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Summary
This thesis explores ensembles of ultracold atoms, trapped and cooled in dark optical
lattices. In this type of optical lattice, atoms are trapped in quantum states which are
decoupled from the trapping light field. Therefore, elastic scattering - the main process
limiting the density of atoms in optical lattices - is significantly reduced. This entails the
chance to overcome the density limit of 1011 at/cm3 existing in conventional optical lattices.
We explore a novel scheme for density enhancement which allows for a four-fold density
increase over the initial density of the magneto-optical trap (MOT). We load 109 atoms
at 70 µK from the MOT into a modified optical lattice consisting of a three-dimensional
dark optical lattice and a far-detuned optical dipole trap. Atoms are now cooled down to
10 µK in the potentials of dark optical lattice at typical densities of 3 · 1011 at/cm3. The
enhancement procedure is based on a time sequence composed of cooling and trapping
cycles inside the dark optical lattice and cycles of free evolution in an array of microscopic
potentials formed by the dipole trap. Applying this sequence to the atomic ensemble, we
can reach densities of up to 1.2 · 1012 at/cm3 while maintaining a temperature of 10 µK.

Zusammenfassung
Im Rahmen dieser Arbeit werden kalte Atome in einem dunklen optischen Gitter un-
tersucht. In diesem Typ von optischem Gitter sind die Atome in Zuständen gefangen,
die nur schwach mit dem Lichtfeld wechselwirken. Dadurch ist die elastische Kompo-
nente der Photonenstreuung, die in konventionellen optischen Gittern für die Begrenzung
der atomaren Dichte verantwortlich ist, erheblich reduziert. Deswegen wird es möglich
in dunklen optischen Gittern die Dichtebegrenzung konventioneller optischer Gitter von
1011 at/cm3 zu übertreffen. Wir untersuchen eine neue Methode der Dichteerhöhung, mit
der wir einen vierfachen Anstieg der atomaren Dichte gegenüber der Anfangsdichte in der
MOT erreichen. Die Atome werden aus einer magneto-optischen Falle, welche einige 109

Atome bei einer Temperatur von ca. 70 µK fängt, in eine Überlagerung von zwei optischen
Fallen geladen. Diese ist durch ein drei-dimensionales dunkles optisches Gitter und eine
fernverstimmte optische Stehwellen-Dipolfalle gebildet. Dort werden die Atome auf die
Temperatur von 10 µK bei einer Dichte von 3 · 1011 at/cm3 gekühlt. Das Verfahren der
Dichteerhöhung basiert auf abwechselnden Zyklen der Kühlung und Lokalisierung in dem
dunklen optischen Gitter und Zyklen der freier Expansion in den Mikropotentialen der op-
tischen Stehwellen-Dipolfalle. Mit dieser Methode konnte eine Dichte von 1.2 · 1012 at/cm3

bei Aufrechterhaltung der Temperatur von 10 µK erreicht werden.
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Introduction

The interference pattern of a set of intersecting laser beams creates a stable periodic po-
tential for neutral atoms through the AC Stark shift, which can trap atoms in an ordered,
crystal-like structure. A simplified semiclassical view of a one-dimensional (1D) optical
lattice formed by a standing wave is shown in Fig 1: atoms are oscillating in the potential
minima formed by a light field.

Figure 1: A simplified view of an
optical lattice.

The idea of light-induced atomic lattices dates back
to the late sixties when Vladimir Letokhov proposed
the trapping of neutral atoms inside the nodes or antin-
odes of optical standing waves by means of dipole
forces [76]. The experimental realization of such light-
induced periodic structures of trapped atoms only be-
came promising after the proposal of Doppler cooling
by Hänsch and Schawlow [37] in the late seventies. This

proposal raised hopes that atoms could be slowed efficiently and remain captured in
the shallow microscopic trapping potentials of optical lattices. However, calculations [30]
showed that two-level atoms inside 1D optical standing wave would thermalize at a mean
kinetic energy larger than the depth of the trapping potential. The first experimental
realization of Doppler cooling in three dimensions was reported in 1985 by the group of
Chu [15]. Further investigations [48] showed that temperatures, achieved in such optical
molasses, were well below the limit predicted by the theory of Doppler cooling [48]. The
explanation of the sub-Doppler temperatures came from the groups of Chu and Cohen-
Tannoudji, who proposed one-dimensional semi-classical theoretic models [20, 80] of addi-
tional cooling mechanisms arising for multilevel atoms in light fields with spatially varying
polarization. The cooling effect arises via spatial correlation between the periodically
varying light shift and the optical pumping rate. According to this model, the atomic tem-
perature is directly proportional to the potential depth (T∼U), so that shallow potentials
can lead to temperatures two orders of magnitude below the Doppler limit. A refined, fully
quantum-mechanical model [12], shows the temperature limit, the so-called recoil-limit (for
alkali atoms typically some hundreds of nano Kelvin). At this temperature, the deBroglie
wavelength of an atom equals the optical wavelength. As a consequence, the center-of-mass
motion needs to be described quantum mechanically, giving rise to quantized vibrational
states. At the typical temperatures obtained in optical lattices only the first few of these
vibrational levels are populated, see Fig. 2.

An interesting phenomenon arising in optical lattices is the Lamb-Dicke effect [23].
Atoms, that are localized in the optical potential to better than an optical wavelength,

12



Introduction 13

preferentially scatter photons elastically. Therefore, most of the absorbtion-emission cycles
do not transfer momentum to the trapped atoms and thus, leave their motion unchanged.
As a consequence, the lifetime of the vibrational levels is much longer than one might
expect from the photon scattering rate. This fact allows to spectroscopically resolve the
quantized vibrational structure in optical lattices [39, 34]. First and second order side-
bands , attributed to Raman transitions between vibrational levels, were demonstrated in
transmission [39, 75] and fluorescence [43, 28] spectra.

Figure 2: Position and
population of vibrational
levels in an optical lat-
tice.

Atoms in an optical lattice scatter photons at a high rate be-
cause they are located around the antinodes of the standing wave,
i.e., locations where their interaction with the light field is maxi-
mized. These scattered photons act to distort the lattice field and
may, thus, degrade the cooling and trapping mechanisms. There-
fore, reabsorption of such scattered photons lead to heating and
losses. As a consequence, the maximum filling rate obtained with
optical lattices is only about 5% of the available potential wells.

A particulary interesting situation in optical lattices is the
regime of high densities, when the number of trapped atoms ex-
ceeds the number of lattice sites. In this regime, the lattice should

acquire some solid-state aspects and quantum statistics should play an important role for
the dynamics. One way to prevent extensive spontaneous photon scattering is to detune
the laser beams far from atomic resonance. In this case the light field does not provide
inherent cooling, i.e., additional cooling is needed [22]. An interesting alternative to signifi-
cantly reduce the spontaneous scattering, while maintaining a built-in cooling mechanism,
is the use of so-called "dark optical lattices" [69, 17]. In contrast to conventional optical
lattices, the elastic scattering contribution is entirely suppressed in dark optical lattices. In
this new type of optical lattice, the total light field can be decomposed into two polariza-
tion components such that the maximum of one component coincides with the minimum
of the other. One polarization traps the atoms in its nodes where photon scattering is
minimal. The other polarization component although maximal at these locations, only
couples to the trapped atoms in the wings of their wavefunctions, i.e., photon scattering
by this component is also limited. In this way the overall photon scattering is reduced
to those photons needed to maintain a Sisyphus cooling process. Experimentally, dark
optical lattices are formed by the interplay between a near-resonant blue-detuned light
field and an external homogeneous magnetic field [32, 41]. The reduced fluorescence level
in dark optical lattices promises the possibility of higher filling factors as compared to con-
ventional, or bright, optical lattices. Unfortunately, conventional loading of dark optical
lattices by a magneto-optical trap (MOT) [59, 1] will only produce densities limited by the
MOT physics (on the 1011 atoms/cm3 level). Thus, additional schemes are needed which
can yield a further density increase.

In this thesis, I explore a dark optical lattice in a novel 3D configuration, providing
potential minima, which are singular points in three dimensions in contrast to the earlier
implementations of a 3D DOL, where the potential minima formed lines [55, 72], thereby
providing efficient escape channels for the trapped atoms. This novel 3D DOL is used
to demonstrate a scheme for density enhancement, that has allowed to obtain a four-fold
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density increase over the initial MOT-density. This scheme uses a time sequence composed
of cooling and trapping cycles in the DOL and cycles of free evolution in an array of quasi-
2D microscopic potentials formed by a far-detuned 1D optical standing wave (1D FORT).
The low spontaneous scattering rate in a FORT allows to trap atomic samples for seconds
and does not limit the atomic density.

Figure 3: Density enhancement
procedure in a dark optical lattice.

The density enhancement procedure, that is ex-
plored in this work, can be divided into three steps
(see Fig. 3):

Step 1. Atoms are confined in a superposition of the
vertically oriented FORT and the 3D dark optical lat-
tice, which cooles the trapped atoms to a temperature
on the order of 10 µK (see Fig. 3, Step 1).

Step 2. The dark optical lattice is switched off
adiabatically, therefore providing additional cooling of
atoms released into the FORT potential. In the hori-
zontal direction the trapping potential of the standing
wave is relatively shallow with a corresponding vibra-
tional frequency of ∼ 150 Hz. Thus, atoms are now
rolling towards the potential minimum of the FORT
and collect there after 1.6 ms for a short time interval
(see Fig. 3, Step 2)

Step 3. When the atoms arrive at the potential
minimum, the 3D DOL is reactivated in order to freeze

their oscillatory motion and trap the atoms in the DOL wells at 10 µK temperature again
(see Fig. 3, Step 3).

After repeating the steps 1-3 for 10ms, we typically achieved a density of
1.2 · 1012 atoms/cm3.

This thesis has the following structure:

Chapter 1 gives a short overview on the cooling mechanisms, which are involved in the pro-
duction of cold atomic samples inside a magneto-optical trap and optical lattices. Doppler
cooling and Sisyphus cooling are briefly described. Chapter 2 provides a detailed descrip-
tion of the vacuum part of our experimental setup, its technical details and procedures
of obtaining proper vacuum conditions. The method of stray magnetic field compensa-
tion is described and analyzed. The data acquisition system is explained in detail as well.
In Chapter 3, the diode laser systems, developed for performing the experiments with
Rb-atoms, are introduced. The Pound-Drewer-Hall stabilization scheme used to obtain the
necessary frequency stabilization of the laser output is described. Chapter 4 describes the
configuration of our magneto-optical trap (MOT), which serves as a prime source of cold
atoms for all our experimental investigations. I discuss the loading procedure and speci-
fications of our modified MOT, designed to maximize the density and number of trapped
atoms. Chapter 5 is dedicated to near resonant optical lattices. I give a brief introduction
to the physics of "bright" and "dark" optical lattices and explain the novel configuration
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used in our experiments. I present our experimental observations with regard to tempera-
ture, density, and spatial diffusion of the trapped atoms. Chapter 6 begins with a brief
summary of physics of far-off resonant optical lattices, concentrating on the parameters:
lifetime, temperature, and vibrational frequency of atoms, which are important for our
investigations. Finally, the density enhancement scheme is introduced and its efficiency is
experimentally demonstrated. We increase the density in dark optical lattice by a factor
of four keeping the temperature of trapped atoms on the level of several micro Kelvin,
which leads to a four-fold phase-space density enhancement. In conclusion we discuss the
limiting factors in our current experimental set-up and possible improvements of our den-
sity enhancement scheme. A number of Appendices provide a collection of important
parameters and their definitions (Appendix A), information on Rb, the atomic species of
interest(Appendix B), derivations of important formulas (Appendix C and D), a list of
material and devices used to perform the experiments (Appendix E), and a collection of
technical data (Appendix F).



Chapter 1

Laser Cooling Mechanisms

1.1 Action of Light on Atoms
The interaction between atoms and light fields relies on the interaction of the induced
dipole moment ~µ and the electric field ~E. Two type of forces arise from this interaction:
the dipole force (also called dispersive force, or gradient force) and radiation pressure force
(spontaneous force, or dissipative force).

The force due to the radiation pressure can be understood as absorbtion of photons
followed by spontaneous emission from the atom. In the case of two-level atom, the the-
ory is simplified. The atom absorbs a photon with momentum ~p = ~~k, where ~k is the
wavevector (k = 2π/λ) and gets a kick in the direction of the incoming photon (recoil
effect). The atom is now excited and next step is the spontaneous emission, which occurs
in a random direction by the resonance frequency of the atomic transition. Due to the fact
that spontaneous emission is isotropic, the net force acting on an atom in the direction of
incoming photons is ~F = Ṅ~~k, where Ṅ is the number of scattered photons per time. The
number of scattered photons depends on the intensity and detuning of the laser light from
resonance and on the natural width of atomic resonance. The radiation force is given by
[51]:

~F = −~~kΓ

2

So

1 + So + (2(δ − ~k~v)/Γ)2
(1.1)

where Γ is the natural linewidth of the cooling transition, So = I/Io is the resonant
saturation parameter (I - laser intensity, Io - saturation intensity for the transition) and
v velocity of the atom. Laser detuning from resonant is δ = ωL − ωA with ωL being laser
frequency and ωA the resonance frequency for atomic transition.

The magnitude of the maximal radiation force , which can act on the atom is given by:

|~F | = −~|~k|Γ/2 (1.2)

This force can be used to decelerate an atomic beam. In the case of rubidium (85Rb) at room
temperature (T=300K), the average velocity of atoms in the atomic beam is |~v| = 296.69
m/s. The atomic mass of 85Rb is 85 a.m.u., the wavelength of D2 line is λ = 780.027
nm and the linewidth of transition is Γ/2π = 5.98 MHz. With these parameters, the
maximum deceleration of the atom will be a = ~|~k|Γ/2m ≈ 1.13 ·105 m/s2. As one can see,

16
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this deceleration is approximately ten thousand times bigger than the earth gravitational
acceleration. After scattering of ∼ 5 · 105 photons in t = |~v|/a = 1.3 ms, atoms will come
to rest passing the distance Lmin = |~v|2/2a = 78 cm.

The dipole force is more difficult to understand from the intuitive point of view. One
can explain it classically: every atom is polarisable. The electromagnetic field induced
the electrical dipole inside the atom, this dipole interact with the electric field. In the
homogeneous electric field this will cause the rotation of the dipole, if electric field is
inhomogeneous than a force will act on the dipole - dipole force. As the radiation trapping
force, the dipole force has resonance behavior, but the dipole force change its sign depending
on the detuning: if the field frequency is smaller than the resonance frequency of transition
(red detuning) than the force is attractive. In the opposite case when the frequency of the
light field is lager than resonance frequency (blue detuning), the dipole force is repulsive.

One can also understand the dipole force in the analogy to a harmonic oscillator :
harmonically bound charge driven by oscillating electrical field oscillate in phase with this
field if the exciting frequency is red detuned ( δ < 0 ), or out of phase , shifted 180◦, if
the exciting frequency is blue detuned ( δ > 0 ). The interaction energy between induced
dipole p = α · E and field E is U = −p · E = α · E2, where α is polarizability. Under the
resonance this energy is negative and the oscillator will be attracted to the strong field,
above the resonance is it positive, so the oscillator will be repulsed and accelerated to the
weak field.

In the light field not only a force acts on atoms, but they also subject to light shifts 1.
For a two-level atom in a laser field the light shift is:

∆ =
~ω2

1

4δ
(1.3)

where ω1 is Rabi frequency:

ω1 = Γ

√
I

2 Io

(1.4)

The potential depth experienced, for example, by 85Rb atoms in the laser field of a beam
with 220 µm and 150 mW power, tuned δ = −200 GHz away from resonance, would be
Udip/kB = T ≈ 129µK.

1.2 Doppler Cooling
The principle of Doppler cooling mechanism can be nicely illustrated for a two-level atom
(see Fig. 1.1) in a weak standing wave with a frequency ωL, which is slightly red-detuned
from the atomic resonance frequency ωA, δ = ωL − ωA < 0, see Fig. 1.2.

Each of the two counterpropagating laser beam forming the standing wave exerts an
average pressure in the direction of its propagation as the atom absorbs the photons in
its propagation direction but emits photons isotropically. When the atom is at rest, the
radiation pressure produced by the two counterpropagating waves is exactly balanced, and
the total force experienced by the atom, averaged over a wavelength, vanishes. If the atom is

1also known as AC-Stark shift
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Figure 1.1: Level scheme of two-level atom in a laser field. Laser frequency is detuned from
atomic resonance at δ = ωL − ωA < 0.
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Figure 1.2: An atom moves along the stand-
ing wave made of two counterpropagating laser
beams, each with the frequency tuned below the
atomic resonance frequency by a small amount
of δ = ωL − ωA .

moving along the standing wave at velocity
v, the counterpropagating waves have oppo-
site Doppler shifts ±ωL · v/c = ±kv. The
frequency of the wave propagating opposite
to the atom is tuned into resonance and
thus exerts stronger radiation pressure on
the atom as compared to the wave copropa-
gating with the atom, which is detuned from
resonance. This imbalance between the two
radiation pressures gives rise to a net fric-
tion force:

~F = ~F+ + ~F− = ~~k
Γ

2

So

1 + So + (2(δ − ~k~v)/Γ)2
− ~~kΓ

2

So

1 + So + (2(δ + ~k~v)/Γ)2
(1.5)

which decelerates the atoms and for small velocities (kv ¿ Γ) and low saturation (I/Io ¿
1) can be written as:

~F (v) = −α · v, α = 4~~kSo

~k(2δ/Γ)

(1 + (2δ/Γ)2)2
(1.6)

where α is the friction coefficient.
Figure 1.3 shows, for low laser intensity, So = 0.625, the damping force as the sum of

two opposing forces that vary with v as Lorentzians, each curve having a width Γ/k. The
curves are centered at ±kv = δ, where δ = ωL − ωA is equal to the detuning of the laser
from resonance. The slope of the total force at v = 0 , i.e., the friction coefficient α, is
maximum when δ ≈ −Γ/2: α = ~k2So. The total force is then proportional to the laser
intensity, always opposes the velocity and is nearly linear in the range −Γ/2 < kv < Γ/2.
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Figure 1.3: Principle of Doppler cooling: At low intensities, the atom feels average forces in
opposite directions from the two beams ( dashed curves ), with the peaks offset because of the laser
detuning. The net force ( black curve ) is the friction that cools the atom. The slope at v = 0 is the
friction coefficient. For the curve shown, the detuning is exactly the half of the natural linewidth
(δ) = Γ/2.

This defines the range of velocities (called the velocity capture range), over which the
atomic motion is most efficiently damped by the Doppler force.

The friction force considered above is the mean force, averaged over several fluorescence
cycles. The random nature of radiation processes produces fluctuations of the atomic mo-
tion, i.e., the force is fluctuating around its average value. These fluctuations heat the
atoms via two processes: 1) the number of fluorescence cycles occurring during a given
time interval is random (quantum noise) 2) each individual fluorescence photon is emit-
ted in a random direction, giving a random recoil to the atom. Each time an absorb-
tion/spontaneous emission cycle occurs, the atom makes two random steps in momentum
space. The increase of the mean square momentum is:

d

dt
< p2 >= 2Γscatt~2k2 = 2Dspont (1.7)

where Γscatt is the total photon scattering rate and Dspont is the momentum diffusion
constant. The diffusion coefficient is defined as the rate of mean square momentum < p2 >
increase, which is dependent on the total scattering rate from two laser beams, each of
them with intensity I. Assuming I ¿ Io we get

2Dspont = 2Γ~2k2 So

1 + (2δ/Γ)
(1.8)

The factor 2 on the right side of the equation accounts for the two beams. In these con-
siderations we completely neglect interference between the two beams. The mean kinetic
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energy increases with the rate:

<
d

dt
Eheat >=

d

dt

< p2 >

2M
=
~2k2

M
Γ

So

1 + (2δ/Γ)
(1.9)

where M is the atomic mass. The cooling rate can be expressed through the friction force
F = −αv as:

<
d

dt
Ecool >=< Fv >= −α < v2 > (1.10)

For the equilibrium between cooling and heating rate we get:

<
d

dt
Ecool > + <

d

dt
Eheat >= −α < v2 > +Dspont/M = 0 (1.11)

In the one-dimensional case we have only one degree of freedom, so:

1

2
M < v2 >=

1

2
kBT (1.12)

And for the steady-state temperature we obtain:

kBT = −~Γ
4
· 1 + (δ/Γ)2

2δ/Γ
= −~Γ

4
(

Γ

2δ
+

δ

2Γ
) (1.13)

This temperature has a minimum at δ = Γ/2. This is the minimum temperature (TD) that
can be reached with Doppler cooling:

TD = − ~Γ
2kB

(1.14)

For rubidium, the minimum temperature in this one-dimensional model is approximately
143µK.

A generalization of this 1D example into 3D is accomplished by adding two pairs
of beams in the other spatial directions. This configuration has been called "optical
molasses"[15]. The configuration of "optical molasses" is not a trap since the damping
force is not position depending.

1.3 Sub-Doppler Cooling
Soon after the first demonstration of optical molasses it was observed [48] that the tem-
perature of the atoms was much lower then the temperature predicted by Doppler cooling
theory 2. Obviously, other cooling mechanisms are responsible for the low temperatures
observed in "optical molasses". The explanation of sub-Doppler temperatures [20, 80] in-
volves additional features as: optical pumping, light shifts and laser polarization gradients.

In the next two sections we will give a short summary of two basic mechanisms of sub-
Doppler cooling, associated with two different types of polarization gradients: lin ⊥ lin
and σ+ − σ− configurations of light field.

2In these experiments [48],[67] was found that the temperatures were around the recoil limit kBTR =
h2k2

2M , two orders of magnitude lower than the Doppler limit kBTD = ~Γ/2
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1.3.1 Polarization Gradient Cooling: lin ⊥ lin

In this section we consider atomic motion in the field of two counterpropagating plane
waves modes with equal amplitudes and orthogonal linear polarizations (see Fig. 1.5) - this
light field is called lin ⊥ lin standing wave

~E = E0(~ex cos(kz + ωt) + ~ey cos(−kz + ωt))

= E0 cos(ωt)((~ex + ~ey) cos kz + i(~ex − ~ey) sin kz) (1.15)

The lin ⊥ lin configuration can be decomposed into two circularly polarized stand-
ing waves with opposite helicity shifted with respect to each other by λ/4. The total
polarization of the light field changes when one moves along the z-axis: In z = 0 it is

Figure 1.4: Level scheme and Clebsch-Gordan
coefficients for the Jg = 1/2 → Je = 3/2 transi-
tion.

clockwise circular (σ+), in z = λ/8 it is lin-
ear along ~ex + ~ey, in z = λ/4 anti-clockwise
circular (σ−), in z = 3λ/8 linear along
~ex − ~ey, in z = λ/2 again clockwise circu-
lar (σ+) (see Fig. 1.5).

The simplest one-dimensional example
of polarization-gradient cooling in this light
field is given with an atom with Jg =
1/2 → Je = 3/2 transition (see Fig. 1.4).
Taking in account a) that σ+ light couples
∆g = +1 transitions (σ− couples δg = −1)
and b) that transitions have different cou-
pling strengths due to Clebsch-Gordan coef-
ficients, we can plot the spatial varying light
shifts of the ground-state Zeeman compo-

nents. For negative ("red") detuning δ of the light frequency with respect to an atomic
resonance, the ground-state energies are decreased by the light shift.

Figure 1.5: lin ⊥ lin configuration.

Atom at rest. Let us consider the atom
placed at a point with pure σ+ polariza-
tion. If the atom is originally in the g =
−1/2 ground state, excitation and subse-
quent spontaneous emission can lead back
either to g = +1/2 or back to g = −1/2
state. Once the atom has been transferred
to the g = +1/2 ground state, further exci-

tation can only reach the g = +3/2 excited state from where spontaneous decay always lead
back to g = +1/2. Thus after a few cycles of excitation and spontaneous decay the entire
population is optically pumped to g = +1/2. Since the Clebsch-Gordan coefficient for the
g = +1/2 → e = +3/2 transition is by factor

√
3 larger than for g = −1/2 → e = +1/2

transition, the ground state g = +1/2 will experience a larger light shift than the ground
state g = −1/2. The same happens if the atom is at a location of σ− polarization. In this
case, the atomic population will be transferred to the g = −1/2 ground state and the state
with g = −1/2 experience larger light shift than the state g = +1/2.
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Moving atom. As the atom moves along the axis of standing wave it will experience a
varying polarization, i.e. the two magnetic sublevels g = −1/2 and g = +1/2 will be shifted
in sinusoidal manner along the propagation axes. As the atom moves from a place with
pure σ+ polarization to the one with pure σ−, the probability of being optically pumped
to the g = −1/2 increases, and reaches a maximum at the point of pure σ− polarization.
This means that when the atom in the g = +1/2 state climbs the potential hill it will
be optically pumped into the state g = −1/2 close to the top of the potential curve. In
the g = −1/2 state it will climb a new potential hill and then will be optically pumped
into the state g = +1/2. The spontaneous photons emitted in this process carries away
the potential energy. Such cooling cycles repeatedly occur until the kinetic energy of the
atom is not sufficient any longer to climb the potential well and the atom remains trapped.
This cooling process has been named Sisyphus cooling because of the similarity of its cyclic
mechanism to job of one of the heroes of the ancient Greek mythology.

Figure 1.6: The spatial dependence of the light shifts of the ground-state sublevels of the g =
−1/2 → e = +1/2 transition, for the case of the lin ⊥ lin polarization configuration. The arrows
show the path followed by atoms being cooled in this arrangement. Atoms starting at z = 0 in the
mg = +1/2 sublevel must climb the potential hill as they approach the z = λ/4 point where the
light becomes σ− polarized, and there they are optically pumped to the mg = −1/2 sublevel. They
must begin climbing another hill toward the z = λ/2 point where the light is σ+ polarized and they
are optically pumped back to the mg = +1/2 sublevel. This process repeats until the atomic kinetic
energy is too small to climb the next hill. Each optical pumping event results in absorbtion of light
at a lower frequency than emission, thus dissipating energy to the radiation field.

1.3.2 Limits of Sisyphus Cooling

Under assumption of I ¿ Io and δ À Γ we can calculate the order of magnitude of the
cooling force and the equillibrium temperature in the Sisyphus model. We can examine the
decelerating force as a friction force ~F = −αsis~v, which has a maximum when the distance
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that an atom moves during a time τp is of the order of λ/4

|~v|τp ≈ λ4 (1.16)

where τp is the optical pumping time. That is fulfilled when

k · v ≈ Γp = 1/τp (1.17)

For this velocity the energy dissipated during the time τz is of the order of ∆E = −~ ·∆(the
maximum energy difference between g = −1/2 and g = +1/2 states, which is negative
because of the detuning δ < 0). The dissipated energy during a time unit is:

dW

dt
=

∆E

τp

= −~ ·∆ · Γp (1.18)

The cooling rate can be also calculated from F , which yields

dW

dt
= −F · v = αsis · v2 (1.19)

From the above equations we get the expression for friction coefficient αsis:

αsis ≈ ~ · k2 ∆

Γp

(1.20)

The friction coefficient αsis is independent on laser intensity, because the light shift ∆ and
optical pumping rate Γp are both proportional to laser intensity. On the contrary to this
the friction coefficient of doppler cooling is proportional to laser intensity (see Eq. 1.6).

For low laser intensities (ω1 ¿ Γ) and big laser detuning (|δ| À Γ) optical pumping
time and light shift can be expressed as:

Γp ≈ ω2
1Γ/4δ2, ∆ ≈ ω2

1/4δ
2 (1.21)

inserting this into Eq. 1.20 we get

αsis ≈ ~k2 · δ/Γ (1.22)

Comparing the Eq. 1.20 with the Eq. 1.6 one can see that the friction coefficient for Sisyphus
cooling is larger than the optimum value for the friction coefficient in Doppler cooling
achieved at δ = Γ/2,

αD ≈ ~ · k2. (1.23)

Note that the velocity range in which this cooling mechanism is working (kv ≈ Γp) is much
smaller than in the case of Doppler cooling (kv ≈ Γ). In experiments both mechanisms are
simultaneously present, so one starts with Doppler cooling and when the atoms are cold
enough continues with the sub-Doppler cooling.

