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Abstract

We introduce non-commutative probability theory as a tool to analyse sample
covariance matrices. We develop the theory necessary for derivation of the spectral
distribution of covariance matrix estimates of VARMA(p, q) random matrix models
and introduce an extension to VARFIMA(p, d, q) random matrix models. The
relationship between sample covariance matrices and there population counterparts
are investigated. Specifically, we showcase efficient algorithms for calculating various
VARMA(p, q) spectral densities.

Both model classes are implemented so that parameter estimation is possible. For a
feasible subset of a high-dimensional data set of stock returns we estimate the model
parameters for VARMA(1, 1) random matrix models.

Wir führen in nicht-kommutative Wahrscheinlichkeitstheorie als ein Werkzeug zur
Analyse von empirischen Kovarianzmatrizen ein. Wir entwickeln die notwendige
Theorie zur Herleitung von Spektralverteilungen von Kovarianz-Matrix-Schätzern
für VARMA(p, q) Zufallsmatrix-Modelle. Mit dieser erarbeiten wir eine Erweiterung
auf VARFIMA(p, d, q) Zufallsmatrix-Modelle. Die Verbindung zwischen Kovarianz-
Matrix-Schätzer und der wahren Kovarianzmatrix werden untersucht. Speziell
präsentieren wir effiziente Algorithmen um diverse VARMA(p, q) Spektraldichten zu
berechnen.

Beide Modellklassen werden implementiert, so dass Parameterschätzung möglich
ist. Für eine praktikable Teilmenge von hochdimensionalen Finanzmarktdaten von
Aktienreturns schätzen wir die Modellparameter für VARMA(1, 1) Zufallsmatrix-
Modelle.

JEL: C13, C51,

MSC: Primary 46L53, 46L54; Secondary 62H12, 60B20

Keywords: Non-Commutative Probability Theory, Covariance-Matrix Estimation,
VARMA, VARFIMA

i



ii



Dedicated to All my Teachers.



iv



Table of Contents

 Abstract i

 Table of Contents v

 List of Tables ix

 List of Figures  xi

 Symbols and Acronyms  xv
 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
 Acronyms and Abbreviations  . . . . . . . . . . . . . . . . . . . . . . . . . xviii

 1 Introduction 1
 1.1 High-dimensional Data  . . . . . . . . . . . . . . . . . . . . . . . . . . 2
 1.2 Covariance Estimation and Model Parameter Growth  . . . . . . . . . 2
 1.3 New Framework: Non-Commutative Probability Theory  . . . . . . . . 3
 1.4 Simple Comparison with Market Data . . . . . . . . . . . . . . . . . 4
 1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

 2 Introduction to Non-Commutative Probability Theory and Free Inde-
pendence 7

 2.1 Introduction to Non-Commutative Probability Theory  . . . . . . . . . 7
 2.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 8
 2.1.2 Random Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 9

 2.2 Wishart Ensemble and Marchenko–Pastur Distribution  . . . . . . . . 12
 2.2.1 Wishart Ensemble . . . . . . . . . . . . . . . . . . . . . . . . 12
 2.2.2 Marchenko–Pastur Distribution  . . . . . . . . . . . . . . . . . 13

 2.3 Free Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
 2.3.1 Independence for Classical Random Variables  . . . . . . . . . 16
 2.3.2 Definition of Free Independence . . . . . . . . . . . . . . . . . 16
 2.3.3 Asymptotic Freeness  . . . . . . . . . . . . . . . . . . . . . . . 18
 2.3.4 Free Deterministic Equivalents . . . . . . . . . . . . . . . . . . 19

 2.4 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
 2.4.1 TheM-transform . . . . . . . . . . . . . . . . . . . . . . . . . 20
 2.4.2 The Cauchy-Transform G  . . . . . . . . . . . . . . . . . . . . 21
 2.4.3 R-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
 2.4.4 S-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

 2.5 Rectangular Random Matrices  . . . . . . . . . . . . . . . . . . . . . . 24
 2.6 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



Table of Contents

 3 Eigenvalue Distributions for Specific Random Matrix Models 29
 3.1 Spectral Distributions of Vector-ARMA-Ensembles  . . . . . . . . . . 29

 3.1.1 Basic Definitions and Short Introduction to VARMA(p,q)
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

 3.1.2 Assumptions on the General Covariance Matrix and Factor-
izations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

 3.1.3 Connection of Sample-Covariance Matrix toM-transform of
Auto-Correlation Matrix . . . . . . . . . . . . . . . . . . . . . 33

 3.1.4 TheM-transform of VARMA(p,q) Processes  . . . . . . . . . . 37
 3.1.5 Calculation of distribution generating polynomials for various

special VARMA(p,q) Models  . . . . . . . . . . . . . . . . . . . 40
 3.1.6 General Remarks on VARMA(p,q) Eigenvalue Density Distri-

butions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
 3.2 Spectral Distributions of Some Linear Stochastic Processes  . . . . . . 48

 3.2.1 VARMA(1,1) processes  . . . . . . . . . . . . . . . . . . . . . . 49
 3.2.2 Short Introduction to Long-Range Dependence  . . . . . . . . . 52
 3.2.3 ARFIMA(p,d,q) processes . . . . . . . . . . . . . . . . . . . . 53
 3.2.4 VARFIMA(0,d,0) processes  . . . . . . . . . . . . . . . . . . . 56
 3.2.5 VARFIMA(1,d,1) process  . . . . . . . . . . . . . . . . . . . . 58

 3.3 Numerical Methods and Algorithms used  . . . . . . . . . . . . . . . . 61
 3.3.1 Calculating the DGP for VARMA(p,q) processes  . . . . . . . 61
 3.3.2 Determining the right root of the DGP for VARMA(p,q) processes  61
 3.3.3 Numerical Integration for VARFIMA(p,d,q) processes . . . . . 64

 4 Overview of Data and Descriptive Statistics 69
 4.1 Basic Methodology for Constructing Raw Data Sets . . . . . . . . . . 69
 4.2 Overview of Raw Data  . . . . . . . . . . . . . . . . . . . . . . . . . . 71

 4.2.1 NASDAQ Intraday Data . . . . . . . . . . . . . . . . . . . . 71
 4.2.2 S&P 500 and DJIA Intraday Data . . . . . . . . . . . . . . . 72

 4.3 Descriptive Statistics and Data Sets . . . . . . . . . . . . . . . . . . . 73
 4.3.1 NASDAQ Intraday Data . . . . . . . . . . . . . . . . . . . . 74
 4.3.2 S&P 500 and DJIA Intraday Data . . . . . . . . . . . . . . . 81

 4.4 Empirical Spectral Distributions . . . . . . . . . . . . . . . . . . . . . 88
 4.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
 4.4.2 Market Eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . 89
 4.4.3 Plots of Empirical Spectral Distributions . . . . . . . . . . . . 90

 5 Application of Specific Random Matrix Models to Financial Returns  97
 5.1 Parameter Estimation Methodology  . . . . . . . . . . . . . . . . . . . 98
 5.2 Numerical Minimization Methods . . . . . . . . . . . . . . . . . . . . 100

 5.2.1 VMA(1) and VAR(1) processes . . . . . . . . . . . . . . . . . 102
 5.2.2 VARMA(1,1) processes  . . . . . . . . . . . . . . . . . . . . . . 105
 5.2.3 VARFIMA(p,d,q) processes  . . . . . . . . . . . . . . . . . . . 106

 5.3 Parameter Estimates and Fit to Historical Data . . . . . . . . . . . . 107
 5.3.1 Parameter Estimates  . . . . . . . . . . . . . . . . . . . . . . . 108
 5.3.2 Fit of Spectral Density and ESD  . . . . . . . . . . . . . . . . 111

 5.4 Reflections on the Results . . . . . . . . . . . . . . . . . . . . . . . . 114

vi



Table of Contents

 6 Conclusions and Perspectives 117
 6.1 Recapitulation and Conclusions  . . . . . . . . . . . . . . . . . . . . . 117
 6.2 Motivations and Restrictions . . . . . . . . . . . . . . . . . . . . . . . 119
 6.3 Perspectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

 Appendices 123

 A Theorems, Proofs and Results  123
 A.1 Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
 A.2 Theorems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

 A.2.1 Some Theorems in Complex Analysis  . . . . . . . . . . . . . . 123
 A.3 Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

 A.3.1 Polynomial for VMA(2) . . . . . . . . . . . . . . . . . . . . . 127
 A.3.2 Polynomial for VAR(2) . . . . . . . . . . . . . . . . . . . . . . 130
 A.3.3 Argument of Roots for a VAR(2) Distribution Generating

Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
 A.3.4 Fit of Spectral Density and ESD . . . . . . . . . . . . . . . . 136

 B Program Code 139
 B.1 Mathematica Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

 B.1.1 Code for Generating DGP . . . . . . . . . . . . . . . . . . . . 140

 Bibliography 143

 Index 152

vii



viii



List of Tables

 4.1 NASDAQ-100 key statistics for different aggregation levels. . . . . . 77
 4.2 NASDAQ key statistics for different aggregation levels. . . . . . . . . 80
 4.3 S&P 500 key statistics for different aggregation levels. . . . . . . . . 84
 4.4 DJIA key statistics for different aggregation levels. . . . . . . . . . . 87

ix



x



List of Figures

 1.1 Marchenko–Pastur law vs. second week of S&P 500 »long« with
T = 946 and N = 224. Largest eigenvalue at 36.084 not shown. . . . 4

 2.1 Density of Marchenko–Pastur law for various shape parameters α.
Atom for parameter 0 ≤ α < 1 depicted as vertical line of appropriate
length at 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

 2.2 Schematic presentation of compression by projection Pα with α := 2
3 . 25

 3.1 Comparison of VMA(2) eigenvalue densities for various parameter
combinations with Marchenko–Pastur law, all with α = 4. . . . . . . 43

 3.2 Simulation of n = 220 realizations of size 32× 32 VAR(1) covariance
matrices with rectangularity ratio α = 4 and ρ = 1

2 . . . . . . . . . . . 44
 3.3 Simulation of n = 220 realizations of size 32 × 32 Wishart matrices

with rectangularity ratio α = 4. . . . . . . . . . . . . . . . . . . . . . 44
 3.4 Comparison of VAR(2) eigenvalue densities for various parameter

combinations with Marchenko–Pastur law, all with α = 4. . . . . . . 45
 3.5 Comparison of VARMA(1, 1) eigenvalue densities for various parame-

ter combinations with Marchenko–Pastur law, all with α = 4. . . . . . 47
 3.6 Comparison of VARFIMA(0, d, 0) eigenvalue densities for various frac-

tional integration orders d, all with α = 4. Estimated with   algorithm
4.1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

 3.7 Comparison of VARFIMA(1, d, 1) eigenvalue densities with fractional
integration orders d ∈ {0, 0.4}, both with α = 4. . . . . . . . . . . . . 60

 3.8 »Density« functions implied by all 9 roots of VAR(2) with θ1 = θ2 = 1/4

and α = 4. Functions corresponding to the true spectral density in
bold, all other dashed.  . . . . . . . . . . . . . . . . . . . . . . . . . . 63

 4.1 110 NASDAQ-100 stocks, portion of days non-NA and with at least
two non-0 returns in trading days between 2007-06-27 and 2015-01-16. 74

 4.2 82 NASDAQ-100 stocks, fraction of non-zero returns per trading
day between 2007-06-27 and 2015-01-16. . . . . . . . . . . . . . . . . 75

 4.3 82 NASDAQ-100 stocks, fraction of non-zero returns per stock
intraday between 2007-06-27 and 2015-01-16.  . . . . . . . . . . . . . . 76

 4.4 82 NASDAQ-100 stocks, change of liquidity per stock for aggregated
returns, sorted. In black the average for each series.  . . . . . . . . . . 76

 4.5 1618 NASDAQ stocks, portion of days non-NA and with at least two
non-0 returns in trading days between 2007-06-27 and 2014-11-28. . . 78

 4.6 826 NASDAQ stocks, fraction of non-zero returns per trading day
between 2007-06-27 and 2014-11-28.  . . . . . . . . . . . . . . . . . . . 78

xi



List of Figures

 4.7 826 NASDAQ stocks, fraction of non-zero returns per stock intraday
between 2007-06-27 and 2014-11-28.  . . . . . . . . . . . . . . . . . . . 79

 4.8 826 NASDAQ stocks, change of liquidity per stock for aggregated
returns, sorted. In black the average for each series.  . . . . . . . . . . 80

 4.9 502 S&P 500 stocks, portion of days non-NA and with at least two
non-0 returns in trading days between 2002-12-30 and 2016-09-16. . . 81

 4.10 393 S&P 500 stocks, fraction of non-zero returns per trading day
between 2002-12-30 and 2016-09-16.  . . . . . . . . . . . . . . . . . . . 82

 4.11 393 S&P 500 stocks, fraction of non-zero returns per stock intraday
between 2002-12-30 and 2016-09-16.  . . . . . . . . . . . . . . . . . . . 83

 4.12 393 S&P500 stocks, change of liquidity per stock for aggregated
returns, sorted. In black the average for each series.  . . . . . . . . . . 83

 4.13 30 DJIA stocks, portion of days non-NA and with at least two non-0
returns in trading days between 2002-12-30 and 2016-09-16. . . . . . . 85

 4.14 28 DJIA stocks, fraction of non-zero returns per trading day between
2002-12-30 and 2016-09-16.  . . . . . . . . . . . . . . . . . . . . . . . . 85

 4.15 28 DJIA stocks, fraction of non-zero returns per stock intraday be-
tween 2002-12-30 and 2016-09-16.  . . . . . . . . . . . . . . . . . . . . 86

 4.16 28 DJIA stocks, change of liquidity per stock for aggregated returns,
sorted. In black the average for each series.  . . . . . . . . . . . . . . . 87

 4.17 Histograms of averaged eigenvalues of the NASDAQ-100. . . . . . . 92
 4.18 Histograms of averaged eigenvalues of the NASDAQ. . . . . . . . . . 93
 4.19 Histograms of averaged eigenvalues of the S&P 500. . . . . . . . . . 94
 4.20 Histograms of averaged eigenvalues of the S&P 500. . . . . . . . . . 95
 4.21 Histograms of averaged eigenvalues of the DJIA. . . . . . . . . . . . 96

 5.1 ‖ε̂t(θ)‖2 of VMA(1) (red) and VAR(1) (blue) random matrix models,
calculated for parameter values in (0, 2]. Depicted is the first day of
observation 2007-06-27 of the NASDAQ-100 data set.   Algorithm 6.1  

was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
 5.2 ‖ε̂t(θ)‖2 of VARMA(1, 1) random matrix model, calculated for pa-

rameter values (θ1, φ1) ∈ [−2, 2]× (0, 3]. Depicted is the first day of
observation 2007-06-27 of the NASDAQ-100 data set.   Algorithm 6.1  

was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
 5.3 Parameter estimates for VARMA(1, 1) random matrix model, S&P 500

»long« data set. θ̂1(t) ∈ (0, 3] in blue, φ̂1(t) ∈ [−1, 1] in red, for all
t ∈ T.   Algorithm 6.1   was used. . . . . . . . . . . . . . . . . . . . . . 109

 5.4   empirical spectral distribution (ESD)  of NASDAQ-100 data set
(daily) for t = 2013-01-16 and VARMA(1, 1) spectral density function.

  Algorithm 6.1   was used. . . . . . . . . . . . . . . . . . . . . . . . . . 111
 5.5 Example of model fit for VARMA(1, 1) random matrix model,   ESD  

of S&P 500 »long« data set (weekly, monthly and quarterly) for the
first complete observation and VARMA(1, 1) spectral density function
with estimated parameters θ̂1 and φ̂1.   Algorithm 6.1   was used. . . . . 112

 5.6 Example of model fit for VAR(1, 1) random matrix model,   ESD  of
S&P 500 »big« data set (monthly) for the last complete observation
and VAR(1) spectral density function with estimated parameter θ̂1. . 113

xii



List of Figures

 A.1 arg of complex-valued root of polynomial M9 − (x+ iy). . . . . . . . 134
 A.2 arg of complex-valued root of VAR(2) polynomial for parameters

θ1 = 0.5, θ2 = 0.25 and α = 4. . . . . . . . . . . . . . . . . . . . . . . 135
 A.3 Example of model fit for VARMA(1, 1) random matrix model,   ESD  of

S&P 500 »big« data set (quarterly) for the median of all eigenvalues
and VARMA(1, 1) spectral density function with estimated parameters
θ̂1 and φ̂1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

 A.4 Example of model fit for VARMA(1, 1) random matrix model,   ESD  

of NASDAQ data set (monthly) for the mean of all eigenvalues and
VARMA(1, 1) spectral density function with estimated parameters θ̂1
and φ̂1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

 A.5 Example of model fit for VARMA(1, 1) random matrix model,   ESD  

of DJIA data set (daily) for the last complete observation and
VARMA(1, 1) spectral density function with estimated parameters θ̂1
and φ̂1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xiii



xiv



Symbols and Acronyms

Symbols

θ AR polynomial of degree p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

Θ
matrix-valued AR polynomial of degree p; resp. matrix-valued
coefficient of this polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

ψ
MA polynomial for ARMA process, possibly after Wold decompo-
sition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

Aσ σ-algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

A general (random) matrix; or (T × T ) auto-covariance matrix. . . . .  32 

γ(Xt)(τ) autocovariance function for stochastic process (Xt) and lags τ ∈ Z .  29 

B backshift operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

Bd fractional difference operator, for d > −1 non-integer . . . . . . . . . . . .  53 

Bσ(R) Borel σ-algebra of R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

C (C++) C resp. C++ programming language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

G G-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

G〈−1〉 inverse G-transform w.r.t. composition of power series . . . . . . . . . . .  22 

Xc

centered random variable X or centered (sub)algebra of random
variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

C complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 
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1 Introduction

We would like to give some perspective on modeling strategies. The world we
experience is complicated, the state space of possible influencing quantities is extremly
high-dimensional. As processing power of the human minds is limited we can only
hope to reduce complexity to an extent so that key dynamics are captured. In
general, we advocate a model view where the central part of our model describes a
low-dimensional subspace and the complementary dimensions are aggregated to a
residual dimension. This residual dimension captures all the discrepancy between
model and real world.

The scientific act of modeling can be seen as searching for a suitable parametrization
so that the low-dimensional subspace captures as much structure of interest to the
researcher as possible.

We are interested in a class of preferably parsimonious models that capture and
describe the main dynamics of financial stock markets. We restrict ourselves to stock
returns and the data sets created in  section 4.3 . In the first part of this work, we
lay the foundation of  non-commutative probability theory  and utilize it to introduce
basic random matrix models. There are many works that utilize  Gaussian orthogonal
ensemble (GOE)  matrices and the implied Marchenko–Pastur spectral distribution
of there covariance matrix estimators and successfully apply those results to financial
data.

A structural caveat of those models is the required and thus assumed independence  

1
 

of all matrix entries, modulo some symmetry constraints. Thus one of the main
points of interest, the inter-dependence of stock returns in time and between different
stocks, is assumed non-existent. It seems therefore natural to relax the very strict
assumptions of independent stock returns and allow for some dependence structure.
We will do so and allow for vector-valued ARMA(p, q) type dynamics.

With the increase of automated data gathering and the reduced cost of processing
power it is now feasible to gather data in quality and quantity unprecedented. Both,
the high volume and the broad availability of data permits one to find answers to
questions intractable just a decade ago.

1In the case of all entries Gaussian uncorrelatedness suffices, because for Gaussians independence
and uncorrelatedness are equivalent.

1



1 Introduction

1.1 High-dimensional Data

A classical example of a branch with enormous amounts of data is the financial
industry. Financial markets connect different local markets to a truely global economy.
The largest companies are traded by computer programs up to thousands of times a
minute. Financial transaction data is the sediment of the time gone. By analyzing it
we may infer on the structure of financial markets. This structural awareness can be
employed to build new models of financial markets to enhance stability or predict
certain future key measures of the economy.

In classical statistics, the branch of asymptotic theory gives conditions necessary for
convergence. But classical asymptotic theory only works well in situations were the
number of observations growth and dominates an eventual growth in new explanatory
variables. In addition, many methods are univariate and not easily applicable for
multivariate situations or are only reasonable employable for a number of explanatory
variables up to about 20.

Many financial markets contain hundreds of stocks, for instance the S&P 500
financial market. Another problem is relevance of historic data, as it might be
questionable on what information financial data from the 1950th contains, an era
before widespread use of computers and before the invention of the internet. Therefore,
there might only exists a medium amount of time with data relevant for certain
questions. Both observations lead to the conclusion that the time horizon of relevant
data is limited and that more and more very new data becomes available. This
calls for high-dimensional methods suitable for situations with possibly hundreds
of explanatory variables like stock returns. In addition, high-dimensional methods
should be able to cope with situations where the growth of observations does not
dominate the growth of explanatory variables.

1.2 Covariance Estimation and Model Parameter
Growth

Motivated from elementary statistics one can model the interdependency of two
quantities by a relationship between those two quantities that is estimable. One of
the most easy measures of dependency is the second moment. Normalized to second
centralized moment, this is the ubiquitous covariance. It is an easy to estimate
dependency measure between two random variables.

If one wanted to continue and measure global dependencies by the collection of
pairwise dependencies, one notices that the number of parameters to estimate growth
like O(N2), for N the number of random variables under investigation. In concrete
numbers, due to the symmetry of the univariate covariance between two random
variables the number of covariances growth with 2−1N(N − 1). For N = 10 this
amounts only to 45, but for N = 100 there are already 4 950 parameters to estimate.
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1.3 New Framework: Non-Commutative Probability Theory

If the S&P 500 had exactly N = 500 stocks and one wanted to know the covariance
matrix for the whole S&P 500, one needed to estimate 124 750 covariances.

This little example illustrates that it is neither feasible nor desirable to model high-
dimensional dependency by pairwise dependency measures. If we model to reduce
complexity and understand the world with our limited human mental capacity, we
have to reduce complexity. This is what models are for. Even the 45 for N = 10
imply a number of parameters way to big to use as model parameters of interest.

The previous paragraphs imply that one should not model high-dimensional depen-
dency by a covariance matrix. But in many applications a covariance estimator is
needed or is of interest in its own right. This includes classical modern portfolio
theory in finance, introduced 1952 by Markowitz. 

2
 The estimated covariance matrix,

or its inverse, is the key building block to obtain portfolio weights. If one were
to estimate a classical covariance matrix for N = 100 stocks, this would imply
estimation of 4 950 covariances. By pure chance, some of those estimates will over-
or underestimate the assumed true covariance of the model. Therefore one could say
with classical Markowitz portfolio selection and high-dimensional data one invests
ones money into the most pronounced estimation errors.

1.3 New Framework: Non-Commutative Probability
Theory

Classical stochastics is concerned with the behavior of random variables and their
interactions and combined behavior. At the core are the basic operations of addition
and multiplication of random variables. For collections of random variables, one can
gather them in a vector. For vectors whose entries are random variables one only
has addition. But there is no general inner multiplication of two random vectors,
yielding a random vector again.

For, say, real valued special vectors of length N2 one can identify the vector space
RN2 with RN×N , the space of square matrices. Often, a matrix structure with random
entries is preferable for structural reasons if one wants to model high-dimensional
objects. On square matrices there exists a natural multiplication, given by matrix
multiplication. It only has the slight caveat that it is not commutative, that is for
two matrices A,B ∈ RN×N in general we have that AB 6= BA. But we will show
that this non-commutativity is the source for a rich mathematical structure that
enables one to work with matrices of classical random variables as new objects in its
own right.

In situations where the model building blocks can be written as matrices, each
with classical random variables as its entries, non-commutative probability theory
is the natural model framework. It is not a generalization of classical probability

2See [ 64 ].
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1 Introduction

theory, but more of a parallel framework that builds on and uses classical probability
theory, but is distinct from it. This has the caveat that most theory, including its
algebraic foundation, has to be learned anew by trained classical probabilists. But
the rewarding theory leads to exiting new ways to model the complexity of the world
and thus reduce it and help us understand.

In this thesis, we want to give a thorough introduction to non-commutative probability
theory and highlight its ability to derive theoretical results previously unavailable. In
addition, we showcase its applicability by exemplary parameter estimation of certain
parametrizations of covariance matrices for financial stock return data.

1.4 Simple Comparison with Market Data

We show in  Figure 1.1 the histogram of the eigenvalues of the sample covariance
matrix Ĉ

(
X(2nd week)

S&P 500

)
for the S&P 500 »long« model for the second week between

2003-01-06 and 2003-01-10. 

3
 To facilitate comparison we re-normalize each asset

time series so that it has vanishing mean and unit variance. Because of the latter
the resulting empirical covariance matrix is also the empirical correlation matrix
with only 1 on its main diagonal. This fixes the matrix trace,  id est (i.e.)  the sum
of all eigenvalues, to equal the number of assets N . This is a reasonable choice as
now data from each data set has a mutual scale. One can even compare data from
different data sets, for instance the DJIA and the NASDAQ.

Eigenvalues

Marchenko–Pastur law vs. second week of S&P 500 “long”

0 1 2 3 4 5

0

0.2
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1.2

dµMP with α = 946/224
histogram of eigenvalues
exact eigenvalue position

Figure 1.1: Marchenko–Pastur law vs. second week of S&P 500 »long« with T = 946
and N = 224. Largest eigenvalue at 36.084 not shown.

3The first week is not a good representative of the data set as it has fewer trading days due to
New Year’s Day.
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1.5 Overview

One of the first basic objects from RMT is the so-called Marechenko–Pastur distri-
bution. It has a shape parameter α = 946/224 and it approximates the data decently.
The 4 biggest and the 18 smallest eigenvalues fall outside the Marchenko–Pastur do-
main. It is well known 

4
 that empirical spectral distributions of financial return series

contain a largest eigenvalue much bigger than all the other eigenvalues. Empirically
the associated eigenvector can be seen as a proxy for the so-called market portfolio.
Therefore the biggest eigenvalue is called the market eigenvalue.

We want to refine this analysis and find estimators, so that their spectrum approx-
imates the empirical observable histogram of the sample covariance matrix even
better.

1.5 Overview

In the first part of this thesis we introduce the theoretical foundation necessary
for application to high-dimensional financial correlation matrices. In  chapter 2 we
introduce the concept of non-commutative probability theory and motivate that so-
called freeness is the non-commutative analog to stochastic independence in classical
probability theory. We develop the theory to add and multiply free non-commutative
random variables and convenient tools to facilitate analysis. The connection between
non-commutative random variables and random matrices is shown in  chapter 3 . After
the introduction of certain random matrix ensembles the theoretical spectral density
functions for correlation matrix estimates of random matrices with dependence
between its entries are derived in sections  3.1 and  3.2 .

The second part is devoted to the application of the theoretical framework developed
in the first part to high-dimensional financial data. An overview of the raw data
available is given in  chapter 4 . The methodology used to construct the final data
sets is explained. The so-called empirical spectral distribution of correlation matrix
estimators for the financial stock return data are shown. In  chapter 5  we introduce
the methodology for estimation of the model parameters. Finally, we exemplary
present some results of the estimated model parameters for the data sets.

A recapitulation, conclusion and perspectives conclude this thesis.

4See e.g. [ 17 , p. 148].
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2 Introduction to Non-Commutative
Probability Theory and Free
Independence

Depending on the researchers’ interest, a mathematical structure can be viewed
from different perspectives to accentuate different aspects. In the branch of measure
theory a measurable space (Ω,Aσ), consisting of a set  Ω and a σ-algebra  Aσ  of Ω of
measurable sets, is endowed with a finite normed measure  P to make it a measure
space. Often one adds additional structure to the set Ω and studies its implications
under the linear functional P. The original structure of the measure space is vital to
this line of research.

From the perspective of classical probability theory the triple (Ω,Aσ,P ) is called
a probability space and the main area of interest are measurable functions from
an abstract measure space to some other, well-behaved measurable space, e.g. to
( R ,  Bσ(R) ). These measurable functions are called »random variables« and induce a
push-forward measure from the original, abstract probability space to ( R ,Bσ(R)).
 Random variables (RVs) and their distributions are the primary objects studied in
probability theory. Commonly the original probability space (Ω,Aσ,P ) is not fixed
but generic. This principle gives great flexibility when working with families of
random variables, because one can simply extend the original probability space to a
suitable product space. The original probability space is embedded in the product
space and can be retrieved by projection on one of the factors.

2.1 Introduction to Non-Commutative Probability
Theory

Classical probability theory is the study of commuting random variables and their
distributions,  i.e. the study of the commutative algebra of random variables with
the expectation map  E . It suffices to use the linear expectation functional  EP   with
respect to (w.r.t.) a probability measure P, because one can retrieve the probability
measure:

P[X ∈ A] = E[1A(X)] for a random variable X and for every event  

1
 A.
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2 Introduction to Non-Commutative Probability Theory and Free Independence

If one wants to study non-commutative random variables, the logical next step is to
change to an non-commutative algebra of then non-commutative random variables.
From this perspective, non-commutative probability theory is the study of non-
commutative algebras together with a linear functional  ϕ that serves as expectation
map.

2.1.1 Basic Definitions

Definition (Non-Commutative Probability Space)
A  non-commutative probability space (NCPS)  (A, ϕ) consists of a unital algebra A
over a field  F and a normed linear functional 

2
 

ϕ:A → F , with ϕ(1A) = 1F.

Definition (?-Probability Space)
If, in addition to the  definition of non-commutative probability spaces  , the unital
algebra A is an ?-algebra and if

ϕ(a?a) ≥ 0, (∀a ∈ A), (positivity)

we call the tuple (A, ϕ) an ?-probability space.

The elements a ∈ A are called  non-commutative random variables (NCRVs)  in (A, ϕ).
To shorten notation we will usually skip the prefix »non-commutative« and just refer
to random variables. This is justifiable, as we will see in the next example:

Example 2.1 (Classical Probability Space as Non-Commutative Probability Space)
Let (Ω,Aσ(Ω),P) be a classical probability space and define

 L−∞R (Ω,P) 

:=
⋂

1≤p<∞
 LpR(Ω,P) 

and
ϕ(a) :=

∫
Ω

a( ω  ) dP(ω), a ∈ L−∞R (Ω,P).

Then the non-commutative probability space
(
L−∞R (Ω,P), ϕ

)
is the classical proba-

bility space of random variables that have finite moments of all orders. The map ϕ
is the classical expectation map, ϕ ≡ EP.

1An event is an element of a σ-algebra of subsets of the sample space.
2The field F will be most times either R or  C .
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2.1 Introduction to Non-Commutative Probability Theory

Definition
For a ?-probability space we call a random variable a ∈ A, with

(i) a = a?; (self-adjoint)
(ii) a?a = aa?; (normal)

(iii) a?a = aa? = 1A. (unitary)

2.1.2 Random Matrices

Example 2.2 (Random Matrices)
Let  Mn×n(R) be the set of (n× n)-matrices with entries in R and let  trn  

:= 1
n

 Tr  (·),
 i.e. 

trn:Mn×n(R)→ R

a 7→ 1
n

n∑
k=1

ak,k for a = (ak,l)nk,l=1 ∈Mn×n(R),

be the normalized trace  

3
 of these matrices. Then the non-commutative probability

space (
Mn×n

(
L−∞R (Ω,P)

)
, trn  ⊗ EP

)
consists of (n× n)-matrices with each entry being a classical random variable (with
all moments finite),  i.e. a random matrix, and a linear functional which is the
normalized trace of the classical expected value of the matrix  

4
 .

Definition (Average Eigenvalue Distribution)
Let the ?-probability space be given by(

Mn×n
(
L−∞(Ω,P)

)
, trn⊗EP

)
.

Let A(ω) ∈Mn×n(L−∞(Ω,P)) be a  normal matrix for all ω ∈ Ω and let λ1(ω), . . . , λn(ω)
be the eigenvalues of A(ω). Then the averaged eigenvalue distribution is defined to
be

µA := 1
n

n∑
j=1

∫
Ω
δ(λj(ω)) dP(ω).

For all k, n ∈ N0, it holds that

ϕ
(
Ak(A?)l

)
= (trn⊗E)

(
Λk(Λ?)l

)
= 1
n

n∑
j=1

∫
Ω
λj(ω)kλj(ω)l dP(ω) =

∫
C
zkzl dµA(z).

In general µA depends on the classical joint probability distribution P of all entries of
A, therefore we cannot generally say whether µA is compactly supported or not. But

3If it is clear from context, we will suppress the dimension index n and write tr instead of trn.
4The expected values are taken element-wise.
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2 Introduction to Non-Commutative Probability Theory and Free Independence

if we specify a joint probability distribution P or family of probability distributions
Pθ indexed by some parameter vector θ, one can calculate the properties of µA. For
the cases interesting to us in this thesis the ?-distribution exists and we identify the
average eigenvalue distribution with it.

If one wants to describe the joint behavior of several or all entries of a (n× n) random
matrix a, that is the joint distribution of several or all classical random variables
forming the entries, one has to switch to the product probability space. To elucidate,
let I := {1, . . . , n2} and let (Ωi,Aσ(Ωi),Pi) be the classical probability space for the
ith entry, with i ∈ I. The product probability space is then given by

⊗
i∈I

(Ωi,Aσ(Ωi),Pi) :=
(
×
i∈I

Ωi,
⊗
i∈I
Aσ(Ωi),

⊗
i∈I

Pi

)
.

Note that because we chose such a general notation, the probability spaces for every
single entry can be chosen differently. If we only want the joint distribution of a
subset of all entries, it suffices to consider the projection onto this measurable space
from the complete product space. To facilitate matters, we often require the entries
to be independent random variables. If we want to describe dependencies among the
entries, we work on the product measurable space but replace the product measure
P :=

⊗
i∈I Pi by a suitable probability measure P′ on that measurable space that

describes the dependencies.

On classical random variables the expectation map EP is a linear functional on the
space of random variables. The trace Tr as well as the normalized trace trn are both
linear functionals on the space of (n× n) matrices. Random matrices combine the
two aforementioned spaces, so a linear functional on the space of random matrices
can be constructed from the individual linear functionals. As we defined random
matrices to be matrices of classical random variables, we can apply the appropriate
linear functionals. That is, we can send random variables to the base field via the
expectation map EP to get an (n× n) matrix with all entries deterministic. Next,
the normalized trace trn maps the deterministic matrix to a scalar in the base field.
So we have

trn⊗EP : Mn×n(F)⊗ L−∞F (Ω,P)→ F, a 7→ 1
n

n∑
k=1

EP[ak,k].

If we took the normalized trace first, this would result in a scalar-valued random
variable. If it is beneficial, we will adapt this view.

