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especially Martin Š́ıcho whose work has been so integral to my research. Thanks

also to Anya, Conrad, Nils, and Anke for the chance to take enjoyable breaks from

my thesis topic to explore and contribute to their interesting research topics.

Additionally, many thanks to Neann, though we did not have the chance to

collaborate directly. I really appreciate our conversations about career goals and

life, as well as the social support during the lockdown.

For the funding of my final year of work on this dissertation, I would like to

thank the Zentrale Ausschuss für Nachwuchsförderung of Universität Hamburg for

granting me an Abschlussstipendium.

I would also like to thank Prof. Dr. Gerhard Wolber for reviewing this thesis.

In addition, I am grateful to Neann Mathai, Jiayi Kong, and Conrad Stork for

each proofreading parts of this dissertation.

Finally, many thanks to my family for their support throughout my entire life

and educational journey. In particular, a very special thanks to my sister Alisa for

the incredible emotional support, encouragement, and life advice over the past few

years.

i



ii



Abstract

Metabolism plays an important role in the e↵ect that foreign compounds have

on the human body. The consideration of xenobiotic metabolism is therefore vital

for the development of safe and e↵ective drugs, as well as other compounds such as

cosmetics and agrochemicals. Computational approaches can aid in this endeavor

by predicting how xenobiotics will be metabolized.

This dissertation focuses on the development of computational methods to

predict metabolically labile atom positions, also known as sites of metabolism

(SoMs), and to predict the chemical structures of the metabolites.

In the context of SoM prediction, this dissertation presents an exploration of

the usefulness of molecular alignment as a basis for predicting cytochrome P450

(CYP) enzyme regioselectivity. This alignment-based approach was evaluated by

considering the proximity of the SoMs of the aligned molecules in terms of three-

dimensional (3D) distance. It was then possible to further improve the performance

of the alignment-based approach by adding a reactivity prediction component to

the method.

For metabolite structure prediction, the use of predicted SoMs as a way to

address the common problem of an overabundance of predicted metabolites was

investigated. Initially, this exploration centered on CYP-mediated metabolism,

for which a set of reaction rules was developed based on the scientific literature

on CYP-mediated metabolism. Two separate approaches to incorporating SoM

prediction were examined: using the predicted SoMs as a hard filter to reduce

the number of predicted metabolites and using the predicted SoM probabilities

in order to score the predicted metabolites. A scoring approach that combined

the predicted SoM probabilities with a binary distinction between common and

uncommon CYP-mediated reaction types was found to be e↵ective at ranking the

predicted metabolites. These methods were implemented in a tool called GLORY.

Following the development of GLORY, the concept of using predicted SoM

probabilities to score the predicted metabolites was further developed and extended

to cover both phase I and phase II metabolism. The extended version of the method,
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called GLORYx, required additional reaction rules to cover non-CYP metabolic

reactions as well as an investigation of the e↵ect of di↵erent SoM prediction models

on GLORYx’s ability to rank the predicted metabolites. An interesting finding

was that this ranking was very di�cult using the general phase II SoM prediction

model, making it necessary to use individual reaction type-specific phase II SoM

models for scoring the predicted phase II metabolites.

Both GLORY and GLORYx have been made publicly available for academic

research, via a web server and as an open-source software package. The datasets

compiled for the development and the validation of the methods developed over the

course of this dissertation have also been made publicly available. These datasets

include but are not limited to manually curated test datasets of CYP as well as

phase I and phase II metabolite data.
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Zusammenfassung

Metabolismus spielt eine wichtige Rolle in der Wirkung körperfremder Sto↵e auf

den menschlichen Organismus. Die Berücksichtigung des xenobiotischen Metabo-

lismus ist daher von entscheidender Bedeutung für die Entwicklung sicherer und

wirksamer Arzneimittel sowie anderer Chemikalien, wie zum Beispiel Kosmetika

und Pestizide. Computerbasierte Methoden können hierbei durch Vorhersagen des

Metabolismus von Xenobiotika helfen.

Diese Dissertation beschäftigt sich mit der Entwicklung computerbasierter

Methoden zur Vorhersage metabolisch labiler Atompositionen (SoMs) in Molekülen

sowie zur Vorhersage der chemischen Strukturen von Metaboliten.

Im Kontext der SoM-Vorhersage wird in dieser Dissertation das Potential mo-

lekularer Überlagerungs-Methoden für die Vorhersage der Regioselektivität von

Cytochrom P450 (CYP) Enzymen untersucht. Der auf molekulkare Übereinander-

lagerungen basierte Ansatz wurde mittels Distanzberechnung der SoMs überein-

andergelagerter Molekülpaare im dreidimensionalen Raum ausgewertet. Aufbauend

auf den Erkenntnissen aus dieser Evaluierung konnte die Performanz des compu-

terbasierten Ansatzes durch die Implementierung einer Reaktivitätskomponente

weiter verbessert werden.

Für die Vorhersage von Metabolitstrukturen wurde die Verwendung vorher-

gesagter SoMs als eine Strategie zur Senkung der generell hohen Anzahl vorher-

gesagter Metabolite untersucht. Anfangs konzentrierte sich diese Untersuchung

auf die Vorhersage des CYP-mediierten Metabolismus, für welche ein Set von

Reaktionsregeln aus der wissenschaftlichen Literatur abgeleitet wurde. Konkret

wurden zwei unterschiedliche Herangehensweisen untersucht. Im ersten dieser bei-

den Ansätze wurden die vorhergesagten SoMs als harter Filter für die Reduktion der

vorhergesagten Metabolite verwendet. Im zweiten Ansatz wurden die berechneten

Wahrscheinlichkeiten für vorhergesagte SoMs in Kombination mit einer binären

Klassifikation von CYP-Reaktionstypen in “verbreitete” und “seltene” Typen ver-

wendet, um eine Priorisierung der vorhergesagten Metabolite zu erreichen. Der

letztere Ansatz hat sich dabei als besonders e↵ektiv herausgestellt. Beide Methoden
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wurden in der Software “GLORY” implementiert.

Aufbauend auf GLORY wurde dieser kombinierte Ansatz weiterentwickelt, um

auch den gesamten Phase I und Phase II Metabolismus abzudecken. Die erweiterte

Methode, genannt GLORYx, erforderte die Entwicklung eines stark erweiterten

Satzes an Reaktionsregeln, um auch nicht-CYP-mediierte Reaktionen abzudecken.

Weiters wurde auch eine Untersuchung der Performanz und Anwendbarkeit ver-

schiedener SoM Vorhersagemodelle notwendig, um ihren Einfluss auf die Metabolit-

Reihung verstehen und optimieren zu können. Im Zuge dieser Analysen stell-

te sich die Reihung von Phase-II-Metaboliten basierend auf den vorhergesagten

SoM-Wahrscheinlichkeiten als besonders herausfordernd dar. Dies machte die

Entwicklung und Anwendung individueller SoM-Modelle für die einzelnen Phase-II

Reaktionstypen notwendig.

GLORY und GLORYx stehen der akademischen Forschung sowohl in Form

eines Webservers als auch eines Open-Source Softwarepakets frei zur Verfügung.

Zudem wurden auch die im Rahmen der Entwicklung dieser Methoden aufwendig

zusammengestellten Datensätze publiziert.
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Introduction

Humans are constantly surrounded by foreign compounds, now more than ever.

These foreign compounds range from man-made to microorganism-made, and we

are regularly exposed to them either on purpose or accidentally. These substances

include drugs, cosmetics, food additives, household products, industrial products

and byproducts, agrochemicals, mycotoxins, and other environmental chemicals. The

body’s process for dealing with this phenomenon is called xenobiotic metabolism,

which refers to the chemical reactions taking place in the body that modify foreign

compounds. The overall goal of the body in this regard is to remove the foreign

compounds. Along the way, the compounds are transformed into di↵erent molecules,

called metabolites.

When investigating the e↵ects of a chemical compound on humans, an exami-

nation of the interactions of the compound itself with various components of the

body does not provide a complete picture of the overall e↵ect of the compound.

Metabolism causes the formation of metabolites that have di↵erent physicochemical

and pharmacological properties compared to the original molecule [1], and the

metabolites often go on to interact with the body before being eliminated, for

example prolonging the activity of a drug, being the primary cause of a drug’s

activity, or causing o↵-target e↵ects [2–5]. These changes in activity, combined with

the observation that metabolism is the main clearance pathway for the majority of

all drugs [6], mean that metabolism a↵ects the half-life, oral bioavailability, and

therefore proper dosing of drugs [6].

Although metabolism generally promotes the elimination of foreign compounds

from the body, there can also be unfortunate e↵ects when the metabolites turn out

to be toxic or reactive [2, 7]. Failure to recognize the e↵ects of a drug’s metabolism

can be devastating; drugs such as nefazodone have been withdrawn from the market

due to fatal toxicity caused by a metabolite [8, 9]. In fact, a positive correlation has

been found between adverse drug reactions (ADRs) and the formation of reactive

metabolites of said drugs [10]. In the case of hepatotoxicity in particular, metabolism
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Chapter 1. Introduction

to reactive metabolites has been found to occur, either in vivo or in vitro, for most

hepatotoxic drugs [11]. Problematic reactive metabolites are typically electrophiles

that can bind covalently to proteins and nucleic acids, thereby disrupting cellular

functions [12] and potentially leading to pathological e↵ects such as carcinogenesis

or immunological hypersensitivity [2, 13].

Even drugs that are commonly used today may have toxic metabolites. One

such drug with a known toxic metabolite is acetaminophen, for which proper dosing

is important in order to prevent the toxic metabolite from building up in the

body [11]. In addition to dose-dependent toxicity, idiosyncratic toxicity is a problem

that is often presumed or known to be caused by toxic or reactive metabolites [7]. It

remains unclear exactly what fraction of drug toxicity actually involves metabolism,

but it is clear that metabolism does play a role [14]. A further source of complexity

is that genetic variations in the expression and function of metabolic enzymes can

also lead to increased toxicity or o↵-target e↵ects of a drug, as well as to lower

e�cacy, depending on whether the enzyme activity is decreased or increased [15,

16]. Metabolism can also play a role in drug-drug, drug-food, and drug-herbal

interactions. These interactions can cause slowed metabolism due to competitive

inhibition, such as the interaction of terfenadine and ketoconazole, or can increase

the rate of metabolism of a drug, such as is the case for St. John’s wort and its e↵ect

on cytochrome P450 (CYP) 3A4 [17]. Further, the metabolites themselves may

cause inhibition-based drug-drug interactions (DDIs), though this risk is considered

low [18]. All told, the e↵ects of metabolism should be taken into account during

the drug development process in order to strive towards safety and e�cacy.

1.1 Enzymes and Reactions Involved in

Xenobiotic Metabolism

Traditionally, xenobiotic metabolism is separated into two phases: phase I and

phase II [19]. Phase I metabolism encompasses oxidation, reduction, and hydrolysis

reactions that typically form or unmask polar functional groups and thus often

result in a metabolite that is more polar than its parent molecule. The more polar

the molecule, the more readily excretable it tends to be. Phase II metabolism also
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Chapter 1. Introduction

generally improves the hydrophilicity and excretability of the compound, but it

does so through conjugation reactions.

Though the phase I-phase II nomenclature did arise from the general observed

order of metabolic transformations, the nomenclature does not mean that any given

molecule must undergo a phase I reaction before it can undergo a phase II reaction

[19]. Many drugs undergo metabolism via multiple metabolism pathways [20].

Overall though, the ratio of phase II reactions to phase I reactions increases over

the course of a sequence of metabolic reactions [21].

An analysis of 1171 xenobiotic compounds and their 6767 metabolites by Testa

et al. [21] found that phase I metabolism accounts for approximately 70% of all

metabolites and phase II metabolism for approximately 30%. Broken down further,

the percentages corresponded to 57% of metabolites formed by oxidation-reduction

(redox), 10% by hydrolysis, and 33% by conjugation reactions [21].

Both metabolism phases are relevant to the di�culties associated with metabolism

discussed above. Reactions from both phases can lead to reactive and/or toxic

metabolites [22]. For DDIs as well, phase I and phase II enzymes can be involved,

though the CYP enzyme superfamily is generally considered the main perpetra-

tor [17]. Further, genetic variations a↵ecting drug metabolism have been found in

many di↵erent enzymes across both phase I and phase II metabolism [23–26]. The

following subsections discuss each phase of metabolism and the enzyme families

involved in more detail.

A xenobiotic that enters the human body may undergo multiple metabolic

reactions catalyzed by di↵erent metabolizing enzymes, and each metabolite may

undergo subsequent further metabolic reactions. The result of this process is

referred to as the metabolic tree, and the successive metabolic reactions result in

successive generations of metabolites. Interestingly, it has been found that reactive

metabolites are nearly just as likely to be formed at any of the first three generations

of metabolites [21]. The percentages of metabolites that are formed by conjugation

reactions increase after the first generation, while the percentage of redox-formed

metabolites decreases [21]. On the other hand, the percentage of metabolites formed

by hydrolysis reactions does not change much throughout the first few generations

of metabolites [21].
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Chapter 1. Introduction

1.1.1 Phase I Metabolism

The most well-known phase I enzyme family is the CYP enzyme family, which

metabolizes around 75% of the small molecule drugs that undergo enzymatic

metabolism [27] and accounts for approximately 40% of all metabolites [21]. This

enzyme family is described in more detail in the subsection below. Although CYPs

generally receive much attention, there are a number of other enzymes that also

play important roles in phase I metabolism.

Oxidation and reduction reactions are two of the three types of reactions

that make up phase I metabolism. Some families of metabolic enzymes, including

CYPs [28], are able to catalyze both oxidation and reduction reactions, so oxidation

and reduction are combined here for the purpose of describing the relevant enzyme

families. In addition to CYPs, these types of reactions are catalyzed by oxidases,

dehydrogenases, reductases, and peroxidases.

Flavin-containing monooxygenases (FMOs) catalyze oxidation reactions that

oxygenate compounds containing a nucleophilic heteroatom such as nitrogen, sul-

fur, and phosphorus [29]. There are five human FMOs, with FMO3 typically

being considered the most important FMO isozyme in the human liver for drug

metabolism [30].

Monoamine oxidases (MAOs) are flavin-containing oxidoreductases that catalyze

the oxidative deamination and dehydrogenation of amines [29]. In humans, two

MAO enzymes have been identified: MAO-A and MAO-B [29].

Aldehyde oxidase (AOX) and xanthine oxidase (XO) are molybdoflavoenzymes

that can catalyze both oxidation and reduction reactions [29]. AOX acts primarily

on aldehydes, catalyzing their oxidation to carboxylic acids, whereas XO acts mainly

on purines and pyrimidines [29]. AOX is not limited to substrates containing an

aldehyde functionality, however, and can also oxidize a variety of other substrates,

including aromatic heterocycles [31]. In terms of reduction, AOX and XO can

catalyze the reduction of S- and N- functional groups [29]. AOX has only one

human isoform, namely AOX1 [32].

Two main types of dehydrogenases involved in phase I metabolism are alcohol

dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). ADHs catalyze

the reversible oxidation of alcohols to aldehydes or ketones, while ALDHs oxidize

aldehydes to carboxylic acids [29].

4



Chapter 1. Introduction

Reductases include aldo-keto reductases (AKRs) and quinone reductases (QRs)

[29]. AKRs reduce aldehydes and ketones to alcohols, whereas QRs reduce quinones

to hydroquinones [29].

A literature analysis by Rendic and Guengerich published in 2015 found that

CYPs are responsible for 95% of metabolic redox reactions, with this percentage at

96% specifically for drugs [33]. The other 4-5% of redox reactions were carried out

by other oxidoreductase enzymes, of which this study considered only FMO, AKR

and MAO.

Hydrolysis reactions are the third type of phase I metabolic reaction. These

reactions are catalyzed by hydrolases, such as epoxide hydrolases, peptidases,

amidases, and esterases. Epoxide hydrolases are a category of hydrolases that

catalyze the hydration of epoxides to 1,2-diols [29]. An example of a peptidase

is cathepsin B, which has been found to catalyze the hydrolysis of prodrugs and

antibody-drug conjugates [32]. The majority of the hydrolysis occurring in the

human liver and small intestine has been found to be catalyzed by carboxylesterase

(CES) enzymes, in particular human carboxylesterase 1 (hCE1) and human car-

boxylesterase 2 (hCE2) [34]. CESs catalyze the hydrolysis of esters, thioesters,

amides, and carbamates [35]. CESs play an especially vital role in the metabolism

of many cardiovascular drugs, in particular the ester prodrugs that are hydrolyzed

by CESs to the active metabolite [35].

The above-mentioned analysis by Testa et al. found that hydrolases account

for 7% of all metabolites [21]. In addition, a study of the 22 prodrugs approved by

the United States (U.S.) Food and Drug Administration (FDA) between 2006 and

2015 found that in 86.4% of cases, it was hydrolases that were responsible for the

bioactivation of the prodrug [36].

CYPs

There has been much focus on CYPs in the context of drug development due to

their prominence as drug-metabolizing enzymes, including for their well-known

involvement in DDIs [37] and in the formation of reactive metabolites [21], which

are of particular concern for ADRs. As mentioned at the beginning of this section,

published analyses of the scientific literature on drugs and other xenobiotics have

also found that CYPs are the most prolific enzyme family in terms of the percentage
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Chapter 1. Introduction

of drugs metabolized and the number of metabolites formed. The above-mentioned

2012 study by Testa et al. considered the metabolites of over 1000 compounds,

including drugs and other xenobiotics, and found that 40% of the metabolites were

formed by CYPs [21]. A 2016 analysis by M. A. Cerny examined the metabolism

of 125 of the 221 small-molecule drugs approved by the FDA between 2006 and

2015, excluding prodrugs, imaging agents, drugs administered neither orally nor

intravenously, and drugs without available ADME data [36]. Of these drugs, 44.8%

were found to be metabolized only by CYPs, with a further 16.8% metabolized

by a combination of CYPs and non-CYPs. Only 20.8% of these drugs were found

to be metabolized only by non-CYPs, as 17.6% had no major metabolites. This

means that approximately 75% of the drugs that are cleared by metabolism are

metabolized by CYPs. These results are in line with the earlier analysis by Williams

et al. of the top 200 most prescribed drugs in the U.S. in 2002, which had found

that approximately two-thirds of the drugs cleared by metabolism were metabolized

by CYPs [20].

The 2012 Testa et al. study also analyzed which reaction types resulted in toxic

and chemically reactive metabolites [21]. In total, 7% of the metabolites were found

to be toxic and/or reactive. Of these, 41% are the result of oxidation to quinones,

15% are formed by sp2- and sp-carbon oxidation, 9.5% by oxidation of sulfur atoms,

8.2% by oxidation of NH or NOH groups, and 6.3% by sp3-carbon oxidation. Each

of these reaction types can be catalyzed by CYPs [21]. In total, this amounts to

80% of toxic and/or reactive metabolites that are potentially formed by CYPs.

In addition to these potentially problematic reaction types, CYPs mediate a

wide variety of reactions. Common CYP reaction types include hydroxylation, N -

dealkylation, and heteroatom oxygenation [28]. More unusual reaction types consist

of reductions, oxidative ester cleavage, and ring formation and expansions [28].

There is little, if any, variability in the ability of the di↵erent CYP isozymes to

catalyze the various reaction types, because all CYPs share the same chemical

mechanism [38]. Instead, the main variability in the di↵erent CYP isozymes is in

the substrates they can bind.

Of the 57 known human CYP enzymes, around half are associated with xenobi-

otic metabolism [39] and only a handful are considered especially important for

xenobiotic metabolism [27]. The CYP isozymes relevant for xenobiotic metabolism

belong mainly to the CYP1, CYP2, and CYP3 subfamilies [40]. The others are
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Chapter 1. Introduction

primarily involved in endogenous metabolism, though drug-metabolizing isozymes

can also play a role in endogenous metabolism [39].

The CYP isozymes share a common overall fold and mechanism of action, with

the active site containing a heme group that plays a direct role in the catalytic

cycle [41]. At the same time, the binding pockets of the CYP isozymes vary widely

in terms of their volume, shape, flexibility, and the substrates they can bind [41, 42].

The sizes of the active sites of the CYP isozymes involved in xenobiotic metabolism

range from a volume of 260 Å2 for CYP2B6 to 1438 Å2 for CYP3A4 [40]. This

variety in the active sites allows CYPs to bind and mediate reactions of highly

diverse substrates.

The most relevant CYP isozymes for xenobiotic metabolism are thought to be

3A4, 3A5, 2D6, 2C8, 2C9, 2C19, 1A1, 2B6, and 2E1 [6], with 1A2, 2C9, 2C19, 2D6,

and 3A4 considered to be of the greatest importance to human drug metabolism [17].

Most of the main CYP isozymes involved in xenobiotic metabolism are a↵ected

by genetic polymorphism and have known inducers and inhibitors [43]. Hence it

is important to be aware of the roles of the di↵erent CYP isozymes during drug

development in order to prevent unanticipated e↵ects caused by polymorphisms

or DDIs combined with too heavy a reliance on one CYP isozyme for clearance.

The above-mentioned literature analysis by Rendic and Guengerich published in

2015 examined the contributions of di↵erent CYP isozymes to the metabolism of

all chemicals, including a specific analysis for drugs [33]. There were 860 drugs

considered in the analysis, including both in-development and marketed drugs,

and approximately 4000 metabolic reactions. Specifically for drugs, Rendic and

Guengerich found that CYP3A4 contributed the most to CYP-mediated metabolism,

at 27%, followed by 2D6 at 13% and 2C9 at 10%. The next highest percentages

belonged to 2C19 and 1A2, each with 9% [33].

1.1.2 Phase II Metabolism

Nearly 90% of all phase II metabolites are formed by five main enzyme fami-

lies: UDP-glucuronosyltransferases (UGTs), glutathione S-transferases (GSTs),

sulfotransferases (SULTs), methyltransferases (MTs), and N-acetyltransferases

(NATs) [21]. All of these transferases carry out conjugation reactions: glucuronida-
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Chapter 1. Introduction

tion, glutathione (GSH) conjugation, sulfonation, methylation, and acetylation,

respectively. Other phase II reactions include amino acid conjugation, such as

glycination, and phosphorylation [21]. Even more unusual phase II reactions have

been attributed to enzymes such as ADP-ribosyltransferase, which is typically

involved in other cellular processes [32].

Glucuronidation by the UGT enzyme family is generally considered the most

important phase II metabolic pathway [44]. UGT-catalyzed glucuronidation reac-

tions occur at a nucleophilic atom such as O, N or S, forming a �-D-glucuronide [45].

In humans, there are at least 22 di↵erent UGTs from four di↵erent families [45].

Isozymes 1A1, 1A3, 1A4, 1A6, 1A9, 2B7, and 2B15 are considered the most impor-

tant UGTs for metabolizing drugs in the human liver, while several other UGTs

(1A7, 1A8, and 1A10) are found primarily in the gastrointestinal tract [45]. A review

by Williams et al. of the top 200 drugs prescribed in the United States in 2002

found that 14 of those drugs have glucuronidation listed as a clearance mecha-

nism [20]. This same study by Williams et al. found that of the drugs metabolized

by UGTs, UGT2B7 was the most commonly listed isozyme, accounting for 35% of

glucuronidation of drugs, followed by UGT1A4 at 20% and UGT1A1 at 15% [20].

In addition to catalyzing GSH conjugation reactions, GSTs can catalyze other

non-conjugation reactions ranging from reduction reactions to isomerization re-

actions [46]. In the context of phase II metabolism, only the GSH conjugation

reactions are typically considered. There are two known GST superfamilies, one

of which is involved in xenobiotic metabolism and the other of which is primarily

involved in arachidonic acid metabolism [45]. Over 20 GSTs have been identified in

humans [47]. Though GSH conjugation is generally a detoxification reaction, there

are a number of cases in which the GSH conjugates are either themselves reactive

or undergo further modifications that lead to reactive molecules [48].

SULTs catalyze sulfonate conjugation at oxygen, nitrogen and sulfur acceptor

groups [45]. Four SULT families have been found in humans [45]. As is the case for

other phase II enzyme families, SULTS can end up forming reactive metabolites

despite generally being considered detoxifying metabolic enzymes [49].

NATs catalyze the N-acetylation of arylamines and arylhydrazines as well as O-

acetylation ofN -hydroxyarylamines [29]. The O-acetylation ofN -hydroxyarylamines

to acetoxy esters is a bioactivation reaction that creates reactive metabolites [29].

In humans, there are two NAT isozymes: NAT1 and NAT2 [45].
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The two main MTs are thiopurine S-methyl transferase (TPMT) and catechol

O-methyl transferase (COMT) [45]. TPMT is known to S-methylate aromatic hetero-

cyclic sulfhydryl compounds, while COMT O-methylates catecholamines [45]. Other

MTs include nicotinamide N-methyltransferase (NNMT) and thiol methyltrans-

ferase (TMT) [29]. In most cases, methylation reactions result in more hydrophobic

metabolites rather than increasing hydrophilicity; however, there are exceptions

such as N-methylation of pyridine [29].

Of these five enzyme families, UGTs play the largest role in xenobiotic metabolism.

The 2012 study by Testa et al. found that UGTs account for 14% of all metabolites,

followed by GSTs and SULTs at 5.5% and 4.7%, respectively [21]. NATs and MTs

lead to only 1.5% and 2.1% of all metabolites, respectively, according to this same

study [21].

1.2 Predicting Xenobiotic Metabolism

Being able to make predictions about how a particular compound could be metabo-

lized o↵ers several key advantages. Knowledge of the potential metabolic pathways

can be used to design modifications to make a drug more metabolically stable

and decrease the chance of its having reactive metabolites, or to attempt to avoid

reliance on highly polymorphic metabolizing enzymes. Studying the metabolism of

a compound of interest either in vivo or in vitro is, however, a laborious process

that can be aided by computational techniques.

Metabolism of xenobiotics in humans is a highly complex system involving

many metabolizing enzymes, transporters, and various tissues in the body. There

are several main aspects that have been the focus of computational methods.

In particular, computational methods can be used to predict the metabolically

labile atom positions, or sites of metabolism (SoMs), which is also referred to as

predicting the regioselectivity of xenobiotic-metabolizing enzymes. The prediction

of the chemical structures of metabolites, i.e. the products of metabolic reactions, is

another promising area for computational methods to address. Further, quantitative

structure-activity relationship (QSAR) models have been developed to predict the

interaction of compounds of interest with particular metabolic enzymes, such as

9
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CYP isozymes, UGTs, and SULTS [42]. For CYPs in particular, predicting isozyme

specificity is of relevance in order to attempt to avoid the reliance on polymorphic

CYPs for the clearance of a drug or to aim at predicting and preventing DDIs [50].

As such, the prediction of CYP inhibition and regioselectivity is a popular goal [51].

With the aim of preventing DDIs, a number of approaches have been developed to

predict the inhibition and induction of key CYP isozymes [52].

There are two general categories of computational techniques for predicting xeno-

biotic metabolism: structure-based and ligand-based. Structure-based approaches

take protein structural information into account, in this case the structural infor-

mation about the specific metabolizing enzyme(s) of interest, including for example

the interactions between the ligand and the active site. Ligand-based approaches,

on the other hand, do not consider the protein structure and instead use compounds

whose metabolism is known in order to make predictions about the metabolism of

other molecules. This dissertation focuses on the ligand-based prediction of SoMs

and of the chemical structures of metabolites.

Computational methods to predict metabolism are usually based on experimental

data in one way or another, at least to test the methods. The source of much of

the experimental data upon which ligand-based methods for SoM and metabolite

prediction are based is from in vitro or in vivo studies in humans and other mammals.

The in vitro studies typically use liver microsomes, liver S9 fractions, or hepatocytes.

The identification of the metabolites is typically done using mass spectrometry

(MS), though nuclear magnetic resonance (NMR) may be used to elucidate the exact

structures of metabolites if the amount of material is su�cient [42]. Metabolite

identification (MetID) is not trivial [53], and in many cases the exact location of

a functional group, for example a hydroxyl group added via a metabolic reaction,

cannot be easily determined. This is another reason that computational prediction

of metabolites can be useful: the predictions can be compared to the MS data to

get a better idea of the exact structures of the experimentally found metabolites.

1.2.1 Regioselectivity Prediction

In general, successfully predicting SoMs is dependent upon taking into account two

distinct but synergistic aspects of the atoms in the molecule(s) in question [54].

10
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The first is reactivity, which represents the intrinsic ability of each atom to be

involved in a reaction. The second aspect is accessibility, which refers to whether

an atom is located at a position in the molecule that allows the atom to interact

with the metabolizing enzyme, either from a steric perspective or in terms of the

orientation of the molecule in the active site. In the case of CYPs, for example,

SoMs must be accessible to the heme. Many successful SoM prediction methods

take both reactivity and accessibility into account, at least implicitly [54].

There have been examples of structure-based methods to predict regioselectivity,

such as docking a molecule of interest into the binding pocket of a metabolic

enzyme, but such approaches are typically computationally expensive and therefore

most useful for examining individual substrate-enzyme interactions [54]. In terms

of ligand-based methods, the majority are based on techniques such quantum

mechanics, machine learning, and data mining [54].

Machine learning approaches in particular are relatively popular and quite

successful at predicting SoMs. Prominent machine learning-based SoM predictors

include XenoSite [55–57], SOMP [58], MetScore [59, 60], and the FAME tools [A4,

A8, 61]. For example, XenoSite, the successor of RS-Predictor [62], uses a variety

of descriptors with neural networks to predict SoMs for CYP-mediated metabolic

reactions [55]. The descriptors explored in XenoSite include quantum chemical,

reactivity, fingerprint similarity, and molecule-level descriptors [55]. XenoSite has

been extended to cover other enzyme families, such as UGTs [57], as well as to

include models focused on specific reaction types, for example to predict sites of

quinone formation [63]. The latest version is Rainbow XenoSite, which predicts

reaction types along with the SoMs for five main phase I reaction classes: stable

oxidation, unstable oxidation, dehydrogenation, hydrolysis, and reduction [56].

Our research group has developed the machine learning-based methods FAME 2

[A4] and FAME 3 [A8], which both use extra trees classifiers and two-dimensional

(2D) circular descriptors. FAME 2 predicts SoMs for CYP-mediated metabolic

reactions, and FAME 3 predicts SoMs for phase I and phase II metabolic reactions,

including separate models for phase I and phase II prediction. Both tools achieved

high performance on their test sets, both in terms of overall measures of SoMs

and non-SoMs being correctly predicted as well as measures of the ranks of the

predicted probabilities of atoms being SoMs.

In contrast to the above-mentioned machine learning methods, SMARTCyp [64–
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67] is a fragment-based method that uses a combination of a reactivity descriptor and

a 2D accessibility descriptor for each atom to predict CYP SoMs. The reactivity

descriptor represents the activation energy required for a reaction to occur at

the particular atom position, which is calculated by matching the atom to a

lookup table of energies computed using density functional theory (DFT). The

accessibility descriptor represents the distance of the atom from the 2D center of

the molecule. SMARTCyp is primarily based on reactivity, with the accessibility

component allowing slightly less reactive atoms to be given greater consideration

if they are potentially highly accessible to the CYP active site. In a later version

of SMARTCyp, a solvent-accessible surface area descriptor was added [65]. The

latest version, SMARTCyp 3.0, o↵ers a similarity feature that scores the matched

substructure according to how well it matches the molecule fragment that was the

basis for the DFT calculation [67].

