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Abstract

The subject of this thesis is exact results on N = 2 supersymmetric quantum
field theories. We restrict our attention to a certain class of quantum field theo-
ries in the literature referred to as class S. For these theories, we study partition
functions on a deformed four-sphere in the presence of extra defect observables
called loop and surface operators. In a degeneration limit of the four-sphere, we
find that these partition functions are related to the eigenfunctions of the con-
served quantities in certain quantum integrable models. We establish a direct
correspondence between parameters classifying the eigenfunctions in the rele-
vant integrable models and the charge labels of the loop operators. Furthermore,
the problem to classify the eigenvalues is mapped to the mathematical problem
of classifying what are called projective structures with real monodromy. We
exhibit various points of contact between the mathematical description of these
projective structures and known as well as new exact results on class S theories.
Apart from providing new non-perturbative results on the theories of class S,
one may obtain further support of the S-duality conjectures from the results
presented here.



Zusammenfassung

In dieser Dissertation werden exakte Ergebnisse der N = 2 supersymmetrischen
Quantenfeldtheorien diskutiert. Wir fokussieren uns hierbei auf eine spezifische
Klasse der Quantenfeldtheorien, die in der Literatur als Klasse S-Feldtheorien
bezeichnet werden. Für diese Theorien wird die Zustandssumme auf einer de-
formierten Vier-Sphäre in Anwesenheit von Loop- und Oberflächendefekten be-
trachtet. Es wird gezeigt, dass in einem Degenerationslimit der Vier-Sphäre
diese Zustandssummen mit den Eigenfunktionen der Erhaltungsgrößen in bes-
timmten quantenintegrierbaren Modellen verwandt sind. Es wird ein direkter
Zusammenhang hergestellt zwischen Parametern, die Eigenfunktionen in den
relevanten integrierbaren Modellen klassifizieren, und Ladungskennzeichnungen
der Loopdefekten. Zudem bilden wir die Problematik der Klassifizierung der
Eigenwerte auf das mathematische Problem der Klassifizierung von sogenan-
nten projektiven Strukturen mit reeller Monodromie ab. Wir zeigen zahlre-
iche Kontaktpunkte zwischen der mathematischen Beschreibung dieser projek-
tiven Strukturen und bekannten sowie neuen exakten Ergebnissen zu Klasse
S-Feldtheorien. Abgesehen von der Bereitstellung neuer, nicht perturbativer
Ergebnisse zu den Theorien der Klasse S kann man aus den hier vorgestellten
Ergebnissen weitere bekräftigende Indizien für die S-Dualitäts-Vermutungen er-
halten.
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Part I

Background and motivation

1 Introduction

1.1 Gauge theories at low energy scales

From the point of view of quantum field theory, we describe forces acting be-
tween particles by gauge theories. In theoretical particle physics, gauge theories
play an important role in describing the interactions between matter.

Due to an effect known as asymptotic freedom, the strength of these interactions
goes to zero for high energy scales. On the other hand, in the low energy region
these interactions become very strong and are much less understood. Although
phenomena such as confinement, describing the binding of quarks together to
form hadrons, have been experimentally observed, a mathematical description
remains elusive.

For high energy scales we may describe the physics of gauge theories using the
perturbative approach, however, for low energy scales the calculations quickly
get out of hand. Furthermore, perturbation theory cannot access all phenomena
observed at these energy scales. For example, instantons, which are non-trivial
solutions to the Euclidean equations of motion, may lead to exponentially sup-
pressed contributions. Describing the gauge theories for such strong coupling
would therefore require a complete understanding of both the perturbative ap-
proach as well as the non-perturbative effects.

There have been many different ways in which physicists have tried to make
progress, but we will focus on the introduction of what is known as supersym-
metry. This is an extension of the algebra containing the Poincaré symmetries
and the internal symmetries present in a gauge theory. The supersymmetry
algebra includes a symmetry mixing bosonic and fermionic degrees of freedom.

Although such a symmetry has not been observed experimentally, the intro-
duction of this type of extension makes certain calculations in quantum field
theories tractable. For example, it had been long believed that instantons play
a crucial role in gauge theories at strong coupling. This is precisely what is
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observed in the realm of supersymmetry. One may hope that the lessons learnt
by introducing supersymmetry, survive if we study gauge theories without su-
persymmetry.

1.2 Dualities and relations to N = 2 gauge theories

If we consider gauge theories with eight real supersymmetry generators, which
we name N = 2 theories, there have been various advances in the exact calcula-
tion of partition functions. It turns out that theories withN = 2 supersymmetry
are highly constrained at the low energy scale. In [1, 2] a method was devel-
oped which under certain assumptions allows one to calculate the prepotential,
a function uniquely defining the low energy effective action.

Later on, it has been shown that the partition function can be calculated by
taking into account all quantum corrections in a suitable regularization scheme
called the Ω-background. The prepotential as defined by Seiberg and Witten,
can be recovered in a suitable limit [3, 4]. See also [5, 6] for alternative ap-
proaches.

Various profound relations between the partition function in the Ω-background
and other physical models and systems have been observed. We refer to the
relevant work when discussing these relations and dualities, but should take
note of that fact that the history on N = 2 supersymmetric gauge theories is
long and we can hardly refer to the entire body of work. For completeness we
refer to two reviews [7, 8] which contain a concise overview of the original work
and many of the corresponding references.

Relations to conformal field theories In [9] dualities of a class of four-
dimensional N = 2 supersymmetric field theories now known as theories of
class S, have been related to changes of pair of pants decompositions of the
Riemann surfaces labeling these theories. It had been observed later that the
partition function in the Ω-background for these theories bears resemblance to
conformal blocks in the Liouville conformal field theory. This correspondence
has been set up in [10] and now goes by the name of the AGT-duality. Since
then much work has been done on this duality and many natural objects we can
introduce on the side of the gauge theories have found natural homes on the
conformal field theory side.
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Relations to integrable systems The ideas used by Seiberg and Witten in
the construction of the prepotential [1, 2], have led to the understanding that
we may describe the prepotential in terms of a classically integrable system.
This leads to an intimate relation between integrable systems and N = 2 gauge
theories [11, 12, 13]. Connections between the deformations of the prepotential
provided by the Ω-backgrounds and the quantization of the integrable systems
related to Seiberg-Witten theory, have been discovered in [14]. If we consider
theories of class S, we find that the associated family of integrable systems is
known as the Hitchin integrable systems [15, 16]. The quantization of these
integrable systems plays a central role in this work.

How do our results fit in the larger picture? The combinations of the
above conjectures and proposals leads to highly non-trivial predictions. The
results we present in this thesis fit into the literature as a check of this con-
jectural picture. Combining the extension of the AGT-duality to include loop
operators and surface defects, we arrive at a statement relating single-valued
eigenfunctions of the quantum Hitchin Hamiltonians to loop operators. In this
thesis we provide the mathematical background to make this relation precise.

Originally used in the context of the Bethe ansatz in [17], a Yang-Yang function
describes a given set of quantization conditions for an integrable system. Al-
though it is not clear if such a function exists for any integrable system and set
of quantization conditions, through the discovery of Nekrasov and Shatashvili
[14] and additional work done in [18, 19], we may reexpress the single-valuedness
condition in terms of a Yang-Yang function. This has been proposed before in
[20]. We will name the quantum numbers introduced in this way the Bethe
quantum numbers.

Using the work done by Pestun in [21] and later by Hama and Hosomichi in
[22], we may consider what is now known as the Nekrasov-Shatashvili limit from
[14] in the context of partition functions on a compactified spacetime taking the
form of a squashed four-sphere. Upon introduction of loop operators in the
gauge theory, the expectation values of the loop operators precisely lead to the
Bethe quantum numbers in the Nekrasov-Shatashvili limit.

A priori, it is unclear how loop operators give rise to different sets of Bethe quan-
tum numbers except in some simple cases. By comparing with the description
of single-valued eigenfunctions of the quantum Hitchin Hamiltonians, we conjec-
ture a simple relation between a set of parameters known as the Dehn-Thurston
parameters, which turn out to classify the single-valued eigenfunctions, and
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the Bethe quantum numbers appearing from the Yang-Yang function. This
expresses a profound relation between various topics in integrable models, hy-
perbolic geometry and supersymmetric gauge theories.

1.3 Integrable systems from N = 2 gauge theories

Proposal by Nekrasov and Shatashvili The construction of Seiberg and
Witten [1, 2] recovers the prepotential using an auxiliary space now known as
the Seiberg-Witten curve. This curve realizes the structure of special geometry,
defining an integrable model with base space the Coulomb branch of the N = 2

theory. Although it is unknown whether an N = 2 gauge theory always has
an associated Seiberg-Witten curve, it is true that we can always associate a
classically integrable model to the gauge theory [23].

In [14] Nekrasov and Shatashvili found relations between a quantization of this
classically integrable system and the partition function of the corresponding
N = 2 gauge theory in what is known as the Ω-background, denoted by R4

ε1,ε2 .
The Ω-background plays the role of regularizing the IR-divergences and comes
with two parameters ε1 and ε2, each associated to a two-dimensional subspace
R2
ε1 ⊂ R4

ε1,ε2 and R2
ε2 ⊂ R4

ε1,ε2 of the four-dimensional theory. The partition
function Z(R4

ε1,ε2) has been calculated through localization by Nekrasov in [3]
for quiver gauge theories and is shown to relate to the prepotential in the limit
ε1, ε2 → 0.

By only considering the limit ε2 → 0, the role of the prepotential is taken over
by a function known as the twisted effective superpotential. It was argued on
physical grounds by relating to an effective two-dimensional N = (2, 2) theory
in this limit, that the twisted effective superpotential plays the role of a Yang-
Yang function Yε1(a,µ, t). We will denote this function simply by Y(a,µ, t)

omitting the dependence on ε1. For our current discussion, it suffices to mention
that the Yang-Yang function depends on vectors of parameters a = (a1, ..., ah),
µ = (µ1, ..., µn) and t = (τ1, ..., τh). We will discuss these parameters in more
detail at various points of this thesis.

In general a Yang-Yang function encodes the quantization conditions of the
integrable model. The quantization conditions considered in [14], lead to the
following holomorphic equations

∂Y(a,µ, t)

∂ar
= 2πinr (1.1)
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for a set of integers nr. If we denote by a = a∗ a solution to the above equation,
we recover the spectrum of the Hamiltonians by

∂Y(a∗,µ, t)

∂τr
= Er

It should be noted that the models of our interest are variants of spin chains
associated to representations of non-compact groups. These are much more
complicated than the usual spin chain models including the usual Gaudin model.
In the absence of a reference state one can in particular not apply the Bethe
ansatz.

A striking aspect of the work of Nekrasov and Shatashvili is that it leads to the
proposal that the quantization conditions can be written in a form resembling
the Bethe ansatz equations even if the Bethe ansatz is not applicable. In order
to do this one just needs to replace the function introduced by Yang and Yang in
the Bethe ansatz framework by another function. However, the function taking
the role of the Yang-Yang function in our case has much more complicated
analytical properties than the functions occurring in models which can be solved
by the Bethe ansatz.

Although a powerful paradigm, it remains a question which quantization condi-
tions precisely appear through the Yang-Yang function, since there is no unique
way to impose quantization conditions on an integrable model. Different quan-
tization conditions for an integrable model can be physically interesting for
different reasons.

The quantization conditions from equation (1.1) are holomorphic in nature. We
will explore a different type of quantization condition which does not have this
holomorphic nature.

Hitchin systems appearing from theories of class S If we compactify
the theories of class S on S1, the associated integrable system is known as the
Hitchin integrable system [24]. This is a famous family of exactly integrable
systems associated to Riemann surfaces. Many known integrable models like
the Gaudin model or the Calogero-Moser models are contained in this family of
integrable systems [25, 26]. Furthermore, it has been found that the Seiberg-
Witten curve of these theories is precisely the spectral curve of the Hitchin
system.



14 1 INTRODUCTION

The quantization of the Hitchin system is interesting not only from the side of
gauge theories. First of all, many classically integrable systems are understood
as special cases of Hitchin systems. The quantization of the Hitchin system will
therefore lead to a better understanding of the quantization of these integrable
systems. Secondly, from a more mathematical point of view, the Hitchin system
plays a prominent role in the geometric Langlands conjecture as studied by
Beilinson and Drinfeld [27]. Finding the eigenfunctions to the quantized Hitchin
Hamiltonians provides a concrete realization of the conjecture.

This division of these different topics is not so strict as appears at first sight. For
example, conformal field theories appear both in the relation to AGT-duality
and the statement of the geometric Langlands conjecture by Beilinson and Drin-
feld in [27]. In [28] Kapustin and Witten have interpreted the geometric Lang-
lands program in terms of N = 4 super Yang-Mills theory. Some of these
relations have been explored in [29].

In this context, the proposal by Nekrasov and Shatashvili gives us a handle on
the quantization of the Hitchin system from the perspective of supersymmetric
gauge theories.

1.4 AGT-duality and relations to conformal field theory

AGT-duality and the introduction of defects in the gauge theory In
[10] Alday, Gaiotto and Tachikawa proposed a remarkable relation between
quantities in theories of class S and conformal field theories. This duality is
physically motivated by the proposed existence of a famous six-dimensionalN =

(2, 0) theory of type A1 and relates SU(2)-gauge theories in the Ω-background
R4
ε1,ε2 with Liouville conformal field theory on a Riemann surface X. The du-

ality is now known under the name AGT-duality and has since been extended
in various directions. For our purposes, we consider the generalizations by the
introduction of surface defects and loop operators in the theory of class S.

From the point of view of the six-dimensional theory living on the product
R4
ε1,ε2 ×X, we can set up the following table of defects (from [30]):

These defects do not exhaust all possible defects, but are the only ones we will
consider in this thesis.
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6D theory R4
ε1,ε2 X interpretation in 4D

co-dimension four defect 2D 0D surface defect
co-dimension four defect 1D 1D loop operators
co-dimension two defect 2D 2D surface defect

Table 1.1: Defects in the 6D theory

In table 1.1, there are two types of surface defects: We can either introduce
a co-dimension two surface operator or a co-dimension four surface operator.
The co-dimension two surface operator wraps the Riemann surface X, while the
co-dimension four surface operator is pointlike on X. From the side of the gauge
theory, we additionally require that the surface defects lie either completely in
R2
ε1 or in R2

ε2 , ensuring that these defects do not break too much supersymmetry.

In [30] the co-dimension two surface operator was studied. It was concluded that
the introduction of such a surface operator on the side of the gauge theory, has
the effect of changing the conformal field theory on X from the Liouville the-
ory to the Wess-Zumino-Novikov-Witten (WZNW) theory with sl(2,C)-affine
Kac-Moody symmetry. The extension of this proposal for arbitrary sl(N,C)

symmetry has been worked out in [31].

In [32] the co-dimension four surface operator was considered. This has the
effect of introducing degenerate fields in the conformal blocks and correlation
functions on the side of the Liouville theory. The proposal relating co-dimension
four operators to degenerate fields has been checked extensively and many of
the corresponding references may be found in [8].

Both the WZNW theory and the Liouville theory with the introduction of
denegerate fields, come with sets of differential equations that the conformal
blocks and correlation functions must satisfy. These differential equations come
from the Ward identities and lead to Knizhnik-Zamolodchikov-Bernard equa-
tions (KZB-equations, in [33, 34, 35]) on the side of the WZNW theory and to
Belavin-Polyakov-Zamolodchikov equations (BPZ-equations, in [36]) on the side
of Liouville theory with degenerate fields. A proof of the fact that the instanton
partition functions in the presence of co-dimension two surface operators satisfy
the KZ-equations was anounced in [37].

Using a version of the separation of variables method, it was shown in [38], using
the observation by Stoyanovsky in [39] (from unpublished work with Feigin and
Frenkel), that solutions of one set of equations can be mapped to solutions of the
other set of equations through an integral transform. In the context of N = 2



16 1 INTRODUCTION

gauge theories, this approach leads to a duality between the two types of surface
defects in the IR-limit as shown in [40].

The third type of defect, the loop operators, has been studied in [32, 41] among
others. On the side of the gauge theory, we can introduce the loop operators
in two configurations: Either contained completely in R2

ε1 or completely in R2
ε2 .

These loop operators take the form of Verlinde loop operators on the conformal
field theory side.

The loop operators in the gauge theory have been classified in terms of their
allowed electric and magnetic charges in [42], which precisely matches a famous
theorem by Dehn (theorem 10.1, see [43, 44]). This theorem classifies the space
of non-self-intersecting multicurves onX up to homotopy through a set of integer
parameters known as the Dehn-Thurston parameters (p,q), depending on a
pants decomposition of X.

Extending the results to S4
ε1,ε2 Many of the results in the context of the

AGT-duality for gauge theories in the Ω-background, have been adjusted in
a natural way when instead we regularize the four-dimensional N = 2 gauge
theory by compactification on S4

ε1,ε2 , a squashed version of the four-sphere with
the following form

S4
ε1,ε2 := {(x0, ..., x4) ∈ R5|x2

0 + ε21(x2
1 + x2

2) + ε22(x2
3 + x2

4) = 1}

The partition function Z(S4
ε1,ε2) was calculated using the localization formalism

by Pestun in [21] and has been shown to relate to the partition function Z(R4
ε1,ε2)

calculated by Nekrasov in [3] as follows

Z(S4
ε1,ε2) =

ˆ
da|Z(R4

ε1,ε2)|2 (1.2)

The parameters a are parameters describing the Higgs breaking of the gauge
group SU(2) to U(1) in the infrared regime and give coordinates for the Coulomb
branch of the gauge theory. It is known that the partition function Z(R4

ε1,ε2)

depends holomorphically on the complexified gauge couplings of the theory.
Note that this is not the case for Z(S4

ε1,ε2), which has a mixed dependence on
the complexified gauge couplings.

This factorized form of the partition function Z(S4
ε1,ε2) is suggestive of the

factorized form of correlation functions in conformal field theory in terms of
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conformal blocks. Indeed, it was already shown in [10] that the combination´
da|Z(R4

ε1,ε2)|2 maps to the Liouville correlation function.

Defects have been included in this extended set-up in various different references.
Let us discuss some of the results from the literature.

The expectation value of some simple loop operators was already calculated by
Pestun in [21]. These calculations have been extended in [32, 41] by a pro-
posal through the AGT-duality including general types of loop operators in the
context of partition functions on S4

ε1,ε2 . There it has been shown that we may
calculate the expectation value 〈L〉S4

ε1,ε2
through a difference operator DL acting

on the parameters a by

〈L〉S4
ε1,ε2

=

ˆ
daZ(R4

ε1,ε2)DL · Z(R4
ε1,ε2) (1.3)

where the precise form of the difference operator has been calculated. Through
the classification in [42], we may write these difference operators as D(p,q).

We assume that the loop operators in the gauge theory, can be inserted either on
the circle C1 = {(x1, x2)|ε21(x2

1 + x2
2) = 1} or on C2 = {(x3, x4)|ε22(x2

3 + x2
4) = 1}.

Exchanging the positions of the loop operators on the side of the gauge theory,
leads to a dual description in terms of the conformal field theory.

Furthermore, if we insert co-dimension four surface operators in S4
ε1,ε2 , the ex-

tended AGT-duality tells us that the partition function Z(S4
ε1,ε2) is mapped to

a Liouville correlator with extra insertions of degenerate fields. See [32].

The co-dimension two surface operators on S4
ε1,ε2 have been investigated by

Nawata in [45]. One expects to find a relation between Z(S4
ε1,ε2) and the corre-

lation functions of the so-called H+
3 -WZNW model classically defined by evalu-

ating the WZNW action on maps from X to the space of hermitian metric with
unit determinant rather than on maps from X to SU(2).

Combining the AGT-duality with the Nekrasov-Shatashvili proposal
By combining the known relations between theories of class S and conformal field
theories through the AGT-duality on one side, and between theories of class S
and (quantum) integrable models on the other side, we can mathematically
characterize the Yang-Yang function of the quantum Hitchin system for some
quantization conditions in terms of the symplectic geometry of the moduli space
of flat connections on X. This was proposed independently in [18] and [19].
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By applying the limit ε2 → 0, this result can be obtained by considering the
semiclassical nature of Liouville theory under the AGT-duality.

Remark 1.1. In the case of the Gaudin model the situation is easy to clarify: We
are led to consider a variant of the Gaudin model in which the representations of
SU(2) considered in the ordinary Gaudin model are replaced by principal series
representations of the group SL(2,C).

1.5 Quantization conditions from Z(S4
ε1,ε2

)

Introducing a different set of quantization conditions Although the
quantization conditions proposed originally in [14] are interesting in their own
right, we will consider a different set of quantization conditions proposed in [20],
which take the form

Re(ar) = πnr

Re

(
∂Y(a, t)

∂ar

)
= πmr

where Y(a, t) denotes the Yang-Yang function for these quantization condi-
tions with a = (a1, ..., ah) playing the role of the auxiliary parameters and
t = (τ1, ..., τh) a set of complex moduli for the Riemann surface X. The integer
h depends on the topology of the surface X.

If we find a solution a = a(n,m) to these equations, for n = (n1, ..., nh) and m =

(m1, ...,mh), we recover the eigenvalues of the quantum Hitchin Hamiltonians
by

4πiEr,(n,m) =
∂Y(a, t)

∂τr

∣∣∣∣
a=a(n,m)

We will call the integers (n,m) Bethe quantum numbers.

These quantization conditions appeared in [20] in the context of finding single-
valued eigenfunctions ΨE(x, x̄) of both the holomorphic and anti-holomorphic
quantum Hitchin Hamiltonians

ĤrΨE(x, x̄) = ErΨE(x, x̄) ˆ̄HrΨE(x, x̄) = ĒrΨE(x, x̄)

and it was noted that any single-valued eigenfunction ΨE(x, x̄) must give rise
to a set of integers (n,m).
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Quantization conditions in the presence of loop operators The pro-
posal by Nekrasov and Shatashvili implies that we may identify the partition
function Z(R4

ε1,ε2)

Z(R4
ε1,ε2) = exp

(
− 1

ε2
Y(a, t)

)
(1 +O(ε2))

in the limit ε2 → 0, where Y(a, t) is the Yang-Yang function from the point of
view of the Hitchin integrable system. By plugging in this expression into the
factorized form of Z(S4

ε1,ε2), we can apply a saddlepoint approximation to solve
the integral. The integral will be dominated by the values a = a∗ such that

Re

(
∂Y(a, t)

∂ar

)∣∣∣∣
a=a∗

= 0

This gives rise to a similar type of quantization condition as above.

We will show that the introduction of loop operators can affect the Bethe quan-
tum numbers (n,m) appearing in the comparison with the quantization condi-
tions in [20].

We will ask ourselves the question

Which loop operators give rise to which sets of Bethe quantum numbers?

Loop operators and single-valued eigenfunctions of the Hitchin Hamil-
tonians The key player for us to compare the quantization condition in [20] to
the introduction of loop operators, is the co-dimension two surface operator. As
suggested in [30], we can use these surface operators to construct eigenfunctions
of the Hitchin Hamiltonians.

We will consider a set-up in which we only introduce a co-dimension two surface
operator in the ε1-plane R2

ε1 and use it as a probe to find the next-to-leading
order of the saddlepoint approximation in the limit of small ε2. By carefully
doing the analysis, we find that this next-to-leading order term is a single-valued
eigenfunction of the quantum Hitchin Hamiltonians. We propose that in this
way we can also find and probe single-valued eigenfunctions in the next-to-
leading order term upon introduction of loop operators.

This suggest the following question

Does there exist a correspondence between loop operators and single-valued
eigenfunctions of the quantum Hitchin Hamiltonians?
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1.6 Approach to the problem and new results

In the previous section we raised two important questions. Let us first discuss
the second question.

Classification of single-valued eigenfunctions through non-self-intersecting
multicurves To make the proposed relation between loop operators in theo-
ries of class S and single-valued eigenfunctions to the quantum Hitchin Hamil-
tonians precise, we will use the fact that the single-valued eigenfunctions are
classified by the same parameters as used for the classification of loop operators
in class S theories, as was shown by Drukker et al. in [42].

It will be shown that single-valued eigenfunctions are in one-to-one correspon-
dence with differential operators of the form ∂2

u + t(u) with real monodromy.
This claim was first proposed in [20]. A detailed proof which had not been given
in [20] will be presented in subsection 3.6.

It was proved by Goldman in [46] that opers with real monodromy have a
classification in terms of an operation known as grafting. This operation takes
as its input a non-self-intersecting multicurve together with a complex structure
X. However, there are various subtleties preventing us from directly applying
the results of [46] to our problem.

Introducing Dehn-Thurston coordinates classifying single-valued eigen-
functions Goldman’s theorem implies a classification of opers with real mon-
odromy in terms of multicurves. In order to get a concrete set of quantum num-
bers for single-valued eigenfunctions it turns out to be very convenient to use
the set of parameters (p,q) for multicurves introduced by Dehn and Thurston.
We denote the corresponding single-valued eigenfunctions by Ψ(p,q)

Since both the loop operators in the theory of class S on S4
ε1,ε2 and the single-

valued eigenfunctions to the quantum Hitchin Hamiltonians are parameterized
by Dehn-Thurston parameters and by the fact that every loop operator gives
rise to a single-valued eigenfunction, we propose there does indeed exist a direct
correspondence between these two different objects.

However, there is an important subtlety. In theorem 8.6 we show that the subset
of multicurves which have even intersection index with any other curve, classify
a subset of the single-valued eigenfunctions in a one-to-one correspondence. This
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is related to the fact that only a subset of the complex projective structures with
real monodromy have monodromy in PSL(2,R), as we discuss later in section §9.

It has been stressed by Aharony et al. in [47], on the other hand, that the set of
loop operators has to be mutually local. This leads to important corrections to
the classification proposed by Drukker et al. in [42]. We will find a one-to-one
correspondence between loop operators that are mutually local to any other loop
operator and single-valued eigenfunctions, as suggested by our considerations in
theorem 8.6. This provides some evidence for the proposal we stated above.

To clarify this relation further, we work out the restrictions on Dehn-Thurston
parameters describing single-valued eigenfunctions explicitly. Although this
gives a constructive way to determine the restrictions for any Riemann sur-
face, the calculations are based on Penner’s formulas [48, 49] which are highly
complex.

Nonetheless, for a closed Riemann surface of genus two we may explicitly deter-
mine the restrictions on the Dehn-Thurston parameters in theorem 11.5. This
is arguably the simplest, non-trivial example we can apply our algorithm to.

Relations to the Yang-Yang function and the Bethe quantum num-
bers The considerations in subsection 1.5 suggest an alternative classification
in terms of a function Y called the Yang-Yang function following [14], and inte-
ger parameters (n,m). Understanding the relation between the classification of
single-valued eigenfunctions in terms of (p,q) and (n,m) turns out to be quite
non-trivial. The main difficulty in relating the single-valued eigenfunctions and
the loop operators in the gauge theory on S4

ε1,ε2 to the Bethe quantum num-
bers (n,m), lies in the fact that we do not know precisely how the Yang-Yang
function must depend on the variables a.

Through the relation between the Yang-Yang function and the symplectic struc-
ture of the moduli space of flat connections from [18] and [19], the variables a

take the role of parameterizing the monodromy of the space of opers over a Rie-
mann surface X. On the other hand, the space of opers over a fixed Riemann
surface is itself parameterized by a set of coordinates E = (E1, ..., Eh). We
use the same notation E as for the eigenvalues of the quantum Hitchin Hamil-
tonian, since these different sets of coordinates agree under the separation of
variables. We denote by E(p,q) the coordinates corresponding to opers with real
monodromy leading to the single-valued eigenfunctions Ψ(p,q).
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It turns out we may analytically continue a as functions of E away from certain
loci where the dependence becomes non-analytical. If we analytically continue
a along a path starting at the oper with coordinates E(0,0) to the oper with
coordinates E(p,q), the very definition of the parameters (n,m) is done by ana-
lytical continuation of the function Y(a, t). This raises subtle issues about the
existence of a path of analytical continuation relating (n,m) to (p,q).

We arrive at the following question:

Can we find a relation between the integers (p,q) and (n,m) by picking the
analytical continuation of a as a function of E ‘correctly’?

This question is stated loosely right now, but will be made more precise.

We use the example where X is a four-punctured sphere with real punctures
as a guide to explore the answer to this question. A subset of opers with real
monodromy over X had already been classified in 1918 by Smirnov in his thesis
(published later in [50]).

However, it turns out that the opers with real monodromy classified by Smirnov
do not exhaust all opers of real monodromy relevant for us. We are going to
demonstrate that all opers with real holonomy can be generated from the subset
classified by Smirnov by the natural mapping class group action.

The advantage of this analysis is that this example provides a much more direct
approach to the problem of classifying opers with real monodromy than the
grafting operation. Indeed, we only have a single parameter τ and one variable
a and E. In this case, we can make the analytical depence of a(E) on E quite
explicit.

Let us denote by the Dehn-Thurston parameters (p, 0) the multicurve which
corresponds to p ’t Hooft loops with respect to the pants decomposition defining
the Dehn-Thurston coordinates. We show that we can construct a path between
E(0,0) and E(p,0) such that the analytical continuation of a along this path leads
to

Re(a) = πp

Re

(
∂Y(a, τ)

∂a

)
= 0

Using the results by McMullen in [51], we can also construct a path between
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E(0,0) and E(0,q) leading to

Re(a) = 0

Re

(
∂Y(a, τ)

∂a

)
= πq

The Dehn-Thurston coordinates (0, q) correspond to q Wilson loops. For these
type of loop operators, we do not necessarily need this formalism to determine
which integers (n,m) arise, since their effect can be described explicitly in the
language of the class S theory by introduction of the operator

D(0,q) = 2 cosh

(
2πa

ε2

)
Nonetheless, the matching of the results coming from the grafting procedure
and those coming from the gauge theory, is interesting in its own right.

We end the mathematical discussion with a conjecture giving an answer to the
question we posed above.

Conjecture. Let a possibly punctured Riemann surface X be given. Consider a
pants decomposition and specify Dehn-Thurston parameters (p,q). There exists
a path in the space of opers over X starting at E(0,0) and ending at E(p,q) for
any set of parameters (p,q) such that analytical continuation of a = a(E) as a
function of E leads to the equations

Re(ar) = πpr

Re

(
∂Y(a, t)

∂ar

)
= πqr
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2 Physics and gauge theory background

2.1 Structure of gauge theories with N = 2 supersymme-
try

Quantum field theories with N = 2 supersymmetry In this thesis we
will consider quantum field theories with supersymmetry. More precisely, we
shall focus our attention on gauge theories with N = 2 supersymmetry in four
dimensions. If we require the spin of our field content to not exceed one, we
can introduce two supersymmetric multiplets known as the vector multiplet and
hypermultiplet. The vector multiplet (A, λ, λ̃, φ), contains a gauge field A, two
Weyl fermions λ and λ̃ and a complex scalar field φ. Since the gauge field
transforms in the adjoint of the gauge group, so must all the other fields in this
multiplet. The hypermultiplet (ψ̃†, Q̃†, Q, ψ) contains two complex scalars Q
and Q̃† and two Weyl fermions ψ and ψ̃†. These fields can transform in any
representation of the gauge group, but we shall only consider the fundamental
or adjoint representation for our purposes. Additionally, the gauge group we
choose will often be SU(2).

For a theory with N = 2 supersymmetry, there often exists an extra symmetry
of the theory which does not commute with the supercharges. This SU(2)R-
symmetry is known as the R-symmetry. The group SU(2)R rotates the two
Weyl fermions λ and λ̃ into each other as well as the complex scalars Q̃† and
Q. The U(1)r part which classically combines with SU(2)R to form the full
U(2)-group rotating the supercharges into each other, breaks down to a discrete
symmetry in the quantum theory.

Due to asymptotic freedom, these gauge theories become strongly-coupled in the
low energy regime. It is here that non-perturbative effects play an important role
and bound states can arise. Nonetheless, the N = 2 supersymmetry constrains
the theory in such a way that the IR effective action is uniquely specified by a
function known as the prepotential.

When we calculate the IR effective action, the Higgs mechanism generically
breaks the gauge group SU(2) to U(1) and the complex scalar φ in the vector
multiplet obtains a vacuum expectation value

〈φ〉0 =

(
a 0

0 −a

)
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If we consider several vector multiplets labeled by r, the complex numbers
u(r) := 〈tr((φ(r))2)〉0 = 2(ar)

2 parametrize the subspace of the moduli space
of vacua known as the Coulomb branch of the theory. This branch is speci-
fied by the vanishing of the vacuum expectation values of the complex scalars
in the hypermultiplets. The Higgs branch is defined by a non-trivial vacuum
expectation value of the scalars in the hypermultiplet and vanishing vacuum
expectation value of the scalar in the vector multiplet. From the point of view
of integrable systems, our interest will be in the Coulomb branch.

The prepotential specifying the theory in the IR is denoted by F = F(a,µ, t),
which is a function of the expectation values ar, the masses µk of the hyper-
multiplets and the gauge couplings τr = 4πi

g2r
+ θr

2π . The coupling constants gr
are the standard Yang-Mills couplings, while θr are known as the theta-angles
describing a topological change to the theory. For example, for the pure Yang-
Mills theory we may set r = 1 and a = a1. We recover the bosonic effective
action by

Seffboson =
1

4π

ˆ
d4x(Im(τ(a))∂µā∂

µa+
1

2
Im(τ(a))FµνF

µν+
1

2
Re(τ(a))Fµν F̃

µν)

where
τ(a) =

∂2F
∂a2

is the coupling constant in the IR, dependent on a. The fermionic part of this
action is uniquely determined by requiring supersymmetry invariance.

Seiberg-Witten theory and integrable systems In [1, 2] Seiberg andWit-
ten found the prepotential using an auxiliary Riemann surface ΣSW which is now
called the Seiberg-Witten curve. If we pick a basis B = {α1, ..., αh, β1, ..., βh}
of H1(ΣSW ,Z) with h the genus of ΣSW , we may normalize the basis such that
the intersection form î satisfies î(αr, βs) = δrs and î(αr, αs) = î(βr, βs) = 0. We
recover the coordinates ar and arD = ∂F

∂ar
as

ar =

ˆ
αr

λSW

arD =

ˆ
βr

λSW

The one-form λSW is the canonical one-form obtained by realizing the curve
ΣSW as an algebraic variety P (x, y) = 0. We may then set λSW = ydx.

Due to the Riemann bilinear relations, the functions arD may be locally inte-
grated with respect to the variables ar to recover the prepotential F . In doing
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so, we see that the data (ΣSW , λSW , B) of the Seiberg-Witten curve, the canon-
ical one-form and the basis of H1(ΣSW ,Z) is enough to recover F . Different
bases of H1(ΣSW ,Z) are related by Sp(2h,Z) transformations. In the low en-
ergy physics, these lead to different prepotentials describing the same theory.
We may therefore consider this a form of an IR duality of the theory.

Once we have the set of coordinates (a1, ..., ah) for the Coulomb branch, we
may introduce a torus fibration Ch/(Zh ⊕ τZh) over the Coulomb branch and
consider coordinates for the torus fibres. Here τ is defined precisely through the
prepotential as the matrix

τ rs(a) =
∂2F
∂ar∂as

This gives the space the structure of an integrable system. The data specifying
the integrable system is precisely what is needed to specify the prepotential.

The prepotential can be constructed from the data of special geometry [23].
Given these data, there is a canonical way to put torus fibers over the base as
above. Conversely, an integrable system is by definition a fibration by complex
tori, more precisely abelian varieties. One can prove that such abelian varieties
can always be represented in the form Cg/(Zg ⊕ τZg), allowing one to recover
the special geometry structure on the base, and in particular the prepotential.

As we have seen, if we can find a Seiberg-Witten curve, we can construct the
prepotential explicitly by integrating along cycles of this curve. Nonetheless,
the statement in [23] is of a more general nature as its construction does not
involve Seiberg-Witten curves. In fact, it is unknown whether we can always
construct a Seiberg-Witten curve for a theory with N = 2 supersymmetry.

The relation between the Seiberg-Witten construction of the prepotential and
integrable systems had been understood only after the original work by Seiberg
and Witten [11, 12, 13].

Later on, we shall restrict our attention even further to theories of class S. See
[9]. For such theories, a Seiberg-Witten curve has been found and has a nice
interpretation in terms of the integrable structure of the Hitchin system [24].

Regularizing IR divergences To calculate the partition function of a gauge
theory, we first have to cure certain IR divergences by introducing a regulariza-
tion scheme. This can in principle be done in many different ways, but in this
thesis we will focus on two.
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First of all, we may introduce an Ω-background [3], which depends on two IR
regulators ε1 and ε2 associated to the planes R2

ε1 and R2
ε2 together making up R4.

Such a deformation introduces a Lorentz-symmetry breaking deformation of the
Lagrangian, but is such that we preserve a certain amount of supersymmetry.
Effectively, the IR regulators will mix the rotation in the physical spacetime
with the rotation of the supercharges generated by the R-symmetry.

A second way in which we may regularize our theories, is by compactifying the
spacetime. Since the IR divergences grow with the volume of our spacetime,
compactifying the spacetime makes these contributions finite. We will come
back to a special type of such a regularization scheme later.

Localization formalism Furthermore, when we have a certain amount of
supersymmetry in our theory, it becomes possible to apply the localization for-
malism in some interesting cases. This is a powerful tool to make the path
integral over the infinite-dimensional space of field configurations well-defined
by rewriting it as an integral over a finite-dimensional space. There are many
reviews clarifying the localization formalism [52]. For example, localization in
the context of N = 2 supersymmetric theories is covered in [7]. Many other
aspects of localization are covered in the special volume [53].

Consider the generator Q of a supersymmetry which squares to Q2 = P a
generator of a bosonic symmetry. If the action functional S is invariant under
the supersymmetry, we write QS = 0. Let us now introduce V a fermionic
functional satisfying PV = 0. We may consider deforming the action to S+tQV

with t a real parameter. The expectation value of an observable now has an
explicit dependence on the parameter t, which we may write as

〈O〉t :=

ˆ
[DΦ] exp(−S − tQV )O

Here we assume the existence of a supersymmetry invariant measure
´

[DΦ](...)

of the path integral.

Let us now also assume O is invariant under the supersymmetry generator Q
so that QO = 0. In this case, we may calculate

d

dt
〈O〉t =

ˆ
[DΦ] exp(−S − tQV )(−Q(V )O)

= −
ˆ

[DΦ] exp(−S − tQV )Q(VO)

= 0
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by the supersymmetry invariance of the measure. This shows that the expecta-
tion value of O actually does not depend on the parameter t!

If we furthermore assume QV has a positive semi-definite bosonic part, the limit
t → ∞ makes the saddlepoint approximation exact and localizes the integral
at the path configurations such that QV = 0. If the space of solutions M =

{Φ|QV (Φ) = 0} is finite-dimensional, the path-integral may be expressed as an
ordinary, finite-dimensional integral overM.

Derivation of the prepotential from the partition function in the Ω-
background Pioneering work on the proposal by Seiberg and Witten was
done in [3, 4, 5, 6]. The proposal was derived by Nekrasov and others by
an honest calculation of the partition function in the Ω-background using the
method of localization. There are many reviews on these topics such as [54] for
the work by Seiberg and Witten and [55] for subsequent works. The localization
formalism has been succesfully applied for quiver gauge theories in [56, 57].

Further important work on the study of these partition functions in the presence
of defects was performed in Nekrasov’s BPS/CFT-series [58, 59, 60, 61, 37].

If we denote the partition function by Zε1,ε2(a,µ, t), depending on the expec-
tation values a of the scalar fields, mass parameters µ and the gauge couplings
t, the existence of N = 2 supersymmetry implies the partition function splits
as a product of three contributions

Zε1,ε2 = Ztree
ε1,ε2Z

1−loop
ε1,ε2 Z inst

ε1,ε2

where Ztree
ε1,ε2 is the tree-level contribution, Z1−loop

ε1,ε2 the one-loop correction and
Z inst
ε1,ε2 the instanton corrections. This is a result of the fact that the partition

function must depend holomorphically on the gauge coupling parameters t,
which implies the higher-loop corrections have to vanish. Let us denote

Z(R4
ε1,ε2) := Zε1,ε2(a,µ, t)

It turns out that there exists a functional V with respect to which we can apply
the localization formalism. The instanton partition function Z(R4

ε1,ε2) localizes
to the self-dual instanton configurations. A direct expression of the moduli
space of such solutions was obtained through the ADHM construction [62]. This
formalism shows in particular that this moduli space is finite dimensional.
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By carefully taking the limit, we may show that

lim
ε1,ε2→0

(−ε1ε2 logZε1,ε2(a,µ, t)) = F(a,µ, t)

recovering the prepotential.

