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A B S T R A C T

Drought is arguably the most complex and least-understood natural hazard. Its un-
derstanding is obscured by irreconcilable spatiotemporal monitoring across different
model realizations and observational datasets. This obscurity and our generally lim-
ited understanding adversely affect our ability to predict this hazard’s probability of
occurrence. While promising developments show potential improvements for both of
these shortcomings, further progress through novel approaches are still in urgent need.
This dissertation addresses both shortcomings by reconciling drought monitoring
across the dimensions mentioned above and demonstrating reliable skill of dynamical
seasonal drought predictions at unprecedented lead times.

The emergence of standardized drought indices revolutionized drought monitoring.
Their advantages reside in their probability-based interpretability and application-
based flexibility. In contrast, their disadvantages concern deficits in their robustness,
extendability, and tractability. A calculation algorithm that universally standardizes
highly non-normally distributed precipitation time series would rectify these deficits
for the most widely used drought index – the Standardized Precipitation Index
(SPI). However, such a calculation algorithm proved elusive in the past because the
abundance of involved dimensions seemed irreconcilable. This dissertation presents
a computation algorithm that universally standardizes the index across space, time,
and different realizations. The results demonstrate that the exponentiated Weibull
distribution excels in the standardization of the index. Particularly notable is that this
finding establishes the theoretical basis for the SPI to be applied to simulations.

This basis formally allows the evaluation of dynamical SPI predictions on seasonal
timescales. On seasonal timescales, drought predictions need to merge multiple
sources of information to be skillful. Previous investigations show significant drought
hindcast skill up to one lead month by merging predicted and observed precipitation.
In contrast, this dissertation merges the dynamical prediction with information about
the observed state of the El Niño-Southern Oscillation (ENSO). In this process, the
results illustrate the conditional drought hindcast skill during active ENSO years.
When an active ENSO state is present at the start of the prediction in October, this
investigation reveals significant and reliable winter drought hindcast skill up to
lead month 4 in equatorial South- and southern North America. Further, the area
of reliable hindcast skill is largest when an active ENSO state is already present in
the preceding summer. Particularly beneficial is that the analysis discloses this skill
during the dry phase of ENSO. Additionally, by using ENSO as a second source of
information (instead of observed precipitation), the methodology decouples the lead
time of reliable predictions from SPI’s accumulation period. This decoupling enables
the present methodology to demonstrate reliable skill at unprecedented lead times.

Universally monitoring and reliably predicting the SPI increase the lead time of
valuable information essential for managing the risks of drought impacts. Additionally,
this dissertation’s findings carry the potential to extend our general understanding
of drought by dissipating obscurities that surround its early detection and timely
prediction.
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Z U S A M M E N FA S S U N G

Dürre ist wohl die komplexeste und am wenigsten verstandene Naturgefahr. Ihr
Verständnis wird durch widersprüchliche räumlich-zeitliche Beobachtungen in unter-
schiedlichen Modellrealisierungen und Beobachtungsdatensätzen verschleiert. Diese
Verschleierung und unser grundsätzlich begrenztes Verständnis beeinträchtigen unse-
re Fähigkeit, die Eintrittswahrscheinlichkeit dieser Gefahr vorherzusagen. Vielverspre-
chende Entwicklungen zeigen zwar Verbesserungspotenziale dieser beiden Defizite
auf, jedoch sind weitere Fortschritte durch neue Ansätze nach wie vor dringend erfor-
derlich. Diese Dissertation nimmt sich beider Probleme an, indem Beobachtungen
von Dürren über die oben genannten Dimensionen hinweg in Einklang gebracht wer-
den und indem zuverlässige, dynamische saisonale Dürrevorhersagekraft zu bislang
unerreichten Vorlaufzeiten demonstriert wird.

Mit der Entwicklung von standardisierten Dürreindizes wurde die Dürrebeobach-
tung revolutioniert. Die Vorteile dieser Indizes liegen in ihrer wahrscheinlichkeits-
basierten Interpretierbarkeit und anwendungsbezogenen Flexibilität. Ihre Nachteile
hingegen betreffen Defizite in ihrer Robustheit, Erweiterbarkeit und Nachvollzieh-
barkeit. Ein Berechnungsalgorithmus, der hochgradig nicht-normal verteilte Nieder-
schlagszeitreihen universell standardisiert, würde diese Defizite für den am weitesten
verbreiteten Dürreindex – den Standardisierten Niederschlagsindex (SPI) – beheben.
Allerdings erwies sich ein solcher Berechnungsalgorithmus aufgrund der scheinbar
unvereinbaren Fülle an beteiligten Dimensionen in der Vergangenheit als schwer zu
verwirklichen. In dieser Dissertation wird ein Berechnungsalgorithmus vorgestellt, der
den Index quer durch Zeit, Raum und verschiedene Realisierungen hinweg universell
standardisiert. Die Ergebnisse zeigen, dass die exponierte Weibull-Verteilung hervor-
ragend geeignet ist, um den Index zu standardisieren. Besonders bemerkenswert ist,
dass dieses Ergebnis die theoretische Grundlage festigt, den SPI auf Simulationen
anzuwenden.

Diese Grundlage erlaubt die Auswertung dynamischer SPI-Vorhersagen auf sai-
sonalen Zeitskalen. Auf saisonalen Zeitskalen müssen Dürrevorhersagen mehrere
Informationsquellen zusammenführen, um Vorhersagekraft aufzuweisen. Frühere
Untersuchungen zeigen, dass Dürrevorhersagen durch die Vereinigung von vorherge-
sagten und beobachteten Niederschlagsmengen eine signifikante Vorhersagekraft bis
zu einem Monat im Voraus aufweisen können. Im Gegensatz dazu vereinigt diese
Dissertation die dynamische Vorhersage mit Informationen über den beobachteten
Zustand der El Niño-Southern Oscillation (ENSO). Durch diese Vereinigung ver-
anschaulichen die Ergebnisse die bedingte Dürrevorhersagekraft während aktiver
ENSO-Jahre. Wenn zu Beginn der Vorhersage im Oktober ein aktiver ENSO-Zustand
gegenwärtig ist, zeigt diese Untersuchung im südlichen Nord- sowie in äquatorial
Südamerika eine signifikante und zuverlässige Winterdürren-Vorhersagekraft bis zu
vier Monaten im Voraus auf. Darüber hinaus ist das Gebiet, in dem die Ergebnisse
zuverlässige Vorhersagekraft aufzeigen, dann am größten, wenn ein aktiver ENSO-
Zustand bereits im vorangegangenen Sommer gegenwärtig ist. Besonders vorteilhaft
ist, dass die Analyse diese Vorhersagekraft während der Trockenphase von ENSO
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offenbart. Durch die Verwendung von ENSO als zweiter Informationsquelle (anstelle
der beobachteten Niederschlagsmengen) entkoppelt die Methodik zudem die Vor-
laufzeit zuverlässiger Vorhersagen von der Akkumulationsperiode des SPI. Diese
Entkopplung ermöglicht es der vorliegenden Methodik zuverlässige Vorhersagekraft
zu beispiellosen Vorlaufzeiten unter Beweis zu stellen.

Eine universelle Beobachtung und zuverlässige Vorhersagen des SPI erhöhen die
Vorlaufzeit von wichtigen Informationen, die für die Eindämmung der Risiken von
Dürreauswirkungen unerlässlich sind. Darüber hinaus bergen die Ergebnisse dieser
Dissertation das Potenzial, unser allgemeines Verständnis von Dürren zu vertiefen,
indem Verschleierungen zerstreut werden, die die frühzeitige Erkennung und die
rechtzeitige Vorhersage dieser Gefahr umgeben.
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1
M E T E O R O L O G I C A L D R O U G H T: U N I V E R S A L M O N I T O R I N G
A N D R E L I A B L E S E A S O N A L P R E D I C T I O N W I T H T H E
S TA N D A R D I Z E D P R E C I P I TAT I O N I N D E X

This dissertation investigates meteorological drought. The investigation focuses on
the monitoring and the prediction of this hazard. The choice of these two targets pre-
cipitates from available options to combat the impacts drought has on societies. The
historical context of combating the impacts of drought establishes societal vulnerabil-
ity as a critical concept for alleviation. Opportunities to reduce societal vulnerability
arise from synergies between drought preparedness and drought mitigation. As it
turns out, two remaining critical challenges of drought preparedness are monitoring
and prediction of meteorological drought. By presenting an approach that univer-
sally monitors meteorological drought and demonstrating its reliable prediction,
the present thesis addresses both of these challenges. Overcoming the challenges of
assessing and estimating temporally varying water availability carries the potential
to alleviate drought impacts by improving capabilities to manage the risks drought
imposes on societies. Managing these risks, thereby, epitomizes this dissertation’s
motivation, which is embedded in the overarching theme of humankind’s endeavor
to adapt to water scarcity.

1.1 societal context of drought

The development of humankind has been intricately intertwined with its endeavor Intertwined history of

humankind and

drought
to adapt to water scarcity. During most of humankind’s existence, socio-cultural
developments have been inextricably linked to aridity, for example, by triggering mass
migrations (Manning & Trimmer, 2020). Conquering aridity, for example, through the
construction of irrigation systems, enabled the emergence of high cultures (for instance
Mesopotamia, or Ancient Egypt) (De Laet, 1994). High cultures’ emergence excited
scientific breakthroughs, such as math discovery, to distribute precious resources (like
water), and prompted prosperity (De Laet, 1994). Nevertheless, conquering aridity
was just the first step of the endeavor. Devastating droughts continued to shape the
history of humankind and even altered the course of it (Wilhite, 1992). That profound
impact occurred over the entire world and is nowadays well documented. In the
Americas, the demise of the ancient Mayan civilization coincided with four major
multiyear droughts (Peterson & Haug, 2005) that contributed to the civilization’s
demise (Haug et al., 2003; Gill et al., 2007). In Asia, reconstructions from tree rings
show that the most extreme drought during the past millennium in western central
High Asia coincided with the collapse of the Chinese Ming dynasty in the 1640s
(Fang et al., 2010). Moreover, in Europe, droughts repeatedly weakened humans and
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2 universal monitoring and reliable prediction of meteorological drought

rodents alike, while the re-emergence of rains sharply increased the number of fleas.
The combination of both effects explains most outbreaks of plague between 1350 till
the late 17th century over the continent (Yue & Lee, 2020). These examples showcase
the impacts of drought and its aftermath on the course of human history. In contrast
to aridity, drought continues to torment humankind until today.

1.1.1 Societal context of drought impacts

Drought affects the most people (Hagman et al., 1984; Wilhite, 1990, 1996, 2001, 2002)Drought mortality

and causes the most fatalities among all natural hazards (Figure 1.1 a). According
to the international Emergency Events Database (EM-DAT) (EM-DAT, 2020), droughts
account for less than 5% of the natural disasters that occurred globally since 1900.
However, droughts caused more than 36% of the fatalities linked to natural disasters
within the same period. Nowadays, the mortality risk of drought is highest in Africa
(except for the Sahara region), followed by South-East Asia and Latin America (Dilley
et al., 2005). In Africa and Asia, drought causes the most fatalities among all natural
hazards (Franzke & Torelló i Sentelles, 2020). These statistics exemplify the severity of
the hazard and build motivation to explore appropriate actions to mitigate drought
impacts.

Figure 1.1: Millions of persons who died from (a), and trillions of USD economic damages
caused by (b) natural hazards. Depicted is the cumulative, global sum since 1900. The figure’s
abbreviations indicate the countries struck by those droughts, which caused the eight largest
death tolls. The data is obtained from the international disasters database EM-DAT (2020) on
the 3rd of October 2020. Economic damages are adjusted for inflation via the consumer price
index (CPI) (Hall & Taylor, 1993; Blanchard, 2000). The CPI values since 1913 are obtained
from US BLS (2020), and values before 1913 are obtained from Multpl (2020).

Drought severely impacts virtually all nations of the world (Wilhite, 1996) throughThe order of

propagating drought

impacts
adversely affecting three main sectors: environments, societies, and economies. Usu-
ally, these impacts are referred to as direct or indirect, or they are assigned an order
of propagation (e.g., first-, second-, third-order, or even higher orders of propagation).
The order of complexity of these impacts typically increases along with the order
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of propagating impacts (Wilhite, 1992). In other words, the farther away the impact
occurs from the cause, the more complex is the impact.

Table 1.1: Classification of drought-related impacts. Adapted from Wilhite (1992), Wilhite &
Pulwarty (2017) and other references provided in the table.

Environments Economies

Damages to: Losses to:

Animal species through e.g. Insurers and re-insurers

Wildlife habitat damages Manufacturers and sellers of recreation equipment

Disease Energy industries affected by drought-related power curtailments

Lack of feed and drinking water Industries directly dependant on agricultural production; e.g.,:

Vulnerability to predators through e.g. Fertilizer manufacturers

Species concentration near water Food processors

Fish species State and local governments through e.g.:

Plant species Reduced tax base

Adverse effects to the quality of: Increased unemployment

Water through e.g.: Water supply firms through e.g.:

Salt concentration Revenue shortfalls

Air through e.g.: Windfall profits

Dust Losses from:

Pollutants Impaired navigability of streams, rivers, and canals

Vision of landscapes through e.g. Recreational businesses

Dust Dairy and livestock production through e.g.:

Vegetative cover Reduced productivity of range land

Carbon emissions with global consequences (IPCC, 2012) Forced reduction of foundation stock

Closure/limitation of public lands to grazing

Societies High cost/unavailability of water and feed for livestock

Famine (Pozzi et al., 2013) Increased predating

Spread of diseases (IPCC, 2012) Range fires

Threats to public safety through e.g.: Crop production through e.g.:

Forest fires Damage to perennial crops; crop loss through e.g.:

Range fires Insect infestation

Health related low-flow problems through e.g.: Plant disease

Diminished sewage flows Wildlife damage

Increased pollutant concentration Field fires

Increased inequity caused by: Reduced productivity of cropland through e.g.:

Universal large-scale exposure Wind erosion

Poorly targeted relief programs (see also: Wang et al., 2016) Timber production through e.g.:

Forest fires

Tree disease

Insect infestation

Impaired productivity of forest land

Fishery production through e.g.:

Damage to fish habitat

Loss of young fish through e.g.

Decreased flows

Unemployment from declines in drought-related production

Increased costs of:

Water transport and transfer

New or supplemental water source development

Strain on financial institutions

Table 1.1 provides a detailed overview of the impacts of drought. Environmental Impacts of drought

impacts are often direct or low-order, such as damages to animal species through a
lack of drinking water, or even carbon emissions. In contrast, societal and economic
impacts consistently are of a high order, such as increased inequality or a wide
range of economic losses. Impacts of droughts are generally more subtle (less evident
because of the usual absence of structural damages) and typically spread over a larger
geographical area, which may even cover entire regions, than the impacts of other
natural hazards (Wilhite, 1992, 1996; Wilhite & Pulwarty, 2017; Pendergrass et al.,
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2020). Arguably the spatially most constrained and visually most apparent impacts of
drought result from wildfires that were triggered by drought (Table 1.1). However,
irrespective of their cause, wildfires are often treated as a separate natural disaster
(e.g., in EM-DAT, 2020).

Drought differs from other natural hazards because of its insidious nature thatDrought in the

context of other

natural hazards
leads to a problematic determination of its onset and termination (Wilhite, 1992,
1996). Its determination is additionally aggravated by the absence of any distinct,
precise, and universal definition (Wilhite, 1992, 1996). The absence of such a definition
poses an obstacle to its understanding and partly explains why drought is the least
understood natural hazard. Despite our lack of understanding, scientists consense
that the impacts of drought usually accumulate slowly and may linger for years even
after its termination (Wilhite, 1992, 1996; Pendergrass et al., 2020). In summary, the
impacts of drought typically are of a larger scale and longer-term than the impacts
of other natural hazards. Further, since economic impacts consistently are of a high
order, estimations of drought damages carry large uncertainties.

Therefore, drought damages are usually inaccurate. As it turns out, they are typ-Uncertainties attached

to estimated economic

damages of drought
ically underestimated (Wilhite, 1992; IPCC, 2012). The reasons for these impeded
estimations have already been presented. While first-order, direct impacts are more
comfortable to assess straightforwardly than higher-order impacts, these direct im-
pacts typically cause non-monetary damages of environmental nature. Any quantifica-
tion of non-monetary damages is universally difficult and carries large uncertainties.
In contrast, straightforwardly assessable monetary damages are typically indirect
impacts of a higher order of propagation and complexity. These indirect impacts
are further removed (in the order of propagating impacts, in space, and in time)
from the cause and linked to the cause only through highly complex socioeconomic
feedbacks (drought seldomly causes directly visible structural damages). Therefore,
the attribution of these impacts to the cause (i.e., the drought event) is again difficult
because of large uncertainties attached to the complex socioeconomic feedbacks. Un-
even interannual distributions of drought damages further aggravate these difficulties
by introducing an additional complexity level through the emergence of winners and
losers from drought impacts (Wilhite, 1992). Decreased yield because of drought in
one region increases grain, fruit, and vegetable prices, which negatively impact all
consumers. Nevertheless, farmers outside the drought-affected area with (above-)
average yields benefit from these price increases (Wilhite, 1992). Summarizing, al-
most all of the damages caused by drought are difficult to assess quantitatively and
carry large uncertainties. Despite these illustrated difficulties and large uncertainties,
quantifications of economic damages caused by drought still exist but should be
interpreted cautiously.

Economic risks associated with drought precipitate in virtually all regions of theHotspots of economic

damages of drought globe. These economic risks are particularly large in Europe, areas adjacent to the
yellow sea and the middle East. Relative to the Gross Domestic Product (GDP), the
economic risks associated with drought are especially severe in southern Europe,
the Middle East, and coastal Australia (Dilley et al., 2005). Irrespective of the region,
economic damages are notable worldwide, particularly compared to the damages
caused by other natural hazards.

Estimations of global economic drought damages consistently rank drought inGlobal estimates of

economic damages of

drought relative to

other natural hazards

the top 4 among all natural hazards. Government reports usually consider drought
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as the costliest natural hazard (e.g., 6 to 8 billion USD annually in the USA alone:
FEMA, 1995). Scientific studies are typically more conscious about uncertainties.
This consciousness leads to larger discrepancies between damages estimated by
different studies. In the USA, uncertainties of estimations range from 120 billion
USD during the 1980s (Domeisen, 1995) to 144 billion USD between 1980 and 2003

(41.2% of the total costs of all weather-related hazards during this time) (Ross & Lott,
2003). Despite these uncertainties, the review of drought literature from Hao et al.
(2018) undisputedly ranks drought as one of the costliest natural hazards worldwide.
Riebsame (2019) shows that a single drought event (i.e., the 1988 drought) can cause
already 40 billion USD economic damages in the USA alone. The estimates of EM-DAT
(2020) are slightly more conservative but still consider droughts to be the fourth-most
costliest natural hazard globally (Figure 1.1 b). It is noteworthy that estimates of
economic damages caused by the current pandemic, COVID-19, are not included in
the database. To supply a context for the magnitude of the estimates of Figure 1.1 b,
the first estimations quantify the global economic damages of COVID-19 to amount to
5.6 trillion USD. Including the value of deaths, this estimate even increases to 8.1-15.8
trillion USD (Dobson et al., 2020). Anyhow, aside from estimating drought as (one of)
the (most) costliest natural hazard(s), previous studies (Wilhite, 1992; Domeisen, 1995;
Wilhite, 1996, 2002) further consense on the explosion of economic damages caused
by drought since the middle of the 20th century (see also Figure 1.1 b).

This explosion of economic damages is caused by the increase of the GDP (Franzke Vulnerability of

societies to drought

impacts
& Czupryna, 2020). Nevertheless, a causal link also connects the magnitude and the
vulnerability of existing economic values. The more goods exist, the more goods are
vulnerable. Thus, analog to the increase of the GDP, societal vulnerability to drought
impacts also increased (Wilhite, 1992). However, this causal link is not static. While
the global GDP (in 2011 international-$) increased between 1965 and 2015 by 480%
(OWD, 2020), inflation-adjusted economic damages caused by drought increased by
more than twice as much between the 1960s and the second decade of this century (by
1,165%) (Figure 1.1 b). Ergo, per unit additional economic value, drought damages
increased by nearly 2.5 units in the past 50 years. Societies exacerbate the impacts of
drought, which are typical indicators of widespread unsustainable water and land
management practices (Wilhite, 2002).

Further aggravating, these unsustainable practices are (despite their vast extent) Aggravated

vulnerability of

societies to drought

impacts during this

century

still expanding. While the global GDP (in 2017 international-$) increased between
2005 and 2015 by 40% (World Bank, 2020), inflation-adjusted drought damages in-
creased by more than four times as much between the first and the second decade of
this century (by 166%) (Figure 1.1 b). Per unit additional economic value, drought
damages increased by more than four units in the past two decades. The reasons
for this aggravation reside in growing economies and expanding populations that
increasingly exploit local and regional water reservoirs while accelerating environ-
mental degradation (Wilhite, 1990; Pendergrass et al., 2020). Consequently, these
unsustainable practices exploit natural capital while preventing its rehabilitation. As
a result, droughts of moderate-intensity that formerly caused only minor impacts
may now lead to serious environmental impacts and severe economic consequences
(Wilhite, 1990).

Nevertheless, this disillusioning insight also discloses a chance. Societies can reduce Reducing

vulnerability of

societies to drought

impacts

their vulnerability to (and, thereby, the risks associated with) drought impacts. As just
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demonstrated, the causal link between the magnitude and the vulnerability of existing
economic values is non-static. Opportunities reside in the level of development,
sustainable policies, social behavior, technological improvements, and ultimately the
size of economies as well as populations and their demand on water (Wilhite, 2002;
Wilhite & Pulwarty, 2017).

Anyhow, instead of grasping these opportunities, governments usually manageThe

crisis-management

tactic
drought in a crisis mode (Wilhite, 2002): Governments (and also civil aid organiza-
tions) only react after (parts of) their nation are struck by drought. Drought-affected
individuals receive assistance and relief, which alleviates human suffering. This allevi-
ation can be seen as humankind’s first triumph in combating the impacts of drought.
However, as it turns out, such a reactive crisis-management tactic does not decrease
vulnerability (Wilhite, 1996, 2001; Wilhite & Wood, 2001; Wilhite, 2002). Ironically,
the crisis-management tactic even prevents strategic changes by reinforcing the un-
sustainable status quo. Thus, the explosion of economic damages is paradoxically a
consequence of this first triumph in combating drought impacts.

1.1.2 Historical context of combating the impacts of drought

During the first half of the 20th century, humankind celebrated the first triumphCrisis-management

tactic of the 20th

century
in combating the impacts of drought. Industrialization heralded the dawn of glob-
alization and the information era. As a consequence of the new opportunities of
this era, the crisis-management tactic emerged. The result was a sharp decline in
the global death toll caused by drought by the middle of the 20th century (Figure
1.1 a). Anyhow, around the same time that humankind controlled the death toll,
economic damages caused by drought spiraled out of control (Figure 1.1 b). While the
crisis-management tactic notably progressed humankind’s endeavor to adapt to water
scarcity, the economic price for this progress continues to increase ever since. As the
economic damages of drought continued to increase, critics of the crisis-management
tactic were voiced with ever-increasing ferocity.

The crisis-management tactic undisputedly reduces human suffering and avoidableCritics of the

crisis-management

tactic
deaths. Nevertheless, this tactic also promotes land managers to continue unsustain-
able practices (such as overgrazing, applying inappropriate tillage practices, planting
inappropriate crops, and storing inadequate fodder reserves for livestock) (Wilhite,
1996, 2001; Wilhite & Pulwarty, 2017). Current crisis-management tactics encourage
existing unsustainable resource management practices that increase societal vulnera-
bility, particularly when a drought struck and their failures become apparent (Wilhite,
2002). As a result, land managers rely on drought assistance and relief (Wilhite, 2002).
That reliance on external aid increases dependence, while disincentivizing self-reliance
and the adaptation of sustainable practices (Wilhite, 1996; Wilhite & Wood, 2001).
Therefore, the current use of crisis-management tactics increases the vulnerability
of societies to drought (Wilhite, 2001). Furthermore, post-drought evaluations from
around the globe have found that the crisis-management tactic is untimely, ineffective,
inefficient, as well as poorly coordinated and targeted (Wilhite, 1996, 2001, 2002; Wang
et al., 2016). The reliance on this reactive tactic exposes the lack of any long-term
strategy. Myopic reductions of suffering do not lead to long-term reductions of future
damages (Wilhite, 2002). Despite these critics, the crisis-management tactic remains
an important tool that is essential if humankind’s endeavor to adapt to water scarcity
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is to succeed. Anyhow, this short-term tactic should be used sparingly and, most
importantly, embedded into a long-term strategy that manages and reduces the risks
drought impose on societies.

A long-term risk-management strategy, that aims to reduce the risks drought Long-term

risk-management

strategy
impose on societies, needs to tackle the causes of vulnerability (Wilhite, 1996; Wilhite
& Wood, 2001; Wilhite, 2002; Pozzi et al., 2013; Pendergrass et al., 2020). It seems
noteworthy that the societal risk to impacts of drought can theoretically also be
tackled by managing societies’ exposure. However, humankind can neither change
the weather nor fine-tune the climate – i.e., affect the occurrence of drought. Instead,
humankind can only change its vulnerability to drought through activities that
either mitigate or exacerbate drought impacts (Wilhite & Wood, 2001). Activities that
mitigate future damages are most effective if committed to before the disaster occurs
– i.e., a long-term risk-management strategy (Wilhite, 1996, 2001). The first calls for
an encapsulating strategy that manages the risks of drought date back almost one
hundred years.

The idea of such a long-term risk-management strategy has been first mentioned in Long-term

risk-management

strategy: historical

context

the mid-1930s (Wilhite & Wood, 2001). However, the discussion stalled for almost half
a century till the idea resurfaced in the late 1970s (WGPO & IPR, 1978; GAO, 1979). By
the late 1980s, the discussion gained momentum (NRC, 1986; Smith & Tirpak, 1989),
and in the 1990s, the need for a long-term risk-management strategy was broadly
recognized (Wilhite, 1992, 1996), apparent by the establishment of federal institutions
and commission for instance in Australia and the USA (e.g., GLC, 1990; OTA, 1993;
WWPRAC, 1998) (see Wilhite, 2001, for more information). Yet, progress has still been
erratic because of missing scientific consensuses that fueled a lack of institutional
capacity, as well as human and financial resources (Wilhite, 2002).

