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Abstract

The quantum mechanical treatment of the electronic properties of colloidal semi-

conductor nanostructures, as used in experimental settings, remains a challenging

task till today. Colloidal nanocrystals such as quantum dots or quantum wires with

less than a thousand atoms are rarely synthesized and investigated experimentally,

but that is the maximum size which can be treated by standard ab initio methods

with a reasonable amount of computational resources, despite a great step forward

in the parallel computing during the last decade. However, the theoretical under-

standing of the experimentally observed phenomena is of utmost importance. In

this work a new comprehensive theoretical method is presented, which requires very

moderate computational resources, but provides accurate ab initio results for the

whole experimental range of sizes (from hundreds to more than 100 000 atoms)

and dimensions (nanoplatelets, quantum wires, and quantum dots) of the colloidal

nanostructures. The method allows a direct comparison between calculated and

experimentally measured electronic and optical properties by including the effect

of atomistic surface passivation and the influence of surrounding medium via a

dielectric screening function.

In Chapter 1 a general overview of the physical properties of semiconductors

is given. The role of the quantum confinement effect and its implications on pos-

sible applications by changing the scale from macroscopic to the nanometers is

discussed. Diverse implementations of colloidal semiconductors in photovoltaics, in

various types of electronic devices from lasers to personal computers, and even in

biology and medicine determine the highest interest in studying their properties,

both theoretically and experimentally.

In Chapter 2 existing theoretical ab initio methods, which provide atomistic de-

scription of the investigated molecular and crystal systems, are reviewed. Different

approximations used to model the single atoms, bulk periodic crystals and finally

experimental-sized nanostructures are gradually introduced. The atomic effective

pseudopotential method is introduced in detail, and possible directions for further

development of this computationally effective approach are indicated in Chapter 3.
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In Chapter 4 recent progress in the theoretical method development is presented.

First, a model, that simplifies the colloidal nanocrystal construction and structure

relaxation, is introduced. The main part of this section is devoted to the further de-

velopment of the atomic effective pseudopotential method, namely the non-spherical

atomic effective potentials, and their implementation for the atomistic surface pas-

sivation. Additionally, the implementation of the empirical correction of the single-

particle band gap is given in detail. Besides, the existing approaches to include the

influence from a dielectric environment around nanocrystal are thoroughly reviewed

and new approaches are presented.

In Chapter 5 the high transferability of the method presented in Chapter 3 and 4

is demonstrated and several examples of possible applications in close relation to the

experimental data are shown, starting from ZnS nanoplatelets absorption spectra,

optical properties of single and coupled CdSe (group II-VI), InP (group III-V) and

Si (group IV) quantum dots up to the calculation of the electronic properties of

giant core-shell CdSe/CdS quantum dots of more than 50 000 atoms with sharp

and alloyed interface.

Finally, in Chapter 6 the results are summarized and further possible extensions

and implementations of the developed computational approach are outlined.



Zusammenfassung

Bis heute ist die quantenmechanische Berechnung der elektronischen Eigen-

schaften von in Experimenten genutzten kolloiden Halbleiter Nanostrukten eine

Herausforderung. Kolloide Nanokristalle wie Quantenpunkte oder Quantum Drähte

mit weniger als eintausend Atomen werden selten synthetisiert und experimentell

untersucht. Dies ist allerdings das Größenlimit von ab initio Methoden, welches mit

vertretbarem Aufwand berechnet werden kann, trotz großer Fortschritte paralleler

Computer in den vergangenen 10 Jahren. Allerdings ist das theoretische Verständnis

der experimentell beobachteten Phänomene von entscheidender Bedeutung. In

dieser Arbeit wird eine neue umfassende theoretische Methode vorgestellt, welche

nur moderate Rechenleistung benötigt, aber zu ab initio Rechnungen vergleich-

bare Ergebnisse gibt. Damit können die gesamte experimentelle Größenbandbreite

von Nanokristallen (von Hunderten bis mehr als 100 000 Atome) und Dimen-

sionen (Nanoplättchen, Quanten Drähte und Quantenpunkte) berechnet werden,

welches den direkten Vergleich von theoretisch und experimentell bestimmten elek-

tronischen und optischen Eigenschaften ermöglicht. Der Einfluss der atomaren

Oberflächenpassivierung und des umgebenden Mediums mittels einer dielektrischen

Abschirmfunktion kann untersucht werden.

Im ersten Kapitel werden die allgemeinen physikalischen Eigenschaften von Hal-

bleitern eingeführt. Der Einfluss des Quantum Confinement Effekts auf mögliche

Anwendungen durch den Wechsel von makroskopischer zur Nanoskala wird disku-

tiert. Die diversen Anwendungsmöglichkeiten von kolloiden Halbleiter Nanopar-

tikeln in Photovoltaik, elektronischen Bauteilen für Laser und Laptops sowie in

der Biologie und Medizin unterstreichen die Wichtigkeit der Untersuchung ihrer

Eigenschaften, sowohl theoretisch als auch experimentell.

Im zweiten Kapitel werden existierende ab initio Methoden diskutiert, welche

atomare Auflösung der untersuchten molekularen und kristallinen Systeme geben.

Verschiedene Näherungen um einzelne Atome, periodische Festkörper oder Nanos-

trukturen experimenteller Größe zu beschreiben werden erläutert. Die atomare

effektive Pseudopotential Methode wird im Detail eingeführt und weitere Entwick-
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lungsmöglichkeiten für zukünftige Anwendungen dieser günstigen rechengestützten

Methode sind in Kapitel 3 beschrieben.

Im vierten Kapitel wird der aktuelle Fortschritt in der Methodenentwicklung

präsentiert. Zuerst wird ein Model vorgestellt, welches die Konstruktion und Struk-

turoptimierung der Kolloiden Nanokristalle vereinfacht. Danach wird die Weit-

erentwicklung einer atomaren effektiven Pseudopotential Methode, basierend auf

nicht sphärischen atomaren effektiven Potentialen und die Implementierung atom-

arer Oberflächenpassivierung vorgestellt. Zusätzlich wird auf die empirische Ko-

rrektur der Einteilchen Bandlücke eingegangen. Existierende Methoden um den

Einfluss eines dielektrischen Mediums um einen Nanokristall zu modellieren werden

vorgestellt und einige neue Ansätze präsentiert.

Im fünften Kapitel wird die Übertragbarkeit der in Kapitel 3 und 4 vorgestell-

ten Methode an verschiedenen Beispielen gezeigt. So werden Adsorptionsspektren

von ZnS Nanoplättchen sowie optische Eigenschaften von einzelnen und gekoppel-

ten CdSe (Gruppe II-VI), InP (Gruppe III-V) und Si (Gruppe 4) Quantenpunkten

vorgestellt. Abschließendes Beispiel ist die Berechnung der elektronischen Eigen-

schaften der großen Kern/Schale CdSe/CdS Quantenpunkte mit mehr als 50 000

Atomen und scharfer oder legierter Grenzfläche.

Abschließend werden die Ergebnisse in Kapitel 6 zusammengefasst und weitere

mögliche Erweiterungen und Implementierungen für die entwickelte Rechenmethode

diskutiert.
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Chapter 1

Introduction

1.1 Crystal lattice in solid state physics

The atoms in a crystal can be mathematically represented as points in a three-

dimensional real-space lattice. If these lattice points are arranged in a periodic

fashion, this reflects the periodic properties of the atoms in the crystal. The lattice,

which specifies a periodic array with repeated units, called a Bravais lattice [1], and

which meets the condition:

R = n1a1 + n2a2 + n3a3 , (1.1)

where a1,2,3 are primitive vectors, and the indexes n1,2,3 are integers which define

the crystallographic planes. For example, the [111] crystallographic direction in a

cube corresponds to the [n1n2n3] direction from the point of origin. Vector R is a

three-dimensional translation vector, i.e. the Bravais lattice is exactly same for any

choice of R, as well as any quantity of the crystal (f(r +R) = f(r)).

A volume of space that, when translated through all the vectors in a Bravais

lattice, just fills all of the space without overlaps or gaps is called a primitive cell,

and the number of the Bravais lattice points within the primitive cell forms its

basis. The Wigner-Seitz cell is one of the most common types of primitive cell and

is defined as a region of space that is closer to particular lattice point than to any

other lattice point. The primitive cell which is chosen that way, that it contains

exactly one lattice point, is called a Wigner-Seitz cell.

If we consider a Bravais lattice in real space and a plane wave f = eikr for a

general reciprocal vector k, the set of vectors G which fulfil the periodic condition

eiG·(r+R) = eiG·r will form the reciprocal representation of a given Bravais lattice.

The primitive vectors constructing the reciprocal lattice can be generated from the

1



Chapter 1. Introduction

real-space primitive vectors in the following way:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
; b2 = 2π

a3 × a1

a1 · (a2 × a3)
; b3 = 2π

a1 × a2

a1 · (a2 × a3)
. (1.2)

The translation vector G in reciprocal space can be written as (see Ref.[2] for

the details):

G = k1b1 + k2b2 + k3b3 , (1.3)

where the indexes k1,2,3 are called Miller indexes, and they describe the crystallo-

graphic planes orthogonal to the reciprocal lattice vector, for example, the (111)

Miller plane in cube corresponds to the plane orthogonal to (k1k2k3) direction from

the origin point. Round brackets are used to avoid confusion with crystallographic

directions in real space. The primitive cell, that corresponds to a Wigner-Seitz cell

in reciprocal space, is called Brillouin zone.

Most experimental methods for determining the atomic structure of crystals are

based on the idea of light scattering, in particular, the X-ray diffraction [3], where

the reciprocal lattice formalism is extremely useful. The periodic crystal structure

determines the range of energies of an electron that the bulk crystal may have

within it and thereby the corresponding electronic band structure. Band theory [4]

has been successfully used to explain different physical properties of solids, such

as electrical resistance and optical absorption, and forms the foundation of the

understanding of transistors, solar cells, and other solid-state devices.

1.2 Semiconductor materials

In the ground state of a system the total energy is minimal and the electrons

are located at the lowest possible energy levels. The property which distinguishes

semiconductors from other bulk materials is the existence of an energy gap (or

band gap) between the highest occupied energy band (valence band maximum,

VBM) and the lowest unoccupied energy band (conduction band minimum, CBM)

in their electronic band structure [5, 6]. The resistance of semiconductor materials

falls as the temperature rises and therefore their electrical conductivity can change

with varying conditions.

Semiconductors are broadly used in everyday life. Silicon (Si) holds the first

place in semiconductor devices, in particular, the metal-oxide silicon field-effect

transistors (MOSFETs) were the key component of the digital revolution in 21st

century [7, 8]. Indium Phosphide (InP) and Indium Arsenide (InAs) with superior

electron mobility are widely implemented in high-power and high-frequency elec-

2



Chapter 1. Introduction

tronics [9]. Cadmium Selenide (CdSe) and Cadmium Sulfide (CdS) materials are

implemented in photoresistors and instruments utilizing infrared light [10]. Zinc

Sulfide (ZnS) is a large-gap semiconductor which is widely used as an efficient

photocatalyst[11].

The majority of bulk semiconductor materials are highly-periodic crystal struc-

tures. In quantum mechanics, periodic boundary conditions are usually used to

treat the large bulk crystals, where the detailed configuration of the surface does

not affect the electronic properties, i.e. the large periodic crystal is approximated

by infinite repetition of the corresponding primitive cell. The materials, considered

in this work, either possess diamond or zincblende (ZB) crystal structure, with the

face-centered cubic Bravais lattice and two-atom basis in the primitive cell (ma-

terials such as Si, InP, InAs), or wurtzite (WZ) crystal structure, in a hexagonal

close-packed form with four-atom basis in the primitive cell (materials such as ZnS)

[2]. Some of the materials, for example, CdSe or CdS, may form in the ZB or WZ

crystal structure depending on the synthesis conditions [12, 13, 14]. The Si bulk

crystal unit (unit cell), primitive and the corresponding Brillouin zone together with

the band structure in reciprocal space are shown in Fig. 1.1.

a1

a2

a3

Crystal cell Silicon band structure

a1

a2

a3

Primitive cell

b3

b2

b1

Γ

L
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Band gap
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Figure 1.1: Left panel: Si bulk (ZB structure) crystal unit cell and the primitive cell
in real space together with the corresponding Brillouin zone in reciprocal space. Right
panel: the electronic band structure with valence (blue) and conduction (green) bands
plotted through the high-symmetry points of the Brillouin zone (green arrows).

Under the influence of electrical or optical excitation, an electron might be pro-
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Chapter 1. Introduction

moted from the valence to the conduction band, leaving behind in the valence band

a local positive charge called a hole. Electron and hole together form a neutral quasi-

particle called an exciton, where the distance between electron and hole defined as

an exciton Bohr radius. The electron and hole of the exciton might recombine back

to the ground state via one of the multiple relaxation channels, which can be subdi-

vided in radiative, i.e. accompanied by light (photon) emission, and non-radiative.

If the decay of the exciton is accompanied with the light emission, this process is

called fluorescence [15].

1.3 Semiconductor nanostructures and their applications

Semiconductor nanostructures with at least one dimension below their exciton

Bohr radius evoke high scientific interest due to their tunable optical and chemical

properties caused by confinement effect and high surface-to-volume ratio [5, 16].

The confinement effect originates from an increase in kinetic energy of electron

and hole, which outweighs the shrinkage of potential energy, and leads to discrete

electronic states formation [17, 18].

Ultra-thin 2D nanocrystals (NCs) like nanoplatelets (NPLs) possess uniform

thickness after synthesis and have broad potential applications such as laser diodes,

high electron mobility transistors, and infrared detectors [19, 20, 21]. Considerable

progress in the synthesis techniques colloidal quantum wires (QWs) and quantum

dots (QDs), especially for CdSe and CdS materials, has allowed obtaining the stable

fractions of colloidal nanostructures with narrow particle size distributions and high

intensity of the fluorescence in visible and infrared range [22, 23, 24]. This leads to

many opportunities for new applications including lasers [25], fluorescent labeling of

biological molecules and cells [26, 27, 28, 29], light-emitting diodes [30], in particular

display components [31] and smart windows [32], as well as solar cells [33]. Another

very promising research direction is studying the electronic transport in the close-

packed QD arrays, which already have shown outstanding efficiency as multiple-

exciton generators and enable new fabrication methods for low-cost and flexible

thermometric devices and power inverters, superior to natural materials systems

[34, 35, 36].

Many-compound QDs such as core-shell and core-shell-shell NCs demonstrate

very high and stable fluorescence due to the elimination of the surface defects [37, 38]

and increased photoconductivity. The alloyed interface in core-shell QDs suppresses

blinking and Auger recombination [39, 40], which promises wide perspectives for

potential practical usage of this new generation of colloidal nanostructures.

4



Chapter 1. Introduction

The relative alignment of the electron (e) and hole (h) in core-shell QDs, which

depends on the relative core and shell material offsets and confinement, subdivides

these nanostructures into several types (see Fig. 1.2).

Type I Type II Quasi-Type II

E
n
er

g
y

core shell

e

h

core shell

e

h

core shell

e

h

Figure 1.2: Schematic representation of the different types of core-shell QDs, depending
on the relative band offsets of core and shell material.

For type-I core-shell QDs, electron and hole are localized either both in the

core or both in the shell, whereas type-II QDs demonstrate spatial isolation of the

electron and hole. The intermediate case forms a class of quasi-type II QDs [41].

Both type-I and type-II core-shell QDs have very promising perspectives of the next-

generation bio-compatible fluorescent markers [42, 43], besides, type-II core-shell

QDs, due to spatial charge separation, have engaging perspectives in photovoltaics

for the next generation of solar cells [44].
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Chapter 2

Computational methods

The Schrödinger equation is a cornerstone of quantum mechanics. Exact solution of

the Schrödinger equation for an atomic or molecular system is in fact full and com-

plete description of this system, which enables the prediction of its physicochemical

properties. However, the exact solutions are not possible even for the small systems

of interest due to the complexity of the electrons behavior in condensed matter.

Therefore, any algorithm attempting to calculate the physical properties of the

atomic system relies on approximations. In this thesis, the basic concepts of ab ini-

tio calculations will be introduced and existing theoretical approaches for modeling

the ground and excited states of the systems consisting of more than 1000 atoms

will be presented.

2.1 Many-body Hamiltonian

The electronic properties of an atomic or molecular structure can, in general, be

explained in terms of quantum mechanics. Prediction of the electronic and geomet-

ric structure of the system requires the calculation of its total energy and subsequent

minimization of this energy concerning electronic and nuclear coordinates [45]. The

stationary, or time-independent, Schrödinger equation for a system of M nuclei and

N electrons [46, 47] can be written as:

7



Chapter 2. Computational methods

ĤΨ = EΨ , where

Ĥ =

[
−

M∑

I

h̄2

2MI

∇2
I −

N∑

i

h̄2

2me

∇2
i

]
+

e2

4πε0

[
1

2

M∑

I

M∑

J 6=I

ZIZJ
|RI −RJ |

+

+
1

2

N∑

i

N∑

j 6=i

1

|ri − rj|
−

N∑

i

M∑

I

ZI
|ri −RI |

]
. (2.1)

The full many-body Hamiltonian from Eq. (2.1) includes kinetic energies of all

nuclei and electrons of the system (first two terms, respectively) as well as the

potential energy, resulting from nuclei-nuclei, electron-electron and electron-nuclei

Coulomb interaction terms (last three terms, respectively). The indices i and j

run over the electronic degrees of freedom and I and J run over nuclei degrees of

freedom.