Localization on the four-sphere Let us now regularize the IR-divergences
by compactifying our space time. Instead of R4, we now consider the squashed
four-sphere S4

ε1,ε2 defined by the coordinate parametrization

S4
ε1,ε2 := {(x0, ..., x4)|x2

0 + ε21(x2
1 + x2

2) + ε22(x2
3 + x2

4) = 1}

The space S4
ε1,ε2 admits a supersymmetry which squares to a combination of

a spacetime symmetry and an internal symmetry. The localization formalism
has been applied originally to quiver gauge theories on the unsquashed four-
sphere [21] for which ε1 = ε2 = 1 and later for ellipsoids in [22], leading to the
calculation of the partition function on S4

ε1,ε2 .

The path integral localizes to the field configurations for which the scalar fields
have constant values and the other fields vanish. The partition function Z(S4

ε1,ε2)

turns out to have the following structure

Z(S4
ε1,ε2) =

ˆ
da|Z(Rε1,ε2)|2 (2.1)

We will denote by
´
da(...) the integral over all scalar fields a1, ..., ah.

Furthermore, it turns out that certain loop observables on S4
ε1,ε2 preserve enough

supersymmetry to be calculated as well. We pick the support of our loop ob-
servables to either be given by C1 := {(x1, x2)|x2

1 + x2
2 = ε−2

1 } or by C2 :=

{(x3, x4)|x2
3 + x2

4 = ε−2
2 }.

From the localization on S4
ε1,ε2 it follows that the expectation value of a loop

operator 〈L〉S4
ε1,ε2

is given by

〈L〉S4
ε1,ε2

=

ˆ
daZ(Rε1,ε2)DL · Z(Rε1,ε2)

where DL is a difference operator acting on the scalar zero mode variables a.
Wilson loops have already been studied in [21, 22]. On the squashed four-sphere
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these can be shown to correspond to pure multiplication operators

2 cosh

(
2πar
εj

)
where the parameter j in εj equals the parameter j of the support Cj of the
loop operator. The action of ’t Hooft loops has been studied in [63] on the
unsquashed four-sphere. Such loop operators act by difference operators on
Z(Rε1,ε2) that are not pure multiplications.

2.2 Theories of class S

Quiver construction theories class S In the class of N = 2 SU(2) quiver
gauge theories, there is a family of theories known as theories of class S [9].
As quiver gauge theories, these theories may be represented by quivers built
up from vector multiplets and matter transforming either in the fundamental,
bifundamental, trifundamental or adjoint representation of the gauge fields it is
charged under. It turns out that these quivers are in one-to-one correspondence
with undirected, trivalent, planar graphs which are allowed to have multiple
edges between two vertices and edges connecting a vertex to itself. On the
other hand, the pants decompositions of a punctured Riemann surface X, i.e.
decompositions of X into three-holed spheres (possibly replacing some holes by
punctures), are also in one-to-one correspondence with such graphs. We refer to
theorem 16.5 for a statement of this kind. The tubes connecting different pants
in a decomposition are associated to the vector multiplets, while the punctures
define the matter of the theory.

Consider as an example the theory with four flavour groups transforming in the
fundamental representation of a single gauge group. This theory is known as the
NF = 4 theory and can be defined by a quiver of the form shown in figure 2.1.

The blocks correspond to SU(2) flavour groups, while the circles define SU(2)

gauge groups. Under the one-to-one correspondence with pants decompositions
of punctured Riemann surfaces, this quiver defines a pants decomposition of the
four-punctured sphere.

It turns out that this correspondence is more than a curiosity: Each pair (P,Γ)

consisting of a pants decomposition P of a Riemann surface X and a gluing
pattern Γ understood as a graph embedded in X, defines a different action
functional for the theory.
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Figure 2.1: Quiver describing the NF = 4 theory

The exactly marginal gauge coupling parameters τr for r = 1, ..., 3g − 3 + n are
related to the gluing parameters qr defining the complex structure of X by the
relation

qr = e2πiτr

Although τr → τr +1 has a trivial effect on the complex structure X, it changes
the gluing pattern Γ in a non-trivial way. The gluing pattern therefore contains
information about the branch of the equation 2πiτr = log(qr) we are working
with. The moduli space Tg,n of these theories is therefore in one-to-one corre-
spondence with the Teichmüller space T (S) classifying complex structures X
together with a marking given by the gluing pattern Γ on a smooth surface S
of genus g and with n punctures.

The perturbative limit of these theories can be recovered by letting all τr →∞.
In this region, the Yang-Mills coupling constants become small. From the point
of view of the Riemann surface, the tubes gluing together the different pants
become elongated. Depending on which pants decomposition and gluing pattern
we pick, we can find many different perturbative descriptions of the same theory.
This is an example of an S-duality of the theory. Indeed, it is believed that the
group of S-dualities for these theories is isomorphic to the mapping class group
MCG(S). See section §16 for a discussion of the mapping class group.

Sewing theories of class S together Since Riemann surfaces can be ob-
tained by gluing pairs of pants together, we may look for a similar construction
for theories of class S. We refer to [9] for this construction, but we will shortly
discuss it here as well.

Our starting point is the trinion theory for flavour group SU(2). The trinion
theory contains matter in the SU(2) trifundamental half-hypermultiplet, unlike
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any of the other theories containing matter in the fundamental, bifundamental
or adjoint representations. This theory will play the role of the three-punctured
sphere.

We can ‘glue’ two trinion theories together by gauging a diagonal combination
of two of the flavour groups that belong to different pairs of pants. This leads
to the moduli space of theories T0,4 containing an SU(2) gauge group coupled
to four flavour groups in the fundamental representation. If the two flavour
groups belong to the same pair of pants, they combine to form an adjoint and a
singlet representation of SU(2). The singlet representation is not charged under
the gauge group and therefore is free. We may gauge the former representation
such that the remaining flavour group transforms in the adjoint of the gauge
group. The moduli space of theories T1,1 then consists of a gauge group and
a flavour group in the adjoint plus a free hypermultiplet. We can apply these
operations consecutively to find a theory in Tg,n.

Theories of class S from M-theory The theories of class S have a well-
known construction based on M-theory. This is discussed for example in [24] and
the reviews [7, 8]. Consider an M5-brane embedded in the eleven-dimensional
spacetime wrapped along the Riemann surface X. We assume the M5-brane
is embedded as R4 × Σ, where Σ → X is a double cover. This defines a six-
dimensional, strongly-interacting theory of type A1 with N = (2, 0) supersym-
metry. To construct the theory of class S, we holomorphically twist along the
Riemann surface X. This preserves N = 2 supersymmetry orthogonal to X.

The twisted compactification alongX has the property that the Coulomb branch
geometry is independent of the area of X. At small areas, we recover the
description of a theory of class S.

The six-dimensional theory of type A1 has a single Coulomb branch operator
which behaves upon twisting as a holomorphic quadratic differential ϕ on X.
The dimension of the Coulomb branch is therefore given by 3g− 3 +n for g the
genus of X and n the number of punctures. The positions of the branes from
the point of view of the surface X are determined by the roots of the polynomial
equation v2 = ϕ(u) defining the double cover Σ = {(v, u) ∈ T∗X|v2 = ϕ(u)}.

Theories of class S are closely related to Hitchin systems. By compactifying on
S1, the low energy effective action is described by a three-dimensional N = 4

sigma model with target space the total space of a Hitchin integrable model
[24]. We also refer to [64] for a description.
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Relations to conformal field theory The sewing of these theories is remi-
niscent of the gluing of conformal blocks in conformal field theories. Indeed, in
[10] it has been conjectured that there exists a map between the partition func-
tions of the class S theories and objects known as conformal blocks in Liouville
theory. The developments initiated by this proposal have led to considerable
amounts of evidence and in some cases even proofs of profound relations be-
tween the partition functions introduced before and correlation functions of
certain conformal field theories.

Let us first state the duality before diving into the details of conformal field
theories. Some basic notions have to be known to understand this duality. We
refer to subsection 2.3 for whatever is unclear to the reader at this stage.

The parameters of the Nekrasov partition function Z(R4
ε1,ε2) have the following

interpretation in the context of conformal field theories

• The parameter b2 = ε1/ε2 specifies the central charge c of the Virasoro
algebra by c = 1 + 6(b+ b−1)2.

• The variables t parameterize the complex structure of the Riemann surface
X on which the conformal field theory is studied.

• The variables µ are parameters of vertex operator insertions.

• Finally, the variables a are the parameters of representations propagating
in intermediate channels.

The AGT-duality states that there exists a one-to-one correspondence between
partition functions of theories of class S and conformal blocks (solutions of the
conformal Ward identities) and correlators in Liouville theory. The correspon-
dence is as denoted in table 2.1.

It should be noted that conformal blocks do not form the physical correlators
of Liouville theory. Generically, the conformal blocks are not single-valued on
the Riemann surface X. To define a correlator, we have to integrate over the
intermediate momenta a. This is precisely how we arrive at the expression of
the partition function Z(S4

ε1,ε2).
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Gauge theory Liouville theory

Ω-background parameters ε1, ε2
Coupling constant b2 = ε1

ε2
Central charge c = 1 + 6Q2

Background charge Q = b+ b−1

Trinion theory Three-punctured sphere
Mass parameter µk Insertion of a

associated to an SU(2) flavour vertex operator Vµk
An SU(2) gauge group A cutting curve with

with UV coupling parameter τr sewing parameter qr = e2πiτr

Vacuum expectation value ar Insertion of Vαr
of scalar in vector multiplet for αr = Q/2 + ar

Z inst
ε1,ε2(a,µ, t) Liouville conformal blocks

Z(S4
ε1,ε2) =

´
da|Zε1,ε2(a,µ, t)|2 Liouville correlator

Table 2.1: The correspondence of the duality discovered in [10]

2.3 A quick overview on conformal field theories

Before we discuss the precise relation between conformal field theories and su-
persymmetric field theories in the context of the AGT-duality and its extensions,
we will give a quick overview of two conformal field theories that will be im-
portant for us: the Liouville theory and the WZNW theory. An overview of
a mathematical approach on two-dimensional CFTs may be found in [65]. We
will follow these notes. We also refer to [40] for a discussion in the context of
surface defects.

It should be noted that we can define two-dimensional conformal field theories
over any Riemann surface, but for our purposes it suffices to clarify the main
points for the sphere.

State-operator correspondence and vertex operators To define a con-
formal field theory, we first have to introduce a Hilbert space H which is a
unitary representation of Virc ×Virc with generators Lk and L̄k.

The algebra Virc is known as the Virasoro algebra with generators Lk∈Z satis-
fying

[Lk, Lm] = (k −m)Lk+m +
c

12
(k3 − k)δk+m,0

and c the central charge of the algebra. We parametrize the central charge by
a number b as c = 1 + 6Q2 where Q = b+ b−1.
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The Hilbert space will be constructed as

H =
⊗
R′,R′′

MR′,R′′ ⊗R′ ⊗R′′

where R′ is a representation of Virc and R′′ of Virc. The factorMR′,R′′ describes
the multiplicity and transforms trivially under Virc×Virc. For a physical theory,
we require that R′ and R′′ are highest-weight representations. We will often
assume the existence of a vacuum vector |0〉 invariant under Lk and L̄k for k =

−1, 0, 1. These six generators should correspond to the translations, rotations,
dilatations and special conformal transformations.

Furthermore, a quantum field theory on X must contain a set of fields Φv(w, w̄)

defined on X. We use v as a label for the set of all fields. Additionally, a
quantum field theory contains an inner product such that we can define single-
valued correlators

Zv(w, w̄) = 〈
n∏
r=1

Φvr (wr, w̄r)〉

An important property of a conformal field theory is the state-operator corre-
spondence. This is an isomorphism v 7→ Φv between H and the space of fields.
This correspondence allows us to express the correlator Z as depending on the
positions of the insertions w and w̄ and the vectors v = (v1, ..., vn).

If we consider X to be the complex plane, the state-operator correspondence is
described by

lim
w,w̄→0

Φv(w, w̄)|0〉 = v

The above discussion gives us some of the main ingredients that a physical
conformal field theory should possess.

Let us now introduce the stress-energy tensor. In a two-dimensional conformal
field theory, the stress-energy tensor splits into a holomorphic and an anti-
holomorphic part defined as

T (y) :=
∑
k∈Z

Lky
−k−2

T̄ (ȳ) :=
∑
k∈Z

L̄kȳ
−k−2

On the level of the correlation functions, the conformal symmetry expresses
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itself through the fact that the expectation value

〈T (y)

n∏
r=1

Φvr (wr, w̄r)〉

is holomorphic away from y = wr for r = 1, ..., n. A similar identity holds for
the field T̄ (ȳ).

Due to the split of these identities into a holomorphic and anti-holomorphic
component, we look for expansions of the correlators of the following form

Zv(w, w̄) =
∑
β′,β′′

Cβ′,β′′,mFβ′,v′(w)Fβ′′,v′′(w̄)

Here β′ and β′′ label basis elements for a space of solutions to the conformal
Ward identities and the integers m label the multiplicities of the vectors v by
vr = mr ⊗ v′r ⊗ v′′r . The functions Fβ′,v′(w) are known as conformal blocks.

Verma modules and Ward identities We look for representations of the
Virasoro algebra Virc which have a highest-weight vector. Such representations
must come from a quotient of a Verma module for the Virasoro algebra, which
is a module Vα constructed from a highest-weight vector vα on which the op-
erators L−k<0 act as lowering operators, while Lk>0 annihilate the vector vα.
Furthermore, we have (L0 −∆α)vα = 0 with ∆α := α(Q− α).

Although these modules are freely generated by the operators L−k<0, for some
values of α it is possible that the Verma module contains null vectors, i.e.
vectors v which behave as highest-weight vectors themselves. These null vectors
generate a submodule which we quotient the Verma module by. For example,
we can show that (L−2 − b−2L−1)v−b/2 in the Verma module V−b/2 defines a
highest-weight vector.

Let us consider X = CP 1\{z1, ..., zn}. To each puncture zr we associate a rep-
resentation Rr coming from the quotient of a Verma module by the submodule
generated by the null vectors. Using this notation, we will rephrase the Ward
identities:

We define an action of the Lie algebra Vect(X) on R =
⊗n

r=1Rr by

Tξ =

n∑
r=1

∑
k∈Z

ξ
(r)
k L

(r)
k
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where L(r)
−1 acts by L−1 only on the component of the tensor product in Vαr and

ξ = ξ(z) ∂∂z is expanded as

ξ(z) =
∑
k∈Z

ξ
(r)
k (z − zr)k+1

If we denote by fX ∈ Lin(R,C) a linear functional, the Ward identities are
given by

fX(Tξv) = 0

for all ξ ∈ Vect(X) and v ∈ R. If a functional fX satisfies these identities,
we call it a conformal block. Furthermore, if v = vα1

⊗ ... ⊗ vαn is the tensor
product of highest-weight vectors vαr , we denote

ZfX (z1, ..., zn) := fX(v)

for fX a conformal block. This makes the dependence on the positions explicit.

Basis of solutions from pants decompositions To understand the appear-
ance of the intermediate labels a, we need to introduce a gluing construction
of conformal blocks. This construction takes as its input conformal blocks on
two Riemann surfaces with punctures and produces a conformal block on the
Riemann surface obtained by gluing these two surfaces together along a given
puncture. This creates large families of conformal blocks, which in some cases
are known to generate bases for the space (or some subspace) of the confor-
mal blocks. This requires that the punctures we glue together have the same
representation associated to them. Such a construction allows us to describe
conformal blocks by gluing together three-punctured spheres over which the
form of the conformal block is known. These gluing patterns come with labels a

denoting the the representations associated to the punctures we glue together,
i.e. the variables a label the intermediate representations.

Defining conformal blocks over the complex moduli space In our for-
mulation of conformal blocks so far, we have not yet put any restrictions on
ZfX (z1, ..., zn) as a function of its parameters z := (z1, ..., zn). However, from
the point of view of physics it is natural to require some form of regularity of
ZfX (z) in z. We therefore also impose the following axiom:

∂

∂zr
ZfX (z) := fX(L

(r)
−1v) (2.2)
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Wemay physically understand this as stating that the operator L−1 must behave
as the generator of translations in the holomorphic direction.

The action by L(r)
−1 defines an automorphism on the space of conformal blocks,

which allows us to interpret equation (2.2) as a connection on the configuration
space of punctures

M0,n = {(z1, ..., zn)|zr 6= zs if r 6= s}/PSL(2,C)

In good cases, we may integrate the connection from equation (2.2) and de-
fine bases for the horizontal sections over neighbourhoods in M0,n. The cor-
responding functions ZfX , for fX being elements of such a basis, characterize
the conformal blocks fX uniquely through the Ward identities together with
equation (2.2).

For a higher genus surface it is also possible to define the space of conformal
blocks on which the generators of the Virasoro algebra act as differential opera-
tors. This implies that the stress-energy tensor on the one hand defines an auto-
morphism on the space of conformal blocks and on the other hand a differential
operator. However, the conformal symmetry and the Ward identities together
are usually not enough to describe the conformal blocks as a finite-dimensional
vector space over a given Riemann surface. To cut down the dimensionality of
this vector space, we need additional relations. One could think for example
of introducing null vectors leading to relations between Virasoro generators, or
extending the Virasoro algebra to a larger symmetry algebra. We will consider
both of these options.

Introducing degenerate representations If we assume some of the repre-
sentations associated to the punctures are degenerate, we can use the geometri-
cal description of conformal blocks over the complex moduli space to construct
differential equations the conformal blocks have to satisfy. Let us consider only
the case where the highest-weight vector is given by vλn+1

= v−b/2 and we set
y = zn+1 for X = CP 1\{z1, ..., zn+1}. A conformal block fX(v) defined on the
tensor product of highest-weight vectors, satisfies

fX(L
(n+1)
−2 v) =

n∑
r=1

(
∆r

(y − zr)2
fX(v) +

1

y − zr
fX(L

(r)
−1v)

)
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where ∆r = αr(Q − αr). The relation (L−2 − b−2L2
−1)v−b/2 = 0 implies a

relation of the form

b−2 ∂
2

∂y2
ZfX (z, y) =

n∑
r=1

(
∆r

(y − zr)2
+

1

y − zr
∂

∂zr

)
ZfX (z, y)

These types of equations are known as the BPZ-equations [36].

Remark that if we introduce a total of n−3 variables y = (y1, ..., yn−3), we find
a total of n− 3 BPZ-type equations.

Extending the symmetry to affine Kac-Moody symmetry Let us now
consider the case where we extend the Virasoro symmetry to an affine Kac-
Moody symmetry. The affine Kac-Moody algebra is a central extension of the
loop algebra of a semi-simple Lie algebra g. If we let Jam be generators of the
affine Kac-Moody algebra with a the Lie algebra index and m the loop algebra
index, the algebra is defined by

[Jam, J
b
p ] =

dim(g)∑
c=1

fabc J
c
k+m +mKδm+p,0κ

ab

where K is the central extension term, κ the (non-degenerate) Killing form on g

and fabc the structure constants of g. We denote the affine Kac-Moody algebra
by ĝK .

A large class of representations for the affine Kac-Moody algebra can be con-
structed starting from a representation of g. The Lie algebra g naturally embeds
into ĝK as the zero mode subalgebra of the enveloping algebra of the Kac-Moody
algebra. Starting from a representation R of g, we may extend R to a represen-
tation R̃ of ĝK by assuming

Jan>0v = 0

Ja0 v = R(ta)v

for all v ∈ R. The element ta is a generator of g.

The Ward identities in the context of affine Kac-Moody algebras take a form
similar to the Ward identities of the Virasoso algebra. In this case we call the
linear functional fX , defined over the Riemann surface X, a conformal block for
the affine Kac-Moody algebra if the identity

fX(Jηv) = 0
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holds for all v ∈ R̃ :=
⊗n

r=1 R̃r and all η ∈ g ⊗ C[X], meromorphic, g-valued
functions on X. The action is defined by

Jη =

n∑
r=1

∑
k∈Z

dim(g)∑
a=1

η
(r)
k,aJ

a,(r)
k

where η = ηa(y)ta has the expansion

ηa(y) =
∑

η
(r)
k,a(y − zr)k

To show that a theory with affine Kac-Moody symmetry does define a conformal
field theory, we use the Sugawara construction [66]. This construction proves
that the Virasoro algebra is actually a subalgebra of the affine Kac-Moody
algebra. Indeed, if we define

Lk :=
1

2(K + ȟ)

∑
m∈Z

dim(g)∑
a,b=1

κab : Jak−mJ
b
m :

where ȟ is the dual Coxeter number of g, it can be checked that Lk generates
the Virasoro algebra with central charge

c =
K dim(g)

K + ȟ

Moreover, the conformal blocks for the affine Kac-Moody algebra also define
conformal blocks for the Virasoro algebra.

The notation : Jak−mJ
b
m : is called the normal-ordering, which means we place

all the raising operators to the right.

Let us consider a vector v = vR1
⊗ ... ⊗ vRn ∈ R̃ for vRr ∈ R̃r coming from

vRr ∈ Rr. We denote a conformal block fX(v) of this type by

ZfX (z|v) := fX(v)

Using the Ward identities and replacing the action of L(r)
−1 by the derivative ∂

∂zr
,

we find the KZ-equations

(K + ȟ)
∂

∂zr
ZfX (z|v) + ĤrZfX (z|v) = 0

where

Ĥr =
∑
s6=r

κabRr(t
a)Rs(t

b)

zr − zs
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and Rr(t
a) only acts on the vector vRr . It can be checked that the operators

Ĥr are mutually commuting operators.

We restrict to g = sl(2,C) and assume the representations R̃r come from prin-
cipal series representations Rr = Pjr with Casimir element jr(jr + 1). The
generators of the zero mode subalgebra are represented by differential operators
as follows:

Rr(t
−) = − ∂

∂xr

Rr(t
0) = −xr

∂

∂xr
+ jr

Rr(t
+) = x2

r

∂

∂xr
− 2jrxr

Elements in the principal series representation Pjr are non-holomorphic func-
tions of the variables xr and x̄r. In this case, the operators Ĥr take the form

Ĥr = −
∑
s 6=r

1

zr − zs

(
(xr − xs)2 ∂2

∂xr∂xs
+ 2(xr − xs)

(
js

∂

∂xr
− jr

∂

∂xs

)
− 2jrjs

)
(2.3)

and the conformal block ZfX (z|x) depends on the positions z = (z1, ..., zn) and
the parameters x = (x1, ..., xn). The parameters x define conformal blocks
twisted by a holomorphic bundle. We will not go into this construction in more
detail and refer instead to [19, 67].

2.4 Introducing defects in the gauge theory

We may define more general partition functions in the presence of certain su-
persymmetric defects. The type of defects that can occur in the context of AGT
and its generalizations, can be classified from an M-theoretical point of view.
We follow the discussion in [30]. For a classification of defects and the construc-
tion of theories of class S through an M-theoretical approach, we again refer to
the reviews [7, 8].

From the M-theory point of view, we may introduce several different defects
in our theories. These will come from two different brane set-ups: Either we
introduce an M2-brane which has a boundary on the stack of M5-branes or
we introduce another stack of M5-branes and intersect our original set-up with
those. Depending on where these branes live precisely, we can get different
defects.
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The former type of set-up gives rise to two-dimensional defects from the point of
view of the six-dimensional theory. The second set-up leads to a four dimensional
defect. There are three types of defects that will be important for us. We may
schematically describe these defects as in table 1.1.

If we intersect an M2-brane with the stack of M5-branes, we can either intersect
the M2-brane completely with the four-dimensional theory such that it lives at
a point with respect to the Riemann surface X, or we can intersect the M2-
brane with a one-dimensional subspace of both the four-dimensional space and
the Riemann surface X. The former set-up constructs a surface defect in the
four-dimensional theory, while the latter defines loop operators.

If we take another stack of M5-branes and intersect the original stack of M5-
branes, there is only one defect of interest for us, namely the one that defines a
surface defect in the four-dimensional theory.

Each of these surface defects in the Ω-background R4
ε1,ε2 and on S4

ε1,ε2 finds a
natural place in the context of generalizations of the AGT-duality.

Co-dimension four surface operators To preserve supersymmetry there
are two ways in which we can introduce co-dimension four operators as surface
operators in the four-dimensional theory, depending on whether we embed the
surface operator completely in the plane associated to the regulator ε1 or to the
regulator ε2. The surface operator couples the four-dimensional theory to a two-
dimensional gauged linear sigma model supported on the surface operator. This
introduces a discrete label s = (s1, ..., sd) for the different types of surface oper-
ators, classified by the vacuum states of the sigma model, and Fayet-Iliopoulos
parameters y = (y1, ..., yd). The partition functions Z(R4

ε1,ε2) are generalized to
functions Zε1,ε2(a,µ, s, t,y). The partition functions Z(S4

ε1,ε2) generalize to

Z(S4
ε1,ε2) =

∑
s

ˆ
da|Zε1,ε2(a,µ, s, t,y)|2

including a sum over the vacua of the sigma model. Details of this construction
and an interpretation in terms of branes can be found in [68].

From the viewpoint of the AGT-duality, the partition functions Zε1,ε2(a,µ, s, t,y)

turn out to map to conformal blocks with extra insertions of degenerate fields
at the positions y. This was found in [69] using the method of topological re-
cursion, generalizing the results from [32] which only considered the case of a
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single insertion of a surface operator. An important check was performed in
[70].

The articles cited here form first steps in understanding this conjecture, but
many others followed that we have not mentioned here. We once again refer to
the review [8] for a more complete picture of the history.

The conformal blocks with extra insertions of degenerate fields satisfy BPZ-type
partial differential equations with respect to each of the positions yr. Under
the duality the variables sr label elements in a basis of solutions to these BPZ-
equations on the conformal field theory side. The insertion of a surface operator
in the ε1-plane corresponds to the insertion of a degenerate field V−b/2, while
inserting a surface operator in the ε2-plane leads to the insertion of a degenerate
field V−1/(2b).

If we consider X = CP 1\{z1, ..., zn} to be the punctured sphere and describe
the complex moduli t in terms of the positions z = (z1, ..., zn), the insertion
of a co-dimension four surface operator with position y on the sphere induces
a BPZ-type equation on the partition function Zε1,ε2(a,µ, s, z, y) through the
extended AGT-duality. This differential equation takes the form(

ε2
ε1
∂2
y +

n∑
r=1

(
1

y − zr
∂zr +

∆r

(y − zr)2

))
Zε1,ε2(a,µ, s, z, y) = 0

The exchange ε1 ↔ ε2 corresponds to the exchange b↔ b−1.

Co-dimension two surface operators The surface operators coming from
co-dimension two operators in the six-dimensional theory are introduced by im-
posing singular behaviour along the support of the defects in the gauge fields.
The possible types of singular behaviour are characterized by continuous param-
eters x = (x1, ..., xh). The partition functions Z(R4

ε1,ε2) generalize to functions
Zε1,ε2(a,µ, t,x). The four-sphere partition functions take the form

Z(S4
ε1,ε2) =

ˆ
da|Zε1,ε2(a,µ, t,x)|2

On the side of the conformal field theory, the Liouville conformal block is up-
graded to a conformal block of the affine Kac-Moody algebra ŝl2,K [30]. The
extension of this proposal to arbitrary sl(N,C) was determined in [31].

The parameters x now parametrize the choice of a holomorphic bundle on the
Riemann surface X. The central charge term K can be recovered in terms of ε1
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and ε2 through the relation
K + 2 = −ε2

ε1

Through the AGT-duality, the KZB-equation for conformal blocks leads to a
KZB-type equation for the partition functions Zε1,ε2(a,µ, t,x). Let us consider
X = CP 1\{z1, ..., zn} to be the punctured sphere once again and relate the
complex moduli t to the punctures z = (z1, ..., zn). In this case, we find the
following relation on the partition function

−ε2
ε1

∂

∂zr
Zε1,ε2(a,µ, z,x) = ĤrZε1,ε2(a,µ, z,x)

if we insert the surface operator in the ε1-plane. For a surface operator in the
ε2-plane, the prefactor − ε2ε1 must be replaced by − ε1ε2 . This replaces K + 2

by (K + 2)−1. In [37] it was stated that a proof of the fact that the partition
function satisfies the KZ-equation had been found for the four-punctured sphere
case.

The differential operators Ĥr are the quantum Hitchin Hamiltonians on X tak-
ing the form of equation (2.3). The Hamiltonians can be generalized to other
Riemann surfaces as well.

Relations between co-dimension two and co-dimension four surface
operators Considerations from M-theory suggest an IR duality between sur-
face operators of co-dimension two and particular systems of surface operators
of co-dimension four [40]. The basic mechanism underlying this duality is a
variant of the Hanany-Witten effect.

In the context of the AGT-correspondence, such a duality would predict rela-
tions between the conformal blocks of the Virasoro algebra and of the affine
algebra ŝl2,K . It has been pointed out in [40] that the relations between confor-
mal blocks underlying the relations between correlation functions of Liouville
theory and of the H+

3 -WZNW model fit very well to the relations between par-
tition functions expected to follow from the Hanany-Witten effect. The above-
mentioned relations between conformal blocks generalize the integral represen-
tation constructed using the separation of variables method of Sklyanin [71] for
the eigenfunctions of the Gaudin model.

Introducing loop operators The expectation value of Wilson loop operators
on S4

ε1,ε2 was calculated in [21, 22, 63]. Let us recall from subsection 1.4 that
these calculations have been extended in [32, 41] and give rise to equation (1.3).
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The loop operators in the gauge theory can be inserted either on the circle
C1 = {(x1, x2)|ε21(x2

1 + x2
2) = 1} or on C2 = {(x3, x4)|ε22(x2

3 + x2
4) = 1}. This

leads to the insertion of degenerate fields in the correlators of the conformal
field theory on the other side of the AGT-duality.

2.5 Relations to integrable models

Relations between field theories in the Ω-background and integrable
models In [14] Nekrasov and Shatashvili have proposed a profound relation
between partition functions Z(R4

ε1,ε2) and integrable models deforming the re-
lations between Seiberg-Witten theory and (classically) integrable models to a
relation between a decompactification limit of supersymmetric gauge theories
in the Ω-background.

The relation they discuss, appears in the limit ε2 → 0. It is argued that in this
decompactification limit, the four-dimensional N = 2 theory gets effectively
represented by a two-dimensional N = (2, 2) supersymmetric theory. The ef-
fective action of this theory appears on the plane R2 ⊂ R4

ε1,0 with vanishing
Ω-deformation by integrating out the fluctuations with masses determined by
the remaining parameter ε1. The free energy of this N = (2, 2) theory defined
on R2, can be obtained as the limit

Y(a,µ, t) = lim
ε2→0

(−ε2 logZε1,ε2(a,µ, t))

Since the supersymmetric vacua are determined by the minimization of (a shifted
version of) the free energy, it follows that there exists a relation between the
extrema of Y(a,µ, t) − 2π

∑d
r=1 nrar called the (shifted) twisted effective su-

perpotential and the vacua of the N = (2, 2) theory. Here d is the dimension of
the Coulomb branch and (n1, ..., nd) a set of integers.

The space of vacua is acted upon by the twisted chiral ring generating a commu-
tative family of observables. Nekrasov and Shatashvili propose to identify the
generators of this chiral ring with the Hamiltonians of the quantum integrable
system obtained by quantizing the integrable system appearing on the Coulomb
branch through the relationship in [23]. The eigenstates of the generators of
the chiral ring are associated to states describing the spectrum of the quantum
integrable system.

All of these facts together amount to the prediction that the vacua of the effec-
tive two-dimensional theory, characterized by equation (1.1), are in one-to-one
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correspondence with the eigenstates in the spectrum of the quantum integrable
model.

The fact that we can characterize the eigenstates and spectrum of many quan-
tum integrable models in terms of conditions as in equation (1.1), is a highly
non-trivial prediction by the work of Nekrasov and Shatashvili. For theories
which allow for a solution by the Bethe ansatz, such descriptions have been
well-known following the work of Yang and Yang in [17]. The role of the pa-
rameters ar is played by the auxiliary variables in this case and extremization
with respect to this variable leads to the Bethe ansatz equations.

The integrable systems appearing in the context of supersymmetric field theo-
ries, cannot in general be solved by the Bethe ansatz. Famous examples include
the closed Toda chain and the Calogero-Moser model. For this class of integrable
systems, it had not been known that there exist functions as in equation (1.1)
allowing us to represent the quantization conditions of the quantum integrable
model. The parameters m and τ take the role of parameters of the integrable
model, while ε1 becomes Planck’s constant. Functions Y(a,µ, t) describing the
quantization conditions in this way, are often called Yang-Yang functions.

Through the relation to supersymmetric field theories, we furthermore have a
concrete mathematical description of the functions Y(a,µ, t). By carefully ana-
lyzing the limit ε2 → 0 of the known series representations for Zε1,ε2(a,µ, t), it
was found in [14] that Y(a,µ, t) may be calculated from the solutions to certain
nonlinear integral equations similar to the equations describing the thermody-
namic Bethe ansatz. For the case of the closed Toda chain, it was shown in
[72] that the quantization conditions derived previously by [73, 74, 75], can be
rewritten in the form of equation (1.1) with Y(a,µ, t) being exactly the function
defined using thermal Bethe ansatz type integral equations in [14].

Relations between the AGT-duality and quantum integrable mod-
els By interpreting the proposal by Nekrasov and Shatashvili through the
lens of the AGT-duality, we get an alternative mathematical characterization of
Y(a,µ, t). By using the relations between partition functions Z(R4

ε1,ε2) in the
Ω-background and conformal blocks, we may calculate the limit ε2 → 0 from the
point of view of conformal field theory. This limit leads to the characterization
of Y(a,µ, t) in terms of the symplectic geometry of the moduli space of flat
connections on the Riemann surface X. For further discussions on this topic,
see [18, 19].
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From the point of view of integrable models one thereby gets a very interesting
alternative, more geometric picture of the Yang-Yang function characterizing
the quantization conditions of some quantum integrable systems. Of particular
interest in our context is the limit ε2 → 0 of partition functions in the presence
of surface operators of co-dimension two. As already suggested in [30] we get
a physical realization of the eigenfunctions associated to the solutions of the
quantization conditions equation (1.1).

2.6 Open questions

Although these developments lead to profound relations between gauge theories,
conformal field theories and integrable systems, there are some basic questions
left unanswered. Let us consider two questions that will take precedent in our
context.

First of all, many algebraically integrable systems admit more than one possible
quantization condition. This comes from the fact that these integrable models
may admit more than one reality condition allowing us to define real phase
space coordinates from an algebraically integrable model with complex phase
space coordinates. Some simple examples where this happens are provided by
spin chains with representations of a complex semi-simple group attached to
each lattice site. The quantization condition will depend on the real form under
consideration, like SU(2) or SL(2,R) in SL(2,C), and the representations in
which we find eigenfunctions of the quantum Hamiltonians. For example, we
might consider discrete series representations, highest-weight representations or
principal continuous series representations, which in general leads to different
quantization conditions.

Even if an integrable model appears in relation to gauge theories as in the con-
text of [14], it is not a priori clear which quantization conditions can be expressed
in the form of equation (1.1) for a suitable Yang-Yang function Y(a,µ, t). On
top of that, if some set of quantization conditions does appear, it is not clear
if other quantization conditions admit a similar representation ideally using the
same Yang-Yang function.

The relations discovered by Nekrasov and Shatashvili could initiate a new way
of looking for the solution of a spectral problem in quantum integrable systems,
but the effectiveness of this approach depends sensitively on whether the answers
to the above questions are known.
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Secondly, it seems natural to expect that the partition functions on S4
ε1,ε2 should

also have an interesting limit ε2 → 0 from the point of view of quantum inte-
grable models. We have shown already in subsection 1.5 that we should expect
a change in Bethe quantum numbers if we introduce loop operators. Although
these equations resemble equation (1.1), it is a priori not clear whether they
have an interpretation in the quantization of the integrable model.

2.7 Loop operators and single-valued eigenfunctions

In this section we will expand on the questions posed in 1.5.

Bethe quantum numbers and loop operators Using the proposal by
Nekrasov and Shatashvili, we find

Z(R4
ε1,ε2) = exp

(
− 1

ε2
Y(a, t)

)
(1 +O(ε2))

in the limit ε2 → 0. Here Y(a, t) is the Yang-Yang function for the Hitchin
integrable system.

By plugging in this expression into the factorized relation of equation (1.2) found
by Pestun, we obtain an integral expression

Z(S4
ε1,ε2) =

ˆ
da exp

(
− 2

ε2
Re(Y(a, t))

)
(1 +O(ε2))

which may be calculated by the saddlepoint approximation, becoming exact in
the limit ε2 → 0. This implies that the partition function Z(S4

ε1,ε2) is dominated
by the values a = a∗ where

Re

(
∂Y(a, t)

∂ar

)∣∣∣∣
a=a∗

= 0

and the parameters a must satisfy

Re(ar)|a=a∗
= 0

Comparing to the results in [20], we see that such a set-up leads to values
(n,m) = (0,0) for the Bethe quantum numbers (as defined in subsection 1.5).

Let us now introduce loop operators on C2 in the decompactification limit ε2 →
0. These loop operators will modify the asymptotic behaviour of the integrand
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of the partition function Z(S4
ε1,ε2). One of the simplest cases is given by the

insertion of a Wilson loop operator, which may be characterized by parameters
ps = 0 and qs = δrs for a given value of r. An analysis along the lines of [21, 22]
shows that such loop operators lead to difference operators acting by a simple
multiplication by a factor of the form

2 cosh

(
2πar
ε2

)
In the limit ε2 → 0, it is clear that this changes the saddlepoint approximation
to

Re

(
∂Y(a, t)

∂ar

)∣∣∣∣
a=a∗

= π

From this perspective, we see that the introduction of loop operators can af-
fect the Bethe quantum numbers (n,m) appearing in the comparison with the
quantization conditions in [20].

We can easily generalize this example to the case where we insert multiple Wilson
loops. Such a set-up defines a loop operator with Dehn-Thurston parameters
(0,q). The difference operator takes the form

D(0,q) =
∏
r

(
2 cosh

(
2πar
ε2

))qr

Therefore, we find

Re

(
∂Y(a, t)

∂ar

)∣∣∣∣
a=a∗

= πqr

showing that we may identify q and m. Hence, the Wilson loop operators have
a clear interpretation in terms of the Bethe quantum numbers.

A similar calculation for a general dyonic loop operator, however, is not so
simple, since a general dyonic loop can lead to shifts in the variables a. Although
a Wilson loop does not affect the integer n, a general dyonic loop operator
therefore could have such an effect.

The partition function Z(S4
ε1,ε2) and single-valued eigenfunctions We

will use the co-dimension two surface operator, inserted in the ε1-plane, as a
probe to find single-valued eigenfunctions to the quantum Hitchin Hamiltonians
from the partition function Z(S4

ε1,ε2).
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Let us first go back to the holomorphic story: If we introduce such a surface
operator in R4

ε1,ε2 , we must find an expression of the form

Z(R4
ε1,ε2) = exp

(
− 1

ε2
Y(a, t)

)
ψ(a,µ, t,x) (1 +O(ε2))

The partition function Z(R4
ε1,ε2) develops a dependence on parameters x, which

are the twisting parameters defining a holomorphic bundle over the Riemann
surface X and coordinates for BunSL(2,C)(X). The generalization of the AGT-
duality proposed by Alday and Tachikawa relates the holomorphic functions
Zε1,ε2(a,µ, t,x) to conformal blocks of the affine Kac-Moody algebra ŝl2,k [30,
37].

The relation to the WZNW model implies that Zε1,ε2(a,µ, t,x) satisfies the
KZB-equation

−ε2
ε1

∂

∂tr
Zε1,ε2(a,µ, t,x) = ĤrZε1,ε2(a,µ, t,x)

where Ĥr is a differential operator acting on the variables x coming from the
quantization of the Hitchin Hamiltonians.

The partition function Z(S4
ε1,ε2) is mapped to

G(µ, t, t̄,x, x̄) = exp

(
− 2

ε2
Re(Y(a∗, t))

)
Ψ(µ, t, t̄,x, x̄) (1 +O(ε2))

where the functions G(µ, t, t̄,x, x̄) are correlation functions for the H+
3 WZNW

model. If we set

Er =
1

ε1

∂Y(a∗, t)

∂τr
Ēr =

1

ε1

∂Ȳ(a∗, t̄)

∂τ̄r

the functions Ψ must satisfy the equations

ĤrΨ = ErΨ
ˆ̄HrΨ = ĒrΨ

and a∗ solving

Re

(
∂Y(a, t)

∂ar

)∣∣∣∣
a=a∗

= 0

It turns out that Ψ is single-valued as we shall see. Before we go into detail,
let us note that we only recover a single, special eigenfunction from Z(S4

ε1,ε2) in
this way. There is no hope to construct other single-valued eigenfunctions from
the partition function.
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The separation of variables for Gaudin models We will sketch the main
ideas very briefly, since the separation of variables for Gaudin models will be
discussed in greater detail in subsection 3.4.

