers can also prevent caches from storing and reusing particular contents. Here, endpoints
must include no-store or max-age=0 to the Cache-Control response header. The web
caching standard also provides the option to prevent shared caches from storing certain responses.
To do so, content providers must include private to the Cache-Control response header.
From the security and privacy viewpoint, this control directive is essential as it allows content
providers to disallow shared caches from storing sensitive information. private can also
be utilized for prohibiting shared response from reusing and storing sensitive header fields
such as Set-Cookie. For instance, if Cache-Control: private="Set-Cookie"
is appended to a response, a cache can still reuse this message for recurring requests, but it must
remove the Set-Cookie header.

Implicit Caching

RFC 7234 allows caches to define an implicit freshness lifetime, if a response does not contain
any explicit caching requirements. An implicit freshness lifetime can be defined by a fixed value
configured by a cache administrator or a heuristic algorithm can derive it. If a response contains
the Last-Modified or the Date header, a cache can also use the time-variant value within
these header fields to derive an implicit freshness lifetime. If a cached response is delivered
from the cache due to an implicit freshness lifetime, no further validation takes place with the
server. The cached resource contains the Age header signaling that a reuse happened without
server intervention.

Another cache-controlled initiative in the absence of any explicit caching is the implicit valida-
tion. The procedure of an implicit validation is the same as for an explicit validation. In case
time-variant tokens within the Date or Last-Modified headers are present, the cache can
initiate an implicit freshness validation request towards the server. Similarly, caches can also
initiate an implicit conditional request in case opaque tokens in the ETag header value are at
hand.

5.2.2 Client-originated Policies

As we have seen, the majority of the caching directives are dedicated to the server and do
henceforth reside in HTTP response messages. For some use cases, however, also the client
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can benefit from expressing caching requirements. RFC 7234 therefore also provides client-
side control directives which are declared in HTTP request messages. If a client maintains an
internal cache subsystem, it can use the If-None-Match or If-Modified-Since header
to issue a conditional request. Moreover, a client may include a max-age directive in the
Cache-Control request header for declaring that it only wishes to retrieve a stored response
of a maximum age. If a cache contains a suitable response, which does not exceed the specified
maximum age, it replays the stored content to the client. If the cache does only have a stale
copy, it must forward the request to the server to retrieve a new fresh response. The control
directives no-store and no-cache of the client-side Cache-Control header implies
same instructions as for the server-side counterpart.

The min-fresh, max-stale and only-if-cached control directives are exclusively
defined for the Cache-Control request header. With min-fresh=60, e.g., a client declares
that it only wishes to retrieve a cached copy if the corresponding stored response is still fresh in
the next 60 seconds. The max-stale directive implies that client is willing to accept a stale
response whose expiration time does not exceed the specified number of seconds. If a client
only wishes to retrieve a cached response, it can use only-if-cached. Caches which are not
able to return a cached response for such a request must return the status code 504 Gateway
Timeout.

5.2.3 Cache Key Adaption

The cache key unambiguously identifies a cached resource. By default, the cache key consists
of the HTTP method and the URL contained in the request. The corresponding response is
then identified by this attribute combination. Content providers intending to extend the cache
key can do so by specifying the according request header names to the Vary response header.
If a response contains, e.g., the header entry Vary: Accept, Accept-Encoding, in
addition to the HTTP Method and the URL the Accept and Accept-Encoding headers are
part of the cache key.

5.2.4 Invalidation of Freshness

Invalidation of freshness is the process that cancels the freshness lifetime of a cached response,
even if the stored content has not expired yet. According to RFC 7234, a cache must invalidate
a freshness lifetime of a response if the result of a request to this response contains a unsafe
method and is not a error message. HTTP standards define PUT, POST, PATCH and DELETE as
unsafe methods, since these action change the state of a resource. Error messages are responses
with the status code classes 4xx and 5xx.

5.2.5 Partial Content

Another optional feature of a cache is allowing the client to retrieve partial content. Requests
intending to retrieve a partial body are considered as range requests. These requests are useful
in case the communication between client and cache is interrupted for some reasons. Instead of
requesting the whole response again, a client can perform a range request retrieving only the
missing parts.
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5.2.6 Security

Caching systems provide scalability, performance and availability. Distributed caching systems
such as CDNs can provide an additional protection mean in terms of DDoS attack prevention.
However, using a cache may also open the door for security issues. Therefore, RFC 7234
specifies security considerations for cache vendors and applications using caching systems. One
important recommendation of the web caching standard is to prohibit the storage of responses
which results from a request containing the Authorization header, unless the server allows
it with a explicit freshness lifetime header value. This rule prevents caches from storing and
reusing responses that require an authentication. Moreover, RFC 7234 suggests implementation
hints for thwarting cache poisoning attacks. The consequences of cache poisoning attacks and
other cache malfunctions will be discussed in the next section.

5.3 Consequences of Malfunctioning Caching

Caches that do not function properly may lead to the loss of the desired properties in terms
of scalability and performance. One intuitive example is when either caches ignore or miss
freshness lifetime policies. That is, caches do not improve the performance as they forward each
request to the origin server and do not maintain response copies for recurring requests. Cache
poisoning attacks are another threat which can adversely affect the reliability of caches.

The request smuggling attack [Lin+05] is a shared cache vulnerability which executes a request
including two Content-Length headers. Even though the handling of such requests is
prohibited by the HTTP standard, their presence may confuse a cache, so that a malicious
response can be injected to the intermediary. This injected response is then reused by the shared
cache for recurring requests.

The host of troubles attack [Che+16] is another cache poisoning threat which exploit the presence
of two equal headers. In this attack, a request containing two Host headers fools a cache to
store a response under the cache key of the injected Host header.

The web deception attack [Gil17] shows a misbehavior of caching systems which also results
from a violation of the RFC 7234. Here, the cache still stores and recycles responses containing
sensitive account information even though the control directives prohibits it. In conjunction with
a flaw in the requests routing process, this attack allows to access account information of other
users.

All above-mentioned malfunctions arise mainly from dishonor of HTTP standards. Triukose et
al. [TAR09] show a vulnerability which does not result from a non-conformance with the HTTP
standards. This attack utilizes the fact that the web caching standard defines the HTTP method
and URL as default cache keys. Hence, each change in a URL including the query part—i.e.
http://example.org?<query>—forms a new cache key. This means, a cache must forward each
request, which includes a URL with the same scheme, host and path but a different query if
the intermediary does not possess a suitable stored response. The presented attack exploits this
definition by using a CDN for initiating a DDoS attack. Even though service providers utilize a
CDN to hamper such attacks, the authors demonstrate that adding a new random string to query
part of the URL prompts always an edge server within a CDN to forward this request to the
origin server. The authors make use of this behavior and perform requests with different random
query strings to all edge servers. As the edge servers conform to RFC 7234 and ignore the
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fact that the origin server produces the same content independent from the query part, the huge
amount of requests produced by the edge servers exceeds the capacity of the origin server. This
hence causes a denial of service due to generated workload. In this case, the distributed web
caching systems are in compliance with RFC 7234 and forward each request, as the URLs are
different. However, the cache does not know that the origin server considers requests including
URLs with the same scheme, host and path but a different query as equivalent requests.

This discussion already emphasize that the reasons for cache malfunctions are manifold reaching
from error-prone configurations, missing input validations to non-compliance with RFC 7234
and other relevant standards. Also, relying on the conformance with HTTP standards alone does
not mean that scalability and reliable caching in particular is ensured in all cases as shown by
Triukose et al. [TAR09]. Moreover, caching policies need to be adjusted and tested according to
the requirements and properties of the web application’s business logic in addition. In order to
mitigate and detect malfunctions in caching systems with the aim to optimize the scalability,
performance and protection of web applications there is a need for test methodologies and tools
analyzing the compliance and reliability of web caching systems.

5.4 Related Work

The previous section showed that programming and configuration mistakes in distributed soft-
ware systems layered by many distinct components can lead to severe consequences. To mitigate
such misuses, software developers and administrators requires meaningful auxiliaries in terms
of testing tools and documentation [GS16; GL16].

Many available cache testing tools are used for performance analysis such as Web Polygraph
[Web18] or Fiddler [Tel18]. Cache performance studies and performance optimization approa-
ches are also subject of much research work such as [Car+05; BVR13; RLB03].

As we have seen, scalability and performance are not the only relevant metrics to evaluate
in the context of web caching. Besides this, there are also many publications and tools in
respect to vulnerability testing. Jia et al. [Jia+15] conducted a study on web browser cache
poisoning (BCP) attacks. The authors investigate the feasibility of BCP attacks in various
popular desktop browsers. Based on these findings, they propose guidelines for users and
browser vendors to mitigate such threats. Also, James Kettle presented a set of cache poisoning
attacks on CDNs and proxies which does not result from a vulnerability in the web caching
system itself [Ket18c]. Unlike the threats described in Section 5.3 where an attacker exploits a
flaw in corresponding caching systems, the cache poisoning attacks presented by James Kettle
are based on a vulnerability in a web framework or content management system. Moreover,
there are a lot of penetration testing tools, e.g. OWASP Zap [BPM18] and Burp Suite [Por18],
which are utilized for detecting vulnerabilities in web-based systems which may include a
cache. In summary, the mentioned works on caching focus on two major topics: (i) performance
optimization and (ii) vulnerability analysis.

Studies on the compliance with web caching standards have not been on the focus of academic
work so far. The Co-Advisor project [The18] has been one of the first projects targeting HTTP
compliance testing. However, this product only provides a set of test cases for free. Users have
to buy additional test cases. Also, it does not allow the user to define custom test cases. Users
requiring customized test cases need to pass their test specification to the Co-Advisor vendor.
Hence, defining test cases for investigating own cache configurations or caching aspects that are
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not predefined by the Co-Advisor project is not feasible in a straightforward manner. Moreover,
the documentation of Co-Advisor project only refers to RFC 2616 [Fie+99] which is an obsolete
HTTP standard. There are also two additional projects from Achintha Reemal [Ree15] and the
HTTP2 specification working group [IET14] focusing on HTTP compliance testing. As with the
Co-Advisor project, both tools do not allow the user to define own test cases without modifying
the source code. Nguyen et al. [NLF18] present an methodology and cache testing tool which
have been used to conduct an empirical analysis of web browser caches. Their approach allows
customizing and extending further test cases in a simple manner. However, their tool covers
the client-internal caches inside web browsers only. In this work, we extend their approach
by implementing a cache testing tool for shared caches. We aim to use this tool for analyzing
popular proxy caches and CDNs in a systematically manner.

5.5 Cache Testing Tool

Our approach is based on the methodology of Nguyen et al. [NLF18] who perform an empirical
study of web browser caches. The first goal of this methodology was to define a comprehensive
test structure, which allows to derive a considerable test suite for analyzing the reliability of web
caching systems. To do so, Nguyen et al. conducted an in-depth review of RFC 7234 as well as
publications related to HTTP and web caching. As a result they proposed a test suite structure
with the following topics:

1. Explicit caching controlled by server

2. Implicit caching controlled by cache

3. Client-originated caching policies

4. Cache key adaptation

5. Invalidation of freshness

6. Partial content

7. Security

8. Other

On the basis of this methodology and a proposed test case specification language Nguyen et
al. were able to identify 397 test cases covering constructive as well as destructive tests. Even
though their paper covers web browser caches only, the test collection can also be utilized for
analyzing all kinds of web caching systems. In this paper, we utilize their methodology, test
suite and test case specification language to build a web cache testing tool for investigating
proxy caches and CDNs.
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5.5.1 Architecture

Figure 5.2 shows the architecture of our web cache testing system which is based on the approach
of [NLF18]. We implement our tool as functional black box test with the main test objective
being the cache. The architecture of the tool consists of a test server, which is accessed and
controlled by the test client. Both endpoints need to be under control of the test environment.

The proposed architecture enables to explore forward or reverse proxies and CDNs. The server-
internal caches WP Super Cache and Ehcache cannot be tested by our system, though, as these
web caching systems are different to others. Here, the caching systems are not designed to
store responses according to protocol header elements of HTTP messages. Instead, the caching
behavior is set via internal elements of the corresponding programming environment.
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Figure 5.2: Architecture of universal shared cache testing system based on [NLF18]

The cache testing client is a web application which consists of a frontend where the test vectors
can be defined and a backend which executes the requests as well as evaluates the returning
responses. The frontend provides a user interface which requires two mandatory input arguments:
the target host and a set of test cases defined by the provided test case specification language.
The request processor reads the supplied test cases, converts each test case into a series of
requests and schedules them for delivery to the server. On their way to the server, the requests
pass the cache. In order to unambiguously distinguish whether a response is originated by the
cache testing server or supplied by the web caching system, the request processor includes
specific meta information to the requests which will be replayed by the cache testing server.
By means of the replayed meta information included in the responses, our cache testing client
is able to infer several properties including whether the content is a cached copy or if other
expected testing requirements are met.

5.5.2 Test Case Suite

The developed testing tool for shared web caches comes with a test case suite of 397 tests that
can be used out of the box. This suite originates from [NLF18] and tests the conformance with
various HTTP and web caching standards. All 397 tests are defined using a custom specification
language. By this means, the base test suite can be easily explored and even extended with
individual tests. Listing 5.1 shows an example test case which is defined with the proposed test
case specification language.
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1 ## Testing freshness lifetime of 60 seconds
2 GET /rsc -c ’Accept:application/json;Cache-Control:no-store’
3 -s ’Cache-Control:max-age=60’
4 -p 30
5 -e ’ch:false;st:200’
6 GET /rsc -c ’Accept:application/json’
7 -e ’ch:true;st:200’
8 -p 35
9 GET /rsc -c ’Accept:application/json’

10 -e ’ch:false;st:200’

Listing 5.1: Example test case defined by the provided specification language

The provided test case specification language is based on the command line tool curl [Ste18].
Each test case starts by a descriptive title followed by one or multiple commands (see Listing 5.1).
A command contains two mandatory and several optional arguments. The first mandatory
argument is the request method, i.e. GET, POST, PUT, PATCH and DELETE. The second
mandatory argument represents the request target which is the URL omitting the scheme and
host parts. Listing 5.1 contains three commands: lines 2 to 5 define the first command and the
second one is specified from lines 6 to 8. Lines 9 to 10 cover the third and last command. Each
command specifies a request and its expected response. The first command demands to generate
a GET request targeting the URL /rsc. Optionally, the test case specification language allows
to add one or more headers to the request. This is done by the -c parameter flag. Multiple
headers must be separated by semicolon. In the example, the first command requires to add
two headers to the request: (i) the Accept header with the value application/json and
(ii) the Cache-Control header containing the value no-store. The -s parameter flag
instructs the cache testing server to add the specified headers to the resulting response. The -p
parameter flag forces the client to wait a certain amount of seconds before executing the next
request. Such breaks between requests are, e.g., required for analyzing whether a cache complies
with the freshness lifetime requirements. With the -e parameter flag, users can define the to be
expected properties of the response. These can be either RFC 7234 requirements or expectations
of the own caching policy. The first expected property in the first command ch:false (see
line 5) assumes that the resulting response originates from the server and is not a cached copy.
The second expected property st:200 demands the response to contain the status code 200
Ok.

Figure 5.3 shows the request/response flow executed by the web cache testing tool when
executing the test case specified in Listing 5.1. Accordingly, the first request includes the
GET method targeting the URL path /rsc. Note that the GET request contains the Accept
and Cache-Control headers signalling the retrieval of an application/json resource
representation that must not be a stored copy from a cache. The request also includes the
X-Response header which contains the headers that the cache testing server has to add to the
resulting response. Therefore, the resulting response includes the Cache-Control header
with the value max-age=60 which allows all caches to store the content for 1 minute.

All requests created by a our cache testing client comprise the X-Id header with a unique
random generated id. This token is returned by the cache testing server in case the request
reaches it. The cache testing server adds the id in the X-Id header of the response as well as
the body. The generated id including in the request and its resulting response allows evaluating
whether a received response has been replayed by a caching system or originates from our cache
testing server. For instance, by means of the id inside the X-Id header, our tool can assess
that the first response is sourced from the server as it contains the same id as the corresponding
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GET /rsc HTTP/1.1
Host: example.org
Accept: application/json
Cache-Control: no-store
X-Response: Cache-Control: max-age=60
X-Id: 142661fd2252eea7

GET /rsc HTTP/1.1
Host: example.org
Accept: application/json
Cache-Control: no-store
X-Response: Cache-Control: max-age=60
X-Id: 142661fd2252eea7

HTTP/1.1 200 OK
Cache-Control: max-age=60
Content-Length: 26
Date: Wed, 29 Aug 2018 13:29:28 GMT
X-Id: 142661fd2252eea7

{“Id“: “142661fd2252eea7“}

HTTP/1.1 200 OK
Cache-Control: max-age=60
Content-Length: 26
Date: Wed, 29 Aug 2018 13:29:28 GMT
X-Id: 142661fd2252eea7

{“Id“: “142661fd2252eea7“}

GET /rsc HTTP/1.1
Host: example.org
Accept: application/json
X-Id: 1aed7eb71b1fe040

HTTP/1.1 200 OK
Cache-Control: max-age=60
Content-Length: 26
Date: Wed, 29 Aug 2018 13:29:28 GMT
X-Id: 142661fd2252eea7
Age: 30

{“Id“: “142661fd2252eea7“}

GET /rsc HTTP/1.1
Host: example.org
Accept: application/json
X-Id: 635ad9e0cafb11d7

GET /rsc HTTP/1.1
Host: example.org
Accept: application/json
X-Id: 635ad9e0cafb11d7

HTTP/1.1 200 OK
Content-Length: 26
Date: Wed, 29 Aug 2018 13:30:33 GMT
X-Id: 635ad9e0cafb11d7

{“Id“: “635ad9e0cafb11d7“}

HTTP/1.1 200 OK
Content-Length: 26
Date: Wed, 29 Aug 2018 13:30:33 GMT
X-Id: 635ad9e0cafb11d7

{“Id“: “635ad9e0cafb11d7“}
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Figure 5.3: Request/Response flow produced by the web cache testing tool according to the
test case specified in Listing 5.1

request. The second response instead is a recycled copy from a shared cache (emphasized by the
gray background), since it includes the id of the first request and not the one from the second
request. Another indicator for a cached response is the Age header. Moreover, the cache testing
server also appends the Date header which represents the response creation time. This date
value is also another information, which can be used to assess whether the response is reused or
new.

Figure 5.3 illustrates that all the three responses comply with the expected properties specified
in the test case specification (see Listing 5.1). The first response is a new one from the server
and contains the status code 200 Ok. The second is a recycled response from the web caching
systems comprising the status code 200 Ok as well. The final response is a new one forwarded
by the cache from the server as the previous reused response is expired.

The introduced web cache testing tool with the base test suite is provided as public domain
software can be obtained from https://github.com/DASCologne/Cache-Testing-Tool.
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5.6 Empirical Study Results

To evaluate the introduced shared web cache testing system and to explore available shared
caching systems we analyzed popular widely deployed backbone and client-side as well as
server-side caching solutions. For the client- and server-side, we choose the proxy caches
Apache HTTP Server v2.4.18 (Apache HTTPD)3, Nginx v1.10.34, Varnish v5.1.15, Apache
Traffic Server v7.1.1 (Apache TS)6, Wingate v97 and Squid v3.5.128. Additionally, we analyze
the Amazon CloudFront CDN9.

All tested caching systems were left in their default configuration, with some small exceptions.
All proxy caches except Wingate enable the option to add the X-Cache-* headers on each
response. This header provides additional details on the cache status of the respective response,
e.g., whether a cached copy of it has been reused. This meta information is a complementary
indicator for studying the caching behavior. We enabled this feature to have an additional source
for validating our implementation.

Table 5.1 illustrates and this section discusses the most significant results of our empirical
analysis on caching systems. The full evaluation can be accessed at https://cachetester.github.io/
cachetest.

