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Abstract

The representation of complex orography in weather prediction and climate models has
been an active field of research for several decades, yet many questions remain unan-
swered. The canonical method of formulating the equations of motion in terrain-following
coordinate systems is known to produce large errors in the computation of the pressure
gradient force due to unbalanced truncation errors particularly in the vicinity of steep
orographic gradients. In the present work an approach to well-balance these truncation
errors is developed. The resulting discretization of the pressure gradient force is based
on the estimation of hydrostatic background states via the solution of suitable initial
value problems for the hydrostatic equation. The proposed method is shown to be well-
balanced for isothermal equilibrium states with arbitrarily complex (smooth) orography.
The developments are implemented and tested with the regional hydrostatic climate
model REMO in several idealized test cases.





Zusammenfassung

Die Darstellung von komplexer Orographie in Wettervorhersage- und Klimamodellen
ist seit Jahrzehnten ein aktives Forschungsfeld, aber viele Fragen sind noch offen. Seit
langem ist bekannt, dass die gängige Formulierung der primitiven Gleichungen in gelän-
defolgenden Koordinatensystemen große Fehler in der Druckgradientkraft produziert.
Ursächlich sind unbalancierte Abschneidefehler, die inbesondere in der Umgebung von
starken orographischen Gradienten auftreten. In der vorliegenden Arbeit wird eine wohl-
balancierte Diskretisierung der Druckgradientkraft entwickelt, die auf der Schätzung von
hydrostatischen Hintergrundzuständen durch die Lösung geeigneter Anfangswertprob-
leme für die hydrostatische Gleichung beruht. Es wird gezeigt, dass die entwickelte
Diskretisierung wohl-balancierte Ergebnisse für isotherme Gleichgewichtszustände mit
beliebig komplexer aber glatter Orographie produziert. Die Entwicklungen werden in
dem regionalen hydrostatischen Klimamodell REMO implementiert und in idealisierten
Testfällen validiert.





Contents

List of Tables 1

List of Figures 3

List of Abbreviations and Acronyms 7

1 Introduction 9
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Terrain-Following Coordinate Systems and the Pressure Gradient Error . 10
1.3 Aims and Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 15

2 The REMO Model 17
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Horizontal Coordinate System . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Vertical Coordinate System . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Continuous Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Prognostic Equations . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Diagnostic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Grid Structure and Discrete Operators . . . . . . . . . . . . . . . . 28
2.4.2 Prognostic Equations . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Diagnostic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.4 Solution of the Discrete Equations . . . . . . . . . . . . . . . . . . 38
2.4.5 Semi-Implicit Correction . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.6 Asselin Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 The Pressure Gradient Error 41
3.1 The Pressure Gradient Force . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 The Cartesian System . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2 The Hybrid η-System . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Well-Balanced Numerical Methods . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Stationary and Steady States . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 A Novel Characterization of Equilibrium . . . . . . . . . . . . . . . . . . . 54

ix



Contents

4 Well-Balancing Strategy 59
4.1 Introductory Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Balancing in η-Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Reconstructing the Local Background State . . . . . . . . . . . . . 65
4.2.2 Vertical and Horizontal Staggering . . . . . . . . . . . . . . . . . . 67
4.2.3 The Isothermal Equilibrium . . . . . . . . . . . . . . . . . . . . . . 70

5 Validation in Idealized Test Cases 73
5.1 The Isothermal Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Computational Domain and Orography . . . . . . . . . . . . . . . 73
5.1.2 Initial and Boundary Values . . . . . . . . . . . . . . . . . . . . . . 75
5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 The Standard Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Conclusions and Future Perspectives 109
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Critical Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . 110
6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendices 115

Vertical Coordinate Parameters for Test Cases 117

References 121

Acknowledgement 129

Eidesstattliche Erklärung 131



List of Tables

3.1 Standard Atmosphere in REMO . . . . . . . . . . . . . . . . . . . . . . . 52

A1 Vertical Coordinate Parameters for 27 Full Layers . . . . . . . . . . . . . 118
A2 Vertical Coordinate Parameters for 40 Full Layers . . . . . . . . . . . . . 119

1





List of Figures

1.1 Illustration of a meteorological field expressed in Cartesian coordinates (left) and
in a terrain-following coordinate (right). . . . . . . . . . . . . . . . . . . . . . 11

1.2 Illustration of orography (solid black) intersecting a regular grid. The resulting
cut-cells are shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Illustration of a domain before and after rotation. . . . . . . . . . . . . . . . . 20
2.2 Illustration of discrete representations of a domain with different resolutions. . . 29
2.3 Illustration of the Arakawa-C grid structure in REMO. . . . . . . . . . . . . . 30
2.4 Illustration of the Lorenz grid structure in physical space. . . . . . . . . . . . . 31

3.1 Example of an atmosphere-at-rest with tracer bubble at time t = 0 . . . . . . . 42
3.2 Disturbances of atmosphere-at-rest at time t = 4h in the REMO model. . . . . . 43
3.3 Illustration of the hydrostatic balance. . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Plot of pressure and temperature distribution for the standard atmosphere. . . . 53
3.5 Temperature (left) and Geopotential (right) in the η-system. . . . . . . . . . . 55

5.1 Test case orography: bell shaped mountain (solid) and Schär-type mountain
(dotted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Vertical level distributions for the isothermal test case with 40 levels and 1 km
horizontal resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 u-error at final time t = 3600 s for the classic scheme and the bell-shaped moun-
tain. Shown are the results for 27 and 40 levels (top to bottom) and 10 km as
well as 1 km (left to right) respectively. Orography is shown in brown. . . . . . . 78

5.4 u-error at final time t = 3600 s for the PGFCONST scheme and the bell-shaped
mountain. Shown are the results for 27 and 40 levels (top to bottom) and 10 km
as well as 1 km (left to right) respectively. Orography is shown in brown. . . . . 79

5.5 u-error at final time t = 3600 s for the PGFLIN scheme and the bell-shaped
mountain. Shown are the results for 27 and 40 levels (top to bottom) and 10 km
as well as 1 km (left to right) respectively. Orography is shown in brown. . . . . 81

5.6 u-error at final time t = 3600 s for the Schär-type mountain. Shown are the
results for 27 and 40 levels (left to right) and for the classic, the PGFCONST
and PGFLIN schemes (top to bottom). . . . . . . . . . . . . . . . . . . . . . 82

5.7 Pressure gradient error at initial time t = 0 s for the classic scheme and the bell-
shaped mountain. Shown are the results for 27 and 40 levels (top to bottom) and
10 km as well as 1 km (left to right) respectively. Orography is shown in brown. . 83

3



List of Figures

5.8 Pressure gradient error at final time t = 3600 s for the classic scheme and the
bell-shaped mountain. Shown are the results for 27 and 40 levels (top to bottom)
and 10 km as well as 1 km (left to right) respectively. Orography is shown in brown. 84

5.9 Pressure gradient error at initial time t = 0 s for the PGFCONST scheme and
the bell-shaped mountain. Shown are the results for 27 and 40 levels (top to
bottom) and 10 km as well as 1 km (left to right) respectively. Orography is
shown in brown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.10 Pressure gradient error at final time t = 3600 s for the PGFCONST scheme and
the bell-shaped mountain. Shown are the results for 27 and 40 levels (top to
bottom) and 10 km as well as 1 km (left to right) respectively. Orography is
shown in brown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.11 Maximum (top) and mean (bottom) absolute u-error for the isothermal case and
the bell-shaped mountain. Values are shown for the classic scheme (solid) and
the PGFCONST scheme (dashed). Colors indicate different resolutions. . . . . . 88

5.12 Maximum (top) and mean (bottom) absolute u-error for the isothermal case and
the Schär-type mountain. Values are shown for the classic scheme (solid) and
the PGFCONST scheme (dashed). Colors indicate different resolutions. . . . . . 89

5.13 Pressure gradient error for a single point centered above the bell-shaped moun-
tain. Values are shown for the PGFCONST scheme (top) and the PGFCONST
scheme with exact geopotential (bottom). Colors indicate different resolutions. . 91

5.14 Pressure gradient error for a single point centered above the Schär-type moun-
tain. Values are shown for the PGFCONST scheme (top) and the PGFCONST
scheme with exact geopotential (bottom). Colors indicate different resolutions. . 92

5.15 u-error at final time t = 3600 s for the classic scheme and the bell-shaped moun-
tain (standard atmosphere case). Shown are the results for 27 and 40 levels (top
to bottom) and 10 km as well as 1 km (left to right) respectively. Orography is
shown in brown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.16 u-error at final time t = 3600 s for the PGFCONST scheme and the bell-shaped
mountain (standard atmosphere case). Shown are the results for 27 and 40 levels
(top to bottom) and 10 km as well as 1 km (left to right) respectively. Orography
is shown in brown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.17 u-error at final time t = 3600 s for the PGFLIN scheme and the bell-shaped
mountain (standard atmosphere case). Shown are the results for 27 and 40 levels
(top to bottom) and 10 km as well as 1 km (left to right) respectively. Orography
is shown in brown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.18 u-error at final time t = 3600 s for the Schär-type mountain (standard atmosphere
case). Shown are the results for 27 and 40 levels (left to right) and for the classic,
the PGFCONST and PGFLIN schemes (top to bottom). . . . . . . . . . . . . 98

5.19 Pressure gradient error at initial time t = 0 s for the classic scheme and the bell-
shaped mountain (standard atmosphere case). Shown are the results for 27 and
40 levels (top to bottom) and 10 km as well as 1 km (left to right) respectively.
Orography is shown in brown. . . . . . . . . . . . . . . . . . . . . . . . . . . 99



List of Figures

5.20 Pressure gradient error at final time t = 3600 s for the classic scheme and the bell-
shaped mountain (standard atmosphere case). Shown are the results for 27 and
40 levels (top to bottom) and 10 km as well as 1 km (left to right) respectively.
Orography is shown in brown. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.21 Pressure gradient error at initial time t = 0 s for the PGFCONST scheme and
the bell-shaped mountain (standard atmosphere case). Shown are the results
for 27 and 40 levels (top to bottom) and 10 km as well as 1 km (left to right)
respectively. Orography is shown in brown. . . . . . . . . . . . . . . . . . . . 102

5.22 Pressure gradient error at final time t = 3600 s for the PGFCONST scheme and
the bell-shaped mountain (standard atmosphere case). Shown are the results
for 27 and 40 levels (top to bottom) and 10 km as well as 1 km (left to right)
respectively. Orography is shown in brown. . . . . . . . . . . . . . . . . . . . 103

5.23 Pressure gradient error at initial time t = 0 s for the PGFLIN scheme and the
bell-shaped mountain (standard atmosphere case). Shown are the results for 27
and 40 levels (top to bottom) and 10 km as well as 1 km (left to right) respectively.
Orography is shown in brown. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.24 Pressure gradient error at final time t = 3600 s for the PGFLIN scheme and
the bell-shaped mountain (standard atmosphere case). Shown are the results
for 27 and 40 levels (top to bottom) and 10 km as well as 1 km (left to right)
respectively. Orography is shown in brown. . . . . . . . . . . . . . . . . . . . 105

5.25 Maximum (top) and mean (bottom) absolute u-error for the standard atmosphere
case and the bell-shaped mountain. Values are shown for the classic scheme
(solid) and the PGFCONST scheme (dashed). Colors indicate different resolutions.106

5.26 Maximum (top) and mean (bottom) absolute u-error for the standard atmosphere
case and the Schär-type mountain. Values are shown for the classic scheme (solid)
and the PGFCONST scheme (dashed). Colors indicate different resolutions. . . 107





List of Abbreviations and Acronyms

CFL Courant-Friedrichs-Lewy

FD finite difference

FDM finite difference method

FE finite element

FEM finite element method

FV finite volume

FVM finite volume method

GCM general circulation model

LHS left hand side

LM Lokalmodell

LTE local truncation error

NWP numerical weather prediction

PGE pressure gradient error

PGF pressure gradient force

RCM regional climate model

REMO Regional Model

RHS right hand side

RMSE root-mean-square error

7



List of Figures

SWE shallow water equations

TFCS terrain-following coordinate system

WBM well-balanced method



1 Introduction

In this chapter a brief overview of available literature pertaining to the representation
of orography in climate and numerical weather prediction (NWP) models in general
and to the accurate computation of the pressure gradient force (PGF) in particular is
given. Furthermore, an outline of the present thesis is presented and its guiding research
questions are posed.

1.1 Motivation

In recent years, climate change due to anthropogenic influence has become a widely
accepted fact in the scientific community and beyond (IPCC 2014). Consequently, nu-
merous research efforts are being directed towards the estimation of the impacts of
climate change on society and its people. This includes the development of strategies to
mitigate future changes or to adapt to changes thought of as unavoidable.

All such endeavors heavily rely on projections of future climate change obtained from
global general circulation models (GCMs). However, due to limitations on computing
power GCMs can only provide data with relatively coarse spatial resolutions, currently
ranging from about 4° to 0.5° in production environments (e.g., Taylor, Stouffer, and
Meehl 2012). These resolutions are well suited to assess changes on the planetary or
continental scale such as global mean temperature increases. However, such resolutions
are not sufficient to resolve the strong spatial heterogeneity in climate change expected
on the regional and local scale, e.g., in the analysis of metropolitan areas, municipalities,
mountains, river deltas or small islands. Therefore, GCM results are often refined locally
with regional climate models (RCMs). In this way, regions of interest can be resolved
much more accurately (e.g., Jacob, Petersen, et al. 2014) while retaining consistency
with the global changes at the boundaries of the computational domain.

Increasing the resolution is however not only a problem of available computational re-
sources. Instead, RCMs have to be adapted to the local scales in order to produce sound
physical information, e.g., by introducing scale dependent physical parameterizations.
Another substantial challenge associated with high resolution RCMs is the representation
of complex orography in the models. Steep gradients and naturally occurring discon-
tinuities in terrain are more accurately resolved when resolution is increased. Albeit

9



CHAPTER 1. INTRODUCTION

being a desired effect, this can also bring about some adverse consequences. The lack
of smoothness in terrain data often proves difficult to handle for the numerical schemes
of climate models potentially leading to a lack of computational stability. For this rea-
son, many state-of-the-art models apply mollifying filters to the data at the expense of
a more realistic representation of orographic structure. Another important example of
detrimental effects related to terrain representation is connected to the widespread use
of terrain-following coordinate systems (TFCSs). It is well known that such coordinate
systems exhibit accuracy deficits in the computation of the pressure gradient force espe-
cially in the vicinity of steep terrain. With increased resolution steep gradients are more
likely to be encountered exacerbating the issue.

These issues present substantial challenges in accurately capturing the local climatic
features in regions such as the Alps, the Rocky Mountains or the Himalayas. The
orographic structure has great influence on parameters such as wind speed, runoff and
precipitation. At the same time, future changes in these regions are especially important
to understand as they may have grave consequences for the livelihood and health of local
residents in neighboring communities. For instance, the fresh water supply of several
hundred millions of people depends on the rivers and the water cycle of the Himalayas
(You et al. 2017). Another example is the dependency of many alpine communities on
winter tourism threatened by changes in snowfall frequency and intensity (e.g., Elsasser
and Bürki 2002; Beniston 2012).

1.2 Terrain-Following Coordinate Systems and the Pressure
Gradient Error

As pointed out in the preceding section accurate resolution of orographic features and
their influence on local climate is a difficult endeavor. The arising challenges range from
constructing suitable parameterizations to adapting the numerical schemes used to solve
the basic equations of motion. The present work will exclusively be concerned with the
latter issue and more specifically with the pressure gradient error (PGE). This error
is associated with the use of TFCSs, i.e., coordinate systems that map the irregular
orographic features in physical space to a flat computational space.

The first example of such a coordinate was introduced by Phillips (1957) and due to
its many advantages soon became the dominating technique to incorporate orography
into circulation models of all kinds. The basic idea is to choose the ratio of pressure
and surface pressure as a vertical coordinate rather than, e.g., geometrical height above
mean sea level. Clearly, such a coordinate always has the value one at the ground where
pressure and surface pressure conform. Likewise, at the top of the model atmosphere
where the atmospheric pressure vanishes this coordinate always has the value zero. Con-
sequently, the distance between ground and top of the atmosphere is always mapped to



CHAPTER 1. INTRODUCTION

the regular unit interval irrespective of the local orographic features. Figure 1.1 shows
an illustration of physical and computational space in a terrain-following coordinate.
Today virtually all weather and climate models use or support at least one coordinate
built upon the same principles.

Figure 1.1: Illustration of a meteorological field expressed in Cartesian coordinates (left) and in
a terrain-following coordinate (right).

To understand the widespread and even quasi-monopolistic use of these coordinates one
must look at the technical challenges faced when introducing orography into models
of the atmosphere. Generally speaking, such models are comprised of two parts often
referred to as the physics package and the dynamical core. The latter term refers to
the part of the model that solves the primitive equations of motion based on suitable
initial (and in case of a regional model also boundary) conditions. The physics package
of a model describes all processes that are not accounted for by the primitive equations
such as turbulence, precipitation, radiation, soil processes, freezing and melting to name
just a few. The physics routines (typically referred to as parameterizations) use the
quantities computed in the dynamical core (often called prognostic variables) such as
temperature, wind speed and pressure as their input. Based on these values the param-
eterization schemes both diagnose all additional variables of interest (e.g., precipitation
rate or net shortwave radiation) and estimate changes to the prognostic variables due to
the parameterized processes. These changes (tendencies in common parlance) are then
passed back to the dynamical core to be incorporated into the prediction of the next
time step. The influence of orography on the prognostic variables is in principle already
described by the equations of motions. Therefore, the natural place for orography to
be included into a model is the dynamical core. Parameterizations may take orography
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values into account for their own purposes (e.g., in runoff computations) but the effects
of terrain features on, e.g., flow patterns, moisture transport and temperature are best
left to the equations of motion. The most prevalent technique to solve these equations
in dynamical cores is the finite difference method (FDM). In fact, when orography was
first introduced into the models it was the only production-ready method available. The
last two decades have seen the advent of dynamical cores based on more advanced tech-
niques such as finite volume (FV) and finite element (FE) methods, but most models
still depend on the canonical methods. The former methods often allow to incorporate
orography by simply fitting an unstructured grid to the terrain, e.g., by using a tessella-
tion of the domain with triangular cells. For all practical purposes, FDMs on the other
hand are limited to the use of structured or even regular grids, i.e., grids constructed of
congruent cuboids with regular connectivity between the cells. Figure 1.2 demonstrates
the problem of covering a domain with orography by a regular grid. The orography

Figure 1.2: Illustration of orography (solid black) intersecting a regular grid. The resulting
cut-cells are shown in red.

tends to intersect the near surface cells, i.e., parts of those cells are located within the
soil, mountains or water bodies. Consequently, the assumptions preceding the equations
of motion no longer hold. The introduction of a TFCS offers a solution to this problem
by transferring the equations to a computational space that can be covered by a regular
grid. Additionally, the formulation of lower boundary conditions is greatly simplified
in this situation. It suffices to require that no transport across the surface takes place.
These features and the lack of alternatives at the time motivated the rapid dissemination
of TFCSs among the NWP and climate research communities.

However elegant, this solution also comes at a price. Smagorinsky et al. (1967) reported
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large truncation errors in the computation of the PGF when using the σ-coordinate
introduced by Phillips (1957). These errors were most prominent in regions character-
ized by strong orographic gradients and large enough to produce spurious eddies in the
vicinity. The authors suggested to compute the PGF in the classical p-system to reduce
the error, albeit being a remedy that requires interpolation back and forth between the
two systems (see Kurihara 1968). Based on an investigation of idealized numerical ex-
amples Gary (1973) instead proposed to express the equations of motion in terms of the
deviation from a hydrostatic background state. This approach proved rather successful
and today is still considered a standard measure to reduce orography related truncation
errors especially in the NWP community. For climate applications the latter method is
less appealing as suitable background states may change over the long integration times
and cannot simply be inferred from initial conditions (Botta et al. 2004). Sundqvist
(1975) and Sundqvist (1976) elaborated on the nature and cause of the observed trun-
cation errors. In the σ-system the horizontal PGF is expressed as the sum of two terms
opposite in sign but similar in magnitude, i.e.,

Fσ
∇p = ∇Φ +RT∇ ln ps (1.1)

with Fσ
∇p the PGF, p and ps the (surface) pressure, Φ the geopotential, R the gas con-

stant of dry air and T the absolute temperature. This form of the PGF is a consequence
of having to compute derivatives along the curved coordinate lines in the computational
space (see Figure 1.1). The PGF is in general much smaller than either of the two
components on the right hand side (RHS) of equation (1.1). Small errors in these com-
ponents can therefore produce disproportionally large errors in the resultant PGF. For
instance, Sundqvist (1975) reported that an error of 1 % in the temperature term can
result in PGF errors of up to 20 %. In this way, truncation errors that are relatively small
compared to the magnitude of the approximated quantities can introduce large errors
into the PGF resulting in spurious or distorted motion. This becomes especially evident
in situations in which (1.1) equates to zero, i.e., in states of hydrostatic equilibrium.
Both NWP and climate models with terrain-following coordinates often fail to retain
such states. Instead, the erroneously generated momentum provokes unphysical hori-
zontal and vertical flow. It should be stressed that mathematically speaking equation
(1.1) always equates to zero in a state of equilibrium. It is only when (1.1) is discretised,
i.e., converted into a form suitable for processing on computer systems that truncation
errors are introduced into the system. Hence, the PGE is not a modeling error but a
numerical one and needs to be addressed as such.