The focus of many SoM prediction methods is on CYP-mediated metabolism or

on general phase I or phase II metabolism. However, some methods have also been

developed that focus on predicting the regioselectivity of certain specific non-CYP

metabolic enzymes [68]. For example, XenoSite UGT predicts SoMs for UGT-

mediated metabolism [57], MetaSite o↵ers AOX [69] and FMO3 [70] regioselectivity

prediction along with CYP regioselectivity prediction [71], and SOMP predicts

SoMs for UGT- as well as CYP-mediated metabolism [58].

Most of the approaches discussed so far are based on machine learning or other

descriptor-based methods. A di↵erent approach to SoM prediction was proposed

by Sykes et al. [72]. In this study, the molecule flurbiprofen, in its CYP2C9-bound

conformation, was used as a template for aligning 69 other CYP2C9 substrates.

The authors found that 60% of the molecules were aligned such that their SoMs

were within 3 Å of flurbiprofen’s SoM. This was an interesting study because it

attempted to use molecular alignment as a spatial method for predicting CYP2C9

regioselectivity. However, this study was limited in scope as it only considered one

CYP isoform and used a relatively lenient cuto↵ of 3 Å to define a correct SoM

prediction. For small molecules, a radius of 3 Å around a SoM could encompass

the majority of the molecule.

Prior to work on this dissertation, the primary public dataset of SoM data was

the dataset published by Zaretzki et al. in 2013 in their paper on XenoSite [55].

This dataset includes 680 molecules annotated with their SoMs for CYP-mediated
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metabolic reactions. During the work on this dissertation, the MetaQSAR database

was published [73]. This database contains over 1800 molecules with annotated

SoMs for phase I and phase II metabolic reactions. The MetaQSAR data was used to

develop the FAME 3 SoM prediction models. In the same year that the MetaQSAR

was published, 2018, a test dataset of 31 compounds annotated with phase I and

phase II SoMs was published and used to validate the MetScore method [60].

Many of the above-mentioned approaches to SoM prediction were trained on

the Metabolite database [74], a commercial database of metabolic data that is

considered to be quite comprehensive and has been commonly used to develop

methods for SoM and metabolite prediction but is no longer available to the public.

Notable exceptions are FAME 2 and FAME 3.

1.2.2 Metabolite Structure Prediction

Most methods for metabolite structure prediction to date use a rule-based approach.

A rule-based approach means that metabolic reactions are encoded in a set of

reaction rules, and the rules are used to generate the possible products of metabolic

reactions. One problem with this approach is that the reaction rule sets typically

generate massive numbers of possible metabolites, which is cumbersome from a

practical standpoint [75]. Therefore, it is important for rule-based methods to score

or rank their predictions, and many of the available tools for metabolite structure

prediction do so. Ranking the predictions has been attempted in a few ways, such

as using occurrence ratios based on a large dataset of metabolic reactions (e.g.

SyGMa [76]), using neural networks to assign probabilities to each of the generated

metabolites (e.g. by Wang et al. [77]), or incorporating the ranking of predicted

SoMs (e.g. MetaTox [78, 79]).

Commercial methods for metabolite structure prediction include Meteor Nexus

(Lhasa Ltd.) [80], TIMES (LMC) [81], MetabolExpert (CompuDrug Ltd.) [82],

ADMET Predictor (SimulationsPlus) [83], StarDrop (Optibrium) [84], and MetaSite

(Molecular Discovery) [71]. Further, a number of non-commercial methods have

been published, including SyGMa [76], BioTransformer [85], MetaTox [78, 79], and

RD-Metabolizer [86]. These non-commercial methods are discussed in more detail

in the remainder of this section.
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SyGMa [76] has a total of 145 reaction rules, subdivided into 118 phase I reaction

rules and 27 phase II rules. The scoring approach used by SyGMa is based on

empirical probability scores that were calculated based on occurrence ratios in

the Metabolite database [74]. Unfortunately, this database has been discontinued.

Considering both phase I and phase II metabolism, by using the entire reaction

rule set, SyGMa successfully predicted 68% of the metabolites in a test set of 175

parent molecules. In terms of ranking ability, 45% of the metabolites in the test set

were ranked among the top ten predicted metabolites for each corresponding parent

molecule. Though SyGMa does not have a CYP-specific model, the performance on

a set of 127 single-step CYP-mediated reactions was measured using all of the phase

I reaction rules, resulting in correct prediction of 84% of the metabolites and the

ranking of 66% of the known metabolites within the top three ranked predictions.

SyGMa, including the reaction rules, is freely available as an open-source Python

package.

BioTransformer [85] provides five metabolite prediction modules: human CYP,

human phase II, gut microbial, environmental microbial, and human “Enzyme

Commission (EC)”-based metabolism. BioTransformer has 163 CYP rules and

74 phase II rules. Note that non-CYP phase I metabolic reactions are not cov-

ered by either of these two modules for human xenobiotic metabolism. Though

BioTransformer does not rank its predictions, it attempts to reduce the number of

excessive predictions by using a separate set of constraints to define the types of

molecules that the di↵erent reaction rules are allowed to act on. Further, for CYP-

specific metabolite prediction, BioTransformer uses a CYP selectivity prediction

model prior to application of the reaction rules. With this approach, BioTransformer

was able to predict 80% of the metabolites in its test set of 40 pharmaceuticals

and pesticides. Considering CYP-mediated metabolism on its own, BioTransformer

was able to successfully predict 90% of the metabolites of a CYP test dataset

of 60 parent molecules. BioTransformer, including the reaction rules, additional

constraints, and the MetXBioDB database of metabolic reactions, is freely available

as an open-source Java package.

MetaTox [78, 79] combines prediction of the reacting atoms [87, 88] with pre-

dictions of the reaction class to predict both phase I and phase II metabolites.

The published evaluation of MetaTox includes a separate validation of the reaction

class and the reacting atom predictions, including a rank-based analysis of each
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prediction component. It is therefore unclear exactly how well MetaTox is able

to predict the actual structures of the metabolites, both in terms of how many

experimental metabolites are predicted and in terms of whether the generated

metabolites are ranked in a meaningful way, to distinguish the more likely from

the less likely.

RD-Metabolizer [86] predicts metabolites for phase I and phase II metabolic

reactions using a set of reaction rules. In addition, RD-Metabolizer predicts SoMs

using occurrence ratios, which were based at least in part on the currently unavailable

Metabolite database. It appears that RD-Metabolizer only applies the reaction

rules to the predicted reaction centers and/or ranks its metabolite predictions

based on the predicted SoMs, though the exact methodology remains unclear. This

method was able to predict 36% of known metabolites within the top three ranked

predictions for a test set of 425 compounds. Several example reaction rules are

provided in the publication, but the full set of reaction rules and RD-Metabolizer

itself do not seem to be easily accessible.

In addition, two new publicly available methods for SoM prediction have been

published since the publication of the relevant portions of this dissertation’s research.

These new tools are discussed in section 5.2, as they can be directly compared to

the methods developed as part of this dissertation.

Overall, many available metabolite structure predictors are knowledge-based

approaches derived from the Metabolite database [74], which has the disadvantage

of not being available for further analysis or reproducibility by other researchers.

A notable exception to this trend is BioTransformer, which was based on a newly

collated, freely available database called MetXBioDB [85].
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Xenobiotic metabolism is highly relevant to the research and development of

chemical entities that come into contact with humans. From drugs to cosmetics to

agrochemicals, the metabolism of these compounds plays a role in their safety and,

for compounds intended for direct use by humans, in their e�cacy. Computational

approaches can be used to predict how these compounds will be metabolized, in

particular by predicting the SoMs and the metabolites of these molecules. This

dissertation focuses on SoM prediction and metabolite structure prediction and

aims to answer the following questions.

Firstly, to what extent can an alignment-based method be successfully used

to predict SoMs? To study this problem, SoM data for multiple CYP isozymes

were used to construct an alignment-based approach that measured the proximity

of the SoMs in the aligned molecules. A further component of this study was

the combination of the alignment approach with a reactivity model, in order to

take into account the other key element of SoM prediction and thereby achieve an

improvement in performance.

Second, how can SoM prediction be combined with a reaction rule set to produce

an e↵ective metabolite structure prediction approach that avoids the problem of

excessive numbers of putative false positive predictions? Most existing methods for

metabolite structure prediction su↵er from this problem, which makes it di�cult to

use them to guide, for example, drug development decisions. We therefore desired

to either reduce the number of false positive predictions or to rank the predictions

in a meaningful way, in order to assign the putative false positive predictions less

importance in the list of predictions.

Third, can comparable or better performance compared to existing freely avail-

able metabolite structure prediction methods be achieved if we only use publicly

available data and attempt to reduce bias caused by dependence on a particular

dataset for the development of the underlying method? Reproducibility is a key

objective in scientific research, and so is being able to build on former research and
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previously developed methods. We aspired to develop an approach that is not only

reproducible but can be expanded or improved in the future.

To answer the second and third questions, we initially focused on the exten-

sively studied CYP family of metabolic enzymes. The comparative abundance

of metabolism data for this enzyme family, as well as its generally acknowledged

importance in drug development, made CYP metabolism a desirable starting point.

After developing a method for metabolite structure prediction focused on CYP-

mediated metabolism, we extended the scope of our work to include all of phase I

and phase II metabolism. The overall aim of this portion of the dissertation was to

develop computational tools for metabolite structure prediction that can predict

metabolites formed by CYP-mediated metabolism as well as by phase I and phase II

metabolism in general, and to make these tools available to the scientific community.
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3.1 Alignment of Small Molecules

The alignment of small molecules to each other, which is often referred to as a shape-

based approach, is a well-studied technique for ligand-based virtual screening [89–

91]. The idea behind this approach is that molecules with similar shape, and similar

chemical makeup in relation to their shape, are likely to have similar function

in terms of whether they bind to a particular target. So, if we have one or more

molecules with known values for a particular property of interest, such as activity

against a particular target, and one or more molecules for which we would like to

predict this property, we can use molecular alignment to make these predictions.

In this dissertation, the property of interest for the alignment-based method

was the SoMs in the context of CYP-mediated metabolism. We surmised that if

two molecules are similar in shape, i.e. align well to each other, then the molecules

could be assumed to bind with similar orientations to the same CYP isozyme(s).

This supposition would suggest that the two molecules could be assumed to have

SoMs located close to each other spatially.

So, if we have a database of molecules with known SoMs, and we have a query

molecule for which we would like to predict the SoMs, then we can align the query

molecule to all the reference molecules in the database. Based on which reference

molecule aligns best to the query molecule, we can use the known SoMs of the

reference molecule to predict that the SoMs of the query molecule should be nearby.

Note that in the context of virtual screening, the terminology of query and reference

is often reversed. The reason for this reversal is that in virtual screening, the query

is often a known ligand and the aim is to find actives in the database of molecules.

For SoM prediction, however, we use the database of molecules as the reference

and make predictions for the query molecule instead.

In this work, the method used for the alignment of small molecules is ROCS [92].
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The basis of the alignment with ROCS is the molecular shape and a quality

called color that represents the chemical properties of functional groups. The

molecular shape is represented by atom-centered Gaussian functions [92]. To align

two molecules, the shared volume between a query molecule and a reference molecule

is maximized. Meanwhile, a color force field is used in order to attempt to achieve

a maximum overlap of functional groups with similar properties, such as hydrogen

bond donors and acceptors, hydrophobic groups, anions and cations, and rings [92].

In order to properly compare two molecules using an alignment-based method, it

is necessary to generate conformers for one of the molecules. Because molecules can

be very flexible, a meaningful alignment is only possible if di↵erent conformations are

considered. It has previously been found, in the context of virtual screening, that it is

not necessary for the reference molecule to be in its bioactive conformation and that

it is not necessary to generate multiple conformers for both the query and reference

molecules [93]. In this dissertation, the conformer generation was performed with

OMEGA [94], which has been found to be a leading conformer ensemble generator

in terms of replicating protein-bound conformations of molecules [A2].

3.2 Incorporating SoM Prediction into

Metabolite Structure Prediction

In general, metabolite structure prediction requires a knowledge-based approach in

which potential metabolic reactions are encoded in a set of reaction rules. Because

of this approach, most available metabolite structure predictors generate huge,

unwieldy numbers of metabolites [75].

With the aim of addressing this common problem of a plethora of predicted

metabolites, we considered two distinct conceptual approaches for incorporating

SoM prediction into the metabolite prediction workflow. First, we considered

whether predicted SoMs could be used as a hard filter to determine where in the

molecule to apply the reaction rules (Figure 3.1A). For example, if there is only

one predicted SoM in the molecule, then the reaction rules are only applied at that

one position. Reaction rules may involve more than one atom, and in that case the

predicted SoM must match one of the atoms in the rule. Since there are far fewer
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SoMs than heavy atoms in a molecule, this approach is designed to drastically

reduce the total number of metabolites predicted.

Second, we considered how the predicted SoM probabilities could be used to

score the predicted metabolites (Figure 3.1B). In this case, the reaction rules were

applied everywhere in the molecule. Note that not every rule can be applied at

every position in a molecule. For example, if a reaction rule requires a sulfur atom

to be involved in the reaction, then the rule cannot be applied to a molecule that

does not contain a sulfur atom. Overall, however, the set of rules was applied to

all positions in the molecule, wherever each rule matched. This approach did not

reduce the total number of predicted metabolites. Instead, we devised a scoring

approach that took the maximum SoM probability of the heavy atoms involved in

the reaction into account. The scoring approach is explained in detail in sections

4.2.1 and 4.2.2.

3.3 Encoding Metabolic Reactions

Metabolic reactions can be encoded using the SMIRKS reaction transform lan-

guage [95]. The SMIRKS language combines components of SMILES (Simplified

Molecular Input Line Entry System) notation and the SMARTS molecular pattern

language in order to describe the changes to atoms and bonds. These changes are

described by representing the reactant and product(s) with a pairwise mapping of

the atoms on the reactant side to the atoms on the product side of the transforma-

tion. Not all atoms must be mapped, however, so some atoms may appear only on

the reactant side or only on the product side of the transform (Figure 3.2).

SMIRKS describe generic transforms, which do not have to be proper chemical

reactions, per se. For example, SMIRKS can be used to convert between di↵erent

tautomeric forms of the same molecule [96]. SMIRKS can also be used to standardize

functional groups, for which they have also been used in this work.

To describe a transformation, the SMIRKS need only encode the a↵ected atoms

in the reactant and product(s). These atoms are described by SMARTS patterns,

and the SMIRKS transformation can be applied to any molecule that matches

the SMARTS pattern on the reactant side of the transformation. The SMIRKS
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A

Predict 
SoMs

Input 
molecule

Filter:
SoM probability > threshold

All atoms in the 
molecule

SoMs

Apply reaction rules

Predicted metabolites

Predicted metabolites

Score each transformation 
product using the SoM 

probabilities of the 
affected atoms

B

Predict 
SoMs

Input 
molecule

Apply reaction rules

All atoms in the 
molecule

Figure 3.1: Workflows illustrating the two concepts for incorporating SoM prediction
into metabolite prediction that were explored in this dissertation: A) using predicted
SoMs as a hard filter, and B) using the predicted SoM probabilities for scoring the
predicted metabolites.
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[#7:1][C:2]([H])>>[#7:1][H].[C:2]=[O]

N C H N CH O+

+

Figure 3.2: Illustration of how a SMIRKS string can be inter-
preted and applied, using the example of the N-dealkylation SMIRKS
(“[#7:1][C:2]([H])>>[#7:1][H].[C:2]=[O]”) applied to tamoxifen. The
blue arrows indicate the mapped atoms, which are present in both the reactant
and the product of the transformation.

language does not allow full SMARTS functionality, requiring for example that

bonds be described as SMILES (i.e. not allowing bond queries).

There is a variant of SMIRKS called Reaction SMARTS, which allows more

SMARTS functionality within the transform language. Reaction SMARTS are

implemented in RDKit, an open-source cheminformatics Python library [97]. The

term SMIRKS is sometimes used to mean Reaction SMARTS, as in the case of

the metabolite structure predictor SyGMa [76], which is an open-source software

library for Python that is based on RDKit. SMIRKS and Reaction SMARTS are not

interchangeable from a software development perspective, however, as the language

that can be used to encode reactions depends on the software library that is used

to interpret the rules and carry out the transformations.

The software library used in this work to perform the transformations is Ambit

SMIRKS [98], which is based on the Chemistry Development Kit (CDK) [99],

a collection of open-source java libraries for cheminformatics. Ambit SMIRKS
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is focused specifically on SMIRKS, as the name suggests, and cannot interpret

Reaction SMARTS correctly. The SMIRKS language was therefore used in this

work. In the third part of this work (section 4.2.2), in which the set of reaction

rules from SyGMa were implemented in our developed program, it was necessary to

translate the Reaction SMARTS to SMIRKS in order for the rules to be interpreted

and applied correctly.

3.3.1 Considerations for Molecular Perception

The CDK software libraries are used to represent and process molecules in various

ways. Prior to transformation with Ambit SMIRKS, the molecules must be pro-

tonated and the hydrogens must be explicitly represented in the virtual molecule.

In addition, the aromaticity or lack thereof must be detected for each atom in the

molecule. Aromaticity detection is necessary because SMIRKS may specify that a

particular transformation may only occur at, for example, an aromatic carbon but

not at an aliphatic carbon.

CDK o↵ers four electron donation models for determining aromaticity [100].

Ambit SMIRKS includes an implementation of one of those models, the cdk electron

donation model. It was determined during the course of this work, however, that

this aromaticity model deviates substantially from the aromaticity interpretation by

human beings with chemical knowledge. In addition, the cdk model’s aromaticity

detection di↵ers substantially from RDKit’s aromaticity perception, which was of

vital relevance when implementing the set of reaction rules from SyGMa. Using the

same set of reaction rules should result in the same products of the transformations,

but instead there were initially large discrepancies. These discrepancies occurred

in the case of rings or ring systems in which ring-adjacent atoms were involved

in the aromatic system. In some cases, the discrepancies seemed to be due to

the molecule being in keto form, when the eno form would be clearly recognized

as aromatic. For example, Ambit SMIRKS combined with the cdk aromaticity

model did not recognize 4-pyridone as aromatic, whereas this molecule’s enol form

(pyridin-4-ol) would be recognized as aromatic. Converting between tautomers is

a complex problem [96], an in this case would be an unrewarding approach as

it would not solve the aromaticity perception problem for some molecules, such
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as 4-hydroxy-6-methylcoumarin (Figure 3.3). For a given aromatic methylation

reaction rule to be applied to this molecule, the carbon must be recognized as

aromatic but the oxygen must be protonated. In order for this and other rules to be

applied correctly to aromatic molecules, it was necessary to consider other options

for aromaticity detection.

Molecule: 4-hydroxy-6-methylcoumarin

Reaction rule: [c:1][O:2]([H])>>[c:1][O:2]C
methylation_(aromatic_OH)

Figure 3.3: Example of a molecule containing atoms that should be recognized as
aromatic but may or may not be, depending on the aromaticity model used by
CDK. The atoms highlighted in gray are the atoms that should be matched by the
shown reaction rule. This reaction rule is a phase II methylation rule sourced from
SyGMa.

CDK o↵ers several other aromaticity models. We found that the daylight

electron donation model [100] could very closely approximate, according to the

transformation products of the set of reaction rules, RDKit’s model [97] as well

as a reasonable human interpretation of chemistry. Hence the daylight electron

donation model was used in this work (section 4.2.2) in order to ensure that the

reaction rules sourced from SyGMa and translated manually into SMIRKS would

predict nearly the same metabolites as SyGMa. One class of molecule was found

(tetrazoles) for which GLORYx was able to predict products of aromatic reaction

rules but SyGMa was not. Otherwise the daylight electron donation model enabled

the exact same metabolites to be predicted as by SyGMa, as tested on a reference

dataset containing 1420 parent molecules compiled from the DrugBank [101] and
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MetXBioDB [85] databases.

3.4 Evaluating Performance

In order to measure performance, it is necessary to decide which definitions of

success are relevant to the problem. In the context of this dissertation, there are

two general types of performance metrics that are of interest. One is the overall

performance, in terms of how many predictions are correct and how many are

incorrect. The other is how early in the ranked list of predictions the correct

predictions can be found. This second concept is often addressed by measuring the

overall ranking performance or the early enrichment.

There are slightly di↵erent considerations depending on whether SoMs or

metabolites are being predicted. SoM prediction is in principle a binary classification

problem, in which atoms are classified either as SoMs or not SoMs. This means

that each prediction falls into one of four categories: true positive (TP), true

negative (TN), false positive (FP), or false negative (FN). In this work, however,

the alignment-based approach to SoM prediction was not a classification method.

Therefore, evaluation metrics were chosen that measured whether the top-ranked

positive predictions are correct, i.e. whether the atoms predicted as most likely to

be SoMs are actually SoMs.

Metabolite structure prediction is not a classification problem. Structures of

potential metabolites are generated, but there are no negative predictions unless one

considers every molecule that could possibly exist but was not predicted. There are

therefore no TN predictions. There are, however, FN predictions: known metabolites

that are not predicted.

Recall and precision are two metrics that provide an idea of the ratio of correct

predictions to incorrect predictions. Because TN predictions are not considered in

these metrics, precision and recall can be used to evaluate metabolite structure

prediction methods. In the context of metabolite prediction, recall is the percentage

of known metabolites that are predicted (Equation 3.1), also known as sensitivity.

Precision is the percentage of predicted metabolites that correspond to known
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metabolites (Equation 3.2).

Recall =
TP

TP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

In order to measure how well the predictions are scored and ranked, for both

SoM prediction and metabolite prediction, the receiver operating characteristic

(ROC) curve can be used. The ROC curve is a visual metric whereby the true

positive rate (sensitivity) is plotted against the false positive rate. Because the

ROC curve describes the order of predictions within a given set of predictions, this

metric can be used on non-classification problems such as metabolite structure

prediction. ROC curves can be interpreted as follows (Figure 3.4). A ROC curve

that is a diagonal line from the bottom left to the top right of the plot represents

random performance (dashed line in Figure 3.4). Perfect ordering of the predictions

is described by a ROC curve that follows a straight line from the lower left-hand

corner to the upper left-hand corner, followed by a straight line from the upper

left-hand corner to the upper right-hand corner (blue line in Figure 3.4). Conversely,

an ordering that is the exact opposite of the correct one is represented by a ROC

curve that progresses in a straight line from the lower left-hand corner to the lower

right-hand corner, and therefrom to the upper right-hand corner (orange line in

Figure 3.4).

A numerical metric that is based on a ROC curve is the area under the ROC

curve (AUC). As the name indicates, the AUC is determined by calculating the area

under the curve in a ROC plot. An AUC of 1 indicates perfect ordering of predictions,

an AUC of 0.5 indicates random performance, and an AUC of 0 indicates that the

performance was the exact opposite of the desired performance. The AUC is a

useful numerical metric to represent the overall ranking performance. However, the

same AUC value can represent di↵erently shaped ROC curves, so an examination

of the ROC curves themselves provides important additional information about

early enrichment.

In order to specifically analyze early enrichment, the top-k and Boltzmann-

Enhanced Discrimination of ROC (BEDROC) [102] metrics can be used. The top-k
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Figure 3.4: Illustration of three ROC curves representing random performance
(diagonal dotted line), perfect ordering of the predictions (blue line), and the
opposite of perfect ordering of the predictions (orange line).

metric measures the percentage of molecules for which a true prediction is within

the top k ranked predictions. The top-k metric was used in this work to evaluate

the performance of both the SoM prediction and metabolite prediction methods.

In this work, the BEDROC metric was used in the evaluation of the alignment-

based SoM prediction approach (section 4.1). The BEDROC metric was developed

to measure early enrichment in virtual screening and is commonly used for virtual

screening [103], but in the case of this dissertation we have SoMs in place of actives

and non-SoMs in place of inactives.

The BEDROC score is calculated as shown in Equation 3.3,

BEDROC =

Pn
i=1 e

�↵ri/N

Ra

1� e
�↵

e↵/N � 1

⇥ Rasinh(↵/2)

cosh(↵/2)� cosh(↵/2� ↵Ra)
+

1

1� e↵(1�Ra)
(3.3)

where n is the number of actives (i.e. SoMs),N is the total number of compounds,
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ri is the rank of the ith active (i.e. SoM) in the ordered list, and Ra is the ratio

of actives (i.e. SoMs) to the total number of compounds, meaning that Ra = n/N

[102]. The value of the BEDROC metric is always between 0 and 1, with higher

values being better.

To calculate the BEDROC, a user-defined parameter ↵ must be chosen. The

value of ↵ can be modulated to change the weighting of the top percentages of the

ranked predictions, in e↵ect representing how “early” the early enrichment being

measured is. For ↵ = 20, 80% of the BEDROC score is accounted for by the top

8% of the ranked predictions. For ↵ = 80.5, the percentage of ranked predictions

accounting for 80% of the score is only 2%. Hence the choice of ↵ has a direct e↵ect

on the meaning of the BEDROC score, and BEDROC scores based on di↵erent ↵

values cannot be compared [102].
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Results

4.1 An Alignment-Based Approach to SoM

Prediction

One way to endeavor to predict xenobiotic metabolism is to predict the metaboli-

cally labile atom positions. Of the many strategies for predicting SoMs that have

previously been investigated, one approach that had been only briefly examined

in the scientific literature was an alignment-based approach to predicting SoMs.

In 2008, Sykes et al. used the CYP2C9-bound conformation of flurbiprofen as a

template that they aligned, based on molecular shape and chemical features, to

other CYP2C9 substrates [72]. The idea behind this approach is that the alignment

might represent the relative orientations of the ligands to each other in terms of

how they would bind in the binding pocket of the enzyme. This appeared to be

the case, as 60% of the molecules were aligned such that their SoM was within 3 Å

of the reference SoM in the template molecule [72]. These results suggested that

such an easily interpretable alignment-based method could potentially be useful

for SoM prediction; however, the study was limited in scope and in the depth of

the analysis.

In the following study, the idea of an alignment-based approach to SoM prediction

was further developed and expanded to include the most relevant CYP isozymes for

humans. To this end, a previously published SoM dataset was modified to correct

the stereochemistry of the molecules. Using this dataset, the approach was also

analyzed in more detail, particularly in terms of key validation aspects such as

early enrichment and false positives. As part of the evaluation, we examined how

the performance of the approach was a↵ected by the similarity of a query molecule

to the reference molecules. We additionally examined the e↵ect of adding an atom

reactivity component to the method, which led to an improvement in performance.
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ABSTRACT: Prediction of metabolically labile atom positions
in a molecule (sites of metabolism) is a key component of the
simulation of xenobiotic metabolism as a whole, providing crucial
information for the development of safe and effective drugs. In
2008, an exploratory study was published in which sites of
metabolism were derived based on molecular shape- and
chemical feature-based alignment to a molecule whose site of
metabolism (SoM) had been determined by experiments. We
present a detailed analysis of the breadth of applicability of
alignment-based SoM prediction, including transfer of the
approach from a structure- to ligand-based method and extension of the applicability of the models from cytochrome P450
2C9 to all cytochrome P450 isozymes involved in drug metabolism. We evaluate the effect of molecular similarity of the query
and reference molecules on the ability of this approach to accurately predict SoMs. In addition, we combine the alignment-based
method with a leading chemical reactivity model to take reactivity into account. The combined model yielded superior
performance in comparison to the alignment-based approach and the reactivity models with an average area under the receiver
operating characteristic curve of 0.85 in cross-validation experiments. In particular, early enrichment was improved, as evidenced
by higher BEDROC scores (mean BEDROC = 0.59 for α = 20.0, mean BEDROC = 0.73 for α = 80.5).

■ INTRODUCTION
Xenobiotic metabolism plays an important role in drug
development, as the biological and physicochemical properties
of the metabolites have a substantial effect on the successful
utilization of a potential drug. Metabolism is one of the main
clearance pathways for approximately 75% of existing drugs.1

The toxicity of metabolites, as well as their potential activity or
inactivity against the target protein, are important factors in the
safety and efficacy of a drug.2 For example, nearly 7% of known
metabolites are confirmed toxic or contain a reactive group,
whereas only around 3% are confirmed to maintain
pharmacological activity.3 From soft drugs, designed to have
neither active nor toxic metabolites, to prodrugs, biotransfor-
mation of small molecules via metabolism plays a key role in
the safety and efficacy of drugs.2,4 An in-depth study of
metabolism is therefore of vital importance for the drug
discovery process.
Predicting metabolically labile atom positions, or sites of

metabolism (SoMs), is a key component of the simulation of
xenobiotic metabolism. Determining the SoMs makes it
relatively straightforward, in most cases, to predict the chemical
structures of the potential metabolites. Once these are known,
an assessment of properties such as toxicity and reactivity can
follow.4,5

Two key aspects that contribute to the location of a SoM in a
molecule are the reactivity of the atom and its accessibility
based on its position in the binding pocket, particularly
accessibility from the catalytic center in enzymes. Cytochromes
P450 (CYPs) are the most important class of enzymes for

xenobiotic metabolism. Approximately 40% of all metabolites
and 58% of first-generation metabolites are created by CYPs,3

and this enzyme family is responsible for most drug−drug
interactions and toxicity due to metabolism.3,6 For CYP-
mediated metabolism, reactivity is the major factor,7 and many
available SoM predictors focus solely on CYP substrates.
Current computational methods for SoM prediction range

from knowledge-based approaches to machine learning,
reactivity models, and structure-based approaches (mainly
ligand docking).4,5,8,9 These methods for SoM prediction can
be generalized into three categories: knowledge-, structure-, and
ligand-based. Knowledge-based systems use relatively simple
rules derived from empirical knowledge accumulated by
medicinal chemists over decades of research. Structure-based
methods take a more detailed look at an interaction with a
specific enzyme, e.g., using docking. This type of method allows
for detailed examination of a specific protein and the binding of
its substrates but requires high-quality protein structures and is
limited by the conformational space covered by the crystal
structures. In addition, the focus of structure-based methods is
on the steric aspects, whereas any contributions from reactivity
are largely ignored. Ligand-based approaches, on the other
hand, do not require a crystal structure and therefore have
broader applicability (e.g., multiple enzymes and coverage of a
larger chemical space) but cannot provide information on
binding or interaction of compounds with an enzyme. In
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general, the most accurate models are multicomponent models
that make use of several different methods, e.g., docking
combined with a reactivity model or a rule-based approach plus
a reactivity model.4,5,8 A typical metric for evaluating the
success of these various methods at predicting SoMs is the
percentage of molecules for which at least one known SoM is
among the top 2 or 3 predicted atom positions in a molecule.
For most existing methods, these percentages lie between 70
and 90%.10

In 2008, Sykes et al.11 published an interesting study in which
the potential of alignment-based methods for SoM prediction
was probed. They extracted flurbiprofen in its CYP2C9-bound
conformation from an X-ray structure and used it as a template
for the alignment of 69 other known CYP2C9 substrates. It was
assumed that molecular shape- and chemical feature-based
alignment would allow the derivation of the correct orientation
of the known substrates. Sykes et al. did indeed find that 60% of
the molecules were aligned such that their site of metabolism
was within 3 Å of the reference site of metabolism.
The study by Sykes et al. yielded encouraging results and

suggested that alignment-based methods could have high
potential for SoM prediction, in particular when used as one
component of a more sophisticated model. However, this
exploratory study is limited in some aspects. For example, it was
based on a data set of just 70 molecules with all but one
molecule annotated with only a single SoM corresponding to
CYP2C9 (not considering topological symmetry). The
approach was designed as a surrogate docking technique that
uses the protein-bound ligand conformation as a reference,
hence limiting it to the availability of such experimentally
determined structures. Furthermore, the requirement for
successful prediction, namely a distance of less than 3 Å
between the aligned SoM in the reference molecule and the
known SoM in the query molecule, is a lenient definition of
what constitutes a good prediction, as a large portion of a
typical druglike molecule (if not the entire molecule) can be
placed within such a sphere (Figure 1). In addition, a limitation
in terms of validation is that neither the existence nor the extent
of false positive predictions was considered.
Inspired by the work of Sykes et al., we set out to fully

explore the scope and limitations of alignment-based methods
for SoM prediction. To examine the degree to which their
applicability can be broadened, we investigate the effects of

several aspects and extensions of the method. A shape- and
chemical feature-based alignment between a query molecule
and a set of reference molecules was used to rank the atoms in
the query molecule in order of likelihood of being a SoM. By
increasing the validation data set from a small data set based on
a single CYP isozyme to a more comprehensive data set with
SoM information for all CYP isozymes, we show that the
applicability of this approach can be extended from CYP2C9 to
encompass CYP metabolism of druglike molecules in general.
In conjunction with using this larger data set, we adjusted the
method from a structure-based to a purely ligand-based
approach. We additionally examined the combination of a
chemical reactivity model with the alignment-based approach,
as chemical reactivity is of key importance to modeling SoMs.