For simplicity, atomic units will be used, which means that the inversed Coulomb

constant 4πε0, the reduced Plank constant h̄ as well as the electron mass me and

the elementary charge e will be equalized to 1 and no longer written explicitly.

The exact solution of the many-body Schrödinger equation even for the small

molecular systems is a literally impossible task. One of the key approximations

which are widely used nowadays is the Born-Oppenheimer, or frozen-core, approxi-

mation [48, 49]. The idea is that the electrons in the system move much faster than

the atomic nuclei because the atomic cores are several orders of magnitude heavier

than electrons. Therefore, it can be assumed that atomic cores are fixed, nuclei

kinetic energy is equal to 0 and the nuclei-nuclei Coulomb interaction term turns

into a constant additional energy E(RI). Thus, the many-body problem transforms

into a many-electron problem, and the electronic Hamiltonian can be written as:

Ĥe = −1

2

N∑

i

∇2
i +

1

2

N∑

i

N∑

j 6=i

1

|ri − rj|
−

N∑

i

M∑

I

ZI
|ri −RI |

+ E(RI) . (2.2)

The wave functions Ψ of the many-electron systems must be antisymmetric,

because electrons are fermions, and the exchange of any two electrons should fulfill

the Pauli principle [50]. The antisymmetry leads to the spatial separation between

electrons with the same spin, therefore the electron-electron Coulomb interaction

is reduced by a Coulomb-like term called the exchange energy [45]. The exchange

energy might be directly included in the electronic Hamiltonian, as in the Hartree-

8
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Fock approximation [51, 52] which will be addressed in more detail in Section 2.4.

In fact, electrons with opposite spins are also spatially separated, which leads to

a further reduction of the electron-electron Coulomb interaction, but at the same

time increases the electron kinetic energy. These effects can be included in the

correlation energy term [53].

It is possible to solve the many-body electron problem for simple systems like

electron gas using quantum Monte Carlo simulations [54]. However, this is not

applicable for complex structures like molecules or crystals.

2.2 Density functional theory

An alternative solution to the many-electron Schrödinger equation is to replace

the many-electron wave function Ψ in the model system with the electron density.

According to the Hohenberg-Kohn theorems [55], the ground state density n(r) is

uniquely defined by the external potential, coming from the electron-nuclei interac-

tions and external fields, and a universal functional for the energy E can be defined

in terms of the density. The exact ground state is the global minimum value of this

functional. This theorems underlie the density functional theory (DFT), which is

widely used to calculate the electronic properties of metals and semiconductors.

The second major development step for DFT theory was performed by Kohn

and Sham [56], who have shown that it is formally possible to replace the many-

electron wave function Ψ by a set of the single-particle wave functions, or orbitals,

ψi. The electron density in this case can be written as:

n(r) =
∑

i

fi|ψi(r)|2 , (2.3)

where fi is an occupation number.

Within these approximations, the Kohn-Sham total energy functional in Eq. (2.2),

in accordance with what was mentioned above, can be represented in the following

way [57]:

E = Ekinetic + Eext + EH + EXC + Enuclei = (2.4)

= −1

2

Nocc∑

i

∫
ψ∗
i∇2ψidr +

∫
n(r)

(
−
∑

I

ZI
|r −RI |

)
dr +

+
1

2

∫∫
n(r)n(r′)

|r − r′| drdr
′ +

∫
n(r)εXC [n(r)]dr + E(RI) .

9
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Here the Ekinetic term includes the kinetic energy of the electrons, Eext com-

prise the electron-nuclei (external potential) interactions, Hartree functional EH

contains Coulomb interactions between electrons, Enuclei the interactions between

nuclei, which is constant due to the frozen-core approximation, and the EXC term

is the exchange-correlation functional (see Section 2.2.1 for details). Unfortunately,

except for very simple systems, it is not possible to define exact exchange-correlation

functional. Possible approximations will be considered in the next subsection.

The Kohn-Sham orbitals are initially completely unspecified, but, in agreement

with the Hohenberg-Kohn theorems, the minimal total energy of the system cor-

responds to a certain type of the single-particle orbitals. And only the minimum

value of the Kohn-Sham functional has a physical meaning: ground state energy of

the system with N electrons and the defined nuclei positions.

Utilizing the Hohenberg-Kohn theorems, the ground state energy functional from

Eq. (2.4) can be minimized with respect to the orbitals ψ∗
i (r) by taking the deriva-

tives from its components according to the chain rule (as long as Enuclei is a constant,

the derivative is equal to 0) :

δEkinetic

δψ∗
i (r)

+

[
δEext

δn(r)
+

δEH

δn(r)
+
δEXC

δn(r)

]
δn(r)

δψ∗
i (r)

= εiψi(r) . (2.5)

It is assumed that the single-particle wave functions are in the field of the effec-

tive Kohn-Sham potential Veff that describes all the interactions of a single electron

with the environment (other electrons and nuclei) [56]. With this approximation,

the many-electron problem with the system of the single-particle Schrödinger equa-

tions is represented as follows:

(
−1

2
∇2 + V eff(r)

)
ψi(r) = εiψi(r) , where

V eff(r) = V ext(r) + V Hartree[n(r)] + V xc[n(r)] . (2.6)

From Eq. (2.5) and Eq. (2.6) it can be seen, that the effective Kohn-Sham

potential Veff consists of terms, which depend on the electron density and, therefore,

indirectly depend on the single-particle wave functions. In other words, any change

of the Kohn-Sham orbitals will affect also Veff , and vice versa. It means that the

Kohn-Sham system of equations must be solved self-consistently [57].

The Kohn-Sham wave functions satisfy the orthonormal condition [5], which can

be expressed in form of a Kronecker delta:

10
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∫
ψ∗
i (r)ψj(r)dr = 〈ψi|ψj〉 = δi,j ; δi,j =

{
0 if i 6= j

1 if i = j
. (2.7)

The self-consistent solution of Eq. (2.6), therefore, form a complete and or-

thonormal set of Kohn-Sham wave functions, which will reproduce the ground state

density nscf(r) (Eq. (2.3)).

2.2.1 Exchange-correlation functionals

As it was already mentioned, the calculation of the exchange-correlation en-

ergy functional in the model system is a non-trivial task. One of the most precise

options is the GW approximation, in which the exchange-correlation functional is

approximated by the single-particle Green’s function G and the screened Coulomb

interaction W , which are not expanded beyond the first term iGW [58, 59]. This

is a precise method that allows performing high-quality calculations, but only for

structures no larger than several dozen atoms due to high computational demand. It

means, the method can only be used for small molecules or bulk crystal structures.

Maybe one of the oldest but still widely used for the crystal nanostructures

exchange-correlation functional is based on the local density approximation (LDA)

[60]. LDA assumes that the exchange-correlation energy εXC(r) of an electronic

system per electron at a coordinate r in the non-homogeneous system is indeed

locally homogeneous. The derivative from EXC can be written as:

δEXC

δn(r)
= V xc[n(r)] =

∫
εhomXC [n(r)] + n(r)

δεhomXC [n(r)]

δn(r)
dr . (2.8)

LDA-based V XC give reasonable computational results for the non-spin-polarized

non-magnetic materials, which match the properties of the goal object - semicon-

ductor nanocrystals - since no external field is considered. The accurate prediction

happens partly due to cancellations of the errors, produced by this approximation

(overestimation of the exchange and underestimation of the correlation effect [45]).

The LDA approximation generally underestimates the band gap in semiconductor

materials due to the charge delocalization [61], which, however, can be corrected

empirically (see Section 4.3 for details).

There are also more advanced (but also less universal and/or computationally

more demanding) methods, like the Generalized Gradient Approximation (GGA),

where the gradient of the density is also included in the EXC functional [62], hybrid

functionals [63, 64] and many others which are beyond the scope of this project and

therefore will be not described in detail.
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2.2.2 Plane wave basis and pseudopotentials

For practical purposes it is necessary to expand the Kohn-Sham orbitals using

a set of basis functions. Kohn-Sham wave function can be written as a linear

expansion of the arbitrary basis set {ϕα(r)}:

ψi(r) =
∑

α

cαiϕα(r) . (2.9)

Here cαi are linear expansion coefficients. There are many different approaches

on how to actually represent Kohn-Sham orbitals within DFT framework, for ex-

ample, Gaussian or Slater orbitals [65] or a linear combination of atomic orbitals

[5]. The plane wave basis set is the most commonly used for the solid crystals and

will be reviewed in detail.

According to Blochs theorem [2, 66], each wave function in a periodic solid crystal

can be written as a product of a lattice-periodic component u(k, r+R) = u(k, r)

and a plane wave component eikr:

ϕi(k, r) = eikr · u(k, r) . (2.10)

The function u(k, r) of a periodic crystal can be also expanded using plane wave

basis set with reciprocal lattice vector G:

u(k, r) =
∑

G

ck,Ge
iGr , (2.11)

and the Kohn-Sham wave functions from Eq. (2.9) can be represented in reciprocal

space as:

ψi(k, r) =
∑

G

ci,(k+G)e
i(k+G)r . (2.12)

It is very convenient and computationally efficient to solve Kohn-Sham equations

(Eq. (2.6)) in reciprocal space. The plane waves approach is also suitable for non-

periodic systems such as nanocrystals, which can be modeled by supercells, crystal

units larger than a bulk unit cell, which must be included in the calculation explicitly

due to violated periodic boundary conditions [67].

One of the main disadvantages of the plane wave basis set is that in reality

Kohn-Sham wave functions strongly oscillate near atomic nuclei, and an enormous

number of plane waves is needed to describe these oscillations. Additionally, it is

impossible to perform all-electron plane wave calculations for systems of practical
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interest. Fortunately, these restrictions can be overcome with the pseudopotential

approach.

The pseudopotential approach replaces the real external potential V ext (respon-

sible for the electron-nucleus interactions) under the certain radius in proximity

of the atom core rcut with the V psp, which includes both atomic nucleus and core

electrons. This approximation results in a smoothed wave functions ψi inside rcut
which can be described with a moderate-sized plane wave basis set [68]. Please

note, that outside the rcut both pseudopotential and corresponding wave functions

coincide with the exact potential for a specific atomic configuration (see Fig. 2.1).

It is also important, that orthonormal properties of the wave functions (Eq. (2.7))

remain conserved.

r

rcut

core region valence region

Vpsp

Ѱpseudo

Ѱfull

Vext

Figure 2.1: Schematic representation of the pseudopotential V psp and the pseudo-wave
function in real space (red), compared to the exact external potential V ext and corre-
sponding wave function (blue). Reproduced in agreement with Ref.[45].

Additionally, a plane wave cutoff |k + G| < Gcut is introduced to reduce the

basis set, namely only the reciprocal lattice vectors whose kinetic energy lower

13
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than a predefined kinetic energy maximum −1
2
|Gcut|2 < Ekinetic

cut are used in the

basis set, as long as high frequency (high energy) plane waves will only give very

minor improvements to the total wave function representation. Pseudopotential

approximation gives results very close to the fully self-consistent calculations [49].

The pseudopotentials for different atom types have a high degree of transfer-

ability in different atomic configurations and require moderate computational costs

which allow using this approach for the crystal structures consisting of up to thou-

sand atoms [69].

2.3 Atomic effective pseudopotentials

Experimental-sized colloidal nanostructures usually contain from hundreds to

hundred-thousands of atoms, most of this size range exceeding the standard DFT-

LDA computational limit. To address the nanostructures consisting of many thou-

sands of atoms, the atomic effective pseudopotentials (AEPs) were developed [70].

AEPs can be considered as a further step into the evolution of empirical and semi-

empirical pseudopotentials (SEP), which allows bypassing the bottle-neck of classi-

cal DFT methods – the self-consistent loop.

The Kohn-Sham equations (Eq. (2.6)) are normally solved self-consistently, and

the electron density of the system is updated until convergence to the ground state

density nscf . Here the norm-conserving pseudopotential V psp in the Kleinman and

Bylander separable form is considered, which includes a position-dependent local

part and an angular momentum l-dependent non-local part. The latter also includes

spin-orbit (SO) coupling [71, 72]. The effective potential V eff from Eq. (2.6) can be

expressed as:

V̂ eff = V psp,loc + V Hartree[n] + V xc[n] +∑

lm

|χKBlm 〉EKB
l 〈χKBlm | , (2.13)

where the last term in Eq. (2.13) is the non-local part of the pseudopotential,

EKB
l are the Kleinman-Bylander eigenvalue and χKBlm the normalized Kleinman-

Bylander projectors. The real-space implementation of the non-local part of the

pseudopotential including (optionally) spin-orbit interactions is possible without

self-consistent loop using the basis of spin-angular functions (see Ref.[73] for details).

The starting point for the AEPs derivation is the local part of the self-consistent
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effective potential V eff(r):

V loc(r) = V psp,loc(r) + V Hartree[nscf ] + V xc[nscf ] .

In this equation V psp,loc are the norm-conserving pseudopotentials constructed using

the approach of Troullier and Martins [74].

Since the periodic boundary conditions are used, the potential V loc(r) is a peri-

odic function and can be expanded in a Fourier series,

V loc(r) =
∑

|G|≤Gcut

V loc(G)eiGr ,

leading to the reciprocal-space potential,

V loc(G) =
1

Ωc

∫

Ωc

V loc(r)e−iGrd3r , (2.14)

where Ωc is the volume of the simulation supercell.

Let‘s consider an inversely symmetric real-space potential, V (r) = V (−r). The

reciprocal-space potential obeys the symmetry V loc(G) = V loc∗(−G), and the spe-

cial case of a spherically symmetric real space potential V (r) = V (|r|) leads to

a vanishing imaginary part of the reciprocal-space potential as well as a spherical

symmetry of the latter one, V (G) = V (|G|). Respectively, any deviation from the

inversion symmetry of the real-space potential would lead to a non-zero imaginary

part in the reciprocal-space potential.

In the AEP method [70], the total potential is defined as a sum of atom centered

pseudopotentials:

V loc(r) =

Nspecies∑

α

Nα∑

n

vα(r − ταn) , (2.15)

for the system with Nα atoms of type α. Each atom is centered at the position ταn.

The total reciprocal-space potential is defined as:

V loc(G) =

Nspecies∑

α

Nα∑

n

e−iG·ταn ṽα(G) with (2.16)

ṽα(G) =
1

Ωc

∫

∞

vα(r)e
−iGrd3r ,

where vα(G) without volume normalisation Ωc can be written as:

vα(G) =

∫

∞

vα(r)e
−iGrd3r = Ωcṽα(G) .
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With this definition, Eq.(2.16) becomes:

V loc(G) =
1

Ωc

Nspecies∑

α

Nα∑

n

e−iG·ταnvα(G) . (2.17)

Here vα(G) are the AEPs for the different atomic types. The AEPs have been

defined as spherically symmetric in real space which translates into a reciprocal-

space potential with real part only, vα(G) = vα(|G|). It is needed in order to make

the AEPs transferable for different crystal structures. The spherical approximation

applied to bulk materials using AEPs [70, 73], or traditional empirical pseudopo-

tentials [75, 76, 77, 78, 79], or semi-empirical pseudopotentials [80, 81] leads to

insignificant errors in the eigenvalues resulting in a band gap deviations of around

60 meV [80], or, more specifically, of 87 meV for Si, 57 meV for InP and 8 meV for

CdSe [70].

For the material interfaces, like in an alloy or core-shell nanostructures, weights

are introduced to account for the difference in the chemical environment compared

to the binary or pure bulk system. Including the weights ωαn = nαn/4 for the

tetrahedrally coordinated materials (where nαn is the number of next neighbours of

type α) changes Eq. (2.17) in the following way [73]:

V loc(G) =
1

Ωc

Nspecies∑

α

vα(G)
Nα∑

n

e−iG·ταnωαn . (2.18)

Back to the binary systems, one should note, that the AEPs cannot be taken

directly from DFT calculation but can be determined via v± potential, defined as:

v± = va ± vc , (2.19)

which can be used for a binary system, in order to find the cation potential

vc and the anion potential va for the certain binary material in reciprocal space.

The procedure can generally be done also for a mono materials by setting va = vc.

Two slabs along the [100] direction with identical atomic coordinates and equal

number of cations and anions, but interchanged cation and anion atomic positions

are usually used as a binary system, from where the V loc
(1) and V loc

(2) can be extracted:
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V loc
(1) (r) =

Na∑

i

va(r − τi) +
Nc∑

j

vc(r − τj) ,

V loc
(2) (r) =

Nc∑

i

vc(r − τi) +
Na∑

j

va(r − τj) . (2.20)

By adding and subtracting V loc
(1) and V loc

(2) from Eq. (2.20), the following expres-

sions for v+ and v− can be obtained:

V loc
(1+2)(r) =

Natoms∑

n

v+(r − τn) ,

V loc
(1−2)(r) =

Natoms∑

n

(−1)n+1v−(r − τn) , (2.21)

or, in reciprocal space:

V loc
(1+2)(G) =

1

Ω

[
Natoms∑

n

eiG·τn

]
v+(G) ,

V loc
(1−2)(G) =

1

Ω

[
Natoms∑

n

(−1)n+1eiG·τn

]
v−(G) . (2.22)

Once again, the potentials v+(G) and v−(G) are in general complex quantities,

but within the spherical approximation framework only the real part is taken into

account.

