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Abstract

Language is one of the complex but fascinating ways of communication, and it is

continuously developed and maintained in the human brain. It is remarkable to

study how humans understand each other in a conversation and continually learn

and develop their communication skills. Understanding the meaning of the spo-

ken or written language and interacting in that language differentiates humans

from other species. Although it is difficult to define the exact working nature

of the brain related to language acquisition and development, researchers find a

strong relationship between different behaviours acquired based on social, cogni-

tive, emotional and behavioural intelligence. Social robots and artificial human-

like intelligent agents are the expected members of future society, where they

are firmly expected to realize and exhibit verbal communication capability. In

addition to the robot appearance, conversational understanding and behaviours

are crucial aspects for their acceptance and co-existence in emerging society.

This thesis aims to connect the knowledge from behavioural intelligence

through conversational language learning with human-robot interaction (HRI).

The socio-linguistic features, such as emotion, sentiment, politeness and dialogue

acts, are the building blocks of the decision-making process in humans. This the-

sis presents extensive conversational analysis through artificial recurrent neural

modelling that helps to build the robots aware of such linguistic cues. Accord-

ingly, the thesis provides tools to analyze and investigate language on different

aspects using recurrent neural networks (RNNs) and attention mechanism and

eventually demonstrates an HRI scenario that facilitates robotics behavioural

adaptation based on social cues. As a result, the thesis provides insights into the

conversational analysis with emotion and dialogue acts, providing useful knowl-

edge of natural language understanding for safe human-robot interaction.

The primary contribution to knowledge from the study and experiments pro-

vided in this thesis is understanding the socio-linguistic features, with the motive

of developing a natural language conversational system for HRI. The analytical

experiments in this thesis can inform necessary future work in order to integrate

social cues for robotic behavioural adaptation. Furthermore, this thesis provides

knowledge to realize safer social robots in society with verbal communication ca-

pability using computational neural linguistics approaches, along with addressing

the safety concerns of humans.
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Zusammenfassung

Sprache ist eine komplexe und faszinierende Art der Kommunikation, die sich

im menschlichen Gehirn ständig weiterentwickelt und verändert. Es ist be-

merkenswert, wie Menschen sich in einem Gespräch verstehen und ihre Kom-

munikationsfähigkeiten erlernen und kontinuierlich weiterentwickeln. Die Bedeu-

tung gesprochener oder geschriebener Sprache zu verstehen und damit zu inter-

agieren, unterscheidet den Menschen von anderen Spezies. Obwohl es schwierig

ist, die genaue Funktionsweise des Gehirns im Zusammenhang mit Spracher-

werb und Sprachentwicklung zu definieren, finden Forscher starke Beziehun-

gen zwischen verschiedenen Verhaltensweisen, die auf sozialer, kognitiver, emo-

tionaler und Verhaltensintelligenz beruhen. Von sozialen Robotern und anderen

künstlichen menschenähnlichen Agenten wird erwartet, dass sie verbale Kommu-

nikationsfähigkeiten durch Interaktion automatisch erlernen. Neben dem Erschei-

nungsbild der Roboter sind Gesprächsverständnis und Verhaltensweisen entschei-

dende Aspekte für ihre Akzeptanz in der Gesellschaft.

Diese Arbeit zielt darauf ab, Forschungsergebnisse aus der Verhaltensintel-

ligenz bezüglich des Erlernens der Konversationssprache mit der Erforschung

der Mensch-Roboter-Interaktion (HRI) zu verbinden. Soziolinguistische Merk-

male wie Emotion, Gefühl, Höflichkeit und Dialogakte sind die Bausteine des

Entscheidungsprozesses des Menschen. Damit Roboter lernen können, solche

Merkmale zu nutzen, wird in dieser Arbeit eine umfassende Gesprächsanalyse

durch künstliche rekurrente neuronale Netzwerke vorgestellt. Dementsprechend

präsentiert diese Arbeit Werkzeuge zur Analyse und Untersuchung von Sprache

auf verschiedene Aspekte auf Basis rekurrenter neuronaler Netzwerke (RNNs)

und einem Attention-Mechanismus und zeigt letztendlich ein HRI-Szenario,

welches die Verhaltensanpassung des Roboters auf Grundlage sozialer Merkmale

ermöglicht. Als Ergebnis bietet die Arbeit einen tiefen Einblick in die Gesprächs-

analyse mit Emotionen und Dialogakten, wodurch ein nützliches Verständnis

der natürlichen Sprache für eine sicherere Mensch-Roboter-Interaktion ermöglicht

wird.

Der primäre Beitrag zum wissenschaftlichen Wissen der Experimente in dieser

Arbeit ist das Verständnis der Auswirkungen soziolinguistischer Merkmale wie

Emotion, Höflichkeit und Dialogakte, bezüglich dem Ziel, ein natürlichsprach-

liches Dialogsystem für eine sicherere HRI zu entwickeln. Die analytischen Exper-
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Abstract

imente in dieser Arbeit können als Grundlage für notwendige zukünftige Arbeiten

dienen, um soziale Merkmale für die Anpassung des Verhaltens von Robotern zu

integrieren. Darüber hinaus liefert diese Arbeit Wissen zur Realisierung sichererer

sozialer Roboter für die Gesellschaft, mit der Fähigkeit zur verbalen Kommu-

nikation unter Verwendung von Ansätzen aus der rechnergestützten neuronalen

Linguistik, sowie um Sicherheitsbedenken zu adressieren.
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Chapter 1

Introduction

1.1 Motivation

Social robots and artificial general intelligent agents are expected members of the

future society (Gladden, 2018). These members are expected to exhibit natural

language communication, one of the fascinating capabilities humans have devel-

oped to use in daily life. While humans learn from and teach each other, mostly

with verbal communication, it is reasonable to realize this existing human ability

in social robots (Mavridis, 2015). It also helps to eliminate the need to require

experts to communicate with the robots, and non-expert humans can naturally

communicate with robots. In natural language communication, robots are ex-

pected to advance beyond the commands or instructions that can be technical and

monotonous. However, it is crucial to building a language understanding model

which learns conversational behaviours and nuances from the human-human in-

teraction.

The conversation is one of the most important conventions of human com-

munication, where the language conveys the information. Natural conversation

is mostly provoked with feelings or incidences along with the information. Hu-

man communication needs to have an awareness of social cues provided through

conversation by others and understand what is being spoken. The term conversa-

tion can define a casual chat as well as formal discussions. The essential processes

involved in the verbal conversation are language understanding, cognitive process-

ing and responding to the conversation partner. Different types of conversation

usually govern communication and knowledge between speakers. For example, a

functional conversation where some goals are to be achieved within a dialogue

1



Chapter 1. Introduction

with the help of information and small talks is regarded as social skills, such as

greeting someone. Several factors shape the language such as grammatical syn-

tax and structures, the cognitive knowledge of speakers, and the medium and

kind of conversation (Austin, 1962; Brennan, 2000; Rashkin et al., 2018). It is

essential to learn the meaning and intentions in the turns (utterances) of the

dialogue for better conversational analysis, commonly with the help of dialogues

acts (Austin, 1962). However, it is also crucial to investigate particular feelings

behind the speaker’s utterances, usually with the help of emotional expressions

that help to respond with empathy (Ekman et al., 1987). Furthermore, engaging

politeness of the speaker can be valuable to extend the conversational analysis

and understand human behaviours, particularly during human-robot interaction.

As humans, we do not learn equally, perhaps a reason we do not react equally

to the same situation (that occurs during social interaction - in conversation or

on social media), as several cues and factors drive our decisions. Hence, finding

a right and safer communication way becomes challenging, on the other hand,

defining the right or safer situation is out of the scope of this work. However,

we are fully aware that human-robot interaction certainly benefits from learning

and analyzing the socio-linguistic features and behaviours in human-human in-

teractions. Learning from different socio-linguistic features in the conversational

language has some additional advantages, such as understanding dialogue initia-

tive, multiple dialogue acts, and affective interaction; to mention a related-few

from the desiderata list for human-robot verbal interaction (Mavridis, 2015). The

robot has to understand a natural input language from human in all the aspects

to react and follow the instructions, and eventually converse.

This thesis explores the conversational analysis and language learning for safer

human-robot interaction on different aspects such as dialogue acts, emotion, and

politeness. This work aims to provide a framework for human-robot verbal in-

teraction by exclusively using socio-linguistic cues to interpret human behaviour.

Understanding the human language is one of the first keys for a verbal conver-

sation. Then the socio-linguistic cues add an interactive and significant value to

produce a natural communication. We naturally learn such skills right from the

early ages, for example, a spoken utterance “Could you please tell me how to reach

this place on the map?” is trivial for us to comprehend and react accordingly.

We can easily figure out that the above utterance represents a question dialogue

act in a request form (multiple dialogue acts), which is linguistically polite as it

2



1.1. Motivation

contains phrase “could you” and word “please” (Danescu-Niculescu-Mizil et al.,

2013); and posses almost neutral emotional expression.

Another essential aspect of the dialogue is that we interpret and understand

the conversation partner through the context. As social robots are on high de-

mand to enter our daily lives, the critical feature expected is that they possess

contextual inference. For example, we can reliably understand and appropriately

respond based not only currently uttered sentence but also the context of pre-

vious utterances in the conversation (Bothe et al., 2018d). We propose to use

attention-based recurrent neural networks (RNN) and bidirectional-RNN neural

models that contextually models the conversational textual utterances to per-

form extensive conversational analysis, for example, using contextual recognition

of dialogue acts (Bothe et al., 2018b). We perform contextual neural learning

not only for dialogue acts but also for the emotion recognition using charac-

ter language models to encode utterances (Bothe and Wermter, 2019). We also

show how different models perform when they are ensemble together, such as

RNN and convolutional neural network (CNN) models together with the word-

and character-level utterance representations. It is expected that the output of

speech recognition systems might contain errors, hence using an ensemble of var-

ious representations and differently behaving models becomes crucial.

In a conversation, humans use changes in a dialogue to predict undesirable

and safety-critical situations and use them to react accordingly (Ekman et al.,

1987). We propose to use these kinds of cues for safer human-robot interac-

tion through early detection of dangers, especially with dialogue-based sentiment

learning (Bothe et al., 2017). The socio-linguistic features, such as emotion, sen-

timent or politeness, together with dialogue acts, add unique value in developing

a dialogue system for the robots. The robots can adapt their behaviour based on

cues generated with the help of those feature recognition. We demonstrate such

a human-robot verbal interaction scenario for navigating the Pepper robot that

variates its speed driven by the social cues: politeness and dialogue act (Bothe

et al., 2018a). We developed a dialogue system to combine these cues, which

helps the robot adjust not only the navigating speed but also various social and

behavioural components such as speech tone, head pitch orientation, and eye

colour.

3
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1.2 Research Questions

In our work, we focus on the natural language understanding module that helps

to develop a dialogue system to adapt different robotic actions based on the socio-

linguistic features found in the human input language. While developing such a

system for HRI, our primary focus drives towards understanding the dialogue

acts (DA) of the utterances. It is known that the application of context-based

learning leads to performance gain in the task of recognition of the dialogue acts.

However, we also emphasize that only current and past utterances shall be used

in context for HRI scenarios that leads to the first research question:

Question 1: How can we find the number of preceding utterances in

the context that are required towards recognizing the dialogue act of

the given current utterance?

When this question is answered, we investigate that different dialogue acts behave

differently in their context. For example, if there is an answer DA utterance, the

previous sentences might contain a question DA utterance which will substan-

tially contribute towards recognition. However, if it is a reverse case, then the

contribution of the past utterances could be negligible; hence the idea is not to

find any fixed number, but a generalized one that leads to the next research

question:

Question 2: How much does each utterance in the context contribute

towards recognizing the dialogue act of the given utterance?

Contextual behaviour in the utterances is also possible when recognizing the

emotional expressions, especially in the absence of other modalities such as facial

expressions or sound variations. On the other hand, the sentiment is a driver

in the decision-making process. The extreme polarity sentiment utterances in

the conversation are used to convey negativeness or positiveness. For example,

appreciation or desirable moments are usually expressed with positive sentiment,

whereas negative sentiment expresses undesirable or unhappy moments. These

extreme sentiment utterances act as feedback cues as of their preceding utterances

providing the context. This kind of behaviour of sentiment in the conversation

leads to the next novel research question:

Question 3: How can dialogue-based neural learning estimate the sen-

timent of the next utterance help us find undesirable events or safety-

critical cues for safe human-robot interaction?
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Emotions and dialogue acts are considerably different aspects of language learn-

ing. However, the lack of availability of such a dataset that contain both the

labels makes it impossible to analyze the relationships between them, that leads

to the next research question:

Question 4: How can we reliably use the neural ensemble method to

enrich existing emotion data with dialogue act labels? Do the emotions

and dialogue acts provide any relations among themselves that would

be useful to consider for conversational analysis?

In the motivation, we stated that different socio-linguistic feature for the

in-depth conversational analysis could lead us to a better understanding of the

human-human interaction. However, our goal is to build a language understanding

module that drives to achieve social and natural human-robot verbal interaction,

leads us to the next research question:

Question 5: How to combine the socio-linguistic features such as emo-

tion or politeness with the dialogue acts in the dialogue system for

HRI? How does that help to influence the output behaviour of the

robots?

Our ultimate goal is to make use of the knowledge gained with these analyses and

experiments for safe human-robot interaction. We attempt to discover the pos-

sibilities to utilize different socio-linguistic cues for safe human-robot interaction

to increase the trust and acceptance of the robots in the emerging society.

1.3 Novelty and Contribution to Knowledge

In this work, we propose novel approaches to conversational analysis that are

useful for the research community in computational linguistics and human-robot

interaction.

• We propose a novel RNN-based approach on the dialogue act recognition

task with domain-independent utterance representations and achieve state-

of-the-art results on Switchboard Dialogue Act (SwDA) corpus. In this ex-

periment, we use the word- and character-level language models to encode

the utterances.

• The number of past utterances in the context required to recognize DA class

of the current utterance is determined experimentally. We also showcase the
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internal or hidden representation of the RNNs clustering the DA classes into

the 2D space demonstrating the learned utterance representation possess

the features isolating them in the given space.

• We developed a novel utterance-level attention mechanism configured on

top of the bidirectional-RNNs to compute the contribution of the context

utterances. It contains the attention mechanism that ultimately computes

the weights of each utterance in the context towards recognizing the DA of

the given utterance.

• We report how the context model is more reliable over no-context model

predictions using their confidence values. It is clear that the context model’s

accuracy is consistently higher than the no-context model; however, we

inspect if the confidence level of the context model is also higher.

• We develop novel ensemble models for emotion recognition in the dialogue

by participating in international competitions. In the EmoInt challenge,

we develop a model to compute the given sentences’ intensity for classify-

ing emotion. In the EmoContext challenge, we develop a novel model that

uses the context-based ensemble of RNNs and CNNs with the word- and

character-level features.

• We propose a novel approach for the sentiment-guided dialogue-based neu-

ral learning to estimate the sentiment of next upcoming utterance using

RNNs. In this experiment, we show that the models learn to predict the

probably undesirable or safety-critical situations that could be useful in

HRI to avoid potential danger.

• We propose a novel approach to annotate emotional conversation data using

an ensemble of neural annotators. We combine five different neural models

(two no-context and three context models) to produce final DA classes for

the given utterances. We annotate two multi-modal emotion conversational

datasets IEMOCAP and MELD and make them publicly available for the

research community.

• We present our discovery of unique relations between emotions and dialogue

acts, and we name them emotional dialogue acts (EDAs). The EDAs show

definite relations such as Thanking DA is mostly expressed with Happy
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emotion and Apology with Sadness. We also investigate the failures where

the model mispredicts the DA classes that help understand where the en-

semble of the neural annotator fails.

• We develop a dialogue system that combines the socio-linguistic feature Po-

liteness with dialogue acts (with added information called slot-value pairs)

using hierarchical-RNN recognition models. The dialogue-based navigation

HRI scenario is chosen to demonstrate the effect of change in the degree

of politeness during the conversation to variate robot speed and behaviour

accordingly.

• Eventually, we provide insight into language learning for safer human-robot

interaction with socio-linguistic features such as emotion or politeness. We

present preliminary direction for how to use those features to produce ade-

quate and safe actions from the robots and how to integrate them into the

dialogue system by navigating the robot with politeness cues.

1.4 Thesis Organization

In the first chapter, we presented motivation to this thesis work, derived research

questions, and listed the novelties and contributions to knowledge. Chapter 2 pro-

vides insight into the background and conceptual methods that are used in this

thesis. We briefly describe the development of natural language processing in the

field of HRI and dialogue systems. We also provide a short description of what

we shall expect from the experiments in this thesis. We also provide prologues

on language learning by incorporating the socio-linguistic features into conversa-

tional system towards safer HRI. Chapter 3 contains an introductory background

on artificial neural network methods that we use to develop our approaches. We

shortly describe different RNN architectures and representation methods used

in this thesis. Chapter 4 presents the approaches to recognize the dialogue acts.

It contains contextual approaches based on the simple RNN and utterance-level

attention-based bidirectional-RNN models with their results and conversational

analysis. Chapter 5, on the other hand, provides ensemble models for contextual

emotion recognition in the dialogue and sentiment-guided dialogue-based neural

learning to estimate the sentiment of the next utterance in conversation. Chapter

6 presents the approach on the ensemble of neural annotators to annotate the ex-
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isting emotion conversational dataset with the dialogue acts, providing a detailed

analysis of the emotional dialogue acts (EDAs). It also contains the discovery of

the unique relations between emotion and dialogue acts. Chapter 7 demonstrates

a dialogue system for HRI where the socio-linguistic feature politeness drives nav-

igation of the robot. It contains a method for utilizing the customized dialogue

acts, in which not only intentions but also extra information is decoded from the

input utterances. Finally, Chapter 8 concludes this thesis, providing discussion

and conclusions on the experiments and results conducted in this thesis work.

It also contains answers to the research questions posed in this first chapter,

together with the possible future work.
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Chapter 2

Language Learning for

Human-Robot Interaction

This chapter focuses on the methods to incorporate techniques of natural lan-

guage processing for conversational analysis and human-robot interaction (HRI).

Humans will be able to interact naturally and verbally with robots is still futur-

istic. However, there is plenty of research work proven the early steps towards a

robust conversational HRI. In this chapter, we will discuss the most important

and relevant developments in this regards.

2.1 Introduction

Robots with the natural-language conversational ability make them useful in

direct human-robot interaction applications, such as health, education or retail.

However, being in the direct interaction with humans, safety comes first, for which

understanding different aspects of the conversation becomes crucial, for example,

conversational and discourse analysis, contextual and pragmatic behaviours in

conversation, and affective or emotional comprehension. When a person wants

to give a command or order the robot, verbal interaction could make them feel

natural (depicted in Figure 2.1) than conveying commands as technical terms

or from a graphical user interface (GUI) of the smartphone. Moreover, most of

the conversational robots are not directly equipped with learning capabilities

(Mavridis, 2015), and they are usually task-oriented human-robot interaction

scenarios (Steinfeld et al., 2006; Bothe, 2015). However, it is still necessary to

understand why is it essential to have robots with natural-language capability,
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Yes, I can bring 
you some water. 

Can I get some 
water, please!

Figure 2.1: Human-robot Interaction Scenario.

and what should we expect from the conversational robots?

Many works have attempted to create a unified set of requirements for the

conversational HRI (Steinfeld et al., 2006; Pandey, 2012; Mavridis, 2015). Some

of the primary expected abilities are grounding speech acts, affective interaction,

dialogue initiatives and learning from human conversations. This thesis attempts

to understand how to model and analyze the abilities mentioned earlier to deploy

them in HRI applications. We propose to use the presented methodologies to learn

and analyze such linguistic aspects using deep learning techniques. It is crucial to

understand that these abilities are not limited and could be extended further, such

as multiple speech acts, multi-level learning, mixed-initiative dialogues, along

with the utilization of online resources and services (Mavridis, 2015). Moreover,

to build a conversational system for HRI includes a different perspective than

human-computer interaction (HCI) systems. Apart from any damage from the

HCI system, HRI has to follow the fundamental Three Laws of Robotics as defined

by Isaac Asimov (Asimov, 1963).

Hence, we derive motivation for this thesis to explore various socio-cognitive

and -linguistic building blocks, having safety concerns in the first place. We aim

to bring conversational abilities, such as context- and situation-aware response,

affective behaviours and proactivity, to the robotic scenario through conversa-

tional analysis. We also highlight social norms for dialogue, comprehension and

navigation to reduce efforts and confusion in the given scenario. Our main aim is

10



2.2. Language to Verbal Interaction

to learn from the datasets of our day to day conversational activities, and finally,

design and develop algorithms and frameworks to equip the robots with such

abilities.

2.2 Language to Verbal Interaction

As a human being, the ability to have a conversation represents a crucial cognitive

component of social skills (Riggio, 1986). The humans can reliably understand

each other and communicate verbally and non-verbally, where “verbal interac-

tion is the basic reality of language” (Allen, 1993). Language has been a subject

of study from ancient linguist Panini in sixth century BC, through the philoso-

phers like Plato and Aristotle, and then to the 20th century’s most influential

linguists like, to mention a few, John Austin, John Searle and Naom Chomsky

(Rajagopalan, 2000; Bod, 2013; Kadvany, 2016). Language and communication

and how it works have been a point of debate for a long time. However, one of the

ideas the debate converged to, is that language is not just the symbols, words,

sentences or grammar, but it is their production and issuance in the performance

of the speech acts, as defined by Searle (Searle and Searle, 1969; Rajagopalan,

2000). Hence, language is not only the combinatorial possibilities of the sym-

bols to make the well-formed sentences, as a Chomskyan generative grammarian

would claim, but the contextual knowledge the speaker has in the conversation.

In recent decades, computational techniques have taken over the traditional

ones in linguistics. It was possible due to recent advances in artificial intelli-

gence and data-driven modelling in the machine learning field. The primary at-

tention has been driven towards artificial neural networks, and its prominent

extension called deep learning. All these advancements brought us to numer-

ous possibilities for natural language processing. They enabled us to build the

conversational dialogue systems, most importantly, neural conversational agents

with the help of dialogue corpora (Serban et al., 2015; Gao et al., 2018). Natu-

ral Language Processing (NLP) aims at converting natural human language into

computer representations, i.e. symbolic or numeric representations that are easy

to handle for computers. NLP involves several challenging tasks such as natu-

ral language understanding, part-of-speech tagging, language modelling, natural

language generation, automatic summarization, sentiment analysis, and discourse

analysis. When combined to architect a system, these tasks enable building an ef-
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fective conversational dialogue system for human-computer or -robot interaction.

In the following section, we will briefly review the conversational systems, a typ-

ical dialogue system and how NLP tasks can be integrated to build a particular

application, and we will also discuss their use in HRI applications.

2.3 Natural Language Processing (NLP) for

Conversational Systems

The conversational systems can be grouped into three categories: question an-

swering system, task-oriented dialogue system, and chatbots (Allen et al., 2001;

Gao et al., 2018). Question answering systems are usually designed to directly

answer the questions based on rich knowledge, like asking about the weather

forecast. Task-oriented dialogue systems are the most widely accepted architec-

tures; they are modular and provide substantial opportunity to improve each of

the components, this approach is commonly used in HRI scenarios. On the other

hand, the chatbots are usually developed to perform small talks such as “tell me

a joke” or greetings, and usually, they are trained as data-driven models.

Most of the systems fall under the category called spoken dialogue system

as the input and output are bound with speech interface. A typical dialogue

system, as shown in Figure 2.2, is composed of four primary modules: Natural

Language Understanding, Dialogue Manager, Response Manager, and Natural

Language Generator. A Natural Language Understanding (NLU) module identi-

fies user intentions and extracts associated information from the input utterance.

A Dialogue Manager (DM) keeps track of the dialogue state that captures all

essential information in the conversation and may communicate with other task-

oriented databases as if needed from the interpretation of NLU. DM module is

usually responsible for communicating with databases depending on the task to

be accomplished for a particular goal, like asking about the restaurants in the

city. A Response Manager (RM) is a DM dependent module that takes care of the

kind of response generated and usually waits in a loop with the DM for contin-

uous corrections. Natural Language Generation (NLG) module is responsible for

converting agent actions from the RM to natural language responses. The input

and output are accomplished with the help of automatic speech recognition and

text-to-speech synthesis, respectively.
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Automatic 
Speech 

Recognition

Dialogue System

Text-To-Speech 
Synthesis

Natural 
Language 

Understanding

Dialogue
Manager

Natural 
Language 
Generator 

Response 
Manager

Figure 2.2: Typical Dialogue System.

While being a modular architecture, it provides substantial opportunities to

improve each component in the dialogue system, and it also allows to control

them independently. Such flexibility is useful for developing the dialogue systems

for human-robot interaction where the system could be modified to add different

linguistic features and modalities (Shi and Yu, 2018; Bothe et al., 2018a). Such

a system is proposed and presented in Chapter 7, where the responses and robot

behaviour are modulated with two linguistic features, the dialogue act (intention)

and politeness.

Recently, there have been several attempts to develop entirely data-driven sys-

tems, popularly called end-to-end conversational models (Gao et al., 2018; Ritter

et al., 2011; Vinyals and Le, 2015; Weston, 2016). The machine translation tech-

niques mostly inspire the end-to-end conversational approaches (Kalchbrenner

and Blunsom, 2013a; Sutskever et al., 2014; Yang et al., 2017) where a deep

sequence-to-sequence neural network directly maps the user input to the conver-

sational agent output. They are gaining popularity due to ease of training on the

big data in an unsupervised fashion. For example, sequence-to-sequence model

could be trained on a large number of conversations such as movie subtitles, where

utterances after utterances are trained as input and output sequences (Vinyals

and Le, 2015). The conversation with such agents turns out quite random as

any input utterance gets mapped to individual responses or a combination of the

words to form an output utterance from the learned data. However, to mitigate

such phenomenon, one more kind of dialogue modelling is gaining popularity

called goal-oriented end-to-end models (Hori and Hori, 2017; Ultes et al., 2017;

Lu et al., 2019). In this case, the conversational agent’s goal is to respond on a
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particular domain given a history of dialogue, for example, recommending places

to visit, suggesting restaurants in the city.

In our experiments, we mostly use the previous version of the dialogue system,

which maps input utterances to responses with the modular components. Our

primary focus of research is on the natural language understanding module of

the dialogue system, and hence in the next sections, we will depict some of its

essential aspects. The neural techniques used for language processing will be

explored in Chapter 3 Neural Networks for Natural Language Processing.

2.4 Natural Language Understanding (NLU)

for HRI

Natural Language Understanding (NLU) is a crucial process in the dialogue sys-

tem and a challenging natural language processing task. NLU is also popular

due to its commercial use in a variety of applications such as text categorization

(dialogue act and intention recognition, sentiment analysis, emotion analysis),

automated reasoning (semantic parsing and analysis), machine translation, ques-

tion answering, news-gathering, and large-scale content analysis (Macherey et al.,

2001; Hirschman and Gaizauskas, 2001; Van Harmelen et al., 2008; Fernández-

Mart́ınez et al., 2012). As a general overview shown in Figure 2.3, NLU processes

sit in the core of NLP tasks. Contrary to human-level language interface, which

is mostly speech, the NLP tasks are solved at text level and then interlinked with

automatic speech recognition (ASR) and text-to-speech (TTS) synthesizer. The

ASR task is also considered as a part of NLP; however, ASR takes an acoustic

signal as an input and returns a word graph hypothesis. NLP then takes such an

output data stream from ASR and extracts meaningful representation through

NLU, as depicted in Figure 2.2 of the dialogue system. As we have already men-

tioned in Section 1.3, this thesis’s main contributions lie in the field of natural

language understanding.

For language understanding, as mentioned, the first step is automatic speech

recognition. The ASR enables the system to listen to a person and convert the

spoken speech into text. This text is further processed for the language process-

ing modules like NLU for either dialogue act recognition, intention detection,

sentiment or emotion analysis. Understanding the spoken language is much more
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Figure 2.3: NLU Research in NLP (an overview).

diverse than ASR, as ASR has a specific and straightforward task which is con-

verting speech into text. For example, in the scenario of NLU where intention

detection in terms of question and answers are essential while in other scenario

detecting whether the input spoken utterances are commands or not. There can be

many ways to interpret the text or input utterance, which diversifies the desired

output from the NLU module. Interpreting the meaning may require to identify

some keywords available in an input utterance while in other cases, decoding a

piece of in-depth semantic information might be crucial. In short, developing a

complete language understanding module is out of the scope of this thesis work.

However, developing the modules that can constitute a meaningful NLU for HRI

is always possible for the given scenarios.

The methods from machine learning technology have been successfully used

for several NLP tasks, for example, the use of Principal Component Analysis

(PCA) and Singular Value Decomposition (SVD) algorithms for finding the word

embedding. The word co-occurrence is used as a parameter to learn the position

of the surrounding words (Lebret and Collobert, 2013; Glorot et al., 2011). Since

learning approaches began to overtake traditional methodologies, the words are

being represented with vectors providing an ability to handle them in matrix

calculus (Bergman and Davidson, 2005; Mikolov et al., 2013a). Many NLP tasks
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traditionally treated that way, for example, part-of-speech (POS) tags such as

nouns (N), verbs (V), and subjects (S) being represented in discrete categories

which are being replaced by vector representations.

Recently, the deep learning approaches allowed to encode language features

into the vector representations and structure the relations between words and

phrases with rich information. The deep learning approach, like the recurrent

neural network (RNN), is sometimes jointly used with traditional approaches to

achieving rich semantic information. For example, recently, context-free grammar

(CFG) was used jointly with RNN, where CFG recognizes syntactic structures

and RNN finds compositional semantic relations (Socher et al., 2013a). The ability

to capture such semantic information against syntactic structure has benefits of

resolving the ambiguous sentences. For example, "go to the right" provides

information about the “direction to take” as against to "go to the kitchen"

gives information about “where to go” (naming the place). Enthusiastic reader

may jump to Chapter 7 to find the use case of such semantic decoding in Table

7.1, where first sentence could be decoded as an intention MoveRobot with the

direction to right while second sentence TakeToPlace with the room name kitchen.