■ RESULTS
Approach of Sykes et al. Revisited. In a first experiment,

we revisited the study of Sykes et al. and tested the performance
of the ROCS-based approach for SoM prediction using the
same experimental setup but more stringent criteria for
analyzing the success of prediction. We aligned the 69 query
molecules of the Sykes data set to the experimentally observed
conformation of flurbiprofen bound to CYP2C9 using ROCS,
as specified in the original study. We then determined the
likelihood that a known SoM in each of the 69 query molecules
would be within less than one bond length (approximated to 1
Å) of a SoM in flurbiprofen and extended this cutoff to 2 and 3
Å for comparison.
Sykes et al. reported that 60%, or 42 of 70 molecules

(including flurbiprofen, which they aligned to itself in protein-
bound conformation), had a known SoM aligned within 3 Å of
the SoM in flurbiprofen.11 We found that 55% of the molecules
(38 of 69) had a known SoM within the same radius (Table 1).

The results of both studies differ by only three molecules.
Using a smaller radius resulted, as expected, in fewer correctly
predicted molecules. Only 38% of molecules had a known SoM
located within 2 Å of the flurbiprofen SoM.
Subsequently, using the same experimental setup described

above, we ranked the atoms in each query molecule according
to distance to a known SoM in the aligned reference molecule.
With this ranking, we looked at the percentage of query
molecules for which there is at least one known SoM in the top
1−3 atoms located closest to the reference molecule’s SoM
(top k metric) as well as the receiver operating characteristic
(ROC) curve and the BEDROC metric. Only 23% of the
molecules in the Sykes data set had a known SoM as the top-
ranked atom, and only 39% of the molecules had a known SoM
within the top 3 ranked atoms (Table 2). The area under the
receiver operating characteristic curve (AUC) was 0.62 ± 0.038
(standard error; Figure 2a).
The BEDROC metric provides insight into early enrichment.

An α of 20 means that 80% of the BEDROC score is accounted

Figure 1. A sphere of 3 Å in radius (green hemisphere) placed around
an atom (gray sphere) on a small druglike molecule can potentially
cover a large portion of the molecule.

Table 1. Percent of Molecules with a Known SoM within a 1,
2, or 3 Å Radius of a SoM in the Reference Moleculea

radius [Å] Sykes Data Set [%] Zaretzki Data Set [%]

1 23.2 54.3 ± 1.5
2 37.7 68.5 ± 1.9
3 55.1 78.7 ± 1.3

aFor the Zaretzki Data Set, both the arithmetic mean and standard
error are reported.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.7b00165
J. Chem. Inf. Model. 2017, 57, 1258−1264

1259



for by the top 8% of the ranked data, whereas an α of 80.5
means that the top 2% of the data accounts for 80% of the
score.12,13 The BEDROC value obtained with an α of 20.0 was
0.28 compared to a BEDROC value of 0.22 for an α of 80.5
(Table 3). These low values for the BEDROC metric indicate
relatively weak early enrichment, coinciding with the low top k
values.
Toward an Alignment-Based Model for Predicting

SoMs Related to CYP Metabolism. The study of Sykes et al.
is focused on CYP2C9 metabolism and based on a data set of
just 70 molecules with only a single known SoM assigned to
most molecules. To study the potential of alignment-based
approaches for SoM prediction in more detail and to extend the
applicability from one isozyme to all relevant CYP isozymes, a
larger data set was required. We therefore used a revised
version (see Methods) of the Zaretzki data set of 680 molecules
with SoMs from all CYP isozymes.14 Unlike Sykes et al., we did
not aim to use ROCS as a surrogate docking approach that
would allow the prediction of the orientation of a ligand within
the binding site. We therefore did not need to restrict ourselves
to a CYP-bound ligand conformation for the reference
molecule. This change enabled us to take advantage of the
larger data set by modifying the method to allow for choosing
the best reference molecule from a wide selection of molecules
with known SoMs. This adjustment also facilitated automatic
extension of the approach to all CYP isozymes, the idea being
that the best-aligned reference molecule would have a similar
binding profile for the set of CYP isozymes and also have
correspondingly similar SoMs. If a query molecule is of similar
shape to a reference molecule, then the molecules are assumed
to bind with the same orientation to the same isozyme(s) and
hence have SoMs located at similar atom positions. This
concept is in direct contrast to the basis of the Sykes et al. study
on a single isozyme that metabolizes all molecules in the data
set. Contrasting schemes of the two methods are shown in
Figure 3.
Once the best-aligned reference molecule had been selected,

we ranked all atoms in the query molecule, as described above.
In addition, the Zaretzki data set was analyzed with 10-fold
cross-validation in which the data set was randomly split into 10
sets of query molecules, each containing 10% of the total data
set. The remaining 90% of the molecules for each set were used
as the corresponding reference set.
We again investigated the existence of a known SoM within

1, 2, and 3 Å of an aligned reference SoM. The percentage of
molecules with a known SoM within 1 Å of a SoM of the best-
aligned reference molecule was 54% (Table 1). When the
radius was increased to 3 Å, an average of 79% of the query
molecules had a known SoM within this distance of a reference
SoM. This is a relatively low percentage when one considers
that a sphere with radius 3 Å may cover a large portion of a

druglike molecule (Figure 1) and that, if the reference molecule
has more than one SoM, this effect can be even more striking.
Using the adjusted method on the Zaretzki data set resulted in
better SoM predictions according to the top k, AUC, and
BEDROC metrics. For example, an average of 58% of
molecules in the Zaretzki data set had a known SoM in the

Table 2. Percentage of Molecules with a Known SoM in the
Top-k Scored Atoms for Top 1−3 for Each Data Seta

top 1 [%] top 2 [%] top 3 [%]

Sykes Data Set, alignment only 23.2 31.9 39.1
Zaretzki Data Set, alignment
only

46.0 ± 1.8 57.7 ± 1.8 64.0 ± 2.1

Zaretzki Data Set, reactivity only 59.9 ± 1.4 73.4 ± 1.6 79.6 ± 0.9
Zaretzki Data Set, alignment and
reactivity combined

53.8 ± 1.2 71.9 ± 1.4 80.3 ± 1.4

aFor the Zaretzki Data Set, both the arithmetic mean and the standard
error are reported.

Figure 2. ROC curves for (a) alignment-based SoM prediction for the
Sykes data set, (b) alignment-based SoM prediction for the Zaretzki
data set, (c) reactivity-based SoM prediction for the Zaretzki data set,
and (d) combination of alignment- and reactivity-based SoM
prediction for the Zaretzki data set. Error bars represent standard
error.
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top 2 ranked atoms (Table 2). The average AUC was 0.69
(Figure 2b) with a standard error of 0.0078, and the average
BEDROCs were 0.44 and 0.50 for α = 20.0 and α = 80.5,
respectively (Table 3).
Note that differences in performance of the Sykes and our

approach are the result of adjustments of the method and the
use of a larger data set with a more comprehensive record of
SoMs. Therefore, direct comparison of the performance of the
two approaches should be avoided.
Molecular Similarity. The effect of molecular similarity on

the quality of the alignment-based predictions was examined.
Greater molecular similarity was found to correspond to
improved SoM prediction for the alignment-based method.
Both the percentage of molecules with a known SoM within 1,
2, or 3 Å of a reference SoM and the percentage of molecules
within the top 1−3 ranked atoms are larger for more highly
similar molecules. As an example illustrating this trend, the
percentage of correctly predicted molecules according to the 1
Å criterion increases on average from 29%, for molecules with
up to 0.25 similarity (calculated using the Tanimoto coefficient
of ECFP6-like fingerprints) to the reference molecule, to 76%

for molecules with similarity greater than 0.75 (Figure 4).
Correspondingly, the percentage of molecules within the top

1−3 ranked atoms increases as the molecular similarity
increases from 58% in the top 2 with similarity up to 0.25 to
88% in the top 2 with similarity greater than 0.75, as shown in
Figure 5a.

Combination of an Alignment-Based Method with a
Reactivity Model. Because steric accessibility of an atom is only
one component of the likelihood of a reaction occurring at that
position in a molecule, we also explored the possibility of
increasing prediction accuracy by including a reactivity
component in the model. SMARTCyp is a leading method
for predicting SoMs related to CYP metabolism. The more
recent versions of SMARTCyp contain steric accessibility
components in addition to the reactivity component. Rydberg
et al. showed that the reactivity component accounts for 86−
97% of their model;7 however, the SMARTCyp model with the
latest accessibility descriptor was trained on a portion of the
nonmodified version of the same data set we used in our study
(the Zaretzki data set), whereas the reactivity descriptor in
SMARTCyp is derived directly from DFT calculations.7,15 We
therefore extracted only the reactivity component from the
SMARTCyp predictions in addition to using the standard
SMARTCyp score for comparison. Because we found the
results to be similar, the results with the standard SMARTCyp
score are located in the Supporting Information.
The top k results for the reactivity component of

SMARTCyp on its own (Table 2) are comparable to those
previously reported (for CYP3A4) with the original version of
SMARTCyp, which was not trained on the Zaretzki data set but
contains an accessibility descriptor.15 We combined this
reactivity component with the alignment-based atom ranking
to create new scores for all the atoms of all query molecules.
The mean percentage of molecules with a known SoM included
in the top 2 ranked molecules was higher for the combination
of alignment and reactivity than for the alignment-only method,
i.e., 72 and 58%, respectively (Table 2). Because the percentage
of molecules for this same metric was 73% for the reactivity
component only, the top k metric shows only a benefit of the
combined approach compared to that of the alignment-based
approach but not compared to the reactivity component on its

Table 3. BEDROC for the Sykes and Zaretzki Datasetsa

BEDROC α

Sykes data
set,

alignment
only

Zaretzki data
set, alignment

only

Zaretzki data
set, reactivity

only

Zaretzki data set,
alignment and

reactivity
combined

20.0 0.28 0.44 ± 0.01 0.44 ± 0.01 0.59 ± 0.01
80.5 0.22 0.50 ± 0.03 0.54 ± 0.02 0.73 ± 0.02

aFor the Zaretzki data set, both the arithmetic mean and standard
error are reported.

Figure 3. Workflow used by Sykes et al.11 (left) compared to the
workflow used in this study (right).

Figure 4. Percentage of molecules with a known SoM within 1, 2, and
3 Å of a reference SoM in the Zaretzki data set with percentage
calculated separately for each bin of molecular similarity calculated
using the Tanimoto coefficient of ECFP6-like fingerprints.
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own. More importantly, however, a larger difference in
prediction according to the top k metric is seen when the
results are broken down into categories of molecular similarity
(calculated using the Tanimoto coefficient of ECFP6-like
fingerprints; Table 2). As expected, there was no clear trend for

the effect of molecular similarity on the top k results for the
reactivity component of SMARTCyp on its own (Figure 5b) or
even the total SMARTCyp score (Figure S1a). Combining the
alignment-based ranking and the reactivity component results
in a top 2 percentage of 88% for similarity greater than 0.75, as
compared to 85% for alignment only and 77% for reactivity
only for the same similarity range (Figure 5).
Analysis of the AUC and BEDROC scores (Figure 2, Table

3), both of which, unlike the top k metric, take false positives
into account, shows a clear advantage of the combined
approach over both models that rely on a single component.
More specifically, the combined method had better early
enrichment than the reactivity-based approach, reflected by a
better BEDROC score at α = 20.0 (BEDROC = 0.59 vs 0.54),
and in particular, a higher BEDROC score at α = 80.5
(BEDROC = 0.73 vs 0.54). The combined method also had a
statistically significantly higher average AUC (AUC = 0.85 ±
0.0048 vs 0.80 ± 0.0051; p = 4.0 × 10−33). The AUC in
particular reveals an even larger significant increase in
performance for the combined approach compared to the
alignment-based atom ranking (average AUC = 0.69 ± 0.0078;
p = 1.7 × 10−139; mean BEDROC = 0.44 for α = 20.0; mean
BEDROC = 0.50 for α = 80.5). For comparison, the AUC of
the reactivity-based approach was also significantly higher than
that of the alignment-based atom ranking (p = 2.1 × 10−33). All
these results indicate substantially better early enrichment (and
hence reduction of false-positive rates) of the combined
approach. The same trend was observed for predictions using
the full SMARTCyp score on its own and combined with the
alignment-based atom ranking (Figures S1−S2, Tables S1−S3),
including a significantly higher AUC with SMARTCyp than
with alignment-based ranking (p = 3.0 × 10−45) and a
significant improvement in AUC when using the combination
of alignment with the full SMARTCyp score compared to both
the SMARTCyp score on its own (p = 5.0 × 10−21) and the
alignment-based prediction on its own (p = 5.5 × 10−145).

■ CONCLUSIONS
We have examined the scope and limitations of an alignment-
based approach to SoM prediction. Starting from the CYP2C9
model introduced by Sykes et al.,11 we widened coverage to
include the CYP isozymes most important for metabolism in
humans. Our analysis filled in the picture presented by Sykes et
al. and provided information about early enrichment and false
positives. We discovered that the alignment-based method can
be used to predict SoMs to a considerable extent. On its own,
the alignment-based approach to SoM prediction yields results
comparable to those of rigid receptor docking.16 Additional
improvements to docking result in improved performance for
more flexible docking models (e.g., in combination with
molecular dynamics simulations techniques).16,17 In this case,
the advantage of an alignment-based method remains in that it
is ligand-based as opposed to structure-based. The alignment-
based approach does not have the accuracy and reach of other
methods for SoM prediction such as machine learning and
reactivity models, but it could be beneficial as a complementary
component of SoM predictors, in particular in addition to
reactivity. Reactivity is a key factor in an atom’s involvement in
a metabolism reaction, and small changes to a molecule can
have a large impact on reactivity. For example, widely applied
strategies for improving metabolic stability while maintaining
target activity, such as fluorination, can have a substantial
impact on the metabolic fate of compounds even though the

Figure 5. Top k analysis for different similarity ranges applied to (a)
the alignment-based SoM prediction, (b) reactivity-based SoM
prediction, and (c) the combination of alignment-based ranking and
the reactivity descriptor for SoM prediction. The percentage is
calculated separately for each bin of molecular similarity, which is
calculated using the Tanimoto coefficient of ECFP6-like fingerprints.
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molecular shape remains largely preserved.18 Because the
alignment-based ranking of atoms does not take atom reactivity
into account, the combination of alignment with reactivity
prediction makes sense on a conceptual level. We tested this
combination using the reactivity descriptor from SMARTCyp
and saw a substantial improvement in the predictions, in
particular with respect to early enrichment and false-positive
rates.
The quality of the alignment-based predictions is strongly

affected by the availability of suitable reference molecules with
sufficient similarity to the molecule in question. The alignment-
based approach works well for structurally related molecules
but less well for highly structurally different molecules. It is
therefore expected that the implementation of a mechanism for
toggling the alignment-based technique in two- or multi-
component models will boost prediction accuracy. For example,
the distance-based ranking that is the output of the alignment-
based method could be used as a descriptor for machine
learning models for SoM prediction. Furthermore, requiring no
structural information, in contrast to the original study
published by Sykes et al., has already removed a key constraint
on the available data and results in a wider array of possible
reference compounds to draw from. With the increasing
availability of metabolism data, the value of alignment-based
methods is expected to increase in the future.

■ METHODS
Data Set Preparation. Sykes Data Set. The structure of

the reference molecule flurbiprofen was downloaded from the
PDB in its crystallized conformation (PDB ID: 1R9O), as
specified by ref 11. The structures of the 69 query molecules
were downloaded as 2D SD files from the PubChem
Compound database. The structure of kaempferide depicted
in ref 11 was corrected. The SoMs were annotated manually
according to the data published by Sykes et al.11

Zaretzki Data Set. The latest version of the Zaretzki data
set14 containing 680 molecules and SoM information from all
CYP isozymes was used. Because the chirality flags were found
to be unreliable, the chirality flags of all 298 chiral molecules
were checked against the PubChem Compound database19

and/or the primary literature and adjusted accordingly.
Additionally, the topology of eight molecular structures was
corrected, preserving correct SoM annotation. The modified
version of the Zaretzki data set used in this study is available in
the Supporting Information.
Workflow. The SoMs for all CYP isozymes were used for

the Zaretzki data set. The Zaretzki data set was separated into
query and reference molecules using 10-fold cross-validation
with random fold selection by KFold from scikit-learn.20,21

Each training set was used as a set of reference molecules, and
each test set as the corresponding query molecules.
Because only heavy atoms are considered SoMs, any SoM

annotated on a hydrogen atom was moved to the neighboring
heavy atom. Topologically identical atoms, determined using
the CanonicalRankAtoms function in the Chem module of
RDKit,22 were assigned the same status, i.e., if any of the atoms
in a set of topologically identical atoms is a SoM, then all atoms
in the set are considered SoMs.
For the Sykes data set, conformers were only generated for

the query molecules, and the reference molecule was left in the
fixed (i.e., experimentally determined, protein-bound) con-
formation. For the Zaretzki data set, only one conformer was
generated for each query molecule, whereas the default number

of conformers was generated for the reference molecules.
Conformer generation was performed with OMEGA.23,24 The
flipper option in OMEGA was used to enumerate all
stereoisomers for each undefined stereocenter. Default
parameters were used for OMEGA with the exception of
canonOrder to preserve the numbering of atoms from SoM
annotations and, for the query molecules of the Zaretzki data
set, maxConfs set to 1.
Each query molecule was aligned to all reference molecules.

The alignment was performed with ROCS25,26 using default
parameters. Only the reference molecule with the highest
TanimotoCombo score when aligned with the query molecule
was used for SoM prediction. A single stereoisomer of each
query molecule was chosen, if applicable, by selecting the
stereoisomer with the highest alignment score out of all
stereoisomers aligned with all reference molecules.
The heavy atoms in the query molecule were ranked

according to distance to a known SoM of the chosen reference
molecule. Reactivity prediction was performed with SMART-
Cyp (version 2.4.2)7,15,27 for the query molecules using default
parameters and the standard SMARTCyp model. To combine
the distance ranking and the SMARTCyp score for each atom,
both the alignment-based ranking and the SMARTCyp score
were normalized and inverted so that the best value of each was
1. If an atom was predicted as reactive by SMARTCyp (energy
not 999), the two values were then averaged to create a final
prediction score. Otherwise, the prediction score was set to 0,
the lowest possible combined score. The score returned by the
current version of SMARTCyp contains two accessibility
components in addition to the calculated reactivity. We used
both the full SMARTCyp score with accessibility included and
the reactivity component of the SMARTCyp score on its own.
The same procedure to combine SMARTCyp prediction and
distance ranking was carried out both using the full
SMARTCyp score and only using the reactivity component
of SMARTCyp.

Evaluation. ROC curves were calculated with the ROCR R
package.28,29 The average ROC curve for the cross-validation
folds was determined using vertical averaging.
The statistical significance of differences in AUC was

determined using the R package pROC with the DeLong test
for correlated ROC curves.30,31 The variance of the AUC, from
which the standard error was derived, was also calculated with
pROC using the DeLong method. For these calculations, all
cross-validation runs were combined into one ROC curve, from
which the total AUC was then calculated. The AUC calculated
in this manner is equal to the average AUC for the cross-
validation runs calculated in ROCR. All ROC curves calculated
for the Zaretzki data set were considered to be correlated for
this test.
Molecular similarity was calculated with ECFP6-like finger-

prints and the Tanimoto coefficient using RDKit. The
BEDROC12 was calculated using the R package enrichvs.32

Hardware Setup. Calculations were performed on a Linux
workstation running openSUSE 13.1 with an Intel i7 3.6 GHz
processor and 32 GB of main memory and a Linux cluster
running openSUSE 13.1 and equipped with Intel Xeon
processors (2.2 to 2.7 GHz) and 126 GB of main memory.
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Chapter 4. Results

4.2 Metabolite Structure Prediction

SoM prediction is one portion of the equation when it comes to predicting xenobiotic

metabolism, but it many cases it is desirable to actually predict the structures of

the metabolites. To this end, the following studies explore how SoM prediction can

be used to improve metabolite structure prediction. The SoM prediction methods

used in this portion of the thesis are not the alignment-based method described

previously (section 4.1) but rather machine learning-based methods that were

developed in our research group [A4, A8].

4.2.1 Predicting CYP Metabolites

A problem common to most of the previously existing methods for metabolite

structure prediction is that they tend to generate huge numbers of false positive

predictions, which can make finding the real metabolites di�cult. The following

study explored how SoM prediction could be incorporated into a metabolite structure

prediction approach in order to address this problem. In this study, we focused

exclusively on CYP-mediated metabolism and used FAME 2 [A4] to predict SoMs.

A major component of this study was the development of a set of reaction rules

describing CYP-mediated metabolic reactions. The reaction rules were created man-

ually based on an analysis of the scientific literature on CYP-mediated metabolism

and were classified as either common or uncommon reaction types, according to

the relevant literature.

To analyze the e↵ects of incorporating SoM prediction, two concepts were

implemented and evaluated. In the first approach, the predicted SoMs were used

as a hard filter that determined where in the molecule the reaction rules were

applied. In the second approach, there was no filter. Instead, the predicted SoM

probabilities were used to score the predicted metabolites, along with consideration

of the above-mentioned simple distinction between common and uncommon reaction

types. We found that this scoring approach resulted in a meaningful ranking of the

predicted metabolites.

For the development and evaluation of the method, a reference dataset of 848

parent molecules and their CYP metabolites was compiled from the DrugBank [101]
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and MetXBioDB [85] databases. In addition, a test dataset was created and used

in the final validation of the approach, including a comparison to two previously

published open-source metabolite structure prediction tools. This test dataset

was manually assembled from the scientific literature on the metabolism of drugs

and other xenobiotics and contains 29 parent molecules and their 81 CYP-formed

metabolites.

This study resulted in the development of GLORY, a novel tool for predicting

metabolites formed by CYP-mediated reactions. GLORY is freely available as a

web server.
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Computational prediction of xenobiotic metabolism can provide valuable information to

guide the development of drugs, cosmetics, agrochemicals, and other chemical entities.

We have previously developed FAME 2, an effective tool for predicting sites of metabolism

(SoMs). In this work, we focus on the prediction of the chemical structures of metabolites,

in particular metabolites of xenobiotics. To this end, we have developed a new tool,

GLORY, which combines SoM prediction with FAME 2 and a new collection of rules for

metabolic reactions mediated by the cytochrome P450 enzyme family. GLORY has two

modes: MaxEfficiency and MaxCoverage. For MaxEfficiency mode, the use of predicted

SoMs to restrict the locations in the molecule at which the reaction rules could be

applied was explored. For MaxCoverage mode, the predicted SoM probabilities were

instead used to develop a new scoring approach for the predicted metabolites. With

this scoring approach, GLORY achieves a recall of 0.83 and can predict at least one

known metabolite within the top three ranked positions for 76% of the molecules of a

new, manually curated test set. GLORY is freely available as a web server at https://

acm.zbh.uni-hamburg.de/glory/, and the datasets and reaction rules are provided in

the Supplementary Material.

Keywords: metabolism prediction, metabolite structure prediction, rule-based approach, sites of metabolism,

xenobiotic metabolism, cytochrome P450, metabolites

INTRODUCTION

Metabolism is responsible for creating metabolites with different physicochemical and
pharmacological properties compared to those of the original parent molecule. Xenobiotic
metabolism in particular is directly relevant for humans, especially as it relates to, for example,
the development of drugs, cosmetics, and agrochemicals. In fact, it is supposed that metabolism
is the main clearance pathway for the vast majority of all xenobiotics (Kirchmair et al., 2015).
However, metabolism can also result in pharmacologically active metabolites as well as toxic
metabolites (Testa et al., 2012).



de Bruyn Kops et al. GLORY: Metabolite Structure Generator

The cytochrome P450 (CYP) family of enzymes plays an
important role in the metabolism of xenobiotics, especially in the
formation of first-generation metabolites, of which roughly 60%
are formed by CYPs (Testa et al., 2012). The importance of CYPs
to drug discovery is clear from the observation that many drugs
are metabolized by CYPs; common estimates range from 50%
(Di, 2014) to 80% (Testa et al., 2012). A detailed meta-analysis
of the metabolites of over 1,000 different xenobiotic substrates
carried out by Testa et al., showed that 40% of all metabolites are
formed by CYPs, including a substantial proportion of all toxic
or highly reactive metabolites (Testa et al., 2012).

There are 57 known human CYP enzymes, the majority
of which are primarily involved in endogenous metabolism.
The CYP2 and CYP3 subfamilies are mainly responsible for
metabolizing xenobiotics (Testa et al., 2012), and the key CYP
isozymes for drug metabolism are CYP3A4, 3A5, 2D6, 2C8, 2C9,
2C19, 1A1, 2B6, and 2E1 (Di, 2014). Among the xenobiotic-
metabolizing CYP isozymes, the binding pockets vary greatly;
in some cases the binding pocket of a single isozyme is highly
flexible and can accommodate a broad range of substrates with
widely varying sizes (Kirchmair et al., 2015).

Computational methods can make a significant contribution
to predicting xenobiotic metabolism, because they can be used to
quickly make predictions that can focus the experimental aspects
of the drug development process. Such a focusing effect is both
cost-effective and time-effective (Kirchmair et al., 2015).

One relatively well-developed aspect of the computational
prediction of xenobiotic metabolism is the identification of
the metabolically labile atom positions, also known as sites of
metabolism (SoMs) (Kirchmair et al., 2012). Being able to predict
SoMs is important because knowing an atom position in a
molecule at which a metabolizing reaction is likely to occur
usually provides a chemist with a good idea of the ensuing
metabolite structure. Besides a range of commercial offerings,
several freely available tools, such as SMARTCyp (Olsen et al.,
2019), SOMP (Rudik et al., 2015), Xenosite (Zaretzki et al., 2013),
and FAME 2 (Šícho et al., 2017), are able to predict SoMs with
high accuracy (Tyzack and Kirchmair, 2018). FAME 2, which
is used in the present work for SoM prediction, is a machine
learning-based tool developed recently in our group. The extra
trees classifier models of FAME 2, which are based on a set of
2D circular descriptors, were developed specifically to predict
SoMs of metabolic reactions catalyzed by the CYP family of
enzymes in humans. FAME 2 is highly accurate, achieving, on
an independent test set, a Matthews correlation coefficient of
0.57 and an area under the receiver operating characteristic curve
(AUC) of 0.91.

In contrast to in silico SoM prediction, computational
prediction of the structures of metabolites lags behind with
respect to prediction accuracy. In general, existing methods for
predicting metabolite structures for xenobiotics are dominated
by rule-based approaches. There are a number of well-established
commercial tools for metabolite structure prediction, including
Meteor Nexus (Lhasa Ltd.), a rule-based metabolite prediction

Abbreviations: AUC, area under the receiver operating characteristic curve; CYP,
cytochrome P450; ROC, receiver operating characteristic; SoM, site of metabolism.

software (Marchant et al., 2008). Meteor Nexus offers three
different reasoning methods to prioritize the plethora of
generated metabolites. The current default reasoning method
is SoM scoring, which compares the SoM identified by the
reaction rule to experimental data in order to assign scores to
the predicted metabolites1. Other rule-based computational tools
include TIMES (LMC; Mekenyan et al., 2004), which uses a
heuristic algorithm to generate possible metabolic maps, and
MetabolExpert (CompuDrug; Darvas, 1987).

In addition to commercial metabolite structure prediction
tools, there is an increasing number of freely available options.
Again, many of the available options rely primarily on a set
of reaction rules to generate structures of possible metabolites.
One well-known approach that has been around for some time
is SyGMa (Ridder and Wagener, 2008), which in this work
is used as a reference method. SyGMa predicts metabolites
using knowledge-based reaction rules, some of which were
derived from common knowledge of metabolism reactions and
some of which were developed using the Metabolite Database
(MDL Metabolite Database, Elsevier, 2001), for a total of 144
reaction rules covering both phase I and phase II metabolism.
The predicted metabolites are ranked by empirical probability
scores calculated based on the fraction of predicted metabolites
produced by the particular reaction rule that match reported
metabolites in the database. Using all 144 phase I and phase II
reaction rules in up to three successive reaction steps, SyGMa
was able to predict 68% of all known metabolites in the test
set. In terms of ranking, SyGMa ranked 45% of the known
metabolites in the test set in the top 10. The authors additionally
examined SyGMa’s potential usefulness for predicting CYP-
mediated metabolism by evaluating its performance on a set
of 127 single-step CYP-mediated reactions. Using only the 118
phase I reaction rules, which include but are not specific to
CYP-mediated reactions, SyMGa was able to predict 84% of all
known CYP-formed metabolites and predict 66% of the known
metabolites within the top three ranked predicted metabolites.
However, the proprietary nature of the dataset that was used
to derive SyGMa’s reaction rules and validate the method, not
to mention the current unavailability of the dataset, hinders the
reproducibility of the results as well as further use of the models
derived from the data.