The relative band offsets in AEPs between different materials are taken into

account by linking them together using the DFT calculations of heterostructures.

The procedure involves the interchange of the cation and anion positions within a

48-atom zincblende (ZB) [100] hybrid slab, formed by two 24-atom halfs presenting

the different materials A and B (see Fig. 2.2).
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Slab 1

Slab 2

Material A Material B

Figure 2.2: Schematic representation of the minimal periodic unit of the 48-atom
zincblende (ZB) [100] hybrid slabs, formed by two different materials. Cation/anion
positions in slab 1 and slab 2 are interchanged.

The resulting potentials V loc
(1) and V loc

(2) can be written similarly to Eq. (2.20):

V loc
(1) (r) =

NA
a∑

i

vAa (r − τi) +

NA
c∑

j

vAc (r − τj)+ ,

+

NB
a∑

k

vBa (r − τk) +

NB
c∑

l

vBc (r − τl) ,

V loc
(2) (r) =

NA
c∑

i

vAc (r − τi) +

NA
a∑

j

vAa (r − τj)+ ,

+

NB
c∑

k

vBc (r − τk) +

NB
a∑

l

vBa (r − τl) . (2.23)

If the AEPs of slab A are fixed to the potential V loc derived from the DFT

bulk calculation, then the v± for slab B can be extracted and corrected, and this

procedure should be repeated in chain manner for materials C, D, etc until all

material offsets are defined. The linking order is defined by using hybrid structures

with the lowest possible crystal lattice mismatch between two materials (see Ref.[70]

for details).

To obtain a correct absolute shift of the band energies using AEPs, a series

of calculations for each bulk material were performed, with the lattice constant

varying by 0.2% in order to obtain the linear dependence of the band gap change

versus lattice constant. The extracted deformation potentials were interpolated

over different V (G = 0), and the final V AEP (G = 0) value was fixed based on the

literature values of the deformation potential [82].

It has been shown, that crystal structures containing up to 100 000 atoms can

be treated at an atomistic ab initio level comparable to DFT-LDA using the AEP
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formalism [73]. Before the development of the ab initio methods, parametric ap-

proaches based on the effective mass approximation [83] were used to provide the-

oretical predictions in comparison with existing experiments. However, while it

is always possible to fit an effective mass model to the experimental results with

only a few parameters, the underlying physics remains not clear and the prediction

capacities of these models for non-optimized properties are very low [84].

2.4 Configuration interaction theory

The single-particle wavefunctions obtained from the DFT-LDA or AEP method

can be used to construct the ground state Slater determinant Φ0 [85, 72]:

Φ0(r1, σ1; ...; rN , σN) = A[ψ1(r1, σ1)...ψN(rN , σN)] , (2.24)

where A is the antisymmetrising operator, N the total number of electrons in the

system and σ is the spin variable. The excited states can be calculated using a

screened configuration interaction (CI) approach [86, 87] where the exciton states

are constructed using a linear combination of single-excited Slater determinants,

Φj
i :

Ψex =

Ni∑

i

Nj∑

j

ci,jΦ
j
i , (2.25)

where ci,j are expansion coefficients. In Φj
i , an electron is promoted from an occupied

(valence) state ψi to an unoccupied (conduction) state ψj and Ni,j stays for the

number of valence and conduction states included in the CI expansion. Now the

CI method approaches again the many-body level of theory, but, instead of many-

electron wave functions, many configurations are implemented. With the basis set of

Eq. (2.25) the exciton energies Eex can be obtained solving the following equation:

Ni∑

k

Nj∑

l

ck,lHijkl = ci,jE
ex , (2.26)

and the many-body Hamiltonian matrix elements can be calculated based on the
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Hartree-Fock method [51, 52], as a difference between initial and final configuration:

Hijkl = 〈Φj
i |H|Φl

k〉 = (εj − εi)δi,kδj,l − Jijkl +Kijkl ,where (2.27)

Jijkl =
∑

σ1,σ2

∫∫
ψ∗
k(r1, σ1)ψ

∗
j (r2, σ2)Wψi(r1, σ1)ψl(r2, σ2)dr1dr2 ,

Kijkl =
∑

σ1,σ2

∫∫
ψ∗
k(r1, σ1)ψ

∗
j (r2, σ2)Wψl(r1, σ1)ψi(r2, σ2)dr1dr2 .

The Coulomb integral J describes the classical electron-electron interaction, and the

exchange integral K is a Coulomb-like term which appears because of the antisym-

metry of the wave functions [50, 88]. TheW = 1/(ǫ(r1, r2)|r1 − r2|) term represents

the screened Coulomb interaction with certain dielectric function ǫ, which will be

described in detail in Section 4.4.

2.5 Single-particle, quasiparticle and optical band gaps

The solution of the single-particle (SP) Schrödinger equation using the AEP

formalism defines the single-particle gap E0 as:

E0 = εe0 − εh0 , (2.28)

where εe0 and εh0 are the single-particle eigenvalues of the lowest unoccupied and

the highest occupied orbital of the bulk crystal or the nanostructure, respectively.

Colloidal nanocrystals (NCs) are usually surrounded by an environment with

corresponding dielectric properties. The dielectric mismatch between the nanocrys-

tal and the surrounding medium leads to a surface polarization potential Vs, which

corresponds to the classic electrostatic potential caused by a point charge inside

the NC [86, 89]. This polarization effect must be included in the electron and hole

self-energies of the exciton [90, 89] since these describe local charge properties. The

polarization self-energies can be accounted for in the first principle ab initio meth-

ods, mainly using the GW approximation (see Section 2.2.1 for details), but with

a large computational expense. For spherical nanostructures an analytic solution

exists [89] which was shown to be in good agreement with first-principles result for
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spherical QDs [91, 92]:

∑pol
i =

1

2

∑

σ

∫
ψ∗
i (r, σ)Vs(r)ψi(r, σ)dr , (2.29)

where Vs(r) =
1

2R

∞∑

l=0

ǫin − ǫout
ǫout + l(ǫin + ǫout)

×
{(l + 1)(|r|/R)2l

ǫin
, if |r| < R

−l(|r|/R)−2(l+1)

ǫout
, if |r| > R

, (2.30)

where R denotes the radius of the QD, |r| is the distance from the QD center, and

l is the orbital angular momentum quantum number. When the dielectric constant

of the QD ǫin is equal to the dielectric constant of the medium ǫout, the polarization

potential Vs vanishes. The discontinuity at |r| = R is smoothed out by the function

1 − e(r−R)2/λ2 , where λ = 0.163a0 in agreement with the width of the transition

region defined in Ref.[93] is used. The quasiparticle (QP) band gap can be written

as:

EQP = E0 +
∑pol

e0 +
∑pol

h0 . (2.31)

The optical, or excitonic, band gap corresponds to the creation of an interacting

electron-hole pair, and can be obtained from the quasiparticle gap by subtracting

the total electron-hole Coulomb interaction [91]. This corresponds to the single-

configuration approach in CI:

Eopt = EQP − J total = E0 +
∑pol

e0 +
∑pol

h0 − J total . (2.32)

The relation between different energy terms considered in this work are shown

schematically in Fig. 2.3. The subdivision of J total into Jmicro and Jpol will be ex-

plained in Section 4.4.4. For simplicity, the equations in the single-configuration

(SC) approximation (no interaction between configurations) will be introduced, al-

though a fully correlated CI approach is used in this work for the excited state

calculations. The final results for isolated NCs, however, have very moderate con-

tributions from the correlation between different configurations, so that the single-

configuration picture is quantitatively quite accurate.
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Figure 2.3: Scheme of the different energy gaps and the contributing energy terms from
Eq. (2.28), Eq. (2.31) and Eq. (2.32). Reprinted from [94].

The exciton binding energy, taking in account Eq. (2.31) and Eq. (2.32), can be

defined as following:

Eex.bind = EQP − Eopt . (2.33)

2.5.1 Exciton fine structure

The optical absorption features observed experimentally in the QDs are strongly

influenced by the exciton fine structure (FS), which is sensitive to the crystal sym-

metry and exchange interactions. In particular, a resonant Stokes shift [95, 96] orig-

inate from the exciton dark-bright (DB) splitting. The lowest exciton FS formation

starting from SP configuration in spherical QDs with ZB and WZ crystal structure

and the role of the Coulomb and exchange interactions is shown schematically in

Fig. 2.4. In experiments the absorption peak at room temperature corresponds to

the first bright exciton state and the emission peak corresponds to the phonon-

assisted long-term emission from the dark exciton state [84, 97]. In case of WZ

structure, the hole states h0 and h1 are non-degenerate due to crystal field (CF)

splitting.
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Figure 2.4: Schematic representation of the exciton FS formation from ground state
electron (e, unoccupied) and hole (h, occupied) states (SO coupling included) for ZB and
WZ spherical nanocrystals. Dashed lines in the exciton FS denote the optically passive
dark states, where optical transition is forbidden due to selection rules [98], and optically
active bright states are plotted with the solid lines. The difference in energy between first
dark and first bright exciton state corresponds to DB splitting.

As it is represented in Fig. 2.4, the Coulomb interactions J (Eq. (2.27)) are

generally long-distant and mostly determine the exciton binding energy (Eex.bind,

hundreds of meV range), whereas the exchange interactions K (Eq. (2.27)) are

short-distant and responsible for the exciton FS splitting (tens of meV range).
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Motivation

The AEP approach inherits the imperfections of the local density approximation

(LDA) used in the AEP generation, in particular, the delocalization of the electron

charge [61] and consequently an underestimation of the single-particle band gap.

Additionally, the spherical approximation used in the AEP derivation procedure is

not suitable for atoms at the surface.

The treatment of the surface remained at a quality well below a full-fledged

self-consistent ab initio treatment. Either the surface atoms were assumed to gen-

erate an electronic pseudopotential with a Gaussian shape determined by two or

three parameters (depth, width, and distance from the surface atom) that could be

adjusted to free the optical gap of surface states [99, 100], or the nanostructure was

embedded in another artificial large band gap material [101, 102, 103]. A recent

procedure [104] to extract passivant potentials based on DFT calculations and the

semi-empirical approach [80, 81] used a spherical real-space description, required

the adjustment of a passivant center (somewhat shifted with respect to the pas-

sivant position – already hinting at the non-spherical character of the passivant)

and the fit to an ad-hoc Yukawa potential. These procedures were justified, to a

certain extent, for large nanocrystals (NCs) [105, 106] or quantum wires (QWs)

[107], where the electronic states in the proximity of the band gap region are well

localized inside the nanostructure and only remotely affected by surface atoms.

However, the influence of the surface on the electronic and optical properties is

known to be significant. Moreover, the surface sensitivity represents one of the

possible applications [108, 109, 110, 111, 112] of these nanostructures. Therefore,

an accurate quantitative accounting of the surface effects is desirable.

The optical properties of the NCs are very sensitive not only to the crystal size

due to the confinement effect. Even though the details of the surface passivation

and ligands have been investigated theoretically to some extent based on ab initio

calculations of very small NCs [113, 114, 115], the NCs are often also affected by the
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embedding environment [86, 116]. The latter effect, i.e. the influence of the solvent

and surface ligands dielectric properties on the optics is less understood and studied,

and lacks connection between theory and experiment. Therefore, a detailed review

of the different theoretical approaches [72, 91, 93, 117, 118, 119] and evaluation of

the dielectric mismatch between crystal structure and surrounding media influence

onto the optical properties of the NCs is necessary.



Chapter 4

Method development

4.1 Nanocrystals: structure and relaxation

All possible kinds of nanoparticles, in particular QDs and QWs, can be con-

structed using simple algorithms which allow cutting a certain shape out of bulk

material. The optimal bulk lattice constant is defined from DFT calculations by

finding the energy minimum of the bulk system. The results are listed in the Ta-

ble 4.1 for the considered semiconductor materials.

Compound a0 (DFT) a0 (exp.)

CdSe (ZB) 6.13 Å 6.08 Å

CdSe (WZ) a=4.33 Å; c=7.06 Å a=4.30 Å; c=7.01 Å

CdS (ZB) 5.85 Å 5.82 Å

CdS (WZ) a=4.14 Å; c=6.74 Å a=4.13 Å; c=6.75 Å

InP (ZB) 5.90 Å 5.87 Å

InAs (ZB) 6.08 Å 6.06 Å

Si (ZB) 5.48 Å 5.43 Å

ZnS (WZ) a=3.83 Å; c=6.25 Å a=3.82 Å; c=6.26 Å

Table 4.1: Lattice constants for zincblende (ZB) and wurtzite (WZ) (see Section 1.2 for
crystal structure details) bulk semiconductor materials, considered in this work, obtained
after DFT optimisation, in comparison with experimental values from Ref.[120]. In the
case of the WZ crystal structure both lattice parameters, c and a, are specified.

Even though the strain may affect the electronic properties of the nanocrystals

(NCs) [121], most of the one-compound NCs might be constructed from the bulk

material using the corresponding bulk lattice constant without further relaxation,

and no considerable change of their electronic properties is observed (see Fig. 4.1).
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Figure 4.1: Eigenvalues near band gap for Si QD with R = 7.0 Å, calculated using DFT
method before (pink stars) and after (yellow squares) structure relaxation. Inset: QD
crystal structure before (pink) and after (yellow) relaxation

Average atom-atom distance follows the linear trend with respect to the number

of atoms in the structure (N
−1/3
atoms), i.e. the deviation between inter-atomic distance

in the confined system and in bulk material is negligible for large systems and

should increase for small ones [16]. Fig. 4.1 indicates, however, that the average

atom-atom distances for Si atoms are not considerably changed after relaxation

even for small QD (163 atoms including passivants) - only slight shift of passivant

atoms is captured. Any compression effects on the NC surface are not observed.

Therefore, E0 gap and eigenstates near band gap are not affected by the relaxation

(meV deviations) in case of one-compound QDs. Similar results were obtained for

InP and CdSe QDs.

Since passivant atom positions are changing after relaxation, the relaxed atom-

to-passivant distance change is important for the slab surface during the AEP con-

struction procedure (see Section 4.2.1 for details) and was done using the DFT

code ABINIT [122]. In the NC construction code, atom-to-passivant distance de-

fined from slab is used, however, an additional algorithm for the surface passivation

is implemented, which allows avoiding experimentally unstable configurations, in

particular surface atoms with three passivants and close distances between two

neighboring passivants.
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4.1.1 Valence force field model for core-shell QDs

For the heterogeneous (core-shell) NCs the lattice constant mismatch between

core and shell material leads to considerable changes in their electronic and optical

properties. The relaxation of the core-shell interface is therefore necessary.

A combination of conjugate-gradient methods with standard molecular dynamics

[45, 123] is the state-of-art precise way for structure relaxation. However, these

algorithms are rather computationally demanding and not suitable for systems with

more than 1000 atoms. The valence force field (VFF) model of Keating [124, 125]

is a computationally cheap alternative, which gives a reasonable quality of the

interface relaxation. In this method the elastic energy per atom is calculated:

Ui =
3α

16r20

4∑

j=1

(r2
ij − r20)

2 +
3β

8r20

4∑

j=1

4∑

k>j

(
rij · rik +

r20
3

)2

, (4.1)

where r0 is the equilibrium bond length of the corresponding bulk material, rij is

a vector between an atom i and its nearest neighbour j. The first part of Eq. (4.1)

defines the bond stretching terms and the second part accounts the bond bend-

ing angle terms. The α and β are the corresponding parameters, which can be

derived for each bulk semiconductor material from the experimentally measured

macroscopic elastic constants c11, c12 and c44[124, 125]:

c11 =
1

a0
(α + 3β); c12 =

1

a0
(α− β); c44 =

4

a0

αβ

(α + β)
. (4.2)

If the atom k and atom j belong to different materials (core-shell interface), the

averaged bond-bending constant is used. The elastic parameters used for InAs/InP

and CdSe/CdS materials within the VFF framework are specified in the Table 4.2.

Compound VFF(α) VFF(β)

CdSe 32.230 5.218

CdS 40.289 5.534

InP 32.614 4.342

InAs 43.842 4.677

Table 4.2: Bond-stretching (α) and bond-bending (β) constant for bulk semiconductor
materials, considered in this work, calculated from [126, 127] using Eq. (4.2).

The total energy of the system is calculated by summing up elastic energies for

individual atoms. For the atomic position which differs from r0 the given atom
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receives a penalty in elastic energy according to Eq. (4.1). The VFF relaxation

mechanism is based on the total elastic energy minimization and can be separated

in two steps. During the first step the gradient of the elastic energy minimization

is defined for individual atoms by their random movement, and during the second

step the shifts of single atoms are performed according to this gradient until the

total energy minimum is reached. The average elastic energy change per atom is

used in the code as a main convergence criterion to make the relaxation quality

independent from the number of atoms.