Remark: We could also use an expectation map that conditions on a non-trivial 

5
 

sub-σ-algebra A1 to get a conditional expectation. The resulting map can then be
thought of as having A1-measurable classical random variables as values. Though the
term »linear functional« does not necessarily apply anymore.

5The »full« expectation EP conditions on the trivial σ-algebra A∅ := {∅,Ω}, so only constant
random variables are A∅-measurable and thus the expectation EP takes values in the constant
random variables, that is the constant scalars.
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2.1 Introduction to Non-Commutative Probability Theory

The vector space of (n× n) matrices together with any submultiplicative norm forms
a Banach space. This extends naturally to a unital Banach algebra for algebra
multiplication given by matrix multiplication. It can be made to a unital C?-
algebra by the involution operation ? of transposition for real respectively conjugate
transposition for complex valued matrices, under which it is obviously closed and we
have ‖a?a‖ = ‖a‖2. De-randomization by taking the expected value first makes the
vector space of random matrices to a vector space of deterministic (n× n) matrices.
This extends naturally to a C?-algebra, as just described.

Conclusion 2.3 (Random Matrices as Non-Commutative Random Variables)
The C?-algebra An := Mn×n

(
L−∞F (Ω,P)

)
together with the linear functional

ϕn := trn⊗EP :Mn×n(F)× L−∞F (Ω,P)→ F, a(ω) 7→
∫

trn(a(ω)) dP(ω),

form the C?-probability space (An, ϕn) with elements a ∈ An as random matrices.

Remark: Since the normalized trace trn is the finite sum of n summands, one can 

6
 

interchange the expectation map EP with trn.

The connection of random matrices and free probability theory was established early  

7
 

on by Voiculescu et al., because the semicircle distribution from free probability was
known much earlier since 1958 as the limit distribution of eigenvalues of large Gaussian
random matrices [ 114 ], which was called »Wigner’s Semicircle Distribution«.

Definition (Empirical Spectral Distribution ( ESD ))
Let M ∈ Rn×n be a deterministic (or random) matrix and let λ1, λ2, . . . , λn be its
eigenvalues 

8
 . The  empirical spectral distribution  or eigenvalue distribution is the

deterministic ( respectively (resp.) random) probability measure 

9
 on C given by

µM := 1
n

n∑
j=1

δ(λj).

Remark: If matrix M ∈ Rn×n in the definition above is self-adjoint, all its eigenvalues
exist and are real and thus the probability measure µ̃M is constricted to the reals.
Note that symmetric matrices are in particular self-adjoint.

For a random matrix M obviously its eigenvalues are random variables, too. So the
eigenvalue distribution, which gives n−1 probability mass to each eigenvalue, is also
random. But one can take the expected value of the eigenvalues, which results in
the expected eigenvalues distribution.

6The associated series with only finite many non-zero summands is absolutely convergent.
7See [ 111 , p. 43].
8Respectively, if the matrix is not diagonalizable, the diagonal elements of its Jordan normal
form.

9The dependence on the dimension n is suppressed in the notation, if no confusion can arise.
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2 Introduction to Non-Commutative Probability Theory and Free Independence

For a self-adjoint matrix M with only real eigenvalues we can define its empirical
 cumulative distribution function .

Definition ( empirical spectral cumulative distribution function (ESCDF)  )
Let M ∈ Rn×n be a self-adjoint  

10
 deterministic (or random) matrix and let λ1 ≥ λ2 ≥

· · · ≥ λn be its real eigenvalues. The  empirical spectral cumulative distribution
function is defined to be

FM:R→ [0, 1], λ 7→ FM(λ) := µM((−∞, λ]) = 1
n

n∑
i=1

1λi≤λ.

We will work with either the empirical spectral measure or the empirical spectral
 CDF , whichever is more convenient.

2.2 Wishart Ensemble and Marchenko–Pastur
Distribution

2.2.1 Wishart Ensemble

Definition (Wishart Ensemble and Wishart Distribution, see [ 72 , p. 82, Defini-
tion 3.1.3])
Let (xi)ni=1 be a family of n independent classical random p-dimensional real vectors,
each distributed according to xi ∼ Np(0,Σ), with Σ ∈ Rp×p symmetric, positive
semidefinite. Let X :=

(
x1 x2 . . . xn

)T

be the (n× p) matrix with each row given
by an independent, centered Gaussian vector xi. The Wishart Ensemble is given by
the ensemble of scatter matrices W := XTX.
The probability distribution of W on the symmetric, positive semidefinite real ran-
dom matrices is denoted as Wp(n,Σ),  i.e. we have W ∼ Wp(n,Σ). It is called the
Wishart distribution.

Notation: If the covariance matrix Σ of the Gaussian vectors is the identity matrix
Ip, we simple use the shorthand notation Wp(n) :=Wp(n, Ip). We call n the degrees
of freedom, noting that this quantity only bears the usual meaning if n ≥ p.

Remark: The Wishart distribution, introduced 1928 by Wishart in [ 117 ], can be
thought of as a multivariate generalization of the chi-square distribution. But we
follow Seber, so

“[ . . . ] we do not call the Wishart distribution the multivariate chi-square
distribution, as the marginal distribution [ . . . ] is not chi square. We

10For M a non-self-adjoint matrix with complex eigenvalues 8 , one can define a 2-dimensional
 cumulative distribution function (CDF) by the isomorphic relation C ∼= R2.
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2.2 Wishart Ensemble and Marchenko–Pastur Distribution

normally reserve the term multivariate for the case when all univariate
marginals belong to the same family.” ([ 88 , p. 22])

The probability density 

11
 function of a Wishart distributed matrix W ∼  Wp(n,Σ) 

is given by

p(W) := 2−np2
Γp
(
n
2
) |Σ|−n2 |W|n−p−1

2 exp
(
−1

2 Tr
(
Σ−1W

))
, n ≥ p,

for Σ ∈ Rp×p a positive definite covariance matrix. Γp(x) denotes the multivariate
gamma function given in terms of the univariate gamma function in [  53 , p. 483,
eq. (57)] as

Γp(x) := π
p(p−1)

4

n∏
k=1

Γ
(
x+ 1− k

2

)
.

By construction, the Wishart distribution is the (rescaled) distribution of the
 maximum likelihood (ML)  covariance matrix estimator for a sample from a multi-
variate (centered 

12
 ) normal distribution. The  maximum likelihood estimator (MLE)  

for such a covariance matrix is
 Σ̂ 

:= 1
n

XTX. (2.1)

If we rescaled X 7→ n−
1
2 X or, equivalently, rescaled the variance-covariance matrix

Σ 7→ n−
1
2 Σ, the resulting Wishart ensemble has elements W ∼ Wp

(
n, n−

1
2 Σ
)
, which

are distributed like ( 2.1 ) for unscaled X  resp. Σ.

2.2.2 Marchenko–Pastur Distribution

Theorem 2.4 (Marchenko–Pastur Distribution for Random Matrices)
Let W ∼ Wp

(
n, n−

1
2 Ip
)
be a Wishart matrix and let the dimensions n, p→∞ in

such a way that n
p
→ α ∈ (0,∞). Then the empirical eigenvalue distribution µ̃W

converges in the weak* topology, in probability, to the deterministic Marchenko–
Pastur distribution given by

d µMP  =
{

(1− α)δ0+ α
2πλ

√
(α+ − λ)(λ− α−)1[α−,α+] dλ, if 0 ≤ α < 1

α
2πλ

√
(α+ − λ)(λ− α−)1[α−,α+] dλ, if α ≥ 1

(2.2)

with α± :=
(

1±
√
α−1
)2

.

Proof See e.g. [  9 , Chapter 3] �

11See the original paper [ 117 ] by Wishart and [ 72 , p. 85, eq. (1)].
12If the rows of X are distributed like xi ∼ Np(µ,Σ) with µ 6= 0, we speak of a non-central
Wishart distribution.
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2 Introduction to Non-Commutative Probability Theory and Free Independence

Remark: The name Marchenko–Pastur law was given because in 1967 Marchenko
and Pastur derived the density function for the first time in [ 63 ]. The name free
Poisson stems from the fact that the limit distribution of

lim
n→∞

((
1− α

n
δ0 + α

n
δ1

))�n
, (2.3)

that is the free additive convolution of free projections
(
pα
n

)
n∈N, is the Marchenko–

Pastur distribution. Because ( 2.3 ) resamples the construction of a Poisson-distributed
classical random variable, it is called the free Poisson distribution, see [ 78 , pp. 203–
206].

As in the Wigner matrix case, the results of Marchenko and Pastur were subsequently
strengthened. The strongest result is  almost sure convergence proved in [ 93 ] under
the finite second moment assumption for matrix X. Due to a Wishart matrix being
W = XTX, this amounts to finite fourth moments of the resulting Wishart matrix
itself.

Density of Marchenko–Pastur law

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

dµMP with α = 1
2 < 1

dµMP with α = 2 > 1

Figure 2.1: Density of Marchenko–Pastur law for various shape parameters α. Atom
for parameter 0 ≤ α < 1 depicted as vertical line of appropriate length
at 0.

A graph of the Marchenko–Pastur distribution in shown in  Figure 2.1 . For parameter
values of 0 ≤ α < 1 the Marchenko–Pastur distribution has an atom of probability
mass 1 − α at 0. For α → ∞ its supports converges to its expected value 1. The
variance of a Marchenko–Pastur distribution is given by α−1, provided α ≥ 1.
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2.2 Wishart Ensemble and Marchenko–Pastur Distribution

We already gave a connection of the Wishart ensemble with covariance matrix
estimators, namely the  ML covariance matrix estimator in ( 2.1 ). The covariance
matrix of a classical random vector x ∼ Np(µ,Σ) with x ∈ Rp is given by

Σ = E
[
(x− E[x])(x− E[x])T] = E[xxT]− E[x]E[x]T. (2.4)

Let a sample of size n be given by n independent realizations (xi)ni=1 of a random
vector x distributed according to x ∼ Np(µ,Σ). One could estimate the expected
value of x by the arithmetic average over the whole sample, that is one uses

µ̂ := x̄ := Ê[x] := 1
n

n∑
i=1

xi.

Applying this procedure at covariance matrix ( 2.4 ) results in the plug-in covariance
matrix estimator

Σ̂(u)
n := Ê[xxT]− Ê[x]Ê[x]T :=

(
1
n

n∑
i=1

xixT
i

)
−
(

1
n

n∑
i=1

xi

)(
1
n

n∑
i=1

xi

)T

. (2.5)

This estimator differs only by the rank-1 matrix x̄x̄T from the estimator

Σ̂n := Ê[xxT] = 1
n

n∑
i=1

xixT
i. (2.6)

We want to estimate bounds on how the empirical spectral  CDF changes by subtrac-
tion of a rank-1 matrix. The next theorem gives a result slightly more general than
we require.

Theorem 2.5 (Inequality for ESCDFs, see [ 94 , p. 179, Lemma 2.4])
Let X,Y ∈ Rn×n be two self-adjoint matrices and let their respective empirical
spectral  CDFs  be given by FX  resp. FY. Then we have

‖FX − FY‖∞ ≤
1
n

 rank(X−Y) .

Proof See [  94 , Proof of Lemma 2.4]. �

To conclude, the empirical spectral  CDFs of the two estimators Σ̂(u)
n in ( 2.5 ) and Σ̂n

in (  2.6 ) differ in supremum norm only by n−1,  i.e. by  Theorem 2.5  we have∥∥∥FΣ̂(u)
n
− FΣ̂n

∥∥∥
∞
≤ 1
n
.

Thus, for limn −→ ∞ the empirical spectral  CDFs of both estimators converge
uniformly. When we are interested in the large n behavior of those estimators, we
therefore can restrict our investigation on the structurally simpler second moment
estimator Σ̂n in (  2.6 ).
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2 Introduction to Non-Commutative Probability Theory and Free Independence

2.3 Free Independence

2.3.1 Independence for Classical Random Variables

As we are able to embed classical commutative probability spaces in the framework
of  non-commutative probability theory  , we like to extend classical independence to
 non-commutative probability spaces  . Therefore we recapitulate the definition of inde-
pendence for classical  random variables  , which is also called tensor independence.

Definition (Tensor Independence, [ 78 , Definition 5.1])
Let (A, ϕ) be a non-commutative probability space and let I be a fixed index set.
Unital subalgebras (Ai)i∈I are called tensor independent or classical independent, if
the subalgebras commute and if ϕ factorizes in the following way:

ϕ

(∏
j∈J

aj

)
=
∏
j∈J

ϕ(aj),

for all finite subsets J ⊂ I and all aj ∈ Aj.

In the sense of categories, the product of two, possibly non-commutative, probability
spaces (Ai, ϕi) with i ∈ {1, 2}, is the tensor product (A1 ⊗A2, ϕ1 ⊗ ϕ2). Therefore
classical independence is sometimes also called tensor independence. The tensor
product probability space contains two canoncial tensor independent subalgebras,
namely A1 ⊗ 1A2 and 1A1 ⊗A2.

As commutativity of all subalgebras is a critical requirement for  tensor independence ,
it does not make much sense to use it for explicitly non-commutative situations.
But one can mimic the structure of tensor independence and try to amend it to
non-commutative probability theory.

2.3.2 Definition of Free Independence

Before we define the non-commutative analog to classical independence, we need the
following definition:

Definition (Centering)
Let (A, ϕ) be an non-commutative probability space with A a unital algebra and
ϕ : A → F a linear functional. The centered subalgebra Ac is defined to be

 Ac  

:= ker(ϕ).

Elements a ∈ A are called centered if a ∈ Ac. Elements a ∈ A can be centered by

(a)c := a − ϕ(a)1A.
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2.3 Free Independence

Remark: Centering in a non-commutative probability space depends on the linear
functional ϕ and is best thought of as analogous to centered classical random variables,
which also depend on the chosen measure.

The analog of classical independence for non-commuting subalgebras is called free
independence and is defined as follows:

Definition (Free Independence, [ 78 , Definition 5.3 (1)])
Let (A, ϕ) be a non-commutative probability space and let I be a fixed index set. Let
Ai ⊂ A be a unital subalgebra for each i ∈ I. The subalgebras (Ai, ϕi)i∈I are called
freely independent  w.r.t. ϕ, if for every n ∈ N we have

ϕ(a1a2 · · · an) = 0,

whenever, for all k ∈ {1, . . . , n}, we have

ak ∈ Aik , for indices i1 6= i2 6= · · · 6= in (non-neighboring)
ϕ(ak) = 0. (centrality)

All factors ak in the product a1a2 · · · an have to be from different subalgebras than
their neighbors, otherwise one could reduce two neighboring elements from the same
subalgebra by their algebra multiplication. Furthermore, all factors ak have to be
centered. So we can combine both conditions into

ak ∈ Acik , for indices i1 6= i2 6= · · · 6= in.

The concept of freeness is defined  with respect to a linear functional ϕ and thus
depends on it. In classical probability theory tensor independence is also defined
 with respect to  a product measure  

13
 . Subalgebras (Ai)i∈I that are free  with respect

to a linear functional ϕ therefore need not be free  with respect to another linear
functional ψ.

Remark: The index set I might be chosen to have countable or even uncountable
cardinality. Free independence of the family (Ai, ϕi)i∈I for |I| =∞ is defined by free
independence of (Aj, ϕj)j∈J for all finite subsets J ⊂ I.

Notation: If it is clear from context to which linear functional we refer we will just
speak about freeness and suppress the dependence on the linear functional. This is
the case when we fixed a non-commutative probability space (A, ϕ).

The  definition of free independence  parallels that for tensor independence in classical
probability theory. There, tensor independence (or short independence) is also an
property of subalgebras. Free independence is related to the kernel of a linear
functional ϕ as it requires that all mixed products stay in the kernel. With slight

13The product measure can be induced by an expectation functional via P[X ∈ A] = E[1A(X)]
for some random variable X and event A.
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2 Introduction to Non-Commutative Probability Theory and Free Independence

abuse of notation, one speaks of »independence of subsets Xi« or »independence
of random variables Xi« and means independence of the subalgebras generated by
this subsets or random variables. For convenience, we will do the same for free
independence:

Definition (Free Independence of Subsets Xi ⊂ A, [  78 , Definition 5.3 (2)])
Let (A, ϕ) be a non-commutative probability space and let Xi ⊂ A be subsets of A.
Then (Xi)i∈I are called freely independent if the unital algebras Ai := alg(1A,Xi)
generated by Xi are freely independent.

Remark: As a special case one can take subsets {ai} with just one element ai ∈ A.
The (ai)i∈I are called freely independent  non-commutative random variables  . In
slight abuse of notation we identify the  non-commutative random variable  ai with the
set that contains it.

If the two subalgebras A1,A2 are freely independent, so are A2,A1. Thus, free
independence is commutative.

2.3.3 Asymptotic Freeness

We have now all prerequisites to define when some sets of  non-commutative random
variables  are asymptotically free:

Definition (Asymptotic Freeness)
Let the situation be as in the  definition of convergence in distribution  and let further
I =

⋃
j∈J Ij be a decomposition of the index set I in |J | disjoint subsets. We say that

a sequence of families
({

a(n)
i

∣∣∣ i ∈ Ij})
j∈J

of sets of  non-commutative random vari-
ables is asymptotically free as n→∞, if it converges to a family ({ai | i ∈ Ij})j∈J
of sets of  non-commutative random variables  in some non-commutative probability
space (A, ϕ) and if the limits ({ai | i ∈ Ij})j∈J are free in (A, ϕ).

Remark: The  definition of asymptotic freeness is twofold. A sequence of a family of
 non-commutative random variables  has to converge in distribution to some family of
 non-commutative random variables and this family has to be free. Thus, asymptotic
freeness can be seen as approximate freeness. In the  definition of asymptotic freeness ,
the index set J numerates the |J | sets of random variables which shall be asymptoti-
cally free. If we do not want sets, each possibly with several random variables, to be
asymptotically free but the random variables itself, we set J := I. This gives us the
decomposition I =

⋃
i∈I i in the elements of the index set I.

An important results concerns asymptotic freeness of Gaussian and constant matrices:
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2.3 Free Independence

Theorem 2.6 (Asymptotic Freeness of Gaussian and Constant matrices, [  96 , pp.
14–15, Theorem 1.])
Let AN be a Gaussian (N ×N)-random matrix and DN a constant (non-probabilistic)
matrix, such that all limiting moments

lim
N→∞

trN
(
Dk
)
, for k ∈ N

exist. Then A and DN are asymptotically free.

Proof See [  110 ] �

A general recipe on how to construct asymptotic free matrices is given by the following
theorem:

Theorem 2.7 (Freeness by Random Rotation, [  96 , pp. 17–18, Theorem 4.])
Let AN and BN be two sequences of constant (N ×N)-matrices with limiting
distributions

AN → A and BN → B.

Let UN be a Haar unitary (N ×N)-random matrix. Then we have

AN ,UNBNU?
N → A,B and BN → B.

where A and B are free.

Proof See [  110 ] �
As Gaussian matrices are rotational invariant, this also proves  Theorem 2.6 .

2.3.4 Free Deterministic Equivalents

Applying the concept of asymptotic freeness to random matrices, the former states
that the mixed moments of a tuple of random matrices behave, for matrix dimension
going to infinity, equal to a tuple of associated operators. So two independent
symmetric normalized Gaussian matrices behave in the large dimension limit as
two free semicircle elements. By results of Voiculescu in [ 109 , Chapter 4], given a
deterministic matrix ensemble that converges to a fixed asymptotic joint distribution
and certain random matrix ensembles, the associated limiting operators are free. We
view deterministic matrices as special (degenerated) random matrices. The linear
functional is just the normalized trace trn, because the expectation is always the
deterministic quantity itself.

In [ 97 ], Speicher et al. give a short introduction to free deterministic equivalents.
In [  97 , Proposition 2.5 and Remark 2.6] they state that if in a non-commutative
probability space (An, τn) and

(
S(n)
i∈I

)
,
(
D(n)
j∈J

)
collections of certain random  resp. 

deterministic matrices for index sets I, J that converge in distribution, then all
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2 Introduction to Non-Commutative Probability Theory and Free Independence

matrices are asymptotically free. The certain random matrices include Haar 

14
 Unitary,

Gaussian and symmetric-Gaussian matrices. In the last paragraph in this section
they also remark that this result can be generalized in a straightforward way to the
more general class of Wigner instead of Gaussian matrices.

Free deterministic equivalents are also compatible with rectangular  non-commutative
random variables  resp. rectangular matrices. 
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2.4 Transformations

2.4.1 The M-transform

Definition (M-Transform)
Let (A, ϕ) be a non-commutative probability space. For a ∈ A and z ∈ C the

 M -Transform is the formal power series

Ma:A →  CJXK 

a 7→ Ma(z) =
∞∑
k=1

ϕ
(
ak
)
zk =

∞∑
k=1

m(k)
a zk, (2.7)

in the variable z ∈ C.

Notation: We define the analogous object for a distribution µ ∈ Σ∅, instead of a ∈ A.
This is consistent, because all moments are given by a distribution µ as well. 

16
 

The M-transform is a power series with its kth coefficient m(k)
a = ϕ

(
ak
)
the kth

non-commutative moment of the  NCRV a.

Remark: A formal power series is invertible  with respect to composition, if and only
if its constant term vanishes and the linear term does not. 

17
 TheM-transform does

not have a constant, so if ϕ(a) 6= 0 it has a compositional inverse. If we attempt
to write the M-transform as formal power series with summand n = 0, this first
summand would be ϕ(a0)z0 = ϕ(1A)z0 = 1. But if we were to add this constant to
( 2.7 ), the resulting formal power series would not be invertible anymore. We need to
multiply by z

z(1 +Ma(z)) = z

(
1 +

∞∑
k=1

m(k)
a zk

)
=
∞∑
k=0

m(k)
a zk+1, (2.8)

in order to obtain a transformedM-transform with summation starting at 0 that is
invertible  with respect to composition.

14Introduced 1933 by Haar in [ 37 ]. For a definition, see [ 18 , VII 2, Definition 2].
15See [ 97 , Section 3.2].
16

 ΣF  is the space of normed linear functionals over a field F and Σ∅ has non-zero elements.
17See [ 26 , pp. 26–27], Proposition 9.1 and the proof thereof.
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2.4 Transformations

2.4.2 The Cauchy-Transform G

Definition (Cauchy-Transform G)
Let (A, ϕ) be a non-commutative probability space. For self-adjoint a ∈ A and z ∈ C
the Cauchy-transform  G  is the formal power series

Ga:A → CJXK

a 7→ Ga(z) =
∞∑
k=0

ϕ
(
ak
)
z−(k+1) =

∞∑
k=0

m(k)
a z−(k+1),

in the variable z ∈ C. If µa is the real-valued distribution of a, we also have for all
z ∈ C\supp(µa) the analytic expression

Ga(z) = ϕ
(
(z1A − λ)−1) =

∫
R
(z − λ)−1 dµa(λ),

where it converges.

Notation: Depending on the context, we will speak about Cauchy-transforms of
elements a of some algebra A or of Cauchy-transforms of a probability distribution.
The latter will often be the distribution of an element a from a non-commutative
probability space (A, ϕ). We will also use to notation Gµ for the Cauchy-transform
of a probability measure µ.

Remark: In some works the Cauchy-transform is called Stieltjes-transform 

18
 . In

other works, predominantly in free probability theory, the Cauchy-transform is the
negative of the Stieltjes-transform 

19
 .

As we want to work with measures, we would like to reconstruct the measure µa
from its Cauchy-transform Gµa . This can be done by  Theorem A.1 . A weak version
of the  inverse Cauchy-transform theorem states that if dµa is a continuous density
 w.r.t. Lebesgue measure  λ , we have

lim
ε↘0
− 1
π

ImGµa(λ+ iε) dλ = dµa(λ). (2.9)

The  M-transform and  G-transform are related to each other via

Ga
(
z−1) =

∞∑
k=0

m(k)
a z(k+1) ( 2.8 )

= z(1 +Ma(z)). (2.10)

So knowing the distribution of µa amounts to knowing all moments m(k)
a and thus the

moment generating functionMa(z). By ( 2.10 ) this information can be transformed
18The Cauchy/Stieltjes-transform first appeared in [ 98 ] and got its name by the so-called Stieltjes
moment problem posed by Titchmarsh in [ 102 , pp. 320–322].

19The name Stieltjes-transform was probably coined by Widder in [ 112 ], see also [ 113 , chapter VIII].
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2 Introduction to Non-Commutative Probability Theory and Free Independence

in the Cauchy-transform. From its knowledge one can recover the spectral measure
µa. This shows us that, by functional calculus, the collection of moments of a non-
commutative self-adjoint random variable is related to a real probability measure.

Remark: The problem to find an inversion formula for the Cauchy  resp. Stieltjes-
transform was first solved by Wintner in [ 116 ].

2.4.3 R-transform

We already derived the  right-hand side (RHS) of ( 2.10 ) as  left-hand side (LHS)  

of ( 2.8 ). The motivation for this transformed M-transform was that we wanted
to ensure  invertibility   with respect to  composition of power series . Therefore, the
 G-transform Ga(z−1) is invertible  with respect to composition of power series and
this inverse will be denoted as  G〈−1〉

a (z) .

Notation: In the context of power series, we mean by inverse the inverse  with respect
to composition of power series.

The inverse G〈−1〉
a (z) can be obtained by the Lagrange inversion formula and is given

by the Laurent series

G〈−1〉
a (z) = z−1 +

∞∑
k=0

κkz
k.

The inverse series has only one term of negative power. Subtracting it, in [  107 ]
Voiculescu defined the resulting formal power series as the  R -transform (of a). We
will define a modified version of the R-transform and will refer to Voiculescu’s original
R-transform as original R-transform, if needed.

Definition (R-transform (modified))
Let (A, ϕ) be a non-commutative probability space. For self-adjoint a ∈ A and z ∈ C
the R-transform is the formal power series

Ra:A → CJXK

a 7→ Ra(z) =
∞∑
k=1

κkz
k,

where κk denotes the kth free cumulant. As with classical cumulants from classi-
cal probability theory, free cumulants linearize addition of moments of free  non-
commutative random variables . For  NCRVs a,b free, we have the desired behavior,
i.e.

Ra+b = Ra +Rb.
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2.4 Transformations

Remark: Voiculescu’s original R-transform is defined to be

 Rorig.
a (z) 

:= G〈−1〉
a (z)− z−1 =

∞∑
k=0

κkz
k.

It is related to the modified R-transform by

Ra(z) = zRorig.
a (z).

If ϕ(a) = m
(a)
1 = κ

(a)
1 6= 0, the modified R-transform has a vanishing constant term

and a non-vanishing linear term and is therefore invertible. There exists a simple
relationship 

20
 for the inverses of R-transform andM-transform, given by

 R〈−1〉
a (z) = (1 + z) M〈−1〉

a (z) . (2.11)

So getting from anM-transform to a R-transform is simple: One just has to invert,
multiply by (1 + z) and invert again.

2.4.4 S-transform

As the R-transform is the transform that linearizes addition of free  non-commutative
random variables , the  S  -transform does the same for multiplication of free  non-
commutative random variables .

Definition (S-transform)
Let (A, ϕ) be a non-commutative probability space. For self-adjoint a ∈ A with
ϕ(a) 6= 0 and z ∈ C the S-transform is the formal power series

Sa:A →  CJXK∅  

a 7→ Sa(z) := z−1R〈−1〉
a (z) =

∞∑
k=0

αkz
k.

For two  non-commutative random variables free a,b, we state the following prop-
erty:

Sab = SaSb

Remark: By the close relationship between the inverse R-transform and inverse
M-transform stated in ( 2.11 ), one also obtains

Sa(z) = 1 + z

z
M〈−1〉

a (z), (2.12)

connecting the moments of a with the S-transform.
20See [ 78 , p. 270], and also the  remark about invertibility of theM-transform .
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2 Introduction to Non-Commutative Probability Theory and Free Independence

2.5 Rectangular Random Matrices

We want to model a class of  non-commutative random variables in such a way
that they have a property which can be translated as being rectangular. So first,
we have to reflect on what are the constitutive properties of some element being
rectangular. From geometric intuition, a proper rectangle is not rotational symmetric
to a perpendicular rotation. On the other hand, the composition of a perpendicular
rotation with itself should be the identity  with respect to rectangles. On reflexive
vector spaces the adjoint resembles our deliberations. But it is too weak of an analogy
to link rectangularity with non-self-adjointness, because for genuine rectangularity we
do not only want the values of such an operator to be different, we also want a whole
range of possible values. This stipulation closely resembles the rectangular matrix
case, where proper rectangular matrices have different dimensions of their domain
and image. As we ultimately motivate this rectangularity to model rectangular
random matrices, this perception is valuable.

One could think of just defining a rectangular random matrix as rectangular matrix
with its entries classical random variables. Unfortunately, with this definition the
rectangular matrices do not have eigenvalues anymore and we also can not use the
transformations from  section 2.4 . Therefore, one would lose the spectral information.
One could argue that one could switch from eigenvalues to singular values, but the
latter are much harder to analyze. So one seeks quadratic matrices which behave like
rectangular matrices.

If we assume, for convenience, that the dimension of the image is smaller than the
dimension of the domain, this can equivalently be accomplished by constraining the
subspace on which the operator maps. The easiest method would be to compose the
operator with a projection, where the latter projects onto the constrained subspace.
We want to formalize this point of view. So let (A, ϕ) be a non-commutative
probability space and let (P1, . . . ,Pm) be a family of self-adjoint projection matrices
that are pairwise orthogonal and which partition unity,  i.e. we have PiPj = 0 for
i 6= j and P1 + · · ·+ Pm = IA. Then any random matrix A ∈ A can be decomposed
as

A =


A1,1 . . . A1,m
... ...

Am,1 . . . Am,m

, with Ai,j := PiAPj for all i, j ∈ {1, . . . ,m}.

(2.13)

Remark: This concept was advocated by Benaych-Georges in [ 13 ,  12 ], but the basic
idea can be found as early as 1991 in [ 108 , p. 213, 3.6.].

With the structure depicted in ( 2.13 ) we have a unifying framework to describe non-
commutative rectangular random variables of different sizes, all over one (possibly
very big) encompassing non-commutative probability space. We will not need
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2.5 Rectangular Random Matrices

to compare rectangular matrices of different dimensions, so we only require two
orthogonal projections Pα + P1−α = IA that divide the whole space into blocks of
size α× α, α× (1− α), (1− α)× α and (1− α)× (1− α). The union of such two
adjacent blocks can be realized by just considering a composition of a random matrix
with just one projection Pα,  i.e. either PαAIA or IAAPα. We will mostly use this
most basic scenario to model non-commutative rectangular random matrices.

The parameter α of a projection matrix Pα describes the »ratio« of the respective
»sizes« of the subspace on which Pα projects and the subspace which Pα suppresses.
This is also apparent from the measure µα := αδ1 + (1− α)δ0 of a projection Pα:
The eigenspace associated with the eigenvalue 1 is the subspace the projection matrix
projects onto, the eigenspace associated with eigenvalue 0 gets suppressed. A measure
of the ratio of these two eigenspaces is precisely α by construction.

In  Figure 2.2 we have depicted schematically what happens to spaces of various sizes
when they are being compressed by projections.

α 1− α
1

α
1
−
α

1

1 |1− α−1|
α−1

1
|1
−
α
−

1 |
α
−

1

Figure 2.2: Schematic presentation of compression by projection Pα with α := 2
3 .
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2 Introduction to Non-Commutative Probability Theory and Free Independence

First, we want to take the perspective that the main space A is represented by the
solid framed green square of unit length. Therein, we have the (1× α) rectangle in
green, north-east hatched. This represents the image of APα for A ∈ A. Also in
green, but north-west hatched is the rectangular space (α× 1) of random matrices
of the form PαA for A ∈ A. The intersection of both spaces has size (α× α) and is
represented by the green square with hatched crosses. A random matrix PαAPα is
an element of the space of relative size (α× α). If we are interested in the spectrum
of an element PαAPα relative to the main space A, it is clear that 1−α of the main
space gets suppressed by the projections. Therefore the spectrum, represented by
the brown diagonal, must be 0 at a fraction of 1−α and can only be non-zero at the
remaining fraction of α.

Second, we want to take the perspective that the main space A(α−1) is represented
by the big dotted square of length α−1 := 3

2 > 1. In this »big« space we have

a projection matrix P(α−1)
α = P1 that projects again on two third of the main

space. The rectangular space generated by right composition with the projec-
tion matrix A(α−1)P(α−1)

α = A(α−1)P1 is represented by the cyan rectangle. On
the other hand, the rectangular space generated by left compositions of the form
P(α−1)
α A(α−1) = P1A(α−1) is represented by the yellow rectangle. The intersection

of both spaces is represented by the green square, which has size (α× α) relative to
the big main space A(α−1). An analog argument to the first one holds, so the whole
spectrum of dimension α−1 has a fraction of |1−α

−1|
α−1 that vanishes and a remaining

part of 1
α−1 = α.

We can change perspective one more time and consider the main space to be A,
represented by the green square. If some random matrices are being projected from
an encompassing ambient »big« space to the main space A, from the perspective
of A the spectrum does not need to vanish. Thus, depending on the perspective
we choose and the ambient space from which we project, we have to renormalize
as just described. From the perspective of the »unit« space A, projection matrices
with values α < 1 give rise to an atom with probability mass (at least) 1− α. On
the other hand, for α > 1 we imagine a »bigger« ambient space and the resulting
distribution has, in general, no atom at 0.
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2.6 Scaling

2.6 Scaling

With rectangular random matrices introduced, it makes sense to revisit the different
transformations from  section 2.4  and examine their behavior under the dual rectan-
gular transformation. So let X ∈ RT×N be a rectangular long random matrix,  i.e. 

T > N . One can calculate second moments by either

A := XTX or B := XXT.

It is well known that the (T × T ) matrix B has T −N eigenvalues euqal to 0 and the
remaining N eigenvalues coincide with the eigenvalues of the (N ×N) matrix A.

Let µA, µB be the  resp.  limit spectral distribution (LSD)  of matrices A,B. The
above translates directly to the measure via

µA(λ) = α−1

α−1 − 1δ0(λ) + αµB(λ) and µB(λ) =
(
1− α−1)δ0(λ) + α−1µA(λ).

We can now calculate the scaling of the G-transform to be

GB(z) =
∫ 1
λ− z dµB(λ)

=
∫ 1
λ− z d

((
1− α−1)δ0(λ) + α−1µA(λ)

)
=
∫ 1
λ− z d

(
1− α−1)δ0(λ) +

∫ 1
λ− z dα−1µA(λ)

=
(
1− α−1) ∫ 1

0− z dδ0(λ) + α−1
∫ 1
λ− z dµA(λ)

= 1− α−1

−z

∫
dδ0(λ) + α−1

∫ 1
λ− z dµA(λ)

= α−1 − 1
z

+ α−1GA(z).

