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Zusammenfassung

Halbleiter sind Materialien, deren elektrische Leitfähigkeit kleiner als die von Leitern,

aber größer als die von Isolatoren ist. Sie sind weit verbreitet als optische Sensoren,

Stromquellen, Lichtsender und auch Festkörperlaser aufgrund ihrer Zuverlässigkeit,

Kompaktheit und geringen Kosten. In den letzten Jahren haben kolloidale Halbleiter-

Quantenpunkte (QDs) die Möglichkeit eröffnet, Halbleiter mithilfe von lösungsbasierten

Verfahren mit niedriger Temperatur und großer Fläche in leistungsstarke und flexible

Bauelemente zu integrieren. Kolloidale QDs sind eine Untergruppe der Halbleiter-

Nanokristalle (NKs) und sind stark im Fokus in der Nanotechnologie. Die Größe

der kolloidalen QDs beträgt normalerweise nicht mehr als 10 nm. In diesem Bere-

ich spielen die Quanten- und die dielektrischen Begrenzungseffekte eine wesentliche

Rolle, die dazu führen, dass sich die elektrischen und optischen Eigenschaften von

denen des bulk-Materials unterscheiden. Ihre hochgradig einstellbaren elektronischen

und optischen Eigenschaften basieren auf Größe, Form, Zusammensetzung und ihre mit

molekularen Liganden unterschiedlicher Chemie funktionalisierten Oberflächen. Dies

führt zu einer Vielzahl von Forschungs- und kommerziellen Anwendungen wie biologis-

chen Bildgebung (Bioimaging), Solarzellen, LEDs, Diodenlaser und Transistoren. Die

optischen Eigenschaften des Nanokristalls werden durch die sogenannte Feinstruktur

(FS) bestimmt. Die Berechnung der FS ist sehr schwierig, da die Kristallstruktur, die

Spin-Orbit-Wechselwirkung und die Elektron-Loch-Austauschintegrale bererücksichtigt

werden müssen. Atomistische Ansätze basierend auf semi-empirischen Pseudopoten-

tialen [8, 9, 20, 38, 111] oder Tight-Binding [30, 32, 66, 69, 101] sind wahrscheinlich

die genauesten, aber auch rechnerisch die teuersten. Bevor diese Methoden zur Verfü-

gung standen, hatte ein dringender Bedarf an theoretischen Vorhersagen zu Modellen

geführt, die auf der effektiven Massenannäherung [34] (EMA) basierten und liefer-

ten einen guten Vergleich mit bestehenden Experimenten. Die Einfachheit der EMA-

Modelle und der Erfolg bei der Vorhersage gemessener Eigenschaften führten zu der

großen Beliebtheit des Ansatzes. Obwohl es immer möglich ist, experimentelle Ergeb-
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nisse mit nur wenigen Parametern an effektive Massenmodelle anzupassen, bleibt häufig

die Frage offen, ob die zugrunde liegende Physik gut erfasst wird. In dieser Arbeit wer-

den die neu entwickelte Methode der atomar effektiven Pseudopotentiale (AEPs) und

die Theorie der abgeschirmten Konfigurationswechselwirkung (CI) kombiniert, um die

elektronischen und optischen Eigenschaften von NCs zu untersuchen.

Diese Arbeit ist in fünf Kapitel unterteilt. Kapitel 1 gibt einen allgemeinen Überblick

über die Dichte Funktional Theorie (DFT) - eine der am häufigsten verwendeten theo-

retischen Methoden, die ein Verständnis der elektronischen Eigenschaften von konden-

sierter Materie bis hin zu Molekülen und Atomen ermöglicht. Wir präsentieren den

Ursprung und die elegante Formulierung, die die Verwendung von DFT ermöglichen.

DFT beinhaltet im Gegensatz zur Hartree-Fock-Methode Elektronenkorrelation und

ist kostengünstig. DFT hat jedoch auch einige Nachteile. In DFT sind sehr viele ver-

schiedene Basisästze und Funktionale verfügbar. Es kann nicht systematisch verbessert

werden. Es kann nicht mit Systemen aus tausenden bis hunderttausenden Atomen

umgehen. Kapitel 2 befasst sich mit der Beschreibung der atomar effektiven Pseudopo-

tentialmethode (AEP). Die neu entwickelte Methode AEP [21, 61] basiert auf DFT

und ermöglicht es uns, mit Systemen aus tausenden bis hunderttausenden Atomen

umzugehen. Das atomar effektive Pseudopotential leitet sich aus einer analytischen

Verbindung zwischen einem AEP und dem abgeschirmten selbstkonsistenten effektiven

Potential von DFT ab. Die Qualität von AEPs wird in verschiedenen Materialien und

Strukturen getestet. In Kapitel 3 wird eine empirische Korrektur der nichtlokalen Teile

des Pseudopotentials eingeführt. Da die AEPs direkt aus der DFT unter Verwendung

von der lokalen Dichtenäherung LDA für die Austauschkorrelationsfunktion erhalten

werden, wird der typische Fehler aus der LDA, wie unterschätzte Bandlücken und ef-

fektive Massen, an die AEPs weitergegeben. Die einfache Korrektur ermöglicht uns

genaue Quasiteilchen-Bandlücken und effektive Massen zu berechnen. Kapitel 4 en-

thält eine allgemeine Einführung in die Konfigurationswechselwirkungsmethode (CI)

und das Verfahren zur Untersuchung der elektronischen und optischen Eigenschaften

kolloidaler Nanokristalle. Kapitel 5 widmet sich den Ergebnissen zur exzitonischen

Feinstruktur von kolloidalen CdSe-, InP- und HgTe-Nanokristallen. Aufgrund der ho-

hen Lumineszenz und der guten Quantenausbeute ist CdSe eines der beliebtesten Ma-

terialien im Quantenpunktbereich. Die hochwertigen CdSe-basierten Quantenpunkte

sind vielversprechende Kandidaten als fluoreszierende Tags für Einzelelektronentran-

sistoren in der biologischen Bildgebung, Leuchtdioden, Lasermaterialien und Solarzel-
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lenanwendungen [25, 59, 64, 89]. InP-NCs haben vergleichbare optische Eigenschaften

wie CdSe-NCs. InP-NCs wurden jedoch erst seit kurzem intensiv untersucht dank

neuer Syntheseprotokolle auf der Basis eines billigen und einfach zu verwendenden

Phosphorvorläufers, der zu hochwertigen InP-NCs führt [11, 100, 105]. In einem an-

deren Anwendungsbereich haben sich HgTe-NCs als vielversprechendes Material für

die Infrarot-Bildgebungstechnologie herausgestellt. [70], Unsere theoretische Studie zu

den optischen Eigenschaften von HgTe-NCs liefert wertvolle Einblicke in dieses neue

Material.
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Abstract

Semiconductors are materials whose electrical conductivity is smaller than that of con-

ductors but larger than that of insulators. They are widely used as optical sensors,

power devices, light emitters and also including the solid-state lasers because of their re-

liability, compactness, and low cost. In recent years, colloidal semiconductors quantum

dots (QDs) open up opportunities to integrate semiconductors into high-performance

and flexible devices by using low-temperature, large-area and solution-based methods.

Colloidal QDs are a subset of semiconductor NCs and are the central topic of nan-

otechnology. The size of colloidal QDs is normally no more than 10 nm. In this regime

the quantum and the dielectric confinement effects play essential roles leading to the

difference in electric and optical properties from those of bulk materials. Their highly

tunable electronic and optical properties based on size, shape, composition and their,

with molecular ligands of diverse chemistry, functionalized surfaces lead to a variety

of research and commercial applications such as bioimaging, solar cells, LEDs, diode

lasers, and transistors. The optical properties of the nanocrystal are governed by the

so-called fine structure (FS). The calculation of the FS is very challenging, as it requires

a proper treatment of the crystal structure, the spin-orbit (SO) interaction, and the

electron-hole exchange integrals. Atomistic approaches based on semi-empirical pseu-

dopotential (SEP) [8, 9, 20, 38, 111] or tight-binding [30, 32, 66, 69, 101] are probably

the most accurate, but also computationally the most expensive. Before these methods

became available, an urgent need for theoretical predictions had led to models based

on the effective mass approximation (EMA) [34], which yield a good comparison with

existing experiments. The simplicity of the EMA models and the success in predicting

measured properties led to the large popularity of the approach. However, while it is

always possible to fit experimental results to effective mass models with only a few

parameters, the question often remains if the underlying physics is well captured. In

this work, the newly developed atomic effective pseudopotential (AEP) method and

the screened configuration interaction (CI) theory are combined to investigate the elec-
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xx Abstract

tronic and optical properties of NCs.

This thesis is divided into five chapters. Chapter 1 gives a general overview of

density-functional theory (DFT)-one of the most used theoretical methods which allow

an understanding of the electronic properties from condensed matter to molecules and

atoms. We present the origin and the elegant formulation which enable the use of

DFT. Though DFT has quite a few advantages such as including electron correlation

unlike the Hartree-Fock method, being cost-efficient, etc. Some disadvantages make

DFT less powerful for example: there are many functionals available in DFT, it can

not be systematically improved, it can not deal with systems consisting of thousands to

hundreds of thousands atoms. Chapter 2 focuses on the description of the AEP method.

The AEP method [21, 61] is based on DFT, and allows us to cope with systems of

thousands to hundred thousand atoms. The AEP is derived from an analytic connection

to the screened self-consistent effective potential of DFT. The quality of AEPs is tested

in various materials and structures. In chapter 3, an empirical correction of the non-

local parts of the pseudopotential is introduced. As the AEPs are directly obtained from

DFT using the local density approximation (LDA) for exchange-correlation functional,

the typical error from LDA, such as underestimated band gaps and effective masses,

are inherited by the AEPs. The simple correction enables us to get accurate quasi-

particle band gaps and effective masses. Chapter 4 provides a general introduction to

the CI method and the procedure used to study the electronic and optical properties

of colloidal NCs. Chapter 5 is devoted to the results on the excitonic fine structure of

CdSe, InP and HgTe colloidal nanocrystals. Because of high luminescence and good

quantum yield, CdSe is one of the most popular materials in the QD area. The high-

quality CdSe-based QDs are promising candidates for fluorescent tags in biological

imaging, single-electron transistors, light-emitting diodes, laser materials and solar cell

applications. InP NCs have comparable optical properties with CdSe NCs. However,

InP NCs have been intensively investigated since just recently thanks to new synthesis

protocols based on a cheap and easy-to-use phosphorus precursor that leads to high-

quality InP NCs [11, 100, 105]. In another field of application, HgTe NCs has emerged

as a promising material for infrared imaging technology [70]. Our theoretical study on

the optical properties of HgTe NCs provides valuable insight into this new material.



Introduction

Colloidal quantum dot (QD) (free-standing QDs) have opened the door to new and

exciting spectroscopic studies of quantum structures due to their exciting features such

as quantum-dot shape-dependent transitions, size-dependent (red) shifts between ab-

sorption and emission, emission from high excited levels, surface-mediated transitions,

exchange splitting, strain-induced splitting, and Coulomb-blockade transitions. It is

essential to understand the way the single-particle (SP) levels of the dot reflect the

quantum size, quantum shape, interfacial strain, and surface effects and the nature of

the many-particle interactions such as electron-hole exchange, electron-hole Coulomb

effects, and electron-electron Coulomb interaction.

There have been several theoretical tools developed for analyzing the electronic

structure of QDs. The first approach is the EMA and its extension called k.p, where k

is the wave vector and p is the momentum. In the empirical pseudopotential method

(EPM) and the semi-empirical pseudopotential method (SEPM) the dangling bonds at

the surface of the QDs are passivated by ligandlike potentials, which are designed to

remove the surface states from the band-gap and minimize the coupling with the band-

edge states [38, 39, 41, 117]. AEP is the most recent method which is free of adjustable

parameters, and the surface of the QDs is terminated by hydrogen or pseudo hydrogen,

which allows for an accurate description of the surface effect. In this thesis, the results

of the AEP method are presents in comparison with experiments and other theoretical

methods.

1



2 Introduction



Chapter 1

Basics of Ab-initio electronic structure

calculations

1.1 Many-body problem and Born-Oppenheimer ap-

proximation

To understand the physical properties of materials, physicists have developed many

different methods. Ab-initio methods, which require only a specification of the atomic

numbers, have been used to calculate and predict efficiently many properties of solids,

such as the total energy, the equilibrium lattice constants, elastic constants, vibrational

frequencies. In combination with other theories, ab-initio methods can be applied to

investigate the optical properties of materials. In quantummechanics, a physical system

can be described by the time-independent, non-relativistic Schrödinger equation

ĤΨ = EΨ, (1.1)

where Ψ and E are the wave function and total energy of the system, respectively. Ĥ

is a differential operator whose expectation value is the total energy, in SI units:

Ĥ = −~2

2

∑
A

52
RA

MA

− ~2

2

∑
i

52
ri

me

− 1

4πε0

∑
A,j

e2ZA
| RA − rj |

+
1

8πε0

∑
i,j
i 6=j

e2

| ri − rj |
+

1

8πε0

∑
A,B
A 6=B

e2ZAZB
| RA −RB |

.
(1.2)
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4 1.1. Many-body problem and Born-Oppenheimer approximation

In this expression MA denotes the mass of the Ath nucleus at the position RA and mi

is the mass of the ith electron at the position ri. The first two terms are the kinetic

energies of nuclei and electrons, other terms describe the Coulomb interactions be-

tween electrons and nuclei, between the electrons and between the nuclei, respectively.