A recent, free software designed to predict metabolites
from multiple sources and enzyme families is BioTransformer
(Djoumbou-Feunang et al., 2019), which in this work is
used as the second reference method. BioTransformer is
a comprehensive metabolite prediction tool that contains
a CYP metabolite prediction module (in addition to four
other metabolite prediction modules). BioTransformer predicts
CYP-formed metabolites using a knowledge-based approach
combined with built-in CYP selectivity prediction by CypReact
(Tian et al., 2018), a machine learning-based tool, as a precursor
to metabolite prediction. Aside from the initial CYP isoform-
specificity prediction, the basis of BioTransformer’s CYP450
metabolite prediction module is a rule-based method whose

1Meteor Reasoning Methodologies, Lhasa Limited, https://www.lhasalimited.org/
products/meteor-reasoning-methodologies.htm
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reaction rules are derived partly from the metabolic reactions in
MetXBioDB (Djoumbou-Feunang et al., 2019), a freely available
database of metabolism reactions that was established in the
context of developing BioTransformer. In the current version
of BioTransformer, the predicted metabolites are not ranked.
BioTransformer also offers an option for identifying metabolites
based on masses from mass spectrometry data. On a test
dataset of 60 parent molecules with a total of 180 known
metabolites, BioTransformer’s CYP450 metabolite prediction
module achieved a recall of 0.90 and a precision of 0.46.

Another freely available metabolite prediction tool is MetaTox
(Rudik et al., 2017), which encompasses both phase I and phase II
metabolism and combines the prediction of the reaction class and
the reacting atom in order to predict metabolites. Additionally,
the open-source software Toxtree (Patlewicz et al., 2008)
contains a metabolism prediction module called “SMARTCyp—
Cytochrome P450-Mediated Drug Metabolism” that predicts
SoMs using SMARTCyp (Rydberg et al., 2010) and then applies
a small set of reaction rules to the predicted SoMs in order to
predict metabolites.

Common to all modern approaches for metabolite prediction
is that they remain challenged by the combinatorial explosion
of predictions, in particular when looking at several generations
of metabolites (Judson, 2014). It is not unusual for metabolite
structure predictors to produce several pages full of predicted
metabolites, a fact which is often and not without reason
criticized, particularly by experts in metabolism. The key to
tackling this problem lies in the development of approaches for
the accurate ranking of metabolites according to their relevance
in terms of metabolic rates and biological properties. A number
of methods attempt to get a handle on the immense number of
predicted metabolites by ranking their predictions according to
various approaches.

Another option, which has primarily been implemented
in commercial tools to date, is to use SoM prediction as a
preliminary step to reduce the number of generated metabolites.
Commercial tools formetabolite prediction that incorporate SoM
prediction include ADMET Predictor (SimulationsPlus)2, which
predicts SoMs and the corresponding metabolite structures for
nine CYP isoforms, and StarDrop (Optibrium; Tyzack et al.,
2016), whose “P450 metabolism” module predicts SoMs using
quantum mechanical simulations and displays the structures
of the metabolites corresponding to the predicted SoMs. In
addition, META Ultra (MultiCASE Inc.; Klopman et al., 1994)
predicts SoMs and metabolites, and MetaSite (Cruciani et al.,
2005) was a SoM and CYP isoform selectivity prediction software
that now also predicts metabolite structures3.

Few freely available metabolite prediction methods combine
information on predicted SoMs with a rule set. MetaTox
predicts reaction classes and reacting atoms (i.e., SoMs, in
principle) separately for each parent molecule, then combines
the predictions to generate metabolites. The probability that
the metabolite is formed is calculated based on the predicted

2ADMET Predictor Metabolism Module, SimulationsPlus, https://www.
simulations-plus.com/software/admetpredictor/metabolism/
3MetaSite, https://www.moldiscovery.com/software/metasite/

probabilities of the reaction class and of the SoM predicted with
the SOMP method (Rudik et al., 2015). However, the validation
of MetaTox considers the performance of the reaction class
prediction and the reacting atom prediction separately, without
evaluating the prediction of the metabolite structures themselves,
and it is unclear how exactly the reaction class and reacting
atom predictions are combined to generate a metabolite structure
(Rudik et al., 2017). On the other hand, it is clear that SoM
prediction is used directly as a prefilter before applying reaction
rules in the SMARTCyp Toxtree module. However, a validation
of this method has not been published.

In terms of the availability of rule sets for metabolite structure
prediction, there are a few existing freely available collections
of reaction rules described in an easily accessible, computer-
readable format such as SMIRKS4, a reaction transform language
within the Daylight system. One source of CYP reaction rules is
the SMARTCyp Toxtree module, which uses 16 reaction rules
and makes the SMIRKS freely available as part of the source
code. A larger selection of reaction rules is provided in the
freely available SyGMA Python package. The reaction rules are
clearly separated into phase I and phase II rules; however, there
is no indication of which of the 118 phase I reaction rules
specifically describe CYP-mediated reactions. In addition, these
rules were derived from a proprietary and no longer distributed
dataset. BioTransformer offers a large number of CYP-specific
biotransformation rules in SMIRKS format as well as additional
constraint(s) for each rule as part of its Reaction Knowledgebase.

In this work, we present a multipronged approach to the
prediction of metabolites formed by the CYP enzyme family in
humans. In reference to FAME, we name this approach GLORY.
One fundamental aspect of GLORY is a new, easily interpretable
rule base for CYP metabolism that was developed solely from
the scientific literature and basic chemistry knowledge, without
relying on any dataset of metabolic reactions. In addition,
we have examined the effect of using SoM prediction as a
preliminary filter for the positions at which reaction rules are
allowed to be applied and also as part of a new approach
to ranking the predicted metabolites. GLORY therefore has
two modes: MaxCoverage, which focuses solely on recall, and
MaxEfficiency, which focuses more on precision. Further, we
have validated GLORY on a new, high quality, manually curated
dataset that is provided in the Supplementary Material.

RESULTS AND DISCUSSION

Two key aspects are at the core of GLORY, which aims to
predict metabolites within the context of human, CYP-mediated
metabolism: reaction rules and predicted SoMs. In terms of
the rule-based aspect, GLORY uses reaction rules to convert
parent molecules into their possible metabolites. To this end, we
developed a collection of rules based entirely on the scientific
literature to ensure that the rule set was not biased by any
particular metabolism dataset. The information on the CYP-
mediated reactions from the literature was combined with

4SMIRKS—A Reaction Transform Language, Daylight, http://www.daylight.com/
dayhtml/doc/theory/theory.smirks.html
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basic chemistry knowledge to develop SMIRKS to describe
each reaction type. In some cases, such as for O-dearylation,
multiple SMIRKS were required for a single reaction type,
resulting in a total of 73 SMIRKS for the 61 reaction
types present in our collection (Supplementary Table 1). We
additionally use a simple binary distinction between common
and uncommon reaction types, which were thoroughly discussed
and distinguished from each other in Guengerich (2001),
and which distinction we were able to extrapolate to the
CYP-mediated reactions found elsewhere in the literature (see
Methods for details). We do not use occurrence ratios calculated
based on a given dataset in order to rank the predicted
metabolites, due to the limited size, quality, and accessibility of
existing datasets. Out of our collection of 61 CYP reaction types,
22 have been designated as common.

The second key aspect of GLORY is its use of the SoM
probabilities predicted by FAME 2 for each heavy atom in a
molecule to (i) reduce the false-positive prediction rate while
maintaining an acceptable recovery rate and (ii) augment the
ranking of predicted metabolites. In order to reduce the false-
positive prediction rate, the possibility of utilizing a hard cutoff
based on SoM probabilities was explored. This cutoff was used
to determine at which atom positions the rules were allowed
to be applied. In the context of GLORY, we have called this
approach, in which SoM prediction is used as a preliminary filter,
MaxEfficiency mode. In contrast, we designate the approach in
which SoM probabilities are used for ranking metabolites derived
for all positions in a molecule regardless of SoM probability the
MaxCoverage mode. The difference in workflow between the two
modes is illustrated in Figure 1.

Datasets
To choose a SoM probability cutoff for the MaxEfficiency mode
and develop a priority score to rank predicted metabolites, a
large reference dataset was generated by combining the CYP
metabolism data extracted from DrugBank (Wishart et al.,

2018) and MetXBioDB. MetXBioDB is a recently published
database of metabolic reactions, whose substrates are mainly
comprised of xenobiotics and also include a few sterol lipids and
mammalian primary metabolites, and whose reaction data came
from the scientific literature as well as publicly available databases
(Djoumbou-Feunang et al., 2019). In addition, a manually
curated, high-quality dataset was compiled from the scientific
literature for the validation of GLORY. This test dataset contains
29 parent molecules and a total of 81 metabolites, resulting in
2.79 metabolites per parent molecule on average. Importantly,
any parent compounds that are in the test dataset were removed
from the reference dataset before any analysis occurred. In total,
the reference dataset contains 848 parent molecules and a total of
1,588 metabolites, for an average of 1.87 metabolites per parent
molecule. Predictions could be made for 847 of 848 molecules
in the reference dataset (one molecule could not be processed
successfully with FAME 2; see Methods for details).

MaxEfficiency Mode: Selection of a Cutoff
for Metabolite Structure Generation Based
on SoM Probability
In order to determine the effect of a SoM prediction-based
prefilter on predicting preferably only the most relevant
metabolites and reducing the number of false positive
predictions, we tried several different cutoffs for the SoM
probability that must be achieved by at least one atom involved
in the reaction (as defined by the reaction’s SMIRKS). For
each heavy atom in a molecule, FAME 2 reports a probability
between 0 and 1, corresponding to the fraction of trees of
the extra trees classifier that predict that a particular atom
is a SoM. The decision threshold in FAME 2 for whether or
not an atom is considered likely enough to be a SoM to be
designated as such was determined by the trained model to be
0.4 (Šícho et al., 2017).

We examined the effect of different SoM probability cutoffs
using the reference dataset and selected the cutoff to be used

FIGURE 1 | Workflow for GLORY indicating the difference between MaxCoverage mode and MaxEfficiency mode.
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in MaxEfficiency mode based on these results. In particular, we
inspected the effect of the SoM probability cutoffs on precision
and recall, which are defined as follows:

Recall = TP / ( TP + FN)

Precision = TP / (TP + FP)

where TP is the number of true positive predictions, FP is
the number of (putative) false positive predictions, and FN
is the number of false negative predictions. In other words,
recall measures the portion of known metabolites that were
reproduced by the method and precision measures the fraction
of all predicted metabolites that are represented in the dataset.

Here it is worth noting that the number of false positives,
and the designation of a prediction as false positive, is especially
dependent on the dataset that is being used for comparison.
Many metabolites that are formed in humans have not yet
been discovered, or their structures have not yet been exactly
elucidated. Since even the highest-quality dataset is limited by
the available experimental data, the reality is that the distinction
between a real false positive prediction and the true positive
prediction of an as yet unknown or unconformed metabolite
may not be possible. Nevertheless, with this caveat, we evaluate
our method based on the available data, including the putative
false positives.

The purpose of the MaxEfficiency mode is to use the SoM
probability cutoff to predict metabolites with increased precision
compared to no cutoff (i.e., MaxCoverage mode). At the same
time, however, we did not want to sacrifice too much in terms
of recall, as it is still important to predict a molecule’s actual
metabolites even while reducing the number of putative false
positive predictions.

For the purpose of metabolite prediction, we found that
using FAME 2’s decision threshold of 0.4 as the cutoff for SoM
probability resulted in a relatively low recall of 0.65 (especially
when compared to the recall of 0.83 achieved in MaxCoverage
mode, as will be discussed later in this work). Hence, despite
the increased precision afforded by a cutoff of 0.4, it was
determined that this cutoff too greatly reduced the achieved
recall. We therefore additionally tested lower SoM probability
cutoffs (Table 1). Observing the trade-off between precision and
recall with cutoffs ranging from 0.4 to 0.1 and comparing them
to MaxCoverage mode, we determined that a SoM probability
cutoff of 0.2, which resulted in a precision of 0.19 and a still-high
recall of 0.75, offered the best compromise. A SoM probability
cutoff of 0.2 for MaxEfficiency mode was therefore fixed based
on the results shown in this section. Note that although all of
the precision values shown in Table 1 are quite low, the precision
of GLORY using a SoM probability cutoff is comparable to the
precision of existing methods for metabolite structure prediction
(see below for the results on the test dataset).

Development of a Priority Score to Rank
Predicted Metabolites for MaxCoverage
Mode
In order to rank the predicted metabolites for a particular
molecule, we developed a priority score for each predicted

TABLE 1 | Effect of different SoM probability cutoffs on precision and recall over

the entire reference dataset.

SoM Probability Cutoffa 0.4 0.3 0.2 0.1 None

Precision 0.24 0.22 0.19 0.13 0.07

Recall 0.65 0.71 0.75 0.80 0.83

aNote that 0.4 is the default decision threshold in FAME 2, a cutoff of none corresponds
to MaxCoverage mode, and a cutoff of 0.2 was chosen for MaxEfficiency mode.

metabolite based on the SoM probability of the atoms involved
in the transformation and whether the reaction type is common
or not. Specifically, the SoM probability calculated by FAME 2 for
all atoms in the parent molecule that are involved in a reaction as
defined by the SMIRKS is considered, and the maximum SoM
probability among these atoms is then incorporated into the
score, as illustrated in Figure 2. The priority score was calculated
using a simple formula:

scorepredictedmetabolite = P×F

where P is the maximum SoM probability out of the atoms in the
parentmolecule that werematched by the applied transformation
and F is the factor according to whether the reaction type
was designated as common or uncommon. In case the same
predicted metabolite resulted from multiple transformations,
the maximum priority score over all transformations leading to
that prediction was used. A higher priority score is intended
to indicate a higher likelihood of the prediction being true.
For all uncommon reaction types, F = 1. The factor F for
common reaction types affects the early enrichment of the
predictions. Specifically, the early enrichment improves when
common reaction types are given more weight in the score than
uncommon reaction types, i.e. Fcommon > 1 (Figure 3). Based on
an analysis of the receiver operating characteristic (ROC) curves
and area under the ROC curves (AUC) for varying Fcommon,
shown in Figure 3, a factor of 5, resulting in an AUC of 0.90, was
chosen. All subsequent results based on ranking the predicted
metabolites therefore used Fcommon = 5 in the calculation of
the priority score, and the priority score can therefore range
from 0 to 5.

Comparison of Performance on a New,
Manually Curated Test Set
The performance of the MaxEfficiency and MaxCoverage modes
of GLORY was evaluated on the curated test set of 29 parent
molecules with a total of 81 metabolites. This evaluation includes
a comparison with BioTransformer and SyGMa as well as an
analysis of how well the scoring and ranking aspects of the
different approaches work. Specifically, we employed the CYP450
module of BioTransformer and the phase I metabolism reactions
of SyGMa (SyGMa does not feature a dedicated module for CYP
metabolism, but phase I metabolism is carried out to a significant
extent by CYP enzymes) for the comparison.

Analysis of MaxEfficiency Mode
GLORY’s MaxEfficiency mode was designed to address the
problem of low precision caused by a high number of putative
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FIGURE 2 | Illustration of the determination of the maximum SoM probability of all heavy atoms in the parent molecule that are matched by the reaction rule, using the

N-dealkylation reaction rule (common reaction type; factor F = 5) as an example. This maximum probability is used to calculate the priority score of the product.

FIGURE 3 | Receiver operating characteristic (ROC) curves over the entire

reference dataset of 848 compounds with 1,588 known metabolites, with

varying values of the factor used for common reaction types when calculating

the priority score for each metabolite. Note that a factor of 1 means that only

the SoM probability (i.e., the maximum SoM probability for all atoms that are

matched by the SMIRKS) affects the priority score of the predicted metabolite,

regardless of the reaction type. Note also that a ROC curve can be calculated

despite there being no “true negative” predictions overall (all predicted

metabolites are “positive” predictions). To generate the ROC curve, the false

positive rate (FPR) is calculated at each score threshold. At each point,

predictions with scores below the threshold are considered “negative”

predictions and predictions with scores above the threshold are considered

“positive” predictions. Hence the number of “true negative” predictions and

therefore the FPR can be calculated for each point of the ROC curve.

false positive metabolite predictions. This general problem of
an excess of predictions is well-documented for metabolite
prediction tools (Judson, 2014). However, as mentioned above,
it is important to note that the designation of predictions as false
positive is particularly dataset-dependent.

As described previously, the MaxEfficiency mode uses a cutoff
based on the SoM probabilities that FAME 2 predicts for each
heavy atom in order to restrict the locations in the molecule at
which the reaction rules are allowed to be applied. This SoM

FIGURE 4 | Precision (portion of predictions that are true positives) and recall

(portion of known metabolites that are predicted) vary according to the cutoff

for FAME 2’s predicted SoM probability. A SoM probability cutoff of 0.4

corresponds to the decision threshold used in FAME 2. The SoM probability

cutoff chosen for the MaxEfficiency mode of GLORY was 0.2.

probability cutoff was set to 0.2 based on the analysis on the
reference dataset; however, we also examine the effect of different
SoM probability cutoffs using the high-quality test dataset in
order to get a more complete picture of how much can be gained
by a cutoff-based approach.

As expected, using SoM predictions to confine the application
of reaction rules to certain positions does involve a trade-off
between precision and recall (Figure 4). Recall measures the
portion of known metabolites that the method was able to
reproduce, and precision measures the fraction of all predicted
metabolites that are actually known metabolites (see previous
section for definitions). The larger the SoM probability required
to be present among the atoms involved in the transformation,
the lower the recall but the higher the precision as measured
across the entire test dataset. In addition, the larger the SoM
probability cutoff, the more parent molecules there are for which
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FIGURE 5 | Histograms of the recovery rate of known metabolites broken down by parent compound: (A) GLORY in MaxCoverage mode, (B) GLORY in

MaxEfficiency mode, (C) SyGMa, (D) BioTransformer. For example, a recovery rate of 0.5 indicates that for x% of all parent molecules, at least half of all recorded

metabolites from the test dataset were predicted.

no metabolite predictions can be made. Without any such cutoff
and even up to a SoM probability cutoff of 0.2, metabolites
can be predicted for all parent molecules in the test dataset.
However, with a SoM probability cutoff of 0.3, no metabolites are
predicted for two parent molecules, and this number increases to
three for a cutoff of 0.4 (Supplementary Table 2). The number
of molecules affected is small in this case, yet is approximately
10% of the size of the test dataset. Overall, as the cutoff increases,
the total number of predicted metabolites decreases drastically
(Supplementary Table 2).

Unfortunately, as Figure 4 shows, there is a large decrease
in recall for a small increase in precision when using SoM
probability cutoffs of 0.1 or greater. Looking more closely at
the recovery rates per parent molecule, we see that GLORY’s
MaxEfficiency mode (using the selected cutoff of 0.2 as described
above) can predict at least half of the known metabolites for 72%
of the parent molecules in the test dataset, as opposed to 83%
for SyGMa and 79% for BioTransformer (Figure 5). GLORY’s
MaxEfficiency mode can predict all known metabolites for 41%
of the parent molecules in the test dataset, as opposed to 45%
for SyGMa and 38% for BioTransformer. On the other hand, the

number of putative false positives per parent molecule is brought
to within the same range as was measured for SyGMa and
BioTransformer (Figure 6). Using MaxEfficiency mode, most
parent molecules have fewer than 10 putative false positives,
which is also the case for BioTransformer but not quite the case
for SyGMa (however, as mentioned above, SyGMa’s rule base also
includes rules for non-CYP-mediated phase I reactions).

Based on these results, it appears that using FAME 2’s
predicted SoM probabilities as a hard cutoff for metabolite
prediction may not be sufficient for many use cases. However,
the SoM predictions are useful for more than just as a hard cutoff,
namely to rank the predicted metabolites, as will be shown in the
next section.

Comparison of MaxCoverage Mode to SyGMa and
BioTransformer
Neither SyGMa nor BioTransformer uses regioselectivity
prediction as a prefilter before applying reaction rules. The
same is true of MaxCoverage mode, which only uses SoM
prediction in order to score and rank the predicted metabolites.
Hence, we compared SyGMa and BioTransformer to GLORY’s
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FIGURE 6 | Histograms of the number of putative false positive predictions: (A) GLORY in MaxCoverage mode, (B) GLORY in MaxEfficiency mode, (C) SyGMa, (D)

BioTransformer. These histograms use right-closed intervals.

MaxCoverage mode in terms of recall, precision, and ability to
rank the predicted metabolites.

A high recall is important for any use case of a metabolite
structure predictor, but even more so for applications in which
it is of utmost importance to not miss any physically existing
metabolites, such as, for example, when attempting to identify
metabolites based on MS data. GLORY’s MaxCoverage mode
performs well in terms of recall, with a recall of 0.83 compared
to 0.74 and 0.72 for SyGMa and BioTransformer, respectively,
across the entire test dataset (Table 2). A closer look at recall
broken down to the level of the recovery rate of known
metabolites for each parent molecule shows that GLORY is able
to predict all known metabolites for 62% of the parent molecules,
whereas SyGMa and BioTransformer achieve only 45% and 38%,
respectively, in this regard (Figure 5). The number of parent
molecules for which GLORY is able to predict at least half of the
knownmetabolites is 90%, compared to 83% for SyGMa and 79%
for BioTransformer (Figure 5).

Precision can be a useful metric for measuring how well a
method is able to keep the number of putative false positive
predictions under control. Precision was low across the board for
metabolite prediction on the test dataset, with BioTransformer
reaching the highest precision of the three tools at 0.17. SyGMa
was close behind at 0.15, and GLORY’s MaxCoverage mode

lagged further behind at a precision of only 0.08 (Table 2). Again
breaking this down to a slightly more detailed overview, we
see that BioTransformer and SyGMa both always produce fewer
than 25 putative false positives per parent molecule and, for
the majority of parent molecules, fewer than 15 putative false
positives or even, in the case of BioTransformer, fewer than 10
(Figure 6). GLORY in MaxCoverage mode, on the other hand,
often produces so many predictions per parent molecule that
there are up to 53 putative false positives per parent molecule
in the test dataset and on average a relatively high number of
putative false positive predictions compared to the other two
tools (Figure 6).

In the case of the low precision observed for SyGMa, it is
important to note that SyGMa’s rule set is not specific to CYP-
mediated metabolism but rather covers phase I metabolism in
general. This could indicate that SyGMa might achieve higher
precision if only the CYP-specific rules were used.

BioTransformer’s CYP450 prediction module, which has the
highest precision of all three methods, uses isoform prediction as
a preliminary filter. Only the relevant reactions for the predicted
metabolizing CYP isoform(s) are applied to the parent molecule,
which could contribute to the observed precision.

Although the precision of MaxCoverage mode (as well as
SyGMa and BioTransformer) was found to be low and high rates
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TABLE 2 | Evaluation results for SyGMa, BioTransformer, and GLORY’s MaxCoverage and MaxEfficiency modes on the manually curated test dataset.

SyGMa BioTransformer GLORY,

MaxCoverage

mode

GLORY,

MaxEfficiency

modeb

Precision 0.15 0.17 0.08 0.16

Recall 0.74 0.72 0.83 0.64

Total number of predicted

metabolites

406 344 793 327

Number of successfully

predicted reported metabolitesa
60 58 67 52

Top-1 0% N/A 68.97% 68.97%

Top-2 48.28% N/A 72.41% 72.41%

Top-3 68.97% N/A 75.86% 75.86%

aThe total number of reported metabolites in the dataset was 81.
bThe SoM probability cutoff used for MaxEfficiency mode is 0.2, chosen based on the results of the analysis on the reference dataset. Data on the performance of MaxEfficiency mode
with different SoM probability cutoffs are reported in Supplementary Table 2.

of false positive predictions are problematic in general, in the
case of metabolite structure predictors a low precision is only
problematic if there is no way to distinguish between the true
positive and putative false positive predicted metabolites. This
distinction can be achieved with a well-working ranking of the
predicted metabolites, which circumvents the need to reduce the
total number of predicted metabolites. Hence it is important that
a metabolite prediction tool can rank the predicted metabolites
in terms of likelihood of occurrence.

GLORY scores its predicted metabolites based partly on the
maximum SoM probability of all the atoms involved in the
reaction and also takes the type of reaction into account (see
above for a more detailed description of the priority score).
SyGMa uses empirical probability scores calculated based on
the percentage of all predictions for each reaction rule that
are found in the training dataset. SyGMa’s scoring system
thereby relies entirely on the discontinued Metabolite dataset.
The scores generated by GLORY or by SyGMa can be used to
rank the predicted metabolites for a given parent compound
in terms of their likelihood of occurring. The current version
of BioTransformer, on the other hand, does not score or rank
its predictions.

We compared the ranking capability of GLORY’s
MaxCoverage mode with that of SyGMa. SyGMa was able
to predict a known metabolite within the top three ranked
positions for 69% of the parent molecules in the test dataset,
whereas GLORY’s MaxCoverage mode predicted a known
metabolite within the top three predictions for 76% of the parent
molecules (Table 2).

To look at the overall quality of the scoring as well as the
ranking ability of SyGMa compared to GLORY, we generated
ROC curves for each method using the score of each predicted
metabolite as well as the rank of each predicted metabolite for
a given molecule. The rank-based analysis corresponds better to
the actual use case, in which it is desired to prioritize the predicted
metabolites for a particular parent molecule, as opposed to over
an entire dataset [note that SyGMa was originally only evaluated
in terms of ranking per parent molecule (Ridder and Wagener,

2008)]. However, we additionally used the score-based ROC
curve to visualize the performance of GLORY’s priority score
across the whole test dataset. To better allow for comparison of
the ROC curves, false negatives were included in the ROC curves
and thereby in the calculated AUCs by adding those molecules to
the set of data points and artificially assigning them a score of 0
or rank of 1,000, as applicable, for the purpose of this evaluation.

Though the AUC values are low, due in part to the inclusion
of false negative data points in the ROC curves, the ROC curves
show a much better earlier enrichment for GLORY than for
SyGMa (Figure 7). SyGMa does not rank a known metabolite
in the best-ranked position for any parent molecule in the test
dataset (Table 2), which is reflected in the ROC curve. This
decent early enrichment with GLORY, which is corroborated by
the top-3 value, is a highly encouraging result indicating that the
most likely predictions are closer to the top of the ranked list than
the putative false positive predictions are.

One possible explanation for why SyGMa performs poorly
in terms of scoring could be that its scoring scheme was
derived from occurrence ratios in the Metabolite database
and therefore optimized to predict the metabolites in that
particular dataset. Although the Metabolite database was large,
the authors of SyGMa report that the database was nevertheless
biased toward compounds with one known metabolite and
postulate that many of the metabolite profiles were incomplete
(Ridder and Wagener, 2008). Our manually curated test dataset
consists of parent molecules with metabolites that have been
published since 2014, while SyGMa was developed using the
2001 version of Metabolite, so we assume that the overlap, if
any, between SyGMa’s training dataset and our test dataset is
low. Without access to the dataset that was used to develop
SyGMa’s scoring methodology, it remains unclear how well the
types of the reactions that lead to the metabolites in the test
dataset were represented in their training dataset. Related to
that, an additional downside of SyGMa’s approach of basing
their scoring approach on a database of metabolic reactions is
that, since reaction rules can only be included if the database
contains enough examples of a specific reaction type to calculate
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FIGURE 7 | ROC curves over the entire test dataset comparing the (A) scoring and (B) ranking approaches of SyGMa to GLORY’s MaxCoverage mode. For a better

comparison of the two methods, false negatives were included in the ROC curve by assigning those data points a score of 0 or rank of 1,000, as applicable.

a probability score, more unusual reaction types or reaction types
that are for some reason not well enough represented in the
database may be missing from SyGMa’s rule base (Ridder and
Wagener, 2008).

There are several other differences in methodology between
GLORY and SyGMa that could contribute to the difference in
performance. Firstly, SyGMa does not specifically predict CYP-
mediated metabolism but rather phase I metabolism in general,
meaning that it could predict other phase I metabolites that are
simply not present in the test dataset because they are not formed
by CYPs. Second, in the current Python package implementation
that was used for this validation, SyGMa does not appear to
require its predicted metabolites to have a certain minimum size.
Unlike GLORY, which does not output a potential metabolite if it
has fewer than three heavy atoms, SyGMa predicts a handful of
metabolites (across the whole test dataset) with only one or two
heavy atoms.

Computation Time
The run time for GLORY was measured on a workstation
equipped with eight Intel(R) Core(TM) i7-4790 CPUs, 32 GB of
main memory, and a Linux operating system. For the test dataset,
the total run time (using eight cores) was 4.6min inMaxCoverage
mode and 4.3min in MaxEfficiency mode (averaged over three
runs). On average, the computation time per molecule required
to predict metabolites was 10.9 s for MaxCoverage mode and 10.3
for MaxEfficiency mode (averaged over three runs).

METHODS

Development of a Collection of
Transformations
A collection of transformations, defined by SMIRKS and
representing reaction types, was assembled based on
known CYP-mediated reactions found in the literature (see
Supplementary Material for details). The SMIRKS were defined
to be as general as possible while being restricted to reasonable
reaction chemistry, as indicated by the literature and common
chemical knowledge. Therefore, if a reaction was found in the

literature but it was not clear how the reaction would apply
to other molecules besides the provided example, the reaction
was excluded from the collection. This was the case for most
reactions involving large ring systems as well as ring fusions and
ring contractions. Specifically, the following types of reactions
were excluded from our collection: reactions that appeared to
be singleton reactions, reactions involving more than two fused
rings that are not part of a steroid backbone, ring fusions, ring
contractions, reactions in which the substrate or product is a
radical, and reactions specifically indicated to have been found
only in the case of plant CYP isozymes.

A few of the SMIRKS used to describe the transformations
were taken from the Toxtree SMARTCyp module5. Most of the
SMIRKS, however, were newly developed specifically for GLORY.
When developing the SMIRKS expressions, care was taken to
include as few atoms as possible in the explicit mapping, since
SoM probabilities were considered for all atoms in the mapping.

Each reaction type was designated as either “common”
or “uncommon.” Whenever possible, this label was assigned
according to the reaction’s classification by Guengerich in his
2001 review of CYP-mediated reactions (Guengerich, 2001),
which explicitly divided the reactions into these two categories.
If the reaction type was not described in that publication,
a “common” or “uncommon” label was chosen based on
extrapolation (on the basis of empirical similarity to reaction
types present in the publication).

Our collection of CYP reaction rules consists of 61 reaction
types. In some cases, multiple transformations were required
to describe the same reaction type, leading to a total of 73
transformations in the collection of defined reactions. A full
list of the reaction types and their SMIRKS can be found in
Supplementary Table 1.

Metabolite Prediction Program
Predicting the structures of the metabolites involves applying the
reaction rules at all relevant positions. The relevant positions

5Toxtree Module: SMARTCyp—Cytochrome P450-Mediated Drug Metabolism,
http://toxtree.sourceforge.net/smartcyp.html
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are determined by the reaction rule itself and, in the case of the
MaxEfficiency mode, by the SoM probability predicted for each
heavy atom. In MaxCoverage mode, the SoM probabilities are
also used to score the predicted metabolites.

SoM Prediction With FAME 2
The SoM predictions were carried out using the FAME 2
software (Šícho et al., 2017), which included preprocessing of
the molecules. The circCDK_ATF_6 trained model, which had
the best average performance during the independent test set
validation in Šícho et al. (2017), was used for the SoM prediction
within GLORY.

Application of Transformations
The transformations of parent molecules into predicted
metabolites based on the defined SMIRKS strings were
performed using Ambit-SMIRKS [Kochev et al., 2018; Ambit-
SMARTS Java Library, version 3.1.0. http://ambit.sourceforge.
net/smirks.html (accessed Oct 4, 2017)]. Some transformations
may result in multiple products. Products that contain fewer
than three heavy atoms are not included in the set of predicted
metabolites generated by GLORY.