An analogous calculation yields

GB(z) = 1− α−1

α−1z
+ αGA(z).
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3 Eigenvalue Distributions for
Specific Random Matrix Models

3.1 Spectral Distributions of Vector-ARMA-Ensembles

We introduced all prerequisites necessary to examine the spectral distribution of
sample covariance matrices for samples from certain stochastic processes with specific
structure. Up to now, we only introduced the  Wishart distribution  as eigenvalue
distribution for rectangular centered Gaussian matrices. Next, we want to extend
this most prominent, but also most basic eigenvalue distribution to situations more
involved than the simple Gaussian case. Specifically we want to examine the spectral
distribution of the sample covariance matrix for a class of vector–valued  autoregressive
(AR)  moving-average (MA) processes.

Remark: In this section we mainly follow Burda, Jarosz, et al. and replicate much of
their work. But we see this necessary to motivate and show our extensions of their
work in [ 23 ]. We specifically mention new results not previously known.

3.1.1 Basic Definitions and Short Introduction to VARMA(p, q)
Processes

Define the backshift operator  B by its action on some random variable in an indexed
collection of classical random variables (Xt) to be

BXt := Xt−1 =⇒ BkXt = Xt−k, (3.1)

where the second part is implied by induction. Also, define a white noise process
as a classical 

1
 stochastic process with the property that it has zero mean and its

auto-covariance  γWN (τ) vanishes for all lags  τ  but τ = 0. We denote a white noise
process as

(Zt) ∼  WN
(
σ2)

 with auto-covariance function γWN (h) =
{
σ2 if h = 0
0 if h 6= 0

.

1One can also define a stochastic process of  non-commutative random variables , but in this
context we mean an indexed collection of classical random variables.
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3 Eigenvalue Distributions for Specific Random Matrix Models

Remark: Every independent distributed stochastic process has auto-covariance func-
tion vanishing for lags τ 6= 0. But if the process is not identically distributed the
variances of each classical random variable, if they exist, might differ. This implies
that every independent and identically distributed stochastic process with finite vari-
ance is white noise. The opposite is not true as there exist white noise processes
which do not consist of identical distributed random variables.

Definition (ARMA(p, q))
A stochastic process (Xt) is called an ARMA(p, q) process if there exist polynomials
θ and φ of degree p  resp. q and a white noise process Zt such that

 θ(B) Xt(ω) =  φ(B) Zt(ω) (3.2)

holds  almost surely (a.s.) .

Remark: Note that we did not define ARMA(p, q) processes to be stationary  

2
 . Doing

so makes the process indirectly defined as the solution to ( 3.2 ) unique. But if not
otherwise stated we just speak of an ARMA(p, q) process without explicitly mentioning
the associated white noise process. As there are (at least) 2p+q possible 

3
 white noise

processes as solution to the defining ARMA equation ( 3.2 ), we will use a white
noise process that makes the ARMA(p, q) processes stationary. Also, questions
about causality or invertibility of an  ARMA process are not well posed because both,
causality and invertibility are not properties of an ARMA process itself but of an
ARMA process  with respect to a suitable white noise process. This subtlety will prove
useful in later applications.

Definition (Multivariate ARMAN(p, q) process)
An N-dimensional vector-valued stochastic process (Xt) is called an N -dimensional
multivariate ARMAN(p, q) process if there exist (N ×N) matrix-valued polyno-
mials  Θ and  Φ of degree p  resp. q and an N-dimensional white noise process
(Zt) ∼ WNN(σ2) such that

Θ(B)Xt(ω) = Φ(B)Zt(ω)

holds  almost surely . The matrix-valued polynomials are given by 

4
 

Θ(x) := Θ0 −Θ1x− · · · −Θqx
q,

Φ(x) := Φ0 + Φ1x+ · · ·+ Φpx
p, (3.3a)

with Θi,Φj ∈ RN×N for all (i, j) ∈ {1, . . . , q} × {1, . . . , p}.

2A stochastic process (Xt)t∈ T 

is said to be stationary if any joint  CDF of finite many  RVs Xt is
invariant  w.r.t. translation in time. It is weakly stationary, if for all t ∈ T the first two moments
exist, the first moments are all equal and the auto-covariance does only depend on differences in
time.  Compare (cf.) [ 20 , p. 12].

3This is a consequence of [ 20 , Propositions 3.5.1 and 4.4.2], as one can »invert« every root.
4See [ 20 , eq. (11.3.1)].
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3.1 Spectral Distributions of Vector-ARMA-Ensembles

Note that these matrix-valued polynomials have matrix-valued coefficients but its
argument is a (commutative) scalar. So every entry of the matrix-valued Θ(z)
polynomial is a scalar polynomial of real coefficients and of degree at most q.

Remark: The auto-covariance at lag τ = 0 is simply the variance and it is captured
by σ2. For convenience and to adhere to convention we normalize at lag τ = 0 and
set

Θ0 := IN and Φ0 := IN . (3.4)

Multivariate ARMAN(p, q) processes give great flexibility but for situations where we
do not have T � N , there is no realistic chance to ever estimate the whole coefficient
matrices with satisfactory precision. Therefore one needs to impose restrictions on
the coefficient matrices. We will impose the very strict restriction that all coefficient
matrices have to be multiples of the identity matrix IN . Diagonality decouples the N -
dimensional vector-valued ARMAN(p, q) process into N scalar-valued ARMA1(p, q)
processes, so ARMA(p, q) process k cannot influence ARMA(p, q) process ` anymore
for k 6= `. By the even stricter restriction that the diagonal matrix coefficients
have to be multiples of the identity matrix IN , we insist that every one of the N
scalar-valued ARMA(p, q) processes is an independent copy of all the others. So
we just have a vectorization of a scalar-valued ARMA(p, q) process. We therefore
call this type of processes suggestively  vector-autoregressive–moving-average  resp. 

VARMA(p, q) processes.

Definition (VARMA(p, q) process, VAR(p) process and VMA(q) process)
A multivariate ARMAN(p, q) process with the restriction that the coefficient matrices
of its matrix-valued polynomials Θ and Φ are only multiples of the identity matrix
IN is called a VARMA(p, q) process. Specifically, it suffices to know the factors (θi)
 resp. (φj) for matrix coefficients Θi = θiIN and Φj = φjIN for all i ∈ {1, . . . , p}
and j ∈ {1, . . . , q}.

We further simplify notation by defining the  vector-autoregressive (VAR) process
VAR(p) := VARMA(p, 0) and the  vector-moving-average (VMA) process
VMA(q) := VARMA(0, q).

3.1.2 Assumptions on the General Covariance Matrix and
Factorizations

Assume we are given a matrix x ∈ RT×N of returns for  N  stocks at  T  points in time.
We want to model each return (xt,n) as a classical random variable Xt,n, so that
(Xt,n)(t,n)∈{1,...,T}×{1,...,N} =: X ∈ RT×N denotes the random matrix comprised of all
classical random variables. Clearly, by rearranging the classical random variables in
matrix form, one does not lose any information. Depending on our assumptions on
the classical random variables, the random matrix X will have different characteristics.
We hope to infer from the characteristics of X the characteristics of return matrix
x.
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3 Eigenvalue Distributions for Specific Random Matrix Models

We are mainly interested in correlations between the random variables. Modulo
normalization 

5
 , we are interested in

EX[Xt,kXs,`] = Ct,s,k,`,

where Ct,s,k,` denotes the correlation of the return RV of stock k at time t with the
return RV of stock ` at time s. In this most general setting inference on Ct,s,k,` by
sampling would be futile, because we only have one observation for each combination.
Therefore we need to impose some structure in order to generate invariance. This
invariance can then be exploited by statistical methods.

As a first restriction on the possible shape of (Ct,s,k,`) we assume that the correlation
factors in a cross-correlation Ck,` and an auto-correlation At,s, that is

EX[Xt,kXs,`] = Ck,`At,s.

The subscript of EX denotes that we take the expectation  w.r.t. all returns,  i.e. the
joint distribution of all classical random variables Xt,n.

The cross-correlation between stock k and stock ` is captured by the N ×N cross-
correlation matrix (Ck,`)k,`∈{1,...,N}2 =:

 C ∈ RN×N for two arbitrary points in time.
So we assume that time is an invariant for the cross-correlation. This invariance
gives a straightforward recipe on how to determine the cross-correlation from given
observations: As we assume that the cross-correlation is stable in time, estimate the
cross-correlations at different points in time and average out variations.

The auto-correlation between points in time t and s is captured by the T × T
auto-correlation matrix (At,s)t,s∈{1,...,T}2 =:

 A ∈ RT×T for two arbitrary stocks. Here
the specific stocks are invariant  with respect to  the autocorrelation structure of the
whole system. As before, this invariance opens up the possibility for non-trivial and
conceptually easy inference.

As the random returns in X contain both, the cross-correlation and the auto-
correlation, we want to normalize:

EX
[
XC−1XTA−1] = IT .

Therefore, for a suitable matrix root 

6
 we have

X = A
1
2 ZC

1
2 ⇐⇒ Z = A−

1
2 XC−

1
2 , (3.5)

where Z ∈ RT×N is a random matrix of the same size as X but with vanishing
non-trivial 

7
 correlation.

5For centered classical random variables with unit variance the second moment is the correlation.
Therefore we will use the term correlation in a broad sense.

6A matrix root for a positive-(semi)definite matrix exists and can be obtained by functional
calculus. We will always choose the so-called principal square root, which is itself positive-
(semi)definite.

7By definition, self-correlation is of course 1.
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3.1 Spectral Distributions of Vector-ARMA-Ensembles

If X were multivariate Gaussian, the joint density for centered random variables
is solely and completely determined by the correlations. The multivariate density
function would be

p(X) := (2π)−
TN

2 |A|−N2 |C|−T2 exp
(
−1

2 Tr
(
XC−1XTA−1)).

In terms of the de-correlated matrix Z the joint density simplifies to

p(Z) := (2π)−
TN

2 exp
(
−1

2 Tr(ZZT)
)
.

3.1.3 Connection of Sample-Covariance Matrix to M-transform
of Auto-Correlation Matrix

Capitalizing on the invariance in time a simple estimator for the cross-correlation
matrix C is given by time-averaging over the single second moment estimates xt,kX̃t,`

for all t:
ĉ := 1

T
xTx.

By the arguments following ( 2.5 ) and ( 2.6 ) in combination with  Theorem 2.5  , by
dividing by T −1 instead of T the resulting empirical spectral  cumulative distribution
function differ at most by 1

T
in the supremum norm. We therefore conclude that

the difference is practically negligible for large T . Bearing in mind that dividing by
T − 1 makes the correlation estimator ĉ unbiased, we opt for ease of notation and
divide by T . The results still hold for division by (T − 1).

In the following, we want to analyze general properties of the correlation estimator
 ĉ . In order to facilitate this goal, we switch perspective and examine the theoretical
model X we imposed for the matrix of return observations  x  . In addition, if we
substitute (  3.5 ) we arrive at

Ĉ := T−1XTX = T−1
(
A

1
2 ZC

1
2

)T(
A

1
2 ZC

1
2

)
= T−1C

1
2 ZTAZC

1
2 , (3.6)

where we use the fact that A,C are symmetric, and by functional calculus, so is its
principal square root.

Without loss of generality assume T > N and set 

8
 

N/T =: α ∈ (0, 1) and define the
two projections 

9
 Pα + P1−α = IT ∈ RT×T partitioning the unit. Now we can realize

all random matrices A,C 1
2 ,Z as rectangular elements over the same rectangular

non-commutative probability space (AT , τT ) for T ∈ N. 

10
 Specifically we have

C =  P αC̃Pα and Z = Z̃Pα,
8By the remarks to  Figure 2.2 α has to be defined relativ to the big ambient space RT×T and
not relativ to RN×N so that we can partition into α and 1− α.

9For some basis Pα is the projection matrix of a specific projection map. The ratio of the
dimensions of the eigenspace associated with eigenvalue 1 and the dimension of the whole image
is denoted by α.

10To ease notation we suppress the dependence of the random matrices on T .
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3 Eigenvalue Distributions for Specific Random Matrix Models

where the matrices with tilde denote random (T × T ) matrices »cut« to the right
size by the projection matrix Pα, which itself is a deterministic random matrix.  

11
 We

will keep in mind this construction of rectangular matrices, but for ease of notation
we will abstract away as much notation as possible regarding the difference between
rectangularized matrices and their squared-sized »big« counterparts.

We want to view all matrix factors of ( 3.6 ) as random matrices. This is certainly in
line with our construction of Z and the cross-correlation  resp. auto-correlation matrix
C  resp. A. They can be viewed as a degenerated special subclass of deterministic
matrices, as can be their square roots.

By the  theorem about asymptotic freeness of Gaussian and constant matrices  the
random matrix Z and the deterministic matrices Pα, A and C are asymptotically free,
provided Z̃ is a Gaussian matrix and the asymptotic distribution of the deterministic
matrices converges.

Henceforth we will assume both conditions, specifically that Z̃ is a Gaussian matrix.
By universality it is expected that asymptotic freeness stays true for broader classes
of random matrices. Projection matrices have an easy spectrum and their distribution
obviously converges. For trivial matrices like Ã = C̃ = IT this would also be the
case, but we will argue later that this is also the case for the resulting matrices
we get by applying the free probability toolkit. 11 Mathematically, we can simply
assume all matrices to be mutually free, as we provided reasoning that this additional
assumption does not reduce the model to the empty set.

Calculating distributions or checking freeness is done with non-commutative mono-
mials in the moments, viewed under the linear functional τT . For random matrices,
we have as linear functional τT = trT ⊗EZ. So this linear functional has the trace
property and therefore we are permitted to cyclically permute factors.

As by ( 3.6 ) Ĉ is a product of free factors, we investigate the S-transform of this
product as it linearizes multiplication:

SĈ(z)
( 3.6 )

= S
T−1C

1
2 ZTAZC

1
2
(z) cycl.= ST−1ZTAZC(z)

mult.= ST−1ZTAZ(z)SC(z) cycl.= ST−1AZZT(z)SC(z)

Here, cycl. denotes cyclic permutation and mult. utilizes that factorization of the
S-transform of a product of free factors. The S-transform SĈ(z) and all subsequent
S-transforms are for (N ×N) matrices, as is Ĉ. We want to isolate the S-transform
of the auto-correlation matrix A, but in terms of its S-transforms for (T × T )
matrices. So we proceed by another cycling permutation and transposition:

SĈ(z) cycl.= ST−1AZZT(z)SC(z) trans.= ST−1ZZTA
(
α−1z

)
SC(z).

11This also holds true for the matrices C 1
2 and

(
C 1

2

)T

.

34



3.1 Spectral Distributions of Vector-ARMA-Ensembles

When transposing, the S-transform has to be rescaled, which is done by scaling its
argument by α−1. We utilize once more the factorization property of the S-transform
to arrive at

SĈ(z) mult.= ST−1ZZT
(
α−1z

)
SA
(
α−1z

)
SC(z). (3.7)

For Z a rectangular Gaussian matrix the term of the first S-transform in ( 3.7 ) is
a Wishart matrix with parameter α−1. By  Theorem 2.4 the Wishart ensemble
has Marchenko–Pastur distribution given by ( 2.2 ). By [ 106 , p. 52, eq. (2.87)], the
S-transform is given by

ST−1ZZT
(
α−1z

)
= 1

1 + α−1z
. (3.8)

Multiplying both sides of the equation by z(1 + z)−1 we arrive at

z

1 + z
SĈ(z)

( 3.8 )
= 1

1 + α−1z
SA
(
α−1z

) z

1 + z
SC(z)

=
(
α−1z

)−1 α−1z

1 + α−1z
SA
(
α−1z

) z

1 + z
SC(z). (3.9)

Ultimately we want Ĉ to be expressed in simple expressions to be able to connect
some of them to real world applications. We aim for the moment-transformM, as it
is the power series decoding all information as basic moments. TheM-transform and
the S-transform are related via theM〈−1〉-transform, which is directly connected to
the S-transform by ( 2.12 ). We notice that ( 3.9 ) has already the right form and we
arrive at

M〈−1〉
Ĉ (z)

( 2.12 )
=

(
α−1z

)−1M〈−1〉
A
(
α−1z

)
M〈−1〉

C (z).

As theM〈−1〉-transform is the inverse of theM-transform we can eliminate one term
by choosing the argument z appropriately. Since we are ultimately interested in the
cross-  resp. auto-correlation matrices C  resp. A we set z :=MĈ(z).

M〈−1〉
Ĉ (MĈ(z)) =

(
α−1MĈ(z)

)−1M〈−1〉
A
(
α−1MĈ(z)

)
M〈−1〉

C (MĈ(z)).

At the  left-hand side  we get z by construction, we ease notation on the  right-hand
side by abbreviating M :=MĈ(z) and arrive at

z =
(
α−1M

)−1M〈−1〉
A
(
α−1M

)
M〈−1〉

C (M). (3.10)

We managed to get an equation with only transforms of the cross- and auto-correlation
appearing. To simplify further we have to pose assumptions on either of the correlation
matrices. We are mainly interested in the dynamics for dependence structures in time,
 i.e. the auto-correlation A. To make matters simple let us assume the true cross-
correlation matrix C to be the identity matrix IN . This is clearly an oversimplification
of the true cross-correlation matrix — but it is virtually the same oversimplification
as assuming the auto-correlation A to be the identity matrix IT as it is normally
done in the literature. Equation ( 3.10 ) is a central starting point for further research
on other correlation structures.

The moments of the identity matrix C = IN are given by τA
(
IkN
)
for k ∈ N. As the

identity matrix is idempotent, all higher moments for k ≥ 2 coincide with the first
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3 Eigenvalue Distributions for Specific Random Matrix Models

moment τA(IN) = 1. Because of ( 2.7 ), the moment series respectivelyM-transform
of C is given by

MI(z) =
∞∑
k=1

zk = z

1− z . (3.11)

The inverse of ( 3.11 ) is theM〈−1〉-transform and it is given by

M〈−1〉
I (z) = z

1 + z
. (3.12)

We substitute ( 3.12 ) in ( 3.10 ) and obtain

z = αM−1M〈−1〉
A
(
α−1M

) M

1 +M

= αM〈−1〉
A
(
α−1M

)
M−1 M

1 +M

1 +M

M

M

1 +M

= α

1 +M
M〈−1〉

A
(
α−1M

)
⇐⇒ z(1 +M)

α
=M〈−1〉

A
(
α−1M

)
.

We are finally in a position to invert theM〈−1〉-transform and get

MA

(
z(1 +M)

α

)
= M

α
. (3.13)

This is the final equation for the auto-correlation matrix. Starting from the sample
covariance matrix ĉ we switched to an ex-ante investigation and wrote Ĉ as product
of free random matrices. By some algebra and simplifying assumptions we finally
were able to derive equation ( 3.13 ), which connects  MLE Ĉ to the moments of the
auto-correlation matrix A.

We are now in a position that if we can work out closed form solutions to a model of
auto-correlation dynamics, we can derive the limiting spectral density. Of course,
this argument holds only in the large T,N limit for N

T
→ α, because we argued with

asymptotic freeness which is only available in the large T,N limit.

Remark: The idea of connecting the variousM-transform stems back to at least [ 22 ,
eq. (22)], but the resulting equation is implicit as it has an M-transform on the
left and on the  right-hand side  as a function argument. In [ 24 ] Burda, Jurkiewicz,
et al. developed a formula comparable to ( 3.10 ), but with different techniques and
much more effort. The physicist Burda, Jarosz, et al. took in [  23 , eq. (14)] a similar
route as we did, but their proof omitted some technical details and lacked some
foundation. Nevertheless, the ideas from this paper motivated and influenced the
derivation presented here. Their [ 23 , eq. (14)] is essentially our ( 3.13 ). But Burda,
Jurkiewicz, et al. defined theirM-transform in a slightly unusual way which amplifies
subsequent differences. They essentially work with inverse (and rescaled) arguments
than the ones we use and they opted to not use the S-transform as a natural transform
for working with products of free matrices.
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3.1 Spectral Distributions of Vector-ARMA-Ensembles

Our subsequent arguments in this line of reasoning are qualitatively similar to theirs
modulo rescaling. To our knowledge we are the first to apply this line of reasoning
and the theoretical results to financial return time series and their specific properties.

3.1.4 The M-transform of VARMA(p, q) Processes

Recapitulating that in order to simplify ( 3.10 ) we chose to model the auto-correlation
at the price of trivial cross-correlation, we have to sastisfy this restriction and can
only model dynamics with non-trivial auto-correlation, but trivial cross-correlation.
As defined on p.  31 , VARMA(p, q) processes are a suitable model class.

Assume we are given theN -dimensional stationary vector-valued Xt ∼ VARMAN [p, q].
By construction, each of the N scalar-valued processes is an identical copy of all the
others and thus there cannot be any cross-correlation present. So we only have the
auto-correlation left:

EX[Xt,kXs,`] =  δk,`  At,s.
Let γ(Xt)(τ) be the auto-correlation function of the VARMA(p, q) process (Xt).
Because (Xt) is stationary, the entries At,s of its auto-correlation matrix A do not
depend on the specific points in time t, s, but only on absolute differences τ := |t− s|.
The auto-correlation matrix A has identical entries γ(Xt)(0) on its main diagonal,
entries γ(Xt)(|±1|) on its sub- and super diagonal and so forth:

A =



γ(0) γ(1) γ(2) · · ·
γ(1) γ(0) γ(1) γ(2) · · ·
γ(2) γ(1) γ(0) γ(1) γ(2) · · ·
... . . . . . . . . . . . . . . .

. . . . . . . . . ...
. . . . . . γ(1)
· · · γ(1) γ(0)


So one gets the value of the (t, s)th entry of A by γ(Xt)(|t− s|) = γ(Xt)(τ),  i.e. all
the information of the auto-correlation matrix is contained in the auto-covariance
function γ(Xt) : Z→ R.

Because of the Wold decomposition every covariance-stationary stochastic process
has a decomposition in a, possible infinite,  MA process with square-summable
coefficients and a purely deterministic process.  

12
 Applying the Wold decomposition

to ARMA(p, q) processes one gets its representation as a, possible infinite, MA
process and the purely deterministic process vanishes 

13
 . But it is known  

14
 that

the coefficients of an ARMA(p, q) auto-covariance are absolutely summable, which

12See [ 20 , Theorem 5.7.1].
13See [ 20 , p. 189].
14See [ 20 , p. 111].
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is a slightly stronger property as the square summability implied by the Wold
decomposition. By iterating on the interpretation of the MA coefficients (ψk), one
directly has that

γMA(∞)(τ) :=
∞∑
k=0

ψkψk+|τ |, (3.14)

where ψkψk+|τ | on the  RHS are the coefficients of the ARMA(p, q) process and

ψ(z) :=
∞∑
k=0

ψkz
k = φ(z)

θ(z) (∀z ∈ C, |z| ≤ 1).

We set the coefficients  ψk  of the MA representation of the stationary ARMA(p, q)
process to zero for some k > q̃ if the MA representation is MA(q̃) with q̃ <∞.

The auto-correlation function with values in [0,∞) is by its very meaning defined
in the time domain that we assumed to be discrete and which spans all integer
numbers. This domain Z is not nicely analytically tractable. We therefore want to
transform the auto-covariance function in such a way that both its domain and its
range have nice topologies and the auto-covariance function is thus easy to work
with. In addition, its new domain should have a nice statistical interpretation to
foster imagination. As the other parts of our model are in the frequency domain,
we therefore want the auto-correlation function γ(Xt)(τ) to act on the frequency
domain as well. The requested transform is exactly the discrete Fourier transform
applied to the auto-correlation function, the resulting quantity is the so-called spectral
density:

Definition (Spectral Density)
The spectral density of a stochastic process (Xt) is the discrete 

15
 Fourier transform  

16
 

of its auto-covariance function,

 γ̃(Xt)(ω) 

:= 1
2π
∑
τ∈Z

e−iτω γ(Xt)(τ), (3.15)

whenever the auto-covariance series is absolutely convergent, uniformly in ω ∈ (−π, π].

For a fixed value τ the function e−iτω with argument ω ∈ (−π, π] runs though the
unit circle, therefore by Euler’s formula 

17
 ω parametrizes all sinusoidal basis functions

for the Fourier transformation.

Remark: For stationary stochastic processes one can expand the  RHS of ( 3.15 ) and
apply trigonometric identities and de Moivre’s formula to arrive at  

18
 

γ̃(Xt)(ω) = 1
2π
∑
τ∈Z

e−iτω γ(Xt)(τ)
 18 

= 1
2π

(
γ0 + 2

∞∑
k=0

γk cos(kω)
)
. (3.16)

15Henceforth, we omit to mention the property discrete for the Fourier transform if there is no
room for confusion.

16We let the factor of (2π)−1 be present at the Fourier transform and do not split it between the
Fourier transform and its inverse to adhere to convention.

17See [ 31 , §138, p. 104].
18See [ 60 , eq. (2.1)].
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3.1 Spectral Distributions of Vector-ARMA-Ensembles

For ARMA(p, q) processes the coefficients (γk) of the autocorrelation function γ are
related to the coefficients of the ARMA polynomials because of ( 3.14 ) by

γMA(q)(τ) :=
q−|τ |∑
j=0

ψjψj+|τ |. (3.17)

The spectral density of the ARMA(p, q) process (Xt) implicitly specified by the
equation θ(B)Xt = φ(B)Zt, with Zt ∼ WN (σ2), is given by 

19
 

γ̃(Xt)(ω) = σ2

2π

∣∣∣∣φ(e−iω)
θ(e−iω)

∣∣∣∣2, ω ∈ (−π, π]. (3.18)

For the auto-correlation instead the auto-covariance function, the variance σ2 is
normed to 1.

With the spectral density we have a quantity that encodes the same information as the
auto-correlation function or the auto-correlation matrix of the ARMA(p, q) process
(Xt), but which also exist in the frequency domain and is analytically tractable. This
last property is crucial and being used in [ 23 , Appendix A.3, eq. (A.1)] to connect
G-transform and spectral density by

GA(z) = 1
2π

∫ π

−π

1
z − 2πγ̃(Xt)(ω) dω, (3.19)

with γ̃(Xt)(ω) the spectral density of (Xt) and A its autocorrelation function.

Remark (Exploiting symmetries): Because the auto-correlation matrix A is real and
symmetric, the auto-correlation function γ(τ) is a real symmetric function and the
spectral density is also a real symmetric and non-negative function. Therefore it
suffices, by symmetry, to only know the values of γ̃(Xt)(ω) in the range ω ∈ [0, π].
Thus one could calculate integral ( 3.19 ) just between 0 and π and double its value.

In a final step we transform to theM-transform and arrive at

MA(z)
( 2.10 )

= z−1GA
(
z−1)− 1

( 3.19 )
= 1

2π

∫ π

−π

z−1

z−1 − γ̃(Xt)(ω) − 1 dω

sym.= 1
π

∫ π

0

z−1

z−1 − γ̃(Xt)(ω) − 1 dω

( 3.18 )
= − 1 + 1

π

∫ π

0

1

1−
∣∣∣φ(e−iω)
θ(e−iω)

∣∣∣2z dω. (3.20)

19See [ 20 , Theorem 4.4.2].
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3.1.5 Calculation of distribution generating polynomials for
various special VARMA(p, q) models

We are now in a position where we can apply the results from  subsection 3.1.4  to
( 3.13 ).

If we combine ( 3.13 ) with ( 3.20 ), we get

0
( 3.13 )

= MA

(
z(1 +M)

α

)
− M

α
. (3.21a)

( 3.20 )
= − 1 + 1

π

∫ π

0

1

1−
∣∣∣φ(e−iω)
θ(e−iω)

∣∣∣2 z(1+M)
α

dω − M

α

= 1
π

∫ π

0

α

α− (1 +M)z
∣∣∣φ(e−iω)
θ(e−iω)

∣∣∣2 dω − M + α

α
. (3.21b)

In principle, this equation can be solved for M provided one is able to calculate
the integral. The solution will be a function for M in the variables z, α and the
ARMA(p, q) coefficients. Since z is complex, M will in general be complex, too.
Remembering the notational abbreviation M :=MĈ(z) before ( 3.10 ), this complex
functionMĈ(z, α, (ψk)) encodes all assumptions and information of the ML estimator
Ĉ of a VARMA(p, q) process. As it still is theM-transform for the  ML estimator Ĉ,
by transforming back to the G-transform and applying the  inverse Cauchy-transform
theorem ( 2.9 ) we finally arrive at the spectral distribution function for Ĉ.

Unfortunately, ( 3.21b ) will not have a unique solution for M , so one has to test every
possible solution whether it possesses all properties of a validM-transform  resp. if
the implied G possesses all properties of a true G-transform. These properties are
specifically that lim|z|→∞ zG(z) = 1, for z ∈ C+ := {a+ ib | a, b ∈ R, b > 0}, 

20
 and

that G is analytic and that G : C+ → C−. 

21
 But it is often more practical to simply

check whether the solution under review gives a probability density function when
the  inverse Cauchy-transform theorem  is applied to the »G-transform« resulting from
the specific M . Usually we apply both tests, that is we discard potential solutions
if the respective G-transform fails to have the necessary properties. After that we
check by integration whether the remaining solutions generate a viable probability
density function whose infinite integral is approximately unity. In almost all cases
this procedure suffices to choose the appropriate solution of ( 3.21b ) that generates
the probability density function for the  ML estimator Ĉ.

Let us give some results for specific VARMA(p, q) models. We will see that for
VARMA(p, q) models ( 3.21a ) gives a polynomial in M . Since one root of this
polynomial is the M-transform MĈ(z) that lets one subsequently calculate the
probability density function of the eigenvalues of C, we call this polynomial a
» distribution generating polynomial  « (  distribution generating polynomial (DGP) ).

20Set C− := −C+.
21See [ 78 , Remark 2.19 (1), eq. (2.19)] and  subsection 2.4.2 .
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VMA(q) processes

We start with VMA(q) = VARMA(0, q) and note that this consists of independent
copies of MA(q) processes. The spectral density of a MA(q) process (Xt) is by ( 3.18 )
given by

γ̃(Xt)(ω) = σ2

2π
∣∣φ(e−iω)∣∣2, ω ∈ (−π, π]. (3.22)

By the definition of VMA(q) processes and the φ polynomial 

22
 ( 3.3a ) and subsequent

application of trigonometric identities and de Moivre’s formula one arrives at

γ̃MA(q)(ω)
( 3.16 )

= 1
2π

(
γ0 + 2

q∑
τ=1

γτ cos(τω)
)

( 3.17 )
= 1

2π

(
q∑
j=0

φjφj+|τ | + 2
q∑

τ=1

(
cos(ω)

q−τ∑
j=0

φjφj+|τ |

))
. (3.23)

Remembering ( 3.4 ),  i.e. φ0 = 1, we observe that ( 3.23 ) is a function in 2 cos(ω).
Applying iteratively de Moivre’s formula  resp. using the trigonometric identity of
Chebyshev polynomials of the first kind and cos one can rewrite every occurrence of
2 cos(τω) for some τ ∈ Z as polynomial in 2 cos(ω). If (Tn)n∈N are the Chebyshev
polynomials of the first kind one has cos(τω) = Tτ (cos(ω)). Since Tn is defined by
a recurrence relation this eliminates the integer factors in the cos argument and
gives a polynomial in cos(ω) of order τ . Doing so for every τ ∈ {1, . . . , q} one gets a
polynomial in 2 cos(ω) of order q. The factor 2 is present for each occurrence of cos
and thus stays.

Next, we change the integration variable to x := 2 cos(ω), which implies ω = arccos
(
x
2
)

for ω ∈ [0, π] and thus dx = − dω√
4−x2 . The principal values of arccos are in [0, π] for

arguments in [−1, 1], so the integration limits have to be {−2, 2}.

Comparing with ( 3.19 ) we finally have to consider z − 2πγ̃(Xt)(ω), where the factor
−2π of γ̃(Xt) is easily incorporated and z is added to the constant term. The resulting
polynomial in x can be written as cq

∏q
k=1(x− xk), with (xk) the q roots and ck the

coefficient of xq. 

23
 So by ( 3.19 ) we have to integrate

GVMA(q)(z) = 1
π

∫ 2

−2

1
z − cq

∏q
k=1(x− xk)

−1√
4− x2

dx.

This integral has been solved in the literature, one gets 

24
 

GVMA(q)(z) = 1
cq

q∑
τ=1

1∏q
k=1
k 6=τ

(xτ − xk)
1√

xτ − 2
1√

xτ + 2
. (3.24)

22See ( 3.3a ) with N = 1 or [ 20 , Example 4.4.1].
23For ease of exposition, we assume all roots (xk) to be pairwise different.
24See [ 23 , eq. (A.3)], but note the slight error in the integration measure induced by the change of
variables, one has to substitute q2 7→ y2 in their notation.
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Remark: All  distribution generating polynomials  were calculated with aid of the
computer algebra system Mathematica. 

25
 We checked the simpler calculations for

VMA(1) and VAR(1) »by hand« and also calculated diagnostic statistics to test
whether certain mathematical objects possess the theorized properties at least in a
statistical sense. For instance, we checked that a proper probability density function
should integrate to 1.

Let us give some explicit solutions. For VMA(1) one gets for ( 3.21a ) a polynomial
in M of order 4. The polynomial reads

M4(φ2
1 − 1

)2
z2

−M3
(

2z
((
φ2

1 + 1
)
α−

(
φ2

1 − 1
)2(α + 1)z

))
−M2

(
−
(
φ2

1 − 1
)2((α + 4)α + 1)z2 + 2

(
φ2

1 + 1
)
(2r + 1)αz − α2

)
−M1

(
2α
(
−
(
φ2

1 − 1
)2(α + 1)z2 +

(
φ2

1 + 1
)
(α + 2)αz − α2

))
− α2z

(
2
(
φ2

1 + 1
)
α−

(
φ2

1 − 1
)2
z
)
. (3.25)

Since polynomials over C up to order 4 can in general be solved analytically, poly-
nomial ( 3.25 ) has a closed solution for each of its 4 roots. But these 4 roots are
very complicated objects. We use Mathematica’s LeafCount function 

26
 as a proxy

of term length and complexity. The polynomial ( 3.25 ) has a LeafCount of 147. In
contrast, each of the 4 roots has a LeafCount of 13 020.

