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I think it’s much more interesting to live not knowing than to have answers which might be wrong. I

have approximate answers and possible beliefs and different degrees of uncertainty about different

things, but I am not absolutely sure of anything and there are many things I don’t know anything

about, such as whether it means anything to ask why we’re here. I don’t have to know an answer.

I don’t feel frightened not knowing things, by being lost in a mysterious universe without any

purpose, which is the way it really is as far as I can tell.

Richard P. Feynman
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Abstract

This thesis is investigating the different influences of correlated and uncorrelated environmental
fluctuations on a two level system. These correlations are of quantum mechanical nature, since
they are the result of non-commuting operators coupled to the dynamics of the degrees of freedom
from a bath or multiple ones. This model has a wide variety of applications which are highly
relevant modern research topics. The most prominent example is a qubit, where the dissipative
properties are of up most importance. Negligence of one of the non-commuting fluctuations only
allows for an insufficient description of the noise sources and thereby inhibit the attempt to correctly
identify which of the ones are important and possibly reduce their influence. The correlated as
well as uncorrelated fluctuations are relevant in the description of voltage gates, used to control
quantum dots, but also to correctly describe the influence of electromagnetic fields, lasers and
crystals defining the various realisations of qubits.

In the first half of this thesis I show the relevant theoretical foundations and extend them to arrive at
a correct description of non-commuting fluctuations. Therein, I first discuss the system-bath model
and its fundamental concepts, show the solution of the dynamics of an isolated two level system
in Liouville space and use them to introduce two methods. First I present RESPET, a perturbative
theory, through the derivation of the dephasing rate in the Spin-Boson model. Then, I extend
RESPET by introducing a master equation to model an additional, pure dephasing bath effectively.
Afterwards I show the resulting propagator for two fully correlated, non-commuting fluctuations
and then continue on to analyse two uncorrelated, non-commuting fluctuations. Here, I find a
contribution of the pure dephasing fluctuations to the relaxation rate, thereby showing the presence
of a second uncorrelated bath can change fundamental properties of a bath. Next an introduction in
the numerically exact method called QUAPI is given, which I then combine with a master equation
approach. Afterwards I derive an extension of QUAPI for two non-correlated fluctuations, which I
then simplify to model one of the baths influences by pure dephasing fluctuations and the other by
relaxational fluctuations.



xii Abstract

In the second half of this thesis I give a detailed investigation of the models used. Here, I first show
how an extension of RESPET and QUAPI by a simple master equation yield fundamental prob-
lems, since both models start to diverge drastically. There after I use the simplified QUAPI scheme
for uncorrelated fluctuations as well as the original QUAPI scheme for fully correlated fluctuations
and discover severe differences. I analyse whether and when in which regimes both fluctuations
can be treated as additive. I observe differences between fully correlated and uncorrelated fluc-
tuations at all temperatures investigated. Fully correlated fluctuations result in a transition of the
two level system to the overdamped regime at lower temperatures and bath coupling strengths then
additive as well as uncorrelated fluctuations. At low temperatures the dephasing rate is enhanced
for fully correlated fluctuations, compared to additive ones, for certain strengths of pure dephasing
fluctuations. The uncorrelated fluctuations consistently decrease the dephasing rate at low temper-
atures. Next I investigate the relaxation of the two level system under these influences. Both fully
correlated and uncorrelated fluctuations consistently lower the relaxation rate for increased pure
dephasing fluctuations, thus additive fluctuations fail to model either uncorrelated or fully corre-
lated fluctuations. Uncorrelated fluctuations show higher order effects even at weak to moderate
coupling strengths of the dephasing fluctuations. These higher order effects can even be reduced
by increasing the relaxational coupling strength. This shows the introduction of a second bath can
modify the scale of a bath, thereby making an interpretation of regime as weak more complicated.
Finally, I study a symmetric two level system under the influence of polarized baths for an Ohmic
pure dephasing bath and a relaxational bath that is either sub-Ohmic or Ohmic. Such a model is a
description for superconduction charge qubits being cooled to low temperatures, thereby polarizing
the environment. I find a polarized relaxational bath creates an effective asymmetry in the two level
system, while a polarized dephasing bath creates a shift in the oscillation frequency.



Zusammenfassung

In dieser Dissertation werden die unterschiedlichen Einflüsse von korrelierten und unkorrelierten
Umgebungsfluktuation, auf ein Zwei-Niveau-System untersucht. Diese Korrelationen sind quan-
tenmechanischer Natur, da sie aus nicht kommutierenden Operatoren stammen, die an die Dynamik
der Freiheitsgrade eines oder mehrere Bäder gekoppelt sind. Dieses Modell hat eine große Bre-
ite an Anwendungen, die hoch relevante, moderne Forschungsthemen sind. Das hervorstechenste
Beispiel ist das Qubit, dessen dissipative Eigenschaften von enormer Bedeutung sind. Ein Vernach-
lässigen einer der nicht kommutierenden Fluktuationen erlaubt nur eine unzureichende Beschrei-
bung der Rauschquellen und verhindert dadurch den Versuch der korrekten Idenifikation, welche
der Rauschquellen signifikant sind und ob es möglich ist deren Einfluss zu verringern. Korre-
lierte wie unkorrelierte Fluktuationen sind relevant in der Beschreibung der Spannungs-Gates, die
in der Kontrolle von Quantenpunkten genutzt werden, ebenso wie in der korrekten Beschreibung
des Einflusses von elektromagnetischen Feldern, Lasern und Kristallen, die die unterschiedlichen
Realiserungen von Qubits bestimmen.

Im ersten Teil der Dissertation präsentiere ich das notwendige theoretische Fundament und er-
weitere es, um eine korrekte Beschreibung von nicht kommutierenden Fluktuationen zu erreichen.
Dabei diskutiere ich erst das System-Bad-Modell und seine grundlegenden Eigenschaften, zeige
die Lösung der Dynamik eines isolierten Zwei-Niveau-Systems im Liouvilleraum und nutze dies
um zwei Methoden einzuführen. Zunächst stelle ich RESPET, eine störungstheoretische Technik,
anhand der Herleitung der Dephasierungsrate im Spin-Boson-Modell vor. Danach erweitere ich
RESPET, indem eine Mastergleichung eingeführt wird, die ein zusätzliches, pures Dephasierung-
bad effektiv modelliert. Hiernach zeige ich den resultierenden Propagator für zwei voll korrelierte,
nicht kommutierende Fluktuationen und fahre dann fort mit der Analyse zweier unkorrelierter, nicht
kommutierender Fluktuationen. Dabei finde ich einen Beitrag von pur dephasierende fluktuationen
zu der Relaxationsrate, wodurch gezeigt wird, dass die Gegenwart eines zweiten, unkorrelierten
Bades die fundamentalen Eigenschaften eines Bades ändern kann. Als nächstes führe ich die nu-
merisch exakte Methode QUAPI ein, welche ich dann mit einer Mastergleichung Methode kom-
biniere. Danach leite ich die Erweiterung von QUAPI für zwei nicht kommutierende Fluktuationen



xiv Zusammenfassung

her, die ich dann vereinfache, um den Einfluss eines der Bäder als pur dephasierende Fluktuationen
und den des anderen Bades als relaxationierende Fluktuationen zu modellieren.

Im zweiten Teil der Dissertation präsentiere ich eine detailierte Untersuchung der benutzten Mod-
elle. Ich zeige zunächst, wie eine Erweiterung von RESPET und QUAPI mit einer simplen Mas-
tergleichung zu fundamentalen Problemen führt, da beide Modelle anfangen drastisch voneinander
abzuweichen. Dann nutze ich die vereinfachte QUAPI-Erweiterung für nicht korrelierte Fluktua-
tionen, sowie die ursprüngliche QUAPI Methode für voll korrelierte Fluktuationen und entdecke
gravierende Unterschiede. Ich analysiere ob und wenn in welchen Regimen die beiden Fluktua-
tionen additiv behandelt werden können. Ich stelle Unterschiede zwischen voll und unkorrelierten
Fluktuationen bei allen untersuchten Temperaturen fest. Voll korrelierte Fluktuationen resultieren
in einem Übergang des Zwei-Niveau-Systems in das überdämpfte Regime bei niedrigeren Temper-
aturen und System-Bad-Kopplungsstärken als sowohl unkorrelierte Fluktuationen als auch additiv
behandelte Fluktuationen. Bei niedrigen Temperaturen wird die Dephasierungsrate von voll ko-
rrelierten Fluktuationen erhöht, verglichen mit additiven Fluktuatonen, in bestimmten Bereichen
der Kopplungstärke der pur dephasierenden Fluktuationen. Unkorrelierte Fluktuationen reduzieren
die Dephasierungsrate durchweg bei niedrigen Temperaturen. Als nächstes untersuche ich die
Relaxation des Zwei-Niveau-Systems unter diesen Einflüssen. Sowohl voll korrelierte, als auch
unkorrelierte Fluktuationen reduzieren durchgängig die Relaxationsrate für anwachsende Kop-
plungsstärken pur dephasierender Fluktuationen, daher versagen additive Fluktuationen bei der
Beschreibung von sowohl unkorrelierten, als auch von voll korrelierten Fluktuationen. Unkorre-
lierte Fluktuationen zeigen höhere Ordnungseffekte bereits bei schwachen und moderaten Kop-
plungsstärken pur dephasierender Fluktuationen. Diese höheren Ordnungseffekte können reduziert
werden durch ein Erhöhen der Kopplungsstärke der relaxierenden Fluktuationen. Dies zeigt, dass
das Einführen eines zweiten Bades kann die Skala eines Bades modifizieren und dadurch die In-
terpretation eines Regimes als schwaches Kopplungsregime komplizierter machen. Zum Ende
studiere ich ein symmetrisches Zwei-Niveau-System unter dem Einfluss polarisierter Bäder mit
einem ohmschen, puren Dephasierungsbad und einem relaxierendem Bad, das entweder ohmsch
oder sub-ohmsch ist. Ein solches Modell beschreibt das Kühlen supraleitender Ladungsqubits zu
niedrigen Temperaturen, wodurch die Umgebung polarisiert wird. Ich stelle fest, dass ein po-
larisiertes relaxierendes Bad eine effektive Asymmetrie erzeugt, während ein polarisierendes De-
phasierungsbad eine Verschiebung der Oszillationsfrequenz erzeugt.



Chapter 1

Introduction

We have been observing the tides in the oceans for millennia and have understood the gravita-
tional force of the solar system as their source some centuries ago. Similarly, humans have used
boiling water to make otherwise indigestible supplies of food useful, without understanding how
the exposure to a heat bath breaks down molecule bonds and fundamentally changes the structure
of the proteins. More recently, most households have a fridge, here food is stored in a cold box
and the surrounding temperature cools the organic matter. Thereby, the molecular processes are
slowed down and decay is inhibited. These are examples of a system of interest such as the oceans
or proteins, being exposed to a larger system, such as the solar system or an external heating or
cooling source. Such a larger system is considered an environment or a bath. System-bath models
are useful for a wide variety of applications and play an important role in understanding physical
phenomena. The idea is to effectively describe, how these environments act on a system of interest
without treating the whole environment explicitly, such that the gravitational force on the ocean is
modelled without describing the dynamics of the planets in detail or to model the exchange of tem-
perature between the proteins and their bath without a precise description of the atoms of neither
the boiling water nor the cold air in the freezer.
Physicists started describing the exposure to heat/cold baths in static scenarios in greater detail in
the context of thermodynamics in the 19.-th century. This resulted in the description of systems as
micro-canonical, canonical and great canonical ensembles, introducing the bath concept in theo-
retical physics. Derived from these thermodynamical concepts is the idea of the partition function
and, deeply connected to it, the density matrix. The latter, in equilibrium, connects the temperature
of a system to the energy of its underlying micro states and thereby describes their population via
the Boltzmann distribution. Thus, allowing a detailed description of an infinite system, continu-
ous as well as discrete. When quantum mechanics was newly developed in the 1920’s, these two
concepts were incorporated into it, first by Landau in 1927 [1] and shortly afterwards by von Neu-
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mann [2]. Whereas non-equilibrium dynamics were partially already discussed in the early days
of thermodynamics, the Carnot process immediately comes to mind as well as the second law of
thermodynamics, a detailed, microscopic description of how a small quantum system reaches equi-
librium, came to be much later. Even though Dirac introduced Fermi’s Golden rule in 1927 [3, 4],
describing the transition from a quantum state into a continuum of states, it took until the 50’s and
60’s, when non-equilibrium dynamics were formalised by the introduction of open quantum dy-
namics [5–8].
Open quantum dynamics are employed to discuss a vast range of modern physical problems. A
few prominent examples are the description of relaxation and decoherence of quantum systems
due to fluctuations induced by their environment, such as quantum dots [9–11] or lasers [12–14],
charge or energy transport dynamics in crystal structures or, in the form of exciton dynamics, along
molecules [15–17] as well as spectroscopy in molecular systems [18].
Qubits [19,20] are a research topic of high interest, they are the quantum mechanical equivalent of
the bit, the basis of the modern computer. The classical bit is created by transistors and has two
possible states. Either a current flows through the transistor or not, which translates into one or
zero and is used to encode information. A qubit allows to circumvent this limitation of classical
transistors. This can improve computer processors in unprecedent ways, leading towards a new age
of computational power which can drastically influence human life. A theoretical description, as
accurate as possible, is therefore of immense importance on the way to quantum computing. In
general, a qubit is a quantum two level system. It allows to go beyond a binary system of only ones
and zeros and instead use amplitudes of quantum mechanical states, e. g. complex numbers, to
store information. Experimental realisations of the qubit have been proposed in various ways.
The main realisations of qubits, which are being investigated at this time, are: Qubits based on
optical coherent states, which can be used over large distances, though photon-photon-interaction
is weak and therefore manipulation of these states is problematic [21–26]. Qubit systems based
on ion traps have been realized with up to 20 qubits in a chain and are a promising candidate for
quantum computing. Such qubits are arranged in a lattice defined by electromagnetic fields in
vacuum [27–32]. Qubits composed of nuclear spins can be created, which are difficult to interact
with experimentally but therefore experience relatively long coherence times [33–38]. Qubits are
also realized through superconducting quantum interference devices (SQUIDS) based on Joseph-
son junctions. There have been systems of ten qubits with full control realized and even systems
of 72 qubits with limited control [39–44]. Majorana Fermions, which were demonstrated experi-
mentally in 2012 [45], are an exiting application for qubits [46–50]. Their topological protection
might allow for longer coherence times but also make them hard to interact with experimentally.
Another realisation of qubits are based on quantum dots [51], which can be used as two types of
qubits, either as spin qubits [52–55] or as charge qubits [56–59]. The advantage lies in highly pre-
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cise manipulation of the dots by voltage gates with the downside of relatively short lived coherence
times.

There are multiple ideas combining a few of these approaches. Since nuclear spin qubits are diffi-
cult to manipulate, it was proposed to use them as storage for qubits based on quantum dots [60].
Another interesting combination of ideas is the usage of quantum dots to interact with Majorana
Fermions. The Majorana edge modes in a superconducting nanowire are brought into contact with a
quantum dot, which in turn is used to prepare and measure the amplitude of the edge mode [61,62].
A recent proposal, in cooperation with Microsoft, uses this idea [63]. In combinations like these
with quantum dots, the decoherence of the two level system is dominated by dissipative properties
of the dot.

All qubit realisations are subject to environmental fluctuations which induce dissipation in these
systems. A major challenge is to control and reduce the decoherence time of the qubits. Thus, a
two level system in connection with an environment is a relevant model for all qubits, regardless
of their type. In most cases the dissipative influence is modelled either via an effective flcutuation
of one bath or via additive fluctuations of multiple baths. However, in many cases experimentalist
find long relaxation times while the dephasing times are short. This gave rise to the idea that there
are more dephasing then relaxation channels. To understand how such different fluctuations are
created, the focus is going to be on quantum dot qubits. These incredible quantum mechanical
systems have many practical uses besides qubits such as lasers, solar cells and single electron
transistors [64–67], and they all have dephasing and relaxation environments [68].

A quantum dot is subject to multiple environmental fluctuations coupled to non-commuting
system-bath operators. Since these fluctuations do not commute, they can be non-additive. It is
not clear, if these fluctuation interfere with each other constructively or destructively and in what
ways set up schemes of quantum dots could be modified to minimize the decoherence rate. For
temperature T = 0 a competing behaviour in relaxation to the eigenbasis of the respective fluc-
tuation has been demonstrated [69]. At finite temperature such a behaviour might explain longer
relaxation times. While one can consider multiple fluctuations from different sources, such as the
phonons of the underlying crystal structure or the electron scattering on defects, it already suffices
to focus on the fluctuations in the voltage gates controlling the quantum dot to see non-commuting
fluctuations arise. A closer look at an experimental set-up of a quantum dot will help to see this in
detail.
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Figure 1.1: In (a) the schematic cross-section of a suspended gate-defined bilayer graphene
quantum dot is shown. Graphene is deposited on a thermally grown SiO2 layer followed
by electron-beam litography steps to define Cr/Au electrodes, an evaporated SiO2 spacer
layer and local top gates. The electric field and carrier density profiles are controlled with
back and top gate voltages Vb and Vt. In (b) a scanning electron micrograph of a similar
quantum dot device is shown. The green line represents a cross-sectional cut through the
device corresponding to visualisation in (a) while the clue line represents one corrsepong
to (c). In (c) the quantum dot formation is illustrated in a cross-sectional cut of energy vs
position at magnetic field B = 0. EC and EV mark the edges of the conductance and valence
bands. This figure is taken from [70] .

The quantum dot set-up, which will serve as an example, was done by M.T. Allen et al. in reference
[70] and is shown in Figure 1.1. Here, the electric field effect in bilayer graphene is used in the
production of quantum confined structures by applying an external electric field and inducing a
bandgab in graphene. Local gating further distorts the band structure such that a potential well,
and thus the quantum dot, is created [71]. The local voltage gates determine the depth of the
potential well and thus play an important role for electron transport on and from the dot, effectively
controlling a tunnel barrier. A scanning electron micrograph of a similar set-up of gates is shown
in Figure 1.1 b). Additionally, the energy level splitting in the potential well is tunable via separate
voltage gates. This distorted band structure is schematically shown in Figure 1.1 c). If the level
splitting is chosen large enough, only a single bound state is possible in the potential well. By
further introducing a magnetic field B a spin qubit can be created, allowing only one electron on
the quantum dot. The energy vs position sketch then has multiple potential wells, corresponding
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to the induced Landau levels. If done correctly, only two states are possible with either an electron
on the dot or not. Thus, a Two-Level-System (TLS) describes the system Hamiltonian accurately.
The induced bandgap is further manipulated by two additional gates, called top and back gate, with
voltages Vt and Vb. These gates are illustrated in Figure 1.1 a). Allen et al. give a relationship
between their voltages and the energy level splitting ∆ as ∆ ∝ E = (αVt − βVb)/2eε0. Thus, the
voltage fluctuations in the level splitting are independent of the fluctuations in the tunnel barrier
while they both do not commute. A good microscopic description of the system would be in the
form of the asymmetric TLS: ∆σx + εσz, where εσz describes the tunnel barrier. In this picture
it is is easy to see how the fluctuations do not commute since they contribute to different Pauli
matrices. Furthermore, if one considers a further simplification to a symmetric TLS by neglecting
the tunnel barrier, the top and back gate only contribute to the decoherence of the dot states and not
their relaxation. The neglect of the tunnel barrier would be an aim for the Mayorana-quantum dot
combination [63]. This is achievable by setting the energy level of the single bound state as close
as possible to the maximum potential of the well. Thereby, a level splitting which is large against
the tunnel barrier is created. This allows for a high possibility of electron exchange between the
edge mode and the dot, as desired. In this set up the top and back voltages create pure dephasing
noise, while they induce no additional relaxation. They can be interpreted as additional dephasing
channels and will be called pure dephasing baths throughout this thesis. The gates controlling
the depth of the potential well induce coherence as well as relaxation, such baths will be called
relaxational baths.

Therefore, non-commuting fluctuations are in general a relevant source of decoherence in this kind
of qubit realisation. Where the case of additional pure dephasing fluctuations are of special interest
to control the dissipative properties. Gaining a better understanding of these sources of noise is
going to be the main goal of this thesis.

The question remains how to model such scenarios in terms of the system-bath formalism. The
coupling between the system and the bath is commonly modelled as bilinear [6]. In many cases,
the Markov approximation is sufficient. It assumes a separation of time scales, thus environmental
correlations to decay rapidly in comparison with the correlations of the system. Also, it assumes an
environment which does not change meaningfully with time due to the interaction with the system.
One example for a physical scenario where this approach was employed successfully, is the descrip-
tion of atom lasers [12,72], where the photon field is the environment and a single atom is modelled
as a discrete system. For cases where the approximation is valid, the system dynamics can be simu-
lated by master equations, which modify the von- Neumann equation. Popular and widely used are
the Lindblad equations [73–75]. In this form, the master equation ensures positivity of the density
matrix, preventing probabilities from becoming negative and thus illogical. Additionally the con-
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servation of the trace is ensured thereby keeping the sum over all probabilities in the system equal
to one. With new experimental techniques to create and manipulate nanosystems, approaches be-
yond the Markov approximation have become increasingly necessary to accurately describe them.
In quantum dots but also in exciton dynamics in biological systems non-Markovian dynamics are
evident. A good example for a typical relevant system environment situation, where the separation
of the time scales fails, is the environment in semi conductors. It is sub-Ohmic, e.g. 1/f type noise,
and therefore has long lived correlations [76–79]. Non-Makovian master equations have been pro-
posed and used to accurately describe such scenarios [80,81]. A non-Markovian approach, essential
for this thesis, is the path integral one done by Feynman and Vernon [6], which integrates out the
environmental influence and relates it to the Feynman-Vernon influence functional. This approach
is exact and has been applied in a wide variety of work [82–88]. The method called hierarchical
equations of motion (HEOM) [84] and the closely related hierarchy of pure states (HOPS) [89],
are based on the influence functional. They are both numerically exact but can not use arbitrary
spectral densities. Problematic spectral densities are modelled by a sum of treatable spectral den-
sities, usually exponentials, instead. HEOM derives auxiliary density operators which are coupled
via differential equations and the reduced density matrix of the system is obtained by solving these
differential equations. HOPS couples pure states of the system in such a hierarchy of differential
equations instead. The Keldysh formalism is another alternative [90, 91], in which contour in-
tegrals are solved, to analytically derive expressions for Greens’ functions, which are then solved
numerically . Another method is called the stochastic Schrödinger equations, in which Monte Carlo
simulations are employed [92, 93] to treat a vector of states in the Hilbertspace of the system and
propagate it. In this thesis the method called QUAPI, also based on the Feynman-Vernon influence
functional, is used for exact numerical simulations. QUAPI discretizes the Feynman-Vernon influ-
ence functional and employs an iterative tensor propagation scheme. The numerical cost is related
to the size of the tensor and the convergence investigation. While in general, numerically more ex-
pensive than the HEOM approach, it allows to include arbitrary spectral densities. Additionally,it
is possible to add a large numbers of baths, as long as their system-bath coupling operators com-
mute with each other [94] with negligible additional numerical costs. This can also be applied to
non-commuting system-bath operators, as long the additional fluctuations commute with one of the
non-commuting fluctuations. Practically, in the example of Allen et al. the top and the back gate
can be treated as two such commuting fluctuations, assuming they act only on the level splitting ∆,
while the other gates are treated as commuting with each other as well, assuming these only act on
the barrier strength ε.

In the first chapters of this thesis, the theoretical groundwork is done to derive the methods used.
In chapter 2 a brief introduction to system-bath description is depicted. In chapter 3, the dynamics
of an isolated TLS is solved, using and introducing the Liouville formalism of quantum mechanics.
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Chapter 4 uses the framework of the previous chapters to show how to derive the perturbative
treatment called RESPET and utilize it, to gain some insight into the effect of non-commuting
fluctuations resulting from two different baths on the symmetric TLS. Additionally, the influence
of two non-commuting fluctuations coupled to a single bath on the symmetric TLS is studied.

This allows for a comparison between fully correlated and fully uncorrelated fluctuations. Also,
RESPET and master equations are combined in a form called Hybrid-RESPET. In chapter 4 the
derivation of the QUAPI scheme, as proposed by Makri et al in 1995 [83] [95], with an initial short
detour to its basis done by Grabert et al. in 1988 [82], is given as well as the known extension to
multiple, commuting baths [96]. Afterwards, the extension of QUAPI for multiple non-commuting
fluctuations is derived, in the general case and for a pure dephasing bath. This allows to simulate
pure dephasing channels and the resulting method was published in reference [97]. Furthermore,
the combination of QUAPI and Lindblad equations into a Hybrid-QUAPI is shown as well.

In Chapter 6, Hybrid-QUAPI and Hybrid-RESPET are compared. Here a problem emerged, the re-
sulting decoherence rate of both methods diverge drastically with increased weight of the Lindblad
equation in the model. This was the motivation for deriving a numerically exact method beyond a
combination of master equations. These results have been published in reference [98].

In chapter 7, the derived QUAPI form for pure dephasing and relaxational fluctuations is used to
investigate the decoherence and relaxation properties of the TLS for multiple temperatures and
multiple system-bath coupling strengths for Ohmic spectral densities. These findings are compared
to fully correlated fluctuations, which have the same form of system operators coupled to a single
bath and to additive fluctuations. These results will be published soon [99].

In Chapter 8 we study a TLS under the influence of a sub-Ohmic pure dephasing bath with either
an Ohmic or a sub-Ohmic relaxational bath. This reflects a typical environment of a superconduct-
ing phase qubit. Cooling protocols of such devices leave the baths polarized, thus we investigate
polarized baths in such an environment. Our findings have been published in reference [100].
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Chapter 2

Non-equilibirum physics: The
system-bath model

There are different approaches to include dissipation in quantum physics. The one used throughout
this work is a system of interest coupled to a bath of infinite uncoupled harmonic oscillators, which
are kept in thermal equilibrium at a fixed temperature T. It is assumed that the interaction with the
system can not change this temperature. The generic Hamiltonian is given by:

Hgen = HS +
∑

j

 p2
j

2m j
+

1
2

m jω
2
j

x j −
c jO

m jω2
j


2 (2.1)

= HS +
∑

j

 p2
j

2m j
+

1
2

m jω
2
j x

2
j − c jOx j +

c2
j O

2

m jω2
j

 .

Throughout this work
∑

j ≡
∑Nbath

j=1 denotes the sum over all Nbath oscillators that make up the
bath. Hgen consists of four parts. A system part HS, which contains the information of the quantum
system of interest subjected to fluctuations. An often used case is that of a free particle in a potential
with HS =

p2
S

2mS
+ VS, where p is the momentum of the particle, mS the mass of the particle and VS

the potential it is subjected to. Another part of Hgen is HB =
{∑

j
p2

j

2m j
+ 1

2m jω2
j x

2
j

}
, which is called

the bath Hamiltonian. It consists of uncoupled bath oscillators with positions x j, momenta p j,
frequencies ω j and mass m j of the j.-th oscillator. The number of oscillators Nbath is usually large
and often the limit N → ∞ is taken. The interaction between the bath oscillators and the system
is modelled with a bilinear coupling as HSB = −O

∑
j c jx j, where O is an operator on the system

Hilbert space. Intuitively, one would believe this to be sufficient to model the interaction between
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two such systems. It is, however, necessary to include the counter term Hcounter =
c2

j O2

m jω2
j

to ensure
the potential given by VS remains unchanged by the bath, such that the properties one wishes
to include in the microscopic model are unchanged. To illustrate this, consider a Hamiltonian
Hgen,int = HS + HB + HSB, without Hcounter, such that:

Hgen,int = HS +
∑

j

1
2

m jω
2
j

x j −
c jO

m jω2
j


2

−

c2
j O

2

m jω2
j

. (2.2)

Since the bath is assumed to be in thermal equilibrium, the oscillators, its composed of, should be
in their respective potential minima [101]. This way, one finds a correction to the system Hamil-

tonian, giving a new potential ṼS = VS −
c2

j O2

m jω2
j

, which in principle can change the fundamental
behaviour of the system one wishes to investigate. To illustrate this, one might consider a particle
in a harmonic potential (harmonic oscillator) as the system with HS =

p2
S

2mS
+ 1

2ω
2
SmSx2

S which is

coupled via its position O = Xs the potential would become ṼS = (ω2
S −

∑
j

c2
j

m jω2
j
)xS = ω̃2

SX2
S. De-

pending on the choice of the bath parameter ω̃2
S < 0 is possible. In this limit the model description

becomes unphysical. This particle would not simply be a free particle, but one which experiences
an infinitely decreasing potential and would be accelerated even for xS → ±∞. The bath would
generate infinite energy in the system, creating a perpetuum mobile. While this is an extreme ex-
ample to show problems that might occur, in many cases with the right choice of bath parameters,
this effect is less drastic. To deal with this problem within our model description the simplest way
possibly is to simply subtract the correction of the system potential from Hgen,int, giving rise to the
fourth term in Hgen the counter term Hcounter with Hgen = Hgen,int + Hcounter, countering the correc-
tion of the system potential in way, that in the potential minimum of the bath the system potential
is given by VS.