When SoM prediction is used as a preliminary filter, a
transformation rule is only applied at a particular location in the
parent molecule if one of the heavy atoms involved is predicted to
be a SoM with a probability over a certain threshold (see Results
for more information on this threshold).

Scoring of Predicted Metabolites
The scoring of the predicted metabolites was based on SoM
probability predictions and whether the reaction type was
designated as common or uncommon. Each atom in the parent
molecule was assigned a likelihood of being a SoM by FAME 2.
When applying the transformations defined by SMIRKS, Ambit-
SMIRKSmaps the reactant portion of the defined transformation
to any matching set of atoms in the parent molecule. Within
this mapping, the maximum SoM probability was calculated and
used to score the predicted metabolite that resulted from this
particular transformation and mapping.

For each predicted metabolite, the priority score is calculated
by multiplying the maximum SoM probability within the
mapping with a factor F depending on whether the reaction
type was classified as “common” or “uncommon.” Priority scores
for the predicted metabolites therefore range from 0 to Fcommon.
The higher the score, the more likely the predicted metabolite is
considered to be. See Results for further details on the selection
of values for F.

If multiple transformations of a given parent molecule lead
to the same metabolite structure, the priority score is calculated
separately in each case and the highest score is retained. To
calculate top-k values and rank-based ROC curves, it was
necessary to rank the predicted metabolites for each parent
molecule based on their priority scores. If different metabolites
of the same parent compound have the same priority score, then
they receive the same rank. In the case of a tie, one or more rank
numbers, according to the number of tied predictions, following
the tied rank are skipped. For example, if the highest score is

2.5 and two predicted metabolites both have this score, then
both of these metabolites are assigned a rank of 1, no predicted
metabolite is assigned a rank of 2, and the predicted metabolite(s)
with the next highest score are assigned the rank of 3.

Program Output
The predicted metabolites are provided as an SD file with the
following information for each predicted metabolite: rank (out
of all predicted metabolites for a particular parent molecule),
priority score, reaction name, and the InChI, SMILES, and ID
of the parent molecule. If multiple transformations led to the
same product, the highest priority score and the corresponding
reaction name are reported. If the input consists of multiple
molecules, the ID of a parent molecule is set to the molecule’s
position in the ordered list of input molecules (i.e., its position in
the input file).

Creation of the Reference Dataset
The reference dataset was made by combining the CYP
metabolism data from DrugBank and MetXBioDB. The total size
of the combined reference dataset, not including any metabolism
information for any of the parent molecules contained in the
manually curated test dataset, is 848 parent molecules and 1588
metabolites (an average of 1.87 metabolites per parent molecule).

DrugBank Dataset
The DrugBank database (DrugBank, version 5.1.2. https://www.
drugbank.ca/ [accessed Jan 14, 2019]) was downloaded from
the website. In addition to the database in XML format, the
structures of all of the molecules, both parents and metabolites,
were downloaded in SD format from the website (drug group
“All” for the parent molecules).

Any parent or metabolite molecule without an available
structure was ignored. One parent compound (DrugBank ID:
DB09327) was ignored because its SMILES had two components
of which the main component could not be unambiguously
identified. All available generations of metabolism reactions were
considered, as long as the reaction was annotated as mediated by
one or more CYP isozymes. The enzymes for the reactions listed
in DrugBank do not have any apparent species information, so all
were assumed to be human and thereby relevant for this dataset.

For all CYP-mediated reactions, the reactant was considered
to be the parent molecule and the product was considered to be
a first-generation metabolite of that particular parent molecule.
Any metabolite with the same InChI, ignoring stereochemistry
information, as its parent molecule was removed from the set
of metabolites for that parent molecule. Only those parent
molecules with at least one valid metabolite were included in the
final dataset.

Finally, the six parent molecules that are also present in the
manually curated test dataset were removed from the DrugBank
dataset prior to any evaluation, along with their corresponding
metabolism information. These parent compounds were
bupropion, ticlopidine, imipramine, ifosfamide, bosentan,
and olanzapine.

After preprocessing, including removal of the overlap with the
manually curated test dataset, the DrugBank dataset contained
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364 parent molecules and 702 metabolites in total, with an
average of 1.93 metabolites per parent molecule in the dataset.

MetXBioDB Dataset
The human, CYP-mediated reactions were extracted from
the MetXBioDB dataset (MetXBioDB, version 1.0. https://
bitbucket.org/djoumbou/biotransformerjar/src/master/
database/ [accessed Jan 11, 2019]). As the only structural
information provided in the MetXBioDB is in the form of InChIs
and InChIKeys, any substrate or product without a reported
InChI could not be considered. A lacking InChI was only
the case for one out of 1468 CYP-mediated, human reactions
in MetXBioDB.

Stereochemistry information was removed by generating
InChIs without a stereochemistry layer, resulting in 751 CYP,
human parent compounds in total. Of these, 259 are also
present in the DrugBank dataset. For these overlapping parent
compounds, 512 of 569 DrugBank metabolites are also in
MetXBioDB, and MetXBioDB has an additional 93 metabolites
for these overlapping parent compounds.

Eight parent compounds (olanzapine, bupropion,
metoclopramide, bosentan, imipramine, ticlopidine, ifosfamide,
and atomoxetine) from the manually curated test dataset were
also present in the MetXBioDB dataset, only two of which
(metoclopramide and atomoxetine) were not also present
in the DrugBank dataset. These parent compounds and the
corresponding metabolism data were removed from the
MetXBioDB dataset.

After preprocessing, including removal of the overlap with the
manually curated test dataset, the MetXBioDB dataset contained
743 parent molecules and 1385 metabolites in total, with an
average of 1.86 metabolites per parent molecule in the dataset.

Merger of the DrugBank and MetXBioDB Datasets
The DrugBank dataset and the MetXBioDB dataset were
combined to form the reference dataset via a straightforward
consolidation of the parent and metabolite information. All
molecule comparisons occurred using InChIs generated without
stereochemistry information. For any parent molecule that was
present in both the DrugBank and the MetXBioDB datasets,
which was the case for 259 parent molecules, the sets of
metabolites from both datasets were combined, disregarding
stereochemistry, to yield the final set of metabolites for that
parent molecule in the reference dataset.

Creation of the Manually Curated Test
Dataset
A new dataset for testing GLORY was manually assembled
from the scientific literature. The data were extracted from
publications on metabolism that were found in two journals:
Xenobiotica and Drug Metabolism and Disposition. The time
frame considered was from January 2014 to June 2018 for
Xenobiotica and from January 2014 to June 2017 for Drug
Metabolism and Disposition.

Publications were chosen and the metabolism information
they contain included in the dataset if the following criteria
were fulfilled:

1. The publication must contain a figure that depicts the
metabolism scheme and includes the chemical structures of
the parent compound and the first-generation metabolites.

2. The metabolism data must have been experimentally
determined from a human source (i.e., either humans, human
cells, or recombinant human CYP enzymes). If some but not
all of the data were from humans, any non-humanmetabolites
in the metabolism scheme were excluded from the dataset.

3. For at least 75% of all of the first-generation human
metabolites depicted in the metabolism scheme (note that any
metabolite that is depicted as merely being an intermediate is
not considered), the following two criteria must be satisfied.
First, the identity of the enzyme(s) responsible for the
formation of the metabolite must be known. For this purpose,
it is sufficient to knowwhether or not this metabolite is formed
by CYPs. Second, the exact chemical structure, including the
connectivity of all atoms, of the metabolite must be known.
There is one exception to this rule: If the metabolite is known
to not be CYP-formed, then the exact structure is not relevant
and the metabolite is counted anyway.

Based on these criteria, 29 metabolism schemes containing at
least one human, CYP-formed first-generation metabolite with
a fully defined structure were found and included in the dataset.
For these 29 parent molecules, there are 81 metabolites in total
that fulfill the criteria (first-generation, human, CYP, fully defined
structure) for inclusion in the dataset. Note that only first-
generation metabolites are included in the dataset. Note also
that intermediates, as depicted in the metabolism scheme, are
not included in the dataset. Instead, the first non-intermediate
metabolite in the pathway is used.

The SMILES for the metabolites were generated using
ChemSpider (ChemSpider. http://www.chemspider.com/
[accessed Feb 13, 2019]). Consistency of stereochemistry
information between parents and their metabolites
was maintained.

Validation of Metabolite Structure
Predictors
Predictedmetabolites were compared to knownmetabolites from
the reference and test datasets using their InChIs. The InChIs
used for this comparison were generated without stereochemistry
information using CDK (Willighagen et al., 2017; Chemistry
Development Kit, version 2.0. https://cdk.github.io/ [accessed
Nov 3, 2017]).

During the validation, a predicted aldehyde metabolite was
considered equivalent to the corresponding carboxylic acid,
because there is evidence that some percentage of an aldehyde
metabolite acts as an intermediate that is further oxidized to
a carboxylic acid without leaving the CYP enzyme active site
(Bell-Parikh and Guengerich, 1999).

In the case of one parent molecule in the reference dataset, no
predictions could be made because the parent molecule contains
boron. FAME 2 is unable to make predictions for molecules
containing boron because no boron-containing molecules were
present in the dataset used to train the model.
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The SyGMa predictions were carried out in Python using
the SyGMa Python package (SyGMa, version 1.1.0), and RDKit
(RDKit: Open-Source Cheminformatics, version 2017_03_01,
2017). Only the phase I reaction rule set was used and one
reaction cycle was applied.

The BioTransformer predictions were performed using the
CYP450 mode of the BioTransformer (BioTransformer, version
1.0.8. https://bitbucket.org/djoumbou/biotransformerjar/
src/master/ [accessed Feb 5, 2019]) command line tool.
BioTransformer was run individually for each parent compound
using single SMILES input.

The ROC curves were generated using the ROCR R package
(Sing et al., 2005; ROCR, version 1.0-7, 2015). When false
negative data points were added to the curve, these data points
were assigned a score of 0 or a rank of 1,000, respectively,
depending on whether the ROC curve represented scores
or ranks.

CONCLUSIONS

We have developed GLORY, a new tool for predicting the
structures of human metabolites formed by CYPs. GLORY
incorporates two key ideas: a literature-based collection of CYP-
mediated reaction rules and SoM prediction, which was used
particularly auspiciously to develop a new scoring approach for
the predicted metabolites.

For GLORY, we developed a new collection of 73 reaction
rules, describing 61 reaction types, for CYP-mediated
metabolism. In developing this collection, we prioritized
the reproducibility of our rule set and therefore based the rules
on the scientific literature rather than on any dataset. In addition
to the rules themselves, each reaction type was designated as
either common or uncommon, again based on the scientific
literature rather than on any dataset.

In addition, we have devised a priority score for predicted
metabolites based on predicted SoM probabilities and the
simple, literature-based distinction between common and
uncommon reaction types. Hence neither our rule set nor
our scoring approach is directly based on any dataset of
metabolic reactions, setting our approach apart from other
tools, for example SyGMa, which uses reaction rules and
occurrence ratios derived from a proprietary dataset, and
BioTransformer, whose rules were to some extent based on a
freely available dataset.

GLORY has two modes: MaxEfficiency, which uses SoM
prediction as a prefilter for the positions in a molecule at
which reactions are allowed to occur, and MaxCoverage, which
does not use a prefilter and instead focuses on high recall and
an accurate ranking of the predicted metabolites. Using SoM
prediction as a preliminary filter, i.e., in MaxEfficiency mode,
does not work as well as might be expected in terms of reducing
the number of putative false positive predictions while still
keeping a high rate of recovery of reported metabolites. However,
by developing a priority score for the predicted metabolites
using SoM prediction combined with a simple binary distinction
between common and uncommon reaction types, we are able

to rank the metabolites predicted by MaxCoverage mode to the
extent that GLORY can predict at least one known metabolite
within the top three ranked positions for 76% of the molecules
in the independent test set while achieving a recall of 0.83.
GLORY’s MaxCoverage mode outperforms both SyGMa and
BioTransformer in terms of recall and outperforms SyGMa
in terms of ranking (BioTransformer does not currently rank
its metabolite predictions). One use case for the MaxCoverage
mode could be, for example, identifying metabolites from mass
spectrometry data.

Along with the collection of reaction rules, we provide a new,
manually curated test dataset for free use as a benchmark dataset.
In addition, GLORY is freely available as a web server at https://
acm.zbh.uni-hamburg.de/glory/.

Importantly, the concept of GLORY is such that it can
be extended to predict metabolites formed by enzymes not
belonging to the CYP family. The enzymes that this approach
can be expanded to is limited, in principle, only by the extent
of the available data and the coverage of the relevant metabolic
reactions by SoM prediction tools.
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Chapter 4. Results

4.2.2 Predicting Phase I and Phase II Metabolites

The approach to metabolite structure prediction developed for CYPs (see section

4.2.1) explored how SoM prediction could be incorporated to improve a metabolite

structure predictor’s ability to prioritize the predictions and enable focusing on the

most likely ones. We concluded that the most e↵ective approach was to use the

predicted SoM probabilities not as a hard filter but as a component of a score for

each predicted metabolite, which enabled a meaningful ranking of the predictions.

The following publication describes the extension of this method to cover both

phase I and phase II metabolism, incorporating SoM prediction by the previously

published FAME 3 models [A8] to score the predicted metabolites. This new

development required additional reaction rules covering non-CYP phase I metabolic

reactions as well as phase II reactions. These new reaction rules were developed

by implementing the reaction rules from SyGMa [76], an existing open-source

metabolite prediction tool, as well as manually developing reaction rules for GSH

conjugation based on the scientific literature.

In addition, we compiled a new reference dataset from phase I and phase II

metabolite data in the DrugBank [101] and MetXBioDB [85] databases in order

to analyze the ability of our new method to predict both phase I and phase II

metabolites. With this reference dataset of 1420 parent molecules and their phase I

and phase II metabolites, we were able to analyze the performance separately for

phase I and phase II, which allowed us to see that although FAME 3’s phase I SoM

model’s predictions led to a reasonable ranking of the phase I metabolites, ranking

the predicted phase II metabolites based on the predictions made by FAME 3’s

phase II SoM model was di�cult. This discovery led to the use of newly developed

FAME 3 models for individual phase II reaction classes, which greatly improved

the ranking of the predicted phase II metabolites.

The result of this work was GLORYx, a novel tool for predicting phase I

and phase II metabolites of xenobiotics. For the final evaluation of GLORYx, we

developed a new, manually curated test dataset of 37 best-selling drugs and their

phase I and phase II metabolites from the scientific literature. GLORYx is freely

available as a web server and is open source.
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ABSTRACT: Predicting the structures of metabolites formed in humans can provide advantageous insights for the development of
drugs and other compounds. Here we present GLORYx, which integrates machine learning-based site of metabolism (SoM)
prediction with reaction rule sets to predict and rank the structures of metabolites that could potentially be formed by phase 1 and/
or phase 2 metabolism. GLORYx extends the approach from our previously developed tool GLORY, which predicted metabolite
structures for cytochrome P450-mediated metabolism only. A robust approach to ranking the predicted metabolites is attained by
using the SoM probabilities predicted by the FAME 3 machine learning models to score the predicted metabolites. On a manually
curated test data set containing both phase 1 and phase 2 metabolites, GLORYx achieves a recall of 77% and an area under the
receiver operating characteristic curve (AUC) of 0.79. Separate analysis of performance on a large amount of freely available phase 1
and phase 2 metabolite data indicates that achieving a meaningful ranking of predicted metabolites is more difficult for phase 2 than
for phase 1 metabolites. GLORYx is freely available as a web server at https://nerdd.zbh.uni-hamburg.de/ and is also provided as a
software package upon request. The data sets as well as all the reaction rules from this work are also made freely available.

■ INTRODUCTION
Metabolism has a large impact on the safety and efficacy of the
xenobiotics that enter the human body, from drugs to
cosmetics and agrochemicals, because metabolic reactions
can change these compounds into metabolites with different
physicochemical and pharmacological properties.1 Computa-
tional approaches can be useful for predicting how drugs and
other xenobiotics will be metabolized in humans, allowing, for
example, the focusing of the drug development process on the
most promising compounds in order to save time and reduce
costs.
Human xenobiotic metabolism is generally separated into

two phases, phase 1 and phase 2, based on the type of reaction
(note that the nomenclature does not indicate that a phase 1
reaction must occur before a phase 2 reaction can take place).
Phase 1 metabolism consists of oxidation, reduction, and
hydrolysis reactions that generally result in increased polarity
of the metabolite compared to the parent molecule by creating
or unmasking polar functional groups. The main enzyme
family responsible for phase 1 metabolism is the cytochrome

P450 (CYP) enzyme family, which is responsible for the
formation of approximately 60% of first-generation metabolites
but only for approximately 40% of metabolites overall (all
percentages presented here are based on the current version2

of the MetaQSAR database,3 which contains over 4000 parent
molecules, including drugs and other xenobiotics, along with
their first-, second-, and third-generation metabolites produced
by mammalian metabolic enzymes in vitro and/or in vivo).
CYPs are also the cause of a large portion of toxic metabolites
and drug−drug interactions.4 Of the non-CYP phase 1
enzymes, the ones with the highest impact on metabolite
formation are hydrolases and flavin-containing monooxyge-
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nases (FMOs), which account for approximately 9% and
approximately 4% of all metabolites, respectively.
Phase 2 metabolism consists of conjugation reactions that,

like phase 1 metabolic reactions, tend to modify compounds to
more excretable forms. In all, phase 2 metabolism accounts for
approximately 30% percent of all metabolites.2 The enzymes
responsible for phase 2 drug metabolism belong primarily to
five enzyme families: UDP-glucuronosyltransferases (UGTs),
glutathione S-transferases (GSTs), sulfotransferases (SULTs),
N-acetyltransferases (NATs), and methyltransferases (MTs).5

These five enzyme families are responsible for nearly 90% of all
phase 2 metabolites.4

Computational prediction of xenobiotic metabolism encom-
passes several aspects, including the prediction of the
metabolically labile atom positions in molecules, which are
known as sites of metabolism (SoM), and prediction of
metabolite structures.1,6 Although SoM prediction can provide
valuable information and often allows the structure of the
resulting metabolite to be inferred by a chemist, it is also of
interest to directly predict the metabolites themselves. There
are many freely available and commercial methods for
metabolite structure prediction, though most focus exclusively
on CYP-mediated metabolism. Commercial tools that offer
comprehensive prediction of metabolites for both phase 1 and
phase 2 metabolism include Meteor Nexus (Lhasa Ltd.),7

TIMES (LMC),8 and MetabolExpert (CompuDrug Ltd.).9

In terms of freely available metabolite structure predictors, a
popular and relatively long-lived, open-source tool is SyGMa.10

SyGMa generates and ranks metabolites based on reaction
rules and their occurrence ratios derived from the Metabolite
database.11 The current version of SyGMa predicts phase 1
and phase 2 metabolites using a set of 145 knowledge-based
reaction rules (118 phase 1 rules and 27 phase 2 rules). Using
the combined set of reaction rules, SyGMa was able to predict
68% of the metabolites in a test set consisting of 175 parent
compounds and 385 reactions (taken from a later release of the
Metabolite database compared to the training data).10 The
predictor was able to rank 45% of the metabolites in the test
set within the top 10 predictions for their corresponding parent
molecules. Unfortunately, the Metabolite database, which was
used to develop the reaction rules and the occurrence ratios for
the scoring, has been discontinued.
Another freely available tool for metabolite prediction is

BioTransformer,12 an open-source, comprehensive program
that predicts metabolite structures for human CYP and phase 2
metabolism as well as gut microbial, environmental microbial,
and human “enzyme commission (EC)-based” metabolism.
BioTransformer has 163 CYP rules and 74 phase 2 rules as well
as additional constraints regarding molecule types that various
rules are allowed to be applied to. Using a combination of the
CYP, phase 2, and EC-based modules (408 rules), BioTrans-
former achieved a recall of 88% on its test set of 40
pharmaceuticals and pesticides, with a precision of 0.49 (188
true positive predictions and 198 putative false positive
predictions). BioTransformer does not currently rank its
predictions.
A further freely available tool, MetaTox,13,14 predicts

metabolites by separately predicting the probability that each
potential reaction class is relevant to the given molecule and
also predicting the probability of a reaction occurring at each
possible reaction center given each possible reaction class. The
probability that the resulting metabolite is formed is calculated
by combining both of these probabilities, which can then be

used to rank the predictions. The reaction types include both
phase 1 and phase 2 reaction types, though it is unclear how
many reaction rules there are in total. During leave-one-out
cross-validation, MetaTox obtained invariant accuracy pre-
diction (IAP, a metric related to area under the receiver
operating characteristic curve (AUC)) values between 0.79
and 0.95 for the prediction of the correct reaction class and
IAP values between 0.86 and 0.99 for the prediction of the
reacting atoms for each of the biotransformation classes.14

We recently reported on the development of a tool called
GLORY that predicts the structures of metabolites formed by
the CYP enzyme family.15 GLORY includes a new set of
reaction rules for CYP-mediated metabolism, whereby
common reaction types are distinguished from more unusual
reactions. Importantly, GLORY explored how SoM prediction
could be effectively employed within the context of metabolite
structure prediction. We were able to demonstrate that using
the predicted SoM probabilities for each atom in a molecule to
score the predicted metabolites, resulting from reactions taking
place at those atom positions, led to a meaningful ranking of
the predictions.
The software for SoM prediction that was used in GLORY

was FAME 2,16 a machine learning-based SoM prediction
program that uses extremely randomized trees classifiers
combined with two-dimensional (2D) circular descriptors to
predict SoMs for CYP-mediated metabolism. Since the
development of GLORY, a successor to FAME 2 has become
available. FAME 317 continues to use the concept of extra trees
classifiers and 2D circular descriptors developed in FAME 2
and applies this approach to generate comprehensive SoM
prediction models for both phase 1 and phase 2 metabolism.
There are several other metabolite prediction tools, both

commercial (e.g., ADMET Predictor18 from SimulationsPlus,
StarDrop19 from Optibrium, and MetaSite from Molecular
Discovery20) and freely available (e.g., MetaTox13,14), that
incorporate SoM prediction into their metabolite prediction
approaches. These tools either focus solely on CYP-mediated
metabolism, have not been published, or, as described above
for MetaTox, have been evaluated in such a way that makes it
difficult to determine how well the metabolite structures
themselves were predicted. Thus, although the concept of
combining SoM prediction with reaction rules for compre-
hensive metabolite prediction has been applied in various ways,
a systematic analysis of the performance for both phase 1 and
phase 2 metabolism has not yet been published.
We have extended the approach developed in GLORY to

create a new tool, called GLORYx, that combines SoM
prediction with a set of reaction rules to predict metabolites for
both phase 1 and phase 2 metabolism. GLORYx employs
FAME 3 for SoM prediction, the results of which are used to
score and rank the predicted metabolites. Compared to
GLORY, GLORYx requires more reaction rules in order to
cover non-CYP phase 1 metabolic reactions as well as phase 2
metabolic reactions. GLORYx is freely available via a web
server at https://nerdd.zbh.uni-hamburg.de/.

■ METHODS
Reference Data Set. A reference data set of compound-

metabolite pairs was compiled from the freely available metabolism
data in the DrugBank (drug group “All”)21,22 and MetXBioDB23

databases to serve as a basis for evaluation of the method during the
development of GLORYx. For each metabolic reaction in either
database, the reactant was considered to be the parent molecule, and
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the product was considered to be the metabolite. The reference data
set is therefore in the format of a map of each parent molecule to its
first-generation metabolites, regardless of whether the parent molecule
is itself the metabolite of another molecule.
The extraction of the data from DrugBank and MetXBioDB is

consistent with the method used in GLORY (see ref 15). The
differences in the preprocessing of the data (i.e., assigning a phase and
removing the minor component of salts; see below) arise from
considering both phase 1 and phase 2 metabolism rather than just
CYP metabolism.
The preprocessing procedure is as follows:

(1) Structural information for both the parent and the metabolite
was required in order for a reaction to be included. For
DrugBank, the structures are provided in SD file format. In
MetXBioDB, only InChIs and InChIKeys are provided, so the
InChI was used to generate the structure. Note that
stereochemistry information was ignored for parent molecules
as well as metabolites, so stereoisomers were thereby
condensed.

(2) The multicomponent parent molecules in the DrugBank
database had to be handled (no multicomponent parent
molecules were found in MetXBioDB). The minor component
of each salt was removed (e.g., K+, Ca2+). There was one
multicomponent compound (DrugBank ID: DB09327) in
which the main component could not be automatically
determined, so this compound was excluded from the
reference data set. Note that multicomponent metabolites,
on the other hand, are simply separated into their individual
components and each is considered a separate metabolite.

(3) Any metabolite that contained only one heavy atom (six cases
consisting of metal ions, SeH2, and a water molecule;
DrugBank only) or had the same InChI, ignoring stereo-
chemistry, as its parent molecule, was excluded.

(4) The metabolites were classified as either phase 1 or phase 2
metabolites, according to the enzyme or biotransformation
type annotation (see subsection below for details). If a
metabolite could not be assigned a phase, the metabolite was
ignored.

(5) Parent molecules with no remaining valid metabolites after
applying the above criteria were removed.

(6) The metabolism data corresponding to all parent molecules
that overlap with a manually curated test data set (described
below) were removed from the reference data set. The removal
of the overlap with the test data set affected 15 parent
molecules from DrugBank and 9 from MetXBioDB.

The DrugBank and MetXBioDB data were combined in a
straightforward manner using InChIs generated without stereo-
chemistry information to compare molecules. If the same parent
molecule was present in both DrugBank and MetXBioDB, then the
metabolites from both sources were combined, disregarding stereo-
chemistry, into one set.
Assigning a Metabolism Phase to Metabolites in the Data Set.

To enable separate evaluation for phase 1 and phase 2 metabolite
prediction, we assigned each metabolite in the reference data set to a
phase based on the relevant information in DrugBank and
MetXBioDB. This allowed the creation of two distinct subsets of
the reference data set. The phase 1 and phase 2 subsets of the
reference data set represent only phase 1 and phase 2
biotransformations, respectively. If a parent compound has no
relevant metabolites for the given phase, then it was excluded from
the corresponding subset of the data set.
For the DrugBank data, the metabolites were assigned to a

metabolism phase based on the enzyme annotation of the reaction.
Some enzymes were omitted completely because they are not
enzymes typically associated with human xenobiotic metabolism (e.g.,
hemoglobin, serum albumin, and lyases). See Table S1 in the
Supporting Information for a list of all enzymes that were excluded.
This criterion resulted in the exclusion of only 17 metabolites from 11
parent compounds.

For the MetXBioDB data, the appropriate phase for each
metabolite was determined based on the “Biotransformation type”
annotation in the database. The reactions annotated “Human Phase
1” or “Human Phase 2” were classified as phase 1 or phase 2,
respectively.

Manually Curated Test Data Set. The test data set was
manually assembled from the scientific literature. We wanted to
include all known metabolites of the parent compounds (i.e., all
metabolites which have been experimentally observed and reported in
the scientific literature), so we chose to structure the data as metabolic
trees, including all generations of metabolites that were found in the
literature.

The selection of parent molecules for the test data set was based on
the top 100 best-selling drugs from 2018.24,25 For all the small-
molecule drugs within these 100 drugs that are made up of only the
atoms H, C, N, S, O, F, Cl, Br, I, and P, we searched the scientific
literature for relevant metabolism information, specifically the
structures of human metabolites and preferably a scheme depicting
the metabolic tree (see below for more detail). For the listed
pharmaceutical products that are a combination of two or more
named drugs (e.g., Mavyret is composed of glecaprevir and
pibrentasvir), a separate literature search was undertaken for each
drug component. For sources of metabolite information, we
considered all scientific journal publications that could be found
online with Google.

The basic criteria for inclusion in the data set were as follows:

(1) The metabolites must be clearly indicated to be found in
humans (either in vivo or in vitro using human hepatocytes,
human liver microsomes, or human liver S9 fractions).

(2) Structures of metabolites must be provided. In cases in which a
metabolism scheme is not shown, it must be clear, based on
chemistry knowledge, that the depicted metabolites are not
metabolites of each other, that is, that the depicted metabolites
are all first-generation metabolites of the parent drug.

(3) Only fully defined metabolite structures (i.e., the exact position
of the added functional group is shown) are included in the
data set. The branches of the metabolic tree are followed, and
the metabolites included and annotated with the correspond-
ing generation, until a not-fully defined structure is reached.
Any further metabolites derived from such a not-fully defined
structure are ignored. The maximum metabolite generation
included in the data set was generation five, which occurred for
only two parent molecules.

(4) Intermediates designated as such in the scheme are not
included in the data set.

(5) Some metabolites could not be considered first-generation
(based on chemistry knowledge and additional information
from the text of the publication), even though the visual
scheme indicated that their precursors were only intermediates.
Such cases were also removed.

(6) Fatty acid conjugation was not considered.
(7) In the case of one prodrug (abiraterone acetate), we used the

drug itself (abiraterone) as the parent molecule in the data set
because it had more (first-generation) metabolites shown in
the scheme.

The data set was assembled by extracting the SMILES for the
parent compounds from the ChEMBL Database26,27 by looking up
each drug name. These structures were manually verified for
correctness before proceeding. The SMILES for the metabolites
were generated with MarvinSketch28 by modifying the parent
molecules to create the metabolites and saving them in SMILES
format. Metabolite stereoisomers were combined, resulting in a
structure with unspecified stereochemistry at the relevant stereo-
center.

Data Set Structure. The final data set contains 37 parent molecules
and is provided as a JSON file (see Notes). There are 136 first-
generation metabolites in total.

The JSON file is structured to represent the metabolic trees, which
include multiple generations of metabolites, whenever relevant,
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following the procedure explained above. For each parent compound,
the DOI or PMID of the reference paper(s) is provided, along with
the drug name, SMILES, and metabolites. For each metabolite, the
name it was given in the publication is provided for reference (this
name is often something like “M1”) along with the metabolism
generation number and the SMILES. Due to the JSON file format, it
is always clear for the second, third, and subsequent generations of
metabolites which first-generation metabolites were their precursor,
and so on.
No distinction between phase 1 and phase 2 metabolites is made,

and enzyme annotations are not included, as this information was
only rarely provided in the original literature used to assemble the
data set.
Analysis of the Metabolite Data from MetXBioDB and

DrugBank. The data from MetXBioDB and DrugBank were
considered separately. The data were extracted and preprocessed
from each source as described in the Reference Data Set subsection,
except that the parent molecules that overlap with the test data set
were not removed. For the analysis described here, only the properties
of the parent molecules were considered.
Calculations of molecular weight and log P in order to plot the

distributions were performed using RDKit.29 The molecular weight
calculated was the average molecular weight including hydrogens.
One molecule in MetXBioDB was not considered a valid molecule by
RDKit (explicit valence greater than permitted) and was therefore
excluded from all analysis described in this section.
Principal component analysis (PCA) was performed with scikit-

learn30,31 using 44 physicochemical descriptors calculated with the
Molecular Operating Environment (MOE).32 A full list of the
descriptors, as well as a brief description of each, can be found in
Table S2.
Reaction Rules. The metabolic reaction rules used in GLORYx

are encoded as SMIRKS.33 Three sets of reaction rules were used: (1)
all of SyGMa’s reaction rules, which include both phase 1 and phase 2
rules; (2) GLORY’s reaction rules, covering only CYP metabolism;
and (3) a newly developed set of GSH conjugation rules to augment
SyGMa’s phase 2 rules, which are missing reactions of this type. The
reaction rules from GLORY were used unchanged.
Implementation of SyGMa Reaction Rules. Because the so-called

SMIRKS provided in SyGMa’s open-source python package34 are
actually in the format of RDKit’s reaction SMARTS, it was necessary
to convert them to proper SMIRKS in order to implement them in
our software. This conversion was performed manually, with care
being taken to preserve the chemical meaning of the reaction.
In one case, namely that of oxidative deamination, additional

SMIRKS strings were necessary to achieve the same result with the
SMIRKS that SyGMa achieved with its reaction SMARTS. The
reason is that double bonds in an aromatic ring are not automatically
shifted during transformation in GLORYx. We therefore added two
additional SMIRKS in order to explicitly shift the double bonds for 6-
rings and 5-rings. Any invalid products generated by the SMIRKS for
this reaction are ignored because the molecule validity checker in
GLORYx discards transformation products with a carbon atom of
invalid atom type (in this case, a valence >4 due to incorrect bond
placement).
Development of Reaction Rules for Glutathione Conjugation.