ε0 is the permittivity of vacuum. The Schrödinger equation of the Hamiltonian (1.2)

is almost unsolvable neither analytically nor numerically. It is necessary to introduce

approximations in order to make this problem more tractable. The first approximation

invoked is the Born-Oppenheimer approximation, which was proposed in 1927 by Max

Born and J. Robert Oppenheimer [12]. The idea of this approximation is that since the

mass of an electron is much smaller than that of a proton (mp/me ≥ 1836), electrons

respond almost instantaneously to ionic motion. Thus nuclei can be treated adiabati-

cally, leading to a separation of nuclear and electronic components of the many-body

wave function

Ψ(ri,RA) = ψ(ri, {RA})φ(RA), (1.3)

where ψ(ri, {RA}) is the electronic wave function in a frozen ion configuration {RA}
and φ(RA) is the ionic wave function. φ(RA) is the solution of the equation

Hnucleiφ(RA) = Enucleiφ(RA), (1.4)

with Hnuclei is the Hamiltonian describing the nuclear motion under the influence of the

Coulomb potential and the time-averaged adiabatic electronic potential. ψ(ri, {RA})
satisfies the Schrödinger equation for electrons(

− ~2

2

∑
i

52
ri

me

− 1

4πε0

∑
A,j

e2ZA
| RA − rj |

+
1

8πε0

∑
i,j
i 6=j

e2

| ri − rj |

+
1

8πε0

∑
A,B
A 6=B

e2ZAZB
| RA −RB |

)
ψ(ri, {RA}) = Eelψ(ri, {RA}).

(1.5)

Even though the Born-Oppenheimer approximation makes the many-body problem

much simpler, it is still a challenge to solve the Schrödinger equation (1.5), and it is

now the task of numerical electronic structure theory.
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1.2 Exchange and correlation

The toughest part of any electronic structure calculation is the need of taking into

account the electron-electron interaction which is described by exchange and correlation

energies. The exchange interaction is a quantum mechanical effect and is present in

any identical particle system. As electrons are Fermions, the wave function of a many-

electron system must change its sign under the exchange of any two electrons, leading

to an increase of the distance between two electrons with the same spin. This spatial

separation reduces the total Coulomb energy of the system and this reduction is defined

as the exchange energy of the electronic system. The first atomic calculation including

the exchange interaction between electrons is the well-known Hartree-Fock method.

[52], [37].

The correlation energy describes how much one electron is affected by all other elec-

trons. Mathematically the correlation energy of an electronic system is the difference

between its exact total energy and its total energy calculated using the Hartree-Fock

approximation. In most cases, it is extremely hard to compute the correlation en-

ergy of a system and an approximation is undoubtedly needed for a correlation energy

calculation.

1.3 Density functional theory

DFT is one of the most used methods nowadays to calculate the electronic properties of

atoms, molecules, and condensed systems. The foundations of DFT are the Hohenberg-

Kohn and Kohn-Sham theorems [53] with the elegant formulation of Kohn and Sham

[65] in which both exchange and correlation effects are taken into account. Unlike tradi-

tional electronic structure methods, in DFT, instead of the many-body wave function,

the one-body density is used as the only one fundamental variable. Since the density

ρ(r) is a function of only three spatial coordinates (rather than the 3N coordinates of

the wave-function), density functional theory is computationally feasible even for large

systems.

1.3.1 Hohenberg-Kohn theorems

DFT was established by two Hohenberg-Kohn theorems. The first theorem, which is

disarmingly simple to prove using reductio ad absurdum, states that the external poten-
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tial Vext(r) of an electronic system corresponds to a ground state electron density ρ0(r)

(to within a constant). The external potential Vext(r) is generally defined by {NA,RA},
therefore, the ground state density ρ0(r) contains information about {N,NA,RA}, here
NA is the number of atoms and N is the number of electrons. We have the following

chain

ρ0(r)⇒ {N,NA,RA} ⇒ Ĥ ⇒ Ψ0 ⇒ E0 and other properties.

The ground state energy is the sum of the ground state kinetic energy T , the potential

energy due to the interaction between electrons Eee and the potential energy due to

the interaction between electron and the external potential Eext.

E0[ρ0(r)] = T [ρ0(r)] + Eee[ρ0(r)] + Eext[ρ0(r)], (1.6)

where Eext[ρ0] =
∫
ρ0(r)Vextdr depends on the actual system while the first two term

are universal in the sense that they do not depend on {NA,RA}. It is convenient to

introduce the Hohenberg-Kohn functional

FHK[ρ0(r)] = T [ρ0(r)] + Eee[ρ0(r)], (1.7)

which describes the universal part of the ground state energy and is the same for ev-

ery electronic system. The Schrödinger equation of the many-electron problem could

have been solved exactly if the functional FHK[ρ(r)] was known exactly. But unfortu-

nately the form of both T [ρ(r)] and Eee[ρ(r)] are not explicitly defined. The Eee[ρ(r)]

is specially difficult to define as it includes the classical Coulomb energy (Hartree en-

ergy) EH[ρ(r)], the exchange and correlation interactions which are non-classical effects

Encl[ρ(r)]

Eee[ρ(r)] = EH[ρ(r)] + Encl[ρ(r)]. (1.8)

Determining the explicit expressions for T [ρ(r)] and Eee[ρ(r)] is the major chalenge in

DFT.

So far it has been established that the ground state density determines uniquely the

external potential thus the Hamiltonian and all properties of interest of an electronic

system. The question is, how do we know exactly if a certain density is the ground

state density. The second Hohenberg-Kohn theorem gives an answer to that question.

It states that the Hohenberg-Kohn functional FHK[ρ(r)] is minimised at the true ground
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state density ρ0. It is nothing but the variational principle which can be expressed as

E[ρ0(r)] ≤ E[ρ(r)] = T [ρ(r)] + EH[ρ(r)] + Encl[ρ(r)] + Eext[ρ(r)]. (1.9)

It is noteworthy that this strategy can not be straightforwardly transferred to the

electronically excited problem.

1.3.2 Kohn-Sham equations

Practically it is not straightforward to solve the many-body problem within the Hohenberg-

Kohn formalism because this approach gives no information about how to construct

the universal functional FHK[ρ0(r)]. Among three components of FHK[ρ0(r)], except

for the electrostatic term EH[ρ(r)], which can be expressed explicitly, the other two,

T [ρ0(r)] and Encl[ρ(r)], are completely unknown and usually calculated approximately.

There were some methods sugessted before DFT, the two most well-known are the

Hartree approach, in which Encl[ρ(r)] is completely neglected, and the Thomas-Fermi

approach in which T [ρ(r)] is represented in terms of a density functional [35, 106].

These approaches, however, are too rude and usually produce inaccurate results.

About one year after the two Hohenberg and Kohn theorems were stated, in 1965,

Kohn and Sham suggested a method to approximate the unknown universal functional

by introducing an auxiliary system of non-interacting electrons which has the same

ground state density as the interacting one. The very clever idea of Kohn and Sham

is to compute the true kinetic energy by separating it into two parts, the main part

is equal to the kinetic energy of the non-interacting reference system TS[ρ(r)] and the

smaller remainder TC[ρ(r)] has to be dealt approximately. The universal functional

FHK[ρ(r)] thus can be presented as

FHK[ρ(r)] = TS[ρ(r)] + EH [ρ(r)] + EXC[ρ(r)], (1.10)

where EXC[ρ(r)], the so-called exchange-correlation energy, is defined by equation (1.10)

itself.

EXC[ρ(r)] = (T [ρ(r)]− TS[ρ(r)]) + Encl[ρ(r)] = TC[ρ(r)] + Encl[ρ(r)]. (1.11)

EXC[ρ(r)] contains not only the non-classical effects but also a part of the kinetic

energy. Up to this point, EXC[ρ(r)] is the only energy contribution we do not know
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how to handle exactly. The total energy of the electronic system can be written as (in

atomic unit)

E[ρ(r)] = TS[ρ(r)] + EH [ρ(r)] + EXC[ρ(r)] + Eext[ρ(r)]

= TS[ρ(r)] +
1

2

∫ ∫
ρ(r1)ρ(r2)

r12

dr1dr2 + EXC[ρ(r)] +

∫
Vextρ(r)dr

= −1

2

N∑
i

〈ψi|O2|ψi〉+
1

2

N∑
i

N∑
j

∫ ∫
| ψi(r1) |2 1

r12

| ψj(r2) |2 dr1dr2

+ EXC[ρ(r)]−
N∑
i

∫ NA∑
A

ZA
riA
| ψi(r1) |2 dr1. (1.12)

Minimizing the energy functional E[ρ(r)] defined by equation (1.12), with the constraint

that 〈ψi|ψj〉 = δij, is equivalent to solving the set of self-consistent equations[
−1

2
O2 +

(∫
ρ(r2)

r12

dr2 + VXC(r1)−
NA∑
A

ZA
riA

)]
ψi =

[
−1

2
O2 + VKS(r1)

]
ψi = εiψi.

(1.13)

Equations (1.13) is the well-known Kohn Sham equations, VXC is the potential due to

the exchange-correlation energy EXC and simply defined as the functional derivative of

EXC with respect to ρ(r)

VXC =
δEXC

δρ(r)
. (1.14)

If EXC were known then the Kohn Sham equation could be solved exactly and self-

consistently. Unfortunately, there is no way to determine EXC explicitly and it becomes

the primary goal of DFT to find better and better approximations to calculate EXC.

1.3.3 Local density approximation

So far DFT allows an exact description of the major part the electronic energy of

a system. All remaining unknown parts are collectively presented by the exchange-

correlation term EXC[ρ(r)]. To solve the Schrodinger equation using the Kohn-Sham

formalism we need to know the form of EXC[ρ(r)] so the quality of DFT will be judged

by the accuracy of the chosen approximation to EXC[ρ(r)]. The simplest approximation

of describing the exchange-correlation functional of an electronic system is the LDA

which was already included in the original paper by Kohn-Sham [65] and have been

widely used for solid systems. In LDA the exchange-correlation energy of an electronic
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system is constructed by assuming that the exchange-correlation energy per electron at

a position r in the electronic system, εXC[ρ(r)], equal to the exchange-correlation energy

per electron in a homogeneous electron gas, εhom
XC [ρ(r)], that has the same density as

the electronic system at r. Therefore, EXC[ρ(r)] can be written in a very simple form

as following

ELDA
XC [ρ(r)] =

∫
ρ(r)εXC[ρ(r)]dr. (1.15)

The potential due to the exchange-correlation energy (1.14) now becomes

VXC =
δEXC

δρ(r)
=
∂ [ρ(r)εXC[ρ(r)]]

∂ρ(r)
. (1.16)

The exchange-correlation energy per electron εXC[ρ(r)] includes the exchange and the

correlation contributions

εXC[ρ(r)] = εX[ρ(r)] + εC[ρ(r)], (1.17)

where the exchange energy per electron of the homogeneous electron gas, εhom
X [ρ(r)] =

εX[ρ(r)], is described by the Slater approximation based on the Hartree-Fock method

and is usually called Slater exchange

εX[ρ(r)] = −3

4

3

√
3ρ(r)
π

. (1.18)

There is no similar way to express the correlation contributions explicitly. However,

the functional form of the correlation energy has been parametrized from the highly

accurate numerical quantum Monte-Carlo simulations of the homogeneous electron gas

which had done by Ceperly and Alder in 1980. One of the most well-known repre-

sentations of εC[ρ(r)] was developed by Perdew and Zunger in 1981 [93]. Later, in

1992, Perdew and Wang provided a simple analytic representation of εC[ρ(r)] which is

widely used [92]. For solid systems which are weakly correlated, LDA and its extension,

the local spin density approximation (LSDA) to deal with the spin-polarized systems,

work surprisingly well and provide an accurate description of structural and vibrational

properties such as lattice constants, bulk moduli and phonon vibrational frequencies.

For the cohesive energy of solids, the dissociation energy of molecules and the ionisa-

tion energy of atoms, LDA becomes less accurate; thus, further development of LDA

were required for those calculations. LDA assumes that the exchange-correlation en-
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ergy functional is local and depend only on ρ(r). It is, in principle, ignores the effect

of inhomogeneities of the electron density. In the generalised gradient approximation

(GGA) where εXC[ρ(r)] depends not only on ρ(r) but also on the gradient of ρ(r),∇ρ(r),

the non-homogeneity of the true electron density is taken into account. GGA, there-

fore, made a high impact in computational chemistry where cohesive and dissociation

energies play important roles. Another extension of LDA is the hybrid approximation

proposed by A. Becke in 1993 [7] in which a portion of exact exchange from Hartree-

Fock theory is incorporated with the rest of the exchange-correlation energy from other

sources (ab initio or empirical). The hybrid functional is mostly used in chemistry.

1.4 Periodic supercells and plane-wave pseudopoten-

tial method

The many-body problem has been mapped into an effective single-particle problem. By

expanding the electronic wave function into a basis set, the integro-differential Kohn-

Sham equation is transformed into an algebraic one. However, it is still challenging

to solve the Kohn-Sham equation since the electronic wave functions extends over the

entire solid and the basis set required is in principle infinite. Some widely used basis set

are, for example, Gaussian functions, atomic orbitals, plane-waves, etc. In our work,

we use the plane-wave basis set, and it will be discussed in this section.