Similarly as for Doppler cooling we can calculate a temperature for Sisyphus cooling,
assuming that the steady-state can be defined as the equilibrium between diffusion and
friction forces,

kBT =
Dsis

αsis

(1.24)
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where Dsis is the momentum diffusion constant. For Sisyphus cooling [20],

Dsis =
3

4
~2k2 δ2

Γ
so (1.25)

with So = ω2
1/2(δ2 + Γ2/4) the saturation parameter. Thus we get

kBT ' ~ω2
1

8|δ| ∝
I

δ
(1.26)

From this expression one could conclude that since decreasing the intensity and increasing
the detuning decreases the temperature, an arbitrarily low temperature value can be ob-
tained. However, there exists a lower limit for the cooling process: if we lower the intensity,
at some point the energy lost in each cooling cycle ∆E will be of the same order as the
recoil energy gained from spontaneous emission. Thus, further lowering of the intensity
degrades the cooling efficiency and the steady-state temperature will rise again.

1.3.3 Polarization Gradient Cooling: σ+ − σ−
Consider an atom on a J = 1 → J = 2 transition3 (see Fig. 1.8) interacting with a sta-
tionary waves obtained from two plane waves counterpropagating along the axis z. These
waves have the same frequency ωL, the same intensity and opposite circular polarizations:
σ+ and σ−

~E = E0(~e+ cos(kz + ωt) + ~e− cos(−kz + ωt))

= −i
√

2E0 cos(ωt)(~ex sin kz + ~ey cos kz)

≡ −i
√

2E0 cos(ωt)~eY (z) (1.27)

where ~e± = ∓1/
√

2(~ex∓i~ey). The two orthogonally polarized waves cannot interfere(in the
usual meaning), so the intensity does not depend on the position. The polarization of the
laser field is always linear along ~eY and rotating in the x− y plane as one moves along the
z-axis. In this case, the light shifts of the ground state sublevels remain constant when the

Figure 1.7: σ+ - σ− light field configuration.

atom moves along the z-axis and there is no
possibility of a Sisyphus effect. Only the ori-
entation phenomena are important for the
cooling mechanism in this polarization con-
figuration.

Consider an atom at rest, in the case of
red.detuned laser (δ <=), the three ground
state Zeeman sublevels have different pop-
ulations and are differently light shifted:
|g, +1〉 and |g,−1〉 have each a steady-state
population of 4/17 and a light shift ∆′

±1

while |g, 0〉 has a population of 9/17 and a

3This cooling mechanism works on every J → J + 1 transition
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light shift of ∆′
0 = 4/3 ∆′

±1. An atom moving along the z-axis with velocity v sees a lin-
ear polarization along ~eY rotating around the z-axis in the x − y-plane with a frequency
−kv. In a co-moving and rotating coordinate system, the atom is at rest and the polariza-
tion direction is fixed. This frame change introduces in the Hamiltonian an internal term
Hrot = kvJz described by a fictitious homogeneous magnetic field in the z direction. If the
atomic velocity is small, the effect of this magnetic field can be treated as a perturbation:
the new eigenstates are linear superpositions of the three Zeeman sublevels. For an atom
moving toward z > 0, a population difference between the |g,−1〉 and |g, +1〉 states arises:

Π+1 − Π−1 ∝ kv/∆′
±1 (1.28)

Since there is a six times greater probability that an atom in |g,−1〉 will absorb a σ−

photon propagating toward z < 0 than that it will absorb a σ+ photon propagating toward
z > 0, it follows that the radiation pressures exerted by the σ+ and σ− waves will be
unbalanced. The atom will scatter more counterpropagating σ+ photons and its velocity
will decrease. For slowly moving atom the friction coefficient can be calculated to give [20]

ασ = ~k2 Γ

δ
(1.29)

Figure 1.8: Level scheme and Clebsch-Gordan
coefficients for the Jg = 1 → Je = 2 transition.

as in the lin ⊥ lin set-up, it does not
depend on the laser intensity I. Compar-
ing ασ with 1.20, we see that ασ is much
smaller as we assume Γ ¿ |∆|. A detailed
calculation [20] taking into account heating
processes shows however, that a steady-
state temperature of the same order and be-
low the Doppler limit can be reached in both
cooling schemes, since the diffusion coeffi-
cient for the σ+ - σ− set-up is much smaller
than the corresponding one for lin ⊥ lin.

1.3.4 Sub-Recoil Cooling

In the standard Sisyphus cooling mechanisms the atoms are cooled down and localized at
sites where their interaction with the laser field is maximum. This situation affects the min-
imum steady-state temperature because the momentum distribution width is determined
by a dynamical equilibrium between the dissipation mechanism and the heating induced
by photon scattering [20]. In order to overcome this limitation, some extensions of the Sisy-
phus mechanism have been proposed [10] that work on a J → J ′ = J or J → J ′ = J − 1
transition with blue detuning (δ > 0). In these situations the atoms are accumulated in
states that have a minimum photon-scattering rate (dark optical molasses). Polarization-
gradient cooling is based on spontaneous processes: a friction force is always associated
with inelastic photon scattering. Therefore, the steady-state momentum distribution can-
not become narrower than the recoil momentum ~k. A completely different laser-cooling
mechanism is able to break down this limitation: velocity-selective coherent population
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trapping (VSCPT) [6]. This cooling method is based on a quantum interference mecha-
nism that creates an atomic state not coupled to the laser field. The atoms are trapped in
this state which has a zero average momentum and can therefore be cooled down to very
low temperatures (Trec/8 for He atoms [81]). This mechanism cannot be interpreted in
terms of a friction force: the cooling is obtained through a diffusion process in momentum
space combined with selectively pumping slow atoms into an internal state which no longer
interacts with the light field.



Chapter 2

Experimental Apparatus

The lifetime of an atom in a certain state of internal and kinetic energy strongly depends on
the collision rate with other atoms of the same sort and on the collision rate with atoms of
all other elements present in the experimental apparatus (background collisions). The main
goal of the vacuum system is to provide a suitable gas environment, where the background
collisions do not limit the observation time of the physical effects of interest. At a typical
background pressure (mostly due to N2) of p=10−9 mbar in the vacuum chamber at room
temperature, the mean free path of an N2 molecule will be

λ =
1

nσ
√

2
=

kBT

pσ
√

2
= 2173, 19 m , (2.1)

where kB is the Boltzmann constant, T is the temperature, n is the atomic density, and
σ ≈ 10−17 m2 is the collisional cross section. The average velocity of an atom is given by
[60]

v̄ = 1, 13

√
2kT

M
, (2.2)

with M being the atomic mass. For nitrogen, the time between collisions is ≈ 3 s, which
is long enough to perform the measurements. In the following section the vacuum system
of our experimental apparatus is described in detail.

This chapter describes the vacuum system, the control and acquisition systems, and
the procedure for compensation of stray magnetic fields.

2.1 Vacuum System
The ultrahigh vacuum (UHV) system consists of two parts: The oven chamber and the
experimental chamber, see Fig. 2.1.

The atomic beam is formed inside the oven chamber. Rubidium is heated in the oven
to a sufficiently high temperature in order to evaporate the atoms. The increased partial
pressure of Rb drives the atoms through small channels of the collimator towards the
experimental chamber. After the collimator, atoms can be divided into two groups. The
first one consists of the atoms that passed the collimator channels ballistically, i.e., without
collisions with the collimator walls. These atoms provide a collimated atomic beam. The

27
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Figure 2.1: An overview drawing of the vacuum apparatus. All important elements are schemat-
ically shown. For more details see photo in Fig. 2.2.

Figure 2.2: Photograph of the UHV system. The oven chamber is not shown, for details of this
part of the apparatus see Fig. 2.3. The red plastic cap on the upper window of the experimental
chamber is for protection during transportation.
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second group is formed from the atoms that collided with the collimator walls and, thus,
pass the collimator diffusively. These atoms produce a background vapor, that increases
the vacuum pressure inside the experimental chamber and, therefore, has to be separated
from the atomic beam.

Leaving the collimator, atoms pass through a liquid nitrogen trap, which separates the
background vapor from the collimated atomic beam. Then the collimated atomic beam
enters the experimental chamber, where the measurements are performed. Finally, the
atomic beam is directed into an ion pump, which maintains a constant pressure in the
chamber. To avoid the production of Rb vapor in the experimental chamber when the
experiment is not active and to maintain UHV vacuum conditions in the experimental
chamber during replacement of the Rb ampule, a UHV valve is placed between the oven
and the experimental chamber of the vacuum system. All important parts of our vacuum
system are shown in Fig. 2.2.

Figure 2.3: Photograph of the oven chamber. The heating
cylinder for the oven bulk is removed in order to obtain a view
on the heating bulk. The Rb ampoule is loaded into the oven
bulk after removing the blank flange. An UHV valve for the
connection with turbo molecular pump is shown in Fig. 2.2.
The collimator stack is mounted inside the collimator body
next to the connection with the oven.

Two getter ion pumps main-
tain the UHV conditions in-
side the vacuum system . The
first one is a diode ion pump
(Perkin Elmer PE 11 STD with
11 l/s pumping speed, see Ap-
pendixE.2) and is connected to
the oven chamber. The sec-
ond pump is a triode ion pump,
which pumps rare gases and has
better pumping characteristic for
nitrogen. This pump (Varian
Star Cell VacIon Plus 20 with
20 l/s, see AppendixE.2) is di-
rectly connected to the main ex-
perimental chamber. These vac-
uum pumps maintain a pres-
sure down to 10−10 mbar without
atomic beam. When the atomic
beam is switched on, the pres-
sure in the vacuum system grows
up to 10−8 mbar. The pressure is
measured with an ITR100 vac-
uum gauge (Bayard-Alpert ion-

ization vacuum gauge, for technical details see AppendixE.2).

2.1.1 Oven Chamber

In this paragraph the construction of our Rb oven and the beam collimation are explained.
A view of the relevant section of the apparatus is given in Fig. 2.3. The source of rubidium
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is a commercial glass ampule containing 1g of Rb in its natural isotopes mixture1. This
ampule is located in a bellow tube welded on both sides to DN 16CF flanges. One side
of the bellow is connected to the vacuum chamber, the other one is sealed with a blank
DN 16CF flange. The collimator consists of a stack of 4 stainless steal plates, which is
fixed inside the vacuum chamber through aluminium ring gasket with 4 screws. Each of
the collimator plates is 6mm thick and has 324 holes of 0.8mm diameter. Four such plates
are combined to a stack and arranged such that all collimation channels are open all over
the stack length. This position is fixed with tacks to avoid misalignment. The total length
of the stack is 24mm, thus, providing the atomic beam with a collimation ratio of 30.
Originally, instead of this stack, we installed a microchannel plate (MCP), see E.1, but
after a while, this MCP was destroyed by Rb, presumably because the ceramics of this
MCP reacts with Rb. To avoid this unwanted chemical reaction one could protect the
MCP with a Cr coating, which is stable in a Rb environment.

Heating of the collimator is provided by 5 turns of a special heating2 wire, which is
wound inside grooves cut into the walls of the vacuum chamber in the vicinity of the
collimator. For heating, the oven is covered by a copper cylinder. In the cylinder, a groove
with 12 turns is cut to receive the heating wire. The special heating wire we use, consists
of a central nickel-chromium wire embedded in isolating mineral powder, surrounded by
a flexible and weldable cladding. Therefore, the heater is electrically isolated from the
chamber. Temperatures of the oven and the collimator are observed with thermocouplers3
that are attached to the oven heating cylinder and the collimator body. The temperature of
the collimator stack should always be higher than that of the Rb oven, otherwise, condensed
rubidium could collect in the collimator channels and would disturb the atomic beam
production. Typical temperatures in our experiment are: 150◦C for the collimator and
130◦C for the oven. Because of the high vapor pressure of Rb (see tableB.4) these moderate
temperatures are sufficient to produce an atomic beam with a density of 3 · 109 atoms/s in
the MOT region.

Rubidium is loaded in the oven through an open flange on the bellow tube. The Rb
ampoule was cut on the air with a glass-cutter and pushed into the bellow tube. After
pumping out the oven part (to about 10−6 mbar) with mechanical backing and turbomole-
cular pumps, the ampoule was broken by bending the bellow tube . After baking the oven
chamber for a couple of hours, the experiment can be run. During the baking procedure,
both UHV ( ion and turbomolecular ) pumps are turned on. By heating a new Rb charge,
a typical atomic beam is established with a time delay of ≈ 15min in comparison to the
usual situation (with an old, used Rb charge) . This time is required for the Rb atoms to
get out of the ampoule and spread all over the oven reservoir.

2.1.2 Experimental Chamber

The experimental chamber is the main part of our vacuum system and is shown in Fig. 2.4.
It is shaped as an octagon with two DN 100CF flanges placed on the upper and bottom

1Rubidium ampoule 99, 5% (m.b.), for detail see E.1
2Thermocoax 1NcAc20, for detail see E.1
3Copper-Konstantan contacts. The temperature range is -100 to +500◦C with the tolerance of 2.5◦C,

the calibration table is shown in theF.1
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sides. On vertical sides it has five specially prepared "flanges" to mount the windows. Two
DN 40CF and one DN 63CF rotating flange on extending tubes serve for connection to the
oven chamber, the liquid N2 trap, and to mount the tilted window.

The vacuum chamber material was chosen to minimize stray magnetic fields. For the
experimental chamber we use AISI 316LN (DIN 1.4429) stainless steel with the magne-
tizability µ = 1.001, for the other parts of our vacuum chamber we take AISI 304 (DIN
1.4401) or AISI 304L (DIN 1.4301) stainless steel with µ = 1.03. To reduce the influence
of stray magnetic fields on the experimental conditions we use the optical table made of
non-magnetic stainless steel E.2.

Figure 2.4: View of the experimental chamber.

Commercially available view-
ports are easy to mount to a vac-
uum chamber (usually through
a CF flange), but optical qual-
ity of these viewports is not
sufficient for the experiments
with high requirements on the
light beams. The uneven sur-
faces and bulk material impu-
rities of these viewports distort
the wavefronts of the laser beams
and cause interference patterns,
making them unsuitable for ex-
periments with optical lattices.
That is the reason why we de-
cide to built our chamber using
quartz substrates with high op-
tical quality4. The price we have
to pay for it are the difficulties in
construction for connecting the

windows to the UHV chamber. All windows are connected to the experimental cham-
ber through special gaskets 5. These gaskets are toroidal aluminium rings cut on the outer
surface and have an inner Nimonic spring that presses the softer shell of the aluminium
toroid onto two contacting surfaces (the quartz window on the one side, the stainless steel
vacuum chamber on the other), therefore, establishing the vacuum seal. Special prepara-
tion of contacting surfaces is required to maintain UHV conditions in the chamber. The
metal surface of the vacuum chamber must be machined on a lathe to avoid microgrooves
crossing the gasket´s contact line which could be created by polishing the contact surface
with a polishing wheel. The AR-coatings on the windows must be smaller than the area
of the inner circle of the gasket - we have observed that if a coating is made on the contact
area of a gasket it can be damaged due to the high local pressure under the gasket, and
vacuum leaks might occur. To avoid damage of the windows by applying pressure to seal

4All windows attached to the experimental chamber are made of fused silica. Two windows with
∅= 100 mm, δ= 15 mm, five windows with∅= 40 mm, δ= 10 mm, one window with∅= 60 mm, δ= 10 mm.
All windows are polished to λ/10, S/D : 20/10 quality and AR-coated for λ=780 nm on both sides.

5Helicoflex c©, type HN100, aluminium/Nimonic 90
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the connection, we placed Helicoflex c© gaskets on both sides of a window. By mounting
this construction one must use gaskets of equal diameter and make sure that they are
positioned exactly coaxial to each other. Moreover, it turns out that this type of caskets is
useful only with windows whose diameter is larger than 60mm6, since at smaller viewport
dimensions, a standard number of compressing screws cannot provide enough pressure to
avoid leaks after the bake-out procedure.

Five windows of 40mm diameter are directly connected to the vacuum chamber through
Helicoflex c© gaskets, two 100 mm windows on the upper and lower sides of the chamber
are first connected to the adaptor flange (DN 100CF to Helicoflex c©) and then mounted
through DN 100CF flange to the experimental chamber as shown in Fig. 2.4. This allows
one to change the design of experimental chamber easily, if necessary.

2.1.3 Liquid Nitrogen Traps

We equipped our apparatus with two liquid nitrogen traps (N2 traps). The first one is
positioned just after the oven. The purpose of this trap is to collect the vapor part of the
atomic beam leaving the collimator. We choose a compact design for this trap in order to
keep the distance between the oven and the MOT region as short as possible (the shorter
this distance, the bigger the brightness of the atomic beam). The trap consists of a trap
body and a container for liquid nitrogen. The trap body is designed as a tube closed on
one end and having a DN 40CF flange for connection with the container on the other.
Two oppositely positioned DN 40CF flanges for connection with other vacuum chamber
elements are welded to the trap body not far from the closed end of the tube perpendicular
to its axis. The container for liquid nitrogen is made also in tube geometry. It is closed
on both ends and is welded with two small tubes to the blank DN 40CF flange. The
two tubes allows to fill the tank with liquid nitrogen (one tube for filling, the second one
for ventilation). The atomic beam passes though the trap container in a tube of 25mm
diameter, which is welded to the trap container on the axis of the atomic beam. To increase
the trapping surface of the construction we added two thin wall tubes to the container,
each of 40mm length, they are mounted into the tube for the atomic beam. The container
volume is relatively small and the trap is mounted very close to the oven, so we have to
fill the trap each half an hour to keep the performance of the trap constant.

To avoid build-up of Rb vapor inside the experimental chamber, we send the atomic
beam after passing the experimental chamber into a second liquid N2 trap, which is
mounted on a DN 63CF flange to the experimental chamber. The construction of this
trap is very similar to the trap described above, but the volume of the second trap is much
larger than that of the first one. The trap body is made as a tube with two oppositely
positioned connection flanges (DN 63CF plus DN 40CF) and a DN 100CF flange to attach
the trap container. The trap volume is ≈ 0.5 l, one complete filling is enough for 4 hours
of operation.

6Performance of the gaskets mounted on the small windows ( ∅= 40 mm ) could be improved using 12
compressing screws instead of 6 (standard). We sealed the small leaks on some ∅= 40 mm windows with
a special leak sealant (LeakSeal c©, Caburn ).
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2.1.4 Baking Procedure and Leak Tests

Obtaining UHV pressures requires careful assembly of the vacuum components. Especially,
one has to make sure that all of the components are clean. All the vacuum parts are first
cleaned with acetone in an ultrasonic cleaner. After the cleaner, the parts are rinsed with
spectroscopy-grade alcohol and dusted off with clean dry air, before they are assembled.
Also the copper gaskets are wiped with ultra-pure alcohol before installation to remove any
factory residue. Significant improvement of the vacuum condition can be achieved after
removing water remains from inner surfaces of the vacuum chamber. For this purpose, the
entire vacuum chamber is heated to a temperature of about 250◦C and pumped for several
days. After the vacuum system is cooled down, the pressure decreases significantly.

Heating from room temperature to 250◦C was done in ≈ 10 hours. When the final
temperature is reached, the vacuum pressure has risen by a factor of 1000 7. Baking8
the vacuum chamber for a week results in a pressure improvement of a factor of 50. A
good option is to connect a mass spectrum analyzer to the vacuum chamber. In this case,
the composition of gases inside the vacuum chamber can be monitored. One can easily
recognize on every stage of the baking procedure, if a vacuum failure has happened. Cooling
the vacuum chamber down to room temperature should be done slowly (at least not faster
than heating it up) in order to prevent cracks in windows and leaks at the gaskets. If
no leaks have appeared, the vacuum pressure has now improved by a factor up to 100.
If the vacuum pressure shows no improvement after baking or becomes even worse, the
vacuum chamber has to be checked for leaks. To do this, we used a helium leak detector,
see AppendixE.2. The leak rate is measured in mbar l/s. Testing our vacuum chamber
after the baking procedure we found several leaks on the 10−8 mbar l/s level, by tightening
windows and using LeakSeal glue, we reduced the leak rate down to the lower detection
limit of the leak tester: 5 · 10−11 mbar l/s.

2.2 Compensation of Stray Magnetic Fields
To perform the experiments with cold atoms in dark states it is necessary to compen-
sate stray magnetic fields in the interaction region. These residual magnetic fields occur
from the massive metal parts in the laboratory and building constructions and from the
earth´s magnetic field. To realize the compensation, we placed magnetic coils around the
experimental chamber, see Fig. 2.5. The compensation coils are made from a braid wire
wrapped on aluminium profiles arranged as a cube with 430mm side length. The regulation
electronics provides a controllable constant current in each coil.

To find the proper settings for each coil, we made series of calibration measurements.
The idea of these calibration measurements is to use the dependence of the width of
dark resonances [7, 5] on the magnetic field. The dark resonances appear as a result of
population trapping in a coherent superposition of several atomic levels Ψ, thereby, the

7There is a large amount of material driven off the walls of the vacuum system during the initial several
hours of the bake. Usually, the pressure after assembling the vacuum chamber is 10−8 mbar and goes up
to 10−5 mbar after the chamber is heated.

8Baking at a temperature higher than 180◦C promotes the evaporation of water from the chamber
surfaces, when the temperature is higher than 250◦C, hydrogen will be also removed.
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Figure 2.5: A view on the experimental apparatus. Compensation coils are arranged as a cube
with 430mm side length around the experimental chamber.

probability amplitudes for the absorption of a definite light field can interfere constructively
or destructively. The transition rate from such a state consists of the sum of the transition
rates from the individual levels building a superposition state. This sum can vanish for
certain couplings and one observes a sharp decrease of the fluorescence signal, the dark
resonance appears. In the case of constructive interference of the excitation pathways the
sum takes on its maximum value and the excitation probability of the system is higher
when it is in the coherent state Ψ. The fluorescence signal increases and one register a
bright resonance.

To describe the method let us briefly review the physics of coherent population trapping.
Consider a system, where an atom with a ground state (|q〉) F = 1 and excited state (|e〉)
F = 0 interacts with an electromagnetic field propagating in z direction and being linearly
polarized along the x direction. If the quantization axis is oriented along the z direction, one
can decompose the electric field into two components with orthogonal circular polarizations
(σ+ and σ−). The laser frequency ω coincides with the atomic transition frequency. A static
magnetic field of strength B is applied collinear to the laser field wave vector.

The Hamiltonian of the system is:

H = H0 + HB + VAL (2.3)

where

H0 = ~ω |e〉〈e| (2.4a)
HB = gµBB(|q, +1〉〈q, +1| − |q,−1〉〈q,−1|) (2.4b)
VAL = ~Ω exp (−iωt)(|e〉〈q,−1|+ |e〉〈q, +1|) + H.c. (2.4c)

H0 is the Hamiltonian of the atomic system without magnetic field, HB describes the energy
shifts due to the applied magnetic field (g is the gyromagnetic factor and µB the Bohr
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magneton), and VAL represents the coupling between atom and laser field9. A description
of the CPT (coherent population trapping) phenomenon can be simplified in the so-called
coupled/noncoupled state basis [4]. The new basis is composed of the excited state |e〉 and
of the two linear combinations of the ground states:

|C〉 = (|q,−1〉 + |q, +1〉)/
√

2 (2.5a)

|NC〉 = (|q,−1〉 − |q, +1〉)/
√

2 (2.5b)

Figure 2.6: Interaction scheme of the transition |Fg = 1〉 → |Fe = 0〉 resonant with two
σ+, σ− laser fields. Left: the basis {|Fg,M〉} is used for the ground state. Right: the basis of
coupled/noncoupled states is used.

The noncoupled state |NC〉 is decoupled from the laser field for any value of the applied
magnetic field B. On the other hand, the magnetic field induces a coupling between |C〉
and |NC〉. The state |C〉 is coupled to the excited state via the laser field. The couplings
due to the Hamiltonian HI = HB + VAL are:

〈C|HI |NC〉 = −gµBB (2.6a)

〈e|HI |NC〉 =
√

2~Ωexp (−iωt) (2.6b)

as shown in Fig. 2.6. In this new basis, the state |1, 0〉 can absorb only light with π polar-
ization, i.e., polarized along the z axis. The state |C〉 absorbs only light with polarization
along the x direction, and the state |NC〉 only light with polarization oriented along the
y axis. Since the light is polarized along the x direction, the atoms in the states |1, 0〉 and
|NC〉 cannot interact with the light field, nevertheless, these states are populated through
the spontaneous decay from the excited state |e〉. The atoms in the state |NC〉 are in a so-
called dark state and can absorb only if the light has y polarization. Remaining in the basis
{|F, MF 〉}, one could explain the transition of an atom in the coherent superposition |NC〉
through the coherence transfer of two circularly polarized light fields via a two-photon Ra-
man transition. The levels participating in the formation of the dark state are connected
through "Λ chain" (σ+ and σ− transitions on the left side in Fig. 2.6). Such a coupling

9The expression for VAL is derived in the dipole and rotating-wave approximation.
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should satisfy the Raman resonance condition: δr = (ωL1 − ωL2) − ω12 = 0 with ωL1 and
ωL2 being the frequencies of the light fields and ω12 the frequency difference of the coupling
states. In our example, we have ωL1 = ωL2, and the dark resonance appears only in the
vicinity of ω12 = 0. An applied magnetic field destroys the nonabsorbing (dark) state and
produces an absorption with a linewidth determined by the relaxation rate of the coherent
superposition. Therefore, the Hanle effect [16] in the ground state of an atomic system
appears as a decrease in the atomic absorption, with a minimum centered at zero magnetic
field and a linewidth determined by the relaxation rate of the ground state coherences.

Recently, it was experimentally shown that for the transitions from F > 0 into F ′ =
F + 1, the constructive interference of the excitation pathways is possible and so the
corresponding resonance changes the sign - it becomes bright [2, 49]. Owing to the fact
that the degeneracy of the excited state is larger than of the ground state, the sublevels
of the excited state also take part in the coupling process. The superposition state is not
stable and can decay via spontaneous emission. The coupling of this state to the light
field is strong and, therefore, only closed transitions contribute to the bright resonance
signal. The appearance of bright resonance at B = 0 could be explained as follows [62]:
When B = 0, the atoms accumulate mostly in the level interacting more with the light
field (bright state), leading to a maximum in the fluorescence. When a magnetic field
orthogonal to the quantization axis is applied, the populations of the ground states will be
partially redistributed, because the Zeeman states are no longer eigenstates of the energy
for B = 0. Thus, the population of levels weakly coupled to the excited state will increase
at the expense of the population of the bright states. This redistribution, leading to a
decrease of the fluorescence rate, explains the bright resonance.

In our calibration measurements we register the dependence of an absorption signal
on the magnetic field. A linearly polarized laser beam, slightly detuned from the 85RbD2
line 3 → 4 transition (MOT transition) and with a laser intensity well below saturation,
propagates through the experimental region perpendicular to the atomic beam, see Fig. 2.7.
Three pairs of magnetic coils, orthogonally oriented with respect to each other, produce the
magnetic field. The compensation procedure works as follows: For the polarization of the
laser beam depicted in Fig. 2.7, the magnetic field Bz is tuned to obtain the Hanle signal at
the zero value of the scanned magnetic field By. The magnetic field Bx is set to minimize
the width of the resulting Hanle resonance. The absorption of the laser beam is measured
as a function of the scanning magnetic field. The sample of such calibration measurement
is shown in Fig. 2.8. Fitting the experimental signal with two Lorentz functions, we obtain
the width of the bright resonance of 27mG. The width of this resonance is limited by
several processes: transit time broadening and inhomogeneity of the magnetic field in the
interaction region. The transit time broadening results from a limited interaction time of
the atoms with the light field. If the interaction time of atoms is ∆t, then according to the
uncertainty relation ∆E = ~/∆t, the line broadening is ∆ν = 1/(2π∆t). Considering a
laser beam with a Gaussian form and an atomic beam with Maxwell velocity distribution,
we get [21]:

∆ν = 2
√

2ln2
vpB

πd
, (2.7)
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Figure 2.7: Experimental scheme for com-
pensation of stray magnetic fields. Probe
transmission signal is measured as a function
of the magnetic field. A sample of such mea-
surement is shown in Fig. 2.8. See text for
more details.

Figure 2.8: An example of the signal from
the calibration measurement. The bright reso-
nance in the vicinity of zero magnetic field is a
Hanle resonance, whose width is dependent on
the quality of the compensation of stray fields
in the interaction region. The dashed line is
a fit to the experimental data. The width of
the resonance is 25mG.