The missing scientific consensuses that fueled these limitations concerned four Long-term

risk-management

strategy: missing

scientific consensuses

main ideas (Wilhite, 2002): (i) Droughts were not broadly accepted as a natural hazard
because of their slow onset in combination with the absence of structural damages.
The absence of structural damages also hindered the monitoring of drought. In
turn, drought monitoring could not help to establish drought as a natural hazard.
Therefore, the lack of structural damages also acted as reinforcing feedback that
prevented droughts from being considered a natural hazard and cemented this
status quo. Disregarding drought as a natural hazard led to insufficient research
support and a general lack of awareness about windows of opportunity. Consequently,
drought and its far-reaching impacts were under-appreciated. That under-appreciation
solidified the crisis-management tactic as a response to droughts. (ii) Droughts were
often disregarded as a regular part of climate and viewed as rare random events
instead. There are confined incentives to devise long-term strategies to combat the
impacts of rare random events. (iii) The socioeconomic aspect of drought was often
disregarded, and the consensus was restricted to humankind’s inability to change
the weather – i.e., the occurrence of drought. Tackling humankind’s vulnerability
to drought requires recognition of the socioeconomic component of drought. (iv)
Despite globally escalating damages of drought due to increasing complexities of
impacts, long-term risk-management investments were not widely considered more
cost-effective than post-impact assistance and relief programs. These quarrels locked
scientists, policymakers, and societies in the crisis-management-tactic mode for two
more decades.
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During the first decade of the current century, scientific consensuses about these fourLong-term

risk-management

strategy: recent

progress

quarrels could ultimately be established. In the second decade of the current century,
a long-term risk-management strategy eventually achieved significant attention (e.g.,
Pozzi et al., 2013; Sivakumar et al., 2014; Wang et al., 2016; Wilhite & Pulwarty, 2017).
Particularly the High-level Meeting on National Drought Policy (HMNDP) (Sivakumar
et al., 2014) proved to be a major stimulus that triggered outstanding progress (Wilhite
& Pulwarty, 2017). Nations around the world finally grasped their options to manage
the risks of drought impacts (Wilhite & Pulwarty, 2017).

Viable options to manage the risks of impacts of drought must reduce societalLong-term

risk-management

strategy: two pillars
vulnerability to drought; reducing the exposure of societies to drought is infeasi-
ble (as explained before). The vulnerability of societies to drought can be reduced
via two options, which form the pillars of the long-term risk-management strategy
(Wilhite, 2002): The first pillar is preparedness, which refers to predisaster activities
that increase readiness for responding to drought evoking improved institutional
and operational capabilities. And the second pillar is mitigation, which refers to
policies, programs, and actions that reduce the risk to productive capacity, property,
and human life. Mitigation manifests in creating plans and policies that promote sus-
tainability, which is vital to building resilient societies adapted to the riks of drought
(for more information about preparedness and mitigation see also: Wilhite, 1992,
1996, 2002; Wilhite & Pulwarty, 2017; Pendergrass et al., 2020). Drought mitigation
undisputedly still faces challenges in achieving sustainable and resilient societies (the
interested reader is referred to Wilhite & Pulwarty, 2017). Anyhow, the remainder of
this thesis covers preparedness. Preparedness feeds accurate information into these
pre-prepared contingency plans and policies that promote sustainability and allocate
water when it is scarce. Consequently, evaluating and predicting temporally varying
water availability are the keystones of drought-preparedness (Wilhite, 1996, 2001;
Wilhite & Wood, 2001; Wilhite, 2002). These keystones urgently need further scientific
advancements. While preparedness also faces other challenges, the monitoring and
the prediction of drought are arguably the most pressing concerns of drought pre-
paredness nowadays (Wilhite, 2002; Hayes et al., 2011; Pozzi et al., 2013; Wilhite &
Pulwarty, 2017; Pendergrass et al., 2020).

Proper monitoring and skillful predictions of drought further humankind’s en-Importance of proper

monitoring and

skillful predictions of

drought

deavor to adapt to water scarcity. Nowadays, socioeconomic developments still in-
crease societies’ vulnerability to drought through widespread unsustainable practices
across many sectors (for instance, economy, agriculture, population, land-use, urban-
ization). For some of these sectors, enforcing sustainability might well be politically
and societally undesired (such as enforcing stabilizing populations through birth
control or preventing the growth of economies). Furthermore, droughts are projected
to become more intense and longer-lasting (IPCC, 2012), leading to increased expo-
sure of societies. Additionally concerning is the recent discovery of flash droughts,
characterized by a sudden onset with rapid intensification (Trenberth et al., 2014;
Otkin et al., 2018; Pendergrass et al., 2020). In contrast to these factors that increase
the societal risk to drought, technological and scientific progress enable humankind
to decrease vulnerability: particularly the monitoring and prediction of drought is the
key to maximize the lead time of important information that improves preparedness
(Wilhite, 1992, 1996, 2002; Hayes et al., 2011; Pozzi et al., 2013; Wilhite & Pulwarty,
2017). While monitoring remains essential, it becomes increasingly insufficient when
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societies face a menace like flash droughts that substantially decrease the lead time
observations can provide through monitoring. In contrast to monitoring, predictions
gain an ever-increasing importance (Pendergrass et al., 2020). Therefore, the present
dissertation will henceforth focus on monitoring and prediction of drought.

In summary, drought preparedness is one pillar of the long-term risk-management Evaluating and

predicting temporally

varying water

availability

strategy. This pillar’s keystones are the evaluation and prediction of temporally
varying water availability; both urgently need further scientific advancements. Thus,
evaluating and predicting temporally varying water availability constitute remaining
critical challenges of the long-term risk-management strategy (Wilhite, 2002; Hayes
et al., 2011). This dissertation contributes to resolving these two remaining critical chal-
lenges of the long-term risk-management strategy – i.e., establishing the robustness
of the keystones of one pillar of the long-term risk-management strategy.

1.2 scientific context of this dissertation

We have no good definition of drought. We may say truthfully that we scarcely know a

drought when we see one. We welcome the first clear day after a rainy spell. Rainless days

continue for a time and we are pleased to have a long spell of such fine weather. It keeps on

and we are a little worried. A few days more and we are really in trouble. The first rainless

day in a spell of fine weather contributes as much to the drought as the last, but no one knows

how serious it will be until the last dry day is gone and the rains have come again . . . we are

not sure about it until the crops have withered and died.

— I. R. Tannehill, Drought, Its Causes and Effects (Princeton University Press, 1947)

Drought is a physical phenomenon with an attached socioeconomic component Complexity of drought

(Wilhite, 1992, 2002). The interplay between the physical phenomenon and the so-
cioeconomic components epitomizes drought and complicates not only its impact
assessment (as seen before) but also its definition and assessment. Given this inter-
play’s fallout, the quote from Tannehill (1947) is up to the present time as accurate as
more than 70 years ago: drought is still the most complex and, therefore, the least
understood natural hazard (Wilhite, 1990, 1996, 2001, 2002; Pulwarty & Sivakumar,
2014; Pendergrass et al., 2020). Despite this complexity, the scientific understanding
of drought has progressed considerably within the previous decades.

1.2.1 Scientific understanding of drought

While aridity is a permanent climatic feature of specific climatic regimes, drought Definition of drought

is a recurrent climatic feature that inevitably occurs across all climatic regimes (Wil-
hite, 1996, 2001). Drought is an insidious, pervasive, and creeping natural hazard
caused by a sustained scarcity of water in specific reservoirs relative to some norm
(Wilhite, 1992, 1996, 2002; Hayes et al., 2011; IPCC, 2012; Wilhite & Pulwarty, 2017).
Logically, the chosen norm varies with the scrutinized water reservoir. This interplay
within the definition of drought convolutes its characterization. That convolution is a
byproduct of focusing the definition of drought on its impacts. Scarcity in different
water reservoirs causes different impacts. Thus, the scientific literature typically dis-
tinguishes between four different types of drought based on the physical processes
related to the water-reservoir deficit and the associated socioeconomic feedbacks
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caused by that deficit (Wilhite & Glantz, 1985). These four types comprise meteoro-
logical, soil-moisture (also known as agricultural), hydrological and socioeconomic
drought (Wilhite & Glantz, 1985; Wilhite, 1992, 2001; IPCC, 2012; Wilhite & Pulwarty,
2017). Consequently, four different scientists may differently characterize any specific
drought in terms of its identification, severity, spatial extent, and duration. Still, all
four different characterizations may be correct. Therefore, any universal drought
definition poses an unrealistic expectation (Wilhite, 1992, 2001; Wilhite & Pulwarty,
2017). Instead of one universal definition of drought, scientists classify drought into
types as mentioned above.

Droughts are traditionally classified along their impact chain from meteorologicalTypes of drought

over soil-moisture and hydrological to socioeconomic drought (Wilhite & Glantz,
1985; Wilhite, 1992, 2001; IPCC, 2012; Wilhite & Pulwarty, 2017). The impact chain
universally starts with a prolonged precipitation deficit (meteorological drought),
which adversely impacts plants (soil-moisture drought) and reduces surface runoff,
streamflow, groundwater, and reservoir levels (hydrological drought). Ergo, soil-
moisture and hydrological droughts are generally caused by a previous meteorological
drought (Wang et al., 2016). A different kind of nature characterizes socioeconomic
drought because it is associated with the supply of and demand for economic goods.
On the one hand, the supply shortage during a socioeconomic drought is usually
caused by a previous meteorological, agricultural, or hydrological drought (Wilhite &
Glantz, 1985). On the other hand, economic development alone can already suffice to
trigger a situation in which excessive demand for more water than ordinarily available
creates a socioeconomic drought (Hoyt, 1942). Nevertheless, these different types of
drought often occur out of phase with each other (Wilhite & Glantz, 1985).

Since the beginning of this century, scientific understanding of the propagationPropagation of

drought from one drought type to another (from meteorological drought over soil-moisture
and hydrological drought to socioeconomic drought) is a hot issue and has produced
several valuable insights (e.g., Peters et al., 2003; Vicente-Serrano & López-Moreno,
2005; Peters et al., 2006; Tallaksen et al., 2009; Loon & Van Lanen, 2012; Haslinger et al.,
2014; Niu et al., 2015; Huang et al., 2015; Loon & Laaha, 2015; Barker et al., 2016). For
instance, a significant link that connects meteorological drought with soil-moisture
and hydrological droughts has been verified (Wang et al., 2016). This connection
is characterized by lags in and a prolonging (lengthening) along the propagation
(Wang et al., 2016). While there are additional factors that contribute to soil-moisture
and hydrological droughts (i.e., they cannot be solely derived from meteorological
drought) (Wang et al., 2016), the insights about the propagation of drought still
indicate that meteorological drought very likely depicts the root cause of all other
drought types. Proper monitoring and prediction of meteorological drought can serve
as a predictor for an ensuing agricultural drought and as the necessary meteorological
forcing to simulate a subsequent hydrological drought (Hao et al., 2018). But what
causes a meteorological drought?

Nowadays, many contributing factors to meteorological drought are well-established.Contributing factors

to drought These well-established contributors usually act synergistically and typically originate
far from the drought-affected area (Wilhite & Pulwarty, 2017; Hao et al., 2018). To
name just a few, the most prominent contributors to drought are soil-moisture deficits
and sea-surface-temperature anomalies. Both of these contributors remotely displace
the jet stream and, thereby, cause predominant subsidence-zones that result in per-
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sistent high-pressure systems that inhibit cloud formation; thus, lowering relative
humidity and precipitation. Persistent establishments of these large-scale anomalies
in the atmospheric circulation patterns lead to prolonged drought conditions (e.g.,
Wilhite & Pulwarty, 2017; Hao et al., 2018).

These insights behold promising prospects. First, meteorological drought is the Proper monitoring

and skillful

predictions of

meteorological drought

root cause of all other drought types. Second, the physical aspects of meteorological
drought can be investigated in isolation from socioeconomic interplays. Anyhow,
adequate monitoring, and reliable numerical simulations of meteorological drought
are still deficient and pose critical challenges of meteorological drought research.

1.2.2 Challenges faced by research on meteorological drought

The following part elaborates on the two aforementioned critical challenges, which are WCRP Grand

Challenges for weather

and climate extremes
faced by research on meteorological drought. These challenges mirror the challenges
for weather and climate extremes that the World Climate Research Programme (WCRP)

elevated to WCRP Grand Challenges of the first quarter of this century (Zhang et
al., 2014). In the general context of extremes, these Grand Challenges identify an
urgent need for improvements in monitoring, reliable predictions, understanding of
interactions between spatiotemporal scales, and the attribution of extreme events to
contributing factors (Zhang et al., 2014).

In the specific context of drought, the latter two WCRP Grand Challenges experienced WCRP Grand

Challenges in the

context of droughts
considerable progress during recent years, as illustrated earlier. In contrast, the first
two WCRP Grand Challenges constitute remaining challenges of the long-term risk-
management strategy, as explained before. Given the insight that meteorological
drought constitutes the root cause of soil-moisture and hydrological drought, advances
in monitoring and the prediction of meteorological drought will cascade along the
entire impact chain of drought. Thus, these advances would improve the monitoring
and prediction of all drought types. Skillful predictions and proper monitoring of
meteorological drought are, therefore, of paramount importance. Advancing our
capability to properly monitor and skillfully predict meteorological drought very
likely constitutes our single most promising window of opportunity to elevate the
long-term risk-management strategy from a theoretical construct to a practical benefit.

This opportunity is being repeatedly voiced since the early 1990s (e.g., Wilhite, Remaining critical

challenges1992). Still, both introduced critical challenges of the long-term risk-management
strategy remain. These challenges concern vital information that is available for
preparedness measurements. The Lincoln declaration on drought indices prominently
summarizes both of these challenges in its first sentence, stating the urgent need for
improved drought monitoring and early warning systems (Hayes et al., 2011). Both of
these issues impede the long-term risk-management strategy by obscuring temporally
varying water availability. Consequently, drought preparedness plans, which are
finally in place, sub-optimally allocate water when it is scarce. The quote from
Tannehill (1947) at the beginning of this section appears omnipresent and more urgent
than ever. Building upon this motivation, I will next illuminate both remaining critical
challenges introduced before, monitoring and predicting meteorological drought, and,
thereby, provide the context for this dissertation’s contributions.
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1.2.2.1 Montitoring meteorological drought

The first remaining critical challenge of the long-term risk-management strategy statesFirst critical challenge:

drought monitoring the urgent need to monitor droughts more appropriately (Wilhite, 1996, 2001, 2002;
Hayes et al., 2011; Pozzi et al., 2013; Zhang et al., 2014; Sillmann et al., 2017). Solving
this challenge requires the refinement of existing drought indices (Wilhite, 1996, 2001,
2002; Hayes et al., 2011; Zhang et al., 2014).

Different meteorological drought indices exist in abundance (for instance, cumu-Meteorological

drought indices lative precipitation anomaly (Foley, 1957), rainfall deciles, (Gibbs & Maher, 1967),
Palmer Drought Severity Index (PDSI) (Palmer, 1965), Drought Area Index (DAI)
(Bhalme & Mooley, 1980), Rainfall Anomaly Index (RAI) (Rooy, 1965),) (see Keyantash
& Dracup, 2002; Hayes et al., 2011; WMO & GWP, 2016, for more information on
meteorological drought indices). This plethora of drought indices emerged because
scientists from around the world investigated meteorological drought at different
time scales, for different audiences, in different locations, with different datasets,
while focusing on different aspects. A single drought index did not universally suffice
all requirements that stem from the abundance of these involved dimensions until
standardized drought indices emerged.

The first standardized indices quantified meteorological drought (Kraus, 1977;Standardized drought

indices McKee et al., 1993). Nowadays, many different standardized drought indices exist.
They quantify meteorological drought (such as the Standardized Anomaly Index
(SAI) (Kraus, 1977), Standardized Precipitation Index (SPI) (McKee et al., 1993)),
soil-moisture drought (such as the Standardized Precipitation Evapotranspiration
Index (SPEI) (Vicente-Serrano et al., 2010), Standardized Soil Moisture Index (Xu et al.,
2018)), and hydrological drought (such as the Standardized Water-level Index (SWI)
(Bhuiyan, 2004), Standardized Streamflow Index (SSFI) (Modarres, 2007), Standardized
Snowmelt and Rain Index (SMRI) (Staudinger et al., 2014), Standardized Reservoir
Supply Index (SRSI) (Gusyev et al., 2015)). The interested reader is referred to WMO
& GWP (2016) for a detailed overview of drought indices. The values of standardized
drought indices are normalized and, thus, are supposed to be normally distributed
with a median of zero. In addition to being normally distributed, the index’s values
are also standardized (their standard deviation is supposed to equal one). Therefore,
index values close to zero indicate median water availability in the reservoir, and
values below -1 indicate a deficit of more than one standard deviation. Because of their
standardization, the index’s values are temporally and spatially invariant, facilitating
the comparison of drought conditions across space and time. The most widely used
standardized drought index is the Standardized Precipitation Index (SPI) (McKee
et al., 1993).

Since the beginning of this century, SPI has been identified as a promising tool toThe Standardized

Precipitation Index

(SPI)
universally monitor meteorological drought (e.g., Wilhite, 2002; Keyantash & Dracup,
2002). Consequently, the World Meteorological Organization (WMO) recommended its
use to all member states in 2011 (Hayes et al., 2011). Today, SPI constitutes the most
widely used drought index of the world (e.g., Hayes et al., 2011; Quan et al., 2012;
Yoon et al., 2012; Yuan & Wood, 2013; Mo & Lyon, 2015; Ma et al., 2015; WMO &
GWP, 2016, see also: US Drought Monitor (USDM), droughtwatch.eu, experimental
Global Drought Information System (GDIS), Global Drought Observatory(GDO),
Integrated Drought Management Programme (IDMP)). However, its primary defect
is known and well-documented for more than two decades and concerns the means
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of its standardization. The index’s calculation algorithm needs to normalize and
standardize highly non-normally distributed precipitation time series via a suitable
probability density function (PDF) (usually called candidate PDF).

The choice of this candidate PDF is the key decision involved in the calculation The importance of a

universal SPI

candidate distribution

function

of SPI. This key decision ignited a long-standing dispute, and any consensus is still
missing (Guttman, 1999; Sienz et al., 2012; Stagge et al., 2015; Blain et al., 2018).
Accordingly, the employed candidate distribution function’s adequacy still needs to
be tested for new datasets and regions before using SPI (Sienz et al., 2012; Stagge et al.,
2015; Touma et al., 2015; Blain et al., 2018). Such tests often complicate applications of
the index. Additionally, the use of different candidate distribution functions impedes
the comparability of results. Thus, the need emerges for a calculation algorithm that
universally standardizes SPI across space, time, and different datasets with the same
candidate PDF. The scientific community was stuck for more than two decades in this
quest to identify an adequate candidate PDF. The emerging long-standing dispute
was fueled by seemingly contradicting candidate PDF recommendations across the
different dimensions mentioned before (Guttman, 1999; Wu et al., 2007; Sienz et al.,
2012; Stagge et al., 2015; Blain et al., 2018). Each tested candidate distribution function
showed deficits in at least one of these dimensions. Recent attempts to predict SPI
on seasonal timescales (Quan et al., 2012; Yoon et al., 2012; Yuan & Wood, 2013; Mo
& Lyon, 2015; Ma et al., 2015; Ribeiro & Pires, 2016) additionally aggravated this
contradiction.

The candidate PDF, employed in the calculation algorithm, is of pivotal importance The importance of a

congruent SPI

candidate distribution

function for

observations and

simulations

to avoid a biased drought description (Guenang et al., 2019; Sienz et al., 2012). In-
congruent SPI-calculation algorithms between observations and simulations can bias
their comparison, i.e., SPI predictions’ evaluation process. Therefore, SPI’s calculation
algorithm not only needs to universally standardize the index across space, time, and
different datasets; but also across different realizations. Identifying such a universally
suited candidate distribution function would pave the path to establish SPI as the
universal index to monitor meteorological drought. Such a consensus would consider-
ably advance the quest to describe meteorological drought universally and general
drought coherently.

The first contribution of this cumulative dissertation proposes a candidate distri- The first contribution

of this dissertationbution function that universally standardizes the index and, thereby, congruently
describes meteorological drought in observations and simulations. This congruent
description solidifies the foundation of evaluation methods to be applied to dynamical
predictions of meteorological drought.

1.2.2.2 Predicting meteorological drought

The second remaining critical challenge of the long-term risk-management strategy Second critical

challenge: drought

predictions
states the urgent need to improve the reliability of meteorological drought predictions
on seasonal timescales (Wilhite, 1992, 1996, 2001, 2002; Pozzi et al., 2013; Zhang et al.,
2014; Wang et al., 2016; Patel, 2012; Wood et al., 2015; Crimmins & McClaran, 2016;
Sillmann et al., 2017; Hao et al., 2018; Baek et al., 2019; Pendergrass et al., 2020).
Solving this challenge requires novel, creative ideas that merge multiple sources of
information to generate prediction skill of meteorological droughts.

Prediction skill of meteorological drought on seasonal timescales is expected to Origin of seasonal

prediction skillarise from the evolution of the slowly changing components of the climate system
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– in particular large parts of the oceans and the land surface (Palmer & Anderson,
1994; Hagemann & Stacke, 2015). Those subsystems are thought to integrate short-
term variability and are therefore expected to carry long-term memory (apparent
by the presence of autocorrelations (Franzke et al., 2020)). Interactions of different
components of the earth system, of which several carry a memory, are the origin
of teleconnections. These teleconnections are the source of seasonal predictability.
Teleconnections that stem from the atmosphere’s interactions with those subsystems
that carry long-term memory generate prediction skill of meteorological drought. To
reconcile the sensitive, chaotic reaction of the atmosphere (to those teleconnections),
seasonal prediction systems employ a set of ensemble members to predict precipitation
and other variables. Meteorological drought predictions heavily rely on the prediction
skill of atmospheric variables, particularly precipitation.

Unfortunately, the prediction skill of seasonal prediction systems generally de-Limits of seasonal

prediction skill creases from air temperature to precipitation (Kim et al., 2012). Similarly, it also
decreases from the tropics to the mid-latitudes; and from the open oceans to the
continental climates (Kim et al., 2012). Consequently, predicting precipitation over
land, as required from conventional meteorological drought predictions, is incredibly
challenging on seasonal timescales. An additional obstacle is posed by the finding that
droughts can develop without a strong signal in the boundary conditions (i.e., with-
out an external driver). Thus, they can be triggered purely by internal atmospheric
variability without the involvement of any teleconnection (Kumar et al., 2013; Baek
et al., 2019). Internal atmospheric variability is unpredictable on seasonal timescales
because of the chaotic nature of the atmosphere. Therefore, the fraction of on seasonal
timescales predictable droughts is limited.

However, also promising prospects for seasonal drought predictions exist. Sea-Prospects for seasonal

drought predictability surface-temperature (SST) anomalies and soil moisture–atmosphere feedbacks have
been recognized as external drivers of large scale drought conditions that affect the
onset, magnitude, and persistence of droughts (Hoerling & Kumar, 2003; Seager
et al., 2008; Schubert et al., 2008; Ferguson et al., 2010; Seager & Hoerling, 2014;
Schubert et al., 2016). SST anomalies in the equatorial pacific region are predictable
several months ahead. Examples of this predictability constitute skillful predictions
of the El Niño-Southern Oscillation (ENSO) (NRC, 2010). The triad of SST anomalies,
recognized as an external driver of drought conditions, with ENSO predictability
and with the comparably large prediction skill in the tropics opens a window of
opportunity for seasonal predictions of meteorological drought.

Studies suggested to seize this opportunity already since the end of the last centuryUsing ENSO to

generating seasonal

drought predictability
(e.g., Wilhite, 1992). The ever-increasing expertise about the lagged influence of ENSO
on regional precipitation (e.g., Redmond & Koch, 1991; Harshburger et al., 2002)
continue to accentuate these suggestions. Further, these suggestions often stress the
potential value of such predictions, particularly during ENSO’s dry phase (Wilhite,
1992; Wood et al., 2015; Crimmins & McClaran, 2016; Madadgar et al., 2016; Baek
et al., 2019). Anyhow, successfully using this expertise to generate reliable prediction
skill with dynamical seasonal forecast systems is still difficult.

The second contribution exemplifies how merging multiple sources of informationThe second

contribution of this

dissertation
can generate reliable prediction skill of meteorological drought in dynamical predic-
tion systems. This example illuminates a path to utilize the observed preceding state
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of ENSO to generate prediction skill of meteorological drought for unprecedented
lead times during ENSO’s dry phase.

1.2.3 Structure of this dissertation

This dissertation contributes to solutions to both remaining critical challenges of the
long-term risk-management strategy outlined before. Both of these contributions are
summarized in two research articles that conclude the findings of this dissertation and
are presented as appendices. The following main parts of this dissertation elaborate
on the context of these two research articles and summarize their conclusions. The
final part of this dissertation sketches societal prospects for humankind’s endeavor
to adapt to water scarcity in general; and scientific prospects for monitoring and
predicting drought in particular. Ultimately, concluding remarks supply the context
for the prospects of this dissertation’s findings.

1.3 universal monitoring of meteorological drought

The first contribution of this dissertation establishes the basis to employ SPI in simula- Universal description

of meteorological

drought with SPI
tions. In this process, I also solidify the foundation of SPI in observations. Thereby, the
contribution enables SPI’s calculation algorithm to describe meteorological drought
universally. This contribution can be quantified with requirements placed on drought
indices.

There are six different requirements that indices, which describe any drought Requirements on

drought indicestype (not just meteorological), ought to meet (Keyantash & Dracup, 2002). First, the
index ought to demonstrate robustness across all relevant dimensions (henceforth
referred to as robustness). Second, the index ought to be sufficiently easy to apply
and compute by scientists with different backgrounds (henceforth referred to as
tractability). Third, the index ought to be comprehensible: not only by scientists
but also by the public (henceforth referred to as transparency). Fourth, the values
and the index units ought to be easily interpretable by a broad public (henceforth
referred to as dimensionality). Fifth, sufficient complexity ought to enable the index
to capture the complexity of drought in sufficient detail (henceforth referred to as
sophistication). Lastly, sixth, the index ought to feature extendability to other datasets
covering different periods or stemming from different realizations, like simulations,
reanalyses, and direct or remote observations (henceforth referred to as extendability).
However, current drought indices universally display deficits of differing magnitudes
for these requirements (Keyantash & Dracup, 2002). The aspiration to shift the deficits
from one requirement to another led to the development of ever-new drought indices.
This reshuffling of deficiencies culminated in the emergence of standardized drought
indices, which display a great potential to fulfill as many requirements as possible
altogether; maybe even all of them.

Two undisputed strengths of standardized drought indices reside in their: (i) Advantages of

standardized drought

indices
probability-based interpretability, which ensures transparency and dimensionality,
and (ii) flexibility stemming from applicability over different time scales (so-called
accumulation periods), which ensures sophistication. This sophistication also enables
some indices (such as SPI) to be applied to other drought types (than meteorological
drought). Consequently, standardized drought indices undisputedly fulfill three of the
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six requirements. Two further theoretical strengths suggest the potential for fulfilling
the remaining three requirements: (i) invariant spatio-temporal comparability across
different datasets and realizations ought to ensure robustness and extendability, (ii)
statistical robustness as a consequence of their normality ought to ensure tractability.
The fulfillment of these three requirements depends on one condition, which sum-
marizes the major disadvantage of standardized drought indices: the means of their
standardization. The indices are standardized by purely empirical methods (candidate
PDFs) that are devoid of any physical foundation. Thus, robustness, extendability, and
tractability constitute rather theoretical advantages; instead of universally providing
practical benefits.