For VMA(2) we apply ( 3.24 ) and subsequently transform back to theM-transform
and solve ( 3.21a ). The resulting polynomial in M is of order 9 and has a LeafCount
of 4 227. Because the polynomial degree exceeds 4 for general parameters φ1, φ2, r,
there do not exist analytic solutions for its roots. Therefore solutions have to be
approximated numerically. One sees from the sheer length of the expression that this
is quite cumbersome. The explicit expression can be found in  subsection A.3.1  .

Remark: As mentioned in  24 , Burda, Jarosz, et al. calculated ( 3.24 ). But to the best of
our knowledge we are the first to follow the described procedure for something different
than VMA(1), VAR(1) or VARMA(1, 1). Specifically we are the first to utilize ( 3.24 )
in order to calcuate the  distribution generating polynomial for the VMA(2) case.
As we describe below, the hard part is to nummerically find the suitable root and
construct an algorithm that returns the spectral density of an VMA(2) process. The
same holds true for VAR(2) processes.

25See [ 118 ].
26Mathematica’s LeafCount gives the total number of indivisible subexpressions of an expression.
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VMA(2) eigenvalue densities for various parameter combinations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50
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0.8

1
dµMP with α = 4
VMA(2) with φ1 = 0.1, φ2 = 0.1 and α = 4
VMA(2) with φ1 = −0.5, φ2 = −0.5 and α = 4
VMA(2) with φ1 = 0.5, φ2 = 0.5 and α = 4

Figure 3.1: Comparison of VMA(2) eigenvalue densities for various parameter com-
binations with Marchenko–Pastur law, all with α = 4.

VAR(q) processes

We note again that a VAR(p) process (Xt) consists of independent copies of AR(p)
processes (Xt). By ( 3.18 ), the spectral density of an AR(p) process is

γ̃(Xt)(ω) = 1
2π

∣∣∣∣ 1
θ(e−iω)

∣∣∣∣2, ω ∈ (−π, π].

Incidentally, the spectral density is connected to the spectral density of a MA(p)
process shown in ( 3.22 ). Regarding the θ(p) polynomial, all coefficients (θk)k∈{1,...,p}
have negative sign and all the coefficients (φk)k∈{1,...,p} of the φ(p) polynomial have
positive sign. So if one sets φk := −θk for all k ∈ {1, . . . , p} and inverts, one arrives
at a MA(p) representation. We therefore transform the original θ(p) coefficients
(θk) as explained and invert the autocorrelation function, which in turn gives us the
spectral density in the MA(p) parametrization we already solved.

For VAR(1) the explicit distribution generating polynomial as solution to ( 3.21a )
reads

M4z2

+M3(2z2 − 2
(
θ2

1 + 1
)
αz
)

+M2((θ2
1 − 1

)2α2 − 2
(
θ2

1 + 1
)
αz −

(
α2 − 1

)
z2)

− 2Mα2z2

− α2z2,
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and is a polynomial of order 4. The LeafCount is 86, but any of the roots in closed
form has a LeafCount of 3 836. In  Figure 3.2 we compare the probability density
for the eigenvalues calculated with the above described method with simulation
results of appropriate VAR(1) matrices with an autocorrelation of θ1 = ρ = 1

2 and a
rectangularity ratio of α = 4.

VAR(1), simulated density for kth eigenvalue with α = 4 and ρ = 1
2

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8 dµVAR(1) with α = 4

scaled density kth eigenvalue

mean of kth eigenvalue

Figure 3.2: Simulation of n = 220 realizations of size 32 × 32 VAR(1) covariance
matrices with rectangularity ratio α = 4 and ρ = 1

2 .

The fit of the theoretical results with the simulation outcomes is striking. Numerical
integration of the plotted density gives 1 with a precision of at least 6 decimal
places.

In comparison with  Figure 3.2  we ran the same simulation for uncorrelated Gaussian
processes, which gives the Marchenko–Pastur density.

Simulated density for kth eigenvalue and Marchenko–Pastur law for α = 4

0 0.5 1 1.5 2 2.5
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0.4
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0.8

1

dµMP with α = 4

scaled density kth eigenvalue

mean of kth eigenvalue

Figure 3.3: Simulation of n = 220 realizations of size 32× 32 Wishart matrices with
rectangularity ratio α = 4.
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Comparing  Figure 3.3 with  Figure 3.2 one notices that by inducing auto-correlation
of ρ = 1

2 the right tail and thus the domain of the probability density function
increases. To conserve probability mass at unity the shape of the distribution has to
change. It should come at no surprise that introduction of a parametric family, which
contains the original Marchenko–Pastur distribution as a special case but possesses
an extra parameter, gives rise to more flexibility. But seen the other way, one is able
to model more distinct dynamics respectively one is able to differentiate between
certain dynamics by comparing different spectral densities.

For VAR(2) we get again a 9th order distribution generating polynomial in M , which
has a LeafCount of 1 862. Its explicit expression can be found in  subsection A.3.2 .
In  Figure 3.4  we compare the spectral density of a VAR(2) process with small
parameters θ1 = θ2 = 0.1 with the Marchenko–Pastur law, both with rectangularity
ratio α = 4. We also plot two additional densities for two different parameter
combinations chosen in such a way that the resulting process is stationary.

VAR(2) eigenvalue densities for various parameter combinations
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Figure 3.4: Comparison of VAR(2) eigenvalue densities for various parameter combi-
nations with Marchenko–Pastur law, all with α = 4.

The shape is different from VMA(2) processes depicted in  Figure 3.1  . The most
prominent difference is that for positive auto-correlations of order 1 and 2 the spectral
density exhibits a long right tail. This is to be expected, as two positive auto-
correlation coefficients mean that consecutive realizations of the AR(2) process are
positively correlated and thus cluster. The VAR(2) process consists of N independent
copies of AR(2) processes, where clusters of high  resp. low values differ between
different trajectories. This naturally spreads the singular values of the observed
matrix X ∼ VAR(2) with X ∈ RT×N , which in turn are implied by the eigenvalues
XTX. 

27
 But this, modulo renormalization, is the ML covariance matrix estimator.

So, after normalizing the variances to 1, this also holds for the ML correlation matrix
estimator.

27We disregarded the T −N zero singular values, which would be present in XXT for T > N .
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We were not able to calculate the distribution generating polynomials for VMA(3)
or VAR(3) as Mathematica eventually ran out of memory, 

28
 but both of these

 distribution generating polynomials are expected to be quite complicated and long.

VARMA(p, q) processes

We saw above that knowing the explicit form of the spectral density was key to
explicitly calculate theM-transform ( 3.21a ). In principal, one always follows the
same route: the definite integral ( 3.21b ) has to be solved for a specific spectral density
given by (  3.18 ) for ARMA(p, q) processes. This is a rational function, because

σ2

2π

∣∣∣∣φ(e−iω)
θ(e−iω)

∣∣∣∣2 = σ2

2π
φ(e−iω)φ(e−iω)
θ(e−iω)θ(e−iω)

, ω ∈ (−π, π]

= σ2

2π
φ(e−iω)φ(eiω)
θ(e−iω)θ(eiω) , (3.26)

where the second equality holds because all coefficients of the φ(z) and θ(z) polyno-
mials have real coefficients for which we have φk = φk for k ∈ {1, . . . , q} respectively
θ` = θ` for ` ∈ {1, . . . , p}. The earlier mentioned »Chebyshev polynomial trick«
allows us to express both, the numerator and denominator of the rational function
( 3.26 ), as polynomials in x := 2 cosω. So at last one only has to solve a definite
integral ( 3.21b ) of a rational function. The integrand is a rational function in the
numerator and denominator polynomials in x, but with complex coefficients induced
by the complex M .

In principle this kind of integrand is solvable by an application of the residue
theorem. For it to apply, we must not have any poles of the integrand on (0, π),
as the integration path must not go through any of the residues. Then we have
to integrate big circular or rectangular paths, whichever is more convenient, which
encloses all residues.

For VARMA(1, 1), we were able to calculate integral ( 3.21b ) with the aid of Mathe-
matica and obtained the following 5th order distribution generating polynomial:

(M + 1)2αz2(M + α)
·
(
M
(
φ1
(
−2
(
φ2

1 + 1
)
θ2

1 + φ1
(
φ2

1 − 10
)
θ1 − 2

(
φ2

1 + 1
))

+ θ1
)

−α
(
φ2

1 + 2φ1θ1 + 1
)
(φ1(φ1θ1 + 2) + θ1)

)
−M(M + 1)α2z

(
M
(
2φ2

1
(
θ3

1 + θ1
)
− φ1

(
θ4

1 − 10θ2
1 + 1

)
+ 2
(
θ3

1 + θ1
))

−2φ1
(
θ2

1 − 1
)2
α
)

+ φ1
(
φ2

1 − 1
)2(M + 1)3z3(M + α)2 + θ1

(
θ2

1 − 1
)2
M2α3.

In this compact form, it has a LeafCount of 160, but multiplied out so every monomial
of M has its own coefficient the LeafCount is 467.

28On a 16 GB RAM Workstation, ca. 14 GB RAM usable.
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Next, we compare the VARMA(1, 1) law we calculated with the Marchenko–Pastur
law. For Gaussian VARMA(1, 1) the Marchenko–Pastur law dµMP is equal to a
situation with φ1 = θ1 = 0. In  Figure 3.5 we plotted the Marchenko–Pastur law
dµMP versus the eigenvalue densities of VARMA(1, 1) processes with three different
parameter pairs and a rectangularity ratio for α = 4.

VARMA(1, 1) eigenvalue densities for various parameter combinations

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
dµMP with α = 4

VARMA(1, 1) with φ1 = 0.1, θ1 = 0.1 and α = 4

VARMA(1, 1) with φ1 = 0.5, θ1 = 0.1 and α = 4

VARMA(1, 1) with φ1 = 0.5, θ1 = 0.5 and α = 4

Figure 3.5: Comparison of VARMA(1, 1) eigenvalue densities for various parameter
combinations with Marchenko–Pastur law, all with α = 4.

For φ1 = θ1 = 0.1 the eigenvalue density deviates only slightly from the Marchenko–
Pastur law. The shape changes for more distinct parameter values.

3.1.6 General Remarks on VARMA(p, q) Eigenvalue Density
Distributions

One also speaks of rational spectra when describing ARMA(p, q) processes, because
( 3.26 ) is a rational function. The other way round, for appropriate polynomials
in numerator and denominator we can find an ARMA(p, q) process. By making
sure that the numerator and denominator are relative prime to each other and, if
necessary, by exchanging roots with modulus < 1 with their inverses, one can always
construct a stationary ARMA(p̃, q̃) process  w.r.t. some white noise process.

Having the previous paragraph in mind, it is not surprising that in time series
theory of spectral densities every real-valued stationary process (Xt) with continuous
spectral density can be approximated with either an invertible MA(q) or a causal
AR(p) process. The approximation is uniform for the respective spectral densities.  

29
 

If one can establish either of both, for instance the approximation for arbitrary MA(p)

29See [ 20 , Corollary 4.4.1 and 4.4.2].
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processes, by Wold’s decomposition one gets an appropriate approximation for AR(q)
processes, too. From this perspective a VARMA(1, 1) process combines both, the
direct MA(1) component and the indirect MA(p) components, with possibly p =∞,
from the Wold decomposition of the AR(1) part. Therefore, in general VARMA(1, 1)
processes are quite parsimonious as their spectral density can assume shapes that
MA(p) or AR(p) processes could not for low number of parameters p. Because of
this rationale, having been able to calculate the explicit distribution generating
polynomial for VARMA(1, 1) processes is likely of much more practical relevance
than being able to calculate the explicit distribution generating polynomials for
VMA(p)  resp. VAR(p) processes for moderate p ≥ 3.

In the special case of a linear stochastic process with dependence structure given
by the Gaussian MA processes in [ 40 ] Hasegawa et al. give a nice interpretation of
the sample covariance matrix Ĉ as a random matrix model for the compound free
Poisson law. In ( 2.3 ) we already defined the free Poisson law and  remarked that this
is a synonym in free probability for the Marchenko–Pastur law in random matrix
theory. The compound generalization of the free Poisson law is given by

lim
T→∞

((
1− α−1

T
δ0 + α−1

T
ρ

))�T

, (3.27)

where ρ is a probability measure over R. For ρ = δ1 one retrieves the special
non-compound version,  i.e. the Marchenko–Pastur law. So VMA processes give rise
to a sample covariance matrix, which is ex ante a random matrix with spectral
distribution ( 3.27 ), where ρ is the spectral measure of the auto-covariance matrix of
the VMA process. If the auto-covariance matrix is trivial, that is the identity matrix
I, all its eigenvalues are 1 and therefore its spectral measure is δ1.

3.2 Spectral Distributions of Some Linear Stochastic
Processes

In the previous  section 3.1  we deduced first a connection of the spectral density
γ̃(Xt)(τ) of a univariate stochastic process (Xt) and the spectral measure of the
sample covariance matrix estimator of a matrix of N independent copies of (Xt).
We present a direct method to calculate the G-transform of the sample covariance
matrix estimator from a given spectral density and a noise matrix Z, subject to some
technical restrictions.

Remark: This method was introduced 2011 by Pfaffel and Schlemm in [  81 ]. In this
section we primarily follow [ 81 ], restate their main theorem and replicate some of
their know results as starting point for our own extensions. We specifically mention
new results not previously known.
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3.2 Spectral Distributions of Some Linear Stochastic Processes

Theorem 3.1 (Cauchy Transform of Linear Stochastic Process 

30
 )

For each i = 1, . . . , N , let Xt,i =
∑∞

j=0 cjZt−j,i, t ∈ Z, be a linear stochastic process
that satisfies

E[Zt,i] = 0, E
[
Z2
t,i

]
= 1, and sup

t,i
E
[
Z4
t,i

]
<∞

lim
n→∞

1
TN

T∑
t=1

N∑
i=1

E
[
Z2
t,i1Z2

t,i≥εT

]
= 0, 

31
 (3.28)

and has a continuously differentiable spectral density γ̃. Assume that

i) there exist positive constants C and δ such that |cj| ≤ C (j + 1)−1−δ (∀j ≥ 0),

ii) for almost all λ ∈ R, f(ω) = λ for at most finitely many ω ∈ [0, 2π], and

iii) d
dω γ̃(ω) 6= 0 for almost every ω.

Then the empirical spectral distribution F T−1XTX of T−1XTX converges, as T tends
to infinity,  almost surely to a non-random probability distribution F̂ with bounded
support. Moreover, there exist positive numbers λ−, λ+ such that the G-transform
z 7→ GF̂ (z) of F̂ is the unique mapping C+ → C+ satisfying

α

GF̂ (z) = −αz + α

2π

∫ λ+

λ−

λ

1 + λα−1GF̂ (z)
∑

ω∈[0,2π]:γ̃(ω)=λ

1∣∣ d
dω γ̃(ω)

∣∣ dλ. (3.29)

Remark: We use the convention that sample matrices have its observations in time
in rows and not in columns as the authors in [ 81 ]. We therefore have to rescale their
variables according to m 7→ α−1GF̂ (z), z 7→ αz and y 7→ α to match ours. We already
rescaled their original version [ 81 , Theorem 1.1.] to our notation in  Theorem 3.1 .

Condition ( 3.28 ) is a Lindeberg-type condition that ensures that the contribution
of every single random variable to the variance of their sum is arbitrary small for
sufficiently large T .

3.2.1 VARMA(1, 1) processes

To utilize  Theorem 3.1 for a linear stochastic process one needs to differentiate the
function

 g  : [λ−, λ+]→ R+, λ 7→ 1
2π

∑
ω∈[0,2π]:γ̃(ω)=λ

1∣∣ d
dω γ̃(ω)

∣∣ dλ. (3.30)

30See [ 81 , Theorem 1.1.].
31T ∈ N
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3 Eigenvalue Distributions for Specific Random Matrix Models

Remark: Note that we took the normalizing constant of (2π)−1 inside the integral as
part of function g to ease subsequent notation of integrals.

From ( 3.26 ) we know that the spectral density of an ARMA(1, 1) process is given
by

γ̃ARMA(1,1)(ω) = 1
2π

1 + φ2
1 + 2φ1 cos(ω)

1 + θ2
1 − 2θ1 cos(ω) , ω ∈ [0, π]. (3.31)

Since this is the spectral density of a real process, because of symmetry it suffices
to analyze ( 3.31 ) only on the domain [0, π]. Because the sum in ( 3.30 ) is over all
γ̃(ω) = λ we need to invert γ̃ARMA(1,1)(ω) and arrive at

γ̃
(−1)
ARMA(1,1)(λ) := arccos

(
(θ2

1 + 1)λ− φ2
1 − 1

2(φ1 + θ1λ)

)
.

The principal branch of arccos is monotonically decreasing from arccos(−1) = π to
arccos(1) = 0, so the domain of γ̃(−1)

ARMA(1,1)(λ) can be found by calculating the argmin
 resp. argmax of γ̃(−1)

ARMA(1,1)(λ), that is solving for the argument of arccos for {1,−1}.
Doing so, we get

1 = (θ2
1 + 1)λ− φ2

1 − 1
2(φ1 + θ1λ) ⇐⇒ λ1 = (φ1 − 1)2

(θ1 + 1)2

−1 = (θ2
1 + 1)λ− φ2

1 − 1
2(φ1 + θ1λ) ⇐⇒ λ2 = (φ1 + 1)2

(θ1 − 1)2 .

We can now set λ− := min{λ1, λ2} and λ+ := max{λ1, λ2}, which gives the range of
γ̃ARMA(1,1)(ω)  resp. the domain of γ̃(−1)

ARMA(1,1)(λ) with [λ−, λ+].

It only remains to calculate

1∣∣ d
dω γ̃(ω)

∣∣ =
∣∣∣∣∣− (1 + θ2

1 − 2θ1 cos(ω))2

2(φ1 + θ1)(φ1θ1 + 1) sin(ω)

∣∣∣∣∣,
to substitute ω := γ̃

(−1)
ARMA(1,1)(λ) and ensure that the resulting expression is non-

negative due to the absolute value requirement. Doing so and utilizing the trigono-
metric identity cos(arccos(x))

sin(arccos(x)) = x√
1−x2 , one arrives at

g(λ) :=

(
1 + θ2

1 − 2θ1 cos
(

arccos
(

(θ2
1+1)λ−φ2

1−1
2(φ1+θ1λ)

)))2

2(φ1 + θ1)(φ1θ1 + 1) sin
(

arccos
(

(θ2
1+1)λ−φ2

1−1
2(φ1+θ1λ)

))1[λ−,λ+]

= (φ1 + θ1)(φ1θ1 + 1)

π(φ1 + θ1λ)
√(

(φ1 + 1)2 − (1− θ1)2λ
)(

(1 + θ1)2λ− (1− φ1)2) . (3.32)
Due to the definition of g on the domain [λ−, λ+] in ( 3.30 ), the indicator function is
not needed and was therefore omitted in ( 3.32 ).
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3.2 Spectral Distributions of Some Linear Stochastic Processes

Remark: Pfaffel and Schlemm give function g(λ) in [ 81 , p. 10, bottom], but note
that they forgot the factor (φ1 + θ1)(φ1θ1 + 1) in the numerator. But for subsequent
calculations one only arrives at their results with ( 3.32 ) and not with their version.
So this missing factor seems to be only some minor inadvertence on their side.

We now have all the prerequisites to calculate integral ( 3.29 ). After tedious calcula-
tions one can bring the integrand

λ

1 + λα−1GF̂ (z)g(λ)

in the following easy to integrate form∫ 1
a+ bλ2 dλ =

arctan
(√

b
a
λ
)

√
ab

,

with lengthy expressions for a, b and quite complicated integration limits. The
arctan expression can be written in a difference of log’s along the imaginary axis.
Rearranging, collecting terms and simplifying, one finally arrives at the concrete
form of ( 3.29 ) for a VARMA(1, 1) process, given by

0 = αz

1− α(1 + GF̂ (z)z) − αz + φ1

φ1GF̂ (z)− θ1
(3.33)

+ (φ1 + θ1)(φ1θ1 + 1)

(θ1 − φ1GF̂ (z))
√(

(φ1 + 1)2GF̂ (z) + (θ1 − 1)2)((φ1 − 1)2GF̂ (z) + (θ1 + 1)2) .
This is, modulo a different scaling, exactly  

32
 the solution of [ 81 , eq. (3.2)]. Solving

( 3.33 ) gives a quintic polynomial in GF̂ (z) and one of its roots is the GF̂ (z) we
searched for.

We calculated the explicit distribution generating polynomial for the G-transform,
which is the following quintic polynomial in G = GVARMA(1,1)(z):

φ5
1G3(Gz − r + 1)2 (3.34)

+ φ4
1θ1G2r(Gz + r + 1)(−Gz + r − 1)− 2φ3

1G2(G − (θ2
1 + 1

)
r
)
(Gz − r + 1)2

+ 2φ2
1θ1Gr

(
G
(
r
(
−z
(
θ2

1(Gz + 2) + G(z + 8) + 2
)
− 8
)

+ 5(Gz + 1)2 + 3r2)
−
(
θ2

1 + 1
)
r
)

+ φ1G
(

2G3z
(
r
(
θ2

1z + z − 1
)

+ 1
)

+ G2

·
(
r
(
−4
(
θ2

1 + 1
)
(r − 1)z +

(
θ4

1 − 10θ2
1 + 1

)
rz2 + r − 2

)
+ 1
)

+ 2Gr
((
θ2

1 + 1
)
(r − 1)2 + rz

(
θ4

1 −
(
θ2

1 − 1
)2
r − 10θ2

1 + 1
))

+ r2
(
θ4

1 − 2
(
θ2

1 − 1
)2
r − 10θ2

1 + 1
)

+ G4z2
)

+ r
(
θ5

1
(
−(Grz + r)2)− 2θ3

1r(G − r)(Gz + 1)2

− θ1(Gz(G + r) + G(−r) + G + r)(Gz(G + r) + Gr + G + r)
)
.

32Note that we exchanged minuend and subtrahend for the term in the denominator, explaining
changed signs.
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Remark: Pfaffel and Schlemm write about the solution of ( 3.33 ) in [ 81 , eq. (3.2)] the
following: »This is a quartic equation in mz ≡ m(z), which can be solved explicitly.«
([ 81 , p. 11]) 

33
 Clearly, our distribution generating polynomial ( 3.34 ) is quintic and

not quartic. Our rescaling should not change the order of the polynomial and does
not. Carrying out their calculations one also gets to a quintic polynomial. Pfaffel
and Schlemm probably mixed up the polynomial order with the one they got after
setting φ1 = 1 and θ1 = 1/2. For this special case the polynomial is, in fact, a quartic
and therefore can be solved explicitly in closed form.

For VMA(1)  resp. VAR(1) we get, again, quartic polynomials. They can be deduced
by setting either θ1 = 0 or φ1 = 0 in ( 3.34 ). The spectral densities, generated by the
 inverse Cauchy-transform theorem , are indistinguishable to the ones generated by
the method used in  section 3.1  .

As we now understand how to utilize this method, we want to apply it to new
linear stochastic processes. Up to now, we only investigated VARMA(p, q) pro-
cesses. One common characteristics of the ARMA(p, q) process family is, that its
autocorrelation function decreases exponentially for growing lags τ , that is we have∣∣γARMA(p,q)(τ)

∣∣ ≤ Crτ for some constants C > 0 and 0 < r < 1. 

34
 Stochastic pro-

cesses with exponential decaying auto-correlation function are called »short-range
dependent«  resp. exhibiting »short memory«. On the other hand, a process whose
autocorrelation function decays slower than exponentially is said to exhibit »long-
range dependence«  resp. having »long memory«. We will introduce a prominent
class of linear stochastic processes with long memory in the next sections.

3.2.2 Short Introduction to Long-Range Dependence

Box and Jenkins introduced and popularized in [  19 ] the class of so-called integrated
ARMA  resp.  ARIMA(p, d, q) processes with integration order d ∈ N0. The linear
stochastic process (Yt) is ARIMA(p, d, q) if the process (1− B)dYt = Xt and (Xt) is
ARMA(p, q). Granger and Joyeux in 1980 and Hosking in 1981 proposed to allow
for non integer-valued d and realized that the resulting autocorrelation function
exhibits long memory. The fact that d is non-integer gave these kind of processes
the name »fractional integrated« ARMA processes of (fractional integration) order
d ∈ (−2−1, 2−1).

Taqqu discusses in [ 101 , section 4] different definitions of long-range dependence. We
will only use this term in a broad sense meaning that the auto-correlation function
decays slower than exponentially.

In econometrics, [  34 ] and [ 42 ] are among the first to introduce and apply fractional
integration methods. Henry and Zaffaroni discuss in [ 41 ] long range dependence in
macroeconomics and finance.

33Their m(z) is, in our notation, the G-transform G(z).
34See [ 20 , section 3.3 and p. 520], see also [ 38 , pp. 448–449] and [ 43 , p. 169].
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In [ 89 , section 10], Sewell gives empirical evidence and list research that implies that
stock return time series sometimes exhibit long range dependence. Baillie et al. is
one of the first in 1996 to apply  fractional integrated autoregressive–moving-average
(ARFIMA) methods to economics, though he analyzed inflation and also used a

 GARCH model. Willinger et al. find some, slightly inconclusive, evidence for long
range dependence in daily stock return time series.

Lillo and Farmer research consequences of empirical identifiable long dependence
patterns in order processes, but argue that the market remains efficient due to also
long memory in »anti-correlated fluctuations in transaction size and liquidity« ([ 58 ,
abstract]).

Already in 1980 Granger argued in [ 33 ] that long memory in economic time series
could be induced by aggregation of time series with different levels of persistence.
This is essentially the well-known argument of [ 6 ] for volatility clustering. Suárez-
García and Gómez-Ullate estimate long memory being present in high-frequency
return series of Madrid’s Stock Exchange Ibex35 index and also give evidence for
the above made claim by Granger that this long memory might be caused by a
superposition of a high-frequency component and a slow-varying one.

On the other hand, Mikosch and Stărică argue in [  69 ] and [ 70 ] that non-stationary of
return time series induces the long range dependence type behavior of its empirical
auto-correlation function. Overall, Graves et al. give an extensive history of long
range dependence, beginning with Hurst  

35
 and Mandelbrot 

36
 to fractional integrated

models of Hosking.

3.2.3 ARFIMA(p, d, q) processes

We begin by defining what we understand by fractional integration in terms of the
usual backshift operator B.

Definition (Fractional Difference Operator)
For the backshift operator B defined in ( 3.1 ), for d > −1, define the fractional
difference operator by 

37
 

 (1− B)d  

:=
∞∑
j=0

(
d

j

)
(−B)j =

∞∑
j=0

j∏
k=1

k − 1− d
k

Bj.

Having defined what is meant by fractional integration we can now define fractional
integrated ARMA processes.

35Hurst invented the Rescaled Adjusted Range Statistic in a series of papers [ 46 ,  47 ,  48 ,  49 ].
36See [ 61 ,  62 ].
37See [ 43 , eq. (2.1)] for the definition and [ 20 , eq. (13.2.2)] for the second equality.
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Definition (ARFIMA(p, d, q) processes)
The stochastic process (Xt) is called an ARFIMA(p, d, q) process with d ∈ (−2−1, 2−1),
if there exists a white noise process (Zt) ∼ WN (σ2) such that

θ(B)(1− B)dXt(ω) = φ(B)Zt(ω),

holds  almost surely and θ(B)  resp. φ(B) are AR  resp. MA polynomials of order p
 resp. q.

The auto-correlation function of an ARFIMA(p, d, q) process is given by 

38
 

γARFIMA(p,d,q)(τ) =
τ∏
k=1

k − 1 + d

k − d . (3.35)

Noting that a product of the fraction in ( 3.35 ) can be written as a product of
factorials  resp. the Gamma function Γ, an application of Sterling’s formula gives the
asymptotic behavior of the auto-correlation function as

γARFIMA(p,d,q)(τ) ∼ Γ(1− d)
Γ(d) τ 2d−1, for τ →∞, (3.36)

where the Gamma function for negative arguments x ∈ [−1, 0) is defined to be
Γ(x) := x−1Γ(1 + x). Clearly, the auto-correlation of ( 3.36 ) decays polynomially
and such much slower than the exponential decay of ARMA(p, q) auto-correlation
functions.

Hosking proves in [  43 , Theorem 1] that for d < 1/2 an ARFIMA(0, d, 0) process (Xt)
is stationary and has a MA(∞) representation and for d > −1/2 it is invertible and
has an AR(∞) representation. The spectral density of an ARFIMA(0, d, 0) process
is given by

γ̃ARFIMA(0,d,0)(ω) =
(

2 sin
(

1
2ω
))−2d

= (2− 2 cos(ω))−d, ω ∈ [0, π], (3.37)

where the last equality follows from the half angular formula 2 sin2(ω
2
)

= 1−cos(ω).

In general, the spectral density of an ARFIMA(p, d, q) process can be calculated to
obey

γ̃ARFIMA(p,d,q)(ω) = σ2

2π

∣∣∣∣φ(e−iω)
θ(e−iω)

∣∣∣∣2∣∣1− e−iω∣∣2. (3.38)

Comparing ( 3.38 ) with the spectral density of an ARMA(p, q) process ( 3.18 ) one
notices that the fractional integration part is given by multiplying the spectral density
with

∣∣1− e−iω∣∣−2d =
(√

1− cos(ω)2 + sin(ω)2
)−2d

= (2− 2 cos(ω))−d, (3.39)

38See [ 20 , eq. (13.2.9)].
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where the second equality follows from the Pythagorean trigonometric identity and
subsequent application of de Moivre’s formula.

In general, if (Yt) is a stochastic process with an absolutely summable autocorrelation
function γ(Yt)(τ), it therefore has a continuous spectral density γ̃(Yt)(ω). Let (Xt)
be the stochastic process obtained by fractionally integrating process (Yt), then the
spectral density of (Xt) is given by  

39
 

γ̃(Xt)(ω) =
∣∣1− e−iω∣∣−2d

γ̃(Yt)(ω), ω ∈ [0, 2π).

In  subsection 3.1.6 we argued that ARMA(p, q) processes can approximate any
continuous spectral density, so why does one need fractional integrated ARMA(p, q)
processes? The answer is twofold.

If a stochastic process is integrated, fractionally or integer-valued, it has infinite
variance and one has to difference in order to transform the process to one with
finite variance. If the stochastic process (Yt) was fractionally integrated with, say,
d = 1/3, differencing of order 1 would give a stochastic process (Xt) with integration
order −2/3. This is completely legitimate as we defined fractional integration and, in
particular, fractional integrated ARFIMA(p, q) processes. So for the sake of argument
take (Yt) ∼ ARFIMA(p, d, q). But according to [  43 , Theorem 2, (1) & (2)], an
ARFIMA(p, d, q) (Yt) process is

1. stationary, if d < 1/2 and θ(z) has only roots outside the unit circle,

2. invertible, if d > −1/2 and φ(z) has only roots outside the unit circle.

So the fractional integration order is d− 1 = −2/3 < −1/2 for the stochastic process
(Xt) and it thus cannot possess an invertible AR(∞) representation. In addition, by
differencing »too much« the zero frequency component will be removed.  

40
 

Second, as it is possible to approximate a given spectral density with an ARMA(p, q)
process whose spectral density is close in norm to the first, the polynomial orders
p, q might be very high. This induces numerous problems ranging from parameter
identification to problems when predicting. Following the epistemic principle of
Occam’s razor a more parsimonious model should be used that captures the es-
sential characteristics,  i.e. the long range dependence. This justifies the class of
ARFIMA(p, d, q) models.

A closed form expression for the auto-covariance function and the spectral den-
sity for an ARFIMA(p, d, q) process with only Gaussian white noise in terms of
hypergeometric functions is given in [  95 ].

39See [ 87 , eq. (6.13)].
40See [ 35 , p. 16].
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3.2.4 VARFIMA(0, d, 0) processes

Let (Xt) ∼ ARFIMA(p, d, q) be a stochastic process with d ∈ (−2−1, 2−1). Construct
the sample matrix X ∈ RT×N as the collection of N independent samples of (Xt),
all with length T . So Xt,i is the tth realization of the ith copy of process (Xt). As
before, we want to examine spectral properties of the sample covariance matrix
Ĉ := T−1XTX ∈ RN×N . By  Theorem 3.1 this amounts to calculating the integral in
( 3.29 ) and subsequently solve the equations for GF̂ (z) with F̂ the spectral measure
of Ĉ.

By ( 3.38 ) the spectral density of an ARFIMA(0, d, 0) process is given by ( 3.37 ),
for d ∈ (−2−1, 2−1). Following the same steps as in the derivation of the spectral
measure for VARMA(1, 1) processes in  subsection 3.2.1  , the inverse spectral density
is then given by the principal branch of

γ̃
(−1)
ARFIMA(0,d,0)(λ) = arccos

(
2− λ− 1

d

2

)
, for λ > 0 and d 6= 0. (3.40)

( 3.40 ) is a strictly monotone increasing function for d > 0  resp. strictly monotone
decreasing for d < 0. The range of ( 3.37 ) is in the interval [λ−, λ+] with boundaries{

0−d, 4−d
}
, where 4−d ∈ (2−1, 2) for d ∈ (−2−1, 2−1) and we set 0−d =∞ for d > 0.

Next, we have to calculate

1∣∣ d
dω γ̃(ω)

∣∣ = (2− 2 cos(ω))d(cos(ω)− 1)
sin(ω)d ,

to substitute ω := γ̃
(−1)
ARFIMA(0,d,01)(λ) and ensure non-negativity by introducing an

appropriate sign factor. Doing so and simplifying further, one arrives at

g(λ) := sign(d) λ−
d+1
d

πd

√
λ−

2
d

(
4λ 1

d − 1
) . (3.41)

Remark: Pfaffel and Schlemm only mention ARFIMA processes at the end of [ 81 ],
but they never tried to obtain or approximate its density. We are also not aware that
anybody else tried or succeeded. To the best of our knowledge, we are the first to show
the shape of resulting  LSDs .

The integral in ( 3.29 ) ∫ λ+

λ−

λ

1 + λα−1GF̂ (z)g(λ) dλ, (3.42)

is approximated numerically, as we were not able to get closed form solutions for all
d ∈ (−2−1, 2−1). For specific rational d ∈ ±{1/4, 1/3}, with the aid of Mathematica
we got lengthy expressions involving elliptic integrals and their inverses, elliptic
functions, and trigonometric and hyperbolic functions. For instance, the integrals
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of the two positive d involved the incomplete elliptic integral of the third kind Π
and arcsinh, whereas the integrals for the two negative d involved incomplete elliptic
integral of the first kind F and the arcsin.