Figure 2.9: Sample of the test measurement
of the stray magnetic fields compensation.

with vpB =
√

3kBT/m being the most prob-
able velocity in the atomic beam and d the
diameter of the laser beam. As can be eas-
ily shown10, the linewidth of the Hanle reso-
nance in Fig. 2.8 is mainly caused by transit
time broadening. The other effect which can
influence the signal width, is the inhomo-
geneity of the magnetic field across the in-
teraction region. Actually, the atomic beam
diameter is ≈ 30mm, but the region where
the compensation magnetic field is homoge-
neous is only about 1 cm3. After the com-
pensation settings for all three pairs of the
compensation coils are found, these settings
are fixed. To control that the compensation
settings are still correct, we make measure-
ments in regular time intervals. We perform
the Raman spectroscopy of magnetic sub-

10Under the following experimental conditions: a diameter of the laser beam 8 mm, the most probable
velocity in the atomic beam 337,3 m/s (beam @ 400K), the transit time broadening is 22.5 mG.
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levels of the ground state. For these measurements we use an arrangement of Raman
spectroscopy shown in Fig. 5.19. From this arrangement we use only the probe beam and
one copropagating pump beam. The polarization of the beams should be oriented per-
pendicular to each other and parallel to the magnetic fields components along x and z
directions. The pump beam is set to the frequency of the dark optical lattice (60 MHz
blue detuned from the F=3→ F ′=3 resonance of D1 line) and the probe beam frequency
is scanned across the frequency of the pump beam. In the presence of a magnetic field, the
transfer curve splits into resonances with the splitting frequency depending on the magnetic
field [73]. If all magnetic fields are well compensated, the width of the central structure
in the transmitted signal is limited by transfer time broadening to a similar value as in
the Hanle resonance measurement as depicted in Fig. 2.9. In conclusion, we compensated
the residual magnetic fields to a value of 20mG, which is sufficiently small to perform the
experiments which are the topic of this thesis.

2.3 DAQ System

For carrying out precision measurements on cold atoms, a good control and data acquisition
(DAQ) system is necessary. As a control unit we use the ADwin-Gold fast realtime system,
whose main feature is a deterministic and robust operation on a 25 ns scale independent of
a Windows-PC. A charge-coupled device (CCD) camera, high quality digital oscilloscope
(see AppendixE.2) plus self-made external electronics and software, complete the DAQ
system.

The following subsection gives an overview of the hardware and software we use in our
DAQ and control system.

2.3.1 Control System Hardware

The main unit for controlling the signal sequences in our experiments is the ADwin-Gold
system. This system has the following features: 32-bit floating point digital signal processor
(DSP) with 512KB CPU RAM and 16MB DRAM, 16 analog inputs, 8 analog outputs with
10µs setting time and 32 digital inputs/outputs. The unit has a compact metal enclosure
and is connected via a link cable and acquisition card to a commercial PC with a Pentium
III 500MHz processor.

The experimental control signal sequence is composed of TTL signals, signals with vari-
able DC voltage and voltage ramps. The TTL signals for controlling mechanical shutters
and triggering of electronics, as well as DC voltage signals for controlling the laser and
magnetic field parameters, are produced directly by the ADwin system. To produce a
ramp for scanning the frequency of the test beam and lowering the intensity of the trap-
ping laser, we built additional electronics. This is a set of controllable integrators, whose
integration time and amplitude of the output signal are controlled by DC signals from the
ADwin system.
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Figure 2.10: Scheme of the experimental control system. The graphical development system
TestPoint serves as input interface for all experimental parameters.

2.3.2 Control and DAQ Software

The general scheme of the experimental control system is shown in Fig. 2.10. The control
signal sequence is programmed with the ADBasic programming language. The code is sent
to the ADwin system and operates there in real-time, independently from the main PC.
For the parameter input, a TestPoint (for details see AppendixE.2) environment was used,
in this object oriented language, we create a parameter input window. All experimental
parameters such as time settings for the analog and digital output channels, control levels
for AOMs, magnetic coils, the experimental cycle time, and number of cycles are set in
this window. The TestPoint software also makes the calculations between parameter values
and control signal values, as in the case of AOMs, whose response to variation in RF power
is strongly non-linear. From the TestPoint software the signal values and parameters are
transferred into the ADBasic program and then to the ADwin processor. The time step
of the ADwin system was set to 10µs in order to provide steep slopes of output analog
signals and stability of the control sequence at the same time. The ADwin processor works
in cycles and each experimental run is repeated again and again until the experiment is
stopped. All mechanical shutters have some time delay and different closing times, so that
exact controlling of the timing is necessary. The timing of the experimental sequence is
verified with the digital oscilloscope (LeCroy) by comparing the timing of ADwin output
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signals and signals from the photodiodes, positioned in the laser beams behind the shutters.
We also verified the adjustment of the dark lattice via Raman spectroscopy. These spectra
are averaged with the oscilloscope over many experimental cycles and saved on the hard
disc drive of the computer.

The CCD camera is controlled by CamWare, a commercial software developed by PCO
company. This software controls and reads out the camera. With this software we are able
to choose all relevant parameters for the image such as exposition time and binning factor.
The images were stored first in a PCO-own 12-bit format (.b16) and are later converted to
the ASCII format for analyzing them with self-made MatLab routines. Number of atoms,
atomic density, and Gaussian width of the atomic sample in both horizontal and vertical
directions are deduced from the gray levels of the image.

2.3.3 CCD Camera System

To take an image of the atomic cloud we use a high performance digital 12-bit CCD camera
system (for details see AppendixE.2). The system consists of an ultra compact camera
head, which connects to a standard PCI board via a high speed serial data link. The
available exposure times range from 10µs to 10 s. A digital temperature compensation is
integrated instead of a space consuming thermoelectrical cooling unit. All camera functions
can be remotely accessed and controlled via a digital interface. To collect the fluorescence
on a CCD chip we use a commercial television objective (for details see AppendixE.2)
together with a 30mm spacer between camera head and objective to adjust the minimal
focal distance of the objective.
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Laser System

All laser systems that we use for our experiments are self-made systems based on com-
mercially available laser diodes. Diode lasers offer many benefits for atom trapping ex-
periments: they are widespread in industry (for the wavelength of Rb) - and, thus, are
low cost and easily available, easy to frequency lock and to align, require little mainte-
nance, but they are typically low power (50 mW ). For efficient trapping of large numbers
of atoms at high densities, this power is not sufficient. Therefore, we use a different type
of semiconductor laser - a tapered amplifier - for increasing the output power.

In this chapter, we describe the construction and stabilization method of grating-
stabilized and tapered amplifier diode laser systems, that were used in our experiments.

3.1 Master Laser

Let us briefly summarize the features of free-running index-guided single-mode laser diodes.
The gain profile of such a laser diode is typically about 10 nm. The emission wavelength
is set by competition between the longitudinal modes of the laser cavity, typically sepa-
rated by 100-200 GHz. Temperature variations cause a change of the cavity length and
a frequency shift of the gain profile, so the emission wavelength can be tuned by varying
the temperature. However, in the tuning process, the gain of the modes varies in a way
that at some point the laser emission frequency jumps from one mode to another, so-called
"mode-hopping" occurs, resulting in a number of inaccessible frequency domains. The
width of accessible frequency domains is a fraction of the free spectral range of the laser
cavity, typically several tens of GHz, while the separation between accessible domains is
a multiple of the free spectral length. By varying the injection current of the diode, it is
also possible to tune the emission wavelength. This leads to a corresponding temperature
change and also a change of the carrier density and, thus, of the refractive index of the
semiconductor laser material. Tuning by injection current also suffers from mode hopping.
The tuning range by temperature tuning is typically on the order of several tens of nm at
a rate of 0.3 nm/K, whereas current tuning typically covers a range of several tens of GHz
at a rate of 4 GHz/mA. It should be mentioned that tuning the laser frequency with the
injection current is much more quickly than the corresponding tuning due the temperature
change. Using a low noise current supply (injection current noise < 1µA integrated over
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100 kHz), the linewidth of a free-running, single-mode laser diode is typically on the order
of some tens of MHz [63].

3.1.1 Grating Stabilized Diode Laser

Unfortunately, it is not possible to use free-running laser diodes for laser cooling experi-
ments - the mode-hopping behavior and their linewidth which is bigger than the natural
linewidth of the atomic transition, make their implementation problematic. These draw-
backs of free-running laser diodes can be eliminated by using an optical feedback technique
[47]. The emission properties of the diode can be improved if the optical feedback comes
from an external resonator with a much smaller linewidth than that of the laser diode
(finesse of the external resonator is higher that from the internal of the laser diode). To
realize this coupling, an output facet of the laser diode should be AR coated (this is the
fact for the most diode lasers with output power >20mW). Because of the length of the
external resonator, its mode spacing is much smaller than that of the internal resonator. To
prevent mode hopping one should use a frequency selective optical feedback from an exter-
nal optical grating. In Littrow configuration - the first order reflection from the grating is
deflected into the laser diode and the zero order beam serves as the output beam. Adjust-
ing the first diffraction order back into the laser diode provides that the back facet of the
diode and the grating form an external cavity coupled to the cavity of the laser diode [78].
This requirement means that the angle of the first order of diffraction Φ1 is equal to the
laser beam incidence angle on the lattice Φ0 (see Fig. 3.1 for details). The wavelength
that fulfills the diffraction condition: λ = 2g sin Φ0 receives a large amplification and the
laser runs single mode at this wavelength (g is grating constant, in our case 1800 mm−1).

Figure 3.1: Principle of grating stabilization.
In the Littrow configuration the first order of
diffraction is backreflected into the diode, i.e.
Φ1 = Φ0.

Our realization of the grating stabilized
laser diode is depicted in Fig. 3.2 and 3.3.

The mounting system consists of three
parts: a basis mount, holding the laser
diode, an adjustable mount for the colli-
mation optics, and an adjustable mount for
the diffraction grating. All metallic parts
are made from the aluminium alloy AlZn-
MgCu1.5, which provides high heating con-
ductivity and good mechanical elasticity.
The laser diode is fixed in the mounting by
means of the pressing ring and two small
screws. Heat conducting grease provides
sufficient thermal coupling between the laser
diode and the holders. The emitting light of
the laser diode is linearly polarized parallel
to the minor axes of the elliptical beam pat-

tern. The diode is aligned such that the polarization is parallel to the lines of the diffraction
grating (vertical to the base mount) - this provides the optimum wavelength selectivity. The
divergence of the diode laser beam is corrected by a collimating objective (Optima colli-
mator, see E.2). The axis of the laser diode and the collimator should exactly coincide



3.1. MASTER LASER 43

(this sets an accuracy challenge for the mechanical workshop). The pre-alignment of the
collimator is made by hand and the fine adjustment is done with a micrometer screw which
tilts the lever arm of the collimator mount. Some tips for the adjustment procedure can
be found in [63]. The diffraction grating is cemented to an adjustable lever arm of the
mounting. The fine adjustment of the angles between grating and the incident laser beam
is achieved through the micrometer screws positioned at the grating and the base mount.
A low voltage piezoelectric transducer (PZT) is placed between the lever and the microm-
eter screw and is used for scanning and for stabilizing the output wavelength to the atomic
resonance. A thermal sensor (AD 590) is fixed on the base mount close to the laser diode.
The base mount is placed on a Peltier element mounted on an aluminium base plate, acting
as a thermal sink. The temperature of the entire system is stabilized to within few mK,
using an electronic servo-loop. A good alignment of the laser system is characterized by a
decrease of the threshold current by about 10-15% (for Hitachi laser diodes typically 7-8
mA) as compared to the threshold of free-running diode.

We tested three different laser diode types in our experiments: Sanyo DL7140201,
Mitsubishi ML64114R, and Hitachi HL7851G. Hitachi laser diodes (for details see E.2) are
the most robust with the longest lifetime and reliable results of spectral characteristics and
output power. No additional antireflection coating on the laser diode facet is required due
to the fact that about 25% of the incident power was coupled back to the diode from the
diffraction grating.

The entire setup is shielded by a metal cover in order to protect the laser against
electromagnetic fields and to improve its thermal isolation. In that way, the frequency
drift of the laser system is limited to less than 10MHz over a few minutes and remains
below 50MHz over a few hours. Properly aligned, the system emits at the same frequency
within 100MHz over weeks, without the necessity of realignment. The emission linewidth is
reduced to about 1MHz [63]. When the output frequency is locked to the atomic transition
by means of low-bandwidth servo-electronics, a stable emission with a linewidth of typically
500 kHz can be achieved. This fact was demonstrated by analyzing a beat signal from two
independent, grating stabilized lasers locked to the Rb resonance.

3.1.2 Pound-Drever-Hall Stabilization

The grating stabilized diode laser system described above, permits reducing the laser
linewidth well below the values of the natural linewidth of 85Rb D1 and D2 lines (5,4 MHz
and 5,9 MHz respectively). Further, the active stabilization of the laser frequency is re-
quired to run the experiments. The stabilization of the laser frequency is based on the
comparison of the actual value of a signal connected with the frequency of the laser with
the desired value of this signal, which results in a so-called "error signal". The stabilization
electronics transforms the error signal into control signals for the laser diode current and
for the PZT connected to the diffraction grating, which correct the deviation of the laser.
For any stabilization method, the following components are necessary: frequency reference,
linear error signal with a steep slope, and a zero signal at the required frequency. As a
frequency reference, we take an absorption signal of the atomic resonance. To obtain the
doppler-free spectrum of atomic resonances, we used the well-known scheme of saturation
spectroscopy [21]. The realization of this scheme is shown in Fig. 3.4. An example of the
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Figure 3.2: Picture of the diode laser setup. Comparing this photography with Fig. 3.3, one can
easily recognize all the important parts of the setup.

Figure 3.3: Schema of the mechanical setup of the grating stabilized diode laser system. Diffrac-
tion grating, laser diode, and collimation optics are mounted on the flex stage, which is fixed to
the Peltier element and temperature stabilized. Grating and collimator are also positioned on the
flex mounts. With the micrometer screws, the exact positions of the grating and collimator are
adjusted, the fine tuning of the grating angle is done with the PZT.
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Figure 3.4: Schema of the laser frequency stabilization to the atomic resonance. In the dashed
box, the design of the Pound-Drever box is schematically shown.

spectrum of Rb lines is shown in Fig. 3.5, a level scheme of the involved transitions is
depicted there as well. Several methods of laser frequency stabilization exist, they can be
divided into two groups: amplitude stabilization methods and phase stabilization meth-
ods. The difference between them is the way how an error signal is created. The first
type - amplitude stabilization - is easy to implement. An input signal for the stabiliza-
tion electronics (a simple PID1 stabilizer, so-called "lock-box") is taken directly from the
transmission signal of the saturation spectroscopy after passing an "offset-box" - a simple
electronics that adds some DC level to the signal. The first drawback of this stabilization
scheme is that the frequency cannot be locked everywhere, for example not directly on
atomic resonance, since the stabilization works only on the slope of the signal. This can be
avoided by the implementation of polarization spectroscopy scheme - through tuning of an
additional magnetic field and polarization of probe and pump beams, a resonance can be
deformed to obtain a dispersive slope instead of a transmission minimum. In our group,
such a stabilization scheme was used in a different experiment, see [54]. The other, more
dramatic, drawback is the dependence of the input signal on the amplitude and on the
stability of the offset-box electronics. If the spectroscopy setup is not well isolated from all
kinds of stray light (reflections from the vapor cell windows, day light, room light), then
the stabilization point and hence the output frequency of the laser can be shifted.

More reliable results can be achieved with the second type - the phase stabilization
method. In this method, the phase delay (dispersion) of the modulated laser light while
passing through a reference medium will be determined by comparing the phases of the

1PID- proportional integral differential, this electronics has the task to hold an error signal at the
desired value and to compensate error signal deviations
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Figure 3.5: Left: Spectrum of the D2 line of Rb. The upper curve shows the doppler-free trans-
mission signal. Transitions F → F

′ are marked in the form [F, F
′
], crossover transitions are

marked with [F, F
′
, F

′′
]. The lower curve shows the transmission of a Fabry-Perot interferometer,

which serves as a frequency reference. Right: the corresponding level scheme of Rb.

carrier and the side band, hence an error signal originates. The scheme of our realization
of the Pound-Drever-Hall2 stabilization is depicted in Fig. 3.4. The local oscillator (LO)
produces a stable radio frequency at 40 MHz. The laser diode current is directly modulated
with the frequency of the LO, the modulation index is small and adjusted in such a way
that the sidebands are not well expressed. Neglecting amplitude modulation, a laser diode
with current modulation emits the following electric field:

E(t) =
E0

2
exp[i(ω0t + Msin(ωmt))] + c.c. (3.1)

where ω0 is the emission frequency of the unmodulated laser light, ωm is the modula-
tion frequency, and M the phase modulation index. Using the series expansion by Bessel
functions Jk(M) and taking in account that M is small we get:

E(t) =
E0

2

∞∑

k=−∞
Jk(M)ei((ω0+kωm)t) + c.c.

≈ E0

2

(
J0(M)ei(ω0t) + J1(M)ei((ω0+ωm)t) − J1(M)ei((ω0−ωm)t)

)
+ c.c.

(3.2)

The modulated light is passing through atomic vapor in a setup of saturation spec-
troscopy and the electric field is transformed to:

ET (t) =
E0

2

∞∑

k=−∞
Jk(M)Tke

i((ω0+kωm)t) + c.c. (3.3)

with transmission coefficients given by Tk = exp(−δk − iφk) with absorption δk = αkI/2
and phase delay φk = nkIωm/2. A photo detector with a bandwidth higher than the

2This method is based on the activities of Pound and Drever, see in the field of frequency modulated
spectroscopy [24, 57]. A good overview is given in [9].
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modulation frequency ωm detects all frequency components of the transmitted intensity:

IT (t) =
cε0

2
|ET (t)|2 (3.4)

In the approximation of slowly varying absorption and phase delay and for the small
modulation index M, the signal measured by the photo diode can be expressed as:

IT (t) ∼ e−2δ0 M
(
1 + (δ−1 − δ1)cos(ωmt) + (φ1 − φ−1 − 2φ0)sin(ωmt)

)
(3.5)

This signal consists of a dispersive part - an in-phase contribution (φ1 − φ−1 − 2φ0) - and

Figure 3.6: An example of signals from saturation spectroscopy and an error signal used for the
stabilization. For better visualization, both signals are scanned over the frequency domain of about
1 GHz and show the hyperfine spectrum of the D2 line of 85Rb.

an absorption part - a quadrature contribution (δ−1−δ1). The signal of the photo detector
is fed into the phase detector, where the frequency components with ωm are mixed with
sin(ωmt) and converted to a DC signal. The result of this conversion depends on the phase
between the photo diode signal and the signal from the local oscillator. In the case that
the in-phase component is converted, we get a dispersive signal. The example of such a
signal is shown in Fig. 3.6. To stabilize the laser, one has to set the desired point on the
slope of an error signal to zero voltage. An offset is added to the error signal because the
background from a Doppler profile of the resonance sets the position of a local maximum
of transmission, and hence, the positions of the resonances. A servo signal produced by a
lock-box, sets the length of the PZT of the grating and diode current of the laser, closing
the servo loop.

3.2 Amplifier (Slave Laser)
The laser system described in Sec. 3.1.1 has for our application only one drawback, namely
the output power. The nominal output power of free-running single-mode laser diodes is
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typically about 50 mW 3, the total output power of the grating stabilized laser system is
therefore maximally 30-35 mW 4. For some applications, for example for a MOT with large
capture volume or for a dipole trap, more power is needed. An efficient way to enhance the
output power of a diode laser system is to use injection locking of a second laser diode with
a higher nominal output power. Several realizations of this method are known. First, one
can injection lock the same type of laser diode as used in the grating-stabilized setup. In
this case, one obtains a laser power of about 50 mW with the same spectral characteristics
as the master laser. The gain in power is not very big. A different method uses a broad
area laser diode as a "slave" laser in the setup of so-called "V-injection". The laser light
from the master laser is injected through the front facet of the slave laser under some angle
to the normal of the front facet, the laser beam propagates in the material of the slave
laser, is reflected on the rear facet of the chip, and the amplified laser beam leaves the
front facet of the slave laser at the angle of deflection. One can gain a factor of 4.5 in
output power, see [68]. In our group, such a system was realized and tested [61]. It should
be mentioned that these systems have some disadvantages. The gain in power is relatively
small compared to the complexity of the optical setup, and they are difficult to adjust.

Another, more efficient way to increase the power of a diode laser system, uses direct
injection into a tapered amplifier laser chip.

3.2.1 MOPA Laser Construction

The main part of our master oscillator power amplifier (MOPA) system is a tapered am-
plifier laser chip (see AppendixE.2 and Ref. [8]). The feature of the tapered amplifier
which is responsible for its capability to produce a high-power output, is the special geom-
etry of the gain region. A horizontal cross section of the tapered amplifier (TA) is shown
in the magnified detail of Fig. 3.8. The gain region consists of a preamplifier with rec-
tangular cross section (similar to the conventional laser diode), followed by a trapezoidal
amplification section. This trapezoidal geometry results in a high output power (up to
500 mW) since the broad output facet of the chip provides a power-density level low
enough to avoid destruction of the gain material. The preamplifier region acts as a spa-
tial mode filter for the light injected at the back facet, since it is small enough such that
only one spatial mode can propagate. The total gain of the TA chip is on the order of
several thousands. Both facets of the TA are antireflection coated to prevent reflection
from the facet and weaken the tendency of the TA to start lasing by itself. Unfortu-
nately, the last tendency is not entirely eliminated. Free-running TA emits radiation with
a broad frequency spectrum (≈ 10 nm) and a strong central peak with a width of 0.5 nm.

3The maximum output power of the laser diode is limited by the damage threshold of the output facet
of the diode. Some new models of laser diodes have higher output power, for example Sanyo DL7140201 -
70 mW. This value is not significantly higher than from a Hitachi diode, but the reliability of these diodes
is worse. Other types of laser diodes (broad area laser diodes) with significantly higher output power
(500-1000 mW) are not single-mode and not suitable for use in Littrow configuration

4The power is reduced due to the reflection losses on the lenses of objective ( ∼ 5% ) and first order
reflection from the grating ( ∼ 25− 30%)
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Figure 3.7: Oscillating behavior of the SDL
chip, leading to instabilities in output mode
quality and power. The graphics shows current-
power characteristics of a free-running TA chip.

This feature of a TA chip plays a negative
role in its application as a light source for a
dipole trap, since the broad emission spec-
trum has also components near the reso-
nance, therefore, dramatically decrease the
lifetime of this dipole trap. Also, some TA
chips from the last production cycles may
have bad specifications 5 - an antireflection
coating on the facets of the chip is not op-
timized, resulting in an oscillation behavior
of the power-current characteristic, see Fig.
3.7. This leads to mode and power instabil-
ity of the output and, therefore, more care-
ful adjustment is required. One needs to fine
adjust the laser every time the experiment
is run. Good features of TA based systems
are the high power amplification (up to 250
mW single mode laser power is available by
20-25 mW seeding power) and its relatively
easy optical setup.

3.2.2 MOPA Laser System

The scheme of our MOPA set-up is shown in Fig. 3.8, details of the slave laser can be found
in Fig. 3.9.

The TA chip is mounted on a temperature stabilized aluminium block. To achieve a
high output power with a small frequency bandwidth, the output of a grating-stabilized
diode laser (see Sec. 3.1) is injected into the preamplifier region through the back facet of
the TA chip. The preamplifier facet has approximately the same shape and dimensions as
the output facet of a conventional laser diode, therefore optimal spatial mode matching
between TA and master laser chips can be achieved by using equal collimation optics for
collimating the master laser and injecting the TA. For this purpose, we use collimation
optics from Optima, model 336-1027-660. Another collimator (Melles Griot GLC-001) is
placed next to the front facet and provides collimation of the TA output beam. Both
injection and output collimator are placed on the adjustable lever arms of the TA chip
holder. The position of the collimators can be exactly adjusted by slightly tilting the level
arms with micrometer screws. This construction is similar to the diode holder of the master
laser, see Sec. 3.1.1. If the master laser is fed into the TA, the output of the TA has the
same spectral properties as the master laser and background radiation is suppressed by
up to 35 dB. Because of the geometry of the TA, the spatial profile of the output beam is
strongly elliptical and astigmatic. Therefore, we use a cylindrical lens and an anamorphic

5The production of the SDL 8630 E chip was stopped in 1999. The chip in our dipole trap laser system
was manufactured in one of the last production cycles and has negative features connected with the AR
coating of the facets. The second SDL chip used in the MOT-MOPA system was produced earlier and
does not show such negative behaviour.
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Figure 3.8: Experimental setup of our MOPA system based on the tapered amplifier (TA). The
magnified detail shows the construction of the TA chip.

prism pair to correct for it. Care has to be taken during the adjustment procedure: the
backreflections into the large output facet should be avoided since this can destroy the
TA. In this case laser light entering the TA at the output facet would be amplified in the
reverse direction and, thus, would lead to very high power densities at the narrow end of
the trapezoid. To avoid this, an optical isolator is placed in the beam directly after the
collimation lens. An acoustooptical modulator, which is placed between master and slave
laser, is used as a quick shutter and sets the desired detuning from the atomic resonance.
In our experiment, we use two MOPA systems: the first is used to provide enough power
for a MOT with a relatively high capture volume ( ®=25 mm ), the second system serves
as a light source for a dipole trap. Detailed description of the TA-based optical setup for
the MOT and the dipole trap can be found in Sec. 4.4.3 and Sec. 6.3.1, respectively.
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Figure 3.9: A photography of the slave laser. A Peltier element is placed between heat sink and
temperature stabilized blocks.



Chapter 4

Source of Cold Atoms

The experimental investigations of ultracold neutral atoms require methods to cool atoms
from initial temperatures of hundreds of Kelvin down to less than 1mK. The efficient tool
to produce such ultracold ensembles of neutral atoms, is the magneto-optical trap (MOT).
To cool the atoms, the MOT uses the radiation pressure force, originating from subsequent
cycles of absorption and spontaneous emission. In combination with a quadrupole magnetic
field, a position dependent force arises and provides a spatial confinement of the atoms. In
our experiments, a MOT loaded from a precooled atomic beam produces cold and dense
atomic samples in an UHV environment.

In this chapter, the principle of MOT operation is briefly reviewed and our imple-
mentation of a MOT with a pre-cooled atomic beam is described and characterized by
measurements of the trap density, lifetime and temperature. We briefly compare our MOT
setup with other possible implementations.

4.1 Magneto Optical Trap

The idea of a MOT [59] can be easily understood on the example of 1D configuration for a
two-level atom with F = 0 in ground state and F = 1 in excited state, with F - the total
angular momentum of the atom. The 1D MOT consists of one pair of counter-propagating
laser beams and an inhomogeneous magnetic field. The magnetic field is a linear function
of z, B = bz, with b being constant. The two laser beams are circularly polarized and
red detuned with respect to the atomic resonance. The magnetic field splits the energy
levels of the excited state into three magnetic sublevels due to the Zeeman effect. When an
atom is moving to the right of the origin, the Zeeman splitting will shift the atom into the
resonance with the beam coming from right and out of resonance with the beam coming
from left, see Fig. 4.1. This formes the force which is velocity and position dependent. The
total force can be written as the force from equation (1.5) with an additional term ωz = βz,
which describes the frequency shift of the atomic level due to the Zeeman splitting:

~F = ~F+ + ~F− = ~~k
Γ

2

so

1 + so + (2(δ − ~k~v − βz)/Γ)2
− ~~kΓ

2

so

1 + so + (2(δ + ~k~v + βz)/Γ)2

(4.1)
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In the limit of small atomic velocities (~kv ¿ Γ) and low laser intensity (so ¿ 1) we obtain
the following expression for the total force:

~F = 4~~k
2δ

Γ
so

(~k~v + βz)

(1 + (2δ/Γ)2)2
= −αv +

α

k
βz (4.2)

where α is the damping constant and α/k the spring constant of the trap. This expression
is identical with (1.6) except from the fact that the factor ~k~v is now ~k~v + βz. The inho-
mogeneous magnetic field produces the position dependent force with friction component.
The characteristic damping time constant for Rb-atom and dB/dx=10G/cm is:

τ = kβ =
~k

gµB
dB
dx

= 0.91ms (4.3)

The motion of an atom in the MOT under the action of confining force (4.2) is strongly
over damped. This can be seen from the equation of damped harmonic oscillator:

z̈ + γż + ω2
trapz = 0 (4.4)

with
γ = 4~k2 2δ

Γ

so

M(1 + (2δ/Γ)2)2
(4.5)

and

ω2
trap = 4~k

2δ

Γ
soβ

(~k~v + βz)

(1 + (2δ/Γ)2)2
(4.6)

The following parameter describes a character of the atomic motion in the trap:

γ2

4ω2
trap

=
~k3 2δ

βΓ

so

M(1 + (2δ/Γ)2)2
(4.7)

The parameters γ and ωtrap have their maximum ( for maximum attenuation and rigidity)
at I = Io and δ = −Γ/2, so the relation (4.7) takes the form:

γ2

4ω2
trap

=
πErec

4λβ~
(4.8)

This expression gives the ratio between photon recoil energy Erec and the increase of
the Zeeman energy over the wavelength λ~β. For typical experimental parameter β =
2π · 1.4 MHz/cm (b = 10 G/cm) is the expression γ2/4ω2

trap = 22 À 1 for Rb. The atomic
motion in the MOT is commonly strongly overdamped.