Apache HTTPD Nginx Varnish Apache TS Wingate Squid Amazon CDN
Explicit Freshness Lifetime
max-age   #     
s-maxage   #     
s-maxage & max-age   #     
Expires   #  #   
max-age & Expires   #  H#   
s-maxage & Expires   #  H#   
s-maxage, max-age & Expires   #  H#   
Implicit Freshness Lifetime
Last-Modified H# # H# #  # #
Date # # H# # # #  
Explicit Freshness Validation
ETag & no-cache # # # # H# # H#
Last-Modified & no-cache # # # # H#  H#
Date & no-cache # # # # # # H#
Implicit Freshness Validation
ETag # # # # H# # #
Last-Modified # # # # H#  #
Date # # # # # # #
Invalidation
PUT  # #  #  #
DELETE  # #  #  #
POST  # #  #  #
PATCH # # # # #  #
Client-originated Policies
max-age  B # # #  B  B #
max-stale  # #  # # #
no-store  B # # # # # #
min-fresh  # #   # #
only-if-cached  # # # #   
no-cache # # # # # # #
Security
Prefer explicit freshness lifetime    #B   #B

Prohibiting two Content-Length header    #B    
Storing response requiring AuthN #  B # # # # #
Storing Set-Cookie header  B # #     

Legend:  RFC 7432 compliant, # none RFC 7432 compliant, H# partially RFC 7432 compliant, B potentially vulnerable

Table 5.1: Results of the empirical analysis of caches obtained by the automated evaluation of
397 test cases

3. https://httpd.apache.org
4. http://nginx.org
5. https://varnish-cache.org
6. http://trafficserver.apache.org
7. https://www.wingate.com
8. http://www.squid-cache.org
9. https://aws.amazon.com/cloudfront
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5.6.1 Freshness Lifetime

Proxy Caches

Our analysis shows that Varnish and Wingate do not comply or only partially comply with the
explicit freshness lifetime policies of RFC 7234. Varnish ignores almost all freshness lifetime
definitions with max-age, s-maxage or the Expires header and stores each response,
regardless whether a freshness lifetime is defined or not, for a fixed predefined time span.
By default this is 120 seconds. This parameter represents the only option for adjusting the
freshness lifetime. The only way to influence the cache behavior is to include max-age=0,
no-store, no-cache and private in the response. Then Varnish does not cache or reuse
the corresponding response and forwards recurring requests to the origin server. Wingate
considers the values and the order of the max-age and s-maxage directives, but does not
support the Expires header. If no explicit freshness lifetime definitions are set, but the
Last-Modified header and a suitable status code such as 200 Ok are present, Apache
HTTPD and Wingate store responses and calculate the implicit freshness lifetime by multiplying
the date value of the Last-Modified header with a predefined factor.

All proxies provide a configuration options for stating self-defined implicit caching policies.
These requirements can be, e.g., a distinct data format, URL path or file suffix. As described in
Section 5.2, if implicit caching is enabled, caches are still required to take account of the explicit
requirements of the origin server and must prefer the server-side caching prerequisite over the
implicit ones. Otherwise the disobey of explicit caching, which is shown by Varnish, may
induces misbehavior in the business logic as responses are stored and reused longer as indicated.
Not prioritizing the explicit caching declaration over the implicit requirements is one prerequisite
for the web deception attack [Gil17]. With the help of our tool, we are able to detect that web
application using Apache TS might be vulnerable to this threat. If implicit caching preconditions
are specified via the configuration, the proxy ignores any explicit caching definitions set by
the origin server and stores responses according to the implicit caching policy only. That is, a
sensitive response which fulfills the precondition, but contains the Cache-Control header
including no-store or max-age=0, is still stored. In conjunction with a flaw in the routing
process, a web deception attack can exploit this malfunction to retrieve sensitive information.

CDNs

The Amazon CloudFront CDN specifies an implicit freshness lifetime of 24 hours for responses
without the Expires or the Cache-Control header, if a suitable status code such as 200
Ok is given. Amazon does not utilize the Last-Modified header to derive an implicit
freshness lifetime, as it uses this header to initiate a validation request. The implicit freshness
lifetime of 24 hours is also overruled, if the origin server sets an explicit freshness lifetime. The
CDN honors all freshness lifetime definitions with max-age, s-maxage and Expires. As
Amazon complies with all explicit and implicit freshness lifetime requirements of RFC 7234,
this proper caching behavior has no negative consequences in terms of performance, security
and privacy.

Optionally, Amazon also allows setting a self-defined implicit freshness lifetime for distinct
resources. However if this configuration option is set, the CDN might be vulnerable to the web
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deception attack. Here, each content is stored with the predefined freshness lifetime even if the
response contains no-store or max-age=0.

5.6.2 Freshness Validation

Proxy Caches

None of the proxy caches comply with all explicit freshness validation control directives.
Wingate and Squid are the only proxies, which partially complies with some requirements. If the
response contains the Last-Modified header, Wingate uses its value to perform a conditional
request but does not update the header of the returned cached response when the validation is
successful. However, Wingate shows non-compliance and odd behavior when the validation
request with an opaque token from the ETag header is successful. Here, Wingate forwards
the response of the origin server containing 304 Not Modified status code without any
body. For a client such a response is useless, as it does not content any meaningful information.
Squid performs an explicit validation request if a response contains the Last-Modified
and Cache-Control headers with no-cache. Responses with no-cache and an opaque
token are not validated by an conditional request, though. Here, it issues a request without
any conditions always fetching a fresh response containing a full body instead. Moreover,
Squid does not perform a implicit conditional requests for responses containing the ETag
header. Wingate executes a implicit validation requests for responses which include the ETag
or Last-Modified header. As with responses with a no-cache control directive and the
ETag header, Wingate forwards the server’s response with a 304 Not Modified status
code to the client if the resource has not changed in the meantime. Apache, Nginx, Varnish and
Apache TS never perform a freshness validation for recurring requests. They always issue a
request without any conditions retrieving the full response. Moreover, all analyzed proxy caches
never use the time-variant parameter of the Date header to perform an explicit or implicit
validation request.

The freshness validation with conditional requests instead of retrieving the same full response
with body on each request saves a lot of workload on the server as well as network traffic when
used properly. Therefore, caches that ignore conditional requests indicators and requirements
impair the performance of web applications.

CDNs

Explicit freshness validation is supported for responses containing the ETag or Last-Modified
header. That is, the CDN initiates a conditional request, if the origin server forces the cache to do
so by declaring no-cache. However, Amazon does not update the headers, it reuses the header
of the cached response. A validation is not performed if the ETag and Last-Modified
header are missing. Both headers are not used to perform an implicit validation. Responses
with these headers are stored implicitly for 24 hours, if the origin server does not specify any
freshness lifetime.

Unlike some analyzed proxy caches, Amazon does perform an explicit validation for responses
with certain validation tokens. This reduces data traffic and improves performance. However,
not updating the header in case of a successful validation is a violation of the standard and may
affect the business logic.
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5.6.3 Client-originated Caching Policies

Proxy Caches

Apache HTTPD is the only caching system which honors all client-side control directives except
no-cache. The other proxies only support the control directives partially.

Not respecting the explicit caching requirement of the client may induce the same consequences
as not considering the server-side ones. On the one hand, refusing the client’s caching require-
ments in some cases is crucial for retaining the scalability. According to RFC 7234, the client can
use the no-store or max-age=0 directive to force the cache to fetch each response from the
origin server without considering cached copies. These requests may reduce the scalability and
increase the workload of the origin server as each request is forwarded to the endpoint. Likewise,
bypassing a cache with these control directives enables the option to execute a DDoS attacks
similar to the vulnerability described by Triukose et al. [TAR09]. To avoid such threats, a cache
can simply ignore and disobey cache-related client headers. On the other hand, disrespecting
client-side control directives which require to fetch a response from the origin server can lead to
users becoming victims of cache poisoning attacks. Client intending to circumvent this attack
must add no-store or max-age=0 to the Cache-Control header which mandate the
cache to fetch a new response from the origin server. Such circumvention is only possible, if
web caching systems support and honor the control directives of the client.

CDNs

Amazon respects the only-if-cached control directive only. As with the proxy caches, not
honoring client-side control directives hinders clients from bypassing a cache. This retains the
performance in some cases. However, ignoring the client caching requirements removes the
option for service consumers to circumvent cache poising attacks.

5.6.4 Invalidation of Freshness

Proxy Caches

Our analysis reveals that only Apache TS, Apache HTTPD and Squid perform an invalidation of
a stored response if a response to a request containing an unsafe HTTP method is successful.
Moreover, Squid even triggers an invalidation if requests include the PATCH [DS10] method is
successfully processed. Apache HTTP and Apache TS does not consider PATCH as valid unsafe
method and still return a stored response after a successful PATCH request. Nginx, Varnish and
Wingate do not perform an invalidation in case of a successful PUT, DELETE, POST or PATCH
request. Instead of fetching a new response from the origin they return a cached copy if the
freshness lifetime has not expired.

Ignoring unsafe methods as indicator for invalidating a response’s freshness leads to misbehavior
in the business logic. Resources that have been removed or changed are not updated by the
cache inducing that users obtain stale responses. Especially, providers of REST-based web
services [RR08] might be affected by this malfunction.
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CDNs

Amazon does never perform an invalidation after a successful request with an unsafe method. It
always returns a stored response even though the target resource is changed or deleted. This
improper behavior may lead to severe consequences for clients using REST-based web services
deploying AWS CloudFront as CDN.

5.6.5 Security

Proxy Caches

In web applications, the Authorization header is utilized for transferring credentials in-
tended for authentication. To avoid middleboxes from storing responses requiring authentication,
RFC 7234 prohibits a shared cache to store responses resulting from requests containing the
Authorization header. The standard allows to cache protected responses only if the content
provider explicitly permits it by specifying a freshness lifetime with the max-age/s-maxage
directive or the Expires header.

Apache HTTPD, Varnish, Apache TS and Wingate do not store and reuse any response which
results from a request containing the Authorization header. They even ignore all explicit
freshness lifetime headers and control directives. Nginx and Squid do cache and recycle re-
sponses for equivalent requests, if the origin server specifies an explicit freshness lifetime. This
compliant behavior provides a performance enhancement for resources requiring an authenti-
cation as the cache omits the verification process for the origin server. However, Nginx and
Squid also return a cached response to a request embodying the Authorization header, if
an equivalent request does not contain the Authorization header. That is, any client can
retrieve a stored response requiring an authentication via these two caches without knowing
the valid credentials. Unfortunately, such a critical behavior is in conformance with RFC 7234,
since the standard does not require a cache to verify the Authorization header credentials
before reusing the response. To prevent disclosure of access protected data residing in a shared
cache, the origin server must declare the Authorization header as an additional cache key.
Then, a cache must compare the value within the Authorization header for every equivalent
request. Only if the value in the Authorization of the recurring request matches with the
stored one, the cache will return the response. Still, a system engineer needs to be aware of this
fact in order not to deploy caching components leaking sensitive data.

The value inside the Set-Cookie header is also commonly utilized for authentication purposes.
This header represents a vital meta information for transferring a session id to the client. With
this session id included in the Cookie request header, users can be identified and authenticated
by web applications. Hence, the disclosure of a Set-Cookie header to an attacker induces
severe consequences. We found that Apache HTTPD stores and reuses responses with the
Set-Cookie header when an explicit freshness lifetime is set. The critical issue of this
behavior is that the proxy does not remove the Set-Cookie header from the response when
the content is reused. Hence, session ids inside Set-Cookie can be accidentally passed to
other users or an attacker being aware of this issue may try to steal cookies. The problem
with this behavior is that the storage of responses comprising the Set-Cookie header by
shared caches is not prohibited according to RFC 7234. The HTTP standard only mentions
that Set-Cookie is not a header which prevents caching. Origin servers intending to store
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such responses should consider this aspect and are encouraged to use appropriate headers. This
means that Apache HTTPD conforms to RFC 7234 in this regards. But this compliant behavior
can lead to the disclosure of security-related data. The other investigated proxies do not show
this behavior. Nginx and Varnish do not store any response containing the Set-Cookie
header even if the response includes an explicit freshness definition. Apache TS, Wingate and
Squid store such a response, but remove the Set-Cookie header from the response if they
reuse it for recurring requests. This an ideal behavior for balancing security and scalability
as it prevents attackers from stealing cookies while considering the cacheability of responses
containing publicly accessible content. Still, the proper handling of the Set-Cookie header is
mentioned briefly in a side-note by the RFC 7234 making it error prone for unaware developers.
To simulate the behavior of Apache TS, Wingate and Squid, service providers can utilize
the private directive. As described in Section 5.2, filling the private directive with
header names (e.g private="Set-Cookie") allows a shared cache to store responses
containing the Set-Cookie header but with the exception that the intermediary must remove
the Set-Cookie header when storing it. Our analysis found that only Apache HTTPD
supports the private directive containing headers. The other proxy caches do not store any
response containing a private directive regardless whether this parameter includes headers or
not.

Moreover, we found that Apache TS permits to send a request with two Content-Length
headers. This is a critical behavior, which can lead to a request smuggling attack. We will
investigate this issue in further work to analyze if this issue can cause such an attack.

Another noteworthy finding, which may cause security issues, is that all analyzed caching
systems incorporate the whole URL including the query part as cache keys by default. This
means adding a random string to the query allows bypassing the cache. Considering the fact that
some proxies (e.g. Squid, Varnish and Apache TS) can be used to build a CDN, this compliant
behavior can be exploited to perform DDoS attacks such as the one demonstrated by Triukose et
al. [TAR09]. All analyzed proxy caches provide the option to disable the query part or certain
query parameter as cache keys via configuration. However, server providers using these caching
systems must be aware of the default behavior and must adjust the configuration according to
their conditions. These settings must be tested carefully with the aim that the cache is able to
understand the application-specific definitions of equivalent requests.

CDNs

By default, Amazon removes the Authorization header from the request and forwards the
request without this header to the origin server. The resulting response is stored implicitly or
explicitly if freshness lifetime definitions are present. If content providers want that Amazon
forwards the Authorization header to the origin server, then they need to add it to a request
header whitelist. This whitelist can be considered as the request header cache keys. If this is done,
Amazon does not remove this header from the request anymore and forward the request with the
Authorzation header to the origin server. The resulting responses are stored implicitly or
explicitly according to the given policy. Moreover, the CDN compares the Authorization
header for recurring requests and returns stored content only if the credentials match with
the values of the cached response. Such a handling of the Authorization header hinders
attackers from obtaining protected responses without the knowledge of the valid credentials.
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Responses with the Set-Cookie header are stored implicitly or explicitly depending on the
header information. However, the CDN removes the Set-Cookie header from the response
even when this resource is requested for the first time. Removing the Set-Cookie header in
each response hinders the transfer of the session id to the clients. This behavior can hamper
authentication procedures of web applications, which use the AWS CloudFront CDN.

With the default settings, Amazon cannot be exploited to perform DDoS attacks as introduced by
Triukose et al. [TAR09], when using exact the same technique. Amazon ignores the query part
as a cache key member by default. If web services still require incorporating query parameters
for delivering different responses, they can either include the query parameter in the settings or
they can use a whitelist. In this whitelist, service providers can define distinct query parameters,
which are processed by the origin server to return different content. If query parameters are
included in the list, Amazon only stores responses based on the defined parameters and the
corresponding parameters values. All other parameters (e.g. an appended random string) and
associated values are ignored. However, the whitelist still enables clients to penetrate through an
edge server cache if they include a random string as value in an allowed query parameter. For
instance, if the query parameter a is in the whitelist, URLs with same query parameter but a
different corresponding parameter value (e.g. http://example.org?a=<randomString>) always
provoke the CDN to forward the request to the origin server. For this paper, we do not investigate
if this setting might be exploited to conduct DDoS attacks.

5.7 Conclusion and Outlook

The obtained and discussed results emphasize that the analyzed web caching systems contain
many malfunctions. In summary, we found that these malfunctions in caches result from (i) the
non-conformance with RFC 7234, (ii) contradictions in RFC 7234, (iii) misconfigurations and
(iv) vulnerabilities in the business logic of web caching systems.

The issues and consequences of malfunctioning caches introduced in this paper show that proper
web caching is not a trivial task. Web caching systems are required to consider issues that
are beyond the definitions in the standard in order to provide a dependable caching systems
promoting performance and protection. There is not a reliable caching policy, which can be
applied for all caching systems. A proper caching guideline needs to be adjusted and tested
according to the requirements of the corresponding web application. Standardization needs to be
improved in order to reduce the current lock-in to specific caching solutions. This all emphasizes
the need for meaningful tools and methodologies for investigating conformance and security
issues of web caching systems before combining them with web applications in production.

Further work will investigate caching facets in respect to security services. The aim is to
propose robust protection means, which do not impair the scalability and performance of ULS
systems.
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6.1 Introduction

Contemporary distributed software systems require to scale at large in order to efficiently
handle the sheer magnitude of requests stemming, e.g., from human users all over the globe
or sensors scattered around in an environment. A common architectural approach to cope
with this requirement is to design the system in layers composed of distinct intermediaries.
Application-level messages travel through such intermediate systems on their path between a
client and a server. Common intermediaries include caches, firewalls, load balancers, document
routers and filters.

The caching of frequently used resources reduces network traffic and optimizes application
performance and is one major pillar of success of the web. Caches store recyclable responses
with the aim to reuse them for recurring client requests. The origin server usually rules whether
a resource is cacheable and under which conditions it can be provided by a caching intermediate.
Cached resources are unambiguously identified by the cache key that consists most commonly of
the HTTP method and the URL, both contained in the request. In case a fresh copy of a requested
resource is contained in an intermediate cache, the client receives the cached copy directly from
the cache. By this, web caching systems can contribute to an increased availability as they
can serve client requests even when the origin server is offline. Moreover, distributed caching
systems such as Content Distribution Networks (CDNs) can provide additional safeguards
against Distributed DoS (DDoS) attacks.

A general problem in layered systems is the different interpretation when operating on the same
message in sequence. As we will discuss in detail in Section 6.3, this is the root cause for
attacks belonging to the family of "semantic gap" attacks [JS12]. These attacks exploit the
difference in interpreting an object by two or more entities. In the context of this paper the
problem arises when an attacker can generate an HTTP request for a cacheable resource where
the request contains inaccurate fields that are ignored by the caching system but raise an error
while processed by the origin server. In such a setting, the intermediate cache will receive an
error page from the origin server instead of the requested resource. In other words, the cache
can get poisoned with the server-generated error page and instrumented to serve this useless
content instead of the intended one, rendering the victim service unavailable. This is why we
denoted this novel class of attacks "Cache-Poisoned Denial-of-Service (CPDoS)".

We conduct an in-depth study to understand how inconsistent interpretation of HTTP requests in
caching systems and origin servers can manifest in CPDoS. We analyze the caching behavior
of error pages of fifteen web caching solutions and contrast them to the HTTP specifica-
tions [FR14c]. We identify one proxy cache product and five CDN services that are vulnerable
to CPDoS. We find that such semantic inconsistency can lead to severe security consequences as
one simple request is sufficient to paralyze a victim website within a large geographical region
requiring only very basic attacker capabilities. Finally, we show that the CPDoS attack raises
the paradox situation in which caching services proclaim an increased availability and proper
defense against DoS attacks while they can be exploited to affect both qualities.

Overall, we make three main contributions:

1. We present a class of new attacks, "Cache-Poisoned Denial-of-Service (CPDoS)", that
threaten the availability of the web. We systematically study the cases in which error
pages are generated by origin servers and then stored and distributed by caching systems.
We introduce three concrete attack variations that are caused by the inconsistent treatment
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of the X-HTTP-Method-Override header, header size limits and the parsing of meta
characters.

2. We empirically study the behavior of fifteen available web caching solutions in their
handling of HTTP requests containing inaccurate fields and caching of resulting error
pages. We find one proxy cache product and five CDN services that are vulnerable to
CPDoS. We have disclosed our findings to the affected solution vendors and have reported
them to CERT/CC.

3. We discuss possible CPDoS countermeasures ranging from cache-ignoring instant protec-
tions to cache-adhering safeguards.

6.2 Foundations

The web is considered as the world’s largest distributed system. With the continuous growing
amount of data traveling around the web, caching systems become an important pillar for the
scalability of the web [BO00b]. Web caching systems can occur in various in-path locations
between client and origin server (see Figure 6.1). Another distinction point is the classification
in private and shared caches. Private caches are only allowed to store and reuse content for one
particular user. Client-internal caches of web browsers are one typical example of private cache
as they store responses for a dedicated user only. On the other hand, client-side and server-side
caches—also known as proxy caches—as well as CDNs deployed in the backbone of the web
belong to the family of shared caches, since they provide content for multiple clients. Some web
applications may also include a server-internal cache. These caching systems usually support
both access policies, i.e., they are able to serve cached resources to multiple users or to one
client exclusively.