Starting from the correlation function G, we may apply an integral transforma-
tion of the form

G(µ, t, t̄,x, x̄) =

ˆ
d2uK(x, x̄,u, ū)H(µ, t, t̄,u, ū)

where K(x, x̄,u, ū) is explicitly known for theories of class S associated to genus
zero surfaces [40]. The function H(µ, t, t̄,u, ū) is a correlation function of Li-
ouville theory in the presence of a certain number of degenerate fields. This
integral transformation relates the KZB-equations satisfied by G to the BPZ-
equations satisfied by H.

In the Nekrasov-Shatashvili limit ε2 → 0, we obtain a relation of the form

Ψ(µ, t, t̄,x, x̄) =

ˆ
d2uK(x, x̄,u, ū)

∏
k

χ(uk, ūk)

with χ(uk, ūk) satisfying the relevant limit of the BPZ-equations

(∂2
u + t(u))χ(u, ū) = 0 (∂2

ū + t(ū))χ(u, ū) = 0

where

t(u) =

n∑
r=1

(
δr

(u− zr)2
+

Er
u− zr

)
for the case of genus zero. In this case, the complex moduli t may be expressed
in terms of the positions of the punctures z = (z1, ..., zn). The residues Er are
obtained by

1

ε1

∂

∂zr
Y(a∗,µ, z) = Er

Single-valuedness of the eigenfunction Ψ now follows from single-valuedness of
the function χ.

Introducing loop operators If we insert a loop operator L in the ε2-plane,
we would expect a representation of the form

〈L〉S4
ε1,ε2

=

ˆ
daZε1,ε2(a,µ, t,x)DL · Zε1,ε2(a,µ, t,x)
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generalizing the factorized form that is known in the case without surface op-
erators. If we now take the ε2 → 0 limit, we expect the same construction of
a single-valued eigenfunction Ψ to hold as for the case Z(S4

ε1,ε2), but possibly
leading to different eigenvalues Er and Ēr due to the adjustment of the Bethe
quantum numbers. In any case, we may conclude that the expectation of a loop
operator in the ε2-plane in the presence of a surface operator of co-dimension
two living in the ε1-plane, gives rise to a single-valued eigenfunction Ψ of the
quantum Hitchin Hamiltonians.
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3 Quantization of the Hitchin system

3.1 Classical and quantum integrable systems

The Liouville-Arnold theorem is a keystone in defining integrability for a Hamil-
tonian dynamical system in a classical sense. Given a Poisson bracket on a
smooth manifold (known as the phase space) P, the Liouville-Arnold theorem
states that if we find 1

2 dim(P) functions in involution, we can introduce action-
angle coordinates for our integrable system. If the fibres of the map fixing the
values of these functions are compact, they will be diffeomorphic to tori. The
motion of the integrable system becomes linearized on this torus fibre and can
be solved by integration.

When we quantize our integrable system, we replace the functions on the phase
space by self-adjoint operators on a Hilbert space and the Poisson bracket is
replaced by a commutator of operators. The problem we now address is finding
the spectrum of a self-adjoint operator for eigenvectors in the given Hilbert
space. The choice of a Hilbert space might restrict the spectrum of the operator,
often times ensuring the spectrum becomes discrete. Two examples of conditions
we might require are square-integrability and single-valuedness.

The notion of quantum integrability is less understood than in the classical
case due to the lack of the Arnold-Liouville theorem. Although we might con-
struct many operators in involution, integrability is not yet guaranteed. Two
well-known techniques that can be used to solve quantum integrable systems
which admit what is known as a Lax formulation, are the Bethe ansatz and the
separation of variables method. The Bethe ansatz requires the introduction of
a reference state in the Hilbert space from which we produce all other vectors
by applying lowering operators defined through the Lax matrix. Although this
technique can be applied widely, a reference state is needed. When such a state
cannot be found or does not exist, we cannot apply the Bethe ansatz.

The separation of variables describes a representation of the Hilbert space for
which the eigenfunctions can be represented as the product of one and the same
function evaluated at different values of the argument. The function appearing
in this product representation can be characterized as the solution of difference
or differential equations called Baxter equations.

Hitchin integrable system The focus of this thesis lies on the quantization
of the Hitchin system defined in [15, 16]. This is a family of complex integrable
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systems with input a Lie group and a Riemann surface on which the spectral
parameter lives that gives rise to many interesting examples. The Gaudin model
and the elliptic Calogero-Moser model can both be obtained from this construc-
tion if we assume the Riemann surface is a punctured sphere and once-punctured
torus respectively. To describe much of the machinery we discuss in more con-
crete terms, we will often look at the Gaudin model as a hands-on example.
The techniques that can be applied to this model, have a natural generalization
to Riemann surfaces of higher genus.

It was shown by Frenkel in [76] that for the SU(2)-Gaudin model the eigen-
functions of the Hamiltonians constructed from the Bethe ansatz, have triv-
ial monodromy as functions living on the punctured Riemann sphere. In this
case, the Hilbert space in which the solutions live is a tensor product over
finite-dimensional representations. More generally, we may replace these finite-
dimensional representations of SU(2) by principal series representations of SL(2,C).
We will consider this in more detail later, but note for now that the Bethe ansatz
is not applicable here due to the lack of a reference state. Therefore, we should
approach the quantization problem using separation of variables.

3.2 Introduction to the Hitchin system

We give a lightning review of the notions introduced in the definition of the
Hitchin system, realizing its structure as an algebraically integrable model.

Stable Higgs bundles Let us consider a rank two holomorphic bundle E
with trivial determinant over a possibly punctured Riemann surface X with
2g − 2 + n > 0. We introduce a global section θ ∈ H0(X,End(E)⊗KX) which
we call a Higgs field. The bundle KX is the canonical bundle over X. We
require that near a puncture z∗, the Higgs field has an expansion of the form

θ(z) =
θr(z)

z − z∗
+O((z − z∗)0)

The pair (E , θ) defines a Higgs bundle.

We will only consider pairs (E , θ) that are stable, i.e. pairs that satisfy 2 deg(L) <

deg(E) for every subline bundle L ⊂ E such that θ(L) ⊂ L ⊗ KX . This is a
technical condition allowing us to find a harmonic metric compatible with the
Higgs pair. We call the set of stable Higgs bundles up to gauge transformation
the Higgs bundle moduli spaceMH .
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Symplectic structure on moduli space Note that for the trivial Higgs
field θ = 0, the stability condition reduces to the stability condition of the
underlying holomorphic bundle and that the stability of a holomorphic bundle
E automatically implies the stability of the Higgs pair (E , θ) for any θ. The space
BunSL(2,C)(X) of stable bundles with parabolic structures at the punctures can
be embedded inMH as the slice of stable Higgs bundles (E , 0). Its tangent space
at a given E ∈ BunSL(2,C)(X) is identified with H1(X,End(E)), so that we may
identify its cotangent fibre with the space of Higgs fields H0(X,End(E) ⊗KX)

through the Serre duality. It turns out that T∗BunSL(2,C) is dense inMH and
we may induce a symplectic structure on MH from the canonical symplectic
structure on T∗BunSL(2,C).

Complex integrable structure We define a map h : MH → H0(X,K2
X)

sending (E , θ) 7→ tr(θ2). By picking a basis ar with r = 1, ..., 3g − 3 + n for the
space of quadratic differentials with at most a double pole at the punctures and
with fixed behaviour of the double order pole, we may write

tr(θ2) =

3g−3+n∑
r=1

Hrar

The map h therefore induces 3g−3 +n coordinate functions Hr onMH . It has
been shown in [15] that these coordinate functions Hr are mutually commuting
onMH with respect to the symplectic structure induced by the canonical sym-
plectic structure on T∗BunSL(2,C). Since dimC(BunSL(2,C)(X)) = 3g− 3 +n, we
find dimC(MH) = 6g − 6 + 2n.

This system has the structure of a complex integrable system, which can be
understood by identifying the fibres of h with complex tori.

Fixing the value of a global quadratic differential a(u) defines the equation
v2 − a(u) = 0. A quadratic differential therefore defines a curve Σ := {(u, v) ∈
T∗X|v2 − a(u) = 0}. We call the curve coming from the Higgs field θ by
a(u) = 1

2 tr(θ(u)2) the spectral curve.

If we consider a pair (u, v) in the spectral curve for which tr(θ(u)2) 6= 0, the
Higgs field can be diagonalized with eigenvalues ±

√
tr(θ2). Since these eigen-

values are distinct, we may introduce the eigenvector bundle at each such point
(u, v). We may extend this construction to the definition of a line bundle over
the complete spectral curve. The moduli space of such line bundles is called the
Prym variety.



56 3 QUANTIZATION OF THE HITCHIN SYSTEM

Conversely, given a line bundle F over Σ, we may consider its direct image
along the two-to-one map π : Σ → C sending (u, v) 7→ u. The direct image
construction defines a rank two holomorphic bundle E with Higgs field θ. This
turns out to be a stable Higgs pair and det(E) ' OC, hence inverting the map
we defined above.

We note that the Jacobian Jac(Σ), the moduli space of line bundles over Σ,
is known to be isomorphic to a complex torus. The fibres of the fibration
h : MH → H0(X,K2

X) can be identified with the Prym variety, defining the
subset of line bundles in Jac(Σ) giving rise to bundles E with det(E) ' OC.
This finally realizes the structure of the Hitchin system as a complex integrable
system.

3.3 Quantization of the Gaudin model

As an illustrative example, we will now realize the SL(2,C)-Gaudin model as
a special case of a Hitchin system. For a discussion on the appearance of the
Gaudin model from the Hitchin Hamiltonians, we refer to [76]. The Gaudin
model has also been considered in [19, 20]. More recently, the Gaudin model
has been discussed in the context of [77].

Classical Gaudin model from the Hitchin system Let us consider the
space X = CP 1\{z1, ..., zn}. The space BunSL(2,C)(X) is characterized com-
pletely by the parabolic structures at the punctures. A parabolic structure is
introduced by defining a flag 0 ⊂ F ⊂ C2 at each puncture together with a set
of weights. Such a flag defines a Borel subgroup B ⊂ SL(2,C) by considering
all transformations keeping F invariant. Without loss of generality, we may as-
sume B is the space of lower-diagonal matrices and describe E ∈ BunSL(2,C)(X)

through a covering of CP 1 consisting of {CP 1\{z1, ..., zn}, D1, ..., Dn} and tran-
sition functions, with theD1, ..., Dn mutually non-intersecting small discs around
each puncture z1, ..., zn.

We may identify the space of flags 0 ⊂ F ⊂ C2 with SL(2,C)/B ' CP 1 and
introduce coordinates (x1, ..., xn) ∈ (CP 1)n for BunSL(2,C)(X). The transition
functions between X and each of the discs Dr then take the form

fr =

(
1 xr

0 1

)



3.3 Quantization of the Gaudin model 57

Remark 3.1. Strictly speaking we only characterize the open dense subset of
BunSL(2,C)(X) in this way coming from the trivial SL(2,C)-bundle over CP 1.
See also section 7 of [77].

The cotangent fibre may now be understood as the subspace in H0(X,End(E)⊗
KX) preserving the flag structure. Therefore, we can parametrize the cotangent
fibre by the matrices

tr =

(
−lr 0

pr lr

)
The numbers lr define the weight at each puncture.

The space of Higgs fields may therefore be parametrized on CP 1\{z1, ..., zn} by

θ(y) =

n∑
r=1

θr
y − zr

where

θr = fr · tr · f−1
r

=

(
xrpr − lr −x2

rpr + 2lrxr

pr −xrpr + lr

)

The constraint that the point at infinity does not produce a pole in the Higgs
field, leads to the equation

n∑
r=1

θr = 0

We may define a moment map µ = Resz=∞(θ) such that the physically relevant
space is defined by µ−1(0). This is equivalent to the following three constraints

n∑
r=1

pr = 0

n∑
r=1

(xrpr − lr) = 0

n∑
r=1

(x2
rpr − 2lrxr) = 0

The space µ−1(0) has a residual sl(2,C)-action on the coordinates (x1, ..., xn)

generated by the constraints, which exponentiates to the Möbius transforma-
tions. We have to quotient by this action to get the physical phase space
µ−1(0) � PSL(2,C).

Effectively, we may set x1 = 0, xn−1 = 1 and xn = ∞ to pick a representative
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of the PSL(2,C)-orbits. Then the above equations allow us to express the coordi-
nates p1, pn−1 and pn in terms of the other coordinates (x2, ..., xn−2, p2, ..., pn−2),
reducing the system to a 2(n− 3)-complex dimensional system.

The Hamiltonians Hr of this system are defined as the residues at the punctures
of the quadratic differential

1

2
tr(θ(y)2) =

n∑
r=1

(
δr

(y − zr)2
+

Hr

y − zr

)

As a function of the coordinates (x,p) ∈ (T∗CP 1)n−3, we find δr = l2r and

Hr = −
∑
s 6=r

1

zr − zs
(
(xr − xs)2prps + 2(xr − xs)(prls − pslr)− 2lrls

)

Note that the lack of pole at infinity implies the constraints

n∑
r=1

Hr = 0

n∑
r=1

(zrHr + δr) = 0

n∑
r=1

(z2
rHr + 2zrδr) = 0

Quantizing the Gaudin model The coordinates xr and ps are canonical
coordinates for T∗BunSL(2,C)(X) satisfying {xr, ps} = δrs with respect to the
standard Poisson bracket on T∗BunSL(2,C)(X). To quantize the Gaudin model,
we may apply canonical quantization by setting p̂r = −ε1 ∂

∂xr
such that as oper-

ators [x̂r, p̂s] = ε1δrs. Although the parameter ε1 derives its meaning from the
gauge theoretical context of the Hitchin model, for the purpose of quantizating
the Gaudin model, we may simply interpret ε1 as a quantization parameter.
After quantization we find operators

Ĵ−r = −ε1
∂

∂xr
(3.1)

Ĵ0
r = −ε1xr

∂

∂xr
+ jr (3.2)

Ĵ+
r = ε1x

2
r

∂

∂xr
− 2jrxr (3.3)
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representing the quantum analogues of θ−r , θ0
r and θ+

r respectively. Now the
Casimir

Ĵ0
r Ĵ

0
r +

1

2
(Ĵ+
r Ĵ
−
r + Ĵ−r Ĵ

+
r ) = jr(jr + ε1)

The shift by ε1jr is a result of the quantization.

Before applying the constraints, the Hamiltonians can simply be canonically
quantized by taking

Ĥr = −
∑
s 6=r

1

zr − zs

(
ε21(xr − xs)2 ∂2

∂xr∂xs
+ 2ε1(xr − xs)

(
js

∂

∂xr
− jr

∂

∂xs

)
− 2jrjs

)
(3.4)

In the classical case, the constraints mix the coordinates x and p. We will
therefore need to carefully take these constraints into consideration. When
n = 4, the quantization of the Gaudin model corresponds to solving a single
ordinary differential equation.

Remark 3.2. The equation (3.4) is equal to equation (2.3). This indeed shows
that the quantum Gaudin Hamiltonians are equal to the operators Ĥr in the
KZB-equation.

Gaudin model corresponding to the four-punctured sphere To quan-
tize the Gaudin model, we will need to look for holomorphic solutions ψE(x)

satisfying
ĤrψE(x) = ErψE(x)

with Ĥr defined by equation (3.4). For simplicity we may set ε1 = 1.

The constraints on the coordinates p translate to three constraints on the func-
tion ψE(x) of the form

n∑
r=1

Ĵ−r ψE(x) = 0

n∑
r=1

Ĵ0
rψE(x) = 0

n∑
r=1

Ĵ+
r ψE(x) = 0

In the case where X = CP 1\{0, z, 1,∞} and jr = − 1
2 for all r = 1, ..., 4, we

may set x4 =∞ and completely remove ∂
∂x4

from the above Hamiltonian. This
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leaves us with two differential equations of the form(
∂

∂x1
+

∂

∂x2
+

∂

∂x3

)
ψE(x) = 0(

x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ 1

)
ψE(x) = 0

Using these properties, we may remove ∂
∂x1

and ∂
∂x3

from the equation as well.
Assuming x = (0, x, 1,∞) such that ψE(x) := ψE(x) only depends on the
crossratio x, it can be shown that the Hamiltonian Ĥ2 acts on ψE(x) by

Ĥ2ψE(x) =
x(x− z)(x− 1)

z(z − 1)
ψ′′E(x)+

3x2 − 2xz − 2x+ z

z(z − 1)
ψ′E(x)+

x− 1
2

z(z − 1)
ψE(x)

By reparametrizing E2 in terms of a parameter λ, the differential equation
Ĥ2ψE(x) = E2ψE(x) becomes a differential equation of Sturm-Liouville type
which we may write as

d

dx
(x(x− z)(x− 1)ψ′λ(x)) + (x+ λ)ψλ(x) = 0 (3.5)

where the dependence on the parameter λ is made explicit in the form ψλ(x) :=

ψE(x).

At this stage, we should note that the choice jr = − 1
2 will become important

for us due to the relation between equation (3.5) and the geometry of the four-
punctured sphere (and more precisely the uniformization theorem). In section §4
we will discuss these statements in greater detail.

Remark 3.3. For the four-punctured sphere X = CP 1\{0, z, 1,∞}, the differ-
ential equation (3.5) has regular solutions on the subspace CP 1\{0, z, 1,∞} ⊂
BunSL(2,C)(X). The fact that this subspace is isomorphic to X is unique to the
four-punctured sphere!

Setting up a quantization problem Solving a quantum problem requires
us to find elements in a Hilbert space which act as eigenfunctions of the op-
erators defined in equation (3.4). Usually a quantization of the Gaudin model
requires us to search for eigenfunctions to the Gaudin Hamiltonians which have
holomorphic dependence on the auxiliary variable on the punctured sphere. This
is not the type of quantization we will be looking at. Instead, we will look at
both holomorphic and anti-holomorphic eigenvalue equations.

To describe an interesting subset of functions, we will consider the Hilbert space
to be a direct product

⊗n
r=1 Pjr,j̄r with Pjr,j̄r the principal series representation
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associated to sl(2,C)C ' sl(2,C)⊕sl(2,C). We may realize these representations
as principal series representations of sl(2,C) on which the operators Ĵ−r , Ĵ0

r and
Ĵ+
r act as holomorphic differential operators as in equation (3.1), equation (3.2)

and equation (3.3) respectively, while ˆ̄J−r , ˆ̄J0
r and ˆ̄J+

r are realized as the anti-
holomorphic variants of these operators with jr replaced by j̄r.

From a quantum mechanical point of view, it is natural to require the existence
of a single-valued solution ΨE(x, x̄) of

ĤrΨE(x, x̄) = ErΨE(x, x̄) ˆ̄HrΨE(x, x̄) = ĒrΨE(x, x̄) (3.6)

with H̄r the complex conjugate of Hr. This sets up a quantum problem that
cannot be solved for generic values of Er and Ēr. Square integrability of the
wave function implies that Ēr is the complex conjugate of Er [77].

We will show that this quantization problem picks out a discrete set of allowed
eigenvalues which we will consider to solve our quantum problem.

From the point of view of single-valuedness, it is clear why we have to give up
holomorphicity of the eigenfunctions. A single-valued holomorphic function on
the punctured sphere is necessarily a quotient of polynomials in the parameters
x. Such solutions have been constructed through the Bethe ansatz in [76].

If we consider any quantum mechanical problem, single-valuedness is one of the
conditions that a wavefunction has to satisfy from a physical point of view. Usu-
ally, single-valuedness is only one of the properties we require the wavefunction
to have, another being square-integrability with respect to a natural scalar prod-
uct. In principle, it could happen that only a subset of the set of all single-valued
wavefunctions is square-integrable. In [77] a scalar product is constructed and it
is shown for the four-punctured sphere that the single-valued wavefunctions are
precisely the square-integrable wavefunctions. This shows that the condition of
single-valuedness is strong enough to characterize the allowed wavefunctions.

3.4 Separation of variables for the Gaudin model

Although we obtain an ordinary second order differential equation for the eigen-
function ψE(x) when n = 4, in general the differential equations will mix differ-
ent coordinates xr. We will describe the separation of variables for the Gaudin
model leading to a set of n− 3 ordinary differential equations in terms of a new
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set of variables u = (u1, ..., un−3). It turns out that such a transformation can
be found both on a classical level as well as a quantum level.

Bethe ansatz for the Gaudin model Before we apply the separation of
variables, we note that the Bethe ansatz does provide a way to quantize the
SU(2)-Gaudin model as we noted before. The Bethe ansatz allows us to find
solutions of our problem in finite-dimensional, highest-weight representations⊗n−1

r=1 Vjr . In this case, the spins must satisfy jr ∈ 1
2Z≥0. In particular, a

finite-dimensional space implies the space of solutions we are looking for are
polynomials in the variables xr. Such solutions can never develop non-trivial
monodromy in PSL(2,C).

The problem we set out to solve contains the uniformization problem as a so-
lution and always excludes trivial monodromy. The solutions obtained for the
SU(2)-Gaudin model through the Bethe ansatz therefore cannot be used in our
case.

Classical separation of variables for the Gaudin model For the sepa-
ration of variables, we will study the zeroes of the function θ−(t) =

∑n−1
r=1

pr
t−zr .

This function is defined as the lower-left element in the matrix-form of the Higgs
field

θ(t) =

(
θ0(t) θ+(t)

θ−(t) −θ0(t)

)
In the context of the separation of variables we will use the notation t instead
of y for the parameter living on the punctured sphere.

Let us define new variables u0 and u = (u1, ..., un−3) by setting

n−1∑
r=1

pr
t− zr

= u0

∏n−3
k=1(t− uk)∏n−1
r=1 (t− zr)

where we have sent zn → ∞ by using the invariance under complex Möbius
transformations of this system. The coordinates u form one half of the new set
of coordinates.

We can explicitly represent

pr(u) = Rest=zr

(
u0

∏n−3
k=1(t− uk)∏n−1
r=1 (t− zr)

)

= u0

∏n−3
k=1(zr − uk)∏
s 6=r(zr − zs)
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The other half of our new coordinates is given by v = (v1, ..., vn−3) defined by

vk = −θ0(uk)

If we let

ϑ(t) =
1

2
tr(θ(t)2)

= (θ0(t))2 +
1

2
(θ+(t)θ−(t) + θ−(t)θ+(t))

we find v2
k = ϑ(uk). Therefore, the pair of coordinates (uk, vk) defines a point

on the spectral curve

Σ = {(u, v) ∈ T∗X|v2 = ϑ(u)}

and the change of coordinates (x,p)→ (u,v) defines a map T∗BunSL(2,C)(X)→
(T∗X)[n−3]. This map is symplectic as the following result shows. See for
example [40] for a discussion.

Proposition 3.4. The coordinates (u,v) are Darboux coordinates for the canon-
ical symplectic structure

∑n−1
r=1 dxr ∧ dpr on T∗BunSL(2,C)(X).

Proof. Consider the function

G(x,u) = κ log

(
n−1∑
r=1

xr

∏n−3
k=1(zr − uk)∏
s6=r(zr − zs)

)
+

n−1∑
r=1

lr log

( ∏
s6=r(zr − zs)∏n−3
k=1(zr − uk)

)

where κ = −ln +
∑n−1
r=1 lr.

One easily checks that

G(x,u) = κ log

[(
n−1∑
r=1

xrpr(u)

)]
−
n−1∑
r=1

lr log(pr(u)) + ln log(u0)

This implies
∂

∂xr
G(x,u) = κ

pr∑n−1
r′=1 xr′pr′

By using the constraint
∑n−1
r′=1(xr′pr′−lr′) = −ln, we may replace

∑n−1
r′=1 xr′pr′ =

κ to find
∂

∂xr
G(x,u) = pr
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On the other hand

∂

∂uk
G(x,u) = κ log

[(
n−1∑
r=1

xrpr(u)

)]
−
n−1∑
r=1

lr log(pr(u)) + ln log(u0)

=

n−1∑
r=1

xrpr − lr
uk − zr

= θ0(uk)

= −vk

The function G(x,u) therefore describes a generating function for the change of
coordinates (x,p) to (u,v).

The existence of such a generating function implies that

dG(x,u) =

n−1∑
r=1

prdxr −
n−3∑
k=1

vkduk

Therefore,
n−1∑
r=1

dxr ∧ dpr =

n−3∑
k=1

duk ∧ dvk

implying the canonical symplectic structure generated by x and p on T∗BunSL(2,C)(X)

coincides with the canonical symplectic structure generated on Symn−3(T∗X).

Quantum separation of variables for the Gaudin model Once we quan-
tize the Gaudin model, the functions θa(t) are replaced by operators

Ĵa(t) =

n−1∑
r=1

Ĵar
t− zr

where a ∈ {−, 0,+} and Ĵar are defined by equation (3.1), equation (3.2) and
equation (3.3). Our goal is to find single-valued functions ΨE(x, x̄) simultane-
ously solving the holomorphic and anti-holomorphic equalities in equation (3.6).

It turns out that we can still apply the separation of variables to the quantum
Gaudin model. See [71, 76, 20]. To do so, we first we apply a (variant of the)
Fourier transformation of the form

Ψ̃E(m, m̄) =

n−1∏
r=1

(
|µr|2jr+2

π

ˆ
d2xre

µrxr−µ̄rx̄r
)

ΨE(x, x̄)
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where m = (µ1, ..., µn−1). We have to pick the minus-sign in front of the
conjugate variables to ensure that the conjugate operators ˆ̄Jar are mapped to
the complex conjugate operators of Ĵar .

The operators Ĵar transform to operators D̂a
r of the form

D̂−r = µr

D̂0
r = µr

∂

∂µr

D̂+
r = −µr

(
∂

∂µr

)2

+
jr(jr + 1)

µr

In this basis, the Hamiltonians take the form

Ĥr = −
∑
s6=r

1

zr − zs

(
µrµs

(
∂

∂µr
− ∂

∂µr

)2

− µs
jr(jr + 1)

µr
− µr

js(js + 1)

µs

)

If we set D̂a(t) =
∑ D̂ar

t−zr , the operator

S(t) :=
(
D̂0(t)

)2

+ ∂tD̂
0(t) + D̂−(t)D̂+(t)

may be expressed as

S(t) =

n−1∑
r=1

(
jr(jr + 1)

(t− zr)2
+

Ĥr

t− zr

)

We may apply the separation of variables in the same way as we did before by
considering the zeroes of D̂−(t). Let us therefore write

n−1∑
r=1

µr
t− zr

= u0

∏n−3
k=1(t− uk)∏n−1
r=1 (t− zr)

Once again, we may express

µr(u) = u0

∏n−3
k=1(zr − uk)∏
s6=r(zr − zs)

such that

∂

∂uk
=

n−1∑
r=1

∂µr
∂uk

∂

∂µr

= D̂0(uk)
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As operators we find(
∂

∂uk

)2

=
∂

∂uk
·
(
D̂0(t)|t=uk

)
=

(
∂tD̂

0(t)
)
|t=uk +

(
∂

∂uk
D̂0(t)

)
|t=uk

The change of variables m → u transforms Ψ̃E(m, m̄) → ΦE(u, ū). It is easy
to check that

S(t)|t=ukΦE(u, ū) =

[(
∂tD̂

0(t)
)
|t=uk +

(
∂

∂uk
D̂0(t)

)
|t=uk

]
ΦE(u, ū)

=
∂2

∂u2
k

ΦE(u, ū)

On the other hand, by definition

S(t)|t=ukΦE(u, ū) =

n−1∑
r=1

(
jr(jr + 1)

(uk − zr)2
+

Er
uk − zr

)
ΦE(u, ū)

The change of variables m→ u therefore leads to a set of equations of the form(
∂2

∂u2
k

−
n−1∑
r=1

(
jr(jr + 1)

(uk − zr)2
+

Er
uk − zr

))
ΦE(u, ū) = 0 (3.7)(

∂2

∂ū2
k

−
n−1∑
r=1

(
j̄r(j̄r + 1)

(ūk − z̄r)2
+

Ēr
ūk − z̄r

))
ΦE(u, ū) = 0 (3.8)

for k = 1, ..., n − 3. Each of these equations defines an ordinary differential
operator in one variable.

We can pass back to the original functions ΨE(x, x̄) using the integration kernel

K(x,u) =

(
n−1∑
r=1

xr

∏n−3
k=1(zr − uk)∏
s6=r(zr − zs)

)J n−1∏
r=1

( ∏
s6=r(zr − zs)∏n−3
k=1(zr − uk)

)jr+1 n−3∏
k<l

(uk − ul)

such that
ΨE(x, x̄) = NJ

ˆ
d2u1...d

2un−3|K(x,u)|2ΦE(u, ū)

for some constant NJ only depending on the complex structure and the param-
eters jr and j̄r. The parameter J is the quantum analogue of κ, defined as
J = −jn +

∑n−1
r=1 jr.
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3.5 Quantization of the Hitchin system for higher genus

The quantization of the Hitchin system is closely related to the geometric Lang-
lands conjecture and conformal field theories, specifically those with an affine
Kac-Moody symmetry. The Ward identities in conformal field theories allow us
to express conformal blocks as vector bundles over moduli spaces. The stress-
energy tensor in the field theory defines a connection on the bundle of conformal
blocks over the moduli space of curves.

Upon a renormalization, we may define a limit known as the critical level limit
for theories with affine Kac-Moody symmetry. This realizes the renormalized
stress-energy tensor on X as a function that transforms as

t(u)→ (w′(u))2t(w(u)) +
1

2
{w(u), u} (3.9)

under coordinate transformations. The function {w(u), u} = w′′′(u)
w′(u) −

3
2

(
w′′(u)
w′(u)

)2

is called the Schwarzian derivative of w(u).

It turns out that in this limit, the stress-energy tensor generates the center of
the chiral algebra for sl(2,C)-affine Kac moody symmetry. For higher rank, the
center generalizes to the classical W-algebra.

In more generality, let us consider G to be a simple Lie group. The conformal
blocks of g-affine Kac Moody algebras are defined as sheaves over both the mod-
uli space of complex structures and the moduli space BunG(X) of holomorphic
bundles. The Ward identities for the affine algebra relate the variations of the
holomorphic bundle to the current algebra action on the spaces of conformal
blocks. This leads to a relation between the differential operators on the line
bundle K1/2

BunG(X) and the affine algebra action on conformal blocks. The bundle

K
1/2
BunG(X) is defined by a choice of square root of the bundle KBunG(X). It is

shown in [27] that elements in the center map to global differential operators
represented diagonally on conformal blocks. In particular, the symbol of these
operators corresponds to the classical Hitchin Hamiltonians.

In this way, we have constructed a quantization of the Hitchin Hamiltonians,
realized as differential operators acting on the line bundle K1/2

BunG(X). Restrict-
ing to the case G = SL(2,C) again, we see that the space of such differential
operators is parameterized by the choice of a global function t(u) transforming
as in equation (3.9).

We may apply separation of variables in a similar way as for the Gaudin model.
It is known that generically a stable holomorphic bundle E up to the tensor
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product by a line bundle, fits in a short exact sequence of the form

0→ OC → E → L → 0

with deg(L) > 2g − 2. The space of extension of the above form may be classi-
fied by H1(X,L−1). Since scaling an extension class by a constant preserves the
vector bundle E , it suffices to consider the space PH1(X,L−1) for a classification
of vector bundles. Assuming deg(L) = 2g − 1, we find dim

(
PH1(X,L−1)

)
=

3g − 3. We may therefore introduce a total of 3g − 3 coordinates xand rep-
resent the quantum Hitchin Hamiltonians in terms of these variables. We
will find solutions ΨE(x, x̄) as before, which are now sections of the bundle(
K

1/2
BunSL(2,C)(X) ⊗K

1/2
BunSL(2,C)(X)

)⊗(3g−3)

.

The function θ−(t) defines an element of H0(X,L ⊗KX) which has a total of
deg(L) + deg(KX) = 4g − 3 zeroes. If we require det(E) ' OC, we find g

constraints on the positions of these zeroes, leaving us with a total of 3g − 3

free parameters. We may use these parameters to introduce coordinates u =

(u1, ..., u3g−3) in Sym3g−3(X) and describe the generalization of the separation
of variables to equation (3.7) and equation (3.8) by a Whittaker model as in
[20], representing the eigenfunctions as

(
∂2
uk

+ t(uk)
)

ΦE(u, ū) = 0
(
∂2
ūk

+ t̄(ūk)
)

ΦE(u, ū) = 0 (3.10)

The functions ΦE(u, ū) are sections of the bundle (K
−1/2
X ⊗K−1/2

X )⊗(3g−3). If we
allow punctures, we require a simple pole in the Higgs field, leading to sections
of (K

−1/2
X ⊗K−1/2

X )⊗(3g−3+n).

3.6 Opers with real monodromy and single-valued solu-
tions

After the application of the separation of variables, we may note that the
single-valuedness of the function ΨE(x, x̄) can be expressed through the single-
valuedness of ΦE(u, ū). Since equation (3.10) separates the dependence on the
variables, we may look for a solution of the form

ΦE(u, ū) =

3g−3+n∏
k=1

φ(uk, ūk)
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The single-valuedness of ΦE(u, ū) reduces to the single-valuedness of the solu-
tion φ(u, ū) to the differential equation (∂2

u+ t(u))φ(u, ū) = 0 and its conjugate.
In this context, these differential equations play the role of the Baxter equation.

We may express φ(u, ū) in a basis of solutions χ(u) = (χ1(u), χ2(u)) and χ†(ū)

to the holomorphic differential equation

χ′′(u) + t(u)χ(u) = 0 (3.11)

and its conjugate respectively.

We assume in doing so that Ēr is the complex conjugate of Er. This is justified
by the results of [77].

The classification of single-valued solutions ΦE(u, ū) may be obtained from a
classification of second order differential equations of the form of equation (3.11)
through the following theorem proposed in [20].

Theorem 3.5. A single-valued function φ(u, ū) solving

(
∂2
u + t(u)

)
φ(u, ū) = 0

(
∂2
ū + t̄(ū)

)
φ(u, ū) = 0

exists if and only if there exists a vector of solutions χ(u) to equation (3.11)
transforming as χ(γ · u) = χ(u) · ρ(γ) for ρ ∈ Hom(π1(X),SL(2,R)).

If we analytically continue the solution χ(u) along a path γ ∈ π1(X), we find
χ(γ · u) = χ(u) · ρ(γ) where ρ ∈ Hom(π1(X),GL(2,C)). Similarly, χ†(γ · ū) =

ρ(γ)† · χ†(ū). Let us assume ρ ∈ Hom(π1(X),SL(2,R)). Then we construct a
function φ(u, ū) = χ1(u)χ̄2(ū) − χ̄1(ū)χ2(u) which solves the differential equa-
tions in the statement of the theorem. Furthermore, we have find ρ(γ) = ρ(γ)

and det(ρ(γ)) = 1. This implies φ(u, ū) is invariant under the action of the
Deck transformations, i.e. φ(γ · u, γ · ū) = φ(u, ū) for γ ∈ π1(X), proving one
direction of this theorem.

For the converse, let us introduce the two-by-two matrix C composed of complex
constants such that

φ(u, ū) = χ(u) · C · χ†(ū)

This is the most general form of a solution to the pair of holomorphic and
anti-holomorphic equations.
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Single-valuedness of φ(u, ū) implies the following property

ρ(γ) · C · ρ(γ)† = C ∀γ ∈ π1(X) (3.12)

As we will show, by changing the basis of solutions χ(u) appropriately, we may
simplify C significantly.

Lemma 3.6. By a change of basis in the space of solutions χ(u), we can always
bring C to diagonal form.

Proof. Consider a change of basis χ̃(u) ·N = χ(u) for a two-by-two matrix N .
The new matrix C̃ is defined by the equation χ̃(u) · C̃ · χ̃†(ū) = χ(u) ·C · χ†(ū)

which sets C̃ = NCN†.

Let us consider this transformation component-wise

C̃12 = N11(C11N21 + C12N22) +N12(C21N21 + C22N22)

C̃21 = N11(C11N21 + C21N22) +N12(C12N21 + C22N22)

We can set both to zero if we can find N11 and N12 such that

N11(C11N21 + C12N22) = −N12(C21N21 + C22N22)

N11(C11N21 + C21N22) = −N12(C12N21 + C22N22)

Compatibility of these two equations implies

(N21)2(C21C11 − C12C11) + (N22)2(C22C21 − C22C12) +

+N21N22(|C21|2 − |C12|2 + C11C22 − C22C11) = 0

For a given matrix C we may always find N21 and N22 satisfying this equation
and not simultaneously vanishing.

We may always scale the matrix C by a constant. This is equivalent to scaling
the solution φ(u, ū) by a constant and clearly does not change the monodromy
representation of φ(u, ū). After rescaling, the solution φ(u, ū) is still single-
valued. Without loss of generality, we may therefore set

C =

(
1 0

0 C22

)
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Definition 3.7. The monodromy ρ of equation (3.11) is called exceptional if ρ
has a set of generators consisting of diagonal elements or elements with vanishing
diagonal.

Lemma 3.8. If the monodromy ρ of equation (3.11) is not exceptional, single-
valuedness of φ(u, ū) implies C22 ∈ R.

Proof. Let us assume ρ is not exceptional and let us assume Im(C22) 6= 0. We

consider any element

(
a b

c d

)
in the image of ρ. Single-valuedness implies

(
|a|2 + |b|2C22 ac̄+ bd̄C22

āc+ b̄dC22 |c|2 + |d|2C22

)
=

(
1 0

0 C22

)

This can only be satisfied if

Im(C22)d̄c = Im(C22)ab̄ = 0

Since ad − bc = 1, a = c = 0 or b = d = 0 are both excluded. The options
b = c = 0 and a = d = 0 lead to a diagonal and completely off-diagonal matrix
respectively. Since this has to be true for all elements in the image of ρ, the
monodromy is exceptional, which is a contradiction.

We conclude that Im(C22) = 0. Finally, we may apply a transformation of the
form C̃ = NCN† again, where now N11 = 1. If we assume C is diagonal with
C11 = 1, this equation is trivial for all components except C̃22 = |N22|2C22.
If C22 6= 0, we may pick N22 = (C22)−1/2 and bring C̃22 to +1 or −1. This
proves that without loss of generality, C is one of three cases where C11 = 1,
C12 = C21 = 0 and C22 ∈ {−1, 0, 1}. We will now always assume C takes this
form.

Lemma 3.9. The following statements are true:

• If C22 = 1, the representation ρ is unitary, i.e. has image in SU(2) ⊂
GL(2,C)

• If C22 = 0, the representation ρ is reducible in GL(2,C)

• If C22 = −1, the representation ρ has image in SU(1, 1) ⊂ GL(2,C)

Proof. Assume C22 = 1. Then equation (3.12) reduces to

ρ(γ) · ρ(γ)† = 1 ∀γ ∈ π1(X)
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This implies the image of ρ lies in SU(2).

Let us now assume C22 = 0. The equation (3.12) reduces to

| (ρ(γ))11 |
2 = 1

| (ρ(γ))21 |
2 = 0

for all γ ∈ π1(X). This implies that the solution χ1(u) transforms under a
representation of U(1), i.e. does not mix with χ2(u). In other words, the
representation ρ is reducible.

Let us finally assume C22 = −1. The equation (3.12) reduces to

ρ(γ) ·

(
1 0

0 −1

)
· ρ(γ)† =

(
1 0

0 −1

)
∀γ ∈ π1(X)

This implies the image of ρ lies in SU(1, 1).

To finish the proof of the theorem, we will need to prove that we can never find
the cases C22 = 1 and C22 = 0 for equation (3.11). To put the proofs of these
statements into context, we will first make a detour.

Oper differential equations A differential equation of the form of equa-
tion (3.11) is called an oper. The two solutions χ1(u) and χ2(u) define global
sections ofK−1/2

X , which under a coordinate transformation u→ w(u) transform
as

χ(u)→ (w′(u))−1/2χ(w(u))

This is equivalent to a transformation of the function t(u) of the form of equa-
tion (3.9). We will also refer to a function t(u) transforming in this way as an
oper. It will be clear from the context which object we refer to. On Riemann
surfaces with punctures, we require that the oper has regular singularities at
the punctures. This means we can expand

t(u) =
δ∗

(u− u∗)2
+

c∗
u− u∗

+O((u− u∗)0)

near a puncture at u = u∗. The value of the parameters δ∗ at each puncture, is
an extra piece of data that comes with the definition of the oper.