To capture the changes with relation to ideal bulk interatomic distances and

bond angles, the relaxed InAs/InP core-shell QDs with the sharp and alloyed in-

terface was calculated using VFF method, and bond lengths and bond angles is

plotted (Fig. 4.2).
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Figure 4.2: Bond lengths (left) and bond angles (right) for the InAs/InP core-shell QDs
after VFF relaxation. Final-size cut of R = 16Å is shown with the red line. QD with the
sharp interface (pink circles) consists of InAs core with R = 8Å and 8Å thick InP shell
on top, whereas QD with the alloyed interface (blue circles) consists of InAs core with
R = 6Å, the alloyed interface with width 4Å and 6Å thick InP shell.

The VFF starting point is a compressed quantum dot, and a slight compression

(0.5− 1%) of core material might remain after relaxation. The bond length in the

shell corresponds to r0 for InP, with deviations no more than 0.3% near the core

material. The alloyed interface leads to slightly more deviations from the ideal

bond lengths than the sharp interface, but the overall quality of the relaxation is

preserved. The angles in InAs/InP QDs are deviating up to 2.5% from the ideal

tetrahedron value, again a bit more in case of the alloyed interface. In order to

avoid spurious bond and angle deviations near the QD surface in the final structure
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and also to construct a passivant shell, around 5Å extra shell thickness should be

used for VFF relaxation.

The quality of relaxation is usually defined by calculating the Hellman-Feynman

forces [128]. The forces per atom were calculated for the InAs/InP QD with the

alloyed interface using ABINIT code before and after VFF relaxation (see Fig. 4.3).
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Figure 4.3: Hellman-Feynman forces (cartesian components) per atom for the InAs/InP
core-shell QD with the alloyed interface, total R = 16Å (InAs core with R = 6Å, the
alloyed interface with width 4Å and 6Å thick InP shell) before(black) after (blue) VFF
relaxation. Relaxation threshold corresponding to the Hellman-Feynman forces 5× 10−3

Ha/Bohr is shown with the red line.

To reliably converge the total energy minimum in ab initio-based ground state

calculations, these forces should not exceed 5× 10−3 Ha/Bohr per atom [129]. The

forces after VFF relaxation are considerably lower than in the non-relaxed structure

and acceptable for the further ground state and excited state calculations. The VFF

method is transferable and can be implemented for other semiconductor materials.

4.2 Non-spherical atomic effective pseudopotentials for pas-

sivant atoms

As it was mentioned in Section 2.3, spherical AEPs, which were developed previ-

ously, are not suitable for surface atoms. Here non-spherical AEPs for the surface,

or passivant, atoms are introduced, for which the imaginary part of the potential in
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reciprocal space is preserved during the potential derivation process, which corre-

sponds to a real-space potential that has no inversion symmetry. The non-spherical

nature of the passivant AEP allows reproducing the surface dipoles which generate

a band offset to vacuum.

4.2.1 Passivant potential derivation

The passivant potential is introduced by rewriting the potential from Eq. (2.17)

explicitly for a binary cation-anion system with two types of passivants denoted by

vH1 and vH2:

ΩcV
loc(G) =

(
Nc∑

n

e−iG·τc,n

)
vc(G) +

(
Na∑

n

e−iG·τa,n

)
va(G) +

+

(
NH1∑

n

e−iG·τH1,n

)
vH1(G) +

(
NH2∑

n

e−iG·τH2,n

)
vH2(G) =

= Scvc(G) + Sava(G) + SH1vH1(G) + SH2vH2(G) ,

where Sc,a,H1,H2 are the structure factors of the cations, anions, and of the passivants

H1 and H2 that are bound to the cations or anions, respectively. The structure

factors depend only on the atomic positions. Reordering the terms leads to:

SH1vH1(G) + SH2vH2(G) = ΩcV
loc(G)− Scvc(G)− Sava(G) , (4.3)

where all is known but vH1,2(G), which are kept as complex quantities. To solve

the equation of two unknowns a second slab is introduced, and both systems are

denoted with A and B:

SAH1vH1(G) + SAH2vH2(G) = ΩcV
loc
A (G)−

− SAc vc(G)− SAa va(G) ,

SBH1vH1(G) + SBH2vH2(G) = ΩcV
loc
B (G)−

− SBc vc(G)− SBa va(G) . (4.4)

The sum and difference of both equations is taken to obtain the system of equations,

used to derive AEPs for atomistic passivant atoms.

Three target properties are considered for the choice of the structures A and B

used for the passivant AEPs derivation. First, the supercell should be significantly

elongated in one dimension, in order to provide a dense grid of G-points along this
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extended direction. Second, the system should be still manageable for calculations

using standard DFT-LDA approach (from the V loc
(1,2) is obtained). Third, the physical

properties of the passivated surface should be representative and transferable for

the calculations of the different nanostructures (QWs, QDs). It turns out, that a

slab geometry which is schematically shown in Fig. 4.4a) suits all the mentioned

conditions. Both systems A and B differ only by one atomic layer in the length of

the slabs used, while the size of the supercell and hence the FFT grid of G-vectors

is kept constant.

Rp

r

Rp

V V

Re[V ]

G

V“Supercell”

“Slab”

a) b)

c)

from Re [V ]

Im[V ]

from Im [V ]

Figure 4.4: a) Schematic representation of the “slab” geometry used to calculate the
passivant AEPs. b) Real and imaginary components of the hydrogen (passivant) pseu-
dopotential in reciprocal space. The imaginary part is odd and peaked towards G=0 with
Im[V (G = 0)] = 0. c) Potential in real space for two passivants with vectors pointing in
opposite directions, corresponding to the situation in the slab geometries. The real space
potential (a real quantity) is divided into a part originating from the real reciprocal-space
potential and a part originating from the imaginary part of the reciprocal-space potential.
Reprinted from [130].

From the full reciprocal-space potential obtained from the self-consistent DFT

calculations V loc
(1,2)(G) only the grid points along the extended direction of the su-

percell in the direction of the crystallographic growth orientation are used, which

is the z-direction in this case:

V loc
(1,2)(G) ≡ V loc

(1,2)(0, 0, G) . (4.5)
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The solution of the system of equations formed from Eq. (4.4) gives vH1,2(G), where

G is the length of the considered G-vector.

For the real component of vH1,2(G) a spherical approximation: Re vH1,2(G) =

Re vH1,2(|G|) is made. For the imaginary component Im vH1,2(G) = Im vH1,2(|G|) is
also valid, keeping in mind that Im vH1,2(G) = − Im vH1,2(−G). When the passivant

AEPs are extracted from Eq. (4.4) using a slab geometry as in Fig. 4.4a), AEPs for

two passivants are obtained. If these passivants are identical (in case of a passivants

for a group IV semiconductors such as Si), then their real parts are identical and

their imaginary parts have same magnitudes but opposite signs.

This follows the expectation that the asymmetry in real space must be reversed

at both interfaces. The real and imaginary parts of the passivant AEP are illustrated

in Fig. 4.4b) showing an even real and an odd imaginary potential. The passivant

AEPs are stored with the imaginary sign corresponding to the passivant orientation

in the slab geometry (pointing upwards).

The contribution of the passivants in Eq. (2.17) to the total reciprocal-space

potential is written as:

VH(G) =
1

Ωc

NH∑

n

e−iG·τHnvH(G) ≈

1

Ωc

NH∑

n

e−iG·τHn

(
Re vH(G) + i

G ·Rp

|G||Rp|
Im vH(G)

)
, (4.6)

where Rp is the real space surface normal vector in Cartesian coordinates, denoting

the direction of the antisymmetric component introduced by the imaginary part.

Eq. (4.6) represents a generalization of the one-dimensional case where G and Rp

are parallel or anti-parallel to a situation where they have arbitrary orientation.

The only known solutions are for the limiting cases of parallel/anti-parallel vectors

(prefactor to imaginary part 1/-1) or perpendicular (prefactor to imaginary part 0,

keeping spherical (real) potentials in-the-plane). A cosine function (dot-product)

connecting both cases is used as the simplest possible assumption. Fig. 4.4c) shows

the qualitative situation with the AEP in real space originating from the real and

imaginary components of the reciprocal-space passivant AEP.

First, the AEP for the passivants on the surface of Si are derived. Two different

slab geometries (slab A and slab B) are shown in Fig. 4.5a). Both slabs are oriented

along the [111] crystallographic direction and the bonds to the passivant atoms

point in this direction as well, forming a normal to the surface. The supercells

of around 11.4 nm length are used in order to obtain a dense grid of G-points.

The DFT calculations are performed with the code ABINIT [122], where the Si-H
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bond are structurally relaxed in the [111] direction. The hydrogen atoms for the

III-V and the II-VI materials are actually pseudo-hydrogens with fractional charges

as typically used in DFT calculations [104, 131], which return a neutrally charged

nanocrystal. One should keep in mind that some experimental situations will differ

from this artificial case. The approach suggested, however, does not rely on the

use of pseudo-hydrogens with fractional charge, but allows to introduce any atomic

passivant.
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Figure 4.5: a) Atomic positions for silicon (gray) and hydrogen (blue) in slab A and slab
B used in the extraction of the passivant AEPs. The slabs have zincblende structure and
the passivant atoms (blue) are pointing in the crystallographic [111] and [1̄1̄1̄] directions.
b) AEPs for the Si passivant as a function of |G|, black stars represent the real part and
red squares the imaginary part of the potential. The symbols (stars and squares) are the
raw data points and the lines reproduce the final AEPs. Reprinted from [130].

The results for the passivant (hydrogen) AEP of silicon are shown in Fig. 4.5b).

The real part is shown in black while the imaginary part of the potential is shown

in red. The symbols show the discrete data points obtained directly from the

processing of the DFT calculations. The straight lines are cubic spline interpolations

through the data points. In the region of |G| = n · 2π
√
3/(a0) (case of [111] crystal
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orientation along z), where n is an integer and a0 the bulk lattice constant, the data

point extraction suffers from the error which is intrinsically carried over from the

bulk AEPs. Since the goal for the passivant AEP is not to correct the deviations

existing within the bulk AEPs, the data points in the vicinity of these |G| values are
omitted. By using these data points, one may indeed obtain better agreement than

by ignoring them for a specific structure, but the transferability to the structures

with other dimensions and configurations would be less accurate. The passivant

effective potential shows a very steep imaginary part for small G-values and a rather

smooth real part, comparable to the bulk AEPs [70].

Before assessing the quality of the derived pseudopotential for the nanostruc-

tures, a single passivant in an empty supercell was considered. To estimate the

effect of the newly defined imaginary component of the potential qualitatively, the

AEP for an isolated passivant in real space is plotted in Fig. 4.6, orientated via the

vector Rp (see Eq. (4.6)).
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-0.02

Figure 4.6: Real space potential of an isolated hydrogen passivant, when only the imag-
inary part of the reciprocal-space AEP is considered. The passivant is oriented by the
vector Rp (see Eq. (4.6)). Reprinted from [130].

The corresponding spherical real part is significantly deeper and not shown ex-

plicitly, i.e., only the imaginary part of the reciprocal-space potential is shown in

Fig. 4.6. The asymmetric part exhibits two components: a short-ranged one, local-

ized in the proximity of the passivant core, and a long-ranged component that intro-

duce a clear band-offset type potential, which might be also observed in Fig. 4.5b).

In case of experimental systems, the charge transfer around the passivant should

form the surface dipole leading to such a band offset. It is reassuring to observe that

the imaginary part of the potential is able to capture the correct physics behind.
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4.2.2 Passivant potentials for different crystallographic directions

To challenge the transferability of the derived AEPs by comparing different

slab orientations, several crystallographic surfaces were considered, and the relevant

structural information is summarized in Table 4.3.

Crystallographic plane [100] [110] [111]

NSi 16 28 24

NH 4 4 4

ρ(H)(1/nm2) 13.4 9.4 7.7

rmin(H-H) (Å) 1.51 3.12 3.87

E0 (DFT) (eV) 0.896 0.906 1.004

E0 (AEP) (eV) 0.987 1.019 1.133

Table 4.3: Structural parameters and band gap at the Γ-point for Si slabs with ZB struc-
ture and with different crystallographic orientations. The passivant (hydrogen) density
on the surface is given as ρ(H) and the minimum distance between passivant atoms as
rmin(H-H).

In Fig. 4.7 the atomic structures of the different surfaces are plotted, the valence

band maximum (VBM) an the conduction band minimum (CBM) wave functions

calculated with DFT (red) and with AEPs (blue) along with error bars for the

eigenvalue differences for states around the band gap, aligned at the VBM level.

37



Chapter 4. Method development

 0.1

 0.2

 0.3

 0

 24  28  32  36  40  44

E
A

E
P

- 
E

D
F

T
 (

e
V

)

Eigenstate index

(100) Surface

 0.1

 0.2

 0.3

 0

 48  52  56  60  64  68

Eigenstate index

 0.1

 0.2

 0.3

 0

 40  44  48  52  56  60

Eigenstate index

VBM CBM (2) VBM CBM VBM (2) CBM

(110) Surface (111) Surface

VBM VBM VBM

AEP
DFT

Figure 4.7: Comparison between AEPs and DFT results for [100], [110] and [111] sur-
faces. The geometries of the different slabs are given at the top of the figure. The middle
panels show the DFT (red) and AEP (blue) wave functions across the slabs along the
growth direction. The degeneracy of the states is given in brackets. The lower part shows
the difference between the AEP and the DFT eigenvalues as bar charts. The eigenvalues
were aligned with respect to the VBM. Reprinted from [130].

From the Fig. 4.7 it follows that the deviations from DFT results are within a

range of 200 meV and occur mainly for the conduction band states. Please note,

that the error of the AEP for the bulk band gap of Si is 87 meV [70]. So all the

conduction band states suffer from the 87 meV error coming from the bulk Si AEP

and of the errors introduced by the passivant AEP. Both errors seem to be of similar

magnitude, which substantiates the good quality of the approach.

4.2.3 Atomistically passivated Si nanostructures

The areas of application of the AEPs are nanostructures. First, the quality of

AEPs was assessed for quantum wires (QWs). A graphical representation of the

atomic positions for a Si quantum wire with the radius around 15Å and average

passivant density on the surface ρ(H) = 12.33 (1/nm2) is given in Fig. 4.8a).
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Figure 4.8: a) The geometry of the Si quantum wire with the R = 15Å. The hydrogens
carrying a weight parameter (w in Eq. (4.7)) of w = 0.6 are shown as orange spheres while
the unweighted hydrogens (w = 1) are shown in blue. b) corresponding local potentials
through the center of the QW across XY plane of the supercell. Reprinted from [130].

The local potential is given in Fig. 4.8b) and demonstrates the positive vacuum-

offset, introduced by the imaginary part of the passivant potential. The comparison

between DFT (red) and AEP (blue) shows that the AEP reproduces the potential

very well in general but significantly overestimates the band offset (the blue line in

the vacuum region is significantly above the red line), which has direct repercussions

on the eigenvalues of excited states close to the vacuum. This effect is related to

the density of hydrogen atoms ρ(H) on the surface. As seen from Table 4.3, the

hydrogen atom surface density for Si slabs with [100] an [110] crystal direction is

significantly higher than for the [111] Si slab used in the AEP construction. A

closer look at the QW geometry, shown in Fig. 4.8a), reveals that its surface is

composed of facets corresponding to [100] and [110] crystallographic directions. In

the [100] direction, two hydrogen atoms are connected to one Si atom. In order to
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Radius (Å) 7.0 11.0 12.5 15.0

ρ(H) (1/nm2) 12.49 11.54 11.21 10.56

E0 (DFT) (eV) 2.692 1.877 1.664 1.498

E0 (AEP) (eV) 2.723 1.944 1.755 1.536

Table 4.4: Structural parameters and E0 band gaps of different Si quantum dots. NSi gives
the number of Si atoms in the quantum dot and NH the number of hydrogen passivants.
The hydrogen densities on the surfaces are given as ρ(H).

systematically reduce the generated offset based on a density argument, a weight

factor w is applied to the imaginary part, so Eq. (4.6) is modified as:

VH(G) =
1

Ωc

NH∑

n

e−iG·τHn (Re vH(G)+

+ i G·Rp

|G||Rp|
w Im vH(G)) . (4.7)

The weight factor w = 0.6 might be applied if a surface atom is passivated by

two hydrogen atoms, which corresponds to the ratio of the densities between slab

[111] and [100]. The results for the potential in the vacuum region, i.e. the offset,

is significantly improved by the use of weights, as can be seen (orange curve) in

Fig. 4.8b). The same result might be achieved by the derivation of two separate

passivant AEPs, one generated from a [111] slabs and one from a [100] slabs. Both

potentials might be used on the respective facets of a Silicon QW with 3.0 nm

diameter (as shown in Fig. 4.8a)). The results were improved for states close to the

band gap from an error of 30 meV to below 10 meV. However, this improvement on

already very small scale, was not systematic for all the states considered. Overall,

an improvement of the results is possible using this technique, which has the benefit

to contain no weight parameter, but rather more complicated from the derivation

procedure.