Approximation of the complex-valued integral of the complex integrand is challenging
but feasible. After all, we want to solve ( 3.29 ) for GF̂ (x+ iε) and trace out the
spectral density −π−1 ImGF̂ (x+ iε) along x ∈ [0,∞). In practice, x ∈ [0, xmax]
suffices for some large enough value of xmax that makes this interval enclose the
domain of the spectral measure. We numerically approximate integral ( 3.42 ) and
search for the argument GF̂ (x+ iε) =  Re G + ImG that minimizes the expression∥∥∥∥∥∥− α

GF̂ (z) − αz + α

2π

∫ λ+

λ−

λ

1 + λα−1GF̂ (z)
∑

ω∈[0,2π]:γ̃(ω)=λ

1∣∣ d
dω γ̃(ω)

∣∣ dλ

∥∥∥∥∥∥
2

2

. (3.43)

For values of ( 3.43 ) close to 0 the equality of ( 3.29 ) holds approximately and we can
solve, with the  inverse Cauchy-transform theorem , for −π−1 ImG to get the value of
the spectral measure at x.

Clearly, this method is computationally expansive, as for the search for an argmin of
( 3.43 ) we have to approximate integral ( 3.42 ) for every search step. Secondly, one has
to repeat this procedure for every grid point xk in [xmin, xmax] to approximate the
spectral measure. Utilizing already calculated nearby solutions as starting points for
the minimization algorithm reduces its time and increases its stability. Nevertheless, if
at one step the minimization fails to find arguments that are in a small neighborhood
of the true argmin, there might occur an artifact in the estimated density. Of course
one could smooth those out by applying, for instance, a median filter for the density
values. But this smoothens the very sharp ascent typically seen for the left-sided tail
of the density. This effect would be mitigated by refining the grid points (xk), which
in turn increases computational time.

In  Figure 3.6 we show some simulated VARFIMA(0, d, 0) eigenvalue densities and
compare them to the Marchenko–Pastur law one would get for d = 0 and Gaussian
white noise.

One can identify different shapes for positive  resp. negative fractional integration
orders. We also chose a parameter value of d = 0.3 where the simulated eigenvalue
density functions has some clearly visible artifacts. Also note the small artifacts
present for small values of x.

The estimated eigenvalue densities have to be used with some caution. Different
from previous numerical simulations, the eigenvalue densities do not integrate to 1
but rather to values about 0.78. In fact the eigenvalue densities for the fractional
integration orders d ∈ {−0.4, 0.1, 0.3} sum to 0.783, 0.786  resp. 0.89. The last value
for d = 0.3 is distinctly larger than about 0.78 because all the artifacts also contribute
to the sum. For the plot and subsequent use we normalized each eigenvalue density
so that it integrates to 1. But obviously this procedure lowers all values of eigenvalue
densities with artifacts present. Following this reasoning the eigenvalue density for
d = 0.3 should be depicted a bit higher than it is.
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VARFIMA(0, d, 0) eigenvalue densities for various fractional integration orders d

dµmp with α = 4
VARFIMA(0, d, 0) with d = −0.4 and α = 4
VARFIMA(0, d, 0) with d = 0.1 and α = 4
VARFIMA(0, d, 0) with d = 0.3 and α = 4

Figure 3.6: Comparison of VARFIMA(0, d, 0) eigenvalue densities for various frac-
tional integration orders d, all with α = 4. Estimated with  algorithm 4.1 .

Remark: One can detect the presence of artifacts quite well by looking at the residues
( 3.43 ) of the argmin. Almost all artifacts have abnormal high residues of more then 5
orders of magnitude larger in log2. The problem remains to find the true values. One
could try other minimization algorithms for grid values xk that produced abnormal
high residues in the first minimization run. Unfortunately this makes it hard to
automate the generation of VARFIMA(0, d, 0) eigenvalue densities.

3.2.5 VARFIMA(1, d, 1) processes

The spectral density of an ARFIMA(1, d, 1) process (Xt) is because of ( 3.38 ) in
conjunction with ( 3.39 ) and ( 3.31 ) given by

γ̃ARFIMA(1,d,1)(ω) = 1
2π

1 + φ2
1 + 2φ1 cos(ω)

1 + θ2
1 − 2θ1 cos(ω) (2− 2 cos(ω))−d, ω ∈ [0, π]. (3.44)

The spectral density function ( 3.44 ) can assume many different shapes. This flexibility
is great for modeling purposes as it permits a very parsimonious representation for
a wide variety of situations. Unfortunately, due to the many shapes possible it is
very tedious to find a closed form inverse spectral density. The spectral density in
γ̃ARFIMA(1,d,1)(ω) is in general not anymore monotone on [0, π], so the inverse has to
be defined piecewise. At most, except for possible degeneration, the inverse consists
of 3 different piecewise functions. This amounts to saying that the spectral density
γ̃ARFIMA(1,d,1)(ω) has some value(s) λ in its range which is the image of 3 different
arguments ω1, ω2, ω3. It is a tedious task to calculate the domain of each of the
piecewise functions, identify which of the endpoints of the domain is smaller and
determine the right permutation the piecewise inverse functions have to be in.
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We opted for numerical inversion, then searched for the appropriate real inverse
piecewise functions and subsequently numerically differentiated γ̃ARFIMA(1,d,1)(ω) in
order to numerically approximate the function g.

In  Figure 3.7  we compare the eigenvalue density of a VARMA(1, 1) process with
the eigenvalue density of a VARFIMA(1, d, 1) process, where only the fractional
integration parameter d changes from d = 0 to d = 0.4.
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2 at Gargmin

Figure 3.7: Comparison of VARFIMA(1, d, 1) eigenvalue densities with fractional
integration orders d ∈ {0, 0.4}, both with α = 4.

The VARFIMA(1, 0, 1) = VARMA(1, 1) process is the one depicted in  Figure 3.5 .
The positive fractional integration order is with d = 0.4 a relatively high value of
all admissible values d ∈ (−2−1, 2−1) and visibly prolongs the right tail. We also
depicted the residues from the numerical minimization for each grid point xk in the
semi-log plot beneath the densities. There is a distinct pattern visible. Residues
have values of about 2−6 ≈ 0.016 if the minimization algorithm did not converge
properly, otherwise the residues are in [5.519 · 10−8, 1.085 · 10−5].

Remark: We deliberately chose to depict a parameter combination where the mini-
mization algorithm for grid points xk of the far right tail does not converge to caution
the reader and underline the relevance of some more in-depth remarks on numerical
methods used and their limits.
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3.3 Numerical Methods and Algorithms used

3.3.1 Calculating the  DGP for VARMA(p, q) processes

For generation of the  distribution generating polynomial  we opted to re-write the
VAR-process as VMA-process with the parameter transformations already explained
on p.  43 and p.  46 .

Formula ( 3.24 ) only gives a general function of nested square roots. One can try to
expand and combine these square roots and transform to a rational function, that is
a function that can be written as quotient of two polynomials. To convert a rational
function into a polynomial, we have to expand by the denominator polynomial. The
much harder part is to power-expand the nested square roots simultaneously making
sure that the solution set of the equation does not change.

In Mathematica, we defined patterns to combine terms and applied this patterns in an
recursive way locally. Without the aid of Computer Algebra Systems like Mathematica
combining terms would have been quite futile. For instance, Mathematicas LeafCount
is 4 227 for the VMA(2)  DGP . To get a feeling on how to interpret Mathematicas
LeafCount, the  DGP for the VMA(2) as shown in  subsection A.3.1 with LeafCount
of 4 227 amounts to a formula about 5 pages long.

With tedious and lengthly calculation we were able to give the  DGPs for both,
the VMA(2) and the VAR(2) processes. Both are polynomials of degree 9. The
VMA(2)  DGP is shown in  subsection A.3.1  and the VAR(2)  DGP is shown in

 subsection A.3.2  .

The Mathematica Code can be found in  subsection B.1.1  .

Remark: To the best of out knowledge, we are the first to derive the  distribution
generating polynomials  for general VMA(2) and the VAR(2) processes. This lays the
foundation for the subsequent calculation of their spectral densities.

3.3.2 Determining the right root of the  DGP for VARMA(p, q)
processes

Let a  DGP be given as calculated in  subsection 3.3.1 . We use the relationship between
M-transform and G-transform given in ( 2.10 ) to transform back to the G-transform
and subsequently apply the  inverse Cauchy-transform theorem to arrive at a possible
spectral density — if one chose the right root. Thus, for given parameters and
rectangularity ratio α every root (ck)k∈{1,...,9} remains a function of the argument of
the G-transform z ∈ C.  i.e. ck : C+ → C, z 7→ ck(z).

If the  DGP has degree up to 4, there exists an, albeit complicated, closed form
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solution for each root. The real difficulty arises for  DGPs exceeding polynomial
degree 4. There exist special parameter constellations which lower the degree of
the  DGP . But as we want to obtain the spectral density for all possible parameter
constellations we have to numerically solve for the right root.

As every root of the  DGP , depending on in which domain it is defined, can be
interpreted as aM-transform or G-transform, we trivialy transform to the implied
G-transform. Every valid G-transform has to obey lim|z|→∞ zG(z) = 1, so we check
whether this limit holds numerically. If it fails to do so, we discard the explored root
and move to the next root.

Assuming for now that c1 is the right root, c1(z) gives the spectral density at x by
the formula −π−1 Im c1(x+ iε), for ε↘ 0. So in order to arrive at the values for the
spectral density, one has to find the numeric root for c1(x+ iε) along x ∈ R+ and ε
small. We usually set ε := 2−20 and have to trace out the spectral density for many
values of x. 

41
 Mostly, the density has its domain contained in [0, 8] and we sample

xi with |xi+1 − xi| = 2−4.

So from the perspective of the root finding algorithm given the parameters (θ, α, ε, x)
one has to find the right of all possible roots. Calculating the numerical roots one
has to move along the same branch of root and must not unintentionally switch. But
this could happen if for some parameter constellation two roots collapse to the same
value in C and the root finding algorithm does not know which branch of both roots
to follow next. In practice, the roots do not have to coincide, it suffices for two roots
being close together to distort the root finding algorithm.

In  Figure 3.8 we depict the described challenges. The different roots imply each, by
means of the inverse G-transform, a »density« function. Only one of the true roots
generates the searched for spectral density. This spectral density is a real probability
density function in the sense that it integrates to 1.

41ε = 2−20 is just 3.5 orders below the square root of the machine epsilon for binary64 doubles of
2−53, see »754-2008 IEEE Standard for Floating-Point Arithmetic« in [ 50 ]. This should provide
enough leeway for numerical stability and is also sufficiently small.
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“Density” functions implied by all 9 roots of VAR(2)
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3rd root of VAR(2) with θ1 = θ2 = 1/4, α = 4
4th root of VAR(2) with θ1 = θ2 = 1/4, α = 4
5th root of VAR(2) with θ1 = θ2 = 1/4, α = 4
6th root of VAR(2) with θ1 = θ2 = 1/4, α = 4
7th root of VAR(2) with θ1 = θ2 = 1/4, α = 4
8th root of VAR(2) with θ1 = θ2 = 1/4, α = 4
9th root of VAR(2) with θ1 = θ2 = 1/4, α = 4

Figure 3.8: »Density« functions implied by all 9 roots of VAR(2) with θ1 = θ2 = 1/4

and α = 4. Functions corresponding to the true spectral density in bold,
all other dashed.

It is clearly visible that none of the roots on its own generates the searched for
spectral density of the VAR(2) process. In fact, none of the »density« functions
implied by the roots integrates to 1. The integrals range from −3.784 over 0.015
to 3.37181. Negative integrals imply that the corresponding root assumes negative
values, which also dominate the integral. The negative part of the roots is not shown
in  Figure 3.8 as we are only interested in the root leading to the spectral density.

By closer inspection one also notices that a piecewise combination of roots {2, 3, 4, 5}
gives a density that looks like the one we are searching for. In fact, the piecewise
defined function integrates numerically to 0.999 37 ≈ 1. This is evidence that the
numerical root finding algorithm sometimes switches between different root branches.
By visual inspection, when branches of different roots cross the numerical root finding
algorithm might choose a different branch. So we have to correct this shortcoming
and manually reconstruct the complete branch of the true root that generates the
spectral density distribution. But this is computationally expansive, as we have to
check at every possible, positive-valued furcation which branch of root to follow. For
the parameter values θ1 = θ2 = 1/4 and α = 4 depicted in  Figure 3.8 the true spectral
density consists of 4 different numerical root branches.
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The complicacy of the 9 roots of a typical VAR(2) distribution generating polynomial
in contrast to the simple polynomial M9 + (x+ iy) is depicted in  subsection A.3.3 ,
plots  Figure A.1 and  Figure A.2  . The complex structure any numerical root finding
algorithm has to cope with is obvious.

Numeric and thus algorithmic problems like the one occurring for calculating the
spectral density of VAR(2) processes will be likely problems for more complicated
VARMA(p, q) processes.

3.3.3 Numerical Integration for VARFIMA(p, d, q) processes

For numerical approximation of the integral in ( 3.42 ) with an appropriate function
g we used a global adaptive integration strategy to recursively bisect integration
intervals based on its specific error. This ensures parsimony of the number of
integrand evaluations as the integration interval is not sampled uniformly, but where
the global integration error is reduced most.

We use Gaussian quadrature rules  

42
 for integration of the specific subintervals. The

main idea of those is to approximate the integrand locally as weighted sum of
polynomials. Picking n sampling points also implies n weights, which makes the
Gaussian quadrature for n sampling points exact for polynomials up to order 2n−1. 

43
 

Interpolation schemata with polynomials at equidistant spaced points belong to the
class generated by the Newton–Cotes formula. A convenient property of quadrature
rules with equidistant evaluation points is that they nest,  i.e. a refinement of sampling
points in the integration interval re-uses all previously evaluated points. This is
not true in general for non-equidistant sampling points, but those methods sample
more appropriate locally in regions of greater absolute variation of the integrand.
Also, Newton–Cotes rules can suffer from so-called Runge’s phenomenon, that is the
integration error at the edge of the interval increases exponentially with growing n.
This is because a polynomial of order n − 1 can always be made to go through n
points, but it might oscillate quite heavily in accomplishing this task.

The class of so-called Gauss–Kronrod quadrature rules  

44
 combines both afore men-

tioned advantages as it does not require to use equidistant sampling points but
does nest for subsequent refinements. It reuses n+ 1 previously calculated optimal
sampling points and in doing so is exact at step n, for accumulated n + (n+ 1)
integrand evaluations, for polynomials of order 3n+ 1. The next Kronrod–Points
can be efficiently calculated by a 5 term recurrence relation as the zeros of the
orthogonal family of Stieltjes polynomials. 

45
 The nesting property also comes handy

in combination with the global adaptive integration strategy we use to subdivide

42See, for instance, the classic [ 84 , section 4.6].
43We lose one degree because we need 2 points to parametrize a linear-affine monomial, 3 points
for a quadratic polynomial and so on.

44See [ 56 ].
45See [ 57 , eq. (18), see also eqs. (19)–(23)].
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the integration domain into subintervals. Both strategies ensure that not too many
costly integrand evaluations are required to reach some convergence criterion.

If the function g is defined piecewise, it often has singularities at the boundary
points or exhibits singularity-near behavior. This issue has to be addressed to
efficiently calculate integrals of integrands where the function g is the main part.
Otherwise the global adaptive algorithm keeps bisecting subintervals, because new
integrand evaluations approaching a singularity keep changing the integration value
and prevent the integration error estimate from decreasing beneath a pre-defined
threshold to terminate the algorithm. We chose a number of 4 bisections to indicate a
possible singularity in the subintervals where the local error estimate is not below the
stopping threshold of the algorithm. We follow Iri et al., who 1970 proposed in [  51 ] a
variable transformation method for quadrature rules in such a way that all odd-order
derivatives of the transformed integrand vanishes near the singularity. This lets the
integration error decrease at a much faster rate than with about O

(
N−2(m+1)), where

N is the number of subintervals and m is the order of the remainder term in the
Euler–Maclaurin approximation. 

46
 

Numerical Minimization

After integral ( 3.42 ) is calculated, equation ( 3.29 ) implies solutions for G = GF̂ (z),
which can be found as roots to a form like the one in ( 3.33 ). Unfortunately, searching
for a root GF̂ (z) changes the value of the integral, which is part of the equation. In
addition, since we only approximated the integral we cannot hope to really find an
exact root; it may happen that one only finds a local minimum with an absolute
value near zero. Because of the dependence of ( 3.29 ) on the integral on the complex
argument G = ReG + ImG, we essentially treat minimization of the norm of form
( 3.43 ) as a black-box problem. We can only evaluate the norm for different values of
ReG + ImG and search for a local minimum. The closeness of the imaginary value
of the found numerical minimum to the exact one determines the accuracy of the
final spectral density estimate at point z = x+ iε.

The step of numerical minimizing the squared norm of the difference of  LHS and  RHS 

of ( 3.29 ) is conceptually detached from the numerical integration algorithm, as there
do not seem to exist any obvious strategies on how to utilize intermediary results
of the numerical integration for the minimization algorithm. Not having to build a
combined integration-minimization algorithm reduces complexity and possibility of
error.

For the described minimization problem the derivative of the function is not known
and function evaluation is, because of the numerical integration necessary, quite
expensive. The objective function is the squared norm ( 3.43 ), which is a real-valued

46See [ 51 ].
47See [ 83 ].
48See [ 77 ].
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Algorithm 3.1: Norm Minimization for Density

Input:
α rectangularity parameter d integration order
ε small positive parameter xmax range from 0 to xmax

bw spacing between successive x-values
Output: vector y of equal spaced density values

Function NumIntGaussKronrod(f(λ), λ−, λ+) {
use Gauss–Kronrod rule 

47
 to integrate

(x+ iy) :=
∫ λ+

λ−

f(λ) dλ

return (x+ iy)
}
Function MASTER(x, y, k, α, d, ε) {

if d > 0 then
λ− := 4−d
λ+ :=∞

else
λ− := 0
λ+ := 4−d

end
define g(λ, d) either by (  3.41 ) (ARFIMA(0, d, 0))

or by g(λ, d) :=
∑

ω∈[0,2π]:γ̃(ω)=λ

∣∣∣∣ d
dω γ̃(ω)

∣∣∣∣−1

with γ̃(ω) given by ( 3.44 ) (ARFIMA(1, d, 1))

f(λ) :=
∫ λ+

λ−

λ

1 + λα−1(x+ iy)g(λ, d) dλ

(a+ ib) := NumIntGaussKronrod(f(λ), λ−, λ+)

z :=
(
− α

(x+ iy) − α(k + iε) + α

2π (a+ ib)
)2

return z

}
Function minMASTER(k, α, d, ε) {

use Nelder–Mead algorithm  

48
 to minimize over (x, y) ∈ R2

(x+ iy) := argmin
x,y

MASTER(x, y, k, α, d, ε)

return y

}
Function getDensityValues(d, α, binwidth, xmax, ε) {

let x contain the equaly spaced sequence from 0 to xmax with
|xi+1 − xi| = binwidth
foreach entry xi of x do

yi := minMASTER(xi, α, d, ε)
end
return y

}
y := getDensityValues(d, α, binwidth, xmax, ε)

66



3.3 Numerical Methods and Algorithms used

function of the complex argument G = ReG + ImG. Ultimately we are interested in
the imaginary part of the argmin of G.

The G-transform maps arguments z = x+ iε ∈ C+ to the positive complex half-plane
C+, so we have to restrict the domain for the minimization algorithm to C+. We
therefore have to choose a minimization algorithm capable of coping with constrained
optimization.

We opted for the robust search heuristic from Nelder and Mead for multi-dimensional
non-linear minimization problems without known closed form derivatives. It essen-
tially constructs a simplex of d+ 1 points for a d-dimensional minimization problem.
At each iteration step the d+ 1 points form a simplex in dimension d. The Nelder–
Mead algorithm 

49
 tries to minimize the volume of the simplex in each iteration step

by reflecting from the centroid of the simplex in the opposite direction of its largest
function value and shrinking the simplex. The algorithm tries to enclose the true
argmin inside the simplex and returns, for the volume very small beneath a threshold,
the argmin of the current d + 1 simplex points. Since the squared norm depends
only on the complex-valued G for fixed z = x+ iε, we have d = 2 real arguments and
as simplex a triangle. Intermediary expansion and contraction steps try to ensure
validity  resp. faster convergence. We chose the reflection and expansion parameters
to be both 2 and the contraction and shrinking parameters to be both 2−1.

The Nelder–Mead algorithm can cope with constrained optimization by incorporating
a penalty function indicating constraint violations. As the constraint is simple and
therefore the sets of admissible and inadmissible solutions are connected partitions
of the whole domain C, the Nelder–Mead algorithm can simply ensure in every step
that at least one of the simplex nodes xk does not violate the constrained and is thus
in the complex upper half-plane. This implies that the closure of the interior of the
simplex contains at least an admissible point. The algorithm has to check before
termination that the obtained candidate xargmin does not violate the constrained,
too.

Remark: Sometimes we had to adjust the parameters mentioned in the paragraph
above to greatly boost chances for the algorithm to converge to the global minimum
and not just a local one. We also tried to incorporate any additional information we
had by choosing appropriate starting points for the simplex.

Since functional evaluations are so computational expensive we could not rely on
Monte Carlo  resp. Quasi Monte Carlo methods or grid search, as to make the
computation practicable the running time of the algorithm has to be bounded in the
order of magnitude of minutes, not hours.

49See [ 77 ].
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3 Eigenvalue Distributions for Specific Random Matrix Models

Parallelization and further Speed-Up

Only the numerical integration algorithm can be easily speed up by parallelization,
as the integrand can be evaluated in parallel without causing any interdependence
to other calculations. The numerical minimization is not easily parallelized, but the
essential computational cost are its function evaluations anyway.

The final combined algorithm of numerical minimization and numerical integration
traces the spectral density on a grid (xk) of equidistant nodes for zk = xk + iε. This
task parallelizes, if one does not wish to use the information from the predecessor
Gargmin
F̂

(xk−1 + iε) for determination of the starting points for the Nelder–Mead
algorithm. We chose to utilize this information, because we did not need to parallelize
on this level. The ultimate task was to fit spectral densities to different empirical
density functions corresponding to different trading periods — and this outermost
loop is pleasingly parallel, too.

In addition, we tried to port bottleneck portions of the source code to C for speed.  C 

is a low-level programming language, its source code is compiled to machine code
and the compiler 

50
 fine-controls CPU and memory usage.

50We use the C++ compiler from Visual Studio Community 2015, [ 68 ].
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4 Overview of Data and Descriptive
Statistics

We introduce the basic methodology used for the construction of raw data sets in
 section 4.1 . In  section 4.2 we describe the raw data sets and preliminary transfor-
mation necessary to coherently analyze the data series using descriptive statistics.
In  section 4.3 we give an overview of their main characteristics. We use descriptive
statistics to select suitable subsets of data for refined data analysis. We especially
concentrate on the  empirical spectral distribution  in  section 4.4 , as the  ESD is the
empirical counterpart to the theoretical spectral density. In  chapter 5  , we want
to fit the theoretical spectral densities from the previous chapters to the  ESDs of
covariance matrix estimates from data sets composed in this chapter.

4.1 Basic Methodology for Constructing Raw Data
Sets

Our aim is to construct several data sets, each comprised of logarithmic return
data suitable for covariance matrix estimation. First, we have to investigate the
basic building blocks of logarithmic returns, stock prices. We can observe stock
prices as a pair of a transaction time ti and a price pti agreed upon by both parties,
seller and buyer. These transaction prices, also called tick data, happen naturally
neither evenly spaced in time nor synchronous across all stocks. As we are mainly
interested in covariance estimates, we have to pay attention to the so-called Epps
effect, introduced by Epps [ 30 ]. The Epps effect is the observable phenomenon that
the empirical correlation between the returns of two different stocks decreases in
absolute value as the sampling frequency of data increases. Münnix et al. [ 73 ] argue
that this idiosyncratic characteristic of stock returns is caused by non-synchronous
trading and microstructure noise. As Merton notes in [  67 , p. 357], in an ideal
situation where prices can be observed continuously without any measurement error
squared intraday returns would yield a variance estimate without any error for every
finite interval. The squared intraday return variance estimator, commonly called the
»realized variance (RV)« estimator, suffers from a well-known estimation bias that
increases with intraday sampling frequency, see e.g. [  32 ,  7 ,  80 ]. Hansen and Lunde
define market microstructure as the source of this bias problem [ 39 ]. According
to them, »[ . . . ] there is a trade-off between bias and variance when choosing the
sampling frequency, as discussed by Bandiy and Russell [  11 ] and Aït-Sahalia et al.
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[ 1 ]. This trade-off is the reason that the RV is often computed from intraday returns
sampled at a moderate frequency, such as 5-minute or 20-minute sampling.« ([ 39 ,
p. 128])

As we want to study theoretical properties of covariance matrix estimators and infer
from these ex ante properties and knowledge of their empirical ex post counterparts
about the underlying market structure, we opt for a simple structure of covariance
matrix estimators. Since we chose to not focus our research on microstructure noise  

1
 ,

we opt for circumventing the associated problematics by using aggregated transaction
prices, synchronized in time across different stocks.

This decision comes in handy to reduce the size of data sets to levels suitable to
process with personal computers and up to 16 GB RAM.

To make analysis of subsamples easy, we require equitemporal observations. This
requirement is closely linked to the decision to work with synchronized data. A priori
synchronization of transaction prices just means that we are able to assign to each
observation time tk a price p(j)

tk
for every stock j. We could choose a set of observation

times {t1, t2, . . . , tn} with varying time interval lengths |tk+1 − tk|. This would be a
sensible choice if we took tk+1 to be the time after which every stock j has a new
transaction price p(j)

tk+1 . But this approach is not feasible, because we already examine
the most liquid stocks available and we are still in a situation that there exist periods
in time where liquidity dries out and a specific stock is not traded once for hours.
Dacorogna et al. state that »[ . . . ] market ticks arrive at random times« ([ 28 , p. 34]).
They go on and refer to, e.g. [ 29 ], for »[ . . . ] models for the stochastic nature of these
times.« ([ 28 , p. 34]). Due to this stochastic nature there is some self-averaging of
the expected number of stocks with at least one transaction price in a given time
interval. This supports the stipulation for exogenously provided observation times ti
detached from actual trading times. This has the further benefit of not having to
discard massive amounts of the available price data. A drawback of this method is
that we cannot ensure that in a given time interval (tk, tk+1] every stock j has a new
transaction price. For every stock and for time tk, we used the last observation in
the time interval and set accordingly price ptk := pti for max{i | k − 1 < i < k}. If
the interval (tk−1, tk] was empty, we set ptk to the last observed price on that day  

2
 

instead. [ 28 , p. 37] call this procedure self-explanatory the previous-tick-interpolation,
taking the most recent value. This procedure is in agreement with how trading
prices are calculated. The current price shown is the last price at which trading
occurred. As we want to model stock prices, and via a transformation stock returns,
as stochastic variables, the property of only utilizing information up to the present is
closely linked to the notion of adapted processes  

3
 in classical probability theory. This

property is important for a realistic model that is operational and can be readily
utilized by practitioners.

1For a general treatise on noise in economics and finance, see [ 15 ].
2If there was no previous transaction for that stock on this day, we set pti :=  NA .
3See [ 92 , p. 5, 1.20 Definition a)].
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4.2 Overview of Raw Data

We study different data sets of price data of stocks from various countries, traded at
several different exchanges and with temporal granularity ranging from milliseconds
to days.

4.2.1 NASDAQ Intraday Data

We use NASDAQ’s Historical TotalView-ITCH data, which contains historical order
and trade transactions from the NASDAQ exchange.

We downloaded  NASDAQ’s Historical TotalView-ITCH data from Lobster  

4
 , a

data vendor for academic research. Since we are only interested in trading prices
we only used the order book of depth 1, best bid and ask orders. From this, we
extracted all transaction orders and collected the corresponding prices and time
stamps in milliseconds. Because we aggregated the order book data to transactions
only, the information about bid/ask is irrelevant.

The NASDAQ Stock Market trading hours 

5
 for the regular market are between

9:30am–4:00pm, 6.5 hours in total.

NASDAQ-100 Intraday Data from 2007-06-27 to 2015-01-16

At January 23, 2020, the NASDAQ-100 has, despite its name, 107 constituents 

6
 .

At December 13, 2014, NASDAQ OMX Group announced their annual changes 

7
 to

the NASDAQ-100 index:

“The following three companies will be added to the Index: American
Airlines Group, Inc. (Nasdaq:AAL), Electronic Arts Inc. (Nasdaq:EA)
and Lam Research Corporation (Nasdaq:LRCX).
[ . . . ]
As a result of the re-ranking, the following three companies will be re-
moved from the Index: Expedia, Inc. (Nasdaq:EXPE), F5 Networks, Inc.
(Nasdaq:FFIV) and Maxim Integrated Products, Inc. (Nasdaq:MXIM).”
([ 75 ])

We included the three companies that were excluded from the NASDAQ-100 at this
day in our list of NASDAQ-100 companies, because the overwhelming majority of

4Lobster: Limit Order Book System — The Efficient Reconstructor at Humboldt Universität
zu Berlin, Germany.  http://LOBSTER.wiwi.hu-berlin.de 

5See [ 76 ]:  http://www.nasdaqomx.com/aboutus/market-information/market-calendar 

6The official list can be found here:  https://indexes.nasdaqomx.com/Index/Weighting/NDX 

7
 http://www.nasdaqomx.com/newsroom/pressreleases/pressrelease?messageId=1320684 
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observations are from the observation period from 2007-06-27 to 2015-01-16. These
are 1900 trading days.

To reduce data size, we aggregated all prices to 10 second intervals. We choose
10 seconds as a compromise to fit the whole data set into 16 GB of RAM, with
enough memory left to process the data with  GNU R . Dividing 6.5 hours by 10 second
intervals gives 2 340. For the sake of completeness, we also include the first time point
9:30:00. Since at this point in time no trading could have occurred, the price values
are all NA. In total, this makes 2 341 observations per day and 1900 · 2 341 = 4 447 900
observations per stock.

NASDAQ Intraday Data from 2007-06-27 to 2014-11-28

We downloaded the company list from [ 74 ,  csv link ]. It encompasses 2 954 companies
traded at the NASDAQ exchange. Only 7 of those companies were  not available (NA) 

on Lobster, so there are 2 947 companies left. Of those, 1 618 companies were listed
the complete time period under investigation from 2007-06-27 until 2014-11-28.

The observation period is comprised by the 1867 trading days between 2007-06-27
and 2014-11-28. Due to memory constraints and data quality we aggregated all
prices to 60 second intervals, similar to subsection  4.2.1 . That makes 60 seconds
times 6.5 hours plus the first time point, so in total 391 observations per stock and
trading day. In total, this are 1 867 · 391 = 729 997 observations per stock.

4.2.2 S&P 500 and DJIA Intraday Data

We utilize the historical intraday stock data provided by the data vendor  pi-
trading.com . 

8
 The so-called »stock data« data set consists of all constituent stocks

of various indices and  exchange traded funds from the  United States (U.S.)  . We
are only interested in indices comprised of at least a medium number of sufficiently
liquid stocks.

• » S&P 500 Index Component Stocks (S&P 500) « with 500 large publicly owned
 U.S. -based companies

• » Dow Jones Industrial Average Component Stocks (DJIA)  « with 30 large
publicly owned  U.S. -based companies

Both index data sets span the time period of 3454 trading days between 2002-12-30
and 2016-09-16, with intraday »OHLC«  

9
 stock prices available for every minute from

9:30 to 15:59. The closing price for e.g. minute 9:30 is the last traded price between
9:30:00 and just before 9:31:00. For these two data sets we have 60 observations per

8[ 82 ],  pitrading.com with historical intraday stock data up to 2016-09-16.
9The acronym »OHLC« stands for the prices »Open«, »High«, »Low« and »Close«.
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4.3 Descriptive Statistics and Data Sets

trading hour times 6.5 trading hours per day,  i.e. in total 390 observations per stock
and trading day. For stocks traded over the whole period under investigation this
makes in total 3 082 · 390 = 1 201 980 observations per stock. In both data sets a
vast majority of stocks, which were an index member at the end of our observational
period at 2016-09-16, have a trading history available from at least the start of our
observational period 2002-12-30. Therefore, we discard all stocks which were not
traded over the full observational period.

S&P 500 Intraday Data from 2002-12-30 to 2016-09-16

There are 405 stocks that have a complete trading history between 2002-12-30 and
2016-09-16. This does not mean that all 405 of this stocks were in the S&P 500
for the whole observational period. For instance the Office  REIT  

10
 » SL Green

Realty Corp. (NYSE:SLG) « from the finance sector only became a S&P 500
constituent 2015-03-20.  

11
 Nevertheless, its stock was publicly traded over the whole

observational period, therefore we utilize its price history.

DJIA Intraday Data from 2002-12-30 to 2016-09-16

As it was the case for some S&P 500 stocks, for instance »  Apple Inc. (AAPL)  «,
besides » Microsoft Corp. (MSFT) « and » Cisco Systems (CSCO)  «, only one of
three NASDAQ listed companies, was added 2015-03-19 to the DJIA. Of course its
trading history is known and will be used. Of all 30 DJIA stocks as of 2015-03-27,
the consumer bank » Visa Inc. (V) « had its IPO 2008-03-18 and therefore cannot be
included in the data set. All remaining 29 constituents of the DJIA have a complete
trading history and will be used.

4.3 Descriptive Statistics and Data Sets

We want to give an overview and brief understanding of certain characteristics of
the data sets. Our goal is to retrieve a subsample of data as large as possible,
which is suitable for further investigation. Our main application is the estimation of
covariance matrices from historical returns. There are two main obstacles to this
goal when viewing the raw data.

First, data completeness might be problematic if not all stocks were traded during the
whole time period, indicated by days with only NA values. Intraday data completeness
might also be an issue, as we want to apply standard covariance matrix estimators
which cannot handle any NA values.

10
 real estate investment trust (REIT) .

11»S&P MidCap 400 constituent  SL Green Realty Corp. ( NYSE:SLG ) will replace  Nabors Indus-
tries Ltd ( NYSE:NBR ) in the S&P 500, [ . . . ] « ([ 86 , p. 1]).
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Second, as covariances are the second central moments, covariance estimation requires
sufficient variation around the mean. This is not in itself a problem of the covariance
estimator, but with many observations equal to the population mean the spectrum of
such an estimator might be distorted. Since we want to analyze this very spectrum,
we have to aggregate returns in time to ensure that enough returns are different from
0. This aggregation in time is equivalent to choosing a time interval length so that
we have at least one observed price in (almost) each interval.