Bloch’s theorem states that in a perfectly periodic system the electronic wave func-

tion can be written as

ψi(r) = eikrfi(r), (1.19)

here fi(r) is a periodic function with the same periodicity as the system and can be

expanded in terms of a discrete plane-wave basis set whose wave vector are reciprocal

space vector of crystal

fi(r) =
∑
G

ci,Ge
iGr. (1.20)

Therefore each electronic wave function can be written as a sum of plane-waves

ψi(r) =
∑
G

ci,k+Ge
i(k+G)r. (1.21)

In principle, an infinite number of plane-wave is needed to expand an electronic wave

function. However, since the coefficient ci,k+G of the plane-waves which have small
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kinetic energy (~2/2m)|k + G|2 are much more important than that of plane-waves

which have a large kinetic energy, in practice, the plane-wave basis set is truncated

at a certain value of kinetic energy Ecut and only plane-waves with the kinetic energy

smaller than Ecut will be included in the basis. This truncation leads to an error in the

total energy. Nevertheless, the error can be reduced by increasing the value of Ecut.

One can study the convergence of the total energy with respect to Ecut and decide

about the accuracy of the calculations.

Using Bloch’s theorem, instead of calculating an infinite number of the electronic

wave function, one needs to calculate a finite electronic wave function at an infinite

number of k point. However, as the electronic wave functions at k points that are

very close together are almost identical, it is possible to represent the electronic wave

functions in a region of k space by electronic wave functions at a finite number of k

point. The error introduced by this k point sampling, like the case of Ecut, can be

controlled by studying the convergence of the total energy with respect to the number

of k point. In insulator or semiconductor, highly accurate calculations can be done

with a small number of k point, but it requires a denser k point for metallic because

of the requirement of defining the Fermi surface precisely.

Using plane-waves basis set the Kohn-Kham equation (1.13) reads

∑
G′

〈k + G′|HKS|k + G〉 ci,k+G = εi
∑
G′

〈k + G′|k + G〉 = εici,k+G. (1.22)

The matrix element of the Kohn-Sham Hamiltonian HKS includes two parts. The

kinetic energy part is diagonal

〈k + G′| − ~2

2m
∇2|k + G〉 =

~2

2m
|k + G|2δGG′ , (1.23)

and the Kohn-Sham potential part is presented in terms of its Fourier transform

〈k + G′|VKS(r)|k + G〉 = VKS(G−G′). (1.24)

The Kohn-Kham equation at a given k vector in matrix form is

∑
G′

[
~2

2m
|k + G|2δGG′ + VKS(G−G′)

]
ci,k+G′ = εici,k+G, (1.25)
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with the matrix elements Hk+G,k+G′ are given by

Hk+G,k+G′ =
~2

2m
|k + G|2δGG′ + VKS(G−G′). (1.26)

Solving Kohn-Sham equation at this point corresponds to diagonalising the Kohn-Sham

Hamiltonian matrix which has the size defined by the energy cut off Ecut.

The plane-wave method is in general developed for a periodic system. The systems

which have a defect or is lack of periodicity such as quantum dots, quantum wires,

slabs, in principle need to be extented in a continuous plane-wave basis set and the

plane-wave method becomes unsolvable. This formidable task can be tackled by using

a periodic supercell so that the nonperiodic system is located inside the supercell and

artificially repeated in space to form a periodic system which is suitably studied by

plane-wave method and the energy per unit cell of a crystal containing an array of

supercells is calculated. The supercell for a point-defect system is illustrated in figure

1.1a, the bulk region surrounding the point-defect need to be enough to ensure that

there is no interaction between defects from different supercells. Nanostructures or

molecules can also be studied in this fashion by making supercell with enough vacuum

surrounding systems. An example of a supercell for a quantum dot is schematically

presented in figured 1.1b.

(a) (b)

Figure 1.1: Supercell geometry for a point-defect (vacancy) in a bulk solid (a) and for
a quantum dot (b).

As most of the physical properties of a system depend on valence electrons only,

we can treat core and valence electron separately. The core electrons are those in the

filled orbitals, strongly localised and can be treated together with the nuclei as the so-

called ion cores. The valence electrons are in incompletely filled shells and more mobile.
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Because of the strong ionic potential induced by the ion cores via Coulomb interaction,

the electronic wave function of valence electron oscillates rapidly in the core region

leading to the need for a vast number of plane-wave basis set to expand the electronic

wave functions and hence make plane-wave method impractical. To tackle this problem

we need to use the so-called pseudopotential approximation. In this approximation the

strong ionic potential is replaced by a much smoother and weaker pseudopotential

which acts on the pseudo wave function instead of the real wave function of valence

electrons. The pseudopotential is constructed ideally so that the scattering properties

are preserved and in such a way that the pseudo wave functions are nodeless. Beyond

a certain radius cutoff rC the pseudopotential and the real potential are identical.

The two most widely used forms of pseudopotential are norm-conserving pseudopo-

tential and ultrasoft pseudopotential. The norm-conserving pseudopotential was first

time introduced by D. Hamann, M. Schlüter, and C. Chiang. [50] and satisfy four

criteria:

(i) Real and pseudo valence eigenvalues agree for the reference configuration.

(ii) Real and pseudo atomic wave functions agree beyond a chosen "core radius" rC.

(iii) The integrals from 0 to r of the real and pseudo charge densities agree for r > rC

for each valence state (norm conservation).

(iv) ) The logarithmic derivatives of the real and pseudo wave function and their first

energy derivatives agree for r > rC.

These criteria guarantee the high transferability and the preserved scattering properties

of pseudopotential. The most common form of pseudopotential is

VSL =
∑
lm

|Ylm〉VNL(r)〈Ylm|. (1.27)

In this form, the pseudopotential is radially non-local but angularly local therefore it

is called semi-local pseudopotential. In the plane-wave basis representation, the calcu-

lation of matrix elements of this pseudopotential is computationally very demanding.

To deal with this difficulty, Kleinman and Bylander proposed a separate form for the

non-local part of pseudopotential

VNL =
∑
l

V NL
l =

∑
lm

|V SL
l φPS

lm〉〈φPS
lmV

SL
l |

〈φPS
lm|V SL

l |φPS
lm〉

, (1.28)

where V SL
l is the local radial part of pseudopotential and φPS

lm are pseudo wave functions
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calculated on each atom. This derivation allows fewer calculations for the matrix

element of the non-local part of pseudopotential.

The ultrasoft pseudopotential was suggested by Vanderbilt [109] with the relaxing

norm-conserving constraint in order to generate a smoother but still highly transferable

pseudopotential. The ultrasoft pseudopotential is commonly used for elements, which

have quite "hard" norm-conserving pseudopotential and require a sizeable plane-wave

basis set for good representation, such as N, O, F and the first row of transition metals.

The general way of generating a pseudopotential for an atom is as follow: (i) The

all-electron calculations are performed for the ground and some electronically excited

states using a given form of exchange-correlation functional to obtain eigenvalues and

eigenfunctions of valence electrons. (ii) The pseudopotential is then defined para-

metrically in such a way that the pseudo atom calculation using the same form of

exchange-correlation as of the all-electron calculation gives the eigenvalues that are

the same with eigenvalues of all-electron calculations and eigenfunctions that match

eigenfunction in the all-electron calculation in the region where r > rC.

DFT with the use of plane-wave basis set has been developed and implemented in

many codes over past decades. In this thesis, all DFT calculations are done with the

code ABINIT, and the norm-conserving pseudopotentials are employed to study the

electronic structure of Si, InP, and CdSe.



Chapter 2

Atomic effective pseudopotential for

semiconductors

AEPs were derived by J. R. Cárdenas and G. Bester in 2012 [21] from an analytic con-

nection between an AEP and the screened self-consistent effective potential of DFT.

The main motivation of deriving AEPs is to save computational cost compared to ab

initio calculations. It can be done because AEPs allows one to bypass the self-consistent

procedure and in contrast to DFT, where the number of calculated eigenstates scales

with the number of atoms, AEP allows consideration of a selected part of the eigen-

value spectrum. Therefore, using AEP, one can address structures with thousands to

hundreds of thousands of atoms as given and most of nanostructures.

The idea to replace the strong Coulomb potential of the nucleus together with the

bound electrons by an effective, weaker pseudopotential were introduced before. The

first generation is the empirical pseudopotential method (EPM) [17, 18, 24, 26, 27, 94],

in this method the empirical pseudopotentials were constructed to reproduce experi-

mentally determined energy levels of the bulk crystals. The band structure and optical

properties of the bulk system can be studied accurately with EPM. For nanostruc-

tures, an extension via interpolation to neighbouring points in G space was performed

to improve the transferability of EPM [4, 23]. The second generation is the semiem-

pirical pseudopotential method developed by Wang, Fu, and Zunger [40, 110]. In this

approach, the semiempirical pseudopotentials were generated from DFT calculations

with LDA for the bulk systems with several values of lattice parameter and a few dif-

ferent structures (wurtzite, zincblende). The local parts of the DFT potentials were

transformed into G space and represented by a set of Gaussian functions. By con-

15
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struction, the semiempirical pseudopotential is not defined at small G vectors that are

shorter than 2π/a0, where a0 is the lattice parameter of the bulk system. However, this

range becomes significantly essential in a nanostructure where the shortest relevant G

vector is 2π/L, where L is the size of the nanostructure. In practice, the Gaussian

function was interpolated from the shortest known G vector to the G = 0 point and

the pseudopotential at G = 0 point is adjusted to reproduce the experimentally deter-

mined quantities. SEPM with very low energy cut off was widely used to study the

electronic and the optical properties of NCs [19, 20, 38, 44, 56, 57].

In this chapter, we introduce a new generation of the pseudopotential method, the

AEP, in which the AEPs are derived via an analytic connection to the effective pseu-

dopotential of DFT without any fitting procedure. The generated AEPs are highly

transferable and efficiently used to study the electronic properties of bulk and nanos-

tructures [21], [61].

2.1 Atomic effective pseudopotential for periodic sys-

tems

2.1.1 Analytic connection between AEPs and effective Kohn-

Sham potentials for bulk systems

The bulk AEP construction requires two simple DFT calculations of slightly deformed

elongated cells [21]. As already mentioned in the previous chapter, the cornerstone of

DFT is the Kohn-Sham equation

(
− ~2

2m
∆ + VKS(r)

)
ψi(r) = εiψi(r),

where the effective Kohn-Sham potential VKS(r) describes the interaction of an electron

with its environment.

VKS(r) = Vext(r) + VHartree[ρ(r)] + VXC[ρ(r)] (2.1)

with

ρ(r) =
occ∑
i

|ψi(r)|2
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is the electron density of all occupied states. Using the pseudopotential approximation,

the external potential Vext(r) is replaced by a weaker one named as the pseudopotential

V (r). In the representation of angular momentum projectors, the local and non-local

part of the pseudopotential can be written as

Vloc(r) =
∑
αn

vαloc(|r− ταn|), (2.2)

Vnloc(r) =
∑
αn

∑
lm

δvαl(|r− ταn|)P̂αn,lm, (2.3)

where α implies atom type and runs from 1 to Nspecies, n is the atom index, and

runs from 1 to the number of atoms Nα for atom type α. ταn presents the atomic

position and P̂αn,lm is the projection operator. In the Kleinman and Bylander form,

the pseudopotential is rewritten as

VKS = Vloc(r) + VHartree[ρ] + VXC[ρ] +
∑
lm

|χlmKB〉Elm
KB〈χlmKB|, (2.4)

where the last term is the nonlocal part of the potential, Elm
KB are the Kleinman-

Bylander eigenvalues and χlmKB are the normalized Kleinman-Bylander projectors. Dur-

ing the self-consistent cycle of the Kohn-Sham equations the density is updated until

the ground state density ρscf is found. The AEPs are constructed from the local part

of the self-consistent effective Kohn-Sham potential

Vloc,KS(r) = Vloc(r) + vHartree[ρ
scf ] + vXC[ρscf ]. (2.5)

The potential vαloc defined in Eq. (2.2) is the norm-conserving pseudopotential con-

structed using the approach of Troullier and Martins [107]. The effective potential in

reciprocal space is the Fourier transform of the effective potential in real space

Vloc,KS(G) =
1

Ωc

∫
Ωc

Vloc,KS(r)e−iG.rd3r, (2.6)

where Ωc is the volume of the unit cell. The effective potential in real space can be

represented as a sum of atom-centered potentials

Vloc,KS(r) =

Nspecies∑
α

Nα∑
n

vα(r− ταn), (2.7)
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and transformed into reciprocal space as

Vloc,KS(G) =
1

Ωc

Nspecies∑
α

Nα∑
n

vα(G)e−iG.τ
αn

(2.8)

where

vα(G) =

∫
∞
vα(r)e−iG.rd3r (2.9)

are the AEPs for different types of atoms.