To describe the space all opers, we note that for a given reference oper t0(u),
the difference t(u) − t0(u) = a(u) must transform as a quadratic differential
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a ∈ H0(X,K2
X) which has prescribed value at the poles. In other words, if we

denote by P(X) the space of opers over X, this space is an affine vector space
modeled over H0(X,K2

X). The dimensions of these spaces must be equal and can
be calculated by the Riemann-Roch formula to be dimC(P(X)) = 3g − 3 + n.
Hence, if we pick a basis of H0(X,K2

X), we may expand a(u) in 3g − 3 + n

complex numbers, which are also called accessory parameters.

Comparing to equation (3.7) and equation (3.8), we see that the role of the ac-
cessory parameters is played by the eigenvalues E in the context of the quantized
Hitchin Hamiltonians.

Lemma 3.10. The monodromy representation ρ ∈ Hom(π1(X),GL(2,C)) of
any vector of solutions χ(u) must be reducible to SL(2,C). Furthermore, two
linearly independent solutions χ1(u) and χ2(u) can never vanish simultaneously.

Proof. Let us define the Wronskian

W (u) := χ′1(u)χ2(u)− χ1(u)χ′2(u)

We may show that this function satisfies the differential equation

W ′(u) = χ′′1(u)χ2(u)− χ1(u)χ′′2(u)

= 0

Therefore the Wronskian W (u) = W0 is a constant on all of X. If χ1(u) and
χ2(u) both vanish at u = u0, we find W (u0) = 0 implying the Wronskian
vanishes everywhere. This implies χ2(u) ∼ χ1(u) so that these solutions are not
linearly independent, leading to a contradiction. This proves the final statement.

For the first statement, we note that χ(γ · u) = χ(u) · ρ(γ). In matrix form, we
may write the Wronskian as

W (u) = det

(
χ′1(u) χ′2(u)

χ1(u) χ2(u)

)

The matrix

(
χ′1(u) χ′2(u)

χ1(u) χ2(u)

)
transforms as

(
χ′1(γ · u) χ′2(γ · u)

χ1(γ · u) χ2(γ · u)

)
=

(
χ′1(u) χ′2(u)

χ1(u) χ2(u)

)
· ρ(γ)

proving that W (γ · u) = det(ρ(γ))W (u). Since W (u) = W0 is a constant, we
find det(ρ(γ)) = 1, proving the lemma.
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Since the two linearly independent solutions χ1(u) and χ2(u) do not vanish
simultaneously, we may construct a map A : X̃ → CP 1 by A(u) = [χ1(u) :

χ2(u)]. We call the map A the developing map.

It is easily seen that the Deck transformations act on the developing map A by

A(γ · u) =
ρ(γ)11A(u) + ρ(γ)12

ρ(γ)21A(u) + ρ(γ)22

The action of the monodromy ρ on A(u) factors through to an element in
Hom(π1(X),PSL(2,C)).

By changing the basis of solutions by an element M ∈ SL(2,C), the matrix M
defines an action of the form

M ·A(u) =
M11A(u) +M12

M21A(u) +M22

M · ρ(γ) = Mρ(γ)M−1

This action factors through to an action of PSL(2,C) on the pair (A, ρ). We
denote by [A, ρ] the equivalence class (A, ρ) ∼ (M ·A,M · ρ). It turns out that
we can invert this construction. See for example [78] for a proof of the following
proposition.

Proposition 3.11. An oper t(z) over X is equivalent to the pair [A, ρ] of an im-
mersive map A : X̃ → CP 1 and a monodromy representation ρ ∈ Hom(π1(S),PSL(2,C))

satisfying the property

A(γ · u) =
ρ(γ)11A(u) + ρ(γ)12

ρ(γ)21A(u) + ρ(γ)22

Proof. We have shown how to construct a developing map from an oper. It
remains to prove that the map A is immersive. The function A(u) is represented
as

A(u) =
χ1(u)

χ2(u)

in a chart defined by χ2(u) 6= 0. Therefore,

A′(u) =
W0

χ2(u)2

For χ1(u) 6= 0, we pick the representation

A(u) =
χ2(u)

χ1(u)
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which shows that for both charts, the function A′(u) remains finite and non-zero.
Therefore, A defines an immersive map.

We now describe the inverse construction. Given a pair [A, ρ] for which A is
immersive, we may define a function t(u) := 1

2{A(u), u}. Since the Schwarzian is
invariant under Möbius transformations, the Deck transformation t(γ ·u) = t(u)

does not affect the function t(u). It therefore factors through to a function t(u)

on X. Furthermore, under a coordinate transformation u → w(u), we find
A(u)→ A(w(u)). The Schwarzian has the following chain rule property

{A(w(u)), u} = (w′(u))2{A(w), w}+ {w(u), u}

This implies the function t(u) transforms according to equation (3.9) and defines
an oper.

Finally, we have to check that these constructions are inverses. Let us start from
two solutions χ1(u) and χ2(u) to equation (3.11). The Schwarzian derivative
satisfies {

χ1(u)

χ2(u)
, u

}
= −2

χ′′2(u)

χ2(u)

= 2t(u)

This shows we recover t(u).

For the other direction, assume we start from a pair [A, ρ]. We construct a new
pair [Ã, ρ̃] from the differential equation equation (3.11) with t(u) = 1

2{A(u), u}.
By construction,

{A(u), u} = {Ã(u), u}

This implies A(u) and Ã(u) differ by a Möbius transformation Ã(u) = M ·A(u).
By the intertwining property

A(γ · u) =
ρ(γ)11A(u) + ρ(γ)12

ρ(γ)21A(u) + ρ(γ)22

the representations ρ and ρ̃ must be related by ρ̃(γ) = M · ρ(γ).

This proves the two constructions are inverse to each other.

Remark 3.12. The pair [A, ρ] is sometimes also called a development-holonomy
pair. The monodromy of such a pair is valued in PSL(2,C) while the monodromy
of an oper is valued in SL(2,C).
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Although a well-known result, we refer to lemma 4.1.7 in [79] for a proof of the
following lemma

Lemma 3.13. If ρ is the monodromy representation of an oper, it cannot have
image in SU(2).

Proof. Assume the monodromy representation is unitary. We may construct a
developing map A : X̃ → CP 1 where A(u) = [χ1(u) : χ2(u)]. The map A allows
us to pull back the metric (1 + |z|2)−2dzdz̄ on CP 1 with constant curvature
+1 to X̃. Since the isometries of this metric are precisely given by Möbius
transformations in PU(2) and the Deck transformations are realized by PU(2)

transformations acting on A, we can define a metric of constant curvature +1

on X. However, by assumption X has negative Euler characteristic, which is
in contradiction with the Gauss-Bonnet theorem. Therefore the monodromy
representation cannot be unitary.

Lemma 3.14. If ρ is the monodromy representation of an oper, it cannot be
reducible.

Proof. Assume the monodromy representation is reducible. Without loss of
generality, we may assume χ1(u) is the solution on which the representation
acts by U(1). To have monodromy in U(1), the function χ1(u) must have an
expression of the form χ1(u) = χ1(u0) exp(−

´ u
u0
s(u′)du′) for holomorphic s(u),

showing that χ1(u) does not vanish anywhere. We may then construct a map
A : X̃ → C by setting A(u) = χ2(u)/χ1(u). With this map, we can pull back the
metric dzdz̄ on C with vanishing curvature to X̃. The isometries of this metric
are precisely the reducible Möbius transformations generated by scaling and
translations. Since the Deck transformations act by reducible transformations,
the metric dzdz̄ defines a metric of vanishing curvature on X. By assumption X
has negative Euler characteristic, which again leads to a contradiction with the
Gauss-Bonnet theorem, showing that the monodromy cannot be reducible.

The only possibility we are left with, is that the monodromy representation of
an oper has image in SU(1, 1). Since this group is isomorphic to SL(2,R), we
conclude the proof of theorem 3.5.

Remark 3.15. Although the monodromy of an oper t(u) might not lie in SL(2,R),
the monodromy of the development-holonomy pair [A, ρ] can still be real! This
happens when the monodromy of t(u) projects to an action of PGL(2,R) on
A(u) not reducible to PSL(2,R). Classifying the pairs [A, ρ] with real mon-
odromy ρ ∈ Hom(π1(X),PGL(2,R)) is therefore not enough: We need to know
which ρ are reducible to PSL(2,R).
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Part II

Quantization on the four-punctured
sphere

If we assume our Riemann surface X is topologically a four-punctured sphere,
the single-valued solution ΨE(x, x̄) to equation (3.6), is constructed from a
combination of solutions to equation (3.5) and its complex conjugate. These
functions only depend on a single variable x and the complex conjugate x̄. If
we furthermore assume that the crossratio z lies in the interval (0, 1) and the
accessory parameter λ is real, the differential equation reduces to a real ordinary
differential equation on the four real arcs connecting the punctures.

In this case, we can analyze the quantization of the Hitchin system directly.
Indeed, the reality condition becomes a condition on the existence of a solution
with certain regularity properties (see theorem 4.5). We will find the mon-
odromy matrices explicitly and draw the image of the four real arcs under the
developing map.

Recently the problem of finding accessory parameters, for which the oper on
X has real monodromy, was discussed by Takhtajan in [80]. However, the
problem itself already goes back to [81, 82, 83]. A complete solution was found
by Smirnov using the theory of real ordinary differential equations of Sturm-
Liouville type. This solution was originally published in 1918 (and much later
collected in [50]) and afterwards in [84, 85].

By assuming the reality of the accessory parameter, we have restricted to a
special series of parameters for which we find opers with real monodromy. An
example of holomorphicity conditions not corresponding to real accessory pa-
rameters was constructed in [77]. In section §6 we show that we can act by
the mapping class group to generate other series of accessory parameters lead-
ing to real monodromy. We show that all opers with real monodromy can be
constructed in this way, but defer the proof to section §9.
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4 Real monodromy and functional behaviour

4.1 Holomorphic solutions from real monodromy

The starting point of our analysis is equation (3.5). Two linearly independent
solutions ψ(1)

λ and ψ(2)
λ can be combined into the function

ΨE(x, x̄) = ψ
(1)
λ (x)ψ̄

(2)
λ (x̄)− ψ̄(1)

λ (x̄)ψ
(2)
λ (x)

on the space CP 1\{0, z, 1,∞} satisfying

Ĥ2ΨE(x, x̄) = E2ΨE(x, x̄) ˆ̄H2ΨE(x, x̄) = Ē2ΨE(x, x̄)

Restricting to real punctures and accessory parameters Let us set
z ∈ (0, 1) and λ ∈ R. The Sturm-Liouville equation reduces to an ordinary
differential equation on the real axis x ∈ R\{0, z, 1}. The discussion mostly
follows [82, 83] from this point on, albeit in a slightly different form.

Around each puncture we can find a basis of two solutions: One solution is holo-
morphic at the puncture, while the other solution has a logarithmic singularity.
Since the differential equation is real, we can look for a basis of solutions which
is real on the real axis. For this purpose, we introduce branch cuts around each
puncture as in figure 4.1.

Figure 4.1: Branch cuts on X = CP 1\{0, z, 1,∞}

For notational simplicity, we will forget about the accessory parameter for now.
We denote the two linearly independent real solutions in a neighbourhood of
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the puncture ∗ ∈ {0, z, 1} by ψ(1)
∗,+ and ψ(2)

∗,+ if they are defined to the right of
the branch cut and by ψ(1)

∗,− and ψ(2)
∗,− if they are defined to the left. We will also

assume that the solutions ψ(1)
∗,+ and ψ(1)

∗,− are holomorphic at ∗. Therefore, we
will simply denote this solution by ψ(1)

∗ . The other solutions may be expressed
as ψ(2)

∗,± = ψ
(1)
∗ log(±(x− ∗)) + f∗(x) for a function f∗ holomorphic at ∗.

Transfer matrices Let us write ~ψ∗,± = (ψ
(1)
∗ , ψ

(2)
∗,±). To calculate the mon-

odromy of ~ψ∗,± around each puncture, we break up the problem in several
analytical continuations. In figure 4.2 we show which paths we analytically
continue along.

Figure 4.2: The paths along which we analytically continue in CP 1\{0, z, 1,∞}

We define ~ψ∗,±(B · (∗+ x)) to be obtained by analytically continuing the basis
of solutions along the curve B. We may then set B · (∗+ x) = ∗ − x and write
for real values of x

ψ
(2)
∗,+(∗ − x) = ψ

(1)
∗ log(∗ − x) + πiψ

(1)
∗ (∗ − x) + f∗(∗ − x)

= ψ
(2)
∗,−(∗ − x) + πiψ

(1)
∗ (∗ − x)

The analytical continuation of our function therefore leads to a relation of the
form

~ψ∗,+ = ~ψ∗,− ·B

in the domain of definition x < ∗. We understand B as a path as well as a

matrix

(
1 πi

0 1

)
depending on the context.

Similarly, we can relate ~ψ0,+ and ~ψz,− through a matrix G by

~ψz,− = ~ψ0,+ ·G

for 0 < x < z and ~ψz,+ and ~ψ1,− by

~ψ1,− = ~ψz,+ ·H
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for z < x < 1.

The matrices G and H are not dependent on a choice of branch cut, since
the functions on the left- and right-hand side can be analytically extended to
the same domain along the real axis. Because the matrices G and H appear
through an analytical continuation of real functions, both of these matrices
are completely real and invertible. We call the matrices B, G and H transfer
matrices.

Through equation (3.5) the matrices G andH implicitly become functions of the
accessory parameter λ. Moreover, due to the real analyticity of the differential
equation both in x and in λ, the solutions ~ψ∗,±(x) are real analytical in x and
λ and the transfer matrices G = G(λ) and H = H(λ) real analytical in λ.

Reality condition of monodromies The monodromy M∗ of the solution
~ψ∗,± around the puncture ∗ is given by

~ψ∗,±(γ∗ · x) = ~ψ∗,±(x) ·B2

with γ∗ a small loop going counter-clockwise around the puncture ∗. Note that
for our choices γ∞γ1γzγ0 = 1.

The basis ~ψ∗,± brings the monodromy to the form M∗ = B2 of the form

M∗ =

(
1 2πi

0 1

)

Since the traces of monodromies are invariant under the chosen basis, we may
choose any basis to calculate tr(MzM0). For example, we may calculate this
trace using the equality

~ψz,−((γzγ0) · x) = ~ψz,−(x) · (M0Mz)

as follows:

~ψz,−(γz · (γ0 · x)) = ~ψz,−(γ0 · x) ·B2

= ~ψ0,+(γ0 · x) · (GB2)

= ~ψ0,+(x) · (B2G−1B2)

= ~ψz,−(x) · (G−1B2GB2)
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We therefore identify

tr(M0Mz) = tr(G−1B2GB2)

= 2 + 4π2 (G21)2

det(G)

We furthermore note that a left action by Deck transformations on the space
CP 1\{0, z, 1,∞} turns into a right action of the monodromy matrices on the
solutions ~ψ∗,± as evidenced by our calculation above.

Fact 4.1. It is sufficient to calculate the seven values tr(M0), tr(Mz), tr(M1),
tr(M0Mz), tr(MzM1), tr(M0M1) and tr(M0MzM1) to uniquely determine the
set (M0,Mz,M1) ∈ SL(2,C) up to conjugation. Since tr(M0) = tr(Mz) =

tr(M1) = 2, the non-trivial information is found in the other four traces. A
proof can be found in [86], but we also briefly come back to this statement in
section §12.

We may calculate in a similar way as before

tr(MzM1) = 2 + 4π2 (H21)2

det(H)

tr(M0M1) = 2 + 4π2

(
((GH)21)2 − π2(G21)2(H21)2

det(G) det(H)
+ 2πi

G21H21(GH)21

det(G) det(H)

)
tr(M0MzM1) = 2 + 4π2

(
(G21)2

det(G)
+

(H21)2

det(H)
+

((GH)21)2 + π2(G21)2(H21)2

det(G) det(H)

)
Only the trace tr(M0M1) has a non-trivial imaginary part. To ensure all traces
are real, we must set G21H21(GH)21 = 0. Therefore, at least one of these three
factors must vanish. We will refer to these conditions as holomorphicity or
quantization conditions.

Lemma 4.2. If any two of the three components G21, H21 and (GH)21 vanish,
all three must vanish.

Proof. We may write out (GH)21 = G21H11 +G22H21. If both G21 = H21 = 0,
clearly (GH)21 = 0. On the other hand, if G21 = (GH)21 = 0, the combination
G22H21 = 0. Since det(G) = G11G22 is non-vanishing, G22 6= 0. Therefore, also
H21 = 0. Finally, H21 = (GH)21 = 0 implies in the same way that G21 = 0.

Lemma 4.3. There exists no value of λ such that both G21(λ) = 0 and H21(λ) =

0.
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Proof. Assume there exists such a value of λ. The conditions G21 = 0 and
H21 = 0 imply that ψ(1)

0 = ψ
(1)
z G11 = ψ

(1)
1 G11H11 is a function holomorphic at

the punctures 0, z and 1. Therefore, it must be holomorphic at ∞. Since the
function is holomorphic everywhere on CP 1, it must be a constant and the only
constant solving equation (3.5) is ψ(1)

0 = 0. Hence, we cannot find a non-trivial
solution for such a value of λ leading to a contradiction.

From these lemmas we conclude that at most one of the conditions G21 = 0,
H21 = 0 or (GH)21 = 0 can hold. In fact, no where did we need to assume the
reality of λ. This result is therefore also valid for λ ∈ C.

Definition 4.4. The real analytical continuation of a function ~ψ∗,− along a
puncture ∗ is defined by ~ψ∗,+. Similarly, we also call ~ψ∗,− the real analytical
continuation of ~ψ∗,+.

The vanishing of G21 and H21 implies that ψ(1)
z is regular at x = 0, respectively

x = 1. By noting that the real analytical continuation of ψ(1)
1 to x = 0 along

x = z is given by ψ
(2)
0 (GH)21 + ψ

(1)
0 (GH)11, the condition (GH)21 = 0 is

equivalent to the regularity of ψ(1)
1 at x = 0 after real analytical continuation

along x = z. We conclude the above discussion with the following theorem
originally due to Klein and Hilbert [82, 83].

Theorem 4.5. An accessory parameter λ ∈ R leads to real monodromy of
equation (3.5) if and only if G21(λ) = 0, H21(λ) = 0 or (GH)21(λ) = 0. Equiv-
alently, a solution ψλ(x) to the differential equation exists such that precisely
one of the three following conditions holds

1. The solution ψλ(x) is regular at both x = 0 and x = z

2. The solution ψλ(x) is regular at both x = z and x = 1

3. The solution ψλ(x) is regular at x = 0 and at x = 1 after the real analytical
continuation along x = z

Hyperelliptic involutions on the four-punctured sphere There exist
biholomorphic maps on the four-punctured sphere exchanging the positions of
the punctures. These maps must be given by complex Möbius transformations.
Indeed, we have the following lemma
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Lemma 4.6. The only biholomorphic maps C → C are given by the identity
and three hyperelliptic involutions j1, j2 and j3 defined by

j1(x) =
z − x
1− x

j2(x) =
z

x

j3(x) =
x− 1

z−1x− 1

Proof. Every biholomorphic map h : C → C must take the form of a Möbius
transformation.

Let us first assume h fixes one of the punctures. Without loss of generality, we
may assume this puncture is ∞. Then the map h is given by h(x) = αx + β

for real α and β. To ensure we map punctures to punctures, we need to set
h(z) = z. Hence β = (1 − z)z. However, now h(0) = (1 − z)z, which is not a
puncture. This leads to a contradiction.

Therefore, we assume ∞ is mapped to 0. Then h(x) = (γx + δ)−1. Now
h(0) = δ−1 so that δ−1 ∈ {z, 1,∞}. The choices δ−1 ∈ {z, 1} lead to Möbius
transformations which do not map punctures to punctures. We must set δ = 0

and find h(x) = γ−1x−1. Noting that h(1) = γ−1 and using the fact that h
must switch the punctures a and 1, we find h(x) = zx−1.

By assuming∞ is mapped to a, we find the map h(x) = x−1
z−1x−1 and by assuming

∞ is mapped to 1, we find the map h(x) = z−x
1−x in a similar way.

Hence, j1, j2 and j3 are the only non-trivial biholomorphic maps C → C.

Remark 4.7. These involutions form the group Z2 × Z2 since j1j2 = j2j1 = j3

and j2
1 = j2

2 = 1.

Since these involutions are Möbius transformations exchanging the punctures,
the oper t(jk(x)) = t(x) for k = 1, 2, 3. Therefore the functions ψλ(jk(x)) are
solutions of the same differential equation. Hence, we find

Theorem 4.8. The conditions from theorem 4.5 have the following alternate
formulations

• There exists a solution regular at x = 0 and at x = z if and only if there
exists a solution regular at x = 1 and at x =∞.
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• There exists a solution regular at x = z and at x = 1 if and only if there
exists a solution regular at x = 0 and at x =∞.

• The following four statements are equivalent:

– There exists a solution regular at x = 0 and at x = 1 after real
analytical continuation along x = z.

– There exists a solution regular at x = z and at x = ∞ after real
analytical continuation along x = 1.

– There exists a solution regular at x = 1 and at x = 0 after real
analytical continuation along x =∞.

– There exists a solution regular at x = ∞ and at x = z after real
analytical continuation along x = 0.

Each of these different formulations involve the puncture x =∞. We may there-
fore restrict our attention to the behaviour of the problem near the punctures
at x = 0, x = z and x = 1.

4.2 Finding the monodromy matrices

We will treat the three holomorphicity conditions separately. For each of these
conditions we will construct a developing map A(x) defined as the quotient of
two solutions to equation (3.5) and show that it has monodromy in PSL(2,R).
The existence of such a developing map is guaranteed by the holomorphicity
conditions.

To ensure the monodromy tr(M∞) = 2, we must constrain the values of G21,
H21 and (GH)21. This is equivalent to setting tr(M0MzM1) = 2, i.e. to the
equation

det(H)(G21)2 + det(G)(H21)2 + ((GH)21)2 + π2(G21)2(H21)2 = 0 (4.1)

We show the following

Lemma 4.9. If we consider G21 = 0, equation (4.1) reduces to tr(G) = 0.
Similarly, if H21 = 0, we find tr(H) = 0. Finally, for (GH)21 = 0, the equation
tr(GH) = π2G21H21 must hold.

Proof. To obtain each of these cases, we only have to simplify equation (4.1).
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For G21 = 0, we find det(G) = G11G22 and (GH)21 = G22H21. Therefore,
G11 +G22 = 0. Similarly, we find H11 +H22 = 0 for H21 = 0.

If we set (GH)21 = 0, we find G21H11 +G22H21 = 0 and

−((GH)11 + (GH)22)G21H21 + π2(G21)2(H21)2 = 0

Since neitherG21 norH21 can vanish, we may rewrite this as tr(GH) = π2G21H21.

Let us now consider the caseG21 = 0. We may construct a non-trivial developing
map by

A(x) =
1

2πiG22H21

ψ
(1)
1 (x)

ψ
(1)
0 (x)

We calculate the action of the monodromy by first calculating

ψ
(1)
1 (γ0 · x) =

∑
j=1,2

ψ
(j)
0 (x) · (B2GBH)j1

=
∑
j=1,2

ψ
(j)
0 (x) · (GBH)j1 + 2πiψ

(1)
0 (z) · (GBH)21

= ψ
(1)
1 (x) + 2πiG22H21ψ

(1)
0 (x)

Then

A(γ0 · x) =
1

2πiG22H21

ψ
(1)
1 (γ0 · x)

ψ
(1)
0 (γ0 · x)

=
1

2πiG22H21

ψ
(1)
1 (x) + 2πiG22H21ψ

(1)
0 (x)

ψ
(1)
0 (x)

= A(x) + 1

We may calculate the other monodromies in the same way and find the following
result

Theorem 4.10. If we consider the developing map A(x) = 1
2πi(GBH)21

ψ
(1)
1 (x)

ψ
(1)
0 (x)

,

we will always find A(γ0 · x) = A(x) + 1.

Let us for simplicity set

X = 2 + 4π2 (G21)2

det(G)

Y = 2 + 4π2 (H21)2

det(H)
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We find the following monodromy matrices:

• Consider G21 = 0. Then

A(γz · x) = A(x)− 1

A(γ1 · x) =
A(x)

1− (Y − 2)A(x)

• Consider H21 = 0. Then

A(γz · x) =
A(x)

1 + (X − 2)A(x)

A(γ1 · x) =
A(x)

1− (X − 2)A(x)

For the case (GH)21 = 0, we consider the developing map A(x) = 1
2πiG21

ψ(1)
z (x)

ψ
(1)
0 (x)

.
Then

A(γ0 · x) = A(x) + 1

A(γz · x) =
A(x)

1 + (X − 2)A(x)

A(γ1 · x) =

(
1− 2X−2

X+2

)
A(x)− 1 + X−2

X+2(
1 + 2X−2

X+2

)
+ (X−2)2

X+2 A(x)

Proof. We may find these results by an explicit computation. Note also that
from A(γ0 · x), A(γz · x) and A(γ1 · x) we may uniquely calculate A(γ∞ · x).
Nonetheless, for the proof of this theorem we may reverse the situation: It
suffices to show that the trace coordinates have the correct values, since the
monodromy A(γ0 · x) = A(x) + 1 uniquely fixes the conjugacy class of the
monodromy representation. This is trivial for the cases G21 = 0 and H21 = 0.
Let us do this in detail for the more complicated case (GH)21 = 0.

Clearly tr(M0) = tr(Mz) = tr(M1) = 2. Indeed, if we represent M0, Mz and
M1 as matrices acting on A(x) by Möbius transformations, we find

M0 =

(
1 1

0 1

)

Mz =

(
1 0

X − 2 1

)

M1 =

(
1− 2X−2

X+2 −1 + X−2
X+2

(X−2)2

X+2 1 + 2X−2
X+2

)
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These matrices define a monodromy representation of the four-punctured sphere
satisfying

tr(M0MzM1) = 2

We can also easily check that

tr(M0Mz) = X

tr(MzM1) = 2− (X − 2) +
(X − 2)2

X + 2

tr(M0M1) = 2 +
(X − 2)2

X + 2

The result tr(M0Mz) = X is obviously correct. From equation (4.1) we find the
relation XY + 2X + 2Y = 12 implying

Y = −2 +
16

X + 2

This allows us to express

tr(MzM1) = 4− (X − 2) +
(X − 2)2

X + 2

= −2 +
16

X + 2
= Y

Finally, we may rewrite using equation (4.1)

tr(M0M1) = 2− 4π4 (G21)2(H21)2

det(G) det(H)

= 2− 4π2

(
(G21)2

det(G)
+

(H21)2

det(H)

)
= X + Y − 2

Indeed, we find
(X − 2)2

X + 2
= X + Y − 4

which proves that tr(M0M1) also produces the correct result.

4.3 Drawing fundamental domains

For each of these developing maps A, we may consider its image in CP 1. By
continuity, it suffices to calculate the image of RP 1 under the map A to de-
scribe the image of this domain. We label each of the four arcs separately. See
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Figure 4.3: Labeling of four arcs in RP 1\{0, z, 1,∞}

Figure 4.4: Example of a fundamental domain for CP 1\{0, z, 1,∞}

figure 4.3.

This will define a polygon with four corners in the image, bounded by circles or
straight lines with fixed real part. The corners of this polygon are the images of
the four punctures. By gluing together two copies of such polygons, we define
a pillow case gluing of the four-punctured sphere, schematically drawn as in
figure 4.4.

We will only consider the cases G21 = 0 and (GH)21 = 0 in detail and comment
on H21 = 0 at the end.

First, let us set G21 = 0. The fixed points of the isometries defined by the
monodromies along the paths γ∗ for ∗ ∈ {0, z, 1,∞}, are the images of the
points ∗ under the developing map. In this way, we find the fixed points A(0) =

A(z) =∞ and A(1) = A(∞) = 0.
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(a) A(RP 1) without zeroes of ψ(1)
0 (b) A(RP 1) with zeroes of ψ(1)

0

Figure 4.5: Image A(RP 1) for the condition G21 = 0

Let us assume ψ(1)
0 , which is regular at both x = 0 and x = z, has m zeroes on

the interval (0, z) and consider the combination

η(x) =
ψ

(1)
0 (x)

ψ
(2)
0,+(x)

It is clear that η(0) = η(z) = 0. Additionally, at each zero of ψ(1)
0 , η has a zero.

Since Im(η) ⊂ RP 1 and η′(x) 6= 0, the image η([0, z]) must cover RP 1 a total
of m + 1 times. If we apply a Möbius transformation, this covering behaviour
will still appear for the image of RP 1 under this Möbius transformation.

By the existence of the three involutions j1, j2 and j3, we can show that the
existence of a solution ψ(1)

0 of this type is equivalent to the existence of a solution
ψ

(1)
1 regular at x = 1 and x =∞ and with m zeroes on the interval (1,∞). The

image A([1,∞]) must therefore also cover itself a total of m+ 1 times.

It turns out that G21 = 0 implies that the solution to equation (3.5) cannot
have zeroes on the intervals (−∞, 0) and (z, 1). This is proved in lemma 5.3.

If we assume ψ(1)
0 has no zeroes on the interval (0, z), the image A(RP 1) takes

the form of figure 4.5a. If we do assume zeroes, we will find covering behaviour
as in figure 4.5b.

Let us now consider (GH)21 = 0. In this case, calculating the fixed points of
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Figure 4.6: A(RP 1) for (GH)21 = 0 without zeroes of the solution ψ(1)
0

the isometries leads to the results

A(0) = ∞ A(z) = 0

A(1) = 2
2−X A(∞) = 1

2

We must necessarily find X < −2 to ensure 0 < 2
2−X < 1

2 .

The same result holds as before, relating the number of zeroes to the number
of covers when we consider the solution on the intervals (0, z) or (z, 1). How-
ever, in this case we can have zeroes on either (0, z) or (z, 1), but not in both
simultaneously. We refer to remark 5.4.

If we assume ψ(1)
0 has no zeroes on either (0, z) or (z, 1), the image A(RP 1)

takes the form of figure 4.6.

This developing map realizes CP 1\{0, z, 1,∞} as a quotient of H by a Fuchsian
group.

If we consider the solution ψ(1)
0 to have m > 0 zeroes on the interval (0, z), we

find figure 4.7a, while for m > 0 zeroes on (z, 1), we find figure 4.7b.

The case H21 = 0 leads to the same picture as in figure 4.7 with the difference
being the images of the punctures under the developing map A: While for
G21 = 0 we found A(0) = A(z) =∞ and A(1) = A(∞) = 0, for H21 = 0 we will
find A(0) = A(∞) =∞ and A(z) = A(1) = 0.

4.4 Describing the single-valued solutions

We will now interpret the results from the previous subsections in terms of
the construction of the single-valued functions ΨE(x, x̄) from the solutions to
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(a) A(RP 1) with zeroes on (0, z) (b) A(RP 1) with zeroes on (z, 1)

Figure 4.7: Image A(RP 1) for (GH)21 = 0 with zeroes of the solution ψ(1)
0

equation (3.5). Since all of the monodromy matricesM0,Mz,M1 andM∞ lie in
SL(2,R), the monodromy of A(x) lies in PSL(2,R). From the developing map

A(x) = 1
2πi(GBH)21

ψ
(1)
1 (x)

ψ
(1)
0 (x)

, we may construct

ΨE(x, x̄) =
2Im(A(x))

|A′(x)|

which is invariant under the action of real Möbius transformations on A(x)

The Wronskian is necessarily of the form

W (x) := (ψ
(1)
1 (x))′ψ

(1)
0 (x)− (ψ

(1)
0 (x))′ψ

(1)
1 (x)

=
W0

x(x− z)(x− 1)

for a constant W0 6= 0. Scaling the constant W0 scales the function ΨE(x, x̄).
We may therefore set without loss of generality W0 = 1.

If G21 = 0, this sets

ΨE(x, x̄) = −|x(x− z)(x− 1)|
(
ψ

(1)
1 (x)ψ̄

(1)
0 (x̄) + ψ̄

(1)
1 (x̄)ψ

(1)
0 (x)

)
Remark 4.11. Near each puncture ∗, the function has at most a singularity of
the form |x − ∗| log(x − ∗) log(x̄ − ∗̄). Therefore ΨE(x, x̄) can be continuously
extended to all of CP 1, but it will not be differentiable at the punctures.

The function ΨE(x, x̄) vanishes precisely on the subvariety V where Im(A(x)) =



92 4 REAL MONODROMY AND FUNCTIONAL BEHAVIOUR

(a) One zero of ψ(1)
0 on (0, z)

(b) One zero of ψ(1)
1 on (z, 1)

Figure 4.8: Curves defined by Im(A(x)) = 0 for m = 1 zero

0. This subvariety V ⊂ CP 1\{0, z, 1,∞} is given by the analytical equation

ψ
(1)
1 (x)ψ̄

(1)
0 (x̄) + ψ̄

(1)
1 (x̄)ψ

(1)
0 (x) = 0

Remark 4.12. Since the equation (3.5) is invariant under taking the complex con-
jugation, the curves defined by the variety V must be invariant under complex
conjugation. This means V = V̄ considered as a subset V ⊂ CP 1\{0, z, 1,∞}.
For λ /∈ R or z /∈ RP 1\{0, 1,∞}, we can also find developing maps with real
monodromy, but the variety V 6= V̄ .

If the function ψ
(1)
0 has m zeroes on the interval (0, z), it can be clearly seen

from figure 4.5 that we find a total of 2m+ 1 points in V intersecting (0, z). We
also find another 2m+ 1 points lying in both V and (1,∞). The other intervals
do not intersect V . The shape of the real curves can be deduced from figure 4.7
as well, so that on the four-punctured sphere these real curves take the shape
as in figure 4.8a.

When we consider H21 = 0, the story is completely analogous. This leads to the
real curves in figure 4.8b. The curves drawn in figure 4.8 are drawn for m = 1.

The analysis for the condition (GH)21 = 0 can be carried out as we did for
G21 = 0. However, it should be noted that now we can only produce an even
number of real curves, while for G21 = 0 and H21 = 0 we could only find an
odd number of real curves!
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Finally, we may check that the sign of ΨE(x, x̄) ∈ R changes every time we cross
the variety V . This is a consequence of the fact that for any solution ψλ(x) such
that ψλ(x0) = 0, we must find ψ′λ(x0) 6= 0. See lemma 5.2 for a proof.
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5 Holomorphicity and accessory parameters

We have described in general terms which holomorphicity conditions lead to
developing maps with real monodromy. The question that remains, is how to
relate these conditions to values of the accessory parameter λ. The matrices
G(λ) and H(λ) are analytic functions of the parameter λ and as such we are
looking for the discrete values such that one of the three conditions G21 = 0,
H21 = 0 or (GH)21 = 0 is satisfied. The important results can be formulated in
theorem 5.1 originally proved by Smirnov. The discussion in this section follows
the work done by Smirnov in [50].

Theorem 5.1. There exist values λk of the accessory parameter for k ∈ Z such
that

• G21(λk) = 0 if k ∈ 2Z≥0 + 1

• H21(λk) = 0 if k ∈ 2Z≤0 − 1

• (GH)21(λk) = 0 if k ∈ 2Z.

Furthermore, these values are ordered as

−∞← ... < λ−2 < λ−1 < λ0 < λ1 < λ2 < ...→∞

with λ−1 < −z < λ1.

Finally,

• If λ = λk such that G21(λk) = 0, the solution ψ(1)
0 (x) regular at x = 0 and

at x = z has a total of k−1
2 zeroes on the interval (0, z).

• If λ = λk such that H21(λk) = 0, the solution ψ
(1)
1 (x) regular at x = z

and at x = 1 has a total of −k−1
2 zeroes on the interval (z, 1).

• If λ = λk such that (GH)21(λk) = 0, the solution ψ(1)
0 (x) regular at x = 0

and at x = 1 after real analytical continuation along x = z has a total of
k
2 zeroes on the interval (0, z) if k ≥ 0 and −k2 zeroes on the interval (z, 1)

if k ≤ 0.

These results may be compared to the search for suitable wavefunctions in quan-
tum mechanics. If we have a bounding potential, the energy eigenvalues for
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which the wavefunctions can be normalized, form a discrete set. In particular,
if the quantum mechanics takes place in one dimension, these wavefunctions are
classified by the number of nodes. We will find a similar classification by the
number of nodes for our problem.

To prove the theorem, we will take a step away from the calculations in the
previous section and study the real equation (3.5) itself in more detail. In
particular we will study the number of zeroes of its solutions. Much of the
discussion in this section revolves around the comparison of the signs of different
real quantities to obtain contradictions. These proofs can be found in [50].

Lemma 5.2. If x0 is a zero of a solution ψλ to equation (3.5), we must find
ψ′λ(x0) 6= 0. Additionally, we must find ψλ(∗) 6= 0 for ∗ ∈ {0, z, 1} and all
solutions ψλ.

Proof. All of these statements follow from the same idea. Assume x0 is a zero
of ψλ and we have ψ′λ(x0) = 0. Any other solution ψ̃λ(x) can be combined with
ψλ(x) into the Wronskian

W (x) = ψ′λ(x)ψ̃λ(x)− ψ̃′λ(x)ψλ(x)

which satisfies W (x) = W0

x(x−z)(x−1) . Under our assumption W (x0) = 0 which
implies W0 = 0. However, this implies that any other solution is linearly depen-
dent on ψλ, which is a clear contradiction.

Similarly, if we can find a solution such that ψλ(∗) = 0, the Wronskian will
remain regular at x = ∗ implying W0 = 0. This leads to a contradiction again.

We will now prove another important lemma which tells us we cannot have
zeroes in both the intervals (0, z) and (z, 1) simultaneously. More precisely

Lemma 5.3. Denote by ψ(1)
∗ the solution to equation (3.5) regular at x = ∗.

Then

• If λ ≤ −z, the solutions ψ(1)
0 and ψ(1)

z cannot have zeroes on (0, z)

• If λ ≥ −z, the solutions ψ(1)
1 and ψ(1)

z cannot have zeroes on (z, 1)

Proof. We first note that x(x− z)(x− 1) ≥ 0 on [0, z]. If λ ≤ −z and ψ(1)
0 has

a zero x0 on (0, z) such that (0, x0) contains no other zeroes, it must satisfy

x0(x0 − z)(x0 − 1)(ψ
(1)
0 )′(x0) = −

ˆ x0

0

(x+ λ)ψ
(1)
0 (x)dx
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This follows directly from equation (3.5). If we assume a normalization such that
ψ

(1)
0 (0) = 1, we find (ψ

(1)
0 )′(x0) < 0 so that the left-hand side of the equation is

negative, while the right-hand side is positive. This is a contradiction, proving
that the existence of a zero implies λ > −z.

We prove the result for ψ(1)
1 in a similar way. If λ ≥ −z and ψ(1)

1 has a zero x0

on (z, 1) such that (x0, 1) contains no other zeroes, we find

x0(x0 − z)(x0 − 1)(ψ
(1)
1 )′(x0) =

ˆ 1

x0

(x+ λ)ψ
(1)
1 (x)dx

Assuming a normalization such that ψ(1)
1 (1) = 1, we find (ψ

(1)
0 )′(x0) > 0. Then

the left-hand side is negative, while the right-hand side is positive, which is a
contradiction.

The statement for ψ(1)
a is completely analogous to these cases.

Remark 5.4. If we tune λ = λk such that (GH)21(λ) = 0, the real analytical
continuation of ψ(1)

0 to (z, 1) is proportional to ψ
(1)
1 . Therefore, it can have

zeroes in (0, z) only if λ > −z and zeroes in (z, 1) only if λ < −z. Clearly, these
cases mutually exclude each other proving that we cannot have zeroes on both
intervals simultaneously.

If we do have a zero x0 of a solution, we wish to find out how this zero behaves
when changing the accessory parameter. The position of the zero x0 is as an
analytical function of the accessory parameter λ denoted by x0 = x0(λ). If λ′

is a value of λ such that the zero x0 exists in the first place, we can make the
following statements in a neighbourhood around λ′:

Lemma 5.5. If x0 is a zero of ψ(1)
0 on (0, z) or a zero of ψ(1)

1 on (z, 1), it must
satisfy dx0

dλ < 0 in a neighbourhood of λ′.

Proof. Let us start by assuming x0 is a zero of ψ(1)
0 on (0, z).

The quantity ψ(1)
0,λ(x) :=

(
d
dλψ

(1)
0

)
(x) satisfies a modified form of equation (3.5)

of the form

d

dx

(
x(x− z)(x− 1)(ψ

(1)
0,λ(x))′

)
+ (x+ λ)ψ

(1)
0,λ(x) = −ψ(1)

0 (x)

Therefore
d

dx
(x(x− z)(x− 1)P (x)) = (ψ

(1)
0 (x))2
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where P (x) = ψ
(1)
0,λ(x)(ψ

(1)
0 )′(x)−ψ(1)

0 (x)(ψ
(1)
0,λ)′(x). Now by assumption d

dλ

(
ψ

(1)
0 (x0(λ))

)
=

0. If we differentiate this result, we find

ψ
(1)
0,λ(x0) + (ψ

(1)
0 )′(x0)

dx0

dλ
= 0

Plugging this into P (x0) = ψ
(1)
0,λ(x0)(ψ

(1)
0 )′(x0), the result is P (x0) = −

(
(ψ

(1)
0 )′(x0)

)2
dx0

dλ .