All raw price data series are transformed to logarithmic return data series by

rtk := log
(
ptk
ptk−1

)
.

If the prices are intraday, returns are only calculated with intraday prices from the
same day. Thus, in case of intraday data the return series lose one observation for
every trading day.

Descriptive statistics about data completeness will provide the necessary information
to choose appropriate time aggregation and subsamples of stocks.

4.3.1 NASDAQ Intraday Data

NASDAQ-100 Intraday Data from 2007-06-27 to 2015-01-16

The raw NASDAQ-100 data set consists of intraday returns of 110 stocks for the
trading days between 2007-06-27 and 2015-01-16. Since we are interested in variations
of stock returns and in order to be able to compute proper empirical variances and
not merely squared returns, we need at least two returns per day. In  Figure 4.1 we
depict the portion of days that have at least two returns.
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Figure 4.1: 110 NASDAQ-100 stocks, portion of days non-NA and with at least two
non-0 returns in trading days between 2007-06-27 and 2015-01-16.

We see that 82 stocks have at least two returns per day. Since for empty intraday
intervals (tk−1, tk] we used the last price on that day, returns rtk belonging to such
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consecutive intervals are zero. A stock is said to have a high liquidity, if one is able
to trade it at any given time. Therefore a stock is said to be (more) liquid, if there
are transactions in almost every (smaller) time interval. The statistic of non-zero
returns is such a measure of a stock’s liquidity. Next, we want to investigate the
percentage of returns different from zero for every trading day. We do so for the 82
stocks with all non-NA returns in  Figure 4.2  .
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Figure 4.2: 82 NASDAQ-100 stocks, fraction of non-zero returns per trading day
between 2007-06-27 and 2015-01-16.

On average, a fraction of µ̂ = 0.373 returns is non-zero with an estimated standard
deviation of σ̂ = 0.081. We see some seasonality at the change of year, but in general
nearly all days have a similar portion of non-zero returns.

Second, we examine the percentage of returns different from zero intraday. We
therefore average each intraday time interval over all trading days. The result is
depicted in  Figure 4.3  .

The distribution of transactions and subsequent non-zero returns is much smoother
intraday along time than along trading days. A seasonal pattern is evident. It
has a higher fraction of non-zero returns at the beginning of every new half-hour.
This increased trading volume microstructure might be due to automated trading
algorithms that execute orders at predetermined points in time. One also sees
increased activity at the very end of the trading day, shortly before 16:00. The
fraction of non-zero returns is, of course, also µ̂ = 0.373.

Over all 82 stocks, intraday and per trading day, we observe that only a fraction of
µ̂ = 0.373 returns are non-zero. This low fraction would distort the spectrum of a
covariance matrix estimator, so we need to aggregate returns in order to reach much
higher levels of non-zero returns.

First, we will concentrate on the 82 stocks that have all non-NA days. For this
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Figure 4.3: 82 NASDAQ-100 stocks, fraction of non-zero returns per stock intraday
between 2007-06-27 and 2015-01-16.

82 stocks,  Figure 4.4 depicts the sorted fraction of non-zero returns for various
aggregation levels. We only choose such aggregation levels so that the total trading
time per day of 6.5 hours is divided by this time without remainder.
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Figure 4.4: 82 NASDAQ-100 stocks, change of liquidity per stock for aggregated
returns, sorted. In black the average for each series.
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For longer aggregation time levels the fraction of non-zero returns increases. It only
starts decreasing from a very high level for the longest time intervals, because the
first interval has by definition a return of NA and this single NA dominates for large
aggregation times. Because with every aggregation step the resulting time series
shrinks, we only want to aggregate up to a level necessary, but not beyond.

As can be seen from the averaged liquidity statistics depicted as black dots in
 Figure 4.4 , from time intervals of length 2 minutes and longer, aggregation does not
enhance liquidity perceptibly. Over the considered liquidity levels, the stocks with
highest liquidity are »Apple Inc. (AAPL)« before »Amazon.com, Inc. (AMZN)«
and »Google Inc. Class C (GOOG)«.

In  Table 4.1 we show a comprehensive summary of key statistics depending on
increasing aggregation levels. At aggregation level of 3 minutes and more the number
of stocks with liquidity at least 0.75 saturates and average liquidity is well above
0.85.

Time [min] Number of Observations Number of Stocks Liquidity

1/6 4 447 900 1 0.850
1/3 8 899 600 4 0.835
1/2 10 387 300 7 0.842
1 32 687 600 44 0.815
2 26 440 400 71 0.858
3 20 160 900 81 0.874
5 12 158 100 81 0.899
10 6 156 000 81 0.914
15 4 155 300 81 0.913
30 2 154 600 81 0.894

Table 4.1: NASDAQ-100 key statistics for different aggregation levels.

We demand for liquidity the following two requirements:

Requirement 4.1 (Liquidity)

L1 Liquidity for every single stock chosen has to be at least 0.75.

L2 Average liquidity over all stocks chosen has to be at least 0.85.

We will adopt both requirements  L1 and  L2 for all data sets. For the NASDAQ-100
data set we chose an aggregation level of 2 minutes, which amounts to an average
liquidity of 0.858. Our final data set NASDAQ-100 consists of 71 stocks between
2007-06-27 and 2015-01-16 with 2 minute continuous returns and a total of 26 440 400
observations.
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NASDAQ Intraday Data from 2007-06-27 to 2014-11-28

The raw NASDAQ data set is comprised of intraday returns of 1618 stocks for the
trading days between 2007-06-27 and 2014-11-28. We will analyze the raw NASDAQ
data set in the same vein as the we did with the raw NASDAQ-100 data set in
subsection  4.3.1 .

In  Figure 4.5  we depict the portion of days that have at least two returns.
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Figure 4.5: 1618 NASDAQ stocks, portion of days non-NA and with at least two
non-0 returns in trading days between 2007-06-27 and 2014-11-28.

As a first step, we restrict the data set to all 826 stocks that have at least two returns
every trading day. As before, we analyze average liquidity over all trading days and
intraday. The former is depicted in  Figure 4.6  .
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Figure 4.6: 826 NASDAQ stocks, fraction of non-zero returns per trading day
between 2007-06-27 and 2014-11-28.

On average, a fraction of µ̂ = 0.382 returns is non-zero with an estimated standard
deviation of σ̂ = 0.076. We note some slight seasonality pattern at the change of
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year, but not as pronounced as in  Figure 4.2 . The liquidity statistic also remains
approximately constant in time, but with a lower estimated liquidity average of
µ̂ = 0.382.

Intraday liquidity is shown in  Figure 4.7 .
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Figure 4.7: 826 NASDAQ stocks, fraction of non-zero returns per stock intraday
between 2007-06-27 and 2014-11-28.

The pattern of NASDAQ is similar to NASDAQ-100 depicted in  Figure 4.3  , but
without such a distinct »smile« shape. We also observe an increase in liquidity
shortly before trading end. Overall, intraday liquidity is in good approximation
constant.

The fraction of non-zero returns of µ̂ = 0.382 is too low, so we need to aggregate
intraday returns again.

As before,  Figure 4.8 confirms our believe that liquidity is increasing with intraday
time aggregation of returns. In comparison with the NASDAQ-100 data set the
liquidity statistic remains lower. This should not surprise as the NASDAQ-100
stocks comprise the largest companies, but the largest companies are evidently also
traded most.

To determine which stocks to include in our final data set we employ requirements
 L1 and  L2 ,  i.e. that every chosen stock has a liquidity of at least 0.75 and the average
liquidity is at least 0.85. From all aggregation level and number of stock combinations
we want to maximize available observations.
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826 NASDAQ stocks

Minutes

O
bs

er
va

tio
n

ra
tio

in
tim

e
826 NASDAQ Stocks, Evolution of Observation Ratio in Time

0 100 200 300 400 500 600 700 800
1

2
3

5
10

15
30

0
0.2
0.4
0.6
0.8

1

Figure 4.8: 826 NASDAQ stocks, change of liquidity per stock for aggregated returns,
sorted. In black the average for each series.

Time [min] Number of Observations Number of Stocks Liquidity

1 35 039 856 48 0.813
2 43 545 908 119 0.837
3 49 893 708 204 0.837
5 51 475 057 349 0.842

10 40 924 640 548 0.855
15 31 051 944 616 0.863
30 19 002 326 727 0.855

Table 4.2: NASDAQ key statistics for different aggregation levels.

Only aggregation levels of at least 10 minutes time intervals fulfill the two requirements
 L1 and  L2 combined.

The NSADAQ-100 data set already contains very many observations in time. To
provide more variety, we therefore want the NASDAQ data set to have a large
number of stocks compared to the number of intraday observations. Aggregation
levels of 10 or 15 minutes seem appropriate. Noting that the number of observations
increases by 31.4 % when going from aggregation level 15 minutes back to 10 minutes,
compared to the 11 % decrease in number of stocks, this seems like a decent trade-
off.

80



4.3 Descriptive Statistics and Data Sets

We will therefore use the NASDAQ data set with an aggregation level of 10 minute
returns, 548 stocks and a total of 40 924 640 observations.

4.3.2 S&P 500 and DJIA Intraday Data

S&P 500 Intraday Data from 2002-12-30 to 2016-09-16

The raw S&P 500 data set encompasses 502 stocks with intraday returns for the
trading days between 2002-12-30 and 2016-09-16. We will analyze the raw S&P 500
data set in the same vein as we did with the previous ones.

First, we show the summary liquidity statistics for every of the 502 stocks in
 Figure 4.9  .
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Figure 4.9: 502 S&P 500 stocks, portion of days non-NA and with at least two non-0
returns in trading days between 2002-12-30 and 2016-09-16.

Analog to subsection  4.3.1 , we only use stocks that have at least two returns at
every single trading day between 2002-12-30 and 2016-09-16. There are 393 stocks
that fulfill this requirement. We look at average liquidity over all trading days and
intraday, which is plotted in  Figure 4.10   resp.  Figure 4.11  .

In contrast to the two NASDAQ data sets which each start 2007-06-27, this S&P 500
data set goes back to 2002-12-30. One can see a pronounced increase in average
liquidity, starting in the year 2003 at about 0.4 and steadily increasing up to around
0.7 right about the 2007–2008 financial crisis. The short time periods of high average
liquidity roughly correspond to times of highest TED spread  

12
 ,  i.e. ICE LIBOR 

13
 

over T-bills 

14
 . Incidentally, the two minor liquidity spikes around June 2010 and

12The acronym »TED« stands for »Treasury Bill Eurodollar Difference«. »TED spread« is the
difference between ICE LIBOR 13 and T-bill 14 interest rate, both for 3 month.

13Intercontinental Exchange LIBOR, where »LIBOR« is an acronym for »London Interbank
Offered Rate«.

14»T-bills«, long »Treasury bills«, are short term  U.S. government debt obligations with a maturity
of less than a year.
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Figure 4.10: 393 S&P 500 stocks, fraction of non-zero returns per trading day
between 2002-12-30 and 2016-09-16.

October 2011 correspond to increasing TED spreads.  

15
 

On average, a fraction of µ̂ = 0.666 returns is non-zero with an estimated standard
deviation of σ̂ = 0.119. Part of the reason behind the distinct higher estimated
standard deviation, compared to the corresponding estimates for the NASDAQ-100
and NASDAQ, is the visible violation of mean stationary in the first part of the
time period roughly between 2003–2007. In addition, from visual inspection there
seems to be a distinct seasonal pattern of outliers with roughly half the liquidity
compared to other nearby trading days. These outliers were also present in the both
previous data sets for the NASDAQ, but are more pronounced here. By closer
inspection the postulated fixed seasonal pattern can be confirmed, almost all low
liquidity outliers are either on Black Friday 

16
 , during the Christmas holidays and

sometimes the day before Independence Day 

17
 . This also explains the seasonal low

liquidity outliers present in both NASDAQ data sets. Overall, their contribution is
negligible.

Intraday liquidity for the S&P 500 is shown in  Figure 4.11 .

15
 https://research.stlouisfed.org/fred2/series/TEDRATE , best seen with log scale.

16Black Friday is the day after Thanksgiving Day in the United states, which in turn is every
fourth Thursday of November and a federal holiday.

17Independence Day is a federal holiday in the United States, celebrated every July 4th.
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Figure 4.11: 393 S&P 500 stocks, fraction of non-zero returns per stock intraday
between 2002-12-30 and 2016-09-16.

The liquidity »smile« is visible again, this time with slightly higher liquidity at the
beginning of the trading day. Looking at singly stock liquidity subject to different
aggregation levels in  Figure 4.12  , we observe that many stocks in the S&P 500 have
a relatively high average liquidity.
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Figure 4.12: 393 S&P500 stocks, change of liquidity per stock for aggregated returns,
sorted. In black the average for each series.
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To determine which stocks to include in our final S&P 500 data set we again call
for requirements  L1 and  L2 to hold. A summary is given in  Table 4.3 .

Time [min] Number of Observations Number of Stocks Liquidity

1 99 938 036 74 0.789
2 151 644 416 224 0.811
3 130 312 512 288 0.828
5 94 138 770 345 0.846

10 52 224 480 378 0.867
15 35 904 330 385 0.873
30 18 858 840 390 0.864

Table 4.3: S&P 500 key statistics for different aggregation levels.

Intraday returns with aggregation levels of 10 minutes or more fulfill the two require-
ments  L1 and  L2 . As maximization of number of observations is the secondary goal,
we choose 10 minutes returns for the S&P 500 data set.

The final S&P 500 data sets consists of 3454 trading days between 2002-12-30 and
2016-09-16 with 10 minute returns, 378 stocks and 52 224 480 observation in total.

In addition, we also want to utilize the S&P 500 raw data to construct a second data
set with very high number of observations and modest average liquidity. Because the
observation count is highest for 2 minute returns, we choose those. This implies a
data set with 224 stocks and a total of 151 644 416 observations. We will call the two
data sets from the subsection the »long« S&P 500 respectively the »big« S&P 500
data set.

DJIA Intraday Data from 2002-12-30 to 2016-09-16

The raw DJIA data set encompasses 30 stocks with intraday returns for the trading
days between 2002-12-30 and 2016-09-16. We will analyze the raw DJIA data set in
the same vein as the we did with previous ones.

First, we show the summary liquidity statistics for every of the 30 stocks in
 Figure 4.13  .
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Figure 4.13: 30 DJIA stocks, portion of days non-NA and with at least two non-0
returns in trading days between 2002-12-30 and 2016-09-16.

As we mentioned in subsection  4.2.2 , the DJIA data set has all stocks but Apple Inc.
and Visa Inc. with at least two returns at every trading day between 2002-12-30 and
2016-09-16, so we analyze the liquidity statistics of the remaining 28 stocks. Average
liquidity over days is depicted in  Figure 4.14  .
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Figure 4.14: 28 DJIA stocks, fraction of non-zero returns per trading day between
2002-12-30 and 2016-09-16.

As the DJIA encompasses 30 of the largest  U.S. publicly held companies and large
companies tend to be more liquid, there should be no surprise that average liquidity
is highest for the DJIA with a fraction of µ̂ = 0.719 returns non-zero. The estimated
standard deviation of σ̂ = 0.091 is again, as it was the case with the S&P 500 data
set, considerably higher than for the much shorter data sets NASDAQ-100 and
NASDAQ. By visual inspection we also see a slight increase in liquidity during the
first years, but not as pronounced as for the S&P 500. The holiday pattern is also
visible as distinct low liquidity outliers. In fact, empirical correlation of the respective
average liquidity series for the S&P 500 and DJIA is 0.939 and for the intraday
liquidity between the two it is 0.988. On the other hand, the empirical correlation
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4 Overview of Data and Descriptive Statistics

between, for instance, the intraday liquidity of NASDAQ and of S&P 500 is
only about 0.699. This high empirical correlation between S&P 500 and DJIA
is also explainable by the fact that all companies from the DJIA are included in
the S&P 500. So one presumably only sees a catch-up of liquidity of the smaller
S&P 500 companies to the level of the big DJIA ones.
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Figure 4.15: 28 DJIA stocks, fraction of non-zero returns per stock intraday between
2002-12-30 and 2016-09-16.

As it was the case with the previous depictions of intraday liquidity, there is a
discernible »smile« present. Because average liquidity is comparably high for the
DJIA data set, we expect this to be true for different aggregation levels, too. This
is displayed in  Figure 4.16  .
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Figure 4.16: 28 DJIA stocks, change of liquidity per stock for aggregated returns,
sorted. In black the average for each series.

From  Table 4.4 we see that requirements  L1 and  L2 are fulfilled for all aggregation
levels of 5 minutes and more.

Time [min] Number of Observations Number of Stocks Liquidity

1 13 505 140 10 0.813
2 13 539 680 20 0.828
3 9 501 954 21 0.850
5 7 094 516 26 0.857
10 3 868 480 28 0.873
15 2 611 224 28 0.879
30 1 353 968 28 0.870

Table 4.4: DJIA key statistics for different aggregation levels.

We chose according to our secondary goal of observation maximization. The DJIA
data set consists of 5 minute returns on 3454 trading days between 2002-12-30 and
2016-09-16 with 26 stocks and a total number of 7 094 516 observations.
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4.4 Empirical Spectral Distributions

4.4.1 Motivation

In the previous  section 4.3 we gave descriptive statistics of the raw data sets that
helped us to choose the final data sets. For every of the final data sets, one can
estimate various descriptive statistics. We are interested in the dynamics of multiple
stocks in time and between themselves. In addition, we derived parametric families
of spectral distributions for covariance matrix estimators in  chapter 3 . Thus, our
main object of study are the  empirical spectral distributions  of covariance matrix
estimates of the data sets.

The  ESD encompasses the spectral information of a quadratic and symmetric real-
valued matrix, but neglects the information present in its eigenvectors. Any quadratic
symmetric real-valued matrix of size (N ×N) can be completely parametrized by
its N main diagonal values and its 2−1N(N − 1) independent values on the lower
or upper triangular matrix. Those 2−1N(N + 1)  degrees of freedom (d.o.f.)  do not
vanish in the spectral representation of a matrix, 2−1N(N − 1)  d.o.f. are hidden in
the N eigenvectors, each with N components. Only N  d.o.f. are displayed as N
eigenvalues.

One can discard the N eigenvectors for rotational invariant matrix ensembles, which
are already completely parametrized by its N eigenvalues. But even for non-rotational
invariant matrix ensemble it can be a sensible choice to disregard 2−1N(N − 1)  d.o.f. 

and concentrate only on the eigenvalues or there spectral distribution. The former
step reduce the parametrization from O(N2) to O(N). If one could parametrize the
 empirical spectral distribution with a fixed number of parameters, the parametrization
would be of asymptotically optimal size of O(1). Since every model is an idealized and
thus simplified image of reality, one part of modelling is to reduce dimensions. But
this compression has to be done in a sensible way to conserve the main characteristics.
This perspective motivates the concentration on only the  ESD .

Remark: There are few but promissing works that go beyond the analysis of the spectral
distribution and investigate the behavior of eigenvectors of random matrices. In the
context of the four moment theorem and central limit theorems universal behavior
for these eigenvectors was proven 2013 by Knowles and Yin in [ 55 ] and 2012 by
Tao and Vu in [ 100 ]. In 2013, Xia et al. proved convergence rates of eigenvector
empirical spectral distribution of large dimensional sample covariance matrix in [  119 ].
In a series of papers 2011, 2012, 2014, Allez and Bouchaud established eigenvector
dynamics of certain random matrix models in [ 2 ,  3 ,  4 ]. In 2014  resp. 2016, Allez,
Bun, et al.  resp. Bun et al. extend the results in [ 5 ]  resp. [ 21 ].

Bordenave and Guionnet analized in 2013 the eigenvector behavior of matrices with
heavy-tailed entries.

The earlist works on eigenvectors of non-hermitian matrices are in a series of papers
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4.4 Empirical Spectral Distributions

[ 65 ,  27 ,  66 ] from 1998 to 2000 by Mehlig and Chalker, followed 1999 by Janik et al.
in [ 54 ]. 2015, Rudelson and Vershynin proved in [ 85 ] that random matrices with
independent entries habe completely delocalized eigenvalues,  i.e. with high probability
the coordinates of unit eigenvectors are of magnitude O

(
N−1/2

)
, modulo logarithmic

corrections. Burda, Grela, et al. showed 2015 in [  25 ] a connection of eigenvector and
so-called Burger dynamics.

In [ 79 ], one can find a recent survey on eigenvectors of random matrices by O’Rourke
et al.

4.4.2 Market Eigenvalue

To facilitate comparability of the  ESD of covariance matrix estimators, we normalize
to correlation matrix estimators. Thus, the estimated correlation matrices have
normed variances of 1 on their main diagonal. Due to the invariance of the trace
to the sum of the main diagonal the real eigenvalues also have a sum equal to the
number of securities. This normalization is generally applied in the literature when
studying  ESDs of covariance matrix estimators, so we comply. But note that due to
the varying sum of eigenvalues for correlation matrices of different size comparisons
are not as easy as with normed total sum, e.g. to unity.

It is a well known characteristic 

18
 that the  ESD of correlation matrix estimators

for stock returns have a largest eigenvalue that is much bigger than all the other
eigenvalues. For the NASDAQ-100 data set with daily returns there are 1900
trading days. For each trading day we estimated the correlation matrix. The largest
eigenvalue λ1 is at least 1.3 times higher than the second largest eigenvalue λ2 —
but this ratio has a maximal value of 29.6, a mean of 5.6 and a median of 5. In
comparison, the ratio λ2/λ3 over all trading days has a minimum of 1.006, a maximum
of 3, a mean of 1.4 and a median of 1.4. Averaged over all trading days, the ratio
of consecutive eigenvalues λk/λk+1 is a decreasing function in its argument k until
k = 14, after that it is still globally decreasing, albeit not monotonically anymore.
This characteristics hold true for all the other data sets and the correlation matrices
estimated daily.

For daily, monthly and quarterly estimated periods for the correlation matrices, the
consecutive eigenvalue ratio function has globally more of a »U«-shape. Nevertheless,
the largest eigenvalue is still, in average, 3.3 to 11.7 times larger than the second
largest eigenvalue. This ratio is, by far, the largest of all consecutive eigenvalue
ratios for all data sets and estimation periods.

In the literature, because of this pronounced characteristics the largest eigenvalue is
called the »market eigenvalue«. This name is motivated by the observation that the
associated eigenvector v1 to the largest eigenvalue λ1 has its components distributed
nearly uniformly.

18See e.g. [ 17 , p. 148].
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Remark: Eigenvectors give directional information, so only the relative magnitude
of the components is of interest, but not their absolute values. Normed to unity in
L1-norm, any eigenvector can be interpreted as a portfolio weight vector. For all
components of the eigenvector non-negative  

19
 , the associated portfolio weight vector

represents a full investment,  i.e. it sums to unity. 

20
 

As eigenvectors span the associated eigenspace, depending on the dimension on the
latter there might be  degrees of freedom on how to choose eigenvectors, independent
of their normalization. In practical correlation matrix estimation, almost always the
eigenspaces are 1-dimensional 

21
 . This leaves only 1  d.o.f. for the parametrization of

the eigenvector, multiplication by −1. So the portfolio weight vector associated to an
eigenvector contains no long/short information for individual stocks.

Following the reasoning from the last paragraph, we choose a parametrization of the
eigenvector associated to the largest eigenvalue in such a way that preferable most
of its components are non-negative. As an empirical characteristic, the eigenvector
components of the so-called »market eigenvector« are almost always all positive
and nearly uniformly distributed. Therefore, the economic interpretation of this
eigenvector is that of a so-called »market portfolio«, which is a portfolio including
all assets in a market. The market portfolio is routinely assumed to be long-only
and non-negative, because of theoretic motivation in financial models such as the
 capital asset pricing model (CAPM)  from Treynor, Sharpe, Lintner and Mossin  

22
 or

the market model from Sharpe  

23
 .

4.4.3 Plots of Empirical Spectral Distributions

We plot the histogram of the average  ESD of the correlation matrix estimators for
the specified data sets over the estimation periods ranging from daily, to weekly,
monthly and quarterly. The market eigenvalue of the average  ESD is between 2.9
and 11.5 times larger than the second largest eigenvalue. To ensure a distortion-free
plot of the histogram only an excerpt is shown. The histogram over all eigenvalues
is shown as inlay. Note that the bin size in the inlay is different from the main plot
due to visibility constraints. Every single eigenvalue is marked underneath each
histograms.

All the  ESDs are non-negativly supported and have a long right tail. In most
histograms there exists a clear »bulk« of eigenvalues and therefrom separated some
single eigenvalues. As the sample period size increases from days to weeks, month and

19Negative portfolio weights correspond to a short investment. For a short investment the investor
sells a security he does not currently own with the goal to buy it back latter to a lower price.

20Henceforth, we speak of eigenvectors and their associated portfolio weight vectors interchangeably.
21Note that for invertible matrices the algebraic and geometric multiplicity of eigenvalues coincides.
22The  CAPM was developed independently in a series of papers [ 103 ,  104 ,  91 ,  59 ,  71 ] between
1961 and 1966.

23See [ 90 ].

90



4.4 Empirical Spectral Distributions

quarters, the separation into bulk and isolated eigenvalues becomes more pronounced,
see  Figure 4.17 –  Figure 4.21  .

Depending on the granularity of intraday returns, for daily or even weekly sample
period size there might be more stocks than observations in the sample period. By
construction, such a correlation matrix estimate has eigenvalues of value 0 with
frequency given by the difference of number of stocks and number of available
observations. This situations happens for the NASDAQ and days or weeks of
sample period size, for the S&P 500 with 2 minute returns and days of sample
period size and for the S&P 500 with 10 minute returns and days or weeks of sample
period size. For all those mentioned, the histogram only show plots truncated in
such a way that the remaining eigenvalue density is visible.

The histograms for the NASDAQ and S&P 500 data sets with 10 minute returns
and sample period size of one day show very spread out eigenvalues. With 10 minute
returns and 6.5 trading hours there are only 39 observations per trading day. For a
high number of stocks like 548  resp. 52 224 480, for the NASDAQ  resp. S&P 500
data set, there is a high share of 0 eigenvalues by construction. All the remaining 39
eigenvalues are spread out so that sum constrained induced by normalization to a
correlation matrix is fulfilled.

Averaged over all observations, the largest eigenvalue accounts for a portion of 24.8 %
to 36.1 % of the eigenvalue sum, depending on the specific data set and length of
sample period. Over all data sets and length of sample periods, the minimal share of
the largest eigenvalue of the sum of all eigenvalues is 6.5 %, the maximal share is
83.2 %.

There is a clear resemblance of the  ESD implied by the bulk eigenvalues of the
previous histograms and the  empirical spectral distributions from  section 3.1 and
 section 3.2  . We investigate this phenomenon thoroughly in the next chapter.
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Figure 4.17: Histograms of averaged eigenvalues of the NASDAQ-100.
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Figure 4.21: Histograms of averaged eigenvalues of the DJIA.
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5 Application of Specific Random
Matrix Models to Financial Returns

We are interested in a class of preferably parsimonious models that capture and
describe the main dynamics of financial stock markets. As explained in the previous
chapter, we restrict ourselves to stock returns and the data sets created in  section 4.3  .
In the first part of this work, we layed the foundation of  non-commutative probability
theory and utilized it to introduce basic random matrix models. These widely-
used models are quite general due to the phenomenon of universality. There are
many works that utilize  GOE matrices and the implied Marchenko–Pastur spectral
distribution of their covariance matrix estimators and successfully apply those results
to financial data.

A structural caveat of those models is the required and thus assumed independence  

1
 

of all matrix entries, modulo some symmetry constraints. Thus one of the main
points of interest, the inter-dependence of stock returns in time and between different
stocks, is assumed non-existent. It seems therefore natural to relax the very strict
assumptions of independent stock returns and allow for some dependence structure.
As we argued in  chapter 3 , we allow for non-trivial autocovariance matrices and a
dependency captured by VARMA(p, q)  resp. VARFIMA(p, d, q).

Specifically, we model the evolution of the stock returns as stochastic VARMA(p, q)
processes for {p, q} small. We call an N -dimensional stochastic VARMA(p, q) process
of length T an (T ×N) VARMA(p, q) matrix. In  chapter 3 , we presented the
spectral distribution of covariance matrix estimators of VARMA(p, q) matrices.
Analogous, we speak of N -dimensional stochastic VARFIMA(p, d, q) processes and
of VARFIMA(p, d, q) matrices.

To assess on how well the theoretical models describe reality, we determine the
structural parameters of each data set and estimate the model parameters. The
structural and estimated parameters can be plugged back into the model to yield
a specific instance of the parametric spectral distribution function. For each data
set, the specific shapes implied by estimated parameters can be compared to the
 empirical spectral distribution of the covariane matrix estimator. We say that a
model is well suited, if the theoretical spectral distribution captures the main shape
and characteristics of the real data. In addition, one has to perform robustness
checks to ensure that the model does not only describe reality well due to overfitting.

1In the case of all entries Gaussian uncorrelatedness suffices, because for Gaussians independence
and uncorrelatedness are equivalent.
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Ideally, one would like that the model results do not depend on certain optimization
techniques or only hold for specific data sets. After all, a model should describe
a restricted part of reality. The various data sets are invariants insofar as any
reasonable model should be applicable with satisfying results to almost all of them.

5.1 Parameter Estimation Methodology

If, by assumption, the vector-valued return process of the stock market under
investigation follows a VARMA(p, q) or VARFIMA(p, d, q) processes, these stochastic
processes imply a specific  empirical spectral distribution of the associated covariance
matrix estimator. In  section 3.1 and  section 3.2 we derived methods on how to
obtain said  ESD . This involved solving for a specific root of a polynomial with the
polynomial coefficients themselves mixed polynomials in the model parameters with
high 

2
 degree.

Based on the observed data used to estimate the covariance matrix, the rectangularity
ratio α can be calculated as the ratio of stocks to observations. One even does not
need specific data, it suffices to know the matrix size. In contrast, the AR, MA
and, if applicable, fractional integration parameters {θ1, . . . , θp, φ1, . . . , φq, d} of the
assumed VARMA(p, q) or VARFIMA(p, d, q) processes have to be estimated,  i.e. for
every possible data set from the sample space there has to be a mapping yielding
the sample estimate.

We denote the rectangularity ratio α as structural parameter, because its value can
be derived a priori to observing the stock market dynamics by meta data about
number of stocks in a market and number of returns in a trading day, week, month
or quarter to come. 

3
 We denote all the other parameters model parameters, as they

are implied by the specific model chosen.

As presented in  section 3.1  and  section 3.2  , only the most basic models AR(1)
and MA(1) have a  distribution generating polynomial  that is of degree 4 and, in
principle, solvable in analytic form. Though, as shown, the closed form solutions are
so complicated that a utilization of the analytical solution by, for instance, method
of moments or estimation equations does not seem reasonable, let alone feasible.
We employ methods similar to maximum likelihood type estimators, which can be
subsumed under a class which Huber introduced 1964 and called M-estimators  

4
 .

Parameter estimation is done by minimization of a sum of functions g, each depending
on the parameter vector  θ  and data X i ∈  X  :

θ̂ := argmin
θ

∑
i∈I

g(X i,θ), (∀i ∈ I : X i ∈ X ). (5.1)

2In the context of  distribution generating polynomials , every degree greater than 4 is considered
high as these polynomials only permits approximate numerical solutions.

3Obviously meta data is also data in itself and can only be known for certain when finally realized
and observed.

4See [ 45 , p. 74] and also [ 44 , pp. 43–55, Section 3.2].
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M -estimators include a large class of estimators, for instance least-squares estimators.
This is a very convenient type of estimators widely used, because minimization of
squared residuals is equivalent to norm minimization in a L2 vector space. Every
L2 vector space can be endowed with a canonical scalar product that makes it into
a Hilbert space, possibly after completion. The scalar product induces a norm,
that is minimized — or equivalently, the squared norm. Note that L2 vector spaces
are the only ones which can be upgraded to Hilbert spaces.  

5
 Hilbert space norm

minimization also has the nice geometrical interpretation of decomposing a vector
into two orthogonal parts, which is roughly the statement of the Hilbert projection
theorem.

In this context, data X is the collection of  empirical spectral distributions  of the
correlation matrix estimators Ĉ. For each observed return data matrix X one gets a
correlation matrix estimator Ĉ(X). The  ESD µ̃Ĉ(Xk) calculated from Ĉ(X) can be
denoted by Xk for k indexing a sample.

For a given model and a fixed parameter vector θ, one can obtain a numerical
approximation of the density function f(θ). For real density functions from  chapter 3 ,
this approximation is done one a grid (xi)i, with xi ∈ R and i from some index set I.
Therefore, the density function f(θ) is approximated by the argument-value pairs
(xi, f(xi,θ))i∈I .

Remark: Note that we do not differentiate between the true density function and its
numerical approximation, because we do not know the true density function and its
numerical approximation is all we have. In general, for the degree of the  distribution
generating polynomial greater than 4, there do only exist numerical solutions. So one
could only differentiate between differing algorithms to approximate the true value,
which we will not pursue.

To be able to compare values of the density function f(xi,θ) with values of the  ESD 

µ̃Ĉ(Xi), the latter has to be aggregated. This is done by choosing a discretization of
the domain in bins [x̃i, x̃i+1) and counting the number of eigenvalues per bin. For
equidistant discretization this gives histograms like  Figure 4.17 –  Figure 4.21  .

We choose a equidistant discretization x := (xi)i∈I and calculate bins [x̃i, x̃i+1), such
that one has

xi = 2−1(x̃i + x̃i+1). 

6
 (5.2)

In addition, we ensure that the discretization covers the whole domain of µ̃Ĉ(Xk).
For calculations of a sample we fix a discretization suitable for all observations to
facilitate intra-model comparability.

Depending on the data set and the maximal range maxk µ̃Ĉ(Xk) of the domain of the
5And the other way round, every Hilbert space is isometric to a certain `2(S) space for a set S
with appropriate cardinality.

6With slight abuse of notation we neglect that the cardinality of index set I for the bins has to
be one bigger than the cardinality of the index set of grid points xi.
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 ESD , a discretization of length between 29 and 213 and granularity |xi+1 − xi| = 2−4

is chosen. The relationship of bins and grid points implies that density function
values f(xi,θ) are calculated at the midpoints of the equidistant bins [x̃i, x̃i+1].
This coupling of bins and grid points facilitates calculation of residues, because one
obtains

ε̂t(θ) := f(x,θt)− µ̃Ĉ(Xt)(x), with t ∈ T, (5.3)

for some index set T. The  ESD µ̃Ĉ(Xt)(x) is the vector of normed histogram counts
for the bins given by (  5.2 ).