The most common scheme of a three dimensional MOT , used in a variety of laser
cooling experiments, includes three pairs of laser beams having σ+ − σ− configuration
that are mutually perpendicular to each other plus a quadrupole magnetic field, which is
generated with a pair of coils positioned in an anti-Helmholtz configuration, see Fig. 4.1
for details.

For our investigations we choose 85Rb because the wavelength of its optical transitions
can be easily produced with the diode lasers, and due to its physical characteristics trapping
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Figure 4.1: Operation scheme of a standard MOT: a. Energy-level diagram of two-level atom,
immersed in a magnetic field Bz(z) = b z. The frequency and polarization of the counterpropagat-
ing laser beams are chosen to produce damping and restoring forces for the atomic motion along
the z-axes. b. Trapping scheme in three dimensions. The quadrupole magnetic field is generated
by two coils of opposing current. Laser light, indicated by heavy arrows, counterpropagates along
x, y, and z, and is polarized shown with respect to the axis of propagation.

and cooling is relatively easily to realize. The cooling cycle is realized on the (52S1/2(F =
3) → 52P3/2(F = 4)) transition of the D2-line of 85Rb, see Fig. 4.2. This transition has
a wavelength of 780.027 nm1 and a natural linewidth Γ/(2π) = 5.9MHz. The transition
is closed, but due to the relatively small separation between F=4 and F=3 levels of only
121MHz and the fact that the typical detuning for MOT operation is δ = −2Γ, the
probability for the off-resonant excitation into the F=3 state is 1/1000. Once excited into
the 52P3/2(F = 3) state, the atoms can populate the lowest hyperfine state (52S1/2(F = 2))
over spontaneous decay, and so are loosed for the cooling process. Therefore, an additional
(so-called "repumper") laser tuned to the 52S1/2(F = 2) → 52P3/2(F = 3) transition,
brings the atoms back into the cooling cycle.

4.2 Capture Range of the MOT

The trapping potential of a MOT is typically several mK deep, which means on the velocity
scale values less than 10m/s. Therefore, only the atoms up to this maximal velocity can be
captured in the trap. This limitation can be understood from the following consideration:
the trapping laser beams are red detuned from the Bohr frequency at zero atomic velocity
and zero magnetic field, that is in the middle of the trap. The increasing magnetic field from
the trap center outwards shifts the atoms with the decreasing velocity into the resonance
with laser, resulting in a resonant condition for a resting atoms at some distance RC from
the trap center. Beyond the sphere with a radius of RC , also called capture radius, no atoms
interact with the trapping light. Only the atoms with a velocity such that their maximum

1value in air
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Figure 4.2: Energy Levels of 85Rb. The ground state consists of two hyperfine states with F=2 and
F=3. The cooling transition for the MOT and beam cooling is 52S1/2(F = 3) → 52P3/2(F = 4)
of the D2-line. The repumping laser for the MOT drives the 52S1/2(F = 2) → 52P3/2(F =
3)transition of the d2-line. The repumper for the beam cooling is tuned to the 52S1/2(F = 2) →
52P1/2(F = 3) transition of the D1-line. All wavelength are given as values in air.
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Doppler shift is twice the Zeeman shift at the capture radius: kvmax = 2bRC = 2 δ, can
be trapped in the MOT. Where b = dB/dz and δ being the detuning from the resonance.
Using the rubidium transition and assuming the experimental values of ω1 = 3.5 Γ and
δ = 1.5 Γ we get RC = 18.8G/b with b in Gauss/cm. With the magnetic field gradient of
15G/cm we find RC = 1.25 cm. The capture velocity is calculated to be vC = 6.6m/s. At
room temperature, the middle velocity of rubidium atoms is v =

√
kT/M = 170m/s, so

only a small part of atoms (∼ 8 ·10−6) can be trapped by the MOT. At this point, one has
to mention the two alternatives for loading the MOT: loading from a vapor and loading
from a cooled atomic beam.

4.3 Loading Schemes for MOT s

In the first realization of a MOT [59], a cold atomic beam was used as a source of atoms
for loading the trap. Later, it was demonstrated that atoms could be directly captured in
a MOT from a low-pressure vapor [53]. Each of these loading schemes has pros and cons,
which we will briefly discuss now.

Let us begin with the atomic beam loading configuration. To efficiently cool down the
atoms in an atomic beam, it is necessary to maintain the resonance condition for the atoms
on the entire way from the oven to the trap region. This can be realized by shifting the
atomic resonance with a magnetic field (Zeeman cooling technique [56]), or by shifting the
frequency of the cooling laser (chirped laser technique [3, 26]). A Zeeman slower decelerates
an intense thermal atomic beam along the propagation axis of the beam by the radiation
pressure, while the spontaneous emission processes give rise to a transverse heating of the
atoms. This results in a strongly diverging beam with a flux of up ot 1011 at/s. This
loading method has following benefits: most of the atoms in the atomic beam can be
decelerated and, thus, can be captured in the MOT; the vacuum in the MOT region is
not significantly influenced by the atomic beam source, since the Zeeman slower acts as
a differential pumping route between oven and MOT region2. The drawback of the beam
method consists in the complexity of the set-up, that requires a Zeeman section, an oven
and collimating sections, and an additional laser with sufficient power to saturate the
atomic transition. The main disadvantage of this method is that atoms are loaded from a
very small spatial angle (typically 3 · 10−4), resulting in relatively small loading rate (small
number of atoms, but almost all of them are cold enough to be trapped in a MOT). The
divergence of the beam imposes geometrical constrains on the arrangement of the Zeeman
slower´s output and the trapping volume of the MOT. The slowing light on axis or the
magnetic fields involved, can disturb the succesive MOT.

Alternatively, a MOT can be easily load from a low-pressure vapor. At this point
one has to mention that this method is only effective in the case of earth-alkali elements,
because of their high vapor pressure at room temperature, see for Rb the Tab.B.4 in the
AppendixB. Along with the obvious advantages of this method, concerning the simplicity

2For rubidium, the slower length should be about 80 cm, and with the inner diameter of a slower tube
of typically 1 cm (a good compromise between beam collimation factor and the current in the Zeeman
magnet, providing the required magnetic field on the beam axis), a pressure difference of two order of
magnitude can be established between oven and the main chamber.
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of the experimental set-up by elimination of a precooling stage, such as Zeeman slower
or frequency-chirped lasers, and loading from the whole spatial angle of 4π, there exist
several drawbacks, namely: only small amount of atoms from the vapor (approx. 10−6)
can be trapped by MOT; background vapor is a source of energetic atoms hitting and
ejecting those atoms, already trapped in a MOT. These background collisions limit the
trap-confinement time and consequently the total number of atoms trapped in a MOT. In
most experiments it is desirable to have a large number of atoms for as long as possible in a
trap, for example in order to support evaporative cooling, a critical step in the production
of a BEC.

In our experiment we try to combine the advantages of these two different loading
schemes. That means, an enhanced spatial angle for loading (as in a vapor method)
together with the better vacuum conditions (as in a beam method).

4.4 Our Magneto-Optical Trap
Our setup uses a pre-cooled thermal atomic beam for loading the magneto-optical trap.
The beam geometry is designed in a way to maximize the loading rate of the MOT. Beam
collimation is realized with a multichannel plate (see Sec. 2.1.1), providing an exit surface
of 25mm in diameter and collimation factor of 30. With a distance of 40 cm between
collimator and MOT region all these parameters provide relatively high spatial angle of
2 · 10−2 for loading atoms into the MOT, in comparison to the typical spatial angle of
5 · 10−6 provided by a Zeeman decelerator.

Since the magnetic coils of our MOT have a radius of 10.5 cm, we can use the magnetic
field ramp for additional deceleration of the thermal atomic beam.

4.4.1 Atomic Beam and Beam Deceleration

We will shortly review the essential points of beam physics. The Maxwell-Boltzmann
velocity distribution of atoms in a gas is given as

f(v) =
( m

2πkBT

)3/2

exp
(
− mv2

2kBT

)
=

( 1

πv2
0

)3/2

exp

(
−v2

v2
0

)
(4.9)

where v0 =
√

2kBT/m is the most probable velocity. In the atomic beam, the velocity
distribution has a form:

fB(v) =
2

v0

(
v

v0

)3

exp

(
−v2

v2
0

)
(4.10)

and the mean velocity in the beam is given as

v̄ =

∫ ∞

0

v fB(v) dv =
3

4

√
π v0 (4.11)

The fraction of atoms in the beam below a certain velocity vc, is given by
∫ vc

0
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The rate of atoms, transmitted through a channel of radius r and length l can be calculated
as

Q = n
A

2
2π

∫ ∞

0

f(v) v3 dv

∫ θm

0

sin θ dθ (4.13)

= n
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2π
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where n = p/kbT is the atomic density. The total rate of atoms reaching the MOT
volume can be estimated by the summation over all channels (in our case 324). With
r = 0.4 mm, l = 24 mm, n = 1.14 ·1020 at/m3 (Rb vapor pressure at 150◦C is p = 0.665 Pa,
see Tab.B.4) one can easily obtain the total flux of Q = 2 · 1013 at/s.

The Eq. 4.12 shows strong dependency of the loading rate, i.e. flux of atoms with
velocities below vc, on the capture velocity of the MOT. The MOT capture velocity can
be extended by increasing the detuning of the MOT capture beam. In our case, we set the
detuning to 2.5Γ, which results in w1 = 4.5 Γ, s = 1.8, and vc = 11.78 m/c. This means
that only each 380 000-th atoms can be trapped in the MOT. To increase the flux of slow
atoms we use the scheme of beam deceleration: a laser beam is counterpropagating to the
atomic beam and the resonance condition during the deceleration is maintained by varying
magnetic field produced by the MOT coils.

The velocity of a decelerated atom changes as: v = vi,− at, where vi is the initial
velocity and a the constant deceleration. The distance travelled by an atom is given as:
s(t) = vit − 1

2
at2. Summing up the above relations and assuming si = v2

i /2a, one easily
obtains:

v

vi

=
(
1− s

si

)1/2

(4.16)

When atoms are decelerating, they are tuned out of resonance with the slowing laser.
To compensate this Doppler effect one can chirp the laser frequency or change the transition
frequency within the atoms using the Zeeman effect. Magnetic field will shift both levels
of the cooling transition, therefore the difference in these shifts has to cancel the Doppler
shift at every moment during the slowing process:

kv = ∆g∆m
µB

~
B (4.17)

where µB is the Bohr magneton, and B the magnetic field. For the 85Rb 52S1/2(F =
3,mF = 3) → 52P3/2(F = 4,mF = 4) cooling transition, the factor ∆g∆m = 1, see
TabB.5. As in the case of MOT, a repumper laser beam should be added to the cooling
beam in oreder to close the cooling cycle. Though, the ∆g∆m -factor for a repumper
transition should have the same value as for the cooling transition. The proper transition
can be found on the D1-line: 52S1/2(F = 2,mF = 2) → 52P1/2(F = 3,mF = 3).

The magnetic field should be tailored in space in such a way, that all decelerating atoms
always experience the suitable magnetic field along the direction of propagation. This can
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be realized if the magnetic field shows the same dependence on slowing distance as the
velocity in Eq. 4.16, namely:

B(x) = Bmax

√
1− x/xi (4.18)

with Bmax = ~ kvi

µB
being the initial magnetic field. The frequency shift due to the

magnetic field is given by δω = ±µB

~ B = 1.4GHz
G

B, where + (−) is valid for σ+ (σ−) light.

Figure 4.3: Shut-down measurement of the
MOT magnetic field. The signal is measured
with a "pick-up" coil.

In the case of quadrupole magnetic field
of the MOT, the field gradient b is linear
and the spatial dependence of the magnetic
field has the form: B = b x. With the same
gradient at the beginning of the decelera-
tion, the linearly decaying magnetic field
needs double distance to reach zero value
in comparison to the optimal tailored mag-
netic field of Zeeman slower according to
Eq. 4.16. In Fig. 4.4, the comparison of the
spatial dependencies of Zeeman slower field
(square-root tailored, in red) and MOT field
(linear decaying, in black) are shown. For
the deceleration procedure this means that
in a quadrupole magnetic field, atoms needs
double distance to be stopped as compared
to the situation in the Zeeman slower.

4.4.2 Magnetic Coils

As previously mentioned, a suitable magnetic field is needed for the MOT operation. It
is created by two magnetic coils arranged in a so-called anti-Helmholtz configuration, i.e.
the spacing between coils is equal to the coil´s diameter, and the electric current in the
coils is counterpropagating. The magneto-optical trap is located in the center between the
coils, where magnetic field vanished. From the trap center outwards, the field is increasing
homogeneously and linearly. The field gradient is not isotropic, in the vertical direction
(coils axis) it is twice as large as in the horizontal plane:

dB

dz

∣∣∣
z=0

= −3µ0 IN

2
· R2 L(

R2 + (L/2)2
)5/2

(4.19)

where L is the separation of the two coils, R is the coil radius, N is the number of turns
in one coil, I electric current, and µ0 = 1.2566 · 10−6 V s/Am the magnetic constant. For
our setup, L=1.12R, and with R=10.5 cm, N=120 turns, I =10A, the gradient in the trap
center is set to 11.6G/cm. Each magnetic coil is made of copper wire of 2mm diameter
wrapped on the U-form aluminium ring. The rings are cut in the axial plane to avoid the
building of ring currents. These currents can dramatically increase the inductance of coils,
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Figure 4.4: Spatial dependence of the Zeeman slower magnetic field (in red) and quadrupole
magnetic field of MOT (in black). The gradients ont the beginning of deceleration (at Bmax =
136G are equal for both fields. Decay distance of the linearly dependent field is twice as large as
of the optimal tailored field from Eq. 4.16

and thus the switch-off time for the magnetic field. For our setup, this effect is enhanced
through the vacuum chamber body, since the magnetic coils are positioned outside the
chamber.

The inductance of each magnetic coil is measured to 3mH, which is consistent with the
calculations, based on the geometrical parameters of the coils. The complete shut-down
process of the magnetic field in the coils, mounted on the chamber, take less than 2ms
for a typical MOT magnetic field (I=10A). To obtain the decay time of MOT magnetic
field, we measure the induced voltage in a "pick-up" coil, positioned coaxial with one of
the MOT coils. The result of such measurement is shown in Fig. 4.3.

To provide a heat dissipation, each coil has a water cooled ring, which is implemented
in the coil body. At the typical current of 10A, about 55W has be dissipated in each coil.

4.4.3 Optical Setup for MOT

As mentioned in Sec. 4.1, three pairs of laser beams with σ+−σ− polarizations are required
to construct a MOT. The simplest way is to reflect the laser beams back after they passed
through the MOT region. This scheme has one drawback: due to the absorption, the
reflected laser beam is weaker than the forthcoming one. Thus, radiation pressure is
imbalanced. This results in the shift of trapped cloud out of the MOT center (place where
magnetic field is zero). If the MOT beams are used as "flash-light" during the detection,
the imbalance of the radiation pressure cause an acceleration of atoms and thus can distort
the experimental results. We choose the six-beam design of the MOT. Combining six
independent laser beams along three spatial directions allows us to precisely adjust the
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Figure 4.5: Optical scheme of our MOT setup, including atomic beam cooling scheme. PBS-
polarizing beamsplitter.
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power balance between laser beams, and, hence, the radiation pressure inside the MOT.
This scheme needs twice as large laser power as the scheme with the retroreflected beams.

The optical scheme of our MOT setup is depicted in Fig. 4.5, where the two-dimensional
view of the setup is shown. Three diode laser systems serve as light sources for the MOT
and beam cooling. All laser systems are protected through Faraday isolators against optical
feedback. The radiation for the cooling transition for the MOT and beam deceleration is
produced by MOPA laser system (see Sec. 3.2.1). Total output power of this system can
reach up to 220 mW, which is quite enough to drive the cooling transition above the
saturation, even with a quite large diameter of the light beams (25mm). The repumping
laser systems are grating stabilized diode lasers (see Sec. 3.2.1). We use in our experiments
two separate laser systems, since the wavelengths for MOT and beam repumper are different
(see Sec. 4.4.1 and 4.1). All laser beams can be separetely shut off by mechanical shutters
(Densitron, see AppendixE.2) placed in the middle of a 1:1 telescopes. The shut off time
is measured to 100µs.

Figure 4.6: Detuning scheme for the
MOT. Red dotted line marks the detuning
of our MOT from the atomic resonance.
Using an AOM at 76MHz we can stabilized
the laser frequency to the 3-4-2 crossover.

An acoustooptical modulator is placed inside
the MOPA laser system between master laser and
the amplifier, see Fig. 3.8. This modulator allows
us to tune the frequency of the laser system in
the range of about 40MHz and to regulate the
output power of the system by varying the power
of the controlling radiowave signal. To reach the
optimal settings for the cooling, we set the detun-
ing of the AOM to 76MHz, so that we can stabi-
lize the laser system to the 3-4-2 crossover on the
85Rb spectrum (see Fig. 3.5, and 4.6), which has
a detuning of 92MHz from the F = 3 → F ′ = 4
cooling transition, so that we can end up with
a red detuning of 2.5Γ to the cooling transition.
The slope of the error signal in the vicinity of 3-
4-2 crossover signal is steeper and larger in the
amplitude as compared to other transitions (see
Fig. 3.6), so that stabilizing to it provides more
reliable and frequency stable output.

The light beams from cooling and repumper
laser systems are combined together on the po-
larizing beam splitter. Before being mixed, the

light beam from each laser system is mode filtered with a pinhole and expanded to the
diameter of MOT beams. The power balance between the dimensions and inside each
dimension of the MOT optical setup is set with the help of λ/2 retardation plates and
polarizing beam splitters, see Fig. 4.5. The cooling and repumper laser beams for atomic
beam deceleration are also combined together on the polarizing beam splitter and injected
into the vacuum chamber through a rear window. This combined laser beam is slightly
focused to compensate the divergency of the counterpropagating atomic beam. To avoid
the influence of the unbalanced radiation pressure on the trapped atoms, we project a spot
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of 4mm diameter into the area of MOT via a 2-f image system, see Fig. 4.5. To avoid an
influence of the atomic beam on the trapped atoms, we blocked the central part of atomic
beam with the stopper (∅=4mm), which is installed inside the vacuum chamber.

4.4.4 Parameters of the MOT

The magneto-optical trap is characterized by three main parameters: number of trapped
atoms, atomic density and the lifetime of atoms in the trap. The number of atoms and
atomic density can be obtained through the fluorescence from a trapped atomic sample.
The power PΩ, detected by a photo diode (or CCD camera) from a solid angle Ω is pro-
portional to the number of scattered photons, and hence to the number of trapped atoms
N :

PΩ = N
Ω

4π
~ω Γsc (4.20)

Figure 4.7: Atomic
cloud in the MOT.

where ω is the atomic resonance frequency and Γsc denotes the
photon scattering rate, which is given for a two-level atom as:
Γ/2 (s/(1+s)). In the case of 85Rb we can assume that all 7 Zeeman
sublevels are uniformly occupied, so that the saturation parameter
s should be multiplied with the correction factor κ = 3/7 ≈ 0.43.
Taking in account s = s0/(1+(2δ/Γ)2), where s0 = I/I0 = 2ω2

1/Γ
2

is the resonant saturation parameter, we can express the number
of trapped atoms as:

N = PΩ
4π

Ω

λ

2π~c
2(1 + κs0 + (2δ/Γ)2)

κs0Γ
(4.21)

with λ being the atomic wavelength and c the light velocity. We
register the power scattered light with a calibrated CCD camera

system, see AppendixE.2. Taking in account parameters of the CCD camera and using
Eq. 4.21, we obtain the number of trapped atoms N = 3.9 · 109 for the experimental
parameters s0 ' 8 and δ ' 2.5Γ. From the images, captured with the camera system we
can obtain the extension of the atomic sample in the trap and, hence the density of atoms,
which was measured to be ρ = 5 · 1010 at/cm3. A typical picture of atomic sample trapped
in the MOT is shown in Fig. 4.7.

The time evolution of trapped atoms provides information on the vacuum conditions
and two-body collisions that occur at high atomic densities. The result of a lifetime mea-
surement is depicted in Fig. 4.8. Decay of the atomic sample is properly described by3:

N(t) = N0
(1− ξ)e−t/τ

1− ξe−t/τ
(4.22)

where τ is the exponential decay time due to collisions with background gas and parameter
ξ = βn0/(βn0 +

√
8/τ) describes the losses due to two-body collisions (β is the two-body

collision rate, n0 the atomic density). From the data in Fig. 4.8 we deduced: τ = 7.9 s
and ξ = 0.072. The exponential decay time τ = 7.9 s shows that the vacuum conditions

3The derivation of Eq. 4.22 is described inC
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and, hence the background gases collision rate, are quite small and will not disturb our
experimental investigations. From the trap loss parameter ξ one can deduce the two-body
collision rate, which is in our case β ∼ 5 · 10−12 cm3/s. Similar values were observed in
other experiments [29], where the trap losses were studied in a wide range of experimental
parameters. A good overview on the collision losses can be found in [79].

To study the influence of the additional trap load rate, originating from the deceleration
of the atomic beam, we measure the density and number of atoms in the MOT in two
regimes: with additional cooling and without it. It turns out that deceleration of the
loading atomic beam increases the number of trapped atoms by a factor of 2, but the
density decreases by a factor of 0.8. This is in a reasonable agreement with the results of
detailed study of density dependence in the MOT on the number of trapped atoms [45, 71].
Namely, in the "optical density" regime, increase in the number of atoms brings decrease
of the atomic density. Typical values for our MOT without additional beam cooling were:
N ∼ 1.8 · 109 at and n ∼ 8.5 · 1010 at/cm3.

Figure 4.8: Decay of the MOT. The red line is a fit with τ = 7.94 s and the decay parameter due
to inelastic collisions ξ = 0.072, see AppendixC.



Chapter 5

2D and 3D Dark Optical Lattices

This chapter presents our experimental results on dark optical lattices. We begin with a
brief review of basic properties of conventional optical lattices (Section 5.1). In Section 5.2
we give a short description of the physics of dark optical lattices and present our implemen-
tation of a two-dimensional dark optical lattice (2D DOL). We characterize the 2D DOL
with respect to the lifetime, the temperature, and the fundamental vibrational frequency
measured by means of stimulated Raman spectroscopy. We demonstrate the reduced flu-
orescence level of this type of optical lattices. Finally, the novel 3D configuration for dark
optical lattice is described and its ability to trap and cool atoms in three dimensions is
presented in Section 5.3.

5.1 Conventional (Bright) Optical Lattices

5.1.1 One-Dimensional Optical Lattices

The first experimentally observed optical lattice had the same geometry of electrical fields
as a 1 D lin⊥lin molasses configuration leading to Sisyphus cooling , for details see Sec 1.3.1.
This field configuration provides not only localization and quantization of the atomic mo-
tion inside optical-potential wells, but also the cooling, which is necessary to have a large
fraction of the atoms in the lowest vibrational levels of the potential wells.

Sisyphus Cooling and Quantization of the Atomic Motion

Consider an atom with a F = 1/2 → F ′ = 3/2 transition (see Fig. 5.1) placed in a light
field composed of two counterpropagating laser beams with frequencies ω, field amplitudes
E0, having orthogonal polarizations ~ex and ~ey (Fig. 5.2).

~E1 =
E0

2
~ex(expi(kz−ωt) +c.c.) (5.1)

~E2 =
E0

2
~ey(expi(kz−ωt) +c.c.) (5.2)

The resultant electric field:

65
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Figure 5.1: Level scheme and Clebsh-Gordan coefficients for the F = 1/2 → F ′ = 3/2 transition.

Figure 5.2: Above: lin ⊥ lin configuration consists of two counterpropagating laser beams with
same frequency and orthogonal linear polarization. The resultant field exhibits a polarization gra-
dient with a λ/2 periodicity. Below: Light shifts for a F = 1/2 → F ′ = 3/2 transition. The
spatial dependence of light shifts is due to the polarization gradient. The light shift is maximal at
the points of pure circularly polarization.
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~Ez = (E+~e+ + E−~e−) exp−iωt +c.c. , (5.3)

exhibiting a polarization gradient, shown in Fig. 5.2, with:

~E+ = −i
E0

2

√
2 sin(kz) (5.4)

~E− =
E0

2

√
2 cos(kz) (5.5)

~e± = ∓~ex±i~ey√
2

(5.6)

Equation 5.3 shows, that the total field can be decomposed into two standing waves
of σ+ and σ− polarization with an offset of λ/4 to each other (so that antinodes of one
standing wave coincides with the nodes of another). The light intensity IL ∝ |E2

z | is
everywhere constant, only the field polarization changes from circular to linear and back
to circular as one moves a distance λ/4 along the z-axes.

Let us take a look on the dynamics of an atom interacting with such a field. At the
points where the light is circularly polarized, the optical pumping transfers all available
atoms into sublevels with mg = 1/2 in the case of σ+ polarization, or in mg = −1/2 in the
case of σ− polarization, see Fig. 5.2. The spatial correlation of optical pumping and light
shifts provides the basis for the Sisyphus cooling mechanism, see Sec. 1.3.1. The atoms
loose their kinetic energy and become localized in the vicinity of the potential minima.

The maximum light shift, and hence, the deepest optical-potential well, arises at the
positions where the light is circularly polarized because the Glebsh-Gordan coefficient for
a transition mg = F → me = F + 1 (or mg = −F → me = −(F + 1)) is equal to
1. Moreover, at these points the most light-shifted sublevel is the only one populated by
optical pumping. The typical depth of the potential wells is on the order of the maximum
light-shift ∆ ≈ ω2

1/4δ, where ω1 is the resonant Rabi frequency for a transition with a
Clebsh-Gordan coefficient equal to 1.

In the limit of low saturation , the optical potentials for the ground states |g,±1
2
〉 are:

U+ =
U0

3
(2 + cos2kz), U− =

U0

3
(2− cos2kz) (5.7)

where U0 = ~δs/2 is the maximum value of the light shift potential and s = 2ω1/(4δ
2 +Γ2)

is the saturation parameter with associated Rabi frequency ω1 = −dE0/~ (d is the dipole
moment for the transition with Clebsh-Gordan coefficient equal to 1), Γ is a natural width
of the upper level and δ = ω − ωA < 0 is the detuning of the lattice from the atomic
resonance. For atoms located in the bottom of a well, the potential is nearly harmonic so
for small z we can approximate it as

U− ∼= 3

2
U0 + k2z2 (5.8)

from U0k
2z2 = 1

2
Mω2

vibz
2 and using Erec = ~2k2

2M
, we get the oscillation frequency of an

atom:

ωvib =
2
√

ErU0

~
(5.9)
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According to the semiclassical model of Sisyphus cooling [20], the minimum tempera-
ture achieved in the cooling process scales with the depth of the potential wells U which
in principle can be made arbitrary small. When the temperature approaches the recoil
limit kBT = Erec, the atomic de Broglie wavelength becomes comparable with the optical
wavelength and thus comparable to the width of the optical-potential wells involved in the
cooling mechanism. In this regime it is no longer justified to treat the atomic external
degrees of freedom classically. However, before one gets close to Erec by approaching low
values of U , another limitation of this model arises. As a necessary condition our resulting
steady-state temperature should correspond to a mean velocity vrms =

√
U/M smaller

than the capture velocity vcap = Γp/k. This condition can be reformulated as ωvibτp which
indicates that the semiclassical model works as long as the time for a vibrational period
1/ωvib of an atom inside the potential well of depth U is longer than the optical-pumping
time. When U tends to zero, ωvibτp increases and will eventually exceed

√
2. At this point

the atomic velocities will exceed the capture velocity vcap and the friction coefficient will
start to decrease below the value predicted in Eq. 1.20. Long before U gets even close to
the recoil energy, the system enters the regime where between successive optical pumping
cycles the atom will oscillate many times in its potential well.

Localized Atoms: the Lamb-Dicke Regime

A quantum treatment of atomic motion is necessary if U is close to the recoil energy.
Similarly to the situation of an electronic gas in a solid, a band model with discrete allowed
energy bands separated by band gaps is employed. In the experiments, the depth of the
potential wells is typically on the order of a few MHz, while the typical band gap at the
bottom of the potential wells is on the order of few hundred kHz. The recoil temperature
corresponds to a few kHz showing that at such low temperatures one may expect only
a few of the lowest states in the optical potential to be populated. due to the extremely
small tunnelling rates for these low-lying states [12], one may treat each potential well as
completely independent and thus may apply a harmonic-oscillator model.