The cache policy is governed by the content provider by specifying caching declarations defined
in RFC 7234 [FNR14]. The web caching standard defines a set of control directives for
instructing caches how to store and reuse recyclable responses. The max-age and s-maxage
attributes in the Cache-Control response header define, e.g., the maximum duration in
seconds that the targeted content is allowed to reside in a cache. The keyword max-age is
applicable to private and shared caches whereas s-maxage only applies to shared web caching
systems. Content providers can also use the Expires header with an absolute date to define a
freshness lifetime. As with max-age, the Expires is adoptable for private and shared caches.
A stored response in a cache is considered as fresh, if it does not exceed the freshness lifetime
specified by max-age, s-maxage and the Expires header. If a content provider wishes to
permit a certain content to be saved by private caches only, it adds the private directive to the
Cache-Control header. Content providers which do not want that a certain response is stored
and reused by any cache have to include the keyword no-store in the Cache-Control
header. The control directives must-revalidate, proxy-revalidate and no-cache
in the Cache-Control header instruct how to verify the freshness of a response, in case
a content is expired or no freshness lifetime information is available. All mentioned control
directives enable a content provider to define caching policies in an explicit manner.

If no explicit caching directive is present in a response, a web caching system may store and
reuse responses implicitly when certain conditions are met. One requirement which permits
caches to store content implicitly is a response to a GET request. Responses to unsafe methods
including POST, DELETE and PUT are not allowed to be cached. Moreover, responses to
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Figure 6.1: Different types of web caching systems classified by location and resource access
policy [NLF19a]

GET method must contain defined status codes including, e.g., 200 Ok, 204 No Content
and 301 Moved Permanently. Here, caches are allowed to derive a freshness lifetime by
using heuristics. Many web applications instruct web caching systems to define an implicit
freshness lifetime for images, scripts and stylesheets as these file types are considered as static
content. Static content refers to data which does not change frequently. Therefore, storing and
reusing such resources is considered as best practice for optimizing the performance.

In some cases, it is also very useful for content providers to cache certain error messages. For
instance, the status code 404 Not Found, which indicates that the origin server does not have
a suitable representation for the requested resource, is permitted to be cached implicitly. The
405 Method Not Allowed declaring the request action is not supported for the targeted
resource can be cached implicitly as well.

6.3 Security Threats in Web Caching Systems

Using web caching systems provides many advantages in terms of optimizing communication
and application performance. However, much work has shown that web caches can also be
exploited to affect the privacy and reliability of applications. Web cache poisoning attacks, e.g.,
are a serious threat that has been emerging over the past years. Amongst them is the request
smuggling [Lin+05] attack which occurs when the web caching system and the origin server do
not strictly conform to the policies specified by RFC 7234. In this particular attack, the attacker
can send a request with two Content-Length headers to impair a shared cache. Even though
the presence of two Content-Length headers is forbidden as per RFC 7234, some HTTP
engines in caches and origin servers still parse the request. Due to the duplicate headers, the
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malformed request is able to confuse the origin server and the cache so that a harmful crafted
response can be injected to the web caching system. This malicious response is then reused for
recurring requests.

The host of troubles [Che+16] attack is another vulnerability targeting shared caches. As with
the previous attack, it exploits a violation of the web caching standard that gets interpreted
differently by the involved system layers. Here, the attacker constructs a request with two Host
headers. These duplicate headers induce a similar misbehavior in the cache and origin server as
the request smuggling attack. Likewise, a malicious response is injected to poison the cache.

Another attack that targets to poison web caches is the response splitting [Kle04] attack. Unlike
the two aforementioned vulnerabilities, where a flaw in the shared cache itself is one reason
why the attack is successful, the response splitting attack exploits a parsing issue in the origin
server only. Here, an attacker utilizes the fact that the HTTP engine of the origin server does not
escape or block line breaks when replaying a request header value in the corresponding response
header. A malicious client can exploit this by dividing the response in two responses. The aim
of this attack is to poison the intermediate cache with the malicious content contained in the
second response.

James Kettle [Ket18c] presented a set of cache poisoning attacks which result from a misbe-
havior in web application frameworks and content management systems respectively. With the
introduced techniques, James Kettle was able to compromise shared web caching systems of
well-known companies.

All introduced attacks aim at poisoning shared caches with malicious content that gets served by
the victim caches for recurring requests of benign clients. Private caches such as the web browser
cache are not affected by the mentioned attacks. However, browser caches are not immune to
this class of attacks. Jia et al. [Jia+15] present browser cache poisoning (BCP) attacks. In their
study they find that many desktop web browsers are susceptible to BCP attacks.

The web cache deception [Gil17] attack targets to poison a shared cache with sensitive content.
Here, the attacker exploits a RFC 7234 violation of a shared cache which still stores responses
even though it is prohibited. In combination with an issue in the request routing of the origin
server, the author was able to retrieve account information of third parties out of the cache.

Triukose et al. [TAR09] showed another attack vector that utilizes web caching systems to
paralyze a web application. Unlike the presented threats, this attack does not intend to poison a
cache with harmful content or to steal sensitive data. The goal of Triukose et al. was to provoke
a DoS attack with the aid of a mounted CDN. The authors utilized the infrastructure of a CDN,
which comprises of many collaborating edge cache servers. With the use of a random string
appended to the URL query, Triukose et al. were able to bypass any edge cache servers so that
the CDN forwards every request to the origin server. To create a DoS attack, the authors send
multiple requests with different random query strings to all edge cache servers within the CDN.
As the edge cache servers forward all of these requests to the origin server, the huge amount of
requests reaching the origin server generates a high workload with the consequence that the web
application cannot process any further legitimate request.

The root cause of almost all of the presented attacks lies in the different interpretation of HTTP
messages by two or more distinct message processing entities, which is known as the semantic
gap [JS12]. Vulnerabilities stemming from the semantic gap are manifold [Kle04; Che+16;
Som+11]. In relation to web caches the request smuggling, host of troubles and response
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splitting attacks exploit this gap between a cache and an origin server. Here, a discrepancy in
parsing duplicate headers or line breaks leads to cache poisoning.

In the next section we introduce a new class of attacks against web caches, the Cache-Poisoned
Denial-of-Service (CPDoS) attack. It exploits the semantic gap between a shared cache and a
origin server for poisoning the cache with error pages. As a consequence, the cache distributes
error pages instead of the legitimate content after being poisoned. Users perceive this as
unavailable resources or services. In contrast to the DDoS attack introduced by Triukose et al.,
CPDoS require only very basic attack skills and resources.

6.4 Poisoning Web Caches with Error Pages

The general attack idea is to exploit the semantic gap in two distinct HTTP engines—one
contained in a shared cache and the other in an origin server. More specifically, the baseline of
the newly introduced variant of web cache poisoning takes advantage of the circumstance that the
deployed caching system is more lax or focused in processing requests than the origin server (see
Figure 6.2). An attacker can make use of this discrepancy by including a customized malicious
header or multiple harmful headers in the request. Such headers are usually forwarded without
any changes to the origin server. As a consequence, the attacker crafted request runs through the
cache without any issue, while the server-side processing results in an error. Henceforth, the
server’s response is a respective error, which will be stored and reused by the cache for recurring
requests. Each benign client making a subsequent GET request to the infected URL will receive
a stored error message instead of the genuine resource form the cache.

Attacker

GET /index.html HTTP/1.1
Host: example.org
X-Malicious-Header: Some value

GET /index.html HTTP/1.1
Host: example.org
X-Malicious-Header: Some value

HTTP/1.1 400 Bad Request
Content-Length: 10
Content-Type: text/plain

Some error

HTTP/1.1 400 Bad Request
Content-Length: 10
Content-Type: text/plain

Some error

Shared 
Cache

Origin
Server

GET /index.html HTTP/1.1
Host: example.org

HTTP/1.1 400 Bad Request
Content-Length: 10
Content-Type: text/plain

Some error

3

21

4

6

Benign
Client

5

Figure 6.2: General construction of the Cache-Poisoned Denial-of-Service (CPDoS) attack

98



It is worth noting that one simple request is sufficient to replace the genuine content in the cache
by an error page. This means that such a request remains below the detection threshold of web
application firewalls (WAFs) and DDoS protection means in particular, as they scan for large
amounts of irregular network traffic.

The consequences for the web application depend on the content being illegitimately replaced
with error pages. It will always affect the service’s availability—either parts of it or entirely. The
most harmless CPDoS renders images or style resources unavailable. This influences the visual
appearance of parts of the application. In terms of functionality it is still working, however.
More serious attacks targeting the start page or vital script resources can render the entire web
application inaccessible instead. Moreover, CPDoS can be exploited to block, e.g., patches or
firmware updates distributed via caches, preventing vulnerabilities in devices and software from
being fixed. Attackers can also disable important security alerts or messages on mission-critical
websites such as online banking or official governmental websites. Imagine, e.g., a situation in
which a CPDoS attack prevents alerts about phishing emails or natural catastrophes from being
displayed to the respective user.

When considering the low efforts for attackers, the high probability of success, the low chance of
being detected and the relatively high consequences of a DoS then the introduced CPDoS attack
poses a high risk. Hence, it is worthwhile investigating under which conditions CPDoS attacks
can occur in the wild. For this reasons we first compiled a complete overview on cacheable
error codes as specified in relevant RFCs [HM98], [Mas98], [NL00], [Dus07], [CJ10], [NF12],
[FR14c], [FNR14], [BPT15] and [Bra16] (see Table 6.1). Moreover, we analyzed whether
popular proxy caches as well as CDNs do store and reuse error codes returned from the origin
server. This exploratory study has been conducted with the approach of Nguyen et al. [NLF19a;
NLF18]. They provide a freely available cache testing tool for analyzing web browser caches,
proxy caches and CDNs in a systematically manner. The cache testing tool also offers a test
suite containing 397 test cases that can be customized by a test case specification language.
We extended the suite by adding new tests for evaluating the caching of responses containing
error status codes. In our study we concentrated on the five well-known proxies caches Apache
HTTP Server (Apache HTTPD) v2.4.18, Nginx v1.10.3, Varnish v6.0.1, Apache Traffic Server
(Apache TS) v8.0.2 and Squid v3.5.12 as well as the CDNs Akamai, CloudFront, Cloudflare,
Stackpath, Azure, CDN77, CDNSun, Fastly, KeyCDN and G-Core Labs.

Even though the cacheability of error codes are well-defined by the series of RFC specifications
given above, our analysis reveals that some web caching systems violates some of these policies.
For instance, CloudFront and Cloudflare do store and reuse error messages such as 400 Bad
Request, 403 Forbidden and 500 Internal Server Error although being not
permitted. The violation of web caching policies is a severe issue and needs to be taken into
account by content providers and web caching system vendors. Recent publications have
revealed that non-adherence may otherwise lead to caching vulnerabilities [Gil17; Lin+05;
Che+16]. Following these observations, we investigated further in order to discover vulnerable
constellations. We were able to identify three concrete instantiations of the general CPDoS
attack that we present in the following subsections.

6.4.1 HTTP Method Override (HMO) Attack

The HTTP standard [FR14c] defines a set of request methods for the client to indicate the
desired action to be performed for a given resource. GET, POST, DELETE, PUT and PATCH
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Legend: X cacheable status code according to HTTP Standard,  stored by web caching
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400 Bad Request – # # # # # # # # # #  # # # #
401 Unauthorized – # # # # # # # # # # # # # # #
402 Payment Required – # # # # # # # # # # # # # # #
403 Forbidden – # # # # # # # # #  # # # # #
404 Not Found X # # # #   #  #    # # #
405 Method Not Allowed X # # # # #  # # # #  # # # #
406 Not Acceptable – # # # # # # # # # # # # # # #
407 Proxy Authentication Required – # # # # # # # # # # # # # # #
408 Request Timeout – # # # # # # # # # # # # # # #
409 Conflict – # # # # # # # # # # # # # # #
410 Gone X #  # #    # #    # # #
411 Length Required – # # # # # # # # # # # # # # #
412 Precondition Failed – # # # # # # # # # # # # # # #
413 Payload Too Large – # # # # # # # # # # # # # # #
414 Request-URI Too Long X # # # #  # # # # #  # # # #
415 Unsupported Media Type – # # # # # # # # # # # # # # #
416 Requested Range Not Satisfiable – # # # # # # # # # # # # # # #
417 Expectation Failed – # # # # # # # # # # # # # # #
418 I’m a teapot – # # # # # # # # # # # # # # #
421 Misdirected Request X # # # # # # # # # # # # # # #
422 Unprocessable Entity – # # # # # # # # # # # # # # #
423 Locked – # # # # # # # # # # # # # # #
424 Failed Dependency – # # # # # # # # # # # # # # #
426 Upgrade Required – # # # # # # # # # # # # # # #
428 Precondition Required – # # # # # # # # # # # # # # #
429 Too Many Requests – # # # # # # # # # # # # # # #
431 Request Header Fields Too Large – # # # # # # # # # # # # # # #
444 Connection Closed Without Response – # # # # # # # # # # # # # # #
451 Unavailable For Legal Reasons X # # # # # # # # # # # # # # #
499 Client Closed Request – # # # # # # # # # # # # # # #
500 Internal Server Error – # # # # # #  # # #  # # # #
501 Not Implemented X # # # # # #  # # #  # # # #
502 Bad Gateway – # # # # # #  # # #  # # # #
503 Service Unavailable – # # # # # #  # # #  # # # #
504 Gateway Timeout – # # # # # #  # # #  # # # #
505 HTTP Version Not Supported – # # # # # #  # # # # # # # #
506 Variant Also Negotiates – # # # # # # # # # # # # # # #
507 Insufficient Storage – # # # # # # # # # # # # # # #
508 Loop Detected – # # # # # # # # # # # # # # #
510 Not Extended – # # # # # # # # # # # # # # #
511 Network Authentication Required / Status Code and Captive Portals – # # # # # # # # # # # # # # #
599 Network Connect Timeout Error – # # # # # # # # # # # # # # #

Table 6.1: Overview of cacheable error status codes according to [HM98; Mas98; NL00;
Dus07; CJ10; NF12; FR14c; FNR14; BPT15; Bra16] and empirical study results
showing whether the status codes are cached by the analyzed web caching systems

are arguably the most used HTTP methods in web applications and REST-based web services
[RR08] in particular. Some intermediate systems such as proxies, load balancer, caches or fire-
walls, however, only support GET and POST. This means DELETE, PUT and PATCH requests
are simply blocked. To circumvent this restriction many REST-based APIs or web frame-
works provide auxiliary headers such as X-HTTP-Method-Override, X-HTTP-Method
or X-Method-Override for passing through an unrecognized HTTP method. These headers
will usually be forwarded by any intermediate systems. Once the request reaches the server, a
method override header instructs the web application to replace the method in the request line
with the one in the method overriding header value.

These method override headers are very useful in scenarios when intermediate systems block
distinct HTTP methods. However, if a web application supports such a header and also uses a
shared web caching system, a malicious client can exploit this semantic gap for performing a
CPDoS attack. In a typical HTTP Method Override (HMO) attack flow, a malicious client crafts
a GET request including an HTTP method overriding header as shown in Figure 6.3.

A CDN or reverse proxy cache interprets the request in Figure 6.3 as a benign GET request target-
ing http://example.org/index.html. Hence, it forwards the request with the X-HTTP-Method
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Attacker

GET /index.html HTTP/1.1
Host: example.org
X-HTTP-Method-Override: POST

GET /index.html HTTP/1.1
Host: example.org
X-HTTP-Method-Override: POST

HTTP/1.1 404 Not Found
Content-Length: 29
Content-Type: text/plain

POST on /index.html not found

HTTP/1.1 404 Not Found
Content-Length: 29
Content-Type: text/plain

POST on /index.html not found

Shared 
Cache

Origin
Server

GET /index.html HTTP/1.1
Host: example.org

HTTP/1.1 404 Not Found
Content-Length: 29
Content-Type: text/plain

POST on /index.html not found

3

21

4

5

6

Benign
Client

Figure 6.3: Flow and example construction of the HTTP Method Override (HMO) attack

-Override header to the origin server. The endpoint, however, interprets this request as a
POST request, since the X-HTTP-Method-Override header instructs the server to replace
the HTTP method in the request line with the one contained in the header. Accordingly, the
web application returns a response based on POST. Let’s assume that the target web application
does not implement any POST endpoint for /index.html. In such a case, web frameworks
usually returns an error message, e.g., the status code 404 Not Found or 405 Method
Not Allowed. The shared cache assigns the returned response with the error code to the
GET request targeting http://example.org/index.html. Since the status codes 404 Not Found
and 405 Method Not Allowed are cacheable according to the HTTP Caching RFC 7231
as shown in Table 6.1, caches store and reuse this error response for recurring requests. Each
benign client making a subsequent GET request to http://example.org/index.html receives the
cached error message instead of the legitimated web application’s start page.

6.4.2 HTTP Header Oversize (HHO) Attack

The HTTP standard does not define any size limit for request headers. Hence, intermediate
systems, web servers and web frameworks specify their own limit. Most web servers and
proxy caches provide a request header limit of about 8,000 bytes in order to avoid security
threats such as request header overflow [NAT10] or ReDoS [SP18] attacks. However, there
are also intermediate systems, which specify a limit larger than 8,000 bytes. For instance, the
Amazon CloudFront CDN allows up to 24,713 bytes. In an exploratory study we gathered the
default HTTP request header limits deployed by various HTTP engines and cache systems (see
Table 6.3).

101



This semantic gap in terms of different request header size limits can be exploited to conduct a
CPDoS attack. To execute an HTTP Header Oversize (HHO) attack, a malicious client needs to
send a GET request including a header larger than the limit of the origin server but smaller than
the one of the cache. To do so, an attacker has two options. First, she crafts a request header
with many malicious headers. The other option is to include one single header with an oversized
key or value as shown in Figure 6.4.

The web caching system forwards this request including the oversized header to the endpoint,
since the header size is under the limit of the intermediary. The web server, however, blocks this
request and returns an error page, as the request exceeds the header size limit. This returned
error page is stored and will be reused for equivalent requests.

Attacker

GET /index.html HTTP/1.1
Host: example.org
X-Oversized-Header: Big value

GET /index.html HTTP/1.1
Host: example.org
X-Oversized-Header: Big value

HTTP/1.1 400 Bad Request
Content-Length: 20
Content-Type: text/plain

Header size exceeded

HTTP/1.1 400 Bad Request
Content-Length: 20
Content-Type: text/plain

Header size exceeded

Shared 
Cache

Origin
Server

GET /index.html HTTP/1.1
Host: example.org

HTTP/1.1 400 Bad Request
Content-Length: 20
Content-Type: text/plain

Header size exceeded

3

21

4

5

6

Benign
Client

Figure 6.4: Flow and example construction of the HTTP header oversize (HHO) attack

6.4.3 HTTP Meta Character (HMC) Attack

The HTTP Meta Character (HMC) works similar to the HHO attack. Instead of sending an
oversized header, this attack tries to bypass a cache with a request header containing a harmful
meta character. Meta characters can be e.g. control characters such as the line break/carriage
return (\n), line feed (\r) or any other Unicode control characters. As the \n and \r characters
are used by the response splitting attack to poison a cache, some HTTP implementations block
requests containing these symbols.

HTTP implementations, which drop such characters, mostly return an error message signaling
that they do not parse this request. However, there are some cache intermediaries which do
not care about certain control characters. They simply forward the request including the meta
character to the origin server which return an error code. The resulting error page is then stored
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and reused by the cache. This constellation can be exploited by a malicious client to conduct
another form of CPDoS attack. We declare this vulnerability as HTTP Meta Character (HMC)
attack. To do so, the attacker crafts a request with a meta character, e.g. \n, as shown in Figure
6.5. The goal of this example attack in is to fool the origin server into believing that it is attacked
by a response splitting request. As with the previously presented vulnerabilities, the HMC
request traverses the cache without any issues. Once the request reaches the endpoint, it is
blocked and an according error page is returned, since the web server is aware of the implications
regarding suspicious characters such as \n. This error message is then stored and recycled by
the corresponding web caching system.