QDs are the most challenging nanostructures in terms of transferability as the

passivant atoms point virtually in all directions. In the AEP approach ideally

passivated nanostructures are considered. The structural information as well as the

numerical results for the band gaps are given in Table 4.4 for four different silicon

quantum dots. It is important to notice, that the E0 gaps are in good agreement

with the DFT results for all the sizes considered.

Next, the quantum dot with the radius 15Å, which represents the size compara-

ble to experiment, was contemplated. The results are presented in Fig. 4.9, where

the eigenvalues in a large range of energy as well as the error bars between DFT

and AEP results are represented, similar to what is shown in Fig. 4.7. The match
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between AEP and DFT calculations is excellent, with the deviations below 50 meV.

The probability density of a wave function ψi corresponds to |ψi|2. The wave

functions are orthonormal by definition and therefore for each wave function ψ must

be fulfilled the condition from Eq. (2.7). The quality of the AEP wavefunction can

be judged by projecting them onto the DFT wave functions:

〈ψAEP
i |ψDFT

i 〉 ≤ 1 . (4.8)

The closer is the result of projection to 1.0, the more AEP and DFT wave

functions are similar to each other (1.0 would mean identical). The actual values

are very close to 1.0, with some improvement if the weight parameter (Eq. (4.7))

is implemented. In the lower panel of the Fig. 4.9 selected wave functions as one-

dimensional plots across the center of the quantum dot are shown. Wave functions

of degenerate eigenstates are summed and their degeneracy is denoted in brackets.

The values are the exact numerical values of the projection onto the DFT wave

functions. The DFT results (red) and the AEP results with weight (orange) show

very good agreement. The insets in the upper part of the Fig. 4.9 shows three-

dimensional isosurface-plots of the highest occupied nanocrystal state (HOMO)

and the lowest unoccupied nanocrystal state (LUMO), showing clearly confined

envelope states.
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Figure 4.9: DFT and AEP results for a silicon quantum dot with the radius of 15Å (see
Table 4.4). The eigenvalues and the eigenvalue differences are given in the upper two
panels. The projection is calculated as in Eq. (4.8) and describes the quality of the AEP
wave functions. Selected wave functions around the band gap are plotted explicitly in
one-dimension across the quantum dot in the lower panels. The insets of the upper panel
show three-dimensional plots of the isosurfaces of the HOMO and LUMO wave functions.
Reprinted from [130].

The importance of the imaginary part (which is responsible for the asphericity of

the passivant potential) is reassessed by calculating the eigenvalues and eigenstates

using only the real-space component of the AEP. The results of this “spherical ap-
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proximation” are shown in Fig. 4.10. The major qualitative discrepancies can be

observed in the conduction states (LUMO and above) as well as some quantita-

tive differences occuring in the valence states (HOMO and below). The surface

dipoles, which can be modeled by the non-spherical complex passivant AEP, form

the band-offset to vacuum which is essential for the correct reproduction of the CB

in colloidal nanostructures. The degeneracy of the LUMO is entirely different when

the imaginary part of the potential is neglected. The splitting between the HOMO

states tends to be overestimated within the spherical passivant approximation.
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Figure 4.10: Eigenvalues of the Si quantum dot with radius 15 Å (top panel) calculated
via DFT and calculated using AEPs without the imaginary component (AEP spherical).
Selected wave functions around the band gap calculated with DFT and AEP spherical
are shown at the bottom panel). Reprinted from [130].

4.2.4 Atomistic passivation for other semiconductor materials

In order to show AEP method quality for different semiconductor materials, a

quantitative comparison of the eigenvalues obtained for Si, InP and CdSe QWs

with the radius around 7 Å is performed. Each quantum wire is constructed along

the [100] crystallographic direction in case of ZB crystal structure (Si and InP) or

along the [0001] direction in case of WZ crystal structure (CdSe). The structural

information is given in Table 4.5. The average hydrogen density are similar to the

values obtained for the Si QDs (Table 4.4).
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QW Si InP CdSe

QW Radius 6.5Å 6.5Å 7Å

ρ(H) (1/nm2) 12.47 11.50 11.69

E0 (DFT) (eV) 2.147 1.771 1.475

E0 (AEP) (eV) 2.165 1.911 1.628

Table 4.5: Structural parameters and band gaps of different QWs. The Si and InP QWs
have ZB crystal structure while the CdSe QW has WZ structure. The passivant density
on the surface is given as ρ(H).

The eigenvalues around the band gap are presented in Fig. 4.11. In the up-

per panels, an energy range in the vicinity of the band gap is shown (aligned at

VBM). For all three materials, Si, InP and CdSe the AEP results (blue crosses)

are in very good agreement with the DFT results (red squares). Both methods

capture the indirect nature of the band gap in Si QW, which results in the reduced

LUMO/LUMO+1 energy offset in comparison with the direct band gap bulk mate-

rials. However, the LUMO/LUMO+1 states for Si QW are non-degenerate states

due to intervalley coupling [132]. The errors between the DFT and the AEP results

are given as bar chart in the lower part of the Fig. 4.11, showing that all errors are

below 150 meV, which is more than satisfactory. The introduction of the weight

factor w = 0.6 for the doubly-passivated surface atoms (orange bars) in comparison

with the absent weight factor (blue bars) does not improve the results significantly

in this energy range.
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Figure 4.11: Top panels: Eigenvalues for Si, InP and CdSe QWs in the proximity of the
band gap. Lower panels: bar charts showing the differences between DFT results and the
AEP result including the weight strategy (orange) and the AEP result without weight
(blue). Reprinted from [130].

44



Chapter 4. Method development

4.3 Correction of the single-particle band gap

As mentioned in Section 2.2.1, the AEP approach inherits also the electron

charge delocalization= from LDA [61] which leads to an underestimation of the

single-particle band gap E0. To empirically adjust the band gap to experimental

values, the non-local part of the pseudopotential V psp,nloc (Eq. (2.13)) should be

considered:

V psp,nloc =
∑

lm

|χKBlm 〉EKB
l 〈χKBlm | ,where (4.9)

EKB
l =

〈ulδVl(r)|δVl(r)ul〉
〈ul|δVl(r)|ul〉

and |χKBlm 〉 = | δVl(r)ψlm 〉
〈ulδVl(r)|δVl(r)ul〉1/2

.

Here δVl(r) corresponds to the difference of the full pseudopotential V psp and

its local part V psp,loc, the latter is also part of the AEPs. The ul is the angular part

of the atomistic pseudopotential wave function ψlm. For details see also Ref.[73].

The δVl(r) can be modified in the following way, using the function:

δVl(r) = δVl(r) + βl

(
1 + cos

πr

rc

)
for r < rc . (4.10)

The βl-parameter is individually adjusted for every material and angular momentum

l (l = 0 corresponds to the so-called s-component, l = 1 to the p-component and

l = 2 to the d-component of the pseudopotential) to fit the bulk band gap to the

experimental value. The pseudopotential δVl(r) is only modified within the cutoff

radius rc and left unchanged for larger r values. For most materials, rc = 2.25 Bohr

was used.

4.3.1 β-correction influence on the bulk band structure and e/h effective

masses

The β-correction for Si bulk semiconductors is shown in Fig. 4.12. The Si pseu-

dopotential was generated with Vd-components as a local part, thus β-correction

can be applied to Vs- and Vp-components of the pseudopotential. One should keep

in mind, that Si bulk is an indirect-gap material, so the experimental band gap cor-

responds to the transition between the Γ and the 0.86X k-point. The introduced

β-correction instigates a slight shift of the CBM from 0.86X to 0.83X k-point.
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Figure 4.12: Band structure of the Si bulk (without SO coupling) before (black dashed)
and after (blue solid) β-correction (see Eq. (4.10)). The chosen β values are specified in
Table 4.6. The transition corresponding to the indirect band gap is shown schematically
with arrows.

The band structure parameters versus different βs and βp values for Si bulk are

shown in Fig. 4.13. Any pair of beta-parameters can be chosen along the band gap

contour line (blue) to fulfill the band gap correction, therefore some additional band

structure parameters such as Γ-X or Γ-L gap can be taken into account (the closer

to additional contour lines - the better). It is clear that the perfect fit of all band

structure parameters is not feasible, however, the final β-set is aimed to match the

minimal deviations from experimental values as well as to choose minimal possible

absolute values of the β-parameters.
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Figure 4.13: Contour lines show the match between calculated and experimentally mea-
sured band structure parameters for Si bulk [133], with respect to different β-values. The
β-set, which was chosen for the further calculations, is marked by the green point.

β-parameters indirectly influence on the effective mass of the electron and hole

and also may alter SO band splitting (if implemented). The exact values for

the band gap, SO splitting and e/h effective masses without and with chosen β-

correction for Si bulk in comparison with experimental values are shown in Table 4.6.

The same procedure for ZnS will be described in detail in Section 5.1. The electron

effective mass me(Si) is anisotropic for Si, and therefore is subdivided into a longi-

tudinal (100) component and two (110) and (111) transverse components. For Si,

the CBM is mostly formed by the Vs-component of the pseudopotential, and the

VBM is mostly formed by the Vp-component, that is why mostly the shift of the

VBM is observed for chosen β-set in Fig. 4.13.

Si bulk E0 ∆SO me,l me,t mhh mlh

no β-correction 0.56 eV 51 meV 0.90 0.19 0.28 0.20

βs = 0.01, βp = −0.095 1.12 eV 54 meV 0.99 0.22 0.30 0.25

experimental values 1.12 eV 44 meV 0.98 0.19 0.46 0.16

Table 4.6: Band gap, e (at the CBM) and h (at the VBM) effective mass values for
Si bulk semiconductor with and without β-correction in comparison with experimental
values [133]. In case of Si, the same β-set is used with and without SO coupling.
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The experimental band structure parameters are taken from Ref. [133]. Due to

the method restrictions, it is impossible to correct all band structure parameters and

effective masses simultaneously. To match the optical absorption experiments, the

band gap value at room temperature (300K) is used as the main target value for the

β-correction. In case of significant deviations for the semiconductor band structure

at room temperature and at 0K, β-parameters set for ideal e/h effective mass or for

experimental band gap at 0K temperature can be chosen differently, depending on

the purposes of the following calculations and experimental benchmarks. Although

this does not apply to Si, sometimes different β-sets are required depending on

whether the SO interactions are considered in the calculation.

4.3.2 β-correction for the band offsets in core-shell QDs

The β-correction is mostly used to match the experimental band gaps. For

core-shell systems, however, it is also important to preserve the correct band offset

between core and shell material, which influences the optical properties of the core-

shell NCs. The band structures around the band gap without and with β-correction

are shown in Fig. 4.14.
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Figure 4.14: Band gaps and band offsets around the Γ-point for ZB CdSe/CdS, aligned
at the Cd d-bands (no SO coupling): a) without β-correction b) with β-correction fitted
to the experimental E0, but preserving the LDA band offsets c) β-correction to ideal E0

and to natural band offsets.

The difficulty in calculating the band offset lies in finding a common reference

that would determine the relative band alignment between the two materials [134].
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However, for the structures with common cations, for example, CdSe/CdS, in which

the Vd-components of the cation pseudopotentials are the same, it is possible to

align the d-bands in the CdSe and CdS bulk band structures in order to obtain the

relative offset.

The reference values for the LDA and natural band offsets measured experimen-

tally were taken from Ref. [120, 134, 135, 136]. The β-correction parameters for

CdSe and CdS in the calculations with and without SO coupling are different and

therefore specified explicitly in Table 4.7 together with the corresponding material

offsets. One should keep in mind that for ZB and WZ binary materials, the CBM

is mostly formed by the non-local Vs-component of the cation (Cd) pseudopotential

(βs,c), and the VBM is mostly formed by the non-local Vp-component of the anion

(Se or S) pseudopotential (βp,a).

E0 (CdSe) E0 (CdS) VBM offset CBM offset

no correction 0.227 eV 0.706 eV 0.250 eV 0.229 eV

without SO coupling, LDA

βCdSes,c = 0.050, βCdSep,a = −0.175 1.739 eV 2.572 eV 0.667 eV 0.166 eV

βCdSs,c = 0.025, βCdSp,a = −0.180

without SO coupling, Natural

βCdSes,c = 0.050, βCdSep,a = −0.175 1.739 eV 2.504 eV 0.427 eV 0.337 eV

βCdSs,c = 0.115, βCdSp,a = −0.155

with SO coupling, LDA

βCdSes,c = 0.200, βCdSep,a = −0.155 1.732 eV 2.535 eV 0.605 eV 0.198 eV

βCdSs,c = 0.200, βCdSp,a = −0.145

with SO coupling, Natural

βCdSes,c = 0.080, βCdSep,a = −0.190 1.778 eV 2.465 eV 0.475 eV 0.212 eV

βCdSs,c = 0.080, βCdSp,a = −0.160

reference values

Experimental values, Ref.[120] 1.732 eV 2.482 eV – –

LDA-offsets, Ref.[136] – – 0.61 eV 0.29 eV

Natural offsets, Ref.[134] – – 0.35 eV 0.34 eV

Natural offsets, Ref.[135] 1.76 eV 2.50 eV 0.42 eV 0.32 eV

Table 4.7: Band gap and HOMO/LUMO offsets for CdSe and CdS bulk semiconductor
with and without SO-coupling in comparison with the reference values. The β-correction
sets for LDA and natural offsets are specified.

4.3.3 β-correction influence on the wave functions
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Wave functions projections before and after β-correction are considered (see

Eq. (2.7)), to check the influence of the β-parameters on the atomistic wave func-

tions:

〈ψAEP+β
i |ψAEP

i 〉 ≤ 1 . (4.11)

The closer is the result of projection to 1.0, the more wave functions are similar

to each other (1.0 would mean identical). The wave function projections from

Eq. (4.11) for Si QD with R=7.5 Å are shown in Fig. 4.15. An excellent agreement

between the wave functions before and after β-correction is observed. This result

was expected, because β-correction does not affect any of the basic criteria for the

norm-conserving pseudopotentials [137].
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Figure 4.15: Results for the Si QD with R=7.5 Å. Upper panel: the wave function
projections of states near band gap, calculated as described in Eq. (4.11). Lower panel:
HOMO and LUMO wave functions before (black) and after (green) β-correction are given
explicitly in one-dimension across the QD.

Similar check was done for the β-correction for CdSe/CdS core-shell QD with a

core radius R=12 Å and a shell thickness of 16.5 Å, both for the LDA and natural

band offsets. The results are shown in Fig. 4.16.
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Figure 4.16: The wave function projections of states near band gap for the CdSe/CdS
QD with a core radius of 12 Å and a shell thickness of 16.5 Å, calculated as described in
Eq. (4.11). The β-sets for SO coupling included for LDA (green) and natural (orange)
band offsets are considered.

From Fig. 4.15 and Fig. 4.16 it can be concluded, that the correction scheme does

not have any considerable influence on the wave function confinement or distribu-

tion. In case of the core-shell QD, even so the projections are not as close to 1 as in

case of one-compound nanostructures due to change of the offsets, β-correction still

has minimal influence on the wave function shape and distribution. β-set for the

QD with natural band offsets returns the wave function projections in VB slightly

closer to 1. The role of the band offsets between CdSe and CdS materials will be

further investigated in Section 5.4.

4.4 Dielectric screening function for colloidal QDs

The optical properties of colloidal QDs are also affected by the embedding envi-

ronment [116]. The influence of the solvent and surface passivation on their optical

properties is important to consider. Dielectric screening is frequency-dependent

and can be subdivided in a high-frequency (ǫ∞) and a low-frequency (ǫ0) response.

The optical properties are dominated by the fast electronic response to the charge,

which is given by ǫ∞. The additional ionic response is much slower and contained in

ǫ0 [138]. Not all of the ionic responses can screen the optical excitation, e.g, solvent

reorganization is too slow to screen a typical optical excitation and should not be

taken into account in the screening constant ǫout [86]. Haken [118] has developed a

model that describes the part of the ionic response for semiconductors ǫin,0 that is

fast enough to screen optical excitations. This contribution is called ionic screening

(see Section 4.4.2).
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4.4.1 Constant screening

The simplest way to model dielectric screening is to use a constant screening

ǫin,∞ = const, in which case the diagonal direct Coulomb integral Jconst
i,j can be

written within the single-configuration (SC) approximation as:

Jconst
i,j =

1

ǫin,∞

∑

σ1,σ2

∫ ∫ |ψi(r1, σ1)|2|ψj(r2, σ2)|2
|r1 − r2|

dr1dr2 . (4.12)

4.4.2 Microscopic screening

A more advanced screening model uses a microscopic description, ǫ(|r1 − r2|).
In the framework of the Thomas-Fermi model, Resta [117] proposed a microscopic

dielectric screening model that depends on the Thomas-Fermi wave vector q and

the screening radius ρ∞:

Jmicro
i,j =

∑

σ1,σ2

∫ ∫ |ψi(r1, σ1)|2|ψj(r2, σ2)|2
ǫ(|r1 − r2|)|r1 − r2|

dr1dr2 , (4.13)

with ǫ(|r1 − r2|) ={
ǫin,∞ q ρ∞

sinh[q(ρ∞−|r1−r2|)]+q|r1−r2|
if |r1 − r2| < ρ∞

ǫin,∞ if |r1 − r2| ≥ ρ∞
.