Figure 5.3: Harmonic-
oscillator model for an
optical lattice. The pop-
ulations of vibrational
levels are indicated with
circles.

In this picture, the cooling arises due to spontaneous Ra-
man transitions between different vibrational states as depicted
in Fig. 5.3. The relaxation rates Γn of the low-lying vibrational
levels via such Raman transitions are proportional to the vibra-
tional quantum number n and the optical-pumping rate Γp for
a free atom multiplied by a small factor η = Erec/Evib (called
Lamb-Dicke factor, which reflects that the extension of the wave
function of an atom localized in an optical lattice is much smaller
than the wavelength of light, see Fig. 5.3), i.e. Γn ≈ (2n + 1)ηΓp.
Here, Evib = ~ωvib is the energy separation between adjacent vi-
brational states. The factor (2n + 1)η plays a similar role as the
Franck-Condon factor in molecular physics. The spatial confine-
ment of the atomic centre-of-mass wave functions increases with
decreasing n: the wave functions of well-confined levels have little
overlap with those of any other level. The steady-state populations
of vibrational levels decrease strongly with increasing vibrational
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number. Besides inelastic transitions which change the vibrational quantum number and
lead to cooling, there are also elastic transitions leading back to the initial vibrational
level. These transitions are clearly not suppressed by the Lamb-Dicke effect and thus oc-
cur at a rate Γp. For this reason, red-detuned optical lattices on a F → F ′ = F + 1 atomic
transition are called bright optical lattices. As a consequence the fluorescence spectrum
consists mainly of an elastic component arising at the frequency of the trapping field and
much smaller vibrational sidebands symmetrically grouped around the elastic peak due to
Stokes or anti-Stokes processes. As the calculations shows [69],[17], the fraction of atoms
in the lowest state can be quite large - more than 30% and is a growing function of F .
Due to this and the fact that the vibrational ground state can only contribute to Stokes
processes, the Stokes component of the vibrational sidebands is larger than its anti-Stokes
counterpart [43].

5.1.2 Multi-Dimensional Optical Lattices

To realize a two-dimensional (2D) optical lattice it is necessary to create points in space
with pure σ+ and σ− polarization of light. Two intersecting standing waves with crossed
linear polarizations were used [39] to construct such 2D light fields, see Fig. 5.4.

Figure 5.4: Light field topography of 2D optical lattice. a) The light field is created using four
linear polarized laser beams. b) The resulting polarization pattern with ψ = 90◦.

In a 1D optical lattice, the fluctuations in the relative phase between the two forming
beams result only in a translation of the lattice. The topology of the lattice remains
constant. A translation of the lattice has little influence on the atoms, since the timescale
for the atomic dynamics is short compared with the phase fluctuation time. Constructing
a 2D lattice with four laser beams it is necessary to control the relative phase ψ between
the standing waves formed along the x and y-axes as depicted in Fig. 5.4Ȧ pattern with
alternating σ+ and σ− wells is obtained with ψ = 90◦.

Another way to create the required polarization pattern is to use only three laser
beams as is shown in Fig. 5.5. In this configuration is not necessary to control the rel-
ative phase [34]. Generally, for a space with n dimensions it is possible to construct a
"phase-stable" polarization pattern using n + 1 light fields, for details see [34]. Compar-
ing these two ways of creating a multidimensional lattice, on the one hand, we have the
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simplicity of experimental realization (in the case of three-beam configuration), but on the
other hand, using four-beam configuration we can easily change the topology of the total
field. Moreover, in the case of dark optical lattices, the four beam configuration seems

Figure 5.5: Configuration with
minimum number of beams. Three
coplanar beams making an angle of
120◦ with each other and polarized
in their plane of propagation.

to be the only one where the localization of atoms is
possiblein three dimensions. To extend a lattice into
three dimensions, a σ+ standing wave in the third di-
mension was added to the 2D configuration. Control-
ling the phase difference between the standing wave
and the 2D field several lattice geometries are possi-
ble [77]. Combining a lin ⊥ lin standing wave with a
2D light field, an antiferromagnetic 3D optical lattice
can be realized [77]. Similar to the 2D case, it is possi-
ble to construct a 3D optical lattice without controlling
the phases between different directions. Namely, com-
bining four laser beams [33],[74].

An important feature of bright optical lattices is,
that the atoms are trapped in the regions with maxi-
mum light intensity. As a consequence, atomic densi-
ties exceeding a few 1011 at/cm3 are impossible in such
optical lattices. One of the limiting factors are den-
sity limitations of the MOT - due to absorption and

multiple scattering of light [45]. The other limiting factor is the lattice itself, where the
retro-action of the atoms upon the light field modifies the potential wells in a way that
disturbs cooling and trapping mechanisms. The lattice geometry can be modified by mu-
tual interatomic interactions [66] or by the backaction of the induced atomic polarization
on the lattice field [40].

A method to overcome these limitations in bright optical lattices is to design a lattice
that makes use of dark states - states in which atoms only interact weakly with the light
field. In such optical lattices, also called dark optical lattices, the atoms are bound at the
locations where, due to selection rules, they are practically decoupled from the light field.

5.2 Bichromatic Dark Optical Lattice

5.2.1 1D Dark Optical Lattice

Dark Optical Molasses

In this subsection we examine the implementation of a blue-detuned light field with appro-
priate polarization gradient in order to obtain Sisyphus cooling into dark states. The result
is a modified optical molasses with reduced fluorescence level where atoms are collected
in states which don’t couple to the light field. This state promises no spatially modulated
light shift and hence no periodical structure is created.

Consider an atom with an F → F ′ transition which interacts with two counterpropagat-
ing light beams having crossed linear polarizations (lin ⊥ lin, Fig. 5.11) and blue detuning
from the atomic transition. In the absence of a magnetic field and for integer angular mo-
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menta, at each point x there is a state |ψNC(x)〉 which is not coupled to the light field. This
state is generally a superposition of the different Zeeman sublevels with spatially-dependent
coefficients. For F > 1 the dark state is no longer an eigenstate of the kinetic energy
and is thus slightly coupled to the other eigenstates |ψj

C(x)〉 (j=1,..,2F) of the light-shift
Hamiltonian. At points where the total electric field has a purely circular polarization σ+,

Figure 5.6: Scheme of the Sisyphus cool-
ing mechanism in a dark optical molasses.

the non-coupling state |ψNC(x)〉 coincides with
the Zeeman sublevel | + F 〉, when the light po-
larization is σ− then |ψNC(x)〉 = | − F 〉. Cou-
pled states exhibit space-dependent positive light
shifts. Because the eigenstates are position de-
pendent, there is a motional coupling between
the uncoupled and the coupled states, which is
most efficient when the energy difference between
the coupled and uncoupled states is minimal, see
Fig. 5.6. The motional coupling transfers some
atoms from the uncoupled state to the coupled
one. In the coupled state, atoms climb a potential
hill before being optically pumped back to the un-
coupled state near the maximum of the potential

hill where the interaction with the light field is maximal. This process leads to an effi-
cient Sisyphus cooling, see Fig. 5.6. This configuration is called "grey" or "dark" molasses

Figure 5.7: Probe transmission spectrum in a 87Rb 3D dark optical molasses. The laser frequency
is blue-detuned by δ = 10Γ from the atomic resonance. A broad resonance in the absorbtion is due
to stimulated Raman transitions from the uncoupled to the coupled state.

because most of the atoms are in the uncoupled state and emit almost no fluorescence.
A way to see that atoms are in the uncoupled (dark) state is to perform probe trans-

mission spectroscopy. A weak probe beam with the same polarization as that of the laser
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beams, composing the molasses field, is propagating through the atomic cloud enclosing a
small angle with a molasses beam. The transmitted signal from the probe beam is recorded
as a function of its detuning from the frequency of the molasses beams. A probe trans-
mission spectrum, recorded under circumstances discussed in more detail in Fig. 5.19, is
shown in Fig. 5.7.

Figure 5.8: Raman coupling in the spec-
troscopy signal from dark optical molasses.
Because the atoms are not coupled to the
molasses light field there is no sideband at
ωp < ω

In this spectrum the absorptive resonance on
the right is much more pronounced than the res-
onance providing gain on the left. Both reso-
nance features can be explained due to Raman
coupling between the uncoupled (dark) state and
the state which couples to the light field. Since
most of the atoms are in the uncoupled state,
the Raman process involving absorption of a pho-
ton from the molasses light field and stimulated
emission of a photon into the probe beam (probe
beam amplification) is suppressed as compared to
the Raman process involving absorption of the
probe photon and stimulated emission in the mo-
lasses beam (probe beam absorption). Atoms are
mostly transferred from the uncoupled state into
the coupled state, see Fig. 5.8. The resonance cor-

responding to this process is located at a frequency detuning ω−ωp equal to the light shift
of the coupled level and the width of the resonance is on the order of the optical-pumping
rate of the coupled level.

Dark Optical Lattice

Figure 5.10: Level scheme and
Clebsch-Gordan coefficients for the
J = 1 → J ′ = 1 transition.

In the dark molasses discussed above (see Sec. 5.2.1),
the dark state is not spatially modulated, i.e. the op-
tical potential for the dark state is flat. This situation
can be changed if a homogeneous magnetic field is ap-
plied to the system. Then, the dark state acquires a
spatially varying coupling to the light field and thus
potential wells for the dark state are created.

Consider an atom with a F = 1 → F ′ = 1 (see
Fig. 5.10) transition placed in a light field with alter-
nating σ and π polarizations1 and an additional exter-
nal homogeneous magnetic field. There exist two limits
for the magnitude of the magnetic field. The Zeeman
shift due to the external magnetic field can be smaller
(small field limit) or larger (large field limit) as com-
pared to the light shifts of the ground state sub-levels.

Only in the limit of large magnetic field, the dark (or non-coupled) states are associated

1such polarization pattern is created in a lin ⊥ lin standing wave, see Fig. 5.11
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Figure 5.9: Ground state energies for different ~B and ~ωB

with Zeeman sub-levels mF of the ground state. In the limit of small magnetic field, the
non-coupled state arises as a linear superposition of different Zeeman sub-levels.

For an atom placed in the superposition of a light field and a magnetic field, the
Hamiltonian of the system will consist of three terms: the light shift, the kinetic energy
P 2/2M , and the Hamiltonian of Zeeman shift. There are two relevant parameters ~∆/Erec

and ~ωB/Erec, where Erec is recoil energy, ∆ = ω2
1/4δ is the light shift with ω1 - resonant

Rabi frequency and δ - detuning from the resonance, ~ωB is the splitting between the
Zeeman sub-levels |mg = +F 〉, |mg = −F 〉 and |mg = 0〉 of the free atom. Consider first
the case of a large magnetic field when ωB À ∆, so that the projection mF of the total
angular momentum F on the magnetic field direction, which defines the quantization axis,
still is a good quantum number. Let us take a look at the case when the magnetic field is
oriented along the standing wave axis (B ‖ x). The light field contains no π component of
polarization, hence the sub-level mF = 0 is not populated, and the system behaves as an
effective 3-level system. The light shift of the mF = 0 state is depending only on the total
intensity and thus is spatially constant. The light shifts of the two outermost magnetic
sub-levels depend on the polarization. In the places of purely σ+ polarization (x = λ/8 and
5λ/8, see Fig. 5.11), the state mF = 1 is a dark state, while on the places of σ− polarization
(x = 3λ/8 and 7λ/8, see Fig. 5.11) the state mF = −1 is completely decoupled from the
light, see Fig. 5.9. Consequently, on these positions, the total population is pumped into
the corresponding outermost Zeeman sub-level. With the positive (blue) detuning of the
trapping beams from atomic resonance, these places are also the minima of light shift
potentials, and so we obtain an optical lattice.
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The dark states are characterized through the additional condition that in the presence
of a magnetic field they have to be eigenstates of the Zeeman shift Hamiltonian. Let us take
a look at the case of a small magnetic field ωB ¿ ∆, where the Zeeman splitting is a small
perturbation as compared to the light shifts, and the lowest optical potential is mainly
associated with uncoupled states. Because of the nonzero magnetic field, the potential
of the lower level, which was flat for B0 = 0, becomes spatially modulated because of
the Zeeman shift. It presents maxima when |ψNC(x)〉 = |mg = +F 〉 and minima when
|ψNC(x)〉 = |mg = −F 〉. At these places, the dark state is stationary and collects the
entire population. At all other places, the dark state is a linear superposition of Zeeman
sub-levels and the population can be transferred through the Larmor precession to the
coupled states C1 and C2, see Fig. 5.9. In this regime, the depth of the trapping potential
is given through the Zeeman splitting.

Let us take a look at the case of transversal magnetic field ( ~B⊥x). The quantization
axes is chosen parallel to the magnetic field ( ~B ‖ y), so the light field contains no pure
σ+ or σ− polarization, but there exist places (x = λ/4, 3λ/4) with pure π polarization,
see Fig. 5.11. At these places, the sublevel mg = 0 is the dark state and has a light-shift
minimum in the case of large magnetic fields, see Fig. 5.9. At the places, with x = 0, λ/2, λ,

Figure 5.11: lin ⊥ lin standing wave

the orientation of polarization is perpendicular to the quantization axes (σ-polarization),
which means that the polarization is composed from σ+ and σ− components. Here, the
potential minima for the mg = ±1 states are located, which couple to the light, i.e., they
are light shifted. In the limit of small magnetic fields, the non-coupled state has its light
shift minima at places with σ polarization as shown in Fig. 5.9.

Finally, we wish to discuss question whether the atoms can be efficiently cooled down
into the dark potential minima. Because of the small potential depth, efficient sub-Doppler
mechanisms are necessary similarly to the case of bright optical lattices.

Consider the case of a large magnetic field (~ωL À EL, see Fig. 5.9). The steady-state
populations for an atom at rest are labelled in Fig. 5.9 with circles. The arrows show the
direction of the population transfer due to optical pumping. For both directions of the
magnetic field, the length of upwards arrows is larger than the length of downward arrows.
This indicates that due to optical pumping on average the system dissipates potential
energy at the expense of its kinetic energy.

In the regime of large magnetic field, through Sisyphus mechanisms the sub-Doppler
cooling forces acts on the atoms and provide that in steady-state the mean kinetic energy
of atoms is below the trapping potential height. In the regime of small magnetic field
(~ωL ¿ EL), the lin ⊥ lin configuration fulfills for an atom with the ground state J > 1
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all conditions for appearing of non-adiabatic cooling force [77]. One expect also in this case
the temperatures that are low enough to localize the atoms in the low-lying bound states.

A theoretical analysis [32] of a dark optical lattice realized in a lin ⊥ lin configuration
on a J = 4 → J ′ = 4 transition in a magnetic field pointing along the standing wave axis
( ~B ‖ ~x) shows that most of the atoms are trapped and cooled inside the potential minima.
It was shown that the population of low-lying vibrational levels is maximal if the light shift
and Zeeman splitting are on the same order of magnitude.

5.2.2 2D Dark Optical Lattice

Figure 5.12: Light field configura-
tion of 2D dark optical lattice (DOL)

We now extend the concept of dark optical lattices for
the two and three dimensional space. Unfortunately, it
is not possible to generalize the one-dimensional dark
optical lattice with longitudinal magnetic field ( ~B ‖ ~x)
for the multidimensional case. If the total light field
has nodes than for blue-detuning (δ > 0) the nodes are
the absolute light-shift potential minima for all Zeeman
substates. The population will not be preferentially
pumped into one of the Zeeman sublevels, so that Sisy-
phus cooling mechanisms are impossible in the vicinity
of the potential minima. On the other hand, it is im-
possible to create a multi-dimensional light field config-
uration which does not provide nodes of its π polariza-
tion component. One way to overcome this problem is
to create an optical lattice with a transversal magnetic

field ( ~B ⊥ ~x), where atoms are localized in the antinodes of the π polarization compo-
nent [38].

5.2.3 Light Field Configuration

The 2D configuration is build in the horizontal plane in the intersection region of two
branches of a folded Michelson interferometer, see Fig. 5.15. Four laser beams with po-
larizations as depicted in Fig. 5.12 are superimposed. Two pairs of counterpropagating
travelling waves form two standing waves: a σ+σ− wave along the x-axis and a lin ⊥ lin
wave along the y- axis, see Fig 5.12

~Ex = E0e
iψ(~e1cos(kx + wt) + ~e2cos(−kx + wt)) = −i

E0√
2
eiωt(~eycoskx + ~ezsinkx)eiψ + c.c.

(5.10)

Ey = E0(~e3cos(ky + wt) + ~e4cos(−ky + wt)) =
E0√

2
eiωt(~excosky + ~ezsinky) + c.c. (5.11)
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where

~e1 =
~ey + i~ez√

2
~e2 =

~ey − i~ez√
2

(5.12)

~e3 =
~ex + ~ez√

2
~e4 =

−~ex + ~ez√
2

(5.13)

are the polarization vectors of the forming laser beams.
If the time-phase difference between two standing waves is properly adjusted (ψ =

90◦, so that the total energy density is spatially constant), the total light field can be
decomposed into two polarization components π and σ with field vectors parallel and
perpendicular to a homogeneous magnetic field, such that the nodes of π coincide with the
antinodes of σ and vice versa, see Fig. 5.13.

~Eσ =
~E0√
2
(~eycos(kx) + ~excos(ky)) (5.14)

~Eπ =
~E0√
2

~ez(sin(ky) + isin(kx)) (5.15)

Figure 5.13: Light field of 2D dark optical lattice for appropriate choice of the time-phase dif-
ference can be decomposed into π and σ components.

In this way we produce the appropriate σ-component for trapping of atoms in the
m = 0-substate and the π-component that is different from zero at the σ-nodes in order to
provide optical pumping into the trapped (m = 0) level2.

2Another light field schemes can be used to produce a dark optical lattice. One can use a bichromatic
field with one frequency component tuned to the blue side of an (F −→ F ) - transition and the other
blue-detuned with respect to an (F −→ F − 1) - transition, with both transitions starting from the same
ground level. Alternatively, one may use bichromatic light fields with one frequency component strongly
detuned to the red side of a (F −→ F + 1) - transition and a second less intense component resonant with
an (F −→ F ) - transition, where again both transitions connect to the same ground state [38].
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5.2.4 Repumping Laser Field

The 3S1/2 → 3P1/2, F = 3 → F ′ = 3 transition of the D1-line of 85Rb, used for the
realization of the dark optical lattice, is not closed. Thus, approximately every second
photon from the lattice field tuned to the F = 3 → F ′ = 3 transition, transfers an atom in
the F = 2 ground state. The atoms accumulate in the F = 2 state and thus cease to interact
with the lattice field. This problem is usually solved by using of an additional, so-called
"repumper" light field, which is tuned in the resonance with the F = 2 → F ′ = 2 transition.
Now atoms are excited again state and through spontaneous emission process can go back
into the F = 3 state, thus closing the trapping cycle. The on-resonance repumper light
field would couple the trapped atoms to the light field and noticeably increase the elastic
photon scattering component. To avoid this, we decided to implement a blue-detuned
repumper light field which is commensurable with the trapping field, i.e. both light fields
will have the same polarization structure and orientation. We superimpose the trapping
and repumper light field which is blue-detuned δrep ≈ 3Γ from the F = 2 → F ′ = 2
transition, see Fig. 5.14.
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Figure 5.14: Energy levels and transitions in 85Rb , which are relevant to our experimental
investigations. Transition 2S1/2 →2 P3/2 is used for cooling and trapping in the MOT and for the
FORL, 2S1/2 →2 P1/2 is a transition where the dark optical lattice is realized.

Implementing the repumper light field in the geometry of the dark optical lattice, we
have to take into the account that the periodicity of trapping and repumper light fields are
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not exactly the same since the wavelength of the involved transitions differ by 3.3 GHz.
Overlapping the two light fields with slightly different frequencies leads to a "beat"-effect:
the total field is amplitude-modulated with the period λbeat = 2π/(k2 − k1), where k1

and k2 are the wave vectors of the two light fields composing the lattice. Designing the
lattice field, attention should be given to the distances between the end mirrors and the
intersection region of the arms (distances AO and BO in Fig. 5.15), and to the length of
the interferometer arms (distances AOC and BODC in Fig. 5.15).

In the intersection region, where the atoms are trapped in the optical lattice, the
amplitude of the total field should be maximal. In this case the trapping potential coincides
with the potential formed by the repumping field and atoms, confined in the dark states by
the trapping potential remain in the dark states of the repumping potential. The electrical
field at this position is given by:

E = E0e
iωt(e−ik1,2a + eik1,2a−2ik1,2La) + c.c. = E0e

iωt−ik1,2La2cos(k1,2(a− La)) + c.c. (5.16)

where a = x, y. With the requirement cos(k1,2(a − La)) = 1 for both k1 and k2 we
get a condition on the distance L ≈ Lpn, where n is an arbitrary integer number and
Lp = 2π/∆k = 8.8 cm is the period of the beat.

Another requirement on the design of an optical lattice setup comes from the fact,
that for a stabilization of the time-phase between two axis of Michelson interferometer (see
Sec. 5.2.5) we need also a maximum in the amplitude of total field outside the interferome-
ter. This condition means that on the beamsplitter (PBS2 in Fig. 5.15), the field amplitude
from each arm of the interferometer should have maximal value. Not only the length of
each arm should be a multiple of Lp, but also a difference between arms lengths should
satisfy this condition. Our set-up for the optical lattice, see Fig. 5.15, is designed in the
way to fulfil these requirements.

5.2.5 Phase Stabilization

In Sec. 5.1.2 several possibilities to create two-dimensional dark optical lattices were dis-
cussed. In the design of 2D and 3D optical lattice configurations it is necessary to consider
the role of the phases of the incident beams for the interference pattern formed by these
beams. The phases have to be actively kept at certain values in order to maintain the
proper interference pattern.

It turns out that only the four-beam configuration with a special choice of polarizations
of the interfering beams allows the localization of atoms in two dimenions. In the case of
a three-beam geometry in the 2D configuration or four-beam geometry in the 3D config-
uration, one obtains a potential exhibiting antidots [72]. Instead of wells, associated with
the localized minima of the potential, one finds there that the minima correspond to lines.
Because the atoms can move along these lines, the atomic dynamics in such "gray" optical
lattices is rather different from that in a red-detuned optical lattices [72].
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Figure 5.15: Scheme of the experimental set-up for a 2D dark optical lattice. Abbreviations:
DL-diode laser, APP-anamorphic prism pair, OI- optical (Faraday) isolator, AOM-acousto-optical
modulator, PH- pinhole with diameter 20µm, BS-beamsplitter, BSC- beamsplitter cube, PBS-
polarizing beamsplitter cube, PD-photodiode, PZT-piezoelectric transducer, IF-interference filter
(serve to pass through only the light of the laser for a time-phase stabilization of the lattice) .
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Phase Stabilization of Dark Optical Lattice

To stabilize the time-phase difference between two arms of the Michelson interferometer,
building our lattice configuration, we used the light of an additional diode laser, referred
to as time-phase laser in the following. The stabilization is based on adjusting the optical
path length in the Michelson interferometer. A variation of the optical path length in one
of the interferometer arms is equal to the variation of the time-phase difference. With a
piezo-mounted mirror, which allows to change the position of the mirror by several µm by
applying a voltage of several hundred volts, we realize an active stabilization scheme of
the relative time-phase difference. The position of the piezo-mounted mirror is adjustedt
by a low-frequency servo feedback loop to the desired value. A fraction of the interference
signal formed by backreflected light coming out from the polarizing beamsplitter (PBS1),
see Fig. 5.15, is splitted on a 10% non-polarizing beamsplitter (BS2) and send through the
interference filter (IF)3 to the photodiode (PD1). A change of the time-phase difference
manifests itself in a changing intensity on the photodiode. The photodiode signal is now
feeded in the servo loop which controls the position of the piezo-mounted mirror. Most of
the optical elements assembling our interferometer are fixed on a massive metal plate, which
allows for a high passive stability of the relative time-phase difference. As a consequence,
an electronic servo-loop with relatively small bandwidth (< 2 kHz) is fully sufficient for
stabilization.

The frequency of the time-phase laser is tuned some tens of nanometer away from the
D2 line of 85Rb at 780 nm, so that its light field has no influence on the optical lattice. The
light field of the time-phase laser is collimated to a diameter of ≈ 9 mm, spatially filtered
with a 20 µm pinhole in the focus of a telescope and combined on a polarizing beamsplitter
cube with the light beams forming the optical lattice.

An advantage of using an additional laser instead of using the light of trapping laser
for stabilizing the phase difference is, that now we are able to turn off the lattice light
fields during the MOT loading phase and transfer phase, hence we can avoid loss of atoms
due to changing magnetic field in the transfer phase. All light fields forming the optical
lattice can be turned off separately by using acoustooptical modulators. The shut on/shut
off times for the lattice light fields are measured to be 0,5 µs.

5.2.6 Experimental Setup for a 2D Dark Optical Lattice

Our scheme of the experimental set-up for a two dimensional dark optical lattice is depicted
in Fig. 5.15. The periodic optical potential is created by the light from a grating-stabilized
diode laser, see Sec. 3.1.1. Its frequency is stabilized ∼ 10Γ linewidth above the F = 3 →
F ′ = 3 resonance of 85Rb D1 line. The laser beam passes some preparation steps before
being used for the lattice: a pair of anamorphic prisms, an optical Faraday isolator, an
acoustooptical modulator (AOM) and a telescope with a pinhole4 in its focus (for spatial
filtering of the beam). An anamorphic prism pair is used to compensate the ellipticity of
the laser diode output beam. A Faraday isolator is necessary to avoid the back-reflection of
the laser beam into the laser diode, which can make impossible its frequency stabilization.

3The interference filter is used to separate the light of the time-phase laser from the total light field
4For details, concerning these devices see Sec. E.1
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Figure 5.16: Frequency stabilization
scheme for the DOL lasers. AOM1 is
placed in the output of the laser as shown
in Fig. 5.15 (AOM1 and AOM3 on this
Fig.). AOM2 is placed in the spec-
troscopy part of the set-up in a "double-
pass" scheme.

The AOM has several missions: first, it is used
as a fast switch-we can switch on/off our lattice
by changing the power of a radio frequency signal
controlling the AOM (see Sec. 5.2.5); second, we
can attenuate the frequency and intensity of the
laser beam by attenuating the RF frequency and
power; third, it is necessary to perform a probe
transmission spectroscopy on the lattice. Spatial
filtering of the lattice beam is required, because
only if the lattice beams have almost plane wave
fronts, interference of the standing waves results
in a regular spatial pattern. The laser beams
forming the repumper light field and the light field
for phase stabilization are prepared in the same
way as the beam for the lattice field. The lattice
and repumper beams are collimated to a diame-
ter of 6 mm each, the beam for the time-phase
stabilization is collimated to a diameter of 9 mm.

After preparation, all the laser beams are combined together before entering the folded
Michelson interferometer. First, the light beams of the repumper and time-phase laser are
combined on the beamsplitter cube (BSC). After passing the beamsplitter, the polariza-
tion of the time-phase light field is rotated with a half-wave plate to be parallel with that
of the repumper field. Thus, using combinations of λ/2 retardation plates and polarizing
beamsplitter cubes (BSC2), all the light fields (lattice, repumper and time-phase) can be
combined and adjusted in the intensity. Rotating the λ/2 retardation wave plates we can
set the required intensity relation between the horizontal and vertical dimensions.

The detunings of the lattice and repump lasers from the atomic resonances are realized
with AOMs, according to the scheme depicted in Fig. 5.16. In this scheme, one AOM
(AOM1) is placed in the output of the corresponding laser and is adjusted to reflect the
laser beam either into the "-1" order of diffraction (reducing the frequency of the laser
beam, the case of lattice light field) or into the "+1" order (increasing the laser frequency,
the case of repumper laser). The second AOM (AOM2 in the Fig. 5.16) is placed in the
frequency stabilization section of the laser set-up and is adjusted in the so-called "double-
pass" scheme, i.e., the light beam passes the AOM twice, thus the frequency change of the
light field is doubled. The frequency of the lasers is stabilized to the crossover resonance
2-3-2 (νcross) of the 85RbD1-line, see Fig. 5.17. The slope of the error signal from the
crossover line is steeper and larger in amplitude as compared to the signals from resonance
transitions, thus providing more reliable frequency stabilization. To achieve a detuning of
60 MHz from the 3-3 resonance of the 85RbD1-line for the lattice laser beam, we set the
frequencies νAOM1 = +90 and νAOM2 = +81. The total detuning can be calculated as:
νout = νcross + 2 · νAOM2 + νAOM1 = ν3−3 − 181 + 180 + 81 = ν3−3 + 60 MHz. In the same
manner, we realized the desired detuning of 21 MHz for the repumper transition 2-3 of
the same Rb-line by setting νAOM1 = −115 and νAOM2 = −70. The total detuning in this
case can be calculated as: νout = νcross + 2 · νAOM2 + νAOM1 = ν2−3 + 181 − 230 + 70 =
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ν2−3 + 21 MHz.