2.1 Quantum Langevin Equation

The generic Hamiltonian can be used to derive a quantum Langevin equation. The classical gen-
eralized Langevin equation describes a stochastic force acting on a Brownian particle and thus
creates dissipation for the particle [8]. A bath system can exert as such a stochastic force on the
system. Analogously a Brownian particle coupled to a bath via its position O = xS in a general po-
sition dependent potential V(xS) is considered here. By using the definition pα(t) = mαẋα coupled
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differential equations can be derived for xS and the x j’s from the Heisenberg equation of motion:

mSẍS = −
d

dxS
V(xS) −

∑
j

c j(
c j

m jω2
j

xS − x j) , (2.3)

and

m jẍ j = −m jω
2
j x j − c jxS . (2.4)

Equation (2.4) is an inhomogeneous differential equation with solutions x j(t) = x j,hom(t) + x j,inh(t),
which, inserted in Equation (2.3), give:

mSẍS +

∫ t

0
ds

∑
j

c2
j

m jω2
j

cos(ω j(t − s))

 ẋS(s) +
d

dxS
V(xS) (2.5)

=
∑

j

c j

x j(0)cos(ω jt) +
ẋ j(0)
ω j

sin(ω jt) −
c j

m jω2
j

xS(0)cos(ω jt)

 .

It is now possible to introduce a damping kernel γ(t) = 1
mS

∑
j

c2
j

m jω2
j
cos(ω jt) and an operator-valued

force Γ(t) =
∑

j c j

[
x j(0)cos(ω jt) +

ẋ j(0)
ω j

sin(ω jt)
]
, giving Equation (2.5) the form:

mSẍS + mS

∫ t

0
dsγ(t − s)ẋS(s) +

d
dxS

V(xS) = Γ(t) −mSγ(t)xS(0) . (2.6)

The Equation of motion (2.6) is a generalized Langevin equation, extended by an inhomogeneous
term mSγ(t)xS(0), which is an initial slip. Further evaluation makes a discussion of initial condi-
tions of the bath necessary, since the random force Γ(t) is dependent on the initial conditions of the
bath x j(0) and p j(0). A useful and physically meaningful choice is, to assumes the bath to be at
thermal equilibrium, ρB = exp(−βHB)/ZB, with ZB = TrB

{
exp(−βHB)

}
. The expectation value of

the bath is defined as 〈O〉B = TrB
{
Oexp(−βHB)

}
. The force Γ(t) thus becomes a stochastic force

and its bath expectation is value zero. For the autocorrelation function L(t − s) follows:
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L(t − s) = 〈Γ(t)Γ(s)〉B = 〈Γ(t − s)Γ(0)〉B (2.7)

= ~
∑

j

c2
j

2m jω j

[
coth(~ω jβ/2)cos(ω j(t − s)) − isin(ω j(t − s))

]
.

It is convenient to define the spectral density J(ω) as:

J(ω) =
π
2

∑
j

c2
j

m jω j
δ(ω − ω j) , (2.8)

such that

〈Γ(t)Γ(s)〉B =
~

π

∫
∞

0
dωJ(ω)

[
coth(~ωβ/2)cos(ω(t − s)) − isin(ω(t − s))

]
. (2.9)

It is also possible to express the damping kernel γ(t) in terms of the spectral density:

γ(t) =
2

msπ

∫
∞

0
dω

J(ω)
ω2 cos(ωt) . (2.10)

All of the influence of the bath on the system can be expressed via J(ω). This becomes obvious,
if one looks at Equation (2.3) and notes that the sum over the bath degrees of freedom is now
expressed by a general integral over all possible frequencies ω, which are sampled by the spectral
density. A bath can therefore be described in terms of its spectral density.
In the limit Nbath → ∞ and with the assumption that the eigenfequencies ω j’s are so dense as to
form a continuous spectrum, the spectral density J(ω) becomes a smooth function of ω. The form
used throughout this work is:

J(ω) = γω1−s
c ωs fcut−o f f (ω,ωc) . (2.11)

Where the constant γ is called the coupling strength of the bath, fcut−o f f (ω,ωc) is a dimensionless
cut-off function. The cut-off frequency ωc limits the energies of the bath, such that larger frequen-
cies are suppressed, while introducing a short-time scale ω−1

c . This spectral density is called sub
Ohmic for s < 1, Ohmic for s = 1 and super Ohmic for s > 1, each case describes different physical
situations. The transition between these regimes can play an important role in the description of
environments. A spectral density describing acoustic phonons in semi conductors such as Ga/As
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can be modelled for low frequencies as super-Ohmic with J(ω) ∝ ω3, while for high frequencies
the behaviour is sub-Ohmic with J(ω) ∝ ω−1 [102]. Sub Ohmic noise is of high interest for qubits,
since it is generic for all disordered materials and common in single electron devices [76–79].

2.2 Master equations

Master equations are a powerful and widely used approach to simulate quantum mechanical many
body interactions such as in quantum optics [12], condensed matter physics [103], quantum chem-
istry [104] as well as quantum thermodynamics [105]. They can be derived for a huge variety of
situations. One of the earliest known examples is Landau’s paper from 1927 describing emmis-
sion [1]. Very prominent are the Redfield equations [101] and the Lindblad equations [73], both
are markovian and have been used for an astonishing number of publications, more recently works
beyond these approaches such as non-Markovian master equations [80] and non-additive master
equations [106] have been published. Here the focus will be on master equations in Lindblad form,
since they were employed in this project [98]. This approach modifies the von Neumann equation
by introducing additional terms:

∂
∂t
ρ =

i
~

[ρ,H] + Γρ = LLindρ . (2.12)

Where Γρ =
∑

j V†jρV j−
1
2 {V

†

j V j, ρ} and V j a system operator. This form ensuress the conservation
of the trace and the positivity of all diagonal elements of ρ. The dynamics becomes Liovillian
instead of Hamiltonian, which inclines one to use superoperators. The modified von Neumann
equation can be solved, yielding a new system time evolution operator US,M. We combine the
master equation approach with a numerically exact simulation method, Hybrid-QUAPI for details
see chapter 5.3, and with a perturbative theory, Hybrid-RESPET for details see chapter 4.4.
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Chapter 3

The Two Level System in Liouville space

The Two Level System (TLS) is one of the simplest systems imaginable, consisting only of two
states. It has been investigated intensively [7] and is a widely used toy model with applications in
broad spectrum of modern physics, such as description of a spin, polarized photons, atomic lasers
and of course qubits and the mixing of states. It is often used in connection with other systems,
such as in the description of masers in the Jaymes-Cummings-Model [107], where it is used to
model an atom in connection with a photon field. More recently the TLS has been used to model
defects in glasses [108, 109], quantum dots in interaction with their environment [63, 110] as well
as molecules in fluids [111, 112]. The TLS Hamiltonian is given by:

Hasym.TLS =
1
2

∆σx +
1
2
εσz . (3.1)

This is called the asymmetric TLS, while for either ∆ = 0 or ε = 0 this is called the symmetric
TLS.

3.1 The Liouville space: Introduction

The Liouville space is a formulation of quantum mechanics in which operators are represented as
vectors and superoperators, which act as matrices on operators are introduced. To understand what
superoperators are, it is helpful to look at the underlying tensor structure of quantum mechanics.
For a Hilbert space with basis vectors ei and scalar product ei(e j) = δ j

i . The Hilbert space of the
TLS has dimension 2 and any eigenstates consists of two vectors, for example e1 and e2. Operators
like the position x or momentum p are matrices acting on the basis elements of the Hilbert space.
Mathematically speaking they are (1,1)-tensors which have basis elements ei ⊗ e j. A superoperator
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is a (2,2)-tensor acting on the operators of the Hilbert space, they have basis elements ei⊗e j⊗ek
⊗el.

Propose an operator A = ea ⊗ eb and a superoperator S = ec
⊗ ed
⊗ e f ⊗ eg. The convention used

in this thesis is: S(A) = ec
⊗ ed
⊗ e f ⊗ eg(ea ⊗ eb) ≡ ec

⊗ ed(ea) ⊗ e f ⊗ eg(eb) = ec
⊗ e fδd

aδ
b
g. To

differentiate between the vectors of the Hilbert space, f.e. |a〉 for an eigenvector of an operator A,
in this theses the convention |A), for the operator A itself, is used. The scalar product of Liouville
space is defined as (A|B) = Tr{A†B}. Two important examples of superoperators are the response
operator of an operator O: Õ = i[O, .], and the correlation operator of O: O = 1

2 {O, .}.

Ã|B) = |i[A,B]) . (3.2)

For the TLS a useful basis for the operators are the three Pauli matrices and the identity matrix. In
tensor algebra they are represented as σx = e1⊗e2+e2⊗e1, σy = i(−e1⊗e2+e2⊗e1) ,σz = e1⊗e1

−e2⊗e2

and 1 = e1 ⊗ e1 + e2 ⊗ e2. For the Pauli matrices [σ1, σ2] = 2iσ3ε123 with (123) ≡ (xyz) and
ε123 the Levi-Civita-Symbol. The convention used here is |O) = O11 + Oxσx + Oyσy + Ozσz ≡

(O1,Ox,Oy,Oz)T.
Often one is interested in correlation and response functions, the representation in Liouville space
is the following. For the response function:

RAB(t, 0) = i〈A(t)B(0) − B(0)A(t)〉 = (1|AUB̃|ρ(0)) . (3.3)

For the correlation function:

CAB(t, 0) =
1
2
〈A(t)B(0) + B(0)A(t)〉 = (1|AUB|ρ(0)) . (3.4)

Notice 〈A(t)B(0)〉 = 2CAB(t, 0) − iRAB(t, 0)

3.1.1 Dynamics of the TLS in Liouville space

The dynamics of the TLS is given by the von-Neumann equation:

d
dt
|ρ) = −i[H, ρ] = −H̃|ρ) = −

∆

2
σ̃x|ρ) =: L|ρ) , (3.5)

where L is called the Liovillian super operator. A formal solution of the von-Neumann equation
can be obtained with the following steps:
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|ρ(t)) =U(t)ρ(0) . (3.6)

Thus

d
dt
U(t) = LU(t) , (3.7)

giving the solution

U(t) = T exp
[∫ t

0
L(s)ds

]
, (3.8)

where T is the time ordering operator. Since HTLS does not depend on time it follows that:

U(t) = exp
[
−

∆ ∗ t
2
σ̃x

]
. (3.9)

For Hermitian dynamics the identityU(t)|ρ(0)) = U(t)ρ(0)U−1(t) holds. Calculation of exp[∆
2 σ̃x]

is straightforward. First one has to find a matrix form of σ̃x. It is easy to calculate how σ̃x acts on
|ρ(t)):

σ̃x|ρ(t)) = σ̃x[ρ1(t)|1) + ρx(t)|σx) + ρy(t)|σy) + ρz(t)|σz)] = i(ρy(t)|[σx, σy]) + ρz(t)|[σx, σz]))
(3.10)

= (0, 0, 2ρz(t),−2ρy(t))T .

In matrix form thus:

σ̃x


ρ1(t)
ρx(t)
ρy(t)
ρz(t)

 =


0
0

2ρz(t)
−2ρy(t)

 , (3.11)
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therefore

σ̃x =


0 0 0 0
0 0 0 0
0 0 0 2
0 0 −2 0

 . (3.12)

Now the super operator propagator can be calculated:

U(t) = exp
[
−

∆ ∗ t
2
σ̃x

]
=

∞∑
j=0

(
−

∆ ∗ t
2

) j σ̃ j
x

j!
=

∞∑
j=0

(
−

∆ ∗ t
2

)2 j+1
−σ̃x

2 j+1

(2 j + 1)!
+

∞∑
j=0

(
−

∆ ∗ t
2

)2 j σ̃2 j
x

2 j!

(3.13)

=


1 0 0 0
0 1 0 0
0 0 −cos[∆ ∗ t] sin[∆ ∗ t]
0 0 −sin[∆ ∗ t] −cos[∆ ∗ t]

 .

This form of U(t) allows a few important statements to be made. A fundamental property of
the density matrix is Tr{ρ} = 1 for all times. For the trace of all Pauli matrices is zero except
for the identity:Tr{1} = 2, therefore ρ1 = 1

2 . Since this has to hold for all times, the first row
in Ũ(t) can only contain zero’s at off-diagonal elements. The eigenstates of the σx are the two
vectors 1

√
2
(1, 1) and 1

√
2
(1,−1), the corresponding density matrix elements are 1

2 (1 + ρxσx) and
1
2 (1−ρxσx) respectively. Since the second row ofU(t) also only contains 0 at off-diagonal elements,
it follows that ρx is constant and thus also the population of the eigenstates remains constant. This
shows a fundamental property of the von-Neumann equation: in pure quantum dynamics there is
no dissipation but infinite coherent oscillations with no change of the population of the energy
states. The Liouville formulation now allows for simple manipulations to introduce relaxation and
decoherence by changing L. While the first row always has to be a zero vector, the second row can
be changed to introduce relaxation, L22 < 0 and L21 → const. for t → ∞ and to mix decoherence
and relaxation L23 , 0 and L24 , 0. By introducing changes in the third and fourth row one can
introduce pure dephasing rates, see for example [98], if one limits oneself to the third and fourth
column. Introducing non-zero values in the second column mixes the population dynamics into the
dephasing, while introducing non zero values into the first column, σz and σy do not vanish any
more in the equilibrium. Thus the eigenbasis of the physical problem changes.



Chapter 4

RESPET: The dissipating two level
system in a perturbative treatment

4.1 Spin-Boson model: The 1-loop approximation

RESPET is a resumed perturbative approach in Liouville space. This introduction of RESPET is
along the line of thought of the derivation done by Nalbach and Thorwart in [113]. Continuing
with the formalism of the previous chapter, the connotation is changed such that the U introduced
before will be renamed into US, from now on the pure system propagator. To model the TLS in an
environment that introduces dissipation the Spin-Boson model (SBM) [7] has been developed.
The generic system-bath Hamiltonian of Equation (2.1) for the SBM reads:

H = HS + HSB + HB + Hcounter =
∆

2
σx +

σz

2

∑
j

c jx j +
1
2

∑
j

p2
j

m j
+ m jω

2
j x

2
j +

c2
j

4m jω2
j

. (4.1)

Note the counter term is proportional to σ2
z = 1, thus commutes with the density matrix W(t),

therefore does not contribute to L and can be neglected in the following derivation. Now interpret

HSB = σz
2

∑
j c jx j as a perturbation of H0 = HB +HS = ∆

2σx + 1
2

∑
j

p2
j

m j
+m jω2

j x
2
j . The formal solution

of the Liouvillian is given byU = Te
∫ t

0 dsL∗s, following L = L0+LSB andU0 = Te
∫ t

0 dsL0∗s =US⊗UB.
If one assumes a system initially uncorrelated with the bath, then: ρ(0) = ρS(0)⊗ ρBoltz

B (0). It holds
that 〈U0(t, 0)〉B = Trbath{U0(t, 0)ρBoltz

B (0)} = US(t, 0), where 〈.〉B denotes the expectation value of
the bath, obtained by tracing out the bath degrees of freedom. Now it is possible to write down a
Dyson equation for this Hamiltonian. UsingU(a, b) =U(a − b), one finds:
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U(t) =U0(t) +

∫ t

0
dsU0(t − s)LSBU(s) (4.2)

=U0(t) +

∫ t

0
dsU0(t − s)LSBU0(s) +

∫ t

0

∫ s

0
dsds′U0(t − s)LSBU0(s − s′)LSBU(s′) .

Assuming a large enough bath, such that the energy ∆ is negligibly small against the sum of the
energy of all the bath oscillators, it can also be assumed that theUS is affected by the bath, while
UB is not affected by the system. Thus the propagator of interest is the effective system propagator,
obtained by 〈U(t, 0)〉B. Calculating the bath expectation value of the Dyson equation one obtains:

Ue f f (t) =US(t) +

∫ t

0
ds〈U0(t − s)LSBU0(s)〉B (4.3)

+

∫ t

0

∫ s

0
dsds′〈U0(t − s)LSBU0(s − s′)LSBU(s′)〉B .

The second term vanishes since:∫ t

0
ds〈U0(t − s)LSBU0(s)〉B ∝

∑
j

〈x j(s)〉B = 0 . (4.4)

Here the cyclic permutation of the trace was used and ρB(s) = ρB(0), since ρB is assumed to be
initially in equilibrium, as well as 〈xk〉 = 0 for harmonic oscillators at equilibrium, hence oscil-
lators that are not displaced. Equation (4.3) is a one loop Dyson equation, where ’loop’ denotes
expectation values of the type 〈x j(t1)x j(t2)〉 as fundamental objects. These can be viewed as a form
of irreducable Feynman diagrams. Hence, all correlation functions are expressed in these objects,
such that higher order correlations of the type 〈x j(t1)x j(t2)〉〈x j(t3)x j(t4)〉, for t1 < t2 < t3 < t4,
are considered, while 〈x j(t1)x j(t3)〉〈x j(t2)x j(t4)〉 are not. The treatment of the third term makes an
approximation necessary.

∫ t

0

∫ s

0
dsds′〈U0(t − s)LSBU0(s − s′)LSBU(s′)〉B =

∫ t

0

∫ s

0
dsds′US(t − s)M(s − s′)Ue f f (s′) .

(4.5)

Where M(s−s′) = 〈LSBU0(s−s′)LSB〉B and a mean-field type approximation is employed according
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to [114]. Application of a Laplace transformation allows to solve the integrals in this equation. A
short reminder of the Laplace transformation: LT[ f (t)] = i

∫
∞

0
dteizt f (t) ≡ f (z) is the transforma-

tion of the function f (t). The back-transformation is defined as f (t) = 1
2πi

∫
∞

−∞
dte−izt f (z), with the

conditions that f (z) is an analytical function and Im(z) > 0 as well as f (t → ∞) < ∞. Now one
can make use of the convolution theorem for the Laplace transformation: LT[

∫ t

0
ds f (t − s)g(s)] =

−iLT[ f (t)]LT[g(t)]:

LT[Ue f f (t)] =Ue f f (z) =US(z) −US(z)M(z)Ue f f (z) (4.6)

= (U−1
S (z) +M(z))−1 .

US(t) was calculated in the previous chapter, performing the Laplace transformation one finds:

US(z) =


−z−1 0 0 0

0 −z−1 0 0
0 0 −z

z2−∆2
i∆

z2−∆2

0 0 −i∆
z2−∆2

−z
z2−∆2

 and U
−1
S (z) =


−z 0 0 0
0 −z 0 0
0 0 −z −i∆
0 0 i∆ −z

 . (4.7)

Now onlyM(z) is left to obtain, therefore LSB has to be analyzed in more detail: LSB = −H̃SB =

−
1
2

∑
j c jσ̃zxk = − 1

2

∑
j c j

(
σ̃zxk + σzx̃k

)
with this:

4M(s − s′) = σzUS(s − s′)σz

∑
jk

c jck〈x̃ jUB(s − s′)x̃k〉B + σzUS(s − s′)σ̃z

∑
jk

c jck〈x̃ jUB(s − s′)xk〉B

(4.8)

+ σ̃zUS(s − s′)σz

∑
jk

c jck〈x jUB(s − s′)x̃k〉B + σ̃zUS(s − s′)σ̃z

∑
jk

c jck〈x jUB(s − s′)xk〉B

= σ̃zUS(s − s′)σz

∑
j

c2
j 〈x jUB(s − s′)x̃ j〉B + σ̃zUS(s − s′)σ̃z

∑
j

c2
j 〈x jUB(s − s′)x j〉B

= σ̃zUS(s − s′)σz

∑
j

c2
j Rqq, j(s − s′) + σ̃zUS(s − s′)σ̃z

∑
j

c2
j Cqq, j(s − s′) .

where Rqq, j(t) = 1
m jω j

Θ(t)sin(ω jt) is the response function of the k-th bath oscillator and Cqq, j(t) =
1

2m jω j
cos(ω jt)coth(β

ω j

2 ) and 〈x̃ jA〉B = 0, for arbitrary A. After a change to the continuum repre-

sentation for sufficiently large Nbath, with
∑

k →
∫
∞

0
dω, the correlation and response functions of

the bath can be expressed by the spectral density J(ω), introduced in chapter 2.1 . This leads to the
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bath response function
∑

j c2
j Rqq, j(s− s′) =

∫
∞

0
dω
4π2J(ω)sin(ω(s− s′)) ≡ Rqq and the bath correlation

function
∑

j c2
j Cqq, j(s − s′) =

∫
∞

0
dω
4π J(ω)coth(βω/2)cos(ω(s − s′)) ≡ Cqq(s − s′). The kernel M(t)

thus has the form:

M(s − s′) =


0 0 0 0

2Rqq(s − s′)sin(∆(s − s′)) −4Cqq(s − s′)cos(∆(s − s′)) 0 0
0 0 −4Cqq(s − s′) 0
0 0 0 0

 , (4.9)

which is in Laplace space:

M(z) =


0 0 0 0

Ξ(z) χ(z) 0 0
0 0 Θ(z) 0
0 0 0 0

 . (4.10)

with Ξ(z) = BR(z)ω−∆
− BR(z)ω+∆, χ(z) = 2(BC(z)ω−∆ + BC(z)ω+∆) and Θ(z) = −4BC(z). With

BR(z) = LT{Rqq(t)} and BC(z) = LT{Cqq(t)}. The upper index in BαR/C indicates a change of ω in
the argument of cos or sin, such that Rα

qq(t) =
∫
∞

0
dω
4π2J(ω)sin(αt) and correspondingly in Cqq. This

result together with Equation (4.7) allows to calculate the inverse in Equation (4.6).

Ue f f (z) =


−z−1 0 0 0
a(z) b(z) 0 0

0 0 z
p(z)

−i∆
p(z)

0 0 i∆
p(z)

z+Θ(z)
p(z)

 , (4.11)

with a(z) = Ξ(z)
χ(z)

−χ(z)
z(z+χ(z)) , b(z) = −(z+χ(z))−1 and p(z) = ∆2

−z2
−2zΓ(z). The one loop characteristic

becomes apparent if one analyses the components of Ue f f (z) on the basis of Equation (4.6), which
can be rewritten asUe f f (z) = US(z)(1 +US(z)M(z))−1 = US(z)(1 + α(z))−1. The corresponding
Taylor series in α(z) gives: Ue f f (z) =US(z)

∑
∞

m=0(−1)mαm(z). Since α consists of 1-loops, αm is a
product of m such 1-loops.
Ue f f allows the calculation of the expectation value of any given system operator in the given
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approximation for any choice of ρS(0). The expectation value for an operator O is given by:

〈O(z)〉 =
(
1
∣∣∣OUe f f (z)

∣∣∣ρS(0)
)

(4.12)

=
(
1
∣∣∣O∣∣∣ − 1

2
z−11 + (

1
2

a(z) + b(z)ρx(0))σx

)
+

(
1
∣∣∣O∣∣∣ p(z)−1(zρy(0) − i∆ρz(0))σy + p−1(z)(i∆ρy(0) + (z + Θ(z))ρz(0))σz

)
= −z−1O1 + 2(

1
2

a(z) + b(z)ρx(0))Ox + 2p−1(z)(zρy(0) − i∆ρz(0))Oy

+ 2p−1(z)(i∆ρy(0) + (z + Θ(z))ρz(0))Oz .

To investigate the dissipation of the TLS the relevant expectation values are Pz ≡ 〈σz〉 and Px ≡

〈σx〉. To study decoherence the time evolution Pz has to be analysed while to study relaxation Px is
the quantity of interest. For relaxation a system initially in an excited stated is sensible, implying
the choice ρS(0) = 0.5(1 + σx), with this initial condition the resulting expectation value becomes:
Px(z) = 0.5(a(z) + b(z)). A useful choice for the initial density matrix to investigate decoherence is
ρS(0) = 0.5(1+σz), implying a state of full coherence with equal population in ground and excited
state. Then the expectation value is given by: P(z) = z+2Θ(z)

p(z) . Even in Laplace space these results
are quite useful. The dynamics are decoupled in two sectors. The 1σx sector governs the relaxation
dynamics, while the σyσz sector covers decoherence dynamics. The first line in Ue f f (z) can only
contain an element at (Ue f f (z))11, otherwise the conservation of the trace is violated.
Normally one wishes to discuss the dynamics in time space. The back transformation of Ue f f (z)
however is highly non trivial and depends on the choice of the spectral density. To give an impres-
sion of the necessary steps a closer look to Pz(z) with the initial conditions of factorized bath and
system density matricces is useful. The back transformation is formally given by:

P(t) =
1

2πi

∫
∞

−∞

dze−izt z + Θ(z)
p(z)

. (4.13)

This integral has to be solved by complex integration. A first simple approximation is to evaluate
each residuum at the bare system poles, yielding results which are equivalent to the Bloch equa-
tions. Additional corrections become substantial for larger system-bath couplings γ, which make
the consideration of branch cuts and shifted system frequencies necessary. These steps are shown
in a rigorous and detailed manner in the 2010 paper by Nalbach et al [113]. Neglecting all terms of
order O(γ4) the result reads:

P(z) ' cos(∆t)e−ΓPt with the rate ΓP = 2πJ(∆)coth(β
∆

2
) . (4.14)
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4.2 RESPET: The asymmetric two level system

As mentioned before, by diagonalization any asymmetric TLS can be transformed to a symmetric
TLS, if the TLS is in contact with a bath, this basis change will reflect in the system-bath coupling
operators. Thereby, effectively simplifying a system Hamiltonian for the cost of a more complex
system-bath coupling operator. Performing this transformation gives:

HRBM =
∆

2
σx +

ε
2
σz − aRBMσz

∑
j

c jx j +
1
2

∑
j

p2
j

m j
+ m jω

2
j x

2
j +

c2
j

4m jω2
j

(4.15)

=
Ω

2
τx + (axτx + azτz)

∑
j

c jx j +
1
2

∑
j

p2
j

m j
+ m jω

2
j x

2
j +

c2
j

4m jω2
j

.

Where aRBM = 1/2, Ω =
√

∆2 + ε2, az = ∆
2Ω

and ax = ε
2Ω

with the rotation σz = axτx + azτz and
σx = azτx − axτz, such that τx and τz are Pauli matrices in the eigenbasis of HS. Hereafter this
model will be referred to as the Rotated Bath Model (RBM). The RBM can be interpreted as two
fully correlated fluctuations, one being in axτx and the other in azτz, fully correlated since both
fluctuation result from the same bath. For example, a voltage fluctuation in one of the gates of the
connection set up for a quantum dot might cause a fluctuation in the energy splitting of the levels
δ∆ as well as a fluctuation in the depth of the potential well δε, see chapter 1. This feature would
be well represented by the RBM, with the choice of ax and az reflecting whether the gate influences
the ∆ or ε with different strengths.
With the diagonalized version of HRBM the derivation for the symmetric TLS can be followed up to
Equation (4.8). After some algebra one obtains:

4M(s − s′) =
{
µτ̃zUS(s − s′)(µτz + ντx) + νµτ̃xUS(s − s′)τz

}∑
j

c2
j Rqq, j(s − s′) (4.16)

+ (µτ̃z + ντ̃x)US(s − s′)(µτ̃z + ντ̃x)
∑

j

c2
j Cqq, j(s − s′) ,

and
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M(z) =Mτx +Mτz +Mmix (4.17)

= a2
x


0 0 0 0
0 0 0 0
0 0 χ(z) χ2(z)
0 0 −χ2(z) χ(z)

 + a2
z


0 0 0 0

Ξ(z) χ(z) 0 0
0 0 Θ(z) 0
0 0 0 0


+ axaz


0 0 0 0
0 0 0 0

Σ(z) 0 0 0
Φ(z) 0 0 0

 + µν


0 0 0 0
0 0 ζ2(z) ζ(z)
0 ζ2(z) 0 0
0 ζ(z) 0 0

 .