While the magnitude of these disadvantages is least impactful for SPI (relative toDisadvantages of SPI

the disadvantages of other (standardized) meteorological drought indices) (Keyantash
& Dracup, 2002; Hayes et al., 2011), tractability, robustness, and extendability still pose
critical defects of SPI. As explained before, the candidate PDF that standardizes and
normalizes the index is highly disputed (Guttman, 1999; Lloyd-Hughes & Saunders,
2002; Wu et al., 2007; Naresh Kumar et al., 2009; Sienz et al., 2012; Touma et al., 2015;
Stagge et al., 2015; Blain & Meschiatti, 2015; Blain et al., 2018; Guenang et al., 2019).

Previous studies proposed different candidate distribution functions dependingThe Achilles’ heel of

SPI: its candidate

PDF
on the scrutinized accumulation period, location, and dataset (Guttman, 1999; Lloyd-
Hughes & Saunders, 2002; Sienz et al., 2012; Stagge et al., 2015; Touma et al., 2015;
Blain & Meschiatti, 2015; Blain et al., 2018). Notably, the scrutinized accumulation
period posed a severe obstacle to evaluations of seasonal drought predictions. Two
different two-parameter candidate PDFs received outstanding support during the
dispute. Most studies recommend the two-parameter Weibull distribution for short
accumulation periods (less than 3 months) and support the two-parameter gamma
distribution for long accumulation periods (more than 3 months) (e.g., Lloyd-Hughes
& Saunders, 2002; Sienz et al., 2012; Stagge et al., 2015; Blain et al., 2018; Guenang et al.,
2019). Thus, the dispute escalated around the very lead time that seasonal drought
predictions attempt to illuminate. Despite this escalation, the dispute disregarded
simulations. This disregard was particularly aggravating for the proper evaluation
of seasonal drought predictions against observations. Biased drought description
in one realization and incongruent drought descriptions between both realizations
potentially undermine this evaluation.

The abundance of dimensions attached to the dispute complicated the problemUsing multiple

candidate PDFs and hindered the revelation of any universally suited candidate PDF for more than
two decades. Analog to the unrealistic expectation of a universal drought definition,
many studies already believed that expecting a single candidate PDF to universally
standardize the index poses a similar unrealistic expectation (Guenang et al., 2019;
Blain & Meschiatti, 2015; Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes &
Saunders, 2002). Instead, these studies proposed to test a set of candidate PDFs before
using SPI. Consequently, SPI’s calculation algorithm should then employ for each
dataset, location, and accumulation period the best-suited candidate PDF out of this
set. Thereby, such a multi-PDF approach would sacrifice and surrender the theoretical
advantages mentioned before. A multi-PDF approach requires extensive testing
before any application. If such an approach were to be established, it would, therefore,
sacrifice SPI’s tractability. Further, using different PDFs to calculate SPI also sacrifices
the robustness and extendability of the index. Yet, spatio-temporal comparability
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across different datasets constitutes one of SPI’s main theoretical advantages. Since
these main theoretical advantages massively contributed to SPI’s establishment as the
worldwide most often used meteorological drought index (Keyantash & Dracup, 2002;
Hayes et al., 2011), the multi-PDF approach has been strongly criticized (Guttman,
1999; Stagge et al., 2015).

In contrast to previous studies (Guttman, 1999; Lloyd-Hughes & Saunders, 2002; Evaluating two-

against

three-parameter

candidate PDFs

Sienz et al., 2012; Stagge et al., 2015; Touma et al., 2015; Blain & Meschiatti, 2015; Blain
et al., 2018), the first contribution of this dissertation1 widens the definition of the prob-
lem. Prescribing extendability to simulations from the solution initially complicates
the problem. As it turns out, this complication reveals that two-parameter candidate
distribution functions (the focus of most of the previous studies) are too simple to
universally standardize the index. To facilitate this insight, I investigate the perfor-
mance of the two-parameter gamma, the two-parameter Weibull, the three-parameter
generalized gamma, and the three-parameter exponentiated Weibull distribution as
candidate PDFs in SPI’s calculation algorithm. The choice for these four candidate
PDFs stems from their promising performance in previous studies. However, these
studies neglect to address all dimensions of the problem adequately. As it turns out,
they, therefore, fall short of settling the long-standing dispute (Guttman, 1999; Lloyd-
Hughes & Saunders, 2002; Sienz et al., 2012; Stagge et al., 2015; Touma et al., 2015;
Blain & Meschiatti, 2015; Blain et al., 2018). Evaluating two- against three-parameter
candidate PDFs introduces the risks of over- and underfitting. While solutions ought
to be as simple as possible, the problem’s complexity usually prescribes the necessary
complexity of eligible solutions. Accordingly, the first part of the investigation evalu-
ates the risk of overfitting, using a PDF that is unnecessarily complex, against the risk
of underfitting, by using a too simple PDF.

I analytically evaluate this so-called optimal trade-off between bias (PDF is too simple) Relative performance

and variance (PDF is too complex) with Akaike’s Information Criterion (AIC) (Akaike,
1974). AIC calculates the value of information gain (the quality of the fit of the PDF
onto precipitation) while analytically penalizing complexity (the parameter count of
the PDF) by estimating the Kullback-Leibler information (Kullback & Leibler, 1951).
In the case presented here, AIC analytically evaluates whether a PDF’s improved fit
justifies the PDF’s increased complexity. Yet, this analysis only evaluates PDFs relative
to each other and cannot decide whether the quality of the fit of the best performing
PDF also satisfies the standards of practical applications in absolute terms.

Therefore, assessing the quality of the fit of candidate distribution functions in Absolute performance

absolute terms covers the second part of the investigation. Per definition, SPI time
series ought to mirror the standard normal distribution (N0,1). Consequently, N0,1

prescribes the theoretically expected occurrence probability (as in normalized count
of occurrences) for arbitrarily chosen SPI intervals. To verify SPI calculation algo-
rithms, which use different candidate PDFs, I compute deviations between actual
and theoretically expected occurrence probabilities for pre-defined SPI intervals. As
SPI intervals, I employ seven drought categories established by the World Meteoro-
logical Organization (WMO) in the SPI User Guide (WMO, 2012). The magnitude of
deviations between actual and theoretically expected (N0,1) occurrence probabilities

1 See appendix A: Pieper, P., Düsterhus, A. & Baehr, J. (2020), "A universal SPI candidate distribution
function for observations and simulations", Hydrology and Earth System Sciences, doi: 10.5194/hess-
24-4541-2020, url: https://hess.copernicus.org/articles/24/4541/2020/ (last accessed on 3rd of
October 2020).
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numerically indicates the performance of different PDFs in absolute terms. Combining
the absolute metric (deviations from N0,1) with the relative metric (AIC) forms a set of
two complementary analyses. Using both analyses in tandem, the methodology ranks
each distribution function in a set of candidate PDFs while assessing their proficiency
in SPI’s calculation algorithm in absolute terms.

The first contribution of this dissertation identifies that the exponentiated WeibullProficiency of the

exponentiated Weibull

distribution
distribution universally standardizes SPI. Across all dimensions, the results of both
complementary analyses unequivocally support the three-parameter exponentiated
Weibull distribution as a universal SPI candidate PDF. The relative analysis reveals
the defects of both two-parameter distribution functions mentioned before, the simple
gamma and the simple Weibull distribution. Relative to the exponentiated Weibull
distribution, both two-parameter PDFs perform: (i) insufficiently in a considerable
fraction of the world’s land area, (ii) without any skill in a non-negligible fraction, and
(iii) particularly deficiently in ensemble simulations. The absolute analysis robustly
substantiates these conclusions across all common accumulation periods of SPI.
When employing the exponentiated Weibull distribution, SPI’s calculation algorithm
performs: (i) better than when any other tested candidate PDF is employed, (ii)
well with each accumulation period in both metrics, relative and absolute, virtually
everywhere worldwide, (iii) outstandingly in ensemble simulations. Additionally, the
finding that the exponentiated Weibull distribution performs indistinguishably from a
multi-PDF approach further corroborates the support for this PDF. These conclusions
carry a considerable potential to reconcile the long-standing dispute about SPI’s most
appropriate candidate PDF. In summary, this dissertation reveals that:

1. Two-parameter PDFs seem too simple to be employed in SPI’s calculation

algorithm because:

• They are unable to standardize the index conclusively along a single

dimension (datasets, locations, and accumulation period).

• They are unable to standardize the index across all dimensions univer-

sally.

• They perform particularly deficiently when applied to ensemble simu-

lations.

2. The exponentiated Weibull distribution is excellently suited to be employed

in SPI’s calculation algorithm because:

• The PDF universally standardizes SPI in simulations and observations

worldwide for all common accumulation periods.

• The PDF standardizes ensemble simulations outstandingly well.

• The PDF performs equally proficient as a multi-PDF approach that uses

the best-suited PDF in each dimension.

Thereby, this dissertation contributes to the reconciliation of a long-standing disputeBenefits of a universal

SPI-candidate PDF concerning the most appropriate candidate PDF of SPI. A consensus on employing
the exponentiated Weibull distribution would (if it were to be reached) increase SPI’s
value by translating the aforementioned theoretical advantages to practical benefits.
Such a consensus would ensure (i) the robustness of SPI by using the same PDF
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across all dimensions of all possible analyses, (ii) the extendability of SPI by enabling
its algorithm to be applied to new locations, accumulation periods, datasets, and
realizations, and (iii) the tractability of SPI by obsoleting complicated tests before
each application. Extending SPI applications to simulations is a particularly valuable
contribution of this dissertation.

The congruent description of drought in observations and simulations carries Benefits of a

congruent SPI

calculation algorithm

in observations and

simulations

groundbreaking potential. Detecting and characterizing meteorological drought con-
gruently in observations and simulations facilitates the expansion of our under-
standing of drought. Additionally, transferring and extending gathered knowledge
about drought from observation to simulations and vice-versa carries the potential
to improve our confidence in its prediction. The proper standardization of the index
enables normality-based evaluations of SPI predictions. Maximizing the normality of
simulations and observations both, individually as well as concurrently, ensures the
basis of many powerful statistical evaluation methods and, thereby, establishes the
robustness that they require.

1.4 reliable seasonal prediction of meteorological drought

After establishing the foundation to apply SPI to simulations, the next contribution A window of

opportunity for

seasonal predictions of

meteorological drought

of this dissertation faces the challenge of reliably predicting meteorological drought.
This section interprets this challenge as chance and reveals a window of opportunity
for seasonal predictions of meteorological drought. The window comprises of the
insight that SST anomalies are recognized as external drivers of drought conditions.
Further, the opportunity resides in combining this insight with dynamical seasonal
prediction systems’ demonstrated ability to predict the El Niño-Southern Oscillation
(ENSO). Ultimately, this section reveals this window of opportunity by exploiting this
combination by focusing an investigation on those regions that display the strongest
ENSO–precipitation teleconnections of the globe.

The regions with the strongest ENSO–precipitation teleconnections of the globe The link between the

El Niño-Southern

Oscillation (ENSO)

and drought impacts

in southern North and

northern South

America

are southern North and northern South America (e.g., Redmond & Koch, 1991;
Harshburger et al., 2002). These regions are prone to experience droughts that have
considerable adverse impacts on society, economy, agriculture, and ecosystems that
timely warning information can partly mitigate. The southern part of North America is
especially prone to exhibit intense droughts, causing massive damage to the economy.
Drought is the economically costliest natural hazard to occur in the USA (Cook
et al., 2007). Aside from economic damages, also environmental impacts of drought
adversely affect societies. The Amazon rain forest, located in northern South America,
constitutes arguably the most prominent example of this claim. The rain forest usually
constitutes a carbon sink. However, drought can also turn Amazonia into a carbon
source, for instance, during the intense drought of 2005 that caused the Amazon rain
forest to emit 1.2 to 1.6 petagrams of carbon into the atmosphere (Phillips et al., 2009).
Thus, drought in northern South America can have devastating ecological impacts
with potential global implications for climate change and societies. Drought occurring
in southern North and northern South America can often be (at least partly) traced
back to ENSO.

The strongest teleconnections of the world, ENSO teleconnections, are expected ENSO teleconnections

and winter

precipitation on the

Americas

to generate the most seasonal prediction skill. Unsurprisingly, exploiting ENSO
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teleconnections to generate prediction skill of meteorological drought conditions has
been repeatedly proposed (Wilhite, 1992; Wood et al., 2015; Crimmins & McClaran,
2016; Madadgar et al., 2016; Manatsa et al., 2017; Baek et al., 2019). ENSO typically
peaks in December and distinctly affects winter (DJF) precipitation in the Americas.
Previous studies have shown that SST anomalies in the ENSO region lead the response
of winter precipitation anomalies on the American continent by roughly 4 to 6 months
(e.g., Redmond & Koch, 1991; Harshburger et al., 2002). Ergo, the ENSO signal
between autumn (SON) and summer (JJA) profoundly influences winter precipitation
in southern North and northern South America. This lagged response of winter
precipitation creates the opportunity to augment dynamical seasonal predictions with
this statistical insight.

Statistical predictions demonstrate skill in utilizing ENSO to generate useful prod-The challenge of

merging multiple

sources of information
ucts for drought predictions (Regonda et al., 2006; Wang et al., 2009; Carrier et al.,
2013; Khedun et al., 2014). Yet, using statistical insights to improve dynamical sea-
sonal predictions of meteorological drought is complicated. Scientific integration
approaches that objectively merge multiple information sources are still in urgent
need (Wood et al., 2015). The lack thereof poses a critical obstacle to extending skillful
dynamical predictions of meteorological drought beyond the first lead month (e.g.,
Yoon et al., 2012; Quan et al., 2012; Yuan & Wood, 2013; Mo & Lyon, 2015; Wood et al.,
2015). Thus, deriving a methodology that robustly and reliably augments dynamical
seasonal predictions with information about the ENSO state depicts this dissertation’s
second contribution.

This second contribution2 scrutinizes the idea that dynamical predictions mayGenerating

drought-prediction

skill with ENSO
already entail drought prediction skill. Similar to statistical predictions, dynamical
seasonal prediction systems also rely on ENSO, apparent by comparable high hindcast
skill in regions affected by strong ENSO teleconnections. Still, these teleconnections’
representation is usually insufficient to predict meteorological drought over land
reliably several months ahead. However, neutral ENSO states might conceal the
existing prediction skill of meteorological drought that may emerge during active
ENSO states. Consequently, I dismiss the ambition to predict droughts during neutral
ENSO states and, instead, focus the analysis on active ENSO states (El Niño and
La Niña events). As it turns out, an ENSO-state composite analysis, based on the
ENSO state at the start of the prediction (by the end of October), reveals significant
drought-hindcast skill during El Niño and La Niña events over parts of North and
South America. Nevertheless, ENSO–precipitation teleconnections are spatially rather
sensitive. This sensitivity begs the question of whether the forecast system accurately
captures these teleconnections in the correct locations of the large, continental regions.
Further, the outlined difficulties before also beg questions concerning the robustness
of the methodology. Therefore, the approach presented here methodically traces skill
improvements back to ENSO. This tracing ensures the robustness of the methodology.

To ensure this robustness, I analyze observed ENSO–precipitation teleconnections ofSafeguarding the

generated

drought-prediction

skill

the past. In this process, I introduce the following hypothesis: well-documented ENSO–
precipitation teleconnections reasonably explain the significant drought-hindcast skill
that the composite analysis identified. To test this hypothesis, I compare the observed

2 See appendix B: Pieper, P., Düsterhus, A. & Baehr, J. (2020), "Improving seasonal drought predictions by
conditioning on ENSO states", Geophysical Research Letters (to be submitted), preprint published at Earth
and Space Science Open Archive, doi: 10.1002/essoar.10504004.1, url: https://doi.org/10.1002/essoar.
10504004.1 (last accessed on 3rd of October 2020).
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ENSO signal by the end of October with the observed local precipitation in DJF
with a correlation analysis. Barring few exceptions, the observed correlations and the
composites of hindcast skill agree over the Americas. This agreement between both
analyses encapsulates their spatial patterns and their magnitudes. Ultimately, I accept
the hypothesis in those grid-cells that concurrently show significant hindcast skill
in the composite analysis and significant observed ENSO–precipitation correlations.
In these grid-cells, well-documented ENSO–precipitation teleconnections reasonably
explain the significant drought-hindcast skill that the composite analysis identified.
While significance in each analysis satisfies a necessary condition, significances in
both analyses establish a sufficient condition to accept the hypothesis.

Satisfying both necessary conditions: (i) ensures the quality of the prediction Complementary

analyses form a robust

methodology
through significant drought-hindcast skill in the ENSO composite analysis, and (ii)
safeguards the afore ascertained quality of the model through significant observed
ENSO–precipitation correlations. Correlation and composite analyses are both linked
to the same well-understood physical mechanism – ENSO. However, both analyses
investigate different realizations, observations and simulations. Further, while the
correlation analysis quantifies precipitation variations relative to fluctuations in the
ENSO signal, the composite analysis investigates the response of SPI hindcast skill
to extremes in the ENSO signal. Thereby, both analyses complement each other in
the methodology. Thus, prescribing grid-cell-wise significant congruences between
both analyses, correlation and composite analysis, establishes the robustness of the
proposed methodology. Consequently, the proposed methodology identifies reliable
drought-hindcast skill by merging two sources of information: ENSO with dynamical
seasonal prediction.

With this methodology, I demonstrate reliable drought hindcast skill up to lead Unveiling reliable

drought hindcast skillmonth 4 in parts of southern North and northern South America. When an active
ENSO state is present at the start of the prediction in autumn (ASO), seasonal winter
(DJF) drought predictions are reliably more skillful in these regions than initially
thought. To further maximize the area of reliable drought hindcast skill, I investigate
larger lead times of the ENSO signal than autumn. As it turns out, active ENSO states
that are present in summer (JJA), 6-month before the prediction time, lead to reliable
drought-hindcast skill that covers large parts of southern North and northern South
America.

Active ENSO states that are present in summer (JJA) typically indicate ENSO states Intensity of ENSO

states and drought

predictability
of considerable intensity during ENSO’s peak in winter (DJF). Active ENSO states in
summer usually either develop into intense ENSO states in the subsequent winter
or developed from intense ENSO states in the preceding winter. Both cases lead in
the preceding winter to a strong precipitation signal (e.g., Redmond & Koch, 1991;
Harshburger et al., 2002) that is beneficial to dynamical seasonal drought predictions.
The benefits of summer ENSO events manifest in reliable winter drought prediction
skill in large parts of southern North and northern South America.

It is noteworthy that the proposed methodology achieves reliable and skillful Drought predictability

during the dry phase

of ENSO
drought predictions during the dry (and the wet) phase of ENSO. While the dry
phase of ENSO often causes drought in the affected regions, the occurrence of drought
is not inevitable; neither during active ENSO events of average intensity nor during
active ENSO events of considerable intensity (see also Patricola et al., 2020). Thus,
skillful and reliable drought predictions are during ENSO’s dry phase of particular
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interest and benefit (Wilhite, 1992; Wood et al., 2015; Crimmins & McClaran, 2016;
Madadgar et al., 2016; Baek et al., 2019).

So far, significant prediction skill of meteorlogical drought in dynamical seasonalDecoupling the

prediction’s lead time

from the index’s

accumulation period

hindcasts has been only achieved through merging the dynamical prediction with
different sources of information. Previous studies customarily merge predicted pre-
cipitation with observed precipitation to derive the predicted drought index (e.g., Mo
& Lyon, 2015; Yuan & Wood, 2013; Quan et al., 2012; Yoon et al., 2012). This approach:
(i) obscures the prediction skill of the forecast system, and (ii) constrains the possible
lead time of significant predictions by linking that lead time to the accumulation
period of the drought index. In contrast to observed precipitation, I augment the
drought prediction with observable information about the ENSO state to reduce the
uncertainty attached to the prediction during specific years. This approach decouples
the lead time of the prediction from the accumulation period of the drought index.
That decoupling enables drought predictions to reliably illuminate unprecedented
lead times. Further, this approach facilitates a proper evaluation of the prediction skill
of the forecast system. The ability to properly evaluate the prediction skill carries the
potential of increased confidence in the forecast system.

The second contribution of this dissertation demonstrates reliable skill of seasonalSummary

drought predictions up to lead month 4 in large parts of southern North and northern
South America. The identification of this skill stems from an approach that merges in-
formation about the state of ENSO with dynamical predictions. With that contribution,
this dissertation presents an approach that:

3. Robustly merges seasonal predictions with observable information about

the ENSO state in order to reliably predict meteorological winter droughts:

• During dry phases of ENSO.

• For an unprecedented lead time of up to 4 months.

• In large parts of southern North and northern South America.

4. Decouples the lead time of the prediction from the accumulation period of

the drought index, which allows to:

• Explore prediction skill at unprecedented lead times.

• Attribute identified prediction skills solely to the forecast-system.

Thereby, this dissertation reveals the potential of ENSO–precipitation teleconnec-Concluding remarks

tions in uncovering untapped capabilities of dynamical forecast systems to predict
drought on seasonal timescales. In light of previous studies’ strictly constrained
success, I methodically trace the generated prediction skill back to ENSO. In doing
so, I safeguard the methodology against over-confidence. The issue of overconfidence
received little attention from previous studies, apparent by their unquestioned custom
to derive the predicted drought index by merging predicted with observed precip-
itation. Another notable opposition of the present approach to this custom is the
decoupling of the lead time of the prediction from SPI’s accumulation period. These
contributions can serve as a template and might excite further progress towards
reliable and timely drought warnings.
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1.5 prospects for humankind’s endeavor to adapt to water scarcity

The overarching theme of this dissertation is humankind’s endeavor to adapt to This dissertation’s

contributionswater scarcity. In this context, the dissertation attempts to modestly contribute to
resolving two remaining critical challenges of the long-term risk-management strategy.
Consequently, this dissertation’s twofold contribution improves the scientific commu-
nity’s ability to monitor meteorological drought universally (Pieper et al., 2020a), and
reliably predict it (Pieper et al., 2020b). Before elaborating on the prospects for these
two critical challenges of the long-term risk-management strategy, I would first like
to derive a few lessons from combating drought impacts with this strategy.

1.5.1 Lessons from combating drought impacts

After more than three decades of experience with the long-term risk-management Untapped potentials of

the long-term

risk-management

strategy

strategy, the strategy still carries untapped potentials. While this dissertation con-
tributes to refining the long-term risk-management strategy, these refinements might
humbly contribute to uncovering the strategy’s arguably most valuable untapped
potential. Uncovering this potential carries prospects for a challenge even grander and
more pressing than adapting to water scarcity: the preservation of humankind’s basis
of life as a whole that is challenged by climate change, environmental degradation,
and the loss of biodiversity (henceforth referred to as CC-ED-LB).

CC-ED-LB is an insidious, pervasive menace that creepingly causes damages to Climate change,

environmental

degradation, and the

loss of biodiversity

(CC-ED-LB)

three main areas: environments, societies, and economies. Yet, these damages are
concealed because they occur far removed (in the order of propagating impacts, in
space, and in time) from the forcing, which makes their attribution to it tricky. These
concealed damages obscure estimations of the costs of being unprepared versus the
benefits of mitigation and adaptation. Further aggravating, the determination of the
onset and termination of CC-ED-LB is difficult because damages may linger for a very
long time (years, centuries, and even millennia) after the termination of their forcing.

This dissertation’s introduction already mentioned all of these characteristics of Analogy between

drought and

CC-ED-LB
CC-ED-LB. Drought can be seen (just as the perils of chlorofluorocarbons (CFC) and
toxic waste) as yet another decreased complexity analogy of CC-ED-LB. In contrast
to CFCs and toxic waste, however, drought constitutes a more complex and less
understood danger. Consequently, sensible blueprints that successfully manage the
risks of drought might provide additional valuable insights to combat CC-ED-LB. This
dissertation aids such knowledge transfers by refining the most promising blueprint
to combat drought – the long-term risk-management strategy.

The long-term risk-management strategy is based on the multidisciplinary nature of The importance of the

human dimension of

drought
drought. As explained in the introduction, drought research must reconcile physical
boundary conditions with the hazard’s human dimension by investigating their
holistic context. While studies that investigate the human aspect of drought are
growing (e.g., Loon, 2015; Loon et al., 2016b,a; Wada et al., 2017; Yuan et al., 2017),
they are still rare (Hao et al., 2018). Therefore, studying the human dimension of
drought offers far-reaching prospects for avoiding and further mitigating the harmful
effects drought has on individuals and societies.

Avoiding and mitigating the adverse effects drought has on individuals and so- Participation in the

scientific processcieties is the ultimate goal of drought research, and, in particular, the long-term
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risk-management strategy. This strategy is most effective if it focuses on the people
that are most affected by drought (Pendergrass et al., 2020). This focus requires iden-
tifying and engaging those most affected by drought to integrate their experiences
and knowledge into the research process (Pendergrass et al., 2020). Yet, those people,
which are most affected by drought, are severely underrepresented in the drought sci-
ence community, particularly Africans, whose mortality risk due to drought is still the
highest in the world (Dike et al., 2018). Women represent another well-documented
example of underrepresentation (Gay-Antaki & Liverman, 2018). In many parts of
the world, women are at greater risk of harm due to climate-related natural hazards
(Pendergrass et al., 2020). Nevertheless, they remain underrepresented among one
influential set of climate scientists – IPCC authors (Gay-Antaki & Liverman, 2018).
Consequently, the scientific workforce needs to inclusively engage with stakeholders
while its diversity needs to be expanded. In practice, however, this need will likely
persist for the foreseeable future. Thus, drought scientists need to remain mindful of
those excluded from the discourse.

The lessons outlined before are just a few of plenty testimonies to the claim thatProspects for satiating

remaining critical

challenges of the

long-term

risk-management

strategy

the blueprint of the long-term risk-management strategy needs further refinement.
Elaborating on all of these required refinements is beyond the scope of this dissertation.
Instead, the remaining part of this dissertation illuminates the prospects for the two
outlined critical challenges of the long-term risk-management strategy, i.e., prospects
for monitoring and predicting drought.

1.5.2 Prospects for monitoring drought

Adequate monitoring of drought, which gives justice to the natural hazard’s complex-Prospects for

monitoring drought

with standardized

indices

ity, is quite a hot debate. The contribution of this dissertation might settle the debate
of monitoring meteorological drought (Pieper et al., 2020a). SPI is an auspicious
tool to detect and monitor meteorological drought adequately and, thus, it offers
encouraging prospects for monitoring meteorological drought. For the monitoring of
other drought types, other indices (such as the Standardized Precipitation Evapotran-
spiration Index (SPEI) (Vicente-Serrano et al., 2010) for soil-moisture drought and the
Standardized Water-level Index (SWI) (Bhuiyan, 2004), the Standardized Streamflow
Index (SSFI) (Modarres, 2007), or the Standardized Reservoir Supply Index (SRSI)
(Gusyev et al., 2015) for hydrological drought) show similar promises. Anyhow, these
indices emerged relatively recently. Therefore, a consensus is still missing about the
means that properly standardize these indices. The methodology derived in the first
contribution of this dissertation offers a template for aiding the establishment of such
consensuses (Pieper et al., 2020a). Once such consensuses are established, the toolbox
to properly monitor three of four drought types, individually, is within reach.