Attacker

GET /index.html HTTP/1.1
Host: example.org
X-Metachar-Header: \n

GET /index.html HTTP/1.1
Host: example.org
X-Metachar-Header: \n

HTTP/1.1 400 Bad Request
Content-Length: 21
Content-Type: text/plain

Character not allowed

HTTP/1.1 400 Bad Request
Content-Length: 21
Content-Type: text/plain

Character not allowed

Shared 
Cache

Origin
Server

GET /index.html HTTP/1.1
Host: example.org

HTTP/1.1 400 Bad Request
Content-Length: 21
Content-Type: text/plain

Character not allowed

3

21

4

5

6

Benign
Client

Figure 6.5: Flow and example construction of the HTTP Meta Character (HMC) attack

6.5 Practicability of CPDoS Attacks

In order to explore the existence of CPDoS weaknesses in the wild, we conducted a series
of experiments. A crucial prerequisite for a potential CPDoS vulnerability is a web caching
system that stores and reuses error pages produced by the origin server. Table 6.1 highlights
that Varnish, Apache TS, Akamai, Azure, CDN77, Cloudflare, CloudFront and Fastly do so.
Based on these findings, we conducted three experiments—one for each introduced CPDoS
variant—to examine whether these intermediate systems are vulnerable to CPDoS attacks.

6.5.1 Experiments Setup

The first step to analyze whether CPDoS vulnerabilities exist in practical environments is to
figure out vulnerable HTTP implementations which are utilized as the origin server. HTTP
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implementations on the origin server can be diverse systems including, e.g., reverse proxies,
web servers, web frameworks, cloud services or other intermediate systems as well as another
cache.

In our first experiment, we analyzed the method override header support in web frameworks.
Additionally, we also evaluated what error page is returned when sending a method override
header containing an HTTP method which is not implemented by corresponding resource
endpoint. Based on the findings in Table 6.1 where we know what error page is stored by what
web caching systems, we inferred what web framework in combination with what web caching
systems might be vulnerable to HMO attacks. For this empirical analysis we chose 13 web
frameworks based on the most popular programming languages according to IEEE Spectrum
[IEE18]. The analyzed collection of web frameworks includes ASP.NET v2.2, BeeGo v1.10.0,
Django v2.1.7, Express.js v.4.16.4, Flask v1.0.2, Gin v1.3.0, Laravel v5.7, Meteor.js v1.8, Rails
v5.2.2, Play Framework 1 (Play 1) v1.5.1, Play Framework 2 (Play 2) v2.7, Spring Boot v2.1.2
and Symfony v4.2.

The second experiment investigated the request header size limits of the web caching systems
in Table 6.1 as well as the 13 web frameworks. As the web frameworks ASP.NET and Spring
Boot requires an underlying web server to be deployed in production mode, we additionally also
evaluate the request header limits of Microsoft Internet Information Services (IIS) v10.0.17763.1
and Tomcat v9.0.14. Moreover, we also evaluated popular cloud services including Amazon S3,
Github Pages, Gitlab Pages, Google Storage and Heroku. As with the first experiment, we also
tested which error code is returned when the request header size limit is exceeded. With these
findings we figured out what HTTP implementations in conjunction with what web caching
systems are potentially vulnerable to HHO attacks.

The last experiment evaluated the feasibility of HMC attacks. Here, we evaluated the handling
of meta characters in all mentioned web caching systems, web frameworks, web servers and
cloud services. To test as many meta characters as possible we collected as list of 520 potentially
irritating strings. This collection contains control, special, international and other unicode
characters as well as strings comprising attack vectors including cross site scripting (XSS), SQL
injections and remote execution attacks. The goals of this study was to analyze what characters
and strings are blocked, sanitized and processed or forwarded without any issues. Moreover, we
also evaluated what error page is triggered when a character or string is blocked. Based on our
findings we were able to conclude what characters and what symbols need to be send to what
constellation of HTTP engine and web caching system to induce an HMC attack.

6.5.2 Feasibility of HMO attacks

Table 6.2 shows the results of the first experiment. It highlights that Symfony, Laravel and Play
1 support method override headers by default. Django and Express.js instead do not consider
method override headers by default, but provide plugins to add this feature. Flask does not
offer any plugin for the integration of method override headers, but provides an official tutorial
how to enable it [Fla10]. Table 6.2 also points out what error code is returned when the web
framework receives a method override header with an action that is not implemented by the
addressed resource endpoint.

Even though the web frameworks with a method overriding header support return cacheable
error codes, we observed that only Play 1 and Flask are vulnerable to HMO CPDoS attacks.

104



Legend: # must be implemented manually,  by default, G# not by default but by extension
Web framework Programming lang. Method overriding support Error code when method not implemented
Rails Ruby # undefined
Django Python G# 405
Flask Python G# 405
Express.js JavaScript G# 405
Meteor.js JavaScript # undefined
BeeGo Go # undefined
Gin Go # undefined
Play 1 Java  404
Play 2 Java/Scala # undefined
Spring Boot Java # undefined
Symfony PHP  405
Lavarel PHP  405
ASP.NET C# # undefined

Table 6.2: HTTP method overriding headers support of tested web frameworks

However, both web frameworks can only be affected if Fastly, Akamai, Cloudflare, CloudFront,
CDN77 and Varnish are used as intermediate cache. The reason why these web frameworks are
vulnerable lies in the fact that Play 1 and Flask do perform an HTTP method change for GET as
well as POST requests in case an HTTP method override header is present. Laravel, Symfony
and the plugins for Django and Express.js are not vulnerable to HMO CPDoS, since they ignore
HTTP method override headers in GET requests and restrict themselves to transform the method
for POST requests only. Attackers cannot poison the tested web caching systems with a POST
request, since responses to POST requests are not stored by any of them.

Malicious clients can attack web applications implemented with the Play 1 by sending a GET
request with the method override header including, e.g., POST as value. If the corresponding
resource endpoint does not implement any functionality for POST, then the web framework
returns the error code 404 Not Found. Akamai, Fastly, CDN77, Cloudflare, CloudFront
and Varnish cache this status code by default (see Table 6.1). Flask is also vulnerable to HMO
CPDoS attacks, if the support of HTTP method override headers is implemented with the official
tutorial of the web framework’s website. However, HMO attacks are only possible, if Akamai
and CloudFront are utilized as CDN, since Flask returns the status code 405 Method Not
Allowed. Akamai and CloudFront are the only analyzed web caching systems, which store
and reuse error pages with this code.

6.5.3 Feasibility of HHO attacks

Table 6.3 depicts the results of our study on request header size limits. If available, it moreover
lists the request header size limit specified in the documentation of the corresponding HTTP
implementation. Note, that we omit the web frameworks ASP.NET, Django, Flask, Laravel,
Rails, Symfony and Spring Boot in this table, as we found out that the request header limits
depend on the used web server and deployment environment.

Our obtained results reveal many varieties in terms of request header size limits among the
HTTP implementations. The evaluation shows that CloudFront provides a request header size
limit, which is much higher than the one of the many other HTTP implementations we tested.
Moreover, Amazon’s CDN also caches the error code 400 Bad Request by default (see
Table 6.1), which is triggered by most of the HTTP implementations when the request header
size limit is exceeded. Hence, in our experiments we figured out that when using CloudFront
as CDN any HTTP implementation that has a request header size limit lower than CloudFront
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HTTP implementation Documented limit Tested limit Limit exceed error code
CDN Akamai undefined 32,760 bytes No Response

Azure undefined 24,567 bytes 400
CDN77 undefined 16,383 bytes 400
CDNSun undefined 16,516 bytes 400
Cloudflare undefined ≈ 32,395 bytes 400
Cloudfront 20,480 bytes ≈ 24,713 bytes 494
Fastly undefined 69,623 bytes No Response
G-Score Labs undefined 65,534 bytes 400
KeyCDN undefined 8,190 bytes 400
StackPath undefined ≈ 85,200 bytes 400

HTTP engine Apache HTTPD 8,190 bytes 8,190 bytes 400
Apache HTTPD + ModSecurity undefined 8,190 bytes 400
Apache TS 131,072 bytes 65,661 bytes 400
Nginx undefined 20,584 bytes 400
Nginx + ModSecurity undefined 8,190 bytes 400
IIS undefined 16,375 bytes 400, (404)
Squid 65,536 bytes 65,527 bytes 400
Tomcat undefined 8,184 bytes 400
Varnish 8,192 bytes 8,299 bytes 400

Cloud Service Amazon S3 undefined ≈ 7,948 bytes 400
Github Pages undefined 8,190 bytes 400
Gitlab Pages undefined >500,000 bytes undefined
Google Cloud Storage undefined 16,376 bytes 413
Heroku 8,192 bytes 8,154 bytes 400

Web Framework BeeGo undefined >500,000 bytes undefined
Express.js undefined 81,867 bytes No Response
Gin undefined >500,000 bytes undefined
Meteor.js undefined 81,770 bytes 400
Play 1 undefined 8,188 bytes No Response
Play 2 8,192 bytes 8,319 bytes 400

Table 6.3: Request header size limits of HTTP implementations

and returns the status code 400 Bad Request if the limit is exceeded is vulnerable to HHO
CPDoS atacks. For instance, the web caching systems Apache HTTPD and Nginx, which can
also be used as web server or reverse proxy provide a lower request header size limit than
CloudFront.

Besides the fact that Apache HTTPD and Nginx are amongst the most used web servers according
to a survey of Netcraft [Net19], both systems are often deployed with other intermediate systems.
When using one of these HTTP implementations in conjunction with CloudFront, these systems
can be affected by an HHO CPDoS attack. This also means if Apache HTTPD and Nginx is
configured as intermediate reverse proxy in front of other web applications, then these systems
are vulnerable to HHO CPDoS as well. Moreover, Apache HTTPD and Nginx are often utilized
as web server and deployment environment for web frameworks such as Rails, Django, Flask,
Symfony and Lavarel. All these web frameworks are vulnerable to HHO CPDoS likewise if they
are deployed with Apache HTTPD or Nginx. Spring Boot and ASP.NET can also be affected by
HHO CPDoS attacks, as both web frameworks require a web server in production mode. Spring
Boot can be deployed with Tomcat and ASP.NET can use IIS as the underlying deployment
environment. Tomcat and IIS have request header size limits lower than CloudFront. Both web
servers return the error 400 Bad Request for oversized header likewise. The cloud service
Heroku is another deployment platform for web frameworks. It supports, e.g., Django, Flask,
Laravel, Rails, Laravel and Symfony. As Heroku provides a request header size limit lower
than CloudFront, web applications using the cloud service in conjunction with the CDN can
be vulnerable as well. Other HTTP implementations which can be affected by HHO CPDoS
attacks when using CloudFront as CDN are Play 2 as well as the cloud services Amazon S3,
Github Pages and Heroku. Play 1 is also vulnerable to HHO CPDoS attacks, even though it does
not return an error page when the request header size limit is exceeded. The web framework
does not return any response if it receives an oversized header. Here, the TCP socket remains
open until the web application shuts down. If CloudFront notices such an idle communication
channel, then the CDN returns the error code 502 Bad Gateway. This error message is
stored and reused for recurring requests likewise. According to our experiments, Google storage
in conjunction with CloudFront is not vulnerable to HHO CPDoS although the cloud service
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has lower request header size limit than the CDN. Google storage returns the error code 413
Payload Too Large for oversized headers and this error message is not cached by any
of the analyzed web caching systems. Table 6.3 also contains a result obtained when using
Nginx with the WAF plugin ModSecurity. In such a configuration, conducting a successful HHO
CPDoS attack is even easier as without the security extension. The tested request header limit of
Nginx is around 20,000 bytes but when ModSecurity is added to both systems, it reduces the
restriction to 8,190 bytes. Even though the usage of ModSecurity should actually avoid web
application attacks such as DoS, it eases to conduct an HHO CPDoS attack in this case.

As mentioned before, IIS and web frameworks such as APS.NET running on this web server
are vulnerable to HHO CPDoS attacks when using CloudFront as CDN. However, in certain
circumstances, they might also be vulnerable when Akamai, Fastly, CDN77, Cloudflare and
Varnish are utilized. The IIS web server provides an option to set a size limit for a distinct
request header. Some web applications require such a configuration option to block, e.g., an
oversized Cookie header. If this restriction is defined for a request header and this limit is
exceeded, then the web server return the error code 404 Not Found. This error message is
cached by Akamai, Fastly, CDN77, CloudFront, Cloudflare and Varnish.

6.5.4 Feasibility of HMC attacks

Table 6.4 shows the results of our third experiments where we analyzed the handling of strings
containing meta characters. For the sake of readability, we only list the characters and strings
that are blocked or sanitized by at least one of the tested HTTP implementations. Moreover, we
omit the web frameworks ASP.NET, Django, Flask, Laravel, Spring Boot and Symfony in this
table, since the handling of meta characters depends on the used web server and deployment
environment.

The evaluation highlights that the many analyzed systems consider control characters as a threat.
Suspicious characters or strings are either blocked by the denoted error code or are sanitized
from the request header. However, the handling of meta strings and characters are very diverse.
For instance, CloudFront blocks the character \u0000 and sanitizes \n, \v, \f, \r, but
forwards other control characters such as \a, \b and \e without modifying them. If Apache
HTTPD, IIS or Varnish is used with CloudFront, then the corresponding systems block the
forwarded header containing forbidden characters with the status code 400 Bad Request.
CloudFront stores such an error message. This means when using CloudFront as CDN, all tested
HTTP implementations, which blocked harmful strings and characters that are not rejected
or sanitize by CloudFront, are vulnerable to HMC CPDoS attacks. Besides Apache HTTPD,
IIS and Varnish, this includes Github Pages, Gitlab Pages, BeeGo, Gin, Meteor.js and Play 2.
Express.js is vulnerable to HMC CPDoS attacks as well, even though it does not block any
tested string by an error code. The issue here is similar to the problem of oversized header in
Play 1. When sending a request header with multiple control characters Express.js does not
reply at all. Accordingly, CloudFront returns the error message 502 Bad Gateway to the
client. This error code is also stored and reused for subsequent requests.

6.5.5 Consolidated Review of Analysis Results

Based on our findings of all three experiments, we detected many CPDoS attack vectors in
various different combinations of web caching systems and HTTP implementations. Most of
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Legend: # processed/forwarded without error and sanitization
Meta character in request header Akamai Azure CDN77 CDNSun Cloudflare Cloudfront Fastly G-

Score
Labs

KeyCDN Stackpath

\u0000 400 400 400 400 400 400 No Re-
sponse

400 400 Sanitized

\u0001 ... \u0006 # 400 Sanitized # # # 400 # # #
\a # 400 Sanitized # # # 400 # # #
\b # 400 Sanitized # # # 400 # # #
\t # # # # # # # # # #
\n # 400 Sanitized Sanitized Sanitized Sanitized Sanitized Sanitized # Sanitized
\v # 400 Sanitized # # Sanitized 400 # # Sanitized
\f # 400 Sanitized # # Sanitized 400 # # Sanitized
\r # 400 Sanitized # Sanitized Sanitized 400 Sanitized # Sanitized
\u000e ... \001f, \u007f # 400 Sanitized # # # 400 # # #
Multiple Unicode control character
(e.g.\u0001\u0002)

# 400 Sanitized # # # 400 # # #

(){0;}; touch
/tmp/blns.shellshock1.fail;

# # # # 403 # # # # #

() { _; } >_[$($())] { touch
/tmp/blns.shellshock2.fail; }

# # # # 403 # # # # #

Meta character in request header Apache HTTPD
+ (ModSecurity)

Apache
TS

Nginx +
(ModSecurity)

IIS Tomcat Squid Varnish Amazon
S3

Google
Storage

\u0000 400 400 400 400 # # 400 # #
\u0001 ... \u0006 400 # # 400 # # 400 # #
\a 400 # # 400 # # 400 # #
\b 400 # # 400 # # 400 # #
\t # # # 400 # # 400 # #
\n 400 # Sanitized # # # Sanitized # #
\v 400 # # 400 # # 400 # #
\f 400 # # 400 # # 400 # #
\r 400 # # 400 # # 400 # #
\u000e ... \001f, \u007f 400 # # 400 # # 400 # #
Multiple Unicode control character
(e.g.\u0001\u0002)

400 # # 400 # # 400 # #

(){0;}; touch
/tmp/blns.shellshock1.fail;

# # # # # # # # #

() { _; } >_[$($())] { touch
/tmp/blns.shellshock2.fail; }

# # # # # # # # #

Meta character in request header Github Pages Gitlab
Pages

Heroku Beego Express.js Gin Meteor Play 1 Play 2

\u0000 No Response 400 # 400 # 400 400 # 400
\u0001 ... \u0006 400 400 # 400 # 400 400 # 400
\a 400 400 # 400 # 400 400 # 400
\b 400 400 # 400 # 400 400 # 400
\t 400 # # # # # # # #
\n 400 # 400 # # # # # #
\v 400 400 # 400 # 400 400 # 400
\f 400 400 # 400 # 400 400 # 400
\r 400 400 # 400 # 400 # # 400
\u000e ... \001f 400 400 # 400 # 400 400 # 400
\u0007f 400 400 # 400 # 400 400 # #
Multiple Unicode control character
(e.g.\u0001\u0002)

400 400 # 400 No Re-
sponse

400 No Re-
sponse

# 400

(){0;}; touch
/tmp/blns.shellshock1.fail;

# # # # # # # # #

() { _; } >_[$($())] { touch
/tmp/blns.shellshock2.fail; }

# # # # # # # # #

Table 6.4: Meta string handling in request header of HTTP implementations

the attacks are executable on CloudFront as shown in Table 6.5. This overview summarizes
what pair of web caching system and HTTP implementation is vulnerable to what CPDoS attack.
The experiments’ results show that web applications using CloudFront are highly vulnerable to
CPDoS attacks, since the CDN caches the error code 400 Bad Request by default. Many
server-side HTTP implementations return this error message when sending a request with an
oversized header or meta characters. The likelihood to be affected by CPDoS attacks when
utilizing the other analyzed caches including Varnish, Akamai, CDN77, Cloudflare or Fastly
is rather lower. These web caching systems do store the error code 404 Not Found but not
400 Bad Request. The caching of error pages with status code 404 Not Found is a
proper and compliant approach for optimizing website performance. In this case, there is no
malfunction in Varnish, Akamai, CDN77, Cloudflare and Fastly. The reason for a successful
CPDoS attack lies in the fact that, Play 1 and Microsoft IIS allows to provoke 404 Not
Found error pages on resource endpoints which do not return an error message when sending a
benign request.
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Legend: # no CPDoS attack dectected
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Web caching system

Origin server HTTP implemenation
# # # # # # # # # # HHO, HMC # # # # Apache HTTPD + (ModSecurity)
# # # # # # # # # # # # # # # Apache TS
# # # # # # # # # # HHO # # # # Nginx + (ModSecurity)
# # # # (HHO) (HHO) # (HHO) # (HHO) HHO, HMC (HHO) # # # IIS
# # # # # # # # # # HHO # # # # Tomcat
# # # # # # # # # # # # # # # Squid
# # # # # # # # # # HHO, HMC # # # # Varnish
# # # # # # # # # # HHO # # # # Amazon S3
# # # # # # # # # # # # # # # Google Cloud Storage
# # # # # # # # # # HHO, HMC # # # # Github Pages
# # # # # # # # # # HMC # # # # Gitlab Pages
# # # # # # # # # # HHO # # # # Heroku
# # # # (HHO) (HHO) # (HHO) # (HHO) (HHO), (HMC) (HHO) # # # ASP.NET
# # # # # # # # # # HMC # # # # BeeGo
# # # # # # # # # # (HHO), (HMC) # # # # Django
# # # # # # # # # # HMC # # # # Express.js
# # # # # (HMO) # # # # HMO, (HHO), (HMC) # # # # Flask
# # # # # # # # # # HMC # # # # Gin
# # # # # # # # # # (HHO), (HMC) # # # # Laravel
# # # # # # # # # # HMC # # # # Meteor.js
# # # # HMO HMO # HMO # HMO HHO, HMO HMO # # # Play 1
# # # # # # # # # # HHO, HMC # # # # Play 2
# # # # # # # # # # (HHO), (HMC) # # # # Rails
# # # # # # # # # # HHO # # # # Spring Boot
# # # # # # # # # # (HHO), (HMC) # # # # Symfony

Table 6.5: CPDoS vulnerability overview

6.5.6 Practical Impact

In the first step to estimate the practical impact of CPDoS attacks, we determined the amount of
websites that use one of the vulnerable web caching systems and HTTP implementations listed
in Table 6.5. Our approach to find vulnerable real world websites is to inspect the response
header.