Figure 5.17: Detuning scheme for the
DOL. Blue dotted lines mark the detunings
of DOL lattice and repumper light fields
from the atomic resonances.

The total power in the horizontal dimension
is divided between the branches of the inter-
ferometer by a combination of λ/2 retardation
wave plate and polarizing beamsplitter cube. The
polarizations of the individual branches are ad-
justed with the retardation plates according to
the scheme from Fig. 5.12. To make sure that the
polarizations of all light fields will rotate equally
and to maintain the thermal stability of our set-
up, we mostly used air spaced zero-order retarda-
tion waveplates (see Sec. E.1). To form a stand-
ing wave, each of the incoming beams is retrore-
flected. Special care is taken in the alignment
of the retroflected beams: the incoming and re-
flected beams are collinear to better than 10−5

rad, securing that the time-phase difference is not
varying over the atomic sample.5

5.2.7 Experimental Time Sequence

The typical experimental time sequence has the
following structure. First, we load the atoms into
a MOT from a thermal atomic beam. The number of trapped atoms is enhanced by
cooling the atomic beam with additional light fields(see Sec. 4.4). The MOT is loaded
for 1.5 seconds using a standard MOT configuration of six laser beams plus additional
cooling laser beam. Some milliseconds before the MOT is switched off, we first turned off
the repumper light field for cooling the atomic beam, followed by the cooling light field.
Then the light fields for MOT are turned off (first repumper and later trapping light), the
quadrupole magnetic field of MOT is switched off, and a homogeneous magnetic field is
turned on - the procedure of switching the magnetic fields for the typical values of MOT
and optical lattice magnetic fields takes about 2 ms. Subsequently, the light fields for the
optical lattice are turned on. The trapping potential of our optical lattice is deep enough
to trap the atoms directly from the MOT, so no additional cooling steps are needed. After
the atoms evolved for some millisecond in the optical lattice( typically 5 ms, the lifetime
of 2D optical lattice) first the light field, and then the homogeneous magnetic field are
extinguished and after different times of free expansion, the atoms are irradiated with a
resonant light pulse. When the light pulse is fully turned on (typical values for rising slope
are 400 µs) we open the exposure window of the CCD camera for 500 µs. From the recorded
images we calculated the dimensions of the atomic cloud in horizontal σx and vertical σy

5An experimental sign for a good alignment is when the retroreflected beam goes through the pinhole
of the spatial filter back to the laser diode. On this position one can see how important is a good (at least
60dBm) optical isolation of the laser. Another point to mention about stability and adjustment features is
that one has to choose properly the mirror mountings of the interferometer mirrors: they should be stable
and sensitive to the adjustment. In our case we used the mountings from "Lees" company.
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Figure 5.18: Experimental sequence of the dark optical lattice. The period during which mea-
surements (Raman spectroscopy see Sec. 5.2.8, fluorescence observation, see sec. 5.2.10) take
place is denoted with the sign "*".

directions. From the evolution of σx and σy in time we can deduce the temperature of the
atoms in these directions. All the light fields are switched with AOMs, so the switching
process is not adiabatic and the atoms are not additionally cooled by adiabatic lowering
of the potential depth. A typical sequence for a temperature measurement is depicted in
Fig. 5.18. For the absorption spectroscopy and fluorescence measurements in the optical
lattice we start the signal recording when the optical lattice is still on.

5.2.8 Spectroscopic Monitoring of OL -Vibrational Spectra

A commonly used method to study the properties of optical lattices is probe transmis-
sion spectroscopy [18]. Adding a supplementary weak beam of frequency ωp (see Fig. 5.15
and 5.19) one can monitor the intensity of the transmitted probe beam or measure the
intensity of a four-wave mixing process emission, when the frequency of the probe beam
ωP is scanned around the frequency ωL of the lattice beams. As was already mentioned in
Sec. 5.2.1, two features appear on such a spectrum: a dispersive signal near δ = ωP−ωL = 0
and a signal originating symmetrically around δ = 0 at ±δ = ωvib

6, positioned symmet-
rically around δ = 0. Let us first examine the signal from stimulated Raman scattering
process, giving rise to peaks at ±δ = ωvib.

At the beginning of this discussion we will take a look on the experimental requirements
for this spectroscopy method. Stimulated Raman spectroscopy requires that probe and
pump (here lattice light field) fields are coherent in phase. Thus, we split approximately
5% from the laser beam that forms the lattice light field to serve as a probe beam, see
Fig. 5.15. With two AOMs: The first one, AOM1(whose frequency (80MHz) is constant) is
placed in the beam, creating the lattice field and is used for switching the optical lattice; the
second, AOM2, whose frequency is varied around the frequency of the AOM1 (80MHz± δ),
is positioned in the probe beam. In this way, we are able to tune the frequency of the probe

6ωvib is a vibrational frequency of atom in the potential well of optical lattice
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beam around the frequency of the lattice field (δ = ωP − ωL = ωAOM1 − ωAOM2 ± δ with
ωAOM1 = ωAOM2 = 80MHz) by maintaining the phase coherence.

The superposition of probe and lattice beams yields an interference pattern that moves
in the sample with a phase velocity v = δ/|~k − ~kp|. This interference pattern yields a
modulation of the trapping potential. The atoms are now oscillating in the potential which
is modulated. When the modulation frequency is equal to the oscillation frequency of the
atoms, the probe signal shows a resonant behavior. The polarization of the probe beam
should be adjusted such that the interference amplitude will be maximal and hence the
amplitude of the probe beam signal. The atoms are localized at the points of π-polarization

Figure 5.19: Scheme of the Raman spec-
troscopy in dark optical molasses. 1 -
a probe beam, having the same polariza-
tion as the nearly co-propagating molasses
beam, 2 - atomic cloud, 3 - detection sys-
tem, 4 - molasses light beams.

in the m = 0 states, so the probe beam should
have a σ component of polarization in order to
excite atoms from these dark states . If the
probe beam is π polarized (parallel to the mag-
netic field) no sideband structure appears on the
spectrum, turning the probe beam polarization
to the σ polarization (perpendicular to the mag-
netic field) give rise to the Raman peaks on the
probe transmission spectrum at the frequencies
δ = ±ωvib. Their amplitude is maximal when the
polarization of the probe beam is parallel to the
polarization of a co-propagating lattice beam 7.

Let us now examine this process from a quan-
tum mechanical point of view. Since the atomic
motion in the trapping potential is quantized,
there exist discrete vibrational levels. When the
frequency difference between probe and lattice
field matches the vibrational frequency, stimu-
lated Raman transitions among the vibrational

levels in the potential wells are excited. Because of the population difference between the
vibrational levels (the lower lying levels are more populated than the upper ones), at the
detuning δ = ωP − ωL < 0 a stimulated Raman process with amplification occurs, see
upper scheme in Fig. 5.20 (a), while at the detuning δ > 0 probe absorption is detected,
see lower scheme in Fig. 5.20 (a).

Depending on the detuning and intensity of the lattice field, the amplification and
absorption values vary about 10%. In Fig. 5.20 (b), an experimental spectrum is shown for
a vibrational frequency of 90 kHz. For a fixed intensity of the probe beam, the amplitude
of the vibrational signal is maximized when the time-phase difference between the lattice
arms is set to ψ = 90◦.

The spectrum of Fig. 5.20 (b) has a dispersive shape with a width corresponding to the
depth of the mF 6= 0 potential wells. This shape originates from the stimulated Raman
transitions between mF = 0 and mF = 1, 2, 3. Similar transitions are observed if the phase
difference between the lattice arms is set to ψ = 0◦. In this case, the atoms are not cooled

7Then the interference pattern has maximum amplitude, so the trapping potential modulation is max-
imize (at fixed power of probe and lattice beams)
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down into the light potentials anymore. This is also the reason for the asymmetrical
form with respect to the frequency axis of the signal for the ψ = 0◦ situation. On the
contrary to the ψ = 90◦ situation, the amplitude of the signal decreases noticeably during
the measurement because atoms leaving the interaction region if they are not effectively
cooled.

Figure 5.20: Left: Scheme for the Raman transitions in the case of probe amplification(upper
scheme) and attenuation(lower scheme). Right: Probe transmission spectra of a 2D dark optical
lattice. The polarization of the probe was oriented parallel with respect to that of the nearly co-
propagating lattice beam. The Raman resonances are observed at 131 kHz with the corresponding
width of 90 kHz. The experimental parameters of this measurement are: the Zeeman splitting
1.1~Γ, detuning from the atomic resonance 10Γ, Rabi frequency 4.7Γ (Γ/(2π) = 5.98 MHz)

The amplitude of the Raman resonances at ψ = 90◦ is maximized for the Zeeman
splitting of ~ωB

∼= −1.1~Γ. The resonances can be also observed for other settings of
magnetic field in the region of the Zeeman splitting from −2.1~Γ to −0.2~Γ. This is in
a good agreement with the theoretical prediction [32], according to which the population
of lowest vibrational levels is maximal if the Zeeman splitting is on the same order of
magnitude as the light shift.

The lifetime of a vibrational level in a potential well, and hence the linewidth of Raman
resonances, originates from two processes: 1) optical pumping towards a different potential
well (another sublevel of the ground state of a trapped atom) and 2) transition towards
another vibrational level belonging to the same potential well. For the m = 0 potential,
optical-pumping processes leading back to the initial vibrational level without changing the
value of m are forbidden, because the coupling polarization component σ has odd parity
with respect to the center of the potential wells. This is in contrast to the conventional
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optical lattices, where such elastic processes exceed all other processes by more than an
order of magnitude. The relaxation rates due to m-changing transitions leading from the
m = 0 well to the m = ±1 wells are larger than those resulting from inelastic transitions
which lead back to the initial m = 0 potential but change the vibrational quantum number.
This is also in contrast to conventional lattices where m-conserving transitions play the
dominant role in the relaxation of vibrational populations. For dark optical lattices it is
the vanishing of the coupling polarization component in the trap centers that suppress
the relaxation of the vibrational levels, while in conventional lattices vibrational relaxation
is suppressed by the Lamb-Dicke effect. The suppression in both cases is of comparable
magnitude.

For an atom trapped in the m = 0 state, the probability to leave the potential well
comes from the nonzero average of the σ component of light on the atomic wavefunction.
This quantity Γn is proportional to Γ′〈n|I(σ)/E2

0 |n〉, where n is the vibrational quantum
number and I(σ) of the σ component of light. Because I(σ) ≈ E2

0k
2x2 near the bottom of

the well, Γn can be approximated by Γ′〈n|k2x2|n〉 and using the properties of the harmonic
oscillator, one finds [18]

Γn ≈ Γ′
Erec

~ωvib

(
2n + 1

)
(5.17)

The experimentally observed width of the Raman resonances is much smaller than the
photon scattering rate

Γ′ ≈ ω2
1

2δ2
Γ (5.18)

If the vibrational lines would be well isolated, the width of the transition between two
vibrational levels n → n + 1 would be on the order of nΓ′(Erec/~ωvib) [18], that is smaller
than Γ′ because of the Lamb-Dicke factor η = Erec/~ωvib

8. The factor (2n + 1) (similarly
as the Frank-Condon factor in molecular physics) comes into play because of the spatial
confinement of the atomic center-of-mass wave function which increases with decreasing
n: the wavefunctions of well-confined levels have little overlap with those of any other
levels. Rate equations involving the relaxation rates of the vibrational levels yield their
steady-state populations. These steady-state populations decrease strongly with increasing
vibrational quantum number.

The shape of the Raman resonance is an envelope of different transitions n → n + 1,
which have different frequencies due to the anharmonicity of the potential. Thus the
width of Raman signals can give information whether the population is mostly in lower
(n = 0, n = 1) vibrational levels or not.

We used the signal of probe beam spectroscopy for a fine adjustment of the lattice light
field (polarization of individual beams, geometrical adjustment of the branches and time-
phase difference). Since the width of the Raman peaks is dependent on the population of
the vibrational levels, on the symmetry of the potential wells and on the equality of the
potential depth at different lattice cites an indication for a perfect alignment are narrow
Raman peaks with maximal amplitude for the fixed probe-beam power. As was mentioned

8For our experimental conditions we arrive Lamb-Dicke factor η ∼ 1/34
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above, the geometry of the lattice potential is strongly dependent on the time-phase differ-
ence between the branches of the interferometer, thus the Raman spectrum was used for
fine adjustment of the time-phase difference.

Finally, let us briefly mention a feature appearing on the probe spectrum in the vicinity
of δ = 0, which originates from a Rayleigh scattering process. Rayleigh scattering results
from the scattering of light on any nonpropagative modulations of atomic observables (in
the case of optical lattices: magnetization, density and velocity) [19] and the width of
the Rayleigh resonance carries the information on the damping time of these observable
variables.

Figure 5.21: Dependence of the vibrational frequency of atoms in the lattice potential on the
detuning (1/

√
δ) of the lattice field.

The vibrational frequency of the localized atoms follows the relation ωvib = 2
√

∆ ωrec.
In our case, the ground state m = 0 couples only on the σ - component of the light field.
Therefore, we expand the optical potential of this component in the vicinity of its minimum,
i.e. in the vicinity of the places of pure π polarization:

Um=0(x) ∼= ~ ω2
1

8δ
(kx)2 (5.19)

the corresponding vibrational frequency in this potential is given by:

ωvib,m=0(x) = ω1

√
ωrec

2δ
(5.20)

For the typical experimental conditions of our setup, we expect to detect the Raman
resonances at ωvib ' 110 kHz. Moreover, as can be seen from Eq. 5.20, the vibrational



88 CHAPTER 5. 2D AND 3D DARK OPTICAL LATTICES

frequency should vary linearly with 1/
√

δ. In Fig. 5.21 the experimental confirmation of
this dependence is shown.

5.2.9 Temperature Measurements

Typical temperatures of the atoms in our two-dimensional dark optical lattice are about
14 µK. Note that such temperatures are achieved only along the trapping (horizontal)
dimensions. Along the vertical direction no trapping potential is available, hence the
cooling is not working. This is due to the fact that the geometry of the two-dimensional
dark optical lattice has open channels in vertical direction. The atoms are trapped at the
positions of pure π polarization. In the horizontal plane these points are embedded in the
variable σ field. In the vertical direction there exists no variation, neither in the π nor in
the σ component, i.e., the atoms are not confined and move freely in vertical tubes. Along
this direction the atoms can be heated so that the temperature is noticeably higher than
the initial temperature in the MOT, the typical value for the temperature in the vertical
direction is about 500 µK .

Temperature is well defined in a system which is in thermal equilibrium, i.e., the atomic
velocities follow a Maxwell- Boltzmann distribution. There exist several methods to mea-
sure the temperature of atomic ensemble. They can be divided into two categories: spec-
troscopic methods and time-of-flight methods.

One spectroscopic velocimetry method is based on recoil-induced Raman resonances [19].
This method was introduced by Meacher et al. [50]: nearly co-propagating pump and probe
interact with a cloud of free atoms. Analyzed in the momentum basis, the absorption of
a pump photon followed by the stimulated emission of a probe photon can be viewed as
a Raman transition between two states with different transverse momenta. The transmis-
sion spectrum of the probe (as a function of δ) is proportional to the derivative of the
momentum distribution.

In the experiments carried out in this thesis, a time-of-flight (TOF) method has been
used to measure the temperature of the trapped atoms. This diagnostic method was
developed for the optical molasses [48, 64] and gives the vertical temperature of an atomic
ensemble. The basic idea of this method is as follows: a cloud of trapped atoms is released
from a confining potential by turning off the light beams. Under the effect of gravity the
atoms fall towards a probe located a few centimeters below the trap position. By passing
through the nearly resonant light of the probe beam the atoms emit fluoresce photons.
The temporal variation of this fluorescence is related to the initial velocity distribution of
the atoms in the trapping potential and therefore to the kinetic temperature of the atoms.
By measuring the temporal distribution of the fluorescence signal, and comparing it with
a Maxwell-Boltzmann distribution, the temperature can be derived. The main problem of
this method is that it requires precise knowledge of the initial size of the atomic cloud,
especially in the case of low initial temperatures of the atomic ensemble.

In our experiments we used a slightly modified TOF method, namely instead of in-
stalling an additional probe beam, we used the near-resonant light of our MOT setup to
illuminate the free expanding atoms after a given time of free expansion. The fluores-
cence signal was monitored with a normalized CCD camera. From the time evolution of
the atomic cloud size we can reconstruct a 2D momentum distribution and ,hence the
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temperature of the ensemble.
Let us examine a simple theoretical model of the cloud expansion. After the trapping

forces are removed, the evolution of atoms is described by x(t) = x0 + vt. Atoms are
distributed in the velocity according to the Gauss distribution f(v) = exp (−v2/v2

0) with
vo = 2kT/m, so for the spatial distribution we get:

f(x, t) = e−
m

2 k T t2
(x−x0)2 (5.21)

at the beginning of the expansion, the atomic cloud has already non-zero radius σ0, so

f(x, t = 0) = e
−
(

x0
σ0

)2

(5.22)

The normalized number of atoms at a given time t in a certain volume is

N(x, t)

N0

=

∫
e
− m

2 k T t2
(x−x0)2−(

x0
σ0

)2
dx0 (5.23)

= σ0

∫
e−γ(y−y0)2−y2

0 dy0 (5.24)

= σ0e
− γ

γ+1
y2

∫
e−(γ+1)

(
γ

γ+1
y−y2

0

)
dy0 (5.25)

≈ e
− γ

γ+1
1

σ2
0

x2

= e−
(

x
σ(t)

)2

(5.26)

where the following substitutions: γ = σ2
0/v

2 t2, y = x/σ0, y0 = x0/σ0 and σ2(t) =
σ2

0 +2kT t2/m have been used. We thus described the evolution of an atomic cloud after the
trapping forces were removed. The temperature of the atomic ensemble can be determined
by fitting of T = (σ(t)2 + σ2

0)m/2k t2, where the width of the atomic distribution at the
beginning of measurement σ0 and after a certain time interval t, σ(t), are deduced from
the widths of Maxwell-Boltzmann distributions fitted to the data.

5.2.10 Evolution of the Atomic Cloud

We studied the evolution of the atomic cloud in our two-dimensional dark optical lattice.
At different times of evolution in the lattice, we took images of the fluorescence from
atoms trapped in the lattice. Our observations show that the size of atomic cloud in
the direction of confinement (horizontal direction) remains constant, whereas the size in
vertical direction is growing very fast. Along the horizontal directions, the confinement is
high and during the lifetime of the two-dimensional lattice (typically 5 ms, which is also the
typical time interval of our measurements) nearly no diffusion can occur. For the behavior
of atoms in the vertical direction we found the following explanation. As can bee seen
from the experimental data (shown in Fig. 5.23), after 1 ms in the lattice, atoms gain a
final temperature and expand now linearly with time. The reason is, that in the beginning
of the lattice phase, a large number of photons are scattered as the result of the cooling
processes in the lattice. In fact, the initial temperature of the MOT of 70µK is reduced
to 13µK in the horizontal directions, so we can estimate the number of inelastic scattered
photons per atom for this cooling process as:
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Figure 5.22: Evolution of the atomic cloud in the 2D dark optical lattice.

Figure 5.23: Vertical size of the atomic cloud trapped in the 2D dark optical lattice as a function
of time. The data points corresponding to the y-axes are gained from the raw data as follows: we
take into account the finite size of the light field forming our lattice and fitted the data (dashed line)
with the convolution of two Gauss functions (one corresponding to the light field, typ. w0 = 2mm,
and the other one to the atomic distribution).
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nscatt =
TMOT − Tlatt

Trec

= 154 (5.27)

The number of elastic photons per atom emitted during this time is evaluated by
division by the Lamb-Dicke factor η (see Sec. 5.1.1)

nelast = nscatt · η = 154 · 8 = 1232 (5.28)

These photons contribute to the vertical heating and the corresponding temperature in-
crease can be estimated as follows :

δTvert = nph · Trec = (nelast + nscatt) · Trec = 513µK (5.29)

After the cooling phase, atoms are trapped in the optical lattice and, hence pumped
into the dark states where they are unable to scatter further photons, so the heating in
the vertical direction is stopped. Atoms move now ballistically along the vertical direction
with the new increased temperature. Time required for the cooling phase we estimate as:

t = nph · 1/Γpump = 374µs (5.30)

With the model of ballistical expansion :

σx =
√

σ2
o + 2kT/M(t− to)2 (5.31)

we found a satisfactory agreement between experimental points and theoretical fit( see
Fig. 5.23). The value for the temperature of atoms in the vertical dimension received from
this model (T = 602µK) show the good correlation with the temperature value of 544µK
measured according to the ballistically expansion method described in Sec. 5.2.9).

The lifetime of our 2D dark optical lattice was measured to be typically about 5 ms.
We explain this small value by strong heating of trapped atoms in the vertical direction.
Considering the vertical temperature of 544 µK, the Rb atoms which are confined in the
center of the trap will leave the trap volume (wo = 1.7 mm) in 7 ms. This value corresponds
well with the measured lifetime.
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5.3 Extension to the 3D DOL

Our two-dimensional dark optical lattice configuration does not provide cooling and trap-
ping in the vertical dimension, see Sec. 5.2.10. The light shift potentials looks like tubes,
opened vertically on both ends, thus providing efficient escape channels for trapped and
cooled atoms. This atom loss mechanism was shown in the experiments described in
Sec. 5.2.10 and Sec. 5.2.9. To provide efficient trapping for the cold atoms, an additional
light field oriented along the vertical dimension should close the trapping potential.

5.3.1 3D DOL Configuration

Figure 5.24: Light field configuration of
3D dark optical lattice (DOL)

In order to obtain a three-dimensional dark op-
tical lattice, we add to the two-dimensional con-
figuration (described in Sec. 5.2.2) a σ-polarized
standing wave along the vertical dimension. The
corresponding light field configuration is depicted
in Fig. 5.24. The localization in 2D DOL take
place in the minima of σ-polarization, the compo-
nent of the light field which is perpendicular to the
vertically oriented magnetic field (see Sec. 5.2.2).
The π-component of the total light field has max-
imum amplitude at those places, providing an ef-
ficient pumping into the dark state. The only way
to provide trapping in the vertical dimension is to
create a σ-polarized light field, exhibiting maxima
and minima along the vertical axis. Such condi-
tion is fulfilled in a σ polarized standing wave as
shown in Fig. 5.24. At the places, where the ver-
tical σ-polarized standing wave exhibits minima,
the π component from the 2D optical lattice pro-
vides optical pumping into the dark state, and

hence the localization in the potential minima along the vertical direction.
Let us now discuss the role of the phase difference between the vertical σ-polarized

standing wave and the 2D DOL oriented in the horizontal plane. As described in Sec. 5.2.5,
to maintain the desired polarization pattern of the 2D optical lattice (see Sec. 5.2.3) one
should actively control the phase between two standing waves that form the lattice. In the
case of 3D optical lattice, which is created by intersection of three standing waves, one has
to control two phases: one between the horizontal standing waves, and the second between
horizontal plane and the vertically oriented standing wave. How important is to control
the phase between vertical and horizontal planes in the 3D dark optical lattice, and what
kind of complications it will imply if this phase remains uncontrolled? The uncontrolled
phase between horizontal and vertical planes leads only to the spatial shift of the potential
minima along the vertical axis (on the contrary to the role of the phase difference in the
horizontal plane, where the proper phase difference makes the trapping possible). The
time constant for the potential minima position change is much longer than the cooling
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time for the atoms inside the potential minima. Therefore, one can assume that the atoms
adiabatically follow the changing positions of the potential minima. For the application
of the 3D DOL as trapping and cooling potential it is thus unimportant to fix the phase
between the horizontal and vertical planes to a certain value.

5.3.2 Properties of 3D DOL

Localization, temperature and lifetime are important parameters in characterization of
optical lattice. To prove, that our 3D dark optical lattice provides an efficient localization
of atoms in the potential minima of light field, we measured the transmission spectrum of
a probe beam according to the scheme from Sec. 5.2.8. To confirm the trapping along the
vertical direction, one should record Raman sidebands in the transmission of a vertically
oriented probe beam. On the other hand, it is desirable to see the direct difference to the
situation in 2D lattice. Also, the confinement in the vertical dimension will noticeably
change the signal from the horizontally oriented probe beam, since cooling and trapping
in vertical direction dramatically increase the population of the lowest vibrational levels
in the optical potentials. That is why we decide to directly compare the signals from
transmission spectroscopy in the cases of 2D and 3D dark optical lattices. We record the
transmission signal from the 3D dark optical lattice according to the measuring scheme,
described in Sec. 5.19. Then we blocked the light beam forming the vertical σ-polarized
standing wave, and took the signal from the 2D dark optical lattice. The conditions, that
are relevant for the 2D optical lattice and the probe beam, remain unperturbed for both
signals. The only difference is the addition of the vertical standing wave, ensuring the 3D
extension of the dark optical lattice. As can be seen from Fig. 5.25, considerably more
atoms are trapped in 3D DOL in comparison to the 2D lattice. The detected vibrational
frequency of the localized atoms remain the same, since the parameters of the horizontal
2D DOL are unperturbed. Signal from the Raman spectroscopy of the 3D DOL can be
used as an indicator for a good power balance between horizontal and vertical dimensions
of the dark optical lattice. Indeed, if the optical potentials in the vertical and horizontal
directions are not equal, that would lead to the different vibrational frequencies along
vertical and horizontal axis. We optimized the power balance between horizontal and
vertical dimensions by monitoring the Raman spectroscopy signal in the horizontal plane
(for details of this spectroscopy arrangement see Sec. 5.2.8). The power is well balanced if
the Raman resonances in the 3D DOL are not broadened in comparison to the 2D DOL
and positions of these resonances remain the unpertubed.

Another good indicator for a successful realization of 3D dark optical lattice is a uniform
temperature along the three dimensions. As is shown in Fig. 5.26, in our 3D DOL the
vertical and horizontal temperatures are equal. This temperature measurement yields a
value of 8.5µK. The form of the atomic ensemble inside the lattice and after the release
remains symmetrically and constant, which delivers an additional confirmation for the
homogeneity of the total optical potential.

From the fact, that the trapping optical potential of our 3D DOL is independent from
the direction and the cooling in all three dimensions, one expects the increase in the lifetime
of the atoms inside the optical lattice. We observe a value of 116ms, which is more than
order of magnitude larger then the lifetime of the 2D DOL (see Sec. 5.2.2). This value is,
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however, much smaller than the lifetime of the 3D dark optical molasses, which is typically
about 1 s. This discrepancy in the lifetime values one could explain with the fact that in
the optical lattice the cooling and trapping processes occur under strong interaction with
the light field which leads to the population of the continuum. Those atoms contribute to
the loss. On the contrary, in the dark molasses atoms are pumped into the dark state which
is completely decoupled from the light field, the final lifetime of the molasses is therefore
limited only by the vacuum conditions.

Figure 5.25: Comparison between spectra of 2D and 3D dark optical lattice. Left: Signal
from Raman spectroscopy acquired in the scheme 5.19 from 2D DOL. Right: The signal taken
in the same setup from 3D DOL. The vibrational frequencies are equal in both cases, since the
parameters for 2D lattice remain the same. Considerably more atoms are localized in the potentials
of 3D lattice due to the trapping in the vertical direction.

5.3.3 Temperature Dependence on Lattice Parameters

In this section we study the dependence of the temperature of the trapped atomic sample
on the value of the magnetic field B. The experimental sequence is described in Sec. 5.2.7.
Dark optical lattice is loaded from the MOT. The value of the magnetic field is set prior to
the beginning of the optical lattice phase. We let atoms evolve in the dark optical lattice
for 6 ms, and then measure the temperature of the atomic ensemble with the time-of-flight
method, see Sec. 5.2.9.

The experimental results are presented in Fig. 5.27. It can bee seen that the temperature
increases with the magnetic field as long as the Zeeman splitting ~ωB between the outermost
ground-state Zeeman sublevels is smaller than the typical light shift ~∆ of the coupled
states. The temperature reaches its maximum when ~ωB is on the order of ~∆, and then
decreases towards an asymptotic value.