The interpretation of the input utterance can be perceived with different

features. For example, the social service robots are supposed to be in the

daily human contact with verbal communication; in such a case, it is useful

if they learn and understand the socio-linguistic behaviours. Eventually, learn-

ing to avoid undesirable or potentially dangerous situations in human-robot

interaction scenarios such as human conveying the message that the glass be-

ing used is broken, which robot could understand by using dialogue-based sen-

timent learning (Bothe et al., 2017). On the occurrence of the input utter-

ance from human "Wait, that glass seems broken." robot could understand

the negative sentiment in the dialogue context, as depicted in Figure 2.5 dis-

cussed in Section 2.4.3. The robot could raise the question of whether to con-

tinue and hence potentially avoid dangerous action. Also, in the previous ex-

amples, "go to the right" and "go to the kitchen", if we combine the un-

derstanding of politeness comprehension, the robot can achieve the ability to

know if the person is in a hurry or patient. For example, if the person says

"Could you please go to the kitchen?" instead, linguistically it is a polite

sentence and does not show any directive command to robot. In such a case, the

robot could politely respond and take appropriate actions (Bothe et al., 2018a).
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In the following sections, we discuss such socio-linguistic features; those can be

mutually exclusive and are applied at different interpretation stages as per re-

quirement.

2.4.1 Dialogue Act Recognition

In linguistics, the dialogue act represents a performative function of an

utterance, for example, the utterance might be a question, a statement,

an answer, or a request (Stolcke et al., 2000). For instance, the sentence

"Could you show me the kitchen?" can be defined as a question (more pre-

cisely a yes-no type or a request). In particular to natural language understanding,

the dialogue act plays an important role in the context of conversational dialogue

learning. It is a commonly used linguistics feature for conversational and discourse

analysis to quantify and identify the role of utterances (Grosz, 1982). The recent

use of dialogue acts can be found in many applications, such as conversational

dialogue systems (McTear et al., 2016).

The research on dialogue act recognition has increased since its successful use

in spoken dialogue systems (McTear, 2002). We mainly focus on the dialogue act

recognition as it is one of the core tasks in NLU. The traditional machine learn-

ing and statistical approaches were used to recognize the dialogue act, such as

the Hidden Markov model, to classify the utterance (Wermter and Löchel, 1996;

Stolcke et al., 2000). Artificial neural networks have recently been successfully

deployed to recognize and classify the dialogue acts (Kalchbrenner and Blunsom,

2013b). However, modelling the dialogue acts at an utterance level drops the

contextual information coming from the preceding utterances. Hence, new mod-

elling techniques have emerged where context-based neural architectures are used

to achieve the same task (Kumar et al., 2018; Chen et al., 2018b; Bothe et al.,

2018d).

A conversational system typically consists of a taxonomy of dialogues that

specify different functions of the utterances. These functions includes different

actions, for example, in question-answering dialogue system the actions would be

question and answer. There have been many taxonomies, most popular speech

acts (Austin, 1962), which forms a basis for many further studies. That was later

modified into five classes (Assertive, Directive, Commissive, Expressive, Declar-

ative) (Searle, 1979). Then new taxonomy emerged which is very fine-grained,
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Could you show me the kitchen?

Dialogue Acts
(intention):

Show_the_Place
Slot:
place

Value:
kitchen

 take me to...
 guide me to...

Figure 2.4: Example on Semantic Decoding.

including 42 dialogue acts, called the Dialogue Act Markup in Several Layers

(DAMSL) tag set. In this taxonomy, each DA has a forward-looking function

(such as Statement, Info-request, Thanking, Question) and a backwards-looking

function (such as Accept, Reject, Answer) (Allen and Core, 1997). We will see

more details on this in Chapter 4, where we also model the dialogue act learning

with neural models, especially RNNs, more details in Section 4.4 (Bothe et al.,

2018d). We have extended this experiment in Section 4.5 where we can com-

pute the amount of contribution of the preceding utterances in the context using

Bidirectional RNNs with attentive neural models (Bothe et al., 2018b).

2.4.2 Semantic Decoding for Dialogue Systems

The dialogue act recognition provides a sufficient amount of understanding as-

pects of the language and commonly used for conversational analysis. How-

ever, it might not be sufficient for a dialogue system to formulate the response

only with such information about the input utterance like a question, an an-

swer, or a request. Often, when we listen to the utterance, we try to extract

as much information as possible from the sentence. For example, the utterance

"Could you show me the kitchen?", we could found that it is a question with

an intention to show or take to someplace. However, one has to extract that extra

information along with show something and it is the kitchen which is a room, see

Figure 2.4, which is necessary for the HRI dialogue systems.

Semantic decoding can provide a framework to extract such a piece of informa-

tion. Traditionally, semantic grammar and rules are used to classify the parts of

the utterance in terms of semantic roles. The task is to detect semantic arguments

associated with the verb as a predicate of the sentence and nouns as the agents and

themes. For example, in the sentence "He is showing the kitchen to John.",
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show is the main verb so that constitutes a predicate, he would be an agent

who is showing, the kitchen forms a theme, and John is a viewer. It is also

known as a slot filling or semantic role labelling task, and deep learning tech-

niques have been successfully deployed to solve this problem, specifically re-

current neural networks (Mesnil et al., 2013). The common uses of the se-

mantic decoding are in a domain such as flight reservations, hotel and restau-

rant recommendation systems. The statistical modelling methods such as Con-

ditional Random Fields (CRFs) have had great success in this task, particu-

larly on the Airline Travel Information Service (ATIS) benchmark. However,

RNN-based models outperformed the CRF baseline, improving the error reduc-

tion (Mesnil et al., 2015). The task was to recognize the intention (extended

but domain-specific dialogue act) and also fill the slots. For example, the sen-

tence "search the flights from Hamburg to Paris today" has an intention

find flight and three slots. Hamburg forms a first slot departure city, Paris a sec-

ond slot arrival city and third slot is date by giving information such as ‘today’.

We find some similar frameworks used in the domain of the

robotics instruction decoding (Fong et al., 2003b). For example,

"go near the table in the kitchen", from HuRIC corpus, task is to

classify the intention as going with the Agent being a robot, Theme would

be table and Goal would be kitchen (Bastianelli et al., 2014). Similarly

in Tell Me Dave corpus, the higher level of instructions as intentions are

converted into a set of symbolic actions (Misra et al., 2016). For example,

"Put the mug into the microwave" has intention Boiling the Water, where

system might need to decode this instruction into Move-to Mug, Grasp Mug,

Move-to Microwave, Open Microwave and then Put Mug in Microwave. A

reinforcement learning approach could also be used to generate the sequence of

actions from the set of symbolic actions (Zamani et al., 2018). The utterances

could formulate a meaningful structure such that the information could be used

to accomplish the dialogue system’s input-output cycle. One of the popular dia-

logue systems, called PyDial (Ultes et al., 2017), uses similar semantic decoding

framework. The input utterance is structured with slot-value pairs along with

intention. In our example utterance "Could you show me the kitchen?", the

intention can be seen as Show the Place, and {slot: value} pair would be {place:

kitchen} (Bothe et al., 2018a). We will explore such examples in Chapter 7

Section 7.3.1 and their use in human-robot interaction scenario.
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2.4.3 Sentiment and Emotion Analysis in Dialogue

The sentiment is an essential characteristic feature in the decision-making process

and thus has received much attention in socio-linguistic studies (Pang and Lee,

2008). The sentiment or emotion has also been considered as one of the primary

social cues in conversational analysis (Vanzo et al., 2014; Bothe et al., 2017; Gupta

et al., 2017; Shi and Yu, 2018). Sentiment can be seen as a grounded emotion,

whether a spoken or written sentence has positive or negative polarity. Emotional

intelligence for sentiment analysis has recently introduced several computational

linguistics tasks such as natural language processing and text mining (Fischer

and Steiger, 2020). Such a study provides deep insight into the affective states

and subjective information of the emotions (Bothe and Wermter, 2019; Bothe

et al., 2020). Sentiment analysis is often used in understanding customer reviews;

for example, how they like certain products against others. It is also applied in

the field of healthcare matters to assist patients with better service (Yadav et al.,

2018).

In the following sentences, sentence (1) can be perceived as positive against

sentence (2). In some cases, the intensifiers can be used to express the sentiment

or emotion with a higher degree. As given in the sentence (3) bellow, “so” is used

to intensify the positive sentiment, similarly “very” or “too” words can be used to

intensify the emotions (Lakomkin et al., 2017; Mohammad and Bravo-Marquez,

2017b). We have conducted such an experiment in Chapter 5 Section 5.2 Emotion

Intensity Detection from the Sentences, where the particular emotion is classified

with fine-grained intensity values using the combination of traditional and neural

networks.

(1) I am happy for you.

(2) Feeling worthless as always.

(3) I’m just still. So happy.

It is crucial to clearly define the sentiment or emotion classes for the an-

notation purpose so that they can be interpreted in the same way. Such a

scheme might loose interpretability and thus often the complete emotion classes

are used to represent the sentences, for example, happy, sad, angry, etc. (Mo-

hammad and Bravo-Marquez, 2017a; Sailunaz et al., 2018). However, the prob-

lem remains the same when it comes to the ambiguous sentences, for example,

Why don’t you ever text me? or Me too! It is difficult even for humans to
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Yes, I can bring 
you some water. 

Can I get some 
water, please!

Wait, that glass 
seems broken.

Shall I continue 
the action?

No, don’t use it!

1

2

3

4

5

Figure 2.5: Illustrating dialogue scenario to potentially avoid a dangerous action

using dialogue-based sentiment learning. Numbers are referring to the sequence

of utterances in the conversation.

identify the emotion of such sentences unless the context is given. One might say

that the above sentence Why don’t you ever text me? is angry or sad. Never-

theless, the sentence Me too! is far from imagining any of the emotions. Hence

contextual information in the text is essential, and such a context could come

in the dialogues (Bothe and Wermter, 2019). We conducted such an experiment

with the contextual emotion detection in dialogues in Section 5.3. The contextual

information from the preceding utterances is used to recognize the emotion of the

utterance with the help of the ensemble of several neural models.

As illustrated in Figure 2.5, when a human in a conversation gives some

cues related to safety, those cues could be recorded and potentially used for

the human-robot interaction scenario. The learning approach could be seen as

teacher-student learning through feedback (Latham, 1997) and could be poten-

tially applied for the conversational analysis and dialogue-based learning (Weston,

2016; Bothe et al., 2017). We experimented with such dialogue-based learning in

Section 5.4, where we use the recurrent neural networks to model the learning

process. The dialogues were modelled in such a way that a set of utterances forms

the context and given this context task is to learn the sentiment of the upcoming

utterance. This way, we achieve the learning through feedback as the positive or
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negative sentiment allow to adjust the learned weights of the neural model. In

this experiment, we use the sentiment feedback of the extreme polarity of the ut-

terances such as "No, don’t use it!" as depicted in illustration of Figure 2.5.

On the other hand, eventually, the models also learn to predict the sentiment

of the next utterance. Our experiments on this study can be visited in Section

5.4. The emotions and dialogue acts possess unique relations that are explored

in Chapter 6, under the title Emotional Dialogue Acts (EDAs).

2.4.4 Politeness Comprehension in Conversation

Politeness is considered as a feature of representing good manners. It also gives

an implicating effect in the conversation, such as how much to say. For exam-

ple, negative politeness signifies ‘do not say more than is necessary’ whereas

positive politeness signifies ‘say as much as required’ (Brown and Levinson,

1987; Watts, 2003). In our study, we might not focus on the counterpart

to politeness, i.e. rudeness. However, we would like to stress on the linguis-

tic issuance of the politeness. When saying "Get me some water." against to

"Could you please get me some water?", we can see that the first statement

is direct while the second version of the utterance is featured with politeness. The

words such as please and could you effectively puts much more weight to indicate

politeness (Kasper, 1990; Aubakirova and Bansal, 2016). It depends on the kind

of discourse posed by the speaker, such as demand, request, suggestion, or hint. In

conversational discourse analysis, socio-linguists posited and demonstrated that

the style of discourse type produces constraints on speakers’ linguistic behaviour

(Saville-Troike, 2008). However, it must be kept in mind that the discourse anal-

ysis is non-objective study, but it is a useful tool for comprehending politeness in

the social conversation.

We demonstrated with an example of the politeness detection in Chapter

7 and its integration with dialogue acts for the human-robot interaction sce-

nario (Bothe et al., 2018a). The dialogue act or intention of the sentences

might remain the same while the politeness or the level of politeness might

differ a lot. For example, in our last examples, "Get me some water." and

"Could you please get me some water?", the intention is same ordering wa-

ter however, first utterance is like a demand while other is more like a request. In

our scenario, when we order or command to the robot, the necessary step is to
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Next State

Figure 2.6: Illustrating a linguistically polite dialogue scenario.

detect if the input utterance is polite or impolite to understand the more in-depth

discourse such as request or demand. It could help the robot to comprehend the

socio-linguistic behaviour of human for taking appropriate decisions and actions.

For example, being impolite may intend that the user is in a hurry and as in such

a case the sentences are usually shorter. In such a situation, we want the robot

to act quickly than talking about the things that might not be necessary. On the

other hand, such a piece of information is also helpful to variate multiple robot

behaviours during the interaction, as illustrated in Figure 2.6.

2.4.5 Conversational Analysis

Interactive communication between two or more people forms a conversation

where different media could be used, such as spoken, written or sign language. In

the spoken language talk, speakers use utterances in their turns. The conversa-

tional analysis attempts to explain how or why someone would utter a particular

utterance centred on tasks or institutions (Wooffitt, 2005; Gibbs and Van Or-

den, 2012). For example, conversation occurring in politics, courts, helplines, and

educational settings. The conversational analysis is used in many fields, with mi-

nor variations and adaptations, with one of the most successful and distinctive

approaches to analyzing the socio-linguistic interactions. Discourse analysis is
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mostly confused with the conversational analysis approaches; however, discourse

analysis acts on a broader level to comprehend the consequence of the sequence

of the turns in conversation.

On the one hand, researchers attempt to analyze and explain the conversa-

tional phenomenon using these approaches. On the other hand, the ability to

create an artificial conversational agent that cannot be distinguished from a hu-

man participant remains a test of complete artificial intelligence (for example The

Turing Test). We will discuss these analytical techniques of the conversation in

the following sections and also look into their potential use for conversational lan-

guage learning. Beyond language understanding or comprehension approach (in

Section 2.4) can be achieved from the conversational analysis. The context-based

dialogue act recognition and dialogue-based sentiment learning are examples of

such learning approaches.

Pragmatics and Hierarchies in Conversation We could already see how

the context plays a vital role in conversational analysis, and for the tasks such as

dialogue act recognition or emotion and sentiment analysis in dialogues. Pragmat-

ics is the study of context contributing to the meaning of the current situation

or an utterance in the conversation. How do people decide how to respond in

context? What is the information being used when answering the question? Is

it dependent on the knowledge of a speaker or individuals understanding of the

situation? Many such factors affect the meaningfulness of the spoken utterances

in conversation. Mostly in pragmatics theory, it is assumed that people have a

particular knowledge of the situation to utter certain words and fails to both the

regularity and variability in peoples speech behaviours (Gibbs and Van Orden,

2012).

Discourse versus Conversational Analysis Discourse and conversation

analysis has many similarities; however, they are different in some aspects. Con-

versation analysis uses everyday natural language to analyze how we perform

interpersonal actions and how we use them to interact socially. On the other

hand, discourse analysis treats language on a broader level and looks for the con-

sequences that might be affecting a sequential context in the conversation. Both

of the analysis processes are qualitative in nature and analyze the functional

importance of utterances and fundamental properties of the language (Wooffitt,
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2005).

Moreover, the discourse analysis approaches are applied to written, spoken,

or sign languages. It is widely used in various fields such as social sciences, psy-

chology, politics and many others, including linguistics. In this thesis, we mostly

focus on the spoken language in the form of text. We analyze the utterances for

different dialogue acts (explained in Section 2.4.1). We emphasize more on the

context-based learning achieved using neural networks. The preceding utterances

contribute to the recognition of dialogue act of the current utterance (Bothe et al.,

2018d) and we have created a web demonstration1(Bothe et al., 2018c). Further,

we investigate the preceding utterances’ contribution to the current one by using

the attention-based neural model (Bothe et al., 2018b).

2.5 Conversational HRI for Social Robotics

Our ultimate goal is to demonstrate a conversational dialogue system for social

robots that can incorporate the socio-linguistic cues to adapt to social behaviours.

Autonomous adaptation to the social behaviours based on such cues brings robots

to a higher degree of decision making autonomy. The studies found that the highly

autonomous robot influences more on human decisions than a lowly autonomous

robot (Rau et al., 2013). As a result, it also provides additional value to trust

and acceptance of the robots in society. The levels of autonomy in human-robot

interaction are listed for the reference in Table 2.1, it is based on (Sheridan

and Verplank, 1978) from (Rau et al., 2013). It is important to note that for

the conversational social robots to achieve the highest level of autonomy, the

language understanding process has to be very robust (Beer et al., 2014).

The conversational system for social robots needs a grounded analysis of the

human language that follow behavioural psychology. For example, understanding

the politeness strategies for the HRI as humans do and then apply the same to the

robots (Bothe et al., 2018a). When we are in an urgent situation, we use short ut-

terances instead of thinking of etiquette or social norms. As a result, it makes the

utterances linguistically impolite, for example, asking "Get me some water."

instead of "Can I get some water, please?". In the first case, the utterances

sound like an order, and in the second case, it sounds like a request. In both cases,

the robot decides by itself (autonomously) how would it react to the given input

1Discourse Wizard: https://crbothe.github.io/discourse-wizard/
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Level Robot Actions

(1) Robot offers no assistance; human does it all.

(2) Robot offers a complete set of action alternatives.

(3) Robot narrows the selection down to a few choices.

(4) Robot suggests a single action.

(5) Robot executes that action if human approves.

(6) Robot allows the human a limited time to veto before automatic
execution.

(7) Robot executes automatically then necessarily informs the human.

(8) Robot informs human after automatic execution only if a human asks.

(9) Robot informs human after automatic execution only if it decides to.

(10) Robot decides everything and acts autonomously, ignoring the human.

Table 2.1: Levels of autonomy for human-robot interaction, source (Rau et al.,

2013).

utterance issued from the human user.

2.6 Towards Safe HRI using Language

Learning

During the human-robot interaction, a conversational agent needs to keep track

of the human user’s input utterances. The behavioural changes do not occur only

in the instance of one turn but from the history and context of the conversation.

It also varies given the knowledge of the speaker partner, for example, if we

meet a new person perhaps we try to follow certain etiquette, and if we know the

person from a long time, one may choose an informal language. It also depends on

the professional hierarchies and relations (Langlotz and Locher, 2017). However,

when it comes to robots, we want them always to be polite but modify a certain

level of politeness depending on the urgency, as explained in Section 2.4.4. Hence,

in HRI, it becomes essential to maintain the history of the user input utterances

and infer the behaviour from the context.
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Figure 2.7: Example of the dialogue where conversational behaviour changes sud-

denly, from the emotional dialogue acts Bothe et al. (2020), we add dialogue act

labels to the original image from Poria et al. (2019).

For example, see in Figure 2.7, the talk between Chandler and Joey, from

utterance number 1 till 6 all the conversation is positive or neutral (Poria et al.,

2019). However, suddenly when Joey realizes that Chandler did not pay attention,

and he got angry. Chandler responds to Joey with Apology and Sadness instead of

getting back angry. Linguistically, he is trying to play safe and avoid a potentially

undesirable situation that could occur, so as not to make Joey unhappy. Chandler

has selected a desirable, favourable and polite action, following the social norm

and etiquette. The etiquette comes from the long term engagement with the

speaker. On the other hand, such changes in the conversation cues might provide

feedback to learn, as explained in Section 2.4.3.

Hence, learning desirable or safety-critical situations from the language be-

comes possible for safe HRI. For such safe HRI scenarios, the natural language

understanding module should be able to learn about all possible socio-linguistic

features. As shown in Figure 2.8, the utterance is decoded into the information

of multiple features. As shown, the dialogue acts could be decoded into multiple

levels, such as it is a Yes-No Question, and at a lower level, it is a Request. Specif-

ically for HRI scenarios, the dialogue acts have to be customized and extract the
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“Could you please take me to the education department?”

Question
Yes-No 

Question

Request
Low-level DA

TakeToPlace
(Department - Education)

Custom DA with Slot-Value pair

Politeness
Polite

Emotion
Neutral

Multiple 
Dialogue Acts

Figure 2.8: Decoding multiple socio-linguistic features.

extra information, such as in this case, the user is asking to take at the education

department. NLU also needs to decode features like politeness and emotion. This

way, the robot would be able to learn and understand humans better than using

only dialogue acts, as in the traditional dialogue systems.

2.7 Summary

In this chapter, we discussed the background on the methodologies proposed in

the thesis. We briefly describe the research background in natural language pro-

cessing and dialogue systems. We provide an insight into the proposed methods

and necessary concepts towards language learning for the safe human-robot in-

teraction. We also present a brief introduction to some socio-linguistic features

such as dialogue acts, emotions or sentiment and politeness.
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Chapter 3

Foundation of Neural Networks

for NLP and HRI

In this chapter, we will discuss and learn about the techniques in artificial intelli-

gence that are used for natural language processing and human-robot interaction

in the experiments of this thesis. We also explore language representations such

as word embeddings and language models that are often deployed to represent

the natural language input to the neural models.

3.1 Introduction

Artificial neural network (ANN) is a computing framework loosely based on bi-

ological neural circuits of the animal brain (van Gerven and Bohte, 2018). The

ANN can be seen as a network or circuit of neurons or nodes, used as a solution

for artificial intelligence (AI) problems. Similar to the biological neural circuit,

ANN neurons are modelled as weights, a positive weight shows as an excitatory

connection link, while a negative weight representing inhibitory connections. The

history of neuronal learning traces back in the late 1940s, when a learning hy-

pothesis based on the mechanism of neural plasticity was designed by D. O.

Hebb (Hebb, 1949), which later popularly became known as Hebbian learning.

Contemporary comparison of a biological and artificial neuron is presented in

Figure 3.1. The output is achieved by the weighted sum of the input and con-

necting weights as a linear combination. An activation function is used to control

the output amplitude, usually in the range of 0 and 1. The main idea behind the

ANN approach was to mimic the human brain processes, so that machine can
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Figure 3.1: Biological vs. Artificial Neural Networks.

learn the way humans learn. However, eventually, the attention got deviated from

biology while leading to success in numerical computations. One artificial neural

network might be composed of several such neurons to form a particular net-

work or circuitry. The common practice is to use these artificial neural networks

for predictive modelling where networks can be trained on a particular dataset.

These networks are capable of learning from the input features directly without

having prior knowledge of the input data.

ANNs are successful in solving specific problems such as speech recognition,

machine translation, computer vision, email spam filtering, playing games, and

pattern recognition. For example, input text (encoded into vector representation)

is labelled with sentiment values, such as positive and negative. The network can

be trained directly with the given labels for the sentiment analysis task. The

trained network might learn to identify the sentiment of the input text without

being known any other features like which word is responsible for the particular

sentiment class. Similarly, many images can be labelled and feed to the network

to learn to identify if there are faces in the image or not. The network can achieve

this without being explicitly giving face features like in the traditional algorithms
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Figure 3.2: Example of Multi-Layer Perceptron Architecture.

(Lawrence et al., 1997). The traditional algorithms require facial features such

as face landmark features, the shape of the eyes, nose, cheekbones, and jaw of

the subjects’ face. However, the neural network approach takes the images of the

faces and learns to identify them from the given input image.

A Multi-Layer Perceptron (MLP) is a basic feedforward artificial neural

network (ANN), which contains multiple layers of the perceptrons. It can be

constructed with at least three layers: input layer, hidden layer and output layer;

where all the nodes use a nonlinear activation function except for the nodes

in the input layer. The nodes in all the layers are interconnected with weights.

Figure 3.2 shows an example of MLP consisting an input layer (with four nodes),

two hidden layers and an output layer (with two nodes). Commonly, MLP is

trained with a supervised learning technique using backpropagation; learning

to distinguish the data points that are not linearly separable. In several neural

architectures, the feedforward neural network is mostly used as a bridge at the

output layer, and hence we find it very useful in our experiments. At the output

layer, a sigmoid or a softmax activation function is commonly employed with

the respective cost function in numerous NLP tasks for binary or categorical

classification respectively. We find the MLP layer beneficial with softmax function
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Figure 3.3: (a) Basic Elman RNN Architecture with its (b) Unfolded Structure

and it is mostly compared with (c) Jordan Network.

for almost all the dialogue act and emotion recognition tasks in this thesis work.

3.2 Recurrent Neural Networks

Recurrent neural network (RNN) model contains a self-connected hidden layer

providing an ability to pursue a memory of previous inputs (Elman, 1990;

Wermter and Sun, 2000). The benefit of pursuing the memory of recent inputs

in the network’s hidden state allows it to learn from the past context in the se-

quential input points, as depicted in Figure 3.3. RNNs are most widely used to

process sequential and time-series data. The idea of the RNN has emerged from

connectionist modelling (Wermter, 1995). In natural language processing, con-

text plays a crucial role in several stages. For example, looking at the characters,

words, utterances, and conversations; they possess sequential feature representa-

tions. Hence making the RNN architectures most suitable for the NLP tasks, such

as language modelling, text classification, summarising, and translation. We will

explore different variants, mechanisms and types of the RNNs in the following

sections.

3.2.1 Variants of RNNs

We present here two principal variants of the RNNs: Elman and Jordan networks.
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The Elman RNN architecture is the fundamental and most widely used

RNN variants, as shown in Figure 3.3(a) and with its unfolded structure in 3.3(b).

Elman RNN uses hidden states as a context to further calculate the new hidden

states (Elman, 1990). The hidden units (ht) and output values (yt) for the given

input (xt) are calculated with the following equations:

ht = σ(Wh ∗ xt + Uh ∗ ht−1 + bh) (3.1)

yt = σ(Wy ∗ ht + by) (3.2)

where Wh, Uh and Wy are weight respective matrices; bh and by are respective

hidden and output biases; and σ represents the sigmoid activation function.

The Jordan RNN architecture, on the other hand, uses the output as a

context directly instead of the hidden states, as shown in Figure 3.3(c) (Jordan,

1997). The hidden units (ht) and output values (yt) for the given input (xt) are

calculated with the following equations:

ht = σ(Wh ∗ xt + Uh ∗ yt−1 + bh) (3.3)

yt = σ(Wy ∗ ht + by) (3.4)

where Wh, Uh and Wy are weight respective matrices; bh and by are respective

hidden and output biases; and σ represents the sigmoid activation function. Only

a difference that the hidden state ht is calculated using yt−1 instead of ht−1.

3.2.2 LSTM and GRU Architectures

LSTM: One of the most successful and widely used architecture units of RNN

cell is a Long Short-term Memory (LSTM) network (Hochreiter and Schmidhu-

ber, 1997). LSTM is a distinctive architecture which is able to learn long-term

dependencies with the help of its contextual feedback. It can process sequential

and time-series data similar to the simple Elman RNN. LSTM is applicable to

the tasks of contextual-predictive application with sparse data such as speech

recognition (Li and Wu, 2015), scene and event detection (Fernando et al., 2018),

handwriting recognition (Graves et al., 2008), and weather forecast.

The LSTM unit receives an encoded feature xt as an input and outputs a

hidden representation ht, as shown in Figure 3.4 (Hochreiter and Schmidhuber,

1997). The hidden ht and memory ct vectors are derived from the input xt and
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Figure 3.4: Long Short-term Memory (LSTM) Architecture.

past hidden vector ht−1 vectors, which are responsible to control state updates

and outputs. The LSTM consists of a forget gate f , an input gate i, an output

gate o, and a memory cell c, which are updated at time step t as follows:

ft = σ (Wf ∗ ht−1 + If ∗ xt + bf ) (3.5)

it = σ (Wi ∗ ht−1 + Ii ∗ xt + bi) (3.6)

ot = σ (Wo ∗ ht−1 + Io ∗ xt + bo) (3.7)

c̃t = tanh (Wc ∗ ht−1 + Ic ∗ xt + bc) (3.8)

ct = ft � ct−1 + it � c̃t (3.9)

ht = ot � tanh (ct) (3.10)

where σ is the sigmoid function, Wf , Wi, Wo, Wc are the recurrent weight matri-

ces, If , Ii, Io, Ic are the corresponding projection matrices and bf , bi, bo, bc are
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Figure 3.5: Gated Recurrent Unit (GRU) Architrcture.

respective learned biases. The weight-projection matrices and bias vectors are ini-

tialized randomly and learned during the training process. The gating functions

of the LSTM helps this RNN architecture mitigate the vanishing and exploding

gradient problems and train the model smoothly.

GRU: Another a very popular RNN unit architecture is Gated Recurrent Unit

(GRU) network. Kyunghyun Cho et al. introduced GRU in 2014 (Cho et al.,

2014) while proposing an RNN-based encoder-decoder architecture for the ma-

chine translation task. The GRU architecture unit is presented in Figure 3.5, and

we can notice that it has fewer parameters than LSTM, as lacking the output

gate; however, it performs similar to that of LSTM. GRU contains an update

gate and a reset gate those work similar to LSTM gates. For example, the update

gate decides on the information what to throw and add, similar to the forget and

input gates in the LSTM cell. The reset gate acts similar to the forget gate, to
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determine the past information to forget. The internal states can be computed

using following equations:

ut = σ (Wu ∗ ht−1 + Iu ∗ xt + bu) (3.11)

rt = σ (Wr ∗ ht−1 + Ir ∗ xt + br) (3.12)

h′t = σ (Wh ∗ ht−1 + Ih ∗ (rt � ht−1) + bh) (3.13)

ht = (1− ut)� ht−1 + ut � tanh(h′t) (3.14)

where xt is an input vector, and ht being an output vector. h′t: candidate activation

vector which is subject to reset based on rt a reset gate vector. Finally, the output

vector ht is calculated with the adjustment in the update gate vector ut deciding

how much to forget. σ is the sigmoid function, Wu, Wr, Wh are the recurrent

weight matrices, Iu, Ir, Ih are the corresponding projection matrices, and bu, br,

bh are respective learned biases.