Since the introduction of the original σ-coordinate many research efforts have aimed
to construct alternative terrain-following coordinates. Kasahara (1974) introduced a
terrain-following coordinate based on geometric height rather than pressure. Gal-Chen
and Somerville (1975a) and Gal-Chen and Somerville (1975b) followed a similar ap-
proach with emphasis on the non-hydrostatic equation set. In that context pressure is
non-monotonic and therefore not suitable to build coordinate transformations. It was
not until two decades later that Laprise (1992) and Janjić, Gerrity, and Ničković (2001)
enabled the use of pressure based TFCSs in a non-hydrostatic context by splitting the
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pressure variable into a hydrostatic and a non-hydrostatic component. Sangster (1960)
suggested a hybrid coordinate that behaves like a σ-coordinate near the ground but
becomes isobaric above a fixed pressure threshold. Arakawa and Lamb (1977) refined
this concept for use in the University of California GCM. Simmons and Burridge (1981)
also presented a hybrid coordinate with emphasis on a smooth transition between the
terrain-following and isobaric regimes. Zhu et al. (1992) presented a hybrid coordinate
transitioning from σ-levels to isentropic levels in the upper atmosphere. Schär et al.
(2002) conceived a coordinate with adaptive decay for small-scale and typically under-
resolved orographic features improving on the smoothness of higher-altitude levels and
thereby reducing numerical noise. However, all of these coordinates still result in repre-
sentations of the PGF similar to (1.1) and can suffer from significant truncation errors.

Song (1998) identified four major directions of research in the literature with the goal of
reducing the PGE in both atmosphere and ocean models. Namely, the interpolation of
data to the z- or p-system (e.g., Smagorinsky et al. 1967; Fortunato and Baptista 1996),
the subtraction of hydrostatic reference states (e.g., Gary 1973), the use of higher-order
schemes to improve accuracy (e.g., McCalpin 1994; Beckmann and Haidvogel 1993) and
the development of schemes that retain discrete analogues of integral properties (e.g.,
Arakawa and Suarez 1983; Arakawa and Konor 1996; Lin 1997).

Problems with retaining equilibrium states due to truncation errors similar to those
exhibited by discrete renditions of (1.1) have also been subject to research outside of the
climate and NWP community. More specifically, a number of mathematical publications
are concerned with finding systematic approaches to balancing the truncation errors of
two or more terms in systems of differential equations such that equilibrium states are
exactly retained. Such methods are often referred to as well-balanced methods (WBMs)
in the literature (e.g., Greenberg and Leroux 1996; LeVeque 1998). Many WBMs also
address geophysical models with terrain such as the shallow water equations (SWE) (e.g.,
Audusse et al. 2004) with applications in diverse areas such as tsunami and inundation
modeling (e.g., Vater, Beisiegel, and Behrens 2015), arterial blood flow (Müller, Parés,
and Toro 2013; Delestre and Lagrée 2013) or sediment transport (Qian et al. 2015). As of
now, comparatively few publications investigated whether numerical schemes developed
under the umbrella of well-balancing could be applied to atmospheric models such as
RCMs. To some extent this can likely be explained by the fact that most publications
on WBMs focus on finite volume methods (FVMs). While these methods have gained
popularity in atmospheric models in recent years most models still work with low-order
FDMs. Of the existing well-balancing literature on FDMs most is geared towards higher-
order schemes with non-oscillatory and total-variation-diminishing properties specifically
engineered to accurately resolve shocks in hyperbolic systems (e.g., Xing and Shu 2006;
Wang et al. 2009). Still, Botta et al. (2004) and Klein, Bates, and Nikiforakis (2009)
demonstrated that the application of well-balancing to models of the atmosphere may
be promising.

Moreover, part of the research has been geared towards alternative representations of
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terrain in atmospheric models. The two most notable examples are the cut-cell and
the step-mountain approach. The former one uses the Cartesian coordinate system and
thereby avoids most of the problems associated with (1.1). However, the intersection
of a regular grid by orography (see Figure 1.2) produces degenerate cells that need
specialized numerical treatment (e.g., Bonaventura 2000; Steppeler, Bitzer, Minotte, et
al. 2002; Klein, Bates, and Nikiforakis 2009; Good et al. 2014; Shaw and Weller 2016;
Yamazaki, Satomura, and Nikiforakis 2016). Such cells typically have small size with
negative impact on performance due to the Courant-Friedrichs-Lewy (CFL) criterion.
Additionally, the application of physically consistent lower boundary conditions becomes
rather complex and usually requires the use of uncentered differences. On the other
hand, the step-mountain approach removes complete cells from the computational grid
to approximate the given terrain. This avoids most of the complications with cut-cells
at the cost of a less accurate representation of orography (see Mesinger et al. 1988).
However, Gallus and Klemp (2000) reported difficulties to produce physically correct
solutions of flow over a steep hill with this method.

While the difficulties in calculating the PGF have been long acknowledged its detri-
mental influence on real-data predictions is difficult to assess. On the one hand, out-
side of strongly simplified test cases no analytical solutions to the equations of motions
are known which makes production of suitable reference solutions a difficult endeavor.
Moreover, physical parameterizations likely are even more critical to the accuracy of
predictions and so the attribution of observed errors to the PGF would be challeng-
ing. Still, there is some indication that the PGE has substantial negative effects on the
quality of predictions. Steppeler, Bitzer, Janjić, et al. (2006) pointed out that artifi-
cial mountain-generated forcing can negatively impact cloud structure in the vicinity.
They also reported structural improvements in precipitation forecast and threat scores
as well as root-mean-square error (RMSE) of temperature and wind vectors when using
a cut-cell version of the German Weather Service Lokalmodell (LM).

1.3 Aims and Structure of the Thesis

Representing orography in circulation models is both a long-standing and current re-
search problem as evidenced by the vast body of classic and recent literature on the
topic. As mentioned relatively little work has been dedicated to apply the concept of
well-balancing to models of the atmosphere. Most notably Botta et al. (2004) presented
a framework to effectively balance truncation errors in the context of FVMs for non-
hydrostatic models. Such methods canonically utilize the Cartesian frame of reference
and represent orography by unstructured grids. While the authors indicate that their
method can readily be applied to FDMs as well it remains unclear whether this also
holds when a TFCS is used or a hydrostatic model is concerned. The present work aims
at filling this research gap by attempting to answer the following research questions:
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• Can existing well-balancing approaches be transferred to hydrostatic FDM climate
models?

• Is this effective and efficient in reducing the pressure gradient error encountered in
the presence of steep and complex orography?

• How does this relate to the different types of TFCSs employed, e.g., pressure-based
vs. height-based systems?

The thesis is structured as follows: In chapter two the regional hydrostatic climate model
REMO which will be used as a test bed to develop and apply a well-balancing strategy
is introduced. In chapter three the pressure gradient error is defined, the basic ideas
of well-balancing and the standard discretisation of the PGF are introduced and the
equilibrium states of the model are investigated. In the fourth chapter an alternative
discretisation of the PGF that can be readily applied within the REMO framework is
developed. In chapter five the newly developed method is applied to several idealized
test-cases to assess strengths and weaknesses of the discretisation. Finally, in chapter
six a summary of the present work is given, the results are critically discussed and an
outlook of possible further research is given.



2 The REMO Model

Throughout this study new methodical developments will be implemented and validated
with the regional hydrostatic climate model REMO Regional Model (REMO). In this
chapter a brief overview of the REMO model in general and its dynamical core in par-
ticular is given.

2.1 Overview

REMO (Jacob 2001; Jacob, Van den Hurk, et al. 2001) is a three-dimensional hydro-
static primitive equation regional climate model originally based on the German Weather
Service “Europa-Modell” (Majewski 1991). To allow application to climate projections
the physics package of the Max Planck Institute for Meteorology global climate model
ECHAM4 (Roeckner et al. 1996) was implemented into REMO and has since been con-
tinuously developed and expanded. More recently the model has also been updated with
a non-hydrostatic extension (Göttel 2009).

2.1.1 Physics

The present work will exclusively deal with the dynamical component of the model, i.e.,
the solution of the primitive equations in Euler-form and more specifically the compu-
tation of the pressure gradient force. Giving even a cursory overview of the numerous
physical parameterizations in REMO, i.e., those parts of the model that describe dia-
batic processes such as, e.g., freezing and melting, microphysical interactions, radiative
transfer and other components of the climate not covered by the primitive equations, is
hence beyond the scope of this work. Instead some of the main parameterization schemes
are listed and appropriate references are pointed out for detailed descriptions. The main
characteristics of the physical parameterizations are given by a radiation scheme based on
Morcrette, Smith, and Fouquart (1986) and Giorgetta and Wild (1995). The treatment
of stratiform clouds is governed by schemes based on Sundqvist (1978) with modifications
based on Roeckner et al. (1996), where also a lot of in-depth information on several other
parameterizations in REMO can be found. Cumulus convection is represented through a
mass flux scheme after Tiedtke (1989) and Nordeng (1994). The turbulent surface fluxes
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are computed according to Monin-Obukhov similarity theory (Louis 1979) with vertical
diffusion based on the turbulent kinetic energy. Soil processes are modeled with a 5-layer
diffusion scheme for heat transfer and a bucket approach for soil moisture, interception
by vegetation and snow with modifications that allow the freezing and thawing of soil
water (Semmler 2002). The runoff scheme is based on Dümenil and Todini (1992).

2.1.2 Dynamics

The most important aspects of REMO’s dynamical core will be covered in the following
sections in some detail, but here the main features as relevant for the developments
in later chapters are summarized. The basic model formulation is based on the hy-
drostatic primitive equation system (e.g., White et al. 2005)), i.e., a rendition of the
Euler-equations of motion under the assumption of a hydrostatically balanced atmo-
sphere. In such cases the third equation of motion reduces to a diagnostic relationship
for the geopotential height, significantly reducing computational costs in the process,
but also limiting the model to coarser resolutions beyond about ten kilometers.

The basic equations are discretized using a centered finite-difference approach on a reg-
ular longitude-latitude grid in the horizontal and a hybrid terrain-following grid in the
vertical. For the time discretization the leapfrog scheme is employed, necessitating the
use of a filter to maintain stability of the computation. In REMO the Asselin-filter is
used for this purpose. While centered differences in general would allow for second order
approximations, in practice the use of the Asselin-filter limits the order of approximation
somewhat below this mark (see e.g., Duran 2010).

Stability requirements also motivate the addition of diffusion terms to the equations in
order to prevent the accumulation of numerical noise at the shortest wavelengths re-
solved by the model. To lessen the constraints given by the CFL number (e.g., Duran
2010), some of the model also features implicit formulations. On the one hand the ver-
tical advection is handled by the classical Crank-Nicolson scheme. On the other hand
processes prone to generating gravity waves are dealt with applying the scheme of Sim-
mons and Burridge (1981) but can also be approached explicitly instead, depending on
model configuration. Implicit formulations enable the use of larger timesteps, generally
outweighing the drawbacks of having to solve additional equations in each of them.

Furthermore, since REMO is a regional model boundary conditions need to be provided
in addition to an initial state, generally created from global model output or reanalysis
products. To smoothly impose the boundary values on the solution a lateral relaxation
scheme after Davies (1976) is applied.
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2.2 Coordinate Systems

In this section the coordinate systems used in REMO are described as a prerequisite to
formulating the equations of motions later on.

2.2.1 Horizontal Coordinate System

REMO employs a spherical coordinate system in the horizontal directions. It is derived
by intricate rotation of the standard geographical coordinate system. The rotation is
constructed such that the rotated equator passes through the center of the domain. Near
the poles meridional convergence can result in very small computational cells, effectively
dominating the choice of timestep for the whole domain due to the CFL-condition (e.g.,
Duran 2010). Because REMO is a regional model the rotation in general guarantees
that the rotated domain is far away from the poles, as illustrated by Figure 2.1. Con-
sequently, the influence of meridional convergence on the choice of viable timesteps is
strongly limited. A detailed account of the coordinate transformation, its inverse and
the conversion of wind components between the rotated and the geographical system
can be found in the literature (Majewski and Schrodin 1995). Note however that the
resulting equation systems – before and after transformation – are exactly the same with
only one exception: the Coriolis factor f = 2Ω sinφ. In the rotated system one instead
has:

(2.1)f = 2Ω
(︂
sinφ sinφN + cosφ cosφN cos

(︂
λ− λN

)︂)︂

where (λ, φ) are the rotated longitude and latitude respectively and
(︂
λN , φN

)︂
are the

coordinates of the geographical north pole in the rotated system.

2.2.2 Vertical Coordinate System

In the vertical direction the REMO model uses a terrain-following coordinate system.
The classical example of such a coordinate for meteorological use is the σ-coordinate
developed by Phillips (1957). The idea is to express the model height not in terms of,
e.g., geometric or geopotential height, or in terms of the atmospheric pressure but as the
ratio of hydrostatic pressure to hydrostatic surface pressure:

(2.2)σ = p

ps
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Figure 2.1: Illustration of a domain before and after rotation.

Clearly at surface level one has p = ps and hence σ = 1. The lowest coordinate surface
in the σ-system coincides with the bottom topography. On the other hand at the top of
the atmosphere one has p = 0 and hence also σ = 0. Since the coordinate is built from
the hydrostatic pressure – which of course is a monotone function of height – the result
is also a monotone function, allowing its use as a vertical coordinate in the equations
of motion. The main advantage is that the lower vertical boundary condition simplifies
substantially, avoiding the use of, e.g., uncentred differences in the presence of sloping
topography.

There are however also a number of tradeoffs: meteorological observations often are
given on surfaces of constant pressure. Such data has to be interpolated to σ-surfaces to
be used as driving data in terrain-following models (e.g., Sundqvist 1976). Additionally
while the sloping of coordinate surfaces is useful at the lower boundary, it serves no
purpose in the upper atmosphere. Here typical flow regimes tend to follow isobaric
surfaces that would be most naturally expressed in a pressure coordinate. Consequently,
the representation along σ-surfaces is often numerically more difficult and can produce
noise around steeply sloped coordinate surfaces even in the upper atmosphere.

Moreover, the representation of the horizontal pressure gradient force is also more com-
plicated in this and related coordinates (e.g., Sundqvist 1978). To reduce these disad-
vantages REMO instead uses a hybrid coordinate after Simmons and Burridge (1981),
which will be referred to as the η-coordinate during this work. The idea is to use a
pressure coordinate in a large part of the upper atmosphere thereby facilitating a nat-
ural representation of the flow. At the lower boundary a σ-system is used instead to
retain the advantages of terrain following coordinates in regards to the lower boundary
condition. Between the two regimes the coordinate is linearly interpolated to allow a
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suitable transition.

This can be written

η =

⎧⎨⎩
p
pr

for 0 ≤ p ≤ pt
p−pt

ps−pt
+ pt

pr
· ps−p
ps−pt

for pt ≤ p ≤ ps
(2.3)

with pr a constant reference pressure and pt a pressure threshold above which η is
identical to a pressure coordinate. In REMO pr = 1013.25 hPa is used for the reference
pressure. The pressure threshold varies between simulations but is generally chosen
roughly around 220 hPa. From (2.3) it can be readily seen that one has η = 1 for p = ps,
i.e., the lowest coordinate surface exactly follows the given orography. As will be seen
later this is enough to ensure the benefits of a simplified lower boundary condition. At
p = pt the two terms in (2.3) are exactly identical and the transition between the terrain-
following and the pressure regime is continuous. Clearly, the influence of orographic
variation on the coordinate surfaces is decaying linearly towards the threshold pt. For
any pressure p ≤ pt the coordinate surfaces are indeed completely independent of the
given surface elevation. In this way detrimental numerical effects of the sloping η-
surfaces as discussed above are effectively limited. Furthermore, the pressure surfaces in
the upper atmosphere are well suited to describe flow in the free atmosphere. Figure 2.4
illustrates these typical features of the coordinate surfaces in the η-system.

According to (2.3) η is a function of p and ps, but likewise one can express p as a function
of η and ps. With the definitions

(2.4)A(η) =
{︄
prη for 0 ≤ η ≤ ηt
prpt

pr−pt
(1 − η) for ηt ≤ η ≤ 1

(2.5)B(η) =
{︄

0 for 0 ≤ η ≤ ηt
prη−pt

pr−pt
for ηt ≤ η ≤ 1

where ηt is the η-value corresponding to the pressure threshold pt, i.e., ηt = pt

pr
, we can

write:

(2.6)p = A(η) +B(η) · ps

This means that in the η-system the atmospheric pressure takes the form of a linear
function. As will be seen later equation (2.6) can be used as a diagnostic equation to re-
cover the pressure from the given atmospheric parameters A(η), B(η) and the hydrostatic
surface pressure ps.
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2.3 Continuous Model Equations

In this section the basic continuous equations of motion, used to advance the meteoro-
logical variables of interest in time, are given. This exposition closely follows Majewski
and Schrodin (1995) where more in-depth information about the dynamical core can be
found.

2.3.1 Prognostic Equations

Here the main equations for each of the prognostic variables are formulated: hydrostatic
surface pressure, horizontal wind components, temperature as well as specific humidity,
cloud water and cloud ice.

Equation of Continuity

Technically the equation of continuity is not used as a prognostic equation for the REMO
model, but the equations for the surface pressure and the vertical velocity in the η-system
both are derived from it. For completeness it is hence given here as

(2.7)∂

∂t

(︃
∂p

∂η

)︃
+ 1
a cosφ

[︃
∂

∂λ

(︃
u
∂p

∂η

)︃
+ ∂

∂φ

(︃
v cosφ∂p

∂η

)︃]︃
+ ∂

∂η

(︃
η̇
∂p

∂η

)︃
= 0

where p is the hydrostatic pressure, a = 6 371 229 m the radius of earth, φ and λ the
rotated latitude and longitude respectively, u, v the zonal and meridional wind compo-
nents, and η̇ = Dη

Dt the vertical velocity in the η-system. As pointed out earlier one of the
main advantages of a terrain-following coordinate system is the simple formulation of
vertical and in particular the lower boundary condition. Assuming that no mass trans-
port happens through the upper or lower boundary, i.e., the interfaces to outer space
and inner earth, the boundary conditions can simply be given as:

η̇ = 0 at the upper boundary with η = 0
η̇ = 0 at the lower boundary with η = 1

(2.8)

Surface Pressure

Integrating (2.7) from top to bottom of the atmosphere and employing the vertical
boundary conditions (2.8) yields a prognostic equation for the hydrostatic surface pres-
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sure ps. The rate of change of ps is then given by:

(2.9)∂ps
∂t

+ 1
a cosφ

∫︂ 1

0

∂

∂λ

(︃
u
∂p

∂η

)︃
+ ∂

∂φ

(︃
v cosφ∂p

∂η

)︃
dη′ = 0

Wind Components

The evolution of the wind component in zonal direction u is described by the following
equation:

(2.10)∂u

∂t
− 1

cosφQ
∂p

∂η
v cosφ+ 1

a cosφ
∂

∂λ
(Φ +K) + RTv

a cosφ
∂ ln p
∂λ

+ η̇
∂u

∂η
−Du = Fu

Here Q denotes the absolute potential vorticity, p the hydrostatic pressure, Φ the geopo-
tential, Tv the virtual temperature, R = 287.05 J/(kg K) the gas constant for an ideal
gas, η̇ the vertical velocity and Du the horizontal diffusion of u. Likewise for the the
wind component in meridional direction v one has

(2.11)∂v

∂t
−Q

∂p

∂η
u+ 1

a

∂

∂φ
(Φ +K) + RTv

a

∂ ln p
∂φ

+ η̇
∂v

∂η
−Dv = Fv

where Dv is the horizontal diffusion of v. The terms Fu and Fv represent diabatic and
subscale, i.e., parameterized processes such as convection or turbulent boundary layer
interactions. Since physical parameterizations are not the topic of this work and for
reasons of brevity the reader is referred to the various sources cited in subsection 2.1.1
for detailed treatments. This also applies to related terms appearing in the remaining
equations.

Temperature

The thermodynamic equation is given by

(2.12)∂T

∂t
+ 1
a cosφ

(︃
u
∂T

∂λ
+ v cosφ∂T

∂φ

)︃
+ η̇

∂T

∂η
−DT = αω

cp
+ FT

where T is the absolute temperature, α the specific volume, ω = dp
dt the vertical velocity

in terms of the hydrostatic pressure p, DT the horizontal diffusion of temperature and
FT changes in temperature due to subscale processes.
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Specific Humidity, Cloud Water and Cloud Ice

The moist components of air are realized as passive tracers

(2.13)∂qd
∂t

+ 1
a cosφ

(︃
u
∂qd
∂λ

+ v cosφ∂qd
∂φ

)︃
+ η̇

∂qd
∂η

−Dqd
= Fqd

(2.14)∂qw
∂t

+ 1
a cosφ

(︃
u
∂qw
∂λ

+ v cosφ∂qw
∂φ

)︃
+ η̇

∂qw
∂η

−Dqw = Fqw

(2.15)∂qi
∂t

+ 1
a cosφ

(︃
u
∂qi
∂λ

+ v cosφ∂qi
∂φ

)︃
+ η̇

∂qi
∂η

−Dqi = Fqi

with specific humidity qd, cloud water qw and cloud ice qi and their horizontal diffu-
sion terms Dqd

, Dqw , Dqi respectively. Feedback mechanisms are included by using the
virtual temperature Tv in (2.10) and (2.11) instead of the absolute temperature T . As
before Fqd

, Fqw and Fqi represent subscale interactions including for example phase con-
versions.