Many HTTP implementations append informational headers to the response for declaring that a
message is processed by this entity. For instance, CloudFront includes the values Hit from
CloudFront or Miss from CloudFront to the x-cache header and Microsoft IIS
adds the string Microsoft-IIS to the Server header. By means of this information an
attacker can unambiguously detect what cache or what server-side HTTP implementation is used
by the target web application respectively. Based on this approach, we analyzed the websites of
the U.S. Department of Defense (DoD)1 and the Alexa Top 500 websites. In addition to this, we
used the Google Big Query service to investigate over 365 million URLs stored in the HTTP
Archive data set httparchive.summary_requests.2018_12_15_desktop. Table
6.6 shows the number of websites and URLs of the DoD, the Alexa Top 500 and the HTTP
Archive where the response header indicates that the content is processed by a vulnerable HTTP
implementation.

The results highlight that eight websites of the DoD, 23 of the Alexa Top 500 and over twelve
million URLs stored in the mentioned data set of the HTTP Archive are served via CloudFront.
Moreover, all eight websites of the DoD, 16 websites of the Alexa Top 500 and over nine million
URLs of the HTTP Archive point out that CloudFront in combination with Apache HTTPD,
Nginx, Amazon S3, Microsoft IIS and Varnish is used. Our experiments revealed that these
constellations are vulnerable to CPDoS attacks (see Table 6.5). However, it is very difficult to
estimate the exact number of vulnerable websites without inspecting each of them individually.

1. https://dod.defense.gov/About/Military-Departments/DoD-Websites/

109

https://dod.defense.gov/About/Military-Departments/DoD-Websites/


DoD Alexa Top 500 HTTP Archive
Total number of web sites/URLs 414 500 365.112.768
Varnish 2 40 4.658.950
Akamai 2 38 1.031.535
CDN77 0 0 321.456
Cloudflare 7 34 18.236.800
CloudFront 8 23 12.140.461
Fastly 0 9 4.013.578
IIS 27 9 17.792.692
Flask 0 0 5.765
Play 1 0 0 10.491

Table 6.6: Number of websites/URLs using Varnish, Akamai, CDN77, Cloudflare, Cloud-
Front, Fastly, IIS, Flask and Play 1

Moreover, the experiments have been done with the default configuration and without taking
any other intermediate system into account. It is, however, very common that content providers
change the default configuration of a cache in order to adapt the caching policy to the respective
needs. Moreover, real world web applications also utilize other intermediate systems such as
load balancers or WAFs. All these settings influence the practicability of CPDoS attacks in
any direction. To get a clearer picture on the real life impact of CPDoS attacks, we took some
samples based on the URLs from the Alexa Top 500, DoD, and HTTP Archive data sets. Overall,
we found twelve vulnerable resources within a few days. These also include mission-critical
websites such as ethereum.org, marines.com, and nasa.gov which use CloudFront as CDN. At all
these websites, we were able to block multiple resources including scripts, style sheets, images,
and even dynamic content such as the start page. The visual damage of a CPDoS attack is shown
by the Figures 6.6 and 6.7 in the Appendix A. In Figure 6.6, the CPDoS attack is first applied
to an image referenced in the start page of the victim website ethereum.org. Then the style
sheet file is denied and finally, an error page replaces the whole start page. Figure 6.7 illustrates
the affected start page of marines.com which displays an error page to the user instead of the
genuine content. Moreover, we were also able to conduct a successful CPDoS attack on the
update files of IKEA’s Smart Home devices. IKEA uses CloudFront in conjunction with S3 to
distribute remote control firmware and driver updates for their wireless bulbs. As CloudFront in
combination with S3 is vulnerable to HHO CPDoS attacks, an attacker can block the remote
control devices of IKEA from fetching security patches. These evidences show that CPDoS
attacks can affect static as well as dynamic resources. Most of the vulnerable websites use
CloudFront as CDN. However, the real world impact of CPDoS attacks is not only bound to
CloudFront. We also found vulnerable websites in our sample which utilize other CDNs such
as Akamai or Cloudflare in conjunction with Play 1. We have uncovered these examples in a
few days only. An advanced attacker with political and financial motivation is easily able to
gather much more vulnerable resources as they only need to investigate the response headers
in order to estimate whether a target website or resource is potentially vulnerable to CPDoS
attacks. Moreover, the freely available HTTP Archive data sets via Google Big Query include
millions of URLs which can be investigated by an attacker. For instance, HTTP Archive data set
httparchive.summary_requests.2018_12_15_desktop contains over 9 millions
URLs which we considered as highly vulnerable since the response headers of these resources
indicate that CloudFront in conjunction with Apache HTTPD, Nginx, Amazon S3, Microsoft
IIS, and Varnish is used. Among them are also many critical websites and resources including
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Amazon itself, the website dowjones.com, as well as Logitech which distributes firmware via
CloudFront.

6.5.7 Practical Considerations

Caches are only vulnerable to CPDoS attacks if they store and reuse error pages. Web caching
systems such as Stackpath, CDNSun, KeyCDN and G-Core labs cannot be affected by CPDoS
attacks, since these CDNs do not cache error messages at all. This is also true for Apache
HTTPD, Nginx and Squid when using them as an intermediate cache without involving any
other vulnerable web caching systems.

As with other cache poisoning vulnerabilities, CPDoS attacks are only possible when a vulnera-
ble web caching system does not contain a fresh copy of the to be attacked resource. That is, if a
shared cache still maintains and reuses a stored fresh response for recurring requests, a malicious
request is not able to poison the intermediary. The web caching system serves all requests to
the target resource. None of the requests are forwarded to the origin server until the freshness
lifetime is expired, so that no error page can be triggered. This means if a cache still owns a
fresh response, an attacker has to wait until the cached content is stale. The most straightforward
information to find out the expiration time is the Expires header which indicates the absolute
expiration date. If the response does not contain an Expires header or the expiration time
of this header is overridden by the max-age or s-maxage directive control directive, the
attacker can make use of the Age header. The Age header declares the seconds of stay in the
cache. The value of the Age header subtracted from the value of the max-age or s-maxage
directive is the relative expiration time of the cached response. If the cached response is expired,
the attacker’s request must be the very first request so that it can reach the origin server to
trigger an error page. To increase the likelihood for being the first request, we send automatized
requests with a one second interval when the response is close to expire. With this technique we
were able to successfully attack all twelve vulnerable websites of our spot check experiment.
Sending regularly performed requests with one second distance of time is also a useful approach
for cached responses which does contain any expiration time information, i.e., resources which
are implicitly cached. Such responses usually do not contain any max-age or s-maxage
directives and Expire headers. Here, the attacker needs to send automatized requests until
one of the requests is forwarded to the origin server. Moreover, automatized requests with a
one second interval are not considered as harmful even when they are sent over a long time,
since health checks requests can also have the same interval. We tested this technique on several
CDNs which also included WAFs and DDoS protections. Since we only used a single client to
perform the attack, none of CDNs detected the malicious requests.

Many web applications configure the proxy cache or the CDN to serve the whole website. This
means all resources including dynamic pages and static files are forwarded and processed by
the cache. To exclude dynamic pages from being implicitly cached, content providers include
no-store or max-age=0 to the response header, so that each request must be forwarded
to the origin server. If a vulnerable cache in conjunction with a vulnerable server-side HTTP
implementation is used, these resources can be attacked without the need to wait and any
automation of sending requests. One single malicious request is enough to paralyze the target
resource, since each request is forwarded to the origin server. Vulnerable websites which
configure the CDN to serve all resources are, e.g., marines.com, ethereum.org and nasa.gov.
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There also many web applications which only configure the cache to store and reuses responses
of certain URL paths such as for static files in the javascript or images directory. Other URL
paths are accordingly not cached at all. Many content providers also maintain subdomains (e.g.
static.example.org) or a specific domain for static files which are served via a cache. In these
cases, only resources within the cached URL paths or the specific domain can be affected. To find
out whether a distinct response traverses a cache, an attacker can inspect the response headers.
For instance, the Age response header indicate that a cache is utilized. The main website of
IKEA (ikea.com) does not use CloudFront or any other vulnerable HTTP implementations
which indicates that this homepage is most likely not vulnerable to CPDoS attacks. However,
IKEA uses a specific domain (fw.ota.homesmart.ikea.net) in conjunction with CloudFront to
host the update files of their Internet of Things devices.

Another important limitation of CPDoS attacks is that the web caching systems except Fastly
do only cache error pages for few minutes or seconds. Fastly stores and reuses the error page
for one hour. If this time span is over, then the first benign request to the target resource is
forwarded to origin server and refreshed again. Still, to extend the duration of CPDoS attacks,
malicious clients can resend harmful requests in accordance to the fixed interval.

6.6 Responsible disclosure

All discovered vulnerabilities have been reported to the HTTP implementation vendors and
cache providers on February 19, 2019. We worked closely with these organizations to support
them in eliminating the detected threats. We did not notify the website owners directly, but left
it to the contacted entities to inform their customers.

Amazon Web Services (AWS)

We reported this issue to the AWS-Security team. They confirmed the vulnerabilities on
CloudFront. The AWS-Security team stopped caching error pages with the status code 400
Bad Request by default. However, they took over three months to fix our CPDoS reportings.
Unfortunately, the overall disclosure process was characterized by a one-way communication.
We periodically asked for the current state, without getting much information back from the
AWS-Security team. They never contacted us to keep us up to date with the current process.
For example, we only got noticed about the changed default caching policy by checking back
the revision history of their respective documentation hosted in Github. Thus, we do not have
much information on the noticeable amount of time required to resolve our reported CPDoS
vulnerability, although having asked for it explicitly. We can only assume that this delay has
to do with the large number of affected users they had to test after implementing according
countermeasures. Moreover, Amazon suggests users to deploy an AWS WAF in front of the
corresponding CloudFront instance. AWS WAF allows defining rules which drop malicious
requests before they reach the origin server.
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Microsoft

Microsoft was able to reproduce the reported issues and published an update to mitigate this
vulnerability. They assigned this case to CVE-2019-0941 [NAT19] which is published in June
2019.

Play 1

The developers of the Play 1 confirmed the reported issues and provided a security patch which
limits the impact of the X-HTTP-Method-Override header [Cha19]. The security patch
is included in the versions 1.5.3 and 1.4.6. Older version are not maintained by this security
patch. Web applications which use older versions of Play 1 therefore should update to the newest
versions in order to mitigate CPDoS attacks.

Flask

We reported the HMO attack to the developer team of Flask multiple times. Unfortunately, we
have not received any answer form them so far and hence we have to assume, that Flask-based
web applications are still vulnerable to CPDoS.

6.7 Discussion

Using malformed requests to damage web applications is a well-known threat. Request header
size limits and blocking meta characters are therefore vital means of protection to avoid known
cache poisoning attacks as well as other DoS attacks such as request header buffer flow [NAT10]
and ReDoS [SP18]. Also, many security guidelines such as the documentation of Apache
HTTPD [Apa19], OWASP [OWA17], and the HTTP standard [FR14b] recommend to block
oversized headers and meta characters in headers. CPDoS attacks, however, aims to beat these
security mechanisms with their own weapons. HHO and HMC CPDoS attacks intentionally
send a request with an oversized header or harmful meta character with the intent to get blocked
by an error page which will be cached. Along these lines, it is interesting to see that CDN
services, which claim to be an effective measure to defeat DoS and especially DDoS attacks,
desperately fail when it comes to CPDoS.

According to our experiment results, most of the presented attack vectors are only feasible when
CloudFront is deployed as the underlying CDN, since it is the only analyzed cache which illicitly
stores the error code 400 Bad Request. Such a non-conformance is the main reason for the
HHO and HMC attacks. The other major issue for both attacks is fact that the cache forwards
oversized headers and requests with harmful meta characters. Violations of the HTTP standard
and implementation issues are also the main reason for many other cache-related vulnerabilities
including request smuggling, host of troubles, response splitting, and web deception attacks.
The HMO CPDoS attack is, however, a vulnerability which does not exploit any implementation
issues and violations of the HTTP standard. The X-HTTP-Method-Override header or
similar headers are legitimate auxiliaries to tunnel HTTP methods which are not supported by
WAFs or web browsers. Play 1 and Flask returns the error code 404 Not Found or 405
Method Not Allowed when an unsupported action in X-HTTP-Method-Override
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header is received. Both error messages are allowed to be cached according to RFC 7231.
Akamai, CDN77, Fastly, Cloudflare, CloudFront, and Varnish follow this policy and cache such
error codes. If these web caching systems are used in combination with one of the mentioned
web frameworks, these combinations have an actual risk of falling victim to CDPoS attacks, even
though they are in conformance with the HTTP standard and do not have any implementation
issues. Therefore, the HMO CPDoS attack can be considered as a new kind of cache poisoning
attack which does not exploit any implementation issues or RFC violations. This shows that
CPDoS attacks do not always result from programming mistakes or unintentional violations of
specification policies, but can also be the exploit of the conflict between two legitimate concepts.
In case of HMO CPDoS attacks, this conflict refers to the usage of method overriding headers
and the caching of allowed error messages.

Even though we did not detect attack vectors in other web caching systems and HTTP imple-
mentations, this does not mean that other constellations are not vulnerable to CPDoS attacks. As
shown by Table 6.1 eight of fifteen tested web caching systems do store error pages and some of
them even cache error pages which are not allowed. If an attacker is able to initiate other error
pages or even cacheable error code at the target URL, then she may affect other web caching
systems and HTTP implementations with CPDoS attacks as well. James Kettle, for instance,
discovered two other forms of CPDoS attacks which fortunately are only successful due to
specific implementation issues of the corresponding web application. The first CPDoS attack
utilized the X-Forwarded-Port header [Ket18b]. This header usually informs the endpoint
about the port that the client uses to connect to the intermediate system, which operates in front
of the origin server. In the revealed attack, the cached response contained the redirect. A DoS
was caused by the user’s browser trying to follow the cached redirect and timing out. The second
attack was able to create a DoS at www.tesla.com due to a faulty WAF configuration [Ket18a].
Tesla configured their WAF to block certain strings which have been used by other cache poison
attacks. Unfortunately, requests with such strings were blocked by a 403 Forbidden error
page which was also cached. This shows that HMO, HHO, and HMC are not the only variations
of CPDoS attacks. There are, certainly, many other ways to provoke an error page on the origin
server. To the best of our knowledge and according to our experiences in developing web
applications, it is not unlikely to provoke an 500 Internal Server Error status code
or other 5xx errors in real world web applications and services. Akamai and Cloudflare do
cache 5xx error codes. At this point, we did not find a way to provoke such error messages in
our experiments.

Moreover, we need to consider that contemporary web applications and distributed systems in
particular are usually layered. That is, they often utilize other intermediate components such as
load balancer, WAFs or other security gateways which are located between cache and endpoint.
Such middleboxes or middleware may provide other request header size limits, meta character
handling or header overriding features. Such systems may also react to malicious requests with
error codes that could be cached.

6.8 Countermeasures

The most intuitive, as well as effective countermeasure, against CPDoS attacks is to exclude
error pages from being cached. However, content providers which exclude cacheable error
codes such as 404 Not Found from being stored, need to consider that this setting may
impair the performance and scalability. There two ways to exclude error pages from being
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cached. The first approach is to configure the web caching systems to omit the storage of error
responses. Akamai, CDN77, CloudFront, CloudFront, Fastly, and Varnish provide options to do
so. Content providers can also add the no-store directive to the Cache-Control response
header which prohibits all caches from storing the content. According to our own evaluation,
all tested web caching systems except CloudFront honored the keyword no-store in error
pages and still do so. At the time of our experiments in February 2019, CloudFront cached error
pages for five minutes by default and even did so when no-store was included in the error
response header. The only way to avoid storing error pages in CloudFront was to disable each
error code from caching via the CDN’s configuration interface. Fortunately, AWS changed the
behavior of caching error pages after our CPDoS reporting. One important change is that 400
Bad Request error pages are not cached by default anymore. CloudFront only caches 400
Bad Request error messages if they include a max-age or s-maxage control directive
[Ama19a].

As mentioned before, the disobey of the HTTP standard in terms of ignoring control directives
is the main cause for many cache-related vulnerabilities. Beside the consideration of cache-
related control directives, web caching systems must, therefore, only store error codes which are
permitted by the HTTP standard. Status codes such as 400 Bad Request are not allowed to
be cached, since this error message is only dedicated to a request which is malformed or invalid.
Other error codes such as 404 Not Found, 405 Method Not Allowed or 410 Gone
can be cached, since they provide error information which is valid for all clients. Also, HTTP
implementations have to use the appropriate status code for the corresponding error case. Table
6.3 shows that almost all tested system return the status code 400 Bad Request for an
oversized request header. IIS even replies with status the cacheable 404 Not Found error
code when a limit for a specific request header is exceeded. Both error messages are not the
appropriate one for requests exceeding the header size limit. According to HTTP standard,
the appropriate error code is 431 Request Header Fields Too Large. Such error
information is not stored and reused by any of the tested web caching systems. To test the
compliance and behavior of caches, we recommend to use the cache testing tool of Nguyen et al.
[NLF19a] or Mark Nottingham [Not19].

Another very effective countermeasure against CPDoS attacks is the usage of WAFs. Many
CDNs provide the option to enable WAFs in order to protect web applications against malicious
requests. To avoid CPDoS attacks, content providers can configure the WAF to explicitly block
oversized requests, requests with meta characters or malicious headers. Using WAFs is, however,
only effective if the WAF is implemented in the cache or in front of the cache, so that harmful
requests can be eliminated before they are forwarded to the origin server. The experiments in
Section 6.5 and the CPDoS attack of James Kettle on www.tesla.com [Ket18a] show that WAFs
which are integrated at the origin server such as ModSecurity do not help against CPDoS attacks.
Requests which are blocked by a WAFs at the origin can still trigger an error page that is stored
by the cache.

Moreover, we recommend adding a subsection to the "Security Considerations" section of
the RFC 7230 [FR14b] to discuss the consequences of non-compliance with the protocol
specification in order to avoid HHO, HMC and other web cache poisoning attacks. The "Security
Considerations" section of RFC 7230 mentions cache-poisoning attacks including response
splitting and request smuggling. However, the standard only makes recommendations that relate
to these two specific attacks. The specification does not mention that the source of many cache-
related attacks lies in violations of the standard. Such an additional description would increase
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developers’ awareness of compliance with the specifications. HMO attacks, on the other hand,
cannot be avoided by complying with the standard, as they are based on non-standard means
which is the X-HTTP-Method-Override header in this case. To avoid HMO attacks while
maintaining the scalability, content providers do not need to exclude the 404 Not Found and
405 Method Not Allowed error code from caching. Here, vulnerable web frameworks
must follow the approach of Symfony, Lavarel as well as the plugins of Django and Express.js.
These HTTP implementations support the method overriding headers, but only consider to
change the action when the method in the request line is POST. By this, a 404 Not Found
error page cannot be triggered by malicious GET request, since method overriding headers are
ignored. When trying to poison the cache with a POST request with a method override header
including GET, the returning response is not stored by any tested cache. Also, the use of non-
standard headers is a general approach to conduct other cache-poisoning attacks as described by
James Kettle [Ket18c]. It is the responsibility of HTTP implementations to carefully integrate
non-standard headers to avoid such attacks. To analyze impact of standardized or non-standard
headers in respect to caches, developers and software testers can use, e.g., the testing tools of
Nguyen et al. [NLF19a] and Mark Nottingham [Not19].

6.9 Conclusion and Outlook

Vulnerabilities stemming from the semantic gap result in serious security threats. Distributed
systems are especially prone to such attacks as they are composed by distinct layers. Their
existence is one major prerequisite for the different interpretation of an object, in this case the
application messages floating through the intermediaries.

In this paper we extended the known vulnerabilities rooted in a semantic gap by introducing a
class of new attacks, "Cache-Poisoned Denial-of-Service (CPDoS)". We systematically study
how to provoke errors during request processing on an origin server and the case, in which error
responses get stored and distributed by caching systems. We introduce three concrete CPDoS
attack variations that are caused by the inconsistent treatment of the HTTP method override
header, header size limits and the parsing of meta characters. We show the practical relevance
by identifying the amount of available web caching systems that are vulnerable to CPDoS. The
consequences can be severe as one simple request is sufficient to paralyze a victim website
within a large geographical region (see Figure 6.8 in Appendix B). Depending on the resource
that is being blocked by an error page, the web page or web service can be disabled piecemeal
(see Figure 6.6 in Appendix A).