3.2.3 Additional Mechanisms for RNNs

With the underlying RNN cell architectures explained above, there are additional

forms which makes them suitable for different tasks and enhance their capabilities.

The main two mechanisms that we use in our experiments are hierarchical and

bidirectional RNNs.

Hierarchical RNNs: The stacked RNNs are used when there is information

that can be perceived as hierarchical, for example, conversational dialogue text:

where characters form words; words form utterances and utterances form con-

versations (El Hihi and Bengio, 1996). Stacking the RNNs helps to improve its

capability to exploit long-range temporal dependency and finding the structural

hierarchy in the data (Zhao et al., 2017). The hierarchical RNN is generally com-

posed of stacked layers of the RNN units, and each layer contains several RNN

cells. However, the final architecture varies according to specific applications. For

example, the hidden to hidden layer units can be concatenated before further

processing or used separately for different computation purposes. Figure 3.6(a)

shows a two layer stacked HiRNN, where first layer produces hidden representa-

tions h1 = {h1t , h1t−1, ...h1t−n} and second layer produces h2 = {h2t , h2t−1, ...h2t−n}.
These representations further concatenated to produce a combined result (mostly
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h1t-n h1t-1 h1t

(a) HiRNN

hft-n hft-1 hft

hbt-n hbt-1 hbt

(b) BiRNN

h2t-n h2t-1 h2t

Figure 3.6: (a) Hierarchical RNN (HiRNN) Architecture, (b) Bidirectional RNN

(BiRNN) Architecture.

in classification tasks) or can be used separately (generally feature extraction

tasks). For example, in the first layer, h1 hidden units can be used to capture

word-level features, whereas h2 hidden units can be used to capture utterance-

level features.

Bidirectional RNNs: Another extended form of the unidirectional RNN is

bidirectional RNN architecture. It introduces one extra hidden layer in the op-

posite direction (Schuster and Paliwal, 1997; Graves et al., 2013). That means

the hidden to hidden layer connections flow into the opposite temporal direction.

The model provides forward and backward states with corresponding directions

of the hidden layers, as shown in Figure 3.6(b), and the final result is calculated

as follows:

hft = f
(
W f

h h
f
t−1 +W f

u ut + bfh

)
(3.15)

hbt = f
(
W b

hh
b
t−1 +W b

uut + bbh
)

(3.16)

yt = g
(
W f

y h
f
t +W b

yh
b
t + by

)
(3.17)

where n is the number of inputs in the context for time instance t. W and h are

the corresponding weight matrices and hidden vectors, where the superscripts f

and b represent the forward and backward hidden layer directions respectively.

In the unidirectional RNN model, there might be a chance that the model be-

comes more attentive to the current data point only, as sequential information

is compressed to the final state. The BiRNN model, on the other hand, exploits

the information in all given input data points by looking back and forth through

them, looking at points in the input sequence uniformly. This ability makes the
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attention

ut-n ut-1   ut

at-1
at-n at

ufinal

Figure 3.7: Attention Mechanism.

BiRNN model suitable for the conversational data. The utterances are treated

uniformly to compute the utterance-level contributions using attention mecha-

nism (more details in Section 4.5).

3.2.4 Attention Mechanism for RNNs

The attention mechanism is loosely based on the visual attention found in hu-

mans, and broadly used in image recognition and object tracking tasks (Larochelle

and Hinton, 2010; Denil et al., 2012). Nevertheless, recently, attention mechanism

with the RNNs are being used for several NLP tasks, such as machine compre-

hension and translation, and speech recognition (Bahdanau et al., 2015; Vinyals

et al., 2015; Chorowski et al., 2015). In this thesis, we propose the attention

mechanism to compute the contribution weights of the utterances for predicting

the corresponding class as presented in Section 4.5. Given the number (n) of

preceding utterances in an input sequence u = {ut, ut−1, ...ut−n}. The attention

layer computes the weights a = {at, at−1, ...at−n} as the contribution for every

corresponding input utterance in u, as depicted in Figure 3.7. Hence, the final

utterance representation ufinal formed with attention layer is calculated as:

m = tanh (Wh ∗ u) (3.18)

a = softmax
(
W T

m ∗m
)

(3.19)

ufinal = tanh
(
u ∗ aT

)
(3.20)

where W is a trained weight matrix while W T being its transpose. We use the

softmax function to compute the weights which provides
∑n

n=0 at−n = 1. It

is crucial for the utterance-level attention mechanism that we normalize a to
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Figure 3.8: Recurrent Convolutional Neural Network.

interpret the amount of contribution for each utterance in u. This is just an

example, a practical implementation will be followed in Section 4.5 for utterance-

level attention mechanism.

3.2.5 Recurrent Convolutional Neural Networks

Convolutional neural networks (CNNs) have proven their capabilities in the com-

puter vision applications (LeCun et al., 1998). However, recently they have been

proven to the use cases in natural language processing (Kim, 2014; Zhang et al.,

2015). Specifically, its combination with RNNs made them efficient and employ-

able to the dialogue act recognition (Kalchbrenner and Blunsom, 2013b; Lee and

Dernoncourt, 2016). Usually, CNNs are used to compress or encode the underly-

ing features to high-level features.

For example, in NLP word embedding vectors of a sentence can be convoluted

to form a final single vector representation which then can be used for further

processing. As shown in Figure 3.8, consider the input xt is an utterance in the

conversation, consisting of word embedding vectors xt = {w1, w2, ...wn} CNN

convolutes over all these vectors and produces unique representations using ker-

nels of a certain dimensionality, usually 1D, or 2D, that slide over the vectors

to learn the underlying features. Convolution layer is then followed by pooling

operation usually max pooling, not shown in the figure for simplicity, which takes
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the convoluted feature map and chooses only maximum values. In this way, the

CNN layer learns the relevant features and suppress irrelevant values to not pass

on to the next layer.

The output features from the convolution layer are then used as input rep-

resentations for the RNN layer. That takes advantage of receiving only CNN’s

relevant features, hence making RNNs learn faster. A practical example will be

followed in Section 5.3, where we use such an architecture for contextual emotion

recognition in dialogues.

3.3 Language Representations

NLP uses several techniques to convert the natural language into symbolic and

numerical representations. A few of them we already mentioned previously: word

embedding vectors and language models. These representations are useful when

feeding them to the next neuronal layers such as CNNs or RNNs. There are also

some other advantages of these features: they possess semantic and syntactic

information.

3.3.1 Word Embeddings

Word embedding is one of the feature representation of language used to map

the words in the form of real-valued vectors. In principle, it is a feature learning

technique where words or phrases from the vocabulary of the given dataset are

mapped to vector representations to learn meaningful aspects of the language.

For example, Word2Vec is one of the most popular techniques to learn word

vector representations for finding the similarity among the words (Mikolov et al.,

2013a). Learning methods used in this approach are neural networks (Mikolov

et al., 2013b), dimensionality reduction such PCA (Lebret and Collobert, 2013)

and matrix factorization (Levy and Goldberg, 2014), and probabilistic models

(Globerson et al., 2007).

The basic idea is to compute the embedding vector representation of the word

with some constraints such as co-occurrence of words and learning to predict the

word given neighbouring ones. Hence, no labelled data is required, and several

relations can be learned using such an unsupervised approach; a few relations to

mention, such as Male-Female, Verb tenses, and Country-Capital. The embedding
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vectors are used to form a space with many dimensions, and potentially convert

them to a continuous vector space with a much lower dimension. For example,

the algorithms such as T-distributed Stochastic Neighbor Embedding (t-SNE) are

generally used to convert such word embedding vectors into 2 or 3 dimensions to

generate the visual representation (Maaten and Hinton, 2008).

Many of such word embedding vectors are available publicly; they are pre-

trained on large corpora such as Word2Vec on Google News1 or the Global Vec-

tors (GloVe) (Pennington et al., 2014) on Wikipedia and Twitter2. The GloVe

approach yields similar performance more efficiently using a co-occurrence ma-

trix of the words in their context. On the other hand, FastText includes sub-

word information to enrich word vectors and handle the out-of-vocabulary words

(Bojanowski et al., 2017). Embeddings from Language Models (ELMo) is a par-

ticular case, as in this approach, language modelling technique is used to yield

the embedding vector and claims to produce robust representations for out-of-

vocabulary tokens using morphological clues (Peters et al., 2018). Bidirectional

Encoder Representations from Transformers (BERT) prominently uses contex-

tual learning approach to achieve similar results (Devlin et al., 2019). A few

character-based embedding approaches, such as ELMo, unlike FastText, go even

below the sub-word level. They use a context-based approach that is looking into

the preceding and succeeding words aims.

One more form of the word embeddings is distributed as part of ConceptNet

5.53, which is created to represent the general knowledge in understanding the

natural language. This embedding method allows the application to understand

better the implications behind the words we use in general (Speer et al., 2017).

It consists of a knowledge graph that relates the words and phrases with labelled

edges. It helps in analyzing utterances when there is some new knowledge is

required from the world. For example, humans are robust in processing even an

ambiguous utterance as they integrate extrasentential knowledge, which results in

improved comprehension (McCrae, 2010). While dealing with the conversational

analysis, the word-level features are essential for analyzing the short utterances

in a conversation. Hence, in our experiments, explained in Section 4.5, we use

ConceptNet 5.5 word embedding representations over all the tokens in the ut-

1https://code.google.com/archive/p/word2vec/
2https://nlp.stanford.edu/projects/glove/
3https://github.com/commonsense/conceptnet-numberbatch
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Do you have a                        ?pen (0.32)
paper (0.21)
book  (0.20)
.
.
apple (0.04)

Do you have an                            ?apple (0.29) 
umbrella (0.23)
.
.
pen (0.03)

Figure 3.9: Example on Language Model.

terance. These embeddings also provide the out-of-vocabulary instance rate close

to 10 per cent and mostly uncommon words for the Switchboard Dialogue Act

Corpus.

3.3.2 Language Models: Character- and Word-level

When we deal only with words, we still compromise with some out-of-vocabulary

instances, leading to the limitation of the feature representations. Especially for

the short utterances in the conversation, it becomes crucial that we include all

possible words, subwords, or even characters. This issue can be resolved using the

character-level language modelling. First, we will define the language modelling

technique. This technique was initially applied to the words (Jozefowicz et al.,

2016). A language model determines a probability distribution P over a sequence

of words, say of length n:

P (w1, . . . , wn) (3.21)

providing a contextual similarity notion to distinguish between words. For exam-

ple, see the utterances (questions) in Figure 3.9, when a person says “Do you have

...”, the next characters ‘a’ or ‘an’ determines completely different probabilities.

It is a data-driven model that learned from the data. For example, the article ‘a’

is most likely to be used before words that start with a consonant sound and ‘an’

before with a vowel sound. Hence, language models are able to compute proba-

bilities of the appropriate next upcoming words. As a result, “Do you have a...”

will most probably produce the list of words with higher probabilities that start

with the consonant sound such as pen, paper, and book. Whereas, the utterance

with “an” will produce the list of words with higher probabilities that start with

the vowel sound such as apple, and umbrella.

The language models can also be trained at the character-level. We use one
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Figure 3.10: Character-level Language Model.

of such a character-level language model to encode the utterances in our exper-

iments. It is a pre-trained character-level language model (LM), trained on ∼80

million Amazon product reviews4 (Radford et al., 2017). The model consists of a

single multiplicative long-short-term memory (mLSTM) network (Krause et al.,

2016) layer to predict the next character given a set of the preceding characters, as

shown in Figure 3.10. It was trained to generate reviews and authors discovered a

sentiment neuron in the learned model. It takes the input characters sequentially

to the mLSTM layer, and the hidden vector is obtained after the last character.

An average vector can be also be produced using all hidden units of the mLSTM

layer per character. We use these feature vector representations to encode the

utterances in the experiments of dialogue act recognition (Bothe et al., 2018b,d),

and emotion detection (Lakomkin et al., 2017).

4https://github.com/openai/generating-reviews-discovering-sentiment
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3.4 Summary

In this chapter, we reviewed the fundamental neural techniques that are used in

this thesis. Recurrent neural networks are considered as a backbone of natural

language processing. We presented RNNs with its variant architectures such as

Elman and Jordan networks. We also detailed the particular forms of the RNNs:

LSTMs and GRUs, the most widely used in the NLP tasks. Then we explored

various mechanisms of the RNNs: hierarchical and bidirectional RNNs. We also

show how the attention mechanism and convolutional neural network can be

used with the RNNs. Finally, we looked into the language representations: word

embeddings and language models. Especially, the character-level language model

where one of the RNN architecture is used to train the model, and we deploy it

in our experiments to encode the utterances.
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Contextual Dialogue Act

Recognition using RNNs

Dialogue act recognition is a necessary process of natural language understand-

ing for any dialogue system and also often used for discourse and conversational

analysis. Unlike emotion and sentiment plays a vital role in the decision-making

process, the dialogue acts represent the meaning of the utterances, as explained

in Section 2.4 “Natural Language Understanding (NLU) for HRI”. The linguis-

tic feature, like the dialogue act, can be used in a dialogue system for taking

situation-aware actions based on different functions and intentions found in the

utterance. For example, commonly, if the utterance dialogue act is a question, the

conversational action could be an answer, or if it is a proposal then the action

could be acceptance or rejection.

4.1 Introduction

The capability to analyze discourse compositionality is a crucial step towards

understanding the conversational dialogue. The dialogue act (DA) recognition is

the first level of investigation approaching conversational analysis (Stolcke et al.,

2000). In most cases, DA recognition is considered a lexical-based or syntax-based

classification at an utterance level. However, the discourse compositionality is a

context-sensitive process, that means the DA of an utterance can be elicited from

the preceding utterances (Grosz, 1982). Hence, classifying dialogue acts only at

the utterance-level is not sufficient because their DA class arises from the context

of the preceding utterances. For example, the utterance containing only the word
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‘yeah’ might appear in several DA classes such as Backchannel, Yes-answer, and

Agree/Accept, see the examples in Table 4.1. For such DA classes, the utterances

are short, and mostly share similar lexical and syntactic cues (Jurafsky et al.,

1998).

In this chapter, we explore RNN techniques to recognize the dialogue acts of

the utterances in a contextual manner and apply them for different analytical

scenarios. In our experiments, we use spontaneous spoken utterances from the

Switchboard Dialogue Act (SwDA1) corpus. Please visit the complete list of the

dialogue act labels with their tags and statistics in Appendix Table B.1. We

first investigate the process of how dialogue act corpora are annotated, and the

learning approaches used so far, detailed investigation in Section 4.2. We find

that the dialogue act is context-sensitive within the conversation for most of the

dialogue act classes. Nevertheless, previous models of dialogue act recognition

work are on the utterance-level, and only very few consider the context. First, we

show an utterance-level classification of the DAs using character-level language

model and word-embedding utterance representations in Section 4.3. We propose

a novel context-based learning method to classify dialogue acts using recurrent

neural networks (RNNs), and we notice a significant improvement, see Section

4.4. We use the RNN architecture, Elman network, as explained in Section 3.2.1,

for context learning of the discourse compositionality.

The results show that consideration of the preceding utterances as a context

of the current utterance improves the dialogue act recognition accuracy. We found

out that using at least three number utterances in the context produces better

overall accuracy on the SwDA test set (Bothe et al., 2018d), provided in Section

4.4.1. We analyze the hidden internal states of the RNNs and plot them on 2D,

and found interesting cluster formations. For example, we could see the clusters

of the DA classes on the plotted graph, in Section 4.4.2. With this method we

rank third globally for Dialogue Act Classification on Switchboard corpus accord-

ing online records for state-of-the-art results2, presented in Table 4.2. However,

the first two (Kumar et al., 2018; Chen et al., 2018b) uses future and past ut-

terances in the context, whereas we use only a few (three) past utterances, and

achieve indifferent accuracy. It is essential to notice that we cannot listen to a

future utterance in real-world before it is uttered unless one is looking at others’

1Available at https://github.com/cgpotts/swda
2https://nlpprogress.com and https://paperswithcode.com
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conversation. Moreover, technically, the operational function of the dialogue sys-

tem can not have access to future utterance in advance. In other words, once a

response is generated by the dialogue system, it would be indifferent to consider

correcting after the second turn has been finished. On the contrary, it can be

used to improve the next turn response in case of a correction. Hence, we give

much importance to using only a few of the preceding utterances in the context.

Conversational discourse analysis is another crucial task for natural language

understanding and building a natural spoken dialogue system. The speech acts are

mostly used to perform discourse analysis of the conversation, which are context-

sensitive, where the context provides information for appropriate interpretation

Speaker Dialogue Act Utterance

A Backchannel Uh-huh.

B Statement About twelve foot in diameter

B Abandoned and, there is a lot of pressure to get that

much weight up in the air.

A Backchannel Oh, yeah.

B Abandoned So it’s interesting, though.

. . .

B Statement-opinion it’s a very complex, uh, situation to go into

space.

A Agree/Accept Oh, yeah,

. . .

A Yes-No Question You never think about that do you?

B Yes-answer Yeah.

A Statement-opinion I would think it would be harder to get up

than it would be

B Backchannel Yeah.

Table 4.1: Example of a labeled conversation (portions) from the Switchboard

Dialogue Act (SwDA) corpus.
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(Sbisà, 2002). However, once the context is taken into account, a few questions

related to the context could be answered. For example, how many utterances

in the context contribute to the current utterance? How do context-utterances

affect the interpretation (Austin, 1962; Searle, 1979; Wermter and Löchel, 1996;

Sbisà, 2002)? We propose a context model based on an utterance-level attention

mechanism using bidirectional recurrent neural network (Utt-Att-BiRNN) archi-

tecture to analyze the importance of preceding utterances while classifying DA

for the current utterance, given in Section 4.5. In our setup, the BiRNN model is

provided with the set of current and preceding utterances as input (Graves et al.,

2013; Schuster and Paliwal, 1997; Bahdanau et al., 2015; Zhou et al., 2016).

Our model outperforms previous models that use only preceding utterances

as context on the used corpus. This model is intended to not only create the

context-based learning architecture but also to analyze the amount of contribut-

ing information in the utterances for the dialogue act recognition task. As a re-

sult, we investigated the discourse analysis in a conversation with context-based

Models Accuracy Context method

CRF-ASN 81.30% Former and later utterances

(Chen et al., 2018b) in context with data-dependant

utterance representations

Bi-LSTM-CRF 79.20% Preceding utterances and

(Kumar et al., 2018) dialogue acts, model makes

prediction of all DAs

for the given set of utterances

using word embedding representations

RNN with LM 77.34% Only preceding utterances

(Bothe et al., 2018d) in context with data-independent

language model utt-representation

Table 4.2: Results compared with the state of the art from nlpprogress.com on

the Switchboard Dialogue Act corpus, available at https://nlpprogress.com/

english/dialogue.html, at the time of writing the article Bothe et al. (2018d).
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learning using the proposed model. We discover that many instances of the DAs

are detected wrongly with both models. These instances are reported along with

the sample examples where the utterance-level model fails to predict correctly

against the Utt-Att-BiRNN model. The examples from SwDA corpus test set are

reported where both the models fail to detect the DAs, given in Section 4.5.2.

We can also determine ambiguously or wrongly annotated utterances with this

investigation. In the given dataset, we show that context-based learning not only

improves the performance but also achieves the higher confidence toward recogni-

tion of dialogue acts, given in Section 4.5.3. As said above, another contribution

of these experiments is a mechanism to discover the amount of information each

utterance contributes to classify the subsequent one, which answers one of the

above questions. We found that when classifying short utterances, the closest

preceding utterances contribute to a higher degree, provided in Section 4.5.4.

Hence in this chapter, we explore a detailed insight into the annotation and

modelling of the dialogue acts. In the first scenario, we propose a neural model

for discourse analysis within the context of a conversation using RNNs, mod-

elled only with preceding utterances. This model uses utterances represented

by the character-level language model and word-embeddings trained on domain-

independent data. As stated earlier, we evaluated the proposed models on the

Switchboard Dialogue Act (SwDA) corpus and showed how using context affects

the results. We show that the context of using only a few preceding utterances

makes the model suitable for a real-time dialogue system, in contrast to the mod-

els where the whole conversation is used as an input. We perform qualitative and

quantitative analyzes on the conversational data.

In the second part, we present an attention-based bidirectional RNN model to

perform further conversational analysis that helps to answer a few key questions.

How many preceding utterances in the context are required to recognize the

DA of current utterance sufficiently? How much each preceding utterance in the

context contributes while recognizing the DA of the current one? We also show

that context-based models detect DAs correctly with higher confidence than the

utterance-level model (especially in the cases where context plays an important

role). Such analysis shows the effectiveness of the utterance-level context-model

over without context model.
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4.2 Annotation and Modelling Background

In this section, we will discuss the first issue from the above discussion, which

provides a detailed insight into the annotation and modelling of the dialogue acts,

and hence we will be looking into the background of the related work.

4.2.1 Annotation of Dialogue Act (DA) Corpora

Annotation Process and Standards: Research on the dialogue acts became

prominent with the commercial reality of spoken dialogue systems. There have

been many taxonomies: speech act (Austin, 1962), which was later modified into

five classes (Assertive, Directive, Commissive, Expressive, Declarative) (Searle,

1979). One of the most widely used taxonomy is the Dialogue Act Markup in Sev-

eral Layers (DAMSL) tag set. It has labels divided into four primary categories:

(1) Communicative-Status, (2) Information-Level, (3) Forward Looking Function

and (4) Backward Looking Function (Allen and Core, 1997). Communicative-

Status contains the dialogue act labels that provide flags for the utterance intelli-

gible and successful completion. Information-Level dialogue acts provide tags for

informing what is happening in the utterance semantically, for example, a task

being carried out or communication indications like greetings and acknowledge-

ments. Forward Looking Function includes the DA labels for Statement (with

and without opinion), Info-request, Thanking whereas Backward Looking Func-

tion such as Accept, Reject, and Answers. Many such standard taxonomies and

schemes exist to annotate conversational data, and most of them follow the con-

cept of discourse compositionality. The DAMSL scheme is one of the essential

tag sets for analyzing dialogues and building a natural dialogue system (Skantze,

2007).

Corpus Insight: We have investigated the annotation method for two corpora:

Switchboard (SWBD) (Godfrey et al., 1992; Jurafsky et al., 1997) and ICSI Meet-

ing Recorder Dialogue Act (MRDA) (Shriberg et al., 2004). Both of these datasets

are annotated with the DAMSL tag set. The annotation includes not only the

utterance-level but also segmented-utterance-level labels. For example, the utter-

ances of the speaker B in the first portion in Table 4.1 are segmented and an-

notated for two different dialogue act labels, Statement and Abandoned. MRDA

corpus contains multiple conversation partners in the meeting scenarios, whereas

we target two-speaker conversation; hence we use the Switchboard dialogue act
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Training Samples Testing Samples

Number of Conversations 1,115 19

Number of Utterances 196,258 4,186

Table 4.3: Switchboard Dialogue Act corpus details.

corpus for the experiments. The DAMSL tag set provides very fine-grained and

detailed DA classes and follows the discourse compositionality. For example, the

SWBD-DAMSL is the variant of DAMSL specific to the Switchboard corpus. The

Switchboard DAMSL Coders Manual3 can be followed for knowing more about

the dialogue act labels, and the detailed statistic is given in Appendix B.1. It

distinguishes WH-questions (qw), Yes-No Questions (qy, Open-ended ( qo), and

Or-questions (qr) classes, not just because these questions are syntactically dis-

tinct, but also because they have different backward functions (Jurafsky, 1997).

The qy dialogue act labeled utterance is more likely to get a “yes” or “no” an-

swer than a qw. It also gives an intuition that the answers follow the syntactic

formulation of the question, which provides a context. For example, qy is used

for a question that from a discourse perspective expects either Yes-answer (ny)

or No-answer nn dialogue act class. The statistics of the Switchboard Dialogue

Act corpus is given in Table 4.3.

Nature of Discourse in Conversation: The dialogue act is a context-based

discourse concept that means the DA class of a current utterance can be derived

from its preceding utterance. We will elaborate on this argument with an example

given in the last portion of the conversation in Table 4.1. Speaker B utters “Yeah.”

twice in the given portion of dialogue, and each time it is labelled with two

different DA labels. It is simply due to the context of the previously conversed

utterance. If we see the four utterances of the example, when speaker A utters the

Yes-No Question DA class, speaker B answers with ‘yeah’ which is labelled as

Yes-answer DA class. However, after the utterance with Statement-opinion DA

class, the same utterance “yeah” is labelled as Backchannel and not Yes-answer.

It provides strong evidence that when we process the text of a conversation, we

can see the context of a current utterance in the preceding utterances only, and

we never watch the future utterances during the annotation process.

3https://web.stanford.edu/~jurafsky/ws97/manual.august1.html
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Prosodic Cues for DA Recognition: It has also been noted that prosodic

knowledge plays a significant role in DA identification for certain DA types (Ju-

rafsky et al., 1998; Stolcke et al., 2000). The main reason is that the acoustic

signal of the same utterance can be very different for different DA classes. It

indicates that if one wants to classify DA classes only from the text, the context

must be an indispensable aspect to consider: simply classifying single utterances

might not be enough, but considering the preceding utterances as a context is

essential. However, the acoustic signals can be used independently or ensembled

to reasonably recognize the utterances’ DA classes.

4.2.2 Modelling Approaches

Lexical, Prosodic, and Syntactic Cues: Many studies have been carried out

to find out the lexical, prosodic and syntactic cues for the DA recognition task

(Stolcke et al., 2000; Surendran and Levow, 2006; O’Shea et al., 2012; Yang et al.,

2014). For the SwDA corpus, the state-of-the-art baseline result was 71% for more

than a decade using a standard Hidden Markov Model (HMM) with language

features such as words and n-grams (Stolcke et al., 2000). The inter-annotator

agreement accuracy for this corpus is 84%, and in this particular case, we are still

far from achieving human accuracy. However, as we saw the words like “yeah”

appear in the utterances of several DA classes such as Backchannel, Yes-answer,

Agree/Accept etc. Hence, the prosodic cues play a crucial role in identifying the

DA classes, as the same utterance can acoustically differ a lot which helps to

distinguish the specific DA classes (Shriberg et al., 1998). Several approaches,

like traditional Naive Bayes and HMM models, use minimal information and

ignore the dependency of the context within the conversation (Grau et al., 2004;

Tavafi et al., 2013). They achieved 66% and 74.32% respectively on the SwDA

corpus test set.

Utterance-level Classification: Perhaps most research in modelling dialogue

act identification is conducted at utterance-level (Stolcke et al., 2000; Grau et al.,

2004; Tavafi et al., 2013; Ji et al., 2016; Lee and Dernoncourt, 2016). The emerging

advances in deep learning also yielded a significant impact on the DA recognition

task. In natural language conversation, most utterances are very short; hence it

is also referred to as short text classification problem.

A Novel Approach - Context-based Learning: Classifying the DA classes
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at single utterance-level might fail when it comes to DA classes where the ut-

terances share similar lexical and syntactic cues (words and phrases) like the

Backchannel, Yes-answer and Accept/Agree classes. Some researchers proposed

the utterance-dependent context-based learning approaches (Kalchbrenner and

Blunsom, 2013b; Bothe et al., 2018d,b; Kumar et al., 2018; Liu et al., 2017; Ji

et al., 2016; Tran et al., 2017; Ortega and Vu, 2017; Meng et al., 2017). The

context-based learning approach was first proposed to model discourse within a

conversation using RNNs (Kalchbrenner and Blunsom, 2013b). The DA of the

current utterance was computed using the preceding utterances as a context,

achieving state-of-the-art results of about 74% accuracy on the SwDA corpus

test set (Kalchbrenner and Blunsom, 2013b; Ortega and Vu, 2017). Kalchbren-

ner and Blunsom (2013b); Ortega and Vu (2017) have proposed context-based

learning, where they represent the utterance as a compressed vector of the word

embeddings using CNNs and use these convoluted utterance representations to

model discourse within a conversation using RNNs. Their architecture also gives

importance to turn-taking by providing the speaker identity but does not analyze

their model in this regard. This approach achieves about 73.9% accuracy on the

SwDA corpus test set. Lee and Dernoncourt (2016) also use recent techniques

such as RNNs and CNNs with word-level feature embeddings and achieve about

73% of accuracy.

In other approaches, a hierarchical convolutional and recurrent neural encoder

model is used to learn utterance representation by processing the whole conver-

sation (Kumar et al., 2018; Liu et al., 2017). The utterance representations are

further used to classify DA classes using the conditional random field (CRF)

as a linear classifier. The model can scan the past and future utterances at the

same time within a conversation, which limits its usage in a real-time dialogue

system where the system can only perceive the preceding utterance as a context

but does not know the upcoming utterances. In this research line, the context-

based learning approach processes the whole set of utterances in a conversation,

where the model can see past and future utterances to calculate the DA of the

current utterance (Ji et al., 2016; Kumar et al., 2018). Ji et al. (2016) use dis-

course annotation for the word-level language modelling on the SwDA corpus

and achieve about 77% of accuracy but also highlight a limitation that this ap-

proach is not scalable to large data. On the other hand, this work suggests that

a domain-independent language model which is trained on the big data might
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be a solution. When building a dialogue system, for example, in human-machine

interaction scenario, one can only perceive the preceding utterance as a context

but does not know the upcoming utterances. The DA corpus is also annotated by

looking at the preceding utterances (Godfrey et al., 1992). Therefore, we use a

context-based learning approach where only preceding utterances are considered

and regard the 73.9% accuracy (Kalchbrenner and Blunsom, 2013b; Ortega and

Vu, 2017) on the SwDA corpus as a state-of-the-art result for this particular task.

4.3 Utterance Representation and No-context

DA Recognition

Before proceeding to the context-based learning, we will see the choices of the ut-

terance representation and baseline model to classify the DAs at utterance-level.