Subsequently, the development of an adequate mathematical description of socioe-Prospects for

monitoring

socioeconomic drought
conomic drought constitutes the next frontier. This frontier likely poses an obstacle
of unprecedented complexity to the drought science community. On the one side,
a readily available toolbox to properly monitor meteorological, soil-moisture, and
hydrological drought will incite a beneficial stimulus to the quest to describe so-
cioeconomic drought. On the other side, it is undisputed that conclusively forcing
socioeconomic drought into a sufficiently complex analytical structure is not straight-
forwardly possible; it might even be impossible. Natural scientists are accustomed to
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a world that solely contains state variables, vectors, and feedbacks expressed through
numbers. However, due to the abundance of interdependencies in societal systems,
such expressions usually overly simplify societal constructs. Consequently, such sim-
plifications often underestimate the degree of chaos (for instance, in stock markets)
and randomness (for instance, in the human behavior) inherent in societal systems.
As a result, the benefit of mathematical descriptions of societal systems is typically
strictly confined. This restriction obscures the societal component of drought from
scientists. One might even argue that it is this very restriction that makes drought the
least-understood natural hazard in the first place.

Despite this obscurity and limited understanding, scientists worldwide attempt to Prospects for holistic

monitoring of droughtmerge many inputs to gain a holistic understanding through comprehensive monitor-
ing of drought conditions. Recently emerged multivariate drought indices illustrate
these attempts. These multivariate drought indices merge several pre-existing drought
indices to estimate drought conditions of more than one drought type. One promi-
nent example of such a multivariate drought index is the Multivariate Standardized
Drought Index (MSDI) (Hao & AghaKouchak, 2013), which explores two drought
types at once, meteorological and soil-moisture droughts. Another example is the
United States Drought Monitor (USDM), which analyzes 40-50 different inputs to
classify drought conditions into five different intensity levels. USDM’s inputs cover
soil moisture, hydrological, climatological, modeled, and remotely sensed variables,
while they additionally include many different drought indices and expert judg-
ments. While such holistic approaches that concurrently monitor meteorological,
soil-moisture, and hydrological drought, need further refinement, they constitute our
most promising path to illuminate the obscurity surrounding the interplay between
meteorological, soil-moisture, and hydrological drought with socioeconomic drought.

Anyhow, obscurity, concerning the proper description and monitoring of drought Drought monitoring

in the context of

climate change
conditions, will inevitably re-emerge soon. Climate change challenges our under-
standing and well-established descriptions of drought. Identified solutions eventually
need to be re-evaluated, adapted, or even discarded as new patterns emerge. These
patterns likely encompass a general increase of the natural hazard’s level of complex-
ity (Jehanzaib et al., 2020), newly distributed underlying variables (such as peculiar
precipitation distributions, which Pieper et al. (2020a) already identified over Aus-
tralia, might extend to other regions in the future), shorter lead times (for instance
those that characterize flash droughts as defined in the introduction), and possible
adjustments in the propagation of one drought type to another (Jehanzaib et al., 2020).
Furthermore, while climate change also affects the likelihood of drought occurrence,
severity, duration, and spatial extent, quantifications of these effects still need more
research before being reliable (IPCC, 2012). Still, (at least some of) these changes will
undoubtedly challenge drought monitoring. Nevertheless, accumulated knowledge is
unlikely to become entirely obsolete. The ever-increasing knowledge base surround-
ing drought research constitutes a promising prospect for steeling drought science for
the effects of climate change.

1.5.3 Prospects for predicting meteorological drought

Seasonal predictions of meteorological drought are still in their infancy (Patel, 2012; Progress need of

meteorological drought

predictions
Wang et al., 2016). Therefore, meteorological drought predictions at sufficient lead
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time are still unreliable in locations unaffected by strong teleconnections, particularly
outside of the tropics. During the aging process of seasonal predictions of meteoro-
logical drought, reliable skill needs to be extended to other regions and longer lead
times. While this dissertation exemplifies one such extension (Pieper et al., 2020b),
the long-term risk-management strategy needs many additional advancements to es-
tablish seasonal predictions of (meteorological) drought as a valuable tool. One major
advancement is currently arising: the merging of multiple sources of information.

During this decade, the forefront of research in seasonal predictability of meteoro-Near-term prospects

for dynamical seasonal

predictions of

meteorological

drought: conditioned

predictions

logical drought will form around advancements through merging multiple sources of
information. This thesis outlines a template that reliably improves dynamical seasonal
predictions of meteorological drought by conditioning them on the state of the El
Niño-Southern Oscillation (ENSO) (Pieper et al., 2020b). This template can serve
as a manual to be extended to other regions to exploit other teleconnections than
ENSO similarly. Also, conditioning dynamical drought predictions on more than just
one additional source of information (teleconnection) could be promising. For both
approaches, an extension to other regions and inclusion of additional teleconnections,
such as soil-moisture teleconnections and multiple SST teleconnections, would be
prominent starting points. Anyhow, conditioned predictions are, per definition, only
beneficial during years in which specific conditions arise.

Therefore, the eventual barrier of advancing seasonal drought predictions throughNear-term prospects

for dynamical seasonal

predictions of

meteorological

drought: hybrid

predictions

a merging of multiple sources of information constitute hybrid predictions. These
hybrid predictions step beyond the approach presented here, the conditioned evalua-
tion of dynamical drought predictions based on the occurrence of teleconnections,
such as those mentioned above. Instead, hybrid predictions merge dynamical with
statistical predictions by utilizing valuable insights from both predictions to maximize
the prediction skill of meteorological drought on seasonal timescales (e.g., Ribeiro
& Pires, 2016; Hao et al., 2018). Thus, the scientific frontier of drought predictability
will devise novel creative methodologies that increase predictability by merging both
predictions. The ultimate objective of these methodologies is to distill skill from both
predictions while filtering out their noise.

Anyhow, statistical relationships that link teleconnections with precipitation anoma-Consequences of

climate change for

meteorological drought

predictions

lies assume stationarity of the climate system. Yet, climate change accelerates the
hydrological cycle (e.g., Dai, 2011) and, thus, challenges the basis of statistical predic-
tions (e.g., Rajagopalan et al., 2000). Consequently, their prediction capabilities might
deteriorate in the future (Hao et al., 2018). To prepare for such a future seems sensible.
Hence, the need arises to improve seasonal predictability of meteorological drought
in a non-stationary climate (NRC, 2010). The most promising tools to meet this need
are dynamical seasonal prediction systems.

During this half of the century, three crucial prospects for dynamical seasonalLong-term prospects

for dynamical seasonal

predictions of

meteorological drought

predictions of meteorological drought will excite prominence. These prospects en-
compass data assimilation, reproduction of teleconnections, and the ensemble size.
The following three paragraphs illuminate these prospects for dynamical seasonal
predictions of meteorological drought.

The first prospect is the initialization of dynamical seasonal prediction systems.Long-term prospects:

data assimilation High-quality observations are of particular importance to identify the initial condi-
tions of essential variables for meteorological drought predictions (such as humidity
and SST). Consequently, the improved accuracy and the extended records of remote
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sensing products constitute promising prospects for the prediction skill of dynamical
seasonal forecast systems (Hao et al., 2018). Initial conditions of other, usually hydro-
logical, variables that are important for meteorological drought predictions (such as
soil-moisture) are challenging to observe and, thus, require reliable computational
parameterizations. Data assimilation is supposed to merge different observations
and model parameterizations coherently. Therefore, data assimilation is one pillar
of the prediction skill of dynamical seasonal prediction systems. The development
of several land data assimilation systems (for instance, North American Land Data
Assimilation System (NLDAS) (Mitchell et al., 2004; Xia et al., 2014a, 2014b), and the
Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004)) during the cur-
rent century exemplifies the promising ongoing progress in this field. This progress
synergistically works in tandem with the improved accuracy and the extended records
of remote sensing products to provide more accurate initial conditions (Hao et al.,
2018). Emerging synergy effects of this tandem behold considerable prospects for
dynamical seasonal predictions of meteorological drought.

The second prospect resides in the ability of dynamical systems to reproduce those Long-term prospects:

reproduction of

teleconnections
teleconnections and subsystem interactions that are related to the generation of me-
teorological drought. In this regard, too strong ocean-atmosphere coupling appears
to be a typical deficiency among dynamical models (Ma et al., 2015; Yuan & Wood,
2013). This deficiency results from linearizations in models that decrease compu-
tational requirements of reproducing interactions between atmosphere and ocean.
Nevertheless, these interactions are, in reality, non-linear. While ocean-atmosphere
coupling is usually too strong in climate models, the land-atmosphere coupling is
typically under-represented (Taylor et al., 2012). Improving the representation of these
teleconnections and interactions is the task of future model development. Increasing
spatiotemporal model resolutions, which allow robust parameterizations of sub-grid
scale processes with novel approaches, is believed to be our most promising course of
action to improve the model’s representation of teleconnections (Zhang et al., 2014;
Koster et al., 2017). The finer the model’s spatiotemporal resolution is, the more
critical physical processes of the earth system can be resolved (Wood et al., 2011,
2015; Yuan et al., 2015). With increasing computational capacities in the future, the
spatiotemporal resolution of climate models will inevitably increase. This increase
of the spatiotemporal resolution offers promising prospects for dynamical seasonal
predictions of meteorological drought.

The last prospect for the improvement of dynamical seasonal prediction systems Long-term prospects:

ensemble sizeconcerns the ensemble size. Probabilistic predictions of meteorological drought are
more valuable to decision-makers and easier to understand for them than determinis-
tic predictions (Hao et al., 2018). Yet, the full set of ensemble members is usually not
the most skillful set (Wood et al., 2015). Sub-selecting and weighting ensemble mem-
bers on different phases of teleconnections either by conditioned or hybrid predictions
is a promising approach for predictions of meteorological drought (Wood et al., 2015;
Zimmerman et al., 2016). However, the initial ensemble size needs to be large enough
to permit this sub-selection and weighting. After the sub-selection or weighting pro-
cess, the size of the remaining set of ensemble members still ought to be sufficiently
large to remain a probabilistic prediction with finely discretized probabilistic levels.
Thus, the specific sub-selection and weighting approaches prescribe the necessary
size of the initial ensemble. Current ensemble sizes (with 10 to 30 ensemble members)
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are likely insufficient for extensive hybrid approaches that iteratively dismiss en-
semble members by incorporating several teleconnections. Increasing computational
capacities bear prospects for dynamical seasonal prediction systems to employ larger
ensembles sizes. Anyhow, just as today, the ensemble size will continue to compete
with the model’s spatiotemporal resolution for scarce computational capacities. Still,
the increased computational capacity will soften the trade-off on both sides.

These three crucial prospects for dynamical seasonal predictions of meteorologicalProspects for

predictability of

drought that reside in

the human dimension

drought augur the discovery of new horizons. Nevertheless, it is worthwhile to recall
that the long-term risk-management strategy regards any focus on a single aspect of
drought as myopic. Consequently, ample prospects for improving (meteorological)
drought predictions reside in the human dimension, particularly in two primary
fields. First, to better represent human activities, such as irrigation, pumping, land-
use change, urbanization, and deforestation, in forecast systems. And second, to
further our understanding of drought impacts to facilitate them in predictions. The
future of drought research needs to combine the three crucial prospects elaborated on
before with advancements in these primary fields of the human dimension, better
representation of human activities and drought impacts, in integrated assessment
models (IAM). IAMs augmented with such a combination would tremendously
progress humankind’s endeavor to adapt to water scarcity.

1.5.4 Concluding remarks

After illuminating the general prospects for humankind’s endeavor to adapt to waterThe root cause of the

hazard scarcity, I would like to close with a retrospective view on the specific prospects
of this dissertation’s contributions for this endeavor. This dissertation’s guiding
principle is to avoid and further mitigate the harmful effects that drought has on
individuals and societies. During the pursuit of this principle, this dissertation focused
on meteorological drought because it depicts the universal beginning of the impact
chain of all drought types – the root cause of the hazard. While attempting to
advance humankind’s ability to cope with this hazard, the dissertation improves the
monitoring (Pieper et al., 2020a) and the prediction (Pieper et al., 2020b) of this root
cause, meteorological drought.

Universal monitoring of meteorological drought (as demonstrated by Pieper et al.,Prospects of

universally

monitoring

meteorological drought

2020a) that is congruent across space, time, and realizations carries a considerable
potential to produce valuable insights about this hazard. The benefits of universal
monitoring of meteorological drought may precipitate into studies that investigate:
attributing factors to all drought types, the propagation from meteorological drought
to other drought types, and predictability of all drought types. Predictability studies
of all drought types notably benefit from congruent monitoring in observations and
simulations. This congruency is also specifically beneficial for studies that extend
our general understanding of drought through knowledge transfers in the interplay
between observations and simulations.

This dissertation also investigates this interplay. That investigation demonstratesProspects of reliable

seasonal prediction of

meteorological drought
the reliable prediction of meteorological drought by merging multiple sources of
information (Pieper et al., 2020b). In doing so, this dissertation presents a template for
future predictability studies. While the merging of multiple sources of information
gains ever-increasing importance for the prediction of droughts, safeguarding method-
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ologies against over-confidence received thus far little attention. The contribution of
this dissertation exemplifies how to address this problem. To prevent the emergence
of over-confidence, methodologies need to rigorously trace back skill improvements
to their expected source. For ENSO as an additional source of information, this thesis
provides a readily applicable blueprint. For other sources of information, the ENSO
template can be adjusted accordingly.

Transforming these outlined pieces of knowledge and insights is still important, so A modest contribution

to the success of

humankind’s endeavor

to adapt to water

scarcity

that they may cascade along the entire drought impact chain. Still, creating knowledge
and discovering insights in the first place is imperative. By presenting an approach
that universally monitors meteorological drought (Pieper et al., 2020a) and by demon-
strating that its reliable prediction is possible at critical, unprecedented lead times
(Pieper et al., 2020a), this dissertation attempts to procure a modest contribution to
the overarching success of humankind’s endeavor to adapt to water scarcity.





A P P E N D I C E S





A
A U N I V E R S A L S TA N D A R D I Z E D P R E C I P I TAT I O N I N D E X
C A N D I D AT E D I S T R I B U T I O N F U N C T I O N F O R O B S E RVAT I O N S
A N D S I M U L AT I O N S

Appendix A comprises a paper, which has been published in the journal of Hydrology

and Earth System Sciences as:

Pieper, P., Düsterhus, A. & Baehr, J. (2020), "A universal SPI candidate distribution
function for observations and simulations", Hydrology and Earth System Sciences 24.9,
pp. 4541–4565, doi: 10.5194/hess-24-4541-2020, url: https://hess.copernicus.org/
articles/24/4541/2020/ (last accessed on 3rd of October 2020).

My and other’s contributions to this paper are as follows:
I led the analysis, conceived the work, and wrote the paper. J.B. and I acquired the
funding for the project. All authors contributed to the design of the study, discussed
the results, and reviewed the manuscript.

1





universal spi candidate distribution function 3

A universal SPI candidate distribution function for

observations and simulations

Patrick Pieper1, André Düsterhus2, and Johanna Baehr1

1Institute of Oceanography, Center for Earth System Research and Sustainability,
Universität Hamburg, Hamburg, Germany

2Irish Climate Analysis and Research UnitS (ICARUS), Department of Geography,
Maynooth University, Maynooth, Ireland

(Submitted: 17 November 2019 – Discussion started: 02 January 2020 – Revised: 06

July 2020 – Accepted: 31 July 2020 – Published: 21 September 2020)

abstract

The Standardized Precipitation Index (SPI) is a widely accepted drought index. Its
calculation algorithm normalizes the index via a distribution function. Which distri-
bution function to use is still disputed within the literature. This study illuminates
that long-standing dispute and proposes a solution that ensures the normality of the
index for all common accumulation periods in observations and simulations.

We compare the normality of SPI time series derived with the gamma, Weibull,
generalized gamma, and the exponentiated Weibull distribution. Our normality
comparison is based on a complementary evaluation. Actual compared to theoreti-
cal occurrence probabilities of SPI categories evaluate the absolute performance of
candidate distribution functions. Complementary, the Akaike information criterion
evaluates candidate distribution functions relative to each other while analytically
punishing complexity. SPI time series, spanning 1983–2013, are calculated from the
Global Precipitation Climatology Project’s monthly precipitation dataset and seasonal
precipitation hindcasts are from the Max Planck Institute Earth System Model. We
evaluate these SPI time series over the global land area and for each continent individ-
ually during winter and summer. While focusing on regional performance disparities
between observations and simulations that manifest in an accumulation period of 3

months, we additionally test the drawn conclusions for other common accumulation
periods (1, 6, 9, and 12 months).

Our results suggest that calculating SPI with the commonly used gamma distribu-
tion leads to deficiencies in the evaluation of ensemble simulations. Replacing it with
the exponentiated Weibull distribution reduces the area of those regions where the
index does not have any skill for precipitation obtained from ensemble simulations by
more than one magnitude. The exponentiated Weibull distribution maximizes also the
normality of SPI obtained from observational data and a single ensemble simulation.
We demonstrate that calculating SPI with the exponentiated Weibull distribution
delivers better results for each continent and every investigated accumulation period,
irrespective of the heritage of the precipitation data. Therefore, we advocate the
employment of the exponentiated Weibull distribution as the basis for SPI.
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a.1 introduction

Drought intensity, onset, and duration are commonly assessed with the Standardized
Precipitation Index (SPI). SPI was first introduced by McKee et al. (1993) as a tem-
porally and spatially invariant probability-based drought index. In 2011, the World
Meteorological Organization (WMO) endorsed the index and recommended its use
to all meteorological and hydrological services for classifying droughts (Hayes et al.,
2011). Advantages of SPI are its standardization (Sienz et al., 2012); its simplicity;
and its variable timescale which allows its application to assess meteorological, agri-
cultural, and hydrological drought (Lloyd-Hughes & Saunders, 2002). In contrast,
the index’s main disadvantage is the mean by which its standardization is realized
and concerns the identification of a suitable theoretical distribution function to de-
scribe and normalize highly non-normal precipitation distributions (Lloyd-Hughes
& Saunders, 2002). The choice of that suitable theoretical distribution function is a
key decision in the index’s algorithm (Blain et al., 2018; Stagge et al., 2015; Sienz
et al., 2012). This study illuminates reasons for a missing consensus on this choice
and attempts to establish such a consensus for both simulations and observations.

SPI quantifies the standardized deficit (or surplus) of precipitation over any period
of interest – also called the accumulation period. This is achieved by fitting a proba-
bility density function (PDF) to the frequency distribution of precipitation totals of
the accumulation period – which typically spans either 1, 3, 6, or 12 months. SPI is
then generated by applying a Z transformation to the probabilities and is standard
normally distributed.

The choice of the PDF fitted to the frequency distribution of precipitation is es-
sential because only a proper fit appropriately standardizes the index. While the
standardization simplifies further analysis of SPI, the missing physical understanding
of the distribution of precipitation leads to a questionable basis for the fit. Therefore,
the choice of the PDF is to some extent arbitrary and depicts the Achilles heel of the
index.

Originally, McKee et al. (1993) proposed a simple gamma distribution – while
Guttman (1999) identified the Pearson type III distribution – to best describe observed
precipitation. Both of these distributions are nowadays mostly used in SPI’s calculation
algorithms. As a result, many studies that use SPI directly fit the gamma (Mo & Lyon,
2015; Ma et al., 2015; Yuan & Wood, 2013; Quan et al., 2012; Yoon et al., 2012) or the
Pearson type III distribution (Ribeiro & Pires, 2016) without assessing the normality
of SPI’s resulting distribution with goodness-of-fit tests or other statistical analyses
beforehand. The selected PDF, however, is of critical importance because the choice
of this PDF is the key decision involved in the calculation of SPI, and indeed many
authors have urged investigating the adequacy of distribution functions for new
datasets and regions before applying them (Blain et al., 2018; Stagge et al., 2015;
Touma et al., 2015; Sienz et al., 2012). Neglecting such an investigation has potentially
far-reaching consequences in terms of a biased drought description (Guenang et
al., 2019; Sienz et al., 2012). A biased drought description would result from an
inadequacy of the fitted distribution function to describe precipitation. Such an
inadequacy has been identified for the gamma (Guenang et al., 2019; Blain et al., 2018;
Blain & Meschiatti, 2015; Stagge et al., 2015; Sienz et al., 2012; Touma et al., 2015;
Naresh Kumar et al., 2009; Lloyd-Hughes & Saunders, 2002) as well as the Pearson
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type III distribution (Blain et al., 2018; Blain & Meschiatti, 2015; Stagge et al., 2015) in
many parts of the world. This led to the request for further investigations of candidate
distribution functions (Blain et al., 2018; Blain & Meschiatti, 2015; Stagge et al., 2015;
Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes & Saunders, 2002; Guttman, 1999).

Several studies have investigated the adequacy of PDFs fitted onto observed precipi-
tation while focusing on different candidate distribution functions (Blain & Meschiatti,
2015), different parameter estimation methods in the fitting procedure (Blain et al.,
2018), different SPI timescales (Guenang et al., 2019), general drought climatology
(Lloyd-Hughes & Saunders, 2002), and even the most appropriate methodology to
test different candidate distribution functions (Stagge et al., 2015). As each of these
investigations analyzed different regions and different PDFs or focused on different
perspectives of this highly multi-dimensional problem, they recommend different
candidate PDFs.

Nevertheless, some common conclusions can be drawn. Most investigations only
analyzed two-parameter distribution functions (Guenang et al., 2019; Blain et al.,
2018; Stagge et al., 2015; Lloyd-Hughes & Saunders, 2002). Among those, they agreed
depending on the accumulation period and/or the location either on the Weibull or
the gamma distribution to be best suited in most cases. However, Blain & Meschiatti
(2015) also investigated three-, four- and five-parameter distribution functions and
concluded that three-parameter PDFs seem to be best suited to compute SPI in
Pelotas, Brazil. Consequently, they advocated for a re-evaluation of the widespread
use of the two-parameter gamma distribution (see also Wu et al., 2007). Moreover,
a single candidate distribution function was neither suited in each location nor for
each accumulation period to properly calculate SPI time series (Guenang et al., 2019;
Blain et al., 2018; Stagge et al., 2015; Lloyd-Hughes & Saunders, 2002). Further, at
the accumulation period of 3 months, a critical phase transition in precipitation
totals seems to manifest, which complicates the overall ranking of candidate PDFs
(Guenang et al., 2019; Blain et al., 2018; Stagge et al., 2015). Findings point at the
Weibull distribution to be best suited for short accumulation periods (smaller than 3

months) and the gamma distribution for long accumulation periods (larger than 3

months) (Stagge et al., 2015).
Two additional studies analyzed the adequacy of different candidate PDFs fitted

onto simulated precipitation while focusing on drought occurrence probabilities in
climate projections (Touma et al., 2015; Sienz et al., 2012). Touma et al. (2015) is the
only study that tested candidate PDFs globally. However, they solely provide highly
aggregated results that are globally averaged for accumulation periods between 3

and 12 months and conclude that the gamma distribution is overall best suited
to calculate SPI. In contrast, Sienz et al. (2012) is up to now the only study that
tested candidate PDFs in simulations as well as in observations and identified notable
differences in their performance in both realizations. They focused on an accumulation
period of 1 month, and their results also show that the Weibull distribution is well
suited for SPI calculations at short accumulation periods in observations but also
in simulations. Moreover, their results also hint at the phase transition mentioned
above: for accumulation periods longer than 3 months their results indicate that the
gamma distribution outperforms the Weibull distribution in observations as well
as in simulations. More interestingly, the results of Sienz et al. (2012) indicate that
two three-parameter distributions (the generalized gamma and the exponentiated
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Weibull distribution) perform for short accumulation periods as well as the Weibull
distribution and for long accumulation periods similar to the gamma distribution; in
observations and simulations. Surprisingly, neither the exponentiated Weibull nor the
generalized gamma distribution has been thoroughly tested since.

Testing the performance of three-parameter distributions introduces the risk of
overfitting (Stagge et al., 2015; Sienz et al., 2012) which could explain the focus on
two-parameter distributions in recent studies. As a consequence of this one-sided
focus in combination with the inability of two-parameter PDFs to perform sufficiently
well in different locations and for different accumulation periods concurrently, many
studies have proposed a multi-distribution approach (Guenang et al., 2019; Blain &
Meschiatti, 2015; Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes & Saunders,
2002). Such an approach recommends the use of a set of PDFs. The best-suited PDF
of this set is then employed. Thus, the employed PDF might differ depending on the
accumulation period, the location, or the dataset. In opposition, other studies have
strongly emphasized concern about this approach because it adds complexity while
reducing or even obliterating comparability across space and time (Stagge et al., 2015;
Guttman, 1999). The comparability across space and time is a main advantage of
SPI. Guttman (1999) even warns of using SPI widely until a single PDF is commonly
accepted and established as the norm.

Most studies test candidate distribution functions with goodness-of-fit tests (Gue-
nang et al., 2019; Blain et al., 2018; Blain & Meschiatti, 2015; Stagge et al., 2015; Touma
et al., 2015; Lloyd-Hughes & Saunders, 2002). In this process, some studies heavily rely
on the Kolmogorov-Smirnov test (Guenang et al., 2019; Touma et al., 2015). However,
the Kolmogorov-Smirnov test has an unacceptably high likelihood of erroneously
accepting a non-normal distribution if the parameters of the candidate PDF have
been estimated from the same data on which the tested distribution is based (which
because of scarce precipitation data availability is usually always the case) (Blain
et al., 2018; Blain & Meschiatti, 2015; Stagge et al., 2015). Therefore, other studies
tested the goodness of fit either with an adaptation of the Kolmogorov-Smirnov
test, the Lilliefors test (Blain et al., 2018; Blain & Meschiatti, 2015; Stagge et al., 2015;
Lloyd-Hughes & Saunders, 2002); with the Anderson-Darling test (Blain et al., 2018;
Stagge et al., 2015); or with the Shapiro-Wilk test (Blain et al., 2018; Blain & Meschiatti,
2015; Stagge et al., 2015). Nevertheless, the Lilliefors and Anderson-Darling tests are
inferior to the Shapiro-Wilk test (Blain et al., 2018; Stagge et al., 2015) which in turn is
unreliable to evaluate SPI normality (Naresh Kumar et al., 2009).