The microscopic screening function tends to 1 (unscreened interaction) when

r1 → r2 and tends to ǫin,∞ when |r1 − r2| is beyond the screening radius ρ∞.

The contribution of the ionic part of the dielectric screening function ǫionic(|r1−
r2|) can be also included in the microscopic screening term, using the polaronic

model of Haken[118]:

1

ǫionic(|r1 − r2|)
=

[
1

ǫin,0
− 1

ǫin,∞

]
×
[
1− e(−|r1−r2|/ρh) + e(−|r1−r2|/ρe)

2

]
. (4.14)

Here ρe,h =
√

1/2me,hωLO, where me,h stands for electron and hole effective

mass, correspondingly, and ωLO is a frequency LO-phonon mode of the bulk ma-

terial. As the radius of QD becomes small compared to ρe and ρh, the relative

importance of ionic screening decreases [91].
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The lack of explicit dependence of the microscopic screening on r, but only

on |r1 − r2|, allows calculating the Coulomb and exchange integrals in reciprocal

space, which is computationally very advantageous [86]. After Fourier transform

the ǫ(|r1 − r2|) (Eq. (4.13)) is turned into:

ǫ(k) =
k2 + q2

k2 + q2 sin(kρ∞)/(ǫin,∞kρ∞)]
, (4.15)

and, correspondingly, the contribution from ionic part ǫionic(|r1 − r2|) from

(Eq. (4.14)) can be written as:

ǫionic(k) =

[
1

ǫin,0
− 1

ǫin,∞

]
×
[

1/2

1 + ρ2hk
2
+

1/2

1 + ρ2ek
2

]
(4.16)

(see Ref.[72] for details).

4.4.3 Modified Penn model for ǫin

Based on the ideas developed by Penn [119] that the dielectric constant can be

related to the band gap of the material, a modified Penn model was developed for

QDs[72, 91]. The increased band gap of the QD, compared to the constituting bulk

semiconductor material gap, leads to a reduced dielectric constant [72, 91]:

ǫQD
in,∞(R) = 1 + (ǫbulkin,∞ − 1)

[E bulk
0 +∆E bulk]2

[EQD
0 +∆E bulk]2

, (4.17)

ǫQD
in,0(R) = ǫQD

in,∞(R) + (ǫbulkin,0 − ǫbulkin,∞) ,

where Ebulk
0 and EQD

0 are the single-particle bulk and QD band gaps, respectively,

and ∆Ebulk denotes the difference between so-called E2 and E0 transitions in bulk

[5]. E2 is the transition with strongest absorption in a semiconductor with tetrahe-

dral crystal structure (4.87 eV for InP and 6.07 eV for CdSe) [120].

The radius-dependent ǫQD
in,∞ along with the bulk value ǫbulkin,∞ are shown in Fig. 4.17.

The radius-dependent ǫQD
in,0 is only used to calculate ionic contribution in the pola-

ronic Haken model (see Eq. (4.14)). The modified Penn model in particular and

the radius-dependent dielectric screening for QDs in general are still actively used

[139, 140, 141, 142, 143].
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Figure 4.17: Radius-dependent ǫQD
in,∞ calculated with the modified Penn model (blue) in

comparison with the ǫbulkin,∞ dielectric screening (black) for InP (left panel) and CdSe (right

panel) QDs. See Eq. (4.17) for details.

4.4.4 Macroscopic screening

In the macroscopic screening model, the boundary between the QD and the

surrounding medium is described by a dielectric function ǫ(r) that changes smoothly

from ǫin,∞ to ǫout at the QD surface. The transition region has a width in the range

of the inter-atomic bond length [92, 91]. In this case, the Coulomb and exchange

integrals are calculated by solving the Poisson equation in real space:

∇ǫ(r)∇Φj(r) = −4πρj(r), (4.18)

where ρj(r) =
∑

σ

|ψj(r, σ)|2 ,

with the electrostatic potential Φj(r) and the charge density ρj(r). The direct

Coulomb integrals Jmacro
i,j are obtained from:

Jmacro
i,j =

∑

σ

∫
|ψi(r, σ)|2Φj(r)dr . (4.19)

This term can be written as the sum of a constant screening term Jconst
i,j (see

Eq. (4.12)) and a polarization term Jpol
i,j , which accounts for the effects of the di-

electric mismatch between the QD and the surrounding material (solvent):

Jmacro
i,j = Jconst

i,j + Jpol
i,j . (4.20)
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To model the real space dependence of the macroscopic ǫ(r) in Eq.(4.18), the

function m(r) [93, 144] is introduced:

m(r) =
1

1 + exp[(|r| −R)/w0]
, (4.21)

where |r| is the distance from the center of the QD and R is the radius of the

QD (including atomistic passivants). The constant w0 determines the width of the

transition region and is given as 0.163a0 (as suggested in Ref. [93]), where a0 is

the bulk lattice constant of the semiconductor. Note that the same width of the

transition region is used for the polarization term in Eq. (2.30). The resulting

dielectric function ǫ(r) is:

ǫ(r) = ǫout +m(r)(ǫin − ǫout) . (4.22)

A graphical representation of the macroscopic screening ǫ(r) is shown in Fig. 4.18)

for a CdSe QD with radius 14 Å.
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Figure 4.18: Graphical representation of the macroscopic dielectric screening, calculated
according to Eq. (4.22) for the CdSe QD with R=14 Å in vacuum (ǫout = 1).

To obtain the total Coulomb interaction term, the microscopic contribution have

to be added, which is lacking in the Poisson equation solution from Eq. (4.18):

J total
i,j = Jmacro

i,j + (Jmicro
i,j − Jconst

i,j ) . (4.23)
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Jconst
i,j has to be subtracted from Jmicro

i,j as it is already included in both the Jmicro
i,j

and the Jmacro
i,j terms. Fig. 4.19 shows a schematic representation of the screening

from Eq. (4.23).

J total Jmacro Jmicro J const

= + –

1 1 11

ε
in

ε
out

ε
in

ε
in

ε
in

ε
out

ε

|r1–r2| |r1–r2| |r1–r2||r1–r2|

Figure 4.19: Top panels: schematic representation of the different screening types and
corresponding Coulomb interactions terms. The solid color fill represents the macroscopic
ǫ(r) (the gradient from dark-blue to light-blue corresponds to the transition between ǫin
and ǫout), the pattern fill represents schematically the microscopic screening ǫ(|r1 − r2|).
Bottom panels: Dielectric function as a function of the distance between two integration
points. Reprinted from [94].

4.4.5 Macroscopic screening in reciprocal space and its restrictions

Since real-space calculations of the electrostatic potential (see Eq. (4.18)) lead to

relatively long computational times, an effort to calculate Coulomb terms J total
i,j (see

Eq. (4.23)) fully in reciprocal space was made by substituting the radius-dependent

dielectric screening function ǫ(r) from Eq. (4.22) directly into the microscopic

screening model (Eq. (4.13)):

J total,gs
i,j = (4.24)
∑

σ1,σ2

∫ ∫
1

|r1 − r2|
[ |ψi(r1, σ1)|2|ψj(r2, σ2)|2

ǫout(|r1 − r2|)
+

+
|ψi(r1, σ1)|2|ψj(r2, σ2)|2m(r1)m(r2)

ǫin(|r1 − r2|)
−

−|ψi(r1, σ1)|2|ψj(r2, σ2)|2m(r1)m(r2)

ǫout(|r1 − r2|)
]
dr1dr2 .
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The transformation of the R-dependent function m(r) into reciprocal space is

quite complicated because in fact there is no dielectric boundary between the QD

and surrounding medium in the reciprocal space. At the same time, it is non-trivial

task to map distance-dependent microscopic screening ǫ(|r1−r2|) (Eq. (4.13)) in the

real space. However, from Eq. (4.24) it follows, that the radius-dependent function

m(r) could be applied not only to the dielectric function ǫ but also to the wave

functions ψi. In this case, “screened” wave functions will replace initial ones in real

space and will be later Fourier-transformed to the reciprocal space, and Eq. (4.21)

might be re-written as:

mψi
(r) =

1

1 + exp((|r|−Rψi
)/w0)

. (4.25)

In Eq. (4.25) the Rψi
is the radius of the individual wave function, which is de-

fined by quantum confinement and therefore indirectly also by QD radius. However,

the radius of the wave function confinement Rψi
tends to scale differently than QD

radius R, and it depends on the wave functions individually, whereas QD radius R

is an averaged value. All wave functions obtained from ground state calculations

are orthonormal by definition (Eq. (2.7)). After applying Eq. (4.25), though, wave

functions will be not normalized anymore:

∫
mψi

(r)ψ∗
i (r)ψi(r)d

3r = norm < 1 . (4.26)

The norm of the wave function is an individual parameter which can be used as

a criteria for the Rψi
choice. It is possible to fix the norm parameter in Eq. (4.26)

that way, that the final result for the J total,gs
i,j from Eq. (4.24) will coincide with

the J total
i,j from Eq. (4.23). The necessity of the m(r) to mψi

(r) modification is

demonstrated for the Si QD (R = 16.7Å) in Fig. 4.20. The final result is obtained

with norm = 0.6.

The norm value is highly transferable for different sizes and materials. To

estimate the possible consequences after the “denormalization” of the wave func-

tions, several tests were performed. First of all, the influence on the electron self-

polarization term
∑pol

e (Eq. (2.29), the radius for polarization potential Vs is the

radius of QD in both cases) is shown in Fig. 4.21.
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In Fig. 4.21 a noticeable increase of the self-polarisation term in case of reduced

norm value can be observed for low ǫout, which most probably happens because of

the clearly confined wave function and charge localization relatively far from the

QD dielectric border. This effect might vanish in case of large QDs, where the wave

functions are initially well-confined inside the NC. Similar effect is observed for the∑pol
h , and thus not shown explicitly.

The orthogonality of the wave functions (Eq. (2.7)) after the “denormalization”

was investigated additionally, and the results for CdSe QD with R = 14.0 Å are

shown in Fig. 4.22. It is demonstrated that some of the wave functions loose also

orthogonality after norm value reduction, which leads to over-ranging of the exciton

DB splitting (see Section 2.5.1 for details), especially for the ǫout close to 1, and

some other undesirable consequences such as abnormally high correlation effects.

Therefore, the idea of the full reciprocal-space screening model requires further

research and will not be considered in the next sections.

 0

 10

 20

 30

 40

 50

 60

 1  2  3  4  5  6  7  8  9  10

D
B

 s
p
li
tt

in
g,

 m
eV

 out

J
 total

J
 total, gs

J
 micro

0.00

0.02

0.5 0.6 0.7 0.8 0.9 1.0

<
ψ

i|ψ
j>

norm, <ψi|ψi>

ϵ

CdSe QD
R=14.0 Å
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Chapter 5

Results and discussion

5.1 Optical transitions in ZnS 2D nanoplatelets

The band structure for ZnS bulk (WZ) with β-correction and SO-coupling is

shown in Fig. 5.1.

-8

-4

 0

 4

 8

A L M Γ A H K Γ

after β-correction
before β-correction

E
n
er

gy
 (

eV
)

k-points

Figure 5.1: Band structure of the WZ ZnS bulk (with SO coupling) before (black dashed)
and after (blue solid) β-correction (see Eq. (4.10)). The band structure parameters are
specified in Table 5.1. The transition corresponding to the band gap at Γ-point is shown
schematically with arrows.
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In Fig. 5.1 the Zn bands at the relatively deep energies are formed entirely by

d-component of the pseudopotential), which is not affected by the β-correction. ZnS

is a direct-gap semiconductor and belongs to large-gap materials, therefore quite

significant β-correction is implemented to fit the experimental results. Band struc-

ture parameters for chosen β-set are specified in Table 5.1 and initially were fitted

to ZnS bulk GW band gap ([145]. The experimental values at room temperature

are taken from Ref.[145, 146].

ZnS bulk (WZ) E0 ∆CF ∆SO me,l me,t mh,l mh,t

no β-correction 1.93 eV 33 meV 75 meV 0.16 0.17 1.49 0.50

βZnSs,c = 0.14 βZnSp,a = −0.164 4.02 eV 35 meV 59 meV 0.34 0.37 1.83 0.77

experimental values 3.90 eV 29 meV 92 meV 0.28 – 1.40 0.49

Table 5.1: Band gap and e/h effective mass values for ZnS bulk semiconductor with and
without β-correction in comparison with experimental values [145, 146]. βs,c corresponds
to the Vs-component of the cation (Zn) pseudopotential, and βp,a affects the Vp-component
of the anion (S) pseudopotential. Both electron and hole (A-band) effective masses me,h

are anisotropic and consist of the longitudinal (100) and transverse (010), (120) compo-
nents.

The AEP-based calculations with β-correction and SO-coupling of the ZnS WZ

slab with 1.91 nm thickness along [1120] (or [110]) growth direction and pseudo-

hydrogen surface passivation were performed in order to predict the ground state

band structure, simulate the dipole transitions and explain the absorption spectra

features of the ZnS 2D nanoplatelets (NPLs) with 1.81 ± 0.2 nm thickness along

[1120] growth direction, observed in the experiment [147]. The absorption spec-

trum was modeled by calculation of the dipole transitions matrix elements within SC

approximation (see Section 2.4). Temperature-dependent broadening of the dipole

transitions was implemented in agreement with Ref.[148]. The calculated and exper-

imental absorption spectra along with single-particle eigenvalues and eigenfunctions

of the relevant near-band-gap states are shown in Fig. 5.2.

In the experiment, the appearance of several absorption features in the absorp-

tion spectra of colloidal CdSe NPLs, and generally in 2D systems, was attributed

to electronic transitions from h0 (heavy-hole (hh) in ZB or A-band in WZ), h1

(light-hole (lh) in ZB or B-band in WZ), and h2 (spin-orbit (SO) in ZB or C-band

in WZ) valence bands to the e0 (CBM) [20], as well as inter-band transitions from

lower valence to higher conduction bands [149]. From the theoretical simulation of

the dipole transitions using Γ-point wave functions, it can be concluded that the

first absorption peak for WZ ZnS NPLs corresponds to a sum of three transitions,

namely, from the h0, h1, and h2 nodeless states derived from the A-, B-, and C-bulk

valence bands to the e0 nodeless state (CBM). The observed first absorption peak
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is dominated by the third valence band state (h2), which has an offset from the h0

(VBM) less than 100 meV. The dominance of the h2 state in the absorption peak

obviously contributes to the considerable Stokes shift observed.

Figure 5.2: (A) Normalized absorption spectrum (black) of ZnS WZ NPLs after subtrac-
tion of a scattering background along with calculated dipole transitions (red dashed). The
first exciton energy was fitted to the experimental value and a temperature broadening ap-
plied to the results. (B) Single-particle eigenvalues at Γ-point (left) and 1d atomistic wave
functions (right) of the relevant near-band-gap states. Bottom right: atomic structure of
the ZnS slab used in the simulations. Reprinted from [147].

The calculations show that crystal field and SO splitting between h0, h1 and h2
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states in the valence band for ZnS NPLs are in the range of tens of meV and hence

not large enough to produce experimentally resolved absorption peaks. This explain

the relatively large broadening of the first absorption band. The second absorption

peak at around 4.8 eV corresponds to a transition between lower conduction and

higher valence band states with a single node (h4-e1 transition). The third absorp-

tion peak at around 5.62 eV corresponds to the transition between nodeless states

(h1-e3 transition), where the electron state e3 originates from the second bulk con-

duction band at the Γ-point. The weak shoulder corresponds to the transitions

between relatively deep bands, to the two-nodes states (h5-e2 transition).

The agreement between the calculations and the experimental results is qual-

itatively good with some quantitative differences. The second absorption peak is

slightly too high in energy and the lowest peak slightly too low. Note that the

single particle gap is at 4.25 eV, which is over 100 meV below the experimental

result. The differences can be attributed to the lack of correlation effects in the

calculations and possibly the presence of out-of-plane strain, which would explain

the underestimated band gap, for example due to surface reconstruction, when the

inter-atomic distances may be altered leading to the appearance of strain [121].

5.2 Solvent-dependent dielectric screening

In this part different approaches to treat theoretically the environmental de-

pendence of the optical properties of QDs are used and compared and a detailed

matching to experimental results is presented, which is used to validate the AEP ap-

proach (with SO coupling and β-correction) in combination with the final screening

model.

5.2.1 The role of the polarization terms

First of all, a comparison to earlier theoretical work and assessment of the famous

cancellation of the Coulomb surface polarization term Jpol with the surface self-

energy term Σpol [92, 89] was done. In Fig. 5.3a) single-particle (E0), quasiparticle

(EQP) and optical (Eopt) band gaps are shown for an InP QD with 17.5 Å radius

as a function of the dielectric constant of the environment ǫout.
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Figure 5.3: a) Single-particle, quasiparticle and optical band gaps as a function of the
dielectric constant of the surrounding ǫout. b) microscopic Jmicro, polarization Jpol and

difference
∑pol

e+h − Jpol as a function of ǫout. The AEP results (green) are compared to
the semi-empirical pseudopotential method (SEPM) results of Ref.[91] (blue), both are
obtained for a spherical InP QD with 17.5 Å radius and ǫin = 10.5. Reprinted from [94].