2.1.2 AEPs construction

The AEPs of a binary system, including va for anion and vc for cation, can be con-

structed indirectly through v+ and v−

v+ = va + vc, (2.10)

v− = va − vc. (2.11)

The effective local potential of a binary system is presented as the sum of anion and

cation components

V
(1)

loc,KS(r) =
Na∑
i=1

va(r− τ i) +
Nc∑
j=1

vc(r− τ j). (2.12)

In the inverted structure, where atomic positions are fixed but anion and cation are

interchanged, the effective local potential is

V
(2)

loc,KS(r) =
Nc∑
i=1

vc(r− τ i) +
Na∑
j=1

va(r− τ j). (2.13)

Two equations (2.12) and (2.13) simply lead to

Natoms∑
n=1

v+(r− τ n) = V
(1)

loc,KS(r) + V
(2)

loc,KS(r) = V
(1+2)

loc,KS(r), (2.14)

and
Natoms∑
n=1

(−1)n+1v−(r− τ n) = V
(1)

loc,KS(r)− V (2)
loc,KS(r) = V

(1−2)
loc,KS(r). (2.15)
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The Fourier transforms of Eqs. (2.14) and (2.15) are as following

V
(1+2)

loc,KS(G) =
1

Ω

∫
Ω

V
(1+2)

loc,KS(r)eiG.rd3r =
1

Ω

Natoms∑
n=1

eiG.τ
n

v+(G), (2.16)

V
(1−2)

loc,KS(G) =
1

Ω

∫
Ω

V
(1−2)

loc,KS(r)eiG.rd3r =
1

Ω

Natoms∑
n=1

(−1)n+1eiG.τ
n

v−(G). (2.17)

Though v+(G) and v−(G) are complex, within spherical approximation only real parts

of v+(G) and v−(G) are of interest. The real components of v+(G) and v−(G) can be

extracted from 2.16 and 2.17

V
(SA)
± (|G|) = Re[v±(G)] = Ω

[Re[V (1±2)
loc,KS(G)]

β±
+
Im[V

(1±2)
loc,KS(G)]

α±

]
×
( β±α±
β2
± + α2

±

)
(2.18)

where
β+ =

∑Natoms

i=1 sin(G.τ n),

α+ =
∑Natoms

i=1 cos(G.τ n),

β− =
∑Natoms

i=1 (−1)n+1sin(G.τ n),

α− =
∑Natoms

i=1 (−1)n+1cos(G.τ n).

The two effective local potentials V (1)
loc,KS(G) and V (2)

loc,KS(G) are generated from two

[100] elongated 24 atoms supercells. One supercell can be obtained by inverting the

atom positions of the other. A deformation of 5% is applied along slab direction to

break the symmetry of the crystal and allow the extraction of long-range interaction.

V
(1)

loc,KS(G) and V (2)
loc,KS(G) generated from supercell calculation agree with that gener-

ated from the bulk unit-cell calculation for larger G vectors, at the point of the smallest

G vector, Gc, of bulk unit-cell calculation the value of potential from slabs calculations

and bulk unit-cell calculation have a small difference. To make AEPs more general

and system independent a Gaussian correction was applied in order to have the same

effective local potential at Gc in supercells and bulk unit-cell calculations. Supercells

were chosen to be in [100] direction to allow for the extraction of V (SA)
− (G) which dis-

appears from the equation determining the effective local potential of the system in

[110] direction. In DFT calculation, the average effective crystal potential V (G = 0)

of a periodic system is undefined and usually fixed to an arbitrary value. Therefore,

the whole eigenvalue spectrum can be shifted corresponding to the value of V (G = 0).

In heterostructure where the band offsets play a very important role, the band

alignment need to be determined correctly. For that purpose, AEPs are linked together.
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The construction of linked AEPs is base on two DFT calculations of two quantum wells

(QWs) which comprise two types of material whose AEPs are needed to be linked.

The lattice parameter is defined as the average of the lattice constants of the two

materials. AEPs of the first material are generated simply by the procedure used for

binary systems, AEPs of the second material are defined according to the AEPs of

the first material. The linked and the binary AEPs are identical beyond Gc. The

values of V (G) at G = 0 and small G are adjusted to reproduce DFT calculation of

deformation potential of the valence band. AEPs have been used in many types of

materials with different structure (zincblende, wurtzite or rocksalt) [21]. The results

show a high transferability of the AEPs and a very good agreement between AEPs and

DFT calculations.

As a demonstration, figure 2.1 show the band structures of Zinc-blende InP and

Wurtzite CdSe bulk systems obtained by DFT and AEP. It is shown that the band

structures calculated using DFT and AEP are almost identical, presenting a very high

quality of AEPs.
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Figure 2.1: Band structure of Zinc-blende InP bulk and Wurtzite CdSe bulk. Red
curves are DFT and blue curves are AEP result.
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2.2 Atomic effective pseudopotential for nanocrystals

2.2.1 Analytic connection between AEPs and effective Kohn-

Sham potentials for passivant.

In the previous section, the construction of AEPs for the bulk systems have been

introduced. Within the framework of the AEP methods, we present a procedure to

extract the AEPs for surface passivants. In contrast with bulk’s AEPs generation, the

imaginary components of the passivant’s AEPs should be retained in order to model

surface dipoles which generate a band offset to vacuum. As the influence of surface on

the electronic and optical properties of nanostructures is significantly important, an

accurate quantitative treatment of surface effect is desirable. Our AEPs for passivant,

which can be simply derived from DFT calculation without empirical parameters, have

been shown to work as well as DFT but require a much less computational cost. Once

AEPs for passivant of a material are created, they can be used in all other types of

structure made from that material, this demonstrates a high level of transferability of

AEPs. For the construction of AEPs of passivants we consider a nanostructure of a

binary cation-anion system with two types of passivant denoted byH1 which is attached

to the cation and H2 which is attached to the anion. The potential in equation (2.8)

becomes

ΩcVloc,KS(G) =

(
Ncat∑
n

e−iG.τ
cat,n

)
vcat(G) +

(
Nani∑
n

e−iG.τ
ani,n

)
vani(G)

+

( NH1∑
n

e−iG.τ
H1,n

)
vH1(G) +

( NH2∑
n

e−iG.τ
H2,n

)
vH2(G)

=Scatvcat(G) + Sanivani(G) + SH1vH1(G) + SH2vH2(G)

(2.19)

where Scat,ani,H1,H2 are the structure factors of the cations, the anions, the passivants

H1, and the passivants H2 respectively. AEPs for passivants can be directly calculated

from equation (2.19)

SH1vH1(G) + SH2vH2(G) = ΩcVloc,KS(G)− (Scatvcat(G) + Sanivani(G)). (2.20)

In this equation, everything except for SH1vH1(G) and SH2vH2(G) is known. To extract

SH1vH1(G) and SH2vH2(G) we need to introduce the second equation of the second
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system and denote them with A and B

SA
H1
vH1(G) + SA

H2
vH2(G) = ΩcV

A
loc,KS(G)− (SA

catvcat(G) + SA
anivani(G)), (2.21)

SB
H1
vH1(G) + SB

H2
vH2(G) = ΩcV

B
loc,KS(G)− (SB

catvcat(G) + SB
anivani(G)). (2.22)

By adding and subtracting two equations (2.21) and (2.22) we obtain a system of

equations

Ax = B (2.23)

with

A =

(
SA

H1
+ SB

H1
SA

H2
+ SB

H2

SA
H1
− SB

H1
SA

H2
+ SB

H2

)
(2.24)

x =

(
vH1(G)

vH2(G)

)
, (2.25)

B =(
Ωc

(
V A

loc,KS(G) + V B
loc,KS(G)

)
−
(
SA

cat + SB
cat

)
vcat(G)−

(
SA

ani + SB
ani

)
vani(G)

Ωc

(
V A

loc,KS(G)− V B
loc,KS(G)

)
−
(
SA

cat − SB
cat

)
vcat(G)−

(
SA

ani − SB
ani

)
vani(G)

)
.

(2.26)

In our model, we terminate the nanostructures by hydrogen for group IV semiconduc-

tors and by pseudo hydrogens, which have atomic numbers differing from 1, for groups

II-VI and III-V semiconductors. In II-VI compounds each cation has 2 valence electrons

and each anion has 6 valence electrons forming 4 bonds with 4 neighbor atoms. Each

bond is contributed by 1/2 electrons from cation and 3/2 electrons from anion. At the

surface of NCs dangling bonds of cation needed to be filled by pseudo hydrogens which

must have the atomic number of 3/2 and dangling bonds of anion needed to be filled

by pseudo hydrogens which must have the atomic number of 1/2. Analogously, in III-V

compound, the nanostructure’s surface is terminated by pseudo hydrogens which have

the atomic number of 5/4 and 3/4 attached to cation and anion, respectively (figure

2.2).

The A and B systems used to construct the AEPs for passivant are two [111] slabs

differ only in the length of the slabs used but the sizes of the supper cells are the

same. Slab A includes 12 atoms while slab B includes 16 atoms, both slabs A and B

have 4 passivants. The slab structure was chosen because they satisfy three criteria:

(i) They are long enough in at least one direction in order to produce a dense grid of
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Figure 2.2: Real and pseudo hydrogen passivants of (a) Si, (b) CdSe, and (c) InP

G-point along the extended supercell direction, (ii) they are not too large to be dealt

by the standard DFT, and (iii) the physical situation in slab is representative of the

situation encountered in the real calculation. The illustration of two slabs A and B are

in figure 2.3. We only use the grid points along the extended direction of the supercell,

(a)

(b)

Figure 2.3: Slab A (a) and slab B (b) used to construct the AEPs for passivant H1 and
H2. Blue color represents cation atoms, green color represents anion atoms and yellow
color represents passivants. In the case of VI group semiconductor, cation and anion
are the same and H1, H2 are the same.

which is the z direction in our case, of V A,B
loc,KS(G) obtained from the self-consistent DFT

calculations.

V A,B
loc,KS(G) ≡ V A,B

loc,KS(0, 0, G). (2.27)

Solving equation (2.23) we obtain vH1,2(G), where G is the length of the vector G.

For both real and imaginary components of vH1,2(G), we use the spherical approxi-

mation: Re vH1,2(G) = Re vH1,2(|G|) and Im vH1,2(G) = Im vH1,2(|G|). The real and

the imaginary parts of vH1,2(G) are illustrated in figure 2.4. In the case of VI group

semiconductor H1 and H2 are the same, therefore the real components of vH1(G) and

vH2(G) are identical while their imaginary components have the same magnitudes but

opposite signs. We store our passivant AEP with the imaginary sign corresponding to

the passivant orientation [111] in the slab geometry (pointing upwards). The contribu-

tion of passivant in the effective potential extracted from DFT calculation in reciprocal
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(a) (b)

Figure 2.4: (a) The real and imaginary components of the hydrogen AEP in reciprocal
space, the real part is even while the imaginary part is odd. (b) AEPs in real space of
passivants with vectors pointing in opposite directions, corresponding to the situation
in our slabs geometries.

space, VH(G), can be written as

VH(G) =
1

Ωc

NH∑
n

e−iG.τ
H,n

vH(G)

≈ 1

Ωc

NH∑
n

e−iG.τ
H,n

(
Re (vH(G)) + i

G.Rp

|G||Rp|
Im (vH(G))

) (2.28)

where Rp is the real-space normal vector in Cartesian coordinates, denoting the di-

rection of the antisymmetric component introduced by the imaginary part. Equation

(2.28) represents a generalization of the one dimensional case where G and Rp are

parallel or antiparallel to a situation where they have arbitrary orientation. The only

known solutions are for the limiting cases of parallel/antiparallel vectors (prefactor to

imaginary part 1/−1) or perpendicular (prefactor to imaginary part 0 as we want spher-

ical (real) potentials in the plane). We use a cosine function (dot product) connecting

both cases as the simplest possible assumption. As will be demonstrated further, it is

advantageous to apply a weight factor ω to the imaginary part in certain circumstances:

VH(G) =
1

Ωc

NH∑
n

e−iG.τ
H,n

(
Re(vH(G)) + i

G.Rp

|G||Rp|
ωIm(vH(G))

)
(2.29)

2.2.2 AEPs for InP and CdSe passivants

To generate AEPs for pseudo hydrogens of, for example, InP we use slab A and slab B

oriented in [111] direction and the bonds to passivant atoms in this direction as well.
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DFT calculations for slab A and slab B were done using the code ABINIT [45, 46],

we used elongated supercells of around 10.2 nm length in order to obtain a dense grid

of G points. The k-point mesh is 10 × 6 × 1 and the energy cutoff is 35 Hartree. We

use Troullier-Martins norm-conserving pseudopotentials for DFT calculations and for

the nonlocal parts of the pseudopotentials in the AEP method. Pseudo hydrogens

were relaxed using ABINIT, other atoms (In and P) were kept as they are in the bulk

system. AEPs for passivants of InP are shown in figure 2.5a,b. The same procedure was

applied to generate AEPs for CdSe passivants using zinc-blende (ZB) structure slabs.

The supercell was chosen to be ten-time longer than the lattice parameter of CdSe

Zinc-blende (ZB) structures (about 10.6 nm). It will be later shown that the AEPs of

CdSe passivants produced from the Zinc-blende structure slabs can be transferred to

other structures. AEPs for CdSe passivants are shown in 2.6c,d.
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Figure 2.5: AEPs for InP passivants as functions of |G| with (a) raw data points and
(b) bad points removed. Red circles represent the real parts, orange circles represent
the imaginary parts of AEPs for passivants of In. Black circles represent the real parts,
blue circles represent the imaginary parts of AEPs for passivants of P. Lines show the
final AEPs.