The abovementioned goodness-of-fit tests equally evaluate each value of SPI’s
distribution. Such an evaluation focuses on the center of the distribution because
the center of any distribution contains per definition more samples than the tails.
In contrast, SPI usually analyzes (and thus depends on a proper depiction of) the
distribution’s tails. Therefore, a blurred focus manifests in these goodness-of-fit tests.
Moreover, the convention to binarily interpret the abovementioned goodness-of-fit
tests aggravates this blurred focus. Because of this convention, these goodness-of-fit
tests are unable to produce any relative ranking of the performance of distribution
functions for a specific location (and accumulation period). This inability prevents
any reasonable aggregation of limitations that surface despite the blurred focus. Thus,
they are ill suited to discriminate the best-performing PDF out of a set of PDFs
(Blain et al., 2018). For SPI distributions the question is not whether they are (or
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ought to be) normally distributed (for which goodness-of-fit tests are well suited
to provide the answer). The crucial question is rather which PDF maximizes the
normality of the resulting SPI distribution. Because of the ill-fitting focus and the
ill-suited convention of these goodness-of-fit tests, they are inept to identify SPI’s
best-performing candidate distribution function out of a set of PDFs.

In agreement with this insight, those studies, that rigorously analyzed candidate
distribution functions, or investigate an appropriate test methodology for evaluating
SPI candidate PDFs, consequently advocate the use of relative assessments: mean
absolute errors (Blain et al., 2018), the Akaike Information Criterion (AIC) (Stagge
et al., 2015; Sienz et al., 2012), or deviations from expected SPI categories (Sienz et al.,
2012). These studies also emphasize the importance of quantifying the differences
between theoretical and calculated SPI values for different drought categories (Blain
et al., 2018; Sienz et al., 2012). Stagge et al. (2015) who investigated appropriate
methodologies to test different candidate PDFs even use AIC to discriminate the
performance of different goodness-of-fit tests.

SPI calculation procedures were developed for observed precipitation data. Since
models do not exactly reproduce the observed precipitation distribution, these pro-
cedures need to be tested and eventually adapted before being applied to modeled
data. Here, we aspire to identify an SPI calculation algorithm that coherently de-
scribes modeled and observed precipitation (i.e. describes both modeled and observed
precipitation distributions individually and concurrently). While testing SPI’s cal-
culation algorithm on modeled precipitation data is usually neglected, such a test
demands nowadays a similarly prominent role as the one for observations because
of the increasing importance of drought predictions and their evaluation. Despite
this importance, the adequacy of different candidate distribution functions has to
the authors’ best knowledge never been tested in the output of a seasonal prediction
system – although seasonal predictions constitute our most powerful tool to predict
individual droughts. To close that gap, this study evaluates the performance of can-
didate distribution functions in an output of 10 ensemble members of initialized
seasonal hindcast simulations.

In this study, we test the adequacy of the gamma, Weibull, generalized gamma,
and exponentiated Weibull distribution in SPI’s calculation algorithm. The evaluation
of their performance depends on the normality of the resulting SPI time series. In
this evaluation, we focus on an SPI accumulation period of 3 months (SPI3M) during
winter (DJF; seasons abbreviated throughout by the first letter of each month) and
summer (JJA) and test the drawn conclusions for other common accumulation periods
(1, 6, 9, and 12 months). Our analysis conducts two complementary evaluations of
their normality: (i) evaluating their normality in absolute terms by comparing actual
occurrence probabilities of SPI categories (as defined by WMO’s SPI User Guide (WMO,
2012)) against well-known theoretically expected occurrence probabilities from the
standard normal distribution (N0,1) and (ii) evaluating their normality relative to
each other with the Akaike information criterion (AIC) which analytically assesses
of the optimal trade-off between information gain against the complexity of the PDF
to adhere to the risk of overfitting. During this analysis, we investigate observations
and simulations. Observed and simulated precipitation is obtained from the monthly
precipitation dataset of the Global Precipitation Climatology Project (GPCP) and the
abovementioned initialized seasonal hindcast simulations, respectively. We conduct
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our analysis for the period 1982 to 2013 with a global focus which also highlights
regional disparities on every inhabited continent (Africa, Asia, Australia, Europe,
North America, and South America).

a.2 data and methods

a.2.1 Model and data

We employ a seasonal prediction system (Baehr et al., 2015; Bunzel et al., 2018) which
is based on the Max Planck Institute Earth System Model (MPI-ESM). MPI-ESM,
also used in the Coupled Model Intercomparison Project 5 (CMIP5), consists of
an atmospheric (ECHAM6; ECMWF Hamburg Model) (Stevens et al., 2013), and
an oceanic (MPIOM; Max Planck Institute Ocean Model) (Jungclaus et al., 2013)
component. For this study the model is initialized in May and November and runs
with 10 ensemble members in the low-resolution version – MPI-ESM-LR: T63 (approx.
1.875°x1.875°) with 47 different vertical layers in the atmosphere between the surface
and 0.01 hPa and GR15 (maximum 1.5°x1.5°) with 40 different vertical layers in the
ocean. Except for an extension of the simulation period by 3 years (extended to cover
the period 1982–2013), the investigated simulations are identical to the 10-member
ensemble simulations analyzed by Bunzel et al. (2018). Here, we analyze the sum of
convective and large-scale precipitation from these simulations (Pieper et al., 2020c).

We obtain observed precipitation from the Global Precipitation Climatology Project
(GPCP) which combines observations and satellite precipitation data into a monthly
precipitation dataset on a 2.5°x2.5°global grid spanning 1979 to present (Adler et al.,
2003). To compare these observations against our hindcasts, the precipitation output
of the model is interpolated to the same grid as GPCP’s precipitation dataset from
which we only use the simulated time period (1982–2013).

Depending on the accumulation period (1, 3, 6, 9, or 12 months) we calculate the
frequency distribution of modeled and observed precipitation totals over two different
seasons (August and February - 1, JJA and DJF - 3, MAMJJA and SONDJF - 6, and
so on). Because our results do not indicate major season-dependent differences in
the performance of candidate PDFs for SPI3M, we aggregate our results for the other
accumulation periods over both seasons.

Our precipitation hindcasts are neither bias- nor drift-corrected and are also not
recalibrated. Such corrections usually adjust the frequency distribution of modeled
precipitation in each grid point to agree better with the observed frequency distribu-
tion. Here, we investigate the adequacy of different PDFs in describing the frequency
distribution of modeled precipitation totals over each accumulation period without
any correction. As a consequence, we require that SPI’s calculation algorithm deals
with such differing frequency distributions on its own. That requirement enables us
to identify the worst possible missmatches.

a.2.2 Standardized Precipitation Index

We calculate SPI (McKee et al., 1993) for our observed and modeled time period
by fitting a PDF onto sorted 3-month precipitation totals in each grid point during
both seasons of interest and for each accumulation period. Zero-precipitation events
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are excluded from the precipitation time series before fitting the PDF and are dealt
with later specifically. We estimate the parameters of our candidate PDFs in SPI’s
calculation algorithm with the maximum-likelihood method (Nocedal & Wright, 1999)
which is also the basis for the AIC computation.

Our parameter estimation method first identifies starting values for the n param-
eters of the candidate PDFs by roughly scanning the n-dimensional phase space
spanned by these parameters. The starting values identified from that scan are opti-
mized with the simulated annealing method (SANN) (Bélisle, 1992). Subsequently,
these SANN-optimized starting values are again further optimized by a limited-
memory modification of the Broyden-Fletcher-Goldfarb-Shanno (also known as BFGS)
quasi-Newton method (Byrd et al., 1995). If the BFGS quasi-Newton method leads
to a convergence of the parameters of our candidate PDF, we achieve our goal and
end the optimization here. If the BFGS quasi-Newton method does not lead to a
convergence of the parameters of our candidate PDF, then we circle back to the
starting values optimized by SANN and optimize them again further but this time
with the Nelder-Mead method (Nelder & Mead, 1965). After identifying converg-
ing parameters, the probabilities of encountering the given precipitation totals are
computed and transformed into cumulative probabilities (G(x)).

If neither the BFGS quasi-Newton nor the Nelder-Mead method leads to any conver-
gence of the most suitable parameters of our candidate PDFs, then we omit these grid
points where convergence is not achieved. For the gamma, Weibull, and exponentiated
Weibull distribution, non-converging parameters are rare exceptions and only occur
in a few negligible grid points. For the generalized gamma distribution, however,
non-convergence appears to be a more common issue and occurs in observations as
well as in simulations in roughly every fifth grid point of the global land area. This
shortcoming of the generalized gamma distribution needs to be kept in mind when
concluding its potential adequacy in SPI’s calculation algorithm.

Since PDFs that describe the frequency distribution of precipitation totals are
required to be only defined for the positive real axis, the cumulative probability
(G(x)) is undefined for x = 0. Nevertheless, the time series of precipitation totals may
contain events in which zero precipitation has occurred over the entire accumulation
period. Therefore the cumulative probability is adjusted:

H(x) = q + (1 − q)G(x) (A.1)

where q is the occurrence probability of zero-precipitation events in the time series of
precipitation totals. q is estimated by the fraction of the omitted zero-precipitation
events in our time series. Next, we calculate from the new cumulative probability
(H(x)) the likelihood of encountering each precipitation event of our time series for
every grid point in each season of interest and each accumulation period. In the
final step, analog to McKee et al. (1993), a Z transformation of that likelihood to
the standard normal (mean of 0 and variance of 1) variable Z takes place which
constitutes the time series of SPI.

In very arid regions or those with a distinct dry season, SPI time series are char-
acterized by a lower bound (Pietzsch & Bissolli, 2011; Wu et al., 2007). That lower
bound results from H(x) dependence on q and correctly ensures that short periods
without rain do not necessarily constitute a drought in these regions. Nevertheless,
that lower bound also leads to non-normal distributions of SPI time series. The shorter
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Table A.1: Abbreviations used for candidate distribution functions.

Distribution function Parameter count Abbreviation

Gamma distribution 2 GD2

Weibull distribution 2 WD2

Generalized gamma distribution 3 GGD3

Exponentiated Weibull distribution 3 EWD3

the accumulation period, the more likely it is for zero-precipitation events to occur
– and the more likely it becomes for SPI time series to be non-normally distributed.
Stagge et al. (2015) proposed to use the center of mass instead of the fraction of zero-
precipitation events to estimate q. Such an adaptation leads to a lower q than the
fraction approach, and distinctly increases the normality of SPI time series and their
statistical interpretability if that fraction becomes larger than approximately one-third.
As explained before, we want to investigate the worst possible case and, therefore,
conservatively estimate q. As a consequence, SPI time series are calculated exclusively
for grid points exhibiting zero-precipitation events in less than 34 % of the times in
our time-period. This limitation restricts the SPI calculation in simulations over the
Sahara and the Arabian Peninsula for accumulation periods of 1 and 3 months, only
exceptionally occurs for an accumulation period of 6 months and does not restrict
accumulation periods longer than 6 months. Current complex climate models pa-
rameterize convection and cloud microphysics to simulate precipitation which leads
to spurious precipitation amounts. Those spurious precipitation amounts prevent
us from directly identifying the probability of zero-precipitation events in modeled
precipitation time series. Analog to Sienz et al. (2012), we prescribe a threshold of
0.035 mm month−1 to differentiate between months with and without precipitation in
the hindcasts.

To further optimize the fit of the PDF onto modeled precipitation, all hindcast
ensemble members are fitted at once. We checked and ascertained the underlying
assumption of this procedure – that all ensemble members show in each grid point
identical frequency distributions of precipitation. It is, therefore, reasonable to pre-
sume that a better fit is achievable for simulated rather than for observed precipitation.

a.2.3 Candidate distribution functions

Cumulative precipitation sums are described by skewed distribution functions which
are only defined for the positive real axis. We test four different distribution functions
and evaluate their performance based on the normality of their resulting SPI frequency
distributions. The four candidate PDFs either consist of a single shape (σ) and scale (γ)
parameter or include (in the case of the two three-parameter distributions) a second
shape parameter (α). Figure A.1 displays examples of those four candidate PDFs
and their 95 % quantiles for 3-month precipitation totals idealized to be distributed
according to the respective distribution function with σ = γ = (α) = 2. Table A.1 lists
the abbreviations used for these four candidate distribution functions.

Instead of investigating the Pearson type III distribution, which is already widely
used, we analyze the simple gamma distribution. They differ by an additional location
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Figure A.1: Candidate distribution functions whose performance is investigated in this
study: the two-parameter gamma distribution (GD2), the two-parameter Weibull distribution
(WD2), the three-parameter generalized gamma distribution (GGD3) and the three-parameter
exponentiated Weibull distribution (EWD3). Displayed are examples of those PDFs for σ =
γ(= α) = 2 and their corresponding 95% quantiles.

parameter which does not change the here presented results (Sienz et al., 2012).
Moreover, other studies have demonstrated that the Pearson type III distribution
delivers results that are virtually identical to the two-parameter gamma distribution
(Pearson’s r = 0.999) (Giddings et al., 2005) and argued that the inclusion of a location
parameter unnecessarily complicates the SPI algorithm (Stagge et al., 2015). Therefore,
our three-parameter candidate PDFs comprise a second shape parameter instead of a
location parameter. The optimization of this second shape parameter also requires the
re-optimization of the first two parameters. The fitting procedure of three-parameter
PDFs needs therefore considerably more computational resources than the fitting
procedure of two-parameter distribution functions.

1. Gamma distribution

f (x) =
1

σΓ(γ)

( x

σ

)γ−1
exp(−

x

σ
) (A.2)

The gamma distribution (Γ being the gamma function) is typically used for SPI
calculations directly or in its location parameter extended version: the Pearson
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type III distribution (Guttman, 1999). The results of the gamma distribution also
serve as proxy for the performance of the Pearson type III distribution.

2. Weibull distribution

f (x) =
γ

σ

( x

σ

)γ−1
exp(−

( x

σ

)γ
) (A.3)

The Weibull distribution is usually used to characterize wind speed. Several
studies identified the Weibull distribution, however, to perform well in SPI’s
calculation algorithm for short accumulation periods (Guenang et al., 2019; Blain
et al., 2018; Stagge et al., 2015; Sienz et al., 2012).

3. Generalized gamma distribution

f (x) =
α

σΓ(γ)

( x

σ

)αγ−1
exp(−

( x

σ

)α
) (A.4)

The generalized gamma distribution extends the gamma distribution by another
shape parameter (α). In the special case of α = 1, the generalized gamma
distribution becomes the gamma distribution and for the other special case of
γ = 1, the generalized gamma distribution becomes the Weibull distribution.
Sienz et al. (2012) identified the generalized gamma distribution as a promising
candidate distribution function for SPI’s calculation algorithm.

4. Exponentiated Weibull distribution

f (x) =
αγ

σ

( x

σ

)γ−1 [

1 − exp(−
( x

σ

)γ
)
]α−1

(A.5)

The exponentiated Weibull distribution extends the Weibull distribution by
a second shape parameter (α). For α = 1 the exponentiated Weibull distri-
bution becomes the Weibull distribution. Sienz et al. (2012) revealed that the
exponentiated Weibull distribution performs well in SPI’s calculation algorithm.

a.2.4 Deviations from the standard normal distribution

SPI time series are supposed to be standard normally distributed (µ = 0 and σ =

1). Thus, we evaluate the performance of each candidate distribution function (in
describing precipitation totals) based on the normality of their resulting SPI frequency
distributions. In this analysis, we calculate actual occurrence probabilities for certain
ranges of events in our SPI frequency distributions and compare those actual against
well-known theoretical occurrence probabilities for the same range of events. We then
evaluate the performance of each candidate distribution function and their resulting
SPI time series based on the magnitude of deviations from the standard normal
distribution (N0,1). These deviations are henceforth referred to as deviations from
N0,1.

According to WMO’s SPI User Guide (WMO, 2012), SPI distinguishes between seven
different SPI categories (see Table A.2). These seven different categories with their
predefined SPI intervals serve as analyzed ranges of possible events in our analysis.
It is noteworthy here, that these seven SPI categories differ in their occurrence
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Table A.2: Standardized Precipitation Index (SPI) classes with their corresponding SPI intervals
and theoretical occurrence probabilities (according to WMO’s SPI User Guide WMO, 2012).

SPI interval SPI class Probability [%]

SPI ≥ 2 W3: extremely wet 2.3

2 > SPI ≥ 1.5 W2: severely wet 4.4

1.5 > SPI ≥ 1 W1: moderately wet 9.2

1 > SPI > −1 N0: normal 68.2

−1 ≥ SPI > −1.5 D1: moderately dry 9.2

−1.5 ≥ SPI > −2 D2: severely dry 4.4

SPI ≤ −2 D3: extremely dry 2.3

probabilities. The occurrence of normal conditions (N0) is more than twice as likely
than all other six conditions put together. Therefore, any strict normality analysis
of SPI time series would weigh each classes’ identified deviation from N0,1 with the
occurrence probability of the respective class. However, when analyzing droughts
with SPI, one is usually interested in extreme precipitation events. Thus, it seems less
important for the center of SPI’s distribution to be normally distributed. Instead, it
is intuitively particularly important for the tails (especially the left-hand tail) of the
distribution to adhere to the normal distribution. The better the tails of our candidate
PDF’s SPI distributions agree with N0,1, the better our candidate PDF’s theoretical
description of extreme precipitation events is. For this reason, we treat all seven SPI
categories equally, irrespective of their theoretical occurrence probability.

The three-parameter candidate distribution functions contain the two-parameter
candidate distribution functions for special cases. Given those special cases, the
three-parameter candidate distribution functions will in theory never be inferior to
the two-parameter candidate distribution functions they contain when analyzing
deviations from N0,1 – assuming a sufficient quantity of input data which would lead
to a sufficient quality of our fit. Thus, the question is rather whether deviations from
N0,1 reduce enough to justify the three-parameter candidate distribution functions’
requirement of an additional parameter. An additional parameter that needs to be
fitted increases the risk of overfitting (Stagge et al., 2015; Sienz et al., 2012). On the
one hand, the final decision on this trade-off might be subjective and influenced by
computational resources available or by the length of the time series which is to be
analyzed because fitting more parameters requires more information. Moreover, it
might well be wiser to employ scarce computational resources in optimizing the
fit rather than increasing the complexity of the PDF. On the other hand, assuming
computational resources and data availability to be of minor concern, there exists
an analytical way to tackle this trade-off: the Akaike Information Criterion (Akaike,
1974).

a.2.5 Akaike Information Criterion

Our aim is twofold. First, we want to maximize the normality of our SPI time series
by choosing an appropriate distribution function. Second, we simultaneously aspire
to minimize the parameter count of the distribution function to avoid unnecessary
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complexity. Avoiding unnecessary complexity decreases the risk of overfitting. The
objective is to identify the necessary (minimal) complexity of the PDF which prevents
the PDF from being too simple and losing explanatory power. Or in other words:
we are interested in the so-called optimal trade-off between bias (PDF is too simple)
and variance (PDF is too complex). The Akaike information criterion (AIC) performs
this trade-off analytically (Akaike, 1974). AIC estimates the value of information gain
(acquiring an improved fit) and penalizes complexity (the parameter count) directly
by estimating the Kullback-Leibler information (Kullback & Leibler, 1951):

AIC = −2 lnL(θ̂|y) + 2k (A.6)

L(θ̂|y) describes the likelihood of specific model-parameters (θ̂) with given data from
which these parameters were estimated (y). k describes the degrees of freedom of the
candidate PDF (the parameter count which equates dependently on the candidate PDF
either to 2 or 3). Analog to Burnham & Anderson (2002), we modified the last term
from 2k to 2k + (2k(k + 1))/(n − k − 1) in order to improve the AIC calculation for
small sample sizes (n/k < 40), whereas in our case n corresponds to the sample size
of the examined period (31 for observations and 310 for simulations). The modified
version approaches the standard version for large n.

In our case, AIC’s first term evaluates the performance of candidate PDFs in
describing the given frequency distributions of precipitation totals. The second term
penalizes candidate PDFs based on their parameter count. The best-performing
distribution function attains the smallest AIC value because the first term is negative
and the second one is positive.

Further, the absolute AIC value is often of little information – especially in contrast
to relative differences between AIC values derived from different distribution func-
tions. Thus, we use values of relative AIC differences (AIC-D) in our analysis. We
calculate these AIC-D values for each PDF by computing the difference between its
AIC value to the lowest AIC value of all four distribution functions. AIC-D values
inform us about superiority in the optimal trade-off between bias and variance and
are calculated as follows:

AIC-Di = AICi − AICmin (A.7)

The index i indicates different distribution functions. AICmin denotes the AIC value
of the best-performing distribution function.

For our analysis, AIC-D values are well suited to compare and rank different candi-
date PDFs based on their trade-off between bias and variance. The best-performing
distribution function is characterized by a minimum AIC value (AICmin) which trans-
lates to an AIC-D value of 0. It seems noteworthy here that any evaluation of (or
even any discrimination between) candidate distribution functions, which exhibit
sufficiently similar AIC-D values, is unfeasible as a consequence of our rather small
sample size (particularly in observations but also in simulations). AIC-D values below
2 ought to be in general interpreted as an indicator of substantial confidence in
the performance of the model (here, the PDF). In contrast, AIC-D values between 4

and 7 indicate considerably less confidence and values beyond 10 essentially none
(Burnham & Anderson, 2002).
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The analysis of deviations from N0,1 assesses the performance of candidate PDFs
in absolute terms irrespective of the candidate PDF’s complexity. In contrast, the
AIC-D analysis evaluates the performance of candidate PDFs relative to each other
while analytically punishing complexity. Consequently, the AIC-D analysis cannot
evaluate whether the best-performing candidate distribution function also performs
adequately in absolute terms. In opposition, deviations from N0,1 encounter diffi-
culties when evaluating whether an increased complexity from one PDF to another
justifies any given improvement. Both analyses together, however, augment each other
complementarily. This enables us to conclusively investigate: (i) which candidate
PDF performs best while (ii) ensuring adequate absolute performance and while (iii)
constraining the risk of overfitting.

a.2.6 Aggregation of results over domains

For each candidate distribution function, accumulation period, and domain and
during both seasons, we compute deviations from N0,1 separately for observations
and simulations as schematically depicted on the left-hand side in Fig. A.2. First,
we count the events of each SPI category in every land grid point globally. For each
category, we then sum the category counts over all grid points that belong to the
domain of interest. Next, we calculate actual occurrence probabilities through dividing
that sum by the sum over the counts of all seven SPI categories (per grid point there
are 31 total events in observations and 310 in simulations). In a final step, we compute
the difference to theoretical occurrence probabilities of N0,1 (provided in Table A.2)
for each SPI category and normalize that difference – expressing the deviation from
N0,1 as a percentage of the theoretically expected occurrence probability.

Figure A.2: Flow chart of methods to aggregate deviations from N0,1 (left) and AIC-D
frequencies (right) over domains.

Again for each candidate distribution function, accumulation period, and domain
and during both seasons, we aggregate AIC-D over several grid points into a single
graph separately for observations and simulations as depicted on the right-hand side
of the flow chart in Fig. A.2. For each domain, we compute the fraction of total grid
points of that domain for which each candidate PDF displays an AIC-D value equal
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to or below a specific AIC-Dmax value. That calculation is iteratively repeated for
infinitesimally increasing AIC-Dmax values. In this representation, the probabilities
of all PDFs, at the specific AIC-Dmax value of 0, sum up to 100 % because only one
candidate PDF can perform best in each grid point. Thus, we arrive at a summarized
AIC-D presentation in which those candidate distribution functions which approach
100 % the fastest (preferably before the specific AIC-Dmax value of 4; ideally even
before the AIC-Dmax value of 2) are better suited than the others.

a.2.7 Regions

We investigate the normality of SPI time series derived from each candidate PDF first
for the entire global land area and analyze subsequently region-specific disparities.
For this analysis we focus on the land area over six regions scattered over all six
inhabited continents: Africa (0°–30°S, 10°E–40°E), Asia (63°N–31°N, 86°E–141°E),
Australia (16°S–38°S, 111°E–153°E), Europe (72°N–36°N, 10°W–50°E), North America
(50°N–30°N, 130°W–70°W), and South America (10°N–30°S, 80°W–35°E) (Fig. A.3).

Figure A.3: Borders of regions examined in this study.

Examining frequency distributions of precipitation totals over domains smaller
than the entire globe reduces the risk of encountering opposite deviations from N0,1

for the same category that balance each other in different grid points with unrelated
climatic characteristics. This statement is based on either one of the following two
assumptions. First, the sum over fewer grid points is less likely to produce deviations
which balance each other. Second, the frequency distribution of precipitation totals
is likely to be more uniform for grid points that belong to the same region (and
therefore exhibit similar climatic conditions) than when they are accumulated over
the entire globe. One could continue along this line of reasoning because the smaller
the area of the analyzed regions is, the more impactful both of these assumptions are.
However, comparing actual against theoretically expected occurrence probabilities
with a scarce database (31 events in observations) will inevitably produce deviations.
In observations, we would expect that 0.7 extremely wet and dry as well as 1.4 severely
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wet and dry events occur over 31 years in each grid point. Thus, deviations in different
grid points need to balance each other to some extent, to statistically evaluate and
properly compare candidate PDFs. The crucial performance requirement demands
that they balance each other also when averaged over sufficiently small domains with
similar climatic conditions.

For a first overview, it is beneficial to cluster as many similar results as possible
together to minimize the level of complexity of the regional dimension. The choice
of sufficiently large/small domains is still rather subjective. Which size of regions is
most appropriate? This subjective nature becomes apparent in studies that identify
differing borders for regions that are supposed to exhibit rather uniform climatic
conditions (Giorgi & Francisco, 2000; IPCC, 2012). Instead of using Giorgi-Regions

(Giorgi & Francisco, 2000) or SREX-Regions (IPCC, 2012), we opt here for a broader
and more continental picture.

a.3 results

a.3.1 SPI accumulation period of 3 months

a.3.1.1 Global

In agreement with prior studies (Blain et al., 2018; Lloyd-Hughes & Saunders, 2002;
McKee et al., 1993), the two-parameter gamma distribution (GD2) describes on the
global average the observed frequency distribution of SPI3M rather well during the
boreal winter (DJF) and summer (JJA) (Fig. A.4, (a)). Contrary to Sienz et al. (2012),
who investigated SPI1M time series, the two-parameter Weibull distribution (WD2)
delivers a poor frequency distribution of SPI3M during both seasons (Fig. A.4, (b)).
Aside from GD2, GGD3 and EWD3 also perform adequately in absolute terms for
observations. Discriminating their deviations from N0,1 is difficult. On the one hand,
GD2 represents the especially important left-hand tail of SPI3M time series’ frequency
distribution (D3) in JJA worse than our three-parameter candidate PDFs (compare Fig.
A.4, (a) against (c) and (d)). On the other hand, GD2 displays smaller deviations from
N0,1 than our three-parameter candidate PDFs in the center of the SPI’s distribution.
Despite these minor differences, and in agreement with Sienz et al. (2012), GGD3 and
EWD3 perform overall similar to GD2 (compare Fig. A.4, (a) against (c) and (d)).