The scientific literature indicates that glutathione (GSH) conjugation
by the GST enzyme family occurs mainly at the following functional
groups: epoxides, α,β-unsaturated carbonyls, quinones, nucleophilic
substitution (aliphatic and aromatic), isocyanates (and isothiocya-
nates), and nitriles.35−40 The SMIRKS for these cases were developed
based on the reaction descriptions and example reactions present in
the referenced literature.
Metabolite Prediction Program GLORYx. GLORYx applies the

reaction rules to all appropriate positions in the molecule, determined
by where each reaction rule SMIRKS matches, if it matches at all.
Within the program, SoMs are predicted with FAME 3,17 and the
predicted SoM probabilities are used to score and rank the predicted
metabolites. The software is written in Java and uses CDK version
2.0.41,42

GLORYx performs an initial preprocessing step for all input
molecules to check that the input molecule can be successfully parsed
by CDK, does not have multiple components, and contains no
element types other than C, N, S, O, H, F, Cl, Br, I, P, B, and Si
(FAME 3’s allowed element types; note that FAME 3 does not make
predictions for B and Si due to a lack of training data, and for this
reason the test set was chosen to not include any molecules with a B
or Si atom). If any of these checks fail, no predictions are made for the
input molecule. Further preprocessing steps that occur within the
context of SoM prediction and the application of the reaction rules are
described in the following subsections.

SoM Prediction. The SoM prediction in GLORYx is performed
using FAME 3.17 FAME 3 was trained on the SoM data from the
MetaQSAR database3,43 and offers three SoM prediction models: the
P1 model predicts SoMs corresponding to phase 1 metabolic
reactions, the P2 model predicts SoMs corresponding to phase 2
metabolic reactions, and the P1 + P2 model predicts SoMs
corresponding to both metabolism phases.

The FAME 3 code includes preprocessing of the input molecules,
involving the standardization of nitro groups, aromaticity detection,
and automatic addition of hydrogens if the hydrogens of the input
molecule are not explicitly specified. Because the SoM prediction step
comes before the application of the reaction rules within the GLORYx
program, the standardization of the molecules described here remains
in place for the subsequent transformation step described below.

FAME 3 uses circular descriptors that incorporate 15 basic 2D
CDK descriptors and circular atom-type fingerprints (see ref 17 for
details). During the development of FAME 3, the effect of the bond
depth of the circular descriptors was examined, and a bond depth of
five was chosen as the default bond depth for the descriptors.
GLORYx uses the default models with a descriptor depth of five.

In order to improve GLORYx’s ability to rank its predictions of
phase 2 metabolites (see Results for details), we used previously
unpublished reaction class-specific individual phase 2 SoM models
from FAME 3. These models were created using the identical
modeling procedure described in the FAME 3 paper (see ref 17), but
with each model trained on only a subset of the data. The SoM data
from the reaction classes in the MetaQSAR database43 corresponding
approximately to the five main enzyme families of phase 2 xenobiotic
metabolism (UGTs, GSTs, SULTs, MTs, and NATs) were selected,
and a separate model was created for each subset. The reaction class
types and the number of molecules used to train the models are
described in Table S3. Note that the data from two classes of
glucuronidation reactions in MetaQSAR were combined to create a
single glucuronidation model.

For the reaction class-specific phase 2 SoM models, GLORYx again
uses the models with a descriptor depth of five, for consistency.

Transformation of Molecules According to Reaction Rules. The
reaction rules were applied using Ambit-SMIRKS.44,45 As for GLORY,
any product containing fewer than three heavy atoms is not included
in the set of predicted metabolites.

In order to apply the reaction rules correctly, that is, to achieve the
same predicted metabolites as SyGMa while using the same rules, it
was necessary to use an aromaticity model that could recognize
aromaticity in rings with exocyclic heteroatoms. To achieve this, we
chose an aromat ic i ty model in CDK that uses the
ElectronDonation.daylight() electron donation model. In order to
allow for better ring recognition in molecules with more than three
rings, we set the cycles portion of the aromaticity model to
Cycles.or(Cycles.all(), Cycles.relevant()), indicating that all cycles
would be used whenever possible and the “relevant” cycles would
be used in cases in which the molecule contained too many cycles for
all of them to be considered. This new aromaticity model is applied
directly before reaction rule-based transformation using all reaction
rules, not just the rules sourced from SyGMa, and does not affect the
aromaticity recognition used for SoM prediction with FAME 3.

There is one noticeable remaining discrepancy related to
aromaticity, as determined by comparison on the reference data set,
between GLORYx’s predictions and SyGMa’s predictions for the
“same” reaction rules. Tetrazoles appear to be recognized as aromatic
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by GLORYx but not by SyGMa, as indicated by an aromatic
glucuronidation reaction being successfully applied by GLORYx but
not by SyGMa. This discrepancy affects only three parent molecules
in the phase 2 subset of the reference data set.
Scoring. Each predicted metabolite is assigned a priority score in

order to rank the predictions. The priority score has two components.
The first component is the predicted SoM probability from the
FAME 3 model used to make the prediction. The maximum SoM
probability among the atoms in the mapping of the reaction rule’s
SMIRKs onto the parent molecule is used.
The second component is a reaction rule weighting factor based on

a simple designation of either “common” or “uncommon” for each
reaction type. This designation, which we previously introduced for
CYP reactions in ref 15, was based primarily on a detailed review of
CYP-mediated reaction types that described both common and
uncommon types of reactions.46 In this work, we use the common−
uncommon designation more loosely, as a simple differentiation in
reaction type prioritization that allows a binary weighting of the
reaction rules. A weighting factor corresponding to the common−
uncommon classification is multiplied with the maximum SoM
probability mentioned above in order to calculate the priority score
for the predicted metabolite. In GLORYx, a weighting factor of 1 is
used for reaction rules designated “common”, and a weighting factor
of 0.2 is used for reaction rules designated “uncommon”. These
weighting factors thereby maintain the same ratio of 5:1 as described
previously in ref 15 but are scaled such that the final priority score
more reflects a probability-like concept, with values ranging from 0 to
1.
The final priority score of a predicted metabolite is thereby the

product of the maximum SoM probability and the weighting factor
corresponding to the priority level, common or uncommon, of the
reaction type.
The final assignment of a priority level to the reaction rules was

determined rationally. The priority levels of the CYP metabolism-
based rules from GLORY were not changed. All of the phase 1 rules
from SyGMa were designated uncommon, which does not affect the
higher priority given to common CYP-mediated reaction types in the
case of duplicate reaction types in the SyGMa and GLORY rule sets.
The phase 2 rules corresponding to the five main phase 2 enzyme
families were designated common, while the others (glycination,
phosphorylation, and dephosphorylation) were designated uncom-
mon.
Validation. Predicted metabolites were compared to the known

metabolites from either the reference data set or the test data set using
InChIs that were generated without stereochemistry information.
Special Consideration for CYP Reactions. Spontaneous oxidation

from an aldehyde to a carboxylic acid was considered during the
evaluation process, as in GLORY (see ref 15), but only for predicted
metabolites that were the product of a phase 1 reaction rule. It was
intended that this consideration only apply to CYP reactions, but
SyGMa’s phase 1 reaction rules do not distinguish between CYP and
non-CYP, so this step was applied to all phase 1 products. Note that
this applies only to the validation and does not affect the predicted
metabolites that are provided to the users of GLORYx.
Comparison to SyGMa. The comparison of GLORYx to SyGMa

was performed using SyGMa34 with RDKit.29 One change to the
standard usage of SyGMa was required, in the case where both phase
1 and phase 2 metabolite predictions were desired. When SyGMa is
run with a single metabolism Scenario object specifying both phase 1
and phase 2, the rule sets for the phases are applied sequentially, that
is, the first rule set listed (phase 1) is applied first, and then the
second rule set (phase 2) is applied to the parent compound as well as
the products of the first rule set. This behavior corresponds to a
different research question than the one posed in our evaluation, so
SyGMa was instead run twice for each molecule in the test set, once
using only the phase 1 rules and then separately using only the phase
2 rules. The predictions from both runs were combined.
In addition, any predicted metabolite with the same InChI as the

parent compound was ignored, and, for the sake of comparison, a
filter to remove all predicted metabolites with fewer than three heavy

atoms was added (SyGMa’s built-in percentage-based size filter was
turned off). Implicit hydrogens were also added to SyGMa’s output
SMILES before generating the InChIs for comparison with
GLORYx’s predictions.

■ RESULTS
The concept of GLORYx is that SoMs, or rather the
probability of each heavy atom being a SoM, are predicted
with FAME 3, and, building on these predictions, a set of
reaction rules is applied in order to generate the structures of
predicted metabolites for both phase 1 and phase 2
metabolism. We have previously determined, for our earlier
CYP-focused metabolite prediction tool GLORY, that using
the predicted SoM probabilities as a hard cutoff to determine
whether or not to apply a reaction rule at a given position is
not a particularly effective approach, except if the goal is to
simply reduce the number of predictions.15 Instead, we found
that using the predicted SoM probabilities to score and rank
the predicted metabolites enabled a reasonable ranking of the
predicted metabolites while retaining a high recall of known
metabolites. Therefore, we again use the predicted SoM
probabilities to rank the metabolites predicted by GLORYx.
For GLORYx, we also have the capability of using a different
FAME 3 SoM prediction model depending on which phase of
metabolism is being predicted.
GLORYx was developed and analyzed using a large

reference data set containing metabolism data from DrugBank
and MetXBioDB. This reference data set was used to examine
phase 1 and phase 2 metabolism separately to make sure each
phase could be handled satisfactorily on its own as well as to
determine how to best combine predictions for both phases.
The final validation of GLORYx was subsequently performed
on a manually curated test data set.

Analysis of the Approach Using a Large Reference
Data Set. A reference data set for the development of the
GLORYx method was created by combining the freely
available metabolism data from DrugBank and MetXBioDB
(see Methods for details). Considering both phase 1 and
phase 2 metabolism, and using the data preparation process
described in Methods, we collected metabolite data for 560
parent molecules from DrugBank and 1188 parent molecules
from MetXBioDB. Of these parent molecules, 310 are
identical, not considering stereochemistry, meaning there are
1438 parent molecules total from both sources combined. The
metabolites for the overlapping parent molecules were
consolidated when forming the reference data set. Within
this overlap, 555 of 868 metabolites were present in both data
sets. Of the rest, 135 were from DrugBank and 178 from
MetXBioDB.
It is relevant to mention here that DrugBank does not

contain species annotations for the metabolism data, while
MetXBioDB specifies “Human Phase 1” and “Human Phase 2”
metabolic reactions. Neither data source includes annotations
regarding whether any given metabolite data were collected in
an in vivo or an in vitro study.
Beyond noting the amount of overlap between the two data

sources, we wanted to examine the chemical space covered by
each, in terms of the parent molecules. To the best of our
knowledge, such an analysis has not yet been done for
MetXBioDB. For DrugBank, an analysis focused specifically on
the compounds for which there is metabolite data has also not
yet been undertaken. When performing this analysis, we
retained the overlapping parent molecules in both data sets.
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In terms of molecule size, we observe a narrower distribution
among the parent molecules of MetXBioDB than among those
of DrugBank, as seen in Figure 1A for molecular weight. In
addition, we noted a shift in the distributions, whereby
DrugBank has a median molecular weight of 322 while
MetXBioDB has a median of only 282. The mean values are
not compared due to the presence of an outlier with a
molecular weight of 4114 Da (semaglutide) in the DrugBank
data. For calculated log P (clog P) values as well, a narrower
distribution is observed for MetXBioDB (Figure 1B).
However, for clog P the median values of the two distributions
are very similar, at 3.04 for DrugBank and 3.05 for
MetXBioDB.
In the context of metabolite prediction, it is especially

interesting to compare the ratio of parent molecules and
metabolites recorded in a data set as this ratio can give an
indication of the comprehensiveness of the metabolism data
(metabolism data are generally incomplete; more metabolites
are typically known for compounds of high relevance, in
particular approved drugs). In the case of the DrugBank and
MetXBioDB data, the distributions of the number of
metabolites per parent molecule are quite similar (Figure
1C). In both cases, the majority of parent molecules have only
one known metabolite. At the same time, over 40% of the
parent molecules from each data source have multiple
metabolites.

Finally, to achieve a visual comparison that takes into
account multiple physicochemical properties of the parent
molecules, we performed principal component analysis (PCA)
on each set of parent molecules using 44 physicochemical
descriptors (Figure 1D; see Methods for details). From the
PCA we see that there is a large amount of overlap between the
two data sets, which is unsurprising given that most of the
molecules in the DrugBank data set are also included in the
MetXBioDB data set. However, we also see that there are
portions of the chemical space populated by parent molecules
from DrugBank but not from MetXBioDB, which is consistent
with the results from the comparison of the distributions of
molecular weight and clog P. Inspection of the PCA loading
plot (Figure S1) shows that molecule size and polarity seem to
play a large role in the variance in the PCA plot. In particular,
molecule size seems to influence the first principal component,
while polarity seems to influence the second principal
component. Interestingly, the five data points (two from
DrugBank, three from MetXBioDB) in the far right portion of
the PCA plot correspond to the five largest molecules included
in the calculation, all of which have a molecular weight
between 1000 and 1300 Da (the outlier with a molecular
weight of over 4000 Da was not included in the PCA). These
five molecules consist of five macrocyclic peptides (including
cyc lospor ine) and one nonmacrocyc l i c pept ide
(angiotensin II).

Figure 1. Comparison of the metabolite data from MetXBioDB and DrugBank, in terms of parent molecules. (A) Distribution of molecular weight.
(B) Distribution of clog P. (C) Histogram of the number of metabolites per parent molecule in terms of percentage of parent molecules. (D)
Comparison of the chemical space of the parent molecules from MetXBioDB and DrugBank using PCA calculated using 44 physicochemical
descriptors. The percentage of the total variance explained by each of the first two principal components is included in the axis labels.

Chemical Research in Toxicology pubs.acs.org/crt Article

https://dx.doi.org/10.1021/acs.chemrestox.0c00224
Chem. Res. Toxicol. XXXX, XXX, XXX−XXX

F



Whereas the above chemical space analysis included all valid
metabolite data from DrugBank and MetXBioDB, a further
data preprocessing step was performed for the formation of the
final reference data set used for the evaluation of the
metabolite structure prediction approach. All metabolism
data corresponding to parent molecules contained in the test
set were removed from the reference data set. This removal
resulted in a final reference data set containing 1420 parent
molecules and a total of 2453 metabolites.
The reference data set was further separated into two

subsets, corresponding to phase 1 and phase 2 metabolism.
The phase 1 subset contains 944 parent molecules and 1763
metabolites, and the phase 2 subset contains 582 parent
molecules and their 690 metabolites (Table 1). Most of the

phase 1 metabolites are CYP metabolites, and most of the
phase 2 metabolites are UGT metabolites (Table 1). Note that
some of the phase 2 metabolites do not correspond to any of
the listed enzyme families, just as some of the phase 1
metabolites are not formed by CYPs.
The two separate subsets of the reference data set were used

to analyze the performance of GLORYx for phase 1 and phase
2 individually, because there are slightly different consid-
erations for each metabolism phase. In addition, the entire
reference data set was used to analyze the combined prediction
of both phase 1 and phase 2 metabolites.
Note that GLORYx is unable to process two parent

molecules in the phase 1 subset of the reference data set and
one parent molecule in the phase 2 subset. Both of the phase 1
parent molecules contain a Se atom, which FAME 3 cannot
handle (partial charges cannot be calculated; see Methods for a
list of allowed element types). Because no SoM predictions can
be made, no metabolites are predicted. The parent molecule in
the phase 2 subset is unable to be processed because it
contains a nitrogen atom with a state that FAME 3 does not
recognize. This is the case regardless of which FAME 3 model
is used.
Phase 1 Metabolism. The fundamental concept of our

approach to predicting metabolites is to integrate machine
learning-based SoM prediction in order to score the predicted
metabolites. Therefore, the first thing we wanted to know is
how GLORYx’s SoM probability-based scoring approach
compares to the scoring approach used by the state-of-the-

art, open source, comprehensive metabolite prediction tool
SyGMa.
To compare the scoring approaches, GLORYx was initially

implemented using only the phase 1 reaction rules sourced
from SyGMa. The phase 1-specific FAME 3 SoM prediction
model (model P1) was used to predict SoMs. The predicted
metabolites were scored using the maximum SoM probability
predicted among all heavy atoms in the mapping onto the
parent molecule of the reaction rule that led to the particular
predicted metabolite. In this case, the score was therefore equal
to this SoM probability; no weighting based on reaction type
was used. SyGMa, on the other hand, ranks its predictions
based on probability scores that are calculated using the
occurrence ratios of each reaction rule in the Metabolite
database. Each of SyGMa’s predicted metabolites is assigned a
probability score corresponding to the reaction rule that
formed the predicted metabolite.
Given the same reaction rules, SyGMa with its reaction

probability score-based ranking performed slightly better than
our SoM probability-based ranking, with an AUC of 0.76
compared to 0.73, respectively, as shown in Figure 2A. This
result is reasonable if we suppose that the Metabolite database,
which was used to calculate the occurrence ratios for SyGMa’s
reaction types, was so exhaustive even in its 2001 version (the
version used to develop SyGMa) that it contained most of the
contents of the current versions of DrugBank and MetXBioDB.
This supposition is consistent with the observation in 2013 by
Kirchmair et al. that nearly all of the Approved Drugs in
DrugBank at the time (1341 out of 1391) were found in the
2011 version of the Metabolite database as top-level
substrates.47 Unfortunately, without access to the Metabolite
database, which is currently unavailable, we are unable to
perform a comparison ourselves. Nevertheless, it appears that
GLORYx achieves a comparable ranking performance to
SyGMa.

Phase 1 Metabolism: Combination of Reaction Rules
from SyGMa and GLORY. For GLORY, we had developed a
set of reaction rules specific to CYP-mediated metabolism.15

These reaction rules were manually created based on the
scientific literature on CYP-mediated reaction types and
mechanisms, and each reaction rule received a designation of
either common or uncommon reaction type, also according to
the literature. SyGMa’s phase 1 reaction rules are not separated
into CYP and non-CYP rules, so it was of interest to determine
whether adding these CYP-specific rules to the phase 1 rules
sourced from SyGMa would result in any gains in performance
for GLORYx.
When combining the rule sets, the overlap of the rules from

the two different sources is handled in a straightforward
manner. Duplicate metabolite predictions are combined by
retaining the highest priority score. The addition of the CYP
reaction rules from GLORY resulted in a substantial jump in
recall (portion of known metabolites that were successfully
predicted, also known as sensitivity) from 0.72 to 0.84 (Table
2). The precision (portion of predictions that match known
metabolites), on the other hand, was halved, as the number of
total predicted metabolites more than doubled, from over
10,000 to nearly 25,000. Note that only a fraction of the
metabolites generated by organisms is experimentally observed
and reported in the scientific literature and databases, for a
number of reasons (e.g., lack of chemical stability, low
concentrations of metabolites, limitations of the in vitro
system, research interest focused on a specific metabolic

Table 1. Composition of the Reference Data Seta in Terms
of Metabolism Phase and Enzyme Family

number of metabolitesb number of parent molecules

phase 1, all 1763 944
CYP 1640 −
phase 2, all 690 582
UGT 480 −
SULT 92 −
GST 46 −
NAT 34 −
MT 17 −
phase 1 + phase 2 2453 1420
aThe reference data set was created by combining the DrugBank and
MetXBioDB metabolism data and removing the data for all parent
molecules contained in the test set. bNote that the total numbers of
phase 1 and phase 2 metabolites do not equal the sum of the
metabolites from the listed enzyme families, because not all
metabolites in the data set correspond to these main enzyme families.

Chemical Research in Toxicology pubs.acs.org/crt Article

https://dx.doi.org/10.1021/acs.chemrestox.0c00224
Chem. Res. Toxicol. XXXX, XXX, XXX−XXX

G



enzyme or reaction or metabolite). Therefore, any predicted
metabolites that are not “known” should more correctly be
considered as putative false positive predictions. Nevertheless,
the number of predicted metabolites is enormous, so it is
crucial that metabolite prediction methods are able to rank
their predictions in a meaningful way.

To examine the ranking performance of GLORYx using the
combined rule set, we first used only the SoM probability to
score and rank the predicted metabolites, as described above.
This nonweighted scoring approach resulted in an AUC of
0.75 (Figure 2A), which was close to SyGMa’s AUC of 0.76.
Note that even though the sets of predicted metabolites are
different in this case, the ranking ability of each approach can
still be compared using the ROC curves and AUC. We then
applied the concept of weighting reaction rules that we first
developed for GLORY, namely applying a simple common vs
uncommon distinction between reaction types and generating
the priority score for a predicted metabolite by multiplying the
SoM probability by a factor corresponding to whether or not
the reaction that led to that particular predicted metabolite was
designated common (see ref 15 for details). The common−
uncommon designations of the reaction rules from GLORY
were used unchanged. Then we simply designated all of
SyGMa’s phase 1 reaction rules as uncommon, based on the
following logic: The CYP enzyme family is the most prevalent
enzyme family involved in phase 1 metabolism,4 SyGMa’s

Figure 2. Rank-based ROC curves for the evaluation of metabolite prediction performance on the reference data set. The ranks are calculated based
on the priority scores of the predicted metabolites for each parent molecule. (A) Comparison of GLORYx, which scores its predicted metabolites
based on predicted SoM probabilities, to SyGMa, which uses reaction probability scores, for phase 1 metabolite prediction. Weighted rules refer to
the weighting of the SoM probability-based score based on whether the reaction type is designated common or uncommon. (B) Comparison of the
ranking performance of GLORYx with different scoring approaches and rule sets as well as direct comparison to SyGMa’s performance, for phase 2
metabolite prediction. The scoring approach that is based on both SoM probability and reaction probability is achieved by a simple multiplication
of the two components. (C) Comparison of the ranking performance of GLORYx for combined prediction of metabolites for phases 1 and 2
metabolism, using different SoM prediction approaches to score the predicted metabolites. In both cases, the score is based on predicted SoM
probability with weighting according to reaction type, and the rule set is made up of the final phase 1 rule set (SyGMa and GLORY rules) and final
phase 2 rule set (SyGMa and GSH conjugation rules).

Table 2. Performance of GLORYx on Predicting Phase 1
Metabolites

GLORYx using reaction rules
from both SyGMa and

GLORY

GLORYx using
reaction rules from

SyGMa only

recall 0.84 0.72
precision 0.060 0.12
total number of
predictions

24,906 10,550

number of true
positive
predictions

1487 1262

AUC (rank-
based)

0.80 0.73
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phase 1 reaction rules contain rules for both CYP- and non-
CYP-mediated reactions, and our process of combining
duplicate predictions by keeping the highest score ensures
that any CYP rules from SyGMa that are also “common” rules
from GLORY will be in effect scored appropriately as being
“common”. The result of this weighting of the rule sets was a
jump in AUC to 0.80 (Figure 2A).
A similar trend in AUCs for GLORYx in terms of the

weighting approach is observed when the ROC curves are
calculated based on score rather than rank (Figure S2A). This
means that predicted metabolites are compared across different
parent molecules in the reference data set in terms of their
priority scores. Here, it is important to note that the original
publication of SyGMa implied that its score was only intended
to be used to compare likelihoods of predicted metabolites of
the same parent molecule, and the evaluation in that
publication only considered the ranking per parent molecule.10

This consideration should be kept in mind when viewing all
score-based ROC curves for SyGMa throughout this manu-
script, which are included for the sake of completeness,
especially since the score-based ROC curves for GLORYx tend
to yield a higher AUC than the rank-based curves, yet the
opposite is true for SyGMa (Figure S2 and Figure 2).
It is also relevant to note that the phase 1 subset of our

reference data set is heavily biased toward CYP-mediated
metabolism, with over 90% of the metabolites in the data set
being CYP metabolites (Table 1). Although CYPs are widely
considered the most relevant enzyme family for phase 1 human
xenobiotic metabolism, the available data are perhaps even
more skewed toward CYP data than would be realistic in
humans. Due to the composition of this phase 1 reference data
set, it is reasonable that the addition of the CYP-specific rules
from GLORY leads to improved performance.
Phase 2 Metabolism. For phase 2 metabolite structure

prediction, we again examined the question of how scoring the
predicted metabolites based on the SoM probability predicted
by FAME 3 compares to SyGMa’s scoring approach. Similarly
to the phase 1 protocol, the initial comparison was carried out
using only the phase 2 reaction rules from SyGMa, along with
the general phase 2 SoM prediction model from FAME 3
(model P2), and scoring the predicted metabolites using only
the SoM probability predicted by the SoM model. This
comparison showed a large difference in ranking performance
between SyGMa and our approach (Figure 2B). SyGMa
achieved an AUC of 0.85, while our approach, which used the
SoM probabilities predicted by the FAME 3 P2 model to rank
the predicted metabolites, achieved an AUC of only 0.67.
It therefore appears that SoM probabilities are a surprisingly

poor indication of the likelihood of phase 2 metabolism
occurring. We know, however, that FAME 3 predicts SoMs
corresponding to phase 2 metabolic reactions very well (AUC
of 0.97 on a holdout data set consisting of 157 randomly
selected compounds with a total of 3476 annotated atoms).17

The reason for this discrepancy is that multiple predicted
metabolites, corresponding to different reaction types, receive
the same score because they correspond to the same predicted
SoM. Phase 2 metabolic reactions are more specific in terms of
functional groups at which they can occur than, for example,
CYP-mediated reactions, which makes it easier to predict
SoMs but more difficult to predict which reaction type would
be more likely to actually occur at a given location. To
illustrate this point, consider the case of a hydroxyl group. A
hydroxyl group that is a phase 2 SoM could be glucuronidated,

sulfated, methylated, or phosphorylated. Another difficult case
would be an amine group, which, if it is a phase 2 SoM, could
be glucuronidated or N-acetylated. These observations
combined with the poor ranking performance indicate that,
so far, GLORYx struggles to discriminate between phase 2
reaction types.
In light of this observation and to further investigate the

relationship between the predictive capabilities of SoM
probabilities and reaction probabilities, we attempted to
combine the two scores, since in theory both the SoM and
the likelihood of a particular reaction rule compared to other
reaction rules that could be applied at a given location are both
relevant to the likelihood of the predicted metabolite. We tried
two combination approaches: multiplying the reaction
probability with the SoM probability and calculating a
weighted average. Despite trying various weights (Table S4),
a combination score was unable to do better than SyGMa’s
reaction probability-based scoring approach alone at ranking
the predictions. In addition, by varying the weights, it became
clear that the more highly the predicted SoM probability was
weighted compared to the reaction probability, the worse the
ranking performance was (Table S4). The weighted average
score combination, using weights up to 10:1, achieved a
maximum rank-based AUC of 0.83 (Table S4), whereas
multiplying the SoM probability by the reaction probability
resulted in a rank-based AUC of 0.85 (Table S4, Figure 2B),
which is the same as for SyGMa’s reaction probability score
alone (however, the shape of the ROC curve is slightly
different). These results indicated that the SoM probabilities
predicted in this way could not compete with SyGMa’s
reaction probability scores when it comes to ranking
performance.
SyGMa’s good ranking performance was to be expected, for

the same reasons discussed in the above section on phase 1
metabolism regarding the use of the Metabolite database to
develop SyGMa’s reaction probability scores. Meanwhile, the
poor showing by the SoM probability scoring approach
indicates that reactivity is not sufficient to discriminate
between the different types of phase 2 reactions, especially
not when compared to the data-derived likelihoods of each
reaction type. We therefore examined how we could use SoM
prediction to achieve a distinction between different reaction
types without resorting to precomputed occurrence ratios for
the reaction rules.

Phase 2 Metabolism: Reaction Type-Specific SoM
Prediction Models. In order to attempt to better predict
which reaction type would be more likely at a given SoM,
without using SyGMa’s reaction probabilities, we developed
FAME 3 reaction type-specific SoM prediction models that
roughly correspond to the five main phase 2 enzyme families:
UGTs, GSTs, SULTs, MTs, and NATs. These models were
created using the same training protocol as for the previously
published FAME 3 models. Each model was trained on only a
subset of the FAME 3 data set, whereby the subsets were
selected based on the reaction class annotation in the
MetaQSAR database. The reaction classes and the number
of molecules used to train each model are provided in Table
S3. The 10-fold cross-validation performance of these models
was high across the board, with average AUCs all above 0.95
and the average percentage of molecules in which a correct
SoM was predicted among the top two atom positions with the
highest SoM probabilities (top 2 metric) all above 0.87 (Table
3), despite the relatively small number of molecules used for
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training in each case. Note, however, that these models are
trained on atoms, not molecules, so the number of training
instances (although not entirely independent from each other)
is much larger than the number of molecules.
Because these reaction type-specific SoM models were each

trained on only a subset of the molecules that were used to
train the general phase 2 SoM model, not all atom types (i.e.,
Sybyl atom types) were represented in the training data for
each individual model, which can then not make predictions
for molecules containing these unrepresented atom types.
Therefore, these individual reaction type-specific SoM models
were used to overrule the predicted SoM probabilities from the
general P2 model for the molecules to which they apply rather
than as a complete substitute for the general model.
There are a few phase 2 reaction rules in SyGMa that do not

correspond to any of the five main phase 2 enzyme families.
These rules are simply designated “uncommon”, while all other
phase 2 reaction rules are designated “common”, and the
general P2 SoM prediction model is always used to score the
products of these uncommon reaction rules.
The general P2 model is also used to score the predicted

metabolites corresponding to the individual reaction type-
specific SoM models that can not make predictions for a given
input molecule. For example, if the SoM model for sulfonation

reactions could not make predictions, the predicted metabo-
lites resulting from sulfonation reaction rules are scored using
the predicted SoM probabilities from the general P2 model. An
illustration of the workflow for predicting phase 2 metabolites
using the reaction type-specific SoM models for scoring is
shown in Figure 3.
In this way, the same metabolites are predicted as if only the

general P2 model was used, but the reaction type-specific
scoring approach results in different ranks of the metabolites
and, perhaps most importantly, a drastic reduction in the
number of tied ranks for predicted metabolites of a single
parent molecule.
Using the individual reaction type-specific phase 2 SoM

models to score the predicted metabolites resulted in a large
improvement in the ranking, with an AUC of 0.77 compared to
an AUC of 0.67 using the general P2 model (Figure 2B) and
only the reaction rules sourced from SyGMa for comparison.
Similarly, the score-based AUC increased from 0.66 to 0.79
upon implementation of the reaction type-specific SoM models
(Figure S2). Unfortunately, even using the reaction type-
specific SoM prediction models resulted in a ranking
performance that was worse than SyGMa’s (AUC of 0.77
compared to 0.85, respectively). However, as discussed for
phase 1 metabolism above, SyGMa’s approach has the
advantage of having derived its scoring approach directly
based on, in effect, all available metabolism data from a
comprehensive but not freely available database. Meanwhile,
the difficulty of using SoM prediction for phase 2 metabolism
appears to be that there are relatively few potential SoMs, but
that the atom environments may not be specific enough to
differentiate between different types of reactions.
Based on these results, we therefore use the individual

reaction type-specific phase 2 SoM models to score the phase 2
metabolites predicted in all subsequent sections of this
manuscript.