To illustrate the structure of ( 5.3 ), for the NASDAQ-100 data set with 2 minute
returns and an aggregation level of one week, the return matrix Xt ∈ RTt×N has
N = 71 stock columns. For 2 minute returns there are 6.5 ·60 ·2−1 = 195 observations
per trading day of 6.5 hours length and, depending on the number of trading days
in week t, Tt = 3 · 195 = 585, Tt = 4 · 195 = 780 or Tt = 5 · 195 = 975 observations
per week. For the whole NASDAQ-100 data set, there are only 3 weeks of length 3
days, 69 weeks of length 4 days and a large majority of 323 weeks with 5 trading
days. The elements t of the index set T enumerate all observed weeks in the data
set.

In light of the motivation of Hilbert spaces we minimize the L2-norm of the residual
ε̂t(θ), which for fixed data Xt and fixed discretization x, is a function of the model
parameter vector θ. The structural parameter α is already subsumed into the density
function f(x,θt) and suppressed in notation.

For each t ∈ T, an estimator is therefore given by

θ̂t := argmin
θ
‖ε̂t(θ)‖2

2 = argmin
θ

ε̂t(θ)Tε̂t(θ)

= argmin
θ

∑
i∈I

(
f(xi,θt)− µ̃Ĉ(Xt)(xi)

)2
= argmin

θ

∑
i∈I

(g̃(xi,θt | Xt))2, (5.4)

with g̃(xi,θt | Xt) := f(xi,θt)− µ̃Ĉ(Xt)(xi). If one sets g̃ := √g, then ( 5.4 ) has form
( 5.1 ).

Remark: The argmin does not change if one transforms the objective function by a
strictly increasing function. Therefore it is more convenient to minimize the squared
L2-norm ‖·‖2

2 than the L2-norm ‖·‖2 itself.

5.2 Numerical Minimization Methods

Minimization of ‖ε̂t(θ)‖2
2 is a challenging task because several obstacles, both me-

thodic and numeric, have to be surmounted. The residual vector ε̂t(θ) = ε̂t(θ,x | Xt)
of log2-length between 9 and 13 has to be calculated efficiently.

7See [ 77 ].
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Algorithm 5.1: Fit VARMA(1, 1) Density to Histogram

Input:
x x values for density λ vector of eigenvalues
bw binwidth

Output: parameter estimates
(
φ̂1, θ̂1

)
Function DensityVARMA(x, φ1, θ1, α) {

set p(G, z, φ1, θ1, α) := to VARMA(1, 1) polynomial ( 3.34 )
return x(θ)
use Mathematica to find all k roots of G in p(G, z, φ1, θ1, α)
r(z, k, φ1, θ1, α) := root k
for i ∈ {1, . . . , k} do

gk(z, φ1, θ1, α) := z−1(1 + r(z, k, φ1, θ1, α))
fk(z) :=

∣∣ 1
π

Im gk(z, φ1, θ1, α)
∣∣2

h(k) := NumIntGaussKronrod(fk(z), 0, 210) from  algorithm 3.1 

end
t := argmink|h(k)|2
f(z) := ft(z)
foreach entry xi of x do

yi := f(xi)
end
return (y)

}
Function ResidualVARMA(x,λ, bw) {

λmax := max{λ} n := Ceiling(λmax)/bw
b sequence from 0 to Ceiling(λmax) with n+ 1 equal spaced elements (bins)
y(x, φ1, θ1, α) := DensityVARMA(x, φ1, θ1, α)
foreach bin [bi, bi+1) of b do

set hλ(i) to relative count of λi ∈ [bi, bi+1)
end
g(x, φ1, θ1, α) := hλ − y(x, φ1, θ1, α)
r(x, φ1, θ1, α) := (g(x, φ1, θ1, α))T(g(x, φ1, θ1, α))
return r(x, φ1, θ1, α)

}
Function EstimateVARMA(x,λ, bw) {

r(x, φ1, θ1, α) := ResidualVARMA(x,λ, bw)
use Nelder–Mead algorithm  

7
 to minimize over φ1, θ1(

φ̂1, θ̂1

)
:= argminφ1,θ1 r(x, φ1, θ1, α)

return
(
φ̂1, θ̂1

)
}

101



5 Application of Specific Random Matrix Models to Financial Returns

For the computation of µ̃Ĉ(Xt)(x) the eigenvalues of Ĉ(Xt) are fixed, given Xt. As
mentioned before, the discretization x is chosen equal for all Xt, t ∈ T. It remains
to count the eigenvalues in each bin. This computation was optimized and exported
for speed to C.

Depending on the chosen random matrix model, the way of computation of the
spectral density f(x,θt) and the minimization routine for the squared residual
differ.

5.2.1 VMA(1) and VAR(1) processes

Both, VMA(1) and VAR(1) processes, only have 1 model parameter φ1  resp. θ1 to
estimate. In addition, the spectral densities of the covariance matrices for both
stochastic processes are given by a  distribution generating polynomial of order 4,  i.e. 

all  DGPs are solvable in closed form.

As elaborated in subsections  3.1.5 and  3.1.5 , Mathematica’s LeafCount function as
a proxy of term length and complexity gives an enormous value of several thousand.
This makes the spectral density unfeasible for direct presentation in printed form,
but nevertheless it can be computed. As the spectral density f(θt) := f(x,θt) has to
be recomputed for every new candidate parameter solution vector θ, fast evaluation
is critical. Due to the long length of the expression to be computed we automated
the porting from Mathematica to C, as writing the code by hand is not feasible
anymore.

The residual vector ε̂t and thus its norm utilize highly optimized C code for fast
computation. But the necessary speed improvement comes at the cost of possible
numerical instability. In general, the root of a 4th order  DGP can be expressed as a
function of the polynomials coefficients, involving square and cubic roots. As the
 DGP coefficients are themselves polynomials in the model parameters, the expressions
for  DGP roots are long. For some parameter constellations the radicand might be
close to zero. Powers, roots and inverses in an unfavorable order might cause some
loss in numeric precision. These numerical errors might grow due to the very long
expression, involving thousands of operations.

For small parameter values in absolute value the spectral density f(θt) shows evidence
of medium numerical instability. We therefore only use parameter values with absolute
value not less than 2−6 ≈ 0.016.

It remains to find the minimum over the one-dimensional parameter space. The
plot of the residual vectors’ norm for both, the VMA(1) and VAR(1) random matrix
models, are depicted in  Figure 5.1  .
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Figure 5.1: ‖ε̂t(θ)‖2 of VMA(1) (red) and VAR(1) (blue) random matrix models,
calculated for parameter values in (0, 2]. Depicted is the first day of
observation 2007-06-27 of the NASDAQ-100 data set.  Algorithm 6.1  

was used.

The graphs depicted in  Figure 5.1 are roughly exemplary in shape for all the other data
sets and sample frequencies. Sometimes, the residual norm as function of the model
parameter has distinct multiple minima and narrow valleys, but the shape is never
too complicated for standard minimization routines. But as it was the case for small
absolute parameter values, there do exists times t with sample Xt so that the residual
norm function ‖ε̂t(θ)‖2 oscillates increasingly and finally diverges. This oscillating
behavior is only visible in very small intervals. Unfortunately, when evaluating
the residual norm function one can never be sure on whether its computed value
contains any significant numerical error. When under- or overflowing, the presence
of numerical errors becomes apparent. However, in a small neighborhood about this
pole-like behavior one cannot differentiate oscillating and normal behavior.

Because of this behavior, classical minimization routines that use some form of
gradient descent are not easily applicable. If a candidate value happens to be
contaminated with numerical error, the gradient gets distorted or, even worse, the
algorithm tries to find a minimum in the interval of oscillating function values.
Obviously gradient descent routines perform very badly in this conditions.

We opted to minimize a smoothed residual norm function ˜‖ε̂t(θ)‖2 to overcome the
problem of numerical outliers. A suitable smoothing procedure has to be insensitive
against possible outliers. As numerical errors can accumulate to under- or overflow,
outliers are not restricted in magnitude. In addition, for wide applicability cutting
of all suspect outliers beyond a threshold is not flexible enough. Outliers slightly
beyond the local treshold value can also be influential or distort the minimization
routine. Proper weighting schemes do not seem appropriate as the smoothing should
be locally confined and with emphasis on only modest many function evaluations
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for speed concerns outlier(s) would still get too much weight and thus distort the
smoothed function.

Smoothing by local median filtering conforms with the requirements stated above
and is very robust. After extensive testing, a median of 7 values yielded a satisfactory
compromise between outlier elimination and over-smoothing. The latter flattens away
any possible valley with 3 or less consecutive values at the current grid resolution
and bigger valleys (and hills) get flattend out, too. In addition, we captured and
eliminated all outliers resulting from overflows.

This median smoothing was combined with a robust gradient-free minimization
routine. A change in sign of consecutive first differences of the smoothed function
values is an indicator of local extrema. One receives curvature information by
observing sign changes of the first difference series. This information was utilized
and all local minima were investigated by successive parameter grid refinements.

The coarsest grid size is chosen to be of order 2−10, so the previously introduced
robust minimization algorithm would only miss vary narrow valleys of absolute wide
at most 3 · 2−10 ≈ 0.003. Knowing the histogram shape  

8
 of the  ESDs and the shape

of the spectral densities of covariance matrix estimators for VMA(1) and VAR(1)
processes, such narrow valleys seem unlikely. This is also confirmed by substantial
testing, where no such narrow valleys were observed and which yielded the chosen
grid size in the first place. The grid is refined in every iterative search step to have
only one fourth the grid size compared to the one from the previous step. At 2−18 we
stop the algorithm and output the parameter with minimal residual norm ‖ε̂t(θ)‖2.
The so estimated parameter is accurate to 2−18 ≈ 4 · 10−6 .

With parallel computing and full CPU 

9
 utilization the run time for the modest

sized NASDAQ-100 data set for daily covariance matrix estimates was still about
5.2 hours for VMA(1) model parameter estimation and 1.3 hours for the VAR(1)
model. Run time for large data sets like the S&P 500 with 2 minute returns was
over 34 hours for the VAR(1) model. This high run times emblematize the need
for fast algorithms and efficient implementation. In comparison to the run time
cost of residual norm function evaluation the overhead run time cost of the robust
minimization algorithm is negligible.

For estimation of the model parameters of VMA(2) or VAR(2) random matrix models,
the  respectively  distribution generating polynomials are of order 9 and have to be
solved numerically. In contrast to the 5th order  DGP for VARMA(1, 1) processes the
4 additional candidate roots aggravate the situation greatly.

The run time for computing the residual norm once is about 8 seconds. The parameter
space is 2 dimensional, if a minimization algorithm only needed 15 residual norm
evaluations, which is about 1–2 orders of magnitude less than would be expected
for reasonable accuracy, estimation time for the smallest data set would be about 5

8See  Figure 4.17 –  Figure 4.21 .
9CPU used was an Intel i7-2600, which has 4 physical cores and hyper-threading.
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days. The methods we employ for the other random matrix models applied to either,
VMA(2) or VAR(2) random matrix models for estimation of all data sets would lead
to a total run time of nearly one month each. As this rough assessment is a lower
bound, estimation of VMA(2) or VAR(2) random matrix models is not feasible at
present.

5.2.2 VARMA(1, 1) processes

In contrast to the  distribution generating polynomial for VMA(1)  resp. VAR(1)
processes, the  DGP for the  empirical spectral distribution  of the covariance matrix
estimator for a VARMA(1, 1) process is of order 5. In general, its roots are not
solvable in analytical form and therefore have to be approximated numerically. In
addition, the VARMA(1, 1) random matrix model possesses the two model parameters
{θ1, φ1} that have to be estimated simultaneously.

Having to choose one of the five roots that corresponds to the  ESD and approximate
it numerically is computationally very costly. As an advantage, the quality of the
numerical solutions is roughly uniform over the entire parameter space, but for
small φ1 values. The numeric challenges one faces when approximating the roots
numerically are described in  section 3.3  .

After comprehensive testing we limited the model parameter space Θ := [−1, 1]×[2−4, 3],
 i.e. we restrict the VAR parameter to θ1 ∈ [−1, 1] and the VMA parameter to
φ1 ∈ [2−4, 3]. This constraints impose no binding restriction for the parameters,
but confinement of the parameter space facilitates numerical minimization. The
 DGP polynomial is even in φ1, so one can restrict to non-negative parameter values.
Because of the numerical difficulty for small absolute φ1 parameter values, we require
φ1 ≥ 2−4. This is not really a restriction, as for φ1 = 0 the VARMA(1, 1) model
collapses to the VAR(1) model we already estimated.

We employ the robust Nelder–Mead minimization algorithm that was described in
the numerical minimization part of  section 3.3 . The graph of the residual norm is a
2 dimensional manifold and usually there are no distinct local minima. We abort the
Nelder–Mead algorithm after only 4 iterations and return the parameter vector with
minimal residual norm ‖ε̂t(θ)‖2. More iterations for the Nelder–Mead algorithm
would be preferable, but it had to be constrained due to excessive run times cost.

Note that the maximal number of only 4 iterations for the Nelder–Mead algorithm
does not imply that, after initialization of the 3-simplex that needs 3 objective
function evaluation, only 4 more objective function evaluations are performed. In
each iteration step the Nelder–Mead algorithm performs a reflextion and expansion
sub-step, and if feasible, also a contraction. In contrast to the robust median grid
search for VMA(1) and VAR(1) processes, the Nelder–Mead algorithm does not give
a accuracy of the argmin. The maximal size of the 3-simplex at termination could
be used as a proxy for accuracy. We impose a second termination conditions of the
algorithm, so that it stops at an accuracy of 2 decimal places. Usually the precision of
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Residual norm of VARMA(1, 1) and 1st day of NASDAQ-100 data set (daily)
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Figure 5.2: ‖ε̂t(θ)‖2 of VARMA(1, 1) random matrix model, calculated for parameter
values (θ1, φ1) ∈ [−2, 2]× (0, 3]. Depicted is the first day of observation
2007-06-27 of the NASDAQ-100 data set.  Algorithm 6.1  was used.

the solution will have said accuracy, but due to the low number of maximal iterations
one cannot be sure.

Run time for the NASDAQ-100 data set for daily covariance matrix estimates is
about 3 hours, but run time for the much bigger NASDAQ data set is over 30
hours.

5.2.3 VARFIMA(p, d, q) processes

Numerical approximation of the  ESD for the covariance estimator of VARFIMA(p, d, q)
processes is supremely challenging, as elaborated in  subsection 3.2.4 and  subsection 3.2.5 .
Computation of the spectral density was computationally very expensive.

As we remarked at the end of  subsection 3.2.4 , it is very difficult to automate the
generation of VARFIMA(0, d, 0) eigenvalue densities due to the artifacts induced
by the numeric algorithm, see  Figure 3.6 . These artifacts are very problematic for
parameter estimation by least-squares minimization, because the histogram data
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that should be fitted has actual atoms at the right tail. One does not want to fit
those isolated eigenvalues with artifacts. In addition, the artifacts are not stable and
change for a different model parameter θ = d.

Calculation of the residual norm once has a run time of 2.5 minutes. The same
rationale as for VMA(2) and VAR(2) random matrix models applies. With the
algorithms introduced and with present computational power of workstations it is
not feasible to estimate the model parameter.

A fortiori, the same holds true for VARFIMA(1, d, 1) eigenvalue densities, see
 subsection 3.2.5  .

5.3 Parameter Estimates and Fit to Historical Data

This section links the theoretical models from  chapter 3 in the 1st part with the
financial data from  chapter 4 in the 2nd part of this thesis. With all the prerequisites
and work done, we are finally in a position to estimate the model parameters of the
 empirical spectral distribution of the covariance estimator for financial return data.
Parameter estimation is done as elaborated in the previous paragraph.

As explained in  subsection 4.4.2 , the  ESD of financial stock return data covariance
estimates have the characteristic of the biggest eigenvalue being one order of mag-
nitude larger than all the other eigenvalues. For estimation, we use to correlation
matrices normed covariance matrix estimators. This normalization ensures that the
entries on the main diagonal are all unity and therefore the matrix trace equals the
number of stocks in the data set. The market eigenvalue accounts for a huge portion
of the matrix trace by itself. This means that the sum of λ2, . . . , λN can only achieve
a value of Tr

(
Ĉ
)
− λ1. This distorts the non-negative eigenvalues λ2, . . . , λN to 0.

As one wants to employ the  ESD of Ĉ for parameter estimation, we chose to adjust
the  ESD for the large value of the market eigenvalue.

One idea to achieve this correction would be to estimate the empirical correlation
matrix from the financial stock return data. As the associated eigenvector to the
market eigenvalue has estimated components almost all of equal sign and roughly
uniform distributed, the L1-normed eigenvector can be interpreted as a market
portfolio and its components as market portfolio weights for each stock. For each
return series one could now calculate the markets portfolio return as inner product
of the stock returns with the market portfolio vector. A simple linear regression of a
constant and the market return series on the original return series projects out the
former from the latter. The residuals of this regression are returns with removed
influence of the estimated market portfolio, at least approximately and in a linear
fashion. Biely and Thurner use this method and also note the close resemblance
of the above regression with the  CAPM . 

10
 This also motivates the inclusion of a

10See [ 14 , p. 6, eq. (6)].
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constant as regressor, which acts by de-meaning the residual returns. These corrected
residual returns can be used for further analysis.

A negative aspect with the above described procedure for return cleaning is that the
market portfolio is estimated by all data. Thus, the cleaned residual return data
will depend on future values. This destroys adaptiveness of the return data with
any underlying probability model, albeit only slightly so. A more severe practical
caveat might be a too positive predictive power for statistics depending solely on
in-sample data and considerably worse predictive power for out-of sample statistics.
Depending on the purpose of the analysis this method of correction for the market
portfolio might be preferable, but we chose an adapted 3 method,  i.e. one that does
not depend on future data.

We propose to simply exclude the market eigenvalue λ1 from the  ESD , so that it
only contains N − 1 eigenvalues. A corresponding correlation matrix would have a
trace of N − 1. To achieve this constraint all remaining eigenvalues λ2, . . . , λN are
linearly rescaled to

λ̃k := N − 1
Tr
(
Ĉ
)
− λ1

λk = N − 1∑N−1
k=1 λk

λk, (5.5)

so that
∑N−1

k=1 λ̃k = N − 1. 

11
 

We use the by ( 5.5 ) rescaled  ESD as input for all the parameter estimation algo-
rithms 

12
 as it removes the  ESD distortion of the largest eigenvalue, which the random

matrix models do not account for.

5.3.1 Parameter Estimates

The S&P 500 »long« data set for daily estimates and both, the NASDAQ and
S&P 500 »big« data sets for daily and weekly estimates, contain more stocks
than return observations. By construction, the estimated correlation matrix Ĉ
has eigenvalues λk = 0 for all k ∈ {N − T + 1, . . . , N}. In the  ESD , these zero
eigenvalues appear as atom at 0 with probability mass of 1− α, for α := T/N.The
presence of this atom at zero distorts the  empirical spectral distribution  twofold.
Firstly, the atom at 0 with probability mass 1− α and secondly the bulk eigenvalue
spectrum only has remaining probability mass α. As the rectangularity ratio α is
knowable in advance, α is a structural parameter and one could omit the atom at
0 and rescale the remaining  ESD by α−1. Additional rescaling of the remaining
eigenvalues is not necessary, as they already sum to T < N .

11If it is clear from context, we still use the notation λk for rescaled eigenvalues λ̃k.
12We also use the rescaled  ESD for plots.
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Weekly parameter estimates for VARMA(1, 1) model
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Monthly parameter estimates for VARMA(1, 1) model
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Quarterly parameter estimates for VARMA(1, 1) model
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Figure 5.3: Parameter estimates for VARMA(1, 1) random matrix model, S&P 500 »long« data set.
θ̂1(t) ∈ (0, 3] in blue, φ̂1(t) ∈ [−1, 1] in red, for all t ∈ T.  Algorithm 6.1 was used.
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5 Application of Specific Random Matrix Models to Financial Returns

The removal of the zero eigenvalues would transform the under-identified case to an
exactly identified case. This implies that there are no  degrees of freedom  left and
parameter estimation accuracy is poor. In this work, we do not want to compare
data sets with structurally different quality of estimated parameters, therefore we
refrain from doing so.

Remark: Note that this line of reasoning yields an active and growing field of re-
search on under-identified statistics. Possible applications include lower subspace
approximation by stochastic methods, regularization and lasso methods in regression
analysis or feature extraction of weak learners in data mining.

The estimated parameter values are roughly identical between different data sets for
the same sampling frequency of either daily, weekly, monthly or quarterly subsamples.
Exemplary, we show parameter estimates for the VARMA(1, 1) random matrix model
for the S&P 500 »long« data set in  Figure 5.3  .

For daily parameter estimates, the S&P 500 »long« data set contains 224 stocks and
a median of 193 observations. This implies for its  ESD an atom at 0 with probability
mass of about 0.138. As previously elaborated, this atom at 0 distorts the bulk
eigenvalues in the  ESD and least squares minimization gives parameter estimates
whose implied spectral density function of the VARMA(1, 1) random matrix model
fails to capture the shape of the  ESD . This is also visible by the fact that for
daily parameter estimates the parameter θ̂1 admits values near its upper bound of 3.
This is a sign that unconstrained optimization would have let to larger parameter
estimates. For the three other sampling frequencies the estimated parameters are
almost never constrained by the boundaries chosen. But even for larger θ̂1 parameter
values the fit of the implied spectral density function with the  ESD would be poor.
We confirm and acknowledge that the VARMA(1, 1) random matrix model is not
applicable in situations with T < N ,  i.e. when there are less observations in time
than stocks in the sample used to estimate the correlation matrix Ĉ.

As expected, parameter variability in time decreases from weekly to monthly and
quarterly parameter estimates. Also note that the first quarter only contains the
two trading days 2002-12-30 and 2002-12-31, compared with the usual 3 month of
observations. For analog reasons, the last week, month or quarter in a data set might
also exhibit different characteristics as the rest of the data set, as it might contain
notably fewer trading days and thus observations. Therefore, when showing concrete
fits of the spectral distribution function with the  ESD , we will often chose the second
or penultimate subsample.

For quarterly estimates, the MA parameter is essential estimated to be 0, with
the exception of the beginning of the financial crisis in the second half of 2007.
The monthly estimates show increased variation between 2008–2011 and from 2014
onwards. This pattern is also visible in the weekly estimates from  Figure 5.3 .
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5.3 Parameter Estimates and Fit to Historical Data

5.3.2 Fit of Spectral Density and  ESD 

As a first example of the capability of the theoretical spectral densities to approximate
the  ESD , see  Figure 5.4 . The NASDAQ-100 data set consists of only 71 stocks,
but the spectral density fits the  ESD well.
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Figure 5.4:  ESD of NASDAQ-100 data set (daily) for t = 2013-01-16 and
VARMA(1, 1) spectral density function.  Algorithm 6.1  was used.

In  Figure 5.5 , we depict the fit to the S&P 500 »long« data set. Because for daily
subsamples one has T < N , we only show the three remaining sampling frequencies.
For weekly, monthly and quarterly, the spectral density includes all but 6, 5  resp. 7
eigenvalues, also counting the market eigenvalue. As the S&P 500 »long« data set
contains 224 stocks, the spectral density approximation contains a share of about
0.97. From a modeling perspective, with only 2 model parameters we were able to
approximate the bulk of the  ESD of the correlation matrix estimate. The »outlier
eigenvalues« can be neglected or have to be modeled in its own right, for instance as
a factor model. 

13
 

For the S&P 500 »big« data set, only for subsamples of frequency month or
quarter one has T ≥ N . The most recent and also complete month is November
2016. Approximation by the 1-parameter VAR(1) model can be seen in  Figure 5.6  .
In contrast to previous VARMA(1, 1) matrix models the shape flexibility is less
pronounced. In order to be able to capture the peak of very small eigenvalues and
approximate the right tail decrease the spectral density function has a long right tail
that decreases only very slowly. The right endpoint of its domain is 44.4 and only
the two largest eigenvalues exceed this domain endpoint.

13See [ 8 ].
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Figure 5.5: Example of model fit for VARMA(1, 1) random matrix model,  ESD of
S&P 500 »long« data set (weekly, monthly and quarterly) for the first
complete observation and VARMA(1, 1) spectral density function with
estimated parameters θ̂1 and φ̂1.  Algorithm 6.1  was used.
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5.3 Parameter Estimates and Fit to Historical Data

In contrast, the VARMA(1, 1) random matrix model for the same data set, but
quarterly parameter estimates has a much narrower domain, see  Figure A.3  . We
show an artificial situation, where we aggregated information of the whole data set
by applying the median for all eigenvalues in time. This median  ESD is well approx-
imated by the spectral density depicted. Similarly, in  Figure A.4 the NASDAQ
data set for monthly sampling frequency is aggregated by averaging over the  resp. 

eigenvalues.

The DJIA data set only consists of 26 stocks. But even for this low number
satisfactory approximation is possible. In the  Figure A.5 we depicted the penultimate
observation, 2016-09-15.
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Figure 5.6: Example of model fit for VAR(1, 1) random matrix model,  ESD of
S&P 500 »big« data set (monthly) for the last complete observation
and VAR(1) spectral density function with estimated parameter θ̂1.

Remark: To test for robustness, we also estimated some of the data sets by minimiza-
tion of the L1-norm and L∞-norm. The parameter estimates in the L1-norm are
almost identical, which implies a certain degree of robustness. Even in the L∞-norm
the general picture does not change.
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5 Application of Specific Random Matrix Models to Financial Returns

5.4 Reflections on the Results

In  subsection 5.3.2 we showed graphically how the fitted VARMA(1, 1) densities
approximate the observable eigenvalue histogram of the sample covariance matrix.

Reflecting a short moment on what we did and why we did it should help to clarify
our approach.

Financial markets are one of the most complex men-made system, as millions of people
participate. Financial equity return data is one manifestation one can investigate
further. Part of the problem is that we do not have a very long history of observations
for the large number of assets available,  i.e. in the S&P 500. As the data is high-
dimensional in nature, it is quite difficult to assess any cross-dependence but the most
simple one, covariances. The sample covariance matrix estimator C := T−1XTX is
the simplest formula to decode all second moments of the data without imposing any
premature restrictions. But even this simple object decodes very much information
and is such very complicated.

The sample covariance matrix estimator is symmetric and at least non-negative
definite by construction. Thus, it can be separated by its Eigendecomposition into its
spectrum and the eigenbasis. The latter is still very complicated, but the spectrum
seems the easier object to research.

It is not our goal to approximate the histogram of sample covariance eigenvalues by
any function. With semi- or non-parametric methods like splines one would probably
get a fit way better by almost all measures. But the very problem at hand is that
the financial market and thus its sample covariance, and even its spectrum, is so
complicated, that we try to find some structure. Finding structure means to be able
to explain major parts by a simple mechanism.

The sample cross-covariance matrix C has an interpretation as encoding as its entry
ci,j the covariance between stocks i, j for i 6= j. But simple linear algebra tells us
that the sample auto-covariance A := T−1XXT has the same non-trivial spectrum as
the cross-covariance matrix C. It is therefore equally valid to not impose restrictions
or assumptions on the cross-covariances, but on the auto-covariances, that is the
evolution of stock returns in time.

In this light,  Figure 5.5  is quite remarkable. Its statement is, that we can abstract
away from the very details of every single asset. Because of how the true spectrum of
the population covariance matrix and the spectrum of the sample covariance matrix
are related for the model class we investigate, one of the most basic results from
 Random Matrix Theory (RMT)  explains much of the shape of the sample eigenvalue
histogram — the Marchenko–Pastur law depicted in  Figure 1.1 . For this to work, we
just had to assume that the financial returns are random variables with finite second
moment and otherwise  independent and identically distributed (i.i.d.) . The moment
assumption is no restriction since we want to investigate second moments anyway.
The highly unrealistic case of assuming no dependence structure at all already gives
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5.4 Reflections on the Results

a quite decent fit. One can thus conclude that much of the shapre of the sample
eigenvalue histogram is due to algebraic and probabilistic constraints on how such a
spectral density can possibly look like.

If we just assume that all assets behave in time like very simple linear processes like
VARMA(1, 1), then we can improve the fit and capture much of the complexity with
just a few additional parameters. We do not claim that financial markets actually
behave solely like VARMA(1, 1) processes in time, but they give a low-parametric
approximation. The structural part of the spectrum that is approximated in such a
low-parametric way is therefore not really distinguishable from very basic behavior
of assets in time. Of course it is well known that the trajectory of single assets is
not well described by a ARMA(1, 1) process. But apparently the macro-behavior of
many such assets can be well described by this assumption. It is certainly not a much
stronger assumption than assuming a block-matrix structure for the cross-covariance,
grouping assets by sectors or other characteristics.

As we are in a high-dimensional setting and research the macro structure, the
VARMA(1, 1) model seems like a good macro explanation. Single stocks do not
behave like ARMA(1, 1) processes, because this would be easily predictable and lead
to opportunities for statistical arbitrage. The evolution of a single asset might very
well be described by information newly available to certain groups of investors. But
the whole market as an aggregate seems to behave very much like an VARMA(1, 1)
process. The difference is the coupling to consider it vector-valued so as to capture
the macro dynamics of the whole financial market and not of single stocks. It is also
quite a good result that financial markets are in big parts indistinguishable in there
macro behavior to VARMA(1, 1) dynamics.

With this background, the actual fit of the VARMA(1, 1) model to the sample
covariance spectrum seems only relevant to compare between structurally similar
results. It would be interesting to compare with other low-parametric approaches
that also explain the shape of the spectrum well.
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6 Conclusions and Perspectives

We complete this thesis by a recapitulation of its content and draw conclusions.
From this combined, we give perspectives on how this work can be extended.

6.1 Recapitulation and Conclusions

After a short introduction in  chapter 1 into the topic of high-dimensional data
we showed the relevance of covariance matrices as basic building blocks in many
applied areas. We continued to motivate the relevance to describe high-dimensional
covariance matrices parsimoniously and the need to model them. We argued that
to structurally model high-dimensional matrix models  non-commutative probability
theory (NCPT) is the right tool.

In the first part of this thesis, we first laid the theoretical foundation necessary
to introduce random matrix models capable of containing dependencies in time
and across stocks. As a first step, in  chapter 2 we introduced the concept of
 non-commutative probability theory  and motivated the necessity of a new concept
of stochastic independence suitable for  NCPT . The abstract building blocks to
advance and enrich  NCPT are of interest on its own. They help one understand
classical probability theory and might also show new paths on how to extend classical
probability theory.

Cumulants are a basic tool to facilitate addition of free  NCRVs  . This holds true for
both, classical and  non-commutative probability theory  if one selects the associated
cumulant type. There is also a branch of research, connecting both types of cumulants
to crossing  resp. non-crossing partitions and mathematical combinatorics.

Distributions as collection of moments are not analytical tractable, so we introduced
various transformations to facilitate additive  resp. multiplicative convolution of
distributions belonging to free  NCRVs  . Most notably the R-transform enables
addition of free  NCRVs and the S-transform enables multiplication.

Rectangular  non-commutative random variables are very important, as we employ
the theoretic  NCRVs to model random matrices. This link was shown in  chapter 3  ,
where we also introduced the concept of asymptotic freeness necessary as motivation
on why certain  non-commutative random variables model specific random matrices.
This connection enabled us to turn from abstract  NCRVs to concrete random matrix
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models. In the same vein the concept of universality was introduced to emphasize
the ubiquitous possibilities of application and stability of results. We introduced
the Wigner and Wishart random matrix ensembles and worked out some lemmata
on convergence of random probability measures. Both are essential if one wants to
switch from  RVs of  empirical spectral distributions to their deterministic limits.

Sections  3.1 and  3.2 unite and use all the theory developed to calculate the spectral
density function of correlation matrix estimators for random matrix models which
are, broadly, from the VARFIMA(p, d, q) family. Even for the most basic VMA(1)
 resp. VAR(1) random matrix models the theory is quite complicated. Fortunately, for
those two models there exist an explicit solution in closed form. Unfortunately these
are too long to express in a meaningful way. Methods from numerical mathematics
have to be applied to advance further. All spectral densities for all the other random
matrix models introduced are only solvable numerically. As the algorithms for the
spectral density are quite complicated an efficient implementation and choice of
suitable numerical methods is vital.

In the second part of this thesis, we employed the theoretical findings to exemplary
show on how to utilize the first part in practice. In  chapter 4  we gave an overview
of various data sets. We use high-dimensional financial high frequency data sets to
estimate the model parameters of correlation matrix estimates under the dynamics
of certain random matrix models.

The high frequency data had to be processed and cleaned. Because of certain
requirements on the data in light of minimal liquidity and data completeness the
raw data had to be constrained. We gave some basic descriptive statistics of the
data and presented the data sets used for subsequent empirical analysis. Finally, the
empirical counterpart to the spectral density, the  empirical spectral distribution , is
estimated.

The final  chapter 5 first explains the methodology used for parameter estimation.
It continuous with a thorough explanation of the challenges one faces when esti-
mating the model parameters. Due to the complexity of the algorithms needed
and constraints on the computational power available only the three most basic
models VMA(1), VAR(1) and VARMA(1, 1) could be estimated for the whole data
set and for subsampling frequencies. We only depicted a small subset of the estimates,
showcasing the ability of the methods used to approximate the bulk of the  ESD of
correlation matrix estimators.

The appendices collect mathematical definitions and theorems used, some proofs too
long for the main part and some additional plots.
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6.2 Motivations and Restrictions

6.2 Motivations and Restrictions

In this work we restrict ourselves to symmetric random matrices. Otherwise, the
spectrum would not be real-valued but be complex. This is much harder to analyze
and another endeavor. We concentrate on the relevant  Random Matrix Theory but
also wanted to give a self-contained introduction. The Wishart ensemble is important
for the Marchenko–Pastur distribution, the first cornerstone of  RMT applied to
covariance matrices. To understand the concept of freeness is essential to understand
 RMT and also to work with different tools. The family of transformations was
used to develop the main building blocks. We shortly touch on rectangular random
matrices and how they can be incorporated in the framework presented.