2.3.2 Diagnostic Equations

Equations (2.9) to (2.15) constitute a closed system that can in principle be solved for
the prognostic variables ps, u, v, T, qd, qw and qi. First however, the auxiliary quantities –
such as for instance the geopotential Φ or the absolute potential vorticity Q – appearing
in these equations have to be expressed in terms of the prognostic variables. Therefore,
in this section the definitions of these diagnostic quantities will be introduced.

Pressure

Equation (2.9) references the pressure p at arbitrary levels. In hybrid pressure based
coordinates the pressure at a given level is a linear function of the surface pressure ps
and the vertical coordinate η. With the definitions of subsection 2.2.2 one can write:

(2.16)p = A(η) +B(η) · ps
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Potential Absolute Vorticity

The potential absolute vorticity Q is needed to evaluate the momentum equations (2.10)
and (2.11). It is given by

(2.17)Q =
(︃
∂p

∂η

)︃−1 (︃
f + 1

a cosφ

(︃
∂v

∂λ
− ∂u cosφ

∂φ

)︃)︃

where f is the Coriolis force. According to (2.1) this term can be written

f = 2Ω
(︂
sinφ sinφN + cosφ cosφN cos

(︂
λ− λN

)︂)︂

with
Ω = 7.292 11 × 10−5 s−1

the angular velocity.

Geopotential

In a hydrostatic model such as REMO the geopotential is characterized by the balance
of a gravity and a buoyancy term. Essentially this balance is the residual of the third
equation of motion under hydrostatic conditions and given by

(2.18)−RTv
∂ ln p
∂η

= ∂Φ
∂η

and consequently the geopotential can be recovered by vertical integration from the
bottom of the atmosphere to a given height η:

(2.19)Φ = Φs −R

∫︂ η

1
Tv
∂ ln p
∂η

dη′

The term Φs = g · zs denotes the surface geopotential with the height above mean sea
level zs.
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Kinetic Energy

Term K in the momentum equations (2.10) and (2.11) represents the kinetic energy per
unit mass. It is given by

(2.20)K = 1
2
(︂
u2 + v2

)︂

Virtual Temperature

The virtual temperature Tv can be expressed as a function of the absolute temperature
T and the moist components of air qd, qw and qi as

(2.21)Tv = T

(︃
1 +

(︃
RD
R

− 1
)︃
qd − (qw + qi)

)︃

where Rd = 461.51 J/(kg K) is the gas constant for water vapor.

Vertical Velocity in the η-System

A diagnostic equation for the vertical velocity η̇, i.e., the change of the vertical coordinate
η following an air parcel along its trajectory, can be derived from (2.7). Integrating from
top of the atmosphere to a given height η yields

(2.22)⋆
η = −

(︃
∂p

∂ps

)︃
∂ps
∂t

− 1
a cosφ

∫︂ η

0

∂

∂λ

(︃
u
∂p

∂η

)︃
+ ∂

∂φ

(︃
v cosφ∂p

∂η

)︃
dη′

with the auxiliary quantity ⋆
η = η̇ ∂p∂η .

Specific Volume

The specific volume α can be derived from the equation of state which can be written
as:

(2.23)α = RTv
p

Note that for a dry atmosphere (2.23) simply reduces to the ideal gas equation.
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Vertical Velocity in the p-System

The αω
cp

term appearing in the thermodynamic equation (2.12) is related to the conversion
of potential and kinetic energy. A diagnostic expression for ω can be found by direct
differentiation of ω = Dp

Dt and substituting equation (2.22). This yields:

(2.24)

ω

p
= −1

p

[︃ 1
a cosφ

∫︂ η

0

∂

∂λ

(︃
u
∂p

∂η

)︃
+ ∂

∂φ

(︃
v cosφ∂p

∂η

)︃
dη′
]︃

+

1
a cosφ

(︃
u
∂ ln p
∂λ

+ v cosφ∂ ln p
∂φ

)︃

Initial- and Boundary Conditions

With the definitions of this section equations (2.9)–(2.15) constitute a closed system that
can in principle be solved for the prognostic variables ps, u, v, T, qi, qd, qw. This depends
of course on the provision of suitable initial and boundary conditions. For the initial
conditions the values of the prognostic variables are prescribed at the initial time and
for the whole computational domain. In practice simulations of historical climate or
reanalysis data are used to acquire appropriate initial values. For the vertical boundary
an appropriate condition has already been established with (2.8). In case of a global
model no further boundary conditions would be required. REMO however is a regional
model and therefore also requires suitable conditions at the lateral boundaries of the
domain. Again such values can be acquired from driving model simulations, both global
and regional ones, or reanalysis data.

However – unlike for the vertical boundary – there is no obvious way to impose the
resulting values for the prognostic variables near the lateral boundary. In REMO this
is resolved by gradually relaxing the prognostic variables towards a specified reference
state at the boundary according to Davies (1976). For any prognostic variable ψ with
given reference state ψR at the lateral boundary, an additional relaxation term of the
form µR (ψ − ψR) results on the right hand side of the respective prognostic equation
(2.9)–(2.15). The relaxation factor µR is chosen in such a way that one has µR = 1 at the
lateral boundary and a rapid but smooth decay towards zero outside of the boundary.

Consequently, in practice µR is essentially zero everywhere but in a boundary zone of
generally less than a dozen grid cells. In this way the driving values are imposed only
at the boundary. At the same time the boundary zone allows for a smooth transition
between the inner domain characterized by regional dynamics and the lateral boundary
dominated by the forcing patterns. This strategy is effective but also likely to cause
numerical noise near the lateral boundaries. In practice simulation results within the
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boundary zone are therefore treated cautiously and often excluded from analysis for
increased robustness.

2.4 Discretization

In the last section the continuous equations of motions in the hybrid terrain-following
η-coordinate were given and appropriate initial and boundary conditions were specified.
Mathematically this should ensure the existence and uniqueness of a solution for which
the given equation system (2.9)–(2.15) can then be solved. However, in general complex
partial differential equations can not be solved explicitly, i.e., in closed form (e.g., Duran
2010). Instead solutions to such systems are typically approximated numerically, e.g., on
high performance computing systems owing to the complexity of the task. Any computer
can by its very nature only represent a finite number of distinct states, e.g., due to finite
memory and a number of other limitations. On the other hand the system (2.9)–(2.15)
– formulated in a mathematical continuum – can assume an infinite number of states.

In other words: computer systems are in general unable to solve such systems directly.
Instead the equations first have to be rendered into a discrete form, i.e., one that requires
only a finite number of unknowns to represent the state of the system across the domain
of interest. Naturally, this representation will – except for very simple states – be only
an approximation to the true solution of the underlying equation system. The more
discrete points are used to represent the system, the better this approximation will be,
as illustrated in Figure 2.2. Each gridbox shown is represented in the discrete model by
a single value for each of the prognostic variables. With more gridboxes per area local
structures including topographic features can be resolved much better. In the following
equations (2.9)–(2.15) will be cast into a discrete form that facilitates the approximation
of solutions on computer systems.

2.4.1 Grid Structure and Discrete Operators

First, an overview of the discrete structure employed in the REMO model is given.
As mentioned before the idea is to approximate a mathematical continuum by a finite
number of data points distributed within the region of interest.

Horizontal Grid

Horizontally REMO employs the so called Arakawa-C grid (see Arakawa and Lamb
1977). The main feature of this grid is that not all prognostic variables are distributed
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Figure 2.2: Illustration of discrete representations of a domain with different resolutions.

along the same discrete points, i.e., the grid is staggered. The main discretization points
are labeled with full indices (i, j) as seen in Figure 2.3. At these points (shown as
diamond nodes), often referred to as mass points, all the prognostic variables except for
the horizontal wind components are located. The mass points are placed equidistantly
within the rotated coordinate system with increments of ∆λ and ∆φ, where in REMO
generally ∆λ = ∆φ. If one thinks of mass points as the centers of computational cells
(dashed lines in Figure 2.3) the horizontal wind components u and v are placed at the
interfaces of those cells. That is, the u-component is displaced to the right by ∆λ

2 and
the v-component upwards by ∆φ

2 . Consequently, u-points labeled with indices (i+ 1
2 , j)

and (i, j + 1
2) for v-points respectively. The vorticity ζ is displaced in both horizontal

directions and labeled (i+ 1
2 , j + 1

2). Note that despite being equidistantly chosen within
the computational space (i.e., the rotated longitude-latitude system) in physical space
(i.e., the geographical system) the effective horizontal resolution differs between the cells.
This is most notably seen towards the poles due to meridional convergence.

Vertical Grid

Vertically the model is discretized with the so called Lorenz grid. Again the main feature
of this grid is the staggering of its variables as illustrated in Figure 2.4. The solid lines
are referred to as full layers and here all prognostic variables are located except for the
(surface) pressure. That (as well as the diagnostic quantities Φ and η̇) is instead located
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Figure 2.3: Illustration of the Arakawa-C grid structure in REMO.

on half layers (dashed lines in Figure 2.4), halfway between the full layers.

This construction is somewhat similar to the horizontal placement of variables, but note
one of the main differences. In the horizontal arrangement the discretization points are
distributed equidistantly at least within the rotated coordinate system. In the vertical
grid this is generally not the case. Instead the vertical resolution in the η-system can
differ substantially between different computational cells. Essentially the η-points at
which the variables are to be evaluated are chosen freely and do not change over the
course of a simulation. Note however that again a distinction between the computational
space and the physical space has to be made. Unlike the horizontal resolution which
in physical space varies between cells but is constant in time, the vertical resolution in
physical space generally changes in every timestep depending on the value of the surface
pressure.

The initial resolution (i.e., based on a reference pressure) in practice is chosen such that
the planetary boundary layer is well-resolved. With increasing height the resolution
becomes much coarser. For instance the lowest layer in standard setups often is only
about 30 m thick, where the highest layers can reach thicknesses of 3 km and more. For
the labeling of grid indices in the vertical k is used for full and k + 1

2 for half layers. For
instance a discrete temperature value on the grid is written Tijk. Note however that in
most cases one or several of the indices can be inferred from context. Therefore the same
value will often be denoted as Tij or Tk instead to improve the readability of formulas.
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Figure 2.4: Illustration of the Lorenz grid structure in physical space.

Finite Difference and Averaging Operators

To construct a closed discrete equation system that allows computing the prognostic
variables at the discretization points, the continuous equations have to be rendered into
a discrete form. The main difficulty here is the approximation of the horizontal and ver-
tical derivatives. In REMO finite-difference approximations, more specifically so called
centered-differences, are used to achieve this. The main advantage of centered-differences
is that they in principle allow for second order approximations of the derivatives, i.e.,
with increasing resolution ∆λ,∆φ the discretization error will tend to zero quadratically.
At the same time, centered-differences are comparatively easy to implement in contrast
to approximations that allow even higher orders of approximation. As discussed above
the staggered nature of the computational grid facilitates the use of centered differences,
making them the natural choice for REMO.

However, the use of staggered grids also requires in some places the transfer of quantities
at mass points to u- or v-points and vice versa. The same applies to the vertical grid
points. To achieve this a simple averaging approach is used which also retains the order
of approximation.
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The difference operators are defined as follows:

δλψ = ψi+1j − ψij
∆λ

δφψ = ψij+1 − ψij
∆φ

(2.25)

where ψ is any quantity located at mass-points, such as virtual temperature Tv or surface
pressure ps. Note that according to equation (2.25) the discrete differences of such
quantities in λ-direction are defined at u-points, and the ones in φ-direction at v-points
respectively. At these points the operators in (2.25) constitute second-order accurate
centered-differences. For quantities located on u- or v-points one likewise defines

δλψ =
ψi+ 1

2 j
− ψi− 1

2 j

∆λ

δφψ =
ψij+ 1

2
− ψij− 1

2

∆φ

(2.26)

and note that the operators (2.26) are defined at mass-points, i.e., at grid cells labeled
with full indices (i, j).

It is in some cases required to evaluate quantities naturally situated at u− or v−points
at mass points and vice versa. The following average operators allow for a simple but
effective conversion:

ψ
λ = ψi+1j + ψij

2
ψ
φ = ψij+1 + ψij

2

(2.27)

Analogously, for those quantities located on u- or v-points one instead has:

ψ
λ =

ψi+ 1
2 j

+ ψi− 1
2 j

2

ψ
φ =

ψij+ 1
2

+ ψij− 1
2

2

(2.28)

Vertically one has to convert quantities located on half-layers to full-layers occasionally
and this is again achieved by means of vertical averaging:

ψ
η =

ψk+ 1
2

+ ψk− 1
2

2
(2.29)

Note that generally indices are omitted wherever they can be inferred from context. For
instance, in (2.29) all references to the horizontal indices i and j are omitted as they are
not relevant for the vertical averaging.



CHAPTER 2. THE REMO MODEL

Leapfrog Time Integration

With the previously defined horizontal and vertical difference operators the spatial
derivatives can be approximated. However, time derivatives also need to be approx-
imated by suitable finite-differences. In REMO the leapfrog scheme is used for this
purpose. Each prognostic equation can be written in the general form

(2.30)∂ψ

∂t
+Ad(ψ)ψ +An(ψ)ψ = 0

where Ad represents all adiabatic terms and An all the other terms (i.e., from parame-
terizations). Then the leapfrog scheme can be given as

(2.31)ψt+∆t − ψt−∆t

2∆t = −
(︂
Ad(ψt)ψt +An(ψt−∆t)ψt−∆t

)︂

where ∆t > 0 is a predefined time increment. Note how in equation (2.31) the adiabatic
and nonadiabatic terms are evaluated at different timesteps.

2.4.2 Prognostic Equations

With these prerequisites at hand the discrete prognostic equations can be given. The
general procedure is straightforward: occurrences of prognostic variables are replaced
by their discrete values at the respective grid points. Likewise, derivatives of these
variables are discretized according to the operator definitions given in the preceding
section. Wherever necessary average operators are used to ensure consistency between
all terms in the equation. All quantities in one equation must either be located at
mass points or at cell interfaces in the horizontal and on either full or half-layers in the
vertical.

Surface Pressure

Approximating the integral in (2.9) with the midpoint rule one has for the surface
pressure at mass points

(2.32)
(︄
pt+∆t
s − pt−∆t

s

2∆t

)︄
ij

= − 1
a cosφj

km∑︂
l=1

[δλUl + δφ (Vl cosφ)]
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where km is the number of vertical levels. Note that in REMO k = 1 denotes the highest
level and k = km the lowest one above the ground.

Wind Components

Equation (2.10) yields

(2.33)

(︄
ut+∆t
k − ut−∆t

k

2∆t

)︄
i+ 1

2 j

− 1
cosφj

Qk
φ
Vkcosφλ,φ + 1

a cosφj
δλ (Φk +Kk)

+ RTvk
λ

a cosφj
δλ ln pk + 1

∆pk
λ

⋆
η
λ

∆ηuk2t
η

= Duk + Fuk

for the horizontal wind component at u-points. Likewise equation (2.11) at v-points
results in:

(2.34)

(︄
vt+∆t − vt−∆t

2∆t

)︄
ij+ 1

2

+Qk
λ
Uk

λ,φ + 1
a
δφ (Φk +Kk)

+ RTvk
φ

a
δφ ln pk + 1

∆pk
φ
⋆
η
φ

∆ηvk2t
η

= Dvk + Fvk

Temperature

The discrete version of the thermodynamic equation (2.12) takes the form:

(2.35)

(︄
T t+∆t
k − T t−∆t

k

2∆t

)︄
ij

+ 1
a cosφj∆pk

(︂
UkδλTk

λ + Vk cosφδφTk
φ
)︂

+ 1
∆pk

⋆
η∆ηTk

2tη = αkωk +DTk + FTk
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Specific Humidity, Cloud Water and Cloud Ice

The structural similarity of equations (2.13)–(2.15) naturally carries over into these
discrete representations:

(2.36)

(︄
qt+∆t
dk − qt−∆t

dk

2∆t

)︄
ij

+ 1
a cosφj∆pk

(︂
Ukδλqdk

λ + Vk cosφδφqdk
φ
)︂

+ 1
∆pk

⋆
η∆ηqdk2t

η

= Dqdk + Fqdk

(2.37)

(︄
qt+∆t
wk − qt−∆t

wk

2∆t

)︄
ij

+ 1
a cosφj∆pk

(︂
Ukδλqwk

λ + Vk cosφδφqwk
φ
)︂

+ 1
∆pk

⋆
η∆ηqwk2t

η

= Dqwk + Fqwk

(2.38)

(︄
qt+∆t
ik − qt−∆t

ik

2∆t

)︄
ij

+ 1
a cosφj∆pk

(︂
Ukδλqik

λ + Vk cosφδφqik
φ
)︂

+ 1
∆pk

⋆
η∆ηqik2t

η

= Dqik + Fqik

2.4.3 Diagnostic Equations

Equations (2.32)–(2.38) constitute the discrete equation system that will be solved in
each timestep. The required discrete forms of the auxiliary and diagnostic quantities
will be given in the following.

Pressure

Equation (2.6) yields the discrete pressure on half layers:

(2.39)pk+ 1
2

= Ak+ 1
2

+Bk+ 1
2

· ps
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The discrete renditions of A and B here can simply be derived by evaluating equations
(2.4) and (2.5) at the given discrete η-levels. These can as mentioned be arbitrarily
chosen before the start of a simulation and remain constant afterwards. Often pressure
values on full layers will be required instead:

(2.40)pk =
pk+ 1

2
+ pk− 1

2

2

Potential Absolute Vorticity

Equation (2.17) yields the discrete form

(2.41)Qk = 1
∆pka cosφλ,φ

[︂
f
λφ
acosφλ + δλvk − δφ (uk cosφ)

]︂

where discrete values of f can be evaluated with equation (2.1).

Geopotential

Applying once more the midpoint rule to the integral in equation (2.19) gives for the
geopotential on half layers:

(2.42)Φk+ 1
2

= Φs +R
km∑︂

l=k+1
Tvl ln

pl+ 1
2

pl− 1
2

From here full layer geopotentials are computed by averaging:

(2.43)Φk =
Φk+ 1

2
+ Φk− 1

2

2

Kinetic Energy

The discrete kinetic energy simply amounts to:

(2.44)Kk = 1
2

(︄
u2
k

λ
+ 1

cosφj
v2
k cosφ

φ
)︄
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Virtual Temperature

For the discrete virtual temperature the discrete values of temperature and moisture
variables simply have to be substituted into equation (2.21):

(2.45)Tvk = Tk

(︃
1 +

(︃
RD
R

− 1
)︃
qdk − (qwk + qik)

)︃

Vertical Velocity in the η-System

Equation (2.22) reads in discrete form:

(2.46)

⋆
ηijk+ 1

2
= bk+ 1

2

1
a cosφj

km∑︂
l=1

[δλUl + δφ (Vl cosφ)]

− 1
a cosφj

k∑︂
l=1

[δλUl + δφ (Vl cosφ)]

Vertical Advection

The vertical advection terms are discretized as follows(︃
η̇
∂u

∂η

)︃
i+ 1

2 jk
= 1

∆pk
λ

⋆
η
λ

∆ηuk2t
η

(2.47)

= 1
2∆pk

λ

[︃
⋆
ηk+ 1

2

λ (︂
uk+1

2t − uk
2t
)︂

+ ⋆
ηk− 1

2

λ (︂
uk

2t − uk−1
2t
)︂]︃

(︃
η̇
∂v

∂η

)︃
ij+ 1

2k
= 1

∆pk
φ
⋆
η
φ

∆ηvk2t
η

(2.48)

= 1
2∆pk

φ

[︃
⋆
ηk+ 1

2

φ (︂
vk+1

2t − vk
2t
)︂

+ ⋆
ηk− 1

2

φ (︂
vk

2t − vk−1
2t
)︂]︃

where ψ2t = ψt+∆t−ψt−∆t

2 . This approach is often referred to as the Crank-Nicolson
scheme. The important point is the presence of unknowns at time level t + ∆t in the
three different levels k − 1, k and k + 1. This means that equations (2.47) and (2.48)
constitute an implicit approach. As will be seen later this requires the solution of a
linear equation system in every timestep.
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2.4.4 Solution of the Discrete Equations

In the preceding sections the continuous equations (2.9)–(2.15) were rendered into the
discrete form (2.32)–(2.38) to facilitate the approximation of solutions on computer
systems. In this section it will be detailed how the resulting equation system can be
solved for the discrete values of the prognostic variables. With some reordering all the
discrete prognostic equations – with exception of the surface pressure that does not
contain implicit components – can be written in the general form

(2.49)Ak(ψt+∆t
k−1 ) +Bk(ψt+∆t

k ) + Ck(ψt+∆t
k+1 ) = Dk

where ψ is the prognostic variable of interest. For reasons of brevity the exact form of
the coefficients Ak, Bk, Ck and Dk is not given here and the reader is instead referred
to the literature and specifically Majewski and Schrodin (1995). Iterated over all levels
k = 1, . . . , km equation (2.49) then yields a tridiagonal system that can be solved with
standard methods. In REMO the system is solved using the well-known Thomas algo-
rithm. Note that Dk also contains values of the prognostic variable, albeit only those at
previous timesteps t− ∆t and t.