Fig. 5.3 demonstrates, that E0 is independent of ǫout, while Eopt depends weakly

and EQP strongly on ǫout. The results are compared to the previously developed

model of Zunger and Franceschetti [91], where SEPs were used [81]. An overall

very good agreement between AEP and SEPM approaches is observed, the only

noticeable difference is for a strong dielectric mismatch (small values of ǫout), where

the optical band gap from the AEP is somewhat larger than from the SEPM calcu-

lations. This difference is attributed to the different treatment of the surface, where

the non-spherical AEPs are used [130], while in the SEPM approach the empirical

Gaussian potentials on the surface are considered [91].
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In Fig. 5.3b) the individual terms entering the calculation of Eopt are shown:

Eopt = E0 +
∑pol

e+h − Jpol + Jmicro , (5.1)

where
∑pol

e+h =
∑pol

e0 +
∑pol

h0 . The microscopic term Jmicro is independent of ǫout,

whereas the polarization terms show a strong dependence.

The same analysis was performed for the InP and CdSe QDs of the similar size

(with the radius 13.5 Å and 14.0 Å, correspondingly) to show the transferability

of the results. The calculated Coulomb and self-polarization terms are shown in

Fig. 5.4.
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Figure 5.4: Microscopic Jmicro, polarization Jpol and difference
∑pol

e+h−Jpol as a function

of ǫout. The results for spherical InP QD with 13.5 Å radius and ǫbulkin,∞ = 9.61 (green) and

spherical CdSe QD with 14.0 Å radius and ǫbulkin,∞ = 6.3 (pink) are shown.

The difference (
∑pol

e+h − Jpol) is rather small for both materials, which is in line

with the expected cancellation of polarization terms based on electrostatic argu-

ments [89] and tight binding GW[92]. However, this difference becomes none negli-

gible for large dielectric mismatch (low dielectric constant of the outside material),

where deviations up to 100 meV are observed.

5.2.2 Optical properties of CdSe and InP QDs in non-polar solvents

In Fig. 5.5 the quasiparticle band gap EQP for spherical ZB InP and CdSe QDs in

hexane (ǫout = 1.89) is plotted. The results of the most accurate solvent-dependent
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model (J total, see section 4.4.4) are shown as green stars. The experimental results

for CdSe are shown as red squares and are in excellent agreement with the solvent-

dependent results. The large discrepancy between the solvent-dependent (green)

and the solvent-independent models (black) is easily understood: in the absence of

dielectric boundary, as in the solvent-independent model, the polarization effects

are absent and hence EQP = E0. The missing polarization self-energy term can

become very significant for large dielectric mismatch, in agreement with what was

shown in Fig.5.4).
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Figure 5.5: Quasiparticle band gap EQP for a) InP and b) CdSe QDs as a function of the
inverse QD radius for the solvent-independent screening model (ǫin = ǫout, black stars)
and the solvent-dependent model for hexane (ǫout = 1.89, green stars). The experimental
results of Meulenberg et al. [150] for CdSe in hexane are shown as red squares. The red
dashed line is a guide to the eye. Reprinted from [94].

In Fig. 5.6 the calculated and measured [151, 150, 152, 153] optical band gaps

for ZB InP and CdSe QDs are plotted. For the solvent-dependent screening model

ǫout = 1.89 is considered. All calculations and experiments correspond to a large

dielectric mismatch between the NC and the solvent (ǫbulkin,∞ (CdSe) = 6.3 and ǫbulkin,∞

(InP) = 9.61). The experiments of Refs. [151] and [150] (red squares) are in hexane

(ǫout = 1.89), while the Refs. [152] and [153] (yellow squares) are in an unspeci-

fied oil mixture (ǫout ≈ 2). Three types of calculations are performed: (i) using the

exact solvent-dependent model with bulk ǫbulkin,∞ (green stars) and (ii) using a solvent-

independent (Jmicro) screening (see section 4.4.2) with a QD radius-dependent ǫQD
in,∞

(modified Penn model, see Section 4.4.3 for details) following Eq. (4.17) (gray cir-

cles) and (iii) using a solvent-independent model and bulk screening ǫbulkin,∞ (black

stars).
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Figure 5.6: Optical gap Eopt for a) InP and b) CdSe QDs as a function of the inverse

QD radius. The solvent-dependent screening model J total with ǫbulkin,∞ (green stars) and

the solvent-independent screening models with ǫbulkin,∞ (black stars) and ǫQD
in,∞ (gray circles)

are shown. The experimental results for InP [151, 152] and CdSe [150, 153] are shown
as squares. The experiments of Refs.[151] and [150] are in hexane (ǫout = 1.89) and of
Refs.[152] and [153] are in an unspecified oil mixture (ǫout ≈ 2). The red dashed line is a
guide to the eye. Reprinted from [94].

The optical gaps calculated with the exact solvent-dependent model (green) are

in very good agreement with experiment for the entire size range. In case of solvent-

independent models (gray and black) it can be seen that the Eopt is underestimated,

especially for the QDs with small sizes. However, the results using high-frequency

bulk screening (black stars) are in reasonable agreement with the experiment and

the full dielectric model (green). Comparing both solvent-independent models, one

may notice that the usage of the QD-radius-dependent screening (gray) performs
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significantly worse than the plain bulk screening (black). Generally, it is advisable to

use the full bulk dielectric constant ǫbulkin,∞ instead of the reduced ǫQD
in,∞ (modified Penn

model) value and present the understanding of the effect qualitatively in Fig.4.17:

While the modified Penn model (blue in Fig.4.17) leads to a smooth but steady

reduction of ǫin,∞ when the QD size is reduced, a more abrupt transition from the

bulk value to a lower value probably occurs (black dashed line, drawn qualitatively).

So that the modified Penn model leads to a significantly too low dielectric constant.

Further important conclution is that the deviation between the different screening

models for the calculation of the optical gap becomes insignificant for large QDs,

where ǫQD
in,∞ approaches ǫbulkin,∞ and the polarization Coulomb interaction term Jpol

and the electron-hole polarization self-energies
∑pol

e,h almost cancel each other.

Additionally, calculated and experimental exciton binding energies (Eq. (2.33))

are compared for CdSe QDs in Fig. 5.7.
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Figure 5.7: Exciton binding energy for CdSe QDs as a function of the inverse QD ra-
dius, calculated using the solvent-dependent screening model J total with ǫbulkin,∞ for hexane

(light green stars) and toluene (dark green stars) as well as using the solvent-independent

screening model Jmicro with ǫbulkin,∞ (black stars) and radius-dependent ǫQD
in,∞ (gray circles).

The corresponding experimental results for hexane [150] (ǫout = 1.89) and toluene [154]
(ǫout = 2.39) solvents and are shown as red and yellow squares, respectively. Reprinted
from [94].

It can be seen that the solvent-independent Jmicro screening model with ǫbulkin,∞
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(black stars) heavily underestimates the exciton binding energy. On the other hand,

the solvent-independent screening model Jmicro together with the modified Penn

model ǫQD
in,∞ (gray circles) shows reasonable qualitative dependence, even though the

exciton binding energy is quantitatively underestimated. Both solvent-dependent

models reproduce the experimental results rather well. Results for the exciton

binding energy for toluene (ǫout = 2.39) are from 10 meV up to 170 meV lower,

depending on the QD size. Overall, the solvent-dependent model combined with

ǫbulkin,∞ shows again the best agreement with the experimental results.

5.2.3 The role of the shape and crystal structure (CdSe QDs)

In Fig. 5.8 Eopt is compared to further experimental [155, 156, 13] and theoretical

results[155] for CdSe QDs in solvents with higher dielectric constants (ǫout ≈ 5.0).

The results for ZB and WZ CdSe QDs are shown, as well as two different shapes

for the large ZB QDs: default spherical as well as faceted (truncated octahedron).

Both shapes are shown in the inset of Fig. 5.8.
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Figure 5.8: Eopt as a function of QD radius with ǫbulkin,∞ for ZB spherical (green stars),

ZB faceted (green squares) and WZ spherical (green triangles) QDs in chloroform (ǫout =
4.72) together with theoretically predicted [155] (empty triangles) and experimentally
measured (filled triangles) optical gaps for WZ CdSe QDs in chloroform [155] (dark-blue)
and aqueous (light-blue) solution [156] (ǫout = 5.2) as well as experimental data for ZB
QDs in chloroform (red squares) [13]. In addition to the different crystal structures, QDs
with spherical and faceted shapes are considered (see inset). Reprinted from [94].
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An overall excellent agreement between theory and experiment is obtained for

the ZB QDs. However, unlike the experimental results from Ref.[13], there is no

significant shift in the optical band gap observed when going from WZ (triangles)

to ZB QDs (squares). It can be explained by the differences in surface passiva-

tion, which will be discussed in the next section. Also the shape of the NCs does

not influence the optical band gap significantly, at least with the definition of the

QD radius which simply uses the distance from the central QD atom to the out-

most atom, including pseudo-hydrogen atoms on the surface. Please note, that the

TEM measurements of the diameter of the QDs have an uncertainty that has been

quantified [155, 156] to be around 10-15%.

5.2.4 The role of the passivant length (CdSe QDs)

To include the effect of the passivants on the dielectric environment, a third

region with dielectric constant ǫpass and width Lpass around the QD was introduced

to the mask function (see Eq. (4.21)). The functional form is according to:

mpass(r) =
1

1 + exp[(|r| − (R + Lpass))/w0]
,

ǫ(r) = ǫout +m(r)(ǫin − ǫpass) +mpass(r)(ǫpass − ǫout) . (5.2)

In Fig. 5.9a) the resulting ǫ(r) is plotted for a QD with Radius R = 10.5 Å, a

passivant width Lpass = 10 Å and ω0 = 1.89 Å. The black (blue) curve represents

the case with toluene (chloroform) as solvent. For ǫpass the value 2.1 is used, since

it approximately corresponds to the high–frequency dielectric constant of most of

the widely used organic long-chained passivants, including ODPA (ǫpass = 2.13).

In Fig. 5.9b) the optical band gap shift is shown as a function of the passivant

length Lpass for two different solvents: toluene (ǫout=2.39, shown in black) and

chloroform (ǫout=4.72, shown in blue). The Lpass = 0 results correspond to the

pseudo-hydrogen passivation results. The infinity results corresponds to the one-

step ǫ(r) results from Eq. (4.21) with ǫout = 2.1. It can be seen that for long-chained

organic passivants, such as ODPA, the dielectric properties are only weakly affected

by the solvent; with an optical band gap shift of only 13 meV in the specific case.

On the other hand, for short or atomistic passivation the dielectric properties of

the solvent are important and the shift in the optical band gap reaches 58 meV in

this case.
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Figure 5.9: a) Two-step dielectric function ǫ(r) including a passivant region (see Eq. (5.2))
for a QD with Radius R = 10.5 Å and a passivant width Lpass = 10 Å. b) Optical band

gap shift ∆Eopt for a CdSe QD with R = 10.5 Å and varying passivant length Lpass in
toluene (black stars) and chloroform (blue circles). The length of ODPA and of atomistic
passivants are shown with black arrows. c) Experimental absorption spectra (normalized)
for the two identical fractions of ODPA-passivated CdSe QDs dispersed in toluene (black)
and chloroform (blue). Reprinted from [94].

In Fig. 5.9c) the experimental absorption spectra is shown for two identical

fractions of ODPA-passivated CdSe QDs dispersed in toluene and chloroform. The

experimental results show no significant shift in the absorption peaks, in good agree-

ment with the calculations that predicts a small shift of 13 meV, which cannot be

resolved by experiment.

72



Chapter 5. Results and discussion

5.3 QD-QD coupled systems

Besides isolated nanocrystals, the advanced screening model was implemented

to the QD-QD coupled systems in order to investigate the coupling effects observed

experimentally in the close-packed films of colloidal QDs.

5.3.1 Coupled systems of Si QDs with different QD radius

First, two coupled systems of Si QDs are considered, one with two QDs of R =

7.7Å each and one with two QDs of R = 15Å each. The inter-dot distance was fixed

to 3Å in both cases. The normalized wave functions for the bonding–antibonding

states originating from former isolated HOMO and LUMO QD states are shown in

Fig. 5.10.
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Figure 5.10: one-dimensional wave functions (normalized) of BA-states for coupled sys-
tems of small (R = 7.7Å, upper panel) and relatively big Si QDs (R = 15Å, lower panel).
The plot starts at the center of the first QD and finishes at the center of the second QD.
Inter-dot distance is fixed to 3Å in both cases.

From the electron density in the inter-dot region and bonding-antibonding (BA)

splitting of HOMO and LUMO states, it can b concluded, that the coupling strength

depends on the QD size, and direct coupling effect is stronger between the relatively
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small QDs (R < 10Å). This effect can be explained by the wave function distri-

bution inside the nanoparticle. The smaller is the QD, the more electron density

is ”leaking” to the surface and passivant atoms, and therefore coupling with the

neighbors is easily possible. On the contrary, the bigger is the QD radius, the more

electron density is confined within the central part, therefore the effective distance

between the neighboring QDs is increased.

5.3.2 Formation of bonding–antibonding states in coupled systems of

small Si, InP and CdSe QDs

The BA splitting versus distance and E0 band gap change in the QD-QD coupled

systems of two small CdSe, InP and Si QDs (R < 10Å) are shown in Fig. 5.11.
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The 2Å distance is approaching the atomic bond length between the surface

atom and its passivant and corresponds to the close-packed film. It is clear that

the direct coupling effect and considerable closing of the band gap E0 occurs at

distances less than 4Å, where the direct overlap of the wave functions is possible.

InP QDs tend to be more sensitive to the coupling effect than the CdSe and Si QDs

of the same size. The indirect nature of the Si QDs band gap leads to the strong

inter-valley interactions between LUMO and upper CB states within one QD (see

Fig. 4.1. Therefore Si QDs demonstrate more localised CB states and the smallest

band gap change and BA splitting.

Si

CdSe

InP

Figure 5.12: Wave function isosurfaces of LUMO binding states at 65% of electron density
for coupled Si (red frame), CdSe (green frame) and InP (blue frame) QDs with R < 10Å.
Inter-dot distance is fixed at 2.5 Å in all cases.
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From the Fig. 5.11 it follows that the LUMO states are clearly more affected by

the QD-QD coupling (BA splitting in order of tens of meV) than the HOMO states

(BA splitting in order of meV), independently of the semiconductor material, which

can be explained by the relatively low electron effective massme in comparison with

effective mass of the holes mhh,mlh.

The three-dimensional LUMO binding state wave function isosurfaces at 65% of

electron density for the QD-QD coupled systems of different materials with inter-

dot distance 2.5 Å are shown in Fig. 5.12. The isosurfaces qualitatively confirm

the different coupling strength and show a direct connection between BA splitting

(Fig. 5.11) and electron density in the inter-dot region.

5.3.3 InP QDs in close-packed films: absorption peak shift

First of all, the correlation effects were estimated in the coupled systems of InP

QDs with R = 9Å versus distance using the single-particle wave functions and

SC and CI theory (see Sections 2.4) with solvent-independent screening with ǫQD
in,∞

(modified Penn model). Observed correlation effects are shown in Fig. 5.13. It

can bee seen that correlation in the QD-QD coupled systems is quite strong (up

to 150 meV) and has complicated non-linear behavior vs distance, therefore SC

approximation cannot be used in such systems. We have used a CI basis of 5

valence and 3 conduction states (SO coupling included).
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Figure 5.13: Correlation energy (meV) for the lowest exciton state in InP QD-QD (R = 9Å
each) coupled systems versus inter-dot distance. CI basis of 5 valence and 3 conduction
states is used (SO coupling included).

For the optical band gap Eopt calculations, besides modified Penn model, the

solvent-dependent screening with ǫbulkin,∞ and different surrounding environment, such

as vacuum (ǫout = 1.0), toluene (ǫout = 2.39) and chloroform (ǫout = 4.72) is used

(see Section 4.4 for details). The change of polarization terms depending on the ǫout
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and inter-dot distance is investigated and shown in Fig. 5.14. The polarization self-

energy term is calculated for single QD with reduced supercell size, because, unlike

Coulomb interaction term Jpol, it cannot be calculated
∑pol

e+h directly for the QD-QD

coupled system due to limitations of the analytical model (see Eq. (2.29)). Please

note that Jpol which is shown on the graph is only interaction between the first

valence and first conduction state. It is the strongest polarization term, however,

as it was already mentioned above, due to the correlation effects in close-packed

films other Jpol terms should generally not be neglected.

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 2  4  6  8  10  12  14  16

E
ne

rg
y 

(e
V

)

εout

a) Σe+h
pol isolated

distance 5 Å

distance 4 Å

distance 3 Å

distance 2.5 Å

distance 2 Å

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 2  4  6  8  10  12  14  16

E
ne

rg
y 

(e
V

)

εout

b) Jpol isolated

distance 5 Å

distance 4 Å

distance 3 Å

distance 2.5 Å

distance 2 Å

Figure 5.14: Polarization self-energy term (upper panel)
∑pol

e+h and Coulomb polarization

term Jpol (lower panel) for isolated InP QD with R = 9Å and QD in close-packed film as
a function of ǫout.