Then we can decide which representation to use for the dialogue act recogni-

tion and conversational analysis using the neural models. A certain number of

words constitute the utterance, and certain characters represent the word. We

have to encode the utterances either on the word-level or character-level feature

representations. Character-level encoding allows processing words and whole sen-

tences based on their smallest units and still capturing punctuation and permuta-

tion of words (Jozefowicz et al., 2016). Word-level encoding allows us to capture

semantic-level information and go beyond the character-level units. On the other

hand, the character-level encoding can easily achieve vector representation for

an out-of-vocabulary word. Whereas, word-embedding representation can only

fetch the vector representation of the seen words. Vector representation of the

out-of-vocabulary words from character-level encoding can be learned when fur-

ther fed to the specific task-learning model. However, when the word-level vector

representation is just not available (in case of the out-of-vocabulary word in the

word-embedding dictionary), the model has to keep track of these new words.

These words representations have to be learned on the fly and stored separately,

creating another dictionary of word vectors. The following section explains the

used utterance representations in our experiments and the utterance-level DA

recognition model.

Character-level Representations: The character-level utterance is encoded
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Figure 4.1: (a) Multiplicative LSTM (mLSTM) character-level language model

to produce the sentence representation ut. The character-level language model is

pre-trained and produces the feature (hidden unit states of mLSTM at the last

character) or average (average of all hidden unit states of every character) vector

representation of the given utterance. (b) Utterance-level classification using MLP

layers with a softmax function (our baseline model).

with a pre-trained character-level language model (character-LM)4 (Radford

et al., 2017) as shown in Figure 4.1(a). This model consists of a single multi-

plicative long-short-term memory (mLSTM) network (Krause et al., 2016) layer

with 4,096 hidden units. The mLSTM is composed of the LSTM and multiplica-

tive RNN units, and it considers each possible input in a recurrent transition

function and trained as a character-level language model on ∼80 million Amazon

product reviews (Radford et al., 2017). We sequentially input the characters of

an utterance to the mLSTM and get the hidden vector obtained after the last

character and average the states’ overall characters in the utterance.

Utterance-level DA Classification with Character-LM: We use the

4https://github.com/openai/generating-reviews-discovering-sentiment
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Model input Accuracy

Most common class 31.50%

Stolcke et al. (2000) 71.00%

Last feature vector 71.48%

Average feature vector 73.96%

Concatenated vector 73.18%

Table 4.4: Accuracy of the dialogue act recognition using the character-LM ut-

terance representation for 42 dialogue act classes.

character-LM utterance representation encoded with the pre-trained character

language model explained above. This model consists of a single mLSTM net-

work layer with providing a vector of size 4,096. All the utterances from SwDA

corpus are encoded with this method. The hidden vector representations obtained

after the last character (Last feature vector) and the average vector representa-

tions for all the characters (Average feature vector) are extracted and used for

the training and testing purpose. We also concatenate these two representations

to create another vector representation (Lakomkin et al., 2017).

We classify these representations with a feedforward neural network (FNN)

consisting of MLP layer (discussed in Chapter 3), as shown in Figure 4.1(b). We

use only one layer with 64 hidden units in this FNN-model. Finally, the softmax

function is used to compute probability distribution of the dialogue acts (dat) for

the input utterance (ut). The results are given in Table 4.4, and we can see that

the average vector seems to carry more information related to the DA; hence

we use it for future experiments. The concatenated vector representation does

not seem to improve the results any further. On the other hand, it shows an

advantage of using domain-independent data: it is rich regarding features being

trained on big data, perhaps surpassing scalability limitation as mentioned in

Ji et al. (Ji et al., 2016). Hence we use these domain-independent character-LM

representations for our proposed context-based learning approach.

Word-level Representations: Word-level features are essential for analyz-

ing the short sentences of utterances in a conversation. We have various word-

embedding distributions to use in our experiments such as ConceptNet, word2vec,
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(a)
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wt-n wt-1   wt

dat
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RNN

  ut   ut

softmaxsoftmax

dat

Figure 4.2: The utterance-level RNN setup for learning the dialogue act recogni-

tion with word embeddings. (a) Word-embedings (wt...wt−n) of utterance ut fed

directly to RNN architecture, and (b) same with attention mechanism, to classify

DAs (da).

GloVe, and ELMo. We chose ConceptNet and ELMo as they are among the lan-

guage models trained on the natural language text corpus.

ConceptNet 5.55, as discussed in Section 3.3.1, is designed to represent the

general knowledge in understanding the natural language and allows the appli-

cation to understand better the implications behind the words people use (Speer

et al., 2017). The embedding dimension of ConceptNet used in this experiment is

300 and averaged over all tokens in the utterance. These embeddings provide the

out-of-vocabulary instance rate close to 10 per cent and mostly for uncommon

words. ELMo (Embeddings from Language Models)6 models complex characteris-

tics of words and their variation across linguistic contexts also knows as polysemy.

The word embedding representations are learned internal states of bidirectional

language model (Peters et al., 2018). Each word in the utterance is represented

with an embedding vector of dimension 1024 from a pre-trained language model

5https://github.com/commonsense/conceptnet-numberbatch
6https://allennlp.org/elmo
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Model input Accuracy

Most common class 31.50%

Stolcke et al. (2000) 71.00%

FNN-model (Mean rep. ConceptNet) 71.73%

FNN-model (Mean rep. ELMo) 72.59%

FNN-model (Concatenated rep.) 70.83%

RNN-model (ConceptNet) 72.32%

RNN-att-model (ConceptNet) 72.29%

RNN-model (ELMo) 74.92%

RNN-att-model (ELMo) 75.13%

Table 4.5: Accuracy of the dialogue act recognition using the word embedding

utterance representations for 42 dialogue act classes.

on a large corpus. These embeddings provide a minimal number of the out-of-

vocabulary instance.

Utterance-level DA Classification with Word-level Representations: In

the case of word embedding representations, we have two ways to perform the

utterance-level classification of the DA classes. First, we take the mean of the

word vectors over the utterances and feed those averaged vectors to FNN-model,

as shown in Figure 4.1(b). We average ConceptNet and ELMo embeddings and

found that ELMo embeddings show better performance over ConceptNet, as can

be seen in Table 4.5.

Second, we use RNNs to model the recurrency in the word sequence and clas-

sify the DA classes, as shown in Figure 4.2(a). In this case, we can also adapt to us-

ing attention mechanism on top of the RNN model, as shown in Figure 4.2(b). In

this way, we acheive a mechanism to compute the contribution (at, at−1, ..., at−n)

of all words (wt, wt−1, ..., wt−n) in the utterance (ut) towards detecting a particu-

lar dialogue act (dat) using the softmax function. The results of these models are

presented in Table 4.5, we can see that ELMo embeddings again outperform the

ConcpetNet embedding representations. The attention mechanism does not seem

to add any performance to the accuracy but provides a way to compute where
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ht-2 ht-1 ht

ut-2 ut-1   ut

RNN

softmax

dat

ht-n

ut-n

Figure 4.3: The RNN setup for learning the dialogue act recognition with the

previous sentences as context. ut is an utterance representation derived with a

character-level language model and has a dialogue act label dat. ut−1 and ut−2

are the preceding utterances of ut. The RNN is trained to learn the recurrency

through previous utterances ut−1 and ut−2 derived as ht−1 and ht−2 as a context

to recognize the dialogue act of current utterance ut which is represented by ht

used to detect dat.

the network is extra attentive on the input features (Kumar et al., 2018). Hence,

we use ELMo embeddings in the conversational analysis part of this chapter, in

Section 4.5. However, in the next experiment, we will use only character-LM for

showing how many preceding utterances are useful for computing the best overall

accuracy of the SwDA corpus test set.

4.4 Context Learning of DAs using RNNs

In this experiment, we will use only character-LM utterance representation to

simplify the problem statement towards the solution. The context-based learning

is applied with the help of RNNs. As shown in Figure 4.3, the utterances with

their character-level language model representation ut are fed to the RNN with the

preceding utterances (ut−1, ut−2,...,ut−n) being the context. Hence, n represents

the number of utterances in the context. In this case RNN gets the input ut, and
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stores the hidden vector ht at time t (instance of utterance in the conversation)

(Elman, 1990), which is calculated as:

ht = f (Wh ∗ ht−1 + I ∗ ut + b) (4.1)

where f() is a sigmoid function, Wh and I are the recurrent and input weight

matrices respectively and b is a bias vector learned during training. ht is computed

using the previous hidden vector ht−1 which is computed in a same way for

preceding utterance ut−1. The output dat is the dialogue act label of the current

utterance ut calculated using ht, as:

dat = g (Wout ∗ ht) (4.2)

where Wout is the output weight matrix. The weight matrices are learned using

back-propagation through time. The task is to classify several classes; hence we

use the softmax function g() at the output layer. The input is the sequence of

the current and preceding utterances, for example, ut, ut−1, and ut−2. We reset

the RNN when it sees the current utterance ut. We also provide the speaker

identification information to the network to find the change in the speaker’s turn

in the conversation. The speaker id ‘A’ is represented by [1,0] and id ‘B’ by [0,1]

and it is concatenated with the corresponding utterances ut, shown in Figure 4.4.

The Adam optimizer (Kingma and Ba, 2014) was used during training the

network with a learning rate of 1e−4, which decays to zero as training progresses,

and clipping gradients at norm 1. Early stopping was used to avoid over-fitting

the network, with 15% of the training samples for validation. In all the learning

cases, we minimize the categorical cross-entropy.

4.4.1 Results with RNNs - Number of Context Utter-

ances

We follow the same data split of 1115 training and 19 test conversations as in the

baseline approach (Stolcke et al., 2000; Kalchbrenner and Blunsom, 2013b). Table

4.6 shows the results of the proposed model with several setups, first without the

context, then with one, two, and so on the number of the preceding utterances in

context. We examined different values for the number of the hidden units of the

RNN, empirically 64 was identified as best and used throughout the experiments.

We also experimented with the various representations for the speaker ID that is
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Figure 4.4: The RNN setup for learning the dialogue act recognition with the

previous sentences as context and speaker identification. The utterance represen-

tation is concatenated with their corresponding speaker id.

concatenated with the respective utterances but could find no differences. As a

result, our proposed model uses minimal information for the context. The perfor-

mance increases from 74% without context to about 77% with context. We run

each experiment ten times and take the average. When we vary the number of

preceding utterances in the context, we run each experiment ten times and take

the average. We discover that with three preceding utterances in the context,

that is n = 3, the accuracy achieved is 77.34% with the standard deviation of

0.37 from mean over ten runs. The model shows robustness providing minimal

variance, and using only three preceding utterances as a context can produce

consistent results.

4.4.2 Analysis on Internal States of RNNs

We also analyze the internal state ht of the RNNs for the two preceding utterances

setup. We plot them on a 2D graph with the t-SNE algorithm for the first 2,000

utterances of the SwDA test set, as shown in Figure 4.5, the clusters of all the DA
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Model setup Accuracy

Baseline

Most common class 31.50%

Utterance-level baseline model 73.96%

Related previous work

Kalchbrenner and Blunsom (2013) 73.90%

Our work

RNN (1 utt. in context w. SpeakerID) 76.48%

RNN (1 utt. in context) 76.57%

RNN (2 utts. in context) 76.81%

RNN (3 utts. in context) 77.34%

RNN (4 utts. in context) 77.28%

Table 4.6: Accuracy of the dialogue act recognition with the context-learning

approach.

classes. The classes which do not share any information are grouped without any

interference such as Non-verbal, and Abandoned. As we can also see in the figure

that the big clusters belong to the dominating Statement classes, sv and sd. The

Question classes, qy, qw, qh and qo are clustered within the big class. The classes

Backchannel, Yes-answers, and Agree/Accept share much syntactic information;

hence they are also clustered together, and our approach makes those classes

separable within the cluster.

Figure 4.6 shows some particular classes with utterances in their vector spaces,

the (1) current utterance and (2) a preceding utterance in the context. These are

the examples of the context-sensitive dialogues, where we can see one cluster of

the ft (Thanking) dialogue act class and three groups of the fc (Conventional

Closing) dialogue act class. It is fascinating to notice that the phrases of the

same dialogue act are clustered themselves in small chunks. For example, “talk

you later” and “we’ll talk again” are in a chunk close to each other. Whereas,

the phrase “you too” created another chunk. Similarly, yet another small chunk

with phrases “I appreciate” and “I sure enjoyed” are close to each other.
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4.5. Conversational Analysis using Utterance-Attention-BiRNN

4.5 Conversational Analysis using Utterance-

Attention-BiRNN

Discourse analysis is a crucial task in the field of natural language processing;

therefore, there exist many dialogue act corpora available (Serban et al., 2015),

however, following the previous experiments, we use the Switchboard Dialogue

Act (SwDA) corpus. We show various analytical observations on the SwDA cor-

pus, which is annotated with the DAMSL tag set (Godfrey et al., 1992; Jurafsky

et al., 1997). In this section, we will answer: How many preceding utterances are

required in the context to recognize the DA of the current utterance sufficiently?

Another critical answer we find out about How much each preceding utterance

in the context contributes while recognizing the DA of the current one (Sbisà,

2002)? Utterance-level attention mechanism helps us model the DA recognition

task to find out this phenomenon. Finally, we show that context-based mod-

els detect correctly and with higher confidence than the utterance-level model

(especially in cases where context plays an important role). The Utt-Att-BiRNN

model is shown in Figure 4.7, for which the main components are the bidirectional

recurrent neural network (BiRNN ) and Attention mechanism.

Bidirectional Recurrent Neural Network

BiRNN is an extended form of the unidirectional RNN (Elman, 1990), introducing

one extra hidden layer (Graves et al., 2013; Schuster and Paliwal, 1997). The

hidden to hidden layer connections flow into the opposite temporal direction, as

discussed in Chapter 3. The model provides forward and backward states with

corresponding directions of the hidden layers, as shown in Figure 4.7, and the

final result which is a probability distribution over all dialogue acts (da) can be

calculated as follows:

hft = f
(
W f

h h
f
t−1 +W f

u ut + bfh

)
(4.3)

hbt = f
(
W b

hh
b
t−1 +W b

uut + bbh
)

(4.4)

dat|{ufinal(ut, ut−1, ...ut−n)} = g
(
W f

dah
f
t +W b

dah
b
t + bda

)
(4.5)

where n is the number of preceding utterances in the context for time instance t,

and ufinal is calculated using attention mechanism discussed in the next section.

W and h are the corresponding weight matrices and hidden vectors, where the
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hf
t-n hf

t-1 hf
t

ut-n ut-1   ut

dat

hb
t-n hb

t-1 hb
t

+

softmax

at-1
at-n at

ufinalAttention

BiRNN
  ht-n    ht-1    ht

ut-n ut-1   ut

dat

at-1
at-n at

BiRNN

softmax

  ht-n    ht-1    ht

attention

Figure 4.7: Utt-Att-BiRNN model for Dialogue Act Recognition.

superscripts f and b represent the forward and backward hidden layer directions

respectively. In our scenario, we want the model to learn the context; thus, the

input consists of the current utterance (ut)and preceding utterances in the con-

text (ut, ut−1, ...ut−n). If we use the unidirectional RNN model, there might be a

chance that the model becomes more attentive to the current utterance only. The

sequential information in RNN is compressed to the final state as a hidden state

(ht). The bidirectional RNN model, on the other hand, exploits the information

in all given input utterances by looking back and forth through them. Therefore,

our goal is to treat all utterances equally and learn how much each utterance

contributes to the final result.

Attention Mechanism

The attention mechanism is loosely based on visual attention found in humans,

and broadly used in image recognition and object tracking, discussed in detail in

Chapter 3 (Larochelle and Hinton, 2010; Denil et al., 2012). Nevertheless, recently,
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4.5. Conversational Analysis using Utterance-Attention-BiRNN

attention mechanism with RNNs are being used for several natural language pro-

cessing tasks, such as machine translation and comprehension, speech recognition

(Bahdanau et al., 2015; Vinyals et al., 2015; Chorowski et al., 2015). We propose

the attention mechanism to compute the contribution weights of the utterances

for predicting the corresponding class. Given the number (n) of preceding ut-

terances in an input sequence u = {ut, ut−1, ...ut−n}, the BiRNN provides the

respective hidden vectors h = {ht, ht−1, ...ht−n}. The attention layer computes

the weights a = {at, at−1, ...at−n} as the contribution for every corresponding in-

put utterance in u using the respective hidden representations h, as depicted in

Attention part of Figure 4.7. Hence, the final utterance representation ufinal of

the utterance sequence in u is formed by a weighted sum of h and a:

m = tanh (Whh) (4.6)

a = softmax
(
W T

mm
)

(4.7)

ufinal = tanh
(
haT

)
(4.8)

where W is a trained parameter while W T being its transpose. We use the

softmax function to compute the weights which provides
∑n

n=0 at−n = 1. It

is important for the utterance-level attention mechanism that we normalize a to

interpret the amount of contribution for each utterance in u.

Training Utt-Att-BiRNN Model

In the baseline model and the Utt-Att-BiRNN model settings, we use a softmax

function to predict a discrete set of classes dat on top of the learned ufinal repre-

sentations. We use a set of 5 utterances in u, with the current utterance and four

preceding utterances in the context. A similar study performed in (Bothe et al.,

2018d) shows the effect of the number of utterances in the context. It was shown

that three utterances provide sufficient context. However, we use four context-

utterances to provide a large enough window for bidirectional exploration by the

RNN, hence n = 4.

We minimize the categorical cross-entropy in all learning cases as we have

multiple classes in the DA recognition task. We use 64 hidden units with the

dropout regulariser (Hinton et al., 2012) in the BiRNN hidden layer for the pro-

posed model. As a result, we get 128 hidden units as a concatenation of the hft

and hbt hidden units. These are the only parameters determined empirically for
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Models Accuracy

Prior related work

Most common class baseline 31.50%

Our baseline model 73.96

Markov Model (Stolcke et al., 2000) 71.00%

C-RNN Model (Kalchbrenner and Blunsom, 2013b) 73.90%

Our work

Character LM rep. 76.47%

Word-embeddings mean rep. (ConceptNet) 75.43%

Word-embeddings mean rep. (ELMo) 75.39%

Concatenated rep. 76.15%

Average char-word-level predictions 76.84%

Average char-word-level &

concatenated rep. predictions 77.42%

Table 4.7: Accuracies on the SwDA test set of Utt-Att-BiRNN model with con-

text.

the classification tasks, but all other parameters are learned during training. The

Adam optimizer (Kingma and Ba, 2014) is used with an initial learning rate 1e-

4, which decays during training. Early stopping is used to avoid over-fitting the

network, with 15% of the training samples for validation. We wait for at least

five iterations over which the accuracy on the validation set does not improve.

4.5.1 Results with Utt-Att-BiRNN Model

The baseline and Utt-Att-BiRNN models are trained and tested using both the

utterance representations explained in Section 4.3. We report the accuracies on

the test set of SwDA corpus in Table 4.7. Character LM and word-embeddings

mean utterance representations perform quite well for this task. Surprisingly, the

word-embeddings mean representations of the utterances used from the Concept-

Net seem to show fair results given the fact of the low dimensionality of the
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GT NC WC Num pct. Example of utterance

sv sd sd 198 4.73% Uh, the problem is here

But they don’t have

We’re hearing the same

sd sv sv 51 1.22% They’re certainly legal,

Real long legs,

And time consuming,

aa b b 44 1.05% Yes.

Yeah.

Uh-huh.

Table 4.8: The test samples from the SwDA corpus where both classifiers, sim-

ple utterance-level and Utt-Att-BiRNN, failed to correctly predict classes (the

majority classes, Statement-non-opinion (sd) and Statement-opinion (sv), are re-

ported here). Where Num is a number of samples, GT stands for ground truth,

and pct. for percentage.

embedding vectors compared to character LM feature vectors. The word embed-

ding vector has only 300 dimension size, whereas character LM feature vector

has 4096 dimension size. However, the word vector might have out-of-vocabulary

words that can be mitigated using a character-level language model. It can be

seen in the results that the accuracy of the models is consistent with the character

LM feature representations.

We also experiment with a combined model of these representations in two

ways: first by concatenating both representations and using them as an input,

and second by averaging both models’ output predictions. Averaging the predic-

tions has shown the best results that are trained with character LM, and word-

embeddings mean vector representations. Concatenated representations deliver

the best of the performance. We can see that context-based learning shows a per-

formance improvement of about 4% (compared with utterance-level classification

from Table 4.4).
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GT NC WC Num pct.

ny b ny 33 0.79%

aa b aa 29 0.69%

aa sd aa 12 0.28%

b aa b 23 0.55%

b % b 16 0.38%

Table 4.9: The test samples from the SwDA corpus where the Utt-Att-BiRNN

model correctly predict as opposed to the simple utterance-level classifier.

4.5.2 Analytical Examination on Failure of Recognition

We examined the SwDA corpus test set and found many of the instances wrongly

predicted with both models. The dominant DA classes in the SwDA corpus are

Statement-non-opinion (sd) and Statement-opinion (sv). Table 4.8 shows the

number of samples (Num) and their percentage (pct.) out of 4,186 utterances.

The examples of utterances present how difficult they are for humans to identify

correctly. It shows ambiguity in two DA classes, sd and sv, which accounts for

about 6% of accuracy reduction for both models. We also show the effectiveness

of the pragmatic model, which predicts the correct class when the context is es-

sential, see Table 4.9. For example, if the utterances like “Yes” or “Yeah” are

followed by Yes-No Question (qy), the probability that the second utterance be-

longs to Yes-answer (ny) is higher than being in Backchannel (b) or Abandoned

(% ). Similar utterances to the ny class are used in the Agree/Accept (aa) class,

but they are usually followed by sv, sd, b, or some other classes. In total, we found

330 samples which constitute around 7.88% of the samples that were correctly

recognized by the Utt-Att-BiRNN model against the utterance-level model. It

means that the context-model has clearly achieved about 8% higher accuracy

than the utterance-level model.

4.5.3 Effectiveness of Context using Confidence Values

We also found that the prediction confidence of the Utt-Att-BiRNN model is

higher than the utterance-level classifier. Figure 4.8(a) shows three rows for the
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Chapter 4. Contextual Dialogue Act Recognition using RNNs

ID Speaker Utterances GT NC WC

1 A Okay, uh o b –

2 A could you tell me what you think contributes qw qy –
most to, uh, air pollution?

3 B Well, it’s hard to say. ˆh fo –

4 B I mean, while it’s certainly the case that things sv sv –
like automobiles, factories, and active volcanoes.

5 B What do you think? qo qw qo

6 A Um, well, you talked about, uh, volcanoes. sd sd sd

7 A I’m not sure how many active sd sd sd
volcanoes there are now.

8 A I think probably the greatest cause is, uh, sv sv sv
vehicles, especially around cities.

9 B Uh-huh. b b b

10 A Um, uh, do you live right in the city itself? qy qy qy

11 B No, nn nn nn

12 B I’m more out in the suburbs, sd sd sd

13 B but I certainly work near a city. sd sd sd

14 A Okay, bk fc bk

15 A so, can you notice... qy sd sd

16 B How about you? qo qw qo

17 A Well it’s, % % %

18 A I live in a rural area. sd sd sd

19 B Uh-huh. b b b

20 A It’s mainly farms and, uh, no heavy industry. sd sd sd

21 A Attleboro, itself, - sd % sd

22 A I live in Rhode Island. sd sd sd

23 B Oh, I see. b bk b

Table 4.10: A piece of conversation from the test set of the SwDA corpus. Marked

the utterances where with-context (WC) model outperformed over no-context

(NC) model.
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batch of 30 utterances in the DA recognition task: first ground truth (GT), second

the predictions of the Utt-Att-BiRNN model (with-context model - WC), and

third the predictions of the utterance-level classifier (no-context model - NC). The

predictions of the Utt-Att-BiRNN model show higher confidence when compared

to the predictions of the utterance-level model.

4.5.4 Contribution of Context Utterances using Attention

Mechanism

We also computed the amount of contribution of the context utterances using

the Utt-Att-BiRNN model. As discussed in Section 4.5, the attention weights

(at, at−1, ...at−n) can be interpreted as the contribution of the utterances, as the

ufinal of the utterance sequence in u is formed by a weighted sum of h and a.

Figure 4.8(b) shows the attention weights (a0, a1, ...a4) that represent the contri-

bution of the corresponding utterances (utt0, utt1, ...utt4). The current utterance

utt0 contributes higher than others. However, the closest preceding utterances

seem to contribute substantially, whereas the far preceding utterances also con-

tribute with a little proportion. In Figure 4.8(c) and 4.8(d), we can see the average

of the weights for the corresponding utterances.

The same piece of conversation is presented in Table 4.10 with the predictions

from the no-context model and with-context model. The rectangle marks show

the utterances where the with-context model correctly predicted the dialogue act

against the no-context model. As it can be seen from Table 4.10, the context

model accurately catches the minuscule differences such as Wh-questions (qw)

and Open-questions (qo), in utterances 5 and 15. The question in utterances 5

and 16 starts with Wh-phrases (“What” and “How”). It is an indication that the

no-context model predicts them as the Wh-question DA class. However, the with-

context model predicts them as Open-questions as they are derived from their

context in the conversation. We can look closely at the attention weights shown in

Figure 4.9 (snippet of Figure 4.8(b)), which is for the set of utterances presented

in Table 4.10. This figure shows the attention weights of the current utterance and

the preceding utterances. We can see that when the utterance is a question (like

qo and qy as in the utterance numbers 5, 10, 15, 16) the attention weight values

are high. However, right after the question (for example, after qy in utterance

10), the answer gets lesser weight giving more attention to the question. The
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5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

5

4

3

2

1

Figure 4.9: Attention weights of the utterances during dialogue act recognition for

the conversation presented in Table 4.10. Note that the dialogue act of utterance

number 5 is determined by using utterance 5 and preceding utterances 4, 3, 2,

and 1. Similarly, DA of utterance 6 given utterances 6, 5, 4, 3, and 2.

utterance 11 with the No-answer (nn) dialogue act class, seem to be computed

by giving more weight to utterance 10, which is preceding utterance with the

Yes-No Question (qy) dialogue act.

Similarly, when the utterance dialogue act is a Backchannel (b or bk) like in

utterance number 9, 14, 19, and 23, the model seems to take help from previous

utterances. Typically, such Backchannel phrases are followed by statements (ei-

ther Statement (sd) or Statment-opinion (sv) dialogue acts). Hence, it is natural

to learn, for context-based models, the conversational behaviour to keep acknowl-

edging the speaker with phrases like “Uh-huh”, “Okay”, or “Yeah” among others.

Sometimes this can be tricky as the phrases like “Yeah” could also be followed

by questions like a Yes-No Question (qy), in which case the dialogue act could

be Yes-answer (ny). The phrases like “Uh-huh” or “Okay” could also be Accep-

t/Agree (aa) dialogue act mostly in the context of Statment-opinion (sv). Hence,

these utterances are contextually dependent as we explained early in this chapter

and modelling them, in the same way, improves not only the performance but

also aids the in-depth conversational analysis.

4.6 Summary

In this chapter, we explored one of the essential features of conversational analy-

sis, the dialogue acts. We detailed the annotation and modelling of dialogue act

corpora, and we highlighted that there is a difference in the way DAs are anno-
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tated and how they are modelled. We argue to generalize the discourse modelling

for conversation within the context of communication. Hence, we proposed to

use the context-based learning approach for the DA identification task. In the

first part, we used simple RNN to model the context of preceding utterances

for the dialogue act of the current utterance. We used the domain-independent

pre-trained character language model and word embeddings to represent the ut-

terances. We evaluated the proposed model on the Switchboard Dialogue Act

corpus and showed the results with and without context. For this corpus, our

model achieved the accuracy of 77.34% with context compared to 73.96% without

context. We also compared our model with Kalchbrenner and Blunsom (2013),

who used the context-based learning approach similar to our method, achieving

73.9%. Our model used minimal information, such as the context of a few preced-

ing utterances which can be adapted to an online learning tool such as a spoken

dialogue system where one can naturally see the preceding utterances but not the

future ones. It makes our model suitable for human-robot/computer interaction

which can be easily integrated into any real-time spoken dialogue system. Our

experiments answer a fundamental question, how many utterances in the context

are contributing to the dialogue act recognition.

In the second part, we have presented the Utt-Att-BiRNN model for conver-

sational analysis. We demonstrated that our model allows us to model context-

based pragmatic learning and compute the amount of information used from

the context utterances. This model also achieves a state-of-the-art result on the

SwDA corpus of about 77% of accuracy, using only preceding utterances in the

context. We showed that our model correctly predicted a significant number of

the instances on the DA recognition task. We also showed that the context-based

learning approach shows higher confidence in the classification task compared to

simple utterance-level classification. We have investigated different aspects of the

conversational analysis and showed that the proposed model could compute the

contribution of the preceding utterances. The utterance-level attention mecha-

nism also helped us determine how much (using attention weights) the preceding

utterances actually contribute to the subsequent utterance. In this research, we

only analyzed the utterance representations based on transcripts. However, we

perceive that audio features could provide better representations for the utter-

ances because of the change in sound intonation for the same utterance might

be different with different dialogue acts. Furthermore, it would also help to an-
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alyze and mitigate the influence of transcription errors. We investigated the DA

annotations by reviewing the predictions of different models that could be ex-

tended to determine a reliable metric to accompany accuracy to assess the model

performance.
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Chapter 5

Emotion and Sentiment Analysis

in Dialogues

Emotion or sentiment recognition plays an important role in natural language

understanding and human-robot interaction to comprehend users feelings, unlike

dialogue acts, provide meaning and semantic information. Emotional or sentimen-

tal expression are essential cues in the decision-making process during empathetic

and affective dialogue. The emotion recognition becomes challenging when other

modalities are absent. In this chapter, we will apply dialogue-based learning to

emotion and sentiment analysis only with the textual conversation data to un-

derstand the affective context in the dialogues.