Here the index 2 indicates a change from sin to cos and correspondingly in the definition of the
bath correlation function Cqq(t) and bath response function Rqq(t), such that χ2(z) = 2(Bω−∆

C2 (z) +

Bω+∆
C2 (z)), with BC2(z) = LT{Cqq2(t)} and Cqq2(t) =

∫
∞

0
dω
4π J(ω)coth(βω/2)sin(ωt). Furthermore

the definitions Σ(z) = 2(Bω+∆
R (z) + Bω−∆

R (z) − BR(z)), Φ(z) = 2(Bω+∆
R2 (z) − Bω−∆

R2 (z)) and ζ(z) =

2(B∆−ω
C (z) + B∆+ω

C (z)) have been used.
The part ofM(z) proportional to a2

x only influences the dephasing dynamics. For az = 0 the system-
bath coupling operator would only be τx, sharing the same eigenbasis as the system Hamiltonian.
Thus, 〈ψτx |[H, ρ]|ψτx〉 = 0 = ρ̇ψτx ,ψτx

with ψτx being the eigenstates for τx. Physically this holds
dramatic meaning: The population of the eigenstates does not change over time, the initial prepara-
tion of these states given by the density matrix ρ0 will never change and no relaxation can happen.
In the way system-bath Hamiltonians were introduced in chapter 2, this holds for any system-bath
model in which HSB commutes with HS. All these baths are pure dephasing baths, in this project
the focus is on the dynamics of the TLS, therefore the model in which HSB ∝ τx will be called the
Pure Dephasing Model. For ax = 0 the result for the SBM is recovered. The mix terms with µν
are more interesting, the bath response function now also gives equilibrium contributions in ρy and
ρz, corresponding to the additional terms in the first row inM(z). The bath correlation function
now mixes the relaxation and the dephasing dynamics. It is straight forward but tedious to calculate
Ue f f (z), its form is shown in appendix A.1.
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4.3 The symmetric TLS for two uncorrelated non-commuting

baths

While the RBM is a useful description to model fluctuation in ε and ∆ stemming from the same
source, it is not applicable if the two fluctuations have different sources. As mentioned in the
introduction this is far from a purely theoretical discussion, but has many real world counter parts.
In this section two completely uncorrelated fluctuations are considered and RESPET is derived
for two uncoupled baths. The Hamiltonian investigated here couples the system via σx

2

∑
j c j,1x j,1 to

the first bath and via σz
2

∑
j c j,2x j,2 to the second bath. From here on this model is called the Two

Bath Model (TBM). The generic Hamiltonian for the TBM reads:

H = HS + HSB,1 + HB,1 + Hcounter,1 + HSB,2 + HB,2 + Hcounter,2 (4.18)

=
∆

2
σx +

∑
e=1,2

∑
j

p2
j,e

2m j,e
+

1
2

m j,eω
2
j,e

x j,e −
c j,eOe

m j,eω2
j,e


2

.

With O1 = σx
2 and O2 = σz

2 . Each of the counter terms is proportional to 1 and can be ignored. To
calculate the reduced density matrix the trace over all degrees of freedom for both baths has to be
performed. Since both baths are uncorrelated in absence of the system-bath couplings many of the
previous considerations still hold but are slightly modified:L = L0 + LSB,1 + LSB,2, factorized initial
condition: W(0) = ρS(0) ⊗ ρBoltz

B1 (0) ⊗ ρBoltz
B2 (0), both at equilibrium with Boltzmann type density

matrix andU0 = US ⊗UB,1 ⊗UB,2. In the Dyson equation (4.3) simply LSB has to be substituted
with LSB,1 + LSB,2 and the second term still vanishes. Continuing the previous steps one arrives at a
new integral kernel:

M = 〈[LSB,1 + LSB,2]U0(s − s′)[LSB,1 + LSB,2]〉B1+B2 , (4.19)

where 〈A〉B1+B2 = TrB{AρBoltz
B1 (0) ⊗ ρBoltz

B2 (0)}. Every term in M that mixes LSB,1 and LSB,2 is propor-
tional to:

Mmix ∝ TrB{α
∑

j

c jx j,1UB1 ⊗UB1

∑
k

ckxk,2ρ
Boltz
B1 (s′) ⊗ ρBoltz

B2 (s′)} (4.20)

∝ α
∑

j

c j

∑
k

ckTrB1{UB1(s − s′)x j,1ρ
Boltz
B1 (s′)}TrB2{UB2(s − s′)xk,2ρ

Boltz
B2 (s′)}

∝ α〈x j1〉B1〈x j2〉B2 = 0 .

The result forM(z) can actually be obtained from the asymmetric TLS result (A.1) by dropping
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the terms proportional to axaz and identifying: a2
z(C/R)qq(t) = (C/R)qq,1(t) and a2

x(C/R)qq(t) =

(C/R)qq,2(t). Therefore in the 1-loop approximation the kernel is simply the sum of both kernels:
M =Mσx +Mσz . While the dephasing dynamics become somewhat more complex, the relaxation
dynamics actually are entirely unchanged compared to the SBM. For stronger coupling this is not
true since higher order differences occur. To understand this in greater detail a two-loop Dyson
equation has to be used.

4.3.1 Two-loop approximation

The two loop Dyson equation for the reduced density matrix reads:

Ue f f (t) = US(t) +

∫ t

0

∫ s

0
dsds′US(t − s)M(s − s′)US(s′) (4.21)

+

∫ t

0

∫ s

0

∫ s′

0

∫ s′′

0
dsds′ds′′ds′′′US(t − s)V(s − s′, s′ − s′′, s′′ − s′′′)Ue f f (s′′′) .

By performing the bath trace additionally to the terms ∝ LSB also the terms ∝ L3
SB vanish after

some algebra, mainly employing a form of the Wick theorem for superoperators, since they are
either proportional to 〈x j,1〉 or 〈x j,2〉. Transformed to Laplace space the equation reads:

Ue f f (z) =US(z) −US(z)M(z)US(z) +US(z)V(z)Ue f f (z) , (4.22)

which is formally solved by:

Ue f f (z) = (U−1
S (z) −V(z))−1(1 −M(z)US(z)) , (4.23)

whereV(s − s′, s′ − s′′, s′′ − s′′′) is the two loop kernel, which has the form:

V = 〈LSBU0(s − s′)LSBU0(s′ − s′′)LSBU0(s′′ − s′′′)LSB〉B , (4.24)

with LSB = LSB,1 + LSB,2. Note that inV the first non vanishing terms mixing LSB,1 and LSB,2 occur.
As mentioned before, even in 1-loop approximation, the dephasing becomes rather complex. After
a lot of tedious algebra one finds contributions to the relaxation rate in this kernel. In this chapter
the overall form of V(z) is given, but explicitly only the element V(22)(z) is discussed, since it is
the relevant entry for relaxation. In Appendix A.3 all elements are shown.
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First a deeper look in the structure of both factors in Equation (4.23) is necessary, the right bracket
has the form:

1 −M(z)US(z) =


1 0 0 0

D1 D2 0 0
0 0 D3 D4

0 0 D5 D6

 , (4.25)

with D1 −D6 being complex numbers. For the left bracket one finds:

U
−1
S (z) +V(z) =

−1
z


1 0 0 0
a b 0 0
0 0 c d
0 0 e f

 , (4.26)

with a − f being complex numbers. Then

(U−1
S (z) +V(z))−1 =


I1 0 0 0
I2 I3 0 0
0 0 I4 I5

0 0 I6 I7

 =
−z

b(c f − ed)


b(c f − ed) 0 0 0
−a(c f − ed) c f − ed 0 0

0 0 b f −bd
0 0 −be bc

 . (4.27)

The overall form ofUe f f (z) then is:

Ue f f (z) =


I1 0 0 0

I2 + I3D1 I3D2 0 0
0 0 I4D3 + I5D5 I4D4 + I5D6

0 0 I6D3 + I7D5 I6D4 + I7D6

 . (4.28)

Therefore the form of Ue f f (z) remains unchanged and no additional equilibrium values for 〈σy〉 and
〈σz〉 are obtained. The dephasing and relaxation dynamics are not mixed in contrast to the RBM.
Now focus on V(22)(z) = I3D2, where one finds I3 = −z

b and D2 = 1 +
χσz (z)

z , with the index σz

showcasing that this is the χ(z) for the bath coupled via σz to system . Now a closer look into b is
necessary to evaluate the influence of the baths on the relaxation rate. Regarding the structure of
the system super operators four terms can contribute to b in principle. Two terms result only from
the σz bath, these are :
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Z1 = σ̃zUS(s − s′)̃σzUS(s′ − s′′)̃σzUS(s′′ − s′′′)̃σz (4.29)

×

∑
i jkl

cic jckcl〈xi,2UB,2(s − s′)x j,2UB,2(s′ − s′′)xk,2UB,2(s′′ − s′′′)xl,2〉

= 16


0 0 0 0
0 c∆

1 c∆
3 0 0

0 0 c∆
2 0

0 0 0 0


∑
i jkl

cic jckcl〈xi,2UB,2(s − s′)x j,2UB,2(s′ − s′′)xk,2UB,2(s′′ − s′′′)xl,2〉 ,

where c∆
1 = cos(∆(s − s′)), c∆

2 = cos(∆(s′ − s′′)) and c∆
3 = cos(∆(s′′ − s′′′)).

The second term is:

Z2 = σ̃zUS(s − s′)σzUS(s′ − s′′)σzUS(s′′ − s′′′)̃σz (4.30)

×

∑
i jkl

cic jckcl〈xi,2UB,2(s − s′)x̃ j,2UB,2(s′ − s′′)x̃k,2UB,2(s′′ − s′′′)xl,2〉

= 4


0 0 0 0
0 s∆

1 s∆
3 0 0

0 0 0 0
0 0 0 0


∑
i jkl

cic jckcl〈xi,2UB,2(s − s′)x̃ j,2UB,2(s′ − s′′)x̃k,2UB,2(s′′ − s′′′)xl,2〉 ,

where s indicates sin and otherwise the same notation as above.
To evaluate 〈xiUB,2(s − s′)x jUB,2(s′ − s′′)xkUB,2(s′′ − s′′′)xl〉 the action of the superoperators on
the density matrix has to be performed, the details are shown in appendix A.2. This allows to a
representation in terms of two point correlation functions, the result reads:

〈xi,2UB,2(s − s′)x j,2UB,2(s′ − s′′)xk,2UB,2(s′′ − s′′′)xl,2〉 = 〈xi,2UB,2(s − s′)x j,2〉〈xk,2UB,2(s′′ − s′′′)xl,2〉

(4.31)

+ 〈xi,2UB,2(s − s′′)xk,2〉〈x j,2UB,2(s′ − s′′′)xl,2〉 + 〈xi,2UB,2(s − s′′′)xl,2〉〈x j,2UB,2(s′ − s′′)xk,2〉

and

〈xi,2UB,2(s − s′)x̃ j,2UB,2(s′ − s′′)x̃k,2UB,2(s′′ − s′′′)xl,2〉 = 0 . (4.32)
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Therefore only Z1 actually contributes to b, the sum over the bath degrees of freedom can be
performed, yielding a contribution to b in time space with:

b1 = 16 cos(∆(s − s′))cos(∆(s′′ − s′′′)) (4.33)

× (Cqq,σz(s − s′)Cqq,σz(s
′′
− s′′′) + Cqq,σz(s − s′′)Cqq,σz(s

′
− s′′′) + Cqq,σz(s − s′′′)Cqq,σz(s

′
− s′′)) .

Note that Cqq,σz(s − s′)Cqq,σz(s′′ − s′′′) is a contribution covered by the one loop approximation.
The other two contributions to b result from the mixing of the two baths. They are:

Mix1 = σ̃zU1σ̃xU2σ̃xU3σ̃z

∑
i jkl

ci,2c j,1ck,1cl,2〈x j,1UB,1(s′ − s′′)xk,1〉〈xi,2UB,2(s − s′′′)xl,2〉 (4.34)

= 16


0 0 0 0
0 c∆

3 (c∆
1 c∆

2 − s∆
1 s∆

2 ) − s∆
3 (c∆

1 s∆
2 + s∆

1 c∆
2 ) 0 0

0 0 0 0
0 0 0 0

 Cqq,σz(s − s′′′)Cqq,σx(s
′
− s′′) ,

and

Mix2 = σ̃zU1σ̃xU2σzU3σx

∑
i jkl

ci,2c j,1ck,2cl,1〈x j,1UB,1(s′ − s′′′)x̃l,1〉〈xi,2UB,2(s − s′′)x̃k,2〉 (4.35)

= 4


0 0 0 0
0 c∆

1 c∆
2 − s∆

1 s∆
2 0 0

0 0 0 0
0 0 0 0

 Rqq,σz(s − s′′)Rqq,σx(s
′
− s′′′) .

Therefore, contributions to the relaxation rate from both the bath correlation function and the bath
response function of the σx bath contribute through irreducible 2-loop diagrams. Additionally, the
bath response function of the σz bath also contributes to the relaxation rate, while in one loop ap-
proximation only the bath correlation does. It is to be expected that these contributions become
especially prominent for large system-bath coupling and temperatures in the region of system en-
ergy difference ∆. While the Laplace transformation of the contributions to b is very tedious, it is
also straightforward.
For the purpose of this thesis we will restrain ourselves from giving the transformed b(z) or any
other contributions or elements of Ue f f (z). The Laplace back transformation is highly non-trivial,
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an example for integrals occurring is:

∫
∞

0
dω1

∫
∞

0
dω2

∫
∞

−∞

dzJσx(ω1)Jσz(ω2)e−izt −z(∆ + ω1 + ω2)(ω2 + ∆)
(z2 − ω2)(z2 − (∆ + ω1 + ω2)2(z2 − (∆ + ω2)2)

.

(4.36)

By performing a partial fraction decomposition this can be further simplified. One of the terms
occurring in Equation (4.36) is:

∫
∞

0
dω1

∫
∞

0
dω2

∫
∞

−∞

dzJσx(ω1)Jσz(ω2)e−izt i(∆ + ω1 + ω2)(∆ + ω1 + ω2)(ω2 + ∆)
z + i(∆ + ω1 + ω2)

. (4.37)

For Equation (4.37) no analytical solution is known ad we did not find one. One could try to
solve these integrals numerically or employ drastic simplifications. Self consistency methods to
obtain a form Ue f f might also circumvent the problem of calculating these integrals. In this thesis
instead the numerical method called Quasi Adiabatic Path Integral was extended, to simulate and
investigate the dynamics of the two level system under the influence of two non-commuting baths,
while including higher loops.

4.4 Hybrid-RESPET

Alternatively one can try to study two baths by treating one phenomenologically and the other
completely, either perturbatively or numerically exact. An approach to include a second bath phe-
nomenological is to modify the von-Neumann equation with a set of Lindblad operators, see 2.2.
This allows to keep the above derivation for the first bath, since only the solution of the US is
affected.

The bare evolution is stillU0(t, t0) = eL0(t−t0), hereL0 = −i[HS +HB, .]+ΓL with the Lindblad type
superoperator ΓL = (0, 0,−γD,−γD) ⊗ 1B. This choice of ΓL ensures only dephasing contributions
to the system dynamics, therefore modelling a PDB. Furthermore LSB = −i[HSB, .] with HSB =

−σz
∑
α cαxα. Hence in Hybrid-RESPET the σx-bath is included in the bare propagation U0, this is

illustrated diagrammatically in Figure 4.1. The effective Dyson equation keeps its previous form
and thus reads:
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= + +

= +

(a)

(b)

Figure 4.1: This figure shows a diagramtic representation of the Dyson Equation. In (a)
both baths are treated via the RESPET formalism, while in (b) the effect of one bath (blue)
is absorbed into the system propagation and the other bath (red) is treated via RESPET.

Ue f f (t − t0) =US(t − t0) +

∫ t

t0

∫ s

t0

dsds′US(t, s)M(s, s′)Ue f f (s′, t0) . (4.38)

Therein,US(t, t0) = eLS(t−t0) with LS = −i[HS, .] + ΓD. In this lowest order perturbative treatment
the memory kernelM(s, s′) is given asM(s, s′) = 〈LIU0(s, s′)LI〉B. Therefore, if one includes a
rate in this form, there are already effectively mixing effects between baths in lowest order. The
rest in analogous to the above derivation, where one arrives in the end at the same 1-loop form of
P(z):

P(z) ' cos(∆t)e−ΓPt .

For an initial system state ρS(0) = 0.5(1 + σz) the modified rate reads:

ΓP = γD −

∫
∞

−∞

dωJ(ω)coth
(
βω

2

)
γD

(∆ − ω)2 + γ2
D

+2πRe
{

J(∆ − iγD)coth
(
β

∆ − iγD

2

)}
. (4.39)



Chapter 5

The Quasi Adiabatic Path Integral

The method called Quasi Adiabatic Path Integral (QUAPI) was first proposed by Nancy Makri et al.
in 1995 [83, 95]. It is a highly successful numerical exact simulation method, which has been used
extensively over the past decades [115]. This chapter first introduces the original method and then
goes on with deriving the extension to multiple non-commuting baths as well as the less general
extension, which is used for the results later on in this dissertation. The start is from the generic
system-bath Hamiltonian as introduced in Equation (2.1):

Hgen = HS +
∑

j

 p2
j

2m j
+

1
2

m jω
2
j

x j −
c jO

m jω2
j


2 . (5.1)

First the essential steps of Grabert et al.’s derivation of ρred(t) will be followed, explicitly focusing
on the ones necessary for integrating out the bath degrees of freedom. Afterwards, this chapter
will showcase the developing of Makri’s method QUAPI and its iterative scheme. Thereafter a
combination of master equations and QUAPI are shown, for which the scheme is rewritten in terms
of super operators. Then the chapter goes on to derive the extension, essential for treating multiple
non-commuting fluctuations in terms of baths. In the earlier parts of this project, the general case
for arbitrary system operators O j was developed, but due to numerical costs, was not usable in a
sensible way. With the emergence of that issue a solution was found by restricting the choice of
system operators, such that one set of operators fulfills [HS,O j] = 0. The reasons for the increase
in numerical cost, compared to the original method, and the choice of the restriction can only be
understood fully if one takes a closer look into the influence functional. The influence functional
describes an effective bath dynamics via time non-local correlations in the system operators O j of
HSB. To achieve the necessary insight it is useful to start with the basics.
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5.1 A formal solution of the Feynman-Vernon Influence

functional

In this section the formal solution of the Feynman-Vernon influence functional as effective system
dynamics, as proposed by Grabert et al., is derived. The main steps follow therefore the paper
"Quantum Brownian Motion: The functional integral approach" of Grabert et al. [82] starting with
the original form Feynman and Vernon proposed in 1963 [6]. For comparability HS =

p2

2m0
+ V0 is

used here, as it is done in the paper.

5.1.1 Real time functional integral

A system, initially prepared in a pure state Ψ(oi, x̄i, t = 0), with x̄i = (x1i , ..., xNi), evolves in time
as:

Ψ(o f , x̄ f , t) =

∫
doidx̄iU(o f , x̄ f , t; oi, x̄i, 0)Ψ(oi, x̄i, 0), (5.2)

where U(o f , x̄ f , t; oi, x̄i, 0) = 〈o f , x̄ f , t| exp[−iHt/~]|oi, x̄i, 0〉 is the coordination representation of
the time evolution operator. This may in turn also be represented as a functional integral [116–118]:∫

DoDx̄ exp
[ i
~

S(o, x̄)
]
. (5.3)

This integral is over all possible paths o(s), x̄(s),0 ≤ s ≤ t with boundary conditions o(0) = oi,
x̄(0) = x̄i, o(t) = o f and x̄(t) = x̄ f . The path probability is weighted according to the action:

S(o, x̄) =

∫ t

0
dsL(o, ȯ, x̄, ˙̄x, s), (5.4)

as in the case of the full Hamiltonian H the full action L may be viewed as composition of
system, bath and system-bath parts. In contrast to Grabert’s paper, the equilibrium contribu-
tions and therefore the imaginary time integrals will not be discussed in detail. While they are
an important representation of the equilibrium density matrix and allow for more general initial
conditions, explicitly they allow for a prepared density matrix W0 =

∑
j P jWβP′j instead of a

factorized density matrixW0 = ρS(0)ρequil
bath (0) with Wβ = Z−1

β exp[−βH] and P j,P′j system opera-
tors. The equilibrium contributions are neglected, since they are of no importance for the deriva-
tion of the nonequilibrium dynamics and additionally the QUAPI scheme constraints the mod-
els investigated to the factorized initial condition. Applied this yields: LS = 1

2Mȯ2
− V(o, s),

LB =
∑

j
1
2m jẋ j

2
−

1
2m jω2

j x
2
j and LSB =

∑
j qc jx j. Putting all this together, using the fundamental

relation ρ(t) = |Ψ(o f , x̄ f , t〉〈Ψ(o′f , x̄
′

f , t| for time evolved initial pure states, one arrives at W(t):
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W(o f , x̄ f , o′f , x̄
′

f , t) =

∫
doido′idx̄idx̄′iU(o f , x̄ f , t; oi, x̄i, 0) (5.5)

×W(oi, x̄i, o′i , x̄
′
i, 0)U−1(o′f , x̄

′
f , t; o′i , x̄

′
i, 0) ,

which leads to the following representation:

W(o f , x̄ f , o′f , x̄
′

f , t) =

∫
doido′idx̄idx̄′i

∫
DoDx̄Do′Dx̄′exp

[ i
~
{S(o, x̄) − S(o′, x̄′)}

]
. (5.6)

Equation (5.6) sums over all paths o(s), o′(s), x̄(s) and x̄′(s) for 0 ≤ s ≤ t.

5.1.2 The reduced density matrix: How to trace out the bath

In the coordinate representation the trace becomes an integral over the bath coordinates. The re-
duced density matrix is:

ρred(o f , o′f , t) =

∫
dx̄ f W(o f , x̄ f , o′f , x̄ f , t) . (5.7)

This equation can be rewritten using the previous definitions and by separating the integrals over
the system coordinates and the bath coordinates :

ρred(o f , o′f , t) =

∫
dqidq′i

∫
DqDq′exp

[ i
~
{SS(o, x̄) − SS(o′, x̄′)}

]
FFV(q, q′) , (5.8)

now the whole influence of the bath is in FFV, the Feynman-Vernon influence functional,

FFV(o, o′) =

∫
dx̄idx̄′idx̄ f

∫
Dx̄Dx̄′exp

[ i
~
{SB(x̄) + SSB(o, x̄) − SB(x̄′) − SSB(o′, x̄′)}

]
. (5.9)

This equation is analytically solvable. First the path integrals of the coordinates for each bath
oscillator may be performed separately:

FFV(o, o′) =

∫
dx̄idx̄′idx̄ f

∏
j

F̃ j(o, x j f , x ji )̃F
∗

j(o
′, x′j f

, x′ji) , (5.10)
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where each F̃ j includes the whole influence of the j.-th bath oscillator. They are naturally defined
by:

F̃ j(o, x j f , x ji) =

∫
Dx jexp

 i
~

∫ t

0
ds

1
2

m jẋ2
j −

1
2

m jω
2
j

x j −
c jo

m jω2
j


2

 . (5.11)

It should be noted that, in contrast to Equation (5.1) the momenta of the bath oscillators are not
written as p j but m jẋ j. In the path integral formulation as introduced by Feynman and Vernon
the momenta p j are rewritten as p j(t) = m j

x j(t+dt)−x j(t)
dt = m jẋ j(t) [116–118]. The outer integral

is a Gaussian functional integral over all paths x j(s) with conditions as introduced before. This
can be solved exactly and most of the required steps can be found in appendix A of Grabert et

al.’s paper [82]. The solution reads: F̃ j(o, x j f , x ji) =
(

m jω j

2πi~sin(ω jt)

)2

exp
[

i
~
Φ j(o, x j f , x ji)

]
, with a real

phase Φ j(o, x j f , x ji), which is quadratic in x j f and x ji . The remaining integral over dx̄i, dx̄′i and dx̄ f

therefore also become Gaussian. One arrives at:

FFV = exp
[
−

1
~

∫ t

0
ds

∫ s

0
dr(o(s) − o′(s))(L(s − r)o(r) − L∗(s − r)o′(r))

]
(5.12)

× exp
[
−

i
2~

∫ t

0
ds µ(o2(s) − o′2(s))

]
= exp

[
−

1
~

∫ t

0
ds

∫ s

0
dr(o(s) − o′(s))(η(s − r)o(r) − η∗(s − r)o′(r))

]
.

With L(t − t′) being the correlation function of the bath defined in Equation (2.7). The factor

in the second line arises from the counter term, here µ =
∑

j
c2

j

m jω j
=

∫
∞

0
dω
π J(ω) 2

π for infinitely
many harmonic oscillators. This also allows the redefining of the integral kernel as: η(t − t′) =

L(t − t′) +
iµ
2 δ(t − t′). Equation (5.8) and Equation (5.12) are the starting point for Makri et al.’s

development of the scheme.

5.2 QUAPI

For a numerical evaluation of the path integral defined in Equation (5.8) instead of a continuous
path, the path of the system eigenvalues of O has to be discretized. To achieve this, the propagator
U(o f , x f , t; oi, xi, 0) has to be sliced into short time propagators. Assuming a time independent
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Hamiltonian the propagator is given by:

U = exp[−iHt/~] =

N∏
j=1

exp[−iHdt/(N~)] , (5.13)

for t = Ndt. This splitting of the propagators is trivially justified, since U(ta − tb) = U(ta −

tc)U(tc − tb) for ta > tc > tb. A splitting of the bath and system parts, as in the continuous path
integral formulation, is however not trivial. In the path integral formalism the limes dt→ 0 allows
a splitting, as if the [HS,HB + HSB] = 0, since e(A+B)dt = eAdteBdt + [A,B]dt2 in lowest order. Thus,
the discretized version of the path integral generates an error that is proportional to the square of
the time slices for each time slice. To achieve even higher accuracy a symmetric Trotter splitting
can be employed, giving: e(A+B)dt = eAdt/2eBdteAdt/2 + [A, [A,B]]dt3. This holds an advantage in the
final scheme, where all the errors accumulate. The overall error, in contrast to the error of a single
slice, becomes ∝ Ndt3 = t ∗ dt2 and a judgement whether the error is large in regards to dt can be
made by investigating its increase, while for the normal Trotter splitting the overall error is ∝ dt,
thus with constant increase.
To split the system and bath dynamics the obvious choice is A = HSB + HB = Henv and B = HS.
The propagator then reads:

U = exp[−iHenvdt/(2~)]

 N∏
j=1

exp[−iHSdt/~]exp[−iHenvdt/~]

 exp[iHenvdt/(2~)] . (5.14)

This means, first the environment is propagated over half a time slice dt, then the propagation of
system and environment over a time slice dt alternate until the whole propagation finishes with one
last propagation of the environment over half a time slice. To evaluate Equation (5.5) numerically,
it is necessary to insert the completeness relation of the full Hilbert space

I =

∫
do|o〉〈o|

∏
l

∫
dxl|xl〉〈xl| , (5.15)

after each system propagation. Therefore the k.-th system propagation is surrounded by two I,
let the one after the propagation be called Ik. Note that from here on it is necessary to label the
system eigenvalues o according to the number of propagations used before the identity relation was
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inserted. Thus for the initial and final eigenvalues: oi = o0, o′i = o′0, o f = oN and o′f = o′N.