In the region of |G| = n2π
√

(3)/a0 (for InP |G| = n ∗ 0.977 1/a.u., for CdSe

|G| = n ∗ 0.941 1/a.u.), where n is an integer and a0 is the bulk lattice constant, the

data point extraction suffers from the error which is intrinsically carried over from

our bulk AEPs, i.e., the AEPs for InP and CdSe in this case. Since the goal for our

passivant AEP is not to correct the deviations existing within the bulk AEPs, we omit

the data points in the vicinity of these |G| values. By using these data points, one may

indeed obtain better agreement than by ignoring them for the specific structure, but
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Figure 2.6: AEPs for CdSe passivants as functions of |G| with (a) raw data points and
(b) bad points removed. Red circles represent the real parts, orange circles represent
the imaginary parts of AEPs for passivants of Cd. Black circles represent the real parts,
blue circles represent the imaginary parts of AEPs for passivants of Se. Lines show the
final AEPs.

the transferability to structures with different dimensionality would be less accurate.

The passivant effective potential shows a very steep imaginary part for small |G| values
and the rather smooth real part, comparable to bulk AEPs.

2.2.3 Assessment of the quality of the AEP for different sur-

faces

The slab [111] structure (figure 2.2), which represents the passivation of a (111) surface,

is the geometry used to generate the AEP. As a first step, we compare the DFT results

with the AEP results for the same structure. In figure 2.7a, we plot the eigenvalues

of the CdSe slab A calculated via DFT (red), AEP only taking the real part into

account (black) and the full AEP with real and imaginary component (blue). The

band gap is located around state index 38. It is obvious that the imaginary part of

the potential improves the quality of the states above band gap significantly. This

is a direct consequence of the introduced band-offset discussed previously. Next, we

want to challenge the transferability of the derived AEPs by comparing different slab

orientations. In figure 2.7b,c, we plot the eigenvalues of different slabs, the error bars

show eigenvalue differences for states around the band gap, aligned at the valence band

maximum (VBM) level. Our errors are within a range of 20 meV. It is worth noting that
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the error of the AEP for bulk band gap of CdSe is 10 meV [21]. So all the conduction

band states suffer from the 11 meV error coming from the bulk CdSe AEPs and the

errors introduced by the passivant AEPs. Both errors seem to be of similar magnitude,

which substantiates the good quality of our approach.
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Figure 2.7: Comparison between AEPs and DFT results for (111), (110), and (100)
surfaces. Upper panels are eigenvalues aligned at VBM obtained using DFT (red
squares), AEPs using only the real component (black stars), and AEPs including the
imaginary and the real components of the pseudopotentials (blue circles). The lower
panels show the differences between the AEP and the DFT eigenvalues as bar charts.

2.2.4 Results for Si, InP and CdSe nanowires

The areas of applications of our AEPs are nanostructures and we therefore first assess

the quality of our results for nanowires (NWs). The structural information is given in

table 2.1 and a graphical representation of the atomic positions are given in figure 2.8a

for an InP nanowire with 1.6 nm diameter. Each nanowire is constructed along the

[110] direction for Si and InP, and along the [0001] for Wurtzite CdSe nanowire. The

surfaces of the nanowires are terminated in such a way that each surface atom has only

one or two passivants.

The real-space potential is plotted in figure 2.8b. The comparison between DFT

(red) and AEP (blue) shows that the AEP reproduces the potential very well in general

but significantly overestimates the band offset (the blue line in the vacuum region is

significantly above the red line). This effect is related to the density of hydrogen atoms

on the surface.



28 2.2. Atomic effective pseudopotential for nanocrystals

NWs diameter
Si InP CdSe

(nm) 1.3 2.1 3.0 4.5 1.3 1.7 1.6 1.4

NQW 37 97 185 437 (16,21) (32,25) (26,26) (24,24)

NH,H 28 44 60 92 (4,24) (32,4) (16,16) (18,18)

ρ(H) (1/nm2) 12.47 12.37 12.33 11.99 11.50 11.14 10.76 11.69

Egap(DFT) (eV) 2.147 1.401 1.156 0.878 1.771 1.095 1.207 1.475

Egap(AEP) (eV) 2.165 1.472 1.233 0.965 1.911 1.082 1.273 1.628

Table 2.1: Structural parameters and band gaps of different nanowires. The Si and InP
NWs are in zinc-blende crystal structure while the CdSe NW is in wurtzite structure.
NW represents the number of atoms in the NWs. For InP [CdSe], the atom numbers
are given as (number of In atoms, number of P atoms) [(number of Cd atoms, number
of Se atoms)]. For InP, the number of passivants is given as (In-passivant, P-passivant)
[for CdSe (Cd-passivant, Se-passivant)]. The hydrogen densities on the surfaces are
given as ρ(H).
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Figure 2.8: (a) The geometry of the InP nanowire with a diameter of 1.6 nm. The
hydrogens carrying a weight parameter (ω in Eq. (2.29)) of ω = 0.6 are shown as orange
spheres, while the unweighted hydrogens ω = 1 are shown in blue. (b) Corresponding
local potential.

As seen from table 2.1 the hydrogen atom surface density is around 11 H-atoms/nm2

in InP NWs, while it is 6.6 H-atoms/nm2 in the [111] InP slab used in the AEP

construction. Hence, we look for a way to systematically reduce the generated offset

based on a density argument. A closer look at the NW geometry, shown in figure 2.8a,

reveals that it is composed of facets belonging to 100 and 111 planes. In the high-

density 100 surfaces, two hydrogen atoms are connected to one host atom. We use this

characteristic to apply weights: if a surface host atom is passivated by two hydrogen
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atoms, then the density is high and we apply a weight in equation (2.29) of 0.6, which

corresponds to the ratio of the densities between slab [111] and [100]. In figure 2.8a, we

marked the hydrogen atoms carrying a weight as orange spheres and see that they are

mostly localized on the 100 planes. The results for the potential in the vacuum region,

i.e., the offset, is significantly improved by the use of weight, as can be seen (orange

curve) in figure 2.8b.

The main benefit of introducing a weight to the imaginary part is to correct the

offset, as just shown, which has direct repercussions on the eigenvalues of excited

states close to the vacuum. In figure 2.9, which shows the eigenvalues in a large energy

range, starting at the lowest energy eigenstate at −8 eV up to 4 eV above the gap.

The calculations without weight (blue data points) are in good agreement with the

DFT results (red data points) until an energy value of around 2 eV above the CBM. At

higher energies, deviations become significant, which are well corrected by the weighted

potentials (orange data points).

-8

-6

-4

-2

 0

 2

 4

 0  20  40  60  80  100 120 140 160 180

DFT
AEP w = 1
AEP w = 0.6 

E
ig

en
v
al

u
es

 (
eV

)

Eigenstate index

LUMO

HOMO

Figure 2.9: Eigenvalues of theD = 1.6 nm InP QW (see table 2.1 for structural details).
The introduction of the weight factors (orange symbols) is shown to improve the quality
of the previous results (blue symbols) for states excited more than 2 eV above the band
gap. Red and orange symbols overlap nearly in the entire region.

Finally, we perform a quantitative comparison of the eigenvalues obtained for nanowires

of different materials in figure 2.10. In the upper panels, we show a large energy range

in the vicinity of the band gap. For both InP, and CdSe, the AEP results (blue crosses)

are in very good agreement with the DFT results (red squares). The errors between

the DFT and the AEP results are given as bar charts in the lower parts of the figures,

showing that all errors are below 150 meV, which is more than satisfactory. The in-
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troduction of the weight factor does not change the results significantly in this energy

range, as is shown by the orange error bars in the lower panels of figure 2.10.
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Figure 2.10: Top panels: Eigenvalues of Si, InP, and CdSe nanowires in the proximity
of the band gap. Lower panels: Bar charts showing the differences between DFT results
and the AEP result including the weight strategy (orange) and the AEP result without
weight (blue).

2.2.5 Results for InP and CdSe QDs

The final comparison for QDs is also the most challenging in terms of transferability

as the passivant atoms point virtually in all directions. The structural information as

well as the numerical results for the band gaps are given in table 2.2 for different InP

and CdSe QDs. The average hydrogen densities are similar to the values we obtained

for the nanowires (table 2.1). The band gaps are in good agreement with the DFT

results for all QDs considered.

QDs diameter (nm)
InP CdSe

1.6 2.4 2.1 2.4

NQD (43,44) (141,152) (81,86) (128,138)

NH (36,40) (64,108) (46,66) (60,96)

ρ(H) (1/nm2) 9.45 9.51 8.9 8.6

Egap(DFT) (eV) 2.472 1.728 1.712 1.487

Egap(AEP) (eV) 2.513 1.723 1.764 1.530

Table 2.2: Structural parameters and band gaps of different InP and CdSe QDs. NQD

gives the number of In and P (Cd and Se) atoms in the QD. NH gives the number of In-
passivants and P-passivant (Cd-passivants and Se-passivant). The hydrogen densities
on the surfaces are given as ρ(H).
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In figure 2.11, we show the eigenvalues in a large range of energy as well as the

error bars in the usual way. The quality of the results is excellent with errors below

150 meV. The quality of the wave function can be judged by projecting them onto

the DFT wave functions: 〈ψAEP|ψDFT〉 We obtain values very close to 1.0. In figure

2.11c, we show selected wave function as one-dimensional plots across the center of the

QD as an illustration. Wave functions of degenerate eigenstates are summed and their

degeneracy is denoted in brackets. The values close to one are the numerical values

of the projection onto the DFT wave functions. The DFT results (red) and the AEP

results with weight (orange) show very good agreement.
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Figure 2.11: DFT and AEP results for 2.4 nm diameter InP QD. (a) The eigenvalues
and the eigenvalue differences are given in the upper panel, (b) the projection is calcu-
lated as 〈ψAEP|ψDFT〉 and describes the quality of the wave functions, and (c) selected
wave functions are given explicitly in one dimension across the QD.

2.3 Generation of artificially relaxed QDs

In principle, a QD is generated from a bulk system, as illustrated in figure 2.12. A QD

with a given radius is cut out from the bulk system and surface atoms are passivated

by hydrogen or pseudo hydrogen. Since the surface atoms which have three passivants

are not stable, we avoid this situation in our generation procedure by removing all the

surface atoms with three dangling bonds from the QD. By doing so, the bond length

in the QD is the bond length of the bulk system. The distances between passivants

and the host atoms are defined as the optimal distances in relaxed slabs obtained from

DFT.
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(a) (b) (c)

Figure 2.12: (a) The bulk system, (b) a QD without passivants cut from the bulk
system, (c) a complete QD with passivants.

We perform a DFT calculation to obtain the forces on each atoms of the QD. Figure

2.13 represents the forces acting on the atoms of InP QDs with different diameters. The

forces obtained for a 1.6 nm diameter QD have a maximum value of 7×10−3 Ha/Bohr,

while in the 2.4 nm diameter QD they have a maximum value of 2×10−2 Ha/Bohr which

is surprisingly high as it is expected that the larger QD, the smaller maximum force

on atoms. Figure 2.13b shows that the atoms with unexpected forces are passivants
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Figure 2.13: Forces acting on the atoms of (a) a 1.6 diameter InP QD and (b) a
2.4 diameter InP QD. The open squares show the forces before refining structure and
solid triangles show the forces after refining structure. Blue points represent In atoms,
orange points represent P atoms, and red points represent passivants.

of In. By looking at the structure, as shown in figure 2.14a, we see that atoms with

large forces are passivants of In atoms which are very close to each other (1.26 Å).

and that In atoms themself also get more force compared to other In atoms. This

situation occurs only in big QDs and for In atoms and their passivants because of the

long optimal distance between In and its passivant (1.78 Å). The optimal distance

between P and its passivant is 1.6 Å that is small and does not make passivants of P
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atoms at the surface too close to each other. This problem can be resolved by replacing

these clusters of passivants of an In atom by a P atom, as shown in figure 2.14b. This

simple technique significantly reduces forces acting on atoms. The forces before and

after refining the structure are shown in figure 2.13b.

(a) (b)

1.26 Å

replaced

In

P
Pseudo H

Figure 2.14: QD (a) before and (b) after refinement by replacing clusters of passivants
of In atoms by P atoms. Blue and red colour represent In atoms and their passi-
vants respectively. Green and orange colour represent P atoms and their passivants,
respectively.

In summary, the procedure of generating an artificially relaxed QD includes five

steps: (i) Make a bulk system that should be big enough to contain the QD. (ii) Cut

out the QD from the bulk system, the remainder will be later replaced by passivants.

(iii) Move anion atoms in the remainder part which coordinate to more than one cation

atom in the QD part to the QD part. (iv) Find and remove from the QD atoms at the

surface which have three dangling bonds. (v) Add passivants for surface atoms.

To inspect the quality of the non-relaxed QD, we compare DFT calculations of

relaxed and non-relaxed QDs. InP QDs are relaxed using the ABINIT code and the

QDs are considered to be relaxed when their total energies converge with respect to the

maximum force. Table 2.3 shows an excellent agreement in QD gaps between relaxed

and non-relaxed InP QDs.