5.1 Introduction

Emotions are rich and crucial socio-linguistic cues in communication that have

been subject to study for several years in the field of psychology, sociology,

medicine, and computer science. As explained in the article, “Emotional Intelli-

gence” (Salovey and Mayer, 1990): “emotions are viewed as organized responses,

crossing the boundaries of many psychological subsystems, including the phys-

iological, cognitive, motivational, and experiential systems”. Furthermore, the

common viewpoint drawn among many studies that the emotions are raised in a

response to certain incidences (Salovey and Mayer, 1990; Ekman, 1992; Mundra

et al., 2017; Gupta et al., 2017). Emotional intelligence is strongly related to social

and communication intelligence (Gardner, 2011). An illustration of the emotion-

driven contextual dialogue is shown in Figure 5.1, where the health assistant
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I am having a headache!
Sadness

Sorry to know about your illness! You told me the same 
yesterday. Are you having it regularly?  Sadness

No, it's just two days.
Neutral

I would strongly recommend you visit doctor ASAP!
Excited

Yeah, it pains a lot!
Frustrated

Please, have some tea or coffee and practice some 
meditation/yoga, it is better for overall health.    Neutral

User Health Assistant

Figure 5.1: Illustration of an Emotion-driven Contextual Dialogue: different re-

sponses are produced for the perceived emotion from the user input and given

the context information - excited response in an emergency situation (red box)

and neutral response in a normal case (green box).

responds based on the emotion and context perceived from the users input, mo-

tivated by the example in (Poria et al., 2019). When the user suffered an illness

for many days, the health assistant responds with excited emotion showing emer-

gency (shown in the red box) otherwise responds with neutral emotion providing

general health suggestions (shown in the green box).

Emotion detection in a text is a challenging task, especially when there is

no other information available such as facial (visual information) expressions or

prosodic (audio signals) features (Ekman, 1992). As emotion expressions are reac-

tions to the incident or event that happened in the context, it is useful information

to ease the emotion detection process. For example, as illustrated in Figure 5.1,

the health assistant makes appropriate use of the context information provided

in the users’ utterances to respond accordingly to empathy. Similarly, when a

person posts a thought (in the form of text) on social media, people respond to it

based on the perceived emotion. The responses could then provide a proper setup

for a few turn dialogues that can help perform contextual emotion detection. A
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similar experiment is conducted in the EmoContext competition, where Tweets

are used as a context. As the Tweet responses, posts are recorded to form the

three-turn dialogues (Gupta et al., 2017).

In the next section (Section 5.2), we will explore an experiment where the

Tweets are given with a goal to detect emotion intensity values of the Tweet mes-

sages, where the contexts are absent. This experiment is conducted in a challenge

called EmoInt (Emotional Intensity Detection Challenge), which helps explore

different language features for emotion detection, where we propose an ensemble

model (Lakomkin et al., 2017). In the following section (Section 5.3), we use a

similar setup of ensemble model, and apply it for the contextual emotion detection

in dialogues (Bothe and Wermter, 2019). In this challenge, named EmoContext

(Contextual Emotion Detection in Dialogue), the three-turn dialogues are given

with a goal to detect emotion labels. The three-turn dialogues are treated similar

to the dialogue act recognition task, as explored in the previous chapter, with

two utterances in the context.

We further extend the idea of contextual emotion learning in dialogue to

sentiment-guided learning to estimate the sentiment of the next upcoming utter-

ance (Bothe et al., 2017), which is presented in Section 5.4. In this experiment,

we find that humans use changes in a dialogue to specify or predict desirable and

safety-critical situations and use them to react accordingly. The same cues can

be used for safe human-robot interaction for early verbal detection of potentially

dangerous situations. As a result, estimating the sentiment of the next upcom-

ing utterance helps in inferring the situation from the preceding utterances in a

conversation in the given scenario.

5.2 Emotion Intensity Detection from Tweets

The EmoInt shared task challenge has a goal to predict emotion intensity values

of the Tweet messages. The text of Tweet and its emotion category (anger, joy,

fear, and sadness) are given along with the intensity values. The participants

were asked to build a system that assigns those emotion intensity values. Catego-

rizing the emotion is already a challenging task, and emotion intensity estimation

becomes an even more challenging problem. The main issues are the short length

of the Tweet messages with the noisy structure of the text and the lack of suf-

ficient annotated data. We developed an ensemble system of two neural models,
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processing input on the character- and word-level, along with a lexicon-driven

system. The correlation scores across all four emotions are averaged to determine

the bottom-line competition metric. Our system ranked fourth place in full in-

tensity range and third place in a 0.5-1 range of intensity among systems when

writing the system description article (June 2017) (Lakomkin et al., 2017).

Introductory Background of Experiment

Sentiment analysis provides the degree of positive or negative of the opinion ex-

pressed by the user in the given text. Such information can be useful for providing

better services for users (Kang and Park, 2014) or preventing potentially danger-

ous situations (O’Dea et al., 2015). However, the emotions (i.e. anger, joy, fear,

and sadness) replace the traditional sentiment classes (such as positive or nega-

tive), and provide extra information on the opinion. On the contrary, a continuous

intensity scale of emotion provides a fine-grained recognition of the emotion. The

challenge in emotion recognition from the Tweet messages arises from several

factors such as extensive usage of hashtags, slang, abbreviations, and emoticons.

The existing approaches, such as AffectiveTweets, heavily rely on manually

constructed lexicons which contain information about intensity weights for each

available word (Neviarouskaya et al., 2007; Mohammad and Bravo-Marquez,

2017a). The final intensity for the whole sentence is inferred by combining in-

dividual scores of the words. The main limitation of such models is ignoring word

order or compositionality of the language that impacts sequence modelling. The

deep learning approaches, such as recurrent neural networks, are deployed to learn

the sequences and compositionality of the language for opinion mining (Irsoy and

Cardie, 2014). Such data-driven approaches can overcome the limitations, and

they have been powering many recent advances in natural language processing

tasks, such as language modelling, machine translation, part-of-speech tagging,

and classification (Biswas et al., 2015; Socher et al., 2013b; Radford et al., 2017;

Irsoy and Cardie, 2014; Sailunaz et al., 2018).

This experiment augments the traditional lexicon-based models with two neu-

ral network-based models: character- and word-level inputs using recurrent neural

networks. Character-level neural language models have shown promising results

on natural language understanding tasks such as text classification (Zhang et al.,

2015) and machine translation (Kalchbrenner et al., 2016). We use one of the

character-level language model trained with the recurrent neural network to pre-
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Split Joy Anger Fear Sadness Total

Train 823 856 1147 786 3612

Validation 78 83 109 73 343

Test 714 760 995 673 3142

Total 1615 1699 2251 1532 7097

Table 5.1: EmoInt (Emotional Intensity Detection Challenge) dataset statistics.

dict the next character given the preceding ones. It is useful for a domain-specific

text like Tweets where special kind of language features are frequently used such

as hashtags, emoticons, or character repetitions. It also supports the intuition

that a character-level model captures common writing patterns. A word-level

recurrent neural model, on the other hand, can incorporate the order of word

sequence using distributed embedding representation of words trained on a large

amount of text data.

5.2.1 Ensemble Model for EmoInt

The input sentence goes through three models: AffectiveTweets model, character-

level language model, and word-level embedding. AffectiveTweets model is a given

baseline model that converts the input sentences into words and their respective

lexical sentiment values. Character-level language model encodes each charac-

ter of the input sentence, whereas the word-level model incorporates sequential

information of the input text in the Tweet processed with the RNNs. Finally,

the weighted average ensembles the output of all these models, the final ensemble

model is shown in Figure 5.2. We will explain the model with the data preparation

process of the Tweet messages.

Data and Preprocessing: The dataset statistics is shown in Table 5.1, it

is comprised of a total of 7097 annotated Tweets, classified into 4 categories:

joy, anger, fear, and sadness (Mohammad and Bravo-Marquez, 2017b). Each

annotated Tweet is assigned with an ID, full text, emotion category, and emotion

intensity value. Emotion intensity is a real value in the range from 0.000 to 1.000,
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id Sentence Emo Int

10005 My blood is boiling anger 0.875

20258 Now #India is #afraid of #bad #terrorism. fear 0.646

30010 I’m just still. So happy. A blast! joy 0.917

30112 LOVE LOVE LOVE #smile #fun #relaxationiskey joy 0.740

30328 @Rbrutti what a #happy looking #couple! joy 0.542

40002 Feeling worthless as always sadness 0.958

Table 5.2: Examples from the EmoInt dataset.

where a higher value corresponds to a greater degree of intensity of the given

emotion label. The samples from the EmoInt corpus are presented in Table 5.2.

Intensifiers (such as ‘really’, ‘too’, ‘so’) increase the intensity of the given

emotion, such as Tweets with id 30328 and 30010. On the other hand, repeti-

tive use of words also intensifies the emotion class, like the LOVE word in 30112

is used to intensify joy. We can see that the data is quite unbalanced and con-

tains non-useful information such as URLs and user mentions (@username). We

strip out the URLs and user mentions, and keep only the following characters:

a-zA-Z@-!:(),;?.#’0-9*. As a final preprocessing step, we always lowercase the

Tweet text before processing with the neural models.

Baseline model: The baseline system is a WEKA-based model called Affec-

tiveTweets (Mohammad and Bravo-Marquez, 2017a). This system combines fea-

tures derived from several lexicons like MPQA (Wilson et al., 2005), Bing Liu

(Hu and Liu, 2004), SentiWordNet (Baccianella et al., 2010), and others, more

information in (Lakomkin et al., 2017). In addition, AffectiveTweets incorporates

SentiStrength values (Thelwall et al., 2012) and Brown clusters (Brown et al.,

1992) trained on ∼53 million Tweets1. They are combined with averaged and

concatenated first k word embeddings of the Tweet. In the end, a Support Vec-

tor Machine algorithm is used as a regression model for predicting the emotion

intensity values.

1http://www.cs.cmu.edu/~ark/TweetNLP/
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K e e p   s m i  l i  n g    :  )
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Average)

Word-level Model

AffectiveTweets

Figure 5.2: The ensemble model architecture for EmoInt Challenge. Affec-

tiveTweets model with two neural models: character- and word-level models, and

finally averaging the scores with weights tuned on the provided validation set.

Character-level RNN Model: We produce the character-level utterance rep-

resentations as explained in Chapter 4, Section 4.3. In short, the character-level

utterance representations are encoded with the pre-trained recurrent neural net-

work model. This model contains a single multiplicative long short-term memory

(mLSTM) network (Krause et al., 2016) layer with 4,096 hidden units, trained

on ∼80 million Amazon product reviews as a character-level language model

(Radford et al., 2017). The whole Tweet text is encoded with this pre-trained

character-level language model. We encode text into a vector corresponding to

the last character of a Tweet, average the representations of all hidden vectors and

a concatenation of the two vectors. We also train the character-based language

model on the Sentiment 140 corpus comprises of 1.6 million Tweets (Go et al.,

2009). This model is small compared to the original pre-trained model, with only

a single-layer LSTM (Hochreiter and Schmidhuber, 1997) of 1024 hidden units.

It is trained using Adam optimizer (Kingma and Ba, 2014) with the learning rate

of 0.0005 and clipping gradients at norm 1. We use the Support Vector Regres-

sor (SVR) algorithm to classify Tweets represented as a fixed-length vector (of

1024 units) with the character-based recurrent neural network. Results reported

in Table 5.3 show that the addition of the average vector to the features improves

the model’s overall performance. Surprisingly, the pre-trained character-level lan-

guage model performed well among all the models; hence, this model produces

the final results.
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Range (0.0-1.0) (0.5-1.0)

Model avg p avg s avg p avg s

PT, LV 0.470 0.468 0.412 0.404

PT, LV+AV 0.474 0.472 0.419 0.413

Twit, LV 0.312 0.307 0.296 0.288

Twit, LV+AV 0.319 0.310 0.298 0.301

Table 5.3: Effect on the avg p (Pearson) and avg s (Spearman) coefficients of

different character language model (Char LM) representations: last cell vector

(LV) of the pre-trained model (PT, LV) and Twitter-specific character LM (Twit,

LV). A concatenation of the last cell vector with the average of all cell vectors

(AV) for the pre-trained model (PT, LV+AV) and Twitter model (Twit, LV+AV).

Word-level RNN Model: We use the distributed word embedding represen-

tations to encode words in the Tweet and experimented with different initial-

ization methods. First, we randomly initialize the word embeddings and train

the bidirectional gated recurrent unit (GRU, explained in Section 3.2.2) network

(Chung et al., 2014). We set empirically 32-dimension cell size for modelling of the

Tweet as a hidden memory vector in GRU. Then we replace the randomly initial-

ized embeddings with two pre-trained versions of GloVe embeddings (Pennington

et al., 2014) trained on Wikipedia and Twitter2 to test if Twitter-specific word

representations (domain-specific) are more suitable to solve the problem. Out-of-

vocabulary words are replaced with a particular word ‘OOV’ and initialized as

a random vector which is tuned during the training. We used a 50-dimensional

embedding representation in all our experiments. GRUs are better in mitigat-

ing the vanishing gradient problem of the RNNs during the training and contain

fewer parameters than LSTM units. The vector corresponding to the last word

is fed to a fully connected layer with one neuron predicting emotion intensity.

Results reported in Table 5.4 show that the Twitter GloVe embeddings could not

show better improvement, whereas the Wiki GloVe embeddings outperformed the

word-level models, which is used for the final results.

2https://nlp.stanford.edu/projects/glove/
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Range (0.0-1.0) (0.5-1.0)

Model avg p avg s avg p avg s

Random emb. 0.291 0.276 0.250 0.227

GloVe (Twitter) 0.300 0.293 0.231 0.220

GloVe (Wiki) 0.326 0.323 0.259 0.252

Table 5.4: Effect of different word embedding initialization techniques for the

word-level model: randomly initialized embeddings, pre-trained GloVe embed-

dings on the Twitter and Wikipedia datasets.

Ensemble of Models: Ensembling different models is a widely used method to

improve the performance of the system by combining the outputs of several classi-

fiers. There are many ensembling techniques: mixing experts (Jacobs et al., 1991),

model stacking, bagging and boosting (Breiman, 1996), and a simple weighted

average of the scores of individual models, which is being used in this experiment.

The small data size and use of the complex neural models might lead to over-

fitting; however, a simple weighted average of the scores of models lead to fair

comparative results (López-Cózar et al., 2010). The final output emotion inten-

sity value is calculated as a linear combination of individual predictions of three

models (baseline, character- and word-level model):

emotionintensity = wb∗baselineemotion+ww∗w rnnemotion+wc∗c rnnemotion (5.1)

such that:

wb + ww + wc = 1 (5.2)

where baselineemotion, w rnnemotion and c rnnemotion are intensity predictions of

the baseline, character- and word-level models corresponding to the emotions (joy,

anger, fear or sadness). wb, wc and ww are the ensembling coefficients, they were

tuned on the given validation set to maximize the average Pearson correlation

coefficient using grid-search.

5.2.2 Results and Discussion on EmoInt

The final Pearson and Spearman correlation score report of the experiments is

presented in Table 5.5. These results were calculated through an online tool of
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Range (0.0-1.0) (0.5-1.0)

Model avg p avg s avg p avg s

Baseline 0.655 0.652 0.475 0.449

Char LM 0.474 0.472 0.419 0.413

Word Level 0.326 0.323 0.259 0.237

Char LM + Word Level 0.659 0.656 0.471 0.467

Char LM + Word Level + Baseline 0.721 0.717 0.562 0.543

Table 5.5: The final results of the ensemble model.

CodaLab, and they are available on the EmoInt Competition webpage3. We can

see from the results that the ensemble model of the Char LM, Word Level, and

Baseline model outperformed through the weighted average of the predictions.

We can notice that Word Level model alone could not achieve anywhere compare

to Char LM alone; however, ensembling it with Char LM boosted the overall

performance quickly. Also, given that these models are trained end-to-end with-

out any external knowledge demonstrates the effectiveness of the character-level

language modelling of noisy and short texts.

It is also worth noticing that the Char LM and Word Level models alone

achieve lower correlation values than the Baseline model. That indicates that the

Baseline model having external knowledge of the words (such as sentiment or

semantics features through lexical models), helps to perform better than data-

driven end-to-end neural models. However, they bring additional value to the

ensemble model when added all together. The Tweet representations encoded

with the pre-trained character language model obtained competitive results, and

most surprisingly, our ensemble of Char LM and Word Level models alone also

achieve better results than the baseline model. Our exploration of the feature

representations for the utterance also shows that the average vector’s addition

could boost the results. Overall, we see that ensemble modelling and transfer

learning helps in achieving state-of-the-art results.

3https://competitions.codalab.org/competitions/16380#results
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5.3 Contextual Emotion Detection in Dialogue

When reading “I don’t want to talk to you any more”, we might interpret this

sentence or utterance as either an angry or a sad emotion in the absence of

context and other modalities. Often, the utterances are shorter, and given a

short utterance like “Me too!”, it is difficult to interpret the emotion without

extra information. The lack of prosodic or visual information makes it challenging

to detect such emotions only with single-turn text. However, using contextual

information in the dialogue is important to provide a context-aware recognition

of linguistic features such as emotion or sentiment and dialogue act. For this

pilot study, we choose the SemEval 2019 Task 3 EmoContext competition that

provides a dataset of three-turn dialogues each labeled with one of the three

emotion classes, i.e. Happy, Sad and Angry, and in addition with Others as none

of the aforementioned emotion classes. We develop an ensemble of the recurrent

neural model with character- and word-level features to address the problem

we explored in the previous experiment. The system performs quite well, and it

ranked in the top 35% of the systems achieving a microaveraged F1 score (F1μ)

of 0.7212 for the three emotion classes.

Introductory Background of Experiment

Humans might misinterpret the emotion in the text when reading sentences in the

absence of context, so machines might too. When reading the following utterance,

Why don’t you ever text me?

it is hard to interpret the emotion where it can be either a sad or an angry emotion

(Chatterjee et al., 2019; Gupta et al., 2017). The problem becomes even harder

when there are ambiguous utterances, for example, the following utterance:

Me too!

One cannot precisely interpret the emotion behind such an utterance in the ab-

sence of context. See Table 5.6 where the utterance “Me too!” is used in many

emotional contexts such as Sad, Angry, and Happy and also in the class “Oth-

ers” where none of aforementioned emotions is present. Analyzing the emotion

or sentiment of the text provides the opinion cues expressed by the user. Such

cues could help computers make better decisions to help users (Kang and Park,
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id turn1 turn2 turn3 label

2736 I don’t hate you. you are i don’t hate anyone me too Angry

just an AI

2867 everything is bad whats bad? me too Sad

4756 I am very much happy :D Thank you, I’m Me too Happy

enjoying it :)

8731 How r uh am fine dear and u? Me too Others

Table 5.6: Examples from training dataset, where turn3 is mostly the same while

emotional state is labeled differently, contextually.

2014) or prevent potentially dangerous situations (O’Dea et al., 2015; Sailunaz

et al., 2018).

Usually, social media utterances are short and contain misspelt words, emoti-

cons, and hashtags, especially in the textual conversation. Hence, using character-

level language model representations can theoretically capture the impression of

such texts. On the other hand, the EmoContext dataset is collected from the

social media, and the character language model used in our experiments is also

trained on a similar corpus of about ∼80 million samples (Radford et al., 2017).

The hypothesis is that the character-level language model captures common writ-

ing patterns such as punctuation and signalling characters, for example, in “How

r uh” shown in Table 5.6, character “r” signifies the word “are”. In the absence

of other modalities like vision or audio signals, the problem of detecting emotions

becomes challenging while speaking those sentences. However, the given context

of the utterances can help to mitigate the problem.

We propose a model that encapsulates character- and word-level features with

recurrent and convolution neural network (Lakomkin et al., 2017). We use our

recently developed models for the context-based dialogue act recognition, where

we use a similar approach of the recurrent neural network and combine char-

acter language model and word embedding feature (Bothe et al., 2018b). Our

final model for EmoContext is an ensemble average of the intermediate neural

layers, ends with a fully connected layer to classify the contextual emotions. The
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Figure 5.3: The overall ensemble model for the contextual emotion detection. This

model ensembles four neural architectures: Net1 and Net2 - character LM last

and average feature vectors with BiLSTMs, Net3 - uses word embeddings with

BiLSTMs and Net4 - with convolutional neural network (CNN) with BiLSTMs.

max represents the max pooling layer and Avg is the average layer.

system performance ranks in the top 35% (at the time of writing this article

Feb 2019) on the public leaderboard at CodaLab Competition4 achieving about

0.7212 microaveraged F1 score (F1μ) for the three emotion classes.

5.3.1 Ensemble Model for EmoContext

The final model used for submitting to the EmoContext challenge is shown in

Figure 5.3. It is an average ensemble of four variants of neural networks. Net1

and Net2 use the input from a pre-trained character language model whereas

Net3 and Net4 use the GloVe embeddings. We modified the previous architecture

developed for EmoInt challenge explained in the previous experiment. There are

significant changes in the current task of contextual emotion detection in the

three-turn dialogues. The RNN is used to model the context of the two preceding

utterances, similar to the dialogue act recognition task. We internally average

4https://competitions.codalab.org/competitions/19790

89

https://competitions.codalab.org/competitions/19790


Chapter 5. Emotion and Sentiment Analysis in Dialogues

Split Happy Sad Angry Others Total

Train 4243 5463 5506 14948 30160

Dev 142 125 150 2338 2755

Test 284 250 298 4677 5509

Total 4669 5838 5954 21963 38424

Table 5.7: EmoContext Data Distribution.

each network’s output layers, as shown with a dashed line in Figure 5.3.

Data and Preprocessing: The dataset provided by the EmoContext orga-

nizers consists of the three-turn dialogues from Twitter, where turn1 is a Tweet

from user 1; turn2 is a response from user 2 to that Tweet, and turn3 is a back

response to user 2 from user 1 (Gupta et al., 2017). The data statistics is pre-

sented in Table 5.7. We can see that the data is uniformly distributed over three

classes (Happy, Sad, and Angry), but the class Others is dominated by a huge

difference.

Character-level RNN Model: We use the same character-level utterance

representations as in the previous experiment. It is a pre-trained recurrent neural

network model which contains a single multiplicative long short-term memory

(mLSTM) (Krause et al., 2016) layer with 4,096 hidden units (Radford et al.,

2017). Net1 and Net2 are fed the last vector (LV) and the average vector (AV)

of the mLSTM respectively. It is shown in (Lakomkin et al., 2017) that the

AV contains compelling features for emotion detection. The character-level RNN

models (Net1 and Net2 ) are identical and consist of two stacked bidirectional

LSTMs (BiLSTM) followed by an average layer over the sequences computed by

last BiLSTM.

Word-level RNN and RCNN Model: The word embeddings are also used to

encode the utterances. We use pre-trained GloVe embeddings trained on Twitter5

with 200d embedding dimension (Pennington et al., 2014). The average length of

5https://nlp.stanford.edu/projects/glove/
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Models F1μ

Baseline model (organizers) 0.5838

Our proposed model 0.7212

Table 5.8: Results compared to other work; microaveraged F1 score (F1μ) for the

three emotion classes, i.e. Happy, Sad and Angry.

the utterances is 4.88 (i.e. ∼5 words/utterance on average), and about 99.37% ut-

terances are under or equal to 20 words. Therefore, we set 20 words as a maximum

length of the utterances.

Net3 is stacked with two levels of BiLSTM plus the average layer, while Net4

consists of a convolutional neural network (CNN). CNN in Net4 over the embed-

ding layer captures the essential features followed by a max-pooling layer (max),

with the kernel size of 5 with 64 filters and all the kernel weights matrix initialized

with Glorot uniform initializer (Glorot et al., 2011; Kim, 2014; Kalchbrenner and

Blunsom, 2013b). The max-pooling layer of the size of 4 is used in this setup.

This architecture eventually leads to building a recurrent convolutional neural

network (RCNN) model by cascading the LSTM and then a stack of BiLSTM

and the average layer to model the context.

Ensemble Model: As explained in Section 5.2.1, ensemble modelling is a

widely used method to improve the performance of the system by combining

the outputs of several classifiers. Among different ensembling techniques (mixing

experts (Jacobs et al., 1991), model stacking, bagging and boosting (Breiman,

1996)), we use an average of the intermediate layers and the scores of individual

models. The small data size and use of the complex neural models might lead

to overfitting; however, a simple average of the models’ representations lead to

fair comparative results. The overall model is developed in such a way that the

outputs of all the networks (Net1, Net2, Net3, and Net4 ) are averaged and the

fully connected layer (FCL) is used with softmax function over the four given

classes. The complete model is trained end-to-end so that given a set of three

turns, the model classifies the emotion labels.
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Models Accuracy F1μ

Char-LM AV Model 86.26% 0.603

(No Context)

Char-LM LV Model (Net1 ) 88.12% 0.655

Char-LM AV Model (Net2 ) 90.25% 0.694

Word Embs Model (Net3 ) 88.27% 0.665

Word Embs Model (Net4 ) 88.80% 0.653

Char-LM Models 89.59% 0.688

(Net1 and Net2 )

Word Embs Models 87.91% 0.692

(Net3 and Net4 )

Average Ensemble Model 91.31% 0.721

(avg. of outputs of individual networks)

Final Ensemble Model 91.34% 0.721

Table 5.9: Results comparing our experimental setups. The Char-LM AV features

outperforms for No Context model as well as for the context model (Net2). We

notice that the ensemble models performs very similar either ways: averaging the

final outputs of the individual nets and final neural ensemble with FCL.

5.3.2 Results and Discussion on EmoContext

The final submitted result to the challenge is shown in Table 5.8. The metric used

for the challenge is microaveraged F1 score (F1μ) for the three emotion classes, i.e.

Happy, Sad and Angry. The EmoContext challenge organizers calculate it through

the CodaLab online interface. Our model performance could compete quite well

with the participating teams in the challenge. The main goal to present these

experiments is to explore the features used for contextual emotion detection. To

compare different language features (character and word) and neural network

setups, we consider calculating the accuracy over all four classes alongside the

score F1μ. The experimental setups of each network and ensemble models are

tested individually; the results are reported in Table 5.9.
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Figure 5.4: Clusters of the intermediate representations of individual networks on

EmoContext test data. Legends given in this figure are applicable to Figure 5.6

and 5.7.

When the models train individually, the model’s output is directly connected

to the FCL shown by the dotted lines in Figure 5.3. The results show that the

average vector Char-LM AV Model outperforms the four individual networks. As

this model performs well, we also train a single FCL to see the effect of the ab-

sence of context. The ensemble models, Char-LM Models (Net1 and Net2 ) and

Word Embs Models (Net3 and Net4 ) show a clearer raise in accuracy than in-

dividuals. The final ensemble model shows a definite improvement in the overall

performance. However, we also ensemble the output predictions of all the indi-

vidual networks, and average them at the end. Such an ensemble method is also

useful for the overall improvement in the performance.

We took the intermediate representations at the last average layers of the

networks on test data. We plot them against four given classes with the help of

the t-SNE algorithm that converts multi-dimensional (256) array to 2-dimensional

array. In Figure 5.4, we demonstrate the clustering of the individual networks.

It also shows the individual network with no context model, where the model

achieved 86.25% accuracy and 0.6 microaveraged F1 score (F1μ) for the character-

LM AV utterance representation. We see four individual clusters of the network

outputs, where the Net2 Char-LM AV model achieves higher isolation between

the classes. Hence, it is worth experimenting with the same model without context
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Figure 5.5: Confusion matrix of models with character-LM representation. No

context model achieves relatively comparable performance to the with-context

model, but we see that mostly the Others class is more confused than the emotion

classes.

(Char-LM AV Model with No Context). We see that despite achieving competitive

accuracy, the model fails to isolate the classes in the given space. Which indeed

shows the effect of the contextual emotional dialogues that are learned with-

context models better than no-context models, as can also be elicited from the

confusion matrices given in Figure 5.5.

Figure 5.6, shows the clustering of the models comparing the average en-

sembles of character-LM representation models (Net1 and Net2 ) and word-

embedding representation models (Net3 and Net4 ). From this figure, we discover

that the character-LM representation models learn the isolation of classes bet-

ter than the word embedding representation models. However, these ensemble

models provide indifferent performance in terms of accuracy. Figure 5.7 shows

clustering on the final ensemble models. We can notice that the Net2 Char-LM

AV model is entirely consistent while other models are a bit unstable in clus-

tering for the given emotion classes. Surprisingly, for the final ensemble model,

word models become too cluttered but still substantially contribute to the im-

provement. Figure 5.8 shows the confusion matrix for the final ensemble model

where we can see numerically that the class Others is mostly confused. Whereas
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the emotion classes Happy, Sad and Angry are clearly recognized as also seen

how they are separated in the final cluster plot. Another critical point to notice

from the confusion matrices is that the accuracy of both the ensemble models

is very indifferent. That gives an intuition that averaging the final results or the

Ne
t1

Ne
t3

Ne
t2

Av
g.

Final Ensemble Model

The models’ internal state 
seems stable and could 
generalize well. 
Also the F1μ (0.721) is 
relatively high. 

Ne
t4

Figure 5.7: Clustering the intermediate representations final ensemble representa-

tions on the EmoContext test data. All networks are averaged (Avg.) to produce

the final ensemble model.
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Figure 5.8: Confusion matrix on the final ensemble with-context models. Both

the ensemble models produce very similar results.

networks’ intermediate representation produces nearly the same results.

Hence, to conclude the contextual emotion detection, it is essential to consider

contextual neural modelling as a crucial step towards conversational analysis. Es-

pecially in the absence of other modalities such as facial expressions and prosodic

features, context becomes an essential asset for emotion detection in the tex-

tual conversation. As we can see from the results, our model could compete and

provide insight to explore different feature representations. The ensemble mod-

elling and transfer learning become the practical tools for such a challenging task,

specifically, when the given data is small, and the labels are not balanced over

all the samples.
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5.4 Sentiment-guided Dialogue-based Learning

In a conversation, humans use changes in a dialogue to predict safety-critical

situations and use them to react accordingly. In this experiment, we propose to

use the same cues towards safe human-robot interaction for early verbal detection

of dangerous situations. We use a sentiment classifier to annotate the utterances

of the targeted dataset due to no availability of the sentiment-annotated dialogue

corpus at the time of this study. The goal is to learn the sentiment changes within

the dialogues neurally and ultimately predict the sentiment of the upcoming

utterance. We train the recurrent neural network on the context of word sequences

from the two utterances of each speaker, to predict the sentiment class of the next

utterance. Our results show that this leads to a useful estimation of the sentiment

class of the upcoming utterance that can be used for early verbal detection of the

potential safety-critical situations.