Table 3. Average SoM Prediction Performance of the
FAME 3 Reaction Class-Specific Models During Cross-
Validation

reaction class average top 2 average AUC

glucuronidations and glycosylations 0.957 0.988
GSH and RSHa conjugations 0.874 0.950
sulfonations 0.966 0.992
methylations 0.877 0.968
acetylations and acylations 0.956 0.992

aRSH = protein thiol.

Figure 3. Workflow of phase 2 metabolite prediction using reaction type-specific SoM models to score and rank the predicted metabolites. The
reaction type-specific SoM models (“UGT”, “GST”, “SULT”, “NAT”, “MT”) are used instead of the general phase 2 SoM model (P2) to score the
products of the relevant reactions for all molecules in which all of the reaction type-specific models are able to make a prediction. The green arrows
indicate the molecules that were predicted successfully by the relevant reaction type-specific SoM model. If one or more of the reaction type-
specific models cannot make predictions for a given molecule, then that molecule additionally follows the path of the black arrows, followed by a
deduplication of predictions. The “UGT” model covers glucuronidation and glycosylation reactions, the “GST” model covers GSH and RSH
conjugations, the “SULT” model covers sulfonations, the “NAT” model covers acetylations and acylations, and the “MT” model covers methylation
reactions. The “other phase 2 rules” refer to the rules that are neither glucuronidation, GSH conjugation, sulfonation, acetylation, or methylation
rules.
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Phase 2 Metabolism: Addition of GSH Conjugation
Reaction Rules. We found that the reaction rules sourced
from SyGMa do not contain any GSH conjugation reactions,
which correspond to the GST enzyme family, one of the five
main enzyme families for phase 2 xenobiotic metabolism. We
therefore developed a set of GSH conjugation reaction rules
based on descriptions of GSH conjugation metabolic reactions
in the scientific literature. This resulted in nine new reaction
rules.
When only the reaction rules sourced from SyGMa were

implemented, GLORYx achieved a recall of 0.78 and a
precision of 0.21 (Table 4). When the new GSH conjugation

reaction rules were added, GLORYx achieved a recall of 0.80
with the same precision, because only 141 more metabolites
were predicted in total (Table 4). Though we do not see a very
large improvement in performance on the reference data set
after adding these GSH conjugation reaction rules to GLORYx,
we believe that this addition is actually meaningful for the
purpose of metabolite structure prediction in the real world,
because GSTs are actually the second most relevant phase 2
enzyme family for xenobiotic metabolism in terms of number
of metabolites formed.4

As was expected based on the relatively low number of GST-
mediated metabolites in the reference data set (Table 1), the
ranking performance remained similar upon the addition of
GSH conjugation reaction rules (AUC of 0.77 and 0.78,
respectively; Figure 2B). This comparable performance seems
to suggest that the products of the new GSH conjugation
reaction rules are scored in a meaningful way based on the
corresponding reaction type-specific SoM prediction model.
Combined Phase 1 and Phase 2. A general use case of

predicting “all” possible metabolites at once was also
considered. FAME 3 provides one model, “P1 + P2”, that
predicts all SoMs from both phases of metabolism. For this use
case, we therefore examined whether it makes sense to use the
P1 + P2 FAME 3 model’s predictions to score the predicted
metabolites or to use the separate models, as determined
separately for phase 1 and phase 2 (see sections Phase 1
Metabolism and Phase 2 Metabolism), and combine the
predictions. The predicted metabolite structures are the same
in both cases; what changes is their scores, since those are
based on the predicted SoM probabilities.
Using separate SoM prediction models for the two phases

did provide a slight advantage in terms of the ranking
performance, with an improvement in AUC from 0.78 to 0.80
compared to using the P1 + P2 SoM model, as shown in
Figure 2C. An improvement of the same amount is seen in the
AUCs of the score-based ROC curves (AUC increased from
0.79 to 0.81; Figure S2C). Although this advantage appears

small at first glance, it is important to recall the composition of
the reference data set. This data set contains more than twice
as much phase 1 data as phase 2 data, in terms of number of
known metabolites, which may cause the benefit of using
separate SoM prediction models for the two phases to be
underrepresented by this analysis. Based on these consid-
erations along with the ROC curves, we conclude that the
multimodel approach should be used for optimal performance,
and we use this approach in the validation on the test data set
(see section Performance on a Manually Curated Test Data
Set).

Performance on a Manually Curated Test Data Set.
The performance of the final version of GLORYx was
evaluated on a manually curated test data set consisting of
37 parent molecules that were among the top 100 best-selling
drugs in 2018. For these parent molecules, the data set
contains a total of 136 first-generation metabolites, which
equates to an average of 3.7 known metabolites per parent
molecule. This test data set does not contain enzyme or
metabolism phase annotations, so the evaluation was carried
out from the perspective of predicting all possible metabolites,
from both phase 1 and phase 2 metabolism.
GLORYx was able to predict 77% of the known metabolites

in the test data set, which is higher than SyGMa’s recall of 68%
(Table 5). In conjunction with this higher recall, GLORYx had

a lower precision than SyGMa (0.061 compared to 0.12,
respectively), which is unsurprising given that GLORYx
contains many more reaction rules than SyGMa due to the
addition of the CYP metabolism rules from GLORY and the
new GSH conjugation rules. The total number of metabolites
predicted by GLORYx was nearly double the number
predicted by SyGMa. However, SyGMa’s precision of 0.12
was also very low, due to a relatively large number of
predictions (800 total). Another potential contribution to the
low precision of both tools is that experimentally determined
metabolites whose structures have not been fully defined were
not included in the test data set. It is possible that this aspect of
the data set has an effect on the number of false positive
predictions, which would have an effect on the precision as
well.
The relatively large number of predictions made by both

SyGMa and GLORYx is a general problem that is shared by all
available metabolite structure prediction approaches.48 This
phenomenon clearly underlines the need to have a meaningful
way to rank the predicted metabolites. In our case in particular,
neither SyGMa nor GLORYx has sufficiently high precision to
be used without ranking the predicted metabolites.
In terms of the ability to rank the predicted metabolites,

GLORYx showed better performance than SyGMa, as
indicated by the ROC curves shown in Figure 4. The AUC
of the rank-based ROC curve was 0.79, compared to 0.74 for

Table 4. Performance of GLORYx on Predicting Phase 2
Metabolites

GLORYx using
SyGMa rules only

GLORYx using SyGMa rules
plus GSH conjugation rules

recall 0.78 0.80
precision 0.21 0.21
total number of
predictions

2509 2650

number of true
positive
predictions

539 555

AUC (rank-based) 0.77 0.78

Table 5. Performance of GLORYx and SyGMa on the Test
Data Set of 37 Parent Compounds and Their 136
Metabolites

GLORYx SyGMa

recall 0.77 0.68
precision 0.061 0.12
total number of predictions 1724 800
number of true positives (out of 136) 105 93
AUC (rank-based) 0.79 0.74
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SyGMa. In addition, GLORYx’s priority score seems to be a
meaningful score in and of itself, not just for ranking the
predictions for individual parent molecules separately, because
the ROC curve and AUC were actually slightly better using the
score than they were using the rank (0.81 compared to 0.79,
respectively; Figure 4). For SyGMa, the AUC of the score-
based approach was also higher than that of the rank-based
approach (0.77 compared to 0.74); however, it is important to
note that SyGMa’s score was most likely not intended to be
used to compare predicted metabolites from different parent
compounds (see section Phase 1 Metabolism: Combination of
Reaction Rules from SyGMa and GLORY).
To get an idea of the variability in the ranking performance

on the test data set, we calculated the AUCs while
systematically removing one parent molecule at a time from
the data set. This resulted in 37 different AUCs for each tool
and AUC type (rank-based or score-based), which are plotted
in Figure S3. From this analysis, we observed a similar amount
of variability in the AUCs between the two tools with the
different metrics (score based and rank based). In all cases, the
median AUCs from this analysis were within 0.01 of the AUCs
reported in Figure 4. From the outliers observed in Figure S3,
we learn that two to three molecules are particularly
challenging for each tool. In the case of GLORYx, the two
outliers correspond to having excluded everolimus (the
furthest outlier) and budesonide for both the score-based
and rank-based AUCs. For SyGMa, the furthest outlier is also
caused by the exclusion of everolimus, while the second-
furthest outlier corresponds to having excluded darunavir.
Everolimus is a macrocycle with 12 known metabolites in the
test data set, while budesonide and darunavir each have 6
known metabolites.
Overall, a clear difference in performance is observed

between the two tools, with GLORYx outperforming SyGMa
in both cases. The improvement in ranking performance seems
to indicate that combining predicted SoM probabilities with
reaction rules to score the predicted metabolites, whereby the
SoM model and the reaction rules correspond to the same
type(s) of reactions, provides very valuable information. This
approach also has the benefit of not relying on reaction rule
occurrence ratios based on existing metabolism data to score

and rank the predictions. Our reference data set was used to
measure performance during development but was not used to
develop reaction rules or calculate occurrence ratios. This
difference could potentially make GLORYx more flexible with
regard to never-before-seen input molecules.

■ CONCLUSION
GLORYx is a new tool for predicting the structures of
metabolites formed by both phase 1 and phase 2 metabolic
reactions in humans. The tool utilizes FAME 3 to predict, for
all atom positions in a molecule, the likelihood of a
biotransformation to take place at this position and, based
on these predictions, applies a set of reaction rules to generate
and rank likely metabolites.
In conjunction with a high recall of known metabolites (77%

on the test data set), GLORYx ranked the predicted
metabolites with an AUC of 0.79 on the manually curated
test data set. This recall and ranking performance is better than
we observed for the established, freely available tool SyGMa on
the same data set. However, when considering only phase 2
metabolite prediction, SyGMa’s ranking performance was
better than that of GLORYx.
We have observed that it is difficult to predict phase 2

metabolites, that is, difficult to rank the predicted metabolites
in a meaningful way, based on predicted SoM probabilities
despite high performance of the SoM prediction models
themselves. We have concluded that the cause of this difficulty
is that reactivity is an insufficient metric for determining which
type of conjugation reaction would be more likely to occur at a
particular atom position. We were able to mitigate this
problem substantially by using individual reaction type-specific
SoM prediction models corresponding roughly to the five main
phase 2 enzyme families.
During each run of GLORYx, the algorithm generates and

ranks one generation of metabolites based on the parent
compound(s) provided. Users may of course provide
(predicted) metabolites as input to GLORYx, hence enabling
multigeneration metabolite prediction.
Given the scarcity of the available high-quality data on small-

molecule metabolism, it is difficult to provide a robust
definition of the applicability domain of GLORYx. However,

Figure 4. ROC curves for GLORYx and SyGMa representing ranking performance on the test set based on the (A) ranks and (B) scores of the
predicted metabolites.
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we know from thorough analyses of FAME 3 that the
metabolic properties of the atoms in a molecule are first and
foremost determined by the proximate atom environment, and
these environments are much more redundant across the
chemical space than the overall (global) structure of molecules.
Considering also that the reaction rules implemented in
GLORYx are based on only a few connected atoms, GLORYx
is expected to provide reliable results for a wide range of
synthetic compounds and natural products alike.
GLORYx is freely available as a web server at https://nerdd.

zbh.uni-hamburg.de/ and is also provided as a software
package upon request. Note that GLORYx should be
considered an extension of GLORY rather than a replacement.
Hence both tools are available on the Web site, to enable users
to choose between CYP-specific metabolite structure pre-
diction with GLORY and comprehensive phase 1 and phase 2
metabolite structure prediction with GLORYx.
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Discussion

Xenobiotic metabolism plays a huge role in the safety and e�cacy of all the

various chemical entities that are so important for our 21st-century lifestyle. It is

therefore important to study and predict xenobiotic metabolism of drugs, cosmetics,

agrochemicals, and other chemical concoctions. SoM prediction and metabolite

structure prediction are two aspects of xenobiotic metabolism that can be predicted

computationally.

5.1 Exploring Alignment-Based SoM Prediction

Reactivity and accessibility are the two key components of SoM prediction, as

discussed in section 1.2.1. The alignment-based approach to SoM prediction explored

in this dissertation (section 4.1) is in e↵ect a ligand-based approach to modeling

accessibility. The reference molecule with the known SoM provides information

about accessibility, following the assumption that the alignment to the reference

molecule indicates the orientation with which the query molecule would bind to

the metabolizing enzyme.

Using molecular alignment and a public CYP SoM dataset of 680 molecules

with newly corrected stereochemistry, a known SoM was predicted among the top

three ranked atoms (top-3) for 64% of the molecules on average. In terms of other

ranking-based metrics, an average AUC of 0.69 and an average BEDROC (↵ = 80.5)

of 0.50 were achieved.

In contrast, the machine-learning based method FAME 2 [A4], which used the

same dataset as the alignment-based method but with an 80:20 training-testing

split, achieved top-3 values above 90% on the independent test set (i.e. 20% of the

total dataset). Even though the other performance metrics were di↵erent for each

of the two approaches and cannot be compared, it is clear that FAME 2 and the

alignment-only approach are not in the same league in terms of performance.
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Nevertheless, in the current age of popular black-box machine learning methods,

our alignment-based approach could o↵er refreshing clarity and insight into the

reason for a particular prediction. Although machine learning methods such as

FAME 2 perform better at the task of predicting SoMs, the particular insights that

this alignment-based approach provides are related to the potential orientation

of molecules in the binding cite of the metabolizing enzyme (CYPs in this case),

which could be valuable information. However, because the performance of the

alignment approach on its own was not satisfactory, we also considered the other

key component of SoM prediction: reactivity.

In order to predict reactivity, we extracted the reactivity component from the

predictions made by SMARTCyp [64]. In addition to the reactivity component

derived from DFT calculations, SMARTCyp contains an atom accessibility com-

ponent as well. For our purposes, however, we wanted to use only the reactivity

component of the SMARTCyp predictions, based on the assumption that the align-

ment implicitly takes accessibility into account. This reactivity-only prediction

approach resulted in a top-3 value of 79.6% on average, an AUC of 0.80 on average,

and a BEDROC (↵ = 80.5) of 0.54 on average. Unsurprisingly, reactivity on its own

was shown to be a better predictor of SoMs than alignment on its own. Combining

reactivity and alignment resulted in a comparable average top-3 value of 80.3%,

an improved AUC of 0.85 on average, and an improved BEDROC (↵ = 80.5) of

0.73 on average. So, based on the ROC curve, AUC, and BEDROC metrics, it

appears that adding the alignment component to the reactivity component resulted

in better early enrichment and overall ranking of the heavy atoms in the molecules

in terms of their likelihood of being SoMs. Interestingly, this combination method

resulted in a slightly better performance than the full SMARTCyp as well, in which

the reactivity was combined with an atom accessibility component. SMARTCyp

achieved a top-3 of 82.6%, a BEDROC (↵ = 80.5) of 0.65, and an AUC of 0.82

on average. Of the measured metrics, only top-k did not show a benefit of the

alignment-reactivity approach compared to SMARTCyp.

A further finding of this study was that the alignment-based approach per-

formed best on query molecules for which there was a similar molecule in the

reference database. The molecular similarity was measured using fingerprints and

was therefore a 2D similarity. We found that performance was quite poor for query

molecules with high dissimilarity to all of the reference molecules. This finding
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indicates a limitation of the alignment-based approach, which was not shared by

the reactivity-only approach. The combination of alignment and reactivity was

a↵ected less by molecular similarity than the alignment-only approach, but still

appeared to be a↵ected.

Machine learning approaches that use, for example, atom environments to predict

SoMs are more able to avoid this problem because the same atom environments

may be found across highly dissimilar molecules [A8]. In this respect, machine

learning-based methods for SoM prediction are able to be more robust than the

alignment-based approach. This robustness seems to be the case, at least for FAME 2

[A4] and FAME 3 [A8], because of the use of atom environments as descriptors.

Due to the limitations of the alignment-based approach to SoM prediction in

terms of performance and robustness, this method’s primary potential for further

use would be in combination with another approach. One possibility would be

to devise alignment-based descriptors to use in the development of a machine

learning model, combined with other descriptors. Such an approach would require

some sort of set of reference molecules to which both the training and test set

molecules would be aligned. The SoMs of the top several best-aligned reference

molecules could then potentially be used as descriptors, in combination with the

alignment score for each of these reference molecules. This approach would lend

itself more to making predictions for a specific metabolic enzyme or enzyme family,

as the alignment descriptors would depend on the availability of relevant reference

molecules. It would be interesting to see whether alignment-based descriptors could

lead to improved performance of a machine learning model.

Finally, this work has provided an additional benefit. This study used the

Zaretzki dataset [55], which is one of the most comprehensive public datasets for

CYP SoMs. However, this dataset was lacking correct stereochemistry information

and therefore had to be revised in order to use it to validate the alignment-based

SoM prediction approach. The revised dataset was provided to the public in the

supporting information for [D1]. The hope is that the revised version of this dataset,

with the stereochemistry included, may be useful to other scientists for further

development and validation of methods for predicting SoMs.
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5.2 Metabolite Structure Prediction

Metabolite prediction is an interesting problem, because although much is known

about metabolic reactions that can occur in humans, the number of potential

reactions that could occur for any given molecule is in most cases much higher

than the number of metabolites that are actually experimentally observed for that

molecule. This is the di�culty facing developers of tools for predicting metabolites.

In knowledge-based approaches, which take a set of reaction rules and apply them

to a given input molecule, the number of predicted metabolites can easily be

cumbersomely large.

Yet the concept of SoMs still applies. In theory, the locations in the molecule at

which the metabolic reactions will occur depend on the reactivity and accessibility

of the atoms. Therefore, it seemed reasonable to attempt to predict the SoMs and

subsequently only apply the reaction rules at the SoMs. When we attempted to

reduce the putative false positive predictions in this manner, however, we found

that this approach doubled the precision but decreased the recall. On a test set

of CYP metabolites, the recall decreased by 0.19, from 0.83 to 0.64, compared to

not limiting the application of the reaction rules. The recall of 0.64 was lower than

the recalls of SyGMa and BioTransformer, which were 0.74 and 0.72 on the same

dataset, respectively. An important caveat here is that SyGMa does not predict only

CYP metabolites but rather phase I metabolites in general, which should be kept in

mind for comparisons to SyGMa. Meanwhile, the precision was comparable to that

of SyGMa and BioTransformer, at 0.16 compared to 0.15 and 0.17, respectively, all

of which are low precisions. These results occurred after trying di↵erent thresholds

for SoM cuto↵s and attempting to balance the improvement in precision with the

loss of recall.

Using predicted SoMs as a hard filter in this way therefore seems to not be worth

the cost of decreased recall. The main use case of metabolite structure prediction

methods would be to predict all of the metabolites that can be experimentally

determined but to predict as few additional metabolites as possible. At the same

time, we know that the SoM prediction method that we used, FAME 2, had high

performance on an independent SoM test set and seems to be one of the leading

SoM prediction methods in terms of performance. It is therefore unlikely that the
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particular SoM prediction method we used was the problem.

Because this first approach to using SoM prediction to reduce the total number

of predicted metabolites was not satisfactory in terms of recall, we subsequently

developed a new scoring function to use the predicted SoMs to provide direction

towards the most likely predicted metabolites. We believe that having a meaningful

way to score and rank the predicted metabolites is of utmost importance in general,

since the precision even of the hard-filter approach, as well as of SyGMa and

BioTransformer, is extremely low.

When developing the scoring approach, we wanted to focus on reproducibility

and ease of comprehension. Other metabolite prediction tools such as SyGMa use

occurrence ratios derived from a dataset, and in SyGMa’s case the dataset is no

longer available, which limits the possibilities for reproducing and developing the

method further. We would like to enable other researchers to continue to use and

develop our methods, and we also wanted to attempt to reduce bias based on any

one dataset as much as possible. Of course, it is not possible to eliminate bias

completely, as we are always limited by the existing experimental data. However,

we wanted to see if we could avoid using occurrence ratios to score the predicted

metabolites and still achieve a meaningful ranking of the predictions. We were able

to accomplish this by paying attention during the development of the reaction rules

to whether each reaction type is a common CYP reaction or a more unusual one.

These two categories of CYP reactions were clearly delineated in a detailed review

by F. P. Guengerich published in 2001 [28], from which we took the nomenclature

for our binary distinction between “common” and “uncommon” reaction types.

Some reaction rules were developed based on additional CYP-mediated reactions

described in other publications, and for these reaction rules the proper category was

determined according to literature-based knowledge of CYP-mediated metabolism.

The final reaction rule set developed from combing the scientific literature consisted

of 61 reaction types described by 73 reaction rules.

We then devised a scoring function that weighted common reactions more

highly than uncommon reactions. After using a reference dataset to compare the

scoring and ranking performance using di↵erent weights, we determined that a 5:1

common:uncommon weighting scheme worked best. During evaluation on the test

set, the rank-based ROC curve showed better early enrichment than the ROC curve

for SyGMa, and the AUC was higher for our approach as well, at 0.66 compared to
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0.50, respectively. These ROC curves included false negative predictions for each

method, i.e. known metabolites that were not predicted, in order to attempt to take

into account the di↵erence in missed known metabolites between our method and

SyGMa. However, this choice resulted in lower AUC values than would typically

be expected and is therefore mentioned here as a caveat when reporting the AUC

values. In our subsequent work on phase I and phase II metabolite prediction, we

decided to reverse this decision.

At this point, the overall result was the CYP metabolite prediction tool GLORY,

which o↵ers two modes to reflect the two di↵erent approaches to incorporating

SoM prediction. The approach using SoMs as a hard filter was called MaxE�ciency

mode, and the other mode was called MaxCoverage because there was no filter to

reduce the number of predicted metabolites. In both modes, the SoM predictions

were used, along with the weighting scheme to distinguish between common and

uncommon reaction types, to score and rank the predicted metabolites.

Subsequently, GLORYx was developed to predict phase I and phase II metabo-

lites, using the principles we discovered during the development of GLORY as a

starting point. For GLORYx, SoMs were used only to score and rank the predicted

metabolites, not as a hard filter. We additionally kept the 5:1 weight ratio between

common and uncommon reaction types.

For GLORYx, we used separate FAME 3 SoM prediction models to score

predicted metabolites resulting from phase I and phase II reaction rules. We

initially implemented the reaction rules from SyGMa, which are separated into

phase I and phase II rules. Then, since the predicted metabolites were the same as

for SyGMa, with only a few exceptions due to molecule processing and aromaticity

perception, we could directly compare our scoring approach to SyGMa’s. We initially

made no distinction between common or uncommon reaction types, so all reaction

rules received the same weight. This means that the score was based only on the

maximum SoM probability of the atoms involved in the transformation. Using a

reference dataset separated into a phase I subset and a phase II subset, we found

that our scoring approach was comparable to SyGMa’s for phase I metabolite

prediction, with AUCs of 0.73 and 0.76, respectively. For phase II, however, our

scoring approach led to a rank-based AUC of 0.67, whereas SyGMa achieved an

AUC of 0.85. This is not only a substantial di↵erence, but an AUC of 0.67 generally

indicates relatively low performance.
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Further investigation into the di�culties of scoring the phase II metabolite

predictions revealed that our scoring approach, using the maximum predicted SoM

probability of an atom involved in the transformation, was not able to distinguish

between more likely and less likely predicted metabolites, despite the high per-

formance of FAME 3’s phase II SoM model. We concluded that this discrepancy

probably occurs because the functional groups involved in conjugation reactions

are similar across di↵erent reaction types, and knowing the probability that a

conjugation reaction occurs at a particular location does not aid in determining

which conjugation reaction is more likely at this location. To solve this problem,

we used reaction type-specific phase II SoM models that were newly developed for

this work using the FAME 3 framework. An individual SoM model was developed

corresponding approximately to each of the five main phase II enzyme families,

and the general phase II SoM model was used for reaction types not corresponding

to these five main enzyme families. This refinement to the method meant that any

given heavy atom in a molecule was assigned separate SoM probabilities for each

type of conjugation reaction. This drastically reduced the number of predictions

that received the same score. The ranking performance also improved as a result,

with a change in AUC from 0.67 to 0.77 on the reference dataset.

After this initial evaluation of the scoring approach by direct comparison to

SyGMa using the same reaction rules, we added the CYP reaction rules from GLORY

to the phase I rule set, and we manually created additional reaction rules for GSH

conjugation. We then implemented a weighting component to the score, applying

the same common-uncommon distinction that we developed for GLORY. For the

reaction rules from GLORY, we kept the original common-uncommon annotation.

The phase I rules sourced from SyGMa were designated “uncommon” and the

phase II rules from the five main phase II enzyme families were designed “common”

while the other phase II rules were labeled “uncommon”. This categorization

scheme resulted in a noticeable improvement over an unweighted scoring function

(i.e. only using SoM probabilities for the score) for phase I, as measured on the

reference dataset. For phase II, there were only a few uncommon reaction types

and a relatively small number of metabolites in the dataset corresponding to these

reaction types, so the weighting was perhaps not as necessary as for phase I in

terms of its e↵ect on performance.

Overall, both GLORY and GLORYx have competitive recall compared to existing
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freely available metabolite prediction tools, based on the test sets that were manually

curated from the scientific literature for this work. GLORY, in MaxCoverage mode,

achieves a recall of 0.83 on a test set of CYP metabolites, compared to 0.74 and

0.72 for SyGMa and BioTransformer, respectively, and GLORYx achieves a recall

of 0.77 on a test set of phase I and phase II metabolites, compared to 0.68 for

SyGMa.

Both GLORY and GLORYx have low precision, which is lower than that of

SyGMa and BioTransformer. However, the precision of the other tools is also very

low, which emphasizes the need to have a meaningful way to rank the predicted

metabolites. In this regard, both GLORY and GLORYx appear to be advanta-

geous. Both GLORY and GLORYx outperformed SyGMa on ranking the predicted

metabolites of the test sets. However, as discussed above, GLORYx lags behind

SyGMa in terms of the ability to rank predicted phase II metabolites.

One of the aims of this dissertation was to use publicly available metabolite data

to develop new approaches to metabolite structure prediction. This was the case for

both GLORY and GLORYx, and the performance of both tools was compared to a

method (SyGMa) developed based on a proprietary, currently unavailable dataset

that is widely considered the most comprehensive metabolite dataset and hence

has been used to develop many methods.

Further, we compared the metabolite data from the MetXBioDB [85] with the

metabolite data from the DrugBank database [101]. This comparison considered

both phase I and phase II metabolism, combined. Though there is a lot of overlap

between these two data sources in terms of the parent molecules and metabolites,

and the MetXBioDB is larger, the DrugBank data does cover additional areas of

the chemical space not covered by the MetXBioDB parent molecules.

One of the di�culties of working with publicly available data is the limitations

inherent in the experimental studies which published the data. For metabolite data

in particular, many studies only present the experimentally determined structures

of the main metabolites, or only the metabolites the researchers are interested in.

It is also common for such studies to provide structures that are not completely

determined. In many cases, the MS data used to determine the structures is

insu�cient to determine the exact location of the added functional group, for

example. These circumstances currently limit the amount of data available for the

evaluation of computational approaches for metabolite structure prediction.
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5.2.1 Ongoing Developments and Future Research

Directions for Metabolite Structure Prediction

A key part of this work on metabolite structure prediction was the development of a

reference dataset and a test dataset for each study, resulting in separate datasets for

CYP metabolism and for comprehensive phase I and phase II metabolism. Since the

publication of GLORYx, there have already been two new publications of methods

for metabolite structure prediction that have used one of the test datasets created

as part of this dissertation, allowing direct comparison of the performance of the

new methods to GLORY and GLORYx.

The Swamidass group has recently published two related methods for metabolite

prediction. The first is the Metabolic Forest [104], which contains 24 reaction rules

aimed at predicting phase I metabolites, but which nevertheless include conjugation

reaction types. Most of the 24 reaction rules are composed of multiple sub-rules,

with approximately 60 Reaction SMARTS in total. The Metabolic Forest has been

implemented in XenoNet [105], a metabolic network predictor that aims to infer

the metabolic pathways connecting a substrate and a target metabolite. The SoM

prediction scores assigned by Rainbow XenoSite [56] are used to score each step in

the metabolic pathway. When XenoNet is applied only to a parent molecule and

predicts only one metabolism step, the normalized Rainbow XenoSite scores are used

to rank the predicted metabolites for the parent molecule. The authors of XenoNet

compared their tool to GLORY as well as to the reference methods from [D2] using

our CYP metabolite test dataset. Prior to this comparison, they used the reference

dataset published in [D2] to define thresholds for each reaction type to filter out

putative false positive predictions. The authors found that XenoNet outperformed

GLORY in terms of recall, predicting 89% of metabolites in the test dataset

compared to 83% for GLORY in MaxCoverage mode. Despite its relatively small

number of reaction rules and reaction type-specific score-based filtering procedure,

XenoNet predicts 1179 metabolites for the test set of 29 parent molecules, which

is nearly 400 more metabolites than GLORY predicts in MaxCoverage mode and

around 800 more than predicted by SyGMa or BioTransformer. This finding could

indicate that XenoNet’s reaction rules are less specific than GLORY’s, which could

also explain the higher recall. In terms of ranking, the ROC curves seem to indicate
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that XenoNet performs comparably to GLORY. The top-3 metric indicates that

XenoNet performs slightly better, at 79% of molecules having a known metabolite

predicted within the top three ranked positions, compared to GLORY’s 76%. It is

interesting to compare XenoNet to GLORY, even though XenoNet was originally

designed to solve a di↵erent problem, because XenoNet also uses SoM prediction

in order to prioritize the predicted metabolites. However, a downside of XenoNet is

that it was developed based on the discontinued Metabolite database [74].