We may finally integrate and obtain

x0(x0 − z)(x0 − 1)P (x0) =

ˆ x0

0

(ψ
(1)
0 (x))2dx

Since x0(x0 − z)(x0 − 1) > 0,
´ x0

0
(ψ

(1)
0 (x))2dx > 0 and

(
(ψ

(1)
0 )′(x0)

)2

> 0, we

must find dx0

dλ < 0.

A similar proof can be applied to ψ(1)
1 to find dx0

dλ < 0.

This means that if a zero x0 ∈ (0, z) of ψ(1)
0 exists for a given λ′ > −z, increasing

the value of λ > λ′ will move the zero to the left. However, since we normalize
ψ

(1)
0 (0) = 1, the zero cannot disappear from the interval. It must therefore exist

for all such λ > λ′ implying that the number of zeroes can only increase in this
way. Similarly, if x0 ∈ (z, 1) is a zero of ψ(1)

1 and exists for some λ′ < −z,
decreasing the value λ < λ′ moves the zero to the right. Since we normalize
ψ

(1)
1 (1) = 1, it cannot disappear if we decrease λ.

The values λk of the accessory parameter such that G21(λk) = 0 define solutions
regular on the interval [0, z]. By standard results from Sturm-Liouville theory,
it is known that for each such λk a solution exists with k−1

2 zeroes on [0, z].
Additionally, both the series −z < λ1 < λ3 < λ5 < ... and the number of zeroes
on any subinterval I ⊂ [0, z], are known to increase without bound.

Before we continue, let us first remark

Remark 5.6. The sign of det(G(λ)) must always be negative. If λk is such that
G21(λk) = 0, we find det(G(λk)) = G11(λk)G22(λk). By lemma 4.9 we have
G11(λk) = −G22(λk), implying det(G(λk)) < 0. By analyticity in λ and the
fact that G(λ) is real for real λ, we must have det(G(λ)) < 0 for all λ ∈ R. A
similar argument can be applied to prove that det(H(λ)) < 0 for all λ ∈ R.

We will now show that the values λk for k ∈ 2Z≥0 + 1 are precisely where the
function ψ(1)

0 develops an additional zero. More precisely,
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Lemma 5.7. The function ψ
(1)
0 develops a new zero if and only if G21(λ)

changes sign. Analogously, ψ(1)
1 can only develop a new zero if and only if

H21(λ) changes sign.

Proof. We will only prove the statement for ψ(1)
0 . We may expand

ψ
(1)
0 = ψ(1)

z (G−1)11 + ψ
(2)
z,−(G−1)21

The local behaviour of ψ(1)
0 near x = z is determined by the ψ(2)

z,− component
as this has a divergence of the form log(z − x). The sign of (G−1)21 there-
fore determines whether ψ(1)

0 diverges to +∞ or −∞. Writing out (G−1)21 =

−G21 det(G)−1 and noting that det(G(λ)) < 0 by remark 5.6, we get sgn((G−1)21) =

sgn(G21).

By the fact that zeroes cannot disappear if we increase λ by lemma 5.5, a change
in sign of G21 must produce a new zero. Conversely, assume ψ(1)

0 develops a
zero x0 by increasing λ and G21 does not change sign. Then at this zero we find
ψ

(1)
0 (x0) = (ψ

(1)
0 )′(x0) = 0 which is in contradiction with lemma 5.2. Therefore

a new zero of ψ(1)
0 implies a change in sign of G21.

Lemma 5.8. If λ is a value of the accessory parameter such that λk < λ < λk+2

for k ∈ 2Z≥0+1, the solution ψ(1)
0 has a total of k+1

2 zeroes in the interval (0, z).
Similarly, if λk−2 < λ < λk for k ∈ 2Z≤0 − 1, the solution ψ

(1)
1 has a total of

−k−1
2 zeroes in (z, 1). If λ−1 < λ < λ1, neither ψ

(1)
0 nor ψ(1)

1 develop zeroes in
(0, z) and (z, 1) respectively.

Proof. Again, we will only prove the result for ψ(1)
0 . We first note that for

λ = λk and k ∈ 2Z≥0 + 1, the solution ψ(1)
0 has a total of k−1

2 zeroes on (0, a).
By lemma 5.7, the only way ψ

(1)
0 can develop a new zero by increasing λ, is

when G21 changes sign. However, this is only possible if λ increases past the
value λk. Therefore the solutions with λ ∈ (λk, λk+2) must all have k+1

2 zeroes
on (0, z). In particular, for λ < λ1 the solution ψ

(1)
0 does not have zeroes on

(0, z).

Finally, we show that a unique value of λ such that (GH)21(λ) = 0 exists in the
interval (λk, λk+2) for k ∈ 2Z≥0 + 1. We call this value λ = λk+1.

Lemma 5.9. There exists a unique value λk of λ ∈ (λk−1, λk+1) such that
(GH)21(λk+1) = 0, where k ∈ 2Z.



99

Proof. Let us consider ψ(1)
0 again. We extend this function by real analytical

continuation to the interval (z, 1) so that its behaviour near x = 1 is given by

ψ
(1)
0 = ψ

(1)
1 ((GH)−1)11 + ψ

(2)
1,−((GH)−1)21

We relate ((GH)−1)21 = −(GH)21 det(GH)−1. Note that det(G) < 0 and
det(H) < 0 for all λ ∈ R by 5.6. The divergent behaviour at x = 1 is regulated
by ((GH)−1)21 so that ψ(1)

0 diverges to sgn((GH)21)∞.

Let us now consider the special value λ = λk with k ∈ 2Z≥0 + 1. The solution
ψ

(1)
0 now regular at x = a, must have k−1

2 zeroes on (0, z). Since ψ(1)
0 is regular

at x = z, it must be proportional to ψ
(1)
z . By lemma 5.3 the function ψ

(1)
z

cannot have a zero on the interval (z, 1), which means neither can ψ(1)
0 .

Depending on the number of zeroes, either ψ(1)
0 (z) > 0 or ψ(1)

0 (z) < 0. If
we normalize ψ(1)

0 (0) = 1, we find sgn(ψ
(1)
0 (z)) = (−1)

k−1
2 . Since ψ(1)

0 does
not have zeroes on (z, 1), sgn(ψ

(1)
0 (x)) = (−1)

k−1
2 for all x ∈ [z, 1). Since the

leading divergent behaviour of ψ(1)
0 goes as −(GH)21 log(1− x) near x = 1, we

find sgn((GH)21(λk)) = (−1)
k−1
2 .

Since (GH)21 is an analytical function of λ which changes sign when we let λ
run over the interval (λk, λk+2), there must exist a value λk < λk+1 < λk+2

such that (GH)21(λk) = 0. Using arguments similar to the ones above, we may
show that this value λk+1 is unique in the interval (λk, λk+2). This finishes the
proof of the lemma.

Putting all the results together, we conclude the proof of theorem 5.1 at the
beginning of this section.
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6 Generating solutions with real monodromy

We have given a complete description of the eigenvalues λ ∈ R for which we
find real monodromy on the surface X = CP 1\{0, z, 1,∞} with 0 < z < 1. We
may try to generalize this result by letting λ become complex.

To prove the reality of the monodromy, it was essential for us to assume the
reality of the accessory parameter. Nonetheless, we are able to express the
solutions λ = λk as smooth functions of the crossratio z ∈ CP 1\{0, 1,∞},
because the set of accessory parameters λ for which the monodromy is real, is
discrete and does not bifurcate.

By moving the point z around a path such that the complex structure of the
surface at the starting point is the same as at the end point, we may construct
new series of accessory parameters leading to real monodromy. Generically, the
conditions G21 = 0, H21 = 0 and (GH)21 = 0 are not preserved under such
transformations and will look quite different. The new accessory parameters
therefore need not be real, although the monodromy they describe remains real.
See section 10.5 of [77] for a discussion of such new quantization conditions.

An interesting question is whether we can describe all accessory parameters
leading to opers with real monodromy through transformations of this kind
on the series ... < λ−1 < λ0 < λ1 < .... Indeed, this turns out to be the
case, although highly non-trivially through the classification of opers with real
monodromy discussed in section §9.

6.1 Describing the mapping class group action

All transformations starting and ending at the same complex structure by mov-
ing z along a path, form what is known as the mapping class group of the
four-punctured sphere MCG(S), where S is the topological surface underlying
X. See section §16 for a short treatment of the mapping class group.

It is known that the mapping class group of the four-punctured sphere is gen-
erated by the braid group on four strands on the sphere. The group MCG(S)
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Figure 6.1: Action of braiding on the punctures of CP 1\{0, z, 1,∞}

has a presentation as follows

MCG(S) '
〈

σ1, σ2, σ3 | σ1σ2σ1 = σ2σ1σ2

σ3σ2σ3 = σ2σ3σ2

σ1σ3 = σ3σ1

(σ1σ2σ3)4 = 1

σ1σ2σ3 = σ−1
1 σ−1

2 σ−1
3

〉
The elements σ1, σ2 and σ3 act on the punctures by braiding them as in fig-
ure 6.1.

By theorem 16.10 we may rewrite this presentation in terms of the two braid-
ing elements σ1 and σ2, braiding the punctures 0 and z, respectively z and
1, and the three hyperelliptic involutions j1, j2 and j3 represented by Möbius
transformations.

If we let 0 < z < 1 denote the initial crossratio, the braiding by σ1 keeps the
crossratio invariant, but sends z to −z(1 − z)−1. In the same way, σ2 sends
z to z−1. Recall that the involutions j1, j2 and j3 preserve the quantization
conditions. Therefore, we may restrict our attention to σ1 and σ2.

Mapping class group action on holomorphicity conditions If we act by
the mapping class group, we can easily check that the intervals [0, z] and [z, 1]

transform as in figure 6.2.
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Figure 6.2: Action of braiding on the transfer matrices G and H

By the definition of the braidings, we may check that

σ1(G) = BG−1B−1

σ1(H) = GB−1H

σ2(G) = GBH

σ2(H) = BH−1B−1

and
σ1(B) = σ2(B) = B

Additionally, it is easily seen that if we move along the intervals in the opposite
direction, we find

σ1(G−1) = BGB−1

σ1(H−1) = H−1BG−1

σ2(G−1) = H−1B−1G−1

σ2(H−1) = BHB−1

A general path P = P (G,H,B) is a product of transfer matrices G and H,
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braidings B and their inverses G−1, H−1 and B−1. It transforms as

µ(P ) = P (µ(G), µ(H), µ(B))

for µ a word in σ1 and σ2. This defines an action of the group generated by σ1

and σ2 on the set of paths of the form of P .

Furthermore, by restricting to the components P21, we find an action of the
form

µ · (P21) := (µ(P ))21

In this way, we can transform the holomorphicity conditions into other condi-
tions that do not appear for real λ.

In this paragraph, we will prove the following theorem:

Theorem 6.1. The action by elements σ1 and σ2 acting on P21 as above,
generates the action of the mapping class group MCG(S).

To prove that this is an action of the mapping class group, we need to prove
the following two equalities:

(σ1σ2σ1) · (P21) = (σ2σ1σ2) · (P21)

(σ1σ2)3 · (P21) = P21

for all paths P .

Lemma 6.2. The transformations σ1 and σ2 satisfy (σ1σ2σ1)(P ) = (σ2σ1σ2)(P )

on a path P = P (G,H,B).

Proof. We only have to check these relations on the transfer matrices G and H.
By the transformation properties under the action of the group generated by σ1

and σ2, this proves the statement for any P .

We note that

(σ1σ2)(G) = H

(σ2σ1)(H) = G
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It now becomes straightforward to check,

(σ1σ2σ1)(G) = (σ1σ2)(BG−1B−1)

= BH−1B−1

= σ2(H)

= (σ2σ1σ2)(G)

Similarly,

(σ2σ1σ2)(H) = (σ2σ1)(BH−1B−1)

= BG−1B−1

= σ1(G)

= (σ1σ2σ1)(H)

This proves the result.

Lemma 6.3. The transformation (σ1σ2)3 acts as (σ1σ2)3(P ) = B2PB−2.
Therefore, P21 = ((σ1σ2)3(P ))21.

Proof. Using the fact that (σ1σ2σ1)(P ) = (σ2σ1σ2)(P ) on any product P , we
may write

(σ1σ2)3(P ) = (σ1σ2σ1)2(P )

The results from the previous lemma show that

(σ1σ2)3(G) = B2GB−2

(σ1σ2)3(H) = B2HB−2

Therefore, for a general P , we find

(σ1σ2)3(P ) = B2PB−2

In particular, since B21 = 0, we find (B2PB−2)21 = P21. This proves the result.

Indeed, as an element of the mapping class group, the word (σ1σ2)3 rotates
the punctures by an angle 2π. This results in a conjugation by a full rotation
around the point at infinity, which is given by B2.

This completes the proof of the fact that the mapping class group defines an
action on the components P21 of a product P of transfer matrices and braiding
matrices.
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6.2 Surjectivity of the mapping class group action

Although we will prove the full classification theorem 8.2 later, currently it
suffices to extract from it the statement that opers with real monodromy are
classified precisely by the real curves they induce.

It is known that the action of the mapping class group on the space of simple
closed curves on CP 1\{0, z, 1,∞} is transitive. We prove this fact in proposition
16.3. This implies that we can use the mapping class group to generate any oper
with real monodromy from the opers corresponding to the conditions G21 = 0,
H21 = 0 and (GH)21 = 0.

We may state the surjectivity of this action as follows

Theorem 6.4. All projective structures with real monodromy on X = CP 1\{0, z, 1,∞}
can be constructed by acting with elements in the mapping class group on the
holomorphicity conditions G21 = 0, H21 = 0 and (GH)21 = 0

Remark 6.5. It actually suffices to only consider the series

λ0 < λ1 < λ2 < ...

The element σ1σ2σ1 acts by

(σ1σ2σ1)(G) = BH−1B−1

(σ1σ2σ1)(H) = BG−1B−1

(σ1σ2σ1)(GH) = B(GH)−1B−1

This action exchanges the conditions G21 = 0 and H21 = 0. The solution
(GH)21 = 0 is invariant under the action by this element. However, if we
consider the solution ψ(1)

0 regular at 0 and at 1 after real analytical continuation
along z, it will have a given number of zeroes on either the interval [0, z] or on
[z, 1]. The action by σ1σ2σ1 exchanges the intervals on which this solution
has zeroes. Therefore, σ1σ2σ1 acts by exchanging λk ↔ λ−k for k ∈ Z. The
uniformizing solution corresponding to λ0 is invariant under this action.
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Part III

Classification of opers with real
monodromy

In this part we will extend the analysis done in Part II to other Riemann surfaces.
Although we do not perform a direct analysis on a general Riemann surface
X as was done for the four-punctured sphere, by following the discussion in
[80] and in [46] we show that the opers with real monodromy are in one-to-
one correspondence with the set of hyperbolic metrics which are allowed to be
singular along a finite union of circles on X. This finite union of circles is
precisely the set where the developing map of the oper becomes real.

It has been shown in [46] that we can construct all opers with real monodromy
from a special oper by an operation known as (half-integer) grafting. The input
of this procedure is a marked Riemann surface X together with a non-self-
intersecting multicurve µ up to homotopy. This classification relies on theo-
rem 9.4 presented by Thurston [87] (see [88]).

Originally a theorem by Dehn from the 1920s and later reproved by Thurston
in the 1970s, there exist Dehn-Thurston parameters (p,q) in one-to-one cor-
respondence with the non-self-intersecting multicurves on a topological surface
up to homotopy. These results can be found in [43, 44]. If we fix the Riemann
surface, we may therefore use the Dehn-Thurston parameters as a first set of
quantum numbers for the single-valued solutions ΨE(x, x̄).

It turns out that grafting along certain multicurves does not lead to monodromy
valued in PSL(2,R), but more generally in PGL(2,R). Although not originally
found in [46], this statement is clarified in [89]. The parameters (p,q) corre-
sponding to these multicurves through Dehn’s theorem, do not lead to single-
valued solutions and we must therefore remove these parameters from the set
of allowed quantum numbers. We analyze this restriction explicitly in the case
of a closed surface of genus two and provide an algorithm based on formulas
by Penner [48, 49]. In principle, this leads to a complete classification of op-
ers with real monodromy through the Dehn-Thurston parameters, although the
conditions can be hard to calculate in practice due to the complexity of Penner’s
formulas.
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7 Constructing the uniformizing oper

The topics discussed in this section have been mathematically well-established
for a long time. A basic reference on much of this section is given by [90].

7.1 Hyperbolic geometry

Hyperbolic geometry plays an important role in the uniformization problem
and as a result in the classification of single-valued eigenfunctions of the quan-
tum Hitchin Hamiltonians. Let us therefore first recall some basic facts about
hyperbolic geometry.

We define the upper half plane H ⊂ C by H := {z ∈ C|Im(z) > 0}. This
space can be given a metric of constant curvature −4 of the form ghyp =
1
4Im(z)−2dzdz̄. The metric ghyp is known as the hyperbolic metric and the
metric space (H, ghyp) as the hyperbolic plane. We will study this space in more
detail.

Geodesics of the hyperbolic metric In terms of coordinates z = x+ iy, we
may write the hyperbolic plane as H = {(x, y) ∈ R2|y > 0} with the hyperbolic
metric

ghyp =
dx2 + dy2

y2

It can be shown that geodesics with respect to this metric are defined by one of
two equations (x − x0)2 + y2 = R2 or x = x0. The variable x0 ∈ R and R > 0

are parameters specifying the geodesic. Therefore, the geodesics are either half-
circles with origin (x0, 0) and radius R or straight lines defined by x = x0 and
starting at (x0, 0).

The boundary ∂H is given by the space RP 1 = {(x, y) ∈ R2|y = 0} ∪ {∞}.
The hyperbolic metric blows up when we approach RP 1 so that each of these
geodesics has infinite length in the hyperbolic space.

Isometries of the hyperbolic plane It can easily be checked that the isome-
tries of the metric ghyp are precisely given by the group of real Möbius trans-
formations. By identifying the real Möbius transformations with PGL(2,R),
the orientation-preserving isometries are given by Isom+(H) ' PSL(2,R). The
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constant curvature metric ghyp is the only metric up to scaling by a real number
that is invariant under all these isometries.

If we consider the real Möbius transformations as a subset of the complex Möbius
transformations, the set of isometries Isom+(H) splits into three types, depend-
ing on which points are fixed by the isometry:

• Elliptic transformations fix one point in H

• Parabolic transformations fix one point on ∂H

• Hyperbolic transformations fix two points on ∂H

Assume a real Möbius transformations is of the form

M =

(
a b

c d

)
∈ PSL(2,R)

acting on z by

z 7→ az + b

cz + d

The matrix formM is only well-defined up to scaling by a real number. We may
use this freedom to set det(M) = 1 and considerM as an element in PSL(2,R) '
SL(2,R)/Z2, where Z2 = {−1,+1} is the center of SL(2,R). Therefore, M is a
matrix in SL(2,R) well-defined up to multiplication by −1.

The fixed points of this transformation are found by solving z = az+b
cz+d . Rewrit-

ing, we find a quadratic polynomial cz2 + (d− a)z − b = 0 which has solutions

z± =
a− d

2c
±
√

(a− d)2 + 4cb

2c

=
a− d

2c
±
√

(a+ d)2 − 4(ad− bc)
2c

The type of transformation is specified by the discriminant tr(M)2− 4. Elliptic
transformations satisfy |tr(M)| < 2 so that the fixed points satisfy z+ = z−. One
fixed point lies in H while the other lies in the complex conjugate H. Parabolic
transformations satisfy |tr(M)| = 2 with z+ = z− ∈ RP 1. Finally, hyperbolic
transformations satisfy |tr(M)| > 2 with both z+, z− ∈ RP 1.

Lemma 7.1. If an isometry is hyperbolic, it has a unique geodesic in H which
is invariant under the isometry.
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Proof. Without loss of generality, we may assume the isometry fixes the points
{0,∞} ⊂ ∂H. We can arrange for this situation by conjugating by a Möbius
transformation preserving the metric structure of the hyperbolic plane. The
invariant geodesic is then given by the imaginary axis. An isometry M with
fixed points {0,∞} must satisfy b = c = 0. This means the transformation is a
dilatation z 7→ a2z, which only keeps straight lines passing through the origin
fixed. The only geodesic in this set is the straight line lying along the imaginary
axis. Therefore, there exists a unique invariant geodesic.

Hyperbolic length Given a geodesic on a hyperbolic surface, we may as-
sociate a hyperbolic length to it. Let us assume the cover of the geodesic lies
along the imaginary axis. The point i on this geodesic is identified with a2i

under the action of the Möbius transformation M . The hyperbolic distance is
then defined as ˆ a2

1

dy

y
= 2 log(a)

We set 2 log(a) = l where l is the hyperbolic length of the geodesic so that we
find

tr(M) = 2 cosh(l/2)

7.2 Uniformization theorem

If we consider an orientable topological surface, it admits a unique compatible
smooth structure S. We define a conformal structure on S to be a metric de-
fined up to scaling by a non-vanishing function called the conformal factor. The
uniformization theorem states that any conformal structure on a simply con-
nected surface is conformally equivalent to one of the following three conformal
structures

• The Riemann sphere CP 1 with constant curvature metric of curvature +1

• The Euclidean plane C with constant curvature metric of curvature 0

• The hyperbolic plane H with constant curvature metric of curvature −1

Any conformal structure on a surface can therefore be obtained as a quotient
of one of these three surfaces by a free action of a discrete subgroup of the
isometry groups of these three conformal structures. This implies in particular
the existence of a constant curvature metric on any smooth surface. We call the
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pair of the smooth surface together with a constant curvature metric covered
by the hyperbolic plane a hyperbolic surface.

For a genus g closed surface we know that the Euler characteristic χ(S) = 2−2g.
Therefore, the Gauss-Bonnet theorem implies a classification of closed surfaces
based on the sign of χ(S) by

RVol(S) = 2πχ(S)

where R is the curvature of a constant curvature metric on S. Since Vol(S) > 0,
the sign of χ(S) must correspond to the sign of R. Therefore, all closed Riemann
surfaces except for g = 1 and g = 0 are covered by the hyperbolic plane.

We can introduce punctures or boundaries on S without drastically altering the
above story. If we have a total of n punctures and boundaries together, the
hyperbolic surfaces are classified by the set of tuples (g, n) of the genus g and
the number of boundary components n satisfying 2g − 2 + n > 0.

Pants decomposition of hyperbolic surface The three-holed sphere sat-
isfies χ(S) = −1 and is the simplest surface of negative Euler characteristic
we can consider, in the sense that we may glue three-holed spheres together to
obtain any other surface with negative Euler characteristic. In this context, we
call the three-holed sphere a pair of pants and a decomposition of a hyperbolic
surface in three-holed spheres a pants decomposition.

Unique geodesic representative If X is a hyperbolic surface, it admits
a set of geodesics coming from the hyperbolic plane realization. The metric
embeds the group π1(X) as a subgroup of Isom+(H). Each element in π1(X)

is in this way represented by a hyperbolic isometry. It turns out that every
conjugacy class in π1(X) has a realization by a unique oriented, closed geodesic
representative. Indeed, any curve representing the same element in π1(X) must
lift to an arc in the universal cover H with the same fixed points as the fixed
points of the hyperbolic isometry. Between any two points on ∂H, we can find
a unique geodesic connecting these points. This is precisely the unique geodesic
representative of an element in π1(X). See proposition 1.3 in [91] for a proof of
these statements.
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7.3 Teichmüller space

We have seen above that every smooth surface S with χ(S) < 0 can be given a
hyperbolic metric such that the surface locally looks like the hyperbolic plane.
The moduli space of such metrics defined up to isometries is called M(S). If
instead we quotient the space of metrics by the action of isometries which can
be connected to the identity, we define what is known as the Teichmüller space
T (S). More precisely, we give the following definition

Definition 7.2. Consider the space of pairs (X, f) whereX is a fixed hyperbolic
surface modeled over the smooth surface S and f : S → X a diffeomorphism.
We will say that two such pairs (X, f) and (Y, g) are equivalent if and only
if g ◦ f−1 : X → Y is isotopic to an isometry which can be connected to the
identity. Let us write such pairs up to equivalence by [X, f ]. Teichmüller space
T (S) is the space of all pairs [X, f ]. We call such a pair a marked hyperbolic
surface where the diffeomorphism f is called the marking.

The moduli space M(S) is obtained from T (S) by taking the quotient by the
mapping class group MCG(S) = Isom(S)/Isom0(S) defined as the space of
isometries modulo the isometries connected to the identity.

Complex versus conformal structure It turns out that on a smooth
orientable surface, the choice of a complex structure and conformal structure
are equivalent. Through the complex structure, one has a canonical notion of
angle on the tangent bundle. If we are given a Riemann surface X with a local
coordinate z, we can choose our conformal structure to be given by the class of
metrics of the form c(z, z̄)dzdz̄ with c : X → R>0 a conformal factor.

The converse construction is more involved. Given any Riemannian metric on
a smooth surface S, we can show we can always locally bring it to the form
c(z, z̄)dzdz̄ by solving the Beltrami equation

∂w(z, z̄)

∂z̄
= µ(z, z̄)

∂w(z, z̄)

∂z

for |µ(z, z̄)| < 1. We call the coordinates (w, w̄) isothermal coordinates and it
is easily shown that if we have two pairs of isothermal coordinates on an open
neighbourhood, the transition function must be biholomorphic. This defines a
complex structure X on our surface S, which is in bijection with the conformal
structure defined by c(z, z̄)dzdz̄.
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Since we will focus our attention to surfaces, we use these notions interchange-
ably. In particular, the Teichmüller space can equivalently be understood as
classifying marked hyperbolic surfaces or marked Riemann surfaces.

Marking and fundamental domain It should be noted that equation (3.11)
we obtain from the conditiosingle-valuedness of ΨE(x, x̄) does not have any
reference to a marking. This equation is defined over a fixed Riemann surface.
Nonetheless, to determine a monodromy representation, we need to introduce
a marking. Indeed, picking a marking for an element in Teichmüller space is
equivalent to picking a set of generators for the fundamental group π1(S). This
statement is known as the Dehn-Nielsen-Baer theorem in the literature. In
theorem 16.7 we give the precise statement.

The mapping class group has a natural action on the development-holonomy
pairs [A, ρ] by precomposing the developing map A : X̃ → CP 1 and the mon-
odromy representation ρ : Hom(π1(S),PSL(2,C)) by an element of the mapping
class group represented as an isometry.

In section §9 we classify the development-holonomy pairs with real monodromy.
To relate this classification to the classification of opers with real monodromy,
we need to take the quotient by the mapping class group.

7.4 Uniformizing oper

For each marked hyperbolic surface X modeled over the topological surface S,
the uniformization theorem defines an isometry A : X̃ → H. This map em-
beds the action of the Deck transformations π1(S) in the group of orientation-
preserving isometries Isom+(H) ' PSL(2,R) defining a monodromy representa-
tion ρ ∈ Hom(π1(S),PSL(2,R)). The pair (A, ρ) has the intertwining property

A(γ · u) =
ρ(γ)11A(u) + ρ(γ)12

ρ(γ)21A(u) + ρ(γ)22

Since the image Γ of ρ is a discrete subgroup, it defines a Fuchsian group.
Two marked hyperbolic surfaces define the same point in T (S) if and only
if the monodromy representations up to conjugation are the same Fuchsian
representation. This implies that the space of Fuchsian representations is also
isomorphic to T (S). See for example proposition 10.2 in [91] for a proof of this
statement.
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Let us denote the uniformizing developing map by A0 and the monodromy by
ρ0 for future convenience. By 3.11, the pair [A0, ρ0] defines an oper t0(z) =
1
2{A0(z), z}. Since the monodromy ρ0 has image in PSL(2,R), it comes from
an oper with monodromy in SL(2,R). Therefore, the uniformizing oper defines
a single-valued eigenfunction of the Hitchin Hamiltonians by theorem 3.5.

Affine bundle structure of opers A dicussion of the following construction
can be found in [78]. Let us denote the space of all opers over the topological
surface S by P(S) :=

⊔
X∈T (S) P(X). Recall that we use the notation P(X)

for the space of opers over a fixed Riemann surface X. The fibres can be
patched together to define a smooth bundle P(S) → T (S) with fibres P(X).
It turns out that the uniformizing opers patch together to a smooth section
σ0 : T (S) → P(S). The bundle P(S) is an affine bundle with each section
σ(X)− σ0(X) living in H0(X,K2

X).

It can be shown by Kodaira-Spencer deformation theory, that the tangent bundle
fibre of TXT (S) is isomorphic to H1(X,K−1

X ). Through the Serre duality, we can
identify the cotangent fibres of T∗XT (S) with H0(X,K2

X). The bundle P(S)→
T (S) has the structure of an affine bundle modeled over T∗T (S)→ T (S).

The identification between T∗T (S) and P(S) allows us to carry over the geo-
metrical structures from the former to the latter. Indeed, there exists a natural
complex structure on P(S) coming from the complex structure on T∗T (S) in
terms of complex moduli t for the base T (S) and complex coordinates E for
the fibres. Furthermore, the cotangent bundle admits a canonical symplectic
structure

Ω =

3g−3+n∑
r=1

dtr ∧ dEr

which carries over to a symplectic structure Ω on P(S).
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8 Eigenfunctions and singular metrics

By the uniformization theorem, we know that H admits a unique metric ghyp of
constant curvature −4. Since Isom(H) ' PGL(2,R), the pair [A0, ρ0] embeds
the Deck transformations into the isometries of H. We may therefore use A0 to
pull back ghyp to a metric on X. Locally, the induced metric takes the form

A∗0(ghyp) =
|A′0(z)|2

4Im(A0(z))2
dzdz̄

Since Im(A0(z)) > 0 everywhere, this metric is well-defined on all of X.

Let us write the conformal factor as e2ϕ0(z,z̄) for ϕ0 : X → R a globally defined
function. Then

ϕ0(z, z̄) = log

(
1

2

|A′0(z)|
Im(A0(z))

)
The function ϕ0(z, z̄) can be shown to satisfy the Liouville equation

∂z∂z̄ϕ0(z, z̄) = e2ϕ0(z,z̄)

Furthermore, we can show by the definition of ϕ0 that 1
2{A0(z), z} = ∂2

zϕ0 −
(∂zϕ0)2. This identifies the uniformizing oper by

t0(z) = ∂2
zϕ0 − (∂zϕ0)2

Although a priori not obvious, the combination ∂2
zϕ0 − (∂zϕ0)2 is holomorphic

as a consequence of the Liouville equation. Finding a solution to the Liouville
equation is therefore equivalent to the construction of the uniformizing oper.

8.1 Singular hyperbolic metrics and real monodromy

Real decomposition of a surface To define the real decomposition of a
surface, we follow the discussion in [46]. We also refer to the notion of real
decompositions in [92].

If the pair [A, ρ] defines a development-holonomy pair over X ∈ T (S) with
monodromy representation ρ valued in PSL(2,R), we may consider the decom-
position CP 1 = H ∪ RP 1 ∪H. Here we denote by H the space

H := {z ∈ C|Im(z) < 0}
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We can pull back this decomposition through the developing map and define
X̃+ := A−1(H), X̃R := A−1(RP 1) and X̃− := A−1(H). Since each of the
subsets H, RP 1 and H is invariant under Möbius transformations valued in
PSL(2,R), we find A(γ · X̃±) = A(X̃±) and A(γ · X̃R) = A(X̃R) for any γ ∈
π1(X). The decomposition is therefore preserved under the action of the Deck
transformations as long as the monodromy of ρ is valued in PSL(2,R). This
allows us to define a decomposition of our surface X = X+ ∪XR ∪X−.

Remark 8.1. If the monodromy of ρ is valued in PGL(2,R), we still find A(γ ·
X̃R) = A(X̃R). Although we cannot define a real decomposition X = X+∪XR∪
X−, the variety where A is real, is still invariant under the action of the Deck
transformations.

On the space H we have the constant curvature metric ghyp. Since the spaces
H and H are related by complex conjugation, we make H into a copy of the
hyperbolic plane by introducing ghyp. We can pull back these metrics through
the developing map and define a metric A∗(ghyp) on X\XR. Each connected
component ofX+ orX− has a natural structure of a complete hyperbolic surface
such that the ideal boundary, the boundary at infinite distance, is given by a
union of components in XR.

Let us denote by e2ϕ(z,z̄) the conformal factor of this metric on X\XR, i.e.

A∗(ghyp) = e2ϕ(z,z̄)dzdz̄

The conformal factor blows up when we approach XR, since the metric diverges
as Im(A(z))−2.

Each connected component Y of X+ and X− can be understood as consisting of
a convex core Ycore ⊂ Y with boundaries of Ycore consisting of closed geodesics
and a complement Y \Ycore consisting of annuli of infinite area. In this way, the
annuli of infinite area are bounded by a geodesic and a component of the ideal
boundary.

Schwarz function of singular curves Let us describe in more detail how
ϕ(z, z̄) blows up when we approach XR following [80]. By [92], it is known that
the space XR is a finite union of circles. Let C ⊂ XR be such a circle. We pick
a simply-connected neighbourhood U ⊃ C and a local coordinate z. Then we
may describe the intersection C ∩ U through the analytical equation

A(z) = A(z)
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Wemay rewrite this equation in terms of the Schwarz function SC(z) := A−1(A(z))

as
z̄ = SC(z)

Applying the chain rule to the equation A(SC(z)) = A(z) shows that A′(z) =

A′(SC(z))S′C(z). Therefore, we may express the conformal factor in terms of
the developing map as

e2ϕ(z,z̄) =
1

4

|A′(z)|2

(Im(A(z)))2

= −
A′(z)A′(SC(z))S′C(z)

(A(z)−A(SC(z)))2

Since the developing map A is nowhere singular, the oper t(z) does not become
singular near the curve C. In terms of the conformal factor, we may show

t(z) = ∂2
zϕ− (∂zϕ)2

If we locally identify the coordinate z with the coordinate obtained by pulling
back the standard coordinate on CP 1, we may simplify

e2ϕ(z,z̄) =
1

4
Im(z)−2

Singular solutions to the Liouville equation We may summarize the
above by stating that the problem of identifying development-holonomy pairs
with real monodromy can be expressed in terms of a variant of the Liouville
problem. This problem has been stated in section four of [80] before:

Theorem 8.2. A development-holonomy pair [A, ρ] over X ∈ T (S) has real
monodromy representation ρ if and only if there exist simple closed analytic
curves C1, ..., Cm such that

⊔m
k=1 Ck = XR and a function ϕ such that ∂z∂z̄ϕ =

e2ϕ on X\XR with singularities along Ck of the form

ϕ(z, z̄) = log


√
−A′(z)A′(SCk(z))S′Ck(z)

A(z)−A(SCk(z))

+O((A(z)−A(SCk(z)))0)

Furthermore, we may clarify theorem 8.2 further and state

Theorem 8.3. Development-holonomy pairs over X with real monodromy are
in one-to-one correspondence to the choice of elements σ1, ..., σm ∈ π1(X), not
necessarily distinct. Furthermore for each choice of elements σ1, ..., σm, there
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exist unique representative curves C1, ..., Cm such that XR =
⊔m
k=1 Ck and a

solution ϕ(z, z̄) exists with singular behaviour as in theorem 8.2.

We will prove this theorem in section §9. More precisely, proposition 9.7 gives
a direct proof of this result.

Remark 8.4. Any set of 3g−3+n mutually non-intersecting simple closed curves
on a surface X of genus g and with n boundary components leads to a pants
decomposition. There exist no other curves not homotopic to the cutting curves
and not intersecting any of the cutting curves. Therefore, the number of distinct
elements in σ1, ..., σm is always bounded from above by the number of cutting
curves 3g − 3 + n.

Remark 8.5. The uniformizing oper is recovered by a solution of the Liouville
equation on all of X. This is the unique solution for which XR = ∅.

8.2 Constructing single-valued functions

The conformal factor e2ϕ(z,z̄) of the metric A∗(ghyp) onX\XR allows us to define
a single-valued and real function φ(z, z̄) := e−ϕ(z,z̄) on X\XR which behaves as

φ(z, z̄) =
A(z)−A(SCk(z))√

−A′(z)A′(SCk(z))S′Ck(z)
exp

(
O
(

(A(z)−A(SCk(z)))0
))

along each curve Ck. Since the behaviour of φ(z, z̄) along Ck is regular, the
function φ(z, z̄) can be extended to all of X and satisfies

∂2
zφ(z, z̄) + t(z)φ(z, z̄) = 0

∂2
z̄φ(z, z̄) + t(z)φ(z, z̄) = 0

where t(z) = (∂2
zϕ)− (∂zϕ)2. By construction, it is a symmetric global section

of the bundle K−1/2
X ⊗KX

−1/2
.

Although φ(z, z̄) is single-valued on X\XR, it need not be when we extend it
to X. The function φ can only vanish along the curves Ck. By the chain rule
S′Ck(z) 6= 0 on a neighbourhood U ⊃ Ck, so that we may always apply the
inverse function theorem to define a coordinate z for which SCk(z) = z. Then

φ(z, z̄) = 2|A′(z)|−1Im(A(z))

Since the curve XR is defined by Im(A(z)) = 0 and Im(A(z)) is positive and
negative on X+ and X− respectively, we find φ(z, z̄) > 0 on X+ and φ(z, z̄) < 0
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on X−. The function φ(z, z̄) therefore changes sign when we cross XR. If we
analytically continue φ(z, z̄) along any simple closed geodesic, we find

φ(γ · z, γ · z̄) = (−1)i(γ,XR)φ(z, z̄)

where i(γ,XR) is the number of intersections between γ and the variety XR.
Comparing with theorem 3.5, we conclude

Theorem 8.6. If ρ is a real monodromy representation of a pair [A, ρ], it is
valued in PSL(2,R) if and only if

i(γ,XR) = 0 mod 2

for any simple closed geodesic γ.

A similar statement has been made by Goldman in the context of closed surfaces
in [89]. See remark 11.3.

Remark 8.7. For an explicit example of the construction in this section on the
four-punctured sphere, we refer back to subsection 4.4.
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9 Grafting complex projective structures

Before we describe the grafting surgery, we will change our point of view slightly.
To keep mathematical expressions more concise, we introduce the following no-
tation

CG(S) := Hom(π1(S), G)/G

for future notational simplicity. An oper t(z) on a Riemann surface X ∈ T (S) is
equivalent to a development-holonomy pair, which is a pair [A, ρ] of a developing
map A : X̃ → CP 1 and a monodromy representation ρ ∈ CPSL(2,C)(S) satisfying
the intertwining property

A(γ · z) =
ρ(γ)11A(z) + ρ(γ)12

ρ(γ)21A(z) + ρ(γ)22

for γ ∈ π1(S). See 3.11 for a proof of this equivalence.

Starting from a pair [A, ρ], we do not actually need to specify the complex
structure X ∈ T (S). Instead, we may define A : S̃ → CP 1 to simply be
an immersion without reference to the complex structure. We may recover a
complex structure on S̃ by pulling back the complex structure on CP 1, i.e. we
introduce a complex structure on S̃ such that A becomes holomorphic.

Complex projective structures A complex projective structure is a maxi-
mal atlas of charts on a smooth surface S valued in CP 1 such that the transi-
tion functions are Möbius transformations on CP 1. It is clear how we can map
a development-holonomy pair [A, ρ] to a complex projective structure. Con-
versely, we can also construct a development-holonomy pair from a maximal
atlas of charts. We follow the explanation in [78].

Given a chart on an open neighbourhood U ⊂ S, we may analytically continue
the map U → CP 1 to a map S̃ → CP 1. This can be done uniquely, since S̃ is
simply-connected. Since the transition functions are Möbius transformations,
an analytical continuation in this way defines a monodromy representation in
CPSL(2,C)(S). This defines a pair (A, ρ) from the complex projective structure.
Composing by a Möbius transformationM has the effect of sending a pair (A, ρ)

to (M ·A,M · ρ). In this way, we have associated a development-holonomy pair
[A, ρ] to the complex projective structure.

We will switch freely between these two notions when we discuss the grafting
surgery.
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9.1 Defining the grafting surgery

Standard form of simple closed geodesic in uniformizing projective
structure Let us consider the uniformizing development-holonomy pair [A0, ρ0]

with A0 : S̃ → H an isomorphism and Γ = im(ρ0) a Fuchsian group. We recover
a hyperbolic structure X ∈ T (S) on S through the quotient X ' H/Γ.