Ikexp[−iHSdt/~]exp[−iHenvdt/~]Ik−1 (5.16)

=

∫
dok|ok〉〈ok|

∏
l

∫
dxk,l|xk,l〉〈xk,l|exp[−iHSdt/~]exp[−iHenvdt/~]

×

∫
dok−1|ok−1〉〈ok−1|

∏
m

∫
dxk−1,m|xk−1,m〉〈xk−1,m|

=

∫
dok

∫
dok−1|ok〉〈ok−1|

∏
l

∫
dxk,l

∏
m

∫
dxk−1,m|xk,l〉〈xk−1,m|

× 〈ok|exp[−iHSdt/~]|ok−1〉〈xk,l|exp[−iHenv(ok−1)dt/~]|xk−1,m〉 .

Applying this to the definition of the reduced density matrix, with the now necessary factorized
initial condition W(0) = ρS(0) ⊗ ρbath(0) to separate bath and system initially, one finds:

ρred(oN, o′N, t) =

∫
do0

∫
do1...

∫
doN

∫
do′0

∫
do′1....

∫
do′N (5.17)

× 〈oN|exp[−iHSdt/~]|oN−1〉...〈o1|exp[−iHSdt/~]|o0〉〈o0|ρS(0)|o′0〉

× 〈o′0|exp[iHSdt/~]|o′1〉...〈oN−1|exp[iHSdt/~]|o′N〉

×

∏
l

∫
dxN,l

∫
dx′N,lδ(x′N,l − xN,l)....

∫
dx0,l

∫
dx′0,l〈x0,l|ρbath(0)|x′0,l

×

N−2∏
m=1

〈xm+1,l|exp[−iHenv(om)dt/~]|xm,l〉〈x′m,l|exp[iHenv(o′m)dt/~]|x′m+1,l〉

× 〈xN,l|exp[−iHenv(oN)dt/2~]|xN−1,l〉〈x′N−1,l|exp[iHenv(o′N)dt/2~]|x′N,l〉〉

× 〈x1,l|exp[−iHenv(o0)dt/2~]|x0,l〉〈x′0,l|exp[iHenv(o′0)dt/2~]|x′1,l〉〉 .

The last four lines in Equation (5.17) represent the influence functional. A shift back to a continuous
path integral formulation is now possible for bath integrals. They can be expressed by:

∏
l

∫
dxN,l

∫
dx0,l

∫
dx′0,l〈xN,l|exp

[
−i

∫ t

0
Henv(̃o)ds/~

]
|x0,l〉 (5.18)

× 〈x0,l|ρbath(0)|x′0,l〉〈x
′

0,l|exp
[
i
∫ t

0
Henv(̃o′)ds/~

]
|xN,l〉 ,
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with the definition of a "path distribution" õ as:

õ =o0(1 −Θ[t − dt/2]) +

N−1∑
m=1

om(Θ[t − dt(k − 1/2)] −Θ[t − dt(k + 1/2)]) (5.19)

+ oNΘ[t − dt(N − 1/2)] .

Note the property of the symmetric Trotter splitting and, following from it, an initial and a final
propagation with Henv over half a time slice dt, shows itself in the first and last term of Equation
(5.19). These two terms are only different from zero in a time window of dt

2 . The reason for that is,
initially the system operators are only propagated after the bath was propagated by half a time slice
and afterwards all the propagation are over full time slices dt, until another propagation of the bath
at the very end of the time evolution again only over half a time slice.
Equation (5.18) is fairly similar to Equation (5.9) and from there one arrives at the form of the
Feynman-Vernon influence functional in Equation (5.12). The distribution õ plugged into Equation
(5.12) gives a discretized version:

FFV,dis = exp

−1
~

N∑
k=0

k∑
k′=0

(ok − o′k)(ηkk′ok′ − η
∗

kk′o
′

k′)

 . (5.20)

The ηkk′ are calculated in appendix B.1.1. Essential for the following discussion is the relationship
with the spectral density function J(ω) through the function Q(t − t′), which is the second integral
of the bath correlation function L(t − t′), specified by the conditions FFV,dis = 0 for t = t0 and
Q(t) = Q(−t)†. The connection is given by: ηkk′ = η(tk − tk′) ∝ Q(t − t′). For a rapidly decaying
J(ω), for instance with an exponential cut off function or with a Debye cut off function, the resulting
bath response function L is also fast decaying, if T , 0, and thus is Q. This allows to neglect the
time non-local coupling between the eigenvalues of O for sufficiently large time distances. Let
τ = Kdt with K being an integer and τ the maximum memory defined by the number of time
slices after which the correlations between the system coupling operators are decayed, then for
t − t′ = dt(k − k′) > τ the coupling ηkk′ = 0, obviously this is equivalent of the k − k′ > K. With
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this follows for Equation (5.20):

FFV,τ = exp

−1
~

N∑
k=0

k∑
max{0,k−K}

(ok − o′k)(ηkk′ok′ − η
∗

kk′o
′

k′)

 (5.21)

=

N∏
k′=0

min{N,k′+K}∏
k=k′

exp
[
−

1
~

(ok − o′k)(ηkk′ok′ − η
∗

kk′o
′

k′)
]

=

N∏
k′=0

Ĩk′;K(ok′ , ..., ok′+K) .

This rearrangement of the sum in the exponential is necessary for the iterative scheme, since it
allows to integrate out, e.g. numerically sum over, all possible eigenstates of ok′ and o′k′ , starting
with the earliest times. Each Ĩk′;K(ok′ , ..., ok′+K) contains all correlations from a time tk′ until a future
time tk′+K. In this notation if k = k̃ + k′ > N the difference ok− o′(k) is set to 0. It should be pointed
out, that ηkk′ has special values for k = 0,N and k′ = 0,N.
For final times t f ≤ τ the whole path integral of Equation (5.17) has to be evaluated to get the
reduced density matrix, for times tk > τ two tensors need to be defined to achieve this:

Ak+1(ok+1, o′k+1, ..., ok+K, o′k+K) =

∫
dok

∫
dok′Λk(ok, o′k, ....ok+K, o′k+K)Ak(ok, o′k, ..., ok+K−1, o′k+K−1) ,

(5.22)

and

Λk(ok, o′k, ....ok+K, o′k+K) = 〈ok+1|exp[−iHSdt/~]|ok〉〈o′k|exp[iHSdt/~]|o′k+1〉̃Ik;K(ok, ..., ok+K) , (5.23)

with initial condition

A0(o0, o′0, ....oK−1, o′K−1) = 〈o0|ρ(t0)|o0〉 . (5.24)

Λ0 contains η00 and ηk0, while all other Λk are constructed only with ηkk′ and ηkk. To obtain the
reduced density matrix as in Equation (5.17), the tensor Ak has to be integrated over all its coordi-
nates and multiply with the last K Ĩk′;K(ok′ , ..., ok′+K), containing ηNk and ηNN and the corresponding
system propagations. With o f =ok+K:
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0 dt 2dt 3dt t
N

t

 A(dt) K=2

0 dt 2dt 3dt t
N

t

 A(2dt) K=2

Figure 5.1: Here two different A tensors are shown. The red lines represent the unique
correlations between the starting point at t = 0 (ηk0) and endpoint t = tN (ηNk) of the
simulation. The blue lines stand for the ηkk′ , being used throughout most of the simulation.
On the left side the first tensor A(dt) calculated from the initial condition shown in Equation
(5.24). This first A tensor calculated out of the starting conditions only contains ηk0. The
yellow circle represents the system propagations and integrations that have taken place.

ρred(o f , o′f , ) =

∫
dok

∫
do′k....

∫
dok+K−1

∫
dok+K−1Ak(ok, ..., o′k+K−1) (5.25)

× 〈o f |exp[−iHSdt/~]|ok+K−1〉....〈ok+1|exp[−iHSdt/~]|ok〉

× 〈o′k|exp[iHSdt/~]|o′k+1〉....〈o
′

k+K−1|exp[iHSdt/~]|o′f 〉

× Ĩk;K(ok, ..., o′o f
)̃Ik;K(ok+1, ..., o′o f

, 0, 0)....̃Ik;K(o f , o′f , 0, ..., 0) .

An example for the iterative scheme is given Figure 5.1, where the A tensor is shown at two different
times dt and 2dt. The red lines represent the unique correlations between the starting point at t = 0
and the k.-th time slice, the η′k0s as well as the correlations between the k.-th time slice and the
endpoint t = tN, the η′Nks. The blue lines stands for the correlations between the k.-th time slice
and the k’.-th time slice, η′kk′s, with k, k , o,N. The ηkk′ are usually being used throughout most of
the simulation, since the final time is normally multiples of τ. On the left side the first tensor A(dt)
calculated from the initial condition given in Equation (5.24). This first A tensor calculated out of
the starting conditions only contains ηk0. The yellow circle represents the system propagations and
integrations that have taken place. On the right side the second tensor A(2dt) is calculated from
A(dt). All new correlations, given by Equation 5.22, are of ηkk′ type and thus represented by blue
lines. On the left side the system was propagated from t = 0 to t = dt and the system coordinates
o0, o′0 have been integrated out. While on the right side the system was propagated from t = 0
to t = 2dt and the system coordinates o0, o′0,o1, o′1 have been integrated out. Both objects allow
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the calculation of two different reduced density matrices, the left one at t = 3dt and the right on
at t = 4dt. To achieve this Equation (5.25) has to be evaluated, for A(2dt) this gives the density
matrix with K = 2 shown in Figure 5.2.

0 dt 2dt 3dt t
N

t

 (4dt)  full memory

0 dt 2dt 3dt t
N

t

 (4dt) K=2

Figure 5.2: This figure shows a sketch of the density matrix at tN = 4dt for full memory
(left) and memory a restriction of τ = 2dt. The yellow circle around a time symbolizes that
all integrations up to that time have been performed and all system propagations have
been done until said time. The red lines represent the unique correlations between the
starting point at t = 0, the η′k0s and endpoint t = tN, the η′Nks, of the scheme. The green line
marks the correlation between starting point and endpoint, ηN0.

In Figure 5.2 two reduced density matrices are shown, the one on the left has full memory, while
the one on the right has the memory restricted to τ = 2dt , hence K = 2. Again, the yellow
circle around a time symbolizes that all integrations up to that time have been performed and all
system propagations have been done until said time. As before the red lines represent η′k0s as well
as the η′Nks and the blue lines stand for the ηkk′ . The green line marks the correlation between
the starting point and the endpoint, ηN0. The latter is the first correlation to be neglected by the
evaluation of A(dt) via Equation (5.25). The correlation ηN0 is dependent on the absolute value
of tN and therefore has to be calculated for each evaluation of Equation (5.17). The evaluation of
A(dt) makes K + 1 more propagations necessary and connects each of the following time slices
to the end point, thus uses ηNk. While comparing these two objects can give valuable information
about convergence, often times the tN investigated is well beyond the memory time τ considered
and other convergence measures have to be employed instead.

This differs from the original paper, where ρred is defined as

ρred(o f , o′f , ) = AN(o f , o′f , 0, 0, ...0, 0, )̃Ik;K(o f , o′f , 0, ..., 0) . (5.26)

The error created by this original evaluation of the A tensor is rather small, Michael Thorwart
used this original QUAPI scheme to calculate the displaced dissipative harmonic oscillator and
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compared it with analytical results and found very good agreements [119]. Differences between
the two evaluation methods become smaller with longer simulation times since, the number of
correct ηkk′ used increases accordingly. Additional errors can only occur in non-diagonal matrix
elements for ρred written in the eigenbasis O and therefore the trace is not affected at all. More
interesting are cases, where the full evaluation of the path integral for the first K time steps creates
a significant difference to the first result of the iterative scheme, which will be discussed in more
detail later on in chapter 7. This difference showcases the effect of the approximation of finite
memory times and thus of the neglect of ηkk′ for k− k′ > τ and most importantly of ηN0, which can
create a discontinuity between the evaluation of ρ at time tK and tK+1, during the research of this
thesis, this typically became apparent during the transition from the strongly damped regime of the
TLS to the overdamped regime and also for unconverged results, giving an additional indication if
convergence is reached.

5.2.1 Converged parameters

0 0,2 0,4 0,6 0,8 1∆dt
0,044

0,0445

0,045

0,0455

0,046

Γ
d

K=10
K=9
K=8
K=7

ω
c
=5∆

 γ=0.1

T= ∆

Figure 5.3: This figure shows a comparison of the decoherence rates for different QUAPI
parameters K and dt. The results are obtained from fitting the form of the small coupling
result to the time evolution of the expectation value of σz for a symmetric TLS HS = ∆

2σx

with a single bath coupled via σz with γ = 0.1, T = ∆ and ωc = 5∆ . Four cases of memory
lengths K, K = 7 to K = 10, and nine different dt′s, dt = 0.1∆−1 to dt = 0.9∆−1, are considered.

An important feature of these simulations is the interplay of two competing errors. With the first
one resulting from the Trotter splitting, which increases as dt increases. As well as a second one
resulting from the memory cut off, which increases for a constant K as dt decreases. Additionally
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with too large dt sampling problems become evident, limiting the dt to a maximum of half the
oscillation time of the system. These errors will be showcased with the model used throughout this
thesis: the symmetric two level system, see chapter 3. The system Hamiltonian for the symmetric
two level system is defined there as: HS = ∆

2σx. For small system-bath coupling one finds 〈σz(t)〉 ≈
cos(∆t)exp[−Γdt] , see chapter 4, with a system oscillation time of TS ≈ 2π∆−1 therefore the
limitation is dt ≤ π∆−1. In Figure 5.3 a comparison for different time slices dt and memory lengths
K is shown. While overall the rates obtained for this specific case only vary between Γd = 0.0457
and Γd = 0.0442, thus with a percentage difference of only ≈ 3.3%. While all these QUAPI results
are acceptable to give a qualitative statement about the decoherence rate, the general considerations
to obtain converged results can be illustrated. At first the differences are considered large, with the
Γd reaching a maximum at dt = 0.2. These differences remain large until a plateau is reached.
In this plateau the memory time τ is large enough, that a further increase of the memory does
not improve the results significantly. For the maximum memory steps considered here, K = 10
represented by the green line, the plateau is reached between dt = 0.4∆−1 and dt = 0.5∆−1, taking
the average one could assume that at dt = 0.45∆−1 the plateau is reached implying a memory of
τ = 4.5∆−1 is necessary. This is confirmed by the red line, representing K = 9 and dt = 5, which
implies τ = 4.5∆−1 as well, also by the purple line, which stands for K = 8 and dt = 0.6 implying
τ = 4.8∆−1 and the blue line, representing K = 7, and dt = 0.7 implying τ = 4.9∆−1. The length
of this plateau is limited by the dt error from the Trotter splitting of Equation (5.14). This error is
quadratic in dt, as explained before, and a linear increase starting at the end of the plateau between
dt = 0.8∆−1 and dt = 0.9∆−1 shows this. As an additional measurement for convergence one can
look at the actual function of dt and search for a discontinuity between ρ(Kdt) and ρ((K + 1)dt).
Thereby comparing the last evaluation of the full path integral to the first evaluation of the A tensor.
Even though this only appears to be useful, if one is far off the actual plateau.

5.3 Hybrid-QUAPI: combination with a master equation

A possible and numerically cheap way to include multiple bath fluctuation in the QUAPI scheme
is the combination of the original scheme with a master equation approach as introduced in chapter
2.2. For the following derivation a PDB will be phenomenologically included in the system propa-
gation, with the same Lindblad equation employed in chapter 4.4. A standard SBM will be included
via a bath with system-bath coupling operator o = σz

2 . The regular QUAPI approach employs a time
discretization to split the quantum mechanical time evolution operator U(t) = exp(−iHt) and fur-
ther separates system and bath contributions via a symmetric Trotter splitting as detailed above.
Since a quantum mechanical time evolution operator can only be formulated for hermitian dynam-
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ics, here instead a time evolution superoperator must be used, as introduced in Chapter 3.1.

U(t) = eLt and W(t) =U(t)W(0) . (5.27)

Thereby L = LS + LSB, LSB = − i
~
[HSB, .] and LS = − i

~
[HS, .] + ΓL including the Lindblad

superoperator ΓL. As in the case of normal operators the time discretization is straightforward:
U(t) =

∏
i=1,NU(dt) for t = Ndt. The full superoperator 1 is defined by :

1 =

∫
∞

−∞

dσ+
z

∫
∞

−∞

dσ−z

∫
∞

−∞

dx+

∫
∞

−∞

dx−|σ±z , x
±)(σ±z , x

±
| , (5.28)

with superstates |σ±z , x±) = |σ+
z , x+
〉〈σ−z , x−| and scalar product (A|B) = Tr{A†B} for operators A,B

acting on the Hilbert space. Inserting the superoperator 1 in between the discretized time evolution
superoperatorU(dt) at a time t j = j ∗ dt gives elements of the form:

(σ±z, j, x
±

j |e
Lδt
|σ±z, j+1, x

±

j+1) = Tr{|σ−z, j, x
−

j 〉〈σ
+
z, j, x

+
j |e
Lδt[|σ+

z, j+1, x
+
j+1〉〈σ

−

z, j+1, x
−

j+1|]} , (5.29)

here [.] is being used to highlight on which operator the superoperatorL is acting. As in the regular
scheme a symmetrical Trotter splitting is employed to separate the system and bath dynamics:

U(dt) ' e−iLSB
δt
2 e−iLSBδte−iLSB

δt
2 + O(δt3) , (5.30)

using the fundamental relation eLαδtA = e−iHαδtAeiHαδt, the Hermitian dynamics can be recovered
for the bath:

(σ±z, j, x
±

j |e
Lδt
|σ±z, j+1, x

±

j+1)

= (σ±z, j|e
LSδt
|σ±z, j+1)〈x+

j+1|e
−iHSB(σ+

z, j)
δt
2 e−iHSB(σ+

z, j+1) δt
2 |x+

j 〉〈x
−

j |e
iHSB(σ−z, j)

δt
2 eiHSB(σ−z, j+1) δt

2 |x−j+1〉 . (5.31)

Thus the Feynman-Vernon-influence functional of the regular QUAPI scheme is recovered. Assum-
ing a factorized initial condition W(0) = ρS(0)⊗ρSB(0), with the bath being in thermal equilibrium
initially, the components of the statistical operator can be obtained:

〈σ+
z,N|ρe f f (t = tN)|σ−z,N〉

=
∏

j=0,N−1

∫
∞

−∞

dσ+
z, j

∫
∞

−∞

dσ−z, j(σ
±

z, j+1|e
LSδt
|σ±z, j)〈σ

+
z,0|ρS(0)|σ−z,0〉IFV(σ±0 , ...., σ

±

N) . (5.32)
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Completely analogously to Chapter 5.2 a memory time τ = K ∗ δt is defined and the tensors A and
Λ are defined, yielding an iterative scheme that is only slightly modified:

A(σ±z, j+1, ...., σ
±

z, j+1+K) =

∫
∞

−∞

dσ+
z, j

∫
∞

−∞

dσ−z, j(σ
±

z, j+1|e
LSδt
|σ±z, j)A(σ±z, j, ...., σ

±

z, j+K)Λ(σ±z, j, ...., σ
±

z, j+K+1) .

(5.33)

Numerically this is not any more expensive than the original Quapi program since only the system
dynamics are affected and the superoperatorUS only has to be determined once.
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5.4 QUAPI for multiple baths with commuting system-bath

coupling operators

The generalization of the generic system-bath Hamiltonian for multiple baths is straightforward,
one only has to add the additional Hamiltonians. This is done by the introduction of an additional
index e, which sums over all the baths one wishes to consider. The Hamiltonian therefore reads:

Hgen,multi = HS +
∑

e

∑
j

p2
j,e

2m j,e
+

1
2

m j,eω
2
j,e

x j,e −
c j,eOe

m j,eω2
j,e


2

. (5.34)

Note the different system-bath coupling operators Oe, corresponding to HB,e + HSB,e, are general
in this equation and the additional baths are all uncorrelated, thus [xa,e, pc,e′] = i~δacδee′ . Un-
der the condition [Oe,Oe′] = 0, hence commuting system-bath coupling operators, extending the
QUAPI scheme is straightforward. Fundamental is that it is possible to chose the same eigenba-
sis |ψ j〉 with different eigenvalues ok,e, j, for a j− dimensional Hilbert space. One great example
where this method was employed is the FMO-complex [96, 120, 121]. Here the exciton transport
through a protein complex is described with a model Hamiltonian of a seven-state system. With
each site representing the exciton sitting on one of the proteins involved. Now one can take the
vibration modes, essentially representing the stretching and twisting of the molecules in question,
as an example of a bath that acts on the exciton, if it is localized on the respective protein. A
natural way to describe such a system-bath interaction, is to let the baths couple to only one of
the sites of the system. For the seven baths considered this way, the system-bath coupling op-
erators would therefore be | j〉〈 j|, with j ∈ [1, 7]. For simplicity the following outline is for the
case of only two different baths and will be generalized later on. The applied Trotter splitting for
the complete propagator U in Equation (5.14) yields the same form, if one substitutes Henv with
Henv1 + Henv2 . Furthermore the separation of the two bath dynamics poses no problem and does not
give an additional error, since the bath Hamiltonians commute as per construction. The traces over
the degrees of freedom for both baths are independent of each other and therefore can be written as
Trbath

{
exp[iHenv1/~]exp[iHenv2/~]

}
= Trbath1

{
exp[iHenv1/~]

}
Trbath2

{
exp[iHenv2/~]

}
. This allows to

write the complete influence functional as a product of all influence functionals, each of the same
form as in Equation (5.20) and with the same definition of η′s: FFV,commuting =

∏
e FFV,e. While the

eigenvalues may differ since the eigenbasis is shared the resulting form is the same as in the single
bath:

FFV,commuting = exp

−1
~

∑
e

N∑
k=0

k∑
k′=0

(ok,e − o′k,e)(ηkk′,eok′,e − η
∗

kk′,eo
′

k′,e)

 . (5.35)
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Herein already lies a fundamental advantage of QUAPI compared to other numerical methods. The
increase in numerical cost is negligible for the calculation of the ηs. The Λ introduced in Equation
(5.23) only has to be calculated once, though each of the K factors in Ĩk;K(ok, ..., ok+K) now has larger
sums in the exponent to calculate, also not numerically expensive. The original iterative scheme for
Ak, as defined by Equation (5.22), has exactly the same numerical cost in terms of calculations to
be done and storage needed. The only difference is, that one has to choose one of the eigenvalues
oe as ok, where oe,k is effectively only counting which eigenstate is considered at time tk. It is even
possible to combine all η′s into one. First it is necessary to introduce new "dummy" eigenvalues
defined by Z|ψ j〉 = z j|ψ j〉, where the absolute value of z j has to be non zero. Then one can write

ok,e, jηkk′,eok′,e, j′ = zk, jη̃kk′,e, j, j′zk′, j′ , (5.36)

where η̃kk′,e, j, j′ = ηkk′,e
ok,e, j

zk, j

ok′ ,e, j′

zk′ , j′
. This definition can be used to combine all bath influentials into one

ηkk′, j j′ =
∑

e η̃kk′,e, j, j′ and rewrite the influence functional as:

FFV,commuting = exp

−1
~

N∑
k=0

k∑
k′=0

(zk − z′k)(ηkk′, j j′zk′ − η
∗

kk′, j j′z
′

k′)

 . (5.37)

Now the only increase in numerical cost lies in the calculation of the ηkk′,e and the calculation of
Equation (5.36), which are both negligible. The new type of η is a (2,2)-tensor instead of a (1,1)-
tensor, which also evaluates the value of zk and z j instead of just the times tk and tk′ . All the entries
in ηkk′, j j′ only have to be calculated once and afterwards the numerical cost is exactly the same.

Herein lies one of the advantages of QUAPI over other numerical methods, such as HEOM [84,85,
122] or HOPS [123]. If one wishes to increase the number of baths in these methods, the number
of differential equation grows rapidly. Surely there are ways to incorporate multiple baths while
restricting some of the properties the hierarchy, for example one can reduce the number of bath
modes. A few examples for employed restrictions are given and tested in [124].
While in this approach many more interesting cases than just the one described above can be stud-
ied, some other very interesting cases are beyond it. As soon as one tries to include system-bath
coupling operators that do not commute, this simple approach does not work any more. To investi-
gate these questions the QUAPI method has to be extended to handle these non-commuting baths
as well.
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5.5 QUAPI for two baths with non-commuting system-bath

coupling operators

As mentioned in Chapter 1 there a multiple interesting scenarios, in which one wishes to include
non-commuting baths. For simplicity we focus on two non-commuting baths at first, though the
line of thought can be employed to two sets of baths, where each set shares the same eigenbasis.
To achieve an extension for QUAPI one can follow the derivation of the original QUAPI scheme
up to the Trotter splitting. The form of equation (5.14) is still valid for Henv = Henv,1 + Henv,2.

U = exp[−iHenvdt/(2~)]

 N∏
j=1

exp[−iHSdt/~]exp[−iHenvdt/~]

 exp[iHenvdt/(2~)] . (5.38)

Now a second non-trivial Trotter splitting has to be applied, since [O1,O2] , 0. Again a symmetric
Trotter splitting is used to keep the therein resulting overall error of order O(dt3). Applied this
gives:

U = exp[−iHenv,1dt/(4~)]exp[−iHenv,2dt/(2~)]exp[−iHenv,1dt/(4~)] (5.39)

×

N−1∏
j=1

exp[−iHSdt/~]exp[iHenv1dt/(2~)]exp[−iHenv2dt/~]exp[iHenv1dt/(2~)]


× exp[−iHSdt/~]exp[−iHenv,1dt/(4~)]exp[−iHenv,2dt/(2~)]exp[−iHenv,1dt/(4~)] .

According to the previous train of thought it becomes necessary for each time step to insert two
additional completeness relations, one with O2 and two with O1, which will be denoted by an
additional index a and b, as the basis for system dynamics and thus with o2 and o1 eigenvalues
respectively:

I1/2 =

∫
do1/2|o1/2〉〈o1/2|

∏
l,e=1,2

∫
dxl,e|xl,e〉〈xl,e| . (5.40)
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Application for a propagation over one time step, U(dt), therefore gives:

I1b,kexp[−iHSdt/~]exp[−iHenv1dt/2~]I1a,k−1exp[−iHenv2dt/~]I2,k−1exp[−iHenv1dt/2~]I1b,k−1

(5.41)

=

∫
do1b,k

∫
do1a,k−1

∫
do2,k−1

∏
l

∫
do1b,k−1

∏
e=1,2

∫
dx3

l,e,k

∏
j=1,2,3

∏
l j

∫
dx j

l,e,k−1

× 〈o1b,k|exp[−iHSdt/~]|o1a,k−1〉〈x3
l,1,k|exp[−iHenv1(o1a,k−1)dt/2~]|x1

l,1,k−1〉

× 〈x1
l,2,k|exp[−iHenv2(o2,k−1)dt/~]|x2

l,2,k−1〉〈x
2
l,1,k−1|exp[−iHenv1(o1b,k−1)dt/2~]|x3

l,1,k−1〉

× 〈o1a,k−1|o2,k−1〉〈o2,k−1|o1b,k−1〉〈x1
l,1,k−1|x

2
l,1,k−1〉〈x

3
l,2,k|x

1
l,2,k−1〉〈x

2
l,2,k−1|x

3
l,2,k−1〉

× |o1b,k〉〈o1b,k−1| ⊗ |x3
l,1,k〉〈x

3
l,1,k−1| ⊗ |x

3
l,2,k〉〈x

3
l,2,k−1| .

Here, the index j is according to the order in which each I have been inserted, counting from
left to right. Note that

∏
l j

is the product over all degrees of freedom for the j.-th I, for the bath
states the convention |x j

l j,e,k
〉 ≡ |x j

l,e,k〉 is used, with k the time step and e the two different sets of

eigenbases oe. Furthermore 〈xλl,e,k|x
j
l,e,k〉 = δ(xλl,e,k − x j

l,e,k), thus reducing the number of integrals per
time slice to one for bath 2 and to two for bath 1. In the following the convention x2

l,2,k = xl,2,k and
x1

l,1,k = xa
l,1,k,x

3
l,1,k = xb

l,1,k will be used.