Our explanation of this temperature behavior is based on the analysis of Refs. [55, 72].
For zero magnetic field, the atom-laser configuration is very similar to the one employed
in subrecoil cooling, and one expect very low temperatures. In the limit of small values
of the magnetic field ~ωB ¿ ~∆, most atoms are accumulated in the energy states associ-
ated with the lowest nearly dark optical potentials. As the magnetic field increases from
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Figure 5.26: Pictures from the time-of-flight temperature measurement of the 3D dark optical
lattice. The symmetrical form of the atomic sample, preserved at all times of free expansion
indicates the identical temperatures in the vertical and horizontal directions. For comparison with
the 2D case see Fig. 5.23

zero, potential wells of depth ~ωB start to develop around points where the uncoupled
state coincides with the Zeeman sublevel mg = 0 and where atoms become trapped and
spatially localized. With increasing magnetic field atoms will be more tightly confined in
the potential wells induced by the magnetic field and the temperature of atoms increases.
The temperature increase has a second reason: atoms become coupled to the light field
through the wings of their wavefunctions and optical pumping from the lower energy level
to the higher energy light shifted sublevels is thus less and less forbidden when B increases.
More and more atoms accumulate in the coupled states, which are motional coupled to the
continuum states of the lower potential curves - this leads to temperature increase. In the
limit of of large B (~ωB À ~∆), where the light shifts are small perturbations compared to
the Zeeman splitting, the optical potentials are essentially associated with the bare ground-
state Zeeman sublevels |mg〉. These potentials are spatially modulated because of the light
shifts induced by the space-dependent laser field. The optical potential, associated with
the |mg = 0〉 state, exhibits minima at points where the Zeeman sublevel coincides with
the uncoupled state. The atoms accumulate at the bottom of these potentials, hence min-
imizing their interaction with light. Atoms with sufficient kinetic energy to escape from
|mg = 0〉 sites may climb a potential hill associated with these potentials before being opti-
cally pumped by increasing σ− component of the lattice field in the |mg = ±F 〉 state. The
height of the potential is proportional to the light field intensity - therefore the temperature
will increase with the intensity. The cooling mechanism is more efficient when B increases
because the eigenstates for the potential are closer to the Zeeman sublevels. For large B,
the eigenvalues are close to Zeeman sublevels and the light shift is just a space-dependent
perturbation that gives the modulation to the potential curves. In this limit, the depth of
the potential wells, and hence the temperature of the atoms is proportional to the light
intensity and independent of the magnetic field.

To confirm this, we measured the variation of the kinetic temperature in the limit of
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Figure 5.27: Variation of the atomic kinetic temperature in the 3D dark optical lattice with the
static magnetic field B.

high magnetic field regime with the light shift in the lattice, see Fig. 5.28. We set the
magnetic field value to 8 G, the typical value for most experiments, performed with our
dark optical lattice. Different light shift values are adjusted by simultaneous attenuation of
the intensity of the trapping and repumping light fields for the optical lattice. Atoms evolve
for 15 ms in the 3D dark optical lattice followed by the temperature measurement. During
the lattice phase we perform Raman spectroscopy (see Sec. 5.2.8) in order to monitor the
capture efficiency of the lattice and to confirm that the phase difference has the proper
value, see Sec. 5.2.5.

A near-resonant optical lattice is characterized by dissipative processes resulting in
heating and cooling effects, whereby the cooling process is associated with the Sisyphus
cooling (Sec. 1.3). In this well-known scheme, an atom climbs a potential hill, thus loosing
kinetic and gaining potential energy, and is optically pumped to a potential minimum,
while the energy is carried away by spontaneously emitted photons. The heating process
originates in this model, for instance, through fluctuations of momentum carried away by
fluorescence photons. The steady-state temperature obtained in Sisyphus cooling scaled
as the modulation depth of the optical potential (T ∼ ~∆). This scaling law has been
demonstrated in semiclassical [20] and full quantum mechanical [11, 13] treatments. Fur-
ther, it was experimentally proved with the "bright" optical lattices [42], as well. All these
studies show, that when the intensity gets too low the laser cooling becomes inefficient and
the temperature increases abruptly. This behavior is commonly called décrochage. Vari-
ation of the temperature with the light shift in the 3D dark optical lattice (as shown in
Fig. 5.28) shows linear dependency from the potential depth till the minimum temperature
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of ∼ 6.8 Trec is arrived at Upot = ~∆ ∼ 75 Erec. At this point the potential becomes too flat
to provide a confinement inside the potential minimum (the last bound vibrational state
leaves the potential well). The cooling process looses its efficiency and the temperature of
the atoms increases.

Decreasing the light shift leads, on the one hand, to lower temperatures of the trapped
atomic sample, and, on the other hand, to a decrease in the capture efficiency, i.e. to a
loss of trapped atoms. One way to obtain a cold ensemble without drastically reducing
the number of the trapped atoms, is to adiabatically cool the optical lattice, originally
optimized for the maximum capture efficiency.

Figure 5.28: Variation of the atomic temperature in the 3D dark optical lattice in the high-
magnetic-field regime with the typical light shift U = ~∆.

5.3.4 Adiabatic Cooling

Adiabatic expansion of the atomic center of mass distribution has been used in a number
of experiments [14, 44] to reduce the temperature of the trapped ensemble. To satisfy
the condition of adiabaticity, one must have | ω̇|/ω = εω, where ε ¿ 1 and ω is the
oscillation frequency in the optical potential. An obvious way to accomplish adiabatic
expansion is to decrease the lattice light intensity. From the fact that ω = 2

√
∆ωrec and

∆ = Γ2/(8 Isat δ) · I, it is easy to obtain the time dependence for the lattice light intensity
which satisfy the adiabaticity condition:

I(t) =
Imax

(1 + γ t)2
(5.32)
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In the simple model, atoms are assumed to be localized near the bottom of potential
wells and the atomic c.m. motion is approximated by a thermally excited 3D harmonic
oscillator. The thermal excitation of each degree of freedom is described by a Boltzmann
factor f i

B = exp(−~ωi/kB Ti) with Ti denoting the temperature of that degree of freedom.
If the harmonic oscillator frequency decays adiabatically, the Boltzmann factor remains
constant, so the oscillator temperature behaves as Ti(t) = Ti(0) ωi(t)/ωi(0), approaching
zero for t → ∞. In the real experiment the temperature does not go to zero, because the
true periodic optical potential cannot be represented by a single harmonic oscillator. The
harmonic oscillator approximation breaks down when the width of the c.m. distribution
becomes comparable to the spacing between optical potential wells. At this point the
heating cannot be assumed negligible during the expansion and the final temperature has
a nonzero value. A more realistic calculation of the final temperature expected for adiabatic
expansion in a periodic potential is performed in [44] and is based on a band theory.

Figure 5.29: Reduction of the lattice
light intensity. With the reduction rate
γ = 104 s−1 and t = 400µs, the opti-
mum settings for the adiabatical cooling
are reached.

We load the 3D dark optical lattice with
atoms by superimposing a magneto-optical trap
on the lattice volume. The MOT initially cap-
tures atoms from the pre-cooled atomic beam (see
Sec. 4.4), producing a dense (≈ 8 · 1010 at/cm3)
sample of cold (≈ 70 µK) atoms in a volume of
≈ 2.57 cm3. The MOT light field is then extin-
guished, MOT magnetic field is switched over to
the lattice magnetic field and the lattice light field
is turned on. The atoms equilibrate in dark lattice
for 15 ms, leading to the atomic temperature of
about 8.5 µK, after which the adiabatic expan-
sion is accomplished by decrease in the lattice
light intensity according to Eq. 5.32 with a typ-
ical decrease rate of 104 s−1, see Fig. 5.29. With
this experimentally obtained value of the decrease
rate, the adiabaticity parameter ε ∼ 0.16 satisfy

the demand of negligible heating during the expansion. The expansion proceeds in 400 µs,
and is terminated when atoms are released from the lattice by rapid (< 1 µs) extinction of
the lattice light. The vertical and horizontal temperature of now free atoms is measured
with the improved time-of-flight metod, see Sec. 5.2.9. We are able to improve the tem-
perature in 3D dark optical lattice by a factor of ∼ 3 and reach a final temperature of
2.8 µK.



Chapter 6

Density Enhancement

This chapter presents our results with regard to increasing the density in a three-dimensional
dark optical lattice (3D DOL). This is accomplished by successive cooling cycles in the 3D
DOL and oscillation cycles in a one-dimensional far-detuned optical lattice (1D FORL). In
Secs. 6.1 and 6.2 we summarize the physics of far-detuned optical lattices. In Sec. 6.3, the
performance of our imlementation of a 1D FORL is described. The density enhancement
procedure is finally presented in Sec. 6.4.

6.1 Optical Dipole Potential
Let us briefly summurize the basic concepts of atom trapping in optical dipole potentials
that result from the interaction with far-detuned light. A simple classical oscillator model
can be used to derive the basic equations for the dipole potential for two-level atoms, which
will be extended to multilevel atoms later on. For an atom in the light field, the electric
field ~E induces an atomic dipole moment ~p that oscillates at the driving frequency ω. The
amplitude of the dipole moment is related to the electric field by:

~p = α~E (6.1)

where α is the complex polarizability of an atom and depends on the driving frequency
ω. The interaction potential of the induced dipole moment ~p in the driving field ~E is given
by

Udip = −1

2
〈~p ~E〉 = − 1

2ε0c
<(α)I (6.2)

The field intensity is I = 2ε0c| ~E|2 and the factor 1/2 iresults from the fact that the dipole
moment is induced. The dipole force writes as

~Fdip(r) = −5 Udip(r) =
1

2ε0c
<(α)5 I(r) (6.3)

The dipole force is conservative and proportional to the intensity gradient of the driving
field.

Considering the light as a stream of photons ~ω, the absorption can be interpreted in
terms of photon scattering in cycles of absorption and subsequent spontaneous reemission

99
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processes. The scattering rate is given by

Γscatt(r) =
Pabs

~ω
=
〈~̇p ~E〉
~ω

= − 1

~ε0c
=(α)I(r) (6.4)

These equations are valid for any polarizable particle in an oscillating electric field. For
an atomic polarizability we consider an atom in Lorenz‘s model of classic oscillator. In
this model an electron is considered to be bound elastically to the core with an oscillation
eigenfrequency ω0, which corresponds to the optical transition frequency. The dipole radi-
ation of the oscillating electron results in damping. From the equation of motion for the
driven oscillation of the electron one can calculate the polarizability as:

α =
e2

me

1

ω0
2 − ω2 − iωΓω

(6.5)

with e elementary charge, me mass of electron and Γω being the classical damping rate due
to the radiative energy loss:

Γω =
e2ω2

6πε0mec3
(6.6)

by introducing the on-resonance damping rate Γ = Γω(ω0/ω)2 we can write Eq.6.5 as

α = 6πε0c
3 Γ/ω0

2

ω0
2 − ω2 − i(ω3/ω0

2)Γ
(6.7)

Neglecting saturation effects, the semiclassical calculation yields exactly the same result
as a the classical one. The damping rate Γ, which corresponds to the spontaneous decay
rate of the excited state, is determined by the dipole matrix element between ground and
excited state:

Γ =
ω0

3

3πε0~c3
|〈e|µ|〉g|2 (6.8)

For the D-lines of the alkali atoms, the classical formula of Eg. 6.6 provides a good
approximation to the spontaneous decay rate with a deviation of few percent. Note that
Eq. 6.5 is only valid in the absence of saturation effects. In the case of a FORT the
saturation is very low and one can use the Eq. 6.5 as an approximation for the quantum-
mechanical oscillator.

In the case of large detunings and negligible saturation one can easily derive the ex-
pressions for the dipole potential and the scattering rate, see Ref. [31]:

Udip(r) = −3πc2

2ω0
3

( Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) (6.9)

Γscatt(r) =
3πc2

2~ω0
3

( ω

ω0

)3( Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r) (6.10)

The above expressions are valid for any driving frequency ω, and show two resonances
at ω = ω0 and ω = −ω0. For the case that the laser frequency is tuned relatively close
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to resonance δ = ω − ω0 ¿ ω0 one can apply the rotating-wave approximation and with
ω/ω0 ≈ 1, the expressions 6.9 simplify to:

Udip(r) = −3πc2

2ω0
3

Γ

δ
I(r) (6.11)

Γscatt(r) =
3πc2

2~ω0
3

(Γ

δ

)2

I(r) (6.12)

These equations indicate that all dipole traps can be divided in two classes, red-detuned
traps, where the laser is tuned below atomic resonance (δ < 0) and blue-detuned traps with
the laser tuned above resonance ( δ > 0). For red-detuned traps the dipole potential is
negative and the interaction thus attracts atoms into the maximum of the light field. For
blue-detuned traps the dipole potential is positive and the interaction pushes atoms out of

Figure 6.1: A. Level scheme of 85Rb atom with full substructure. B. Reduced level scheme for
large detunings in the range 4′

fs ≥ 4 À 4hfs, 4′
hfs.

the field to the minima of the intensity. According to Eqs. 6.11, the dipole potential scales
as Γ/δ, while the scattering rate scales with Γ/δ2. Thus, for optical dipole traps large
detunings and high intensities are desirable to keep the scattering rate as low as possible.
This is of interest, since spontaneous scattering events lead to heating of the atomic sample.

For a multilevel atom (as in the case of alkali atoms) the energy structure is more
complicated as in the case of two-level atom, see Fig. 6.1 A. This complicated substructure
should be taken in account in the calculations.

For alkali atoms, Rb for example, spin-orbital coupling in the excited state leads to
the well-known D-line doublet 2S1/2 → 2P1/2,

2P3/2 with splitting 4′
fs. The coupling to

the nuclear spin adds hyperfine structure in both ground and excited states with splittings
4hfs and 4′

hfs. These scale according to 4′
fs À4hfs À4′

hfs, see Fig. 6.1A.
In our case, all optical detunings are large compared with the hyperfine splitting of the

excited state 4′
hfs and the ground state 4hfs but smaller than the fine structure splitting
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4fsof the D1 and D2 lines (see Fig. 6.1). In this case of resolved finestucture and unresolved
hyperfine structure ( see Fig. 6.1B,), one may calculate the energy shift considering the
atom in the spin-orbit coupling and neglecting coupling to the nuclear spin. For linear
polarization and detunings 41,F and 42,F of the laser light from the center of the D1

and D2 lines, both electronic ground levels are shifted by the same amount and stay
degenerate after coupling to the nuclear spin. The exact quantum-mechanical treatment
of the interaction Hamiltonian for this situation results in the following expression for the
dipole potential [31]:

Udip(r) =
πc2Γ

2ω0
3

( 2

42,F

+
1

41,F

)
I(r) (6.13)

and for the scattering rate:

Γscatt(r) =
πc2Γ2

2~ω0
3

( 2

42
2,F

+
1

42
1,F

)
I(r) (6.14)

6.2 Standing Wave Red Detuned FORT

Figure 6.2: Three-dimensional view of
the standing-wave dipole potential. Axial
periodicity of the potential is λ/2=390.2
nm, the extension in radial direction is
much larger, some hundreds of µm.

The intensity distribution in the standing wave
formed by retro-reflecting a Gaussian laser beam
has the form:

I(r) =
4P

πw2(z)
exp

[ −2 r2

w2(z)

]
cos2

( 2πz

λ

)

(6.15)
where P is the power of the incident laser beam
and r denotes the radial coordinate. The 1/e2

radius w(z) depends on the axial coordinate z via
w(z) = w0

√
1 + ( z

zr
)2 with the minimum radius

w0, called beam waist, and zR = πw0
2/λ denoting

the Rayleigh length. In the axial direction the
intensity shows the standing wave pattern,i.e., it
is spatially modulated with a period of λ/2. In the
radial plane the intensity distribution is caused by
the Gaussian form of the laser beam. The trap
depth U0 and the scattering rate Γ0 for atoms in
the trap center (r = z = 0) is given by:

U0 =
2Pc2Γ

w2
0ω0

3

( 2

42,F

+
1

41,F

)
(6.16)

Γ0 =
2Pc2Γ2

~w2
0ω0

3

( 2

42
2,F

+
1

42
1,F

)
(6.17)

In the Fig. 6.2, the three-dimensional view of the red-detuned FORT potential for our
experimental parameters is shown. Atoms are trapped in the antinodes1 of the standing

1The FORT is red-detuned from the atomic resonance (ω − ω0 < 0)
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wave, resulting in a one-dimensional lattice of "pancake-shaped" sub-traps. The name
"pancake" will becomes obvious if one notes the different scales of the spatial axes in
Fig. 6.2. The pancake-shaped microtraps are arranged in a 1D lattice structure and we will
thus talk of a 1D far-off resonant optical lattice (FORL) in the following. If the standing
wave is oriented along the vertical axes, the axial confinement in the trap greatly exceeds
the gravitational force.

For a trapped atom, oscillating on the bottom of potential, the potential shape can be
approximated as a harmonic one. From the equation of motion for a harmonically trapped
particle mẍ + kx = 0, one can derive the oscillation frequency ω =

√
k/m for the axial

and radial directions:

ωradial =

√
4 U0

mw2
(6.18)

ωaxial = k

√
2 U0

m
(6.19)

with k = 2π/λ being the wavevector and U0 the trap depth.
Assuming a Boltzmann distribution for the atomic populationin the trap potential, we

obtain a Gaussian distribution for atoms in all three dimensions. The Gaussian width σi

of the sample in direction i is connected with the temperature of the atoms and the trap
frequency by:

σi =

√
kBT

mωi

(6.20)

6.3 Characterization of the FORL
In this section we discuss our experimental realization of a far-detuned standing wave
dipole trap. We describe the temporal evolution of the atomic sample in the FORL and
show temperature and radial vibrational frequency measurements.

6.3.1 Experimental Realization

Three-dimensional confinement in a standing wave is only accomplished with red-detuned
trapping light. To efficiently load the dipole trap and to obtain a high number of atoms,
the trap potential should be deeper than the temperature of the atomic sample in the
MOT (typically about 100 µK). The available optical power of 180 mW and the need of
a reasonable volume of the trap (250 µm) determines the maximum detuning of 181 GHz
from the atomic resonance of the 85Rb D2-line. With this experimental settings we can
calculate the resulting potential depth of U0 = 173 µK with corresponding axial and radial
frequencies of νax = 236 kHz and νax = 166 Hz, see Tab.D.1.

The optimal loading conditions requires a good overlap of the MOT cloud and the
dipole trap. In our set-up, we first perform the magnetic field compensation procedure
(see Sec. 2.2), align the power and polarization of MOT beams to compensate the radiation
pressure inside the MOT and finally optimize the position of the FORL by monitoring the
number of trapped atoms with a CCD camera. A picture of the atomic cloud trapped in
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the FORL is shown in Fig. 6.6. It is irradiated by a resonant beam with an exposure time
of 500 µs, 40 ms after shutting off the MOT. The pictures, obtained with the CCD camera
are used to quantify the fluorescence and the number of trapped atoms.

Master laser

To wavemeter

Slave laser

40 dB

60 dB
AOM

Optical isolator

Mirror

Beamsplitter, 10%

Achromatic lens F=40 mm
Cylindrical lens F=250 mm
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Figure 6.3: Scheme of the optical setup for our FORL.

The following part of this subsection describes the optical setup for our FORL, which
is depicted in Fig. 6.3. A tapered amplifier diode laser based system (see Sec. 3.2) with the
single-mode output power of 180 mW was used as a light source for the FORL. The output
of the grating-stabilized master laser (see Sec. 3.1.1) is controlled with a confocal Fabry-
Perot interferometer to assure that the laser is running single-mode (this is esssential for
the performance of the FORL because otherwise intensity fluctuations may cause undesired
parametric heating [65]). The output wavelength (detuning of the FORL is typically 0,4nm)
is controlled with a self-made Michelson-interferometer based "wavemeter". Leaving the
tapered amplifier, the laser beam passes through an optical isolator, is collimated, deflected
by an AOM, mode-filtered and finally send into the experimental chamber. An optical
isolator is necessary since the tapered amplifier is very sensitive to back-reflected light (see
Sec. 3.2.1) and we use a standing wave configuration for our FORL. An AOM is needed
since we have to modulate the trap depth of the FORL.

Originally, this AOM was positioned between master and slave lasers, but it was noticed
that the tapered amplifier chip is very sensitive (see also notes in Sec. 3.2.1) concerning
the optical injection. So for the operational reliability we had to place the AOM after
the amplifier. Unfortunatelly, deflecting a laser beam on the acoustic wave disturbs the
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wavefront of the light beam. Since for the performance of the FORL a good quality
Gaussian beam is necessary, we filtered the laser beam with a spatial filter. The FORL
is built in the vertical direction in order to support atoms against gravity. The lens Ltr

(Fig. 6.3) with F=300 mm is positioned such that the beam waist of the focused laser beam
is positioned on the back-reflection mirror. This lens is mounted on a translational stage
and used for a fine adjustment of the beam waist position in order to compensate the
intensity losses on the windows of the vacuum chamber.

6.3.2 Lifetime Measurements

Figure 6.4: Experimental sequence for measurement of the FORL lifetime. The sequence consist
of three phases: loading phase, free-developing phase and detection phase. For the detection a
resonant light is switched on. To normalize the measured number of atoms we used a signal from
MOT, collected during the loading phase.

For measuring the lifetime of the FORL we used the following sequence depicted in
Fig. 6.4. The FORL is loaded directly from the MOT for 1,5 seconds. The MOT repumper
beam is switched off shortly (2ms) before the cooling laser for the MOT is extinguished.
This procedure prepairs all atoms in the F = 2 ground state. After MOT extinction, the
atoms remain trapped by the dipole potential and after a variable time 4t, a picture of
the atomic cloud is taking by switching on the light of MOT for 500µs. During this short
exposure time, the fluorescence from atoms which remained in the FORL is collected by
the CCD camera. From the signal of the CCD camera, the number of atoms remaining
in the FORL after a time 4t is calculated. The time interval 4t is increased untill the
number of atoms, remaining in the FORL can be no longer detected by the CCD camera.
The number of atoms observed after a delay time 4t is normalized to the number of
atomsinitially prepaired by the MOT and an average over 8 measurements is produced for
each data point.

The temporal evolution of FORL population is shown in Fig. 6.5. At trapping times
exceeding 70 ms, an exponential decay of the trap population occurs due to collisions with
background atoms. For trapping times below 70 ms, the decay is faster than exponential
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due to additional collisions between cold atoms only occuring at sufficiently high densities.
The trap decay is described with Eq. 6.212, taking in account both loss processes:

N(t) = N0 · (1− ξ)e−Γ t

1− ξ e−Γ t
(6.21)

with N(t) being the time-dependent number of atoms in the trap, N0 the maximum atom
number in the beginning of the measurement, Γ the decay rate due to the hot background
gas, and ξ ∈ [0, 1] a parameter comparing the rate for cold collisions with Γ.

Figure 6.5: Decay of the dipole trap, created with the diode laser system . The scale of y-
axes is logarithmical. The fit (solid liine) results from the model of non-exponential decay, see
Eq.6.21, with 1/Γ = 80ms decay time and ξ = 0.36. The trap depth was 173µK and the detuning
δ = 181.7GHz.

The parameter Γ is a measure for the vacuum conditions inside the experimental cham-
ber. With the typical values for the pressure in our experimental chamber on the order of
5 · 10−9mbar, we expect decay times of about 0.6 s 3, whereas in the experiment we find
τ = 1/Γ to be equal to 80.39ms. We believe, that the reason for this large discrepancy
in the values for τ , results from the limited spectral quality of the laser light used for the
dipole trap. Namely, the fluorescence spectrum of the SDL chip, used as an amplifier, is
some nanometers broad. For optimal amplification, the center of this spectrum is shifted
by changing the temperature of the chip in the vicinity of the amplified wavelength. The
detuning of the dipole trap from the atomic resonance was set to 0.37 nm, so there existed
a non-vanishing component of light at the resonant wavelength. The spectral density of
the fluorescence of the diode chip varied and sometimes we could see a weak fluorescence

2see AppendixC.8 for the derivation
3As a rule of thumb, the lifetime of a dipole trap is ≈ 1 s at a pressure of the 3 · 10−9 mbar in the

vacuum chamber. The expected lifetime a MOT at the same pressure is a factor of three larger because
of the larger cross sections for collisional loss at lower trap depth [31].
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from the FORL (at a detuning of 0.37 nm, the fluorescence due to the off-resonant excita-
tion is not detectable with our CCD system). These observations support the assumption
that the observed heating in our dipole trap is due to a small part of the laser light being
resonant with the atomic transition.

Figure 6.6:
Fluores-
cence of
the atoms
trapped in
the FORL.

Despite of the fact that our trap lifetime is limited due to residual resonant
excitation, we briefly wish to mention other possible trap loss mechanisms:
cold-body collisions, hyperfine changing collisions and photoassociation.

Cold two-body collision losses can be caused by several processes: Trap
losses due to collisions involving atoms in an electronically excited state, losses
due to the hyperfine changing collisions, and losses due to photoassociation.
We assume that the main loss mechanism in our dipole trap is caused by
the collisions of atoms in an electronically excited state, because of the non-
vanishing on-resonant part in the trap light.

Hyperfine changing collisions [58] can also lead to losses in a dipole trap.
This loss process arises if one of the colliding atoms is in the upper hyperfine
state. The energy difference in this case is equal to 3.1 GHz, which is much
higher than the trap depth (typically some MHz). In our experiment, the
atoms are initially prepared in the F = 2 state. However, due to spontaneous
scattering events, they can be optically pumped into the upper F = 3 state.
To exclude the hyperfine changing collisions, we applied an additional weak
depumping laser resonant with the F = 3 → F ′ = 3 transition, yielding a low
population of the upper hyperfine state. Despite of the depumping beam, the
lifetime of the trap does not change which indicates that hyperfine changing
collisions are not responsible for the trap losses.

A third two-body loss mechanism is connected with photoassociation [70],
when atoms build a stable molecule which leaves the trap. Two colliding atoms in the
ground state can create a molecule in the excited state by absorbing a photon from the
trap light. This process has a resonance behavior because it depends on the narrow lines
of the molecular potentials. The photoassociation spectrum of Rb was studied in detail in
[52].

Figure 6.7: Modulation of the trapping
laser intensity for the measurement of the
vibrational frequency in the dipole trap.
Laser intensity is modulated over a time
interval Tmod = 30ms with a variable pe-
riod of 2 tmod.

Technical noise and intensity fluctuations of
the trapping light are further possible reasons for
heating in a dipole trap, see [65, 27]. Technical
noise can influence the stability of the trap po-
sition. The reason for the position noise can be
the beam-direction instability of a laser or insta-
bility of optical mountings (arising from acoustic
noise or mechanical jitter) used in the optical set-
up. Intensity fluctuations with twice the trap fre-
quency can lead to strong heating losses from the
trap, so-called parametrical heating. The influ-
ence of the intensity and beam-pointing stabilities
on the heating rate of the trap is studied in [65]
in detail.
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A typical picture of atoms trapped in our FORL is shown in Fig. 6.6. The sample shown
in this picture has σr ≈ 100µm in radial and σz ≈ 900 µm in axial direction.

In the tableD.1 in AppD we have combined the parameters of our dipole trap. The
values are calculated according to Eqs. 6.18, 6.15, 6.13, 6.14:

6.3.3 Measurement of the Radial Vibrational Frequency of the
FORL

To verify the calculated value for the radial vibrational frequency of the FORL, we mea-
sured this parameter in the experiment. We measure the trap filling factor as a function of
the trap depth modulation frequency. For this purpose we modulated the intensity of the
FORL laser beam using an AOM. We decreased the trapping laser intensity by 8% for a
variable time tmod and checked the number of atoms remaining in the trap after a modu-
lation time Tmod, for details see Fig. 6.7. The experimental sequence for this measurement
is depicted in Fig. 6.8.

Figure 6.8: Measuring scheme for the observation of the radial vibration frequency of atoms in
the FORL. After a loading phase of 1.5 s, laser intensity is modulated for Tmod = 30ms following
by the detection phase.

One expects a behavior typical for a parametric resonance, i.e., the heating rate for the
atoms in the trap and, hence, the losses from the trap are maximal when the frequency of
the intensity variation equals twice the frequency of the atomic oscillations in the unper-
turbed trap. The result of our measurement is presented on the Fig. 6.9. The number of
trapped atoms is reduced by a factor more than 5 for a modulation period of 3.4 millisec-
onds, which well corresponds to twice the frequency of radial oscillations in the trap 2 ωrad.
According to the calculation, this value should be 3.22ms, which shows a good agreement
between calculated and measured parameters.
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Figure 6.9: Results of the measurement of the radial vibrational frequency in the FORL. The
population in the unperturbed trap is set to 100%. A pronounced minimum at the modulation
period of 3.4ms corresponds to the parametrical heating by twice the trap frequency.