Let us consider a simple closed geodesic γ with monodromy realized by a hy-
perbolic isometry ρ0(γ). By lemma 7.1 we can find an invariant geodesic of this
isometry in H with fixed points {z1, z2} and z2 > z1 on RP 1. By conjugating
the monodromy ρ0 with a Möbius transformation valued in PSL(2,R) of the
form

z 7→ z − z2

z − z1

we may map the fixed points of this isometry to {0,∞}. This brings the action
of the Deck transformation of γ on X̃ to the form

A0(γ · z) = elγA0(z)

where lγ is the geodesic length of γ.

Let us consider a tubular neighbourhood U ⊃ γ defined by

U := {x ∈ X|dhyp(γ, x) < ε}

We denote by dhyp(γ, x) the hyperbolic distance between the point x and the
geodesic γ. If we pick ε small enough, the neighbourhood U does not contain
any other simple closed geodesic and we may realize U as the domain

U ' {ew ∈ C×| − ε < Re(w) < ε}

for a coordinate w = w(z) of the universal cover Ũ of U

Ũ ' {w ∈ C| − ε < Re(w) < ε}

such that w(γ · z) = w(z) + 2πi.

The projective structure on U induced by the pair (A0, ρ0) is recovered by the
exponential map A0(z) = ielγw/(2πi) for which indeed A0(γ · z) = elγA0(z).

The developing map A0 maps the universal cover Ũ to the set

A0(Ũ) = {s ∈ C× ⊂ CP 1| − lγε

2π
+
π

2
< arg(s) <

lγε

2π
+
π

2
}
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(a) Fundamental domain (b) Copy of U with geodesic

Figure 9.1: Standard form of a projective structure around a hyperbolic isometry

A fundamental domain for the action of the Deck transformation A0(γ · z) =

elγA0(z) on the space A0(Ũ) is sketched in figure 9.1. We call this form the
standard form of the projective structure around the geodesic γ.

Remark 9.1. For the uniformizing projective structure all simple closed geodesics
have hyperbolic isometries as their monodromy. We may therefore bring a
neighbourhood around any simple closed geodesic to the standard form.

Constructing a projective structure on the annulus Let us consider an
annulus A = R × γ with γ diffeomorphic to a circle. We may put a complex
structure on A through the diffeomorphism A ' C× and let z be the correspond-
ing complex coordinate. Let w be a coordinate of the universal cover Ã such
that w(γ · z) = w(z) + 2πi once again. We may define a projective structure on
A through the map w 7→ A(z) = ielγw/(2πi). At this point, the number lγ ∈ R>0

is simply a parameter suggestively denoted by lγ .

This is the same situation as for the uniformizing projective structure. In the
open neighbourhood (−ε, ε) × γ, this projective structure is clearly isomorphic
to the uniformizing projective structure if we let lγ be the length of the geodesic
γ.

Grafting the uniformizing projective structure If we cut open the uni-
formizing projective structure along a geodesic γ with tubular neighbourhood
U , the neighbourhood U splits into two neighbourhoods U1 and U2 around the
two new boundary components which are copies of γ. We may glue the annular
projective structure on [0, t] × γ ⊂ A in a neighbourhood of {0} × γ to the
uniformizing projective structure in the neighbourhood U1.

Since any other neighbourhood of the form (t − ε, t + ε) × γ can be brought
back to the open neighbourhood (−ε, ε)×γ by mapping w 7→ w− t, equivalently
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A(z) 7→ eilγ(t/2π)A(z), we can glue the projective structure in the neighbourhood
of {t} × γ to the uniformizing projective structure in the neighbourhood U2.
This implies that if z is a local coordinate on U1, crossing the annulus to the
neighbourhood U2 maps A(z) 7→ eilγ(t/2π)A(z).

It is important to note that for t large enough, this projective structure covers
itself multiple times. The grafted projective structure is therefore not necessarily
injective! Indeed, if we graft with parameter t ∈ 4π2

lγ
Z, we introduce a copy of

C× ' CP 1\{0,∞} into the image. Furthermore, for these values of t, the
monodromy of the projective structure is preserved under the grafting.

Remark 9.2. Grafting does not necessarily preserve the underlying complex
structure of [A, ρ]. See lemma 9.8.

Extending grafting to the space of measured laminations It is easy to
see that we may extend the definition of grafting along a simple closed geodesic
to grafting along multiple non-intersecting geodesics. We may extend this def-
inition even further to the space of measured laminations ML(S). For our
purposes of classifying opers with real monodromy, we do not need to consider
this space in detail. The important properties of this space are that it can
be given a topological structure and that it is the completion of the space of
multiple non-intersecting geodesics.

Let us introduce the grafting angle θ :=
lγt
2π . We may pick a number of

non-intersecting simple closed geodesics {P1, ..., P3g−3+n} and graft with an-
gles θ1, ..., θ3g−3+n. These parameters determine the Möbius transformations
A(z) → eiθkA(z) when we cross the annulus grafted along γk. A measured
lamination λ ∈ ML(S) of this form, will be written as the formal sum λ =∑3g−3+n
k=1 θkPk.

9.2 Action of grafting on monodromy representation

We have described how the developing map changes by grafting. Additionally,
we have seen that when we cross the annulus grafted along a simple closed
geodesic γ, the developing map changes by A(z)→ eiθA(z).

An insertion of such a transformations implies that we must adjust the mon-
odromy of the uniformizing oper by

Diθ =

(
eiθ/2 0

0 e−iθ/2

)
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or by its inverse whenever we cross γ. The matrix Ds for a given s is a repre-
sentative of the dilatation z 7→ esz in SL(2,C).

There are now two distinct cases to consider: Either cutting along γ separates
the surface X into two subsurfaces X1 and X2 or cutting along γ keeps the
surface connected.

If γ separates the surface X into X1 and X2, we may describe π1(X) in terms
of π1(X1) and π1(X2).

If σ ∈ π1(X1) ∪ π1(X2), the grafted monodromy representation denoted by
ρiθγwill take the form

ρiθγ(σ) =

ρ(σ) if σ ∈ π1(X1)

D−iθρ(σ)Diθ if σ ∈ π1(X2)

All other elements σ ∈ π1(S) can be built from these elements.

If γ is non-separating, we may assume it is embedded in a one-holed torus. A
representation ρ will reduce to a representation of this one-holed torus. If κ
is the curve homotopic to the boundary and η a curve intersecting γ once, we
may define a presentation of the fundamental group of the one-holed torus by
〈γ, η, κ|γηγ−1η−1 = κ〉.

The grafted representation ρiθγ is defined by

ρiθγ(γ) = ρ(γ)

ρiθγ(η) = ρ(η)Diθ

ρiθγ(κ) = ρ(κ)

Since ρ(γ)Diθ = Diθρ(γ), we find ρiθγ(γηγ−1η−1) = ρiθγ(κ) showing that ρiθγ
is also a representation of the one-holed torus. It is straightforward to construct
the grafted representation ρiθγ on the entire surface X from these results.

Reality of the monodromy and real curves The way the monodromy
representation of the oper transforms if we apply the grafting surgery, implies
the following proposition:

Proposition 9.3. If we graft a projective structure along a simple closed geodesic
γ, its monodromy representation is real, i.e. valued in PGL(2,R), up to conju-
gation if and only if θ ∈ πZ≥0. Furthermore
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• If γ is non-separating, the cases θ ∈ 2πZ≥0 lead to representations valued
in PSL(2,R) while for θ ∈ 2πZ≥0 +π we find elements in PGL(2,R) which
do not lie in PSL(2,R).

• If γ is separating, all of the cases θ ∈ πZ≥0 lead to representations valued
in PSL(2,R).

It therefore suffices to consider θ ∈ πZ≥0 if we require the reality of the mon-
odromy of the development-holonomy pair.

9.3 Classifying opers with real monodromy

Surjectivity of the grafting operation The key result encouraging us to
use the grafting procedure, is the following unpublished theorem by Thurston
[87]. See also [88].

Theorem 9.4. The grafting map Gr : T (S)×ML(S)→ P(S) from the space of
marked hyperbolic structures and measured laminations to the space of complex
projective structures over S defines a homeomorphism.

In the statement of this theorem, we have identified T (S) with the image of
the smooth section σ0(T (S)) ⊂ P(S), which associates to each X ∈ T (S) the
uniformizing projective structure.

By theorem 9.4, any element in P(S) may be constructed by grafting a uni-
formizing projective structure. The measured laminations describing projec-
tive structures with real monodromy, are precisely those of the form λ =∑3g−3+n
k=1 mkπPk for a pants decomposition {P1, ..., P3g−3+n} and grafting an-

gles mkπ where we allow mk ∈ Z≥0. See proposition 9.3. Moreover, the con-
struction of opers with real monodromy through the grafting surgery shows
that the image of the monodromy map intersects the space CPSL(2,R)(S) of real
monodromy representations transversally.

We call such measured laminations half-integer measured laminations and de-
note the space of the half-integer measured laminations byML 1

2Z
(S). Grafting

along the half-integer measured lamination λ can be understood as simultane-
ously applying the grafting procedure for simple closed geodesics with angles
mkπ to all the curves Pk. See [46] for the classification of projective structures
with real monodromy.



9.3 Classifying opers with real monodromy 125

Quadratic differentials from measured laminations We will now discuss
the relation between measured laminations and quadratic differentials. This
discussion follows [78]. Our end goal is to classify the quadratic differentials
over a fixed marked Riemann surface X leading to opers with real monodromy.
Recall that by the uniformization theorem, we construct a smooth section σ0 :

T (S) → P(S) of the affine bundle π : P(S) → T (S) which associates to each
X ∈ T (S) the corresponding uniformizing oper. This allows us to describe the
fibres of P(S) as quadratic differentials.

The key result allowing us to relate quadratic differentials and measured lami-
nations is given by the following theorem proved in [93]

Theorem 9.5. For each λ ∈ ML(S) the map grλ : T (S) → T (S), defined by
grλ := π ◦Grλ, is a diffeomorphism.

Since grλ is a diffeomorphism, we may invert it and define a smooth map
σλ(X) := Grλ(gr−1

λ (X)). By definition π(σλ(X)) = X so that σλ defines a
smooth section of π : P(S)→ T (S) for each λ ∈ML(S). There exists a unique
element 0 ∈ ML(S) which leads to a section σ0 associating the uniformizing
projective structure σ0(X) to X. This is compatible with the previous definition
of σ0: The uniformizing oper corresponds to the zero element in the measured
laminations.

By theorem 9.4, there exists a unique pair (gr−1
λ (X), λ) as the inverse image

of Grλ for every oper in the fibre P(X). Therefore, we find a homeomorphism
between the space of quadratic differentials H0(X,K2

X) and the space of mea-
sured laminationsML(S). Let us denote the accessory parameters of the opers
in P(X) obtained by grafting along λ by Eλ.

Corollary 9.6. For every λ ∈ML 1
2Z

(S), there exists a set of accessory param-
eters Eλ defining an oper over X with real monodromy. This oper is obtained
from the projective structure Grλ(gr−1

λ (X)). Conversely, every oper with real
monodromy can be found in this way.

Grafting and real curves By corollary 9.6, the opers with real monodromy
are classified by half-integer measured laminations. To finish the proofs of the-
orem 8.2 and theorem 8.3, we want to clarify the relation between these mea-
sured laminations λ ∈ ML 1

2Z
(S) and the space XR in the real decomposition

of Grλ(gr−1
λ (X)).

If we graft along a simple closed geodesic γ by angle θ = πm0 for m0 ∈ Z≥0,
the projective structure on A defined by A(z) = ielγw/(2πi) becomes real along
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(a) Fundamental domain (b) Real curves on grafted tube

Figure 9.2: Real curves from grafting along a simple closed geodesic

a total of m0 straight lines. Indeed, our domain is bounded by 0 ≤ Re(w) ≤
t = 2πθ

lγ
so these lines are precisely those for which Re(w) = 4π2m

lγ
− 2π2

lγ
and

m = 1, ...,m0. All of these lines map to copies of the curve γ. Since the
developing map of the uniformizing projective structure has image contained in
H, it never becomes real. Therefore, the only real curves that are introduced
by grafting along a simple closed geodesic are the m0 copies of γ. See figure 9.2
for an example where we graft along a simple closed geodesic.

By extending this analysis to λ ∈ML 1
2Z

(S), we learn that for λ =
∑3g−3+n
k=1 mkπPk,

the grafting procedure introduces a total of mk copies of the geodesic Pk in XR.
If µ is the non-self-intersecting multicurve consisting of mk copies of the curves
Pk, we will write µ as the formal sum µ =

∑3g−3+n
k=1 mkPk. This analysis shows

that XR ' µ as submanifolds of X. Conversely, any set of non-self-intersecting
curves up to homotopy on X can be understood as defining the space XR of
some projective structure with real monodromy.

We may write these observations as follows

Proposition 9.7. Let C(S) be the space of non-self-intersecting multicurves µ
up to homotopy. Then the map C(S) → ML 1

2Z
(S) defined by µ 7→ πµ is a

one-to-one correspondence between non-self-intersecting multicurves and opers
with real monodromy having the property that the space XR is homotopic to the
image of the multicurve µ.

If we fix the underlying complex structure X, there can exist only one projective
structure with XR homotopic to the multicurve µ which is precisely the one
given by Grπµ(gr−1

πµ(X)). Therefore, a unique choice of curves {C(ik)
k } with

k = 1, ..., 3g − 3 + n and ik = 1, ...,mk exists such that Grπµ(gr−1
πµ(X)) satisfies

XR =
⊔3g−3+n
k=1

⊔mk
ik=1 C

(ik)
k . This proves theorem 8.3.



9.4 Comparison to the quantization on the four-punctured sphere 127

Figure 9.3: Uniformizing domain of CP 1\{0, z, 1,∞} in standard form

9.4 Comparison to the quantization on the four-punctured
sphere

It is illuminating to clarify the grafting surgery in terms of the example of the
four-punctured sphere we worked out explicitly in section §4. For the four-
punctured sphere, any non-self-intersecting multicurve must be a number of
parallel copies of a simple closed curve. Any other curve on the four-punctured
sphere either has to intersect this simple closed curve or is homotopic to this
curve or to the punctures.

Let us consider λ ∈ R for the four-punctured sphere. If we consider the condi-
tions G21 = 0, H21 = 0 and (GH)21 = 0, the real curves we found, are shown in
figure 4.8. By the classification of opers with real monodromy, we may there-
fore construct the values λk for k ∈ Z by grafting the uniformizing projective
structure with accessory parameter λ0 along the curve surrounding the interval
(0, z) or along the curve surrounding (z, 1).

Indeed, we can see this explicitly by applying a Möbius transformation to fig-
ure 4.6 and bringing it to a more suggestive form. See figure 9.3

Applying the same Möbius transformation to figure 4.5b and figure 4.7a leads
to the pictures in figure 9.4.

It is instructive to compare these pictures to figure 9.2 and conclude that we
have introduced grafting annuli in the developing map.
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(a) Transformation of figure 4.5b (b) Transformation of figure 4.7a

Figure 9.4: Domains of figure 4.5b and figure 4.7a in standard form

Changing the complex structure by grafting Although grafting by angles
which are multiples of 2π preserves the monodromy, we can prove that this
does not preserve the complex structure. More precisely, we will show that if
the monodromy of two opers is equal up to conjugation over the surface X =

CP 1\{0, z, 1,∞}, the accessory parameters of the opers must be equal. This is
a special case of the Riemann-Hilbert correspondence discussed in section §17.
A proof of the following lemma can be found in [50].

Lemma 9.8. Let z ∈ CP 1\{0, 1,∞} not necessarily real and consider two
opers over CP 1\{0, z, 1,∞}. If their monodromy representations are equal up
to conjugation, their accessory parameters must coincide.

Proof. Let κ1 and κ2 be two accessory parameters for opers overX = CP 1\{0, z, 1,∞}
with the same monodromy representation up to conjugation. By our assump-
tion, we may use a basis transformation to bring ~ψ0,+(x, κ1) and ~ψ0,+(x, κ2) to
a form such that their monodromies are precisely equal, not just up to conju-
gation. Let us then consider the combination

V (x) = ψ
(1)
0 (x, κ1)ψ

(2)
0,+(x, κ2)− ψ(1)

0 (x, κ2)ψ
(2)
0,+(x, κ1)

The function V (x) can at most blow up as log(x−∗) or (log(x−∗))2 near each
puncture at x = ∗. Furthermore, it is single-valued at each puncture. The
function V (x) must therefore have an expansion in terms of a Laurent series
around each puncture. However, we know that V (x) can blow up with at most
log-type singularities implying that V (x) is a constant.

For large values of x, the equation (3.5) becomes

x3(1 +O(x−1))(ψλ)′′(x) + 3x2(1 +O(x−1))(ψλ)′(x) + x(1 +O(x−1))ψλ(x) = 0
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This shows that both solutions of the differential equation have the behaviour
x−1(1 +O(x−1)) for large x. Therefore

lim
x→∞

V (x) = 0

Since limx→∞ V (x) = 0, we find V (x) = 0 everywhere. This implies the relation

ψ
(2)
0,+(x, κ1)

ψ
(1)
0 (x, κ1)

= c0(κ1, κ2)
ψ

(2)
0,+(x, κ2)

ψ
(1)
0 (x, κ2)

for some constant c0 depending on κ1 and κ2. From this result, it is easily
checked that {

ψ
(2)
0,+(x, κ1)

ψ
(1)
0 (x, κ1)

, x

}
=

{
ψ

(2)
0,+(x, κ2)

ψ
(1)
0 (x, κ2)

, x

}
Recall that the Wronskian satisfies

W (x, λ) =
W0(λ)

x(x− z)(x− 1)

for W0(λ) independent of x. Since{
ψ

(2)
0,+(x, λ)

ψ
(1)
0 (x, λ)

, x

}
=

1

2x2
+

1

2(x− z)2
+

1

2(x− 1)2
+

z − x+ 1 + 2λ

x(x− z)(x− 1)

we conclude with the equality κ1 = κ2.



130 10 DEHN-THURSTON COORDINATES

10 Dehn-Thurston coordinates

10.1 Introducing Dehn-Thurston coordinates

We denote by C(S) the space of non-self-intersecting multicurves on the topo-
logical surface S up to homotopy. We allow these multicurves to start and end
at punctures or boundary components. It turns out there exists a bijection be-
tween the elements of this set and the so-called Dehn-Thurston parameters. In
this section, we will clarify this statement. We refer to [42] for a clear exposition
on the definition of the Dehn-Thurston coordinates.

To specify the Dehn-Thurston parameters, we first need to introduce a reference
pants decomposition. If our surface is of genus g and has n boundary compo-
nents, this pants decomposition consists of 3g−3+n cutting curves and 2g−2+n

pairs of pants. Let us denote the pants decomposition by {P1, ..., P3g−3+n}.

Let µ ∈ C(S). Then one half of the set of parameters will be defined as
pk = i(µ, Pk), where i : C(S) × C(S) → Z≥0 counts the minimal number of
intersections between representatives of the two elements in C(S). Before we
discuss the other half of the coordinates, we have to understand which multic-
urves can appear on pairs of pants.

Elementary multicurves on a pair of pants Without loss of generality,
we may assume P1, P2 and P3 bound a single pair of pants. We can build up
multicurves on a pair of pants from six simple curves. We call these six curves in
figure 10.1 elementary curves. An elementary curve satisfies the property that
each intersection with the boundary lies in the top half of the pair of pants, i.e.
above the red dotted line in figure 10.1. If a multicurve is built from elementary
curves, we call its form elementary.

The number of intersections between an elementary multicurve µ and the bound-
ary components is enough to specify the elementary multicurve uniquely. The
intersection points must be connected in such a way that the multicurve does
not intersect itself. We may therefore use three parameters (p1, p2, p3) ∈ (Z≥0)3

to classify all elementary multicurves on the pair of pants. These numbers must
satisfy p1+p2+p3 ∈ 2Z since the multicurve must start and end at the boundary
components.
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(a) Curve l12 (b) Curve l13 (c) Curve l23

(d) Curve l11 (e) Curve l22 (f) Curve l33

Figure 10.1: Six elementary curves on the pair of pants

First consider the case pi > pj +pk for given i, j, k all distinct from one another.
It is then impossible to find pj > pi + pk or pk > pi + pj , since this would imply
pk < 0 or pj < 0 respectively. We easily check that the multicurve µ takes the
form

µ =
1

2
(pi − pj − pk)lii + pj lij + pklik

The other case is given by pi ≤ pj + pk for all i, j, k different from each other.
The multicurve µ now takes the form

µ =
1

2
(p1 + p2 − p3)l12 +

1

2
(p1 + p3 − p2)l13 +

1

2
(p2 + p3 − p1)l23

Gluing pairs of pants The other half of the coordinates is introduced when
we glue together two different pairs of pants. Consider a four-holed sphere
obtained by gluing two pairs of pants along a cutting curve P . By cutting along
P , we obtain a boundary component isotopic to P for each pair of pants. Any
multicurve on the four-holed sphere defines a multicurve on each pair of pants.
Without loss of generality, we may assume that the multicurve on one pair of
pants has elementary form. The multicurve on the other pair of pants can be
brought back to elementary form by twisting the boundary curve P .

Consider two pairs of pants on which we have elementary multicurves. If the
multicurves have the same number of intersections along one of the boundary
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Figure 10.2: Twisting for (p, q) = (3, 2)

components, we can glue the pairs of pants together and define a multicurve on
a four-holed sphere. However, before doing so, we may introduce an annulus
which contains a certain amount of twisting. Any multicurve on the four-holed
sphere can be described in this way.

More precisely, if we consider an annulus with p intersection points, we say we
twist by q > 0 if we apply bq/pc Dehn twists to the right and connect the
first intersection point from the left on the inner annulus to the (q mod p)-
th intersection point on the outer annulus, also counted from the left. See
figure 10.2 for an illustrative example.

If q < 0, we apply b−q/pc Dehn twists to the left and connect the first intersec-
tion point on the inner annulus to the (−q mod p)-th intersection point on the
outer annulus, both counted from the right this time! For p = 0, we will always
choose to set q ≥ 0.

Note that due to the canonical ordering requiring the multicurves to start and
end above the red dotted line, there is a unique way to connect these inter-
sections without crossing the red dotted line. We set q = 0 for this untwisted
configuration.

We therefore introduce an additional coordinate qk for each cutting curve Pk
which takes into account the twisting. For our purposes, it suffices to describe
multicurves not intersecting the boundary components of S. By describing all
such multicurves in the way described above, we find the following theorem
originally due to Dehn in the 1920s and rediscovered by Thurston in the 1970s.
Both articles have been published much later in [43, 44].
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Theorem 10.1. The set of integers (p1, ..., p3g−3+n, q1, ..., q3g−3+n) ∈ Z3g−3+n
≥0 ×

Z3g−3+n restricted by pi+pj+pk ∈ 2Z≥0 if Pi∪Pj∪Pk bounds a pair of pants and
qm ≥ 0 if pm = 0 for i, j, k,m = 1, ..., 3g−3 +n is in one to one correspondence
with the set C(S) of non-self-intersecting curves up to homotopy.

Remark 10.2. If our surface has boundary components, we may assume the mul-
ticurves have components intersecting the boundary. We can introduce twisting
along these boundary components in the same way as we twist along cutting
curves. This leads to the set of coordinates

(p3g−3+n+1, ..., p3g−3+2n, q3g−3+n+1, ..., q3g−3+2n)

If we have a puncture on our surface, twisting along the puncture does not
change the multicurve. Therefore, if we wish to change a boundary component
into a puncture, we can simply remove the corresponding twist parameter.

Dehn-Thurston parameters as quantum numbers By theorem 10.1 we
get a classification of non-self-intersecting multicurves on S in terms of Dehn-
Thurston parameters. If we put a hyperbolic structure X ∈ T (S) on the surface
S, we may combine this result with corollary 9.6 to find a classification of opers
on X with real monodromy in terms of the Dehn-Thurston parameters. The
accessory parameters of these opers will be denoted by

E(p,q) = (E1,(p,q), ..., E3g−3+n,(p,q))

In this notation, the uniformizing oper is recovered from the set of accessory
parameters E(0,0).

This leads to a first set of quantum numbers for the opers with real monodromy.

By theorem 3.5 and the fact that each φk(uk, ūk) in the decomposition ΦE(u, ū) =∏3g−3+n
k=1 φk(uk, ūk) satisfies the same oper differential equation, we find a set

of quantum numbers labeling the single-valued solutions Ψ(p,q) := ΨE(p,q)
.

Remark 10.3. Although all single-valued solutions are labeled in this way, not
every function Ψ(p,q) is single-valued! To find the subset of single-valued func-
tions, we have to apply theorem 8.6. This will be done in section §11.
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(a) A-move

(b) S-move

Figure 10.3: Depiction of elementary moves on pants decomposition

10.2 Changing the pants decomposition

The Dehn-Thurston parameters were defined by gluing different pairs of pants
together into the surface S and therefore depend on a pants decomposition of
S. It is natural to ask ourselves how the Dehn-Thurston parameters transform
under a change of pants decomposition. For this purpose, we will note the
following proposition originally proved in the appendix of [94].

Proposition 10.4. Any two pants decompositions of S are related by one an-
other by a finite number of elementary moves.

Although originally proved for closed surfaces, these results have been extended
for punctured surfaces as well. See for example [95].

Furthermore, in [94] it is noted that two elementary moves suffice to generate
all pants decompositions. These moves are named the A- and the S-move. See
figure 10.3.

These two moves only change the pants decomposition in the subsurfaces home-
omorphic to the four-holed sphere or one-holed torus inside S. Therefore, only
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the Dehn-Thurston coordinates associated to these subsurfaces are transformed.
These moves act by piecewise integral linear transformations on the Dehn-
Thurston parameters. Full formulas can be found in the original paper [48].
For a general overview, we also refer to [49].

We will finish this section by giving some examples of calculations we can per-
form using these S- and A-moves.

Example: Torus with one puncture Let us consider the example of the
S-move acting on a once-punctured torus. A pants decomposition is defined
by a single cutting curve so that we may introduce Dehn-Thurston parameters
(p, p0, q) for the number of intersections with the cutting curve, the number
of intersections with the puncture and the number of twists along the cutting
curve respectively. After the S-move, we find a new set of coordinates (p′, p′0, q

′).
We first note that p0 = p′0 ∈ 2Z≥0. The new coordinates can be calculated as
follows

(p′, q′) =



(
p0
2 − p+ |q|,−q

)
if p0 > 2p and p > |q|(

p0
2 − p+ |q|,−sgn(q)p

)
if p0 > 2p and p ≤ |q|(

|q|,−sgn(q)
(
p− p0

2 + |q|
))

if p0 ≤ 2p and p0 > 2|q|

(|q|,−sgn(q)p) if p0 ≤ 2p and p0 ≤ 2|q|

We refer to [42] for a proof of this statement.

From these transformations, we observe

Corollary 10.5. For the one-holed torus, the number of intersections p′ after
the S-move between the new cutting curve and the multicurve, satisfies

p′ =

p0/2− p+ |q| if p0 > 2p

|q| if p0 ≤ 2p

Proof. By noting that the twist around the hole of the one-holed torus can be
localized in a neighbourhood of the boundary, this lemma is an obvious corollary
from the transformation of the Dehn-Thurston parameters under the action of
an S-move on the once-punctured torus.
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Figure 10.4: Two different cutting curves on one-holed torus

Nonetheless, we do not need the full formulas to prove this corollary. Indeed,
we only need to know the expression for p′. We will now give a different proof
that we can easily apply in different cases. We describe a pants decomposition
of the one-holed torus as in figure 10.4.

Proof. On the pair of pants defined by cutting along the curve defining the
coordinate p, there are two possible configurations of multicurves possible.

Case 1. If we let P1 be the boundary of the one-holed torus and identify P2

and P3 in figure 10.4, we define a pants decomposition of the one-
holed torus. For p0 > 2p, we find the multicurve (p02 − p)l11 + pl12 +

pl13. See figure 10.1. Each copy of l11 intersects the orange curve
once. The curves l12 and l13 do not intersect this curve. Additionally,
if we insert an annular neighbourhood around the cutting curve with
a number of twists, we find a total of |q| more intersection points.
We therefore find p′ = p0

2 − p+ |q|.

Case 2. On the other hand, for p0 ≤ 2p, we find the multicurve p0
2 l12 +

p0
2 l13 +(p− p0

2 )l23. None of the curves l12, l13 or l23 intersect the new
cutting curve. All of the intersections are therefore contained in an
annular neighbourhood in which the twisting defining q takes place.
We therefore find p′ = |q|.

Example: Connected components of multicurves on the once-punctured
torus We may conclude the example of the S-move on the once-punctured
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torus by calculating the number of connected components of multicurves on the
once-punctured torus not intersecting the puncture. Such multicurves consist
of a number of parallel copies of a simple closed curve γ.

Let us pick any cutting curve to define a pants decomposition of the once-
punctured torus. Since we set p0 = 0, we may classify the multicurves by two
parameters (p, q) corresponding to the number of intersections p between the
multicurve and the cutting curve, and the amount of twisting q along the cutting
curve.

We first note that Dehn twisting does not change the number of parallel copies of
the multicurve (p, q). Therefore, by Dehn twisting the multicurve, we may bring
it to a multicurve with parameters (p, q1) with the same number of connected
components and 0 < q1 < p.

After applying an S-move, we find a new set of coordinates (p′1, q
′) = (q1,−p).

Once again, we may Dehn twist to bring the curve (q1,−p) to the form (q1, p1)

where 0 < p1 < q1.

If we continue this procedure of S-moves and Dehn twists, we can bring the
curve back to the form (0, Q) for some Q ≥ 0. The algorithm we have defined, is
the same as the Euclidean algorithm determining the greatest common divisor
gcd(p, q) of the integers p and q. We therefore identify Q = gcd(p, q) and
conclude that the curve with Dehn-Thurston parameters (p, q) has a total of
gcd(p, q) connected components.

We may note that any simple closed geodesic intersects the multicurve (0, Q)

a multiple of Q times. Conversely, we can always construct a simple closed
geodesic intersecting the multicurve (0, Q) a total of Q times. We must therefore
set Q = 0 mod 2 according to theorem 8.6.

This is in agreement with 9.3 stating that we may only graft a simple closed
geodesic along angles 2πZ if we want the monodromy of the oper defined from
the grafting to remain valued in PSL(2,R).

Example: Four-punctured sphere Finally, to continue our analysis for the
four-punctured sphere, it will be useful to have the formula of the A-move at
hand. We will only consider multicurves not starting or ending at the punctures.
Such multicurves may be parameterized by two integers (p, q) where p is the
number of intersections with a cutting curve and q the amount of twisting.
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After the A-move, new parameters (p′, q′) are given in a similar fashion as for
the once-punctured torus

(p′, q′) = (2|q|,−sgn(q)p/2)

The validity of this formula can easily be shown by an explicit calculation. For
example, see [42].

Together with the braiding along the cutting curve

(p′, q′) = (p, q +
p

2
)

which squares to a Dehn twist, these transformations generate all of SL(2,Z).
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11 Reducibility of monodromy to PSL(2,R)

11.1 Reducing to a finite number of calculations

We will describe how to produce restrictions on the allowed Dehn-Thurston
coordinates through theorem 8.6. We have introduced the intersection number
i : C(S)× C(S)→ Z≥0 by

i(λ1, λ2) = min
C1,C2

#(C1 ∩ C2)

where C1 and C2 are representatives of λ1 and λ2 respectively. The notation
C1 ∩ C2 should be understood as the set of points in the intersection im(C1) ∩
im(C2) of the images of the multicurves C1 and C2. We minimize this number
over all representatives C1 and C2 of the homotopy classes λ1 and λ2. By
assuming C1 and C2 intersect transversally, we see that i(λ1, λ2) must be finite.
Proposition 1.7 in [91] shows how to algorithmically pick two representatives C1

and C2 minimizing the number #(C1 ∩ C2).

Algebraic intersection number We define a new space C(or.)(S) to denote
the space of elements in C(S) together with an orientation. We may extend the
notion of the intersection number to C(or.)(S). On the other hand, we may also
define the algebraic intersection î : C(or.)(S)× C(or.)(S)→ Z by

î(λ1, λ2) =
∑

x∈C1∩C2

sgn(x)

for C1 and C2 representatives of λ1 and λ2. We define sgn(x) by the right-hand
rule. See figure 11.1.

A priori, one might expect the number produced by î to depend on the repre-
sentatives C1 and C2. By proposition 1.7 in [91], two curves minimize i if and
only if they do not have an embedded bigon as in figure 11.2. However, when
calculating the number of intersections with sign, we see that a bigon does not
change the algebraic intersection number î.

In general, the numbers produced by i and î are different from each other. For
example, consider a bigon as in figure 11.2. If we assume this bigon surrounds a
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(a) Intersection with sign +1 (b) Intersection with sign −1

Figure 11.1: Algebraic intersection numbers of different configurations

Figure 11.2: Bigon with trivial algebraic intersection

boundary component, we cannot in general reduce the number of intersections.
Nonetheless, the algebraic intersection form does not pick up on this boundary
component as it only counts signed intersections. The number of intersections
counted by i must therefore be larger than the number of intersections counted
with sign by î.

For our purposes, it suffices to note that

i(λ1, λ2) = î(λ1, λ2) mod 2

as is easily seen from the definitions.

The algebraic intersection number î turns out to be easier to work with than i,
because of the following well-known result

Proposition 11.1. The algebraic intersection number î(−,−) which counts the
number of intersections of two multicurves with orientation, only depends on the
homology classes of the curves in C(or.)(S).

Proof. Let us consider two oriented multicurves λ1 and λ2 in C(or.)(S). We will
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check that the map î(λ1,−) defines a group homomorphism, i.e. î(λ1, µ1+µ2) =

î(λ1, µ1) + î(λ1, µ2) for µ1 + µ2 the formal sum of the multicurves µ1 and µ2.

Let C1 be a representative of λ1 and D1 and D2 representatives of µ1 and µ2

respectively. Then

î(λ1, µ1 + µ2) =
∑

x∈C1∩(D1∪D2)

sgn(x)

=
∑

x∈(C1∩D1)∪(C1∩D2)

sgn(x)

=
∑

x∈C1∩D1

sgn(x) +
∑

x∈C1∩D2

sgn(x)

= î(λ, µ1) + î(λ, µ2)

Since the fundamental group of a Riemann surface is free of torsion, i.e. has no
elements of finite order, this implies î(λ1,−) factors through to the homology
H1(S,Z). Applying the same argument to λ2 shows that î(λ1, λ2) only depends
on the homology classes [λ1] and [λ2] and defines a bilinear map î : H1(S,Z)×
H1(S,Z)→ Z.

Restrictions in terms of homology basis If S is closed, the homology
H1(S,Z) has a basis {[a1], ..., [ag], [b1], ..., [bg]}. If S has n boundary components,
we can find a basis in terms of cycles {[a1], ..., [ag], [b1], ..., [bg], [B1], ..., [Bn−1]}.
These cycles come from simple closed geodesic curves which can be used as
generators of the presentation

π1(S) = 〈a1, b1, ..., ag, bg, B1, ..., Bn|
g∏
k=1

akbka
−1
k b−1

k = B1...Bn〉

Note that for n > 0, π1(S) ' F2g+n−1 where F2g+n−1 is the free group in
2g + n − 1 generators. We can remove Bn from the presentation by using the
relation

∏g
k=1 akbka

−1
k b−1

k = B1...Bn. In homology this leads to
∑n
k=1[Bk] = 0.

For S closed, we find no such relation on the generators.

We can always choose the generators such that

î([ak], [bl]) = δkl

holds and î([ak], [al]) = î([bk], [bl]) = 0. Furthermore, since the curves {a1, ..., ag, b1, ..., bg}
do not end on the boundary components, we must find î([ak], [Bl] = î([bk], [Bl]) =

0 by the bigon relation. We can extend these relations to all elements of H1(S,Z)
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Figure 11.3: Choice of cycles on genus two surface forming a basis of H1(S,Z)

by linearity. For g = 2 and n = 0, these generators can be chosen as in fig-
ure 11.3.

We can reduce the statement in theorem 8.6 to a finite number of calculations
by noting that

Proposition 11.2. A multicurve µ intersects any other simple closed geodesic
an even number of times if and only if it intersects each element in

{a1, ..., ag, b1, ..., bg, B1, ..., Bn−1}

an even number of times.

Proof. By applying 11.1, we can reduce this to a question in homology classes.
Let µ be a multicurve intersecting elements in

{a1, ..., ag, b1, ..., bg, B1, ..., Bn−1}

an even number of times. We expand as a homology class

[µ] =

g∑
k=1

(
µ(k)
a [ak] + µ

(k)
b [bk]

)
+

n∑
l=1

µ
(l)
B [Bl]

We find

î([µ], [ak]) = −µ(k)
b

î([µ], [bk]) = µ(k)
a
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implying

µ(k)
a = 0 mod 2

µ
(k)
b = 0 mod 2

Since any simple closed geodesic γ projects to an element [γ] in H1(S,Z), it can
also be written as a sum of elements

[γ] =

g∑
k=1

(
γ(k)
a [ak] + γ

(k)
b [bk]

)
+

n∑
l=1

γ
(l)
B [Bl]

We may now calculate

î([µ], [γ]) =

g∑
k=1

(
µ(k)
a γ

(k)
b − µ(k)

b γ(k)
a

)

Since both µ(k)
a = µ

(k)
b = 0 mod 2, we find the result

î([µ], [γ]) = 0 mod 2

for any simple closed geodesic γ. Note that we did not need to assume γ is a
simple closed geodesic. All of the above holds just as well for multicurves γ.

Remark 11.3. For a closed surface S, there exists a reformulation of the above
statements through the Poincaré duality. This duality states that î(−,−) defines
an isomorphism H1(S,Z) ' H1(S,Z). If µ is an element such that î([µ],−) = 0

mod 2, the Poincaré duality implies [µ] = 0 ∈ H1(S,Z2). This is not true for
surfaces with boundary for which the Poincaré duality does not hold in this way.
See [89] for a statement of this kind.

11.2 Restrictions on the Dehn-Thurston coordinates

Invariance under mapping class group action The mapping class group
has a natural action on each multicurve µ ⊂ S by restricting the action of an
element in m ∈ MCG(S) to the multicurve µ. This sends µ 7→ m(µ).

If a multicurve µ intersects any other element in C(S) an even number of times,
acting by m does not change this fact.

Remark 11.4. This can be made more precise by considering the linearization of
the action of the mapping class group. It turns out that the action of MCG(S)

on C(or.)(S) descends to an action on H1(S,Z) preserving î. The mapping class



144 11 REDUCIBILITY OF MONODROMY TO PSL(2,R)

group acts by the group Sp(2g,Z) ⊂ GL(2g,Z) on {[a1], ...[ag], [b1], ..., [bg]} and
trivially on {[B1], ..., [Bn−1]}. If [µ] can be expanded in terms of µ(k)

a , µ
(k)
b ∈ 2Z,

it must remain true that m(µ)
(k)
a ,m(µ)

(k)
b ∈ 2Z. See for example chapter 6 in

[91].

In other words, if B(S) ⊂ C(S) denotes the elements µ ∈ C(S) which intersect
every other multicurve an even number of times, m(µ) ∈ B(S) for every m ∈
MCG(S).

Homeomorphism classes of pants decompositions Given a pants de-
composition and Dehn-Thurston parameters (p,q) with respect to this pants
decomposition, we want to find the subset of parameters corresponding to the
subset B(S). Since this subset is invariant under the mapping class group, the
restrictions on the Dehn-Thurston parameters must also be invariant. As such,
the restrictions will only depend on the homeomorphism classes of the pants
decompositions.

For each surface S, there exists a finite number of such homeomorphism classes
as shown in theorem 16.5. We may calculate the restrictions for each pants
decomposition by picking a single pants decomposition and repeatedly acting
by A- and S-moves. This defines an algorithm which terminates after a finite
number of steps.

Let us finish this section by applying the above discussion to two simple exam-
ples. We will discuss the more complicated example of the genus two surface in
the next section.

Example: Once-punctured torus Let S be the once-punctured torus. There
exists only a single pants decomposition for the once-punctured torus up to
homeomorphism. We have already calculated the space B(S) of multicurves
not intersecting the puncture before and found (p, q) ∈ (2Z)2 as the parameters
defining the subset B(S) ⊂ C(S). We can use the above machinery to reprove
this result, shining some light on the algorithm we use.