According to this Equation (5.17) becomes:

ρred(o1,a,N, o′1,a,N, t) =

∮
do1,a

∮
do1,b

∮
do2 US(o1,a, o1,b) Φ({o1,a}, {o1,b}, {o2}) 〉〈o1b,0|ρS(0)|o′1b,0

〉

(5.42)

×

∮
dx1,a

∮
dx1,b

∮
dx2B̃1 B̃2 〈xb

l,1,0|ρbath,1(0)|x′bl,1,0〉〈xl,2,0|ρbath,2(0)|x′l,2,0〉 .

We have introduced the following definitions:∮
da ≡

∫
daN...

∫
da0

∫
da′N...

∫
da′0 . (5.43)

Note that
∮

does not represent a pathintegral in the conventional sense, but a discretized one.
Moreover,

US(o1,a, o1,b) ≡ 〈o1b,N|exp[−iHSdt/~]|o1a,N−1〉....〈o1b,1|exp[−iHSdt/~]|o1a,0〉 (5.44)

× 〈o1a,0|exp[iHSdt/~]|o1b,1〉....〈o1a,N−1|exp[iHSdt/~]|o1b,N〉 ,
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Φ({o1,a}, {o1,b}, {o2}) ≡ 〈o1a,N|o2,N〉〈o2,N|o1b,N〉....〈o1a,0|o2,0〉〈o2,0|o1b,0〉 (5.45)

× 〈o′1a,0|o
′

2,0〉〈o
′

2,0|o
′

1b,0
〉....〈o′1a,N|o

′

2,N〉〈o
′

2,N|o
′

1b,N
〉 .

The B̃1 and the B̃2 are compromised of the respective bath propagators evaluated according to the
inserted I′s and the delta function that is created by the evaluation of the trace of the bath:

B̃2 ≡ 〈xl,2,N|exp[−iHenv2(o2,N)dt/2~]|xl,2,N−1〉〈xl,2,N−1|exp[−iHenv2(o2,N−1)dt/~]|xl,2,N−2〉 (5.46)

× ....〈xl,2,1|exp[−iHenv2(o2,0)dt/2~]|xl,2,0〉〈x′l,2,0|exp[iHenv2(o
′

2,0)dt/2~]|x′l,2,1〉....

× 〈x′l,2,N−2|exp[iHenv2(o2,N)dt/~]|x′l,2,N−1〉〈x
′

l,2,N−1|exp[−iHenv2(o2,N)dt/2~]|x′l,2,N〉

× δ(xl,2,N − x′l,2,N) .

Note that Equation (5.46) has the same form as the bath propagators in Equation (5.17). Moreover,
we have

B̃1 ≡ 〈xa
l,1,N|exp[−iHenv1(o1a,N)dt/4~]|xb

l,1,N〉〈x
b
l,1,N|exp[−iHenv2(o1b,N−1)dt/4~]|xa

l,1,N−1〉 (5.47)

× 〈xa
l,1,N−1|exp[−iHenv1(o1a,N−1)dt/2~]|xb

l,1,N−1〉〈x
b
l,1,N−1|exp[−iHenv2(o1b,N−1)dt/2~]|xa

l,1,N−2〉

× ....〈xb
l,1,1|exp[−iHenv1(o1a,0)dt/4~]|xa

l,1,0〉〈x
a
l,1,0|exp[−iHenv2(o1b,0)dt/4~]|xb

l,1,0〉

× 〈x′bl,1,0|exp[iHenv1(o
′

1a,0)dt/4~]|x′al,1,0〉〈x
′a
l,1,0|exp[iHenv2(o

′

1b,0
)dt/4~]|x′bl,1,1〉....

× 〈x′al,1,N−1|exp[iHenv1(o1a,N)dt/4~]|x′bl,1,N〉〈x
′b
l,1,N|exp[−iHenv2(o

′

1b,N−1)dt/4~]|x′al,1,N〉

× δ(xa
l,1,N − x′al,1,N) .

In the case of the bath described by B2 everything is analogous to the original QUAPI scheme, thus
Equation (5.21) is the form of the influence functional for this bath. For B1 a few different steps
are necessary. First another path distribution has to be used, the first bath effectively has half or a
quarter time slices dt in which the eigenvalues are constant before they change via a unitary basis
transformation. To achieve the form of Equation (5.18) the following definition can be used :

õ1 = o1b,0(1 −Θ[t − dt/4]) + o1a,0(Θ[t − dt/4] −Θ[t − dt/2]) (5.48)

+

N−1∑
m=1

{o1b,m(Θ[t − (m + 1/2)dt] −Θ[t −mdt]) + o1a,m(Θ[t −mdt] −Θ[t − (m − 1/2)dt]}

+ o1b,N(Θ[t − (N − 1/2)dt] −Θ[t − (N − 1/4)dt]) + o1a,NΘ[t − (N − 1/4)dt] .
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After some algebra a similar form to equation (5.20) can be achieved:

F1
FV,dis = exp

−1
~

∑
s=a,b

∑
r=a,b

N∑
k=0

k∑
k′=0

(o1s,k − o′1s,k)(ηk,s;k′,ro′1r,k′ − η
∗

k,s;k′,ro
′

1r,k′)

 , (5.49)

with slightly more complex ηk,s;k′,r compared to the original scheme. Now it is possible to apply
the finite memory approximation and derive a modified version of Equation (5.21). Of course
it is important to stay consistent with the memory approximation τ = Kdt. The cut off imposes
additional conditions for the cases, with non local correlations in time between oa’s and ob’s. For the
simple case of dt = τ this becomes obvious, ηk+1,a;k,b couples two operators with a time difference
of 1.5dt and thus would be zero even though in this convention k − k′ = 1. With this in mind the
modified version of the influence functional with non zero exponentials becomes:

F1
FV,τ = exp

−1
~

∑
s=a,b

N∑
k′=0

min{N,k′+K}∑
k=k′

(o1s,k − o′1s,k)(ηk,s;k′,so′1s,k′ − η
∗

k,s;k′,so
′

1s,k′)

 (5.50)

× exp

−1
~

N∑
k′=0

min{N,k′+K−1}∑
k=k′

(o1a,k − o′1a,k)(ηk,a;k′,bo′1b,k′
− η∗k,a;k′,bo

′

1b,k′
)


× exp

−1
~

N∑
k′=0

min{N,k′+K}∑
k=k′

(o1b,k − o′1b,k
)(ηk,b;k′,ao′1a,k′ − η

∗

k,b;k′,ao
′

1a,k′)

 .

For convenience in notation the zero exponential for s = a,r = b and k − k′ = K is included as a
factor 1, similar to before, if k′ + k > N then ok+k′ = o′k+k′ :

=

N∏
k′=0

∏
s,r=a,b

min{N,k′+K}∏
k=k′

exp
[
−

1
~

(o1s,k − o′1s,k)(ηk,s;k′,ro′1r,k′ − η
∗

k,s;k′,ro
′

1r,k′)
]

(5.51)

=

N∏
k′=0

Ī1
k′;K(o1a,k′ , o1b,k′ , ..., o1a,k′+K, o1b,k′+K) .

With the condition that for k = k̃ + k′ > N the differences o1a,k + o′1a,k
and o1b,k + o′1b,k

are set to zero.
This form of the influence functionals has different η’s as the original QUAPI scheme, again with
special start and end correlations. For the correlations in between the endings, e.g. k, k′ , 0,N, the
η’s are however similar to the η’s of the original scheme with (k − k′ + 1/2)dt instead of (k − k′)∆,
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for s , r and equal time arguments for s = r. The new iterative scheme becomes:

An.c.
k+1(o1a,k+1, o1b,k+1, o2,k+1, o′1a,k+1, ......, o2,k+K, o′1a,k+K, o

′

1b,k+K, o
′

2,k+K) (5.52)

=

∫
do1a,k

∫
do1b,k

∫
do2,k

∫
do′1a,k

∫
do′1b,k

∫
do′2,kΛ

n.c.
k An.c.

k (o1a,k, ..., o
′

2,k+K−1) ,

with initial condition:

An.c.
0 (o1a,0, ..., o

′

2,K−1) = |o1b,0〉〈o1b,0|ρS(0)|o′1b,0
〉〈o′1b,0

| . (5.53)

The definition of Λn.c.
k is:

Λn.c.
k = Λn.c.

k (o1a,k, o1b,k, o2,k, o′1a,k, ......, o2,k+K, o′1a,k′+K, o
′

1b,k′+K, o
′

2,k′+K) (5.54)

= Ī2
k;K(o2,k, .., o2,k+K)Ī1

k;K(o1a,k, o1b,k, ..., o1a,k′+K, o1b,k′+K)

× 〈o1b,k+1|exp[−iHSdt/~]|o1a,k〉〈o
′

1a,k′ |exp[iHSdt/~]|o′1b,k′
〉

× 〈o1a,k|o2,k〉〈o2,k|o1b,k〉〈o
′

1b,k′
|o′2,k′〉〈o

′

2,k′ |o
′

1a,k′〉 .

Again to calculate the reduced density matrix for the first K time slices the whole path integral as in
Equation (5.42) has to be evaluated. For times beyond t = Kdt the An.c. tensor has to be evaluated
in the following way. Here the end time of the simulation is given by tN = tk +Kdt and accordingly
o f = o1a,N,o′f = o′1a,N

:

ρred(o1a,N, o
′

1a,N, tN) = (5.55)∫
do1a,k

∫
do1b,k

∫
do2,k....

∫
do1b,k

∫
do2,N〈o1a,k|o2,k〉〈o2,k|o1b,k〉...〈o1a,N|o2,N〉〈o2,N|o1b,N〉

×

∫
do′1a,k

∫
do′1b,k

∫
do′2,k....

∫
do′1b,N

∫
do′2,N〈o

′

1a,k|o
′

2,k〉〈o
′

2,k|o
′

1b,k
〉...〈o1a,N|o

′

2,N〉〈o
′

2,N|o
′

1b,N
〉

× 〈o1b,N|exp[−iHSdt/~]|o1a,N−1〉...〈o1b,k+1|exp[−iHSdt/~]|o1a,k〉A
n.c.
k (o1a,k, ..., o

′

2,N−1)

× 〈o′1b,k+1|exp[iHSdt/~]|o′1a,k〉...〈o
′

1b,N−1|exp[iHSdt/~]|o′1a,N〉Ī
1
k;K(o1a,k, ..., o1b,N)Ī2(o2,k, ..., o′2,N)

× Ī1
k;K(o1a,k+1, ..., o1b,N, 0, 0, 0, 0)...Ī2(o2,N, o′2,N, 0, ..., 0) .

While this scheme is generic for two sets of system-bath coupling operators that do not commute,
it also holds some disadvantages. The dimension of the original QUAPI tensors Ak and Λk are
dim(A) = dim(HS)2K and dim(Λk) = dim(HS)2K+2 corresponding to the 2K and 2K + 2 sets of
eigenvalues they depend on respectively . The new schemes tensors An.c.

k and Λn.c.
k depend on 6K

and 6K + 6 sets of eigenvalues respectively, thus dim(An.c.
k ) = dim(Ak)3. This is a major problem
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with this scheme. The numerical cost to achieve a converged simulation such that dt is sufficient
small while τ is still large enough, is in most cases out of reach. A solution to this problem is a
loss of generality, which keeps the non-commuting property of the sets of system-bath coupling
operators, but imposes the condition, that one of the sets must share the same eigenbasis with the
Hamiltonian, e.g. one of the sets consists of pure dephasing baths. This will be derived in the
following chapter and is the two bath code used throughout this thesis.

5.6 QUAPI for multiple baths with non-commuting system-

bath coupling operators with pure dephasing bath

A solution of the problem of numerical cost can be achieved through the reduction of the size of
the tensors by imposing the condition:

[HS,Henv,1] = 0 . (5.56)

Then the Trotter splitting is exact: e−i(HS+Henv,1)dt/~ = e−iHSdt/~e−iHenv,1dt/~. Now the dynamics can be
split two times. First the non-commuting Hamiltonian Henv,2 is separated:

U = exp[−iHenv2dt/(2~)]

 N∏
j=1

exp[−i(HS + Henv1)dt/~]exp[−iHenv2dt/~]

 exp[iHenv2dt/(2~)] .

(5.57)

Now the separation of the commuting Hamiltonian Henv,1 follows:

= exp[−iHenv2dt/(2~)]

 N∏
j=1

exp[−iHSdt/~]exp[−iHenv1dt/~]exp[−iHenv2dt/~]

 (5.58)

× exp[iHenv2dt/(2~)] .

The insertion of the completeness relations I1/2 for the baths in each time step, for details see
Equation (5.40)to Equation (5.41) , thus gives :
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exp[−iHSdt/~]exp[−iHenv1dt/~]I1,kexp[−iHenv2dt/~]I2,k (5.59)

=

∫
do1b,k

∫
do2,k

∏
e=1,2

∏
j=1,2

∫
dx j

l,e,k

× exp[−iHS(o1,k)dt/~]〈x1
l,1,k|exp[−iHenv1(o1,k)dt/~]|x2

l,1,k〉

× 〈x1
l,2,k|exp[−iHenv2(o2,k)dt/~]|x2

l,2,k〉〈o1,k|o2,k〉

× |o1,k〉〈o2,k| ⊗ |x1
l,1,k〉〈x

2
l,1,k| ⊗ |x

1
l,2,k〉〈x

2
l,2,k| .

Now only a dependence on two eigenvalues for the bath propagation in a time step is necessary
instead of three as in the general case. This translates into the reduced density matrix, the A tensor
and the Λ tensor. For the second bath the η′s resulting from this are the same as in the original
QUAPI scheme, with special η′s for the beginning and end points, see appendix B.1.1. While the
first bath only contains two different η′s: ηkk and ηkk′ , since there are no accentuated points in the
propagation. The iterative scheme becomes:

As.c.
0 (o2,0, o1,1, ..., o′2,K−1, o

′

1,K) = |o2,0〉〈o2,0|ρS(0)|o′2,0〉〈o
′

2,0| (5.60)

. (5.61)

The Λ tensor becomes:

Λs.c.
k = Λs.c.

k (o2,k, o1,k+1, ..., o′2,k+K, o
′

1,k+K+1) (5.62)

= Ī2
k;K(o2,k, o′2,k′ , .., o2,k+K)Ī1

k;K(o1,k+1, o′1,k′+1, ..., o
′

1,k′+K+1)

× exp[−iHS(o1,k+1)dt/~]exp[iHS(o′1,k′+1)dt/~]

× 〈o2,k+1|o1,k+1〉〈o1,k+1|o2,k〉〈o′2,k′ |o
′

1,k+1〉〈o
′

1,k+1|o
′

2,k+1〉 ,

yielding a slightly modified iteration scheme:

An.c.
k+1(o2,k+1, o2,k+2, ..., o2,k+K, o′1,k+K+1) (5.63)

=

∫
do1,k+1

∫
do2,k

∫
do′1,k+1

∫
do′2,kΛ

n.c.
k An.c.

k (o2,k, o2,k+1, ..., o′2,k′+K−1, o
′

1,k+K) ,
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and an accordingly modified evaluation scheme:

ρred(o2,N, o′2,N, tN) = (5.64)∫
do1,k+1

∫
do2,k....

∫
do1,N

∫
do2,N〈o2,k|o1,k+1〉〈o1,k+1|o2,k+1〉...〈o2,N−1|o1,N〉〈o1,N|o2,N〉

×

∫
do′1,k+1

∫
do′2,k....

∫
do′1,N

∫
do′2,N〈o

′

2,k|o
′

1,k+1〉〈o
′

1,k+1|o
′

2,k+1〉...〈o
′

2,N−1|o
′

1,N〉〈o
′

1,N|o
′

2,N〉

× 〈o1b,N|exp[−iHSdt/~]|o1a,N−1〉...〈o1b,k+1|exp[−iHSdt/~]|o1a,k〉A
n.c.
k (o1a,k, ..., o

′

2,N−1)

× 〈o′1,k′+1|exp[iHSdt/~]|o′1a,k〉...〈o
′

1b,N−1|exp[iHSdt/~]|o′1a,N〉Ī
1
k;K(o1a,k, ..., o1b,N)Ī2(o2,k, ..., o′2,N)

× Ī1
k;K(o1,N, o′1,N, 0, ..., 0)Ī2(o2,N, o′2,N, 0, ..., 0) .

With this iteration scheme it is now possible to achieve K = 6 for convergence investigations.
Though K = 7 is possible to be run as a code, it is impractical to be used for convergence investi-
gations due to the long calculation times needed. After all to get a valid simulation of the density
matrix for one set of parameters over reasonably long times t multiple dt’s and K’s have to be
used. To get a feeling for this, note a typical convergence investigation had dt’s ranging between
0.1∆−1

− 0.9∆−1 and K = 4, 5, 6, thus needing on average 27 simulations for a single usable one.
Simulation times above a day where therefore unacceptable for the problems we wished to examine
in this project. This method is published in [97].
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Non-pertubative environmental
influence on decoherence
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Figure 6.1: The difference of decoherence rate and γD normalized by the standard RESPET
result Γp(γd = 0) is plotted against γD. Various system-bath couplings γz have been
investigated at temperature T = ∆/kB for ωc = 5∆. The inset shows the monotonical
increase of the overall decoherence rate Γ

The first question investigated as part of this project was an already dissipative quantum system
which is exposed to environmental fluctuations. This was studied by employing the technically
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easiest approach to include dissipation independently of fluctuations with the derived Hybrid meth-
ods, for which the details have been shown in chapter 4.4 for the perturbative method RESPET and
in chapter 5.3 for the numerically exact simulation QUAPI. In both cases an already dissipative
quantum system is exposed to environmental fluctuations. A dissipative quantum system is created
by modifying the von-Neumann equation with Lindblad operators such that the system only experi-
ences dephasing. The strength of these Lindblad rates is given by γD. The investigated Hamiltonian
is a SBM as given in Equation 4.1. For simplicity an Ohmic spectral function J(ω) = γzω fc(ω,ωc)
is used, with a cut off function of Debye form fc(ω,ωc) =

ω2
c

ω2
c +ω2 . The decoherence rate Γ of the TLS

is then determined by fitting f (t) = cos(∆t)e−Γt to the expectation value 〈σz(t)〉 to the numerical
results of the Hybrid-Quapi scheme. The inset of figure 6.1 shows the decoherence rate Γ versus
the dephasing rate γD at T = ∆/kB with ωc = 5∆. For all studied system-bath couplings γz the rate
Γ increases monotonically with γD, which is qualitatively in agreement with equation 4.39.
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Figure 6.2: The ratio Γrat is plotted for various temperatures and two system-bath couplings
γz = 0.01 and γz = 0.2 obtained from the Hybrid-QUAPI simulation. The ratio Γrat

was also calculated for the Hybrid-RESPET result for three different temperature T =
0.2∆/kB, 0.5∆/kB,∆/kB. For visibility kB = 1 is used here.

In order to separate out the contribution of the system-bath coupling γz in figure 6.1 the difference
between the decoherence rate and the dephasing rate is plotted and normalized by the perturbative
result Γp, given in Equation (4.39), for γD = 0, thus a non-modified von-Neumann equation. In the
following this ratio will be called Γrat = (Γ(γD) − γD)/ΓP(γD = 0). For γD = 0 the normalized rate
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is different from 1 only if the system-bath coupling γz is large, e.g. γz = 1. Here, in contrast to
QUAPI, RESPET fails to accurately describe a SBM, even without the inclusion of the Lindblad
rate. Therefore we focus on system-bath couplings γz ≤ 0.2 here after. Nonetheless for small γD

and small γz the decoherence rate is the sum of the dephasing rate γD and the weak coupling result
for the SBM. Surprisingly for all γz the ratio decreases for a larger dephasing rate γD. This means
the inclusion of a phenomenological dephasing rate suppresses the decohering effect of the fluctu-
ations in the SBM. In contrast the relaxation rate remains unaffected within the numerical accuracy
of the hybrid QUAPI scheme. The relaxation rate is determined by fitting to the expectation value
〈σx〉.
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Figure 6.3: The ratio Γrat for the Hybrid-QUAPI results is investigated at weak system-bath
coupling γz = 0.01 for two temperatures T = 0.2∆/kB and T = 0.5∆/kB for a larger range of
γD.

To further study suppressing of the decoherence in figure 6.2 Γrat is investigated in the case of
a rather strong coupling with γz = 0.2 as well in the case of weak coupling with γz = 0.01 at
five temperatures, e.g. T = 0.01∆/kB, 0.05∆/kB, 0.2∆/kB, 0.5∆/kB,∆/kB, and three temperatures,
e.g. T = 0.2∆, 0.5∆,∆. In case of T = 0.01∆/kB, 0.05∆/kB the data coincides thus representing
the low-temperature limit. For the perturbative results the ratio Γrat is independent of γz, since
Γp − γD is proportional to γz according to Equation (4.39), though this only holds for lowest order
perturbation.

Surprisingly there are cases in which small coupling numerically exact results results differ not
only strongly from the perturbative rate, they even differ more then the strong coupling results. The
simulation data shows small deviations between γz = 0.01 and γz = 0.2 for T = 0.2∆/kB and
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Figure 6.4: The ratio Γrat for the Hybrid-QUAPI result and the Hybrid-RESPET result are
compared for small γD. the temperatures investigated are T = 0.2∆/kB,T = 0.5∆/kB and
T = ∆/kB and the Hybrid-QUAPI result was calculated for weak coupling γz = 0.01.

T = ∆/kB but not for T = 0.5∆/kB. This lack of γz dependence points towards a lowest-order
effect in the system-bath coupling as determined by the perturbation rate. Surprisingly, however,
numerical results differ substantially from perturbative results except for very small dephasing γD.
Furthermore, pertubation shows with increasing γD first a suppression of decoherence and then an
increase. The minimum shifts towards larger γD with increasing temperature and, thus, is only
visible for T = 0.2∆/kB in figure 6.2. In contrast, the correct behaviour, as determined by QUAPI,
shows at first a decrease of decoherence which seems to level off for larger γD. To investigate this
further figure 6.3 plots the data for γz = 0.01 and T = 0.2∆/kB and T = 0.5∆/kB for an extended
range of γD. Therein, the γD dependence is very weak for γD � 2∆ . The T = 0.2∆/kB data exhibit
a shallow minimum while the T = 0.5∆/kB simply levels off. In total, we find that a perturbative
approach, which is standard to treat weak system-bath coupling successfully, fails when the system
dynamics is not Hamiltonian but follows a Liouvillian dynamics.

One might argue heuristically that a large dephasing rate γD is the result of strong environmental
noise and further that such a strongly coupled environment even invalidates a perturbative treat-
ment of an additional independent noise source even when this noise is weak, i.e., its system-bath
coupling is small, i.e., γz = 0.01. Then, discrepancy between QUAPI and RESPET should occur
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only for large γD . Figure 6.4 plots the data for γz = 0.01 and T = 0.2∆/kB,0.5∆/kB , with a focus
on small dephasing rate γD . As expected RESPET and QUAPI results agree for vanishing phe-
nomenological dephasing. Sizeable differences, however, already occur for γD ≥ 0.1 with stronger
deviations at lower temperatures.

6.1 Conclusion

In both Hybrid-QUAPI and Hybrid-RESPET a suppression of the contribution from the environ-
ment to the decoherence rate with increasing dephasing is observed. Thus, dephasing suppresses
the effects of additional environmental fluctuations. By including a phenomenological dephasing
rate in two well established methods and comparing the results the reliability of a simple inclusion
of a master equation in these methods becomes questionable. Surprisingly, strong quantitative and
qualitative deviations are found between the perturbative and the numerically exact results, even for
system-bath couplings that are considered to justify a perturbative treatment, for example γz = 0.1.
This however, has to be taken in the context of model. Absorbing one bath in the system dynamics
introduces correlation between the baths in lowest order, while treating both baths equally results
in no correlation in lowest order, as was shown for RESPET in chapter 4.3. To truly treat both baths
equally the extension of QUAPI, as done in chapter 5.6, can be employed. Sadly RESPET in next
higher order is already not solvable any more and can only be used to interpret results qualitatively.
These findings have been published in reference [98].
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Chapter 7

The Two Level System: Dynamics under
the influence of two non-commuting
fluctuations

We wish to investigate two types of noise in non-commuting operators: fully correlated and uncor-
related fluctuations. These types of fluctuations are important to understand how the underlaying
noise sources in multiple different, important systems, such as the ones used in molecular dy-
namics [17], in quantum wells [70] and in the multiple realisations of qubits, as discussed in the
introduction of this thesis. We focus on the two level system (TLS) and compare both fluctuations
in terms of dissipative properties.
A rigorous study of the dynamics of a TLS under the influence of two uncorrelated, non-commuting
fluctuations demands a method which goes beyond the hybrid methods employed in the previous
chapter. The extended QUAPI method for two non-commuting baths with the additional condi-
tion [HS,HSB,1] = 0 as derived in chapter 5.6 is employed throughout this chapter. The additional
condition treats dephasing fluctuations which do cause relaxation. We call this the two bath model
(TBM), as introduced in chapter 4.3. Furthermore, the standard QUAPI scheme is employed to
model two fully correlated fluctuations in non-commuting system-bath operators via the rotated
bath model (RBM), which was introduced in Chapter 4.2. We compare our findings to the effect
of classical fluctuations, which are additive in nature. Thus, we simply add the rates resulting from
single fluctuations in the same system-bath operators, corresponding to the Spin-Boson model and
the independent boson model, the latter being an example for a pure dephasing bath.

As shown in the calculations of Chapter 4.3 in 1-loop approximation the integral kernel M for the
TBM coincides with the sum of the kernel Mσx for a single bath coupled via σx, called the pure de-
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phasing bath (PDB), and the kernel Mσz of the relaxational bath coupled via σz. The interpretation
as a pure dephasing bath, which fulfills [HS,HSB,1] = 0, is in fact only true in absence of second
bath. While for vanishing system-bath coupling the dephasing rates resulting from the uncorrelated,
the correlated and the additive fluctuations should coincide, under the condition that the bath con-
sists of the same kind of harmonic oscillators described by the same spectral densities, with increas-
ing system-bath coupling this is not to be expected. First, differences between the fully correlated
fluctuations and the other two models should emerge and second, for further increased system-bath
coupling, differences between the uncorrelated fluctuations and the additive fluctuations should
arise. This is apparent if one looks at the Taylor expansion Ue f f (z) = US(z)

∑
∞

m=0(−1)mαm(z).
For small system-bath coupling γ it is sufficient to employ the expansion only up to the first order
m = 1, this allows to find rates independently for (back transformed) α1

σz
(t) and α1

σx
(t), where the

overall rate would be given by the sum of these rates. Thus, additive fluctuations describe uncor-
related, non-commuting fluctuations accurately for weak system-bath coupling. The rotated bath
model, on the other hand, already has differences in the first order, as shown by the additional
terms in the 1-loop kernel M proportional to the coefficients of σx as well as to the coefficients
of σz. These terms are called Mmix in Chapter 4.1. As a model the symmetric two-level system
(TLS) is studied, HS = ∆

2σx, coupled to two baths, one, described by HSB,z, causing relaxational
fluctuations due to its coupling via σz to the TLS and the other, described by HSB,x, coupled via σx,
causing pure dephasing fluctuations. This leads to a total Hamiltonian

H = HS + HSB,z + HSB,x , (7.1)

with

HSB,ν =
∑

j

p2
j,ν

2m j,ν
+ 1

2m j,νω
2
j,ν

x j,ν −
c j,νaνσν
m j,νω2

j,ν


2

, (7.2)

for the TBM. The σν are the corresponding Pauli matrices of the TLS algebra in which the cor-
responding baths cause fluctuations. For fully correlated fluctuations the Hamiltonian is given for
only one bath with ν = RBM and aRBM =

√
a2

x + a2
z and an asymmetric TLS. Additionally, σRBM

is a Pauli matrix in a different basis, such that a basis transformation leads to the same system
Hamiltonian HS = ∆

2σx and aRBMσRBM = axσx + azσz. The corresponding basis transformation is
V = exp[iarctan(az/ax)

2 ], see Equation (4.15).