2.4.5 Semi-Implicit Correction

The previously presented scheme is – with the exception of vertical advection – purely
explicit. In practice however the model is almost always run with additional implicit
components. Since in REMO these components can be switched on and off the term
semi-implicit correction is often used. First, the (mostly) explicit forecast is computed
according to the preceeding section. Then terms that are known to cause gravity waves
are corrected for by averaging the linear components of those terms in time.

The main advantage of the semi-implicit approach is the ability to use larger timesteps
that would otherwise be prohibitive as a consequence of the CFL-criterion (e.g., Du-
ran 2010). The CFL-criterion essentially ensures that waves do not travel across more
than one gridbox per timestep. On the flipside the semi-implicit scheme requires more
computational effort, as the updated values of the prognostic equations must first be
derived from an appropriate equation system. For REMO this results in a Helmholtz
equation, that is quite difficult to solve. Nevertheless the much larger timestep that can
be used with the semi-implicit correction generally outweighs this disadvantage. This
work will mostly be concerned with the explicit parts of the model and hence a detailed
description of the semi-implicit correction is beyond the scope. Instead the reader is
referred to the literature and specifically to Simmons and Burridge 1981 for an in-depth
treatment.
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2.4.6 Asselin Filter

To complete a prediction step the Asselin filter has to be applied to the intermediate
results. This is required to ensure the stability of the leapfrog time integration scheme.
With the definitions of equation (2.30) the Asselin filter takes the form

(2.50)ψt+∆t = ψ
t−∆t − 2∆tAd(ψt)ψt − 2∆tAn(ψt−∆t)ψt−∆t

where ψ denotes the filtered values.

This completes the introduction into the REMO dynamical core. In the next chapter
the notations and definitions given here will serve as the basis for taking a closer look
at the pressure gradient force in REMO and the particular problems arising from its
computation.





3 The Pressure Gradient Error

In this chapter a thorough problem description to outline the difficulties associated with
the computation of the pressure gradient force in terrain-following models is given. To
this end, the pressure gradient error is defined, examples of its detrimental influence
on model simulations are given and some of the ideas that have been applied to tackle
the problem in the literature are briefly reviewed. The aim of this work is to gauge the
applicability of numerical schemes developed under the umbrella of WBMs to the REMO
dynamical core. The concept of well-balanced discretizations is therefore introduced and
an approach suitable to address the problem in REMO is identified.

3.1 The Pressure Gradient Force

For quite some time it has been well established that numerical models of the atmosphere
often fail to retain states of rest. Such conditions are characterized by horizontally ho-
mogeneous thermodynamic variables in hydrostatic balance and the absence of external
forcing. From a physical point of view such states are maintained indefinitely. However,
for instance Sundqvist (1975) reported erroneous winds in a global model that was ini-
tialized with such an atmosphere-at-rest. These errors, often referred to as the pressure
gradient error (PGE), were most pronounced in mountainous areas and around steep
slopes with spurious velocities of up to several meters per second. This suggested a con-
nection to the representation of complex orography in the terrain-following σ-coordinate
system employed.

The same study also identified inconsistent truncation errors in the computation of
the pressure gradient force (PGF) as the root cause of this issue. In terrain-following
models derivatives of meteorological quantities have to be computed along the sloped
coordinate surfaces (cf. Figure 2.4). For the PGF this results in two terms that both
have to be approximated by finite-differences. Such approximations are always afflicted
with a truncation error due to the finite resolution of computational models. However,
in general the truncation errors of these approximations will not cancel in a state of rest.
This results in the observed generation of spurious momentum in the model atmosphere.
This effect is not limited to the σ-system but occurs in all common terrain-following
coordinates, such as the Gal-Chen-Somerville (Gal-Chen and Somerville 1975a; Gal-
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Chen and Somerville 1975b) or the hybrid η-coordinates (Simmons and Burridge 1981)
used in REMO.

To illustrate the issue Figure 3.1 shows an example of an atmosphere-at-rest in the
REMO model at time t = 0. The model is initialized with a horizontally homogeneous
and hydrostatic state. Centered in the domain is a parabola-shaped hill of 2.5 km height.
A circular tracer bubble is placed above the hill representing, e.g., the concentration of a
chemical or moisture species whose transport is modeled. From a physical point of view
the tracer should keep its shape indefinitely because the atmosphere is in equilibrium.
Figure Figure 3.2 shows the disturbances resulting from erroneous pressure gradient

Figure 3.1: Example of an atmosphere-at-rest with tracer bubble at time t = 0

computations at t = 4 h. The tracer has visibly deformed due to the induced horizontal
momentum which in turn triggers vertical transport as well. The shape of the underlying
hill has to some extent been imprinted onto the tracer bubble due to the terrain-following
model layers.

Numerous studies have since proposed strategies to more accurately compute the pres-
sure gradient force in terrain-following coordinates both in atmosphere and ocean mod-
els. Due to the strong bathymetric variations the latter ones often suffer even more from
the PGE. Probably the most widespread approach is to subtract global mean stationary
states from the prognostic variables before computing the PGF (e.g., Gary 1973). Other
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Figure 3.2: Disturbances of atmosphere-at-rest at time t = 4h in the REMO model.

authors have opted to compute the PGF in the p-system to avoid errors resulting from
the terrain-following coordinate (Smagorinsky et al. 1967).

Sometimes the terrain-following system is abandoned in favor of a vertical z-coordinate.
In such cases the lower boundary conditions become much more intricate leading to
the cut-cell approach (e.g., Steppeler, Bitzer, Minotte, et al. 2002; Yamazaki, Satomura,
and Nikiforakis 2016; Shaw and Weller 2016; Adcroft, Hill, and Marshall 1997). Another
common approach is to construct terrain-following coordinates that minimize the PGE
as best as possible (e.g., Schär et al. 2002). Some authors have suggested approximations
based on the conservation of integral properties or other basic physical principles (e.g.,
Lin 1997). Another common theme that can be identified in the literature is the use
of higher order approximations to reduce the PGE (Song 1998; Song and Wright 1998).
Song (1998) has also proposed a general framework based on the so called density-
jacobian form of the PGF that in principle can be applied to all kinds of terrain-following
coordinates.

In practice the simulation of an atmosphere-at-rest is rare and generally only carried
out to validate dynamical cores. However, there is clearly considerable interest in the
reduction of PGF related errors as evidenced by the amount of literature on the topic.
The reason for this is that in atmospheric modeling one is interested in simulating rela-
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tively small deviations from a resting atmospheric background state. For instance, even
strong storms only violate the hydrostatic equilibrium by about 20 % (e.g., Klemp and
Wilhelmson 1978). That is, most common atmospheric conditions are merely small per-
turbations of an underlying equilibrium. Failure to account for such background states
can potentially hinder the correct resolution of the perturbations of interest. Increasing
the resolution can in principle resolve such issues, but the computational cost can easily
become prohibitive especially for climate simulations with long integration times.

One example of detrimental effects of the PGE in realistic simulations is given by Step-
peler, Bitzer, Janjić, et al. (2006). The authors suggest that reduction of the PGE
via a cut-cell approach substantially improved precipitation forecasts due to improved
representation of clouds in the vicinity of mountains.

3.1.1 The Cartesian System

The pressure gradient force is one of the main drivers of atmospheric motion (e.g.,
Haltiner and Williams 1980) and plays a prominent role in any kind of primitive equation
model. In the absence of wind speed and external forcing the PGF is in fact the sole
source of movement in the primitive equations. In cartesian coordinates it is commonly
written

(3.1)F∇p = 1
ρ

∇p

where F∇p denotes the pressure gradient force, ∇ the gradient and ρ the density of
the fluid. Note that the gradient is a vector quantity and equation (3.1) therefore has
three components. It is instructive to examine the PGF in a hydrostatic equilibrium,
i.e., a state of balance between the forces pushing an air parcel downwards and those
lifting it upwards (see Figure 3.3). The vertical component of the PGF must then be
counteracted by a gravitational force that has equal magnitude but acts in the opposite
direction. Furthermore, in a state of rest the horizontal components have to vanish as
well. That gives:

F∇p + ∇Φ =

⎛⎜⎜⎝
1
ρ
∂p
∂x

1
ρ
∂p
∂y

1
ρ
∂p
∂z + ∂Φ

∂z

⎞⎟⎟⎠ = 0 (3.2)

Note that the horizontal components of the gravitational force in (3.2) vanish due to
the alignment of coordinate surfaces with the surfaces of constant geopotential in the
cartesian system.

It is the representation of such stationary states, i.e., atmospheres-at-rest, in a numerical
model that this thesis will be largely concerned with. If any given discretization of equa-
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Figure 3.3: Illustration of the hydrostatic balance.

tion (3.2) fails to evaluate to zero in a stationary state then spurious acceleration will be
introduced into the model atmosphere. For the horizontal components any discretization
yielding zero in a state of rest will suffice. For instance, centered finite-differences have
this property. However, for the vertical component both terms are non-zero even in a
state of rest and therefore have to cancel each other. The discrete approximations to
these terms must be carefully engineered to respect a discrete rendition of the hydrostatic
balance:

1
ρ

∂p

∂z
+ ∂Φ
∂z

= 0 (3.3)

To illustrate the problem consider a standard centered difference approximation to the
vertical component of (3.2) in a one-dimensional setting. Suppose equidistant gridpoints
in the vertical zi−1, zi and zi+1 are given with spacing ∆z > 0. Additionally, point values
of pressure p and density ρ at these points are also given, i.e., pi = p(zi), ρi = ρ(zi) and
so on. The goal is to approximate the PGF at zi. Discretizing the derivative of the
pressure with a centered difference and using ∂Φ

∂z = g the discrete rendition of (3.3)
reads: (︃1

ρ

∂p

∂z

)︃ ⃓⃓⃓⃓
zi

+ g = 1
ρi

pi+1 − pi−1
2∆z + g + o(∆z2) (3.4)

The Landau symbol on the right hand side of (3.4) is due to the approximation of
the pressure term with a second-order accurate approximation. Assuming sufficient
smoothness a Taylor expansion around the point zi gives further insight into the nature
of the resulting error:

1
ρi

pi+1 − pi−1
2∆z + g =

(︃1
ρ

∂p

∂z

)︃ ⃓⃓⃓⃓
zi

+ g + 1
ρi

∞∑︂
n=1

1
(2n+ 1) !

∂(2n+1)p

∂z(2n+1) (∆z)2n (3.5)
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The first two terms on the left hand side of equation (3.5) cancel each other in a state of
hydrostatic equilibrium. This shows that this discretization will in general not be able
to retain the hydrostatic equilibrium, because the remaining third term is not balanced
by a suitable counterpart. With decreased grid spacing the resulting error will decrease
quadratically, but even if the initial error is small, it can grow over time and lead to
considerable erroneous motion. Moreover, increasing the resolution also incurs higher
computational costs. Ideally, a discretization of (3.3) should be engineered to net exactly
zero in hydrostatic equilibrium even on coarse grids. This concept will be expanded on
in a later section when discussing the idea of well-balanced methods.

To sum up, standard discretizations of the vertical pressure gradient force fail to retain
the hydrostatic equilibrium even in the cartesian coordinate system. This is due to
unbalanced local truncation errors resulting from approximations with finite differences.
Retention of atmospheres-at-rest is therefore not only a problem with terrain-following
coordinate systems as is sometimes implied in the literature. However, as will be seen
in the following terrain-following coordinates indeed exacerbate this issue.

3.1.2 The Hybrid η-System

So far the pressure gradient force as found when using the classic height or z-coordinate
has been investigated. Discrete errors occur as a result of truncation errors in the vertical
momentum equation, potentially inducing spurious movement into an atmosphere-at-
rest. Naturally, in hydrostatic models such as REMO the third component of (3.2) always
holds, because the atmosphere is assumed to be in hydrostatic balance permanently.
Such models do not feature a prognostic vertical momentum equation and hence no
spurious momentum can be generated in this way. Yet, retaining states of rest remains
a challenge (see Figure 3.1) in terrain-following systems.

As discussed in subsection 2.2.2 the REMO model uses the hybrid terrain following η-
coordinate. To understand why computing the pressure gradient force is prone to errors
equation (3.2) written in the η-system will be investigated. According to Kasahara
(1974) in this system the horizontal pressure gradient force can be written:

Fη
∇p =

⎛⎝ 1
a cosφ

[︂
RTv

∂ ln p
∂λ + ∂Φ

∂λ

]︂
1
a

[︂
RTv

∂ ln p
∂φ + ∂Φ

∂φ

]︂ ⎞⎠ (3.6)

Note that the vertical component has been omitted as it vanishes due to the hydrostatic
assumption. It can be seen that horizontal balances in (3.6) analogous to the vertical one
in (3.2) appear. A balance emerges between a pressure and a gravitational term, that will
cancel each other in a state of rest. The approximations to these terms must be balanced
with respect to such states or spurious horizontal momentum will be introduced into the
model atmosphere. Error resulting from a lack of cancellation of these approximations
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is often referred to as the pressure gradient error (PGE). In contrast to the cartesian
system the truncation errors have to be balanced in two components rather than just one.
This is one of the reasons the pressure gradient error is often found to be exacerbated
in terrain-following coordinate systems. In fact, in case of non-hydrostatic models with
terrain-following coordinates the approximations in all three components have to be
balanced. Sundqvist (1975) found that the absolute value of the individual terms in
(3.6) can surpass the value of their sum by up to 20 times. The truncation errors will
scale with the size of these individual terms. Therefore, if unbalanced the truncation
errors can severely impose on the actual quantity of interest, namely the (horizontal)
momentum. For instance an error of 1 % in both terms can result in errors of up to 40 %
in the horizontal momentum.

Despite the strong similarities to the issues encountered with the vertical z-coordinate
previously there are also subtle differences. In (3.2) the balance is between the pressure
gradient force and the gravitational force. For a hypothetical atmosphere without gravity
the second term would simply vanish and no balancing problem would arise. In (3.6) on
the other hand the balance as a whole merely describes the horizontal pressure gradient
force itself. Even an atmosphere without gravity would result in a similar balance of
opposing terms in the terrain-following coordinate. To elucidate this surprising difference
the transformation of the horizontal PGF to the η-system has to be investigated. Using
the chain rule the derivatives of the pressure can be converted between the two coordinate
systems. Restricting to just one of the two momentum equations to demonstrate the
principle:

1
ρ

(︃
∂p

∂x

)︃
z

= 1
ρ

(︃
∂p

∂x

)︃
η

− 1
ρ

∂p

∂z

(︃
∂z

∂x

)︃
η

(3.7)

Here the subscripts indicate whether the derivatives are taken along surfaces of constant z
or η. Equation (3.7) shows that the representation of the PGF in η-coordinates naturally
leads to a sum of two terms. This is independent of whether gravity is considered in the
equations or not. Substituting the hydrostatic equation ∂p

∂z = −gρ leads to:

1
ρ

(︃
∂p

∂x

)︃
z

= 1
ρ

(︃
∂p

∂x

)︃
η

+ g

(︃
∂z

∂x

)︃
η

(3.8)

Finally, using the ideal gas law and Φ = gz yields the form that is used in the REMO
model:

1
ρ

(︃
∂p

∂x

)︃
z

= RT

(︃
∂ ln p
∂x

)︃
η

+
(︃
∂Φ
∂x

)︃
η

(3.9)

Note that the remaining differences to (3.6) are due to the additional transformation to
spherical-type coordinates and the addition of moisture equations. These aspects are not
relevant for this discussion. The important point is that the balancing problem in the
horizontal momentum equations is due to the vertical coordinate transformation. The
balancing problem in the vertical momentum equation instead stems from the addition
of gravity to the general Euler equations.
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3.2 Well-Balanced Numerical Methods

Previously the pressure gradient error as found in most primitive equation models of
the atmosphere has been described. Related problems also arise in other branches of
scientific modeling, such as astrophysics (Käppeli and Mishra 2016), nozzle flows (Xing
and Shu 2006) or shallow-water applications (Noelle et al. 2006). The common theme
is the existence of nontrivial stationary or steady states owing to the balance of two
opposing terms. These terms have to cancel each other on a discrete level to retain the
equilibria and require discretizations specifically engineered for this purpose. In almost
all instances such problems arise from the addition of source terms to a given hyperbolic
conservation law. In abstract terms a conservation law can be described in differential
form as

∂q

∂t
+ ∇ · f(q) = 0 (3.10)

where q is the vector of conserved quantities and f is called the flux function. The
divergence of f is often referred to as the flux gradient. Common examples of such
systems include the Euler equations of motion and the shallow-water equations. In
many modeling applications a solution dependent term is added to the RHS of (3.10):

∂q

∂t
+ ∇ · f(q) = s(q) (3.11)

Equation (3.11) is then referred to as a balance law and s is called a source term. Clearly,
in a state of equilibrium a balance between the flux gradient and the source term must
hold:

∇ · f(q) = s(q) (3.12)

In general both of these terms will be non-zero, equal in magnitude but opposite in sign.
Any discretization of the balance law (3.11) must respect a discrete version of (3.12).
Failure to do so will result in a spurious non-zero rate of change for the state vector
q. Typical examples of balance laws include the shallow water equations with bottom
topography and the Euler equations with gravity and or Coriolis force. It was already
seen in the preceding section that the addition of gravity to the equations of motions
indeed prompts a balance of this kind in the vertical momentum budget.

The first publication to systematically investigate problems of this nature was Greenberg
and Leroux (1996). The authors also coined the notion of well-balanced schemes to
describe numerical methods conceived to retain equilibria of the kind (3.12). For any
convergent scheme errors resulting from unbalanced approximations of (3.12) can simply
be reduced by increasing the resolution. The problem is that the computational cost of a
sufficiently high resolution is often prohibitive. Therefore, a well-balanced discretization
of (3.11) should ideally respect a discrete version of (3.12)

• for all equilibria of equation (3.11)
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• independently of the given grid resolution

• and at affordable computational cost

Many well-balanced schemes developed in the literature can only fulfill these goals par-
tially. For instance, often the first requirement is violated and only certain subclasses
of equilibria can be maintained. In other cases the schemes do not fully resolve (3.12)
but merely allow for an improved cancellation, i.e., are not independent of the grid
resolution.

One of the aims of this thesis is to evaluate the applicability of existing well-balanced
schemes to the REMO model. In the past 20 years many well-balanced discretizations
have been proposed for different branches of modeling. However, most approaches are
bound to the particular equation system governing the applications at hand instead
of providing a generalized strategy to construct well-balanced schemes. For instance,
many publications study the shallow water equations and the well-known lake-at-rest
equilibrium, e.g., LeVeque (1998) and Audusse et al. (2004) to name just two seminal
examples. Therefore, this discussion is restricted to the available literature on the Euler
equations.

Most of the developments revolve around the use of FVMs. Such methods are based
on an integral version of the conservation or balance law to be solved. The domain of
interest is partitioned into a finite number of computational cells or volumes. Given
suitable prerequisites one can show that the conserved quantity can only change due
to inflow or outflow through the boundaries of these cells. Averaging the values over a
cell an equation for the evolution of its mean value in time can be derived. In general,
polygonal cells are chosen so that the boundary integrals required to advance the mean
cell value in time can be efficiently computed. However, the values at the boundary
between neighboring cells need not be continuous. This is resolved by solving initial
value problems with discontinuous data, referred to as Riemann problems.

The literature dealing with finite difference models such as REMO is mostly concerned
with non-linear high-order schemes (e.g., Ghosh and Constantinescu 2015; Xing and
Shu 2006). All of these schemes are constructed for the Euler equations formulated in
a cartesian coordinate system, i.e., with a vertical z-coordinate. Some schemes only
conserve the most simple equilibria while others manage to tackle a wider subset. Addi-
tionally, all of them only consider atmospheres without rotation. This shows that despite
considerable effort so far no universal solution to well-balancing the Euler equations has
been found. Moreover, any approach has to be adapted to the terrain-following coordi-
nate and the specific finite difference structure of the REMO model. The approach that
seems most promising in this regard is due to Botta et al. (2004). On the one hand the
scheme can be applied to centered-difference schemes such as REMO even though it is
mostly geared towards FVM applications. Other existing FVM schemes do not easily
support the transfer to the finite difference framework. On the other hand the method
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does not rely on explicit characterizations of equilibrium states. As will be seen in the
next section such states can be easily described in z-coordinates but doing so in the
terrain-following coordinate is very difficult. Moreover, the method proposed by Botta
et al. (2004) is specifically aimed at climate simulations with their long integration times.
Therefore, out of the available options this approach appears to be the most suitable for
application within the REMO model.

3.3 Stationary and Steady States

As previously described the aim of well-balanced methods is to retain stationary or
steady states in numerical models even on rather coarse grids. Depending on the model
equations and the field of application such states can take many different forms. It is
therefore instructive to investigate how stationary and steady states manifest within the
REMO model.