The homology H1(S,Z) ' Z2 is generated by two curves a and b defining cy-
cles [a] and [b] such that î([a], [b]) = 1. See figure 10.4. If we pick the pants
decomposition to be defined by a cutting curve homotopic to a, we find that p
describes the number of intersections between a given multicurve µ ∈ C(S) and
a. Therefore, we must set p ∈ 2Z.
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(a) Separating curve P2 (b) Non-separating curve P2

Figure 11.4: Two distinct pants decompositions on S up to homeomorphism

If we apply an S-move, we can make b the cutting curve of the pants decom-
position. In the new parametrization (p′, q′), the number of intersections of
µ ∈ C(S) with b is given by p′. Hence, p′ ∈ 2Z.

The S-move expresses the parameters (p′, q′) in terms of (p, q) by

(p′, q′) = (|q|,−sgn(q)p)

proving q ∈ 2Z. This result may be compared to corollary 10.5.

Example: Sphere with boundary components If we consider S to be a
sphere with n boundary components, the generators of the fundamental group
are given by the set curves {B1, ..., Bn−1}. Therefore, we will find no addi-
tional restrictions on the allowed multicurves and can identify B(S) = C(S). In
this sense, the four-punctured sphere we discussed before is too simple to find
restrictions on the Dehn-Thurston parameters through theorem 8.6.

11.3 Restrictions for the closed surface of genus two

Let us set S to be the closed surface of genus two for the rest of this section.
It is known that up to homeomorphism, S has two pants decompositions. See
theorem 16.5 for a proof. For both we may introduce Dehn-Thurston parame-
ters (p1, p2, p3, q1, q2, q3). We have depicted these two pants decompositions in
figure 11.4. These pants decompositions distinguish themselves by whether the
curve P2 is separating, i.e. cuts S into two one-holed tori, or not.

Multicurves on S along which we may graft and keep the monodromy valued
in PSL(2,R), may be quite complicated. See figure 11.5 for two examples of
such multicurves on S. Both of these multicurves intersect the curves in the set
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Figure 11.5: Two examples of multicurves on the genus two surface

{a1, b1, a2, b2} an even number of times and therefore by 11.2 intersect all other
curves an even number of times.

Let us first consider the pants decomposition in figure 11.4a.

The curves P1 and P3 correspond to the curves a1 and a2 in our chosen basis
from figure 11.3. Therefore, we have to set p1, p3 ∈ 2Z to ensure the multicurve
passes a1 and a2 an even number of times. Note that two copies of the curve
P1 and one copy of P2 bound a pair of paints. Therefore we also know that any
multicurve satisfies p2 ∈ 2Z.

We now wish to classify the restrictions on the Dehn-Thurston parameters com-
ing from the fact that the multicurve must also intersect b1 and b2 an even
number of times. To find the number of intersections of the multicurve with b1
in terms of Dehn-Thurston parameters, we may restrict to the one-holed torus
containing a1 and b1 defined by cutting along P2. We may restrict our dis-
cussion to this one-holed torus with Dehn-Thurston parameters (p1, p2, q1, q2).
The parameters p2 and q2 correspond to the number of intersections with the
boundary component and the amount of twisting of the boundary.

If we act by the S-move, we find p′2 = p2. By 10.5, the S-move sets

p′1 =

p2/2− p1 + |q1| if p2 > 2p1

|q1| if p2 ≤ 2p1

The number p′1 counts the number of intersections between the multicurve and
b1. We must therefore set p′1 ∈ 2Z. This implies p2/2 + q1 ∈ 2Z if p2 > 2p1 and
q1 ∈ 2Z if p2 ≤ 2p1. Therefore,

q1 ∈

2Z if p2 ≤ 2p1

2Z + p2
2 if p2 > 2p1
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Figure 11.6: Pants decomposition including cycles in the homology basis
H1(S,Z)

Applying the same argument to the one-holed torus containing a2 and b2, we
find

q3 ∈

2Z if p2 ≤ 2p3

2Z + p2
2 if p2 > 2p3

Let us now consider the other pair of pants decomposition figure 11.4b.

As before, we introduce Dehn-Thurston coordinates (p1, p2, p3, q1, q2, q3) classi-
fying non-self-intersecting multicurves with respect to the pants decomposition
{P1, P2, P3}. The curves P1 and P3 coincide with a1 and a2 again, implying
that p1, p3 ∈ 2Z. Since the curves {P1, P2, P3} define the cutting curves of a
pair of pants, we immediately find p1 + p2 + p3 ∈ 2Z. This implies p2 ∈ 2Z as
well.

We now have to find restrictions on the Dehn-Thurston parameters following
from the even number of intersections of the multicurve with the curves b1 and
b2. Let us cut along the curves P1 and P3 to obtain a four-holed sphere. The
pair of pants decomposition then takes the form as in figure 11.6, where we
included the b1 and b2 curves.

We will first calculate the number of intersections between our multicurve and
the curve b1. There are two distinct cases: Either p3 > p1 + p2 or p3 ≤ p1 + p2.

Consider the first case. Comparing to the elementary curves in figure 10.1, we
find a total of 1

2 (p3−p2−p1) curves intersecting b1 on the left pair of pants and
1
2 (p3 − p2 − p1) on the right. In total, there are p3 − p2 − p1 ∈ 2Z intersections
with the b1 curve.
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In the second case, there are no intersections between the b1 curve and the
multicurve.

Gluing the pairs of pants together and twisting introduces the q2 coordinate.
This leads to a total of |q2| additional intersections between the multicurve and
b1. Twisting along P1 introduces an additional |q1| intersections.

Adding all of this together, the number of intersections between the multicurve
and b1 is given by p3 − p2 − p1 + |q1| + |q2|. Therefore, an even number of
intersections between the multicurves and b1, implies q1 + q2 ∈ 2Z.

Similarly, we can show that an even number of intersections with b2 implies
q2 + q3 ∈ 2Z. We conclude q1, q3 ∈ q2 + 2Z.

Putting everything together, we may state the following theorem

Theorem 11.5. If S is a closed surface of genus two, up to homeomorphism
there are two distinct pants decompositions as in figure 11.4. Consider Dehn-
Thurston parameters (p1, p2, p3, q1, q2, q3) for these pants decompositions. The
elements in B(S) are in one-to-one correspondence to the sets of parameters
satisfying the following constraints:

• Consider the pants decomposition as in figure 11.4a. Then (p1, p2, p3) ∈
(2Z)3 and

q1 ∈

2Z if p2 ≤ 2p1

2Z + p2
2 if p2 > 2p1

and

q3 ∈

2Z if p2 ≤ 2p3

2Z + p2
2 if p2 > 2p3

• Consider the pants decomposition as in figure 11.4b. Then (p1, p2, p3) ∈
(2Z)3 and q1, q3 ∈ q2 + 2Z

Remark 11.6. The multicurve on the left of figure 11.5 has Dehn-Thurston pa-
rameters (2, 2, 2, 0, 0, 0) for both pants decompositions. On the other hand, the
multicurve on the right of figure 11.5 is specified by the parameters (0, 2, 2, 1, 0, 0)

and (0, 2, 2, 1, 1, 1) with respect to the pants decompositions in figure 11.4a and
figure 11.4b respectively. Both of these multicurves satisfy the restrictions from
theorem 11.5, proving that grafting along them indeed leads to a projective
structure with monodromy in PSL(2,R).
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Extension to general surfaces The pants decomposition in figure 11.4a
can easily be generalized for a closed surface S of genus g > 2. With respect to
this pants decomposition {P1, ..., P3g−3}, we introduce Dehn-Thurston param-
eters (p1, ..., p3g−3, q1, ..., q3g−3). Let us denote by {P1, ..., Pg} the curves such
that cutting along them leads to a sphere with 2g boundary components and
by Pg+1, ..., P2g the curves that bound P1, ..., Pg in a one-holed torus respec-
tively. Since we only need to calculate the restrictions coming from the curves
{a1, ..., ag, b1, ..., bg} as we did in the case of g = 2, we immediately find the
restrictions

(p1, ..., p3g−3) ∈ (2Z)3g−3

and

qk ∈

2Z if pk+g ≤ 2pk

2Z +
pk+g

2 if pk+g > 2pk

for k = 1, ..., g.

Any set of parameters satisfying these restrictions, defines an element in B(S).

Since the number of pants decompositions of a (not necessarily closed) surface
is finite, we may construct the restrictions with respect to any other pants
decompositions by repeatedly acting with the A- and S-moves.

We can introduce n boundary components by adding the parameters

(p3g−3+1, ..., p3g−3+n, q3g−3+1, ..., q3g−3+n)

to the Dehn-Thurston parameters for a closed surface of genus g. If we assume
the multicurves do not start or and at boundary components, adding these
parameters does not affect the result. Therefore, the restrictions we found are
also valid if we introduce n boundary components in S and we may compute
the restrictions with respect to any pants decomposition once again by applying
a finite number of A- and S-moves.
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Part IV

Quantization from the Yang-Yang
functional

In this part our goal is to relate the Dehn-Thurston parameters (p,q), in-
terpreted as quantum numbers for the classification of single-valued solutions
Ψ(p,q), to another set of parameters (n,m) called the Bethe quantum numbers
with n = (n1, ..., n3g−3+n) and m = (m1, ...,m3g−3+n). This will allow us to
express the quantization conditions in terms of a Yang-Yang function Y(a, t),
resembling the way it was originally introduced by Yang and Yang in [17]. This
function depends on the complex moduli t and parameters a = (a1, ..., a3g−3+n)

parametrizing, up to conjugation, the monodromies associated to the cutting
curves of a pair of pants. The function Y(a, t) explicitly depends on a choice of
pants decomposition of our surface S.

The parameters a are defined through the complexification of a set of real coor-
dinates (l,k) on T (S) known as Fenchel-Nielsen coordinates. On the character
variety CPSL(2,C)(S) which contains T (S), we can introduce a set of coordinates
known as the trace coordinates. It turns out that the Fenchel-Nielsen coordi-
nates depend in a real analytical way on the trace coordinates restricted to the
Teichmüller locus T (S). The discussion on trace coordinates and their relation
to Fenchel-Nielsen coordinates mostly follows [86].

The monodromy of opers in a fibre P(X) of the bundle P(S)→ T (S) depends
on the accessory parameters E. Both spaces P(S) and CPSL(2,C)(S) admit a
natural complex structure. It was originally shown in [96] that the monodromy
map P(S)→ CPSL(2,C)(S) is locally homeomorphic and later in [97, 98] that this
map is in fact locally biholomorphic. We may therefore describe the complexified
Fenchel-Nielsen coordinates over a fixed Riemann surface (at least locally) by
analytically continuing with respect to the accessory parameters E. This was
also noted in [20].

On top of being locally biholomorphic, the map P(S) → CPSL(2,C)(S) relates
two different symplectic structures with Darboux coordinates (t,E) and (l,k)

[99, 100, 101]. Therefore, a generating function W(a, t) must exist for these
different sets of Darboux coordinates. The function W(a, t) can be understood
geometrically as the generating function for the Lagrangian variety of opers. It
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had been observed before in [18] using the AGT-duality and in parallel in [19]
that the Yang-Yang functional Y(a, t) must be closely related to the generating
function W(a, t).

The precise relation between the generating function W(a, t) and the quanti-
zation condition of single-valuedness of the solution ΨE was clarified in [20].
Indeed, this shows that we may also realize the generating function as a Yang-
Yang function Y(a, t), but for a different quantization condition than originally
considered in [14] and used in [18].

We will consider the example of the four-punctured sphere in which we can
derive some results directly through the comparison with the results from [50]
and clarify the meaning of the integers (n,m) in this context.

Motivated by the example of the four-punctured sphere, we conjecture the fol-
lowing

Conjecture. Let a possibly punctured Riemann surface X ∈ T (S) be given.
There exists a path η(p,q) : [0, 1]→ P(X) for each set of parameters (p,q) such
that

η(p,q)(0) = E(0,0) η(p,q)(1) = E(p,q)

and analytical continuation of (l,k) along these paths, implies

Re(ar(η(p,q)(1))) = πpr

Re

(
∂Y(a(η(p,q)(1)), t)

∂ar

)
= πqr

Afterwards we return to the physical side of the story. We use the Dehn-
Thurston parametrization of the single-valued eigenfunctions Ψ(p,q) to give evi-
dence for a direct relation between single-valued eigenfunctions Ψ(p,q) and loop
operators L(p,q). The restrictions obtained through theorem 8.6 have an inter-
esting counterpart in physics relating to the mutual locality of the loop opera-
tors.

The above conjecture identifies the Dehn-Thurston parameters of the single-
valued eigenfunctions Ψ(p,q) with the Bethe quantum numbers (n,m). We will
also discuss the interpretation of this result from a physical point of view.



152

Finally, we discuss some possible future directions and interesting topics that
could be studied from the perspective we have set up in this thesis.
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12 Geometry of the character variety

12.1 Character variety and trace coordinates

For the topics discussed in this section, we will mainly follow the exposition in
[86].

There exists a natural set of coordinates on the character variety CSL(2,C)(S)

defined through the traces tr(ρ(γ)) of the representations ρ ∈ CSL(2,C)(S) acting
on an element γ ∈ π1(S). Using the isomorphism SL(2,C)/Z2 ' PSL(2,C), we
may relate the character varieties CSL(2,C)(S) and CPSL(2,C)(S) to each other.

Although a priori it might seem we need an infinite number of traces to describe
the character variety, it should be noted that for X,Y ∈ SL(2,C) the following
trace relation holds

tr(XY ) + tr(XY −1) = tr(X)tr(Y )

By using this relation, we may reduce the trace of any word with multiple
occurrences of some elements to a polynomial in traces of words with only a
single occurrence of these elements.

Character variety of pair of pants Let S be a pair of pants. The fundamen-
tal group of the pair of pants has a presentation of the form 〈γ1, γ2, γ3|γ1γ2γ3 =

1〉, which is isomorphic to the free group in two generators. Using the trace
relation, we may describe CSL(2,C)(S) ' C[L1, L2, L3] where Lk = tr(ρ(γk)),
k = 1, 2, 3. By requiring the monodromies to be non-elliptic, we set |Lk| ≥ 2.

To describe the real components of CPSL(2,C)(S), we may pick without loss of
generality a representation such that L1 ≥ 2 and L2 ≥ 2. We now either find
L3 ≥ 2 or L3 ≤ −2. Only in the latter case do we find Fuchsian representations
of the pair of pants.

Character variety of four-holed sphere Let S be the four-holed sphere.
The fundamental group of the four-holed sphere has a presentation of the form
〈γ1, γ2, γ3, γ4|γ1γ2γ3γ4 = 1〉. This group is isomorphic to the free group in three
generators. We find more relations than the trace relation alone. Let us set
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Figure 12.1: Curves γs and γt on a four-holed sphere

Lk = tr(ρ(γk)), k = 1, 2, 3, 4 and γs = γ1γ2, γt = γ1γ3, γu = γ2γ3 such that

Ls = tr(ρ(γs))

Lt = tr(ρ(γt))

Lu = tr(ρ(γu))

See figure 12.1 for the configurations of the curves γs and γt on the four-holed
sphere.

We find a relation of the form

P (Ls, Lt, Lu) = 0

where

P (Ls, Lt, Lu) = LsLtLu+L2
s+L2

t +L2
u−(L1L2 +L3L4)Ls−(L1L3 +L2L4)Lt

− (L1L4 + L2L3)Lu + L1L2L3L4 + L2
1 + L2

2 + L2
3 + L2

4 (12.1)

This gives the character variety of the four-holed sphere the algebraic structure

CSL(2,C)(S) ' C[L1, L2, L3, L4, Ls, Lt, Lu]/P

Character variety of one-holed torus Let S be the one-holed torus. The
fundamental group of the one-holed torus has a presentation of the form 〈γa, γb, γK |γK =

γaγbγ
−1
a γ−1

b 〉. The curves γa and γb go around the two cycles of the torus while
γK surrounds the boundary.
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Figure 12.2: Curves γa and γb on a one-holed torus

We set

Lx = tr(ρ(γa))

Ly = tr(ρ(γb))

Lz = tr(ρ(γaγb))

LK = tr(ρ(γK))

See figure 12.2 for the configuration of curves γa and γb on the one-holed torus.

As in the case of the four-holed sphere, we find a polynomial equation relating
the different trace coordinates. For the one-holed torus, this equation takes the
form

P (Lx, Ly, Lz) = L2
x + L2

y + L2
z − LxLyLz − 2− LK (12.2)

This gives CSL(2,C)(S) the algebraic structure

CSL(2,C)(S) ' C[Lx, Ly, Lz, LK ]/P

12.2 Fenchel-Nielsen coordinates

Introducing Fenchel-Nielsen coordinates Given a surface S, the Teich-
müller space is embedded in CPSL(2,R)(S) as the connected component contain-
ing the Fuchsian representations. There exists a set of coordinates on Teich-
müller space called the Fenchel-Nielsen coordinates. For a full discussion we
refer to section 3.2 in [90].

To define the Fenchel-Nielsen coordinates, we need a pants decomposition of S.
A surface of genus g and with n boundary components has a pants decomposition
into 2g − 2 + n pairs of pants along a total of 3g − 3 + n cutting curves.
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Figure 12.3: Pair of pants with perpendicular curves between the boundaries

We define one part of the coordinates as the hyperbolic lengths of the geodesics
associated to the boundaries of the pairs of pants. If the traces of the boundary
monodromies are given by Lr for r = 1, ..., 3g − 3 + n, the hyperbolic lengths
are defined as

Lr = 2 cosh(lr/2)

See for example subsection 7.1.

Since dimR(T (S)) = 6g − 6 + 2n, we need to add another 3g − 3 + n real
coordinates to complete the set of Fenchel-Nielsen coordinates.

For a pair of pants, fixing the lengths of boundary geodesics fixes the monodromy
representation up to conjugation uniquely. Between any two non-intersecting
geodesics, we can always find a unique geodesic intersecting both geodesics
perpendicularly. We define the distance between the non-intersecting geodesics
as the length of this unique geodesic between the intersection points. Fixing the
boundary lengths therefore fixes all of the geodesics as in figure 12.3.

By cutting open the pair of pants along the geodesics, we end up with two
hexagons. We have drawn one copy in figure 12.4.

We may summarize these statements as follows

Proposition 12.1. Let the geodesic lengths (lα, lβ , lγ) ∈ R3
≥0 of the boundary

geodesics α, β and γ of a pair of pants be given. We can construct a hexagonal
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Figure 12.4: Copy of a hexagon obtained by cutting a pair of pants into simply-
connected domains

tiling of H by cutting along the perpendicular geodesics as above. Once we fix
the boundary lengths, the hexagon is specified uniquely.

For a proof, see theorem 3.4 in [90].

Remark 12.2. If the geodesic length goes to zero, the monodromy around the
boundary is parabolic and we replace the boundary component by a puncture.
When the geodesic length is strictly positive, the boundary components develop
to geodesics that do not intersect each other.

The perpendicular geodesics give a natural way to glue two pairs of pants to-
gether, namely in such a way that the perpendicular geodesics fit together pre-
cisely to form a geodesic on the four-holed sphere. Let us start from a cut-
ting curve γ with geodesic length lγ . We may always bring the developing
map to a form where analytical continuation along the cutting curve acts by
A(γ · z) = elγA(z) for z a coordinate of X. This is the standard form we
introduced when discussing the grafting operation.

We cut open the surface along the geodesic, multiply the coordinate on one side
of the geodesic by ekγ and reglue. The coordinate kγ defined in this way, is
called the twisting coordinate because one may imagine this surgery as cutting
open the surface, rotating one boundary component by an angle of 2πkγ/lγ

and regluing. By attaching twist coordinates kr for r = 1, ..., 3g − 3 + n to
each of the 3g − 3 + n cutting curves, we find coordinates (l,k) on T (S) with
l = (l1, ..., l3g−3+n) and k = (k1, ..., k3g−3+n) realizing Teichmüller space as the
domain

T (S) ' (R>0)3g−3+n × R3g−3+n

This set of coordinates is known as the set of Fenchel-Nielsen coordinates.
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Furthermore, these coordinates turn out to form a set of Darboux coordinates for
the Weil-Petersson symplectic structure on T (S) as was shown in [102, 103, 104].
In particular, since the Weil-Petersson symplectic structure is defined without
any reference to a pants decomposition, we find that the equality

ωWP =

3g−3+n∑
r=1

dlr ∧ dkr

is actually independent of the choice of pants decomposition.

12.3 Analytically continuing Fenchel-Nielsen coordinates

Relating trace coordinates and Fenchel-Nielsen coordinates By the
definition of the Fenchel-Nielsen coordinates and the fact that the Teichmüller
space T (S) defines a connected component of CPSL(2,R)(S), we expect a relation
between trace coordinates and the Fenchel-Nielsen coordinates. For simplicity
we will only describe this relation explicitly for the one-holed torus. This ex-
position follows section 4.5 from [86]. formulas relating trace coordinates and
Fenchel-Nielsen coordinates can also be found in [105, 20].

Let us define a pants decomposition by cutting along the curve γa. See fig-
ure 12.2 for the configuration of curves. For the one-holed torus, we find one
length coordinate l and one twist coordinate k.

By conjugation, we may always assume

ρ(γa) =

(
el/2 0

0 e−l/2

)

is diagonal. The length coordinate l is the length of the geodesic γa.

Now
Lx = 2 cosh(l/2) (12.3)

defines the trace coordinate Lx in terms of the hyperbolic length l.

The geodesic γa maps to a geodesic in H running between the fixed points {0,∞}
in the upper-half plane. If we normalize the twist coordinate k = 0 such that
the geodesic of ρ(γb) is orthogonal to ρ(γa), we must make sure γb lifts to a
geodesic in H with fixed points {−s, s} for some s ∈ R>0. By scaling, we may
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always assume s = 1. This implies we must set

ρ(γb) =

(
cosh(µ/2) sinh(µ/2)

sinh(µ/2) cosh(µ/2)

)

Twisting defines a new representation ρkγa such that ρkγa(γb) is related to ρ(γb)

by
ρkγa(γb) = ρ(γb)Dk

where Dk is the dilatation operator representing z 7→ ekz in SL(2,C) as defined
in subsection 9.2.

In terms of the parameters µ and k we find

tr(ρkγa(γb)) = Ly

= 2 cosh(µ/2) cosh(k/2)

Similarly,
Lz = 2 cosh(µ/2) cosh((l + k)/2)

The relation P (Lx, Ly, Lz) = 0 with P (Lx, Ly, Lz) defined by equation (12.2)
implies we can express cosh(µ/2) in terms of the boundary trace LK and the
hyperbolic length l. After substituting cosh(µ/2), we end up with the equations

Ly
√
L2
x − 4 = 2

√
L2
x − LK + 2 cosh(k/2) (12.4)

Lz
√
L2
x − 4 = 2

√
L2
x − LK + 2 cosh((l + k)/2) (12.5)

We assume Lx > 0 and Ly > 0 for these equations to hold. Changing the sign of
these quantities simply amounts to changing the above equations accordingly.

We can compute the Fenchel-Nielsen coordinates for the four-holed sphere in a
similar way. If we consider the curve γs to be the cutting curve for our pants
decomposition, we find the following set of relations

Ls = 2 cosh(l/2) (12.6)

Lt(L
2
s − 4) = 2(L2L3 + L1L4) + Ls(L1L3 + L2L4)

+2 cosh(k)
√
c12(Ls)c34(Ls) (12.7)

Lu(L2
s − 4) = Ls(L2L3 + L1L4) + 2(L1L3 + L2L4)

+2 cosh(l/2 + k)
√
c12(Ls)c34(Ls) (12.8)

where cij(Ls) = L2
i + L2

j + L2
s + LiLjLs − 4. For these equations to hold, we

assume Ls > 0, Lt > 0 and Lu > 0.
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Fenchel-Nielsen coordinates as functions of the accessory parameters
We may invert equation (12.3) and equation (12.4) to express the Fenchel-
Nielsen coordinates (l, k) as a function of the trace coordinates by

l = 2 arccosh(Lx/2)

k = 2 arccosh

(
Ly
2

√
L2
x − 4√

L2
x − LK + 2

)

The Fenchel-Nielsen coordinates are analytical functions of Lx everywhere out-
side of the points where | cosh(l/2)| = 1 or | cosh(k/2)| = 1.

Similarly, for the four-holed sphere, the non-analytical behaviour appears for
| cosh(l/2)| = 1 and | cosh(k)| = 1.

Therefore, we can extend the definition of the Fenchel-Nielsen coordinates an-
alytically as a function of the trace coordinates away from these loci. We call
these coordinates the complexified Fenchel-Nielsen coordinates.

As we stated in the introduction to Part IV, the monodromy map P(S) →
CPSL(2,C)(S) has been shown to be locally homeomorphic in [96] and later to be
locally biholomorphic in [97, 98]. This implies that we may describe the trace
coordinates themselves as analytical functions of the accesory parameters E and
the complex moduli t. The space of opers P(X) over a fixed point X ∈ T (S) is
defined by fixing t, so that the complexified Fenchel-Nielsen coordinates depend
analytically on the accessory parameters E away from the non-analytical loci
described above.

Since the functions (l(E),k(E)) are not analytical everywhere, different paths
between the same points in the space of accessory parameters may lead to
different values of the complexified Fenchel-Nielsen coordinates. If we wish to
make sense of the complexified Fenchel-Nielsen coordinates, we must therefore
pick a path to analytically continue along.
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13 Quantization and Fenchel-Nielsen coordinates

13.1 Real representations in terms of Fenchel-Nielsen co-
ordinates

Let a monodromy representation ρ ∈ CSL(2,C)(S) of an oper be given. This
representation defines a representation in CPSL(2,C)(S) which is real if and only if
for each simple closed curve γ ∈ π1(S), the image ρ(γ) maps to an element which
is completely real or completely imaginary. The real and imaginary matrices
project to elements in PGL(2,R) with determinant +1 and −1 respectively.

We may describe this reality property more concretely in terms of Fenchel-
Nielsen coordinates. Let us therefore introduce a pair of pants decomposition
on the surface X with cutting curves {P1, ..., P3g−3+n} and associate Fenchel-
Nielsen coordinates (lr, kr) to each cutting curve Pr. Using equation (12.3) to
equation (12.8), depending on whether Pr bounds a four-holed sphere or one-
holed torus, we may express the trace coordinates away from the Teichmüller
locus in terms of complexified Fenchel-Nielsen coordinates.

The reality of the monodromy ρ implies the following statement from [20].

Theorem 13.1. For each single-valued eigenfunction Ψ(p,q) to the quantized
Hitchin Hamiltonians, there exist tuples of integers n = (n1, ..., n3g−3+n) and
m = (m1, ...,m3g−3+n) such that analytically continuing the Fenchel-Nielsen
coordinates away from the uniformizing projective structure to the oper with
accessory parameters E(p,q) implies

Im(l(E(p,q))) = πn

Im(k(E(p,q))) = πm

Remark 13.2. The integers (n,m) could in principle depend on the precise
analytical continuation of the complexified Fenchel-Nielsen coordinates in E.

Remark 13.3. We have chosen to normalize the integers (n,m) differently from
[20]. In this normalization, it is clear that some integers can never appear as
coming from single-valued eigenfunctions. For example, the integers nr must
always be even in our case.

It is important to mention that it could be possible for cosh(lr/2) to become
real even if Im(lr) is not an integer multiple of π. This could lead to an off-set of
the integers n. Although we would expect the same classification result to hold
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with this off-set, this situation does not appear for the case of the four-punctured
sphere with real punctures.

13.2 Quantization conditions and the generating function

From the discussion in the introduction to Part IV, we know that the mon-
odromy map P(S)→ CSL(2,C)(S) is locally biholomorphic and relates the holo-
morphic symplectic structures ωWP and Ω, defined in subsections 7.4 and 12.2,
by

−4πiΩ = ωWP

See [99, 100, 101]. The fact that (t,E) are Darboux coordinates for Ω and (l,k)

for ωWP , implies the existence of a generating function W(l, t) satisfying

−4πi
∂

∂lr
W(l, t) = kr(l, t)

∂

∂tr
W(l, t) = Er(l, t)

Remark 13.4. The space of opers P(X) over a fixed point X ∈ T (S) is defined
by fixing t. Varying only l and defining k by the above equation, the generating
function W(l, t) generates the Lagrangian subspace P(X) in P(S).

The quantization conditions may be rewritten as

Re(ar) = πnr

Re

(
4πi

∂

∂ar
W(a, t)

)
= πmr

where we have set a = il. If we also set Y = 4πiW, we can express these
relations as

Re(ar) = πnr (13.1)

Re

(
∂Y(a, t)

∂ar

)
= πmr (13.2)

The parameters a behave as the auxiliary parameters of the Yang-Yang function
Y.

This relation between the Yang-Yang function for the quantization conditions
of the SL(2,C)-Gaudin model and the generating function of opers has been
observed before in [19]. In parallel, it was proposed in [18] that the quantization
conditions for the Hitchin system are naturally formulated in terms of W.
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If we denote by a(n,m) for fixed t a solution to equation (13.1) and equa-
tion (13.2), we can express

Er,(n,m) =
∂W(a(n,m), t)

∂tr
(13.3)

Remark 13.5. There is no guarantee that the solutions a(n,m) are unique. In
principle, it could be possible that multiple solutions Ψ(p,q) lead to the same
set of quantum numbers (n,m).

In light of remark 13.5, we will look for a way to define the analytical contin-
uation of (l,k) such that the solutions are unique. In this case, we must find
E(n,m) = E(p,q) by the definition of Ψ(p,q).

If we find a unique solution a(n,m) for each (n,m), we are able to describe all
quantization conditions in terms of equation (13.1) and equation (13.2), but it
remains a question which sets of integers (n,m) actually appear as quantum
numbers for single-valued eigenfunctions Ψ(p,q).

Nonetheless, we remark that if a one-to-one-correspondence between the Dehn-
Thurston parameters (p,q) and a subset of the Bethe quantum numbers (n,m)

does indeed exist, we find restrictions on the allowed integers (n,m) through
theorem 10.1 and theorem 8.6.

13.3 Relation between grafting and the twist coordinate

We can already give a partial answer to the question of how to relate the param-
eters (p,q) and the integers (n,m). By comparing the description of grafting
to the twisting used to define the coordinates k, we see that grafting can be
understood as a twisting along the imaginary axis.

To make this more precise, let us denote byMLH(S) the space

MLH(S) = {(s, λ) ∈ H ×ML(S)|(ts, λ) ∼ (s, tλ) for t ∈ R>0}

for H = {z ∈ C|Im(z) ≥ 0} and byMLR(S) the space

MLR(S) = {(s, λ) ∈ R×ML(S)|(ts, λ) ∼ (s, tλ) for t ∈ R>0}

We have the inclusions

ML(S) ⊂MLR(S) ⊂MLH(S)
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Recall the notation Grλ(X) for the grafted projective structure constructed
from the pair (λ,X) ∈ ML(S) × T (S). If we denote by Twλ(X) the twisted
projective structure, it is constructed from a pair (λ,X) ∈ MLR(S) × T (S),
since we may twist both clockwise and counter clockwise we have to pick a
measured lamination λ valued in MLR(S) instead of ML(S). The twisting
map Twλ gives rise to a map twλ : T (S) → T (S) by concatenation with the
projection P(S)→ T (S).

We may define for λ ∈ MLH(S) the map Eqλ(X) := GrIm(λ)(twRe(λ)(X)).
Proposition 2.6 from [51] clarifies the interaction between grafting and twisting:

Theorem 13.6. The map Eqtλ(X) varies holomorphically with respect to t ∈
H.

It is important to note that by holomorphicity, this result is independent of the
path we pick in H to arrive at the result. The imaginary component of the twist
coordinates kr may therefore be understood as the grafting angle, while the real
part of kr corresponds to the twisting angle.

Expression in terms of quantization conditions Let us pick a pants
decomposition and define Dehn-Thurston parameters (p,q) and the Fenchel-
Nielsen coordinates (l,k). Let us graft along a multicurve µ with Dehn-Thurston
parameters (0,q). Then theorem 13.6 implies that any path η(0,q) : [0, 1] →
P(X) starting at E(0,0) and ending at E(0,q) must satisfy

Im(k(η(0,q)(1))) = πq

More concretely, we may pick the path path Grtπµ(gr−1
tπµ(X)) for t ∈ [0, 1]

which goes from E(0,0) to E(0,q) and satisfies Im(k(E(0,q))) = πq. Additionally,
we know that the grafting procedure Grtπµ(X) does not affect the hyperbolic
lengths of the components of the multi curve µ. This means that changing the
underlying complex structure from X to gr−1

tπµ(X) can only change the real part
of the hyperbolic lengths l. We may therefore conclude that

Im(l(E(0,q))) = 0

along this path and identify the parameter (0,q) with the integers (0,m) for
this special case.

It should be noted that Grtπµ(gr−1
tπµ(X)) is only a single path for which Im(l(E(0,q))) =

0. Many other paths η(0,q) with this property exist.
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14 Revisiting the four-punctured sphere

The four-punctured sphere provides a hands-on example for which we can put
the mathematical machinery developed in this thesis in practice. We will prove a
special, but non-trivial case of the conjecture formulated before, relating Dehn-
Thurston parameters to the set of Bethe quantum numbers.

14.1 Fenchel-Nielsen coordinates and the accessory pa-
rameter

Let us consider a monodromy representation ρ ∈ CPSL(2,C)(S) for S the four-
punctured sphere. If we require the boundary components to be punctures, we
have to set Lk = 2 for k = 1, ..., 4 in equation (12.6) to equation (12.8). This
simplifies the equations considerably to

Ls = 2 cosh(l/2)

Lt(Ls − 2) = 8 + 2 cosh(k)(Ls + 2)

Lu(Ls − 2) = 8 + 2 cosh(k + l/2)(Ls + 2)

if Ls 6= −2.

We may rewrite this relation as

cosh(k) =
Lt
2

Ls − 2

Ls + 2
− 4

Ls + 2

Let us now specialize to the four-punctured sphere with real punctures. In
this case, we may rewrite the above relations in terms of G21(λ), H21(λ) and
(GH)21(λ) introduced in section §4 and which are all analytical functions of the
accessory parameter λ. Let us for simplicity set det(G) = det(H) = −1 as is
possible by remark 5.6. We may then note

Lemma 14.1. The Fenchel-Nielsen coordinates (l, k) with respect to a pants
decomposition defined by cutting along γs, may be expressed as a function of the
accessory parameter λ in the form

cosh(l/2) = −1 + 2π2(G21(λ))2

cosh(k) = 1− 2

(
(GH)21(λ)

G21(λ)

)2



166 14 REVISITING THE FOUR-PUNCTURED SPHERE

Proof. The expression for cosh(l/2) follows immediately by comparing with
equation (12.6) and the formulas for the trace coordinates in section §4. The
second equation follows from equation (12.7) and equation (4.1). Indeed,

cosh(k) = −1 + 2π2(H21)2 − 2

(
H21

G21

)2

Using equation (4.1), we rewrite

(H21)2 =
((GH)21)2 − (G21)2

1− π2(G21)2

A simple calculation shows

−1 + 2π2(H21)2 − 2

(
H21

G21

)2

= 1− 2

(
(GH)21

G21

)2

proving the result.

The change of sign with respect to the equations in section §4 comes from the
fact that we assumed Ls and Lt to be positive when defining the Fenchel-Nielsen
coordinates of the four-holed sphere.

The Fenchel-Nielsen coordinates are analytical away from the loci | cosh(l/2)| =
1 and | cosh(k)| = 1. From the first of these two equations, we extract that
l(λ) is analytical away from the accessory parameters λ for which G21(λ) ∈
{−π−1, 0, π−1}. In combination with equation (4.1), we deduce from the second
equation that k(λ) is analytical away from the values λ for which (GH)21(λ) = 0,
G21(λ) ∈ {−π−1, 0, π−1} or H21(λ) = 0.

14.2 Partial identification of Bethe and Dehn-Thurston
parameters

In this section, we will construct a path η(p,0) : [0, 1] → P(X) for X =

CP 1\{0, z, 1,∞} and 0 < z < 1 satisfying the conditions in the conjecture
proposed in the introduction to Part IV.

Non-analytical loci If we assume λ ∈ R, we find from theorem 5.1 a series
of parameters ... < λ−1 < λ0 < λ1 < ... for which G21(λk) = 0, H21(λk) = 0 or
(GH)21(λk) = 0. Let us consider k ≥ 0. The other loci where the analyticity
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of the Fenchel-Nielsen coordinates breaks down, are given by λ = ν
(j)
k for j =

1, ..., Nk with Nk > 0 satisfying

(G21(ν
(j)
k ))2 = π−2

The integer Nk counts the number of these solutions in the interval (λk, λk+1).
Its precise value is unimportant for our calculations as it is only important for
us to know that (G21(λ))

2 is a decreasing respectively increasing function at
λ = ν

(j)
0 for j odd respectively even.

Including these values ν(j)
k , we find the series

λ0 < ν
(1)
0 < ... < ν

(N0)
0 < λ1 < ν

(1)
1 < ... < ν

(N1)
1 < λ2 < ...

Since the monodromy of the oper is Fuchsian for λ = λ0, all curves have positive
geodesic length for this value of the accessory parameter. In particular, we must
find (G21(λ0))2 > π−2. For λ = λ1 we have G21(λ1) = 0. From this we conclude
that the integer N0 must be odd. For the same reason we find Nk odd for all
k ≥ 0.

Defining the path We now consider a path η(p,0) for p ∈ 2Z≥0 starting at
λ0 and ending at λp/2, behaving as follows:

1. The path η(p,0) starts at λ0 and increases its imaginary part until we reach
λ0 + iδ for some infinitesimally small δ � 1.

2. We continue on a half circle parametrized by λ = λ0−δeiθ for θ ∈ [π/2, π].

3. We analytically continue along the positive direction on the real axis until
|λ− λ̃| = δ for

λ̃ ∈ {ν(1)
0 , ..., ν

(N0)
0 , λ1, ν

(1)
1 , ..., ν

(N1)
1 , λ2, ν

(1)
2 , ..., ν

(N2)
2 , ...}

and move along a half-circle parameterized by λ = λ̃− δeiθ for θ ∈ [0, π].

4. We continue in this way until we reach the point λp/2 + iδ. We then
decrease the imaginary component until we reach λp/2.

We may draw this path as in figure 14.1.
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Figure 14.1: Image of the path η(p,0)

Since G and H are both real analytical and map real values to real values, we
know that the Fenchel-Nielsen coordinates cannot move away from the real axis
as long as we are on a segment of the path η(p,0) which lies on the real axis.
Therefore, we may deduce the entire analytical behaviour of the Fenchel-Nielsen
coordinates l and k as a function of the accessory parameter by studying its
analytical behaviour on the half-circles at distance δ away from non-analytical
points

{ν(1)
0 , ..., ν

(N0)
0 , λ1, ν

(1)
1 , ..., ν

(N1)
1 , λ2, ν

(1)
2 , ..., ν

(N2)
2 , ...}

We will only describe the behaviour of η(p,0) for the values λ0 ≤ λ ≤ λ2 to avoid
unnecessary complications.

Calculating values of the transfer matrix and derivative at non-analytical
points Before we describe the analytical continuation of the Fenchel-Nielsen
coordinates, we first calculate some of the values of G21, G′21, (GH)21 and
(GH)′21 at the non-analytical points. We note several facts

• By definition we find

(GH)21(λ0) = (GH)21(λ2) = G21(λ1) = 0

• Normalizing ψ(1)
0 (0) = 1, we must find G21(λ) > 0 for λ < λ1. If it were

the case that G21(λ) < 0 for λ < λ1, we would find a zero of ψ(1)
0 in

the interval [0, z]. However, the first zero only appears for λ > λ1 by
lemma 5.7. Therefore,

G21(ν
(j)
0 ) = π−1 G21(ν

(j)
1 ) = −π−1

• Since the value of (G21(ν
(1)
0 ))2 is decreasing at ν(1)

0 and G21(ν
(j)
0 ) = π−1,

we must find G′21(ν
(1)
0 ) < 0. If we pass through G21 = π−1 again for

ν
(2)
0 , the value of (G21(ν

(2)
0 ))2 must be increasing so that G′21(ν

(2)
0 ) > 0.