The spectral densities are:

Jν(ω) =
π
2

M∑
k=1

λ2
k,νδ(ω − ωk,ν)

2mk,νωk,ν
=: γ̃νωe−ω/ωc , (7.3)
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with ν = x,ν = z or ν = RBM. Here, J(ω) is chosen as an Ohmic spectral density with an expo-
nential cut-off function. The bath cut-off frequency is chosen to be ωc = 5∆ for both baths. The
coupling strength is now redefined as γν = a2

νγ̃ν for the ν fluctuations to the quantum system. Note
the system-bath coupling strength γRBM of the rotated bath model (RBM), as defined by Equation
(4.16), can be expressed in terms of γx and γz as well. To compare our models we chose Ω = ∆.
Then a2

RBM = a2
x + a2

z and thus γRBM = a2
RBMγ̃RBM = (a2

x + a2
z)γ̃RBM. Thus, by fixing γ̃ν ≡ 1, we find

γRBM = γx + γz.

7.1 Dephasing and Relaxation

In this section the bulk of the numerical efforts invested into this thesis is presented in the form of
an extensive study of the dissipative properties of the models we have proposed. Both the RBM
and the TBM simplify to the standard spin-boson model (SBM) for ax = 0 or alternatively to an
independent boson model or pure dephasing bath (PDB) for az = 0. The third model, additive
fluctuations, uses the simple approximation, that two non-commuting fluctuations yield the same
relaxation and dephasing rates as the sum of independent fluctuations. Thus, the rate for additive
fluctuations is given by: ΓΣ

r/d(γx, γz) = ΓPDB
r/d (γx) + ΓSBM

r/d (γz).

We explicitly study the time evolution of Pz(t) = 〈σz〉(t) with initially Pz(0) = 1 to investigate
dephasing and Px(t) = 〈σx〉(t) with initially Px(0) = 1 to study relaxation. We employ a fitting
function

Pfit
z (t) = Pstat

z + [x1 + x3 ∗ sin(∆̃(t) ∗ t) + x2 ∗ cos(∆̃(t) ∗ t)] ∗ ex7∗t (7.4)

with ∆̃(t) = (x4 + x5 ∗ ex6∗t) and Pstat
z = 1 − x1 − x2 and with the xi the fit parameters to describe

the numerical data. As expected from weak coupling analytical results we observe |Pstat
z | � 1 and

∆̃(t) ' ∆ and x1, x3 � x2 for all studied cases, i.e. γx ≤ 0.5, γz ≤ 0.5 and temperatures 0.1∆ ≤

kBT ≤ 2∆. The dephasing rates extracted are x7 = ΓRBM
d for fully correlated fluctuations in the

rotated bath model or x7 = ΓTBM
d for uncorrelated fluctuations in the two bath model. The relaxation

rate ΓRBM
r and ΓTBM

r are extracted similarly by fitting Pfit
x (t) = Pstat

x + (1 − Pstat
x ) ∗ ex8∗t to the data.

These dephasing and relaxation rates are functions of both coupling strength γx and γz. Note that
by fixing γ̃ν ≡ 1 and choosing ax and az identical for fully correlated or uncorrelated fluctuations,
it is ensured that in lowest order of the coupling to the bath the dephasing and relaxation rates for
the quantum two state system are identical for fully correlated and uncorrelated fluctuations. All
differences result from higher order corrections due to strong system-bath coupling of at least one
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of the fluctuation sources.

7.1.1 Dephasing at T = 0.2∆/kB
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Figure 7.1: In this figure P(z)= 〈σz〉(t) is plotted for the SBM (crosses), the PDB (plusses) and
the TBM (circles) at T = 0.2∆/kB. For PDB and SBM the respective system-bath couplings
are γx = 0.1 and γz = 0.1. For the TBM three different set ups are plotted γx = 0.01, γz = 0.1
, γx = 0.1, γz = 0.01 and γx = γz = 0.1.The orange lines represent the envelop exp[−Γi

d]
.

At first we investigate the dephasing for a temperature T = 0.2∆/kB. In Figure 7.1 the function
Pz(t) is plotted for five different cases. The TBM result (circles) is given for the three cases γx =

0.1;γz = 0.01 ,γx = 0.01;γz = 0.1 and γx = 0.1;γz = 0.1. Additionally we show the PDB result
(pluses) for γx = 0.1 and the SBM (crosses) for γz = 0.1. As to be expected for γz = 0.01 or
γx = 0.01 the TBM deviates negligibly from the PDB with γx = 0.1 and the SBM with γz =

0.1. The inset shows a maximum of P(z) for later times to compare the damping of the different
models. The orange lines represent the envelops exp[−Γi

dt]. We find ΓPDB
d (γx = 0.1) = 0.021858 ,

ΓSBM
d (γz = 0.1) = 0.019326 and ΓTBM

d (γx = 0.1, γz = 0.1) = 0.0415311. Thus ΓΣ
d (γx = 0.1, γz =

0.1) = ΓPDB
d (γx = 0.1) + ΓSBM

d (γz = 0.1), then ΓΣ
d (γx = 0.1, γz = 0.1) = 0.041184. Such that

ΓPDB
d (γx = 0.1) +ΓSBM

d (γz = 0.1) = ΓTBM
d (γx = 0.1, γz = 0.1) + O(ΓΣ

d /100), a deviation about twice
as large as the error resulting from the QUAPI error, which is < 0.5% for the calculations shown
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Figure 7.2: Here P(z) is compared for the TBM (circles) and the RBM (diamonds) at
T = 0.2∆/kB for three different scenarios: γx = 0.1;γz = 0.01 ,γx = 0.01;γz = 0.1 and
γx = 0.1;γz = 0.1.

here. Thus, additive fluctuations are a reasonable approximation for uncorrelated, non-commuting
fluctuations in this regime.

In Figure 7.2 the RBM results (diamonds) and the TBM results (circles) for Pz(t) are compared for
the same three combinations of relaxational and dephasing couplings: γx = 0.1;γz = 0.01 ,γx =

0.01;γz = 0.1 and γx = 0.1;γz = 0.1. We find again agreement between the TBM and the RBM
if either of the two coupling is small. For γx = 0.1 and γz = 0.1 the rates are ΓTBM

d = 0.0415311
and ΓRBM

d = 0.043582. The relative difference between them is (ΓTBM
d − ΓRBM

d )/ΓRBM
d = −4.7058%,

while the relative difference between the RBM rate and the sum of both rates is (ΓRBM
d − ΓΣ

d )/ΓΣ
d =

5.8229% and for the TBM rate it is: (ΓTBM
d − ΓΣ

d )/ΓΣ
d = 0.8428%. The QUAPI error in this

region is less then 0.5%. While the deviations are not large, they still show a trend: The rates
resulting from non-commuting uncorrelated fluctuations are about the same as the rates for additive
fluctuations, which are thus a good approximation, whereas the rates caused by fully correlated non-
commuting fluctuations are larger then the other two, thus additive fluctuations are not as accurate
of an description in this case. Furthermore fully correlated fluctuations enhance the dephasing rate
compared to uncorrelated fluctuations in this set-up. To further investigate this behaviour we focus
on the relative rates as defined by

ΓTBM
d −ΓΣ

d
ΓΣ

d
,

ΓRBM
d −ΓΣ

d )

ΓΣ
d

and
ΓTBM

d −ΓRBM
d

ΓRBM
d

.
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In Figure 7.3 these three relative rates are presented in a plot against γz for six different values of
γx: γx = 0.01, 0.2, 0.25, 0.3, 0.4, 0.5. The error of the QUAPI simulation grows for larger system-
bath couplings γx up to 3%. Strong dephasing poses a problem due to larger memory requirements
[125]. Still, the differences between the set-ups are large enough to not only make qualitative
but also quantitative statements. While the uncorrelated and additive fluctuations agree well for
γx = 0.01 and γz = 0.5, fully correlated fluctuations show a difference of 4%. Thus, if one of the
fully correlated fluctuations is large, another small fluctuation can already enhance the dephasing
rate. For γx = γz = 0.5 the deviations are the largest between uncorrelated fluctuations and additive
fluctuations. Overall the deviations between them grow with both γx and γz.
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Figure 7.3: In this figure relative rates are plotted at T = 0.2∆/kB against γz. The circles
represent the differences between the ΓTBM

d and ΓΣ
d , the diamonds the ones between ΓRBM

d
and ΓΣ

d and the crosses the ones between ΓTBM
d and ΓRBM

d . The relative rates are given for
six fixed values of γx: γx = 0.01, 0.2, 0.25, 0.3, 0.4, 0.5.

The same can not be said for fully correlated fluctuation. While the differences to additive fluc-
tuations grow with γz, they do not show the same behaviour for increasing γx. Instead they reach
a maximum in the region γx = 0.2 − 0.3, where all three curves agree well with each other, and
then start to decrease again, so much that they agree better with additive fluctuations for γx = 0.5
then for γx = 0.01. This behaviour of the fully correlated fluctuations results in an decrease of the
deviations between them and the uncorrelated fluctuations as well.

Since the behaviour for γz is consistently an increase, we now focus on only three fixed value of γz:
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γz = 0.01, 0.2 and 0.5. In Figure 7.4 the three relative rates are plotted against γx. The deviations
between the three rates are almost constant and relatively small for γz = 0.01, they are of the order

of the numerical error, the largest deviation is at γx = 0.05 with
ΓRBM

d −ΓΣ
d

ΓΣ
d

= 0.02487917, which
is slightly larger then the sum of the relative errors of the three simulations. Still even there the
agreement is acceptable enough to claim additive fluctuations are a good approximation. For the
fully correlated model with γz = 0.2 and γz = 0.5 we observe that a maximum plateau of the
deviations emerges in the region of γx = 0.1 − 0.3. The increase of the deviations between fully
correlated and additive fluctuations increase with γx, with a larger gradient for larger γz.
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Figure 7.4: In this figure relative rates are plotted at T = 0.2∆/kB against γx for three fixed
values of γz:γz = 0.01, 0.2, 0.5 . The circles represent the differences between the ΓTBM

d and
ΓΣ

d , the diamonds the ones between ΓRBM
d and ΓΣ

d and the crosses the ones between ΓTBM
d

and ΓRBM
d .

Overall the results indicate, that additive fluctuations are an acceptable approximation for uncorre-
lated fluctuations at this temperature for moderate system-bath couplings, with all deviations being
less then 8%. We observe a maximum relative deviation between the rates of uncorrelated and ad-
ditive fluctuations of 7.5%. The dephasing is consistently weaker than the one caused by additive
fluctuation, allowing the statement that uncorrelated fluctuations reduce the decoherence rate in this
region. Fully correlated fluctuations, on the other hand tend, to cause stronger dephasing compared
to additive ones, with a maximum difference of approximately 10% for γz = 0.5 in the region of
the plateau. It is to be expected, that a further increase of γz yields even stronger deviations. The
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same can not be said for γx, we find a more complex connection between γx and the dephasing rate
induced by fully correlated fluctuations. Moderate system-bath couplings γx of dephasing fluctua-
tions enhance the dephasing rate, while stronger couplings destroy this enhancement again. Fully
correlated and uncorrelated fluctuations show a relative difference of more then 12% in the region
of the plateau. For a further investigation we will look into different temperature regimes. Larger
temperatures result in stronger dephasing for weaker system-bath couplings, thus we hope an addi-
tional temperature investigation will allow us to gain further insight on the γx dependency of fully
correlated fluctuations.

7.2 Dephasing at Temperatures: 0.1∆/kB ≤ T ≤ 2∆/kB
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Figure 7.5: In this figure relative rates are plotted for γz = 0.2 against γx for three fixed
values of T:T = 0.1∆/kB, 0.2∆/kB, 0.5∆/kB . The circles represent the differences between
the ΓTBM

d and ΓΣ
d , the diamonds the ones between ΓRBM

d and ΓΣ
d and the crosses the ones

between ΓTBM
d and ΓRBM

d .

In Figure 7.5 we investigate a range of low temperatures for a fixed γz = 0.2 . The blue dots repre-
sent T = 0.1∆/kB, the dashed red line T = 0.2∆/kB and the dashed-dotted orange line T = 0.5∆/kB.
For uncorrelated fluctuations at T = 0.1∆/kB we find almost perfect agreement with additive fluc-
tuations for any given coupling γx. While not shown here, even an increase of the system-bath
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coupling to γz = 0.5 only yields a maximum difference of ΓTBM
s −ΓΣ

s
ΓΣ

d
= −0.045407 . Thus, the lower

the temperature the better the approximation as additive fluctuations for uncorrelated fluctuations.
For larger temperatures T = 0.2∆ and T = 0.5∆ we find almost the same relative deviation for
uncorrelated fluctuations up to 5% and 4% respectively. Since 1% is of the order of the numerical
error they should be viewed as equal. The deviation of uncorrelated fluctuations increases as tem-
perature decreases, again for T = 0.2∆/kB and T = 0.5∆/kB the maxima are about the same height,
while the maximum increases substantially for T = 0.1∆/kB. The relative differences between un-
correlated and additive fluctuations grow up to 10%, which is as much as the maximum deviation
at T = 0.2∆/kB for a large relaxational system-bath coupling γz = 0.5. Overall we find a strong
temperature dependence of the maximum and the width of the plateau. While the decrease of the
plateau is only partly visible from γz = 0.4 to γz = 0.5 for T = 0.1∆/kB, we can further observe
the decrease for T = 0.5∆/kB. Here the rate of fully correlated fluctuations decreases so much, that
it is less then the rate caused by additive fluctuations for γz = 0.4 and even becomes about equal
to the rate caused by uncorrelated fluctuations at γz = 0.5. The concave form of the relative rate
between fully correlated and additive fluctuations lead to the expectation, that it will decrease even
further when increasing γx. Our results show that a bad composition of γx and γz is possible for
the for fully correlated fluctuations, where the dephasing rate is enhanced compared to the other
two models.
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Figure 7.6: In this figure relative rates are plotted for γz = 0.2 against γx for three fixed
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ΓTBM

d and ΓΣ
d , the diamonds the ones between ΓRBM

d and ΓΣ
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In Figure 7.6 the relative rates are plotted for γz = 0.2 and three temperature T = 0.5∆/kB,∆/kB and
2∆/kB. The behaviour that emerged for large γx at T = 0.5∆/kB is further amplified. At T = ∆/kB

and T = 2∆/kB the differences between all three models can be neglected until the rate caused by
fully correlated fluctuations starts to deviate strongly. In this region of comparably small deviations,
the ones for T = 0.5∆/kB are the largest. Interestingly, the deviations between uncorrelated and
additive fluctuations become smaller at larger temperatures, even though they still grow with γx,
they only reach a maximum difference of about 5% for T = ∆ and 3% at T = 2∆/kB. Before the
fully correlated fluctuations start their extreme behaviour, they reach a maximum difference at γx =

0.1 with
ΓRBM

d −ΓΣ
d

ΓΣ
d

= 0.84% for T = ∆/kB and at γx = 0.05 with
ΓRBM

d −ΓΣ
d

ΓΣ
d

= 1.65% for T = 2∆/kB,
which are both of the order of the QUAPI error and thus these differences are negligible. Thus,
we do not find a plateau for these two temperatures. The fundamentally different behaviour of the
RBM remains to be investigated in more detail. To achieve this, we will investigate dephasing at
T = 2∆/kB, where the effect is most prominent.
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7.3 Dephasing at T = 2∆/kB
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Figure 7.7: The dephasing rates ΓRBM
d for the RBM, diamonds, and ΓTBM
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d , plus symbols, for the sum of the dephasing rate of the SBM and the PDB, are
plotted versus the coupling strength for the dephasing fluctuations γx for a fixed γz = 0.2
and a high temperature T = 2∆/kB.

In Figure 7.7 the dephasing rate is plotted at T = 2∆/kB for a coupling strength γz = 0.2 against
γx. The dephasing rates of the additive fluctuations and the uncorrelated ones grow linear. The rate
of uncorrelated fluctuations grows to be larger the rate of additive fluctuations around γx = 0.2 ,

the maximum difference is at γx = 0.4 with
ΓTBM

d −ΓΣ
d

ΓΣ
d

= 0.976423−0.928821
0.928821 = 5.1% and then decreases

to
ΓTBM

d −ΓΣ
d

ΓΣ
d

= 1.1896−1.155942
1.155942 = 2.9% at γx = 0.5. Fully correlated fluctuations show very different

behaviour, while the dephasing rate increases linearly up to γx = 0.2, it reaches a maximum at
γx = 0.25 and then decreases afterwards to a constant rate of about ΓRBM

d = 0.5. This indicates,
that the TLS undergoes a transition to the overdamped regime. It is to be mentioned, that it was not
possible to fit to the evaluation of the QUAPI tensor in this region, but only to the solution of the
full path integral, for details see appendix C .

In Figure 7.8 the dephasing rate Γd is shown for a pure dephasing coupling strength γx = 0.5. Fully
correlated fluctuations cause the TLS to undergo the transition to the overdamped regime already
for γz = 0.05 and it reaches the overdamped region around γz = 0.3. Here, uncorrelated fluctua-
tions cause the TLS to start its transition to the overdamped regime at γz = 0.4 as well, reaching a
maximum of ΓTBM

d there. Before the transition, it diverges notably from dephasing rate cause by ad-
ditive fluctuations. Neither the SBM nor the PDB reach the transition to the overdamped region in
the investigated regime, with maximum coupling strengths γν = 0.5, therefore this feature can not
be reproduced by additive fluctuations. This is consistent with fully correlated fluctuations, which
do cause a transition to the overdamped regime for γRBM = 0.51 for γx = 0.5 and γz = 0.01 and
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vice versa. Interestingly, we find transitions for compositions with γRBM = 0.5, as shown in Figure
7.7 one such composition is γx = 0.3 and γz = 0.2. Thus, two fully correlated fluctuations enhance
the dissipative effect of both fluctuation beyond a simple additive effect and show transitions to the
overdamped regime for weaker system-bath couplings than uncorrelated fluctuations. Uncorrelated
fluctuations not only show a transition to the overdamped regime as well, they also diverge strongly
from additive fluctuations and show an enhancement of the dephasing rate for large temperatures
and medium system-bath couplings.
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Figure 7.8: The dephasing rates ΓRBM
d for the RBM, diamonds, and ΓTBM

d , circles, for the
TBM and ΓΣ

d , crosses, for the sum of the dephasing rate of the SBM and the PDB, are
plotted versus the coupling strength for the relaxational fluctuations γz for a fixed γx = 0.5
and a high temperature T = 2∆/kB.

In Figure 7.9 we take a closer look into the behaviour of Pz(t) for a fixed dephasing coupling
strength γx = 0.5 and increasing γz. The equilibrium value of the TLS remains unchanged for
uncorrelated fluctuations, while fully correlated fluctuations appear to shift it substantially. For a
weak relaxational coupling of γz = 0.05 the difference between the TBM and the PDB at γx =

0.5 is small, whereas the RBM result already shows relevant differences. The additional fully
correlated relaxational fluctuation gives rise to two competing behaviours even at low coupling
strength. The shifted equilibrium value is actually a deception, as shown in the inset, a second,
long term behaviour comes into play which has an algebraic characteristic. This is highlighted by
seemingly linear behaviour at later times. While looking at the values of t = 6∆−1, the algebraic
behaviour is obvious for γz = 0.5 and the competition between the two behaviour is somewhat
visible for γz = 0.2, while for γz = 0.05 it seems to be an exponential decay with a shifted
equilibrium value, as observed for lower temperatures and expected by RESPET results. In this
regime, especially for strong dephasing coupling γx, QUAPI fails to produce a continuous function,
but produces a discontinuity between the evaluation of the full path integral at t = K ∗ dt and the
evaluation of the QUAPI tensor at t = (K + 1) ∗ dt. For this set up the converged results where at
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dt = 0.6∆−1. The discontinuity presents itself as a jump of Pz and it is in all three cases too small
to account for the equilibrium shift. In fact, it roughly halves the values. The behaviour afterwards
stems from the evaluation of the QUAPI tensor, thus neglects memory that is somewhat important.
Therefore the behaviour at later times should rather be seen as a good indication then a numerical
exact fact. Some features can still be extracted though.
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Figure 7.9: Pz(t) versus time is shown for fixed coupling strengthγx = 0.5 of pure dephasing
fluctuations at temperature T = 2∆/kB and for various coupling strengthsγz for relaxational
fluctuations. The inset shows the behaviour of the RBM at later times, highlighting the
competion between the exponential damping behaviour of the damped case and the
algrebaic decay of the the overdamped case.

We observe stronger linear behaviour for γz = 0.05 then for the other two cases. For γz = 0.2
linear decay is still observable, while for γz = 0.5 no linear behaviour is observable. Instead,
we find non-linear behaviour even for the latest times simulated, though on a smaller scale. The
inset is already magnified by a factor 100, to see the non linear behaviour at least a factor 1000
is necessary. Interestingly the discontinuity becomes smaller for more algebraic behaviour. This
is also reflected in the non-linear but algebraic behaviour at later times, showing that the QUAPI-
tensor seems capable to correctly recover some features of the algebraic behaviour even though
the correlation length increases. In all cases Pz(t) goes to zero. For γx = 0.5 and γz = 0.5 fully
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correlated fluctuations cause the TLS to show a competition between the damped and overdamped
regime as well. However, the uncorrelated fluctuations do not exhibit a discontinuity. For the TBM
dt = 0.6 was chosen as well, but only K = 6 was used, thus, if existing, the discontinuity should be
visible between ∆ ∗ t = 3.6 to 4.2, which it is not. The reason is somewhat technical and related to
to the Feynman-Vernon influence functional and it is discussed in appendix C.

7.4 Relaxation at T = 0.2∆/kB
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Figure 7.10: Here the Relaxation rate Γr, obtained from Px(t), is shown at T = 0.2∆/kB and
plotted against γz for three fixed γx and the three models.

Now we turn our focus to the relaxation of the excited TLS. In Figure 7.10 the relaxation rate is
given for three constant values of γx: γx = 0.01, 0.2 and 0.5. and plotted via γz at temperature
T = 0.2∆/kB. We find perfect agreement between all three models for γx = 0.01. For γx = 0.2
the relaxation rates for fully correlated and uncorrelated fluctuations show very small differences,
of order of the numerical QUAPI error, that grow with γz, but both deviated substantially from the
relaxation rate cause by additive fluctuations. For even stronger dephasing fluctuations the differ-
ences between the rates caused by fully correlated fluctuations and uncorrelated fluctuations grow.
Overall an increase in dephasing fluctuations lowers the relaxation rate. That this effect already
starts for a medium coupling of dephasing fluctuations of γx = 0.2 is surprising for the uncorre-
lated fluctuations, since it is an effect of higher order.
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Figure 7.11: In this figure the relaxation rate normalized to the system-bath coupling of
the relaxational bath Γr

γz
is shown for the three models an four different values of γz. We

investigate the effect of increasing pure dephasing γx-depending fluctuation by plotting
against γx.

To further analyse the deviations between the models, we take a closer look to the relaxation rate
at four different γz = 0.01, 0.1, 0.2 and 0.5, as shown in Figure 7.11. To exclude a direct linear
effect, since in lowest order ΓSBM

r ∝ γz, we chose to look at Γr
γz

. While both fully correlated and
uncorrelated fluctuations consistently lower the relaxation rate of the SBM for all couplings inves-
tigated, a detailed look shows, how differences emerge. The deviations between the fully correlated
fluctuations and additive fluctuations grow linearly with γx for all couplings γz investigated. The
uncorrelated fluctuations exhibit a non-linear behaviour, with weaker decrease for lower coupling
of the dephasing fluctuations γx. This is according to our expectations, since higher order effects
are typically non-linear. Interestingly, we observe non-linear behaviour for all γx for uncorrelated
fluctuations at weak relaxational couplings and linear effects start to emerge with γz = 0.1. All
dephasing coupling effects are of higher order but have to be seen as relative to γz. In 2-loop RE-
SPET we found contributions that are ∝ γxγz, while the higher order effects of just the relaxational
fluctuations are ∝ γ2

z . Thus, already for γz = 0.1 the higher order effects that stem from a mixing
of the baths are only by at most a factor ten smaller then the lowest order effect. The low order is
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in this case defined by the actual value of the relaxational coupling strength, this is why linear be-
haviour emerges only for γz’s which are of O(γx). It appears as if the relative differences between
ΓΣ

r and γTBM
r do not increase between γz = 0.2 and γz = 0.5, while the relative differences between

ΓΣ
r and ΓRBM

r do. We will further analyse this by looking at the the relative rates for low to medium
relaxational fluctuations and for medium to strong relaxational fluctuations.
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Figure 7.12: The relaxation rates for the TBM (circles) and the RBM (diamonds) normalized
to SBM results are shown for low to moderate γz at T = 0.2∆/kB.

We start with weak to medium relaxational fluctuations and take a look in Figure 7.12 at the rela-
tion of the relaxation rate of uncorrelated fluctuations and additive fluctuations ΓTBM

r
ΓΣ

r
and the relation

of the rates of fully correlated fluctuations and additive fluctuations ΓRBM
r
ΓΣ

r
for four relaxational cou-

plings between γz = 0.01 and γz = 0.2 . We find almost perfect agreement for the relative reduction
for fully correlated fluctuations. The only graph deviating is for γz = 0.01, which might be due
to the need of longer simulations times and a larger accumulative error. The long simulation times
were necessary to achieve meaningful fitting results, since the relaxation was very weak. For un-
correlated fluctuations the region of linear behaviour grows with increased system-bath couplings,
resulting in a stronger decrease of the the relaxation rate of additive fluctuations.
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Figure 7.13: The relaxation for the TBM (circles) and the RBM (diamonds) normalized to
SBM results is shown for moderate to large γz at T = ∆/kB.

In Figure 7.13 the next region of relaxational coupling, between γz = 0.25 and γz = 0.5, which we
investigate is shown. Again we look at the relaxational rates of the uncorrelated and fully correlated
fluctuations normalized to the rate of the additive fluctuation. In this region the differences between
the relative rates for uncorrelated fluctuations differ only slightly. The region of linear deviations
appears to converge between γx = 0.1 − 0.15. The fully correlated fluctuations on the other hand
start to show higher order effects now. Both fully correlated and uncorrelated fluctuations agree
well in the linear region of the uncorrelated fluctuations, even for large γz. We expect the deviations
to further grow with larger γz and investigate this, through studying higher temperature behaviour.
For T = 0.2∆/kB we consistently find a reduction of the relaxation rate resulting from additive
fluctuation, thus the assumption of adding rates is a bad description of either fully correlated or
uncorrelated fluctuations. The reduction of the relaxation rate at this temperature is stronger than
anything we observed for the dephasing rate.
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7.5 Relaxation at different temperatures
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Figure 7.14: The relative relaxation rates for the TBM (circles) and the RBM (dia-
monds) normalized to SBM results is shown a large γz = 0.5 at temperatures T =
0.1∆/kB, 0.2∆/kB and 0.5∆/kB.