6.3 Perspectives

With more computational power the VMA(2) and VAR(2) random matrix models are
estimable, as well as the VARFIMA(1, d, 1) models. The VARFIMA(0, d, 0) random
matrix model introduces the idea of fractional integration to random matrix models,
but it seems not to be able to replicate the empirical characteristics of  ESDs of
correlation matrix estimates of financial stock return data. The VARFIMA(1, d, 1)
should, in principle, work well as it extends the VARMA(1, 1) model. It is of interest
whether fractional integration can, it least in a statistical sense, help explain the
shape of the  ESD .

A next step after the initial parameter estimation could be the construction of a factor
model. We did not analyze the eigenvectors belonging to the largest eigenvalues not
the market eigenvalue. It is known that they contain suitable information that can
be utilized for inference and prediction. The structure given by our parametrization
of the estimated correlation matrix could also be utilized by economic scenario
generators to simulate future market behavior.  Non-commutative probability theory 

can be extended to non-commutative stochastic processes. They also can be used to
capture high-dimensional marked dynamics in a parsimonious fashion.

Also a new field of research is the explicit modeling of eigenvectors of random matrices.
For non-rotational invariant random matrix models the eigenvectors contain much
information. As an additional bonus, eigenvectors of normal correlation matrices are
quite easy interpretable as portfolio vectors.
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A Theorems, Proofs and Results

A.1 Definitions

We want to extend convergence of distributions from a sequence of distributions of
an implicit single random variable to a sequence of joint distributions of a fixed set
of random variables.

Definition (Convergence of Joint Distributions)
Let I be an index set, indexing random variables in a joint distribution. For each
n ∈ N, let (An, ϕn) be non-commutative probability spaces and let

(
a(n)
i

)
i∈I
∈ An be

a family of  non-commutative random variables with joint distribution

µn := µ(
a(n)
i

)
i∈I

.

We say the sequence of joint distributions (µn)n∈N converges for n → ∞, if there
exists a joint distribution µ, such that

lim
n→∞

(µn(P ))n∈N = µ(P ), (∀P ∈ C〈Xi | i ∈ I 〉).

Notation: We say that a sequence of random variables
(
a(n))

n∈N converges in dis-
tribution to some random variable a ∈ A in some non-commutative probability
space (A, ϕ), if the respective sequence of distributions of

(
a(n))

n∈N converges in
distribution to the distribution of a. This naturally extends to sequences of families
of random variables converging.

A.2 Theorems

A.2.1 Some Theorems in Complex Analysis

Theorem A.1 (Inverse Cauchy-transform)
Let µ be a real probability measure and let Gµ(z) be its Cauchy-transform. Then we
have
µ((a, b)) + µ([a, b])

2 = lim
ε↘0
− 1
π

∫ b

a

ImGµ(x+ iε) dx, (a < b ∈ supp(µ) ⊆ R). (A.1)
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In addition, if a, b are continuity points of µ,  i.e. neither of a, b is an atom of µ, we
have

µ({a}) = µ({b}) = 0 =⇒ µ((a, b)) = µ([a, b]),

and (  A.1 ) simplifies to

µ((a, b)) = µ([a, b]) = lim
ε↘0
− 1
π

∫ b

a

ImGµ(x+ iε) dx, (a < b ∈ supp(µ) ⊆ R).

Proof ( Theorem A.1  )
In the situation of  Theorem A.1 , the imaginary part of the Cauchy-transform Gµ(z)
is, with x+ iε = z ∈ C

ImGµ(x+ iε) = Im
∫
R

1
(x+ iε)− λ dµ(λ) = Im

∫
R

1
(x− λ) + iε dµ(λ)

= Im
∫
R

x− λ
(x− λ)2 + ε2

− i ε

(x− λ)2 + ε2
dµ(λ)

=− ε
∫
R

1
(x− λ)2 + ε2

dµ(λ). (A.2)

Because of ∫ 1
u2 + 1 du = arctan(u) + c, (A.3)

we want to bring ( A.2 ) in this form. By direct calculation

lim
ε↘0
− 1
π

∫ b

a

ImGµ(x+ iε) dx = lim
ε↘0
− 1
π

∫ b

a

−ε
∫
R

1
(x− λ)2 + ε2

dµ(λ) dx

Fubini= lim
ε↘0

1
π

∫
R
ε

∫ b

a

1
(x− λ)2 + ε2

dx dµ(λ)

= lim
ε↘0

1
π

∫
R
ε

∫ b

a

1
ε2

1(
x−λ
ε

)2 + 1
dx dµ(λ), (A.4)

and the change of variable

u := x− λ
ε

=⇒ dx = ε du,

we get a form where (  A.3 ) is applicable:∫ b

a

1(
x−λ
ε

)2 + 1
dx =

∫ b−λ
ε

a−λ
ε

1
u2 + 1ε du = εarctan(u)|

b−λ
ε

a−λ
ε

.

Choosing a vanishing integration constant c = 0 we get for ( A.4 ):

lim
ε↘0

1
π

∫ b

a

ImGµ(x+ iε) dx = lim
ε↘0

1
π

∫
R

arctan
(
b− λ
ε

)
− arctan

(
a− λ
ε

)
dµ(λ)

(A.5)
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For λ = a the argument of arctan and therefore the second summand itself vanishes
and we are left with

lim
ε↘0

1
π

arctan
(
b− a
ε

)
= 1

2 ,

because b − a > 0 and for limε↘0 the argument goes to infinity. For λ = b, an
analogous argument also yields 1

2 . The range of the usual principal value of arctan is

Image(arctan) =
(
−π2 ,

π

2

)
,

and arctan is monotonically increasing and we have that b > a, therefore we have

0 ≤ 1
π

(
arctan

(
b− λ
ε

)
− arctan

(
a− λ
ε

))
≤ 1, (A.6)

and for limε↘0 ( A.6 ) approximates the characteristic function 1(a,b). Because of
( A.6 ) we can apply the dominated convergence theorem to ( A.5 ) and the claim is
proved. �

Remark:  Theorem A.1  is closely related to the Sokhotski–Plemelj theorem from
complex analysis.

To calculate ImGµ(x+ iε), one often needs to know the following:

Lemma A.2 (Im
√
x+ iy)

For x, y ∈ R we have

Im
√
x+ iy =

√√
x2 + y2 − x

2 , (A.7)

where we choose the branch with the same sign as y, if not otherwise stated, so that
the square root is well-defined.

Proof ( Lemma A.2  )
By direct calculation, we have√√x2 + y2 + x

2 + i

√√
x2 + y2 − x

2

2

=
√
x2 + y2 + x

2 + i2
√
x2 + y2 − x

2

+ i2

√√
x2 + y2 + x

2

√√
x2 + y2 − x

2

= x+ i
√(√

x2 + y2 + x
)(√

x2 + y2 − x
)

= x+ i
√
x2 + y2 − x2 = x+ iy.

Because we have
√
x2 + y2 ≥ x for all x, y ∈ R, the radicand is never negative and

thus the  RHS of (  A.7 ) is always real. So we have proven the claimed identity. �
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Lemma A.3 (Re
√
x+ iy)

For x, y ∈ R we have

Re
√
x+ iy =

√√
x2 + y2 + x

2 .

Proof Analogous to  Lemma A.2  �

Lemma A.4 (Schur’s Complement)
Let (

A B
C D

)
, (A.8)

be an invertible block-matrix, where the entries A,B,C,D are matrices with appro-
priate dimensions and D−1 exists. Then one has(

A B
C D

)−1

=
(

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1

)
.

(A.9)

Proof Multiplication of ( A.8 ) with ( A.9 ) gives the identity matrix I. �
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A.3 Results

A.3.1 Polynomial for VMA(2)

(A.10)

M9z5 (φ2 − 1)2 (φ2
1 − 4φ2

) (
φ2

1 − (φ2 + 1)2)4

−M8
(
z5
(

(−4α− 5)
(
φ2

1 − 4φ2
)

(φ2 − 1)2 (φ2
1 − (φ2 + 1)2)4)

+ 4z4α
(
φ2

1 − (φ2 + 1)2)2 (((φ2 − 3)φ2 + 1)φ4
1 + (φ2 (φ2 ((φ2 − 2)φ2 + 10)− 2) + 1)φ2

1 − φ2 (φ2 + 1)2 (φ2 (5φ2 − 6) + 5)
))

−M7
(
z5
(

2(−α(3α + 10)− 5)
(
φ2

1 − 4φ2
)

(φ2 − 1)2 (φ2
1 − (φ2 + 1)2)4)

+ z4
(

16α(α+ 1)
(
φ2

1 − (φ2 + 1)2)2 (((φ2 − 3)φ2 + 1)φ4
1 + (φ2 (φ2 ((φ2 − 2)φ2 + 10)− 2) + 1)φ2

1 − φ2 (φ2 + 1)2 (φ2 (5φ2 − 6) + 5)
))

− 2z3α2 ((φ2 (3φ2 − 14) + 3)φ6
1 + 2 (φ2 (φ2 ((φ2 − 2)φ2 + 18)− 2) + 1)φ4

1

+ (φ2 + 1)2 (3φ4
2 + 26φ2

2 + 3
)
φ2

1 − 4φ2 (φ2 + 1)4 (φ2 (5φ2 − 2) + 5)
))

−M6
(
z5
(

2(−α(α(2α + 15) + 20)− 5)
(
φ2

1 − 4φ2
)

(φ2 − 1)2 (φ2
1 − (φ2 + 1)2)4)

+z4
(

8α(α(3α+8)+3)
(
φ2

1−(φ2 +1)2)2 (((φ2−3)φ2 +1)φ4
1 +(φ2 (φ2 ((φ2−2)φ2 +10)−2)+1)φ2

1−φ2 (φ2 +1)2 (φ2 (5φ2−6)+5)
))

+ z3 (2(−4α− 3)α2 ((φ2 (3φ2 − 14) + 3)φ6
1 + 2 (φ2 (φ2 ((φ2 − 2)φ2 + 18)− 2) + 1)φ4

1 + (φ2 + 1)2

·
(
3φ4

2 + 26φ2
2 + 3

)
φ2

1 − 4φ2 (φ2 + 1)4 (φ2 (5φ2 − 2) + 5)
))

+ 4z2α3 (((φ2 − 8)φ2 + 1)φ4
1 + (φ2 (φ2 ((φ2 − 8)φ2 − 2)− 8) + 1)φ2

1 − 2φ2 (φ2 + 1)2 (φ2 (5φ2 + 2) + 5)
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−M5
(
z5
(

(−α(α(α(α + 20) + 60) + 40)− 5)
(
φ2

1 − 4φ2
)

(φ2 − 1)2 (φ2
1 − (φ2 + 1)2)4)

+z4
(

16α(α+1)(α(α+5)+1)
(
φ2

1−(φ2 +1)2)2 (((φ2−3)φ2 +1)φ4
1 +(φ2 (φ2 ((φ2−2)φ2 +10)−2)+1)φ2

1−φ2 (φ2 +1)2 (φ2 (5φ2−6)+5)
))

+ z3 (2α2 (−2
(
α(7α + 12) + φ2

(
φ2
(
(α(7α + 12) + 3)φ2

2 − 3(α(3α + 8) + 2)φ2 + 8α(14α + 27) + 54
)
− 3(α(3α + 8) + 2)

)
+ 3
)
φ4

1

− (φ2 + 1)2 (α(17α + 36) + φ2
(
φ2
(
−6φ2α

2 + 2(73α + 156)α + (α(17α + 36) + 9)φ2
2 + 78

)
− 6α2)+ 9

)
φ2

1 − φ6
1
(
(α(17α + 36) + 9)φ2

2

−42(2α(α + 2) + 1)φ2 + α(17α + 36) + 9
)

+ 2φ2 (φ2 + 1)4 ((α(59α + 120) + 30)φ2
2 − 2(α(13α + 24) + 6)φ2 + α(59α + 120) + 30

)))
+ z2 (8α3(2α + 1)

(
((φ2 − 8)φ2 + 1)φ4

1 + (φ2 (φ2 ((φ2 − 8)φ2 − 2)− 8) + 1)φ2
1 − 2φ2 (φ2 + 1)2 (φ2 (5φ2 + 2) + 5)

))
+ z

(
α4 (4φ2 (φ2 (5φ2 + 6) + 5)− φ2

1 ((φ2 − 18)φ2 + 1)
)))

−M4
(
z5
(
−(5α(α(α+ 2)(α+ 6) + 4) + 1)

(
φ2

1− 4φ2
)

(φ2− 1)2 (φ2
1− (φ2 + 1)2)4)+ z4

(
4α(α(α+ 2)(α(α+ 14) + 8) + 1)

(
φ2

1− (φ2 + 1)2)2

·
(
((φ2 − 3)φ2 + 1)φ4

1 + (φ2 (φ2 ((φ2 − 2)φ2 + 10)− 2) + 1)φ2
1 − φ2 (φ2 + 1)2 (φ2 (5φ2 − 6) + 5)

))
+ z3 (2α2 ((−(α(α(10α + 51) + 36) + 3)φ2

2 + 14(2α(α(2α + 9) + 6) + 1)φ2 − α(α(10α + 51) + 36)− 3
)
φ6

1

+2 (−3α(α(2α + 7) + 4) + φ2 (α(α(2α + 27) + 24) + φ2 (φ2 (α(α(2α + 27) + 24)− (3α(α(2α + 7) + 4) + 1)φ2 + 2)
−2(4α(2α(5α + 21) + 27) + 9)) + 2)− 1)φ4

1 − (φ2 + 1)2 (α(α(10α + 51) + 36) + φ2
(
φ2
(
−6(2α + 3)φ2α

2 + 6(α(14α + 73) + 52)α

+(α(α(10α+51)+36)+3)φ2
2 +26

)
−6α2(2α+3)

)
+3
)
φ2

1 +2φ2 (φ2 +1)4 ((α(α(38α+177)+120)+10)φ2
2−2(α(α(10α+39)+24)+2)φ2

+α(α(38α + 177) + 120) + 10
)))

+ z
(
α4(4α + 1)

(
4φ2 (φ2 (5φ2 + 6) + 5)− φ2

1 ((φ2 − 18)φ2 + 1)
))

+ z2 (4α3 ((α(5α + 8) + φ2 (−α(47α + 64) + (α(5α + 8) + 1)φ2 − 8) + 1)φ4
1

+
(
(α(5α + 8) + 1)φ4

2 − 2(α(25α + 32) + 4)φ3
2 − 2(α + 1)(7α + 1)φ2

2 − 2(α(25α + 32) + 4)φ2

+α(5α + 8) + 1
)
φ2

1 − φ2 (φ2 + 1)2 (α(57α + 80) + φ2 (2α(9α + 16) + (α(57α + 80) + 10)φ2 + 4) + 10)
))

− 4φ2α
5
)
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−M3
(
z5
(

2α(−5α(α + 1)(α + 3)− 2)
(
φ2

1 − 4φ2
)

(φ2 − 1)2 (φ2
1 − (φ2 + 1)2)4)

+ z4
(

16α2(α + 1)(α(α + 5) + 1)
(
φ2

1 − (φ2 + 1)2)2 (((φ2 − 3)φ2 + 1)φ4
1 + (φ2 (φ2 ((φ2 − 2)φ2 + 10)− 2) + 1)φ2

1

−φ2 (φ2 + 1)2 (φ2 (5φ2 − 6) + 5)
))

+ z3 (2α3 (−2 (α(2α(α+ 9) + 21) + φ2 ((α− 9)α(α+ 3) + φ2 (2α(α(11α+ 120) + 168) + φ2 ((α− 9)α(α+ 3) + (α(2α(α+ 9) + 21) + 4)φ2

−8)+72)−8)+4)φ4
1−(φ2 +1)2 ((α(2α(α+15)+51)+12)φ4

2−6α(α(α+6)+3)φ3
2 +2(α(2α(4α+63)+219)+52)φ2

2−6α(α(α+6)+3)φ2

+α(2α(α+15)+51)+12
)
φ2

1−φ6
1
(
(α(2α(α+15)+51)+12)φ2

2−14(α(α(α+12)+18)+4)φ2 +α(2α(α+15)+51)+12
)

+2φ2 (φ2 +1)4

·
(
(3α(α(3α + 38) + 59) + 40)φ2

2 − 2(3α(α(α + 10) + 13) + 8)φ2 + 3α(α(3α + 38) + 59) + 40
)))

+ z2 (8α4 ((α(α+ 5) +φ2 (−α(15α+ 47) + (α(α+ 5) + 2)φ2− 16) + 2)φ4
1 +
(
(α(α+ 5) + 2)φ4

2− 2(α(9α+ 25) + 8)φ3
2− 2(α+ 2)(3α+ 1)φ2

2

−2(α(9α + 25) + 8)φ2 + α(α + 5) + 2
)
φ2

1 − φ2 (φ2 + 1)2 ((α(17α + 57) + 20)φ2
2 + 2(α(α + 9) + 4)φ2 + α(17α + 57) + 20

)))
+ z

(
4α5 (φ2

(
(27α + 20)φ2

2 + 6(5α + 4)φ2 + 27α + 20
)
− φ2

1 (α + φ2 (−25α + (α + 1)φ2 − 18) + 1)
))

− 16φ2α
6
)

−M2
(
z5
(

2α2(−5α(α + 2)− 3)
(
φ2

1 − 4φ2
)

(φ2 − 1)2 (φ2
1 − (φ2 + 1)2)4)

+ z4
(

8α3(α(3α+ 8) + 3)
(
φ2

1− (φ2 + 1)2)2 (((φ2− 3)φ2 + 1)φ4
1 + (φ2 (φ2 ((φ2− 2)φ2 + 10)− 2) + 1)φ2

1−φ2 (φ2 + 1)2 (φ2 (5φ2− 6) + 5)
))

+ z3 (2α4 (−2
(
6α(α + 3) + φ2

(
3(α− 3)(α + 1) + φ2

(
(6α(α + 3) + 7)φ2

2 + 3(α− 3)(α + 1)φ2 + 6α(11α + 40) + 112
))

+ 7
)
φ4

1

− (φ2 + 1)2 (6α(α + 5) + φ2
(
φ2
(
(6α(α + 5) + 17)φ2

2 − 6(3α(α + 2) + 1)φ2 + 12α(4α + 21) + 146
)
− 6(3α(α + 2) + 1)

)
+ 17

)
φ2

1

−φ6
1
(
(6α(α + 5) + 17)φ2

2 − 42(α(α + 4) + 2)φ2 + 6α(α + 5) + 17
)

+ 2φ2 (φ2 + 1)4

·
(
(3α(9α + 38) + 59)φ2

2 − 2
(
9α2 + 30α + 13

)
φ2 + 3α(9α + 38) + 59

)))
+ z2 (4α5 ((4α + φ2 (−α(7α + 60) + (4α + 5)φ2 − 47) + 5)φ4

1 +
(
(4α + 5)φ4

2 − 2(α(5α + 36) + 25)φ3
2 − 2(2α(α + 6) + 7)φ2

2

−2(α(5α + 36) + 25)φ2 + 4α + 5
)
φ2

1 − φ2 (φ2 + 1)2 (α(7α + 68) + φ2 (−2(α− 4)α + (α(7α + 68) + 57)φ2 + 18) + 57)
))

+ z
(
4α6 (φ2

(
(14α + 27)φ2

2 + 6(2α + 5)φ2 + 14α + 27
)
− φ2

1 (φ2 (−14α + φ2 − 25) + 1)
))

− 20φ2α
7
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−M1
(
z5
(

(−5α− 4)α3 (φ2
1 − 4φ2

)
(φ2 − 1)2 (φ2

1 − (φ2 + 1)2)4)+ z
(
8α7φ2

(
(α + 7)φ2

1 + α + φ2 ((α + 7)φ2 + 6) + 7
))

+z4
(

16α4(α+1)
(
φ2

1− (φ2 +1)2)2 (((φ2−3)φ2 +1)φ4
1 +(φ2 (φ2 ((φ2−2)φ2 +10)−2)+1)φ2

1−φ2 (φ2 +1)2 (φ2 (5φ2−6)+5)
))

+ z3 (4α5 (− (6(α + 1) + φ2 (3α + φ2 (66α + φ2 (3α + 6(α + 1)φ2 − 2) + 80)− 2))φ4
1

− (φ2 + 1)2 (3α + φ2 (−9α + φ2 (6(4α + 7) + φ2 (−9α + (3α + 5)φ2 − 6))− 6) + 5)φ2
1

−φ6
1
(
(3α + 5)φ2

2 − 7(3α + 4)φ2 + 3α + 5
)

+ φ2 (φ2 + 1)4 ((27α + 38)φ2
2 − 2(9α + 10)φ2 + 27α + 38

)))
+ z2 (8α6 ((φ2 (−7α + φ2 − 15) + 1)φ4

1 +
(
φ2
(
φ2
(
φ2

2 − 2(5α + 9)φ2 − 4α− 6
)
− 2(5α + 9)

)
+ 1
)
φ2

1

−φ2 (φ2 + 1)2 (7α + φ2 (−2α + (7α + 17)φ2 + 2) + 17)
))

− 8φ2α
8
)

+α4z
(
−8φ2

(
φ2

1 + φ2
2 + 1

)
α4 + 4zφ2

(
7φ4

1 + 2 (φ2 (5φ2 + 2) + 5)φ2
1 + (φ2 + 1)2 (φ2 (7φ2 − 2) + 7)

)
α3 + 4z2 (((φ2 − 7)φ2 + 1)φ6

1

+
(
2φ4

2 + φ3
2 + 22φ2

2 + φ2 + 2
)
φ4

1 + (φ2 + 1)2 (φ2 (φ2 ((φ2 − 3)φ2 + 8)− 3) + 1)φ2
1 − 3φ2 (φ2 + 1)4 (φ2 (3φ2 − 2) + 3)

)
α2

− 4z3 (φ2
1 − (φ2 + 1)2)2 (((φ2 − 3)φ2 + 1)φ4

1 + (φ2 (φ2 ((φ2 − 2)φ2 + 10)− 2) + 1)φ2
1 − φ2 (φ2 + 1)2 (φ2 (5φ2 − 6) + 5)

)
α

+ z4 (φ2 − 1)2 (φ2
1 − 4φ2

) (
φ2

1 − (φ2 + 1)2)4)

A.3.2 Polynomial for VAR(2)

(A.11)

4M9z5θ2

+M8 (20z5θ2 − αz4 ((θ2 (θ2 + 18) + 1) θ2
1 + 4θ2 (θ2 (5θ2 − 6) + 5)

))
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+M7 (−4
(
α2 − 10

)
θ2z

5 − 4α
(
(θ2 (θ2 + 18) + 1) θ2

1 + 4θ2 (θ2 (5θ2 − 6) + 5)
)
z4

+ 4α2 ((θ2 (θ2 + 8) + 1) θ4
1 + (θ2 (θ2 (θ2 (θ2 + 8)− 2) + 8) + 1) θ2

1 + 2 (θ2 − 1)2 θ2 (θ2 (5θ2 − 2) + 5)
)
z3)

+M6 (−20z5 (α2 − 2
)
θ2 + 2z4α

((
α2 + θ2

(
4α2 +

(
α2 − 3

)
θ2 − 54

)
− 3
)
θ2

1 + 6θ2
(
α2 +

(
α2 − 10

)
θ2

2 − 2
(
α2 − 6

)
θ2 − 10

))
+ 12z3α2 ((θ2 (θ2 + 8) + 1) θ4

1 + (θ2 (θ2 (θ2 (θ2 + 8)− 2) + 8) + 1) θ2
1 + 2 (θ2 − 1)2 θ2 (θ2 (5θ2 − 2) + 5)

)
−2z2α3 ((θ2 (3θ2 +14)+3) θ6

1 +2 (θ2 (θ2 (θ2 (θ2 +2)+18)+2)+1) θ4
1 +(θ2−1)2 (3θ4

2 +26θ2
2 +3

)
θ2

1 +4 (θ2−1)4 θ2 (θ2 (5θ2 +2)+5)
))

+M5
(

20z5 (1− 2α2) θ2 + 4z4α
((

2α2 + θ2
(
8α2 +

(
2α2 − 1

)
θ2 − 18

)
− 1
)
θ2

1 + 4θ2
(
3α2 + θ2

(
−6α2 +

(
3α2 − 5

)
θ2 + 6

)
− 5
))

+ z3 (12α2 ((θ2 (θ2 + 8) + 1) θ4
1 + (θ2 (θ2 (θ2 (θ2 + 8)− 2) + 8) + 1) θ2

1 + 2 (θ2 − 1)2 θ2 (θ2 (5θ2 − 2) + 5)
)

− 4α4 ((θ2
2 + θ2 + 1

)
θ4

1 + (θ2 − 1)2 (θ2
2 + 1

)
θ2

1 + 3 (θ2 − 1)4 θ2
))

−4z2α3 ((θ2 (3θ2 +14)+3) θ6
1 +2 (θ2 (θ2 (θ2 (θ2 +2)+18)+2)+1) θ4

1 +(θ2−1)2 (3θ4
2 +26θ2

2 +3
)
θ2

1 +4 (θ2−1)4 θ2 (θ2 (5θ2 +2)+5)
)

+ 4zα4 (θ2
1 − (θ2 − 1)2)2 ((θ2 (θ2 + 3) + 1) θ4

1 + (θ2 (θ2 (θ2 (θ2 + 2) + 10) + 2) + 1) θ2
1 + (θ2 − 1)2 θ2 (θ2 (5θ2 + 6) + 5)

))

+M4
(

4z5 (1− 10α2) θ2

+ z4 (4αθ2
(
18α2 + θ2

(
−36α2 +

(
18α2 − 5

)
θ2 + 6

)
− 5
)
− αθ2

1
(
α4 − 12α2 +

(
α4 − 12α2 + 1

)
θ2

2 − 2
(
α4 + 24α2 − 9

)
θ2 + 1

))
+ 4z3 ((θ2 (θ2 + 8) + 1) θ4

1 + (θ2 (θ2 (θ2 (θ2 + 8)− 2) + 8) + 1) θ2
1 + 2 (θ2 − 1)2 θ2 (θ2 (5θ2 − 2) + 5)

− 3α2 ((θ2
2 + θ2 + 1

)
θ4

1 + (θ2 − 1)2 (θ2
2 + 1

)
θ2

1 + 3 (θ2 − 1)4 θ2
))
α2 + z2

(
2α5 (θ2

1 − (θ2 − 1)2)2 ((
θ2

2 + 1
)
θ2

1 + 2 (θ2 − 1)2 θ2
)

−2α3 ((θ2 (3θ2+14)+3) θ6
1 +2 (θ2 (θ2 (θ2 (θ2+2)+18)+2)+1) θ4

1 +(θ2−1)2 (3θ4
2 +26θ2

2 +3
)
θ2

1 +4 (θ2−1)4 θ2 (θ2 (5θ2+2)+5)
))

+ 4z
(
θ2

1 − (θ2 − 1)2)2 ((θ2 (θ2 + 3) + 1) θ4
1 + (θ2 (θ2 (θ2 (θ2 + 2) + 10) + 2) + 1) θ2

1 + (θ2 − 1)2 θ2 (θ2 (5θ2 + 6) + 5)
)
α4

−
(
θ2

1 − (θ2 − 1)2)4 (θ2 + 1)2 (θ2
1 + 4θ2

)
α5
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+M3
(
−20z5θ2α

2 + 4z4 (12 (θ2 − 1)2 θ2 − θ2
1
(
α2 +

(
α2 − 2

)
θ2

2 − 2
(
α2 + 4

)
θ2 − 2

))
α3

− 12z3 ((θ2
2 + θ2 + 1

)
θ4

1 + (θ2 − 1)2 (θ2
2 + 1

)
θ2

1 + 3 (θ2 − 1)4 θ2
)
α44z2 (θ2

1 − (θ2 − 1)2)2 ((
θ2

2 + 1
)
θ2

1 + 2 (θ2 − 1)2 θ2
)
α5
)

+M2
(
−4z5θ2α

2 + 2z4 ((−3α2 + θ2
(
6α2 +

(
1− 3α2) θ2 + 4

)
+ 1
)
θ2

1 + 6 (θ2 − 1)2 θ2
)
α3

− 4z3 ((θ2
2 + θ2 + 1

)
θ4

1 + (θ2 − 1)2 (θ2
2 + 1

)
θ2

1 + 3 (θ2 − 1)4 θ2
)
α42z2 (θ2

1 − (θ2 − 1)2)2 ((
θ2

2 + 1
)
θ2

1 + 2 (θ2 − 1)2 θ2
)
α5
)

−4M1z4α5θ2
1 (θ2 − 1)2

−α5z4θ2
1 (θ2 − 1)2
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A.3.3 Argument of Roots for a VAR(2) Distribution Generating
Polynomial
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Figure A.1: arg of complex-valued root of polynomial M9 − (x+ iy).
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Figure A.2: arg of complex-valued root of VAR(2) polynomial for parameters θ1 = 0.5,
θ2 = 0.25 and α = 4.
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A.3.4 Fit of Spectral Density and  ESD 
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Figure A.3: Example of model fit for VARMA(1, 1) random matrix model,  ESD of
S&P 500 »big« data set (quarterly) for the median of all eigenvalues
and VARMA(1, 1) spectral density function with estimated parameters
θ̂1 and φ̂1.
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Figure A.4: Example of model fit for VARMA(1, 1) random matrix model,  ESD 

of NASDAQ data set (monthly) for the mean of all eigenvalues and
VARMA(1, 1) spectral density function with estimated parameters θ̂1
and φ̂1.
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Figure A.5: Example of model fit for VARMA(1, 1) random matrix model,  ESD 

of DJIA data set (daily) for the last complete observation and
VARMA(1, 1) spectral density function with estimated parameters θ̂1
and φ̂1.
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B.1.1 Code for Generating  DGP 

In[1]:= ClearAll[FactorPoly,PolySquareFree,PolyReduce,NormalizePoly,SimplifyRoot,PowerContract,showPoly];

FactorPoly[poly_,var_:M]:=Collect[FactorList[Numerator[Together[Numerator[Rationalize[ExpandAll[poly]]]
//.{e1_+e2_ Power[e3_,r_Rational]:→:→:→With[{d=Denominator[r]},-(-e1)^d+(e2 e3^r)^d]}]]][[-1,1]],var];

NormalizePoly[poly_,polyarg_:M]:=Collect[Numerator[Together[poly]],polyarg];

PolySquareFree[poly_,polyarg_:M]:=Module[{
num=(PowerContract[Expand[Numerator[Together[-(-(Replace[poly,{a_Plus:→:→:→Most@a}]))2

+(Replace[poly,{a_Plus:→:→:→Last@a}])2]]]//.powerdistr]//.powersimplify),
denom=(PowerContract[Expand[Denominator[Together[-(-(Replace[poly,{a_Plus:→:→:→Most@a}]))2

+(Replace[poly,{a_Plus:→:→:→Last@a}])2]]]//.powerdistr]//.powersimplify)},
NormalizePoly[Simplify[Cancel[Together[(num/denom)/.sumpowred]]],polyarg]];

PolyReduce[poly_,var_:M]:=Module[{termlist,explist,reslist,vars,exp},
termlist=With[{Mlist=CoefficientList[poly,var]},Table[Part[Mlist,i],{i,Length[Mlist]}]];
explist=Range[Length[termlist]]-1;
reslist=Parallelize[Table[Power[var,Part[explist,k]]*(With[{termpoly=Part[termlist,k]},

vars=Variables[termpoly];
exp=Exponent[termpoly,vars];
vars=Take[vars,Flatten[Position[exp,Min[exp]]]];
reslist=Map[Apply[Plus,With[{mlist=MonomialList[termpoly,#]},

Table[FullSimplify[ExpandAll[Part[mlist,i]]],{i,Length[mlist]}]]]&,vars];
Part[reslist,First@Flatten[{Ordering[Map[LeafCount,reslist]]}]]

]),{k,Length[termlist]}]];
Apply[Plus,reslist]

];
SimplifyRoot=PowerExpand[Factor//@#]//.{1/Sqrt[x_]:→:→:→Sqrt[1/x],Sqrt[x_] Sqrt[y_]:→:→:→Sqrt[x y]}&;
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B
.1

M
athem

atica
C
ode

PowerContract[expr_]:=expr//.{m_^q_ n_^q_:→:→:→(m n)^q/;!IntegerQ[m]&&!IntegerQ[n],m_^q_
n_^p_:→:→:→(m/n)^q/;q≥≥≥0&&p==-q&&!IntegerQ[m]&&!IntegerQ[n]};
showPoly=PolynomialForm[#,TraditionalOrder→→→True]&;

In[2]:= ClearAll[fracdistr,powerdistr,powersimplify,distr,square,sumpowred,oneSide,PowerContract,CollectPoly,showPoly];

fracdistr={
a_
b_

+
c_
d_

:→:→:→FullSimplify@Numerator[a] FullSimplify@Denominator[b]
FullSimplify@Denominator[a]FullSimplify@Numerator[b]

+
FullSimplify@Numerator[c] FullSimplify@Denominator[d]
FullSimplify@Denominator[c] FullSimplify@Numerator[d]

};

powerdistr={a_ Power[b_,exp_Rational]+c_ Power[b_,exp_Rational]:→:→:→(a+c)Power[b,exp]};
powersimplify={Power[a_,exp_Rational]:→:→:→Power[Simplify[ExpandAll[a]],exp]};
distr={a_ b_+c_ b_:→:→:→(a+c)b,b_ a_+b_ c_:→:→:→b(a+c),(2+2 M) a_+(-2-2 M) c_:→:→:→(2+2 M)(a-c)};
square= {e1_+e2_ e3_r_Rational:→:→:→With[{d=Denominator[r]},-(-e1)d+(e2 e3r)d]};
sumpowred={(a_+b_ Power[c_,exp_Rational]) Power[d_,-1]:→:→:→-(-(a/d))1/exp

+((b Power[c,exp])/d)1/exp};
oneSide=(Head[#][Subtract@@#,0]&);
PowerContract[expr_]:=expr//.{m_^q_ n_^q_:→:→:→(m n)^q/;!IntegerQ[m]&&!IntegerQ[n],m_^q_
n_^p_:→:→:→(m/n)^q/;q≥≥≥0&&p==-q&&!IntegerQ[m]&&!IntegerQ[n]};
CollectPoly[poly_,polyarg_]:=Nest[Simplify[PolynomialQuotient[Numerator[#1],Denominator[#1],#2]]

+Simplify[PolynomialRemainder[Numerator[#1],Denominator[#1],#2]/Denominator[#1]]&[#,polyarg]&,
FullSimplify[poly,ComplexityFunction→→→
LeafCount[#]+2^10*StringCount[ToString[#,InputForm],ToString[poly]]&],3];

showPoly=PolynomialForm[#,TraditionalOrder→→→True]&;
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