Repeating this argument for ν(j)
0 and ν(j)

1 , we find

sgn(G′21(ν
(j)
0 )) = (−1)j sgn(G′21(ν

(j)
1 )) = (−1)j
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Value of λ λ0 ν
(j)
0 λ1 ν

(j)
1 λ2

Value of G21 π−1 0 −π−1

Sign of G′21 (−1)j (−1)j

Value of (GH)21 0 π−1 π−1 0
Sign of (GH)′21 (−1)j+1 (−1)j

Table 14.1: Values and signs of G21, (GH)21 and their derivatives

• Since ψ(1)
0 cannot have zeroes in the interval [z, 1] at the value λ = λ1

and the sign of (GH)21 is constant on the interval (λ0, λ2), we must find
(GH)21 > 0 for all λ ∈ (λ0, λ2). At the values ν(j)

0 and ν(j)
1 , equation (4.1)

implies
(GH)21(ν

(j)
0 ) = (GH)21(ν

(j)
1 ) = π−1

• Finally, we determine the sign of (GH)′21(ν
(j)
k ). Using equation (4.1), we

find

π(GH)′21(ν
(j)
0 )(GH)21(ν

(j)
0 ) = G′21(ν

(j)
0 )(1− π2H21(ν

(j)
0 )2)

π(GH)′21(ν
(j)
1 )(GH)21(ν

(j)
1 ) = −G′21(ν

(j)
1 )(1− π2H21(ν

(j)
1 )2)

If λ ≥ λ0, grafting appears along the curve γt. This implies that the mon-
odromy along the curve γt must stay hyperbolic. This implies H21(λ)2 ≥
π−2 for any λ ≥ λ0. Therefore, we find

sgn((GH)′21(ν
(j)
0 )) = (−1)j+1 sgn((GH)′21(ν

(j)
1 )) = (−1)j

Putting everything together we find table 14.1.

Analytically continuing the length coordinate along η(p,0) Let us con-
sider the equation

cosh(l(λ)/2) = −1 + 2π2(G21(λ))2

and λ = ν
(j)
0 − δeiθ. This sets

cosh(l(λ)/2) = 1− 4πδeiθG′21(ν
(j)
0 ) +O(δ2)
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Figure 14.2: Image of cosh(l(λ)/2) ⊂ C×

On the half-circle centered at λ1 and parameterized by λ = λ1 − δeiθ, we find

cosh(l(λ)/2) = −1 + 2π2δ2e2iθ(G′21(λ1))2 +O(δ3)

Finally, for the half-circle λ = ν
(j)
1 − δeiθ centered at ν(j)

1 , we find

cosh(l(λ)/2) = 1 + 4πδeiθG′21(ν
(j)
1 ) +O(δ2)

Furthermore, the coordinate l(λ) is analytic in λ at the points λ0 and λ2.

Putting all of this together and combining with the results in table 14.1, we see
that the image of cosh(l/2) along η(p,0) between λ0 and λ2 looks like figure 14.2.

Furthermore, we can deduce that at λ = λ1+iδ we must have cosh(l(λ)/2) < −1.
This implies Im(l(λ1+iδ)) = 2π. By following the path, we end up at λ = λ2+iδ

for which cosh(l(λ)/2) = 4π + O(δ). By continuing the argument for λ > λ2,
we deduce

Im(l(λp/2 + iδ)) = πp+O(δ)

Closing the path, we find in full generality

Im(l(λp/2)) = πp

Analytically continuing the twist coordinate along η(p,0) Let us now
expand

cosh(k(λ)) = 1− 2

(
(GH)21(λ)

G21(λ)

)2

near each of the non-analytical points in the interval [λ0, λ2].

On the half-circles at λ = λ0 − δeiθ and λ = λ2 − δeiθ, we find

cosh(k(λ)) = 1− 2δ2e2iθ((GH)′21(λ0))2(G21(λ0))−2 +O(δ3)

cosh(k(λ)) = 1− 2δ2e2iθ((GH)′21(λ2))2(G21(λ2))−2 +O(δ3)
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Figure 14.3: Image of cosh(k(λ)) ⊂ C×

respectively. On the half-circle λ = λ1 − δeiθ, we find

cosh(k(λ)) = −2δ−2e−2iθ((GH)21(λ1))2(G′21(λ1))−2 +O(δ−1)

Finally, on the half-circles at λ = ν
(j)
0 − δeiθ and λ = ν

(j)
1 − δeiθ, obtain the

expressions

cosh(k(λ)) = −1− 4πδeiθ(−(GH)′21(ν
(j)
0 ) +G′21(ν

(j)
0 )) +O(δ2)

cosh(k(λ)) = −1 + 4πδeiθ((GH)′21(ν
(j)
1 ) +G′21(ν

(j)
1 )) +O(δ2)

respectively. By using table 14.1, we determine

sgn(−(GH)′21(ν
(j)
0 ) +G′21(ν

(j)
0 )) = (−1)j

sgn((GH)′21(ν
(j)
1 ) +G′21(ν

(j)
1 )) = (−1)j

Once again combining these results with table 14.1, we see that the image of
cosh(k) along η(p,0) looks like figure 14.3.
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We determine that along the path η(p,0) defined as before, we must find

Im(k(λp/2)) = 0

Relation to the conjecture We conclude by noting that we have found a
constructive proof of the following theorem:

Theorem 14.2. There exists a path η(p,0) : [0, 1]→ P(X) for X = CP 1\{0, z, 1,∞}
such that defining the Fenchel-Nielsen coordinates by analytically continuing
along this path sets

Im(l(η(p,0)(1))) = πp

Im(k(η(p,0)(1))) = 0

We may write these relations in terms of the Yang-Yang function by

Re(a) = πp

Re

(
∂Y(a, t)

∂a

)
= 0

Since the oper with accessory parameter λp/2 has real curves with Dehn-Thurston
coordinates (p, 0), we may identify the Dehn-Thurston coordinates of these real
curves with the integers (n, 0). This provides a counterpart to the result ex-
tracted from [51], which identifies the integers (0, q) with (0,m) along a path
η(0,q).

14.3 Extending the result to arbitrary integers?

Although we have only proved the conjecture for the parameters (n, 0) and
(0,m), it is suggestive to conjecture that real curves with Dehn-Thurston pa-
rameters (p, q) can be identified with integers (n,m) by analytically continuing
along a path η(p,q).

One interesting consequence of this conjecture is that the parameters (p, q)

and (n,m) must transform in exactly the same way under changes of pants
decompositions. Indeed, we have seen before that under an A-move, we find the
relation

(p′, q′) = (2|q|,−sgn(q)p/2)
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If we would be able to identify the parameters (p, q) with the integers (n,m), the
integers must transform in the same way under a change of pants decomposition.

This identification between parameters would imply that the Fenchel-Nielsen
coordinates (which also depend on a choice of pants decomposition) must trans-
form under an A-move in such a way that the integers (n,m) change as

(n′,m′) = (2|m|,−sgn(m)n/2)

Whether this is the case in full generality is an open question, but with some
extra work we can indeed confirm from our calculations that this transformation
rule holds when either m = 0 or n = 0.

One way we might prove the conjecture for the four-punctured sphere, is by
grafting projective structures that are not uniformizing. In principle this is
possible, as long as we graft along geodesics which have hyperbolic monodromy.
If we graft the opers coming from Dehn-Thurston parameters (p, 0) along the
cutting curves of the pants decomposition, it might be possible to apply the
result from [51] to extend the identification of (p, q) with (n,m) to all integers.

Based on these results, we propose the following conjecture for a more general
punctured Riemann surface, as we stated in the introduction to Part IV.

Conjecture 14.3. Let a punctured Riemann surface X ∈ T (S) be given. There
exists a path η(p,q) : [0, 1] → P(X) for each set of Dehn-Thurston parameters
(p,q) such that

η(p,q)(0) = E(0,0) η(p,q)(1) = E(p,q)

and analytical continuation of (l,k) along these paths, implies

Re(ar(η(p,q)(1))) = πpr

Re

(
∂Y(a(η(p,q)(1)), t)

∂ar

)
= πqr

Since our interest lies in Dehn-Thurston parameters which define single-valued
eigenfunctions Ψ(p,q), one might consider weakening the conjecture by only
requiring this identification to hold between integers (n,m) and parameters
(p,q) for which we can construct such a single-valued eigenfunction Ψ(p,q).
Whether this is necessary, is not clear at this point.
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15 Concluding remarks and open questions

Correspondence between loop operators and single-valued eigenfunc-
tions? We had shown at the beginning of this thesis in subsection 2.7 that any
loop operator in the presence of a co-dimension two surface defect, gives rise to
a single-valued eigenfunction. The classification of single-valued eigenfunctions
Ψ(p,q) in terms of Dehn-Thurston parameters therefore suggests that we could
find a direct relation between the two objects.

It should be noted that the Dehn-Thurston parameters (p,q) are not simply
remnants of the classification of the single-valued eigenfunctions: Applying the
separation of variables, we find an expression of the form

Ψ(p,q)(x, x̄) =

ˆ
du|K(x,u)|2

3g−3+n∏
r=1

φ(p,q)(ur, ūr)

where φ(p,q) is the single-valued eigenfunction constructed in subsection 8.2
coming from the oper with accesory parameters E(p,q). We have seen that the
vanishing locus XR = {(u, ū)|φ(p,q)(u, ū) = 0} is precisely homeomorphic to the
multicurve defined by Dehn-Thurston parameters (p,q).

From this point of view, it seems natural to expect that the loop operator
L(p,q) with support homeomorphic to XR on X from the perspective of the six-
dimensional N = (2, 0) theory, maps to the single-valued eigenfunction Ψ(p,q).
Nevertheless, a subtle point remains, since not all parameters appear in the
classification of the single-valued eigenfunction according to theorem 8.6. Let
us clarify this point.

On the side of the gauge theory, the loop operators had been classified in terms
of Dehn-Thurston parameters in [42]. However, later work by Aharony, Seiberg
and Tachikawa [47] showed that this is not quite correct. The loop operators
must be mutually local in any physical theory. Mutual locality holds in theories
of class S if the curves labeling the loop operators always have even intersection
index. Picking a maximal subset of curves satisfying this constraint amounts to
choosing additional discrete data classifying theories of class S as discussed in
[106].

From this point of view, we may interpret the meaning of theorem 8.6 in the
following way:

The loop operators giving rise to single-valued eigenfunctions Ψ(p,q), must exist
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in any theory of class S, independent of the choice of discrete data picking a
specific one according to [47].

Bethe quantum numbers and loop operators Let us now come back to
the physical interpretation of the Bethe quantum numbers. We had seen before
that the Bethe quantum numbers make an appearance when considering the
Nekrasov-Shatashvili limit ε2 → 0 of the expectation value of loop operators on
S4
ε1,ε2 . The question we raised was which Bethe quantum numbers appear for

which loop operators.

The effect of Wilson loops is easily calculated in the gauge theoretical picture
and leads to a shift in the parameters m. However, if we consider ’t Hooft loops
or other dyonic loop operators, the question of classification becomes much
harder, because the difference operators shift the variables a so that we can
no longer read off from the saddlepoint approximation which Bethe quantum
numbers appear.

For the four-punctured sphere with real punctures, we have seen by theorem 14.2
that we can make sense of the Bethe quantum numbers (n, 0) as coming from
the Dehn-Thurston parameters of the single-valued eigenfunctions Ψ(p,0), where
n = p ∈ 2Z. This identifies the Bethe quantum numbers with the Dehn-
Thurston parameters in this special case. Upon combination with the corre-
spondence between single-valued eigenfunctions and loop operators, this leads
to the statement that such a set-up would correspond to the insertion of n/2 ’t
Hooft loops.

Our observations for the four-punctured sphere lead us to consider conjecture
14.3, proposing that there exists a definition of the Yang-Yang function Y(a, t)

realizing the Bethe quantum numbers as the Dehn-Thurston parameters of the
single-valued eigenfunctions. We may also relate this to the Dehn-Thurston
parameters of the loop operators under the above mentioned correspondence.

Assuming the validity of the conjecture, we may give a physical interpretation
of the following form:

In the Nekrasov-Shatashvili limit ε2 → 0, the expectation value 〈L(p,q)〉S4
ε1,ε2

is
dominated by the values a = a(n,m) solving the equations

Re(ar) = πnr

Re

(
∂Y(a, t)

∂ar

)
= πmr
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which are, for a proper choice of Y(a, t), precisely the equations defining the
Bethe quantum numbers for the single-valued eigenfunctions Ψ(n,m) of the quan-
tum Hitchin Hamiltonians.

Outlook and open questions Although we have given a clear indication
of the physical and mathematical relations between the Bethe quantum num-
bers and the Dehn-Thurston parameters, as well as between loop operators and
single-valued eigenfunctions, work still has to be done to make this more rigor-
ous. We could hope for a complete proof of conjecture 14.3, but should keep in
mind that a full problem of this form could prove difficult to solve.

Furthermore, there is still work to be done on the classification between loop
operators and single-valued eigenfunction to the quantum Hitchin Hamiltoni-
ans. It could prove interesting to deepen out this relation more than through
a matching of parameters as we have shown in this thesis. The construction of
the single-valued eigenfunctions shows in particular that we may use all sets of
Dehn-Thurston parameters (p,q) to define functions Ψ(p,q) which can at most
have a sign change under analytical continuation. We might expect to extend the
correspondence between mutually local loop operators and single-valued eigen-
functions to a correspondence involving multi-valued functions Ψ(p,q) which at
most change by a sign and a larger set of loop operators. It should be noted that
such multi-valued functions will still define single-valued probability densities
when we consider the quantum mechanical problem at hand.

Lastly, we might try to generalize the set-up of the defects. By introducing loop
operators on top of co-dimension four surface defects in the ε2-plane, we might
give rise to more exotic and singular functions Ψ. If these functions remain
single-valued, we may still use theorem 3.5 to prove that they must come from
an oper with real monodromy. However, this oper must now have singularities at
the positions of the surface operators on the side of the Riemann surface. Such
a set-up might prove meaningful in generalizing the notion of real geometric
Langlands which first appeared in [20].
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Part V

Appendices

16 Mapping class group

16.1 Action of the mapping class group on projective struc-
tures

Definition of the mapping class group Recall that Teichmüller space was
defined to be the space of pairs [X, f ] where (X, f) ∼ (Y, g) iff g ◦ f−1 : X →
Y defines a biholomorphism isotopic to the identity. We can recast this in
the conformal world by assuming X and Y are hyperbolic structures and g ◦
f−1 defines an isometry isotopic to the identity. We can therefore describe
Teichmüller space of the surface S as the quotient T (S) = Conf(S)/Diff+

0 (S)

of conformal structures on S modulo the action of diffeomorphisms isotopic to
the identity. We do not always write the marking f explicitly for notational
simplicity.

To obtain the moduli space M(S) of conformal structures on S, we have to
take the quotient by the full diffeomorphism group Diff+(S). This leads to the
description as a quotient M(S) = Conf(S)/Diff+(S). We can rewrite this as
M(S) = T (S)/MCG+(S) where

MCG+(S) := Diff+(S)/Diff+
0 (S)

is known as the (oriented) mapping class group of the surface S.

We refer to [91] for a basic reference on mapping class groups and the rest of
section §16.

We may equivalently define the mapping class group

MCG+(S) := Homeo+(S)/Homeo+
0 (S)

since every homeomorphism on a compact smooth surface is isotopic to a diffeo-
morphism and every topological surface has a unique smooth structure making
it into a smooth surface. We will switch between these two notions freely. For
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example, for the definition of Dehn twists as elements in the mapping class group
it is more practical to take the definition as a quotient of homeomorphisms

The mapping class group acts on elements [X, f ] by [m] · [X, f ] = [X, f ◦m−1],
where [m] is the equivalence class of a diffeomorphism m : S → S. This defi-
nition is well-defined, as one can easily check: If m′ is another diffeomorphism
such that [m′] = [m], then [m′] · [X, f ] = [X, f ◦ m′−1]. Since [m′] = [m],
the diffeomorphism m−1 ◦m′ is isotopic to the identity and indeed, the function
f ◦(m−1◦m′)◦f−1 defines a biholomorphism isotopic to the identity. Therefore,
[X, f ◦m−1] = [X, f ◦m′−1].

Action on the space of measured laminations If we represent the map-
ping class group by the action of diffeomorphisms, we have a natural action on
a pair (X,λ) ∈ T (S) ×ML(S). We have described above how the mapping
class group acts on a marked Riemann surface. On the other hand, if we are
given any simple closed geodesic γ ⊂ X, the mapping class group acts naturally
by a diffeomorphism acting on γ as a subset of X. This sends the geodesic γ to
another curve in π1(S) with a unique geodesic representative. By continuity, we
may extend this action to all ofML(S) and define an action of m ∈ MCG+(S)

m · (X,λ) = (m ·X,m · λ)

Since a projective structure is nothing but a choice of charts and transition
functions on a marked Riemann surface such that the charts are given by Möbius
transformations, the mapping class group also acts naturally on a projective
structure. In fact, these two actions coincide and we may describe the action on
the space of projective structures by the action on the pairs in T (S)×ML(S).

16.2 Change of coordinate principle

The classification of surfaces allows us to state some non-trivial facts about the
the mapping class group. Let us start from the famous classification result

Theorem 16.1. Let a compact connected surface S possibly with finite number
of boundary components and marked points be given. The surface S is defined
up to homeomorphism by the surface data (g, b, n) of its genus g, finite number
of boundary components b and finite number of marked points n.

Note that we can always find a homeomorphism of a connected surface switching
any two boundary components or any two marked points.
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Non-separating curves Let us assume γ is a non-separating curve on S, i.e.
γ does not cut S into two connected components. Let a surface S be given
specified by the data (g, b, n) of the genus, number of boundary components
and number of marked points on S.

Cutting along γ produces a new surface Sγ with two more boundary compo-
nents and one less handle. It therefore has surface data (g − 1, b + 2, n). We
can reproduce S by gluing together the two newly obtained boundary compo-
nents in Sγ leading to a continuous gluing map Sγ → S. Cutting along any
other non-separating curve γ′ defines a surface Sγ′ with the same data and an-
other gluing map Sγ′ → S. By the classification of surfaces there must exist a
homeomorphism Sγ → Sγ′ which in particular sends the boundary components
obtained by cutting along γ to the boundary components obtained by cutting
along γ′ while fixing the other boundary components.

We conclude by noting that there must exist a homeomorphism of S sending
γ to γ′ showing that all non-separating curves can be mapped to one another
through homeomorphisms of S. More precisely

Proposition 16.2. Given a compact connected surface S possibly with boundary
and marked points. Let consider two non-separating curves α and β on S. We
can always find a homeomorphism φ : S → S such that φ(α) = β.

Since a pants decomposition of the one-holed torus is defined by a single cutting
curve not isotopic to the boundary, this result tells us that up to homeomor-
phism, there is only one pants decomposition of the one-holed torus.

Separating curves If we consider γ to be separating, the situation compli-
cates. Indeed, if we are given a disjoint union of surface Sγ,− and Sγ,+, we
can only find a homeomorphism to another disjoint union of surfaces Sγ′,− and
Sγ′,+ if the surface data match up of the different surfaces. Even if the data do
match up, it is still possible that we do not find a homeomorphism respecting
the choice of boundary components. To illuminate this last statement, let us
consider a simple example.

Proposition 16.3. Let a four-holed sphere be given. A closed curve always
separates the four-holed sphere into a pair of three-holed spheres. Up to homeo-
morphisms fixing the boundary, we have three distinct curves pairing the bound-
ary components in the three-holed spheres. If we do not require the boundaries
to be fixed, any closed curve can be mapped to any other closed curve.
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Proof. If a four-holed sphere S with boundary components B1, ..., B4 is given,
any curve γ cuts it into two three-holed spheres. Each of these three-holed
spheres has one boundary component coming from the cutting along γ and two
boundary components in the set {B1, B2, B3, B4}. Since each subsurface is a
three-holed sphere, we can always find a homeomorphism mapping the curve
γ to any other closed curve on S. However, it is important to note that this
homeomorphism might not fix the boundary components.

Requiring that the boundary components are fixed under the homeomorphism,
cuts down the image of the curve γ in the space of all curves. The curve γ will
separate the boundary components from each other pairwise after cutting along
it: Two boundary components will be part of one three-holed sphere and the
other two will belong to the other three-holed sphere. If cutting along γ′ leads
to different pairs of boundary components, it can never be homeomorphic to γ
if we require the boundary components to be fixed.

Conversely, if two curves α and β separate the same boundary components from
each other, the change of coordinate principle tells us that there must exist a
homeomorphism φ : S → S such that φ(α) = β. This follows from the fact
that both curves cut S into two three-holed spheres with the same boundary
components.

This example illuminates the difference between what is known as the mapping
class group and the pure mapping class group. The pure mapping class group
consists of homeomorphisms keeping the boundary components and marked
points fixed, while the full mapping class group allows these to be exchanged.

For completeness we will also consider an example without boundary compo-
nents. This illuminates the first requirement we stated before: The curves have
to separate the surface into subsurfaces with the same surface data.

Proposition 16.4. Let a surface S of genus g without boundary components
nor marked points be given. A separating curve γ will separate S into Sγ,−

and Sγ,+ which we may choose to have surface data (k, 1, 0) and (g − k, 1, 0)

respectively for 0 < k ≤ g/2. The integer k is specified uniquely by the curve
γ. Conversely, if two curves α and β specify the same integer k, there exists a
homeomorphism φ : S → S such that φ(α) = β.

Proof. The idea is the same as before. The separating curve γ separates S into
surfaces Sγ,− and Sγ,+ which are up to homeomorphism specified by the data
of their genus, number of boundary components and marked points. Since a
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separating curve introduces a boundary component on both Sγ,− and Sγ,+ and
does not change the genus, we find two triples of data (k, 1, 0) and (g − k, 1, 0)

corresponding to Sγ,− and Sγ,+ respectively, which specify these surfaces up to
homeomorphism.

Application to pair of pants decompositions A pair of pants decom-
position consists of 3g − 3 + n cutting curves and 2g − 2 + n pairs of pants,
where we set n equal to the sum of the number of boundary components and
marked points. Since the pairs of pants are all three-holed spheres, the ques-
tion of which pants decompositions are homeomorphic to each other, becomes a
combinatorial problem relating cutting curves to the boundary components of
pairs of pants. We have a finite number of pairs of pants and a finite number of
cutting curves which must be the boundary components of the pairs of pants.
In particular, this implies that we find a finite number of pants decompositions
up to homeomorphism.

It is interesting to note that we can associate a trivalent graph to the combi-
natorial problem described above. For each pair of pants we introduce a vertex
and for each cutting curve an edge. For each boundary curve shared by two
pairs of pants, we introduce an edge running between the two corresponding
vertices. In particular, this means the graph can have multiple edges between
the same vertices.

We also allow for the possibility of a pair of pants sharing a boundary curve with
itself, meaning that in the graph an edge may start and end at the same vertex.
This happens when the pair of pants is introduced by cutting a one-holed torus.

Finally, when we consider surfaces with boundary, we assume that these bound-
ary components define vertices as well. If one of these boundary components
also is the boundary component of a given pair of pants, we introduce an edge
between the vertex of the correspoding pair of pants and the vertex of the
boundary component.

By defining the graph as above, we find a total of V = 2g− 2 + 2n vertices and
E = 3g − 3 + 2n edges. The number of inscribed loops or faces F satisfies the
equation F = g + 1 (counting also the face bounded by the outer edges). The
Euler characteristic is found to be V − E + F = 2. This implies we can embed
this graph on a sphere, i.e. it is a planar graph. This leads us to conclude the
following
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(a) Graph for decomposition 11.4a (b) Graph for decomposition 11.4b

Figure 16.1: Two non-isomorphic, trivalent graphs

Theorem 16.5. There exists a one-to-one correspondence between trivalent,
planar graphs (possibly with multiple edges between the same vertices or edges
going from a vertex back to itself) up to isomorphism and pair of pants decom-
positions up to homeomorphism.

In the case of the genus two surface without boundary, we find the two graphs
in figure 16.1.

16.3 Different notions of marking

The Dehn-Nielsen-Baer theorem allows us to relate two different ways of defining
a marking on a Riemann surface. Let us work with closed Riemann surfaces,
which are specified precisely by their genus.

Let us introduce a different notion of marking on a Riemann surface than before:

Definition 16.6. A marking of a Riemann surface is a preferred set of gener-
ators of π1(X). More precisely, if our surface X has genus g, a presentation of
π1(X) is of the following form:

π1(X) = 〈α1, ..., αg, β1, ..., βg|
g∏
j=1

[αj , βj ]〉

The generators αk and βl for k, l = 1, ..., g define a preferred set of generators
which we may denote by Σ = {α1, ..., αg, β1, ..., βg}. We say that two markings
are equivalent if they differ by an inner automorphism. A diffeomorphism f

preserves the marking if we have two pairs (X,Σ) and (Y,Σ′) such that f :

X → Y defines a biholomorphism and f∗(Σ) = Σ′.
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The Dehn-Nielsen-Baer theorem provides a link between these two ways of defin-
ing a marking:

Theorem 16.7. If we are given a closed surface S of genus g ≥ 1, we have the
following isomorphism as groups

MCG+(S) ' Out+(π1(S))

where Out+(π1(S)) defines the orientation-preserving outer automorphisms of
the fundamental group. More generally without reference to the orientation, we
find

MCG(S) ' Out(π1(S))

From a geometrical perspective, any diffeomorphism of the surface S, defines an
automorphism of π1(S). In particular, if the diffeomorphism is not isotopic to
the identity, this automorphism cannot be an inner automorphism. The non-
trivial statement is that any outer automorphism can be realized as coming from
a diffeomorphism of the surface not isotopic to the identity. In this way, we may
start with a marking defined by a diffeomorphism f : S → X and construct
a preferred set of generators by pulling back the generators of π1(X) along f .
This gives a marking [X,Σ]. Any other marking [X, f ′] is obtained from an
element in the mapping class group and in fact realizes a change in marking
[X,Σ′]. Conversely, any change in marking [X,Σ′] also realizes an associated
diffeomorphism in the mapping class group so that we obtain a new marking
[X, f ′]. We may therefore freely exchange the two notions of marking.

16.4 Braid groups as mapping class groups

Some simple example of mapping class groups are given by the mapping class
groups of punctured spheres. If we let X = CP 1\{z1, ..., zn} and S the un-
derlying topological surface, it can be shown that the mapping class group has
a presentation in terms of braiding elements. The intuition behind this pre-
sentation is that the complex structure of X is completely determined by the
positions of the punctures. By moving the punctures around each other, we
can define a map from the Riemann surface X back to itself which changes the
marking. Such movements are generated by the braiding elements.
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The mapping class group has a presentation of the following form

MCG(S) '
〈

σ1, ..., σn−1 | σiσjσi = σjσiσj if |i− j| = 1

σiσj = σjσi if |i− j| > 1

(σ1...σn−1)n = 1

σ1...σn−1 = σ−1
1 ...σ−1

n−1

〉
For example, for n = 3, we recover

MCG(S) '
〈

σ1, σ2 | σ1σ2σ1 = σ2σ1σ2

(σ1σ2)3 = 1

σ1σ2 = σ−1
1 σ−1

2

〉
' S3

where S3 is the symmetric group on the set of three elements. For a larger
amount of punctures, the groups become increasingly more complicated.

Mapping class group of the four-punctured sphere To compare with
the results in Part II, we will explicitly describe the mapping class group of
the four-punctured sphere. If we set X = CP 1\{0, z, 1,∞} and let S denote
the underlying topological surface, we will prove that the mapping class group
MCG(S) is a semi-direct product

MCG(S) ' PSL(2,Z) o (Z2 × Z2)

with PSL(2,Z) generated by braiding elements σ1 and σ2 and the group Z2×Z2

containing the elements j1, j2 and j3 defined as

j1 = σ3σ
−1
1 j2 = (σ2σ1σ3)2 j3 = (σ1σ2σ3)2

We will prove this result in several steps starting from the explicit description
of MCG(S) as the braiding group

MCG(S) '
〈

σ1, σ2, σ3 | σ1σ2σ1 = σ2σ1σ2

σ3σ2σ3 = σ2σ3σ2

σ1σ3 = σ3σ1

(σ1σ2σ3)4 = 1

σ1σ2σ3 = σ−1
1 σ−1

2 σ−1
3

〉
We first note
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Lemma 16.8. The mapping class group MCG(S) can be presented as follows

MCG(S) '
〈

σ1, σ2, σ3 | σ1σ2σ1 = σ2σ1σ2

σ3σ2σ3 = σ2σ3σ2

σ1σ3 = σ3σ1

(σ1σ2σ3)4 = 1

σ3
1 = σ2

3

(σ1σ2)3 = 1

(σ2σ3)3 = 1
〉

Proof. We have to show that the relation σ1σ2σ
2
3σ2σ1 = 1 is equivalent to the

three relations σ2
1 = σ2

3 , (σ1σ2)3 = 1 and (σ2σ3)3 = 1. Proving that the latter
three relations imply the first relation, is easy to see:

σ1σ2σ
2
3σ2σ1 = (σ1σ2σ1)(σ−1

1 σ2
3σ
−1
1 )(σ1σ2σ1)

= (σ1σ2σ1)2

= (σ1σ2)3

= 1

The converse is more intricate. Assume σ1σ2σ
2
3σ2σ1 = 1. Then we may write

σ−2
3 = σ2σ

2
1σ2. Hence, σ2

1σ
−2
3 = (σ1σ2σ1)2 = (σ1σ2)3. Similarly, σ2

3σ
−2
1 =

(σ2σ3)3.

Let us now rewrite

(σ1σ2σ3)2 = (σ1σ2σ3)(σ1σ2σ3)

= (σ1σ2σ1)(σ3σ2σ3)

= (σ1σ2σ1)(σ2σ3σ2)

= σ2
1σ2σ3σ1σ2

Therefore,

(σ1σ2σ3)4 = (σ2
1σ2σ3σ1σ2)2

= σ2
1σ2σ1σ3σ2σ

2
1σ2σ3σ1σ2

= σ2
1σ2σ

2
1σ2

= (σ1σ2)3

This implies
(σ1σ2)3 = σ2

1σ
−2
3 = (σ2σ3)−3 = 1
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proving the claim.

The first interesting observation from this presentation, is that we find a sub-
group PSL(2,Z) < MCG(S) of the form

PSL(2,Z) '
〈

σ1, σ2 | σ1σ2σ1 = σ2σ1σ2

(σ1σ2)3 = 1
〉

Using this presentation, we easily check that j2
1 = j2

2 = j2
3 = 1. Additionally,

we see that

j1j2 = σ3σ
−1
1 (σ2σ1σ3)2

= σ−1
1 σ3σ2σ3σ1σ2σ1σ3

= σ−1
1 (σ3σ2)2σ1σ2σ3

= σ−1
1 σ−1

2 σ−1
3 σ3σ2σ1

= (σ1σ2σ3)2

= j3

The elements j1, j2 and j3 therefore generate the subgroup Z2 × Z2. As noted
before in lemma 4.6, these elements have realizations as Möbius transformations
on X.

We continue by calculating the commutation relations for the elements j1, j2
and j3 with any of the braiding elements σ1, σ2 and σ3.

Lemma 16.9. The elements j1, j2 and j3 satisfy the following commutation
relations with the generators σ1, σ2 and σ3:

σij1σ
−1
i =

j1 i = 1, 3

j3 i = 2

σij2σ
−1
i =

j3 i = 1, 3

j2 i = 2

σij3σ
−1
i =

j2 i = 1, 3

j1 i = 2

Proof. We will only need to prove the first two sets of commutation relations,
since the third one follows from these through the relation j1j2 = j3. Let us
now consider the first two sets of relations:
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It is clear that σ1j1σ
−1
1 = σ3j1σ

−1
3 = j1 as follows from σ1σ3 = σ3σ1. Now

σ2j1σ
−1
2 = σ2σ

−1
1 σ3σ

−1
2

= σ2σ1σ2σ3σ3σ2σ3σ
−1
2

= σ2σ1σ2σ3σ2σ3

= (σ1σ2σ3)2

= j3

This proves the first set of relations. Next

σ1j2σ
−1
1 = σ1(σ2σ1σ3)2σ−1

1

= σ1σ2σ1σ3σ2σ3

= (σ1σ2σ3)2

= j3

and

σ3j2σ
−1
3 = σ3σ

−1
1 σ1j2σ

−1
1 (σ3σ

−1
1 )−1

= j1σ1j2σ
−1
1 j1

= j3

Finally we show

σ−1
2 j2σ2 = σ−1

2 (σ2σ1σ3)2σ2

= σ1σ3σ2σ1σ3σ2

= σ1σ2σ3σ2σ1σ2

= σ1σ2σ3σ1σ2σ1

= σ1σ2σ3σ1σ2σ3σ
−1
3 σ1

= (σ1σ2σ3)2(σ3σ
−1
1 )−1

= j1j3

= j2

This proves all commutation relations.

Theorem 16.10. The mapping class group MCG(S) is isomorphic to the semi-
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direct product PSL(2,Z) o (Z2 × Z2) in the presentation

MCG(S) ' 〈σ1, σ2, j1, j2| σ1σ2σ1 = σ2σ1σ2

(σ1σ2)3 = 1

j2
1 = j2

2 = 1

j1j2 = j2j1

σ1j1 = j1σ1

σ2j1 = j1j2σ2

σ1j2 = j1j2σ1

σ2j2 = j2σ2〉

where
PSL(2,Z) '

〈
σ1, σ2 | σ1σ2σ1 = σ2σ1σ2

(σ1σ2)3 = 1
〉

and
Z2 × Z2 '

〈
j1, j2 | j2

1 = 1

j2
2 = 1

j1j2 = j2j1
〉

Proof. We already derived all of these relations in our previous lemmas. To
prove the equivalence of this presentation to our previous presentations, it is
enough to reintroduce σ3 = σ1j1 and prove the relations

σ1σ3 = σ3σ1

σ2σ3σ2 = σ3σ2σ3

(σ1σ2σ3)4 = 1

σ1σ2σ
2
3σ2σ1 = 1

The first relation is trivial. The second relation follows from

σ2σ3σ2 = σ2j1σ1σ2

= j1j2σ2σ1σ2
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and

σ3σ2σ3 = j1σ1σ2j1σ1

= σ1j2σ2σ1

= j1j2σ1σ2σ1

= j1j2σ2σ1σ2

The third relations follows from

σ1σ2σ3 = σ1σ2σ1j1

= j2σ1σ2σ1

Hence (σ1σ2σ3)2 = j2j1 and (σ1σ2σ3)4 = j2
1j

2
2 = 1.

Finally, the fourth relation can be written as

σ1σ2σ
2
3σ2σ1 = σ1σ2σ1j

2
1σ1σ2σ1

= (σ1σ2)3

= 1

We have therefore proved the equivalence of this presentation to the previous
presentations.

By an explicit calculation using the semi-direct product form of the mapping
class group, we find

Corollary 16.11. The only elements in MCG(S) of order two and not fixing
any of the punctures, must be equal to j1, j2 or j3.
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17 The Riemann-Hilbert correspondence

Hilbert’s twenty-first problem Historically, the Riemann-Hilbert corre-
spondence was first discussed from the point of view of Hilbert’s twenty-first
problem. This problem asked for the existence of a Fuchsian differential equa-
tion on the complex plane with punctures X = C\{z1, ..., zn} realizing a given
representation (up to conjugation) of the free group Fn → GL(N,C). We will
set N = 2 and only consider representations that reduce to SL(2,C). The
Fuchsian differential equations we consider are assumed to have regular singu-
larities at the punctures. This means the differential equations take the form of
equation (3.11), where

t(z) =

n∑
r=1

(
δr

(z − zr)2
+

Er
z − zr

)

Furthermore, we require
∑n
r=1Er = 0 to ensure regularity of the solution when

we let z →∞.

It turns out that the space of regular Fuchsian differential equations is not large
enough to accommodate all monodromy representations in CSL(2,C)(S) where
S is the topological surface underlying X. Indeed, a simple calculation shows
that we will need 3n − 3 complex parameters to describe the monodromy rep-
resentations, coming from three parameters per generator mapped to a matrix
in SL(2,C) and one constraint by the overall action of conjugation by SL(2,C).
On the other hand, regular Fuchsian differential equations have the freedom of
the parameters {δr, Er} together with one constraint, leading to a total of 2n−1

complex parameters.

Introducing apparent singularities To find the missing n− 2 parameters,
we may note that any monodromy can be realized by integrating a holomorphic
connection of the form

∇′ = ∂z +A(z)

where

A(z) =

(
α(z) β(z)

γ(z) −α(z)

)
If we furthermore assume the monodromy is irreducible, the lower-left element
γ(z) is not identically zero.

By applying a gauge transformation A(z) → g(z)A(z)g(z)−1 + g(z)∂z(g(z)−1)
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with

g(z) =

 √
γ(z) 1√

γ(z)

(
−α(z) + γ′(z)

γ(z)

)
0 1√

γ(z)


we may bring this connection to the form

∇′ = ∂z +

(
0 −t(z)
1 0

)

for

t(z) = −α(z)2 − β(z)γ(z)− α′(z) + α(z)
γ′(z)

γ(z)
+

1

2

(
γ′′(z)

γ(z)
− 3

2

(
γ′(z)

γ(z)

)2
)

We may locally write(
η′(z)

χ′(z)

)
=

(
0 t(z)

−1 0

)(
η(z)

χ(z)

)

=

(
t(z)χ(z)

−η(z)

)

This sets η(z) = −χ′(z) and χ′′(z) + t(z)χ(z) = 0.

The function t(z) has a number of singularities defined by the zeroes of γ(z). If
we require t(z) to have regular singularities at the punctures, we must assume
A(z) only has simple poles at the punctures. Since γ(z) is regular at infinity, it
generically has a total of n− 2 simple zeroes.

These simple zeroes lead to singularities in t(z), i.e. points uk for k = 1, ..., n−2

around which
t(z) =

3

4(z − uk)2
+

vk
z − uk

+ ťk(z)

and ťk(z) is defined as the regular part of t(z) at uk.

By a simple calculation, we may check that the residue vk satisfies the equation
v2
k+ťk(uk) = 0. This is precisely the equation needed to have trivial monodromy
around the singularity z = uk. Indeed, the missing n−2 parameters are precisely
made up by the positions of the n− 2 parameters introduced in this way.

Solutions unique up to gauge transformation For a given holomorphic
connection ∇′ on a Riemann surface X, we say that φ(z) is a solution to the
Riemann-Hilbert problem if ∇′φ = 0. In a local frame, we may rewrite this
equation as φ′(z) +A(z)φ(z) = 0.
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Let us now assume we have found a solution φ(z) to the Riemann-Hilbert prob-
lem. We do not need to assume X is of genus g = 0! We find the following
proposition:

Proposition 17.1. If φ1(z) and φ2(z) have the same monodromy up to conju-
gation, the corresponding gauge connections A1(z) and A2(z) making φ1(z) and
φ2(z) into solutions to a Riemann-Hilbert problem, must be gauge equivalent.

Proof. Let us assume we have solutions φ1(z) and φ2(z) to the Riemann-Hilbert
problems

φ′1(z) +A1(z)φ1(z) = 0

φ′2(z) +A2(z)φ2(z) = 0

with conjugate monodromy on some Riemann surface X. We may assume φ1(z)

and φ2(z) have equal monodromy by applying a gauge transformation to one of
them. Let us now combine the solutions φ1(z) and φ2(z) into matrices

Φ1(z) = (φ1(z), φ′1(z))

Φ2(z) = (φ2(z), φ′2(z))

If the monodromy acts on the right, the combination Φ1(z)(Φ2(z))−1 is single-
valued. As such, we may write

Φ1(z) = g(z)Φ2(z)

for some single-valued matrix-valued function g(z) on X. Therefore,

φ2(z) = g(z)φ1(z)

and we identify

A2(z) = g(z)A1(z)g(z)−1 + g(z)∂z(g(z)−1)

Hence, A2(z) is a gauge transformation of A1(z) by the function g(z).

Apparent singularities on higher genus surfaces We can generalize the
set-up from above to other marked Riemann surfaces and ask ourselves how
many apparent singularities are needed to accommodate all the degrees of free-
dom of the monodromy representation. It turns out that we need at most
3g − 3 + n apparent singularities [107, 108] on a surface of genus g and with
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n punctures to describe a dense subset of the space of all representations in
CSL(2,C)(S). In particular, applying 17.1 to the holomorphic connections ∇′1
and ∇′2 of the form

∇′k = ∂z +

(
0 −tk(z)

1 0

)
for k = 1, 2, shows that two opers t1(z) and t2(z) without apparent singularities
and with different accessory parameters cannot have the same monodromy up
to conjugation. The monodromy map restricted to the fibre P(X) must be
injective. A special case of this statement was proved for the four-punctured
sphere in lemma 9.8.

Changing the complex structure of the surface Another way to intro-
duce more parameters is by allowing the underlying marked complex structure
of our surface to change. The space of opers on a fixed Riemann surface has
complex dimension 3g − 3 + n, which is precisely the complex dimension of
Teichmüller space. By allowing ourselves to change the underlying complex
structure, we can describe a large set in the space of monodromy representa-
tions CPSL(2,C)(S).

To be more precise, assume n = 0 and note that the space CPSL(2,C)(S) consists
of two connected components. If we denote by (CPSL(2,C)(S))0 the connected
component to the identity, it was shown in [109] that the monodromy of P(S)

lies in (CPSL(2,C)(S))0 and the image of the monodromy map

P(S)→ (CPSL(2,C)(S))0

is dense in (CPSL(2,C)(S))0.
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