In Figure 7.14 we look at the behaviour of the relative relaxation rates for three low temperatures
T = 0.1∆/kB, 0.2∆/kB and 0.5∆/kB for a maximum relaxational coupling γz = 0.5, since the
reduction scales with it. The reduction of the relaxation rate is apparent for all these temperatures.
Uncorrelated fluctuations cause the lowest reduction for T = 0.1∆/kB, with a maximum reduction
of about 6%, while the difference for T = 0.2∆/kB and T = 0.5∆/kB is small, with a maximum
reduction by about 14% for the latter. Fully correlated fluctuations on the other hand show the
largest reduction for T = 0.1∆/kB with about 20%, though the deviations to T = 0.2∆/kB are small
for all dephasing couplings γx. Interestingly, at T = 0.5∆/kB uncorrelated and fully correlated
fluctuations show non-linear behaviour, the former of concave form and the latter of convex. This
leads to a region between γx = 0.05 and γx = 0.3 in which uncorrelated fluctuations reduce the
relaxation rate of additive fluctuations stronger than fully correlated ones. The gradiant of the graph
for fully correlated fluctuations grows while the gradiant of the graph for uncorrelated fluctuations
does not. This leads to a relative reduction of the rate for γz = 0.5 that is almost as low as for the
other two temperatures, which suggests a further reduction below them for even larger γz. Again
to investigate this further we take a closer look to increased temperatures.
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In Figure 7.15 we show larger temperature and include T = 0.5∆/kB for comparability. Uncorre-
lated fluctuations actually cause less of a reduction for larger temperatures and appear to be linear.
Larger temperatures somewhat destroy the higher order effects of uncorrelated fluctuations in the
relaxation, whereas in the dephasing they enhance it. The higher order effects of fully correlated
fluctuations strongly enhance the decrease of the relaxation rate. While for T = ∆/kB at first a
convex graph is observed it becomes linear in the region γx = 0.3 to γx = 0.5. Fully correlated
fluctuations also slightly increase the relaxation rate for additive fluctuations up to γx = 0.1 and
are larger then the relaxation rates resulting from the uncorrelated fluctuations up to γx = 0.2. The
most interesting behaviour is at T = 2∆/kB for fully correlated fluctuations. At first the relaxation
rate is slightly increased compared to the one from the additive fluctuations, but then immediately
reduces the relaxation strongly, already being below the relaxation rate of the uncorrelated fluctu-
ations at γx = 0.1. The graph goes from a convex form, to a linear form and finally to a concave
form. This coincides with the transition to the overdamped regime apparent in the dephasing rate.
The TLS starts it around γx = 0.15 and reaches the overdamped regime around γx = 0.3. At the
largest coupling investigated, at γz = 0.5 and γx = 0.5 the reduction of the relaxation rates is 54%.
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7.6 Conclusion

We studied the non equilibrium dynamics of a two level system under the influence of two fully cor-
related, non-commuting fluctuations and under the influence of two uncorrelated, non-commuting
fluctuations. Then, we compare these results to the assumption of simply adding the rates caused
by each fluctuation source independently and determine if this would be a decent description. One
of the fluctuations commutes with the system Hamiltonian, called dephasing fluctuation, while the
other does not commute with the Hamiltonian and is called relaxational fluctuation. For temper-
atures smaller T = ∆/kB we find dephasing rates resulting from uncorrelated fluctuations con-
sistently lower then the additive effect of these fluctuations, these deviations growing with both
coupling strengths. For T = ∆/kB additive fluctuations and uncorrelated fluctuations do not show
any large deviations, but for T = 2∆/kB they do emerge. A transition to the overdamped regime has
been observed at T = 2∆/kB for a combination of large couplings of both fluctuations. Fully corre-
lated fluctuations show a more complex behaviour. For temperatures less then T = ∆ the dephasing
rate consistently grows with the coupling strength to the relaxational fluctuation and is enhanced
compared to the additive rate for a regime of the coupling strength for the dephasing fluctuations.
Increasing this coupling strength while keeping the relaxational coupling strength constant shows
how a plateau is reached, further increasing the dephasing coupling strength yields a decrease on
the dephasing rate, even to less then the additive one. Furthermore, the height and width of the
plateau grow for decreasing temperature. All the differences to an additive dephasing rate are less
than 15% in the coupling strengths investigated. Still, this holds implications for different exper-
imental scenarios, a superconducting charge qubit for instance. The set up of the connected gates
and strengths of the voltages applied can lead to faster dephasing, thus one should vary the voltages
to find an optimal regime to configure a set up. Our findings suggest instead of using one strongly
coupled gate, it is better to use two gates with half the coupling strength, the lower the temperature
the larger the effect.
For temperatures T = ∆/kB and T = 2∆/kB the fully correlated fluctuations increase the coupling
strength of either fluctuation until a transition to the overdamped regime takes place. Until then
the differences to the additive dephasing rate are negligible. The transition to the overdamped
regime is more dependent on the dephasing fluctuations then on the relaxational fluctuations. The
uncorrelated fluctuations enhance the dephasing rate in this region, compared to the additive rate.
Furthermore, the transition to the overdamped rate starts at larger couplings and a completely over-
damped regime was not simulated in any of the studied coupling strengths. The transition was only
visible at the largest coupling strengths investigated and T = 2∆/kB. All in all additive fluctua-
tions only describe non-commuting fluctuations accurately in certain regions, generally speaking
for weak to medium system-bath couplings of either of the fluctuations. They completely fail to
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describe a transition to the overdamped regime for fully correlated fluctuations, where a transition
was observed at an overall coupling strength to the fluctuation source below the coupling strength
where either the independent boson model or the Spin-Boson model undergo a transition to the
overdamped regime.

We find dephasing fluctuations consistently reduce the relaxation rate compared to the pure Spin-
Boson model consistently for either fully correlated or uncorrelated fluctuations. Fully correlated
fluctuations decrease the rate for low temperatures T = 0.1∆/kB to T = ∆/kB very similarly up to a
maximum decrease of almost 20% for the maximum coupling strength of dephasing investigated.
For larger temperature this effect becomes more extreme, in the overdamped regime the Spin-
Boson rate is even reduced by more than 50% for large dephasing fluctuation coupling strengths.
Uncorrelated fluctuations reduce the Spin-Boson rate less drastically if temperatures are increased.
They exhibit an interesting behaviour at low temperatures, where higher order effects resulting from
the dephasing coupling strength are suppressed for increased relaxational coupling strength. These
findings indicate a complete failure of additive fluctuations to describe the relaxation of a two level
system under the influence of non-commuting fluctuations, either fully correlated or uncorrelated.

All in all we found certain regimes, in which additive fluctuations are an invalid assumption for the
determination of the dephasing rate. The reduction of the dephasing rate is, however, not on a scale
which would be desirable for qubits, where one wishes to increase the dephasing time by multiples
of the ones currently achieved in experimental realisations. The large differences between the
dephasing and relaxation times on the other hand are interesting for experimental set ups, allowing
for an alternate explanation than simply assuming more dephasing channels. After all we find not
just an increase of the dephasing rate by an additional dephasing channel but a reduction of the
relaxation rate, thus an additional dephasing channel act oppositely on dephasing and relaxation.
Finally, we found that a σx bath, as introduced, loses its pure dephasing characteristic in presence of
a σz bath, which introduces relaxation in the system. Therefore, a similarly by choice of operators
constructed pure dephasing bath in larger systems might lose the pure dephasing characteristic as
well. This findings have been submitted [99].
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Chapter 8

The Two Level System: Under the
influence of two polarized,
non-commuting baths

In this chapter, we continue to study a symmetric two-level system, this time under the influence
of a sub-Ohmic pure dephasing bath and an Ohmic or sub-Ohmic relaxational bath. This describes
a typical situation for superconducting phase qubits, while electromagnetic noise exhibit an Ohmic
spectrum whereas the defects, normally also modelled as two-level systems, exhibit a 1/f - noise
and are thus sub-Ohmic in nature, see chapter 1. We investigate specifically the non-equilibrium
dynamics in case that the relaxational or the dephasing bath are polarized, i.e. when they were
thermalized with either 〈σz〉 = qz , 0 or 〈σx〉 = qx , 0 fixed. The former polarizes the relaxational
bath and results in an effective asymmetry. We investigate how an additional dephasing bath de-
creases this effective asymmetry. The decrease can quantitatively be tuned by the dephasing noise
spectrum. Thermalizing the baths with 〈σx〉 = qx , 0 polarizes the dephasing bath and generates a
shift of the coherent oscillation frequency of the TLS. We study how this frequency shift depends
on the spectral function of the dephasing bath and how the relaxational bath influences it.

8.1 Model

The system-bath model is a spin coupled to two uncorrelated fluctuations as introduced in Equation
(4.18). The TLS is coupled to two independent baths, one a relaxational bath HSB,z coupled via σz

and the other a dephasing bath HSB,x coupled via σx. We will focus on spectral densities with



86 8. TLS: Non-commuting fluctuations and polarized baths

exponential cut off:

Jν(ω) =

M∑
k=1

λ2
k,ν · δ(ω − ωk,ν)

2mk,νωk,ν
=: 2ανω1−sν

c ωsνe−ω/ωc (8.1)

with ν = x or ν = z. The reason for the slightly different definition of the coupling strength is,
that it has been used like this in reference [126], which we use to compare our findings. This is
related to the γ used before via γ = 2 απ . The bath cut-off frequency is chosen to be ωc = 10∆ for
both baths, double the value we chose to use before. αν is the dimensionless system-bath coupling
strength and sν is the spectral exponent. The sub-Ohmic spin-boson problem with a σz - bath only
shows a localization phase transition at T = 0 for coupling strengths αc(sz = 0.25) ' 0.022,
αc(sz = 0.5) ' 0.1065 and αc(sz = 0.75) ' 0.3 [127] depending on the spectral exponent sz.
For better comparability of the relaxational and dephasing fluctuations, we discuss the coupling
strength ratios

ζν = αν/αc(sz) (8.2)

in the following.

8.2 Observables and Bath polarization

We discuss the coherent dynamics of the TLS under the influence of a relaxational as well as
a dephasing bath by explicitly investigating the time evolution of Pz(t) = 〈σz〉(t) with initially
Pz(0) = 1. Without baths, the TLS oscillates around zero with frequency ∆, i.e. P(0)

z (t) = cos(∆t).
To include the baths into the consideration we determine the effective time evolution Ueff(t, t0) of
the TLS after tracing out the bath degrees of freedom. Alternatively, we directly determine the
reduced density matrix ρ(t) = Ueff(t, t0)ρ(t0) of the TLS.

The initial conditions of baths, which are dominated by their low frequency modes, lead to sizable
deviations in the TLS dynamics. Typically, for the total initial state, a factorized statistical operator,
i.e. ρ0 = ρS ⊗ ρB, with the initial state of the system ρS and of the two baths ρB = ρB,z ⊗ ρB,x

is assumed. Note that assuming factorized initial conditions neglects possible strong correlation
effects relevant for strong system-bath coupling. It nevertheless allows to discuss the much stronger
polarization effects of a sub-Ohmic bath which is our focus here.

In thermal equilibrium, a symmetric TLS exhibits 〈σz〉eq = 0. Thus, upon cooling such a TLS
with only a relaxational environment at temperature T, the bath can be expected to be in thermal
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equilibrium with ρBz0. Herein, we defined for a polarized bath

ρBνq = exp(−HSB,ν|σν=q/kBT)/ZB,νq (8.3)

with ZB,νq = Tr exp(−HSB,ν|σν=q/T). If instead the system plus bath is cooled down while keeping
〈σz〉(t ≤ 0) = 1, the environment thermalizes to a shifted spin. This results in the shifted or polar-
ized initial condition ρBz1. Whereas these two different bath initial states result for an Ohmic bath
only to sizeable differences on very short times of the order of 1/ωc [128], rather strong and long
lived deviations are observed for a sub-Ohmic bath [126]. Specifically, the polarized bath creates an
effective asymmetry ε for the TLS, i.e. an effective term εσz/2. At preparation time t = 0 this effec-
tive asymmetry is given by 2qER with the reorganization energy ER =

∫
∞

0
dωG(ω)/ω ' 2ανωc/sν.

The effective asymmetry, however, shows a rather strong time-dependence on times scales shorter
than ∆−1. On the time scales we are interested in, i.e. between ∆−1 and the TLS dephasing time
ζ−1

2 , the effective asymmetry is roughly time independent [126] but a simple correspondence to the
reorganization energy is no longer possible. For an asymmetric TLS one would expect from weak
coupling theory damped coherent oscillations with frequency Ω =

√
∆2 + ε2 around a long time

limit P∞ = ε/Ω for a TLS with finite constant asymmetry ε. Thus, we determine P∞ = ε/Ω (as
measure for the generated effective asymmetry) by the long time limit of our data since our longest
studied times t f fulfill t f . 5ζ−1

2 .

Whereas, the polarization of a relaxational bath is only achieved when cooling the bath while
polarizing the spin (by applying external fields), a dephasing bath becomes polarized for any finite
temperature since Px.eq = 〈σx〉eq = − tanh(∆/kBT). This polarization creates additional effective
terms δ∆σx/2 and, thus, shifts the oscillation frequency Ω. On the other hand, keeping 〈σz〉(t ≤
0) = 1 while cooling ensures that Px(t ≤ 0) = 0 and, thus, an unpolarized dephasing bath. Thus,
cooling any real TLS under the influence of the two bath, typically results in a polarization of one
of the two bath. In the following, we discuss various polarizations qx of the dephasing bath and qz

of the relaxational bath which fix the corresponding bath initial states (Eq.(8.3)). For the numerical
simulation we employ the QUAPI method as introduced in the previous chapters. An extension for
treatment of a single polarized bath [126] was include via modifying the relevant parts of ηkk′ , by
adding various equal time correlators which can be implemented in a straight forward way.
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8.3 Dynamics in polarized sub-Ohmic baths
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Figure 8.1: Pz(t) versus time is plotted for four different polarization cases.

At first, we choose both baths with a sub-Ohmic spectrum, i.e. sx = 0.25 and sz = 0.25, with
coupling strengths ζx = 0.3 and ζz = 0.6. Both baths are thermalized at a low temperature T = 0.1∆

since at high temperatures polarizations effects are diminished [126]. Fig. 8.1 plots Pz(t) versus
time for four different polarization cases. The black circle symbols reflect data for both baths
unpolarized, i.e. qz = 0 and qx = 0. We observe damped coherent oscillations around zero (P∞ = 0)
as expected for a symmetric TLS under the influence of environmental fluctuations. A polarized
relaxational bath, i.e. qz = 1 and qx = 0, results as expected in damped coherent oscillations around
P∞ ' 0.25 (red squares) reflecting the generated effective asymmetry. The oscillations frequency is
minimally shifted (in line with Ω =

√
∆2 + ε2). Polarizing instead the dephasing bath, i.e. qz = 0

and qx = 1, leads to damped coherent oscillations (green diamonds) around zero with an increased
oscillation frequency. Polarizing both baths, i.e. qz = 1 and qx = 1, combines both effects. The
damped coherent oscillations (blue triangles) are around P∞ ' 0.25 with an increased oscillation
frequency. In the following, we discuss these effects in more detail. Specifically, we determine
how an additional dephasing bath influences the effective asymmetry generated by a polarized sub-
Ohmic relaxational bath. Additionally, we investigate the shifted frequency by the dephasing bath
and whether and how the relaxational bath influences it.
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8.4 Dephasing suppresses the effective asymmetry

A polarized sub-Ohmic relaxational bath creates an effective asymmetry [126] for the TLS. This
effect is stronger for smaller sz, i.e. more dominant slow fluctuations, but gets diminished strongly
at temperatures T & ∆ [126]. The question arises whether additional fluctuations might suppress
the effective asymmetry. Thus, we add to the polarized relaxational bath a second, unpolarized,
dephasing bath with various coupling strength and spectral exponents.
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Figure 8.2: P∞ as measure for the effective asymmetry is plotted versus the coupling
strength ζx of the dephasing bath for various combinations of spectral exponents for the
two baths.

Fig. 8.2 shows P∞ for both baths with spectral exponents sx = 0.25 = sz (green circles), both
with sx = 0.5 = sz (red squares) and both with sx = 0.75 = sz (blue diamonds) plotted versus the
coupling strength ζx of the dephasing bath. Temperature is T = 0.1∆ and the coupling strength of
the relaxational bath is fixed at ζz = 0.6. Fig. 8.2 reveals clearly that (stronger) dephasing fluc-
tuations suppress the effective asymmetry (more). At the same time, faster polarized relaxational
fluctuations, i.e. with larger spectral exponent sz have a smaller effective asymmetry which de-
creases faster with faster dephasing fluctuations, i.e. with increasing spectral exponent sx. Faster
dephasing fluctuations decrease the effective asymmetry also more when the effective asymmetry is
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generated by the same slow bath as outlined by the green crosses and green stars in Fig. 8.2. Green
circles, crosses and stars show data for a polarized relaxational bath with sz = 0.25. The dephas-
ing bath spectral exponent increases from sx = 0.25 (green circles) over sx = 0.5 (green crosses)
to sx = 0.75 (green stars). With increasing spectral exponent of the dephasing bath the effective
asymmetry decreases stronger. Thus, faster fluctuations create smaller effective asymmetries and
are more effective in eradicating such effective asymmetries.

8.5 Shifted Frequency

A polarized dephasing bath creates a shift of the frequency in the coherent oscillations in Pz(t) as
shown in Fig. 7.9. We determine Pz(t) for various parameters. To obtain the oscillation frequency Ω

we fit the data with f (t) = cos(Ωt) exp(−ζ2t). Note that here no effective asymmetry is generated
since the relaxational bath is unpolarized. Figure 8.3 plots the observed oscillation frequency Ω

versus the polarization factor qx of the dephasing bath.
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Figure 8.3: Shifted frequency Ω of the damped coherent oscillations of Pz(t) is plotted
versus polarization factor qx of the dephasing bath for various temperatures and coupling
strengths and spectral exponents of both baths.

We study an Ohmic relaxational bath and a sub-Ohmic polarized dephasing bath. In the upper
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graph of Fig. 8.3 we compare Ω versus qx for three different spectral exponents sx of the dephasing
bath, i.e. sx = 0.25 (black circles), sx = 0.5 (red squares) and sx = 0.75 (blue diamonds). Therein,
we employ a coupling strength ζx = 0.3 and ζz = 2π·0.03 with both baths at temperature T = 0.1∆.
A polarization parameter qx = −1 (qx = 1) reflects the situation of cooling while the TLS is kept in
its ground (excited) state. We observe that for qx = −1 the frequency Ω > ∆ and decreases linearly
with increasing qx. Overall, the change in Ω is roughly 30% for changing qx = −1 to qx = 1
for sx = 0.25. As expected from the effective asymmetry, the frequency shift is smaller for larger
spectral exponent sx. Surprisingly, however, this diminishment is small, i.e. the change in Ω for
sx = 0.5 is still 28% and for sx = 0.75 is 22%.

In the lower graph of Fig. 8.3 we compare two different coupling strengths for the relaxational
couplings, i.e. ζz = 2π · 0.03 (black circles) and ζz = 2π · 0.01 (orange triangles), with ζx = 0.3,
sx = 0.25 and temperature T = 0.1∆. Despite an overall shift of the frequency (due to different
ζz), the dependence on qx is identical in both cases. As expected a strong deviation is observed
for a different coupling strength of the polarized dephasing bath (see ζx = 0.3 (black circles) and
ζx = 0.1 (green stars) in the lower graph of Fig. 8.3 with ζz = 2π · 0.03, sx = 0.25 and temperature
T = 0.1∆). Increasing the temperature to T = 0.5∆ does not affect the qx behaviour as can be seen
by data for T = 0.1∆ (green stars) and T = 0.5∆ (violet crosses) with ζz = 2π · 0.03, sx = 0.25 and
ζx = 0.1. Higher temperatures could not be studied since the dynamics was too strongly damped
to accurately determine oscillation frequencies unless the dephasing bath coupling strength was
chosen smaller. Then, however, the frequency shift was much smaller which again prevented an
accurate investigation.

8.6 Conclusion

We have investigated the non-equilibrium dynamics of a symmetric two-level system (TLS) under
the influence of a sub-Ohmic pure dephasing bath and an Ohmic or sub-Ohmic relaxational bath.
This model reflects a typical superconducting phase qubit where two-level defects (likely within
the dielectrics) exhibit environmental relaxational as well as dephasing noise with sub-Ohmic spec-
tra. Since every cooling protocol of according devices will either polarize the relaxational or the
dephasing bath, we studied the coherent dynamics of the two-level system for such polarized bath.
A polarized relaxational bath generates an effective asymmetry. Baths with smaller spectral ex-
ponent create larger effective asymmetries. Strong additional dephasing fluctuations suppress the
asymmetry. This suppression increases with increasing spectral exponent and coupling strength. A
polarized dephasing bath generates a shift in the coherent oscillation frequency. We find, thereby,
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up to 30% changes of the oscillation frequency for the strongest investigated dephasing bath cou-
pling strength. With decreasing dephasing coupling strength the shift decreases. However, the shift
seems independent from the coupling strength of the relaxational bath. Thus relaxational fluctua-
tions do not suppress the frequency shift. For temperatures T . ∆/2 the frequency shift is (almost)
temperature independent and it depends only weakly on the spectral exponent of the dephasing
bath. These findings haven been published in reference [100].



Chapter 9

Summary and Outlook

In this thesis, non-commuting fluctuations in quantum mechanical systems have been investigated.
Typically any single source of such fluctuations is assumed to consist of larger degrees of freedom
then the small systems investigated, which are usually quantum mechanically modelled by focusing
only on the most relevant states. The experimental set ups for such systems are subject to a multi-
tude of environmental influences and it is difficult to distinguish the effect of a single noise source
out of all of them. As a first step for a more profound description I investigated two fundamentally
different types of fluctuations: relaxational as well as dephasing ones. These two fluctuations in-
duce different dissipative properties in absence of the other and are typically treated additively in
the attempts to analyse noise sources. Achieving a deeper understanding of their interplay is ad-
ditionally motivated by the differences between the measured relaxation rates and dephasing rates
in experimental quantum dot set ups, which are assumed to result from multiple dephasing chan-
nels compared to only a few or even only a single relaxational channel. Determining how many
gates employed for controlling a quantum dot and with what relative strength to each other, might
allow for optimal, therefore minimal dephasing, realisations. As a first step to analyse whether it
is preferable to use more or less gates, the cases of fully correlated fluctuations resulting from one
bath has been compared to the same type of uncorrelated fluctuations induced by two independent
baths. While this toy model is a drastic simplification, after all no quantum dot can be controlled
by a single gate or two, it provided remarkable insight.

In the first part of this thesis I extend two well established methods to describe non-commuting
fluctuations from independent baths. The perturbative method showed the emergence of contribu-
tions in the relaxation rate due to dephasing fluctuations for both fully correlated and uncorrelated
fluctuations. The quantitative effect was investigated in later parts of this thesis. In this part the
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numerical method called Quasi Adiabatic Path Integral has been extended for two non-commuting
baths for arbitrary fluctuations, two non-commuting baths in the case of dephasing and relaxational
fluctuations and for two sets of baths, where all baths in a set commute but baths from different
sets do not commute. The code for arbitrary fluctuations was not numerically feasible at the time
of this thesis, but the code for the experimental set up of interest allowed for a simplification which
sufficiently reduced the requirements of the calculation.

The second part of this thesis starts with modelling dephasing and relaxational fluctuations by im-
plementing the dephasing fluctuations in the system dynamics and treating the relaxational fluctua-
tions in the system-bath formalism. I compared the perturbative results with the numerical ones and
a large difference became apparent. In both cases increasing the dephasing in the system dynamics
resulted in an initial reduction of the overall decoherence rate. For the QUAPI results this reduction
became constant for large dephasing fluctuations, while the perturbative result reached a minimum
and increased thereafter. The second part continues on to show the bulk of the numerical results. I
investigated the two level system for multiple temperatures, dephasing system-bath couplings and
relaxational system-bath couplings in terms of the decoherence and relaxation properties. For low
temperature and uncorrelated fluctuations the decoherence rate is less then additive result while
fully correlated fluctuations increase the decoherence rate above the additive result. For larger tem-
peratures drastic effects emerge and fully correlated fluctuations let the two level system undergo
the transition to the overdamped regime at moderate system-bath coupling strengths, where single
fluctuations are far from causing a transition. Uncorrelated fluctuations enhance the decoherence
rate above the additive result at high temperatures, before resulting in a transition to the over-
damped regime as well at large system-bath couplings. The relaxation rate is consistently reduced
by increasing the dephasing fluctuations for either uncorrelated and fully correlated fluctuations at
all temperatures. The effect is larger then the reduction of the decoherence rate. Therefore many
multiple dephasing channels are not necessarily the explanation for the difference between the de-
coherence and relaxation times, instead fewer dephasing channels which additionally reduce the
relaxation rate are a possible explanation as well. I observed the emergence of higher order effects
for weak relaxational coupling and moderated dephasing couplings for uncorrelated fluctuations.
A perturbative weak coupling analysis treating both baths as weak is therefore no longer justified
here, even though on their own both baths could be treated in such a way. A simple analysis in terms
of weak system-bath coupling can therefore fail, if the dynamics of the observable investigated de-
pend largely on only one of the fluctuations. At the end of the second part I investigated sub ohmic,
polarized, non-commuting baths acting on the two level system. A polarized relaxational bath gen-
erates an effective asymmetry and smaller spectral exponents create larger effective asymmetries.
Strong additional dephasing fluctuations suppress this asymmetry. This suppression increases with
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increasing spectral exponent and coupling strength. A polarized dephasing bath generates a shift in
the coherent oscillation frequency, where decreasing dephasing coupling strength reduce the shift,
while relaxational fluctuations do not suppress the frequency shift. For temperatures T . ∆/2 the
frequency shift is (almost) temperature independent and it depends only weakly on the spectral
exponent of the dephasing bath.

There are multiple, possible projects which can continue the study of this thesis. Experimentally
additional gates in set up schemes can be realised and the effect on the decoherence and relaxation
can be investigated. The hierarchical equations of motion can be employed as an alternative numer-
ical simulation and can even include a third fluctuation, not commuting with either of the other two.
The extension for two non-commuting sets, a straightforward extension of the extensions derived
in this thesis, remains to be employed extensively.
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Appendix A

RESPET additonal information

A.1 Ue f f for the RBM

The form of Ue f f (z) for the rotated bath model (RBM) is

Ue f f =


1 0 0 0

A1 α11 α12 α13

A2 α21 α22 α23

A3 α31 α32 α33

 , (A.1)

with: A1 = z−1q−1(ν2Ξ[(ν2χ− z)(µ2Θ + ν2χ− z)− (ν2χ2 − i∆)2]− (µν)2Σ[ζ(ν2χ− z) + ζ2(ν2χ2 −

i∆)] + (µν)2Φ[ζ(ν2χ2 − i∆) − ζ2(µ2Θ + ν2χ − z)] and

A2 = z−1q−1(µν3Ξ[ζ(µ2χ−z)−ζ2(ν2χ2− i∆)]− (µν)Σ[(µ2χ−z)(ν2χ−z)− (µν)2ζ2
2]+µνΦ[(µ2χ−

z)(ν2χ2 − i∆) − (µν)2ζζ2] and

A3 = z−1q−1(µν3Ξ[−ζ(ν2χ2− i∆)−ζ2(µ2Θ+ν2χ−z)]+ (µν)2Σ[(µ2χ−z)(ν2χ2− i∆)+ (µν)2ζζ2]+

(µν)Φ[(µ2χ − z)(µ2Θ + ν2χ − z) − (µν)2ζ2] where q = ((µ2χ − z)(µ2Θ + ν2χ − z)(ν2χ − z) −
(µν)2ζ2

2)(µ2Θ+ν2χ−z)− (µν)2ζ2(ν2χ−z)+ (ν2χ2− i∆)2(µ2χ−z)) with the conventions introduced
in the chapter 4.