According to our experiments 11% of the DoD web sites, 30% of the Alexa Top 500 websites
and 16% of the URLs in the analyzed HTTP Archive data set are potentially vulnerable to
CPDoS attacks. These cached contents include also mission-critical firmware and update
files. Considering the fact that modern distributed applications often follow the Mircoservices
[New15] and Service-Oriented Architecture (SOA) [Erl07] design principles where services are
implemented with different programming languages and are operated by distinct entities, more
semantic gap vulnerabilities may appear in the future. Hence, a more in-depth understanding
of such vulnerabilities needs to be gathered in order to develop robust safeguards that do not
depend on particular implementation and concatenation of system layers.
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Appendix A: Illustrative Examples of CPDoS Attack

A.1 Ethereum-website

Figure 6.6: These screenshots show the start page of the website ethereum.org and how parts
as well as the whole page are rendered inaccessible due to a successful CPDoS
attack. More specifically, this website has been vulnerable to HHO CPDoS.

A.2 Marines-website

Figure 6.7: These two screenshots show the start page of the website marines.com before a)
and after b) a successful CPDoS attack. More specifically, this website has been
vulnerable to HHO CPDoS.
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Appendix B: CPDoS Attack Spread

Legend: none-affected region, affected region, attacker, origin server

(a)

(b)

Figure 6.8: Affected CDN regions when sending a CPDoS attack from a) Frankfurt, Germany
and b) Northern Virginia, USA to a victim origin server in Cologne, Germany.
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systems. In terms of security, CREHMA outperforms available REST-based authentication
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7.1 Introduction

In the last four decades, software has moved from simple single-user offline computer programs
to complex Internet-connected distributed systems used by a multitude of people [Boo18].
Emerging trends including Cyber-Physical Systems (CSP) [Raj+10] and the Internet of Things
(IoT) [Car+18] continue to foster this development. Due to the large number of users and the
resulting significance for society, scalability and security are considered as two key qualities of
modern distributed software [Car+18].

To ensure scalability, distributed software systems are often designed following the rules defined
by the architectural style REST (Representational State Transfer) [Fie00; KJ10; BW16]. In order
to scale, a system needs to be stateless, cacheable and layered according to REST. Stateless
protocols are characterized by self-contained messages retaining the server to maintain state.
Such messages are well-suited to be stored and redistributed by caches which are part of layered
architectures located on the path between the client and the server. Appropriate technologies
to implement REST-based architectural designs can mainly be found in the Web domain with
HTTP [FR14b] at its core and related standards on caching [FNR14]. The Web is also a vivid
proof that systems do scale at large when considering the REST architectural constraints in their
design.

To ensure security, Transport Layer Security (TLS) [Res18] is the industry standard for protecting
the confidentiality, integrity and authenticity of data in transit on the Web [Fel+17]. If the end
user’s client connects directly to a service provider’s server then TLS is sufficient to authenticate
the content served over the protected connection. However, when there is an intermediary such
as a Web caching system between the end user and the service provider, the TLS connection
terminates at the intermediate system’s server as it requires to get access to the HTTP message
to fulfill its duties [LNG19]. In this circumstance, TLS ensures that the connection to the
cache server is authenticated, but it says nothing about whether the cache is serving the service
provider’s intended content. Essentially, both parties must completely trust the cache to faithfully
serve the service’s assets to its users. This includes also the proper handling of the TLS private
key that the service provider needs to hand over to the cache for TLS channel termination.

Considering the fact that intermediate systems are almost ubiquitously present in Web-based ap-
plications, the required trust in such intermediaries can often not be accepted by service providers.
Moreover, for critical web applications requiring a defense-in-depth in which the security is
ensured by multiple safeguards, the adoption of TLS alone is by far not sufficient [Cal+19]. As
an initial step to ensure end-to-end integrity protection, many so-called HTTP signature schemes
have been proposed over the last years. These security schemes generate a digital signature
over the HTTP message header and body in order to protect it against man-in-the-middle threats
including malicious modifications and replay attacks. However, the available HTTP signature
schemes either do not provide comprehensive security as they leave response messages out of
the protection scope while enabling caching or they do provide signed request and response
messages while preventing caching.

This current situation leads to a trade-off between using the first mentioned group of HTTP
signature schemes with the abandonment of a comprehensive end-to-end security or using the
second one without the advantages of caching. Many real world applications currently have to
cope with this trade-off. In particular this includes organizations such as video streaming services
or social media platforms, which requires an intensive usage of Content Distribution Networks
(CDN) in order to delivery high quality content. Beside public resources, these organizations
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also provide content, which is restricted to a group of users or a single user. In many cases
the data transfer of these services is only protected by TLS. No additional end-to-end security
mechanism is usually utilized to protect the exchange of credentials and cached content.

In this paper we introduce a cache-aware REST-ful HTTP message authentication scheme
(abbreviated as CREHMA) that enables caches to store, modify, and reuse HTTP messages while
preserving end-to-end integrity and authenticity. We make the following main contributions:

1. We motivate the need for end-to-end security mechanisms complementing TLS by
introducing an evolved threat model for the Web that explicitly considers intermediate
systems such as caches.

2. We point out that existing HTTP signature systems have deficiencies either in terms of
inadequate protection or lack of performance without requiring modifications to caches.

3. We introduce CREHMA, a cache-aware HTTP signature scheme that protects cacheable
resources from end to end.

4. We evaluate CREHMA for its compatibility with existing caches, its performance and
security.

The remainder of the paper is organized as follows. In Section 7.2 we provide the required
background on Web caching. In Section 7.3 we introduce an evolved threat model for Web-based
systems and argue that end-to-end message-oriented security is required as complement to TLS.
We present the available HTTP signature schemes in Section 7.4 and review them in the light
of the threat model. We conclude with a set of requirements for cache-aware HTTP signature
schemes in Section 7.5 and introduce our proposed cache-enabled HTTP signature scheme
CREHMA in Section 7.6. In Section 7.7 we provide and discuss our results obtained from
various experimental evaluations and conclude in Section 7.8.

7.2 Web Caching Background

The basic idea behind web caching is to store and reuse HTTP response messages with the
aim to eliminate interactions, improving efficiency, scalability, and user-perceived performance
[Fie00]. The HTTP caching standard [FNR14] distinguishes between two types of web caching
systems: private and shared caches. Private caches store and reuse content of one single user, as
do Web browser caches for instance. Shared caches deliver cached responses to multiple clients.
Common examples include proxy caches and CDNs.

The service provider controls the cacheability of response messages by specifying its freshness.
One approach is to assign an explicit freshness lifetime with the max-age directive of the
Cache-Control response header (see Figure 7.1). By specifying max-age=60, e.g., the
cache is instructed that the response is fresh for the next 60 seconds. During this time, the cache
can store and reuse the response to satisfy recurring requests without any further interaction
with the origin server. The max-age directive is dedicated for shared and private caches
whereas s-maxage addresses shared caches only. An alternative approach to specify an
explicit freshness lifetime for shared and private caches is to define an expiration date with the
Expires header. If a response message includes a Expires header as well as a freshness
lifetime defined by max-age or s-maxage directives, then the latter two must be preferred.
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Web Client Web ServerWeb Caching System

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain

<Empty Body>

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain

<Empty Body>

HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain
Cache-Control: max-age=360
Date: Tue, 23 Jul 2019 08:15:31 GMT

Hello World

HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain
Cache-Control: max-age=360
Date: Tue, 23 Jul 2019 08:15:31 GMT

Hello World

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain

<Empty Body>

HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain
Cache-Control: max-age=360
Date: Tue, 23 Jul 2019 08:15:31 GMT

Hello World

Figure 7.1: This example HTTP messages flow illustrates caching with a freshness lifetime.
The response message from the origin server contains meta information declaring
the amount of time the response can be reused by the cache without any further
server intervention.

The second approach determines the freshness of a HTTP response by checking back with the
origin server using a conditional request (see Figure 7.2). Service providers can explicitly force
caches to validate the freshness for each incoming request. To do so, the no-cache directive
of the Cache-Control header is set. This control directive tells the cache that reusing the
corresponding response requires a validation of freshness with the origin server.

To aid the cache in conducting conditional requests, service providers include an opaque or time-
variant validation token to the response header by which the origin server can identify whether the
cache owns a fresh copy of the response. The example in Figure 7.2 shows a freshness validation
with an opaque validation token that is placed in the ETag response header. Time-variant valida-
tion tokens are respectively included in the Last-Modified response header. When the cache
constructs a conditional request, the opaque token is placed in the If-None-Match request
and the time-variant token is added to the If-Modified-Since header. If a conditional
request contains the If-None-Match and the If-Modified-Since headers simultane-
ously, then origin server has to prefer the If-None-Match header. If the conditional request
is successful, i.e., the stored response is still fresh, the origin server sends a response with the
status code 304 Not Modified and an empty body. The cache is now allowed to reuse
this response message, but it has to update the headers of the stored response with the ones
contained in the server’s response. Such a header update is emphasized in Figure 7.2. Here,
the cache updates the Date header of the stored response with the one of the received 304
Not Modified response. If the origin server notices that the validation token refers to a stale
response message, it returns a full response message including a new header and body. The
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cache must forward this new response message to the client. Moreover, the cache must replace
the new response message with the stored one.

Web Client Web ServerWeb Caching System

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain

<Empty Body>

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain

<Empty Body>

HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain
Cache-Control: no-cache
ETag: xyz
Date: Tue, 23 Jul 2019 09:15:31 GMT

Hello World

HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain
Cache-Control: no-cache
ETag: xyz
Date: Tue, 23 Jul 2019 09:15:31 GMT

Hello World

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain

<Empty Body>

HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain
Cache-Control: no-cache
ETag: xyz
Date: Tue, 23 Jul 2019 09:25:31 GMT

Hello World

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain
If-None-Match: xyz

<Empty Body>

HTTP/1.1 304 Not Modified
ETag: xyz
Date: Tue, 23 Jul 2019 09:25:31 GMT

Figure 7.2: This example HTTP messages flow illustrates caching with freshness validation.
The response message from the origin server contains meta information instruct-
ing the cache to validate the resource’s freshness with the origin server before
reuse. The bold entries denote headers that are added or updated by the cache.

A service provider can also explicitly restrict caches from storing certain responses with the
no-store directive of the Cache-Control header. Another relevant control directive of
the Cache-Control header is no-transform, which prohibits any intermediate system
to change the body of traversing and cached messages.

When a response lacks any caching directive, caches can derive the freshness implicitly by
themselves. As with explicit caching, a cache can ensure the response freshness with two
approaches. It can define a freshness lifetime by using heuristics or if can validate the freshness
with a conditional request. Implicit caching is optional. Caches can also omit such response
messages from caching.

7.3 Evolved Threat Model

To ensure end-to-end security in modern Web-based distributed software systems, the existence
of intermediate systems must be taken into account. Instead, the current threat model for the
Web, and TLS in particular, still assumes that a client is directly connected to a server. If this
assumption is true, then TLS is sufficient to secure the content provided over the connection.
However, as soon as an intermediary, including a cache, joins this setup, the TLS connection
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terminates at the cache. In this case, the TLS connection provides its security services between
the client and the cache, but it says nothing about whether the cache is serving the provider’s
intended content. Therefore, the service provider and the end user must fully trust the cache to
faithfully serve the web service’s resources. Until today they have no other choice but to assume
that caches are acting accordingly.

Service providers and end users should be alarmed about this critical prerequisite, since inter-
mediate systems and caches in particular are more and more deployed as third-party services.
Simply trusting these parties is often not sufficient, especially when considering the steady
growth of P2P-based caching systems [Lov17]. Moreover, the threats and resulting consequences
when caches do not act faithfully can be severe. Caches can for instance (A1) modify web
service’s content or metadata to distribute false information or deface the victim, (A2) serve
stale content to prevent software updates to take effect, (A3) inject malicious client-side code
to eavesdrop sensitive information including credentials, and (A4) responding in arbitrarily
malicious ways to client requests.

The motivation for caches to do this can be manifold and can even include powerful organizations
or governments forcing them. Therefore, the current threat model needs to evolve with the
architectural changes of Web-based distributed systems. In general, an enhanced threat model
should provide end-to-end confidentiality, integrity and authenticity for data on the Web in
the presence of intermediaries. Such enhanced security schemes need to be understood as
complementary to TLS to enable defence-in-depth.

In recent years, many HTTP signature schemes have been proposed that provide end-to-end
integrity and authenticity. As per the status quo, these schemes have never been analyzed
according to their interdependencies with caches.

7.4 Review of HTTP Signature Schemes

Request
Protection

Response
Protection

Response Swaping
Protection

Replay Attack
Protection

Cache
Compatibility

Allow Benign
Message Modification

AWS [Ama19b]  # #    
Google [Goo17]  # #    
HP [Hew14]  # #    
Microsoft [Mic17]  # #    
SHREQ [Run19]  # #    
OAuth1 [Har12]  # #    
OAuth Mac Tokens [RMT14]  # #    
Signing an HTTP Request for OAuth [RBT16]  # # #   
Lo Iacono et al. [LNG19]   #  #  
Cavage et al. [CS19]   #  #  
Serme et al. [Ser+12]   #  # #
SRI [Dev+16] # G# # #   
Stickler [LCB16] # G# # G#   

Table 7.1: Analysis of the related work in HTTP signature schemes

The goal of HTTP signature schemes is to provide end-to-end integrity and authenticity by
digitally signing the HTTP messages or certain parts of them. Although the available schemes are
different from each other, they still follow a common procedure when signing and respectively
verifying HTTP messages (see Figure 7.3).

The signing procedure starts with processing the HTTP message, which is to be signed. First, a
string representation is generated from the message by concatenating a time-variant parameter
(TVP), the entries of the message headers, and the hash of the message body. This constructed
string is then signed with a signature generation key. After that, the Signature header is built
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Figure 7.3: Process diagram visualizing the general steps all HTTP signature schemes adopt
when signing and verifying HTTP messages

by concatenating the string representation of the key ID, the TVP and the signature value. This
new header is finally added to the HTTP message headers as emphasized in Figure 7.3.

Accordingly, the verification procedure starts with processing the signed HTTP message. First,
the Signature header is extracted from the message and the contained items are retrieved
from it. In the following step, the string to be verified is constructed by concatenating the string
representations of the TVP, the entries of the message headers, and the hash of the body. The last
step verifies the signature and checks the validity of the TVP in order to detect replay attacks.

As said before, the available HTTP signature schemes follow this general process with slight
deviations. Amazon Web Services (AWS), Google, Hewlett Packard (HP), and Microsoft
use self-developed HTTP signature schemes for users to authenticate to their cloud storage
services [Ama19b; Goo17; Mic17; Hew14]. Their schemes do make use of a TVP to avoid
replay attacks, but they do neither sign the response nor all request headers. Instead, they define
a set of request headers that is considered security-relevant, including the HTTP method, the
URL and the Host header. These headers have to be non-empty and present exactly once for
the message to be valid. The computed signature value and the signature-related metadata are
then placed in the Authorization header, which is finally added to the request.

Signed HTTP Requests (SHREQ) [Run19] is very similar to the industry-driven approaches, as it
provides end-to-end integrity for request messages only. It signs a subset of request headers and
adds a TVP to the signature to avoid replay attacks. The signature value and the corresponding
metadata are either included in the body or in case of requests without a body in the URL.

The first version of the authorization framework OAuth [Har12] as well as the OAuth 2.0 draft
extensions OAuth Mac Tokens [RMT14] and Signing an HTTP Request for OAuth [RBT16] also
sign requests only following a predefined list of to be protected headers. While OAuth 1.0 has
been established as an official web standard, the both draft specifications have not been updated
since 2014 and 2017.

Cavage et al. [CS19], Lo Iacono et al. [LNG19], and Serme et al. [Ser+12] proposed HTTP
signature schemes that protect the request as well as the response message. The scheme by
Serme et al. includes a TVP in the signature to detect replay attacks and embeds the signature
value as well as the signature metadata in signature headers starting with X-JAG-*. However, it
does not define a list of to be signed headers. Instead, all headers are considered in the signature
and verification procedure. This may impair the signature’s validity when an intermediate system
modifies or adds a protected header. Caches usually add a header to traversing request messages
to validate the response freshness (see Figure 7.2). If this happens, the string to be signed built
by the client and the string to be verified crafted by the origin server are different. This issue
hampers web applications to use the security mechanism of Serme et al. in conjunction with
caches. Cavage et al. and Lo Iacono et al. instead provide a list of security-relevant message
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headers. Headers not part of the list can be modified and added by intermedaries. Both signature
schemes also require to integrate a TVP to avoid replay attacks. The resulting signature value
and the corresponding metadata is inserted in the introduced Signature header. A major
issue that affects all three approaches is a missing distinction between a replay attack and benign
replayed message. A reused cached message contains the same signature value and TVP as
the original one. Clients receiving a reused signed response message twice, may assess this
signed replication as a replay attack, which is the case for all three HTTP signature schemes as
they are not compatible with caches. As the current state does not provide a solution for this
issue, web applications which consider to use these security mechanisms are forced to disable
caching. The other HTTP signature schemes which only protect the request message can be
used in conjunction with caches. Here, the client does not have to deal with the distinction
between replay attacks and reused signed response messages from a benign cache, as there is
no end-to-end security and replay attack protection for the response message at all. Another
drawback of all three HTTP signature schemes is the missing protection against attack vectors
which swap signed responses.

Many web applications use Subresource Integrity (SRI) [Dev+16] for providing end-to-end
integrity of static files. SRI is used in conjunction with CDNs to distribute public resources. The
integrity of the content is ensured by a message body hash generated by the service provider.
The hash value is included in an attribute of the corresponding HTML tag (e.g. <script ...
integrity=’sha384-...’>). The web browser verifies the integrity by comparing the
hash value in the HTML attribute with the self-calculated hash value. This hash value only
ensures the integrity of the response message body. Neither the request nor any message header
is protected by SRI. A compromised or malicious cache can still replace the hash value with a
hash value of a malicious content. Web browsers cannot detect such a man-in-the-middle attack,
as SRI does not contain any mechanism to verify the authenticity.

Stickler [LCB16] is another end-to-end integrity protection scheme for cacheable static Web
assets. The goal of Stickler is to ensure end-to-end integrity in Web-based application without
the need to trust the cache for integrity. When a client visits a Stickler-protected website, the
origin server returns an HTML page including a bootloader script. This script contains a public
key, a script for retrieving and verifying the protected assets and the location of a manifest file.
The integrity and authenticity of the bootloader script is ensured by a TLS connection. The
bootloader starts with invoking the manifest file containing a manifest signature. If the signature
is valid, the bootloader retrieves the website’s assets based on a list included in the manifest.
Each asset in this list contains the asset’s URL, the corresponding hash or signature value and
optionally an expiration date in order to prevent caches from serving stale or outdated content.
Since the integrity and authenticity of the manifest is ensured by a signature, the client can
verify the integrity and authenticity of assets by comparing the assets’ hash or signature value. A
shortcoming of Stickler is that it does not provide a replay attack protection for the manifest file,
as it only contains a signature without an expiration date. A malicious cache is henceforth able
to replace the current manifest file with an outdated one. Another major drawback of Stickler
is the exclusive protection of the response body. The response headers remain unprotected.
Available HTTP attacks have shown, however, that the manipulation of the response header can
have severe consequences [Kle04; LNG19].

A summary of this related work review is given in Table 7.1. It gets apparent that there is a lack
of comprehensive protection means for HTTP messages that are cache-enabled.
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7.5 Requirements for Cache-aware HTTP Signature Schemes

The related work analysis in the previous section highlights that many end-to-end message
signature schemes for HTTP have been proposed in recent years with some of them originating
from global players such as AWS, Google, HP, and Microsoft. This emphasizes the significance
as well as demand for end-to-end security schemes. However, Section 7.4 also shows the
shortcomings of the available HTTP signature schemes in terms of comprehensive protection
and cacheability. Our goal is to close this gap and to define a cache-aware HTTP signature
scheme that aligns end-to-end integrity protection and cacheability. Based on the threat model
introduced in Section 7.3, we define the requirements for a cache-aware HTTP signature schemes
as follows:

(R1) A cache-aware HTTP signature scheme must ensure the integrity and authenticity of
request as well as response messages. This includes a holistic protection for the message
headers and body.

(R2) A cache-aware HTTP signature scheme must pair the request and the corresponding
response message in order to alter response message swapping.