Introductory Background of Experiment

In human-robot interaction, one of the primary concerns is safety. In this work,

we address safety as the condition of being protected from or unlikely to cause

danger or injury. A mobile robot serving a wrong drink, coffee instead of water in

a cup might be an acceptable mistake, whereas serving any drink in a broken cup

becomes an unacceptable risk. When the robot is verbally instructed to perform

this action, consider that the user also informs the robot that there is a chance

of hazardous or risky situation, as illustrated in Figure 5.9. Early recognition of

hazards is crucial for safety-related control systems, such as protective or emer-

gency stop, which is an essential feature for personal care robots (Tadele et al.,

2014). The main goal of this experiment is to study the early detection of safety-

related cues through language processing. In the case of wrong robot action, the

user might prompt with an utterance that, although often not understandable

for the robot, carries a feedback signal for the last action performed, which can

help understand the situation (Latham, 1997; Weston, 2016).

A possible conversation scenario as shown in Figure 5.9, the robot (R) per-

ceives a sentence from the person (P) with neutral sentiment and responds with a

query whether this means it should continue. Expecting a favourable (sentimen-

tally positive) reply if everything is fine, but the next utterance has a negative

sentiment. The robot can stop or revert the action based on this sentiment sig-
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R: Hello, how can I help you? Neutral
P: Can you bring me tea? Neutral
R: Yes, I can make some tea. Positive (context)
P: Oh, that cup seems broken. Neutral
R: Shall I continue the action. Neutral
P: No, don’t use the broken cup. Negative (context)
R: Okay, I will find another one. Neutral

Figure 5.9: Example for preparing the context samples: labeled by sentiment

analyser, previous two utterances of the sentiment classes (such as positive and

negative) are stored as the context samples.

nal without understanding the utterance. Furthermore, an estimate of the users’

response sensitivity is necessary when the robot needs to ask safety-critical ques-

tions (Fong et al., 2003b).

The goal of this experiment, as a first step, is to learn from the spoken language

dialogues to predict the sentiment of the next upcoming utterance that eventually

leads to in-depth language learning of the safety-critical cues. As shown in Figure

5.9, we use two utterances as context, capturing a sequence with both speakers, to

predict the next utterance sentiment from the first speaker. We deploy long short-

term memory (LSTM) network to learn the sentiment change in the dialogues.

Since we want to extend our model to longer contexts, we choose the LSTM

RNNs and show that they could successfully learn to estimate the sentiment of

the next upcoming utterance.

5.4.1 Background: Language Learning through Feedback

Responses from humans in the conversational interaction have been used in var-

ious ways in the human-robot scenarios. In student/teacher learning scenarios,

to facilitate learning, a teacher gives positive and negative feedback depending

on the success of the student (Latham, 1997). Weston (2016) has shown that the

positive-negative sentiment in the teacher’s response helps to guide the learning

process. Other work (Sordoni et al., 2015) describes context-sensitive response

generation in the field of language understanding and generation. They report

that the model lacks in reflecting the agents intent and maintaining the consis-

tency with the sentiment polarity. That means that the predictable changes in
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the sentiment polarity may act as cues for the changing situations so sentiment

change over the dialogue can be used as a feedback signal to learn the changes

in the perceivable environment.

Sentiment analysis is a crucial aspect of the decision-making process and has

received much attention in the scientific community (Pang and Lee, 2008). With

the vast amount of data available for analysis, many methods have been explored

(Kim and Hovy, 2004; Wang and Manning, 2012) recently. Deep learning has

given rise to some new methods for the sentiment analysis task, outperforming

traditional methods (Socher et al., 2013b; Dai and Le, 2015). Different NLP

tasks can be performed independently using deep neural networks (Collobert

and Weston, 2008). Especially in text classification, the advanced neural network

approaches are used, such as convolutional neural networks (Kim, 2014) and

recursive and recurrent neural networks (Biswas et al., 2015; Socher et al., 2013b).

A fixed-size context window can be used to solve the variable length of language

text sequences, but this fails to capture the dependencies longer than the window

size.

The accessibility to large unlabelled text data can be utilized to learn

word2vec model (Mikolov et al., 2013a), which attempts to encode the meaning

of words and the structure of sentences. The learned word embeddings are then

used for creating lexicons and have a reduced dimensionality compared to tradi-

tional methods. This approach has also been used for learning sentiment-specific

word embeddings for sentiment analysis (Maas et al., 2011). Our approach uti-

lizes such word embeddings to process by the LSTM network in order to learn

the sentiment changes in dialogues.

5.4.2 Contextual Sentiment Learning of Next Utterance

Data and preprocessing: We have used two spoken interaction conversa-

tional corpora for training our model from two very different sources, child-adult

interaction and movie subtitles. The first has the child-level language compo-

nent taken from the TalkBank system, called CHILDES6 (MacWhinney, 1991),

where many child and adult speakers converse on daily issues. In this dataset, we

selected the conversations with children of age 12 and above, which have suffi-

cient verbal interaction capabilities and comparatively less grammatical mistakes

6http://childes.talkbank.org or http://childes.psy.cmu.edu
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Datasets CHI MDC

Raw utterances 11.1k 304k

Contexts (neg-pos) 4.1k 189k

Contexts (neg-neu-pos) 6.2k 283k

Table 5.10: Dataset statistics for sentiment-guided dialogue learning.

(Clark, 1978). The other corpus is the Cornell Movie-Dialogues corpus (Danescu-

Niculescu-Mizil and Lee, 2011), which is more structured, it is grammatically

more correct, and is also larger than the child-interaction corpus.

As our goal is to predict the sentiment from a context, as shown in Figure

5.9, we need to annotate the utterances with the sentiment labels. The child-

interaction corpus (CHI) already has word-level sentiment annotation, while the

movie dialogues corpus (MDC) has none. We thus used the Vader sentiment anal-

ysis tool (Hutto and Gilbert, 2014) from the Natural Language Tool Kit (NLTK)

(Loper and Bird, 2002) library to annotate each utterance with a determined

sentiment polarity. We empirically adjusted the sentiment level threshold to 0.2

and 0.6 on the scale of 0 to 1 for both positive and negative classes to avoid imbal-

anced classes in our data. Data samples are extracted by selecting the utterance

with the given sentiment label as a ground-truth and capturing the previous two

utterances as a context sample. We have created two datasets for the experi-

ment, creating contexts from utterances with a set of either binary negative/-

positive (neg-pos) or multi-class negative/neutral/positive (neg-neu-pos) classes.

The dataset details are shown in Table 5.10. While taking the previous utterances

for each sample, we encounter the overlapping of utterances in the contexts, i.e.

one utterance may appear in two contexts. The proposed classification model can

operate on binary (neg-pos) and multi-class (neg-neu-pos) dataset.

Model: We used the well-established recurrent long short-term memory (LSTM)

neural network (Hochreiter and Schmidhuber, 1997), a particular form of the

recurrent neural network, discussed in Chapter 3 and shown in Figure 3.4. The

sequence of the words is represented by their numeric indices in a dictionary to

be proposed with the embedding layer, which is implemented as a standard MLP

layer, as shown in Figure 5.10. The embedding layer randomly initializes the

normalized vectors or can utilize already pre-trained embeddings, to represent
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Figure 5.10: The long short-term memory (LSTM) units with classification setup.

Biases are ignored for simplicity.

each word index by a real-valued vector of a given size which is then processed

by the LSTM layer.

The LSTM layer receives a sequence of embedded word vectors (w1, w2, ..., wn)

from the context utterances (ut−1 and ut) as an input and outputs a sentiment

class of the next utterance yt+1. The last LSTM unit maintains a hidden vector hn

and different gates and memory cells responsible for controlling state updating at

time step t as given in Equations from 3.5 to 3.10, as described in Section 3.2.2.

The weight-projection matrices and bias vectors are initialized randomly and

learned during the training process. The gating functions of the LSTM helps this

RNN to mitigate the vanishing and exploding gradient problems. As an output,

we get the hidden vector representation (h) of the entire sequence of words which

is then used as an input to the softmax classifier. In the classification setup as

shown in Figure 5.10, given the current activation function in the hidden state

ht, the LSTM generates the output according to the following equation:

ht = LSTM (w1, w2, w3...) |
∑

w ∈ (ut−1, ut) (5.3)
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Setups
Random

Guess

CHI

(10d)

CHI

(100d)

MDC

(100d)

Binary 50.00% 59.30% 59.06% 52.44%

Multi-class 33.33% 54.60% 54.56% 48.36%

Table 5.11: Prediction accuracy on the test dataset of the model trained with

word embedding vectors.

yt+1 = softmax (Wout ∗ ht) (5.4)

where Wout is an output weight matrix which can be stored to make the pre-

dictions along with other parameters as explained in Section 3.2.2. The softmax

function produces normalized probability distribution over the possible classes,

positive, neutral and negative.

5.4.3 Experiments and Results

The model is trained to recognize the sentiment polarities of the next upcoming

utterance, given the recent two utterances in the context. We train the classifier

by concatenating the context utterances and using the next utterance label as a

training target signal (yt+1). The utterances have been labelled by the sentiment

analyzer for the binary and multi-class datasets, as given in Table 5.10. The input

to the network is always the sequence of concatenated utterances. The prediction

of the upcoming utterance sentiment is taken from the classified output of LSTM

at the end of the sequence. The input sequence length is fixed to the maximum

length in the utterances, and padding is used to make them of the same length.

The training is performed using categorical cross-entropy as the loss function,

using the stochastic gradient descent optimization method. The learning rate and

the number of hidden units were empirically determined for all the experimental

setups. The hidden layer dimensions used are 64 for CHILDES and 512 for Movie-

Dialogues corpus. We randomly initialized the word embedding vectors with the

dimension of 10 and 100 for CHILDES and 100 for MDC, and we also used the

pre-trained GloVe vectors of dimension 100 (Pennington et al., 2014). We trained

the model on both the datasets as described before and for every two different

setups. Each dataset is split into training, validation and test data with a 60%-
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Setups
Random

Guess

CHI

(100d)

MDC

(100d)

Binary 50.00% 63.36% 54.97%

Multi-class 33.33% 58.13% 51.71%

Table 5.12: Prediction accuracy on test data with the pre-trained GloVe word

embedding vectors.

20%-20% split. The summary of the test data prediction accuracies is shown

below in Table 5.11 where the word embedding vectors are learned by the model

and 5.12 where pre-trained word embedding vectors are used. The pre-trained

embedding representations show better accuracy than the randomly initialized

representations, also, using different embedding dimensions (10 or 100) produced

very similar results.

We also implemented a simple bot, that receives the utterances sequentially,

evaluates the trained model on dialogue, and monitors the changing hypothesis

of the upcoming utterances’ sentiment. We present an example from the test

data in Figure 5.11. The utterances from the conversation are processed one by

one, and the progression of sentences is shown with the predictions and ground-

truths. Bold values in the array [neg neu pos] represent the detected class for the

current and the next utterance’s sentiment hypothesis. We also show two related

contexts, positive (green) and negative (red). For example, the utterance “oh no,

yeah this chair is broken” has a negative sentiment label, and the model estimates

a correct prediction. We can also see that the model failed to predict the positive

class for the utterance “yeah please use another one”.

We notice an unpredicted increase in the negative sentiment for the utterance

“oh that chair is broken”. However, the final result is still classified as neutral

(towards negative), which could already have been used to detect a change in the

sentiment. Thus the robot could be aware of a possible safety-critical change in

the environment situation or the users’ perception of the robots current action.

The same can be noticed for the misclassified utterance where P2 perceived a

negative situation and might have no solution. However, suddenly, interpreting

the positive sentiment of P1 in the next utterance to understand that the situation

has a solution or has been solved and no hazardous situation to expect. Overall,
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Utterances Sentiment of Next utterance    Next utterance
current utterance sentiment hypothesis    might be
[neg    neu   pos] [neg    neu   pos]

P1: please sit down [0.00  0.46  0.54] [0.45  0.04  0.51]    Positive

P2: yeah thanks  [0.00  0.00  1.00] [0.09  0.78  0.13]    Neutral

P1: oh that chair is broken [0.44  0.56  0.00] [0.58  0.20  0.22]    Negative

P2: oh no , yeah this chair is broken [0.46  0.34  0.20] [0.03  0.94  0.03]    Neutral *

P1: yeah please use another one [0.00  0.40  0.60] [0.28  0.09  0.63]    Positive

P2: okay thank you [0.00  0.18  0.82] [0.22  0.59  0.19]    NeutralP
os

iti
ve
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xt

)
N

eg
at

iv
e

(c
on

te
xt

)

*

Figure 5.11: Test example: prediction on a dialogue.

* indicates that the sentiment recognition does not match the ground-truth.

the results show that it is possible to derive valuable cues by estimating the

sentiment of the next upcoming utterance, and the model can learn to keep track

of the sentiment through dialogues. The corpora used in this experiment, are auto-

annotated with the standard sentiment analysis tool, which led to comprehensible

results. However, a human-annotated corpus might still lead to better results.

Concluding Remarks and Discussion

In this experiment, we have presented a learning approach to estimate the sen-

timent of the next upcoming utterance within the dialogue. We show that the

model can predict the sentiment of the upcoming utterance to a certain degree,

taking into account that the used corpora are noisy. It is also important to men-

tion that no system would reliably predict the upcoming utterance sentiments due

to the changing nature of social dialogues. Detecting safety-related cues as early

as possible is crucial, and a certain number of false-positives can be accepted (or

quickly resolved through a query within the dialogue) if possible dangers can be

avoided when they occur. We find that tracking even a noisy sentiment through

the dialogue can positively impact safety during human-robot interaction, espe-

cially when combined with a multi-modal system.

While this work focuses on keeping track of the sentiment in dialogue-based

context learning, we aim to extend this to different language features contain-

ing safety-related cues. The experiments show that the models can learn from

the auto-annotated sentiment datasets. However, human-annotated labels might
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lead to better results. This work already presents a promising step towards learn-

ing social cues via sentiment and can provide useful dialogue-based information

regarding the safety context in human-robot interaction. However, we aim to

explore different socio-linguistic features that contribute to more aspects of the

language.

5.5 Summary

In this chapter, we explored one of the key socio-linguistic features, emotion. We

provide an insight into how emotion influences the dialogue and decision-making

process in general. We explored emotion intensity detection from the Tweets,

where we learn how different features derived from several domain-specific lexica

aids end-to-end learning of emotion detection. However, we found that RNN-

based ensemble models alone could compete with the baseline model. Then we

explored the contextual emotion detection in the data of three-turn dialogues,

where we employ only RNN- and CNN-based ensemble models that competed

for the state-of-the-art results. In the following section (5.3 “Contextual Emo-

tion Detection in Dialogue”), we showed that the context learning of emotion

elicits improved performance over the no-context model. In the last section (5.4

“Sentiment-guided Dialogue-based Learning”) of this chapter, we presented a

novel technique where the model is trained to estimate sentiment of next up-

coming utterance using context-based learning. This technique helps determine

undesired or dangerous cues through language learning in the conversation for

safe human-robot interaction.

We aimed to use minimal information, such as transcribed textual conversa-

tions, which could be extended to different modalities such as prosodic features,

as human voice changes in different emotional situations (Lakomkin et al., 2018).

Sometimes such information of other modalities is entirely unavailable, such as on

the social media and conversational chat. In such cases, the minimal textual infor-

mation has to be utilized to achieve the ultimate task of emotion recognition. In

contrast, while dialogue acts extract the meaning of an utterance in the dialogue,

the emotions express feelings. In the next chapter (6 “Emotional Dialogue Acts”),

we will show how emotion and dialogue acts posses some special relations. On the

other hand, other socio-linguistic features, such as politeness, allow exploring an

extended dimension of the emotion or sentiment. For example, polite behaviour
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is seen with positive sentiment or happy mood emotion, whereas impolite is per-

ceived as negative, aggressive, or unhappy with emotion (Langlotz and Locher,

2017). We will discuss about this concept in the last chapter (7 “Dialogue-based

Navigation driven by Politeness for HRI”), where we demonstrate a human-robot

interaction scenario that uses politeness cues in verbal interaction to vary the

navigation speed of the robot.
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Chapter 6

Emotional Dialogue Acts

We have explored dialogue acts and emotions independently; however, we discover

that there is a strong relation between them, which can be useful to understand

a different aspect of language. In this chapter, we present an ensemble of neural

annotators to annotate existing emotion conversational data with the dialogue

act labels and explore the discovery of the emotional dialogue act relationships.

6.1 Introduction

Emotion makes us understand feelings, whereas dialogue acts reflect the inten-

tions and performative functions in the utterances. The recognition of emotion

and dialogue acts can enrich conversational analysis and help build a natural di-

alogue system. It is quite evident from our conversational experience that when a

person apologies (an Apology dialogue act) the expressed emotion is mostly sad-

ness as against when thanking (a Thanking dialogue act), the emotion expression

is mostly joyful, as illustrated in Figure 6.1. We aim to analyze such relations,

but there was no conversational dataset available with the emotion and dialogue

act labels together during this study. Most of the textual and multi-modal con-

versational emotion datasets contain only emotion labels but not dialogue act

labels. To address this problem, we propose to use a pool of various recurrent

neural network models trained on the Switchboard Dialogue Act (SwDA) corpus,

in different architectural setups such as with or without context, as discussed in

Chapter 4. We developed an ensemble of such neural annotators to annotate the

emotion dataset for dialogue acts explained in this chapter. Each neural models

annotate the emotion corpus with dialogue act labels, and an ensemble annotator
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Everything was 
delicious!

Thank you very 
much.

Person1 Person2

Ohh, well, this is just 
perfect!

I am really sorry!

Person1 Person2

Appreciation

Thanking

Statement-opinion

Apology

Joyful Anger

SadnessJoyful

Figure 6.1: Example of a contextual dialogue with dialogue acts (upper box aside

utterance) and emotion expressions (lower box aside utterance).

extracts the final dialogue act label. We annotated two accessible multi-modal

emotion datasets: IEMOCAP and MELD. We analyzed the co-occurrence of emo-

tion and dialogue act labels and discovered specific relations. For example, Accep-

t/Agree dialogue acts often occur with the Joy emotion, Apology with Sadness,

and Thanking with Joy. We make the Emotional Dialogue Act (EDA) corpora

publicly available to the research community for further study and analysis.

With the growing demand for human-computer/robot interaction systems,

detecting the user’s emotional state can primarily benefit a conversational agent

to respond at an appropriate affective level. Emotion recognition in conversations

has proven valuable for various applications such as response recommendation or

generation, emotion-based text-to-speech, and personalization. Human emotional

states can be expressed verbally and non-verbally (Ekman et al., 1987; Osgood

et al., 1975), and however, while building an interactive dialogue system, the

interface needs dialogue acts to understand user input utterance (López-Cózar

et al., 2010). A typical dialogue system consists of a language understanding

module that requires determining the meaning and intention in the input utter-

ances (Berg, 2015; Ultes et al., 2017). Also, in conversational discourse analysis,

dialogue acts are the main linguistic features to consider (Bothe et al., 2018b).

The dialogue act provides an intention and performative function in the utter-

ance of a dialogue. For example, it can distinguish different intentions such as

Question, Answer, Request, and Agree/Reject and performative functions such

as Acknowledgement, Conversational-opening or -closing, Thanking and Apology.
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Figure 6.2: Emotional Dialogue Acts: Example of a dialogue from MELD repre-

senting emotions and sentiment (rectangular boxes), in our work, we add dialogue

acts (rounded boxes) to the original image from Poria et al. (2019).

The dialogue act information, together with emotional states, can be beneficial

for a spoken dialogue system to produce natural affective interaction (Ihasz and

Kryssanov, 2018).

The research in emotion recognition is proliferating, and many datasets are

available, such as text-based, speech- or vision-level, and multi-modal conversa-

tional emotion data. Emotion expression recognition is a challenging task, and

hence multimodality is crucial (Ekman et al., 1987). However, a few conver-

sational multi-modal emotion datasets are available, for example, IEMOCAP

(Busso et al., 2008), SEMAINE (McKeown et al., 2012), MELD (Poria et al.,

2019). They are multi-modal dyadic conversational datasets containing audio-

visual and conversational transcripts. Every utterance transcript in these datasets

is labelled with an emotion label.

In this chapter, we explore an automated neural ensemble annotation pro-

cess for dialogue act labelling. Several neural models are trained with the SwDA

corpus (Godfrey et al., 1992; Jurafsky et al., 1997) and used for inferring dia-

logue acts on the emotion datasets. We ensemble the outputs of the five models

by checking majority occurrences (most of the model outputs the same label)
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and ranking confidence values of the models. We have annotated two potential

multi-modal conversation datasets for emotion recognition: IEMOCAP (Inter-

active Emotional dyadic MOtion CAPture database) and MELD (Multimodal

EmotionLines Dataset). Figure 6.2, shows an example of the dialogue act tags

with emotion and sentiment labels from the MELD dataset. We confirmed the

reliability of annotations with several inter-annotator metrics. We analyzed the

co-occurrences of the dialogue act and emotion labels and discovered an interest-

ing relationship between them; individual dialogue acts of the utterances show

significant and useful association with respective emotional states. For example,

Accept/Agree dialogue act often occurs with the Joy emotion while Reject with

Anger, Acknowledgements with Surprise, Thanking with Joy, and Apology with

Sadness. The detailed analysis of the emotional dialogue acts (EDAs) are re-

ported in this chapter, and annotated datasets are available at the SECURE EU

Project website1.

6.2 Annotation of Emotional Dialogue Acts

(EDA)

6.2.1 Data for Conversational Emotion Analysis

There are two primary emotion taxonomies: (1) discrete emotion categories

(DEC) and (2) fined-grained dimensional basis of emotion states (DBE). The

DECs are Joy, Sadness, Fear, Surprise, Disgust, Anger and Neutral; identified by

Ekman et al. (Ekman et al., 1987). The DBE of the emotion is usually elicited

from two or three dimensions (Osgood et al., 1975; Russell and Mehrabian, 1977;

Cowie and Cornelius, 2003). A two-dimensional model is commonly derived with

Valence and Arousal (also called activation), and the three-dimensional model

contains Dominance as a third dimension. IEMOCAP is annotated with all DECs

and two additional emotion classes, Frustration and Excited. IEMOCAP is also

annotated with three DBE, that includes Valance, Arousal and Dominance (Busso

et al., 2008). MELD (Poria et al., 2019), which is an evolved version of the Emo-

tionLines dataset developed by (Chen et al., 2018a), is annotated with exactly 7

DECs and sentiment labels (positive, negative and neutral).

1https://secure-robots.eu/fellows/bothe/EDAs/, IEMOCAP is available only with

speaker IDs, for full data visit https://sail.usc.edu/iemocap/
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6.2.2 DA Tagset and SwDA Corpus

As discussed in Chapter 4, there have been many taxonomies for dialogue acts:

speech acts (Austin, 1962) refer to the utterance, not only to present informa-

tion but also to the action performed by an utterance. Speech acts were later

modified into five classes (Assertive, Directive, Commissive, Expressive, Declar-

ative) (Searle, 1979). Many such standard taxonomies and schemes are used to

annotate conversational data, and most of them follow the discourse composition-

ality. These schemes have proven their importance for conversational discourse

analysis (Skantze, 2007). During the increased development of dialogue systems

and discourse analysis, the standard taxonomy was introduced in recent decades,

the DAMSL tag set being one of them. As discussed in chapter 2, each DA has

a forward-looking function (such as Statement, Info-request, Thanking) and a

backwards-looking function (such as Accept, Reject, Answer) (Allen and Core,

1997). The DAMSL annotation includes not only the utterance-level but also

segmented-utterance labelling.

However, in the emotion datasets, the utterances are not segmented, as we

can notice from Figure 6.2, first and fourth utterances are not segmented as two

separate ones. The fourth utterance could be segmented to have two different

dialogue act labels, for example, Statement (sd) and Yes-No Question (qy). That

could provide very fine-grained DA classes and follows the concept of discourse

compositionality. DAMSL scheme distinguishes Wh-question (qw), Yes-No ques-

tion (qy), Open-ended question (qo), and Or-question (qr) dialogue act classes,

not just because these questions are syntactically distinct, but also because they

have different forward functions (Jurafsky, 1997). For example, yes-no question

(qy) is more likely to get a “yes” answer than a Wh-question (qw). It also gives

an intuition that the answers follow the syntactic formulation of the question,

providing a context. For example, qy is used for a question that, from a discourse

perspective, expects a Yes- (ny) or No- (nn)Answer dialogue act. We have investi-

gated the annotation methods (in Section 6.2) and the neural models are trained

with the SwDA corpus (Godfrey et al., 1992; Jurafsky et al., 1997). SwDA corpus

is annotated with the DAMSL tag set, and it has been used for reporting and

bench-marking state-of-the-art results in the dialogue act recognition task (Stol-

cke et al., 2000; Kalchbrenner and Blunsom, 2013b; Bothe et al., 2018d) which

makes it ideal for this use case of the ensemble of neural annotators. The details
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Observation and
Correction

Human
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.

.

.

.

Speaker ID Utterance Emotion utt-l1 utt-l2 con1 con2 con3 EDA

Ses01F_impro03_F000 Well Vegas was awesome. happy sv sv sv sv sd sv

Ses01F_impro03_M001 Yeah. I heard. neutral b sd b b b b

Ses01F_impro03_F001 And, um, I got married. happy sd sd sd sd sd sd

Ses01F_impro03_M002 Shut up. No- in Vegas? surprise ad qy^d qy^d qy qy qy

Ses01F_impro03_F002 Yeah. In the old town part. happy aa sd na ny na na

Ses01F_impro03_M003 Who did you marry? excited qw qy qw qw qw qw

Ses01F_impro03_F003 Chuck. [LAUGHTER] unknown sd sd sd sd sd sd

Figure 6.3: Setup of the annotation process of the EDAs, above example utter-

ances (with speaker identity) and emotion labels are from IEMOCAP database.

about this dataset is provided in Chapter 4 and in Appendix B.1.

6.2.3 Neural Annotators

We adopted the neural architectures based on (Bothe et al., 2018c) where the

two primary variants are non-context model and context model. The non-context

model classifies at an utterance-level, whereas the context model uses the current

utterance along with a few preceding utterances for the classification. From con-

versational analysis using dialogue acts in (Bothe et al., 2018b), we learned that

the preceding two utterances contribute significantly to recognizing the dialogue

act of the current utterance. Hence, we adapt this setting for the context model

and create a pool of annotators using recurrent neural networks (RNNs). RNNs

can model the contextual information in the sequence of words of an utterance,

and the sequence of utterances of a dialogue. Each word of the utterance is repre-

sented with a word embedding vector of dimension 1024 using the word embed-

ding vectors from the pre-trained ELMo (Embeddings from Language Models)
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embeddings2 (Peters et al., 2018). We create a pool of five neural annotators,

as shown in Figure 6.3. Our online tool called Discourse-Wizard3 is available to

demonstrate automated dialogue act labelling. We use the same neural architec-

tures in the backend in this tool, and the entire process is encapsulated with

ELMo embeddings as a REST API. The annotators are shown in Figure 6.4 that

represents following models:

Utt-level 1 Dialogue Act Neural Annotator (DANA) is an utterance-

level classifier that uses word embeddings (w) as an input to the RNN layer

with attention mechanism (a) and computes the probability of dialogue acts (da)

using softmax function (see in Figure 6.4, dotted line utt-l1 ). This model achieved

75.13% accuracy on the SwDA corpus test set.

Context 1 DANA is a context model that uses two preceding utterances while

recognizing the dialogue act of the current utterance (see context model with con1

line in Figure 6.4). It uses a hierarchical RNN architecture with the first RNN

layer to encode the utterance from word embeddings (w) and the second RNN

layer is provided with these encoded utterances (u), current and two preceding

ones, followed by the attention mechanism (a), where
∑n

n=0 at−n = 1. Finally, the

softmax function is used to compute the probability distribution of the dialogue

acts (da). This model achieved 77.55% accuracy on the SwDA corpus test set.

Utt-level 2 DANA is another utterance-level classifier which takes an average

of the word embeddings in the input utterance and uses a feedforward neural

network hidden layer (see the utt-l2 line in Figure 6.4, where mean (avg.) passed

directly to the softmax function). Similar to the previous model, it computes the

probabilities of dialogue acts using the softmax function. This model achieved

72.59% accuracy on the test set of the SwDA corpus.

Context 2 DANA is another context model that uses three utterances similar

to the Context 1 DANA model, but the utterances are composed as the mean

of the word embeddings over each utterance, similar to the Utt-level 2 model

(avg. passed to context model in Figure 6.4 with con2 line). Hence, the Context

2 DANA model is composed of one RNN layer with three input vectors, finally

topped with the softmax function for computing the probability distribution of

the dialogue acts. This model achieved 75.97% accuracy on the SwDA corpus test

set.

2https://allennlp.org/elmo
3https://secure-robots.eu/fellows/bothe/discourse-wizard-demo/
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Figure 6.4: Recurrent neural network mechanism with attention mechanism de-

picting all the architectures of the utterance-level and context-based models.

Context 3 DANA is third context model that uses three utterances similar

to the previous context models, but the utterance representations combine both

features from the Context 1 and Context 2 models (con1 and con2 together in

Figure 6.4). Hence, the Context 3 DANA model combines features of almost all

the previous four models to provide the recognition of the dialogue acts. This

model achieves 75.91% accuracy on the SwDA corpus test set.

114



6.2. Annotation of Emotional Dialogue Acts (EDA)

Stats AllMatch ConModel ConfMatch NoMacth

IEMOCAP 43.73% 46.66% 3.01% 6.60%

MELD 37.07% 47.20% 4.58% 11.15%

Table 6.1: Annotations Statistics of EDAs - AllMatch: All Models Absolute

Match, ConModel: Context-based Models Absolute Match (matched all context

models or at least two context models matched with one non-context model),

ConfMatch: Based-on Confidence Ranking, and NoMacth: No Match (these are

labeled as ‘xx’: determined in EDAs).