Diameter (nm) 1.6 2.4 3.2

F non−relaxed
max , Ha/Bohr 7.00× 10−3 6.28× 10−3 4.48× 10−3

F relaxed
max , Ha/Bohr 6.40× 10−5 4.10× 10−4 4.83× 10−4

Gapnon−relaxed, eV 2.45 1.73 1.49

Gaprelaxed, eV 2.51 1.74 1.51

Table 2.3: Comparison between non-relaxed and relaxed InP QDs. The maximum
force act on atoms of non-relaxed QDs reduces with the QDs size leading to a better
agreement in QD gaps.
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It is well known that the interior of the colloidal QD is almost bulk-like while the

surface is slightly compressed. The bigger QD the less important surface effect and,

therefore, the better our artificially relaxed QD. It is clearly shown in table 2.3, the

difference between QD gaps is reduced when the size of QD increases. Figure 2.15 shows

DFT eigenvalues and eigenvalue differences for states around the band gap, aligned at

the highest occupied molecular orbital (HOMO) level of relaxed and non-relaxed InP

QD with a diameter of 1.6 nm.
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Figure 2.15: Comparison between the relaxed and non-relaxed 1.6 nm diameter InP
QD. The upper panel shows the eigenvalues calculated without SO aligned at the
HOMO. The lower panel shows the differences between the eigenvalues of the relaxed
and non-relaxed QD as bar charts. Non-degenerate wavefunctions are represented
by A1 or A2 representations, two-fold degenerate wavefunctions are represented by E
representation, and three-fold degenerate wavefunctions are represented by T1 or T2

representations.

The errors are within a range of 60 meV which is about 2% of band gap value and

can be negligible. We also develop a code to analyse the symmetry of wavefunctions. A

zinc-blende spherical QD has Td symmetry, hence, its wavefunction can be represented

by A1, A2 representation if the wavefunction is non-degenerate, the wavefunction is

represented by E representation if it is two-fold degenerate; and if the wavefunction is



Chapter 2. Atomic effective pseudopotential for semiconductors 35

three-fold degenerate it is represented by either T1 or T2 representation. The results

show that relaxed and non-relaxed QD give identical symmetry of wavefunction.

It should be noted that up to this point, all calculations we have shown are without

the effect of SO coupling. In the presence of SO coupling, all states are doubly degen-

erate by Kramers degeneracy. A double group is invoked to represent the symmetry

of the system and its wavefunctions will be described by more complex representations

which are combinations of orbital and spinor components. The SO coupling is added

from next chapter.
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Chapter 3

Empirical correction

The AEP [21, 61, 116] method allows us to study nanocrystals with experimental sizes

with LDA-quality eigenfunctions and eigenvalues. The AEPs are directly obtained

from density functional theory [21] using the local density approximation [75] for the

exchange-correlation functional. As a consequence, the typical errors from LDA, such

as underestimated band gaps and effective masses, are inherited by the AEP. In this

work, we apply a simple correction scheme based on a small modification of the non-

local part of norm-conserving pseudopotentials δVNL, that enables us to obtain accurate

quasiparticle band gaps and effective masses.

3.1 The functional form of the correction

Following the notation of Ref. [116] we have

VNL =
∑
l,m

|l,m〉 δVl(r) 〈l,m| , (3.1)

and the correction is applied as:

δV modified
l (r) = δVl(r) + βl(1 + cos

πr

rc

) , (3.2)

where the βl parameter is individually adjusted for every material and angular momen-

tum to fit the bulk band gap to the experimental value.

As the norm-conserving pseudopotential has some desirable properties such as (i)

the pseudo and the real potentials agree beyond a chosen "core-radius" rc; (ii) the

integrals from 0 to r of the real and the pseudo-densities agree for r > rc for each

37
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valence state; (iii) the logarithmic derivatives of real and pseudo wave functions and

their fist energy derivatives agree for r > rc [50]. We want to preserve these properties

of pseudopotential as much as possible. That is why δVl is only modified within the

radius rc and kept unchanged for larger r values.

In semiconductors, the HOMO is mostly contributed by the anion p component

while the lowest unoccupied molecular orbital (LUMO) is dominant by the cation s

component. Therefore we need to apply a modification with a negative (positive) β

parameter to the p (s) component of pseudopotential of the anion (cation) to open the

band-gap. β parameter of the cation is varied from 0 to 0.2, and β parameter of the

anion is varied from −0.2 to 0 with the step of 0.01 to find out a couple of parameters

which give us the correct band-gaps, and effective masses.

3.2 Result for InP

Figure 3.1 shows the contour plot of the differences between calculated values and

the experimentally measured values of the band-gap and the effective mass of electron.

These two contour lines are almost parallel to each other indicating that it is impossible

to correct band-gap and effective mass of electron with the same values of βl. As shown

in this figure, there are many pairs of βIn−s and βP−p that can correct band-gap or

effective mass of electron. In our calculation, we choose the pair of βl that give the

best value for the ΓL, ΓX gaps, and the spin-orbit splitting ∆SO besides band-gap and

effective mass.
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Figure 3.1: Contour plot the differences between calculated values and the experimental
values of (a) band-gap (in eV) and (b) the effective mass of electron (in m0).

The effective mass of electron (m∗e), band-gaps, ΓL, ΓX gaps, and the spin-orbit

splitting ∆SO values of InP bulk system are shown in table 3.1.
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InP Exp without βIn = 0.14 βIn = 0.03

[74] correction βP = −0.10 βP = −0.07

Egap (eV) 1.43 0.28 1.43 0.91

ΓL gap (eV) 1.93 1.18 2.21 1.74

ΓX gap (eV) 2.19 1.62 2.40 2.15

∆SO (meV) 0.11 0.13 0.11 0.11

m∗e(m0) 0.08 0.03 0.12 0.08

Egap/m
∗
e 17.88 9.33 11.92 11.38

Table 3.1: m∗e, band-gap, ΓL and ΓX gaps of InP bulk in experiment and theory with
and without β corrections. (βIn−s = 0.14, βP−p = −0.10) aim to correct the band-gap
while (βIn−s = 0.03, βP−p = −0.07 ) aim to correct the effective mass of electron.

Though we can not correct both band-gap and m∗e precisely at the same time, the

correction of band-gap leads to a significant improvement of m∗e compared to the non-

corrected value. Interestingly, our calculation shows a quite stable value of the ratio

between band-gap and m∗e regardless of βl parameters.

The band structures of InP bulk system before and after β correction are shown in

figure 3.2. For calculations of InP nanocrystals we use βIn−s = 0.14 and βP−p = −0.10.
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Figure 3.2: (a) Band structure of InP before (blue curves) and after(red curves) cor-
rections.(b) The magnification of (a) in the vicinity of Γ points.

The modified pseudopotentials of In and P are illustrated in figure 3.3, the positive

value of βIn−s increases the modified s component pseudopotential of In while the

negative value of βP−p lowers the p component pseudopotential of P.
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β"#= 0
β"#= 0.14

β)= 0
β) = −0.10

Figure 3.3: Solid curves: In pseudopotential before (black curve) and after (red curve)
modification. Dash curves: P pseudopotential before (black curve) and after (red curve)
modification.

3.3 Result for CdSe

The effective masses, band-gaps, ΓL, ΓX gaps, and ∆SO values of ZB CdSe bulk system

are shown in table 3.2.

ZB CdSe Exp GW-PP without βCd = 0.14 βCd = 0.10

[74] [36] correction βSe = −0.18 βSe = −0.10

Band-gap (eV) 1.82 1.48 0.097 1.82 1.10

ΓL gap (eV) # 3.39 1.94 3.55 2.87

ΓX gap (eV) # 3.95 2.78 4.19 3.55

∆SO (meV) 0.42 # 0.41 0.46 0.45

m∗e(m0) 0.13 # 0.025 0.21 0.13

Egap/m
∗
e 14.00 # 3.88 8.67 8.46

Table 3.2: m∗e, band-gap, ΓL and ΓX gaps of CdSe bulk in experiment and theory with
and without β corrections. (βCd−s = 0.14, βSe−p = −0.18) aim to correct the band-gap
while (βCd−s = 0.10, βSe−p = −0.10) aim to correct the effective mass of electron.

Similar to InP, the ratio between band-gap and me of ZB CdSe bulk changes very

slightly with respect to β parameters. We correct the band-gap to the experimental

value at 0K temperature with βCd−s = 0.14 and βSe−p = −0.18. After the correction,

the spin-orbit splitting ∆SO is about 9% overestimated but with 420 meV of ∆SO,
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the SO band locates quite deep under VBM and does not influence that much to the

optical properties of CdSe systems. As the experimental values of ΓL, ΓX gaps are not

available, we compare them to GW-PP calculations which are expected to be at high

quality.

The band structures of ZB CdSe bulk system before and after β correction are

shown in figure 3.4.
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Figure 3.4: (a) Band structure of ZB CdSe before (blue curves) and after (red curves)
corrections.(b) The magnification of (a) in the vicinity of Γ points.

In Wurtzite CdSe bulk, the broken symmetry in the z direction (or c axis) leads

to the so-called CF splitting ∆CF, which is the splitting between the A- and the B-

band holes. In our calculations, the lattice parameters are determined by an Abinit

relaxation with a fixed value of the ratio c/a = 1.633. The internal parameter u defined

as the nearest neighbour distance along the c-axis in the unit of c is then 0.375, which

are the ideal values of c and u for CdSe Wurtzite structure. A significant deviation

from the ideal values of c and u leads to severe distortions of A, B bands, and can

change the electronic and optical properties of WZ CdSe systems. Data of WZ CdSe

bulk are presented in table 3.3. The band structures of WZ CdSe bulk system before

and after β correction are depicted in figure 3.5.

The modified pseudopotentials of Cd and Se are illustrated in figure 3.6. Similar to

InP, the positive value of βCd−s increases the s component pseudopotential of Cd while

the negative value of βSe−p lowers the p component pseudopotential of Se.
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WZ CdSe m∗e m
∗‖
A m∗⊥A m

∗‖
B m∗⊥B Band-gap ∆CF ∆SO

(m0) (m0) (m0) (m0) (m0) (eV) (meV) (eV)
Exp [74] 0.12 ≥ 1 0.45 # 0.9 1.83 26 0.42

without correction 0.03 1.33 0.06 0.03 0.08 0.16 38 0.40
βCd = 0.11 0.19 1.74 0.42 0.25 0.39 1.83 27 0.45
βSe = −0.18

βCd = 0.10 0.12 1.48 0.17 0.11 0.78 32 0.49
βSe = −0.05

Table 3.3: Effective masses, band-gap, CF splitting ∆CF and spin-orbit splitting ∆SO

of WZ CdSe bulk in experiment and theory with and without β corrections.
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Figure 3.5: (a) Band structure of WZ CdSe before (blue curves) and after (red curves)
corrections.(b) The magnification of (a) in the vicinity of Γ points.

3.4 Result for HgTe

HgTe has emerged as an interesting material for decades due to its unique electronic

properties [22, 43, 88, 91]. HgTe bulk is a semi-metal with the Fermi level lying between

the heavy hole and light hole bands, while the Γ6 band in the band structure of HgTe is

lower in energy compared to the Γ8 (heavy hole and light hole) bands (see figure 3.7).

Original LDA calculation of the band structure of HgTe predicts an incorrect order of

Γ6 and Γ7 bands. The β correction not only gives the correct order of Γ6 and Γ7 bands

(see figure 3.7) but also produces correct values of level splittings and effective masses

(see table 3.4).
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Figure 3.6: Solid curves: Cd pseudopotential before (black curve) and after (red curve)
modification. Dash curves: Se pseudopotential before (black curve) and after (red
curve) modification.
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Tabel 3.4 shows good agreement between our results and experiment and other

theoretical methods. As in typical semiconductors, band-gap is defined as the splitting

between the Γ8 and Γ6 bands, ∆SO is the splitting between the Γ8 and Γ7 bands.

Band-gap ∆SO mlh(Γ8) mhh(Γ8) mhh(Γ8) mhh(Γ8) m(Γ6)

HgTe (eV) (eV) (m0) (m0) (m0) (m0) (m0)

[100] [110] [111]

without -1.30 0.837 0.167 0.210 0.699 1.089 0.216

correction

βHg = 0.18 -0.14 0.856 0.023 0.337 0.928 1.327 0.024

βTe = −0.18

HSE [85] -0.27 0.890 # # # # #

EPM [91] -0.29 0.898 0.039 0.933 1.559 2.022 0.050

k.p [91] -0.29 0.898 0.052 0.948 1.271 1.429 0.069

Exp[74] -0.14 1.080 0.031 0.321 0.406 0.445 0.028

Table 3.4: Effective masses, band-gap and spin-orbit splitting ∆SO of HgTe bulk in
experiment and theory with and without β corrections.

The modified pseudopotentials of Hg and Te are illustrated in figure 3.8.

β"#= 0
β"#= 0.18

β)*= 0
β)* = −0.18

Figure 3.8: Solid curves: Hg pseudopotential before (black curve) and after (red curve)
modification. Dash curves: Te pseudopotential before (black curve) and after (red
curve) modification.

The β corrections shift the eigenvalues around band-edge but do not change the

main feature of band structures. The projections of the wave functions after correction
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onto that before correction are always more than 0.95 indicating that the wave function

is not significantly affected by the β corrections.