(R3) A cache-aware HTTP signature scheme must enable caches to modify signed messages
while maintaining semantic and logical equivalence.

(R4) A cache-aware HTTP signature scheme must tell replay attacks apart from replayed
messages delivered by a benign cache.

7.6 CREHMA

CREHMA is based on the work of Lo Iacono et al. [LNG19], as it already fulfills requirements
(R1) and (R3) of Section 7.5. Moreover, the scheme provides a comprehensive and detailed
description on what security-relevant elements are required to be integrity protected. Cavage
et al. [CS19] fulfills both requirements as well, but it fails in protecting all security-relevant
headers [LNG19] and it is still in an early development stage with many parts in the draft being
still not completely specified. CREHMA extends the approach of Lo Iacono et al. with the aim
to make it cache-ware.

Lo Iacono et al. denoted their scheme as REST-ful HTTP Message Authentication (REHMA).
One main contribution of REHMA is a comprehensive list of mandatory HTTP request and
response headers. The defined message elements are required to be available in order to render
a HTTP message self-descriptive for endpoints as well as intermediate systems. Since these
message elements are mandatory, they are considered as security-relevant and are therefore
protected by the signature.

To enable cacheability, we adjust the REHMA policy and add cache-related response headers
(see Table 7.2). As with the REHMA policy, the CREHMA header policy requires to consider
the Content-Type header, Content-Length, Transfer-Encoding header and the
HTTP version in the signature and verification process of each HTTP message. In case the
message is a request message, the Accept header, the Host header, the HTTP method and
the request target must be integrity protected. In most cases, the request target is the URL
path including the query string. When the message is a response message, the status code
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HTTP Request Message HTTP Response Message
HTTP Method
Request Target
HTTP Version
Accept
Content-Length
Content-Type
Host
Transfer-Encoding

Cache Key
HTTP Version
Status Code
Cache-Control
Content-Length
Content-Type
ETag
Expires
Last-Modified
Transfer-Encoding
Vary

Table 7.2: HTTP headers that need to be signed as defined by REHMA [LNG19]. CREHMA
extends this list with the bold entries to protect against malicious caches

must be considered by the signature. Moreover, the CREHMA header policy includes the
Cache-Control, the Expires, the Last-Modified, the ETag, and the Vary response
header. These response headers are vital cache-related meta information which are required to
be protected by a cache-aware HTTP signature scheme. Not protecting these headers enables a
man-in-the-middle to manipulate the caching behavior. Note, CREHMA does not consider any
cache-related request headers, as they are barely supported by caches [NLF19a].

Beside the addition of the mentioned to be signed headers, one major difference between
REHMA and CREHMA is the consideration of the cache key in the message signature and
verification process of the response message. The cache key is an essential indicator for caches
to assign an incoming request to a stored response. According to the HTTP caching standard the
cache key consists of the HTTP method and the URL. None of the available HTTP signature
schemes takes the cache key into account. The omission of the cache key allows a man-in-the-
middle to replace a response message with another response message which are signed with
the same key so that the client receives a signed response which is not dedicated to the actual
request message. For instance, an malicious intermediate system or an attacker which is able
break the TLS connection can exploit this shortcoming to exchange a signed patched script file
with a signed script file that still contains vulnerabilities. The man-in-the-middle can also, e.g.,
substitute signed images or videos with another signed images or videos to manipulate news
or posts on social media platforms. The integration of the cache key in the signature processes
allows to detect such attack vectors as the cache key of the client’s expected response message
is different to the one of the replaced response message. To build the cache key for the signature
or verification process of the response message, the HTTP method, the request target and the
Host header must be obtained from the received or issued request message. The cache key can
also be extended by other headers such as the User-Agent or Accept-Language header.
The origin server can inform the client about the cache key extension with the Vary header
(e.g. Vary: Accept-Language, User-Agent). If this is the case, then these cache
key extension headers the must be considered in the signature and verification process as well.

7.6.1 Signature Generation

An endpoint, i.e client or origin server, starts the signature generation with processing the
message (see left half of Figure 7.4). CREHMA defines two different templates for building the
string to be signed: one for the client’s request message and one for origin server’s response
message. Both templates require to add a TVP firstly. If a request message is processed by
the client, the HTTP method, the request target and the HTTP version are added next. These
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Figure 7.4: Process diagram visualizing the steps to sign and verify HTTP messages using
CREHMA

header entries can be obtained from the processed request message. The origin server which
intends to sign a response message concatenates the cache key, the HTTP version, and the
status code to the string to be signed. The three latter header entries can be extracted from the
processed response message. The cache key is obtained from the received request message.
After that, all the other headers specified in the CREHMA header policy (see Table 7.2) are
included according to the alphabetical order of the header names. This applies to both messages.
This means, the client extracts the header entries defined in the left side of Table 7.2 from the
request message and appends them alphabetically to the string to be signed. The origin server
does the same but uses the right side. Note, that all headers of the CREHMA header policy
must be considered in the construction of the string to be signed and verified respectively. When
signing the request message, the HTTP method, the request target, the HTTP version, and Host
header must not be empty. For the other mandatory headers, empty values are accepted. For
instance, the GET, HEAD, DELETE, and OPTIONS requests contain an empty body. Therefore,
it is not required for a GET request to include the Content-Length, Content-Type, and
Transfer-Encoding headers. This is also true for the Accept header, which is only
required when a client desires a distinct media type. The omission of this header indicates
that the client accepts all types of media. Still, according to the CREHMA header policy
these headers must be part of the string to be signed. Thus, empty string values are added as
placeholders. If a response message is about to be signed the HTTP version and the status code
must be available. The cache key must be obtained from the received message. All other header
entries defined in the right side of Table 7.2 can be replaced with an empty string if not present.
The last item to be added for both messages is a text representation of the message body’s hash
value. If the message body is empty, then the hash of an empty value is appended instead. The
next step signs the constructed string. A text representation of the computed signature value
is added to the Signature header, which also comprises the TVP value, the key ID as well
as the names of the used signature and hash algorithms. Additionally, the Signature header
includes an AddHeaders value which can be used to inform the verifying party that additional
application-specific headers are protected by the signature. The final step adds the constructed
Signature header to the message as emphasized in Figure 7.4.

7.6.2 Signature Verification

As with the signature generation, the client or the origin server starts the signature verification
procedure with processing the message (see right half of Figure 7.4). The next step extracts the
Signature header from the message in order to obtain the information to verify the signature
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value. The Signature header must exist exactly once in a message. Duplicate or missing
Signature headers result in classifying the message as invalid. This also applies for all
other headers of the CREHMA header policy. After successfully extracting the Signature
header, the string to be verified is build according to same policy and order as for the string to
be signed. The client receiving a response message builds the string to be verified according to
template for the response message. The to be verified header entries as well as the body can
be obtained from the response message and the cache key can be retrieved from the client’s
issued request message. The origin server concatenates the string to be verified according to
the template for the request message. With the string to be verified and the parameters of the
Signature header, the procedure can now verify the authenticity and integrity of the received
message. Besides the validation of the signature value, the verification process also checks
whether the TVP value is within a given time frame. Moreover, it is required to check whether
the signed message is a replay attack or a reused signed response message form a benign cache.
To distinguish between a replay attack and a legitimate reused message, the verification process
validates the signature freshness which is equivalent to the response freshness. The signature
freshness can be either inferred from the max-age or s-maxage control directive which
is included in the Cache-Control or it can be derived form the Expires header. The
parameters max-age and s-maxage describe the relative explicit freshness lifetime. This
information can be trusted, since the Cache-Control header is part of the CREHMA header
policy and therefore protected by the signature. To compute the signature freshness the seconds
defined in the max-age or s-maxage are added to the timestamp defined in the TVP value.
The resulting timestamp is compared to the current time. If the comparison indicates that the
resulting timestamp is not in the past, then the signature can be considered as fresh. If the
explicit freshness lifetime is defined by an absolute expiration date with the Expires header,
then this timestamp is used for the comparison. The Expires header can be trusted as well, as
it is included in the CREHMA header policy.

Note, that signature freshness only exists for response messages. If the verification process
detects a reused request message signature, this message must be considered as a replay attack.
Also, if a signature value of a response message is received twice but the message header neither
contains a Expires header nor a max-age or s-maxage control directive, then is message
must be classified as invalid. Moreover, the signature and verification process for caching with
freshness validation requires an additional step as well.

7.6.3 Use Cases

We present two examples use cases to further illustrate CREHMA. The use cases are crafted
following the the two main caching approaches, namely caching with freshness lifetime and
with freshness validation (see Section 7.2).

Caching with Explicit Freshness Lifetime

Let’s assume the request and response message flow in the Figure 7.1 requires to be protected
by CREHMA. Following the signature generation and verification policies of CREHMA and
the templates for the request and response messages, the constructed strings are shown below
(based on the first HTTP message shown in Figure 7.1):
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String to be signed/verified for request message String to be signed/verified for response message
2019-06-13T15:41:10.494ZCR LF
GETCR LF
/rscCR LF
HTTP/1.1CR LF
text/plainCR LF
CR LF
CR LF
example.orgCR LF
CR LF
47DEQpj8HBSa-_TImW-5JCeuQeRkm5...

2019-06-13T16:41:21.233ZCR LF
GET example.org/rscCR LF
HTTP/1.1CR LF
200CR LF
CR LF
CR LF
max-age=360,no-transformCR LF
11CR LF
text/plainCR LF
CR LF
CR LF
CR LF
pZGm1Av0IEBKARczz7exkNYsZb8LzaMr...

The string representation of the request message shows that the TVP, the HTTP method, the
target resource, and the HTTP version are appended according to the order of the template in
Figure 7.4. The remaining mandatory headers follow in alphabetical order. The headers that are
not present are represented by an empty string value.

Figure 7.5 shows the HTTP message flow in which caching with an explicit freshness lifetime
is used. The message flow is analogous to Figure 7.1 with the exception that these messages
contain CREHMA signatures. For the sake of readability, we removed the Date headers though.
All messages include the Signature header which contains the signature value and related
metadata. As both messages do not require to integrate additional application-specific headers
to the signature and verification process, the addHeader parameter contains the value null.
If both endpoints intend to integrate additional security-relevant headers to the signature and
verification process, a list with the header names using semicolon as delimiter must be in-
cluded to the addHeader parameter (e.g addHeaders=Content-Security-Policy;
X-XSS-Protection).

The signed response message contains a Cache-Control header with the directive max-age
=360 which indicates that this response message can be reused for the next six minutes. If a
client receives a signed response twice, then the verification process needs to add the seconds
of the max-age directive value to the timestamp of the TVP value. If this sum is greater
than the current time, the reused signature is considered as fresh. Beside max-age=360
the Cache-Control header also contains no-transform, which prevents intermediate
systems from modifying the message body.

Caching with Freshness Validation

Figure 7.6 shows an example HTTP message flow involving caching with explicit freshness
validation. Although the messages have been protected using the CREHMA signature scheme,
the flow and especially the HTTP messages are mostly similar to the one in Figure 7.2. Again,
we omitted the the Date header for readability reasons.

When the response is requested subsequent times, the cache converts the request into a condi-
tional one by adding the If-None-Match header and forwards the conditional request to the
origin server. Since the If-None-Match and the If-Modified-Since headers are not
part of the mandatory request headers, they can be added by the cache without interfering with
the request’s signature. If the conditional request is successfully processed by the origin server,
it returns a signed response message with the status code 304 Not Modified as shown in
Figure 7.6. This response message contains only the response line and the ETag header with
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Web Client Web ServerWeb Caching System

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain
Signature: sig=HMAC/256,hash=SHA256,↩
tvp= 2019-06-13T15:41:10.494Z, ↩
addHeaders=null,sv=<sv>,kid=<Key ID>

<Empty Body>

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain
Signature: sig=HMAC/256,hash=SHA256,↩
tvp= 2019-06-13T15:41:10.494Z, ↩
addHeaders=null,sv=<sv>,kid=<Key ID>

<Empty Body>

HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain
Cache-Control: max-age=360
Signature: sig=HMAC/256,hash=SHA256, ↩
tvp= 2019-06-13T15:41:21.233Z, ↩
addHeaders=null,sv=<sv>,kid=<Key ID>

Hello World

HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain
Cache-Control: max-age=360
Signature: sig=HMAC/256,hash=SHA256, ↩
tvp= 2019-06-13T15:41:21.233Z, ↩
addHeaders=null,sv=<sv>,kid=<Key ID>

Hello World

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain
Signature: sig=HMAC/256,hash=SHA256,↩
tvp= 2019-06-13T15:45:10.494Z, ↩
addHeaders=null,sv=<sv>,kid=<Key ID>

<Empty Body>

HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain
Cache-Control: max-age=360
Signature: sig=HMAC/256,hash=SHA256, ↩
tvp= 2019-06-13T15:41:21.233Z, ↩
addHeaders=null,sv=<sv>,kid=<Key ID>

Hello World

Figure 7.5: This example HTTP messages flow shows caching with a freshness lifetime. The
messages are integrity protected by CREHMA.

value xyz indicating that the cached response message is still up-to-date. Once a cache receives
such a message, it is allowed to reuse the cached response but it must update the header entries
of the stored response with the ones of the 304 Not Modified response.

CREHMA makes use of the header updating policy in order to refresh the expired signature
value of the stored response message in the cache. To do so, the origin server has to compute
two signatures: One to update the expired signature of the cached response and the other is
required to verify the integrity and authenticity of the 304 Not Modified response. The
string to be signed of the first signature must be constructed under the assumption that the full
response message with a header and the body is returned (see left column in the table below).
This string is almost identical to the one which was constructed for the initial response message
in Figure 7.6. The only difference is the updated TVP value. To accelerate signature generation
time, this string to be signed without the TVP value should be stored in server-internal database.
The database index for this string could be the ETag header value. When creating this signature
for the next time, a new TVP value needs to be added only. The second signature must be crafted
according to the message elements of the 304 Not Modified response message as shown
by the right column in the table below.
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Web Client Web ServerWeb Caching System

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain
Signature: sig=HMAC/256,hash=SHA256,↩
tvp= 2019-06-13T16:41:10.494Z,↩
addHeaders=null,sv=<sv>,kid=<Key ID>

<Empty Body>

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain
Signature: sig=HMAC/256,hash=SHA256,↩
tvp= 2019-06-13T16:41:10.494Z,↩
addHeaders=null,sv=<sv>,kid=<Key ID>

<Empty Body>

HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain
Cache-Control: no-cache
ETag: xyz
Signature: sig=HMAC/256,hash=SHA256, ↩
tvp= 2019-06-13T16:41:21.233Z, 
addHeaders=null,sv=<sv>,kid=<Key ID>

Hello World

HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain
Cache-Control: no-cache
ETag: xyz
Signature: sig=HMAC/256,hash=SHA256,↩
tvp= 2019-06-13T16:41:21.233Z,↩
addHeaders=null,sv=<sv>,kid=<Key ID>

Hello World

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain
Signature: sig=HMAC/256,hash=SHA256,↩
tvp= 2019-06-13T16:45:10.494Z,↩
addHeaders=null,sv=<sv>,kid=<Key ID>

<Empty Body>

HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain
Cache-Control: no-cache
ETag: xyz
Signature: sig=HMAC/256,hash=SHA256, ↩
tvp= 2019-06-13T16:45:21.633Z, ↩
addHeaders=null,sv=<sv>,kid=<Key ID>
Validation-Signature: sig=HMAC/256, ↩
hash=SHA256, ↩
tvp= 2019-06-13T16:45:21.733Z, ↩
addHeaders=null,sv=<sv>,kid=<Key ID>

Hello World

GET /rsc HTTP/1.1
Host: example.org
Accept: text/plain
Signature: sig=HMAC/256,hash=SHA256,↩
tvp= 2019-06-13T16:45:10.494Z,↩
addHeaders=null,sv=<sv>,kid=<Key ID>
If-None-Match: xyz

<Empty Body>

HTTP/1.1 304 Not Modified
ETag: xyz
Signature: sig=HMAC/256,hash=SHA256, ↩
tvp= 2019-06-13T16:45:21.633Z, ↩
addHeaders=null,sv=<sv>,kid=<Key ID>
Validation-Signature: sig=HMAC/256, ↩
hash=SHA256, ↩
tvp= 2019-06-13T16:45:21.733Z, ↩
addHeaders=null,sv=<sv>,kid=<Key ID>

Figure 7.6: This example HTTP messages flow shows caching with freshness validation. The
messages are integrity protected by CREHMA.

The signature value and the corresponding metadata which are intended to update signature value
of the cached response message must be inserted the Signature header. The other signature
value in conjunction with its meta information which protects the 304 Not Modified
response message must be included the newly introduced Validation-Signature header
as shown in Figure 7.6.

The returned 304 Not Modified response message requires the cache to update the header
entries of the stored response with the headers of the 304 Not Modified response. Accord-
ingly, the Signature header of the stored response message gets updated too. All updated
headers are marked in bold. The response with the updated header can now be returned to client.
As the Signature header is refreshed, the client can successfully verify the message signature.
The addition of two signatures in the 304 Not Modified response message is mandatory,
as the origin server does not know whether the client or what intermediate system includes the
If-None-Match header to the request message. If client has inserted these headers by itself
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string to be signed/verified of response message signature to
be updated

string to be signed/verified of 304 Not Modified re-
sponse message

2019-06-13T16:45:21.633ZCR LF
GET example.org/rscCR LF
HTTP/1.1CR LF
200CR LF
CR LF
xyzCR LF
no-cache,no-transformCR LF
11CR LF
text/plainCR LF
CR LF
CR LF
pZGm1Av0IEBKARczz7exkNYsZb8LzaMr...

2019-06-13T16:45:21.733ZCR LF
GET example.org/rscCR LF
HTTP/1.1CR LF
304CR LF
CR LF
xyz
CR LF
CR LF
CR LF
CR LF
CR LF
CR LF
47DEQpj8HBSa-_TImW-5JCeuQeRkm5...

because it operates an own cache or the client is a caching middlebox by itself which supports
CREHMA, it must validate the signature value in the Validation-Signature header, as
this security information verifies the authenticity and integrity of the 304 Not Modified
response message. If a client decides to add to the If-None-Match to the request mes-
sage, it should not include this elements as additional to be protected header entries in the
addHeaders parameter. This is also true for the If-Modified-Since header. According
to the RFC 7234, caches can append further opaque validation token to the If-None-Match
header or can change the value in the If-Modified-Since header. Such modifications
impair the signature value of the request. In real world scenario, a client does not know how
many and what intermediate systems a request message traverses until it reaches the origin
server. Therefore, the If-None-Match and the If-Modified-Since header should be
excluded from the signature and verification process.

7.6.4 Limitations

With CREHMA, distributed web-based software systems can benefit from caching without
having to trust the cache for integrity. CREHMA achieves these properties while remaining
opaque for the cache. Still, CREHMA does have some limitations. One is, that CREHMA
supports explicit caching only, since it requires reliable information for clients to unambiguously
infer the signature freshness. Signed responses which are stored and reused according to an
implicit freshness lifetime do not contain any reliable indicator for the client to validate the
signature freshness. To hinder caches from deriving an implicit freshness lifetime, response
messages which are not considered to be cached must be declared with Cache-Control
header containing the control directive no-store.

Moreover, CREHMA does not allow intermediate systems to transform the message body. For
instance, some CDNs provide the feature of minifying assets such as scripts, stylesheets and
images to reduce the data volume required to be transfered. All kinds of compression and
other kinds of message body modifications are not permitted, since a change of the message
body changes its hash fingerprint and thus void the signature’s validity. To prevent caches from
modifying the response message body, the no-transform control directive must be added
to the Cache-Control header. In case this control directive has not been set by the origin
server, the CREHMA signature generation adds it to the respective header.
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7.7 Evaluation

To evaluate the introduced CREHMA signature scheme, we designed and implemented a set of
distinct experiments to gain insights on the compatibility of CREHMA with real world caches
as well as its performance and security properties. The test beds consist of two prototype clients,
a set of real world caches and a prototype test server. One client is based on Ruby v2.5.1p57
using the Net:HTTP and OpenSSL module for creating hashes as well as signatures. We used
this client to evaluate proxy caches and CDNs. The other client is a single page web application
implemented with Javascript and the Web Crypto API. We utilized this Javascript-based client
to test web browser caches. We developed the test server based on node.js v12.4. The test server
utilizes the native http and crypto node modules for computing hashes and signatures. In all our
compatibility and performance evaluations, we used HMAC/SHA256 to generate the signatures
and SHA256 to calculate the hashes. Moreover, we used Base64URL to encode the hash and
signature values.