First, the distinction between steady and stationary states as used in the remainder of
this work is made. Both stationary and steady states are states of equilibrium, i.e., the
time derivatives of the prognostic variables in equations (2.9)–(2.15) vanish. From a
continuous vantage point the state of the system will then be maintained indefinitely,
because there are no changes to the prognostic variables over time. Naturally, this
requires the sum of all the remaining terms to vanish as well. If there is non-zero wind
speed the equilibrium is referred to as a steady state and as a stationary state otherwise.
It is important to differentiate the one from the other, because steady states can be
much more complex. To understand the differences a closer look will be taken at the
prognostic equations under such circumstances.

If u, v = 0 is substituted into the prognostic equations many terms vanish right away. The
integral in (2.9) equates to zero resulting in no surface pressure change. The same holds
true for the vertical velocity (2.22), if additionally ∂ps

∂t = 0 is taken into account. For
the moisture equations (2.13)–(2.15) only the advection terms remain and those clearly
equate to zero as well. Hence, no change in these variables will occur. The situation for
the temperature equation (2.12) is similar, except for the additional omega-alpha term.
From the definition of ω in (2.24) it can be concluded that this term also vanishes. This
leaves only the momentum equations (2.10) and (2.11). Here in addition to the terms
mentioned above the kinetic energy K equals zero by definition. The terms containing
the absolute potential vorticity Q are multiplied by v or u respectively. Consequently,
the momentum equations are the only ones to retain non-zero terms in this situation.
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The stationary state equations for REMO can then be stated as follows:
∂u

∂t
= − 1

a cosφ

(︃
RTv

∂ ln p
∂λ

+ ∂Φ
∂λ

)︃
= 0 (3.13)

∂v

∂t
= −1

a

(︃
RTv

∂ ln p
∂φ

+ ∂Φ
∂φ

)︃
= 0 (3.14)

By comparing to equation (3.6) it can be seen that the remaining terms represent the
horizontal pressure gradient force in the η-system. This explains why the discretization
of the PGF is so fundamental to retaining stationary states. It is the only way for
movement to develop in a state of rest. Likewise, if the truncation errors of the opposing
terms in the discrete version of (3.13)–(3.14) are not perfectly balanced the numerical
model will eventually drift out of rest.

The situation for steady states is entirely different. Since the wind speed is non-zero
none of the terms except for the time derivatives of the prognostic equations vanish by
default. Consequently, the complete equation set (2.9)–(2.15) is retained. To sustain
such states numerically the sum of all the remaining terms has to vanish on a discrete
level. This generally requires a very complex balance between the numerous discrete
terms. This thesis will therefore be restricted to stationary states and the numerical
treatment of the PGF terms in (3.13) and (3.14).

Equations (3.13)–(3.14) describe the requirements for any stationary state in abstract
terms. This raises the question if the nature of such states can be described in a more
tangible manner. Clearly, since these equations are derived from the classical primitive
equation by means of coordinate transformation the stationary states of both systems
are identical. In the cartesian system they take a particularly simple form that has been
described many times (e.g., Haltiner and Williams 1980). First, such states need to be
vertically hydrostatic, i.e.,

∂p

∂z
= −gρ (3.15)

holds. Second, they need to be horizontally homogeneous. That means the thermody-
namic variables only depend on z and have no horizontal variation:

T = T (z), p = p(z) and ρ = ρ(z) (3.16)

Consequently, any variation between two points must exclusively be caused by the height
difference between them. The ease of characterizing equilibrium states in cartesian
coordinates unfortunately does not carry over to the η-system. To illustrate this an
idealized atmosphere will be analytically transferred to the η-system. This idealized
atmosphere will be modeled after the US standard atmosphere (see NASA 1976). It will
also serve as a basis for testing the ability of the numerical developments to retain an
atmosphere-at-rest in later chapters.

The standard atmosphere is characterized by a piecewise linear vertical temperature
distribution given as a function of geopotential altitude. Note that gravity in REMO is
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assumed to have no vertical variation and therefore the difference between geopotential
and geometric altitude can be ignored for this purpose. Together with given initial values
at a reference height the atmospheric pressure can then be derived from equation (3.15).
The density values required can be diagnosed from the ideal gas equation resulting in a
horizontally homogeneous and vertically hydrostatic state. Table 3.1 lists the reference
values at various altitudes and the linear temperature lapse rates assumed between those.
The temperature in any of the atmospheric layers described in Table 3.1 can be written

Table 3.1: Standard Atmosphere in REMO
Name Height [m] Pressure [hPa] Temperature [K] Lapse Rate [K/m]

Troposphere 0.0 1013.25 288.15 0.0065
Tropopause 11000 226.320 216.65 0.0
Stratosphere 20000 54.7488 216.65 -0.001
Stratosphere 32000 8.68017 228.65 -0.0028
Stratopause 47000 1.10906 270.65 0.0
Mesosphere 51000 0.66939 270.65 0.0028
Mesosphere 71000 0.03956 214.65 0.002

T (z) = Tref − lref (z − zref ) (3.17)

where Tref and zref are the reference temperature and height at the bottom of the layer
and lref the lapse rate through the layer. Substituting the ideal gas law

ρ = p

RT
(3.18)

into equation (3.15) and using (3.17) an initial value problem for the logarithm of the
atmospheric pressure can be posed as follows:

∂ ln p
∂z

= − g

R (Tref − lref (z − zref )) , p(zref ) = pref (3.19)

Here zref and pref are the reference height and pressure respectively at the bottom of
the layer of interest. Equation (3.19) is separable, i.e., it can be solved by vertically
integrating the equation from the reference height upwards. This leads to:

ln p = ln pref − g

R

∫︂ z

zref

1
Tref − lref (z′ − zref ) dz′ (3.20)

To retrieve an explicit expression for the pressure the integral on the RHS of (3.20) must
be solved. With the antiderivative of the integrand the integral can be restated as:∫︂ z

zref

1
Tref − lref (z′ − zref ) dz′ =

[︄
− 1
lref

ln (Tref − lref (z − zref ))
]︄z
zref

(3.21)
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to arrive after some further rearrangement at:

p = pref

(︄
Tref − lref (z − zref )

Tref

)︄ g
Rlref

(3.22)

However, equation (3.22) only holds for non-zero lapse rates. If the lapse rate vanishes
this reads:

p = pref exp
(︄

−g (z − zref )
RTref

)︄
(3.23)

With equations (3.22) and (3.23) the standard atmosphere can be created according to
the layer definitions in Table 3.1. Figure 3.4 shows a plot of the resulting temperature
and pressure distribution. Note that small differences to the definition of the US standard
atmosphere can occur due to slightly different values of R and g. For consistency the
values from the REMO model are used here. The standard atmosphere can now be

Figure 3.4: Plot of pressure and temperature distribution for the standard atmosphere.
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transferred to the η-system. To that end, the above relationships between pressure and
height will be inverted. For non-zero lapse rates this gives

z = zref + Tref
lref

⎛⎜⎝1 −
(︄

p

pref

)︄Rlref
g

⎞⎟⎠ (3.24)

and otherwise:
z = zref − RTref

g
ln p

pref
(3.25)

With equations (3.24) and (3.25) any pressure value can be mapped onto the correspond-
ing geometric height. Substituting relationship (2.6) into the above equations yields the
geometric height as a function of η:

z = zref + Tref
lref

⎛⎜⎝1 −
(︄
A(η) +B(η)ps

pref

)︄Rlref
g

⎞⎟⎠ (3.26)

Substituting (3.26) into the definition of the temperature in (3.17) gives:

T = Tref

(︄
A(η) +B(η)ps

pref

)︄Rlref
g

(3.27)

Equations (3.26) and (3.27) show that even a simple linear temperature distribution
in the z-coordinate leads to nonlinear power laws for temperature and height in the
η-system. These also depend on ps which is dominated by the orographic structure. In
this way, more complex terrain gives rise to more intricate representations of the basic
thermodynamic variables. Figure 3.5 shows a plot of the temperature and geopotential
distributions in the η-system up to a height of 30 km for the parabola-shaped hill. The
lines of constant temperature and geopotential show the expected curvature due to the
given orography. Towards higher altitudes the lines flatten and the influence of the
terrain is reduced gradually. Above the defined pressure threshold the lines become
completely isobaric.

3.4 A Novel Characterization of Equilibrium

In this section an alternative characterization of stationary states that only relies on
pressure and temperature is derived, that makes no reference to the geopotential. To
that end, the integro-differential equation (4.20) is cast into the form:

−RT ∂ ln p
∂λ

= ∂Φs

∂λ
− ∂

∂λ

∫︂ η

1
RT

∂ ln p
∂η

dη′ (3.28)
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Figure 3.5: Temperature (left) and Geopotential (right) in the η-system.

This is a rendition of the complete stationary state equation for the REMO model. The
standard discretization in REMO is constructed by using centered differences for the
horizontal and vertical derivatives. The integral on the right hand side is evaluated with
the midpoint rule as detailed in chapter 2. Consequently, the resulting discrete operators
are structured very differently. The pressure term is discretized in a purely local manner
relying only on known values of p and T along the given coordinate surface. Contrary to
this the discretization of the geopotential term involves values not only from the given
coordinate surfaces, but also from all the coordinate surfaces below it down to the surface
layer. This is a consequence of enforcing the hydrostatic assumption via equation (2.18).
Cancellation thus requires a delicate discrete balance between a number of terms, that
continually increases towards the top of the model atmosphere.

First, transposing differentiation and integration in (3.28) – note that this is only possible
because the derivatives are taken along surfaces of constant η – and integrating by parts



CHAPTER 3. THE PRESSURE GRADIENT ERROR

yields the following representation for the gradient of the geopotential:

∂Φ
∂λ

= ∂Φs

∂λ
−R

∫︂ η

1

∂T

∂λ

∂ ln p
∂η

+ T
∂2 ln p
∂η∂λ

dη′

= ∂Φs

∂λ
−R

∫︂ η

1

∂T

∂λ

∂ ln p
∂η

dη′ −R

[︃
T
∂ ln p
∂λ

]︃η
1

+R

∫︂ η

1

∂T

∂η

∂ ln p
∂λ

dη′

= ∂Φs

∂λ
+R

∫︂ η

1

∂T

∂η

∂ ln p
∂λ

− ∂T

∂λ

∂ ln p
∂η

dη′ −R

(︃
T
∂ ln p
∂λ

− Ts
∂ ln ps
∂λ

)︃
=
(︃
∂Φs

∂λ
+ Ts

∂ ln ps
∂λ

)︃
+R

∫︂ η

1

∂T

∂η

∂ ln p
∂λ

− ∂T

∂λ

∂ ln p
∂η

dη′ −RT
∂ ln p
∂λ

(3.29)

It can immediately be seen that the surface term in brackets vanishes due to the lower
boundary condition u = 0. Substituting the result back into equation (3.28) then yields:

R

∫︂ η

1

∂T

∂λ

∂ ln p
∂η

− ∂T

∂η

∂ ln p
∂λ

dη′ = R

∫︂ η

1

∂

∂λ

(︃
T
∂ ln p
∂η

)︃
− ∂

∂η

(︃
T
∂ ln p
∂λ

)︃
dη′ = 0 (3.30)

That is, any stationary state can be characterized by the vanishing of the integrals in
(3.30). Moreover, outside of equilibrium these integrals describe the residual of the
stationary state equation, i.e., the horizontal PGF. Note that the above equation gives
rise to a geometrical interpretation of an equilibrium state. The integral on the RHS of
(3.30) has to vanish for any given η for the equation to hold. It can be deduced that the
integrand vanishes as well. That is, the partial differential equation

∂

∂λ

(︃
RT

∂ ln p
∂η

)︃
− ∂

∂η

(︃
RT

∂ ln p
∂λ

)︃
= 0 (3.31)

holds. If a vector field of the form (︄
RT ∂ ln p

∂λ

RT ∂ ln p
∂η

)︄
(3.32)

is pictured, then equation (3.31) essentially states that it is curl-free. Such vector fields
have scalar potentials, i.e., can be expressed as the gradient of a scalar function. Clearly,
this potential must be given by the geopotential:

∇Φ =
(︄
RT ∂ ln p

∂λ

RT ∂ ln p
∂η

)︄
(3.33)

The second component of (3.33) is simply the hydrostatic equation which always holds.
The first component is the stationary state equation and only holds for equilibrium
states. In such cases (3.31) simply reduces to Schwarz’s theorem applied to Φ:

∂2Φ
∂λ∂η

= ∂2Φ
∂η∂λ

(3.34)
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The advantage of using equation (3.30) to characterize the equilibrium is that both the
surface geopotential term and the pressure term have already been eliminated. An in-
tegral over the whole atmospheric column as in (3.28) is still retained, but it suffices
to balance the integrand in each level individually. In (3.28) the integral has to cancel
with both the remaining surface terms instead. Moreover, the structure of the opposing
terms in the remaining balance under the integral is rather similar. The transposition
of derivatives is the only difference here. This equation also gives rise to an intuitive
geometric interpretation of stationary states in the η-system. Namely, a state is station-
ary if and only if the change in a thermodynamic variables between two points in the
atmosphere is exclusively due to their difference in geometric height. This will be useful
in developing a reconstruction technique in the next chapter.





4 Well-Balancing Strategy

In this chapter the balancing strategy that will be applied to the REMO model in the
subsequent chapters is derived. In the first section the approach for a co-located grid
structure is developed. Subsequent sections then aim to transfer this approach to the
staggered grid used in REMO as described in chapter 2. It turns out that some of the
differences to the framework of Botta et al. (2004), namely the change from a height-
based to a pressure-based coordinate system and the presence of horizontal and vertical
grid staggering, present substantial additional challenges. Therefore modifications to the
basic method are developed as needed and a well-balancing strategy that can readily be
applied to the REMO model is presented towards the end of this chapter.

4.1 Introductory Example

It has been seen previously that balancing problems in computing the PGF can arise
in different ways. The addition of gravity to the Euler equations results in a balance in
the vertical momentum budget irrespective of the coordinate system used. Employing
a terrain-following coordinate system additionally poses analogous problems in the hor-
izontal momentum equations. The method developed by Botta et al. (2004) is geared
towards the z-coordinate, i.e., is built to deal with the spurious generation of verti-
cal momentum. Before applying these ideas to the horizontal momentum equations in
REMO it is instructive to demonstrate them on a simple Cartesian example given by
Botta et al. (2004). Therefore, in this introductory section a one-dimensional example
with a vertical z-coordinate is examined. As pointed out before in this situation the
balancing problem can only occur in the vertical momentum budget, as the horizon-
tal gradient of the geopotential taken along the coordinate lines naturally vanishes. In
this one-dimensional example there is no difference between hydrostatic and stationary
states. Therefore, the starting point is the familiar hydrostatic equation:

∂w

∂t
= ∂p

∂z
+ ρ

∂Φ
∂z

= ∂p

∂z
+ ρg = 0 (4.1)

Assume now that this equation is discretized on a regular grid (zi)i∈I with spacing ∆z
using centered differences in the vertical. The time discretization will not be specified,
as this is not of importance for the following considerations. Now let pi, ρi be exactly
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hydrostatic point values, i.e., for these values (4.1) holds exactly on a continuous level.
Ideally in such a case the discrete version of (4.1)

pi+1 − pi−1
2∆z + ρig = 0 (4.2)

should also hold and the scheme would be well-balanced. However, this is generally not
the case. While the second term in (4.2) will be evaluated exactly, the first term will
be afflicted with a truncation error that is caused by the approximation to the gradient
of the pressure with a finite difference. The magnitude of this error will depend on
the grid spacing ∆z. Especially on rather coarse grids the error induced in (4.2) can
introduce spurious momentum into the system. Over time such errors can conflate and
grow leading to considerable vertical motion. One idea to tackle this issue is to seek a
discretization for the gradient of the geopotential that allows for better cancellation of
the overall equation. In addition to the references given earlier such an approach has
for example been applied successfully to the shallow-water equations in Audusse et al.
(2004). Following these ideas the second term in (4.2) is represented discretely by

ρig ≈ −
p∗
i+1 − p∗

i−1
2∆z (4.3)

with a suitable pressure variable p∗. Using the same discrete gradient formulation for
both terms in equation (4.2) a substantial improvement of cancellation can be expected.
Clearly, the question is how to construct an appropriate pressure p∗ to achieve this. On
the one hand for stationary states ideally p∗ = p would hold to yield perfect cancellation.
On the other hand the RHS of (4.3) must still be a valid second-order approximation
to the gradient of the geopotential. In general as will be seen later only the latter
requirement can be fulfilled exactly with the approach presented here. However notable
improvements with regards to the former requirement can still be realized, as long as p∗

is constrained to stay close to the current model pressure p.

A natural approach to construct suitable candidates for p∗ is to solve (4.1), i.e., to find
pairs of hydrostatically balanced solutions p∗, ρ∗ around a given grid point zi. Locally
this gives:

∂p∗

∂z
= −ρ∗g (4.4)

However, the ordinary differential equation (4.4) on its own does not provide unique
solutions. The remaining degrees of freedom, namely a cell-centered initial value at
z = zi and provision of ρ∗, can then be used to constrain p∗ towards p around zi. To
this end it is required that p∗ take the given point value of the model pressure at the
cell center:

p∗(zi) = p(zi) = pi (4.5)
The goal is to integrate (4.4) together with (4.5). However, a local density distribution ρ∗

has still to be provided. Note that for any p∗ acquired in this manner it is by construction

−
p∗
i+1 − p∗

i−1
2∆z = g

2∆z

∫︂ zi+1

zi−1
ρ∗ dz′ (4.6)
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provided (4.4) can be integrated analytically across the cell. This is referred to as the
discrete Archimedes buoyancy principle. It can be shown (see Botta et al. 2004) that
for any ρ∗ with ρ∗(zi) = ρ(zi) = ρi the left hand side (LHS) of equation (4.6) yields a
second-order approximation to the term gρi of (4.3). Instead of the naive formulation
(4.2) (4.1) can now be discretized by

pi+1 − pi−1
2∆z −

p∗
i+1 − p∗

i−1
2∆z (4.7)

retaining the second-order accuracy. If ρ∗ is exactly equal to ρ around zi and the pair
p, ρ is hydrostatically balanced then (4.4) and (4.5) will yield p∗ = p. Then both terms
in (4.7) will cancel out perfectly. Therefore, the better of an approximation ρ∗ is to ρ,
the more well-balanced the approximation (4.7) can be expected to be.

To sum up, the fundamental idea is to express both the pressure gradient and the
gravitational source term with the same discrete approximation. This is achieved by
finding local hydrostatic background states p∗, ρ∗ via solving the hydrostatic equation.
Suitable initial values and the provision of a local density approximation ensure that
the hydrostatic solutions stay close to the current model state. With the help of these
functions an approximation to the source term can then be constructed employing the
discrete Archimedes buoyancy principle.

This technique is remarkably similar to the widespread technique of subtracting a hy-
drostatic reference profile to reduce cancellation errors (e.g., Gary 1973). However, the
above approach has two major advantages. Firstly the background states are local to
each cell instead of spanning whole vertical columns. This allows for improved approx-
imation of the hydrostatic components. Secondly the background states are readjusted
to the evolving conditions in each timestep. This is very important for applications in
climate simulations. Over time any initially computed background state may cease to ap-
proximate the hydrostatic components of the solution. Adjusting the background state
in each timestep to the evolving atmospheric conditions allows for continued benefits
throughout long integrations.

4.2 Balancing in η-Coordinates

In this section the ideas presented previously are applied to the numerical scheme of
the hydrostatic regional climate model REMO as described in chapter 2. Particular
difficulties arise from the nature of the pressure-based vertical coordinate, the hydrostatic
assumption and the use of a staggered Lorenz-type computational grid. These challenges
will be addressed step by step to yield a scheme directly applicable to the REMO model
towards the end of this section.
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The aim is to transfer the ideas put forward in the previous section to the REMO
framework. It has already been seen in section 3.1 that one of the key differences stems
from the vertical coordinate system. In the Cartesian vertical coordinate z the balancing
problem arises due to the addition of a source term that represents gravity. It is limited to
the vertical equation of motion. In the η-system the balancing problem is a consequence
of the coordinate transformation itself and essentially unrelated to the source term. It
is restricted to the horizontal momentum equations.

On the other hand the structural similarity of the resulting terms in (3.3) and each com-
ponent of (3.6) is striking. In both cases the balance of a pressure and a gravitational
term characterizes certain equilibrium states. In one case these are hydrostatic and in the
other stationary states. Failure to respect such balances in the discrete approximations
leads to unbalanced local truncation errors and generation of spurious vertical or hori-
zontal momentum respectively. Therefore, it appears promising to adapt the technique
from the example section 4.1 to the REMO framework.

Firstly, note that the following developments can be applied independently in both
horizontal directions and that this exposition can with no loss of generality be restricted
to a horizontally one-dimensional setting. Moreover, the analysis of the stationary state
equations in section 3.3 suggests that the momentum equations are the only potential
source of erroneous movement. Consequently, a dry atmosphere can be assumed for
this purpose. In that case the virtual temperature reduces to the absolute temperature:
Tv = T . The stationary state equation (3.13) can then be written:

− 1
a cosφ

(︃
RT

∂ ln p
∂λ

+ ∂Φ
∂λ

)︃
= 0 (4.8)

To formulate a general roadmap the steps taken to improve local truncation error (LTE)
cancellation in the example from section 4.1 are recapitulated. The aim is to express both
terms in (4.8) with the same discrete formulation. To that end, local stationary states are
constructed by solving equation (4.8) under provision of suitable initial conditions and
local thermodynamic approximations. These local stationary states will then be used to
construct approximations to the horizontal PGF with improved cancellation properties
via the discrete Archimedes buoyancy principle.