6.2.4 Ensemble of Neural Annotators

First preference is given to the labels that are perfectly matching the predictions

of all the neural annotators. Table 6.1 shows that both datasets have about 40%

of exactly matching labels over all the models. Then priority is given to the

context-based models to check if the label in predictions of all context models is

matching perfectly. In case two out of three context models match correctly, and

if the same label is also produced by at least one of the non-context models, we

allow these labels to rely on these at least two context models. As a result, about

47% of the labels are taken based on the context models.

When we see that none of the context models is producing the same labels,

then we rank the labels with their respective confidence values produced as the

probability distribution using the softmax function. The labels are sorted in

descending order according to the confidence values. Then we check if the first

three (case when one context model and both non-context models produce the

same label) or at least two labels are matching, then we allow to pick that one.

There are about 3% in IEMOCAP and 5% in MELD.

Finally, when none of the above conditions is fulfilled, we leave the label with

an unknown category. This unknown category of the dialogue act is labelled with

‘xx’ in the final annotations, and they are about 7% in IEMOCAP and 11% in

MELD. The statistics4 of the EDAs is reported in Table 6.3 for both datasets. The

total utterances in the annotated MELD corpus include the training, validation

4The updated statistics and datasets are available at: https://github.com/bothe/EDAs
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Metrics α k SCC

IEMOCAP 0.553 0.556 0.636

MELD 0.494 0.502 0.585

Table 6.2: Annotations Metrics of EDAs - α: Krippendorff’s Alpha coefficient, k:

Fleiss’ Kappa score, and SCCM: Spearman Correlation between first two Context-

based Models.

and test sets5.

6.2.5 Reliability of Ensemble Neural Annotators

The pool of neural annotators provides an acceptable range of annotations, and we

checked the reliability with the following metrics (McHugh, 2012). Krippendorff’s

Alpha (α) is a reliability coefficient which is often used in emotion annotation

(Wood et al., 2018). It is created to measure the agreement among annotators,

and raters. We apply it on the five neural annotators at the nominal level of

measurement of dialogue act categories. α is computed as follows:

α = 1− Do

De

(6.1)

where Do is the observed disagreement and De is the disagreement that is ex-

pected by chance. α = 1 means all annotators produce the same label, while

α = 0 would mean none agreed on any label. As we can see in Table 6.2, both

the datasets, IEMOCAP and MELD, produce significant inter-neural-annotator

agreement, 0.553 and 0.494, respectively.

A prevalent inter-annotator metric is Fleiss’ Kappa score, also reported in

Table 6.2, which determines consistency in the ratings. The kappa score k can be

calculated as,

k =
P̄ − P̄e

1− P̄e

(6.2)

where the numerator P̄ − P̄e provides the degree of actually achieved agreement

over the denominator 1 − P̄e that elicits the degree of agreement that is attain-

able above possibility. Hence, k = 1 if the raters agree completely, and k = 0

5https://affective-meld.github.io/
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when none reach any agreement. We got 0.556 and 0.502 for IEOMOCAP and

MELD, respectively, with our five neural annotators. It indicated that the anno-

tators are labelling the dialogue acts reliably and consistently. We also report the

Spearman’s correlation between context-based models (Context1 and Context2),

and it shows a strong correlation between them (see in Table 6.2). While using

the labels, we checked the absolute match between all context-based models and

hence their strong correlation indicates the robustness of the neural annotators.

6.3 EDAs Analysis

We can see emotional dialogue act co-occurrences with respect to emotion labels

in Figure 6.5 for both datasets. There are sets of three bars per dialogue act

in the figure, the first and second bar represents emotion labels of IEMOCAP

(IE) and MELD (ME), respectively, and the third bar is for MELD sentiment

(MS) labels. MELD emotion and sentiment statistics are compelling as they are

strongly correlated to each other. The bars contain the normalized number of

utterances for emotion labels regarding the total number of utterances for that

particular dialogue act category. The statements without-opinion (sd) and with-

opinion (sv) contain utterances with almost all the emotion labels and many

neutral emotion utterances are spanning over all the dialogue acts.

On the other hand, the quotation (ˆq) dialogue act labelled utterances are

mostly used with ‘Anger’ and ‘Frustration’ (in case of IEMOCAP), however, some

utterances with ‘Joy’ or ‘Sadness’ as well (see examples in Table 6.4). Action

Directive (ad) dialogue act utterances, which are usually commands or orders,

frequently occur with ‘Anger’ or ‘Frustration’ although many with ‘Happy’ emo-

tion in case of MELD. Acknowledgements (b) are mostly with positive or neutral

sentiment, however, Appreciation (ba) and Rhetorical (bh) backchannels often

occur with a greater number in ‘Surprise’, ‘Joy’ and/or with ‘Excited’ (in case

of IEMOCAP). Questions (qh, qw, qy and qyˆd) are mostly asked with emotions

‘Surprise’, ‘Excited’, ‘Frustration’ or ‘Disgust’ (in case of MELD), and many are

neutral. No-answers (nn) are mostly ‘Sad’ or ‘Frustrated’ as compared to Yes-

answer (ny). Forward-functions such as Apology (fa) are mostly with ‘Sadness’

whereas Thanking (ft) and Conventional-closing or -opening (fc or fp) are usu-

ally with ‘Joy’ or ‘Excited’. We also noticed that both datasets exhibit a very

similar relationship between dialogue act and emotion labels. It is essential to no-
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DA Dialogue Act IEMOCAP MELD

sd Statement-non-opinion 43.97 41.63

sv Statement-opinion 19.93 09.34

qy Yes-No-Question 10.3 12.39

qw Wh-Question 7.26 6.08

b Acknowledge (Backchannel) 2.89 2.35

ad Action-directive 1.39 2.31

fc Conventional-closing 1.37 3.76

ba Appreciation or Assessment 1.21 3.72

aa Agree or Accept 0.97 0.50

nn No-Answer 0.78 0.80

ny Yes-Answer 0.75 0.88

br Signal-non-understanding 0.47 1.13

ˆq Quotation 0.37 0.81

na Affirmative non-yes answers 0.25 0.34

qh Rhetorical-Question 0.23 0.12

bh Rhetorical Backchannel 0.16 0.30

ft Thanking 0.13 0.23

qyˆd Declarative Yes-No-Question 0.13 0.29

bf Reformulate 0.12 0.19

fp Conventional-opening 0.12 1.19

fa Apology 0.07 0.04

fo Other Forward Function 0.02 0.05

Total number of utterances 10039 13708

Table 6.3: Number of utterances per DA in respective datasets. All values are in

percentages (%) of the total number of utterances.
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EDAs Utterances Emotion

Quotation (ˆq) Not after this! anger

Ross, I am a human doodle!! anger

No, you can’t let this stop! sadness

Oh hey! You got my parent’s gift! joy

Action-Directive (ad) And stop using my name! anger

Oh, let’s not tell this story. sadness

Check it out, he’s winning! surprise

Yep! Grab a plate. joy

Backchannel (b) Oh yeah, sure. neutral

Appreciation b (ba) Great. joy

Rhetorical b (bh) Oh really?! surprise

Rhetorical Question (qh) Oh, why is it unfair? surprise

Wh-Question (qw) What are you doing? surprise

How are you? neutral

Yes-No Question (qy) Did you just make that up? surprise

Declarative qy (qyˆd) Can’t you figure that out? anger

No-Answer (nn) No! disgust

Yes-Answer (ny) Yeah! joy

Table 6.4: Examples of EDAs with annotation from the MELD dataset. Emotion

and sentiment labels are given in the dataset, while our ensemble of models

annotates EDAs.

tice that the dialogue act annotation is based on the given transcripts; however,

the emotional expressions are better perceived with audio or video (Busso et al.,

2008).

We report some examples where we mark the utterances with a determined

label (xx ) given in Table 6.5. They are skipped from the final annotation because

of not fulfilling the conditions of the ensemble model explained in Section 6.2.4
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EDAs Utterances Emotion

Determined EDAs (xx )

1. (P-DA b) b, b, ba, fc, b Yeah, sure! neutral

2. (P-DA sd) sv, aa, bf, sv, nn No way! surprise

3. (P-DA qy) aa, aa, ng, ny, nn Um-mm, yeah right! surprise

4. (P-DA qy) aa, ar, ˆq, ˆh, nn Oh no-no-no, give me some anger

specifics.

5. (P-DA fc) fc, sd, fc, sd, fp I’m so sorry! sadness

Table 6.5: Examples of determined EDAs with annotation from the MELD

dataset. Emotion/sentiment labels are given in the dataset, while EDAs are by

our ensemble of models. P-DA: previous utterance dialogue act.

It is also interesting to see the previous utterance dialogue acts (P-DA) of those

skipped utterances, and the labels of the neural annotators as given in Figure 6.3

(utt-l1, utt-l2, con1, con2, con3). In the first example, the previous utterance is

b, and three DANA models produced labels of the current utterance as b, but it

is skipped because the confidence values could not bring it as a final label. The

second utterance can be challenging even for humans to perceive with any of the

dialogue acts. However, the third and fourth utterances are followed by a Yes-No

question (qy), and hence, we can see in the third example, the context models tried

to at least perceive it as an answer dialogue acts (ng, ny, nn). The last utterance,

“I’m so sorry!”, has reasonable disagreement by all the five annotators. Similar

apology phrases are mostly found with ‘Sadness’ emotion labels, and the correct

dialogue act is Apology (fa). However, these utterances are placed either in the

sd or in ba dialogue act category. We believe that those labels of the utterances

can be corrected with minimal efforts with human annotator’s help.

6.4 Summary

In this chapter, we presented a method to extend conversational multi-modal

emotion datasets with dialogue act labels. We successfully show this on two well-
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established emotion datasets: IEMOCAP and MELD, which we labelled with

dialogue acts and made publicly available for further study and research. As a

first insight, we found that many dialogue acts and emotion labels follow certain

relational features. These relations can be useful to learn about the emotional

behaviours with dialogue acts to build a natural dialogue system and perform

deeper conversational analysis. The conversational agent might benefit in gener-

ating an appropriate affective response when considering both emotional states

and dialogue acts of the utterances.

In future work, we foresee the human in the loop for the annotation process

along with a pool of automated neural annotators. Robust annotations can be

achieved with minimal human effort and supervision, for example, observing and

correcting the final labels produced by ensemble output labels from the neural an-

notators. The human-annotator might also help to achieve segmented-utterance

labelling of the dialogue acts. We also plan to use these datasets for conversational

analysis to infer interactive behaviours of the emotional states with respect to the

dialogue acts. In the next experiment, we use dialogue acts to build a dialogue

system for a social robot, where we find this study and dataset very helpful. For

example, we can extend our robotic conversational system to consider emotion as

an added linguistic feature alongside politeness to produce natural interaction.
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Chapter 7

Dialogue-based Navigation

driven by Politeness for HRI

Service robots need to show appropriate social behaviour in order to be deployed

in social environments such as healthcare, education, and retail. Some of the main

capabilities that robots should have are navigation and conversational skills. If

the person is impatient, that can act as a cue for the robot to navigate faster

and vice versa. Linguistic features that indicate politeness can provide social

cues about a person’s patient and impatient behaviour. The novelty presented

in this experiment is to incorporate the politeness feature in a robotic dialogue

system for a dynamic navigation speed. Understanding the politeness cues in

users’ utterance can also be used to modulate the robot behaviour and responses

accordingly. Therefore, we developed a dialogue system to navigate the humanoid

robot in an indoor environment, which produces different robot behaviours and

responses based on the users’ intention and degree of politeness. We tested our

system with the Pepper humanoid robot that adapts to the changes in users

behaviour at the Innovation Department Lab of SoftBank Robotics Europe.

7.1 Introduction

In this experiment, we develop a dialogue system with multivariate behavioural

adaptation based on the socio-linguistic aspects such as politeness. It is another

preliminary step towards understanding the safety concepts for safe human-robot

interaction (HRI). Politeness strategies ensure smooth communication and har-

monious interpersonal relationship in non-hostile social communication (Kamlasi,
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2017). Politeness reflects the perception of the users towards their patience during

the interaction. Hence, perceiving politeness of the user becomes a crucial process

in HRI. In addition to other factors, such as robot appearance, robot behaviour

is a crucial aspect of their acceptance in society. This work is a primary step to-

wards developing a dialogue system for safe and pro-active HRI where the robot

takes advantage of linguistic politeness comprehension to adapt social behaviours.

The socio-linguistic factors like politeness also play an essential role in knowing

whether social interaction goes appropriately or poorly. Hence, politeness cues

are intimately related to the dynamics of behavior and interaction (Brown and

Levinson, 1987; Danescu-Niculescu-Mizil et al., 2013; Holmes and Stubbe, 2015;

Srinivasan and Takayama, 2016). It is useful for adapting to the dynamic tension

that occurs as the user tries to maintain a sufficient degree of politeness while

interacting with the robot (Rogers and Lee-Wong, 2003). For example, sentence-

initial you or an action directive verb can be impolite “You need to show...” or

“Show me the...”, whereas sentence-medial you or sentence-initial could or would

often indicates polite interaction like in the sentences “Could you show me...” or

“Would you take me to...”.

Multivariate adaptive and affective dialogue systems based on linguistic fea-

tures have been subject to previous research (Fong et al., 2003a; Adam et al.,

2016; Shi and Yu, 2018). The effect of politeness on the conversation is promi-

nent, and it has been researched in the socio-linguistic community (Rogers and

Lee-Wong, 2003; Danescu-Niculescu-Mizil et al., 2013; Holmes and Stubbe, 2015).

The effect of such features on HRI has been a subject of study with various as-

pects: polite versus impolite robot playing a game (Castro-González et al., 2016),

in determining social robot acceptance with multi-cultural background people

(Salem et al., 2014), making robots sociable and supporting to achieve safe HRI

(Fong et al., 2003a). Hence, a robot that can recognize the user’s intention dur-

ing interaction should also adapt to the human’s linguistic behavioural changes.

For example, different socio-linguistic features, such as politeness, emotion, and

sentiment, represent users’ social and behavioural dynamic interactions.

For this experimental HRI scenario, we portray the politeness concept as a

linguistic cue. If the users’ utterance is impolite, then the user might be impa-

tient, that means the user is in a hurry or urgency as one uses short phrases in

the utterances in such a situation. On the other hand, if the user is polite, the

behaviour can be another way around. In such cases, the robot needs to change
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its behaviour or even alter the actions and speed to maintain social and safe ad-

justments during the interaction. The modulated behaviours can be programmed

to intrigue the user to maintain the engagement with the robot. We develop a

modular dialogue system (DS) that can process such features and make the robot

to adapt accordingly. The natural language understanding module of the DS uses

recurrent neural networks (RNNs) (Ultes et al., 2017; Yang et al., 2017) and the

Snips library (Coucke et al., 2018) for extracting the intentions and structured

information from the user input utterances. The politeness detection is learned

from the corpus using RNNs and fine-tuned for the domain-specific data. The

navigation of the Pepper humanoid robot is achieved by using the NAOqi frame-

work. The robot behaviour and responses are driven by dialogue flow module

using the intention and politeness detection in the input utterances. This ex-

periment’s main contribution towards bridging the gap between socio-linguistic

research and HRI community is in understanding the use of the socio-linguistic

feature for developing the dialogue-based navigation system that incorporates

politeness as a primary driving social cue. As a future work direction, this ex-

periment provides a robotic behavioural model based on literature that can be

assessed with extended experimentation. To the best of our knowledge, our sys-

tem is the first dialogue-based navigation system that incorporates politeness as

a primary social cue to drive the robot behaviour and responses.

7.2 Approach: Proposed HRI Dialogue System

We propose a dialogue system which takes into account the degree of politeness

as a factor that affects the conversational flow and the robots’ behaviour. Usually,

a typical dialogue system considers only the intention and semantic information

extracted from the utterance such as slot-value pairs (discussed in the next sec-

tion) (Ultes et al., 2017). We use politeness detection module as an additional

driving feature in this particular experiment, and it could be scaled to extend

to use other social cues such as emotion. In the proposed model, the dialogue

system can process various socio-linguistic features to perform inference on the

input utterance. The overall architecture is shown in Figure 7.1. As mentioned,

the proposed system is customizable to any extent as the robot is controlled using

a modular client-server architecture. The state and motion managers are wrapped

into an application programming interface (API) as a server (Grinberg, 2018) and
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Speech 
Recognition

Politeness 
Detection

Dialogue Act 
Recognition

DoPIntention

i/p utterance

Additional 
Module

Dialogue 
Flow

Response 
Manager  

State 
Manager

Motion 
Manager

o/p utterance
and BehaviourNavigation

Figure 7.1: The overall architecture of the dialogue system. Degree of Politeness

(DoP) is the primary driven of the conversational behaviour.

communicated via the client dialogue flow module. The dialogue system can also

be accessed if the robot is not connected to the server, which is useful for human-

computer interaction scenario, making the dialogue system similar to the one

explained in Section 2.3. However, it is an advance version of the typical dialogue

system as we incorporate socio-linguistic cues in the proposed architecture.

The dialogue system takes the input utterance of the human user through

a speech recognition system. The speech recognition used is embedded on the

Pepper robot platform with an independent server API. The transcribed text is

then processed by the dialogue act recognition and politeness detection modules,

and additional modules. Dialogue Flow (DF) module takes the output from these

modules to interpret the response from the Response Manager. The DF module

also sends its interpretation and the fetched response to the Motion Manager and

State Manager to variate the robot navigation speed and behaviours accordingly.

Motion Manager contains the information of the planned map and a programmed

switch for the speed based on the degree of politeness (discussed in later sections).
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State Manager keeps track of overall behavioural state and adjusts parameters of

the robot such as speech pitch, head orientation angle, and eyes colour, and also,

utters the output response.

7.3 Dialogue System driven by Politeness

The conversational part of the dialogue system (DS) can be used independently

of the robot. The central part of the DS is the language understanding module

which consists of the Dialogue Act Recognition, Politeness Detection, and addi-

tional modules. Another central part of the proposed DS is the Dialogue Flow

module which takes care of the flow of utterances and sending commands to the

robot. Finally, the response manager is responsible for interpreting an appropriate

response given the intention and the degree of politeness.

7.3.1 NLU: Intention and Politeness Detection

The input speech from a user is converted into text using the embedded speech

recognition module from the Pepper robot (accessed via the NAOqi framework).

The natural language understanding (NLU) module takes the converted tran-

script of the input utterance and processes it with the dialogue act recognition

and politeness detection modules. DA recognition module detects intention and

semantic information in the utterance, whereas politeness detection module infers

politeness polarity of that utterance.

DA Recognition Module

The dialogue act (DA) recognition is a crucial process in any typical dialogue

system. Its task is to decode the natural language input utterance and extract the

symbolic representation, such as dialogue acts and slot-value pairs. For example,

the utterance “Could you please show me the retail department?” can be decoded

as {intention : TakeToPlace, department : retail} where intention represents the

dialogue act, department is a slot and retail being its value. It is also called the

user dialogue act because the users’ input utterances determine it. We created a

dataset for the given scenario to be able to drive the conversation (some examples

are given in Table 7.1). The following methods are used in conjunction for robust
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RNNInput Utterance

DA 
Recognition

Dialogue Acts

utt_rep1 RNN

Slot 
Recognition

Slots

utt_rep2 RNN

Value 
Recognition

Values

 
∈ slot-switch

Figure 7.2: Dialogue acts and slot-value pairs recognition using RNNs.

dialogue act recognition by validating one another based on heuristics of their

confidence values.

(1) Dialogue Act Recognition using Hierarchical RNNs: We discussed

the basic hierarchical RNN (HiRNN) architecture and its brief operation in Sec-

tion 3.2.3. As mentioned there, the hidden unit representations of each RNN

layer in the HiRNN architecture can be used solely and could also be carried

forward for the other task learning. A customized architecture is shown in Figure

7.2, where RNNs are used in hierarchical fashion to learn the dialogue acts and

slot-value pairs (Yang et al., 2017; Bothe et al., 2018c; Kumar et al., 2018). As

we can see in the architecture, the first layer of the RNN is used to classify the

dialogue acts, and the utterance representation utt rep1 is carried forward to the

next RNN layer. The next RNN layer uses utt rep1 representation to recognize

slots, producing a new hidden utterance representation utt rep2. The values of

the slots are learned with the next RNN layer using utt rep2 representation. The

slot-switch (∈) is used for classifying the values learned in this layer to the slot

detected in the past layer (see the output in Figure 7.5 for better understanding).

We train the model to the customized data and use them for inference.
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Table 7.1: Examples of dialogue act and slot-value pairs

(2) Snips Natural Language Understanding (NLU) Engine: Snips NLU

Engine1 is an open-source Python library that uses two approaches: a determin-

istic parser and a probabilistic parser (Coucke et al., 2018). The deterministic

parser is a pattern matching mechanism which uses regular expressions to parse

the input utterance. The probabilistic parser uses a logistic regression algorithm

1https://snips-nlu.readthedocs.io
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DoP Class Utterance

1 polite Could you please show me the education department?

0 neutral Can you show me the education department?

-1 impolite Show me the education department.

Table 7.2: Examples of utterances in different Politeness classes.

for intent classification and conditional random fields (CRFs) technique for the

slot filling task. For the given input utterance, the NLU engine provides the

intention label and slot-value pairs.

Politeness Detection Module

Politeness detection is one of the crucial processes in the proposed DS architecture

as it drives the conversational flow and robot behaviour. This module takes the

input utterance and detects politeness using linguistic features ranging from 1 to

-1 (very polite to very impolite). The RNN model with sigmoid function is used

to learn the politeness from Stanford Politeness Corpus2 (Danescu-Niculescu-

Mizil et al., 2013). We fine-tune the trained model for the experimental dataset

(mentioned in the previous section) that is created for the particular scenario to

minimize uncertainty in prediction. For the sake of conceptual and computational

simplicity, we discretized the politeness values into three categories: polite (1),

neutral (0) and impolite (-1); see the examples in Table 7.2.

We use same RNN model as given in Figure 4.2(a) discussed in Chapter

4, except we use the sigmoid function instead of the softmax function and the

word embeddings are learned during the training process. The model predicts

politeness values in the range of 0 to 1; hence, the sigmoid function, then these

values converted into the politeness classes such as:

DoP Range 0.0 - 0.4 0.4 - 0.6 0.6 - 1.0

Class impolite (-1) neutral (0) polite (1)

Moreover, these discrete values are summed cumulatively over the conversation

to calculate the degree of politeness and further used to modulate the dialogue

2https://www.cs.cornell.edu/~cristian/Politeness.html
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flow of the proposed DS.

Additional Module

This module is open to adding additional socio-linguistic features such as sen-

timent or emotion. Adding more features can increase the complexity of the

dialogue system, especially the dialogue flow module. However, it could be use-

ful in some cases to incorporate multiple features and modalities to produce the

required behaviour.

7.3.2 Dialogue Flow Module

The dialogue flow (DF) is a central engine of the system which communicates

with most of the modules. It is implemented as a primary function to drive the

DS, mainly connecting the user dialogue acts to the system dialogue acts. A rule-

based and probabilistic belief tracking or dialogue state tracking model could be

used to maintain the dialogue flow (Ultes et al., 2017). We used a rule-based

model where the dialogue flow module keeps track of the user dialogue acts and

DoP, extract a system dialogue act and send them to the response manager to

fetch the appropriate responses.

The DF has a queue to store the context information of the preceding utter-

ances to complete the state loop. It is useful to trigger the system dialogue acts

from the response manager based on the context information and the current

user dialogue act. For example, suppose the last user dialogue act is TakeTo-

Place. In that case, it triggers the FinishedOne system dialogue act to inform

the user that the last action is finished providing a conditional flag. The system

with the FinishedOne dialogue act asks if the user wishes to visit the next place.

The contextual information in the loop keeps track whether the user accepts or

rejects the proposal using the Accept and Reject user dialogue acts. If the Accept

dialogue act appears, the robot takes the user to the next location until the list

of locations is finished. If the user rejects with the Reject dialogue act, then the

dialogue is ended with the conventional closing (ConvClosing) system dialogue

act.
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7.3.3 Response Management Module

The response manager is responsible for mapping the right response for the given

intention and degree of politeness. In principle, the response manager maps the

system dialogue acts and degree of politeness with the responses. Pre-defined

response templates are stored in a data file that is accessed continuously during

the interaction. Here are some examples of the stored responses:

"TakeToPlace": {

"polite" : {"op_utt": ["Please follow me, I can show you

the [slot_value]"]},

"neutral" : {"op_utt": ["Please follow me, I can take you

to the [slot_value]"]},

"impolite": {"op_utt": ["Please follow me.",

"Sure, follow me.",

"Sure."]}

},

"Thanking": {

"polite" : {"op_utt": ["It was my pleasure, you are welcome,

hope to see you again."]},

"neutral" : {"op_utt": ["You are welcome, thanks for bearing

with me."]},

"impolite": {"op_utt": ["You are welcome."]}

}

As we can see from the examples given above, when the DF module, consider,

gets the utterance with the dialogue act TakeToPlace and polite the respective

response (output utterance “op utt”) has to be fetched from the given templates.

One can define several forms of the same utterance, as we can see for the impolite

utterance of the TakeToPlace dialogue act, one of them is randomly or empirically

picked to reduce the monotonousness in the responses. The slot-value pair names

can be used in the output utterance by using [slot value] field. This field gets filled

with the respective value of the slot when they occur in a given conversational

situation. Also notice the variations adapted for different politeness classes with

the shortness of the response utterances, for example, in the Thanking dialogue

act. Please see Appendix B.2 for more examples of the response templates used

in this experiment.
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7.4 Robot Navigation and Behavioural Control

7.4.1 Humanoid Robot Platform: Pepper

Pepper is a 1.2 meter tall omnidirectional wheeled humanoid robot platform. It

is capable of exhibiting body language, perceiving and interacting with its sur-

roundings, and move autonomously. Due to its 17 joints and 20 degrees of freedom

kinematic configuration and edgeless design, the system is suitable for safe HRI

(Pandey and Gelin, 2018). The platform is equipped with various sensors and

actuators that ensure safe navigation and a high degree of expressiveness. LED’s

are distributed across the head (eyes and ears) and torso (shoulders) to support

non-verbal communication by modifying colour and intensity. The microphones

and speakers allow verbal interaction as well as environmental awareness. Sens-

ing components include three laser sensors, two sonars and two infrared sensors

located in the robots’ base, two cameras, and a three-dimensional camera located

in the head. In addition to them, two tactile sensors on the back of both hands

allow human-robot physical awareness. Finally, the platform is powered by an

Atom processor with a 1.91 GHz quad-core unit that allows the NAOqi SDK

to orchestrate the different hardware elements as well as their access from other

APIs, such as embedded speech recognition. Pepper is one of the widely used hu-

manoid robots in HRI research experiments (Perera et al., 2017; Suddrey et al.,

2018).

7.4.2 State Manager Module

In order to produce the physical and verbal responses in accordance with the

degree of politeness exhibited during the interaction, a behavioural model has

been designed in the State Manager, inspired by the valence and arousal model

(Beck et al., 2010). The model is given with the discrete politeness values (1, 0,

-1), computed from the last utterance, and degree of politeness (DoP) is stored

as a cumulative sum in a sequential manner for every utterance in the given con-

versational interaction. The state manager maps the DoP as the cumulative sum

of the previous and current utterances to different actuators. The actuators used

to characterize the robots’ change of behavioural state are the LED’s colour (Nij-

dam, 2009), head pitch orientation (Lemaignan et al., 2016), voice pitch (Hubbard

et al., 2017) and navigation speed, and they are mapped following the intuition
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Polite

Head 
(rad)

Speed 
(m/s)

Impolite

Pitch 
(Hz)

High

Low

Figure 7.3: The behavioural model used to create the verbal and non-verbal re-

sponses based on the cumulative sum of the DoP. The Pepper robot shown in the

right is in the position of the vertical orange line in the plot during the interaction.

as given in Figure 7.3. For example, the head pitch position raises as DoP in-

creases, whereas the robot’s navigation speed does the opposite. The voice pitch

increases equally for both extreme politeness values and eyes colour code matches

the robot’s internal emotional state.

In this way, a multi-variability is provided to every single social cue that can

vary in order to fit the interactive behavioural model. The user being repetitively

polite during the whole interaction will experience a decrement in the robot’s

navigation speed. The head position orients towards the user, LEDs of eyes turn

green with a slightly higher voice pitch (a similar state is depicted in Chapter 2

Figure 2.6). It is due to the fact that the degree of politeness has cumulatively

incremented to a certain high positive number. However, it can not grow infinite,

and hence we limit it to reach in the range of +3 to -3. That means we have seven

individual states for each behavioural variable, as shown in Figure 7.3 and aside

is a picture of the Pepper robot in one of the behavioural model states.
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Tourism Education

Retail

Robot

Healthcare

Figure 7.4: The environment map created with the Pepper robot and gmapping

from ROS.

7.4.3 Motion Manager Module

The motion manager is responsible for navigation and planning, and adjusting

speed according to the behavioural model explained in the last section. The nav-

igation environment consists of the four locations to visit with the robot: Retail,

Education, Tourism, and Healthcare, as shown on the map in Figure 7.4, The

navigation can be operated in the following three modes: Tele-operation, Scripted

Navigation and Navigation with Mapping.

Tele-operation

In this mode, the Pepper robot can be teleoperated by an operator sitting behind

the computer. The NAOqi framework allows such a mechanism using the move-

Toward function from the ALMotion service, and the keys on the keyboard can

be used for moving or stopping the robot. This method is not efficient; however,

with this method, we could learn the location point distances from each other

with reference to the initial position of the robot. These measurements are then

used to calibrate the distances in the scripted navigation.

Scripted Navigation

The scripted navigation is achieved by commanding the robot to move to specific

locations with the known distances in the environment. The distances can be

measured with the help of teleoperation and some with manual measurements.

135



Chapter 7. Dialogue-based Navigation driven by Politeness for HRI

The moveTo command from the ALMotion service also allows adding a specific

distance for the robot to be reached. We specify how far the robot has to move

(in meters) and the orientations (in radians) it has to take during motion from

the robot’s initial position to each location in the map. The robot could be asked

to reach any location, and it has to remember its current location to be able to

know the distances from the other locations. We found this method very useful

for the given simple navigation environment. It is easy to install for the known

environment but not easily scalable to the unknown locations, hence the next

method was introduced to map and plan the navigation autonomously.