In summary, our correction scheme based on a modification of the non-local part of

norm-conserving pseudopotentials allows us to correct the effective masses, band-gap,

ΓL, ΓX gaps, ∆SO and ∆CF and keep the wavefunction nearly unchanged at the LDA

quality. That is a good starting point to study the optical properties of nanocrystals.
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Chapter 4

Configuration interaction method

Configuration interaction (CI) is the matrix mechanics solution of the time-independent

non-relativistic electronic Schrödinger equation. Moreover, it is one of the most effec-

tive improvements of the Hartree-Fock theory by adding the correlation effect. While

wave-function is a single Slater determinant in the Hartree-Fock method, the CI wave-

function is a linear combination of Slater determinants, with the linear coefficients

being determined variationally. In this chapter, we introduce the method for a system-

atic generation of Slater determinants starting from the one-electron orbitals obtained

from the Ab inito calculation.

4.1 N-particle wave-function

To construct the N-particle basis function we follow the arguments of Szabo and

Ostlund [103]. Assume we have a complete set of functions ψi(x1) of a single vari-

able x1. Then any function φ(x1) can be expanded as

φ(x1) =
∑
i

aiψi(x1). (4.1)

Now we consider a two-particle system and the function φ(x1, x2). If we fix x2, then

φ(x1, x2) =
∑
i

ai(x2)ψi(x1), (4.2)

47
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where ai(x2) is a function of variable x2 and can be written as

ai(x2) =
∑
j

bijψj(x2). (4.3)

From 4.2 and 4.3 we have

φ(x1, x2) =
∑
ij

bijψi(x1)ψj(x2). (4.4)

The same process can be expanded for N-particle wave-function φ(x1, x2, ..., xN). How-

ever, by the Pauli exclusion principle, the many-particle wave-function must be anti-

symmetric with respect to the exchange of the coordinates of any two electrons. In the

case of φ(x1, x2), it means

φ(x1, x2) = −φ(x2, x1). (4.5)

It is equivalent to bij = −bji and bii = 0, or

φ(x1, x2) =
∑
j>i

bij[ψi(x1)ψj(x2)− ψj(x1)ψi(x2)]. (4.6)

In determinant form

φ(x1, x2) = bij

∣∣∣∣∣ψi(x1) ψj(x1)

ψi(x2) ψj(x2)

∣∣∣∣∣ . (4.7)

Similarly, any N-particle wave-function can be constructed as a linear combination of

all possible N-particle Slater determinants formed from a complete set of single-particle

wave-function ψi(x). The solution of equation (1.1) in this complete basis set can be

described as

|Ψj〉 =
∑
i

cij |φi〉 , (4.8)

where |φi〉 denotes N-particle basis functions and can be written as substitutions or

excitations from the Hartree-Fock "reference" determinants, i.e.

|Ψj〉 = c0 |φ0〉+
∑
ra

cra |φra〉+
∑

a<b,r>s

crsab |φrsab〉+
∑

r<s<t,a<b<c

crstabc |φrstabc〉+ ... (4.9)

where |φra〉 means Slater determinant formed by replacing spin-orbital a in |φ0〉 with
spin-orbital r, etc.

In most of the case, it is impossible to get a complete set of single-particle basis
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function {ψi(x)}. Instead, a large enough basis set is used to produce useful results

with a reasonable computational cost. The quality of the single-particle basis set can

be checked by comparing the results of calculations using a progressively larger basis

set. If the calculation is done with all possible N-particle basis functions {|φi〉} formed

by a given single-particle basis set {ψi(x)} then it is called full-CI calculations. In

case of the complete single-particle basis set {ψi(x)}, the calculation is complete-CI.

Unfortunately, even with incomplete single-particle basis set, a full-CI calculation is still

computationally expensive, leading to a requirement of the reduced CI space. So far,

the most used CI approximation is CI singles and doubles (CISD), which includes only

those N-particle basis functions which represent single or double excitations relative to

the reference state.

4.2 CI calculation procedure

In the first step, we solve the single-particle Schrödinger equation using the AEP

approach [21, 61, 116], which allows us to study NCs with experimental sizes with

Ab initio quality wave functions ψi(r, σ). The AEPs are directly obtained from den-

sity functional theory [21] using the local density approximation (LDA) [75] for the

exchange-correlation functional. As already mentioned in the previous chapter, the

empirical β correction on the non-local part of pseudopotential is invoked for correct

band-gap and effective masses.

In the second step, we use the AEP single-particle basis functions set |φi〉 to con-

struct a set of single-substitution Slater determinants Φh,e obtained from the ground-

state Slater determinant Φ0 by promoting an electron from the occupied valence band

state ψh with energy εh to the unoccupied conduction band state ψe with energy εe

[8, 38]. The exciton wavefunctions Ψα (where α denotes the exciton quantum numbers)

are expanded in terms of this determinantal basis set [38]:

Ψα =

Nh∑
h

Ne∑
e

Cα
h,eΦh,e (4.10)

Nh and Ne denote the number of valence (states below the Fermi level that can be

occupied by holes) and conduction band states (states above the Fermi level that can

be occupied by electrons) included in the expansion of the exciton wavefunctions. The

matrix elements of the many-particle Hamiltonian H in the basis set Φh,e are calculated
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as [38]:

Hhe,h′e′ = 〈Φh,e|H |Φh′,e′〉

= (εe − εh)δh,h′δe,e′ − Jhe,h′e′ +Khe,h′e′

(4.11)

where J and K are the Coulomb and exchange integrals, respectively:

Jhe,h′e′ = e2
∑
σ1,σ2

∫ ∫
ψ∗h′(r1, σ1)ψ∗e (r2, σ2)ψh(r1, σ1)ψe′(r2, σ2)

ε(r1, r2)|r1 − r2|
dr1dr2, (4.12)

Khe,h′e′ = e2
∑
σ1,σ2

∫ ∫
ψ∗h′(r1, σ1)ψ∗e (r2, σ2)ψe′(r1, σ1)ψh(r2, σ2)

ε(r1, r2)|r1 − r2|
dr1dr2. (4.13)

The screening function ε(r1, r2) is microscopic, i.e. it naturally includes the full

range (long- and short-range) of interaction and homogeneous: ε(r1, r2) = ε(|r1 − r2|).
The inverse dielectric function in reciprocal space ε−1(k) includes an electronic (high-

frequency) ε−1
el and an ionic (low-frequency) contribution ε−1

ion [38, 49]:

ε−1(k) = ε−1
el (k) + ε−1

ion(k). (4.14)

The electronic part ε−1
el is approximated by the Thomas-Fermi model proposed by Resta

[95] and the ionic (or polaronic) part ε−1
ion is described by Haken [49]:

ε−1
el (k) =

k2 + q2 sin(kρ∞)/(εdot
∞ kρ∞)

k2 + q2
, (4.15)

∆ε−1
ion(k) =

( 1

εdot
0

− 1

εdot
∞

)
+
( 1/2

1 + ρ2
hk

2
+

1/2

1 + ρ2
ek

2

)
. (4.16)

Here q = 2π−1/2(3π2n0)1/3 is the Thomas-Fermi wave vector, n0 is the valence electron

density, ρ∞ is the screening radius which can be calculated from sinh(qρ∞)/(qρ∞) =

εdot
∞ , and ρh,e = (~/2mh,eωLO)1/2, where mh,e are hole (h) and electron (e) effective

masses, ωLO is the frequency of the bulk LO phonon mode [38]. The high-frequency

dielectric constant of the NC is obtained from a modified Penn model [38, 90],

εdot
∞ (R) = 1 + (εbulk

∞ − 1)

[
Ebulk

gap + ∆E
]2[

Edot
gap + ∆E

]2 (4.17)

where εbulk
∞ is the bulk high-frequency dielectric constant of the underlying bulk, Ebulk

gap

and Edot
gap are the single-particle bulk and NC band gaps, ∆E denotes the difference
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between the so-called E2 and E0 transitions in bulk. E2 is the transition with the

strongest absorption in a semiconductor with tetrahedral crystal structure [113]. The

low-frequency dielectric constant is given as [38]:

εdot
0 (R) = εdot

∞ (R) + (εbulk
0 − εbulk

∞ ). (4.18)

So the dielectric function depends both on the electron-hole separation and the NC

size. The final step is the diagonalization of the many-body Hamiltonian.

Some parameters in the Thomas-Fermi and Haken models of InP, CdSe, and HgTe

are shown in table 4.1.

Unit: a.u q ρh ρe εbulk
∞ εbulk

0 ∆E
InP 1.303 22.34 63.18 9.61 12.56 3.13
CdSe 1.256 33.70 63.40 9.30 6.20 4.03ZB/4.77WZ

HgTe 1.198 55.20 174.70 15.20 21.00 2.64

Table 4.1: Parameters in the Thomas-Fermi and Haken models of InP, CdSe, and HgTe

High and low-frequency dielectric constants of InP, CdSe, and HgTe nanocrystals

are presented in figures 4.1, 4.2, and 4.3, respectively. It is shown that the macroscopic

dielectric constant increases significantly with the size of quantum dot; therefore, re-

ducing the Coulomb and exchange interactions.
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Figure 4.1: Size-dependence of (a) εbulk
∞ (R) and (b) εbulk

0 (R) of InP quantum dots. Black
lines present high- and low-frequency dielectric constant of InP bulk which are 9.61 and
12.56 [74], respectively.
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Figure 4.2: Size-dependence of (a) εbulk
∞ (R) and (b) εbulk

0 (R) of CdSe quantum dots.
Black lines present high- and low-frequency dielectric constant of CdSe bulk which are
6.2 and 9.3 [74], respectively.
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Figure 4.3: Size-dependence of (a) εbulk
∞ (R) and (b) εbulk

0 (R) of HgTe quantum dots.
Black lines present high- and low-frequency dielectric constant of HgTe bulk which are
15.2 and 21.0 [74], respectively.

The CI calculation procedure of electronic excitations is schematically shown in fig-

ure 4.4. The single-particle calculations are performed using the AEP method, which

is implemented in the Latepp code. The MX package allows one to perform CI cal-

culations of electronic excitations in semiconductor nanostructures with an arbitrary

number of electrons in the conduction band and holes in the valence band. The package

contains three codes: mxmat, mxci, and dipole, which are normally run in sequence.

The codes communicate with each other via binary files.
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mxmat.d

mxci.d

dipole.d

mxmat

mxci

dipole

J and K

M

rMN

Latteplatepp.in

Figure 4.4: Diagram summarises the input and output of the calculation procedure.
latepp.in, mxmat.d, mxci.d, and dipole.d are input files of Latepp, mxmat, mxci, and
dipole codes, respectively.

The MX package requires as input a set of single-particle energies εiα and orthonor-

mal wave-function ψiα. Here the suffix i denotes the orbital quantum number and α

denotes the spin quantum number (α = 1, 2). The output of the MX package consists

of the Coulomb and exchange integrals, the energies EN and wave-functions ΨN of the

N-particle electronic excited states, as well as the dipole matrix elements between the

one-particle states (M) and the N-particle states (rMN).
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Chapter 5

Excitonic fine structure of colloidal

nanocrystals

In this chapter we study the excitonic fine structure of colloidal nanocrystals (a.k.a.

quantum dots) using atomic effective pseudopotentials in combination with the screened

configuration interaction method and show excellent agreement with experiment. Many

optical properties of nanostructures emerge as a consequence of the so-called excitonic

fine structure (FS). The recombination dynamics, e.g., is strongly influenced by the

splitting between the lower dark state and the energetically first bright state of the

excitonic FS; the so-called dark-bright (DB) splitting. For DB splittings larger than the

thermal energy, the carriers can become trapped in the lower energy dark state [10, 28,

34, 68] prohibiting an efficient emission. More generally, the polarization properties of

the emission at low temperature is a result of the FS and has direct consequences for any

possible application of colloidal nanocrystals (NCs) based on their optical properties

[5, 13, 16, 48, 73, 102] or their spin in the area of quantum information [1, 55, 76, 114].

The excitonic FS originates from the electron-hole exchange interaction in the presence

of spin-orbit coupling. In Fig. 5.1 we show a schematic picture explaining the situation

in NCs with wurtzite (WZ, left) and zinc-blende (ZB, right) crystal structures, both

of which can be realized experimentally for CdSe NCs. The single-particle eigenvalues

for the lowest unoccupied orbitals (e0) and the highest occupied orbitals (h0 and h1)

create the band edge excitonic states.

In the first step in Fig. 5.1 we create the electron-hole (e−h) pairs as simple products

of the single-particle states and without considering the FS, the states are four- or

eight–fold degenerate, depending on the crystal structure. The splitting between h0

55
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Figure 5.1: Schematic representation of the FS of “spherical” WZ and ZB NCs. The
single-particle (SP) levels are labeled with e0 (unoccupied states), h0,1 (occupied states).
The e − h pair (middle) columns show the exciton without considering the exchange
interaction. The energy splittings in the exciton FS are not to scale and typically in
the tens of meV range. Solid (dashed) lines show optically bright (dark) states. The
difference in energy between the lowest dark and bright states is the DB splitting. In
WZ NCs, the h0 and h1 states are split by the CF splitting.

and h1 in the WZ structure, called crystal-field (CF) splitting, originates from the

lower symmetry of the WZ (C3v) compared to the ZB structure (Td) [113]. In the

next step, we include the electron-hole exchange interaction, which leads to the exciton

FS, strongly magnified in Fig. 5.1. For the labeling in the WZ structure, we use for

historical reasons [34] the total angular momentum J of 1 or 2, which originates from

the combination of the e0 state with Jze = 1/2 and the h0 state with Jzh = 3/2. The

letters U and L refer to upper and lower. Note that the exciton states are not pure

J = 1, 2 states and that upper/lower will also reverse order in the following. The

DB splitting mentioned previously is labeled with (DB) in Fig. 5.1. Note that in the

related field of epitaxial self-assembled quantum dots the ability to control the FS (and

minimize it) with external fields has lead to the realization of one of the best sources

of single- and entangled photons [42, 81, 83].