The predicted optical band gap Eopt and absorption peak shift in the close-

packed systems in comparison with isolated InP QDs was compared with experi-

mental values for InP QDs with R=9 Å capped with hexylamine (ǫout = 4.08) and

initially dispersed in an octane-hexane mixture (ǫout ≈ 2) [151]. Close-packed films

are formed in the experiment after the solvent evaporation. The closest inter-dot

distance reached in the experiment is 9 Å, but the length of the hexylamine molecule
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used for QD surface passivation (l ≈ 7.5Å), which might contribute to the wave

function delocalization, should be considered. It is assumed, that the experimental

close-packed distance corresponds to the 2Å inter-dot distance in the model szstem

with atomistic passivant. The results are shown in Table 5.2.

ǫQD
in,∞ ǫbulkin,∞ ǫbulkin,∞ ǫbulkin,∞ Mićić et al

ǫin = ǫout ǫout = 1.0 ǫout = 2.39 ǫout = 4.72 (opt. abs.)

Eopt 2.629 eV 2.997 eV 2.904 eV 2.867 eV 2.86 eV

red shift 66 meV 77 meV 72 meV 86 meV 140 meV

Table 5.2: Optical band gap of the single InP QDs with R = 9Å as well as red shift of the
absorption peak versus QD-QD distance, which was calculated as a difference between
Eopt of isolated and close-packed QDs (inter-dot distance 2 Å) using different screening
models. Experimental results from Ref.[151].

From the Table 5.2 it follows that the Eopt is underestimated by modified Penn

model and predicted the most accurate with the solvent-dependent model and chlo-

roform outside (which has dielectric constant close to the hexylamine). The ab-

sorption red shift is slightly underestimated by the calculations in all cases. This

may be explained by the increased number of close neighbours in the experimental

close-packed films or imperfection of the analytic calculation of the polarization

self-energy term
∑pol

e+h for coupled systems and requires further investigations.

5.4 Core-shell CdSe/CdS QDs with the sharp and alloyed

interface

Besides one-compound materials, core-shell nanostructures with the sharp and

alloyed interface were simulated, with the radius up to 68 Å (> 50 000 atoms) -

well beyond the capabilities of the standard ab initio methods such as DFT.

5.4.1 The role of the CdS shell thickness

Shell thickness plays an important role in the electronic and optical properties of

the core-shell QDs and was the first point of the interest. CdSe/CdS QDs with the

CdSe core radius of 12Å were chosen as model systems. According to experiment

[157], they correspond to quasi-type II QDs, where valence (HOMO and lower) wave

functions are confined within the CdSe core while conduction (LUMO and higher)

wave functions are up to certain extent deconfined into the CdS shell (see Fig. 5.15).
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The β-correction set for natural offsets is used in this case, and SO coupling is not

included.

It is clear, that even very thin shell (3.0 Å correspond to 1 monolayer CdS)

leads to the significant reduction of the band gap presumably due to conduction

wave functions deconfinement. Further growth of the shell thickness mostly affects

the LUMO/LUMO+1 offset which might be also connected to the relative con-

finement of the core and shell material and relative energy offset change. At shell

thickness 16.5 Å, which corresponds to approximately 5 monolayers of CdS, the

eigenvalues near band gap reach equilibrium, and it means, that the band gap and

LUMO/LUMO+1 offset will no longer be dependent on further shell growth. This

shell thickness will be further considered as stable enough to allow a separate study

of the influence of the core-shell interface on the electronic properties.
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Figure 5.15: Eigenstates near band gap and corresponding eigenvalues for the CdSe/CdS
core-shell QD with the CdSe core radius of 12 Å and gradually increased CdS shell thick-
ness. Eigenvalues are aligned at HOMO.

The influence of the sharp and alloyed interface between core and shell materials

on the electronic properties is investigated for the CdSe/CdS core-shell QDs with

the CdSe core radius of 12Å and 16.5Å shell. In case of the alloyed interface,

the alloy width of 12Å with step and graduate alloy distributions plus 4 − 4.5Å-

thick CdS shell on top is used. With regard to step alloy, the probability to find

core anion atom is literally the same in proximity to the core and to the surface
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of QD (experimental probabilities vary from 52% near core to 46% near surface

[39, 136]), whereas in case of graduate alloy the probability to find core anion atom

changes gradually from 75% near core to 25% near surface [40, 136]. The eigenvalues

without alignment as well as selected wave functions near band gap are presented

in Fig. 5.16).

It can be observed that the presence of the alloyed interface affects mostly valence

states, whereas conduction wave functions remain unchanged (see lower panel). In

particular, the graduate alloyed interface leads to HOMO deconfinement to the shell

and therefore the more significant reduction of the band gap. Please note, that the

degeneracy of the valence wave functions is in fact slightly disturbed (several meV

splitting) due to the broken symmetry of the alloyed core. The difference would

become more pronounced if the alloyed interface was broader. However, the step

alloy will be used in the further calculations to be consistent with the experimental

data [39].
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alloyed interface. Lower panel: selected one-dimensional wave functions (normalized)
around the band gap with the same color map for the sharp and alloyed interface. The
core (c) and shell (s) border of QD are shown with the dashed lines.
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5.4.2 The role of the CdSe core size

As the next step, the electronic properties for the different CdSe core radii are

calculated, namely 12Å, 15Å and 19Å, in order to check how the core size influ-

ences on the QD electronic properties (band gap and LUMO/LUMO+1 as well as

HOMO/HOMO-1 offsets). Pure CdSe QD is compared with core-shell CdSe/CdS

QDs both with the sharp (shell thickness 16.0-16.5 Å) and step alloy (12 Å alloy

thickness + 4.5 Å pure shell to avoid alloy directly at the QD surface) interfaces.

The β-correction for the natural offsets was used, as before, but now for the case with

SO coupling included in the calculation. The results can be observed in Fig. 5.17.
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Figure 5.17: Optical properties of the pure CdSe and core-shell CdSe/CdS QDs with
the different CdSe core radii (12 Å, 15 Å and 19 Å) and with the sharp (shell thickness
16.0-16.5 Å)) and alloyed interface (12 Å alloy thickness + 4.5 Å pure shell). E0 band
gap (left panel) and LUMO/LUMO+1 and HOMO/HOMO-1 offsets (right panel) versus
shell thickness.

In Fig. 5.17, left panel, one can notice, that E0 gap for core-shell QDs with

the core radii 12Å and 15Å are basically the same, presumably due to deconfine-

ment of the conduction wave functions from CdSe core into CdS shell. For the

core radius 19Å the E0 band gap changes less drastically from pure CdSe QD to

core-shell QD. Overall, the reason for the observed effect is relative core and shell

confinement which also alter energy offset between CdSe and CdS conduction states

(see Fig. 4.14). This is confirmed by the change of LUMO/LUMO+1 offsets (right

panel), which shrinks drastically after the addition of the shell. With regard to

HOMO/HOMO-1 offsets, it can be seen that they are less sensitive to the shell.

Alloy interface does not considerably change HOMO/HOMO-1 offsets and slightly

increase LUMO/LUMO+1 offsets, but it leads to a slight decrease of the band gap

E0 due to valence states deconfinement.

To show explicitly the effect of the deconfinement and check the experimentally
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observed core-dependent transfer from quasi-type II (R(core) = 12Å) to type I

(R(core) = 19Å) core-shell CdSe/CdS QDs [157], one-dimensional wave functions

(normalized) are plotted for the corresponding QDs (shell thickness 16.5Å) with the

sharp and alloyed interface (see Fig. 5.18).

s c c s

HOMO−1(2)

R(core)=12Å

s c c s

HOMO(2)

 

s c c s

LUMO(1)

 

s c c s

LUMO+1(3)

s c c s

HOMO−1(2)

R(core)=19Å

s c c s

HOMO(2)

 

s c c s

LUMO(1)

 

s c c s

LUMO+1(3)

Figure 5.18: One-dimensional wave functions (normalized) near band gap for the pure
CdSe (green) and core-shell CdSe/CdS QDs with the sharp (pink) and alloyed interface
(step alloy, blue) and CdSe core radii of 12Å (upper panel) and 19Å (lower panel). Please
note, that degeneracy of the alloyed wave functions is in fact slightly disturbed due to
broken symmetry of the core. The core (c) and shell (s) border of QD are shown with the
dashed lines.

The wave functions behavior in Fig. 5.18 supports the results shown previously.

Unlike experimental results from Ref. [157], a considerable deconfinement of the

conduction wave functions to the shell is observed even for the QD with R(core) =

19Å, whereas valence wave functions are confined within core region, which means,

no transfer from quasi-type II to type I core-shell CdSe/CdS QDs is observed (see

Fig. 1.2). The alloyed interface does not affect conduction wave functions but leads

to a slight deconfinement of the valence wave functions into the shell.

Additionally to the β-correction set with natural offsets between CdSe and CdS

material, the case where bulk LDA offset is kept after the β-correction for the QDs

with sharp core-shell interface and R(core) = 1Å and R(core) = 19Å was con-

sidered. For quantitative comparison the partial norm value of the LUMO wave

function is calculated based on Eq. (2.7), but with the core radius as a limiting pa-

rameter. The results are shown in Fig. 5.19. Please note that due to the specificity of

the one-dimensional wave function visualization (each point of the one-dimensional

wave function along Z-direction of the supercell is in fact the sum of the values on
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the corresponding XY plane) the central part of the wave function also partially

includes the shell contribution.

s c c s

16.3%
15.6%

R(core)=12Å, LUMO

LDA offsets
natural offsets

s c c s

26.9%
25.9%

R(core)=19Å, LUMO

LDA offsets
natural offsets

Figure 5.19: The influence of the β-correction sets with LDA (green) and natural (pink)
bulk offset (see Fig. 4.14 for exact values) onto LUMO wave functions (one-dimensional,
normalized). The core-shell CdSe/CdS QDs with the sharp interface and CdSe core radii
of 12Å (left panel) and 19Å (right panel) are considered. The core (c) and shell (s) borders
of QDs are shown with the dashed lines.

Relative core confinement for the LUMO wave functions obtained using β-

correction with LDA and natural bulk offsets reveals noticeable, but insignificant

difference in the wave function distribution. This can be partially justified by the

really small difference for the CB offsets, in particular for the calculations with SO

coupling (see Table 4.7). The partial norm of the LUMO wave function located

in the core directly depends on the core size, so it can be presumed that with the

further increase of the core radius and with the different choice of the β-set (make

an emphasis on maintaining CB offset) the wave functions for LUMO and higher

conduction states should eventually become fully confined in the core.

Finally, the single-particle band gaps for the CdSe/CdS QDs with the CdSe

core radius 15Å and 16Å, 27Å and 52Å CdS shell on top are presented. For the

two biggest shell sizes, the core-shell interface was simulated both sharp and with

15Å-wide alloy. The biggest QD (R = 68Å), calculated here on an atomistic level,

consists of 55691 atoms (including 5436 passivants). The results were compared

with the experimentally determined optical band gaps for the same NCs [39] on a

qualitative basis. The results are shown in Fig. 5.20.
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Figure 5.20: Theoretically predicted single-particle E0 band gap (orange) in compari-
son with experimentally measured optical band gap Eopt (black) (from Ref.[39]) for the

CdSe/CdS QDs (R(core) = 15Å) with respect to the shell thickness, both for the sharp
(solid lines) and 15Å-wide alloyed (dashed lines) core-shell interface.

From Fig. 5.20 it follows, that very good qualitative agreement of the changes

caused by shell thickness modification is observed between single-particle (calcu-

lated) band gap and optical (experimentally observed) band gap. Also the features

introduced by the alloyed interface are correctly captured in the calculation. The

quantitative deviations might origin from the changes in polarisation term and will

require calculations with the full screening model.
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In this work a new method to derive non-spherical AEPs for the passivant atoms

was presented, which improves the results compared to the more traditional spher-

ical pseudopotentials at no additional computational cost. It is shown that the

imaginary part of the AEP introduces a local asymmetry in the vicinity of the pas-

sivant atom and energy offset on the border between vacuum and nanostructure, in

agreement with the general understanding of surface-induced dipoles in physics. In

the test cases of Si, InP and CdSe nanostructures an excellent transferability of the

passivant AEPs is demonstrated and maximum energy deviations from standard ab

initio DFT-LDA method prediction are within 200 meV for the small QWs, where

surface effects are very important. The new AEP method, therefore, represents a

significant improvement over former approaches that only lead to a qualitative re-

sult for the passivant, such as an absence of surface states within the band bap. For

larger QD structures the agreement with DFT improves to an error below 100 meV.

The AEP method is rather universal, so that not only passivant such as hydrogen

or pseudo-hydrogen (for III-V and II-VI group semiconductors), but other atomic

passivants like Chlorine (Cl) or Fluorine (F) can be constructed, and there are

also possibilities to include other functional groups like Hydroxyl (OH−) or Methyl

(CH−
3 ).

The main benefit of the improved AEP approach is that it opens the possibility

to study surface-related phenomena at the ab initio level literally for the whole ex-

perimental size range and that it represents a large simplification in the generation

of the pseudopotentials because of simple analytic connection with the DFT-LDA

method. Furthermore, the AEP approach was supplemented with an empirical

bulk single-particle band gap correction (β-correction). The latter comprehensive

approach together with the VFF interface relaxation was implemented for rather

complex core-shell QDs with the CdSe core radii from 12Å to 19Å, sharp and al-

loyed interface. It was demonstrted, that the shell thickness for the CdSe/CdS QDs
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plays an important role in the band gap determination due to strong conduction

states deconfinement, whereas the alloyed core-shell interface influences mostly on

the valence wave functions properties. No significant influences are traced of the

LDA and natural band offsets between CdSe and CdS, used in the β-correction,

on the wave function confinement for the selected core-shell QDs. The theoreti-

cally predicted single-particle band gaps show the excellent qualitative agreement

in comparison with experimentally measured optical band gaps.

The AEP-based approach was also implemented for Si, InP, and CdSe QD-

QD coupled systems and observed BA splitting as a result of the direct coupling

between QDs of different sizes. The coupling is the strongest between QDs with

R < 10Å due to near-surface wave function distribution in the nanocrystal, and

BA splitting is much stronger for conduction states than for valence, presumably

due to differences between electron and hole effective masses. A very clear (and

even technically implemented) perspective for the quantitative comparison of the

calculated and experimentally measured optical band gaps for core-shell QDs with

sharp and alloyed interface can be seen. Moreover, the developed method has wide

perspectives for even more complex structures modeling, such as core-shell-shell

QDs, Quantum rods and QD-Qrod coupled systems.

The single-particle wave functions from the AEP approach were used within the

CI framework in combination with various modeling techniques for the dielectric

screening to account for the influence of the surrounding medium on the optical

properties of the colloidal NCs. The quasiparticle and optical gaps of the ZnS 2D

NPLs, InP and CdSe QDs are calculated. The final screening model consists of a

constant bulk dielectric constant inside the QD with a sharp transition at the QD

interface to the high-frequency dielectric constant of the environment. The AEP

results in comparison with the earlier SEPM results show deviations in the 100

meV range for the large dielectric mismatch, which validates both computational

approaches. Additionally, a broad comparison of the final screening model with

experimental measurements is performed, and an excellent agreement is demon-

strated. It is shown, that the sum of the polarization self-energy and the Coulomb

surface polarization terms nearly cancels, when the dielectric mismatch is small, but

sums up to 50 – 140 meV for the largest mismatches. The given energy range cor-

responds to results for QDs of different sizes, with the tendency to become smaller

for larger QDs. It was also demonstrated that a simplified solvent-independent

screening model (with lower computational cost) leads to rather small errors for the

optical gaps (below 140 meV) and can be considered as a good alternative. Inter-

estingly, this good agreement is obtained using the full dielectric constant of the

semiconductor and not the reduced radius-dependent value based on the modified
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Penn model. However, the use of these models is inappropriate for the calculation of

quasiparticle gaps or exciton binding energies which require the surface self-energy

term, since it can be as large as 700 meV for QDs with the large dielectric mismatch.

For isolated CdSe quantum dots, the environment is modeled considering sep-

arately passivant with varying length and solvent contributions. It is shown that

commonly used long-chained organic passivant molecules effectively shield the effect

of the solvent so only small shifts in the optical gap for different solvents (within 10

meV) are traceable. For short-chained or atomic passivants, however, the solvent

effects on the optical gap are more significant (up to 100 meV). Using the same

approach, as for the passivant-solvent screening function, it is already technically

possible to implement two-step macroscopic screening for the core-shell QDs.

Finally, the correlation effects and the optical red-shift occurring because of the

coupling of two InP QDs is calculated, with a good agreement between experi-

mental data and the final screening model. However, the analytical model for the

self-polarisation term is not optimized for coupled systems, and there are promising

perspectives in the screening method development for the non-spherical nanostruc-

tures as well as QD-QD coupled systems with the atomic bridge. Another challeng-

ing topic would be modeling of trions and biexcitons in QDs as well as exciton-trion

interactions in coupled systems of QDs using the developed comprehensive method.
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eingereicht wurde.

Anastasia Karpulevich

February 12, 2020

107