Navigation Mapping and Planning

This method requires the use of the Robot Operating System (ROS), an open-

source middle-ware framework. To fit our navigation need, we have adopted the

following approach for generating and post-processing the map. The current read-

ings of the Pepper’s depth image sensor are converted into virtual laser data, using

the package depthimage to laserscan (Perera et al., 2017; Suddrey et al., 2018).

Hence, the map is generated using only the virtual laser data. An offline map

(shown in Figure 7.4 is post-processed for testing purposes) can be acquired us-

ing gmapping (laser-based SLAM algorithm) (Grisettiyz et al., 2005). Then, the

localization is performed using Adaptive Monte Carlo Localization (acml) (Fox,

2003). Finally, the navigation system uses a global planner with a map of inflated

obstacles (costmap) and a local costmap with observations from the virtual laser

data. The Dialog Flow requests a location from the API server (on the robot

hosted with a virtual machine) using an ID (location name), and this one sends

the coordinates to the ROS navigation stack to execute the path.

7.5 Results and Discussion

This experiment demonstrates the conversational dialogue system for social

robots mainly driven by socio-linguistic cue politeness. The tour scenario con-

sists of four departments in the lab: Retail, Education, Tourism and Healthcare,

as shown on the map in Figure 7.4. The robot acts as a guide which takes the

user to the particular requested department location using verbal interaction, as

mentioned in Section 7.3.2. When a user requests the robot with the input utter-

ance gets processed by the DA recognition module, which produces the result, as
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Could you please take me to the education department?
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Figure 7.5: Output of the DA recognition module.

shown in Figure 7.5. The politeness detection module provides the politeness of

that utterance. The dialogue flow sums the politeness values cumulatively over

the conversation and communicates this information with all the following man-

agers. Based on the degree of politeness, calculated as a cumulative sum of the

politeness values, the robot adapts behavioural changes such as speeding up or

down while navigating to the locations and changing the pitch of speech and the

pitch angle of the head.

We tested this system on the Pepper robot with different users, expressing

different levels of politeness. The behavioural variation and adaptation to speed

change are based on the change in DoP. As can be seen, a few resulted in con-

versation plots given in Figure 7.6, for polite and impolite interaction scenarios.

As we can see in part (a) of the figure, the DoP increases with a maximum of +3

(shown with blue line), and speed decreases (as shown with a green line), the cor-

responding log of dialogue is given in Table 7.3. The robot slows down and spends

more time with the user when the user uses polite utterances. On the other hand,

when the user uses impolite utterances, the robot speeds up and executes motion

faster, as shown in part (b) of the figure. The corresponding dialogue log is given

in Appendix Table B.2. The DoP changes gradually as it is cumulatively added

and subtracted over the utterances in the conversation. Hence, in this dialogue

system, DoP will not directly reach neutral (zero) or negative position, unless we

can detect the intensity of the politeness similar to emotion intensity detection.
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Table 7.3: Output example of the polite interaction.
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Figure 7.6: Robot internal state for (a) polite and (b) impolite interactions.

That would be an idea for the future work where we can infer the linguistic im-

patient from the user input utterance by using repetitive phrases to intensify the

politeness. It will be necessary when we want the robot to switch from the slower

to faster modes quickly.

The proposed behaviour of the robot for different situations, shown in the

figure, is mainly to demonstrate the developed system and the efficacy of the

proposed framework. The results indicate that the system is able to consider the

linguistic features to modulate the navigation and behaviour of the robot in a

coherent theoretical and functional framework. As aforementioned, to the best

of our knowledge, such implementation of the framework is one of the first at-

tempts of its kind. However, it is important to mention that the validation of the

hypotheses about the most appropriate robot behaviours is not within the scope

of this thesis, and it might require further investigation and user studies. Such

studies are one of the next steps to utilize the framework for different scenarios,

for example, inclusion of other socio-linguistic features into the natural language

understanding module. The demonstration video and dialogue logs of the gen-

erated graphs in Figure 7.6 are available at the SECURE EU Project website:

https://secure-robots.eu/fellows/bothe/secondment-project/.
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7.6 Summary

We developed a dialogue-based navigation system for integrating intention and

politeness features to the multivariate adaptation of the robot. We successfully

deployed and tested our system on the Pepper humanoid robot with different

levels of politeness. Currently, this experiment does not elicit the causal expla-

nation for the behaviour and the multivariate adaptation of the robot. However,

our experimental framework opens up a new challenge for studying the effect

of politeness in human-robot verbal interaction scenarios. We firmly find this

experiment useful in bridging the gap between socio-linguistic research and the

HRI community. This research shall also help target the deployment of social-

service robots with adaptation to socio-linguistic features such as politeness. In

this work, the robotic behaviours are based on the previous research; however,

they can be modified as per scenarios and requirements. This experiment uses

politeness as a socio-linguistic cue such that being impolite tends to use short

and direct commands as against to the longer and requests in polite interaction.

That implies polite representing normal situation whereas impolite representing

emergency. We successfully demonstrate its use in HRI experiment where the

robot adapts this socio-linguistic changes in humans. As a result, we show how

the robot can react in safety or emergencies using politeness socio-linguistic cues.
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Discussion and Conclusion

One of the identities of social robots or human-like agents is expected to ex-

hibit natural language communication while maintaining safer interaction with

humans. Natural language communication is one of the fascinating capabilities of

humans that is developed with high complexity. While it is reasonable to realize

this existing human ability to interact with the robots, learning from the humans’

conversational behaviours becomes crucial. The focus of this thesis is to join the

effort from the natural language processing research towards safe human-robot

interaction using conversational analysis and computing techniques. The main

goal is to contribute to the knowledge of understanding the socio-linguistic fea-

tures such as emotion, politeness and dialogue act, towards building a natural

language understanding for safe human-robot interaction.

8.1 Thesis Summary

The thesis discovers essential facts in natural language understanding and con-

versational analysis to address the goal mentioned above, formulating narrow

research questions on conversational language learning and safe human-robot in-

teraction. In brief, understanding the humans’ behavioural changes in verbal com-

munication can enable us to transfer that knowledge into social robots. We present

the developed methods and models that allow performing language learning for

conversational analysis. We explore the recurrent neural network approaches used

in the learning process of dialogue acts, emotions and politeness. These methods

later provide the ability to be used in the dialogue system, developed for safe

human-robot interaction scenarios.
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Dialogue acts aids conversation system to produce a natural dialogue flow;

however, it is unclear how other socio-linguistic features such as emotion and po-

liteness affect the conversational flow in HRI. Context-based learning improves

the performance of the dialogue act or emotion recognition, but we answer how

many utterances in the context are useful; how do they contribute to the fi-

nal result. The first model, a context-based model using recurrent neural net-

works (RNN), helps to discover that only a few preceding utterances are suffi-

cient to recognize the dialogue act of the current utterance. The second model,

a context-based utterance-level attention mechanism on top of the bidirectional

RNN model, extends the contextual learning of the preceding utterances by pro-

viding an ability to compute each utterance’s contribution in the context.

Furthermore, we apply similar techniques to contextual emotion detection and

found that they exhibit the same properties to the dialogue acts in the conversa-

tional analysis. We deploy neural ensemble modelling for emotion recognition in

the conversation and found that end-to-end models perform better than domain-

specific lexicon-based models. We also found that how dialogue-based learning

to estimate the next utterance’s sentiment helps discover undesirable or unsafe

situations during the conversational interaction. We propose a new paradigm, the

emotional dialogue acts, annotating multi-modal conversational emotion datasets

with the dialogue acts. We created an ensemble of neural annotators trained on

the dialogue act corpus and used it to annotate the emotion corpora. We have

shown how some dialogue acts and emotions commonly occur together in many

instances, such as apology with sadness, thanking with happiness, and rejection

with frustration.

Finally, we demonstrate the use of socio-linguistic feature, politeness, in an

HRI scenario, by considering the user’s safety and desirability. For example, if

the user utters short sentences or finds user utterances linguistically impolite, the

robot acts quicker and faster. In contrast, the same phenomenon could occur if

the user uses polite language and indicates that the user wants to spend more

time with the robot. The experiments and models presented in the thesis allow

transferring the knowledge learned through them, confirming the hypothesis made

on the language learning during research question formulations, and supporting

the pose of novel suggestions to the research community towards safe human-

robot interaction.

142



8.2. Discussion

8.2 Discussion

We performed a series of experiments to prove the hypothesis and research ques-

tions posed during the exploration of this thesis work. As mentioned already,

this thesis mainly focuses on the natural language understanding and conversa-

tional analysis that helps to develop a dialogue system for HRI to adapt different

robotic actions based on the behavioural changes found in the human communi-

cation. We will discuss the thesis by answering the research questions posed in

the introduction chapter:

Question 1: How can we find the number of preceding utterances in

the context that are required towards recognizing the dialogue act of

the given current utterance?

During the development of the concept of a dialogue system for HRI, we pri-

marily looked into the dialogue acts (DA) of the input utterances. We performed

a conversational analysis and found that context-based learning has to be ap-

plied in the dialogue act recognition task. However, only past utterances can be

used because technically any dialogue system can access only the past utterances,

that applies to the HRI scenarios. In our experiment, presented in Section 4.4,

we found that only three utterances in the context are sufficient to produce bet-

ter accuracy over all the test set of the SwDA corpus. This experiment achieved

state-of-the-art accuracy on the given test set; however, this experiment could

not help to find out how to investigate the particular set of utterances to answer

the mentioned question. Hence, we conducted another experiment, presented in

Section 4.5, where an utterance-level attention-based bidirectional RNN model

is used to compute the contributions of each utterance in the context. This way,

we discover that two preceding utterances in the context contribute in higher

amount during the dialogue act recognition of the current utterance (which is

presented graphically in Figure 4.8).

During this study, we found that different dialogue acts behave differently due

to their contextual differences. For example, if there is an answer DA utterance,

the previous sentences might contain a question DA utterance which will substan-

tially contribute towards recognition. However, if there is a reverse case, then the

contribution of the past utterances (answer) can be negligible when predicting

the current utterance (question). That led to asking the next question, which was

also posed in the research community but was not answered experimentally:

143



Chapter 8. Discussion and Conclusion

Question 2: How much does each utterance in the context contribute

towards recognizing the dialogue act of the given utterance?

As mentioned already while answering the previous question, the experiment

presented in Section 4.5, the attention mechanism is used to compute the weights

over a set of the input utterances, as a result eliciting the amount of contribution

of each utterance. In this experiment, we took the sets of five utterances (batches

of size five), and process them with BiRNNs along with the attention layer which

computes the weights for every utterance in the batch. We discover that the

preceding two (at the most three) contributes substantially towards the current

utterance. It is due to the fact that most recent utterances contain precious

context as against to the very past utterances for the dialogue act recognition.

This way, we successfully show the methods to discover the required number of

utterances in the context and to compute their contribution towards the dialogue

act recognition.

We learn to know others feelings via emotion expressions, and we found that

the identifying emotion in the conversation is a challenging task, especially, when

other modalities are absent such as facial expressions or sound variations. We

experiment with contextual emotion recognition in conversation and learn about

their importance in the decision-making process. For example, the extreme sen-

timent polarities in the utterances of conversation may convey negativeness or

positiveness in the context. Hence, the next research question posed was:

Question 3: How can dialogue-based neural learning estimate the sen-

timent of the next utterance help us find undesirable events or safety-

critical cues for safe human-robot interaction?

To answer this question, we proposed to use a dialogue-based context learn-

ing model to estimate the sentiment of next utterance. This model uses a special

recurrent neural network, long short-term memory network, that takes preceding

utterances as a context to predict the sentiment of the next utterance. The con-

cept is derived from the feedback learning phenomenon; for example, appreciation

or desirable moments are usually expressed with positive sentiment, whereas neg-

ative sentiment is expressed on undesirable or unsafe or unhappy moments. These

extreme sentiment utterances are used as feedback cues, while their preceding ut-

terances are providing the context. We successfully show that the model learns

to estimate the next utterance sentiment; the experiment is presented in Section

5.4. We deeply analyze the predicted sentiment values in the test set and dis-
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cover that the results show an interesting phenomenon of predicting undesirable

or safety-critical situations. For example, in a particular scenario, on informing

through the utterances that the “chair is broken”, the model raises a negative

sentiment. This experiment supports proving the hypothesis and answering the

research question; however, it requires building a proper foundation of sentiment

analysis in conversations. On the other hand, it is also an indirect elicitation

based only on the sentiment polarities, though we use fine-grain numerical val-

ues. Hence, adequate improvement is required before its integration in the HRI

scenarios. However, this experiment is a step towards language learning for safe

human-robot interaction.

Emotional dialogue acts, as presented in Section 6.3, the co-occurrence rela-

tions between emotion expressions and dialogue acts, provide interesting discov-

ery; as a result, to answer the following question:

Question 4: How can we reliably use the neural ensemble method to

enrich existing emotion data with dialogue act labels? Do the emotions

and dialogue acts provide any relations among themselves that would

be useful to consider for the conversational analysis?

As presented in Chapter 6, we show how effectively the ensemble model of

the neural annotators annotates the conversational emotion data for the dialogue

act labels. As emotion and dialogue acts are considerably different aspects of

the language, we found that their inter-relationship brings another dimension to

the natural language understanding. This analysis of the relationships between

them leads to exploring its incorporation into the dialogue systems. It is one of the

primary goals, as we stated that different socio-linguistic features for the in-depth

conversational analysis could lead us to a better understanding of the human-

human interaction. We designed a dialogue system that incorporates politeness

as a socio-linguistic feature into the natural language understanding module that

drives the conversational flow and helps to answer the next research question:

Question 5: How to combine the socio-linguistic features such as emo-

tion or politeness with the dialogue acts in the dialogue system for

HRI? How does that help to influence the output behaviour of the

robots?

In Chapter 7, we demonstrated the dialogue-based navigation system that

combines the politeness feature with the dialogue acts to produce different be-

haviours and actions from the robot. We find that using such features to modulate
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robotic actions and behaviours make robots more autonomous and reliable. This

additional dimension to the natural language understanding module makes it

possible to reach a higher level of autonomy, as discussed in Section 2.5. Po-

liteness comprehension makes the robot distinguish between different interactive

behaviours such as order versus request instruction, urgent versus normal event,

and patient versus impatient user. It provides a basis to our ultimate goal to

make use of the knowledge gained with these experiments and analysis for safe

human-robot interaction.

With the proposed methods and approaches, we achieve fundamental knowl-

edge to make it possible to utilize different socio-linguistic cues for safe human-

robot interaction. The experiment of learning desirable or safety-critical situa-

tions from the conversational language brings a higher dimension to the language

understanding for HRI. As the robot would be able to anticipate dangerous situ-

ations and react accordingly to avoid a possible hazard, it can improve the trust

of the robot in society. The robot can be aware of possible changes in the environ-

ment and the safety-critical situations; it can inform the humans around verbally.

We are aware that detecting the safety-related cues as early as possible might pro-

duce false-positives; however, they can be accepted (or quickly resolved through

a query within the dialogue) if possible dangers can be avoided when they occur

in the given scenario. In another experiment, we propose to use politeness as a

social cue to understand users patient or impatient behaviour. As we know, when

a user is impatient or in an urgency situation, we use short sentences and orders

instead of requests. The robots being aware of such politeness comprehension,

make them more acceptable in society. On the other hand, in a possibly unsafe

situation, we expect the robots to react quicker, which is possible if the robot

is aware of the safety-critical situations and understands users’ urgency through

the language learning.

8.3 Limitations and Future Work

To comprehensively identify the most suitable natural language understanding

for human-robot interaction, the methods and approaches explored in this the-

sis can be modified in several ways. All the approaches and models proposed in

this thesis are based on the textual language processing alone; however, this can

be addressed in the future work by adding multiple modalities such as speech
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or vision-based socio-linguistic feature detection. It is needless to mention that

emotion or politeness is perceived better with vision and speech in addition to

textual processing in conversation. On the other hand, the politeness compre-

hension model was designed intuitively by studying the literature for the given

human-robot interaction scenario, which could be extended as a neural model to

learn from conversational interactions. These effect of the socio-linguistic features

in human-robot interaction can be considered for performing the user studies for

better understanding of such linguistic features.

Conversational interaction occurs in an incremental fashion, and the human

input utterances can always be similar but with variance due to the use of natural

language. The proposed neural models cannot be directly applied for online or

incremental learning, as they are trained with gradient descent mechanism for

finding the best weight setting on the given datasets. Hence, future research

must address the possibility to continue the training of the model with minimal

changes in the parameters.

8.4 Conclusion

This thesis contributes to understanding socio-linguistic features such as emotion,

politeness and dialogue act, towards building a natural language understanding

for safe human-robot interaction. Combined comprehension of social cues and

linguistic features can integrate novel experience and safety during human-robot

verbal interaction. With the knowledge about conversational analysis and neural

modelling to perform in-depth experimentation for language learning, we can

design human-like artificial agents, that are aware of the environment and interact

with safety concerns with humans. That will help to realize safer social robots

with verbal communication capability.
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Appendix A

Publications and Associated

Activities

A.1 List of Publications Associated this Thesis

Following publications are related to the research contribution of this thesis,

published as a part of SECURE (Safety Enables Cooperation in Uncertain

Robotic Environments) EU Project, hosted by the University of Hamburg,

where this thesis primarily contributes. This project is funded by the EU Hori-

zon 2020 research and innovation programme under grant agreement No 642667

(http://secure-robots.eu). As per EU Project guidelines, all the publications

are available and accessible at: https://secure-robots.eu/fellows/bothe/

and https://www.inf.uni-hamburg.de/en/inst/ab/wtm/people/bothe.

P2020 : Bothe, C., Weber, C., Magg, S., and Wermter, S. (2020). EDA: En-

riching Emotional Dialogue Acts using an Ensemble of Neural Annotators. In

Proceedings of the International Conference on Language Resources and Evalu-

ation, LREC 2020, pages 620–627. European Language Resources Association

(ERLA).

P2019 : Bothe, C. and Wermter, S. (2019). SemEval-2019 Task 3: Ensemble

BiRNNs for Contextual Emotion Detection in Dialogues. In Proceedings of the

International Workshop on Semantic Evaluation (SemEval-2019) at the Confer-

ence NAACL-HLT 2019, pages 261–265. Association for Computational Linguis-

tics (ACL).
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P2018a : Bothe, C., Garcia, F., Cruz-Maya, A., Pandey, A. K., and Wermter,

S. (2018). Towards Dialogue-Based Navigation with Multivariate Adaptation

Driven by Intention and Politeness for Social Robots. In Proceedings of the In-

ternational Conference on Social Robotics, ICSR 2018, pages 230–240. Springer

International Publishing.

P2018b : Bothe, C., Magg, S., Weber, C., and Wermter, S. (2018). Con-

versational Analysis using Utterance-level Attention-based Bidirectional Recur-

rent Neural Networks. In Proceedings of the International Conference INTER-

SPEECH 2018, pages 996–1000. International Speech Communication Associa-

tion (ISCA).

P2018c : Bothe, C., Magg, S., Weber, C., and Wermter, S. (2018). Discourse-

Wizard: Discovering Deep Discourse Structure in your Conversation with RNNs.

Computation and Language.

P2018d : Bothe, C., Weber, C., Magg, S., and Wermter, S. (2018). A Context-

based Approach for Dialogue Act Recognition using Simple Recurrent Neural

Networks. In Proceedings of the Eleventh International Conference on Language

Resources and Evaluation, LREC 2018, pages 1952–1957. European Language

Resources Association (ERLA).

P2018e : Zhou X., Weber C., Bothe C., and Wermter S. (2018). Hybrid

Planning Strategy through Learning from Vision for Target-directed Navigation.

In Proceedings of the International Conference on Artificial Neural Networks,

ICANN 2018, pages 304–311. Springer International Publishing.

P2017a : Bothe, C., Magg, S., Weber, C., and Wermter, S. (2017). Dialogue-

based neural learning to estimate the sentiment of a next upcoming utterance. In

Proceedings of the 26th International Conference on Artificial Neural Networks,

ICANN 2017, pages 477–485. Springer International Publishing.

P2017b : Lakomkin, E.*1, Bothe, C.*1, and Wermter, S. (2017). GradAscent

at EmoInt-2017: Character and Word Level Recurrent Neural Network Models

1equal contribution
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for Tweet Emotion Intensity Detection. In Proceedings of the 8th Workshop on

Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

at the Conference EMNLP 2017, pages 169–174. Association for Computational

Linguistics (ACL).

A.2 Secondment Project

One month secondment was conducted from 25th July 2018 to 24th August

2018, as a part of the SECURE project at the Innovation Department of Soft-

Bank Robotics Europe, Paris, under the supervision of Dr Amit Kumar Pandey,

Head Principal Scientist (now President and Chief Technology Officier at Han-

son Robotics) with Fernando Garcia and Dr. Arturo Cruz-Maya. SoftBank

Robotics Europe is an associated industrial partner of the SECURE EU

Project, along with the involvement of CROWDBOT and MUMMAR EU

Projects.

The outcomes, produced almost in the same month, are a dialogue-based navi-

gation system driven by politeness for a social robot tested on the Pepper hu-

manoid robot, a video demo (link provided in the following section) and an article

(P2018a) titled “Towards Dialogue-Based Navigation with Multivariate Adap-

tation Driven by Intention and Politeness for Social Robots” published in the

proceedings of and presented at the International Conference on Social Robotics,

ICSR 2018 in Quingao, China with the video demo available at:

http://secure-robots.eu/fellows/bothe/secondment-project/

A.3 Conference and Workshop Organizations

ICDL-EpiRob 2019 Workshop on Personal Robotics and Secure

Human-Robot Collaboration (Joint APRIL and SECURE ITN Sym-

posium) This jointly organized workshop by the SECURE and APRIL EU

Project fellows focusing on learning and interaction-based approaches to safe

human-robot collaboration and their application to personal robotics. The work-

shop was co-located with ICDL-EpiRob 2019. The workshop included research

topics like: developmental approaches to robot learning, safe interaction in uncer-

tain environments, affect and emotion modelling for safe human-robot interaction,

language and non-verbal communication etc.
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https://secure-robots.eu/icdl2019-workshop/programme/

https://icdl-epirob2019.org/workshops/

The International PhD Conference on Safe and Social Robotics

(SSR-2018): Two EU Horizon2020 Projects SOCRATES and SECURE with

the main focus on Robotics are jointly organized this conference. The conference

was co-located with IROS 2018 in Madrid, Spain. It was an opportunity for young

researchers and PhD students in Human Robot Interaction (HRI) to showcase

their research and connect with other researchers, fellows and acclaimed senior

researchers in Robotics, Social Sciences, Machine Learning and Assisted Living

to name a few. http://www.socrates-project.eu/sesoro-2018/

Peer Network Workshop “Project Review” (2017): Workshop organiza-

tion by the fellow at the University of Hamburg during the Mid Term Review

meeting. Program was chaired by Chandrakant Bothe, Mahammad Ali Zamani,

Egor Lakomkin. The workshop was organized to train the fellows on projects and

reviews with several practical sessions such as Collaborative Project Search, Re-

view Collaborative Projects, Discussion and Ranking of Collaborative Projects,

and Fellow Progress Presentations and Discussion. This workshop was then fol-

lowed by the Mid Term Review Meeting of SECURE EU Project in May, 2017.

Lecture highlights: Prof. Stefan Wermter delivered an “Interactive Lecture:

Projects and Reviews” and Dr. Sven Magg delivered an “Interactive Lecture

on Progress, Review Process and Outcomes”.

A.4 Corpora and Demonstration Links

Emotional Dialogue Acts (EDA) Corpora: Enriching Existing Conversa-

tional Emotion Datasets with Dialogue Acts using Neural Annotators (P2020).

Dialogue Act Recognition Demonstration server API which has 3 with context

models and 2 without context models. The API information is available at:

https://github.com/bothe/EDAs

Discourse-Wizard Web Demo: Discovering Deep Discourse Structure in your

Conversation with RNNs (P2018b), also refer to (P2018c; P2018d).
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Dialogue Act Recognition Demonstration with and without context model, shows

the importance of context in a conversation. The live web-demo is available at :

https://secure-robots.eu/fellows/bothe/discourse-wizard-demo/

https://bothe.github.io/discourse-wizard/

Secondment Project Video Demo: Dialogue-based Navigation with Multi-

variate Adaptation driven by Intention and Politeness for Social Robots (P2018a).

Video demo of the secondment work accomplished in collaboration with SoftBank

Robotics Europe in Paris, France during July-August 2018.

https://secure-robots.eu/fellows/bothe/secondment-project/
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Additional Notes

B.1 Switchboard Dialogue Act Corpus Statis-

tics and Tag Set

Table B.1: Statistics of SwDA corpus with the Dialogue Act tags, and their

SWBD-DAMSL names with examples (Stolcke et al., 2000).

SWBD-DAMSL SWBD Example Count %

Statement-non-opinion sd
Me, I’m in

the legal department.
72,824 36%

Acknowledge

(Backchannel)
b Uh-huh. 37,096 19%

Statement-opinion sv I think it’s great 25,197 13%

Agree/Accept aa That’s exactly it. 10,820 5%

Abandoned

or Turn-Exit
% - So, - 10,569 5%

Appreciation ba I can imagine. 4,633 2%

Yes-No-Question qy
Do you have to have

any special training?
4,624 2%

Non-verbal x [Laughter], [Throat clearing] 3,548 2%

Yes answers ny Yes. 2,934 1%
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Conventional-closing fc
Well, it’s been nice

talking to you.
2,486 1%

Uninterpretable % But, uh, yeah 2,158 1%

Wh-Question qw Well, how old are you? 1,911 1%

No answers nn No. 1,340 1%

Response

Acknowledgement
bk Oh, okay. 1,277 1%

Hedge h
I don’t know if I’m making

any sense or not.
1,182 1%

Declarative

Yes-No-Question
qyˆd

So you can afford

to get a house?
1,174 1%

Other
o,fo,bc,

by,fw

Well give me a break,

you know.
1,074 1%

Backchannel

in question form
bh Is that right? 1,019 1%

Quotation ˆq
You can’t be pregnant

and have cats
934 .5%

Summarize/reformulate bf
Oh, you mean you switched

schools for the kids.
919 .5%

Affirmative

non-yes answers
na,nyˆe It is. 836 .4%

Action-directive ad Why don’t you go first 719 .4%

Collaborative

Completion
ˆ2 Who aren’t contributing. 699 .4%

Repeat-phrase bˆm Oh, fajitas 660 .3%

Open-Question qo How about you? 632 .3%

Rhetorical-Questions qh
Who would steal

a newspaper?
557 .2%
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Hold before

answer/agreement
ˆh I’m drawing a blank. 540 .3%

Reject ar Well, no 338 .2%

Negative non-no answers ng,nnˆe Uh, not a whole lot. 292 .1%

Signal-non-understanding br Excuse me? 288 .1%

Other answers no I don’t know 279 .1%

Conventional-opening fp How are you? 220 .1%

Or-Clause qrr
or is it more of

a company?
207 .1%

Dispreferred answers arp,nd Well, not so much that. 205 .1%

3rd-party-talk t3
My goodness, Diane,

get down from there.
115 .1%

Offers, Options Commits oo,cc,co I’ll have to check that out 109 .1%

Self-talk t1
What’s the word

I’m looking for
102 .1%

Downplayer bd That’s all right. 100 .1%

Maybe/Accept-part aap/am Something like that 98 <.1%

Tag-Question ˆg Right? 93 <.1%

Declarative Wh-Question qwˆd
You are what kind

of buff?
80 <.1%

Apology fa I’m sorry. 76 <.1%

Thanking ft Hey thanks a lot 67 <.1%
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B.2 Examples of Response Templates

The template is arranged in the JavaScript Object Notation (JSON) format:

"DialogueAct": {

"politeness" : {"op_utt": ["utterance_1", "utterance_2",...]}

"politeness" : {"op_utt": ["utterance_1", "utterance_2",...]}

...

}

where “DialogueAct” is a customized dialogue acts for example “FinishedOne”,

“Accept” or “Reject”. “politeness” can be of the three classes: polite, neutral

and impolite. “op utt” contains a list of utterances, with variants such as “utter-

ance 1”, “utterance 2”,...

"FinishedOne": {

"polite" : {"op_utt": [

"We arrived at [slot_value] department, here you

can find the [slot_value] related stuff.

Let me know if you wish to visit next department?",

"Here is the [slot_value] department, here

you can find the stuff related to [slot_value].

Do you wish to visit next department?" ]},

"neutral" : {"op_utt": [

"We arrived at [slot_value] department,

here you can find the [slot_value] related

stuff. Would you like to visit next department?",

"Here is the [slot_value] department,

here you can find the stuff related to [slot_value].

Do you wish to visit next department?" ]},

"impolite": {"op_utt": [

"We arrived at [slot_value] department.",

"Here is the [slot_value] department." ]}

},

"Accept": {

"polite" : {"op_utt": [

"Okay, I will direct you to the next department."]},
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"neutral" : {"op_utt": [

"Okay lets go to the next department."]},

"impolite": {"op_utt": [

"Okay lets go to the next department."]}

},

"Reject": {

"polite" : {"op_utt": [

"Okay, enjoy the time."]},

"neutral" : {"op_utt": [

"okay, have a nice day."]},

"impolite": {"op_utt": [

"Okay. " ]}

},

"AbortRobotAction": {

"polite" : {"op_utt": [

"Oh, Something must be went wrong,

let me finish reconfiguring and

you can come back in some time." ]},

"neutral": {"op_utt": [

"Wait, something went wrong, let me

reconfigure the actions." ]},

"impolite": {"op_utt": [

"Sorry, something went wrong." ]}

},

"ConvClosing": {

"polite" : {"op_utt": [

"It was nice meeting you, have a nice day." ]},

"neutral" : {"op_utt": [

"Bye bye, have a nice day." ]},

"impolite": {"op_utt": [

"Bye bye." ]}

}
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B.3 Output Example of the Impolite Dialogue
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Table B.2: Output example of the impolite interaction.
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