The other recent addition to the field worth discussing here is a publication

by Litsa et al. [106] on a new rule-free approach to phase I and II metabolite

structure prediction called MetaTrans. Litsa et al. reframed metabolite prediction

as a sequence translation problem, using end-to-end learning with neural networks

based only on SMILES of parent molecules and metabolites. MetaTrans was pre-

trained on general chemical reactions, then tuned on human metabolic reactions

sourced from public databases. Litsa et al. compared MetaTrans to GLORYx and

SyGMa using a test dataset based on our CYP test dataset from [D2], to which

they added additional parent molecules and metabolites from DrugBank in order to

create a test dataset covering both phase I and phase II metabolism. Considering

the top twenty predicted metabolites for each parent molecule, GLORYx had a

recall of 74% whereas MetaTrans had a recall of 65%. Considering only the top five

predicted metabolites for each parent molecule, however, GLORYx had a recall of

30% while MetaTrans had a recall of 43%. These results indicate that MetaTrans

may do a better job of prioritizing its predictions, though it does not rank them.

Instead, the algorithm provides a fixed number of predicted metabolites for each

input molecule, depending on the user-defined “beam size” parameter. Overall, the

highest possible recall reported for MetaTrans was only 68%.

It is exciting that the field of metabolite structure prediction is continuing

to advance at such a rapid pace, and that the test datasets developed as part of

this dissertation can contribute. Further advancement of the field may depend to

some extent on the availability of more high-quality metabolite data. For example,

more SoM data could be used to build more specific models. Perhaps reaction

type-specific SoM models for phase I metabolism could also lead to improvements

in distinguishing between the likelihoods of di↵erent predicted metabolites. It would

be interesting to see if such a data-driven approach would perform better at ranking

the predictions instead of or in addition to the simple distinction between common
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and uncommon reaction types.

A further question that could be addressed is the prediction of multiple gen-

erations of metabolites, which is a capability of several existing tools such as

SyGMa. However, multigenerational prediction leads to even larger numbers of

predicted metabolites compared to predicting only one generation. Both GLORY

and GLORYx predict only one generation of metabolites at a time, though it is

possible to apply each tool sequentially in order to generate predicted metabolites

of the predicted metabolites and thereby e↵ectively predict multiple generations of

metabolites. A potential future direction for work on this topic could be to examine

how the problem of prioritizing the predicted metabolites, such as by ranking them,

could be addressed for multigenerational predictions, and whether predicted SoM

probabilities can help with this task.
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Xenobiotic metabolism presents an ongoing challenge for the development of

safe drugs, agrochemicals, and cosmetics. This dissertation aimed at addressing

this challenge by exploring new methods for SoM and metabolite prediction.

First, the possibility of using molecular alignment to predict SoMs was inves-

tigated. An alignment-based approach had first been introduced by Sykes et al.

in 2008 [72] but was accompanied by a limited analysis. In this dissertation, the

alignment-based concept was further developed and expanded from a single CYP

isozyme and one reference molecule in its bioactive conformation to an approach

including all major CYP isozymes and a set of potential reference molecules. The

analysis was broadened as well, to include several metrics for early enrichment and

ranking-based performance. Since the performance of the alignment-based method

on its own was found to be at an impractical level, a reactivity component was

combined with the alignment. The combination of reactivity and alignment led to

a boost in performance compared to either component on its own.

Further, two tools for metabolite structure prediction were developed. This

research aimed at using SoM prediction to address the general problem of predicting

more metabolites than a user can easily deal with. Initially, the development of

the metabolite prediction approach focused on CYP-mediated metabolism. In this

context, two distinct approaches for incorporating SoM prediction were investigated.

One was to use the predicted SoMs as a hard filter to determine where in a molecule

the reaction rules would be applied. The other approach was to employ the predicted

SoM probabilities as part of a score for each predicted metabolite. This scoring

approach was found to be more successful and useful than the hard-filter approach.

The resulting tool was GLORY.

Subsequently, the focus of the metabolite prediction approach was expanded

to cover all of phase I and phase II metabolism, resulting in the development of

GLORYx. In this case, SoM prediction was only used to score the predictions,

based on the conclusions of the previous work. Extending the approach to phase
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I and phase II was not trivial. For phase II in particular, it proved tricky to use

SoMs to determine which metabolites were more likely to occur experimentally.

We determined that this is because phase II reactions are more likely to occur at

similar functional groups, to the extent that multiple reaction types can occur at

the same functional group. To address this problem, additional SoM prediction

models were required. These additional models were reaction type-specific, which

allowed each atom to have a di↵erent SoM probability depending on which reaction

type was being considered. Using these new SoM prediction models, we were able

to improve the ranking performance for phase II metabolism.

For both GLORY and GLORYx, rule sets of metabolic reactions were developed.

For GLORY, a CYP reaction rule set was developed based on the scientific literature.

For GLORYx, the phase I and phase II rule sets from SyGMa were translated into

SMIRKS and combined with the CYP rule set from GLORY as well as a new GSH

conjugation rule set developed based on the scientific literature.

Over the course of this dissertation, two new test sets for metabolite structure

prediction were manually created, one for CYP-mediated metabolism and one for

phase I and phase II metabolism. In addition, a public dataset for SoM prediction

was modified to include proper stereochemistry and two reference datasets for

metabolite structure prediction, one for CYP-mediated and one for phase I and

phase II metabolism, were assembled by combining data from two public sources.

The hope is that these datasets can be used in the future development of new tools

and the further improvement of existing tools for metabolite structure prediction.
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[A10] Stork, C.; Embruch, G.; Š́ıcho, M.; de Bruyn Kops, C.; Chen, Y.; Svozil, D.;

Kirchmair, J. NERDD: a web portal providing access to in silico tools for

drug discovery, Bioinformatics 2020, 36, 1291–1292.

[A11] Wilm, A.; Norinder, U.; Agea, M. I.; de Bruyn Kops, C.; Stork, C.; Kühnl, J.;
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a)                                                                         b) 

 
Figure S1. Top-k analysis for different similarity ranges applied to a) SoM prediction with 
the SMARTCyp standard model and b) the combined model, taking into account alignment-
based ranking and the SMARTCyp standard model score. Error bars represent standard error. 
Molecular similarity was calculated using the Tanimoto coefficient of ECFP6-like 
fingerprints. 
 

 
 
a)                                                                        b) 

      
Figure S2. ROC curves for SMARTCyp. a) SoM prediction with the SMARTCyp standard 
model for the modified Zaretzki dataset; b) combination of alignment-based and SMARTCyp 
standard model SoM prediction for the modified Zaretzki dataset. Error bars represent 
standard error.  
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Table S1. Percentage of Molecules with a Known SoM in the top-k Scored Atoms, for top-1, 
top-2, and top-3 for SMARTCyp and Combined SMARTCyp and Alignment-Based Ranking 
Predictions using the Zaretzki Dataset.a 

 top-1 [%] top-2 [%] top-3 [%] 

SMARTCyp 64.9 ± 1.4 76.5 ± 0.7 82.6 ± 1.0 

Alignment and 
SMARTCyp 
combined 

56.2 ± 1.2 74.0 ± 1.5 82.1 ± 1.4 

 a Both the arithmetic mean and standard error are reported. 

 
 

 
Table S2. BEDROC for SMARTCyp and Combined SMARTCyp and Alignment-Based 
Ranking Predictions using the Zaretzki Dataset.a  
BEDROC α SMARTCyp Alignment and 

SMARTCyp combined 

20.0 0.49 ± 0.01 0.60 ± 0.01 

80.5 0.65 ± 0.02 0.75 ± 0.02 

a Both the arithmetic mean and standard error are reported. 
 
 

 
Table S3. AUC and Standard Error of AUC for SMARTCyp and Combined SMARTCyp and 
Alignment-Based Ranking Predictions using the Zaretzki Dataset. 

 AUC Standard error 

SMARTCyp 0.82 0.0049 

Alignment and SMARTCyp 
combined 

0.86 0.0047 
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Supplementary Table 1: Reaction Rules for GLORY, Including the SMIRKS, Sources, 
and Common vs Uncommon Label. 

 

Reaction Name Sourcea Common/ 
Uncommon 

SMIRKS 

aliphatic hydroxylation (1) common "[C;X4:1][H:2]>>[C:1][O][H:2]" 

aliphatic hydroxylation with 
allylic rearrangement 

(2) uncommon‡ "[C;!$(C(=C)CC=C);X3:1]=[C;X3:2][C;!$(C(C=C)C=C);X4:3]([
H])>>[C:1](O)-[C:2]=[C:3]" 

"[C;X3:1]=[C;X3:2][C;$(C(C=C)C=C)X4:3]([H])([H])>>[C:1](
O)-[C:2]=[C:3]" 

aromatic hydroxylation (1) common "[c:1][H:2]>>[c:1][O][H:2]" 

aromatic hydroxylation with 
NIH shift 

(1, 3) common “[c:1]([H:5])[c;$(c1c([H])c([H])[c;H0]c([H])c([H])1):2][CH3,Br,
Cl:3]>>[c:1]([*:3])[c:2][O][H:5]” 

aromatic hydroxylation of 
pyrazolone 

otherb common‡ "[#6;$([#6]1[#6](=O)[#7][#7][#6]:,=1),$([#6]1:,=[#6][#6](=O)[#
7][#7]1):1][H:2]>>[#6:1][O][H:2]" 

hydroxylation of cyclopropane (2) uncommon‡ "[C:1]1[C:2][C:3]1[C:4]([H])>>[C:1](O)[C:2][C:3]=[C:4]" 

amine hydroxylation (1) common "[N:1]([H:3])[#6:2]>>[N:1]([O][H:3])[#6:2]" 

N-dealkylation (1) common "[#7:1][C:2]([H])>>[#7:1][H].[C:2]=[O]" 

N-dealkylation of piperazine (4) common‡ “[*;!#1:1][N;X3:2]1[C:3][C:4][N;X3:5][CH2][CH2]1>>[*:1][N:
2][C:3][C:4][N:5]” 

N-dealkylation of morpholine (4) common‡ [N;X3;$(N1CCOCC1):1][CH2;$(C1NCCOC1)][CH2;$(C1OCC
NC1)][O;$(O1CCNCC1):4]>>[N:1].[O:4] 

S-dealkylation (1) common “[#16:1][C:2]([H])>>[#16:1]([H]).[C:2]=[O]” 

O-dealkylation of 
methylenedioxyphenyl 

(5) common‡ “[O$(O1c2ccccc2OC1):1][C:2]([H])([H])[O$(O1c2ccccc2OC1):
3]>>[O:1]([H]).[C:2](=O)[O-].[O:3]([H])” 

S-oxidation (1) common "[#16:1]>>[#16:1](=[O])" 

N-oxidation (1) common "[#7;X3,X2;H0:1][#6:2]>>[#7+:1]([O-])[#6:2]" 

P-oxidation (1) common “[#15;X3:1]>>[#15;X4:1]=[O]” 

aldehyde oxidation to 
carboxylic acid 

(1) common "[C:1]([H])=[O:2]>>[C:1](O)=[O:2]" 

  



aldehyde oxidation to olefin 
plus HCO2H 

(1) uncommon "[C:1]([H])[C:2]([H])[C:3]([H])=[O:4]>>[C:1]=[C:2].[C:3](O)=[
O:4]" 

olefin oxidation (1) common “[C:1]([C:3])([C:4])=[C:2]([C:5])([C:6])>>[C:1](=O)([C:3])[C:2
]([C:4])([C:5])([C:6])” 

acetylene oxidation (1) common “[#6:3][C:1]#[C:2][#6:4]>>[#6:3][C:1]([#6:4])=[C:2](=O)” 

“[#6:3][C:1]#[C:2][#6:4]>>[#6:3][C:1]([#6:4])[C:2](=O)[O]” 

oxidation of indole (1) uncommon "[c;$(c1cc2ccccc2n1),$(c1c2ccccc2nc1):1]([H])=,:[c:2]-
,:[n:3]>>[C:1](=[O])-[C:2]-[N:3]" 

alcohol oxidation (1) common "[C:1]([H])[O:2][H]>>[C:1]=[O:2]" 

oxidation of 4-substituted 
phenol to quinone 

(6) uncommon‡ “[c:1]1([O:7][H])[c:2][c:3][c;X3:4]([!C:8])[c:5][c:6]1>>[C:1]1(=
[O:7])-[C:2]=[C:3]-[C;X3:4](=O)-[C:5]=[C:6]-1.[!C:8]” 

oxidation of 4-substituted 
anisole to quinone 

(6) uncommon‡ “[c:1]1([O:7][C:9])[c:2][c:3][c;X3:4]([!C:8])[c:5][c:6]1>>[C:1]1
(=[O:7])-[C:2]=[C:3]-[C;X3:4](=O)-[C:5]=[C:6]-1.[!C:8].[C:9]” 

oxidation of 4-substituted 
phenol to quinone if the 
substituent is not a leaving 
group 

(6) uncommon‡ “[c:1]1([O:7][H])[c:2][c:3][c;X3:4]([C:8])[c:5][c:6]1>>[C:1]1(=[
O:7])-[C:2]=[C:3]-[C:4]([C:8])(O)-[C:5]=[C:6]-1” 

oxidation of 4-substituted 
phenol to quinone imine 
(dehydrogenation) 

(7) uncommon‡ "[c:1]1([O:7][H])[c:2][c:3][c;X3:4]([N:8][H])[c:5][c:6]1>>[C:1]
1(=[O:7])-[C:2]=[C:3]-[C;X3:4](=[N:8])-[C:5]=[C:6]-1" 

oxidation of 4-substituted 
anisole to quinone if the 
substituent is not a leaving 
group 

(6) uncommon‡ “[c:1]1([O:7][C:9])[c:2][c:3][c;X3:4]([C:8])[c:5][c:6]1>>[C:1]1(
=[O:7])-[C:2]=[C:3]-[C:4]([C:8])(O)-[C:5]=[C:6]-1.[C:9]” 

oxidation of 1,4-
dihydropyrridines 

(1) common "[N;X3:1]1([H])[#6:2]=[#6:3][#6;X4:4]([H])[#6:5]=[#6:6]1>>[n;
H0:1]1=[#6:2][#6:3]=[#6:4][#6:5]=[#6:6]1" 

aliphatic epoxidation (1) common "[C:1]=[C:2]>>[C:1]1[C:2][O]1" 

N-dearylation (1) uncommon “[c;R1:1]1[c;R1:2][c;R1:3][c;R1:4][c;R1:5][c;R1:6]1[N:7][c:8]>
>[C:1]1=[C:2]-[C:3]-[C:4]=[C:5]-[C:6]1=[O].[c:8][NH2:7]” 

O-dearylation (1) uncommon “[c;R1:1]1[c;R1:2][c;R1:3][c;R1:4][c;R1:5][c;R1:6]1[O:7][c:8]>
>[C:1]1=[C:2]-[C:3]-[C:4]=[C:5]-[C:6]1=[O].[c:8][O:7]” 

“[c;R1:1]1[c;R1:2][c;R1:3][c;R1:4][c;R1:5][c;R1:6]1[O:7][c;R1:
8]2[c;R1:9][c;R1:10][c;R1:11][c;R1:12][c;R1:13]2>>[C:1]1=[C:
2]-[C:3]-[C:4]=[C:5]-[C:6]1=[O:7].[C:8]2(=[O])-[C:9]=[C:10]-
[C:11]-[C:12]=[C:13]-2” 

“[c;R1:1]1[c;R1:2][c;R1:3]([O:20][H])[c;R1:4][c;R1:5][c;R1:6]1
[O:7][c:8]>>[C:1]1=[C:2]-[C:3](=[O:20])-[C:4]=[C:5]-
[C:6]1=[O].[c:8][O:7]” 

“[c;R1:1]1[c;R1:2][c;R1:3]([O:20][H])[c;R1:4][c;R1:5][c;R1:6]1
[O:7][c;R1:8]2[c;R1:9][c;R1:10][c;R1:11][c;R1:12][c;R1:13]2>>
[C:1]1=[C:2]-[C:3](=[O:20])-[C:4]=[C:5]-
[C:6]1=[O:7].[C:8]2(=[O])-[C:9]=[C:10]-[C:11]-[C:12]=[C:13]-
2” 



deformylation (1) uncommon "[C:1]([H])-[C:2]([H])-[C:3]=[O:4]>>[C:1]=[C:2].[C:3]=[O:4]" 

oxidative desulfuration of 
phosphor 

(8) common‡ "[*:1][P:2](=S)([*:3])[*:4]>>[*:1][P:2](=O)([*:3])[*:4]" 

desulfuration of carbon (8) uncommon‡ “[*:1][C:2](=S)[*:3]>>[*:1][C:2](=O)[*:3]” 

reduction of N-oxide (1) uncommon “[#7+;X4:1]([O-])>>[#7;X3:1]” 

reduction of RNOR (1) uncommon “[#8;$([#8][#6]):1][#7:2]:,=[#6:3]>>[#8:1]([H]).[#7:2]([H])([H])
-[#6:3]([H])” 

“[#8;$([#8][#6]):1][#7:2][#6;!X4:3]>>[#8:1]([H]).[#7:2].[#6:3]=[
O]” 

“[#8;$([#8][#6]):1][#7;$([#7][#6]):2]>>[#8:1]([H]).[#7:2]([H])” 

reduction of nitro group (1) uncommon "[N;X3:1](=O)=[O]>>[NH2:1]" 

"[N+;X3:1](=O)[O-]>>[NH2:1]" 

reduction of C- or N-nitroso 
compound 

(1) uncommon “[C,N:1][N;X2:2](=O)>>[C,N:1][N;H2:2]” 

azo reduction (1) uncommon “[#6:1][N:2]=[N:3][#6:4]>>[#6:1][NH2:2].[NH2:3][#6:4]” 

hydrazine reduction (1) uncommon “[NX3:1]-[NX3:2]>>[N:1]([H]).[N:2]([H])” 

alkyl oxidative dehalogenation (1) common “[C:1]([H])[F,Cl,Br:2]>>[C:1]=[O].[F,Cl,Br:2]” 

benzyl oxidative 
dehalogenation 

(1, 9) uncommon “[c;$([c;!H]1ccccc1),$(c1[c;!H]cccc1),$(c1c[c;!H]ccc1),$(c1cc[c
;!H]cc1),$(c1ccc[c;!H]c1),$(c1cccc[c;!H]1):1][F,Cl,Br,I:2]>>[c:
1][O].[F,Cl,Br,I:2]” 

reductive dehalogenation (1) uncommon “[C:1]([F,Cl,Br:3])[C:2]([F,Cl,Br:4])>>[C:1]=[C:2].[*:3].[*:4]” 

alkyl dehydrogenation (1) uncommon “[C:1]([H])-[C:2]([H])>>[C:1]=[C:2]” 

dehydrogenation of N-C bond (8) uncommon‡ “[N;X3:1]([H])[C;!H3:2][H]>>[N:1]=[C:2]” 

"[#7;X3:1]([H]):,-[#6;!H3:2]([H]):,=[#6:3]-
[C:4]([H])>>[#7:1]=[#6:2]-[#6:3]=[C:4]" 

“[N;X3:1][C:2][H]>>[N+:1]=[C:2]” 

oxidative ether cleavage 
(O-dealkylation) 

(1) common "[#6:1][O:2][C:3]([H])>>[#6:1][O:2].[C;X3:3](=O)" 

oxidative ester cleavage (1) uncommon "[C$(C(O)([#6])=O):2][O:3][C:4][H]>>[C:2][O:3].[C:4]=[O]" 

monothiophosphate ester 
cleavage 

(8) uncommon‡ “[S:1]=[P$(P(O)(O)=S):2][O:3][#6:4]>>[S:1]=[P:2][O:3].[#6:4][
O]” 

“[S:1]=[P$(P(O)(O)=S):2][O:3][#6:4]>>[S:1].[O]=[P:2][O:3].[#
6:4][O]” 

phosphoester cleavage (1) uncommon “[O:1]=[P$(P(O)(O)=O):2][O:3][#6:4]>>[O:1]=[P:2][O:3].[#6:4]
[O]” 

  



carbamate cleavage (8) uncommon‡ “[#7:1][C;$([C](O)=O):2][O:3][C:4]>>[#7:1][H].[C:2]=[O:3].[C
:4][O]” 

carbamide cleavage (2) uncommon‡ “[N:1][C;$([C](N)(N)=O):2][N:3]>>[N:1][C:2].[N:3]” 

oxidation of N-nitrosamine (1) uncommon “[N$(N(C)C):1]([C:3][H])[N$(N(N)=O):2]>>[N:1]([H])([H]).[N
:2]([O-]).[C:3](=O)” 

scission of unsaturated fatty 
acid peroxides 

(1, 2) uncommon "[C:1]([H])=[C:2]-[C:3]=[C:4]-[C:5]-
[O:6]([O])>>[C:1]=[C:2][C:3](O)[C:4]1-[C:5]-[O:6]1" 

"[C:1]([H])=[C:2]-[C:3]=[C:4]-[C:5]-
[O:6]([O])>>[C:1]([O])[C:2]=[C:3][C:4]1-[C:5]-[O:6]1" 

dehydration of an aldoxime to 
a nitrile  

(1) uncommon “[C:1]([H])=[N:2][O]([H])>>[C:1]#[N:2]” 

cyclization to 6-membered 
lactone 

(10) uncommon “[C:1]([H])([OH])[#6:2][#6:3][#6:4][C;$(C=O):5][O:6][*:7]>>[
C:1]1[#6:2][#6:3][#6:4][C;$(C=O):5][O:6]1.[*:7]” 

cyclization to 5-membered 
lactone 

(1) uncommon “[C:1]([H])[c:2][c:3][C;$(C=O):4][O:5][C,#1:6]>>[C:1]1[c:2][c:
3][C:4][O:5]1.[*:6]” 

cyclization to 6-membered 
NCN ring 

(2) uncommon “[N;X3:1]([H])~[*:2]~[*:3]~[*:4]~[N:5]-
[C:6]([H])>>[N:1]1~[*:2]~[*:3]~[*:4]~[N:5]-[C:6]1” 

cyclization to 5-membered 
NCN ring 

(2) uncommon “[N;X3:1]([H])~[*:2]~[*:3]~[N:5]-
[C:6]([H])>>[N:1]1~[*:2]~[*:3]~[N:5]-[C:6]1” 

cyclization to furan (1) uncommon “[O:1]=[C;R1:2][C;R1:3]=[C:4][C:5]([H])[H]>>[O:1]1[C:2]=[C:
3][C:4]=[C:5]1” 

cyclobutamine expansion (1) uncommon "[C:1]1-[C:2]-[C:3]-[C$(C1(C)CCC1):4]1[N:5]([H])>>[C:1]1-
[C:2]-[C:3]-[C:4]=[N+:5]1" 

oxidation of spiro[2,5]oxane (11) uncommon "[C:1]1[C:2]2([C:3][C:4]2)[C:5]([H])[C:6][C:7][C:8]1>>[C:1]1[
C:2]2(O)[C:3][C:4][C:5]2[C:6][C:7][C:8]1" 

D-homoannulation of 17 
alpha-ethinyl steroids  

(1) uncommon "[C$([#6R1]~1~[#6R1]~[#6R1]~[#6R2]~2~[#6R2]~1~[#6R1]~[
#6R1]~[#6R2]~3~[#6R2]~2~[#6R1]~[#6R1]~[#6R2]~4~[#6R1]
~[#6R1]~[#6R1]~[#6R1]~[#6R2]~3~4):1]1([O:6][H])([C:7]#[C:
8])[C:2][C:3][C:4][C:5]1>>[C:1]1(=[O:6])[C:7](=[C:8](O))[C:2]
[C:3][C:4][C:5]1" 

 
a Note that the source(s) provided for each reaction type is not an exhaustive list. Many 
reaction types were found in multiple publications. When listing the source in this table, 
priority was given to the 2001 review by FP Guengerich (1) (because that is where the 
common/uncommon designation came from) and a second source only provided if it 
provided additional information used in the development of the SMIRKS. If the reaction was 
not found in reference 1, then the most general source that was applicable to the development 
of the SMIRKS was provided. 
b Special case of aromatic hydroxylation. This additional reaction type was needed because 
pyrazolone is not recognized as aromatic by CDK and Ambit SMIRKS. 



‡ This designation was based on extrapolation, as this reaction type was not included in the 
2001 review by FP Guengerich (1). 

 
 
 

  



Supplementary Table 2: Evaluation Results for GLORY in MaxEfficiency Mode with 
Varying Site of Metabolism (SoM) Probability Cutoffs on the Manually Curated Test 
Dataset. 

SoM Probability Cutoff 0.4 0.3 0.2 0.1 

Precision 0.22 0.18 0.16 0.13 

Recall 0.41 0.51 0.64 0.74 

Total number of predicted 
metabolites 

148 226 327 465 

Number of successfully 
predicted reported 
metabolitesa 

33 41 52 60 

Number of molecules for 
which no metabolites could 
be predicted 

3 2 0 0 

Top-1 65.52 %b 65.52 % 68.97 % 68.97 % 

Top-2 65.52 %b 65.52 % 72.41 % 72.41 % 

Top-3 65.52 %b 68.97 % 75.86 % 75.86 % 
 
a The total number of reported metabolites in the dataset was 81. 
b Note: If it existed, the best rank of the a known metabolite was always 1 for the SoM 
probability cutoff of 0.4. No known metabolite was predicted for nearly half of the parent 
molecules. 
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Table S1. Enzymes Excluded From Consideration When Extracting Relevant Metabolites From DrugBank. 

Enzyme 

Cocaine esterase 

Thymidine phosphorylase 

Serum albumin 

Ribulose-phosphate 3-epimerase 

UDP-galactose 4-epimerase 

cGMP-specific 3'5'-cyclic phosphodiesterase 

Dihydropyrimidinase-related protein 2 

Aromatic-L-amino-acid decarboxylase 

Elongation of very long chain fatty acids protein 4 

Elongation of very long chain fatty acids protein 5 

Hemoglobin subunit beta 

Hemoglobin subunit alpha 

Selenocysteine lyase 

Lysosomal protective protein 

Enoyl-CoA hydratase mitochondrial 

NADPH--cytochrome P450 reductase 

Cytochrome b 
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Table S2. Descriptors Used for Principal Component Analysis. 

Name Description (1) 

a_acc Hydrogen bond acceptor atom count 

a_acid Acidic atom count 

a_aro Aromatic atom count 

a_base Basic atom count 

a_don Hydrogen bond donor atom count 

a_heavy Heavy atom count 

a_hyd Hydrophobic atom count 

a_nB Boron atom count 

a_nBr Bromine atom count 

a_nC Carbon atom count 

a_nCl Chlorine atom count 

a_nF Fluorine atom count 

a_nH Hydrogen atom count 

a_nI Iodine atom count 

a_nN Nitrogen atom count 

a_nO Oxygen atom count 

a_nP Phosphorus atom count 

a_nS Sulfur atom count 

b_ar Number of aromatic bonds 

b_count Number of bonds 

b_double Number of double bonds 

b_rotN Number of rotatable bonds 

b_rotR Fraction of rotatable bondsa 

b_single Number of single bonds 

b_triple Number of triple bonds 

chiral Number of chiral centers 



S4 

FCharge Total charge of the molecule 

logP(o/w) Log of the octanol/water partition coefficient 

logS Log of the aqueous solubility (mol/L) 

mr Molecular refractivity 

PC+ Total positive partial charge 

PC- Total negative partial charge 

rings Number of rings 

TPSA Polar surface area (Å2) 

vdw_area Area of van der Waals surface (Å2) 

vdw_vol van der Waals volume (Å3) 

vsa_acc Approximation of the sum of VDWb surface areas (Å2) of pure hydrogen bond 
acceptorsc 

vsa_acid Approximation of the sum of VDW surface areas of acidic atoms (Å2) 

vsa_base Approximation of the sum of VDW surface areas of basic atoms (Å2) 

vsa_don Approximation of the sum of VDW surface areas of pure hydrogen bond donorsd 

vsa_hyd Approximation of the sum of VDW surface areas of hydrophobic atoms (Å2) 

vsa_other Approximation of the sum of VDW surface areas (Å2) of atoms typed as "other" 

vsa_pol Approximation of the sum of VDW surface areas (Å2) of polar atoms 

Weight Molecular weight 
a b_rotN divided by the number of bonds between heavy atoms 
b VDW = van der Waals 
c Not counting acidic atoms and atoms that are both hydrogen bond donors and acceptors 
d Not counting basic atoms and atoms that are both hydrogen bond donors and acceptors 
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Table S3. Number of Molecules Used to Train the FAME 3 Reaction Type-Specific SoM Prediction Models. 

Reaction class Number of molecules ClassID(s) from MetaQSAR 

Glucuronidations & glycosylations 440 + 153 = 593 14, 15 

GSH & RSHa conjugations 243 17 

Sulfonations 148 16 

Methylations 94 20 

Acetylations & acylations 83 18 

aRSH = protein thiol 

 

Table S4. Ranking Performance of Phase 2 Metabolite Prediction using the Reaction Rules from SyGMa and 
Various Formulas for Combining the Predicted SoM Probabilitiesa with SyGMa’s Reaction Probabilities. 

Score equationb AUC of rank-based ROC curve 

S x R 0.85 

(S + R) / 2 0.82 

(2S + R) / 3 0.81 

(3S + R) / 4 0.80 

(5S + R) / 6 0.80 

(10S + R) / 11 0.80 

(S + 2R) / 3 0.82 

(S + 3R) / 4 0.82 

(S + 5R) / 6 0.82 

(S + 10R) / 11 0.83 

a The SoM probabilities were predicted with FAME 3 model P2 
b S = SoM probability, R = reaction probability 
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Figure S1. PCA loading plot for the PCA plot shown in Figure 1D. The PCA compares parent molecules from 
DrugBank and MetXBioDB using 44 physicochemical descriptors (Table S2). The percentage of the total variance 
explained by each of the first two principal components is 35.81% for PC1 and 10.69% for PC2. 
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Figure S2. Score-based ROC curves for the evaluation of metabolite prediction performance on the reference 
dataset. (A) Comparison of GLORYx, which scores its predicted metabolites based on predicted SoM probability, 
to SyGMa, which uses reaction probability-based scoring, for phase 1 metabolite prediction. Weighted rules refer 
to the weighting of the SoM probability-based score based on whether the reaction type is designated common or 
uncommon. (B) Comparison of the ranking performance of GLORYx with different scoring approaches and rule 
sets, as well as a direct comparison to SyGMa’s performance, for phase 2 metabolite prediction. The scoring 
approach that is based on both SoM probability and reaction probability is achieved by a simple multiplication of 
the two components. (C) Comparison of the ranking performance of GLORYx for combined prediction of 
metabolites for phases 1 and 2 metabolism, using different SoM prediction approaches to score the predicted 
metabolites. The predicted metabolites are scored based on predicted SoM probability. The rule set in both cases 
is the same and is made up of the final phase 1 rule set (SyGMa and GLORY rules) and final phase 2 rule set 
(SyGMa and GSH conjugation rules). Note that the score-based ROC curves for SyGMa should be viewed 
cautiously because SyGMa’s scoring approach was only intended to compare scores among predicted metabolites 
of the same parent molecule (i.e. a rank-based comparison). 
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Figure S3. Variability in the ranking performance of SyGMa and GLORYx on the test set based on the rank and 
the score of the predicted metabolites. The data points were calculated by systematically removing one parent 
molecule from the test set at a time and calculating the AUC from the remaining predictions. There are therefore 
37 AUC data points for each combination of tool and AUC type, corresponding to the size of the test set. 
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