6.4 Parametric Density Enhancement
Optical lattices are typically loaded from a magneto-optical trap (MOT), where densities
above several 1011 at/cm3 are unattainable due to radiative repulsion and light-assisted
collisions [59, 45]. This limits the filling fraction in an optical lattice to below 5 %. Several
experimental approaches have been taken to overcome this density limit [22, 36]. In these
experiments, a 3D far-detuned optical lattice was used for confinement and the MOT
molasses light for cooling. An adiabatic compression sequence was implemented to increase
the atomic density inside the far-detuned optical lattice with the result that peak densities
up to 6 · 1011 at/cm3 were achieved [22].

In this thesis, we investigate another experimental scheme for density enhancement in an
optical lattice. We implement a 3D dark optical lattice, which provides efficient cooling and
trapping of atoms with the advantage of permitting a significantly reduced elastic photon
scattering rate (see Sec. 5.3). The density enhancement is based on adiabatic compression
of atoms inside the additional optical potential of a 1D FORL. We superimposed the 1D
FORL lifght field with the three-dimensional dark optical lattice as shown in Fig. 6.10. The
1D FORL trap is made from a vertically oriented, linearly polarized, retroreflected beam
(see Secs. 6.2, 6.3.1). The following three-step scheme (see Fig. 6.11) was implemented to
obtain a density enhancement in the DOL:

• in the first step, atoms are confined in a superposition of the vertically oriented 1D
FORL (red curve in Fig. 6.11) and the 3D dark optical lattice (blue curve in Fig.
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Figure 6.10: Configuration of the light fields for the experiment to increase the density in the
FORL. Left: a configuration of the 3D dark optical lattice, as described in 5.3.1, right: a standing
wave dipole trap (FORL) configuration, see Sec. 6.2.

6.11), which cools the trapped atoms to a temperature on the order of 10 µK (see
Fig. 6.11, Step 1).

• in the second step, the dark optical lattice is switched off adiabatically4, the exact
switching procedure is depicted in Fig. 6.13. The atoms are now subjected to a
dipole potential only and, therefore oscillate in the "pancake-shaped" microtraps
at each site of the FORL. Due to the difference in the steepness of the radial and
axial potentials, the oscillation frequencies in these directions are also very different,
see Tab.D.1. In the low-confinement (radial) direction the oscillation frequency is
measured to be 155 Hz. In the time Tk = 1/4 · T0 = 1/4ν = 1.6 ms (see Fig. 6.12)
atoms perform a quarter of periodic oscillation, that means they will collect in the
potential minimum for a short time interval (see Fig. 6.11, Step 2)5.

• in the third step, the 3D DOL is reactivated when the atoms arrive at the potential
minimum of the 1D FORL in order to freeze their oscillatory motion and trap the
atoms in the DOL wells at 10 µK temperature again (see Fig. 6.11, Step 3).

The experimental sequence of this scheme is shown in Fig. 6.14. We start the experi-
mental cycle by trapping 109 Rb atoms at 1011 atoms cm−3 in a MOT. After turning off the
MOT, atoms are trapped by the 1D FORT. In 30ms the trapped atoms equilibrate and
the untrapped atoms are removed by gravity6. A cylindrically symmetric sample of atoms
is thereby prepared. Next, we switched on the three-dimensional dark optical lattice, and

4The adiabaticity is needed to additionally cool the atoms, see Sec. 5.3.4
5This statement uses the assumption that potential shape is harmonic one. Therefore, all atoms have

the same oscillation frequency. Substantively, potential of a FORL has an exp(r2)-form and can be
approximated by a harmonic potential only in the vicinity of the potential minimum.

6This time is needed to let the non-trapped atoms to escape from the interaction region, otherwise they
will disturb the detection process.
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Figure 6.11: Scheme for the den-
sity enhancement in the FORL via
parametrical modulation of the three-
dimensional dark optical lattice.

Figure 6.12: Harmonic oscillation of an
atom in the FORL potential.

the atoms are localized and cooled down to a temperature of ∼ 10 µK. Subsequently, the
optical potential of the dark optical lattice is reduced adiabatically 1000-fold in 400µs, pro-
viding further cooling down to ∼ 3 µK(see Sec. 5.3.4), and finally the 3D DOL is completely
extinguished. The atoms are now confined in about 2500 pancake-shaped microtraps with
250 µm radius and 150 nm thickness at a temperature of 3 µK. The pancakes dipole force
resulting from the Gaussian transverse profile of the 1D FORT leads to a collapse of the
atomic distribution towards the trap centers. In harmonic approximation, the atoms will

Figure 6.13: Light modulation of the
dark optical lattice for the density enhance-
ment procedure.

accumulate at the potential minima after one-
quarter of oscillation period in the radial poten-
tial of the FORL. The time to peak compression is
1.6 ms, then the 3D DOL is switched again to cool
the collapsed atoms. We modulate the potential
of the dark optical lattice according to the pre-
viously described procedure 10 ms long (striped
area of 3D DOL in Fig. 6.14). At the end of the
modulation phase we adiabatically turned off the
dark optical lattice and release the compressed
atoms into the FORL potential. Finally, we de-
tect the atoms in the FORL by recording their

resonant fluorescence. The atomic density is determined from the fluorescence measure-
ment and is compared with the density which is achieved without the modulation of the
dark optical lattice potential.

To show that the expected density enhancement occurs at the predicted fraction of 1/4
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of the oscillation time in the radial potential of the FORL, we vary the evolution time
Tk that atoms spend inside the 1D FORL7, see Fig. 6.14, and measure the corresponding
density increase. Figure 6.15 plots the relative peak density increase as a function of the
evolution time in the 1D FORL. The time when the maximum compression is reached is
1.55 ms, which corresponds well with the calculated oscillation time of T0/4 = 1.61 ms (see
Tab.D.1) and the experimentally obtained value of the radial oscillation time T0/4 = 1.7 ms
(see Sec. 6.3.3). We achieve a peak enhancement factor of four. The corresponding peak
density is calculated from the fluorescence signal to be 1.2·1012 at/cm3 and the phase-space
density is 1/140.

Figure 6.14: Measuring scheme for the density enhancement in the FORL via parametrical
modulation of the three-dimensional dark optical lattice.

The dependence of the enhancement factor on the evolution time in the FORL poten-
tial is relatively broad as can be seen in Fig. 6.15. The reason is that the dipole potential
has a Gaussian form and its approximation with the harmonic potential is only correct in
the vicinity of the potential minimum. In our experiment, the atoms are distributed at
positions inside the potential where this approximation is not valid. This leads to anhar-
monicities in the evolution phase inside the FORL. Due to this fact, in the compression
phase, atoms starting at different positions arrive at the potential minimum not exactly at
the time TK .

We expected a higher efficiency of our scheme than the experimentally observed four-
fold density enhancement. The reason for the observed limitation of the enhancement
factor is the technical limitation of the 1D FORL. As already mentioned, the trap lifetime
τ = 80 ms is greatly reduced due to the on-resonant component in the trapping light. The
typical duration of the enhancement procedure is about 50 ms, so that at the end of the
enhancement cycle approximately half of the atomic population is lost. The improvement
can be reached by using another laser source for the FORL, which does not provide any
resonant components in its emission spectrum, for example a Ti-Sa laser. After eliminating

7If Tk is shorter than 400µs, the time during the 3D DOL is "on" was set to 400µs in order to provide
cooling for the atoms.
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Figure 6.15: Experimental results of the density enhancement. An enhancement factor of 4 is
achieved at the modulation time Tk ∼ 1.6ms.

this experimental problem we should achieve an overall enhancement of more than one order
of magnitude, the corresponding peak density would be on the order of 2.4 · 1012 at/cm3.
The achieved phase-space density of 1/140 could be further improved by implementation
of Raman sideband cooling inside the 1D FORL [35] and subsequent adiabatic cooling of
the atoms down to the recoil limit by slowly reducing the FORL intensity. In order to
approach a phase space density ρ ≈ 1 at a density of n = 2.4 · 1012 at/cm3 the temperature
needs to be reduced from 10 µK to about half of a µK .



Appendix A

Notation and Definitions

Parameter Definition Description
ω0 ω0 = ωf − ωi angular frequency of the atomic transition
ωL laser frequency
Γ Γ = 1/τ natural width of the atomic transition
δ δ = ωl − ωa detuning between laser frequency and atomic transition
ω1 ω1 = −edE0/~ Rabi frequency
s0 s0 = 2(ω1/Γ)2 on-resonance saturation parameter
s s = s0/(1 + (2δ/Γ)2) off-resonance saturation parameter

= ω1
2/2 (δ2 + (Γ/2)2)

∆ ∆ = ω1
2/(4δ) light shift

ωrec ωrec = k2/2M recoil frequency
ωvib ωvib = 2sqrt∆ωrec vibrational frequency
Πexc Πexc = s/(2(1 + s)) excitation probability
Γ′ Γ′ = ΠexcΓ power-broadened linewidth
T T = M〈v2〉/kB temperature
Tdop Tdop = ~Γ/2kB Doppler temperature (Doppler limit)
Trec Trec = ~2k2/MkB recoil temperature (recoil limit)
η η = Erec/~ωvib Lamb-Dicke factor

Table A.1: Definitions.
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Appendix B

Rb Atom Data

Rubidium1 was discovered by the German chemists Robert Bunsen and Gustav Kirchoff in
1861 in Heidelberg while carrying out a spectral analyze of samples of the mineral lepidolite
(KLi2Al(Al, Si)3O10(F, OH)2) . The sample produced a set of deep red spectral lines they
had never seen before. Bunsen was eventually able to isolate samples of rubidium metal.
Today, most rubidium is obtained as a byproduct of refining lithium.

atomic number 37
atomic weight 85, 4678 a.m.u.
number of isotopes (including nuclear isomers) 30
isotopes mass range 71 → 101
estimated crustal abundance 9, 0 · 10−1mg/kg
estimated oceanic abundance 1, 2 · 10−1mg/kg
melting point 312, 2K
boiling point 961K
thermal conductivity 58, 2W/(m ·K)@300K
thermal expansion coefficient 90 · 10−6K−1

density 1532kg/m3@293K
electrical resistance 12, 5 · 10−8Ωm@298K

Table B.1: Physical properties of Rb. The data is from [25].

Rubidium is a glittering silver-white colored metal which is burning in the air and
actively reacting with water. Rubidium and its compounds are mostly used for scientific
investigations and have little commercial significance. In industrial applications Rubidium
is used in vacuum tubes as a getter, a material that combines with and removes trace gases
from vacuum tubes. It is also used in the manufacture of photocells and in special glasses.
Rubidium forms no known minerals in which it is the predominant metallic constituent.
It occurs mainly as a replacement for potassium, especially in minerals formed late in the
crystallization of pegmatites. Some of the common rubidium compounds are: rubidium

1from the Latin word rubidius - deepest red , the element was named due to the color of its fundamental
spectral line
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chloride (RbCl), rubidium monoxide (Rb2O) and rubidium copper sulfate(Rb2SO4 ·CuSO4 ·
6H20). A compound of rubidium, silver and iodine, RbAg4I5, has interesting electrical
characteristics and might be useful in thin film batteries.

The natural mixture of Rubidium consists of two isotopes : 85Rb and 87Rb , see tableB.2.

Isotope 85Rb 87Rb
Abundance,% 72,17 27,83
Nuclear spin I 5/2 3/2
Decay time, T1/2 stable 4, 9 · 1010years
gyromagnetic ratio 2, 5828 · 107rad/(T · s) 8, 7532 · 107rad/(T · s)

Table B.2: Rb isotopes data, taking from [25]

The atomic element for investigations performed in this thesis is 85Rb. All experiments
were carry out with the natural mixture of these two isotopes. The choice of 85Rb was
made because of the signal amplitude in experimental data and spectroscopy for laser
stabilization. Both isotopes have similar electronic structure. The electronic structure of
85Rb and the transitions used in our experiments are shown in Fig. 5.14. TableB.3 shows
the essential data concerning laser cooling parameter of this isotope.

Data Value
ground state term 5S1/2

ionization energy 4, 177eV
λair(5

2S1/2 −→ 52P3/2), nm 780,027
λair(5

2S1/2 −→ 52P1/2), nm 794,760
Saturation intensity Is(5

2P3/2), (mW/cm2) 1,64
Saturation intensity Is(5

2P1/2), (mW/cm2) 1,4
τ(52P3/2), ns 26,63
γ/2π(52P3/2),MHz 5,98
γ/2π(52P1/2),MHz 5,4
ωrec/2π, kHz 3,86
Capture temperature Tc,mK 222,12
Doppler temperature Td, µK 143,41
Recoil temperature Tr, µK 0,37

Table B.3: Essential laser cooling parameters of 85Rb

In the TableB.4 the temperature dependance of the rubidium vapor pressure is listed.
The data was used for adjustment of the oven temperature and atomic flux calculations.
The intermediate values can be obtained using the formulas.
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T(◦C) 679,4 514,9 387,9 297,5 229,5 176,4 133,8 98,7 69,3 44,3 23,1
pvap(torr) 760 100 10 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7

Table B.4: Atomic vapor pressure vs. temperature. Data was taken from [46].

B.1 Landè factors
Interaction of an external magnetic field and an atom disturb the energy levels of the atom
and leads to rescission of degeneracy of the magnetic sublevels. The interaction term in the
Hamiltonian due to the Zeeman effect is HB = −~µ· ~B. The energy shift is ∆E = gF µBmF B.
With µB = −e~/2mc Bohr magneton, mF magnetic sublevel, B external magnetic field
strength and gF Landè factor. The Landè factor consists of

gF = gJ

{F (F + 1) + J(J + 1)− I(I − 1)

2F (F + 1)

}
(B.1)

with F = I ⊕ J . With J = L⊕ S and gl = gs/2 = 1 the gJ factor is

gJ = gl

{J(J + 1) + L(L + 1)− S(S − 1)

2J(J + 1)

}
+gs

{J(J + 1) + S(S − 1)− L(L + 1)

2J(J + 1)

}
=

= 1 +
J(J + 1) + S(S − 1)− L(L + 1)

2J(J + 1)
(B.2)

Landè g-factors for 85Rb levels of interest are listed in the tableB.5

5P3/2 5P1/2 5S1/2

F gF gF gF

4 1/2
3 7/18 1/9 1/3
2 1/9 -1/9 -1/3
1 -1

Table B.5: Landè g- factors of 85Rb



Appendix C

Nonlinear Trap Losses

Measurements show that at high trap densities, in the beginning of the decay process the
trap losses are not linear, changing over in the linear regime. These additional losses are
generated by two-body collision processes and scaled linear with the square of the trap
density and can be included as an extension into the linear loss model:

Ṅ(t) = R− Γ N(t)− β

∫
n2(r) d3r (C.1)

Since a modified exponential decay is expected, one looked for the solution for the trap
decay (R=0, no loading processes) in the form:

N(t) = N0 e−Γt Φ(t) (C.2)

Inserting C.2 into the C.1 yields Φ̇(t) = Φ2(t) · f(t) with f(t) = −β N0 e−Γt, where
n(r) = n(t)e−(r/a)2 , n(t = 0) = n0 and N(t) =

∫
n2(r) d3r were considered. Now we define:

g(t) ≡ exp
(
−

∫ t

t0

f(s)Φ(s)ds
)

(C.3)

this function has the property g′′/g′ = f ′/f . With g′ = α0e
−Γt and g = α2 + α1e

−Γt one
gets:

Φ(t) =
1

α3e−Γt

(
α4 − α0e

−Γt

α1e−Γt + α2

)
(C.4)

For t →∞, Φ has to be final, so α4=0 and we can reform Eg. C.4 as Φ = (A e−Γt + B)−1

with A = α1α3/α0 = −βN0/Γ. Considering N(0) = N0 and therefore Φ(0) = 1 we get
B = 1 + βN0/Γ and for N :

N(t) = N0
e−Γt

1 + βN0

Γ
− βN0

Γ
e−Γt

(C.5)

with N0 = n0(
√

πa)3 being the steady state population and

n0 =

√
2Γ2

β2
+

8R

β
(
√

2πa)
3 −

√
8Γ

2β
(C.6)
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being the corresponding steady state peak density in the ensemble. Introducing the ratio
of the quadratic losses to the total losses ξ ∈ [0, 1]:

ξ =
βn0

βn0 +
√

8Γ
=

γ − Γ

γ + Γ
(C.7)

with γ = Γ + 2βN0 =
√

(Γ/2)2 + Rβ = Γ(1 + ξ/1 − ξ) we can write the solution for
trap decay C.5 as

N(t)

N0

=
(1− ξ)e−Γt

1− ξe−Γt
(C.8)

During the loading process, the inelastic collisions play only a role at high trap densities,
but never at the begining of the loading, when the density is relatively moderate, thus
Ṅ(0) = R, and for the trap loading we get

N(t)

N0

=
1− ξe−γt

1 + ξe−γt
(C.9)



Appendix D

Calculation of the peak-density in the
FORL

The atomic density inside a standing-wave dipole trap is not constant. It varies from a
microtrap to microtrap and is maximal in the focus of the forming laser beam. Inside
each microtrap, the density reaches its maximum value in the middle of a microtrap and
decreases to its periphery. The Gauss distribution describes the density distribution along
the beam axis z:

N(z)

N
=

1

σF

√
2π

exp
(
− z2

2σF
2

)
(D.1)

with σF being the width of the intensity distribution along z-axis and N the total number
of trapped atoms. Taking in account that in a standing-wave trap, atoms are confined
in the antinodes, whose displacement is λ/2 from each other, we replace the continuous
variable z with the quantized one i · λ/2. The distribution takes the form:

Ni

N
=

1

2σF

√
2π

exp
(
−1

2

( iλ

2σF

)2)
(D.2)

Inside a single microtrap, the density is also distributed according to the Gauss formula.
Under assumption that in the x and y directions, the density is equally distributed with
the width σr, we get the total distribution inside a single microtrap:

ni(r, z) =
Ni(r, z)

Ni

=
1√

8πσzσr
2
e−( z

2σz
)2 e−( r

σr
)2 (D.3)

where ni(r, z) is the density inside a single microtrap with the total number of trapped
atoms Ni, σr and σz are the width in radial and axial directions. The width σr and σz are
given through

σr =
w0

2

√
kB T

U0

(D.4)

σz =
1

ωz

√
kB T

M
(D.5)
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where w0 is the waist of the forming laser beam, U0 is the maximum trap depth, M the mass
of Rb-atom and ωz = 2π/λ ·

√
U0/M the oscillation frequency along the axial direction.

The time evolution of the number of atoms in a single microtrap is described by the
equation

Ṅi = −Γ Ni − β

∫
n2

i (r, z)dv (D.6)

where the decay due to the linear collisions (background gas collisions) is considered with
the rate Γ. Decay rate β takes in account the density dependent two-body collision rate.
Inserting Eq. refGaussFortAll into the Eq.D.6 and integrating over i we get:

Ṅi = −Γ Ni − β
λ

32 π2 σF σz σ2
r

N2 (D.7)

The solution for this differential equation is given by Eq.C.8 from the AppendixC. Thereby,
parameters Γ, ξ, β and the maximal number of atoms in the trap N are connected together
as follows:

β
32 π2 σF σz σ2

r

λ
N = Γ

ξ

1− ξ
(D.8)

Using Eq.C.7, we can express β as:

β =

√
8 Γ

nmax

ξ

1− ξ
(D.9)

Comparing the Eqs.D.8 andD.9 we get for the maximum density nmax the following ex-
pression:

nmax =
N λ√

8 π2 σF σz σ2
r

(D.10)

Using the Eq.D.4 we get the maximum density in the dipole trap, which is reached in the
center of the most populated microtrap:

nmax =
N 3/2

√
U0

kB T

πσF ω2
0

(D.11)
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Parameter Value Units

Detuning δ 181.7 GHz
Waist w0 249 µm
Trap depth U0/kB 173 µK
Temperature 70 µK
Heating rate 22.32 µK/s
η = U0/kT 2.47
Number of atoms N0 5 x 106

Density ρ0 3 x 1011 at/cm3

Lifetime τ 80 ms
Axial vibr. frequency νax (calculated) 236 kHz
Radial vibr. frequency νrad 147.06 Hz
Radial vibr. frequency νrad (measured) 155.28 Hz
Time of compression tcomp 1.61 ms
Time of compression tcomp (measured) 1.7 ms

Table D.1: Essential parameters of standing wave far-off-resonance dipole trap for 85Rb



Appendix E

Materials and Devices

E.1 Materials
Rubidium Ampoule 7440-17-7, Alfa GmbH/Karlsruhe

• natural isotope mixture 1 g

Micro Channel Plate (MCP),Type J5022-11/Hamamatsu GmbH/Herrsching

• External size: 24,8 mm

• Effective size: 20 mm

• Channel diameter: 10 µm

• Thickness: 0,4 mm

• Open area ratio: 57

• Material: lead sulfate glass

Gaskets, Helicoflex c©, Garlock

• HN100-15027 M for 40 mm windows

• HN100-150443 M for 100 mm windows

• Material : Alu/Nimonic 90 (H)

Anamorphic Prism Pairs, Type PS871-B, Thorlabs GmbH/Karlsfeld

• unmounted, AR-coating 650-1050 nm.

Retardation wave plates (zero-order air spaced), LENS-Optics GmbH/Allershausen

• Air spaced λ/2, λ/4 retardation wave plates, Type: W2Z25 and W4Z25

• mounted, clear aperture 25mm, design wavelength 780nm

• all plates AR-coated ( total reflection <0.15%)
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E.2 Devices
Optical Table Newport RP RelianceTM , Newport/Darmstadt

• Sealed Hole Table Top, nonmagnetic steel

Ion Pump Star Cell VacIon Plus 20, Varian GmbH/Torino

• triode sputter-ion vacuum pump

• flange: DN 40 CF

• pumping speed (N2): 20 l/s

• lifetime @ 10−6 mbar: 80000 h

• max. starting pressure: 1 · 10−3mbar

• final pressure: < 10−11mbar

• maximum backing temperature: 350 ◦C (for ferrite magnet)

• power supply: MiniVac controller (5000 V DC, 15 mA)/ Varian

Ion Pump PE 11 STD, Perkin Elmer

• diode sputter-ion vacuum pump

• flange: DN 40 CF

• pumping speed (N2): 11 l/s

• maximum backing temperature: 150◦C with magnet, 450 ◦C without magnet

• repaired pump by Dunniway Corp. through Tectra GmbH/Frankfurt a.M.

• power supply: Ionpack 200 controller/ Perkin Elmer

Turbomolecular Pump Turbovac c© 50, Leybold GmbH/Köln

• flanges: high vacuum side DN 40 CF, prevacuum DN 16 KF

• pumping speed (N2): 29 l/s

• 72000 rpm, 2 min startup time

• max. starting foreline pressure: 1 mbar

• final pressure: < 8 · 10−9mbar

• electronic frequency converter: TURBOTRONIC NT 10/Leybold
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Foreline Pump Trivac c© D 1,2E, Leybold GmbH/Köln

• flange: DN 16 KF

• pumping speed: 1.8 m3/h

• 72000 rpm, 2 min startup time

• final pressure: < 2 · 10−3mbar

Display and Control Unit Combivac IT 23, Leybold GmbH/Köln

• display range with TTR 211S transmitter: 5 · 10−4 to 1000 mbar

• display range with Ionisation Vacuum Gauge ITR 100 transmitter:2 ·10−10 to 1 ·10−1

mbar

• measurement range of TTR 211S transmitter:5 · 10−4 to 0.1 mbar

• measurement princciple: thermal conductivity according to Pirani, tungsten filament

THERMOVAC TTR 211S Transmitter, Leybold GmbH/Köln

• flange: DN 16 KF

• measurement principle: thermal conductivity according to Pirani, tungsten filament

• measurement range of : 5 · 10−4 to 1 · 103 mbar

• measurement uncertainty: ±20% in the range 5 · 10−4 to 1 · 103 mbar

ITR 100 Transmitter, Leybold GmbH/Köln

• flange: DN 40 CF

• sensor type: wide range Bayard Alpert ionization vacuum gauge

• cathode: Yttrium oxide coated iridium dual cathode, protected by current limiting
and overpressure emission cut-off

• measurement range of TTR 211S transmitter:5 · 10−4 to 0,1 mbar

• response threshold: 1 · 10−10 mbar

• reproductivity: ±10% to the meas. value in the range 1 · 10−7 to 1 · 10−2 mbar

Temperature regulator TEMPAT c©, Messner Emtronic/Dettenhausen

• two point regulator, sensor break protected

• temperature range: 0-400 ◦C
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• switchable power 2000W, 10 A

• sensor type: PT 100

Vacuum Leak Detector Ultratest UL 200, Leybold /Köln

• flange: DN 16 KF

• pumping speed (He): 1 l/s

• lover detection limit 5 · 10−11 mbar

• upper detection limit 1 · 10−1 mbar

• sensor type: PT 100

Photodiode Power Meter LaserMate-Q, Coherent /Dieburg

• silicon sensor VIS, wavelength range 400-1064 nm, power range 10 µW to 50 mW,
accuracy ±3.5% of reading, ±2 LSD, max.1.0 W/cm2, sensor diam. 7.9 mm

• display response time <0.2 ms, offset of reading to zero

Thermal Power Meter MeterMate D10MM, Thorlabs GmbH/Karlsfeld

• wavelength range: 0.3-10.6 µm

• accuracy ±5% of full scale, 10 mW resolution

• output "x100": 100 mV/W, 2x1000!: 1V/W

• sensor area 2.57 cm2, aperture ∅ 18.1 mm

• max. power 10 W, max. power density 200 W/cm2

Digital Oscilloscope LeCroy 9314C, LeCroy/USA

• -3 dB bandwidth: DC to 400 MHz @ 50 Ω, DC to 230 MHz @ 1MΩ

• four channels and digitisers, 50k acgu.memory/channel

• output "x100": 100 mV/W, 2x1000!: 1V/W

• max. sampling rate 100 MS/s on each channel

• sensitivity 2 mV/div to 5 V/div, DC accuracy ±2% full scale

• 1 ns/div to 1000 s/div, clock accuracy ≤ ±0.002%

Signal Analyzer Advantest R4131D
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• 10 kHz to 3.5 GHZ, input 50 Ω

• 1abs. max. ratings +20 dBm and ±25VDC

Diode Laser for 780 nm Type HL7851G, Hitachi/Japan

• nominal output power 50 mW, negative polarity

• typical values: Ith=40 mA, Is=60 µA, ν=0.6 mW/mA, λ=782 nm(@20◦C) (for Rb
D2 line), λ=789 nm (@20◦C) (for Rb D1 line), Θvert=21◦, Θhor=9◦

Tapered Diode Laser for 780 nm Type SDL8630E,AMS Optotech/München, SDL/USA

• nominal output power 500 mW, negative polarity

• intra-cavity facet 4 µm aperture AR coated (R=0.1%), output facet130 µm aperture

• serial number: TD 420, Ith=0.52 A, Iop=1.55A, tuning range 781-791 nm, ν=0.4
W/A, λ=786 nm(@21◦C)

Diffraction Grating Type 263232 9051 324, Carl Zeiss Jena GmbH /Germany

• BK-7 substrate: 15x10x6 mm3

• 1800 lines/mm, holographic sinus grating, reflecting coating: aluminium, reflecting
efficiency in the first diffraction order: ca.25%

CCD camera, PixelFly, PCO Computer Optics GmbH/Kelheim

• b/w sensor Sony; Resolution: VGA, 640 x 480 pixel

• Pixel Size: 9.9x9.9 µm2

• Dynamic Range: 12 bit

• Quantum Efficiency @ λ= 780nm: 12%

• Expose Time: 10µs÷ 10s

• Readout Noise: 17 e−

• Binning: vertical:1,2,4 ; horiz.: 1,2

• Optical Input: C-Mount

• Lenses: Pentax c© Cosmicar 50mm/1.4

Fast Real-Time Automation System, ADWin-Gold, Jäger GmbH/ Lorsch

• CPU: SHARK-DSP 32 bit floating point, 512 kB DSP-RAM/ Analog Devices
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• 16MB DRAM

• 16 analogue inputs: 2x16-bit 10µs ADCs and 2x12-bit 0.8µs ADCs

• 8 analogue outputs: 16-bits DACs 10/3µs (<2V/20V)

• 32 digital inputs/outputs, TTL/CMOS

• 1 trigger/event input, TTL/CMOS



Appendix F

Technical Data and Schemes

T(◦C) 0 10 20 30 40 50 60 70 80 90 100
∆U(mV) 0 0,40 0,80 1,21 1,63 2,05 2,48 2,91 3,35 3,80 4,25

Table F.1: Thermoelectric voltages in mV according to DIN 43710 for Cu-Konst. thermocoupler
(E.Braun). Comparative temperature is 0◦C. In the experiments this temperature was set to 20◦C,
so one has to add to each position in the table the value 0,8 mV.
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