In theory, since the three-parameter generalized gamma distribution (GGD3) en-
compasses GD2 as a special case, GGD3 should not be inferior to GD2. In reality,
however, the applied optimization methods appear to be too coarse for GGD3 to
always lead to an identical or better optimum than the one identified for GD2 with
the given length of the time series. When optimizing three parameters it is more likely
to miss a specific constellation of parameters which would further optimize the fit; es-
pecially when limited computational resources impede the identification of the actual
optimal fitting parameters. Additionally, a limited database (our database spans 31

years) obscures the frequency distribution of precipitation totals which poses another
obstacle to the fitting methods. This results in missed optimization opportunities
that impact GGD3 more strongly than GD2 because of GGD3’s increased complexity
which leads to GGD3 requiring more data than GD2. Therefore, the weighted sum
(weighted by the theoretical occurrence probability of the respective SPI class (Table
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A.2)) over the absolute values of deviations from N0,1 along all SPI categories is lowest
for GD2 in both analyzed seasons (see legend in Fig. A.4, (a)–(d)).

In agreement with Sienz et al. (2012), who identified notable differences in the
performance of candidate PDFs between observations and simulations, this general
ranking changes when we consider modeled instead of observed SPI3M time series
(Fig. A.4, (e)–(h)). While GD2, GGD3, and EWD3 display similar deviations from
N0,1 in observations (Fig. A.4 (a), (c), and (d)), a noticeable difference emerges in
ensemble simulations (Fig. A.4 (e), (g), and (h)). GD2 performs distinctly worse than
our three-parameter PDFs in ensemble simulations.

In simulations, the fit onto 3-month precipitation totals is performed on all 10

ensemble members at once. This increases 10-fold the sample size in simulations
relative to observations. Presuming an imperfect fit for the 31 samples in observations,
deviations from N0,1 are expected to reduce along our four candidate distribution
functions as a result of increasing 10-fold the sample size of their fit. Yet, GD2 does
not benefit from increasing 10-fold the sample size. GD2 performs similarly in obser-
vations and simulations (Fig. A.4 (a) and (e)). In contrast, our three-parameter PDFs
display considerably smaller deviations from N0,1 in ensemble simulations than in
observations (compare Fig. A.4 (c) and (d) against (g) and (h)). Consequently, both
three-parameter candidate PDFs excel during both seasons in ensemble simulations
(Fig. A.4, (g) and (h)), while any distinction between both three-parameter candidate
distribution functions is still difficult. On the one hand, different frequency distri-
butions between observed and modeled precipitation totals might be one reason for
this difference. On the other hand, the fit of three parameters also requires more
data than the fit of two. It is therefore sensible to expect that three-parameter PDFs
benefit more strongly than two-parameter PDFs from an increase in sample size. Are
our three-parameter candidate PDFs better suited than our two-parameter PDFs to
describe modeled precipitation distributions? Or do our three-parameter PDFs just
benefit more strongly than two-parameter PDFs from an increasing sample size?

We attempt to disentangle both effects (analyzing modeled, instead of observed,
precipitation distributions and increasing the sample size) for our two-parameter
candidate PDFs next. If the two-parameter PDFs are suited to be applied to modeled
precipitation data, they should benefit at least to some extent from this multiplication
of sample size. Despite expecting irregularities in the magnitude of these reductions,
they ought to be notable for candidate distribution functions that are adequately
suited to describe modeled 3-month precipitation totals – assuming an imperfect fit
for the 31 events spanning our observational time series. Therefore, we weigh each
class’ deviation from N0,1 by the theoretical occurrence probability (see Table A.2) of
the respective class and analyze weighted deviations from N0,1.
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Figure A.4: Deviations from N0,1 over the entire globe for observed (left) and modeled
(right) SPI time series. SPI time series are derived by using the simple two-parameter gamma
distribution (GD2; top row), the simple two-parameter Weibull distribution (WD2; second
row), the three-parameter generalized gamma distribution (GGD3; third row), and the three-
parameter exponentiated Weibull distribution (EWD3; bottom row). The legends depict
weighted (by their respective theoretical occurrence probability) sums (WSs) of deviations
from N0,1 over all SPI categories. Irrespective of the candidate PDF, deviations from N0,1 are
smallest for the center of SPI’s distribution (N0) and largest for its tails.
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For the two-parameter PDFs, the weighted deviations from N0,1 (shown in the
legend of Fig. A.4) either stay constant (for GD2 in DJF) or increase in simulations
relative to observations (compare the legends in the left against the one in the right
column of Fig. A.4). Relative to observations, GD2’s weighted deviations increase in
simulations by more than 120% in JJA, while WD2’s increase by more than 25% in
JJA and 80% in DJF. The most plausible explanation for these weighted deviations to
increase, when increasing 10-fold the database, are different frequency distributions
between observed and modeled 3-month precipitation totals. Our two-parameter
candidate PDFs are better suited to describe observed than modeled 3-month precip-
itation totals. In contrast, for our three-parameter candidate distribution functions,
weighted deviations from N0,1 are substantially larger in observations than in sim-
ulations. GGD3’s (EWD3’s) are larger by 210% (500%) and 58% (200%) during DJF
and JJA, respectively. The three-parameter candidate distribution functions benefit
strongly from the artificial increase of our time series and seem better suited than our
two-parameter candidate PDFs to describe precipitation distributions obtained from
ensemble simulations.

In this section, we have analyzed global deviations from N0,1 thus far and identified
the following:

• GD2, GGD3, and EWD3 describe similarly well the overall frequency distribu-
tion of observed 3-month precipitation totals.

• WD2 performs overall poorly and is in every regard inferior to any other
candidate distribution function.

• GGD3 and EWD3 describe the frequency distribution of modeled 3-month pre-
cipitation totals distinctly better than any two-parameter candidate distribution
function.

• GD2 describes the frequency distribution of modeled 3-month precipitation
totals sufficiently well on the global average.

• Both two-parameter candidate distribution functions are unable to benefit from
the increased length of the database in simulations relative to observations,
while both three-parameter PDFs strongly benefit from that increase.

It is noteworthy, that investigating deviations from N0,1 over the entire globe contains
the risk of encountering deviations that balance each other in different grid points
with unrelated climatic characteristics. Until dealing with this risk, our analysis of
deviations from N0,1 only indicates that three candidate PDFs (GD2, GGD3, and
EWD3) display an adequate absolute performance. On the one hand, we can reduce
that risk by analyzing deviations from N0,1 only over specific regions. This analysis
safeguards our investigation by ensuring (rather than just indicating) an adequate
absolute performance around the globe and is performed later. On the other hand,
we first completely eliminate this risk by examining AIC-D frequencies: aggregating
AIC-D values over the entire globe evaluates the performance of PDFs in each grid
point and normalizes these evaluations by (rather than adding them over) the total
number of grid points of the entire globe. We investigate AIC-D frequencies first to
evaluate whether GGD3 and/or EWD3 perform sufficiently better than GD2 to justify
their increased complexities.
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Figure A.5: AIC-D frequencies: percentages of global land grid points in which each distribu-
tion function yields AIC-D values that are smaller than or equal to a given AIC-Dmax value.
The vertical black line indicates the different complexity penalties between three- and two-
parameter PDFs. AIC-D frequencies are displayed for each candidate PDF for observations
(left) and simulations (right) during DJF (top) and JJA (bottom).

In general, each candidate distribution function performs similarly well in winter
and summer in their depiction of the frequency distribution of observed 3-month
precipitation totals (compare Fig. A.5, (a) against (b)). In agreement with our previous
results and prior studies (Blain et al., 2018; Lloyd-Hughes & Saunders, 2002; McKee
et al., 1993), GD2 ideally describes observed 3-month precipitation totals during
both seasons in many grid points of the global land area (Fig. A.5, (a) and (b)). GD2

displays AIC-D values of less than 2 in approximately 84.5% (83.5%) of the global
land area in DJF (JJA). That ought to be interpreted as substantial confidence in
GD2’s performance in these grid points. However, beyond an AIC-Dmax value of 2,
EWD3 (and GGD3) approach 100 % coverage considerably faster than GD2. EWD3

quickly compensates for AIC’s complexity punishment (which is 2.46 units larger for
EWD3 than for GD2 (indicated by the vertical black line in Fig. A.5)). Beyond this
vertical black line, EWD3 conclusively outperforms GD2 (the only intersection of the
yellowish, and the bluish lines coincide with the intersection of that vertical black line
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in Fig. A.5, (a) and (b)). EWD3 performs well (AIC-Dmax < 4) in virtually every global
land grid point. During DJF (JJA), EWD3 globally displays (in all land grid points)
AIC-D values of less than 5.03 (7.03). In contrast, GD2 performs erroneously (apparent
by AIC-Dmax values in excess of 4) in approximately 7% (6%) of the global land grid
points during DJF (JJA). Further, GD2 performs during both seasons insufficiently
(AIC-Dmax values beyond 7) in 2% and without skill (AIC-Dmax values beyond 10)
in 1% of the global land area. While EWD3 strictly outperforms GGD3, GGD3 still
performs similarly to EWD3 in observations. Thus, our focus on EWD3 becomes only
plausible during the investigation of AIC-D frequencies in ensemble simulations.

In ensemble simulations, our results are again rather stable for all investigated
distribution functions between summer and winter (compare Fig. A.5, (c) against
(d)). All distribution functions display in both seasons the same distinct ranking of
their performance for AIC-Dmax values of 2 and beyond. EWD3 outperforms GGD3

which is better than GD2, while WD2 performs especially poor. The confidence in
GD2 drastically diminishes further when we analyze the performance of our four
candidate PDFs in ensemble simulations. EWD3 is superior to any other distribution
function in JJA and DJF for each AIC-Dmax value beyond 1.52 in DJF and 0.73 in JJA
(see intersect between yellowish and blueish lines in Fig. A.5, (c) and (d)). Assuming
those AIC-Dmax values to be sufficiently small (AIC-D values of less than 2 are
practically indistinguishable from each other in their performance), EWD3 performs
best among all candidate PDFs in general. We interpret EWD3’s performance in
ensemble simulations as ideal in approximately 85% (86%) of the global land area
during DJF (JJA). For AIC-Dmax values beyond 2, EWD3 quickly approaches 100 %
coverage, again, and performs erroneously or insufficiently only in 1% of the global
land area during both seasons. In contrast, GD2 performs erroneously in 23% (30%)
and insufficient in 14% (21%) of the global land grid points during DJF (JJA). Yet, most
telling might be the fraction of grid points in which the candidate PDFs display AIC-D
values of 10 and beyond and thus show no skill in ensemble simulations. GD2 fails
during DJF (JJA) in 10% (15%) of the global land area. In opposition, EWD3 only fails
in 0.45% (0.87%) during DJF (JJA). Ergo, employing EWD3, instead of GD2, reduces
the count of grid points without any skillful performance by over one magnitude (by
a factor of roughly 20). EWD3 also universally outperforms GGD3. Given their equal
parameter count, it seems rational to rather employ EWD3 than GGD3.

Analyzing AIC-D frequencies for both seasons (DJF and JJA) discloses no distinct
season-dependent differences, similar to before in the investigation of deviations
from N0,1. Therefore, we average identified land area coverages over both seasons
in the summary of AIC-D frequencies. Table A.3 summarizes our findings from the
investigation of AIC-D values over the entire global land area during both seasons.
EWD3 performs well (AIC-D ≤ 4) with substantial confidence (at least 95% of land
grid points conform performance) around the globe in both realizations. Additionally,
EWD3 also performs best in each of these analyses (each row of Table A.3 in which we
consider its performance with substantial confidence). The other analyzed candidate
PDFs perform substantially worse than EWD3 in ensemble simulations and slightly
worse in observations.

It seems worth elaborating on the insufficient (only average) confidence in EWD3

to perform ideally in observations (ensemble simulations) around the globe. The
complexity penalty of AIC correctly punishes EWD3 more strongly than GD2 because
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Table A.3: Percent of grid points that are classified into specific AIC-D categories (according
to Burnham & Anderson (2002)) for each candidate PDF over both seasons. Percentages of
grid points indicate the confidence in candidate PDFs to overall performance according to the
respective AIC-D category. We consider percentages that exceed (subceed in case of AIC-D
values beyond 10) 95% (5%) as a sign of substantial confidence in the candidate PDF (green)
to overall performance according to the respective AIC-D category. In contrast, we consider
those candidate PDFs that exceed (subceed) in 85% (15%) of the grid points as a sign of
average confidence in the candidate PDF (yellow) to overall performance according to the
respective AIC-D category. Percentages that fall short of 85% (or that show no skill in more
than 15%) are considered as an overall sign of insufficient confidence in the candidate PDF
(red).

SPI period Realization AIC-D category GD2 WD2 GGD3 EWD3

3 months

Observations

Ideal (AIC-D ≤ 2) 84 76 22 31

Well (AIC-D ≤ 4) 94 91 98 100

Sufficient (AIC-D ≤ 7) 98 98 100 100

No skill (AIC-D > 10) 1 0 0 0

Ensemble
simulations

Ideal (AIC-D ≤ 2) 65 18 68 86

Well (AIC-D ≤ 4) 74 24 89 99

Sufficient (AIC-D ≤ 7) 82 34 94 99

No skill (AIC-D > 10) 12 57 4 1

AIC evaluates whether EWD3’s increased complexity (relative to GD2) is necessary.
However, the results justify the necessity for this increased complexity – GD2 performs
erroneously in 26% (6%), insufficiently in 18% (2%), and without any skill in 12%
(1%) of the global land area in ensemble simulations (observations). The risk of
underfitting by using two-parameter PDFs seems larger than the risk of overfitting
by using three-parameter PDFs. Once the need for three-parameter candidate PDFs
is established, their remaining punishment relative to two-parameter PDFs biases
the analysis; particularly for the ideal AIC-D category. EWD3’s increased complexity
penalty relative to two-parameter candidate PDFs depends on the sample size and
amounts to 2.46 in observations and 2.04 in ensemble simulations (see black vertical
lines in Fig. A.5 (a)–(d)). The AIC-Dmax value beyond which EWD3 reaches coverages
close to 100% approximately amounts to EWD3’s increased penalty (see Fig. A.5
(a)–(d)). Correcting EWD3’s coverages for this bias would affect our evaluation of
EWD3’s performance only for the ideal AIC-D category. To illustrate this effect, we
only consider AIC’s estimated likelihood (without its penalty). Such a consideration
corrects this complexity bias in EWD3’s performance. While we analytically analyzed
this consideration, a first-order approximation suffices for the scope of this publication.
In that first-order approximation of this consideration, we simply shift the curve of
EWD3 by 2.46 units leftwards in observations (Fig. A.5 (a) and (b))) and by 2.04 units
leftwards in ensemble simulations (Fig. A.5 (c) and (d)). After this shift, EWD3 would
also perform ideally with substantial confidence.

The AIC-D frequencies of Table A.3 are robust in all investigated regions except
Australia (not shown). In Australia, GD2’s performance slightly improves relative
to the global results during DJF in observations. In contrast, GD2 performs worse
than any other investigated candidate PDFs (even worse than WD2) during JJA in
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observations and during DJF in simulations. Since these are the only minor regional
particularities evident in regional AIC-D frequencies, we will during the regional
focus in the remaining analysis of SPI3M solely display, explain, and concentrate on
deviations from N0,1.

Among our candidate PDFs, EWD3 is obviously the best-suited PDF for SPI. Yet,
we still need to confirm whether also EWD3’s absolute performance is adequate.
While the global analysis indicated EWD3’s adequateness, the ultimate validation of
this claim is incumbent upon the regional analysis.

a.3.1.2 Regional deviations from N0,1

We investigated thus far deviations from N0,1 for the entire global land area. In this
process, our results indicate an adequate absolute performance of GD2, GGD2, and
EWD3. However, that investigation might be blurred by deviations which balance
each other over totally different regions with unrelated climatic characteristics. Thus,
we will reduce the area analyzed in this subsection and perform a further aggregated
investigation that focuses on each continental region individually. That further ag-
gregation of results dismisses the dimension of different SPI categories because their
analysis revealed a rather uniform relation over each region: extreme SPI categories
show the largest deviations, while normal conditions exhibit the smallest. As a con-
sequence, we display from now on only unweighted sums over the absolute values
of these deviations across all SPI categories. To provide a more intuitive number
for these unweighted sums, we normalize them by our SPI category count (seven).
Consequently, our analysis will investigate the mean deviations per SPI category,
henceforth.

In observations (Fig A.6. (a) and (b)), WD2 performs in all analyzed regions again
worst of all candidate PDFs in delivering a proper frequency distribution of SPI3M

during both investigated seasons. Over all analyzed regions and seasons, EWD3

displays the smallest deviations from N0,1, while GD2 and GGD3 perform only
slightly worse. Some minor region-dependent differences emerge; e.g., in Africa,
a distinct ranking of the performance of all four candidate distribution functions
emerges during JJA – EWD3 outperforms GGD3, which performs better than GD2.
Aside, all candidate PDFs display almost identical deviations from N0,1 over Australia
during DJF in observations.

In simulations (Fig A.6. (c) and (d)), the ranking of the performance of different
PDFs becomes more distinct than it is in observations during both analyzed seasons
and investigated domains, except Australia. This easier distinction compared to obser-
vations over almost every region of the globe results from increased mean deviations
for GD2, while they stay comparably low for GGD3 and EWD3, relative to the global
analysis. As shown before, two-parameter PDFs ineptly describe precipitation totals
obtained from ensemble simulations. Consequently, during both seasons, GGD3 and
EWD3 perform in each region exceptionally well, while GD2 performs overall average
at best, whereas WD2 still performs poor in general. The performances of GD2 and
WD2 are only in Africa during DJF equally poor which impedes any clear ranking.
Similarly difficult is any distinction of their performance in North America during JJA
as a consequence of one of WD2’s best performances (as also identified by Sienz et al.,
2012, for SPI1M). Furthermore Australia poses an exception to the identified ranking
pattern of candidate PDFs for simulations. During the austral summer (DJF), WD2
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Figure A.6: Mean deviations from N0,1 per SPI category for the entire global land area and
each investigated region. Results are depicted for observations (left) and simulations (right)
during DJF (top) and JJA (bottom).

distinctly outperforms GD2 which exhibits the largest mean deviations. Interestingly,
analog to the performance of candidate PDFs over Australia in observations during
DJF, we identify over Australia also in simulations a season when the performance
of all four candidate distribution functions is rather similar. However, this occurs in
simulations during JJA.

These insights about candidate PDFs performance in observations and simulations
are even more obvious at first glance when displayed in an image plot (Fig. A.7 (a) and
(b)). The poor performance of WD2 in observations and simulations is obvious over
all domains and in both investigated seasons. Also, the exception to this pattern for
Australia during the austral summer (Fig. A.7 (a)) in simulations is distinctly visible.
Evident are further the overall similar performances of GD2, GGD3, and EWD3 in
observations over all domains and both analyzed seasons. Further, the generally
improved performance of three-parameter candidate distribution functions (GGD3

and EWD3) relative to two-parameter candidate PDFs in simulations is distinctly
palpable. Aside, even the better performance of EWD3 relative to GGD3 in Africa
generally or in observations over Europe is easily discernible.
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(b) Mean Deviations of each Domain per Analysis in JJA
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Figure A.7: Mean deviations from N0,1 per SPI category during DJF (a) and JJA (b). Mean
deviations are displayed for each investigated domain and each analyzed PDF for observations
and simulations.
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For observations, the regional analysis confirms the insights from the global anal-
ysis in each region: EWD3 is (same as GD2 and GGD3) an adequate PDF in SPI’s
calculation algorithm. For ensemble simulations, the regional analysis additionally
corroborates the finding of the AIC-D analysis that EWD3 performs noticeably better
than GD2. The corroboration of this finding substantiates support for EWD3.

The analysis of AIC-D frequencies proves that EWD3 is SPI’s best distribution
function among our candidate PDFs. Additionally, the regional investigation confirms
the global analysis: the absolute performance of EWD3 is at minimum adequate in
observations and ensemble simulations.

a.3.1.3 Improvement relative to a multi-PDF approach and a baseline

In the following, we investigate deviations from N0,1 for a multi-PDF SPI calculation
algorithm which uses in each grid point that distribution function which yields for
this respective grid point the minimum AIC value (whose AIC-D value equates to 0).
An analog SPI calculation algorithm has been repeatedly proposed in the literature
(Guenang et al., 2019; Blain & Meschiatti, 2015; Touma et al., 2015; Sienz et al., 2012;
Lloyd-Hughes & Saunders, 2002). We analyze the impact of such an SPI calculation
algorithm and compare those results against a baseline comparison and against the
most suitable calculation algorithm identified in this study which uses EWD3 as
a PDF. The results obtained from the SPI calculation algorithm that uses a multi-
PDF approach are labeled AICmin-analysis. As a baseline comparison, we choose the
calculation algorithm and optimization method of the frequently used R package from
Beguería & Vicente-Serrano (2017) and refer to these results as a baseline. To maximize
the comparability of SPI time series calculated with this baseline, we employ the
simple two-parameter gamma distribution as a calculation algorithm and estimate the
parameters of the PDF again with the maximum-likelihood method. It seems noteworthy
that our parameter estimation method takes about 60 times longer to find optimal
parameters of GD2 than the baseline. The comparison between the performance of
our baseline against GD2’s performance (compare Fig. A.8 against Fig. A.7) thus also
indicates the impact of the meticulousness applied to the optimization of the same
parameter estimation method.

The AICmin-analysis performs generally almost identically to EWD3 over each
domain and in both realizations (observations and simulations). Further, deviations
are not necessarily minimal when computing SPI with the AICmin-analysis (Fig. A.8,
(a) and (b)). This results from the dependence of AIC’s punishment on the parameter
count of the distribution function. It is simply not sufficient for EWD3 to perform
best by a small margin in order to yield a lower AIC value than GD2 or WD2. EWD3

needs to perform sufficiently better to overcompensate its punishment imposed by
AIC. Or in other words, EWD3 is expected to perform distinctly better than GD2 or
WD2 because of its increased complexity. As a consequence, EWD3 is only selected
by AIC as the best-performing distribution function if it fulfills that expectation.
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(b) Mean Deviations of each Domain per Analysis in JJA
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Figure A.8: As in Fig. A.7 but for the three-parameter exponentiated Weibull distribution
(EWD3) – the best-performing candidate distribution function in this study –, a baseline which
uses the two-parameter gamma distribution (BL2), and a frequently proposed multi-PDF
SPI calculation algorithm that uses in each grid point and season that distribution function
that yields in the respective grid point and during the respective season the minimum AIC
value (AICmin-analysis which is denoted as AICmin in this figure). In contrast to GD2 in our
previous analysis, BL2 employs a simpler optimization procedure of the same parameter
estimation method (maximum-likelihood estimation).
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In contrast to previous results in this and other studies (Stagge et al., 2015), which
showed no seasonal differences in the performance of candidate PDFs, the baseline
performs overall better in JJA than in DJF (compare in Fig. A.8, (a) against (b)).
Relative to our findings in the previous subsection (Fig A.7.), the baseline performs
similar to GD2 in JJA but worse than WD2 in DJF (compare Fig. A.7 against Fig.
A.8,). This reveals a substantial impact of the optimization procedure, at least for
DJF precipitation totals. Further, the baseline performs especially poor in describing
the frequency distribution of SPI3M in simulations during the austral summer. It is
important to note that the baseline overestimates modeled extreme droughts during
DJF over Australia by more than 240% (not shown). That is by a huge margin the
largest deviation we encountered during our analysis and highly undesirable when
analyzing droughts. Contrary to Blain et al. (2018), who investigated the influence
of different parameter estimation methods on SPI’s normality and identified only
barely visible effects, the massive difference between the baseline and GD2 in DJF is
severely concerning; especially given that the parameter estimation methods used here
are identical and that the only difference is the meticulousness of the optimization
procedure. Since GD2 and the baseline both use the maximum-likelihood method
to estimate the PDF’s parameters, main differences do not only emerge when using
different estimation methods but rather manifest already in the applied procedures
by which these methods are optimized.

Unsurprisingly the same deficit as identified before for both two-parameter can-
didate PDFs also emerges in the baseline’s performance: the sum weighted by each
classes’ likelihood of occurrence over the absolute values of deviations from N0,1

increases as a result of increasing 10-fold our database (not shown). Although the
baseline already performs especially poorly when analyzing weighted deviations
during DJF in observations, it performs even worse in simulations; although the
performance deteriorates only marginally. Such an increase of weighted deviations is
a strong indicator of the baseline’s difficulties to sufficiently describe the frequency
distribution of modeled SPI3M. In the baseline, these weighted deviations increase
globally by 2 % in DJF and 40 % in JJA (as a reminder: the weighted deviations stay
constant for GD2 in DJF and increase by more than 120 % in JJA). In contrast, these
weighted deviations decrease for the AICmin-analysis by 70% in DJF and by 60% in
JJA around the entire globe (not shown).

Moreover, identifying the maximum deviation from N0,1 for 196 different analyses
which range across each SPI category (seven), domain (seven), both seasons (two),
as well as differentiating between observation and simulation (two) (not shown), the
baseline performs worst in 79 out of those 196 analyses, while WD2 performs worst
in 103 of these analyses. It is noteworthy that out of those 79 analyses in which the
baseline performs worst, 63 analyses occur during DJF. As a side note, GD2 performs
worst six times with our optimization, while GGD3 and EWD3 each perform worst
four times overall.

a.3.1.4 Sensitivity to ensemble size

So far, we used all ensemble members at once to fit our candidate PDFs onto simulated
precipitation. That improves the quality of the fit. In this section, we first analyze a
single ensemble member and investigate subsequently the sensitivity of our candidate
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PDFs’ performance on the ensemble size. In doing so, we properly disentangle the
difference between observations and simulations from the impact of the sample size.

Table A.4: Percent of grid points that are classified into specific AIC-D categories (according
to Burnham & Anderson (2002)) for each candidate PDF over both seasons. Percentages of
grid points indicate the confidence in candidate PDFs to overall performance according to the
respective AIC-D category. We consider percentages that exceed (subceed in case of AIC-D
values beyond 10) 95% (5%) as a sign of substantial confidence in the candidate PDF (green)
to overall performance according to the respective AIC-D category. In contrast, we consider
those candidate PDFs that exceed (subceed) in 85% (15%) of the grid points as a sign of
average confidence in the candidate PDF (yellow) to overall performance according to the
respective AIC-D category. Percentages that fall short of 85% (or that show no skill in more
than 15%) are considered as an overall sign of insufficient confidence in the candidate PDF
(red). In contrast to Table A.3, the evaluation of simulations is based on a single ensemble
member. Observations are identical to Table A.3.