To express these ideas most clearly it is assumed in this section that the equations are
solved on a co-located grid. That means all prognostic and diagnostic quantities are
assumed to be located at the same points in the discrete grid structure. In later sections
the basic method will be adapted to the vertical and horizontal staggering used in the
REMO model. In this setting the discrete grid points take the form (λi, ηj) with the
notation from chapter 2. Assume that discrete point values pij , Tij and Φij of pressure,
temperature and geopotential at these locations are given. In practice this will either
be initial data or the values computed for the last timestep during the course of a
simulation.
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To construct a discrete approximation of (4.8) on the co-located grid the pressure term
is treated first. Using standard centered finite differences a second-order approximation
to ∂ ln p

∂λ at a given gridpoint (λi, ηj) can be given as:

∂ ln p
∂λ

= ln pi+1j − ln pi−1j
2∆λ + o

(︂
∆λ2

)︂
(4.9)

To gain more insight into the nature of the LTE a Taylor-expansion of ln p around the
central point (λi, ηj) is applied. Assuming sufficient smoothness this gives:

ln pi+1j − ln pi−1j
2∆λ = 1

2∆λ

∞∑︂
n=0

1
n!

(︃
∂n ln p
∂λn

(λi+1 − λi)n − ∂n ln p
∂λn

(λi−1 − λi)n
)︃

(4.10)

The even terms in the sum in equation (4.10) cancel and the odd terms double, because
of (λi+1 − λi) = ∆λ and (λi−1 − λi) = −∆λ. Isolating the first term yields:

ln pi+1j − ln pi−1j
2∆λ = ∂ ln p

∂λ

⃓⃓⃓⃓
ij

+
∞∑︂
n=1

1
(2n+ 1) !

∂(2n+1) ln p
∂λ(2n+1) (∆λ)2n (4.11)

That is, the local truncation error decreases at least quadratically with the horizontal
grid spacing ∆λ.

Assume now that a local stationary state is given, i.e., a pair of temperature and pressure
(T ∗, p∗) that solves (4.8) around the cell-center (λi, ηj):

∂ ln p∗

∂λ
= − 1

RT ∗
∂Φ
∂λ

(4.12)

If the same discrete difference operator used for the pressure in equation (4.9) to p∗ is
applied one has by construction:

∂ ln p∗

∂λ
=

ln p∗
i+1j − ln p∗

i−1j
2∆λ + o

(︂
∆λ2

)︂
= 1

2∆λ

∫︂ λi+1

λi−1

∂ ln p∗

∂λ
dλ′ + o

(︂
∆λ2

)︂
(4.13)

Note that in (4.13) the vertical index j for the background pressure p∗ has been omitted,
because p∗ is a local approximation essentially limited to the given horizontal coordinate
surface. Substituting (4.12) into the RHS of equation (4.13) yields:

ln p∗
i+1j − ln p∗

i−1j
2∆λ = − 1

2∆λ

∫︂ λi+1

λi−1

1
RT ∗

∂Φ
∂λ

dλ′ (4.14)

That is, the discrete Archimedes buoyancy principle has been exploited to construct a
discrete approximation to the RHS of equation (4.12). This approximation is achieved
using the same discrete operator that has been applied to the pressure term in (4.9). It
should be stressed again that the discrete operator structure is a key point in controlling
the resulting LTE and thus in improving cancellation properties. The local stationary
solution (T ∗, p∗) is supposed to approximate the stationary component of the current
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model state (T, p) around the cell-center (λi, ηj). Since the local stationary components
cancel exactly only the residual components have to be taken into account for the ap-
proximation of the PGF. A balance of two terms with similar magnitude but opposing
signs is still retained. However, the residual components are much smaller in magnitude.
The LTE scales with these magnitudes and so the vulnerability to errors discussed before
is reduced. This approach is similar to the subtraction of constant background states
from the thermodynamic variables before evaluating the PGF (e.g. Gary 1973). The
main advantages of the technique applied here are the locality and time-adaptivity. The
locality allows for more accurate approximations of the background states, because they
do not have to be applicable to a whole vertical column. In this way, the available de-
grees of freedom can solely be used towards approximating the background states more
precisely. The time-adaptivity refers to the fact that the local background states are ap-
proximated in each timestep based on the current model state. This allows applications
in climate modeling with very long integration times.

So far (T ∗, p∗) have only been required to solve the stationary state equation (4.8) or
equivalently (4.12). Without constraining the local solutions appropriately they can not
be expected to relate to the stationary components of the given model state. To this
end, it is required that both the background pressure and temperature take the given
point values of the model:

T ∗
ij = T ∗(λi, ηj) = Tij and p∗

ij = p∗(λi, ηj) = pij (4.15)

In this way, the local approximations are guaranteed to be close to the true model state
at least near the cell-center. Now all ingredients needed to construct an approximation
to the PGF with improved cancellation properties are given. To that end, the difference
between equations (4.9) and (4.13) is investigated. Defining

Dij
λ = ln pi+1j − ln pi−1j

2∆λ −
ln p∗

i+1j − ln p∗
i−1j

2∆λ (4.16)

and applying (4.11) to both ln p and ln p∗ yields:

Dij
λ =

(︃
∂ ln p
∂λ

− ∂ ln p∗

∂λ

)︃ ⃓⃓⃓⃓
ij

+
∞∑︂
n=1

1
(2n+ 1) !

∂(2n+1) (ln p− ln p∗)
∂λ(2n+1) (∆λ)2n (4.17)

Note that all terms are evaluated at the cell-center (λi, ηj). Exploiting both the station-
arity of p∗, i.e., equation (4.12), and the constraints on the local approximation (4.15)
this can be written:

Dij
λ =

(︃
∂ ln p
∂λ

+ 1
RT

∂Φ
∂λ

)︃ ⃓⃓⃓⃓
ij

+
∞∑︂
n=1

1
(2n+ 1) !

∂(2n+1) ln p
p∗

∂λ(2n+1) (∆λ)2n (4.18)

Firstly, equation (4.18) shows that Dij
λ is a second-order accurate approximation to

∂ ln p
∂λ + 1

RT
∂Φ
∂λ at the cell-center. Secondly, the individual summands of the LTE each
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scale with a derivative of ln p
p∗ . The closer the local background state p∗ is to the

true pressure p, the smaller these derivatives will be. The idea is that if the model state
(p, T ) is stationary then approximations (p∗, T ∗) fulfilling (4.12) and (4.15) will generally
be very accurate. Ideally, one would have p = p∗ and T = T ∗ and the truncation
error in equation (4.18) would vanish completely. However, in general the true model
state can only be approximated based on the given local point values. More accurate
approximations will lead to better cancellation properties. The question how to construct
these approximations will be addressed in the next section. Before, equation (4.18) is
used to finally give an approximation to the PGF in equation (4.8):

− 1
a cosφ

(︃
RT

∂ ln p
∂λ

+ ∂Φ
∂λ

)︃ ⃓⃓⃓⃓
ij

= − RTij
a cosφj

Dij
λ + o

(︂
∆λ2

)︂
(4.19)

with Dij
λ according to (4.16).

To sum up, with the help of a local stationary background state a discrete approximation
(4.19) to the PGF that is second-order accurate can be constructed. Moreover, the
remaining LTE can be decreased by improving the accuracy of these approximations
potentially leading to greatly improved cancellation. The caveat is that it has so far
not been specified how to actually reconstruct suitable background states (p∗, T ∗) from
given point values of p, T and Φ. This will be attempted in the next section.

4.2.1 Reconstructing the Local Background State

It has been seen in the preceding section that cancellation of the PGF can be improved if
suitable approximations of a background equilibrium state (p∗, T ∗) are acquired. Clearly,
the stationary state equation (4.12) within the given cell needs to be solved. If the
solution also respects (4.15), i.e., is linked to the local thermodynamic state of the
model, the approximation (4.19) will retain the desired properties. In the example
from section 4.1 the background states were reconstructed by solving an initial value
problem for the separable ordinary differential equation (4.1). Aside from substituting
a local density approximation the separability relied on the simple form of the vertical
geopotential gradient ∂Φ

∂z = g. Applying the same principle here is difficult, because
the stationary state equation in the η-system instead features the horizontal gradient
of the geopotential. It is already known from the previous chapters that this gradient
is in general not constant along surfaces of constant η. Moreover, since the model is
hydrostatic it must respect a discrete version of (2.18). In REMO this is achieved by
discrete integration of the hydrostatic equation based on the given values of p and T .
Expanding the stationary state equation (4.12) with the definition of the geopotential
in (2.19) yields:

∂ ln p∗

∂λ
= − 1

RT ∗

(︃
∂Φs

∂λ
−R

∂

∂λ

∫︂ η

1
T ∗∂ ln p∗

∂η
dη′
)︃

(4.20)
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Equation (4.20) needs to be solved in order to reconstruct the local background states,
but it is not separable even if suitable local approximation of the temperature are sub-
stituted. Instead, it is of the integro-differential type, i.e., it involves an integral of the
unknown p∗. Additionally, the equation is a partial differential equation that features
both horizontal and vertical derivatives. This severely complicates the solution and one
can not expect to attain analytical solutions as in the introductory example. This com-
plication is a result of both the pressure-based coordinate system and the hydrostatic
nature of the model. For instance, a terrain-following coordinate based on geometric
height would allow to compute the geopotential exactly in every level of the model.
Integration of (2.18) would not be required anymore. However, if such a model was hy-
drostatic equation (2.18) would still have to be enforced in a different way. Consequently,
such a model would have to attain the pressure values by integration of the hydrostatic
equation instead. This would also result in an integro-differential equation similar to
(4.20). The main culprit is therefore the enforced hydrostatic consistency of the model.
However, a non-hydrostatic model with a height-based terrain-following coordinate may
retain a simple form of the stationary state equation and lend itself more towards the
approach presented here.

If analytical solutions of (4.20) are too difficult to attain the remaining option is to aim
for approximate solutions instead. Note that to construct the approximation (4.19) only
the values of p∗ at the adjacent gridpoints (λi−1, ηj) and (λi+1, ηj) are required. The
precise evolution of the background state between those need not be known. This can
be exploited by integrating the stationary state equation (4.12) from the cell-center to
these adjacent points and introducing a change of variables:

ln p∗
i+1j = ln p∗

ij −
∫︂ λi+1

λi

1
RT ∗

∂Φ
∂λ

dλ′ = ln p∗
ij − g

R

∫︂ zi+1

zi

1
T ∗ dz′ (4.21)

Applying the initial condition (4.15) for p∗ and repeating the procedure for the other
gridpoint one arrives at:

ln p∗
i+1j = ln pij − g

R

∫︂ zi+1

zi

1
T ∗ dz′

ln p∗
i−1j = ln pij − g

R

∫︂ zi−1

zi

1
T ∗ dz′

(4.22)

The advantage of using equation (4.22) to compute the point values of p∗ is that no
assumptions about the geopotential gradient have to be made. This avoids most of the
complications with equation (4.20) and gives an equation that can be integrated in a
straightforward manner at least for simple local temperature approximations. On the
other hand point values of the geometric height or equivalently the geopotential are still
needed. These are required not only because they control the range of integration in
(4.22), but also because T ∗ needs to be formulated as a function of z in this case. This
emphasizes once more the relevance of the geometric height for the approach considered
here. The only recourse is to estimate such values via the hydrostatic equation. Clearly,
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any errors made will be detrimental to the cancellation properties of the method but
some improvement can still be expected.

In principle equations (4.22) and (4.19) can now be used to construct an approxima-
tion for the horizontal PGF. However, the point values of z and the local temperature
approximation T ∗ must be specified to actually make use of (4.22). Also all of the devel-
opments so far rely on the assumption of a co-located grid structure. Before clarifying
the computation of z and T ∗ the scheme will be adapted to the vertical and horizontal
staggering of the REMO model in the following section.

4.2.2 Vertical and Horizontal Staggering

So far it has been assumed that the discrete variables of the model all reside at the same
points in the computational grid. For the REMO model this does not actually hold.
Instead, the variables are arranged on a grid that is both vertically and horizontally
staggered (see Figure 2.3 and Figure 2.4). The approximations (4.22) and (4.19) do
not depend on any specific vertical grid arrangement. That is, the vertical staggering
can be neglected for now. It will only be relevant for computing the height values
required to compute p∗ with (4.22). On the other hand the horizontal staggering is very
relevant, because the discrete form of the approximation (4.19) depends explicitly on
the horizontal grid structure. In REMO the u-points are located halfway between the
points at which the temperature and pressure are defined. Since the PGF appears in
the momentum equation it must also be defined at u-points. Ideally, one would like to
use an adapted form of (4.19)

D
i+ 1

2
λ = ln pi+1j − ln pij

∆λ −
ln p∗

i+1j − ln p∗
ij

∆λ (4.23)

to construct the approximation. Note that this in accordance with the definitions of the
horizontal difference operators in equation (2.25). That means Di+ 1

2
λ is located at the

point
(︂
λi+ 1

2
, ηj
)︂
, i.e., the u-point between the adjacent cell-centers.

It has however been stressed that the local approximations (p∗, T ∗) must be linked to
the thermodynamic state of the model via equation (4.15). In the co-located setting this
simply meant that the approximations interpolate (p, T ) in the cell-center. However, due
to the horizontal staggering the approximation is now defined at the u-point between the
adjacent mass-points, i.e., at a cell boundary. The values of T and p at these points are
unknown. They can only be estimated based on the given point values in the vicinity.
The problem is that doing so would introduce additional truncation error into equation
(4.18), namely in the first term. In light of this it appears more fruitful to first use
equations (4.16) and (4.19) to compute balanced approximations at the adjacent mass-
points (λi, ηj) and (λi+1, ηj). These approximations can then be averaged to construct
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a balanced approximation at the respective u-point, i.e.,

− 1
a cosφ

(︃
RT

∂ ln p
∂λ

+ ∂Φ
∂λ

)︃
= − R

2a cosφj

(︂
TijD

ij
λ + Ti+1jD

i+1j
λ

)︂
+ o

(︂
∆λ2

)︂
(4.24)

Dij
λ will be referred to as the left hand and Di+1j

λ as the right hand approximation.

The remaining questions then are how to define the local temperature approximation
T ∗ and the height values required for an evaluation of (4.22), (4.16) and finally (4.24).
For the temperature two alternatives are formulated based on the assumption of either
a constant or piecewise linear temperature distribution across the cell

T ∗ = Tij (4.25)

T ∗ =
{︄
Tij +Gi+1 (z − zi) , for z between zi and zi+1

Tij +Gi−1 (z − zi) , for z between zi and zi−1
(4.26)

where Gi+1 and Gi−1 are given by:

Gi+1 = Ti+1j − Tij
zi+1 − zi

(4.27)

Gi−1 = Ti−1j − Tij
zi−1 − zi

(4.28)

Note that (4.25) and (4.26) are the approximations used around the cell-center (λi, ηj)
for use with the left hand approximation Dij

λ . For the right hand approximation Di+1j
λ

around (λi+1, ηj) they have to be modified in the obvious way. Especially a linear
distribution appears as a plausible choice given that the temperature is often assumed
to be linear in z, e.g., when applying height corrections in the analysis of ensemble
predictions. The standard atmosphere also works with piecewise constant or linear
distributions. Note that both formulations are consistent with the constraints specified
in equation (4.15) in the sense that zi corresponds to λi and so on. Moreover, T ∗

has been given as a function of z as required by (4.22). Having specified the local
temperature approximation one can continue by analytically evaluating the integrals in
equation (4.22). For the constant temperature case this yields:

ln p∗
i+1j = ln pij − g

RT ∗ (zi+1 − zi)

ln p∗
i−1j = ln pij − g

RT ∗ (zi−1 − zi)
(4.29)

This representation has to be modified analogously for the right hand approximation
Di+1j
λ . In case of the piecewise linear temperature distribution the result is

ln p∗
i+1j = ln pij − g

RGi+1 ln Tij +Gi+1 (zi+1 − zi)
Tij

ln p∗
i−1j = ln pij − g

RGi−1 ln Tij +Gi−1 (zi−1 − zi)
Tij

(4.30)
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Finally, the height values used in (4.30) have to be estimated to complete the scheme.
The improved cancellation properties of the method will crucially depend on both: the
accuracy of the local temperature approximation T ∗ and the estimated height values.
Finding suitable approximations of the geometrical height is much more difficult, because
the hydrostatic equation has to be integrated from the surface up to the given layer ηj . In
this way, more and more vertical discretization error is introduced into the estimation as
one progresses towards the top of the atmosphere. Consequently, the method is expected
to yield better results towards the surface layer. Recall from (2.19) that one can write

Φ = Φs −R

∫︂ η

1
T
∂ ln p
∂η

dη′ (4.31)

and that exact values of the surface geopotential Φs at the mass-points are given. The
main question is then how to approximate the integral in (4.31). Once again one can
avoid making assumptions about the gradient by introducing a change of variables:

z = zs − R

g

∫︂ ln p

ln ps

T d ln p′ (4.32)

The point values of the pressure in (4.32) are given, but the vertical temperature distribu-
tion has to be estimated to make use of (4.32). It appears sensible to use approximations
that are consistent with the ones used before, i.e., either piecewise constant or piecewise
linear ones. For the evaluation of the integral a common quadrature rule will be used,
known as the Simpson rule. For low order polynomials this rule gives the exact integral
and it can be used without additional loss of accuracy. According to the Simpson rule
one can write the integral of a constant or linear function f as:∫︂ b

a
f d ln p′ = b− a

2 (f (a) + f (b)) (4.33)

Clearly, for a constant function it is f(a) = f(b). This rule can now be applied to
approximate the geometrical height up to any given layer. Due to the staggered vertical
grid a temperature at the surface is not given, but only at the full layers above (see
Figure 2.4). Therefore, a constant temperature between the surface and the lowest full
layer is assumed. The estimated height in the lowest full layer km can then be given as:

zikm = zsi − R (ln pikm − ln psi)
g

Tikm (4.34)

For any of the remaining layers j with 1 ≤ j < km above one has for the piecewise
constant vertical temperature distribution:

zij = zij−1 − R (ln pij − ln pij−1)
g

Tij (4.35)

Assuming a piecewise linear temperature distribution instead yields:

zij = zij−1 − R (ln pij − ln pij−1)
2g (Tij + Tij−1) (4.36)
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Now all the prerequisites to approximate the PGF according to (4.24) are assembled.
However, there is a caveat. As can be seen from the definition of Gi+1 and Gi−1 in
equations (4.27) and (4.28) the local approximation T ∗ becomes singular if zi = zi+1
or zi = zi−1. This is a consequence of transforming the integral in equation (4.21) into
z-space, which is essentially predicated on the assumption of a one-to-one relationship
between longitude λ and height z. The result is that the two sampling points for the
linear approximation coincide prohibiting the use of a linear interpolation. In such
cases the constant temperature distribution will instead be used which poses no such
problems.

Now the procedural approach to computing the approximation in the form of pseudo code
can be given. First, the algorithm based on constant horizontal and vertical temperature
approximations is given, see Algorithm 1.

For the alternative of linear temperature approximations one instead has Algorithm 2.
Here ϵ is a threshold for receding to the constant temperature approximation if the
adjacent points are too close in terms of geometric height. Technically, this is only
required if there is no change in height between the points at all, but due to the limited
precision of floating point calculations a threshold close to zero has to be used. Both
algorithms will be tested and compared to the standard scheme in REMO in the next
chapter.

4.2.3 The Isothermal Equilibrium

It has already been shown that the cancellation properties of the scheme largely rest
on the accuracy of both the local temperature and height approximations. Clearly, for
most cases it will not be possible to deliver perfectly well-balanced approximations due
to the limitations of these approximations. For the most simple stationary state, i.e., an
isothermal equilibrium, one can however show that both schemes given here will exactly
retain such states. An isothermal equilibrium is characterized by a constant atmospheric
temperature. To this end, the height approximations, i.e., equations (4.35) and (4.36) are
investigated. The initial values given by the surface height are known exactly beforehand,
as are the pressure values controlling the range of integration. The only source of error in
these equations is thus the assumed temperature distribution. However, in an isothermal
state the temperature is simply equal to a constant reference temperature. Hence, both
the piecewise constant and linear approximations will yield exact height values. This
removes the most prominent source of error from the approximation.

The second source of error is the assumption about the horizontal distribution of the
temperature for computing the pressure p∗ in (4.29) or (4.30). Both the constant and
linear assumption will obviously lead to the true temperature distribution across the
cell for the isothermal state. The integrals have been evaluated analytically, hence no
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error can be introduced in this way either. Locally, one then has p∗ = p and from
equation (4.18) it can be seen that the discretization error for both the left and right
hand approximations Dij

λ and Di+1j
λ will vanish completely. As a result, the averaged

approximation (4.24) will also vanish. This shows that the isothermal equilibrium will
be retained by the schemes given here.