Furthermore α11 = q−1[(µ2Θ + ν2χ − z)(ν2χ − z) + (ν2χ2 − i∆)2] , α12 = q−1µν[ζ(ν2χ − z) +

ζ2(ν2χ2 − i∆)], α21 = α12 − 2q−1µνζ2(ν2χ2 − i∆). α13 = q−1µν[ζ(ν2χ2 − i∆) − ζ2(µ2Θ + ν2χ − z)]
, α31 = α13 + 2q−1µνζ2(µ2Θ + ν2χ − z). α23 = q−1[(ν2χ2 − i∆)(µ2χ − z) − (µν)2ζζ2] , α32 =

α23 − 2q−1ν2χ2 − i∆)(µ2χ − z)
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A.2 Calculation of

〈xiUB(s − s′)x jUB(s′ − s′′)xkUB(s′′ − s′′′)xl〉

In Chapter 3.3.1. 〈xiUB(s−s′)x jUB(s′−s′′)xkUB(s′′−s′′′)xl〉 has to be calculated. Here most of the
necessary steps are shown. For reasons of clarity and comprehensibility the following conventions
are used: U1 = UB(s − s′),U2 = UB(s′ − s′′) and U3 = UB(s′′ − s′′′). The fundamental relations
used areU1ρ ≡ U1ρU†1 and xiU1ρ = 0.5(xiU1ρU†1 + U1ρU†1xi)

〈xiU1x jU2xkU3xl〉 = 〈xiU1x jU2xkU3xl〉 (A.2)

=
1
4

Tr{xiU1(x jU2(xkU3xlρU†3 + U3xlρU†3xk)U†2 + U2(xkU3xlρU†3 + U3xlρU†3xk)U†2x j)U†1}

=
E + F + G + H

4

First, we calculate E:

E = Tr{xiU1x jU2xkU3xlρU†3U†2U†1} (A.3)

= Tr{UΣxiUΣU†3U†2x jU2U3U†3xkU3xlρ} = 〈xi(s − s′′′)x j(s′ − s′′′)xk(s′′ − s′′′)xl〉 ,

where cyclic permutation of the trace and 1 = UiU†i was used. Now performing xlρ and employing
the Wick theorem one can notice:

〈xi(s − s′′′)x j(s′ − s′′′)xk(s′′ − s′′′)xl〉 + 〈xlxi(s − s′′′)x j(s′ − s′′′)xk(s′′ − s′′′)〉 (A.4)

= (〈xi(s − s′′′)xl〉 + 〈xlxi(s − s′′′)〉)〈x j(s′ − s′′′)xk(s′′ − s′′′)〉 + ...

= 〈xi(s − s′′′)xl〉〈x j(s′ − s′′′)xk(s′′ − s′′′)〉 + ...

here ... indicates the other four/two terms resulting from the Wick theorem. This results in a slightly
modified version of the theorem. Using the convention to not transform xlρ we find :

E = 〈xi(s − s′′′)xl〉〈x j(s′ − s′′)xk〉 + 〈x j(s′ − s′′′)xl〉〈xi(s − s′′)xk〉 (A.5)

+ 〈xk(s′′ − s′′′)xl〉〈xi(s − s′)x j〉
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The other three terms yield:

F = Tr{xiU1x jU2U3xlρU†3xkU†2U†1} (A.6)

= Tr{U†3xkU3U†3U†2U†1xiU1U2U3U†3U†2x jU2U3xlρ}

= 〈xk(s′′ − s′′′)xi(s − s′′′)x j(s′ − s′′′)xl〉

= 〈xk(s′′ − s′′′)xl〉〈xi(s − s′)x j〉 + 〈xi(s − s′′′)xl〉〈xk(s′′ − s′)xk〉

+ 〈x j(s′ − s′′′)xl〉〈xk(s′′ − s)xi〉

G = Tr{xiU1U2xkU3xlρU†3U†2x jU†1} (A.7)

= Tr{U†3U†2x jU2U3U†3U†2U†1xiU1U2U3U†3xkU3xlρ}

= 〈x j(s′ − s′′′)xi(s − s′′′)xk(s′′ − s′′′)xl〉

= 〈x j(s′ − s′′′)xl〉〈xi(s − s′′)xk〉 + 〈xi(s − s′′′)xl〉〈x j(s′ − s′′)xk〉

+ 〈xk(s′′ − s′′′)xl〉〈x j(s′ − s)xi〉

H = Tr{U†3xkU†2x jU†1xiU1U2U3xlρ} (A.8)

= Tr{U†3xkU3U†3U†2x jU2U3U†3U†2U†1xiU1U2U3xlρ}

= 〈xk(s′′ − s′′′)x j(s′ − s′′′)xi(s − s′′′)xl〉

= 〈x j(s′ − s)xi〉〈xk(s′′ − s′′′)xl〉 + 〈xk(s′′ − s)xi〉〈x j(s′ − s′′′)xl〉

+ 〈xk(s′′ − s′)x j〉〈xi(s − s′′′)xl〉

Now one can use 〈x j(s′ − s)xi〉 + 〈x j(s − s′)xi〉 = 2Re[〈x j(s′ − s)xi〉] = 2Re[2〈x j(s′ − s)xi〉

−i〈x j(s′−s)x̃i〉] = 4〈x j(s′−s)xi〉, sum over all terms and arrive at a Wick theorem for superoperators:

〈xiU1x jU2xkU3xl〉 (A.9)

= 〈xiU1x j〉〈xkU3xl〉 + 〈xiU1U2xk〉〈x jU2U3xl〉 + 〈xiU1U2U3xl〉〈x jU2xk〉

For the expectation values containing x̃ j everything is analogous, only some prefactors and the
signs of F, G and H change. For the expectation values appearing in the 2-loop approximation one
finds:
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〈xiU1x jU2xkU3x̃l〉 (A.10)

= 2(〈xi(s − s′)x j〉〈xk(s − s′′′)x̃l〉 + 〈x(s − s′′)xk〉〈x j(s′ − s′′′)x̃l〉 + 〈xi(s − s′′′)x̄l〉〈x̄ j(s − s′′)x̃k〉)

〈xiU1x̃ jU2x̃kU3xl〉 = 0 (A.11)

〈xiU1x jU2x̃kU3x̃l〉 = −2i(〈x j(s′ − s′′′)x̃l〉〈xi(s − s′′)x̃k〉 + 〈xi(s − s′′′)x̃l〉〈x j(s′ − s′′)x̃k〉) (A.12)

〈xiU1x̃ jU2x̃kU3x̃l〉 = 0 (A.13)

A.3 Additonal two-loop contributions in the TBM

In Chapter 4.3.1 four of the two-loop contribution to the kernel V were discussed. Again the
convention s1 = sin(s − s′),s2 = sin(s′ − s′′), s3 = sin(s′′ − s′′′) and ci = si|{sin → cos}. The
remaining ones are:
For the σx-bath only one contribution exists:

σ̃xU1σ̃xU3σ̃xU3σ̃x

∑
i jkl

ci,1c j,1ck,1cl,1〈xi,1UB,1(s − s′)x j,1UB,1(s′ − s′′)xk,1UB,1(s′′ − s′′′)xl,1〉 (A.14)

= 16


0 0 0 0
0 0 0 0
0 0 c3(c1c2 − s1s2) + s3(s1c2 + c1s2) c3(c1s2 + c2s1) + s3(c1c2 − s1s2)
0 0 −c3(c1s2 + c2s1) + s3(c1c2 − s1s2) c3(c1c2 − s1s2) − s3(s1c2 + c!s2)


×

∑
i jkl

ci,1c j,1ck,1cl,1〈xi,1UB,1(s − s′)x j,1UB,1(s′ − s′′)xk,1UB,1(s′′ − s′′′)xl,1〉

For the σz-bath, next to the two contributions discussed in Chapter 4.3.1, three additional one exist:
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σ̃zU1σ̃zU3σ̃zU3σz

∑
i jkl

ci,2c j,2ck,2cl,2〈xi,2UB,2(s − s′)x j,2UB,2(s′ − s′′)xk,2UB,2(s′′ − s′′′)x̃l,2〉 (A.15)

= −8


0 0 0 0

c1s3 0 0 0
0 0 0 0
0 0 0 0


∑
i jkl

ci,2c j,2ck,2cl,2〈xi,2UB,2(s − s′)x j,2UB,2(s′ − s′′)x̃k,2UB,2(s′′ − s′′′)x̃l,2〉

σ̃zU1σ̃zU3σzU3σz

∑
i jkl

ci,2c j,2ck,2cl,2〈xi,2UB,2(s − s′)x j,1UB,2(s′ − s′′)x̃k,2UB,2(s′′ − s′′′)x̃l,2〉 (A.16)

= −4


0 0 0 0
0 0 0 0
0 0 0 0
0 0 s2 0


∑
i jkl

ci,2c j,2ck,2cl,2〈xi,2UB,2(s − s′)x j,1UB,2(s′ − s′′)x̃k,2UB,2(s′′ − s′′′)x̃l,2〉

σ̃zU1σzU3σzU3σz

∑
i jkl

ci,2c j,2ck,2cl,2〈xi,2UB,2(s − s′)x̃ j,1UB,2(s′ − s′′)x̃k,2UB,2(s′′ − s′′′)x̃l,2〉 (A.17)

= 2


0 0 0 0

s1c3 0 0 0
0 0 0 0
0 0 0 0


∑
i jkl

ci,2c j,2ck,2cl,2〈xi,2UB,2(s − s′)x̃ j,1UB,2(s′ − s′′)x̃k,2UB,2(s′′ − s′′′)x̃l,2〉

The additional contributions mixing the σz and the σx bath correlation and response functions are:

σ̃xU1σ̃xU2σ̃zU3σ̃z

∑
k,l

c2
k,1c2

l,2Cqq,k,σx(s − s′)Cqq,l,σz(s
′′
− s′′′) (A.18)

= 16Cqq,σx(s − s′)Cqq,σz(s
′′
− s′′′)


0 0 0 0
0 0 0 0
0 0 c1c2 − s1s2 0
0 0 −s1c2 − c1s2 0


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σ̃xU1σ̃zU2σ̃zU3σ̃x

∑
k,l

c2
k,1c2

l,2Cqq,k,σx(s − s′′′)Cqq,l,σz(s
′
− s′′) (A.19)

= 16Cqq,σx(s − s′′′)Cqq,σz(s
′
− s′′)


0 0 0 0
0 0 0 0
0 0 −s1s3 s1c3

0 0 −c1s3 c1c3



σ̃xU1σ̃zU2σ̃zU3σ̃x

∑
k,l

c2
k,1c2

l,2Cqq,k,σx(s − s′′′)Cqq,l,σz(s
′
− s′′) (A.20)

= 16Cqq,σx(s − s′′′)Cqq,σz(s
′
− s′′)


0 0 0 0
0 0 0 0
0 0 −s1s3 s1c3

0 0 −c1s3 c1c3



σ̃zU1σ̃zU2σ̃xU3σ̃x

∑
k,l

c2
k,1c2

l,2Cqq,k,σx(s
′′
− s′′′)Cqq,l,σz(s − s′) (A.21)

= 16Cqq,σx(s
′
− s′′)Cqq,σz(s − s′′′)


0 0 0 0
0 0 0 0
0 0 c2c3 − s2s3 c2s3 + s2c3

0 0 0 0



σ̃xU1σ̃zU2σxU3σz

∑
k,l

c2
k,1c2

l,2Rqq,k,σx(s − s′′)Rqq,l,σz(s
′
− s′′′) (A.22)

= 4Rqq,σx(s − s′′)Rqq,σz(s
′
− s′′′)


0 0 0 0
0 0 0 0
0 0 0 s1

0 0 0 c1


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σ̃xU1σ̃zU2σ̃xU3σz

∑
k,l

c2
k,1c2

l,2Cqq,k,σx(s − s′′)Rqq,l,σz(s
′
− s′′′) (A.23)

= 8Cqq,σx(s − s′′)Rqq,σz(s
′
− s′′′)


0 0 0 0

c1s2 + s1c2 0 0 0
0 0 0 0
0 0 0 0



σ̃zU1σ̃xU2σ̃xU3σz

∑
k,l

c2
k,1c2

l,2Cqq,k,σx(s
′
− s′′)Rqq,l,σz(s − s′′′) (A.24)

= 8Cqq,σx(s
′
− s′′)Rqq,σz(s − s′′′)


0 0 0 0

(s1s2 − c1c2)s3 − (s1c2 + c1s2)c3 0 0 0
0 0 0 0
0 0 0 0


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Appendix B

QUAPI: additonal information

B.1 η

B.1.1 η in the original scheme

To calculate the components of η the representation of the path is of utmost importance. After the
splitting of the propagator U and the insertion of the completeness relation one arrives at Equation
(5.17) from which the definition of the path distribution given in Equation (5.19) followed. With
the definition of a "path distribution" õ as:

õ =o0(1 −Θ[t − dt/2]) +

N−1∑
m=1

om(Θ[t − dt(k − 1/2)] −Θ[t − dt(k + 1/2)]) (B.1)

+ oNΘ[t − dt(N − 1/2)] .

It is convenient to change to the representation of the difference and sum of the coordinates o on
the positive time evolution and o′ on the negative time evolution, let the difference be ξi, j = (pi−p′i)
and the sum χi = (pi + p′i). Their time derivatives are:

.
ξ =

N−1∑
i=0

[ξi+1 − ξi]δ(t − idt − dt/2) and .
χ =

N−1∑
i=0

[χi+1 − χi]δ(t − idt − dt/2) (B.2)
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Furthermore, let the second antiderivative of η be Q(t − t′) = Q′ + iQ′′, where Q′ is the real part
and Q′′ the imaginary part of Q. The second antiderivative is given by:

Q(t) =
1
π

∫
∞

0
dω

J(ω)
ω2

{
coth(

~ωβ

2
)(1 − cos(ωt)) + isin(ωt)

}
(B.3)

The conditions imposed on Q are necessary to enable ΦFV = 0 for t = 0 and the possible linear
term Q ∝ t has to be dropped, to ensure Tr{ρ} = 1. As explained in the chapter QUAPI, one is able
to use the form calculated by Grabert given in Equation (5.12). This equation has to be integrated
by parts twice, where FFV = exp[− 1

~
ΦFV]. One arrives at:

ΦFV = −

∫ t

0
dt′

∫ t′

0
dt′′ξ̇(t′) {Q(t′ − t′′)ȯ(t′′) −Q∗(t′ − t′′)ȯ′(t′′)} (B.4)

+ ξ(t)
∫ t

0
dt′ {Q(t − t′)ȯ(t′) −Q∗(t − t′)ȯ′(t′)}

+ ξ(t) {Q(t)o(0) −Q∗(t)o′(0)} −
∫ t

t0

dt′ξ̇(t′) {Q(t′)o(0) −Q∗(t′)o′(0)}

The evaluation of this integral is straightforward, yielding:
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= −ξN

−q0Q((N − 1)dt) + q′0Q∗((N − 1)dt) +

N−1∑
j=1

q j[Q((N − j)dt) −Q((N − 1 − j)] − q′j[c.c.]


(B.5)

+

N−1∑
i=1

ξi(qiQ(dt) − q′iQ
∗(dt) + q0(Q((i − 1)dt) −Q(idt)) − q′0[c.c.]

+
∑
i=2

ξi

i−1∑
j=1

q j
{
Q((i + 1 − j)dt) − 2Q((i − j)dt) + Q((i − 1 − j)dt)

}
)

+ ξN

{
qNQ(dt/2) − q′NQ∗(dt/2) − q0Q((N − 1/2)dt) + q′0Q∗((N − 1/2)dt)

}
+ ξN

N−1∑
i=1

qi[Q((N − 1 + 1/2)dt) −Q((N − i − 1/2)dt)] − q′i[c.c.]

+ ξN(q0Q(Ndt) − q′0Q∗(Ndt))

− q0

ξNQ((N − 1/2)dt) − ξ0Q(dt/2)) +

N−1∑
i=1

ξi[Q((i − 1/2)dt) −Q((i + 1/2)dt)]


+ q′0

ξNQ∗((N − 1/2)dt) − ξ0Q∗(dt/2)) +

N−1∑
i=1

ξi[Q∗((i − 1/2)dt) −Q∗((i + 1/2)dt)]


The ηk,k′ can now be found by checking the coefficients, yielding:

η0,0 = ηN,N = Q(dt/2) (B.6)

ηN,0 = Q((N − 1)dt) + Q(Ndt) − 2Q((N − 1/2)dt) (B.7)

ηk,0 = Q((k − 1)dt) −Q(kdt) + Q((k + 1/2)dt) −Q((k − 1/2)dt) (B.8)

ηN,k = Q((N − 1 − k)dt) −Q((N − k)dt) + Q((N − k + 1/2)dt) −Q((N − k − 1/2)dt) (B.9)

ηk,k = Q(dt) (B.10)

ηk,k′ = Q((k − k′ − 1)dt) + Q((k − k′ + 1)dt) − 2Q((k − k′)dt) (B.11)

B.1.2 η for two non-commuting baths

The Feynman-Vernon influence functional can be treated as before, the differences are in the paths
used. One of the baths reproduces the previous result. This bath will not be discussed any further
and the whole focus will be on the other bath, which has to be propagated over two quarter time
slices (dt/4) in the beginning and the end instead. The path of this bath was given in Equation
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(5.48). While the convention o1a,k and o1b,k was used in Chapter 5.5 to highlight for which bath
this coordinate was used, the distinction between baths is meaningless at this point, since they are
completely separated. For convenience here the convention is changed by introducing new indices
defined by (1a, k) ≡ j = 2k and (1b, k) ≡ j = 2k + 1. This allows a very convenient representation
of the derivative of the path õ1 as:

.
õ1 = (o1 − o0)δ(t − dt/4) +

2N−1∑
l=1

(ol+1 − ol)δ(t − ldt/2)) + (o2N+1 − o2N)δ(t −Ndt + dt/4) (B.12)

Another straightforward evaluation of the integrals to determine ΦFV yields η j, j′ with:

η0,0 = η1,1 = η2N,2N = η2N+1,2N+1 = Q (dt/4) (B.13)

η2N+1,2N = η1,0 = Q
(

dt
2

)
− 2Q

(
dt
4

)
(B.14)

η2N+1, j = Q
(2N + 1 − i

2
dt

)
+ Q

(4N − 1 − 2i
4

dt
)
−Q

(2N − i
2

dt
)

+ Q
(4N + 1 − 2i

4
dt

)
(B.15)

η2N+1,1 = Q
(4N − 3

4
dt

)
+ Q

(4N + 1
4

dt
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(2N − 1
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dt
)
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η2N+1,0 = Q
(2N − 1

2
dt

)
+ Q (Ndt) − 2Q
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(
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(
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η j, j = Q
(

dt
2

)
(B.22)

η j, j′ = Q
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(
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dt
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(B.24)

To recover the form ηk,s;k′,r on can simply use the relations: k =
j−mod2( j)

2 , s = a|mod2( j) = 0 and
s = b|mod2( j) = 1. Observing the form of Equation (B.12) one can note, that the sum in the middle
is the same as in the original QUAPI scheme, thus one could have already expected, that the η j, j′ and
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η j, j have the same form as ηk,k′ with the arguments of Q being halved. The calculation confirms this
expectation. This justifies the interpretation of the multibath scheme, as two QUAPI schemes being
employed independently, with one with halve the time slice, but the same memory as the other one.
This interpretation neglects however the more complex start and endpoints condition, which are
of relevance. In principle QUAPI can an extended to an arbitrary number of non-commuting sets
of baths, though for each set each "original" time slice dt has to be sliced more. For B baths the
necessary time slice for the B.th bath is dtB = dt1

2B−1 , while the memory τB = τ1 has to stay the same,
actually demanding KB = 2B−1K1. Even For B = 2 only K1 = 4 and K2 = 8 were reasonable to
be used for convergence investigations and not sufficient to search for convergence meaningfully.
With the rise of quantum computing, these versions of QUAPI could become interesting.
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P f it
z in the overdamped regime
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Figure C.1: Pz(t) at T = 2∆/kB with γz = 0.05 and γx = 0.4. The Quapi parameters used are
K = 10 and dt = 0.3, 0.4, 0.5, 0.6. The circles represent the QUAPI results and the squares
represent the fit result P f it

z to the full pathintegral before the step happens.

At large temperature and increasing system-bath coupling the system dissipative properties undergo
a transition to the overdamped regime. In the overdamped regime two major problems arise. First,
the correlation length increases and the neglect of ηkk′ is only valid for K = k − k′ outside of
our numerical reach. This is highlighted in figure C.1, where at K = 10 dt was varied, yet the
numerical result of Pz(t) is not continuous, but has a jump visible from t = K ∗ dt to T = (K + 1)dt,
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corresponding to the neglect of ηN0. For dt = 0.4 and dt = 0.5 the visible discontinuity becomes
minimal, corresponding with the range of dt where the plateau of the convergence is identified. The
jump simply magnifies the differences, which otherwise are small in for example the rate extracted
or if one compares times of the simulation, which are included in the different time steps, e.g.
where the dt splittings share a multiple. This also shows the dependence of the γx contribution to
the memory, especially the ηN0 correlation. This problem, however, we were capable to circumvent.
For large temperatures most of the dynamics happens before the evaluation of the QUAPI tensor
becomes necessary. Thus the P f it

z (T) was only used to fit to Pz(t) for times t ≤ K ∗ dt. To further
highlight the dependence on γx in figure C.2 in the same set up additionally γx = 0.25 is shown for
otherwise the same parameters. The numeric result is continuous between the evaluation of the full
path integral and the evaluation of the QUAPI tensor. Additionally two different fitting approaches
are highlighted: The diamonds represent a fit to all data and the squares represent a fit only to the
evaluation of the full path integral. While fit over the full simulation is expected to better represent
the equilibrium value, it fails to accurately describe dephasing. Therefore the fit to the full path
integral was used in the determination of the dephasing rate ΓRBM

d

C.1 TBM vs RBM discontinuity

To understand how the discontinuity emerges, the first memory neglected should be investigated.
To do this a closer look to the Feynman-Vernon influence functional is necessary. The first term
neglected is given by the term (qN − q′N)(ηN0qo + [c.c.]) in the sum of the exponential. Thus, all
elements of ρ with qN = q′N are unaffected by the neglect of ηN0 in the scheme. For the SBM the
system-bath coupling does not share the same basis as the system Hamiltonian. In the eigenbasis
of σz, |ei

z〉, the matrix elements |ei
z〉〈ei

z| fulfill (qN − q′N) = 0. These elements can be represented by
the eigenvectors of σx as 0.5 ∗ (|e1

x ± e2
x〉〈e1

x ± e2
x|). Therefore the decoherence is not affected by the

neglect of ηN0 but the relaxation is. For the PDB, following the same line of thought, the roles of
decoherence and relaxation are reversed, where the relaxation is non-existent anyway. However,
the decoherence shows no sign of a discontinuity whatsoever for both the PDB and the SBM (both
tested up to γ = 1.8. Interestingly, for γz = 0.05 an increase of γx form 0.25 to 0.4, see Figure C.2
in Appendix C, results in the rise of a discontinuity. This implies, fully correlated fluctuations not
only mix the discontinuity of the relaxation, and therefore its stronger memory dependence in the
decoherence, they also enhance the dependence. The TBM, by construction, holds the same feature
as the SBM, since this is the bath with unique start and endpoints, while the part of the simulation
covering the σx system-bath coupling does not. Thus it can not show a discontinuity, which stems
from a neglect, since no such η is used. In the relaxation we observe a comparable discontinuity to
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the SBM.

2 4 6 8 10 12
t/∆

-0.15

-0.1

-0.05

0

0.05

2 4 6 8 10 12
t/∆

-0.15

-0.1

-0.05

0

0.05

γ
z
=0.05,γ

x
=0.4,dt=0.5

γ
z
=0.05,γ

x
=0.25,dt=0.5

2 4 6 8 10 12
t/∆

-0.15

-0.1

-0.05

0

0.05

QUAPI
fit to all data
fit before step

T=2∆/k
B

Figure C.2: Pz(t) at T = 2∆/kB with γz = 0.05 and γx = 0.4. The Quapi parameters used are
K = 10 and dt = 0.5. The circles represent the QUAPI results, the squares the fit result P f it

z
to the full path integral and the diamonds the fit result to the whole simulation.
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Appendix D

Extension of the multibath QUAPI
scheme to arbitrary number of baths

The extension is straightforward and simply takes the idea of chapter 5.4 and employs it to the
multi-bath codes. Thereby extending η1 and η2 to (2,2) tensors, one obtains

η1/2,kk′, j j′ =
∑

e

η̃1/2,kk′,e, j, j′ , (D.1)

where η̃ is defined as in Equation (5.36) with dummy coordinates z1/2.

The influence functional can then be expressed for each bath as

FFV,1/2,commuting = exp

−1
~

N∑
k=0

k∑
k′=0

(zk − z′k)(η1/2,kk′, j j′zk′ − η
∗

kk′, j j′z
′

k′)

 . (D.2)

This extension remains to be investigated thoroughly, so far only two non-commuting baths have
been systematically studied in terms of multiple temperatures and system-bath coupling γx/z. An
illustration of the usefulness of this extension can be shown by applying it to the quantum well
example given in the introduction to this thesis, which was experimentally realized by Allen et al.
in reference [70]. In figure 1.1 a) the connection of the top and back voltages to the quantum well
are illustrated and in the paper the relationship between the energy difference ∆ of the levels in
the quantum well and the top Voltage Vt and back voltage Vb is given by ∆ ∝ (αVt − βVb). In
the symmetric TLS Hammiltonian this is equivalent to fluctuations in the level splitting as δ∆ ∝
(αVt − βVb). As a first step for simplicity it is assumed that the baths representing both voltage
gates are identical, except for coupling operators Ob and Ot, which then have the form Ot = ασx

and Ob = −βσx. Thus the eigenvalues for each eigenvector of the system-bath coupling operators
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have opposite signs. The gates responsible for controlling the tunnel barrier, thus the depths of
the quantum well, are more in number and do not have such a simple relationship. They will be
treated similarly as the level fluctuations under the assumption that there are only two voltages
instead of four. Let the barrier controlling voltages be Vc and Vd, then let the tunnel barrier be
ε ∝ (χVc − ξVd). An extensive, numerical study employing this multi-bath code remains to be
done, here only one example is be presented. Therein a two bath model is employed, having an
ohmic spectral density with ωc = 5∆, a temperature T = 0.2∆/kB and equal system-bath coupling
strengths γx = γz = γ = 0.2 for both baths. Now an additional baths will be investigated, since the
energy fluctuations in the symmetric TLS is proportional to σx, the two σx baths will be denoted
with α and β, both coupled via the same γz but to different baths, representing an independent
voltage source each. Furthermore, an additional σz bath will be included in the same way, both σz

baths will be coupled via the same value of γz but to two independent baths. In figure D.1 the black
line with stars represents a TBM as introduced in previous chapters, the red line with circles is a
model where an additional σx-proportional bath with β = 0.8 is added, the blue lines with squares
represent a model where an additional σz proportional bath with ξ = 0.8 is added and the green
line with triangles shows a model with two additional baths, one proportional to σx with χ = 0.8
and one proportional to σz with ξ = 0.8, are included. The dephasing rate increases with additional
baths, as to be expected. To compare the effect of additional baths the sum of all system-bath
couplings in a model should be similar. A model with parameters chosen in such a way is shown in
figure D.2 and in figure D.3. The purple line represents a single bath case with, with χ = 1.8, while
the orange line represents a single bath case with χ = 1.8. Absorbing the pre-factor of the system-
bath coupling operators into γ, such that the system-bath coupling operators are normalized gives
γΣ = 1.82γ = 3.24γ. For the model including four baths one finds the sum of all coupling strengths
is equal to γΣ = (2 + 2 ∗ 0.82)γ = 3.28γ for the two bath case the pre-factors are chosen to be 1.28
since 2 ∗ 1.282 = 3.2768. Thus the overall coupling the TLS is exposed to is roughly of the same
size in all four models. Finally in figure D.4 the four bath model with an overall coupling strength
of γΣ = 3.28 is compared to a TBM with an overall coupling strength of γΣ = 2 ∗ 1.282 = 3.2768.
Here, the expectation value of σz is identical in the error of the simulation. Thus, in a system
with two sets of non-commuting baths, where each set consists of two commuting baths coupled
to the same operator but with different weights can be instead simulated by one bath. It remains
to be investigated how baths coupled to different, but commuting operators, for example O1 = σx,
O2 = 1 + σx and O3 = 1 − σx, change the results.



117

0 5 10 15
t/∆

-0.5

0

0.5

1

P
z

α=1     β=0     χ=1     ξ=0

α=1     β=0.8  χ=1     ξ=0

α=1     β=0     χ=1     ξ=0.8

α=1     β=0.8  χ=1     ξ=0.8

Figure D.1: Pz(t) at T = 0.2∆/kB with γz = γx = 0.2 for various combinations of α, β, χ, ξ.
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Figure D.2: Pz(t) at T = 0.2∆/kB with γz = γx = 0.2 for various combinations of α, β, χ, ξ.
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Figure D.3: Pz(t) at T = 0.2∆/kB with γz = γx = 0.2 for various combinations of α, β, χ, ξ.
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