SPI period Realization AIC-D category GD2 WD2 GGD3 EWD3

3 months

Observations

Ideal (AIC-D ≤ 2) 84 76 22 31

Well (AIC-D ≤ 4) 94 91 98 100

Sufficient (AIC-D ≤ 7) 98 98 100 100

No skill (AIC-D > 10) 1 0 0 0

Single
ensemble
member

Ideal (AIC-D ≤ 2) 83 76 19 28

Well (AIC-D ≤ 4) 93 92 98 100

Sufficient (AIC-D ≤ 7) 98 98 100 100

No skill (AIC-D > 10) 1 0 0 0

As before, three-parameter candidate distribution functions also perform for a
single ensemble simulation better than two-parameter PDFs (Table A.4). For a sin-
gle ensemble member, the difference by which three-parameter PDFs outperform
two-parameter PDFs reduces considerably relative to the entire ensemble simula-
tions (compare Table A.4 against Table A.3), though. In contrast to Table A.3, all of
our candidate distribution functions perform similarly between a single ensemble
simulation and observations. In contrast to our previous results (e.g. when analyz-
ing weighted sums of deviations from N0,1), modeled and observed precipitation
distributions now seem sufficiently similar. Reducing the sample size for the fit by
a factor of 10 leads to more homogeneous performances of all candidate PDFs in
simulations. As a reminder, AIC-D frequencies as depicted in Table A.4 measure only
relative performance differences. Consequently, our two-parameter candidate PDFs
do not actually perform better with fewer data. Instead, limiting the input data to a
single ensemble member impairs our three-parameter candidate PDFs more strongly
than our two-parameter candidate PDFs. Optimizing three parameters needs more
information than the optimization of two parameters. Irrespective of the realization,
GD2 performs erroneously for 31 samples (apparent in grid points which display
AIC-D values beyond 4). Despite the need for more information, 31 samples suffice
EWD3 to fix GD2’s erroneous performances in both analyzed realizations.
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Table A.5: Percent of grid points that are classified into specific AIC-D categories (according
to Burnham & Anderson (2002)) for each candidate PDF over both seasons. Percentages of
grid points indicate the confidence in candidate PDFs to overall performance according to the
respective AIC-D category. We consider percentages that exceed (subceed in case of AIC-D
values beyond 10) 95% (5%) as a sign of substantial confidence in the candidate PDF (green)
to overall performance according to the respective AIC-D category. In contrast, we consider
those candidate PDFs that exceed (subceed) in 85% (15%) of the grid points as a sign of
average confidence in the candidate PDF (yellow) to overall performance according to the
respective AIC-D category. Percentages that fall short of 85% (or that show no skill in more
than 15%) are considered as an overall sign of insufficient confidence in the candidate PDF
(red). In contrast to Table A.3, the evaluation of simulations is based on different ensemble
sizes.

SPI period Ensemble size AIC-D category GD2 WD2 GGD3 EWD3

3 months

2

Ideal (AIC-D ≤ 2) 78 56 43 57

Well (AIC-D ≤ 4) 87 74 96 99

Sufficient (AIC-D ≤ 7) 94 90 98 100

No skill (AIC-D > 10) 3 4 1 0

3

Ideal (AIC-D ≤ 2) 77 45 53 69

Well (AIC-D ≤ 4) 86 61 96 99

Sufficient (AIC-D ≤ 7) 93 79 99 100

No skill (AIC-D > 10) 4 10 1 0

4

Ideal (AIC-D ≤ 2) 75 38 59 74

Well (AIC-D ≤ 4) 84 50 95 99

Sufficient (AIC-D ≤ 7) 90 67 98 100

No skill (AIC-D > 10) 7 19 2 0

5

Ideal (AIC-D ≤ 2) 74 31 63 79

Well (AIC-D ≤ 4) 82 42 94 99

Sufficient (AIC-D ≤ 7) 89 57 97 99

No skill (AIC-D > 10) 7 30 2 0

6

Ideal (AIC-D ≤ 2) 73 27 64 80

Well (AIC-D ≤ 4) 81 36 93 99

Sufficient (AIC-D ≤ 7) 88 50 96 99

No skill (AIC-D > 10) 9 37 2 0

7

Ideal (AIC-D ≤ 2) 70 25 66 81

Well (AIC-D ≤ 4) 78 33 92 98

Sufficient (AIC-D ≤ 7) 86 45 96 99

No skill (AIC-D > 10) 10 43 2 1

8

Ideal (AIC-D ≤ 2) 69 21 67 83

Well (AIC-D ≤ 4) 77 29 91 98

Sufficient (AIC-D ≤ 7) 85 39 95 99

No skill (AIC-D > 10) 11 49 3 1

9

Ideal (AIC-D ≤ 2) 66 20 67 85

Well (AIC-D ≤ 4) 76 27 90 99

Sufficient (AIC-D ≤ 7) 84 36 95 99

No skill (AIC-D > 10) 12 53 3 1
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In the next step, we isolate and investigate the improvement of the fit by an
increasing sample or ensemble size. As a consequence of limited observed global
precipitation data, we neglect observations and their differences to simulations in
this remaining section. During this investigation, we reanalyze Table A.4 while
iteratively increasing the ensemble (sample) size for the fit (and the AIC-D calculation).
Irrespective of the ensemble size, EWD3 performs proficiently (Table A.5). Further,
the fraction of grid points in which EWD3 performs ideal increases constantly. This is
a consequence of EWD3’s better performance relative to our two-parameter candidate
PDFs. Unfortunately, AIC-Ds can only compare models that are based on an equal
sample size without adhering to additional undesired assumptions. Thus, any direct
analysis of each candidate PDF’s improvement relative to its own performance for a
single ensemble member is with AIC-D frequencies not feasible. Despite this caveat,
Table A.5 still indicates strongly that EWD3 benefits more strongly from the increased
sample size than any of our two-parameter candidate distribution functions. The
larger the sample size is, the larger the margin by which EWD3 outperforms GD2 is.

Despite requiring more data, our three-parameter candidate PDFs perform already
better for 31 samples. For 31 samples, we identify this better performance of three-
parameter candidate PDFs in observations and simulations. Further, since our three-
parameter candidate PDFs require more data to estimate optimal parameters, they
benefit in simulations more strongly from additional samples than our two-parameter
candidate PDFs. That benefit becomes apparent in a distinctly improved relative
performance after multiplying the sample size through the use of additional ensemble
members.

a.3.2 Other SPI accumulation periods

A similar pattern as identified for SPI3M also emerges in the evaluation of AIC-D-
based performances of our candidate PDFs for accumulation periods of 1, 6, 9, and
12 months (Table A.6). No candidate PDF performs ideally (AIC-D values below
2) with substantial confidence around the globe. The reasons for this shortcoming
are distribution-dependent. GD2 performs too poorly in too many grid points (e.g.,
apparent by too low percentages for covering AIC-D values even below 4) and EWD3

excels only for AIC-D values beyond 2 because it first needs to overcompensate
its AIC-imposed complexity penalty (as explained before). Equally apparent is the
striking inability of the two-parameter candidate PDFs to adequately perform in
ensemble simulations for all analyzed accumulation periods which we have also seen
for SPI3M before.

In agreement with prior studies (Stagge et al., 2015; Sienz et al., 2012), we also
identify the apparent performance shift between short (less than 3 months) and
long (more than 3 months) accumulation periods for the two-parameter candidate
PDFs. While WD2 performs well for short accumulation periods (only in observations
though), GD2 performs better than WD2 for longer accumulation periods. Neverthe-
less, neither three-parameter candidate PDF displays such a shift in its performance.
Both three-parameter PDFs perform for accumulation periods shorter and longer
than 3 months similarly well.
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Table A.6: Percent of grid points that are classified into specific AIC-D categories (according
to Burnham & Anderson (2002)) for each candidate PDF over both seasons. Percentages of
grid points indicate the confidence in candidate PDFs to overall performance according to the
respective AIC-D category. We consider percentages that exceed (subceed in case of AIC-D
values beyond 10) 95% (5%) as a sign of substantial confidence in the candidate PDF (green)
to overall performance according to the respective AIC-D category. In contrast, we consider
those candidate PDFs that exceed (subceed) in 85% (15%) of the grid points as a sign of
average confidence in the candidate PDF (yellow) to overall performance according to the
respective AIC-D category. Percentages that fall short of 85% (or that show no skill in more
than 15%) are considered as an overall sign of insufficient confidence in the candidate PDF
(red). In contrast to Table A.3, this table evaluates different accumulations periods of SPI.

SPI period Realization AIC-D category GD2 WD2 GGD3 EWD3

1 month

Observations

Ideal (AIC-D ≤ 2) 84 86 30 33

Well (AIC-D ≤ 4) 94 97 100 100

Sufficient (AIC-D ≤ 7) 98 99 100 100

No skill (AIC-D > 10) 0 0 0 0

Ensemble
simulations

Ideal (AIC-D ≤ 2) 55 43 81 87

Well (AIC-D ≤ 4) 64 54 96 100

Sufficient (AIC-D ≤ 7) 73 66 98 100

No skill (AIC-D > 10) 21 26 1 0

6 months

Observations

Ideal (AIC-D ≤ 2) 82 67 16 30

Well (AIC-D ≤ 4) 93 86 96 99

Sufficient (AIC-D ≤ 7) 99 98 99 100

No skill (AIC-D > 10) 0 0 0 0

Ensemble
simulations

Ideal (AIC-D ≤ 2) 75 11 49 77

Well (AIC-D ≤ 4) 82 15 82 95

Sufficient (AIC-D ≤ 7) 88 22 90 97

No skill (AIC-D > 10) 8 71 7 2

9 months

Observations

Ideal (AIC-D ≤ 2) 83 64 13 28

Well (AIC-D ≤ 4) 93 84 93 98

Sufficient (AIC-D ≤ 7) 99 97 98 99

No skill (AIC-D > 10) 0 1 1 0

Ensemble
simulations

Ideal (AIC-D ≤ 2) 75 10 40 76

Well (AIC-D ≤ 4) 82 13 76 93

Sufficient (AIC-D ≤ 7) 89 18 85 95

No skill (AIC-D > 10) 7 76 12 3

12 months

Observations

Ideal (AIC-D ≤ 2) 82 61 13 29

Well (AIC-D ≤ 4) 92 81 91 96

Sufficient (AIC-D ≤ 7) 98 96 97 98

No skill (AIC-D > 10) 1 1 1 1

Ensemble
simulations

Ideal (AIC-D ≤ 2) 79 9 34 69

Well (AIC-D ≤ 4) 86 11 75 87

Sufficient (AIC-D ≤ 7) 91 15 83 90

No skill (AIC-D > 10) 6 80 14 7
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Most interesting, EWD3 performs well almost everywhere around the entire globe
for each accumulation period and in both realizations. EWD3 shows the highest
percentages of all candidate PDFs for each analysis (each row of Table A.6) beyond
AIC-D values of 2, except for an accumulation period of 12 months in simulations.
While there is not even a single candidate PDF that seems well suited for an accu-
mulation period of 12 months in simulations, GD2 and EWD3 both perform equally
adequate, despite EWD3’s higher AIC penalty compared to GD2. As a reminder, AIC
punishes EWD3 more strongly than GD2. Despite this complexity punishment, it is
obvious by now that our two-parameter PDFs are inept to universally deliver normally
distributed SPI time series; particularly if one considers all depicted dimensions of the
task at hand. As it turns out, this punishment is the sole reason for both performance
limitations that EWD3 displays in Table A.6 (i) the ideal AIC-D category and (ii)
EWD3’s tied performance with GD2 for an accumulation period of 12 months in en-
semble simulations. As shown before, AIC’s punishment is particularly noticeable in
the ideal category. Further, this punishment also affects the tied performance ranking
for the accumulation period of 12 months. To illustrate this effect, we again consider
AIC’s estimated likelihood (without its penalty) to correct EWD3’s performance for
the complexity punishment. While we again analytically analyzed this consideration,
for the scope of this publication a first-order approximation suffices also here. In that
first-order approximation of this consideration, EWD3’s coverages of Table A.6 shift
again by 2.46 (2.04) AIC units in observations (ensemble simulations). Since neigh-
boring AIC-D categories differ by 2-3 AIC units, this approximation shifts EWD3’s
coverages of Table A.6 by roughly one category. Such a shift would solve EWD3’s
limitation in the ideal AIC-D category. Further, EWD3 would also perform best across
all AIC-D categories in ensemble simulations; including the accumulation period of
12 months.

Despite the inclusion of the complexity penalty, EWD3 still performs best in 32 out
of all 40 analyses (all rows of Table A.3 and Table A.6), and in 30 of those 32 analyses,
we consider EWD3’s performance to display at least average confidence (indicated
by a yellow or green background color in the respective table). In contrast, GD2

only performs best seven (two) times (while also performing with at least average
confidence); WD2 performs best once and GGD3 never does.

a.4 discussion

Previous studies have emphasized the importance of using a single PDF to calculate
SPI for each accumulation period and location (Stagge et al., 2015; Guttman, 1999) to
ensure comparability across space and time which is one of the index’s main advan-
tages (Lloyd-Hughes & Saunders, 2002). However, any two-parameter distribution
function seems in observations already ill suited to deliver adequately normally dis-
tributed SPI time series. Single two-parameter candidate PDFs are suited for neither
all locations nor both short (less than 3 months) and long (more than 3 months)
accumulation periods (Stagge et al., 2015; Sienz et al., 2012). Introducing ensemble
simulations as another level of complexity exacerbates the problem additionally. Yet,
the importance of accepting and solving this problem becomes increasingly pressing
as a result of a growing interest in dynamical drought predictions and their evaluation
against observations. To properly evaluate drought predictability of precipitation
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hindcasts against observations, the distribution function used in SPI’s calculation
algorithm needs to capture sufficiently well both frequency distributions mutually:
those of observed and modeled precipitation totals.

The outlined problem is additionally aggravated by the fact that it cannot be cir-
cumnavigated. Our results demonstrate that any inept description of precipitation
by SPI’s candidate distribution function manifests most severely in the tails of SPI’s
distribution. Since SPI is usually employed to analyze the left-hand tail of its distribu-
tion (droughts), biased descriptions of this tail are highly undesirable. To establish the
robustness of this valuable tool and to fully capitalize on its advantages, SPI’s problem
of requiring a single, universally applicable candidate PDF needs to be solved. In this
study, we show that the three-parameter exponentiated Weibull distribution (EWD3)
is very promising in solving this problem virtually everywhere around the globe in
both realizations (observations and simulations) for all common accumulation periods
(1, 3, 6, 9, and 12 months).

Other studies have dismissed the possibility of such a solution to this problem and
proposed instead a multi-PDF approach (Guenang et al., 2019; Blain & Meschiatti,
2015; Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes & Saunders, 2002) which
selects different PDFs depending on the location and accumulation period of interest.
The emergence of this proposal stems from a focus on two-parameter PDFs that
exhibit a shift in their performance which depends on the scrutinized accumulation
period. While WD2 performs better for an accumulation period of 1 month, GD2 is
better suited for longer accumulation periods. However, any multi-PDF approach
would partly sacrifice the aforementioned index’s pivotal advantage of comparability
across space and time. Our results suggest that such a multi-PDF approach does
not improve the normality of calculated SPI time series relative to a calculation
algorithm that uses EWD3 as a PDF everywhere. Furthermore, the use of an empirical
cumulative distribution function has been proposed (Sienz et al., 2012). We checked
this approach which proved to be too coarse because of its discretized nature (not
shown). As a result of its discretized nature, the analyzed sample size prescribes
the magnitude of deviations from N0,1. Consequently, these deviations are spatially
invariant and aggregate with each additional grid point. Thus, deviations from N0,1

will not spatially balance each other.
Yet, in agreement with those other studies (Guenang et al., 2019; Blain & Meschiatti,

2015; Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes & Saunders, 2002), our results
also suggest that two-parameter PDFs are inept for all accumulation periods, locations,
and realizations. Despite this inability of two-parameter PDFs, EWD3 competed
against two-parameter PDFs in our analysis. This competition unnecessarily (given
the inadequacy of two-parameter PDFs, the risk of underfitting seems to outweigh
the risk of overfitting) exacerbates EWD3’s performance assessed with AIC-D because
AIC punishes complexity (irrespective of that risk consideration). As a consequence of
EWD3’s increased complexity, AIC imposes a larger penalty on EWD3 than on the two-
parameter candidate PDFs (which are anyhow ill suited to solve the outlined problem
because they are most likely too simple). Still, EWD3 conclusively outperforms any
other candidate PDF. Yet, EWD3 does not perform ideally with substantial confidence
in ensemble simulations. However, leveling the playing field for candidate distribution
functions with different parameter counts in our AIC-D analysis leads to an ideal
performance of EWD3 universally.
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We also repeated our AIC-D analysis with the Bayesian information criterion
(Schwarz, 1978) which delivered similar results. Irrespective of the employed infor-
mation criterion, the findings sketched above stay valid on every continent in both
realizations with a few exceptions. It seems noteworthy, that Australia’s observed DJF
and modeled JJA precipitation totals are generally poorly described by any of our
candidate distribution functions. Since the performances of all investigated distribu-
tion functions deteriorate to a similar level, it is difficult, however, to discern any new
ranking. Even more troublesome is the proper description of simulated 12-month
precipitation totals. Here, our candidate PDFs perform only sufficiently. Yet, despite
its increased AIC penalty, EWD3 still performs still best along with the two-parameter
gamma distribution.

Overall our three-parameter candidate PDFs perform better than investigated two-
parameter candidate PDFs. Despite requiring more data, a sample size of 31 years
suffices our three-parameter candidate PDFs to outperform our two-parameter candi-
date PDFs in simulations and observations. Further, our three-parameter candidate
PDFs greatly benefit from an increase in the sample size in simulations. In simulations,
such a sample size sensitivity analysis is feasible by using different ensemble sizes.
Whether three-parameter PDFs would benefit similarly from an increased sample size
in observations is likely but ultimately remains speculative because trustworthy global
observations of precipitation are temporally too constrained for such a sensitivity
analysis.

In contrast to Blain et al. (2018), who investigated the influence of different param-
eter estimation methods on the normality of the resulting SPI time series and only
found minuscule effects, our results show a substantial impact of the meticulousness
applied to optimize the same parameter estimation method. Despite using the same
parameter estimation methods and the same candidate PDF, the baseline investigated
here enlarges deviations from N0,1 by roughly half a magnitude compared to GD2

in DJF. This result is concerning because it indicates that main differences do not
only emerge when using different parameter estimation methods but rather manifest
already in the applied procedures by which these methods are optimized. In our anal-
ysis, not different PDFs but different optimization procedures of the same parameter
estimation method impact normality most profoundly.

Other consequences of this finding are apparent major season-dependent differences
in the performance of the investigated baseline. This finding contradicts the results of
Stagge et al. (2015) (and the results we obtained from the analysis of our candidate
PDFs). These results suggest that the performances of candidate PDFs are independent
of the season. In contrast, the baseline performs similar to GD2 during JJA, but the
performance of the baseline severely deteriorates during DJF in our analysis. While
this deterioration is overall more apparent in observations than in simulations, its
most obvious instance occurs in simulations. The investigated baseline overestimates
modeled extreme droughts in Australia during DJF by more than 240% – that depicts
the largest deviation from N0,1 we encountered in this study. Therefore, we urge
exercising substantial caution while analyzing SPIDJF time series with the investigated
baseline’s R package irrespective of the heritage of input data. While the largest
deviations from N0,1 occur during DJF in Australia, the baseline performs particularly
poorly during DJF in general. During DJF, the examined baseline displays larger
deviations from N0,1 than any other of the six SPI calculations (GD2, WD2, GGD3,
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EWD3, baseline, and AICmin-analysis) analyzed here in 63 out of 98 different analyses,
which range across all seven SPI categories, all seven regions, and both realizations.
Aside from the investigated baseline and in general agreement with Stagge et al.
(2015), we find only in Australia minor seasonal differences in the performance of our
candidate PDFs.

To aggregate our AIC-D analysis over the globe and visualize this aggregation in
tables, we need to evaluate the aggregated performance of candidate PDFs for certain
AIC-D categories (Burnham & Anderson, 2002). Their aggregation over all land grid
points of the globe demands the introduction of another performance criterion that
requires interpretation. That criterion informs whether the candidate PDFs conform
to the respective AIC-D categories in sufficient grid points globally and, therefore,
needs to interpret which fraction of the global land grid points can be considered
sufficient. For this fraction of global land grid points, we select 85 % and 95 % as
thresholds. Consequently, we categorize our candidate PDFs for each AIC-D category
into three different classes of possible performances. We consider the confirmation of
the respective AIC-D category in at least 95% of grid points globally as an indicator of
substantial confidence in the candidate PDF performance according to the respective
AIC-D category globally. Confirmation of the respective AIC-D category in less than
85% of grid points globally is considered as an indicator of insufficient confidence in
the candidate PDF. Lastly, we consider it to be an indicator of average confidence in
candidate PDFs when they conform to the respective AIC-D category in between 85%
and 95% of grid points globally. One might criticize the fact that these thresholds lack
a scientific foundation or that they are to some extent arbitrary. However, they seem
adequately reasonable and agree with analog evaluations of such fractions derived
by rejection frequencies from goodness-of-fit tests in previous studies (Blain et al.,
2018; Blain & Meschiatti, 2015; Stagge et al., 2015; Lloyd-Hughes & Saunders, 2002).
Moreover, these thresholds show a robust statistical basis in terms of being equally
represented over all 320 analyzed evaluations in this study (all entries of Table A.3,
Table A.4. Table A.5, and Table A.6). Across all 80 analyses (all rows of Table A.3,
Table A.4. Table A.5, and Table A.6), the four candidate PDFs perform insufficiently
132 times, while they perform with substantial (average) confidence 130 (58) times.

There is scope to further test the robustness of our derived conclusions in different
models with different time horizons and foci on accumulation periods other than
3 months (e.g. 12 months). Of additional interest would be insights about the dis-
tribution of precipitation. Such insights would enable SPI’s calculation algorithm to
physically base its key decision. A recent study suggests that a four-parameter ex-
tended generalized Pareto distribution excels in describing the frequency distribution
of precipitation (Tencaliec et al., 2020). Anyhow, the inclusion of yet another distribu-
tion parameter additionally complicates the optimization of the parameter estimation
method. We already exemplified the impact of the meticulousness of the applied
optimization in this study. Establishing a standard for the optimization process seems
currently more urgent than attempts to improve SPI through four-parameter PDFs.

The results presented here further imply that the evaluated predictive skill of
drought predictions assessed with SPI should be treated with caution because it is
likely biased by SPI’s current calculation algorithms. This common bias in SPI’s calcu-
lation algorithms obscures the evaluation of predictive skill of ensemble simulations
by inducing a blurred representation of their precipitation distributions. That blurred
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representation emerges in the simulated drought index which impedes the evaluation
process. Drought predictions often try to correctly predict the drought intensity. The
evaluation process usually considers this to be successfully achieved if the same
SPI category as the observed one is predicted. This evaluation is quite sensitive to
the thresholds used when classifying SPI categories. The bias identified here blurs
these categories in ensemble simulations more strongly than in observations against
which the model’s predictability is customarily evaluated. As a consequence of these
sensitive thresholds, such a one-sided bias potentially undermines current evaluation
processes.

a.5 summary and conclusions

Current SPI calculation algorithms are tailored to describe observed precipitation
distributions. Consequently, current SPI calculation algorithms are ineptly suited
to describe precipitation distributions obtained from ensemble simulations. Also in
observations, erroneous performances are apparent and well-known, but less conspic-
uous than in ensemble simulations. We propose a solution that rectifies these issues
and improves the description of modeled and observed precipitation distributions
individually as well as concurrently. The performance of two-parameter candidate
distribution functions is inadequate for this task. By increasing the parameter count
of the candidate distribution function (and thereby also its complexity) a distinctly
better description of precipitation distributions can be achieved. In simulations and
observations, the best-performing candidate distribution function identified here – the
exponentiated Weibull distribution (EWD3) – performs proficiently for every common
accumulation period (1, 3, 6, 9, and 12 months) virtually everywhere around the
globe. Additionally, EWD3 excels when analyzing ensemble simulations. Its increased
complexity (relative to GD2) leads to an outstanding performance of EWD3 when an
available ensemble multiplies the sample size.

We investigate different candidate distribution functions (gamma (GD2), Weibull
(WD2), generalized gamma (GGD3), and exponentiated Weibull distribution (EWD3))
in SPI’s calculation algorithm and evaluate their adequacy in meeting SPI’s normality
requirement. We conduct this investigation for observations and simulations dur-
ing summer (JJA) and winter (DJF). Our analysis evaluates globally and over each
continent individually the resulting SPI3M time series based on their normality. This
analysis focuses on an accumulation period of 3 months and tests the conclusions
drawn from that focus for the most common other accumulation periods (1, 6, 9,
and 12 months). The normality of SPI is assessed by two complementary analyses.
The first analysis checks the absolute performance of candidate PDFs by comparing
actual occurrence probabilities of SPI categories (as defined by WMO’s SPI User Guide

(WMO, 2012)) against well-known theoretical occurrence probabilities of N0,1. The
second analysis evaluates candidate PDFs relative to each other while penalizing
unnecessary complexity with the Akaike Information Criterion (AIC).

Irrespective of the accumulation period or the dataset, GD2 seems sufficiently
suited to be employed in SPI’s calculation algorithm in many grid points of the globe.
Yet, GD2 also performs erroneously in a non-negligible fraction of grid points. These
erroneous performances are apparent in observations and simulations for each accu-
mulation period. More severely, GD2’s erroneous performances deteriorate further
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in ensemble simulations. Here, GD2 performs in a non-negligible fraction of grid
points also insufficiently or even without any skill. In contrast, EWD3 performs for
all accumulation periods without any defects, irrespective of the dataset. Despite
requiring more data than two-parameter PDFs, we identify EWD3’s proficient per-
formance for a sample size of 31 years in observations as well as in simulations.
Further, ensemble simulations allow us to artificially increase the sample size for
the fitting procedure by including additional ensemble members. Exploiting this
possibility has a major impact on the performance of candidate PDFs. The margin, by
which EWD3 outperforms GD2, further increases with additional ensemble members.
Furthermore, EWD3 demonstrates proficiency also for every analyzed accumulation
period around the globe. The accumulation period of 12 months poses in simulations
the only exception. Here, EWD3 and GD2 both perform similarly well around the
globe. Still, we find that three-parameter PDFs are generally better suited in SPI’s
calculation algorithm than two-parameter PDFs.