Algorithm 1 PGFCONS
1: for all i do
2: for all j do
3: Compute zij according to (4.35)
4: for all i do
5: for all j do
6: Compute p∗ according to (4.29)
7: Use p∗ to compute Dij and Di+1j with (4.16)
8: Approximate PGF using (4.24)

Algorithm 2 PGFLIN
1: for all i do
2: for all j do
3: Compute zij according to (4.36)
4: for all i do
5: for all j do
6: if |zij − zi+1j |≤ ϵ then
7: Compute p∗ according to (4.29)
8: else
9: Compute p∗ according to (4.30)

10: Use p∗ to compute Dij and Di+1j with (4.16)
11: Approximate PGF using (4.24)





5 Validation in Idealized Test Cases

In this chapter numerical examples of the scheme developed in the previous chapter are
presented demonstrating its capacity to reduce the pressure gradient error in idealized
scenarios. To this end, a 2D vertical-plane version of the REMO model is initialized with
different stationary states and the generation of spurious momentum in the vicinity of
steep orographic gradients is investigated.

5.1 The Isothermal Atmosphere

In this section the most simple example of a stationary state, namely the isothermal
equilibrium is examined. This state is characterized by a vertically and horizontally
constant reference temperature. As pointed out in subsection 4.2.3 the new scheme is
expected to retain such an equilibrium due to theoretical argument. However, due to the
finite precision of floating point computations the error can in general not exactly equal
zero. Ideally, a well-balanced scheme produces errors close to the system dependent
roundoff error ϵm, often referred to as machine epsilon. All computations in this chapter
were carried out on a 64-bit architecture in double precision with the GNU FORTRAN
compiler. In this framework one has the estimation ϵm ≈ 2.22 × 10−16. Note that errors
of this magnitude can be considered to be numerically zero, i.e., are not inherent to the
numerical scheme but merely a consequence of machine limitations. However, depending
on the sensitivity of a scheme to roundoff errors, which is closely linked to the number
of floating point operations expended, larger errors may accrue over time.

5.1.1 Computational Domain and Orography

A domain of 1° longitudinal extent around the prime meridian and located on the equato-
rial great circle is considered. This equates to a domain width of approximately 111 km.
Two different orographies are tested, both characterized by a domain-centered moun-
tain of zm = 2.5 km maximum height. The first one is a bell shaped mountain given in
parameterized form as:

fb(λ) = zm exp
(︄

− λ2

2rb

)︄
(5.1)

73
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with the shape parameter rb = 0.001.

The second orography is substantially more complex and given by a Schär-type mountain
(see Schär et al. 2002) in parameterized form

fs(λ) = h0 cos2
(︄
πλ

rf

)︄
(5.2)

with

h0(λ) =

⎧⎨⎩zm cos2
(︂
πλ
2ra

)︂
|λ|< ra

0 otherwise
(5.3)

where the shape parameters are given by rf = 0.1 and ra = 0.25. Figure 5.1 shows a
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Figure 5.1: Test case orography: bell shaped mountain (solid) and Schär-type mountain (dot-
ted).



CHAPTER 5. VALIDATION IN IDEALIZED TEST CASES

plot of the two test orographies. The tests for the bell-shaped mountain are conducted
at two different resolutions both horizontally and vertically. For the former resolutions
of 0.1° and 0.01° are investigated corresponding to about 10 km and 1 km respectively.
For a hydrostatic model these resolutions are relatively high given that the hydrostatic
assumption becomes questionable when the ratio of horizontal and vertical scales ap-
proaches one (e.g., Orlanski 1981; Daley 1988). However, these tests merely serve to
assess the ability of the discretization to retain equilibrium states. To that end, the
physical validity of the hydrostatic approximation is of little importance. It is more
important to capture the orographic features with sufficient accuracy especially for the
Schär-type mountain. Therefore, the Schär-test is only conducted at the higher horizon-
tal but both vertical resolutions.

For the vertical resolution two options commonly used in operational applications of
the REMO model are investigated. The actual vertical resolution in meters is highly
inhomogeneous along a given vertical column and depends on both the chosen vertical
coordinate parameters and the surface pressure, i.e., is time-dependent. Therefore, the
vertical resolutions are characterized by the total number of vertical levels used. For
classical hydrostatic applications REMO is generally run with 27 levels. For computa-
tions with the non-hydrostatic model version REMO-nh 40 levels are used to allow for an
improved resolution. The appendix contains a detailed list of the corresponding vertical
coordinate parameters A and B for both vertical resolutions. Figure 5.2 shows the level
distributions for both test orographies at the higher vertical and horizontal resolutions.
The typical structure emerges with orography-dominated levels near the ground slowly
tending towards flat pressure levels in the upper atmosphere. Above approximately
18 km the levels have become completely isobaric.

5.1.2 Initial and Boundary Values

To assess the ability of the new discretization to retain an isothermal state the model
must be initialized with suitable initial and boundary data. Note that an isothermal
state is equivalent to the equilibrium derived in section 3.3 when a vanishing lapse
rate is assumed. A mean sea level reference pressure of pref = 1013.25 hPa and an
atmosphere wide reference temperature Tref = 288.15 ° K is prescribed. Equation (3.23)
is used together with the known surface height to find the matching surface pressure.
Equation (2.39) then yields the pressure for each column and the temperature values of
the model are all set to Tref . The equilibrium is also initialized into the two boundary
lines used in the REMO model to avoid perturbations entering the domain from outside.
Boundary assimilation has been switched off for all computations in this chapter. This
concludes the initialization procedure. The model is then run for a total of one hour to
investigate the development and growth of spurious motion during this time.
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Figure 5.2: Vertical level distributions for the isothermal test case with 40 levels and 1 km
horizontal resolution.

5.1.3 Results

In this section the results for the isothermal test case are evaluated and both the spatial
structure of the resultant PGE as well as its evolution over time are investigated.

Spatial Error Structure

The most straightforward performance measure is the absolute value of u-wind speed
at any given time t > 0. Note that the analytic solution gives u = 0 at all times
and therefore the magnitude of deviations from this value is a sensible measure of error.
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Non-zero windspeed in the given test environment should accrue exclusively due to errors
in the PGF and hence represents the combined detrimental effect over the course of a
simulation. Inspecting PGF errors directly on the other hand is merely a measure of
how much additional spurious acceleration is created at that point in time.

Figure 5.3 shows the u-error at the final time of computation t = 3600 s for the classic
PGF discretization. First note that the orography for the lower horizontal resolution
(left hand side) appears to be much flatter than for the high resolution (right hand side).
This is solely due to graphical limitations where the computational cells are drawn as
quadrilaterals with vertices at cell interfaces. Intra-cell variation of orography is not
taken into account. Due to the low amount of sampling points at 10 km resolution this
gives the impression of a lower overall mountain height. However, in the initial data the
mountain is actually sampled at zm = 2.5 km among other points. The results immedi-
ately suggest a strong dependency on both the chosen vertical and horizontal resolution.
For all but one case (upper right) the highest errors are found in the stratosphere above
15 km. Increasing the vertical resolution while keeping the horizontal resolution fixed
strongly reduces the errors. As expected the lowest error is observed with a combination
of high vertical and horizontal resolution (lower right) with values between −0.05 and
0.05 m s−1. For lower resolutions spurious motion can reach more than ±0.15 m s−1 which
is quite substantial given the short simulation time. Somewhat peculiar is the result for
high horizontal and low vertical resolution as shown in the upper right. The error is most
prominent in the upper troposphere and shows indications of a computational mode. It
can be conjectured that this is a result of mismatched resolutions which would indicate
that the PGE can have detrimental effects on stability as well at least if resolutions are
not chosen carefully. Interestingly, the opposite combination of low horizontal but high
vertical resolution (lower left) does not appear to suffer from any such issues. Instead the
structure of the error is virtually the same as in the low resolution case above albeit with
much lower magnitudes. The importance of the geopotential approximation in comput-
ing the PGF has already been pointed out. That approximation is built from adding up
discrete vertical derivatives whose accuracy depends mostly on the vertical resolution.
Therefore, these results may give credence to the notion that vertical resolution is overall
more important for reducing the PGE and that the geopotential approximation may be
at least as relevant to the problem as the choice of coordinate system.

Next the results for the newly developed scheme are investigated. Recall that in chapter 4
two algorithms PGFCONST and PGFLIN have been given that differ only in the kind of
approximations (piecewise constant or linear) used to reconstruct the local hydrostatic
background states. Figure 5.4 shows the results for the PGFCONST scheme. Clearly, the
new scheme produces substantially reduced errors in all cases with typical magnitudes
between −1 × 10−11 and 1 × 10−11 m s−1, i.e., several orders of magnitude smaller than
the classic discretization. This is rather close to round-off error but the deviation from
the theoretical predictions in subsection 4.2.3 is apparent. The scheme does not appear to
produce fully well-balanced results even for this simple test case. Possible reasons for this
discrepancy will be addressed later in this section. However, a qualitative examination
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Figure 5.3: u-error at final time t = 3600 s for the classic scheme and the bell-shaped mountain.
Shown are the results for 27 and 40 levels (top to bottom) and 10 km as well as 1 km
(left to right) respectively. Orography is shown in brown.
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Figure 5.4: u-error at final time t = 3600 s for the PGFCONST scheme and the bell-shaped
mountain. Shown are the results for 27 and 40 levels (top to bottom) and 10 km as
well as 1 km (left to right) respectively. Orography is shown in brown.
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of these results may already give rise to a possible explanation. In stark contrast to
the results for the classic scheme the error appears to increase with improved resolution
both horizontally and vertically. No sign of a computational mode can be identified,
but clearly higher resolutions tend to produce higher magnitudes of error and appear
more noisy. As mentioned before even a perfectly well-balanced method will generally
produce non-zero error due to the finite precision of floating point operations. Often the
results will oscillate around zero with magnitudes ideally in the range of machine epsilon.
However, the error is related to the number of floating point operations expended in the
scheme because each operation will cause additional round-off. The computation of the
geopotential requires additional operations for each additional vertical level. Possibly,
this may in part explain the observed tendency to produce larger errors with increased
resolution. Another interesting observation is that the new scheme seems to produce the
largest errors close to the ground and in the troposphere in contrast to the classic one.
Overall the error seems to be a bit more evenly distributed.

Figure 5.5 shows the results for the PGFLIN scheme. The structure of the error appears
to be virtually if not exactly the same as that in Figure 5.4, i.e., there is no benefit
of using a linear over a constant approximation for the given test case. This is rather
easily explained because of the isothermal equilibrium. The local constant or linear
temperature approximations used in constructing background states naturally give the
same results for a temperature constant among cells as in the isothermal example.

Figure 5.6 shows the results for the Schaer-type mountain. The classic scheme produces
errors comparable in magnitude to the ones from the bell-shaped mountain in Figure 5.3.
The increased complexity of the orography does not appear to have any direct effect in
this regard. However, the results for the lower vertical resolution are somewhat remi-
niscent of the possible computational mode encountered before albeit less pronounced.
Possibly, the more complex terrain in this example requires the highest vertical and
horizontal resolution to be adequately resolved. In that case (right hand side) the er-
ror is greatly reduced and remarkably similar to the one observed for the bell-shaped
mountain. The results for the PGFCONST and PGFLIN schemes are also quite simi-
lar to those in Figure 5.4 and Figure 5.5. Note that the schemes seem to handle even
the lower resolution without any indication of numerical issues. The magnitudes and
spatial structure of the errors also are consistent with the results for the bell-shaped
mountain. At least for the given test case the new schemes appear to be independent of
the orographic complexity as conjectured in subsection 4.2.3.

To gain more insight into the representation of the PGF the PGE is now investigated
directly. As mentioned the PGE is a measure of how fast new spurious momentum is
produced at a given time. Figure 5.7 shows the PGE results for the bell-shaped mountain
and the classic discretization at the initial time of the simulation. As expected the highest
errors are found in the upper atmosphere with values in the range of ±1 × 10−2 m s−2.
The results show a spatial structure with four distinct regions of errors centered above
the mountain and arranged in a symmetrical pattern. Most likely this is due to the
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Figure 5.5: u-error at final time t = 3600 s for the PGFLIN scheme and the bell-shaped moun-
tain. Shown are the results for 27 and 40 levels (top to bottom) and 10 km as well
as 1 km (left to right) respectively. Orography is shown in brown.
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Figure 5.6: u-error at final time t = 3600 s for the Schär-type mountain. Shown are the results
for 27 and 40 levels (left to right) and for the classic, the PGFCONST and PGFLIN
schemes (top to bottom).
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Figure 5.7: Pressure gradient error at initial time t = 0 s for the classic scheme and the bell-
shaped mountain. Shown are the results for 27 and 40 levels (top to bottom) and
10 km as well as 1 km (left to right) respectively. Orography is shown in brown.
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Figure 5.8: Pressure gradient error at final time t = 3600 s for the classic scheme and the bell-
shaped mountain. Shown are the results for 27 and 40 levels (top to bottom) and
10 km as well as 1 km (left to right) respectively. Orography is shown in brown.
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symmetry of the bell-shaped mountain and the change of sign of the inclination along
the mountain top. All resolutions show qualitatively similar results. It appears that
increasing the vertical resolution (from top to bottom) is more effective in reducing the
error than increasing the horizontal resolution (from left to right). Figure 5.8 shows the
same plot but for the final time of the simulation. Interestingly, the left hand side (low
horizontal resolution) shows a similar picture compared to the initial time. However,
the magnitude of error has clearly reduced significantly. The right hand side shows
that for the higher resolutions the error is greatly reduced after 1 h of simulation. The
results suggest that the initial PGE slowly reduces over time leading into a perturbed
steady-state at which little or no further momentum is produced.

Figure 5.9 shows the PGE for the PGFCONST scheme at the initial time. The scheme
produces greatly reduced errors very close to round-off error. As observed with the
u-error previously higher resolutions exhibit larger errors. The spatial structure is com-
pletely different from the classic scheme with a more evenly distributed error but a more
noisy appearance. Figure 5.10 shows the PGE for the final time of simulation. Unlike
the classic scheme the picture has hardly changed over time. Both the magnitude and
structure of errors are very similar compared to the initial time. This suggests once more
that these errors are related to round-off errors and in that sense are not inherent to the
scheme itself.

Time Evolution

Previously the spatial structure of the mountain-induced circulation has been investi-
gated for both the classic and the new schemes. Another interesting question is how
the error evolves over the course of the simulation. Figure 5.11 shows the growth of the
domain-wide maximum absolute (top) and mean (bottom) u-error over the duration of
the experiment. Note that the error curves are plotted on a logarithmic y-axis to allow
for direct comparison of the classic and the new discretization in one plot. The results of
the PGFLIN scheme have been omitted as they have been previously seen to be virtually
identical to those of the PGFCONST scheme. The new scheme produces substantially
smaller maximum errors over the duration of the simulation as expected. Both schemes
appear to produce the bulk of the spurious motion immideately after initialization and
then tend to stagnate and settle into the attained speed. This is consistent with the PGE
at the final time examined before. Interestingly, the highest resolution for the classic
scheme shows the largest variation but produces the smallest errors. The new scheme in
contrast produces the lowest errors for the lowest resolutions as observed before. Both
schemes produce very similar curves for both maximum and mean error suggesting that
the overall variance of the error is rather limited.

Figure 5.12 shows the results for the Schär-type mountain. Qualitatively the picture is
very similar to the one for the bell-shaped mountain. After initial growth the errors tend
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Figure 5.9: Pressure gradient error at initial time t = 0 s for the PGFCONST scheme and the
bell-shaped mountain. Shown are the results for 27 and 40 levels (top to bottom)
and 10 km as well as 1 km (left to right) respectively. Orography is shown in brown.
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Figure 5.10: Pressure gradient error at final time t = 3600 s for the PGFCONST scheme and the
bell-shaped mountain. Shown are the results for 27 and 40 levels (top to bottom)
and 10 km as well as 1 km (left to right) respectively. Orography is shown in brown.
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Figure 5.11: Maximum (top) and mean (bottom) absolute u-error for the isothermal case and
the bell-shaped mountain. Values are shown for the classic scheme (solid) and the
PGFCONST scheme (dashed). Colors indicate different resolutions.
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Figure 5.12: Maximum (top) and mean (bottom) absolute u-error for the isothermal case and
the Schär-type mountain. Values are shown for the classic scheme (solid) and the
PGFCONST scheme (dashed). Colors indicate different resolutions.
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to settle into a new equilibrium for the classic scheme. The new scheme also exhibits
slight initial error growth but the magnitude is essentially negligible.

Clearly, the new scheme produces substantially smaller errors both for the PGF and the
u-wind. However, the errors are significantly larger than machine epsilon. According
to the theoretical predictions this should only be possible due to rounding errors which
are hardware dependent and not inherent to the scheme itself. I.e., if carried out with
infinite precision the scheme should produce no error at all. It has also been conjectured
that the unexpectedly large error may be connected to the high number of floating point
operations used to calculate the geopotential. Each such operation introduces additional
round-off error. This would also explain why the errors for the scheme appear to grow
with higher resolution. To confirm this hypothesis the simulations were repeated as
before but this time the known geopotential was prescribed instead of estimating it
based on the given data. In this way the summation over the vertical levels can be
avoided to greatly reduce the round-off error incurred. If the hypothesis is correct
most or all of the error exhibited in the previous results should vanish. Figure 5.13
shows the pressure gradient error for the first 5 min of the simulation for a single point
centered above the mountain in the mid-atmosphere. The upper picture shows the error
for the PGFCONST scheme without provision of the exact geopotential values. The
values oscillate with high frequency around the zero line as is common for well-balanced
schemes. The lower picture shows the results of the PGFCONST scheme when the exact
geopotential is prescribed. The errors exhibited before completely vanish and are exactly
zero. This confirms the initial suspicion: the observed errors stem exclusively from the
approximation of the geopotential. However, due to the simplicity of the isothermal case
the geopotential approximation is exact outside of round-off error. Therefore, it can be
concluded that the errors encountered are due to round-off and round-off alone. That
is, the scheme is well-balanced for the isothermal case as previously predicted. However,
in light of the perturbation produced by round-off error alone much larger errors can be
expected when the geopotential is additionally afflicted by truncation errors. Such an
example will be investigated in the next section.

To sum up, it has been shown that the new scheme is well-balanced for the isothermal
equilibrium with substantial improvements over the classic method. The new scheme is
able to achieve much better results with much lower resolutions. Moreover, in some cases
stability benefits of the new scheme were observed. On the other hand, round-off errors
incurred in the computation of the geopotential prevent the scheme from producing
errors in the range of machine epsilon. Instead the errors are two to four orders of
magnitude above this threshold. This suggests a high susceptibility of the new scheme
to even small errors in the geopotential.
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Figure 5.13: Pressure gradient error for a single point centered above the bell-shaped mountain.
Values are shown for the PGFCONST scheme (top) and the PGFCONST scheme
with exact geopotential (bottom). Colors indicate different resolutions.
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Figure 5.14: Pressure gradient error for a single point centered above the Schär-type mountain.
Values are shown for the PGFCONST scheme (top) and the PGFCONST scheme
with exact geopotential (bottom). Colors indicate different resolutions.
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5.2 The Standard Atmosphere

In this section the performance of the scheme on a more complex test case is investigated.
The same computational domain and orographies as in the previous section is used but
the model is initialized with the standard atmosphere derived in chapter 3. This test
case is characterized by a piecewise linear temperature distribution. In such a case the
geopotential will not only contain round-off errors as in the previous example but also
truncation errors. Looking at the apparent high sensitivity of the scheme in regards to
the geopotential drastically different results are to be expected.

5.2.1 Results

Here, the results for the standard atmosphere test case are presented both in terms of
spatial error structure and evolution over time.

Spatial Error

Figure 5.15 shows the results for the classic scheme and the bell-shaped mountain at the
end of the simulation. The magnitude of the error especially for the lower resolutions
is much larger than for the isothermal equilibrium. This is likely due to the increased
complexity of the vertical temperature distribution in this scenario. It has been seen
previously that the classic scheme often produces large initial errors that settle down
over time. The higher resolutions both vertically (lower right) and horizontally (upper
right) exhibit drastically smaller errors. It is likely that the scheme needs a longer time
at the lower resolutions to disperse the initial disturbances and reach a new equilibrium.
Interestingly, at least for the higher resolutions the largest errors are now found more in
the mid-atmosphere in contrast to the stratospheric maximum in the isothermal case.
This is likely due to the structure of the standard atmosphere that is characterized by
a constant temperature lapse rate below 11 km followed by an isothermal layer above
that.

Figure 5.16 shows the results for the PGFCONST scheme. Interestingly, the picture
is strikingly similar to that for the classic scheme. While the magnitude of error is
slightly reduced the spatial structure is virtually the same quite unlike the situation in
the isothermal case. Clearly, this is due to the additional truncation error generated in
approximating the geopotential. It has previously been seen how very small round-off er-
rors can accumulate and have a significant influence on the results. The truncation errors
however are much larger than round-off errors and consequently exhibit a much stronger
influence. Unfortunately, this appears to prohibit any substantial improvement on the
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Figure 5.15: u-error at final time t = 3600 s for the classic scheme and the bell-shaped mountain
(standard atmosphere case). Shown are the results for 27 and 40 levels (top to
bottom) and 10 km as well as 1 km (left to right) respectively. Orography is shown
in brown.
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results of the classic scheme. Figure 5.17 shows the results for the PGFLIN scheme.
Both qualitatively and quantitatively the results agree with those of the PGFCONST
and the classic scheme. There is a slight improvement over the PGFCONST scheme due
to the linear approximations but it is negligible. Apparently, the geopotential errors are
much too pronounced to allow the linear approximations to have a stronger impact.