7.7.1 Compatibility

In order to meet requirement R3, we have designed CREHMA to be transparent to caching
systems, i.e. in CREHMA-instrumented systems, clients and servers must be adapted while
the caches remain unchanged. To validate whether our design influences the proper function-
ing of caches or CREHMA and downstream processes, we conducted experiments with real
world caching systems. We performed our experiments with three different types of caches:
web browser caches (Chrome v.75.0.3770.100, Safari v12.1.2, Firefox v69.0, Microsoft Edge
v17.17134), proxy caches (Apache Traffic Server (ATS) v8.0.3, Apache HTTPD v2.4.41, nginx
v1.16.1 and Squid v4.8) and CDNs (CloudFront and CloudFlare). Our compatibility evaluations
covered caching scenarios with explicit freshness lifetime and explicit freshness validation.

In the test procedure to evaluate the handling of CREHMA-protected messages equipped with
an explicit freshness lifetime, the client sends an initial signed GET request to the server. The
server verifies the request and returns a signed response containing the Cache-Control:
max-age=3600 header instructing the cache to store and reuse the response for the next hour.
After one second the client executes an equivalent request and inspects the source and validity
of the response. We repeated this procedure with the s-maxage directive and the Expires
header.

As shown in Table 7.3, all examined caches were able store and reuse CREHMA-signed
responses with an explicit freshness lifetime. The CREHMA-instrumented client was able to
classify the replayed message as a valid signed message, since the max-age=3600 directive
declares that the cached signature is still in its defined validity time frame. These results
show that CREHMA is compatible with common web caching systems when explicit freshness
lifetime caching is deployed.

We performed a similar test to check the processing of CREHMA-protected messages with an
explicit freshness validation. In this setup the client initiates the test procedure with a signed GET
request. The server then sends a signed response including the ETag and Cache-Control
headers, with the latter containing a value instructing the cache to validate the freshness (i.e.
no-cache, must-revalidate, or proxy-revalidate). The client then issued subse-
quent signed GET requests and inspects the obtained response.
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Table 7.3: Compatibility evaluation of CREHMA with real world caches storing and reusing
signed response messages

The results are shown in Table 7.3. They highlight what caches are compatible with the storage
and reuse of CREHMA-signed response messages based on freshness validation caching. The
client was able to successfully verify the cached response messages of Chrome, Firefox, Safari,
Edge, ATS, Apache HTTPD, and Squid. These caches comply with the Web caching standard,
as they update the header of the cached response when the freshness validation was successful.
This is, however, not the case for nginx, CloudFront and Cloudflare. These web caching systems
do not update the header of the cached response when a freshness validation is successful. The
caches always replay the initially cached response. These observations are inline with the results
presented in [NLF19a]. Here the authors showed that these particular caching systems do not
behave compliant with the Web caching standard. Such a violation leads to the issue that reused
signed messages are classified as a replay attack, as the signature freshness is expired. Service
providers which intend to use CREHMA in conjunction with these caches, should therefore
avoid using caching with freshness validation. Alternatively, they can exclusively use caching
with explicit freshness lifetime or simply exclude such response messages from caching so that
for each request message a new response message with a new Signature header is returned
form the origin server.

7.7.2 Performance

The goal of this evaluation was to gain insights on the influence of CREHMA to the perfor-
mance of a web application using caching. We therefore designed experiments to capture the
message processing times of CREHMA-protected messages and compare those with equivalent
setups containing no message protection mean and REHMA, the non-cache-aware equivalent to
CREHMA. By message processing time we mean the time elapsed from the request being gener-
ated and issued by the client to the time the response has been received back by the client. This
includes the generation of request and response messages, the parsing of request and response
messages, and the round trip time. The test cases including HTTP signature schemes add to this
with signature generation and verification times for both request and response messages.

All virtual machines were running in the EC2 instance type t2.micro. All our performance
experiments followed this general setup. In one test run, the client requests a certain resource
200 times from the server with a request frequency of 1Hz. The cache is blanked for each test
run. Depending on the test case, the origin server either sets an explicit freshness lifetime or an
explicit freshness validation policy. In a test run, the test client captures the message processing
times of all 200 requests. We conducted test runs with different response body sizes ranging
from 1KB to 10MB. We performed our experiments with three different types of caches: a web
browser cache (Chrome), a proxy cache (ATS) and a CDN (CloudFront). We deployed our test
client, test server, and the real world cache in distinct regions of the AWS cloud.
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Freshness Lifetime Experiments Results

Figure 7.7 shows the results of the experiments with the explicit freshness lifetime policy set
to Cache-Control:max-age=3600. Each plotted value represents the average of 200
measurements. According to our measurement results, CREHMA introduces only a slight delay
compared to the unprotected case. We could also observe, that this delay increases with a
growing body size. For response messages with a 1KB body the introduced delay is less than
1ms for all cache types. The processing time of signed response messages with a 10MB body
took 44ms in average longer than in the unprotected case in Chrome. When using ATS, the
difference was 42ms in average. In CloudFront the message processing time differs by 29ms in
average. Our detailed measurements shows that the signature generation time of GET requests at
the client-side and the signature verification of such requests at the server-side take less than 1ms
in average each. This is due to the empty body in these messages. The signature generation time
for response messages with a 10MB body took 40ms in average. The response message signature
generation needs to be performed only once for the initial request, though, as the signed response
message will be cached and served from the cache without further server intervention. Thus, the
measured delay introduced by CREHMA is mainly caused by the hash generation of the body
during response message signature verification. The measured differences in the distinct test
case are due to distinct client implementations. For 10MB, the average hash calculation time in
our Ruby client takes 29ms and 43ms for the Javascript client. Also, the message expansion
introduced by CREHMA is minimal and boils down to a static offset defined by the size of the
Signature header. In terms of our experiments this means 43B for the signature value, 24B
for the TVP and some more bytes for additionally required metadata, such as algorithm names
and a key ID. Although this static overhead is added to every CREHMA-protected request and
response message, still the overall amount is rather small and does e.g. not lead to an measurable
increase in data transfer time.
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Figure 7.7: Comparison between the average processing time of cached messages with
CREHMA protection and cached messages without CREHMA protection via
explicit freshness lifetime.

Some measurements for small payload sizes showed that the average message processing time
of unsigned messages is higher than for signed messages. As the measurements include the
round trip times and we deployed our test beds in the AWS cloud, these deviations are most
likely attributable to network fluctuations.
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Freshness Validation Experiments Results

Further experiments targeted caching policies adopting freshness validation. We conducted the
test runs with the same general setup, only the Cache-Control header was assigned with the
no-cache directive in the tests with Chrome and CloudFront. Since ATS does not support the
no-cache directive properly [NLF19a], we had to use max-age=0,must-revalidate
instead to force ATS to validate the freshness of each request message.

Figure 7.8 shows the results of our experiments in respect to caching with freshness validation.
The gathered results are very similar to the once from the previous section. The average delay
for retrieving a signed 1KB response message is 5ms with the Chrome browser cache, 2ms with
the ATS proxy cache and less than 1ms with the CloudFront CDN. Likewise, we measured larger
differences in message processing times when the response payload size increased. In Chrome,
CREHMA induced a 51ms delay in average for response body size of 10MB. The average delay
for the same body size when using the proxy cache ATS was 16ms. If CloudFront was used,
the message processing of CREHMA-protected messages time took 57ms in average longer. In
summary, we observed the processing time of CREHMA-protected messages is governed by the
message body size, the programming environment and by the regional locations of the cache and
endpoints. The message overhead added by the Signature and Validation-Signature
header barely affects the performance of the communication.
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Figure 7.8: Comparison between the average processing time of cached messages with
CREHMA protection and cached messages without CREHMA protection via
freshness validation.

Non-Cache-Aware HTTP Signature Schemes

Finally, we compare the performance of CREHMA and other comprehensive HTTP signature
schemes that do not support caching in order to quantify possible advantages. From the available
state of the art we chose REHMA. The schemes of Serme et al. and Cavage et al. can be
considered as similar, as all three HTTP signature schemes differ only in terms of what headers
they protected. The signature generation and verification procedures are similar. Also, caching
has to be disabled for all three schemes, as the signed responses are not intended to be replayed by
any entity including caches. We implemented a REHMA-instrumented prototype server and two
REHMA-instrumented clients for testing proxy caches and CDNs following the implementation
of the CREHMA testbeds. The REHMA-instrumented systems were deployed on the same EC2
instances as the CREHMA-instrumented systems.
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Figure 7.9: Comparison between the average processing time of cached messages with
CREHMA protection and uncached messages with REHMA protection.

The results obtained from our experiments are shown in Figure 7.9. Since REHMA does not
support caching, each request message is forwarded by the cache to the origin server, which
returns a full response message including a body. When using CREHMA, cacheable response
messages do not require to be retrieved from the origin server. They can be delivered directly by
the cache reducing the amount of signature operations, end-to-end delay and data traffic. In case
CREHMA is used with a browser cache such as contained in Chrome, the message processing
time is up to three times faster for response messages with a 10MB body than with REHMA.
This is also true for the CloudFront CDN. In the test run based on the ATS proxy cache, the
message processing time for response messages with a 10MB body with CREHMA is twice as
fast as than with REHMA.

Finally, our experiments showed that CREHMA can also be deployed and used in web-based
systems that make no use of caching. This implies similar performance penalties as when using
REHMA.

7.7.3 Security

The goal of CREHMA is to ensure end-to-end integrity and authenticity of HTTP messages
while enabling cacheability. By this, CREHMA aims at mitigating the attack vectors identified
by the evolved threat model introduced in Section 7.3 and at fulfilling the emerging security-
related requirements for cache-aware HTTP signature schemes in Section 7.5. Here, we evaluate
to what extent CREHMA achieves these security goals. Moreover, we broaden the scope of the
security analysis by discussing known attack classes to Web caches, such as HTTP response
splitting [Kle04] and HTTP request smuggling [Lin+05], in the light of CREHMA-enabled
systems.

In general, due to the signature of the mandatory HTTP headers and the body of both the request
and the response, a verifying party is able to detect any modification of the protected elements
of these messages. This thwarts attack vectors of type (A1) in Section 7.3. As the CREHMA
signature generation and verification algorithms check and enforce a strict message structure,
related attacks such as signature wrapping [GL09] are defeated. Application-specific needs can
be added to either the unprotected or the protected message areas according to the respective
critically.

To mitigate replay attacks as depicted by (A2) and (A3) in Section 7.3, CREHMA adds a TVP
to each signature generation which induces—amongst others—that each generated signature
value is unique. Thus, a replay attack can be detected when a signature value is received twice.
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To distinguish between a replay attack and a legitimate message reuse provided by benign cache,
CREHMA requires to verify the signature freshness which can be derived from the response
freshness as described in Section 7.6. Hence, CREHMA enables cacheability while effectively
detecting replay attacks.

Moreover, with the integration of the cache key in the signature verification process, CREHMA
allows to detect attack vectors in which a malicious cache swaps a signed response message
with another signed response message (see (A4) in Section 7.3). Beside the detection of
response message swapping attacks, the consideration of the cache key also mitigates a set of
cache poisoning attacks Response Splitting [Kle04], Request Smuggling [Lin+05] and Host of
Trouble [Che+16]. In these attack vectors, a malicious client aims to inject a malicious response
message under the cache key of the target resource. This harmful content is then returned
when a client requests the injected URL. When using CREHMA, the described web cache
poisoning attacks can be detected, as an attacker-crafted response message does not contain a
valid signature. There are also web cache poisoning attacks which intend to replace a response
message with another response message of another resource endpoint from the same origin
server such as HTTP Desync attacks [Ket19a]. If CREHMA is used such web cache poisoning
attacks can be detected as well, since the signature value of the replaced response message
includes another cache key as the genuine one.

7.8 Conclusion and Outlook

In this paper, we introduce CREHMA, a cache-aware HTTP signature scheme that provides
comprehensive end-to-end integrity and authenticity for Web-based systems. The need for secu-
rity mechanisms that complement TLS is introduced by an evolved threat model that considers
intermediate systems in Web-based software systems. Our analyses show that CREHMA only
causes minor delays and data extensions in the provision of its end-to-end security services.
Moreover, CREHMA outperforms the existing HTTP signature systems both in terms of se-
curity as they provide no comprehensive protection and in terms of performance as they are
not cacheable. Service providers can immediately use CREHMA with available Web caching
systems, since CREHMA does not require any changes to caches.

In future work we will study the key management of CREHMA deployments as well as the
confidentiality of CREHMA-protected messages. Moreover, we will analyze the performance
and compatibility when CREHMA is integrated in a cache. This will enable to provide further
benefits, such as the access control to cached private resources. Finally, we would like to
understand to what extent the CREHMA approach can be generalized to meet the end-to-end
security in Web-based distributed software systems to other intermediate systems including
load balancers, application firewalls, HTTPS interceptors, protocol converters, and message
routers.
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Chapter 8
Summary and Further Work

Reliable software systems that scale at large are the driving forces of the digital transformation.
The industry and academia have conducted many initiatives to explore the security and scalability
of such systems [Fei+06]. This thesis comprises several works to study and enhance the security
of REST-based ULS systems. It provides two comprehensive state-of-the-art analyses on current
work in REST-based authentication schemes and service description languages. Based on this
background, this work proposes a methodology on how to develop REST-Security components
for any kind REST-based technologies. With this approach, REMA is introduced, a generic
security scheme for ensuring end-to-end integrity and authenticity of REST messages. REMA
then serves as a guideline to derive REHMA and RECMA, which provides end-to-end security
for HTTP and CoAP messages. As intermediate systems are vital components for the scalability
and security of modern distributed systems, a large-scale study on web caching has been
conducted. The analysis revealed many malfunctions and non-conformances, which may lead to
potential vulnerabilities. The developed cache testing tool and the whole test suite, which have
been used for the analysis, can be downloaded as open-source and free software via GitHub
(see Appendix A). In further investigations on web caching, CPDoS has been discovered, a
novel web cache poisoning attack class. The experiments show that millions of websites are
affected by the discovered attack. To mitigate the vulnerabilities, this thesis proposes and
discusses countermeasures in cooperation with affected organizations. The term CPDoS has
been established as a new class of attacks that exploit a cache to provoke a denial of service.
Other researcher took the findings of this thesis as a role model to discover and report other
CPDoS variations [Ket19b; Dav20; Dav19]. Moreover, many security and computer science
news platforms reported the findings to inform organizations and people on CPDoS. More
details on the media coverage and recent information on CPDoS can be found on the website
https://cpdos.org. Based on the knowledge from the studies in web caching, this thesis proposes
CREHMA, an extension of REHMA. Unlike available HTTP signature schemes, CREHMA
ensures comprehensive end-to-end authenticity and integrity of HTTP messages without loss of
cacheability and vice versa. As with the cache testing tool, software developers can download
CREHMA as a free and open-source tool via GitHub. More details, can be found in at the
Appendix B.

CREHMA is the first security scheme for REST, which takes caches into account to enable
scalability. Security and scalability are two key quality factors in modern distributed systems.
Caches ensure scalability by storing and recycling frequently used resources. In terms of security,
caches provide increased availability. CDNs, which include a WAF, can protect against DDoS
attacks and additionally filter malicious requests. These observations show that intermediate
systems are vital elements for security and scalability. However, intermediate systems can also be
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misused to impair the availability, as shown, e.g., by the introduced CPDoS attack. Researchers
also demonstrated with, e.g., HTTP Request Smuggling [Lin+05] or Host of Trouble [Che+16],
that they can distribute malicious content to millions of users using a cache [Ket19a; Che+16].
Moreover, the usage of intermediate systems interrupts the transport security provided by TLS.
This all shows that even though intermediaries are crucial for any modern distributed system,
the usage of them in real-world systems still entails severe vulnerabilities. The mitigation of
security threats in layered systems requires, therefore, an in-depth understanding of the interplay
between intermediaries and endpoints. This thesis contributes to these efforts.

Chapter 7 shows that CREHMA not only mitigates man-in-the-middle attacks but also detects
web cache poisoning attacks, including HTTP Request Smuggling, HTTP Response Splitting,
and Host of Trouble. However, CREHMA cannot thwart the presented CPDoS attacks and some
of the web cache poisoning techniques of James Kettle [Ket18c] as the poisoned response is
returned from the target origin server itself. To address these attacks, countermeasures need to
be designed which filter the malicious requests before they reach the origin server.

Chapter 4 and Chapter 5 mainly focus on caches. Caches are not the only intermediate systems
in REST-based applications. The interference of other intermediaries needs to be studied as
well. Further work should conduct similar studies on, e.g., load balancer or WAF to explore the
impact of other intermediate systems.

The end-to-end message confidentiality for REST messages is another important topic that is
only partially addressed by this work. Chapter 2 specifies the requirements for designing a REST
message confidentiality. To avoid malicious intermediaries reading sensitive information, it
requires to define a policy describing what class of intermediate systems has read access to what
type of message elements. Such a policy can be defined for caches at first. Chapter 4 and Chapter
5 already point out the cache-related headers. Based on studies on other intermediate systems,
similar policies need to be specified for other intermediate systems such as load balancers or
WAFs.

Another crucial topic that is not covered by this thesis is a CREHMA counterpart for CoAP.
As CoAP is based on HTTP and specifies similar cache-related control directive, a CREHMA
adaptation to CoAP might be very straightforward. Such a cache-ware signature scheme should
be developed in further work to ensure end-to-end authenticity and integrity under consideration
of caching in IoT environments.

Future work should conduct further studies in other mission-critical application domains of
REST. The upcoming mobile 5G network for mobile and wireless devices is a REST-based ULS
system which requires high as well as specific security demands. In the publication [Rud+19],
my co-authors and myself already discussed the security challenges for REST-based services
in 5G. Further studies need to address these challenges as well as evaluate CREHMA and
cache-related security issues in 5G software systems.
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Appendix A
Cache Testing Framework

The cache testing framework is a comprehensive compliance auditing tool kit for all kinds of
web caching systems. It comprises a test suite with over 415 test cases and a cache testing tool.
We developed the cache testing framework for the empirical studies in Paper 4 and Paper 5. We
also used this framework in combination with other tools in Paper 6 to analyze whether a tested
cache or website is vulnerable to CPDoS.

After Paper 4 was accepted for the publication at the 2nd International conference on Web
Studies, we published a website of our cache testing framework (see Figure A.1 https://das.th-
koeln.de/developments/cache-testing-tool/).

Figure A.1: Website of the cache testing framework

The website offers full access to the test suite with all test cases which can be downloaded
and modified by the proposed test case definition language in Paper 4. The cache testing
tool consists of two parts: a testing client and a testing server. Both can be downloaded as a
standalone executable program as well as open-source Git repository via Github (Testing client:
https://github.com/das-th-koeln/Cache-Testing-Tool; Testing server: https://github.com/das-th-
koeln/cachetestservernode). More details on the installation process and usage of the cache
testing tool can be found on the website.
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Appendix B
CREHMA

We implemented multiple reference implementation for CREHMA in Java, JavaScript and Ruby.
All implementations can be downloaded and modified as open-source software via GitHub.

jCREHMA

jCREHMA is a Java implementation that is based on jREHMA. We designed CREHMA to
be used in any Java-based web framework or HTTP library. For more details, please read the
documentation of jCREHMA. The full source code of jCREHMA, including the documentation,
can be downloaded here https://github.com/das-th-koeln/jCREHMA.

CREHMA.js

CREHMA.js is the JavaScript adaption of CREHMA. It can be used in client-side web applica-
tions to sign XHR requests and verify HTTP responses. We use the WebCrypto API [Wat] to
sign and verify the messages. For web browsers which does not support the WebCrypto API, we
also provide the option to sign and verify the messages with Stanford Javascript Crypto Library
(SJCL) [SHB]. Moreover, developers can use CREHMA.js in every JavaScript web framework
or library such as Node.js. CREHMA.js is also freely available as open-source software on
GitHub (https://github.com/das-th-koeln/CREHMA.js).

CREHMAforRuby

The CREHMA implementation for Ruby is based on the native Net::HTTP library. For the
cryptographic, we used the OpenSSL library. CREHMAforRuby can be used in any Ruby-
based web library and web framework. It can be downloaded here https://github.com/das-th-
koeln/CREHMAforRuby.
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