Given all the dimensions (locations, realizations, accumulation periods) of the task,
our results suggest that the risk of underfitting by using two-parameter PDFs is
larger than the risk of overfitting by employing three-parameter PDFs. We strongly
advocate adapting the calculation algorithm of SPI and the use therein of two-
parameter distribution functions in favor of three-parameter PDFs. Such an adaptation
is particularly important for the proper evaluation and interpretation of drought
predictions derived from ensemble simulations. For this adaptation, we propose
the employment of EWD3 as a new standard PDF for SPI’s calculation algorithm,
irrespective of the heritage of input data or the length of scrutinized accumulation
periods. Despite the issues discussed here, SPI remains a valuable tool for analyzing
droughts. This study might contribute to the value of this tool by illuminating and
resolving the discussed long-standing issue concerning the proper calculation of the
index.
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keypoints

• We assess genuine hindcast skill by deriving the predicted drought index
entirely from hindcasts

• We improve drought predictions by utilizing expertise on ENSO–precipitation
teleconnections

• ENSO-state conditioning increases lead time of significant drought hindcast
skill from 1 to 4 months
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abstract

Significant hindcast skill for the 3-month standardized precipitation index (SPI3M) has
been so far limited to one lead month. To increase that lead time, we propose to ex-
ploit well-known El Niño-Southern Oscillation (ENSO)–precipitation teleconnections
through ENSO-state conditioning. We condition initialized seasonal SPI3M hindcasts,
derived from the Max-Planck-Institute Earth System Model over the period 1982-2013,
on ENSO states by exploring significant agreements between two complementary
analyses: hindcast skill ENSO–composites, and observed ENSO–precipitation correla-
tions. Predictions conditioned on autumn (ASO)-ENSO states demonstrate significant
and reliable winter (DJF) drought hindcast skill up to lead month 4 in equatorial
South- and southern North America. The area of reliable drought hindcast skill is
further enlarged when the respective region’s dry ENSO phase is already present
in the antecedent summer (JJA-ENSO-state-conditioned). In contrast to previous
studies, our evaluation separates predictions and observations. Thereby, ENSO-state
conditioning demonstrates genuine hindcast skill up to lead month 4.

plain language summary

The time horizon of skillful seasonal drought predictions was in previous studies
limited to 1 month. In this study, we increase that horizon to up to 4 months by
exploiting a well-known and thoroughly investigated dependence of regional pre-
cipitation on sea-surface temperature anomalies in the equatorial Pacific Ocean. Yet,
seasonal drought predictions still insufficiently capitalize on this expertise. Retro-
spective forecasts exhibit a better ability to predict winter droughts for a longer
time horizon when these sea-surface temperature anomalies are sufficiently large.
The magnitude of these anomalies is observable at the start of the prediction in
November and does not change fundamentally during the prediction time. Thus, the
uncertainty associated with our prediction decreases when the magnitude of those
observed anomalies surpasses a certain threshold, which generates a predictable
precipitation signal over the target regions. Furthermore, previous studies usually
combine simulated with observed precipitation to derive the predicted drought index.
This facilitates the identification of skill in the prediction. Such an approach blurs the
proportion of the predictive skill that is based on the prediction. In contrast to this
practice, we strictly separate observations from simulations and, thereby, demonstrate
the genuine skill of our prediction in parts of the Americas.
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b.1 introduction

Reliable seasonal drought predictions can alleviate the harm caused by droughts
through timely and accurate warnings, resulting in increased preparedness. However,
the time horizon of reliable drought predictions is currently strictly confined to one
lead month Mo & Lyon, 2015; Ma et al., 2015; Yuan & Wood, 2013; Quan et al.,
2012; Yoon et al., 2012. Here, we analyze the potential to increase this time horizon
by evaluating our predictions for times and regions known to be influenced by El
Niño-Southern Oscillation (ENSO) teleconnections. Previous studies have shown that
SST anomalies in the equatorial Pacific lead the response of winter precipitation
anomalies on the American continent by roughly 4 to 6 months Redmond & Koch,
1991; Harshburger et al., 2002. Despite this expertise on lagged ENSO–precipitation
teleconnections, current evaluations of dynamical seasonal drought predictions still
insufficiently utilize this window of opportunity. Exploiting this, the present study
generates significant and reliable drought hindcast skill up to lead month 4.

While the predictive skill of precipitation is usually unreliable over land Kim et al.,
2012, ENSO teleconnections affect regional precipitation and are known to generate
seasonal prediction skill Kumar et al., 2013. Several studies established ENSO telecon-
nections as a dominant forcing for observed precipitation over many regions Seager
et al., 2005; Dai & Wigley, 2000; Ropelewski & Halpert, 1987, 1986. Additionally, the
same patterns of teleconnections were identified with similar strength in simulations
Schubert et al., 2016, 2008. The insights about ENSO–precipitation teleconnections
were also successfully transferred to teleconnections between ENSO and specific
drought indices.

One such drought index is the Standardized Precipitation Index (SPI) McKee et al.,
1993, which we use in this study. SPI is recommended by the WMO Hayes et al.,
2011 and widely in use e.g., Mo & Lyon, 2015; Ma et al., 2015; Yoon et al., 2012.
The index quantifies the standardized deficit (or surplus) of precipitation during a
predefined accumulation period. Here, we analyze SPI with an accumulation period
of 3 months to investigate the predictability of meteorological droughts. Analog to
ENSO-precipitation teleconnections, ENSO–SPI teleconnections are nowadays equally
well established for observations Manatsa et al., 2017; Hallack-Alegria et al., 2012 and
simulations Ma et al., 2015; Mo et al., 2009 over many regions. In summary, models
usually capture ENSO–precipitation and ENSO–SPI teleconnections properly.

Ma et al. (2015) evaluated the seasonal forecast skill of SPI in ENSO composites.
However, they focused on the relationship between seasonal drought predictability
and forecast skill. Among several sensitivities, they also illustrate this relationship
through ENSO composites. Their results indicate promising impacts of an active ENSO
state on the forecast skill of general SPI variability. Yet, their results suggest that the
impacts of active ENSO states on forecast skill of extremes, such as droughts, are less
robust. However, Ma et al. (2015) investigated forecast skill over southern China. With
this contribution, we want to investigate drought hindcast skill in northern South
America and southern North America. Both regions display more pronounced ENSO–
precipitation teleconnections than China Dai & Wigley, 2000. We attempt to expand
this expertise by investigating the predictive potential of ENSO–SPI teleconnections
during active ENSO states. Our investigation focuses on opportunities to increase the
lead time of reliable drought hindcast skill.
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A remaining key challenge for seasonal predictions of meteorological droughts is to
increase the lead time of skillful seasonal precipitation and drought index predictions
Wood et al., 2015. Several studies e.g., Mo & Lyon, 2015; Yuan & Wood, 2013; Quan
et al., 2012; Yoon et al., 2012 have demonstrated significant SPI hindcast skill up to lead
month 1 with an accumulation period of 3 months and/or up to lead month 3 with an
accumulation period of 6 months. In these studies, hindcast skill usually drops below
the significance threshold when the lead time exceeds half of SPI’s accumulation
period. This implies that significant prediction skill has been achieved only when
the precipitation output of the model accounts for not more than half of the data of
the predicted SPI, while the other half stems from observations. The predicted SPI
with an accumulation period of 3 (6) months employs observed precipitation in 2 (3)
months. On one hand, this is a valid approach to exploit the memory of the drought
index introduced by its accumulation period. On the other hand, using observations
in the calculation of the predicted drought index obscures the quantification of the
model’s predictive skill. That may lead to over-confidence in the performance of the
model because the actual skill might originate from observations. Depending on the
prediction time, these observations may impact the predicted drought index stronger
than predicted precipitation. To avoid such obscurities, our predicted drought index
is solely forecast based and does not use observations.

Consequently, we analyze drought hindcast skill using SPI with an accumulation
period of 3 months (SPI3M), which comprises lead months 2 to 4. Instead of relying
on a blend of observations and simulations in the predicted drought index, we
attempt to extend predictive skill through ENSO teleconnections. We investigate the
lagged impacts of an active ENSO state on winter (DJF) drought hindcast skill for
the period 1982-2013 in seasonal hindcasts of the Max-Planck-Institute Earth System
Model (MPI-ESM), which were initialized each start of November. The analysis
conditions our prediction on active ENSO states by exploring significant agreements
between two complementary analyses: hindcast skill composites of ENSO states, and
ENSO–precipitation correlations. In this process, we investigate the sensitivity of our
ENSO-state-conditioned prediction by considering different lead times of the ENSO
signal and determine which of those lead times maximizes ENSO-state-conditioned
drought hindcast skill in our analysis. To showcase the potential of ENSO-state
conditioning, we investigate the lead time 2-4 months using SPI with an accumulation
period of 3 months. With this investigation, we attempt to quadruple the time horizon
of skillful drought predictions.

b.2 data and methods

b.2.1 Data

Our seasonal prediction system Baehr et al., 2015; Bunzel et al., 2018; Pieper et al.,
2020c is based on MPI-ESM, which is also used in the Coupled Model Intercomparison
Project 5 (CMIP5). MPI-ESM couples general circulation components for the ocean
Jungclaus et al., 2013 and the atmosphere Stevens et al., 2013. Moreover, MPI-ESM
additionally contains subsystem components for terrestrial processes Hagemann &
Stacke, 2015 and the marine bio-geochemistry Ilyina et al., 2013. For this study the
model runs with 10 ensemble members in the same resolution as in CMIP5 – MPI-
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ESM-LR (low-resolution): T63 (approx. 1.875°x1.875°) with 47 vertical layers in the
atmosphere between the surface and 0.01 hPa, and GR15 (maximum 1.5°x1.5°) with
40 vertical layers in the ocean. Except for an extension of the simulation to cover the
period 1982-2013, the analyzed simulations are identical to the ensemble investigated
by Bunzel et al. (2018). In hindcasts, initialized each start of November, we evaluate
the precipitation output from December till February (lead months 2 to 4).

Observed monthly precipitation is obtained from the Global Precipitation Climatol-
ogy Project (GPCP). GPCP’s dataset combines observations and satellite precipitation
data into a 2.5°x2.5°global grid spanning 1979 to present Adler et al., 2003. To evaluate
our hindcasts against these observations, the precipitation output of the model is
interpolated to GPCP’s grid.

b.2.2 Methods

We calculate SPI3M McKee et al., 1993 for observations and simulations to evaluate
modeled against observed SPI3M timeseries. SPI timeseries ought to be normally
distributed and it is important to note that non-normally distributed SPI3M timeseries
would impair this evaluation process. Also, differences in the goodness-of-fit between
observations and simulations would undermine our evaluation process. Consequently,
a proper evaluation process ought to establish comparability between observed and
modeled SPI3M timeseries by maximizing their normality both individually as well as
concurrently. To ensure such comparability, we employ in this study the methodology
proposed by Pieper et al. (2020a), which uses the exponentiated Weibull distribution,
to compute SPI3M timeseries.

While analyzing these timeseries, we differentiate between two target regions that
display strong ENSO–precipitation teleconnections: the southern USA and northern
Mexico (henceforth simply referred to as North America), and northern South America
(henceforth simply referred to as South America).

To quantify the strength of the ENSO signal, we calculate an ENSO-index by
averaging SST anomalies, from the ERA-Interim reanalysis Dee et al., 2011, in the
Niño3.4 region (5°S-5°N, 120°W-170°W). El Niño and La Niña events, used in the
process of conditioning our prediction on active ENSO states, are identified analog
to NOAA Climate Prediction Center, based on a threshold of ±0.5°C in the 3-month
running mean Niño3.4-index (ONI) CPC, 2020.

We condition our prediction on active ENSO states by exploring significant agree-
ments between hindcast skill composites of active ENSO states and ENSO–precipitation
correlations. In this process, we calculate Brier-Skill-Scores (BSS) Murphy, 1973 and
Pearson correlations. BSS needs to distinguish between a drought and a non-drought
event to quantify the hindcast skill. For this differentiation a threshold is set in accor-
dance with WMO’s SPI User Guide WMO, 2012 to an SPI value of −1. Significances of
BSS (Pearson correlations) are computed with a one- (two-)sided 500-sample bootstrap
which is evaluated at the 5% significance level against the Brier-Score of a random
prediction that uses theoretical climatological occurrence probabilities to predict the
likelihood of drought and non-drought conditions (against the null-hypotheses that
the correlation is zero). We use well-known theoretical occurrence probabilities of the
standard normal distribution for this random prediction since Pieper et al. (2020a)
demonstrated the normality of the here employed calculation algorithm of SPI3M.
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Obtaining significant BSS hindcast skill in an ENSO composite analysis ensures
the quality of the model’s prediction. Attaining also significant observed correlations
in an ENSO–precipitation correlation analysis safeguards the afore ascertained qual-
ity of the model. Correlation and composite analyses are both linked to a sound,
well-understood physical mechanism and, thus, complement each other in our study.
Moreover, while the correlation analysis quantifies precipitation variations relative to
fluctuations in the signal, the composite analysis investigates the response of hindcast
skill of SPI to extremes in the signal. By exploring grid-cell-wise significant congru-
ences of both analyses, we establish the robustness of our investigation. Henceforth,
we refer to this procedure as conditioning our hindcast skill on ENSO states. Since
the hindcasts are initialized at the start of November, we consequently use the ENSO
information available by November to condition our hindcast skill.

b.3 enso-state-conditioned drought hindcast skill

In agreement with prior studies Mo & Lyon, 2015; Wood et al., 2015; Yoon et al.,
2012, BSS-assessed drought hindcast skill is poor for lead months 2 to 4 in climate
models such as MPI-ESM-LR almost everywhere around the globe (Fig B.1a). Still,
the best drought hindcast skill emerges in North and South America (black boxes
in Fig B.1a). In particular, those parts of North and South America, where observed
precipitation is strongly coupled to variations of the ENSO-index (Fig B.1b). Grid cells
that demonstrate comparable high hindcast skill concurrently show large correlation
values between the ENSO-index and precipitation (compare Fig B.1c with B.1d). The
more skillful the model’s prediction of droughts, the higher is the correlation value
between observed precipitation and ENSO-index. This co-occurrence affirms our
presumption that MPI-ESM-LR captures strong ENSO–precipitation teleconnections
in our target regions.

Confining our hindcast skill analysis to start years that exhibit La Niña (Fig B.1e)
or El Niño (Fig B.1f) conditions in ASO (at the initialization at the start of November)
substantially improves drought hindcast skill. However, some grid cells (e.g. in west-
ern South America, and East North Central USA) show significant BSS hindcast skill
in this composite analysis but weak ENSO–precipitation correlations. In those grid
cells, we cannot maintain the claim that ENSO–precipitation teleconnections depict
the physical basis for the skill improvement. Therefore, ENSO-state conditioning
safeguards our analysis against over-confidence. To condition our drought hindcast
skill on ENSO states, we highlight grid cells (Fig B.1g and B.1h) exhibiting both: sig-
nificant correlations between ENSO-index with precipitation (Fig B.1d) and significant
drought hindcast skill in the respective ENSO composite analysis (Fig B.1e and B.1f).
Thereby, we achieve reliable (significant in both analyses) ENSO-state-conditioned
drought hindcast skill (Fig B.1g and B.1h).

Because a specific ENSO state contributes to either drying or wettening of our
target regions, we separate our results into two cases. First, we obtain reliable SPI3M

hindcast skill during a region’s dry ENSO phase (indicated by brown grid cells in Fig
B.1g and B.1h). Second, we obtain reliable SPI3M hindcast skill during a region’s wet
ENSO phase (indicated by green grid cells in Fig B.1g and B.1h). Since we investigate
drought hindcast skill, we focus on the dry ENSO phase for the remainder of this
study.
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Figure B.1: The BSS-assessed skill of the model in predicting droughts at lead-months 2 to 4

and Pearson correlations between DJF precipitation and ASO ENSO-index on a global map
(a and b, respectively) and in our target regions (c and d, respectively). BSS for a composite
analysis which only considers years exhibiting La Niña (e) or El Niño (f) states present
in ASO. Dots indicate BSS values significantly greater than 0 (which translates to Brier-
Scores significantly greater than the ones of the random reference prediction) and Pearson
correlations that significantly differ from 0. Reliable hindcast skill during DJF achieved
through conditioning the prediction on La Niña (g) or El Niño (h) states in ASO (significant
correlations (d) that spatially coincide with significant BSS (e/f)). Colors indicate whether
reliable hindcast skill is obtained during the region’s wet (greenish) or dry (brownish) ENSO
phase.
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Next, we maximize the area of reliable drought hindcast skill during the dry ENSO
phase of our target regions. We maximize that area by examining its sensitivity to
the prescribed lag of the ENSO signal in our analysis. Instead of selecting composites
based on (and correlating DJF precipitation with) the ENSO signal in ASO, this
sensitivity analysis investigates the ENSO signal in an earlier season than ASO. In
this process, we identify that conditioning our drought hindcast skill on JJA-ENSO
states maximizes the area of each region’s reliable drought hindcast skill (the count
of brown grid cells in Fig B.1g and B.1h).

Figure B.2: Correlations between DJF precipitation and JJA ENSO-index over North America
(a) and South America (d). BSS for a composite analysis that only considers years exhibiting
La Niña (b) or El Niño (e) states present in JJA. Dots indicate again BSS (Pearson correlations)
significantly greater than (different from) 0. Reliable hindcast skill during DJF achieved
through conditioning the prediction on La Niña (c) and El Niño (f) states present in JJA.

In North America (Fig B.2a - c) and South America (Fig B.2d - f), ENSO-index
variability imprints similar during JJA as during ASO on observed DJF precipitation
(compare Fig B.2a and B.2d against Fig B.1d). This result agrees with the lag identified
by other studies Redmond & Koch, 1991; Harshburger et al., 2002. Yet, when an ENSO
event is present in the preceding boreal summer (JJA), MPI-ESM-LR captures ENSO–
precipitation teleconnections better (see next paragraph). As a result of exploiting
this lagged relationship, the count of grid cells showing significant BSS drought
hindcast skill increases in Fig B.2 relative to Fig B.1 by 60% (42%) in North (South)
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America. Consequently, also the count of grid cells in which we achieve reliable
drought hindcast skill through ENSO-state conditioning increases in Fig B.2 relative
to Fig B.1 by 44% and 46% in North- and South America, respectively. Consequently,
ENSO-state conditioning leads to reliable drought hindcast skill for lead months 2 to
4 in large parts of our target regions during their respective dry ENSO phases.

Illustrating why MPI-ESM-LR represents ENSO–precipitation teleconnections bet-
ter, when they are present in JJA than those present in ASO, finalizes our results.
Timeseries demonstrate that active ENSO events in JJA develop a stronger ENSO
signal than active ENSO events in ASO. This stronger ENSO signal leads, via stronger
ENSO–precipitation teleconnections, to a more pronounced precipitation signal in
observations. MPI-ESM-LR captures this stronger signal easier than weaker signals,
stemming from active ENSO events in ASO. Consequently, MPI-ESM-LR represents
ENSO-precipitation teleconnections better when they are present in JJA than those
only present in ASO.

Figure B.3: ENSO-index during JJA (a) and ASO (d). DJF SPI averaged and standardized over
the brownish colored grid points in Fig B.2c (b), B.2f (c), B.1g (e), and B.1h (f). Observations
are depicted by solid lines, while the ensemble mean is indicated by dashed lines. In JJA, the
Pearson correlation between ENSO-index and observations (simulations) amounts to -0.67

(-0.7) in South and 0.56 (0.7) in North America, while the correlation between the ensemble
mean and observations is 0.86 and 0.79 in South and North America, respectively. In ASO,
the correlation between ENSO-index and observations (simulations) amounts to -0.75 (-0.77)
in South and 0.57 (0.73) in North America, while the correlation between the ensemble mean
and observations is 0.83 and 0.77 in South and North America, respectively.

Between 1983-2013, La Niña and El Niño events observable in JJA became the
strongest events in ASO. In contrast, comparable weak ASO events developed later
than JJA (compare Fig B.3a against B.3d). These comparable weak events, that de-
veloped in between JJA and ASO, often coincided with ordinary drought-prone
conditions (SPI values close to −1 in Fig B.3b and B.3c). The classification of these
ordinary drought-prone conditions as drought or non-drought sensitively depends on
SPI’s threshold used by BSS. Such threshold sensitivity is highly unfavorable for any
model tasked with the demonstration of BSS-assessed predictive skill. Consequently,
omitting these comparably weak events from our analysis maximizes the area of
reliable drought hindcast skill as seen before. As a result of omitting these weak
events, SPI’s DJF ensemble mean prediction demonstrates a better agreement with
observations during the remaining stronger events (compare highlighted years in Fig
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B.3b and B.3c against B.3e and B.3f). This improved agreement during strong events
is apparent e.g. in North America during the years 1999, 2000, and 2011 and in South
America during the years 1983, 1992, 1998. During these years also the most intense
droughts occurred in both regions, coinciding with particularly strong La Niña or El
Niño events. The model seems to skillfully capture distinct teleconnections during
these strong events. Yet, these distinct teleconnections may still vary temporally and
do not necessarily cause droughts see also Patricola et al., 2020. These variations are
also captured by the model. The model correctly predicts normal conditions e.g. in
South America during the strong El Niño event of 1988 or in North America during
the phase-out of a strong La Niña event in 1990.

b.4 discussion

ENSO-state conditioning reliably improves drought hindcast skill in MPI-ESM-LR over
North and South America during their respective dry ENSO phases. For ENSO-state
conditioning to improve drought hindcast skill, strong, large-scale ENSO–precipitation
teleconnections need to be present. We confirm their existence and relevance through
significant correlations between local precipitation and a lagged ENSO-index. More-
over, the forecast system needs to capture these ENSO–precipitation teleconnections.
We ascertain this ability through significant drought hindcast skill in the composite
analysis. ENSO-state conditioning classifies this drought hindcast skill as reliable only
in those grid cells that concurrently also display significant correlations.

We condition our prediction on the state of ENSO in two different seasons (ASO and
JJA). Depending on the season, on which we condition, the drought prediction of MPI-
ESM-LR exhibits different strengths. Since La Niña and El Niño events generally occur
more often in ASO (7 and 10 times in between 1983-2013, respectively) than in JJA (5
and 6 times, respectively), MPI-ESM-LR demonstrates reliable drought predictions
more often when they are ENSO-state-conditioned on ASO-ENSO events. Yet, when
active ENSO events persist in JJA, they usually cause more distinct teleconnections
that cover a larger area. Therefore, MPI-ESM-LR captures the teleconnections of these
stronger events (which are detectable in JJA) in more grid cells than the teleconnections
of the weaker events (which are only detectable in ASO).

This explanation agrees with previous studies Redmond & Koch, 1991; Harshburger
et al., 2002 and with NOAA Climate Prediction Center’s definition of an ENSO event: 5

consecutive overlapping seasons of ±0.5°C in the 3-month running mean Niño3.4-
index (ONI) CPC, 2020. Active ENSO events detected at initialization in ASO may
demonstrate an exceedance of this threshold only in 4 consecutive overlapping seasons
by our prediction time in DJF. Since ENSO events generally peak around December,
events present in JJA usually strengthen over the following months. Those events,
present in JJA, usually demonstrate an exceedance of the threshold in at least 6

consecutive overlapping seasons by DJF, our prediction time. In the time-period
analyzed here, we identify a single exception to this pattern in 1990. In 1990, one La
Niña event was still present in JJA, while a neutral ENSO state emerged by ASO later
that year. Still, this La Niña event persisted for more than 5 consecutive overlapping
seasons before the time of our prediction in DJF. According to previous studies, the
imprint of this La Niña event on precipitation over the American continent should
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be notable during our prediction time in DJF Redmond & Koch, 1991; Harshburger
et al., 2002.

We also checked for ENSO-state-conditioned drought hindcast skill outside of
our target regions. Elsewhere in the world, ENSO-state conditioning only leads in
single, scattered grid cells to reliable drought hindcast skill during ENSO’s dry phase
(not shown). In MPI-ESM-LR, ENSO-state conditioning improves drought hindcast
skill only in the investigated target regions. This indicates a plausible reason for our
drought hindcast skill to improve stronger for longer lead times than Ma et al. (2015)
were able to identify over south China during an active ENSO.

There appears to be little scope to extend ENSO-state conditioning to other regions
that are characterized by strong ENSO–precipitation teleconnections with MPI-ESM-
LR. MPI-ESM-LR seems to insufficiently capture these teleconnections elsewhere.
Aside, there could be scope to employ ENSO-state conditioning in a similar manner,
as demonstrated here, to improve the hindcast skill of surplus precipitation extremes
(by suitably adapting the BSS threshold).

Our seasonal hindcasts start – as usually with the satellite era – in 1982 spanning
31 years. The composite analysis, which considers only years exhibiting a certain
ENSO state, further reduces our dataset to 5 to 6 independent years which arguably
constitutes a scarce database. This issue is partially mitigated by the fact that BSS
evaluates the entire probabilistic ensemble space of the prediction. Since our ensemble
space is spanned by 10 different ensemble members, we rely on at least 50 to 60 events
for our BSS-evaluation. Yet, an increasing ensemble size cannot arbitrarily compensate
for a limited temporal length of dynamical seasonal hindcasts, because different
ensemble members are not completely independent of each other. Thus, the problem
of a scarce database would be further exacerbated if we had e.g. analyzed different
ENSO flavors. Different ENSO flavors are certainly promising to capture variations in
ENSO–precipitation teleconnections. However, such an analysis is not feasible with
current dynamical seasonal hindcasts initialized with satellite observations.

One way to alleviate the issue of statistical reliability is to decrease the SPI threshold
that BSS uses to classify drought conditions. The threshold we use here is disputed
within the literature. Svoboda et al. (2002) proposed to identify drought conditions
in the US Drought Monitor by an SPI threshold of −0.8 – rather than −1, as used in
this study. On one hand, a lower absolute value of this threshold would increase the
number of (modeled and observed) droughts and would thereby increase statistical
reliability. On the other hand, a lower absolute value of that threshold would result in
a reduced extremity of the analyzed droughts. Disentangling these two competing
effects is difficult, and has to the authors’ best knowledge not been investigated up to
now.

While GPCP’s precipitation data set is generally reliable, estimating South American
precipitation is principally delicate. Observational datasets are notably sparse in South
America. Consequently, uncertainties might be too large to reliably classify droughts
Mo & Lyon, 2015. Despite these uncertainties, monthly precipitation analyses remain
one of our most powerful tools for the task at hand.
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b.5 conclusions

This study investigates drought hindcast skill of DJF SPI3M, which comprises lead
months 2 to 4, in an initialized MPI-ESM seasonal hindcast ensemble. The evaluation
process of SPI hindcasts usually combines predicted and observed precipitation. Such
a combination artificially generates predictive skill. In contrast, our evaluation strictly
separates simulations and observations and, thereby, quantifies genuine hindcast skill
of the forecast system. To demonstrate reliable drought hindcast skill despite this
more challenging evaluation process, we exploit well-known ENSO–precipitation
teleconnections. During ENSO’s dry phase – when skillful drought predictions are
particularly valuable –, we achieve reliable drought hindcast skill up to 4 lead months
ahead with SPI3M in DJF. When the dry ENSO phase is already present in the preced-
ing JJA, the area of reliable drought hindcast skill covers large parts of northern South
America and southern North America. Ultimately, this study reveals the potential of
ENSO-state conditioning in uncovering the predictive potential of dynamical models
by exploiting ENSO–precipitation teleconnections. That revelation might excite further
progress towards reliable and timely drought warnings.
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