Figure 5.18 shows the results for the Schär-type mountain. The overall picture is similar
but the largest errors now occur closer to the ground most likely due to the increased
complexity of the orography. Again the classic and the new schemes produce very similar
errors structurally and quantitatively. As previously seen the new schemes produce
slightly smaller errors but the difference is mostly negligible. In some areas the PGFLIN
scheme improves over the PGFCONST scheme but the effect of the linear approximations
is limited as in the previous situation.

Now the PGE for the standard atmosphere case is investigated. Figure 5.19 shows the
pressure gradient error at the initial time for the classic scheme. The PGE exhibits vir-
tually the same spatial structure with four distinct and symmetric regions of large error
centered above the mountain. The largest errors are found in the upper atmosphere
as before and the magnitude of the error is also very similar to the isothermal case.
This suggests that at least some of the greatly increased u-error found in the standard
atmosphere case is not a direct consequence of the PGE but due to indirect effects when
the initial disturbance interacts with the rest of the scheme. Figure 5.20 depicts the
situation at the end of the simulation. Interestingly, the results with lower horizontal
resolution (left) show greatly increased PGE compared to the initial time. The simula-
tions with higher horizontal resolution (right) on the other hand exhibit greatly reduced
error. This is consistent with the situation in the isothermal case where the initial PGE
has been seen to disperse over time leading into a disturbed equilibrium. However, in
the isothermal case the error also decreased for the lower resolutions albeit more slowly.
It is possible that this process simply needs more time for the standard atmosphere case
or that the low resolution prevents dispersion and instead drifts off into an atmosphere
in full motion.

Figure 5.21 shows the pressure gradient error for the PGFCONST scheme at the be-
ginning of the simulation. The plots with higher horizontal resolution (right) exhibit
a pattern similar to the classic scheme. The error in the upper atmosphere is slightly
reduced over the classic scheme but conversely the error close to the ground is increased.
On the other hand, the results for the lower horizontal resolution (left) show greater dif-
ferences to the classic scheme. Quantitatively and qualitatively the results for the lower
atmosphere are comparable. However, the upper atmosphere exhibits greatly decreased
error. Possibly, the error builds up from the bottom of the atmosphere up to the top
and this process is faster for the classic scheme. Figure 5.22 shows the situation by the
end of the simulation and gives some credence to this conjecture. The picture on the
right hand side now looks very similar to the one for the classic scheme again including
the separating layer observed around the 5 km mark. The pictures with high horizontal
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Figure 5.16: u-error at final time t = 3600 s for the PGFCONST scheme and the bell-shaped
mountain (standard atmosphere case). Shown are the results for 27 and 40 levels
(top to bottom) and 10 km as well as 1 km (left to right) respectively. Orography
is shown in brown.
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Figure 5.17: u-error at final time t = 3600 s for the PGFLIN scheme and the bell-shaped moun-
tain (standard atmosphere case). Shown are the results for 27 and 40 levels (top to
bottom) and 10 km as well as 1 km (left to right) respectively. Orography is shown
in brown.
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Figure 5.18: u-error at final time t = 3600 s for the Schär-type mountain (standard atmosphere
case). Shown are the results for 27 and 40 levels (left to right) and for the classic,
the PGFCONST and PGFLIN schemes (top to bottom).
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Figure 5.19: Pressure gradient error at initial time t = 0 s for the classic scheme and the bell-
shaped mountain (standard atmosphere case). Shown are the results for 27 and
40 levels (top to bottom) and 10 km as well as 1 km (left to right) respectively.
Orography is shown in brown.
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Figure 5.20: Pressure gradient error at final time t = 3600 s for the classic scheme and the bell-
shaped mountain (standard atmosphere case). Shown are the results for 27 and
40 levels (top to bottom) and 10 km as well as 1 km (left to right) respectively.
Orography is shown in brown.
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resolution (right) show substantially reduced error compared to the classic scheme. One
interpretation is that both schemes disperse the initial PGE over time (at least if the
resolution is sufficient) but that the new scheme is slightly more efficient at this.

Finally, Figure 5.23 shows the results for the PGFLIN scheme. The only significant dif-
ference to the PGFCONST scheme is the absence of the large errors close to the ground
in the simulations with low horizontal resolution (left). As before this error is expected
to build up over time as in the previous example. The improved linear approximations
appear to slow this process down even further in comparison to the classic and PGF-
CONST scheme. Figure 5.24 confirms the expectations and shows virtually the same
structure as for the two other schemes. For the higher horizontal resolutions (right)
the PGE has mostly dispersed suggesting that no or little further spurious motion is
produced at this point in time.

Time Evolution

The development of the u-error over the course of the experiments is briefly investigated
here. Figure 5.25 shows the maximum (top) and mean (bottom) u-error for the standard
atmosphere case. Particularly interesting are the curves for the low horizontal resolu-
tions (blue and black). The error initially decreases as observed in previous examples
but then starts to grow rapidly again. Apparently the initial disturbances in the PGF
are too large to readjust to a disturbed equilibrium as seen before. This behavior is
however only observed for the classic scheme. The errors for the PGFCONST scheme
(dashed) continue to decline after the initial growth period. The higher resolutions are
both qualitatively and quantitatively similar between the classic and the new scheme as
expected from the spatial error analysis.

Figure 5.26 shows the results for the Schär-type mountain. For the maximum error
(top) the situation is similar to the bell-shaped example, but all errors exhibit sustained
growth including the new scheme. At the same time a large difference between the
maximum and mean (bottom) error can be observed. This suggests that only a few
grid points produce very large errors whereas most points do not. Likely this can be
attributed to the increased complexity of the Schär-type mountain but a more detailed
analysis would be required to confirm that.

To sum up, the results for the standard atmosphere case appear to suggest that the new
scheme produces slightly improved results. However, the magnitude of improvement
is essentially negligible and the scheme is far from well-balanced. Before it has been
shown that most of the error is connected to the accuracy with which the geopotential
is approximated. Clearly, for the standard atmosphere the errors in the geopotential are
too large and overpower most of the improvements that may have manifested otherwise.
To confirm this the simulations were also repeated with prescribed exact geopotential.
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Figure 5.21: Pressure gradient error at initial time t = 0 s for the PGFCONST scheme and the
bell-shaped mountain (standard atmosphere case). Shown are the results for 27
and 40 levels (top to bottom) and 10 km as well as 1 km (left to right) respectively.
Orography is shown in brown.



CHAPTER 5. VALIDATION IN IDEALIZED TEST CASES

20 10 0 10 20
[km]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

[k
m

]

20 10 0 10 20
[km]

20 10 0 10 20
[km]

0

5

10

15

20

25

[k
m

]

20 10 0 10 20
[km]

1.0 × 10 2

7.5 × 10 3

5.0 × 10 3

2.5 × 10 3

0.0 × 100

2.5 × 10 3

5.0 × 10 3

7.5 × 10 3

1.0 × 10 2

[m
/s

**
2]

Figure 5.22: Pressure gradient error at final time t = 3600 s for the PGFCONST scheme and the
bell-shaped mountain (standard atmosphere case). Shown are the results for 27
and 40 levels (top to bottom) and 10 km as well as 1 km (left to right) respectively.
Orography is shown in brown.
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Figure 5.23: Pressure gradient error at initial time t = 0 s for the PGFLIN scheme and the
bell-shaped mountain (standard atmosphere case). Shown are the results for 27
and 40 levels (top to bottom) and 10 km as well as 1 km (left to right) respectively.
Orography is shown in brown.
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Figure 5.24: Pressure gradient error at final time t = 3600 s for the PGFLIN scheme and the
bell-shaped mountain (standard atmosphere case). Shown are the results for 27
and 40 levels (top to bottom) and 10 km as well as 1 km (left to right) respectively.
Orography is shown in brown.
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Figure 5.25: Maximum (top) and mean (bottom) absolute u-error for the standard atmosphere
case and the bell-shaped mountain. Values are shown for the classic scheme (solid)
and the PGFCONST scheme (dashed). Colors indicate different resolutions.
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Figure 5.26: Maximum (top) and mean (bottom) absolute u-error for the standard atmosphere
case and the Schär-type mountain. Values are shown for the classic scheme (solid)
and the PGFCONST scheme (dashed). Colors indicate different resolutions.
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In that case the error is once again equal to zero as in the isothermal case. This suggests
that the current scheme may be a step in the right direction but in its current state will
not yield well-balanced results for equilibria more complex than the isothermal one.



6 Conclusions and Future Perspectives

In this chapter a brief summary of the present work is given and the progress that has
been made in terms of the guiding research questions is critically discussed. Furthermore,
an outlook of possible future research trajectories is given.

6.1 Summary

In the present work the question whether existing numerical techniques developed under
the umbrella term well-balancing can be transferred to the regional hydrostatic climate
model REMO in order to reduce mountain-induced spurious circulation in the pres-
ence of complex orography was investigated. To that end, the state-of-the-art research
pertaining to well-balancing different kinds of equation sets in climate and NWP mod-
eling and related fields were reviewed. It was found that the framework developed in
Botta et al. (2004) is most likely to be applicable to a hydrostatic finite difference (FD)
model. The two key factors in this judgment were the similarities of the equation systems
(non-hydrostatic vs. hydrostatic Euler-equations) and the relative ease of application to
second-order centered differences as used in the REMO model. The main challenge in
transferring the approach to the REMO model was the change from a Cartesian to a
pressure-based hybrid vertical terrain-following coordinate system (TFCS) as commonly
used in FD models of the atmosphere. Additionally, both the vertical and horizon-
tal staggering used in the REMO model required further modification of the original
method. In the course of development a novel characterization of equilibrium states
in the η-coordinate system was found that provides additional geometric insight and
was also used in transferring the reconstruction technique for hydrostatic background
states to the REMO framework. It was proven mathematically that the newly developed
scheme is well-balanced for isothermal equilibria for any given (smooth) orography irre-
spective of its complexity. That notion was validated by implementing the new scheme
in a 2D-version of the REMO model and applying it to an isothermal resting atmosphere
test case with two examples of steep orographic gradients. Furthermore, the scheme was
tested on a more challenging standard atmosphere equilibrium.
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6.2 Critical Discussion and Conclusions

In this section the research questions posed in the introduction are reviewed and the
answers that can be given based on the findings in the present work are discussed.

• Can existing well-balancing approaches be transferred to hydrostatic FDM climate
models?

It has been shown for the first time that at least one of the existing well-balancing
approaches (Botta et al. 2004) can be successfully transferred to hydrostatic FD models
such as REMO. As is the case with most well-balancing techniques this requires the
reconstruction of local hydrostatic equilibria based on the available prognostic point
values in a given cell and its vicinity. To some extent, this approach can be compared
to the canonical method of subtracting constant hydrostatic reference states from the
prognostic variables before computing the pressure gradient force (PGF) as commonly
used in NWP (e.g., Gary 1973). However, the advantage of the method proposed here
is that the reference states are reconstructed each time step and for each individual cell.
Constant reference states on the other hand need to be constructed based on initial data
and are therefore unable to adapt to long term changes in the underlying hydrostatic
equilibrium. Such changes are to be expected in simulations of past and future climate
with integration times of 50 years or more in contrast to NWP applications with just a
few days. This is one of the reasons why advancements in well-balancing are particularly
desirable for climate models. With its capacity to retain the isothermal equilibrium for
arbitrarily complex terrain the method developed in the present work can be considered
a first but important step in that direction.

• Is this effective and efficient in reducing the pressure gradient error encountered in
the presence of steep and complex orography?

It has been shown both theoretically and in practical examples that at least for the most
simple isothermal equilibrium the newly developed PGF discretization proves effective
in treating rather complex orography such as Schär-type mountain ridges. The PGE is
greatly reduced in comparison to the standard method and in some cases showed more
favorable stability properties. In fact, for these specific equilibria the new scheme is
fully well-balanced, i.e., is independent of grid resolution and produces non-zero errors
purely due to the finite precision of floating point computations. On the other hand, the
investigation shows that the method is inherently sensitive to round-off errors due to the
high number of floating point operations expended in approximating the geopotential.
As a result even the isothermal equilibrium produced errors much larger than machine
epsilon. Moreover, when tested with the more complex standard atmosphere equilibrium
the results of the new scheme were no better or worse than the standard method. It has
been shown that if the exact geopotential is provided the method does yield well-balanced
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results for this case as well. This proves that the provision of accurate geopotential values
is the key for this method to improve on the PGE. Unfortunately, the requirements in
accuracy appear to be very demanding. On average the approximated geopotential
in the standard atmosphere case only deviates from the true values by a few meters.
Yet, all possible improvements in balancing compared to the standard method are lost.
It is highly unlikely that geopotential approximations accurate enough to retain the
benefits of the method are achievable for practical purposes. In terms of efficiency
the new scheme has excellent properties as the additional cost of computing the PGF
is essentially negligible. Moreover, the implementation is rather straightforward and
requires no substantial refactoring of existing code. In light of this it has to be concluded
that the proposed technique is efficient but unfortunately not very effective outside of
very idealized situations.

• How does this relate to the different types of TFCSs employed, e.g., pressure-based
vs. height-based systems?

The present work has exclusively dealt with a hybrid pressure-based TFCS. It has been
found that at least for the approach followed here pressure based coordinates present a
possibly incurable obstacle in achieving improved balancing properties. In such TFCS
the geopotential is commonly computed by integrating the hydrostatic equation along
the vertical. It has been seen that this can not only produce round-off errors but also
substantial truncation errors stemming from the estimation of vertical pressure gradients
as well as numerical quadrature. The current method however hinges on the mathemat-
ical consistency of temperature, pressure and geopotential values. The latter however is
not given as initial data (such as the prognostic variables T and ps) but instead diag-
nosed from the other two via discrete approximations. It appears outright inconceivable
that the required grade of consistency could be achieved across different equilibria and
atmospheric states. In the original method (Botta et al. 2004) this issue was not en-
countered because the consistent geopotential could simply be acquired from the vertical
z-coordinate. In the η-system the vertical coordinate is required to compute the pressure
instead (in conjunction with the given surface pressure) and no information pertaining
to the geopotential is provided in this way. On the other hand, pressure-based systems
allow the reduction of the full pressure equation to a surface pressure equation. Tradi-
tionally, this was seen as an advantage due to reduced computational load and improved
memory management. In light of the recent advances in computing technology these
features seem less relevant today. Consequently, it would appear promising to change
to a height-based TFCS such as the Gal-Chen-coordinate. In this way, the geopotential
could be acquired from the vertical coordinate which has been seen to be key to suc-
cessful application of the method. However, this is where the picture gets a bit more
complex. A hydrostatic model such as REMO needs a way of enforcing the hydrostatic
consistency of its prognostic values. I.e., when pressure and temperature are given the
geopotential must be chosen such that the hydrostatic equation holds at least approx-
imatively. Therefore, changing to a height-based TFCS would offer no benefit at least
for hydrostatic models. Suppose temperature is given as initial data and geopotential is
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derived from the alternative coordinate then the pressure must be chosen such that the
hydrostatic equation holds. The only obvious way to achieve that would be to diagnose
the pressure by vertical integration of the hydrostatic equation rather than solving a full
prognostic pressure equation. The net result of such a change would hence be a reversal
of the roles of pressure and geopotential in the current scheme. It can therefore be con-
cluded that when a hydrostatic model is concerned neither pressure- nor height-based
TFCS provide a favorable environment for the proposed scheme. One interpretation
of this is that the enforcement of hydrostatic consistency in hydrostatic models is at
least as much a cause of the PGE as the terrain-following coordinate transformation.
To the author’s knowledge most of the existing literature attributes the PGE to the use
of TFCSs alone. The results of this thesis suggest that the canonical way of enforcing
hydrostaticity exacerbates the issue substantially.

6.3 Outlook

In this section a brief outlook on possible future research directions based on the findings
of the present work is given. As pointed out previously the proposed scheme has very high
demands in terms of the accuracy required in approximating the geopotential. However,
it is unlikely for any approximation technique to consistently achieve the needed precision
outside of singular idealized cases. It has been shown that the sensitivity to errors in
the geopotential is twofold. On the one hand round-off errors related to the number of
floating point computations increase the PGE above machine epsilon even in technically
well-balanced cases. This could possibly be addressed by employing quad precision, but
only to the geopotential computations. In this way, the relevant round-off errors would
be minimized without slowing down computations too much. On the other hand in more
complex examples the geopotential is additionally afflicted with truncation error. Here,
a Taylor analysis of the error terms may identify ways to apply appropriate corrections to
the discrete approximation of the integrals used in computing the geopotential. This may
at least reduce the impact of such truncation errors and thereby increase the practical
applicability of the scheme.

It may also be fruitful to explore alternative ways of enforcing hydrostatic consistency.
For instance, if a height-based TFCS is applied instead of a pressure-based one it may be
possible to derive a prognostic pressure equation that produces results consistent with
the geopotential derived from the vertical coordinate. In this way, the main obstacles to
successful application of the method developed here would be removed.

Moreover, it may be promising to investigate whether the new discretization may be
used in connection with a non-hydrostatic model. On the one hand, it appears coun-
terintuitive that a method that fails to balance a hydrostatic model should work on
a more complex non-hydrostatic model. On the other hand, non-hydrostatic models
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do not need to enforce hydrostatic consistency removing the main source of difficulty
with this scheme. However, crucially the non-hydrostatic model would have to employ
a height-based TFCS such that the geopotential can be derived from the vertical co-
ordinate. Together with temperature and pressure from the prognostic equations the
necessary ingredients for the application of the scheme would be given. Non-hydrostatic
models formulated in hydrostatic terrain-following pressure coordinates (Laprise 1992;
Janjić, Gerrity, and Ničković 2001) still diagnose the geopotential from an analogue of
the hydrostatic equation sometimes referred to as the hypsometric equation. Hence,
they will likely not benefit from the technique developed here.

Clearly, the suggested trajectories of future research may yield conflicting or negative
results and unveil new challenges not encountered in the present work. Yet, they provide
novel pathways in a longstanding research problem that is still waiting for a convincing
solution decades into its conception.
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Vertical Coordinate Parameters for Test
Cases

Here, the vertical coordinate parameters A and B (see subsection 2.2.2 and specifically
(2.6)) used for the test cases in chapter 5 are given. Note that the parameters are defined
at half layers. I.e., the experiments with 27 and 40 full layers yield 28 and 41 coordinate
parameters respectively.
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Table A1: Vertical Coordinate Parameters for 27 Full Layers
Level A B

1 0.0000000 0.0000000
2 5000.0000000 0.0000000
3 10000.0000000 0.0000000
4 13600.0000000 0.0000000
5 14736.3554688 0.0203192
6 15689.2070312 0.0369749
7 16266.6093750 0.0594876
8 16465.0039062 0.0878950
9 16297.6210938 0.1220036
10 15791.5976562 0.1614415
11 14985.2695312 0.2057033
12 13925.5195312 0.2541886
13 12665.2929688 0.3062354
14 11261.2304688 0.3611450
15 9771.4062500 0.4182023
16 8253.2109375 0.4766881
17 6761.3398438 0.5358866
18 5345.9140625 0.5950842
19 4050.7177734 0.6535646
20 2911.5693359 0.7105944
21 1954.8051758 0.7654052
22 1195.8898926 0.8171670
23 638.1489258 0.8649558
24 271.6264648 0.9077159
25 72.0635834 0.9442132
26 0.0000000 0.9729852
27 0.0000000 0.9922815
28 0.0000000 1.0000000



APPENDIX . VERTICAL COORDINATE PARAMETERS FOR TEST CASES

Table A2: Vertical Coordinate Parameters for 40 Full Layers
Level A B

1 0.0000000 0.0000000
2 2000.0000000 0.0000000
3 4000.0000000 0.0000000
4 6000.0000000 0.0000000
5 8000.0000000 0.0000000
6 9988.8828380 0.0001970
7 11914.5244690 0.0015110
8 13722.9429420 0.0048840
9 15369.7308560 0.0110760
10 16819.4762690 0.0206780
11 18045.1835870 0.0341210
12 19027.6944760 0.0516900
13 19755.1087570 0.0735340
14 20222.2053090 0.0996750
15 20429.8629670 0.1300230
16 20384.4814280 0.1643840
17 20097.4021470 0.2024760
18 19584.3292430 0.2439330
19 18864.7503930 0.2883230
20 17961.3577410 0.3351550
21 16899.4687940 0.3838920
22 15706.4473210 0.4339630
23 14411.1242610 0.4847720
24 13043.2186180 0.5357100
25 11632.7583640 0.5861680
26 10209.5013400 0.6355470
27 8802.3561550 0.6832690
28 7438.8030920 0.7287860
29 6144.3150030 0.7715970
30 4941.7782130 0.8112530
31 3850.9134220 0.8473750
32 2887.6966030 0.8796570
33 2063.7799050 0.9078840
34 1385.9125530 0.9319400
35 855.3617500 0.9518220
36 467.3335770 0.9676450
37 210.3938940 0.9796630
38 65.8892430 0.9882700
39 7.3677430 0.9940190
40 0.0000000 0.9976300
41 0.0000000 1.0000000
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