5.1 Excitonic fine structure of CdSe nanocrystals

In this section, we show that results of atomistic atomic effective pseudopotentials

(AEPs) [21, 61, 116] in combination with screened configuration interaction [38] are

in qualitative disagreement with the popular EMA model of FS [34] and its recently

revisited version [98]. We show that the dark states, in general, are in qualitative dis-

agreement with the atomistic results and especially the DB splitting. We compare our
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atomistic results to available experiments and show very good agreement. We further

discuss the FS of ZB and WZ CdSe NCs with different aspect ratios and highlight

differences and similarities. The experimentally measurable (at low temperature) FS

is shown for both crystal structures as a function of NC size and ellipticity. We can

quantitatively identify the aspect ratio at which the ZB and WZ structure show almost

identical FS. We also show that ZB or WZ NCs with large aspect ratios (strongly pro-

late) exhibit similar FS as well. However, nearly spherical ZB and WZ structures have

a very distinct FS.

5.1.1 Comparison to Experiment and to EMA results

First, we compare our results to existing experiments in figure 5.2. The DB splitting

was measured by several groups [34, 86, 112] as a function of the size of the NCs and

is shown with black symbols. All the experiments were performed on CdSe WZ NCs

at low temperature. We show our results for both ZB and WZ NCs as red and blue

circles, respectively. We also included earlier theoretical results based on semi-empirical

pseudopotentials [38] as green squares. We can see that the theoretical results compare

very well with the experiments in the entire size range.
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Figure 5.2: Dark-bright splittings of “spherical” ZB and WZ CdSe NCs in comparison
with SEPM calculations in Ref. [38] and experiments in Refs. [34] (exp 1), [112] PLE
(exp 2), [112] PL (exp 3), and [86] (exp 4).

In figure 5.3a) we directly compare our atomistic results (filled circles fitted by solid

lines) to the most recent EMA results [98] (dashed lines). The five different excitonic

states (see Fig. 5.1) are labeled with ±2,±1L, 0L,±1U , and 0U and shown in red, blue,
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black, orange, and purple, respectively. To compare atomistic and EMA results, lines

of the same color should be compared as these belong to the same states. All the states

are aligned to the ±2 (red) state, consequently, the atomistic and EMA results for ±2

(red) overlap. The comparison reveals that both results are in qualitative disagreement.

Most striking are±1L states that show an opposite curvature as a function of NC radius.

Also the 0L states show no size dependence in the EMA, while it is strongly increasing in

the atomistic calculations. If we exclude the exchange interaction in the CI calculation,

the size-dependence of the splitting between 0L and ±2 states is unchanged, implying

that the origin of this splitting is not the exchange interaction but the confinement

effect on the crystal field splitting. Therefore, our suggestion to improve the EMA is

to introduce a size-dependent crystal field splitting.
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Figure 5.3: Exciton FS versus radius of “spherical” WZ NCs. (a) Comparison between
atomistic results ( circles and solid lines) and EMA (dashed lines) for the five different
exciton states ±2,±1L, 0L,±1U and 0U (see figure 5.1). Filled and empty circles rep-
resent bright and dark states, respectively. The crosses show excitonic states without
electron-hole exchange interaction, in this case, ±2 and ±1L are degenerate; 0L, ±1U ,
and 0U are degenerate. The results are aligned to the ±2 states. (b) Comparison be-
tween atomistic theoretical results and experiments. The thick green curve represents
the atomistic calculations including the lattice relaxation phononic effect taken from
Ref. [51]. Exp 1, exp 2 refer to the experiments from Refs. [87] and [34], respectively.

In figure 5.3b) we show a further, more detailed, comparison between the atomistic

results and experiment. The experiments (exp 1 [34], exp 2 [87]) probe the energy

shift between the absorption and the emission peaks, the so-called Stokes shift. Our

calculations use the same crystal structure in the excited and in the ground state. The

experiment, on the other hand, probes two different geometries, since the geometry
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of the excited states is relaxed before emission. This structural relaxation effect (the

reorganization energy) was calculated ab-initio for CdSe colloidal QDs in Ref. [51] and

we use the values obtained there to correct our “static” results. The final results are

shown as thick green line in figure 5.3b) and compare extremely well with the results of

“exp 1” and the small sized NCs of “exp 2”. Experimental results for larger NCs in ”exp

2” [34] are somewhat higher and it resembles a general shift to higher energy. Striking

is the fact that the experimental results do not seem to converge to the bulk crystal

field splitting for the largest radii shown in figure 5.3b) but to a somewhat larger value.

We could speculate that the NCs are strained, but further studies would be necessary

to confirm this hypothesis. Our results for the DB splitting are in very good agreement

with the results of ”exp 2, DB” [34] (see figure 5.3).

Our final comparison to experiment requires the calculation of the oscillator strength

of the different transitions. We first present our theoretical results in Figure 5.4 where

we show the absorption as a function of the energy and NC size for (a) “spherical” NCs

(the real NCs are somewhat faceted, because of the atomistic construction) and slightly

prolate NCs, with an aspect ratio (length along the c-axis divided by in-plane diameter)

around 1.16. The blue curves show transitions polarized in-plane and the red curves

show transitions polarized along the c-axis in the WZ structure. The energy transitions

correspond to the state ±1L, ±1U and 0L (see figure 5.1), in order of increasing energy.

It is striking that the oscillator strength is significantly reduced for the lower energy

±1L transition in the prolate NCs.

Another way to plot these results is shown in Fig. 5.5, where the sum of the

oscillator strength of the ±1U and 0U (black and blue in figure 5.5) and the oscillator

strength of ±1L (red and green in figure 5.5) are shown, both normalized to the total

oscillator strength. The results for the “spherical” NC are shown as stars, and for the

slightly prolate NCs as circles. The experimental results [87] are shown as open red

and black circles. We can see that the theoretical results fit very well to experiment

for the slightly elongated structures. This is in agreement with the many observations

that the synthesized WZ CdSe NCs are not perfectly spherical but slightly elongated

with an AR varying from 1.0 to 1.3 [82, 84, 87].
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Chapter 5. Excitonic fine structure of colloidal nanocrystals 61

5.1.2 Comparison between the FS of WZ and ZB NCs.

A schematic representation for the FS of WZ and ZB was shown for “spherical” NCs in

figure 5.1. The term “spherical” stands for the overall shape, which is as close as possible

to spherical but remains faceted (where the facets are determined by the underlying

atomic lattice). An alternative description is based on the point-group symmetry of

the entire NCs; which is Td for the “spherical” ZB NCs and C3v for the “spherical” WZ

NCs. An elongation of the ZB NCs along the [001] axis leads to a symmetry reduction

to C3v. In figure 5.6 we schematically illustrate how the point group symmetry changes

when going from a “spherical” to an ellipsoidal (oblate) shape, for ZB NCs. We consider

first the larger effect of the splitting of the single-particle valence band states to then

include the electron-hole exchange interaction to obtain the FS. From this schematic

representation we can see that the elongation has the effect to split the degenerate

valence band states of Γ8 symmetry into two, akin the splitting into heavy- and light-

hole states in a quantum well [113]. The CF splitting in the WZ structure (figure

5.1) corresponds to this elongation-induced splitting in the ZB NCs. The final FS is

qualitatively very similar between the elongated ZB and the WZ structures according

to Fig. 5.6. In the case of a prolate shape, the Γ4 and the Γ5⊕Γ6 states are energetically

in reversed order and the FS accordingly.
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Figure 5.6: Schematic representation of the FS in “spherical” and oblate ZB NCs. The
single-particle (SP) and exciton FS levels are labeled by their irreducible representa-
tions. The energy splittings in the FS are not to scale and typically in the range of
tens of meV. Solid (dashed) lines show optically bright (dark) states.

We now proceed to calculate quantitatively the FS of ellipsoidal ZB and WZ NCs.



62 5.1. Excitonic fine structure of CdSe nanocrystals

Two examples of the atomistic structures we use in the calculation of the larger struc-

tures with Dh = 3.6 nm are given in figure 5.7. The oblate NC includes 183 Cd, 208 Se

and 236 pseudo-H atoms. The prolate NC includes 541 Cd, 580 Se, and 432 pseudo-H

atoms. For the smaller NCs with Dh = 2.8 nm we use a cylindrical shape terminated

by two half-spheres as the elliptical shape becomes very narrow and somewhat unre-

alistic. In Figure 5.8 we show the projections of the NC’s h0 state (see figure 5.1)

y

x

z

! "
=
3.6

'(

Figure 5.7: Oblate NC with an aspect ratio of 0.5 (left) and prolate NC with an aspect
ratio of 1.5 (right). Cd, Se, and H atoms are rendered in blue, green, and orange,
respectively.

onto the corresponding bulk Bloch bands. The upper panels of Figure 5.8 show the h0

projection for ZB NCs onto the heavy-hole (hh) and light-hole (lh) bands of bulk ZB

CdSe. The lower panels of Figure 5.8 show the corresponding projection for the WZ

NCs onto the WZ bulk bands, denoted as A- and B-bands [113]. All the projections

are shown as a function of the aspect ratio (AR). For an aspect ratio of one in the ZB

NCs (upper panels), the h0 state has equal contributions from hh and lh, so that the

square and triangles are superimposed. As stated above (see figure 5.6) the ellipticity

(changing AR) leads to a splitting of the hh/lh bulk ZB bands and the NC state h0

changes rather abruptly from being hh-like for ARs below one to being lh-like for ARs

above one. This abrupt change is obvious for both sizes, 2.8 nm diameter Dh (left pan-

els in figure 5.8, see figure 5.7 for Dh definition) and 3.6 nm Dh (right panels in figure

5.8). For the WZ structure with an AR of one, the bulk valence bands are already

split by the crystal field (figure 5.1) and the NC’s top of the valence band state h0 has

a dominant contribution from the bulk A-band (over 60%) and a small contribution

from B-band (less than 15%). Changing the AR has a similar effect as observed for

the ZB structure, i.e., we observe a transition between dominant A-band to dominant

B-band h0 states. However the transition is smooth, corresponding to an anticrossing

rather than a crossing. The anticrossing point for the NCs with horizontal diameter

Dh of 2.8 and 3.6 nm are 1.54 and 1.70 respectively. This result fits reasonably well
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with experimental results on the polarization factor of nanorods with diameter from

3.0 to 3.5 nm that changes rapidly from nearly zero to ∼ 70% when the aspect ratio

increases from 1 to 2 [54].
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Figure 5.8: Projection of the h0 state onto the bulk heavy hole and light hole bands
for two ZB NCs with different Dh (top panels), and projection of the h0 state onto the
bulk A- and B-band for two WZ NCs with different Dh (bottom panels).

From figure 5.8 we expect a qualitative change of the ground exciton FS as a function

of the AR. In Figures 5.10 and 5.11 we show the dependence of the FS on the AR for

both WZ and ZB NCs, and two different sizes. For the ZB NCs with an AR of one, we

obtain the results expected from the group theory analysis (figure 5.1) with a three-fold

higher-energy bright state (Γ5 in Td point group) and a five-fold lower energy dark-state

(Γ3⊕Γ4 in Td point group). As already observed for the h0 band character (figure 5.8)

the change around the AR of one is rather abrupt. The excitonic states split and shift

energetically. For the AR > 1 (prolate structures, C3v point group) the h0 state has

Γ4 symmetry and the h1 state has Γ5 ⊕ Γ6 symmetry (energetically in reversed order

compared to figure 5.6) and the FS has a bundle of three lower energy states and two

upper states. This situation is reversed when the AR < 1 for the larger structure (figure

5.11), in accordance with our hole state analysis (figure 5.8).
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Figure 5.9: The single-particle energy of the h0 and h1 states (both are aligned at the
h0 energy) for two WZ NCs.

For the smaller structure in figure 5.10 this reversal is not quite complete, even at

our smallest AR of 0.75 where the state 0L is still energetically close to the lower energy

states ±1L and ±2.
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Figure 5.10: FS of ellipsoidal ZB (top) and WZ (bottom) CdSe NCs with the same
horizontal diameter Dh of 2.8 nm but different vertical lengths, thus different aspect
ratios. The exciton levels ±2,±1L, 0L,±1U and 0U are represented by red, blue, black,
orange, and purple circles, respectively. Open circles present dark exciton states and
the filled circles present the bright exciton states.

EMA predicts that the energy splitting between the h0 and h1 states due to the

uniaxial shape distortion ∆h0h1 is governed by the ratio of the A- and B-band effective
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masses along the parallel direction β = mB
‖ /m

A
‖ . The AEP-calculated β in this work

is 0.14 which, within the EMA, leads to a constant ∆h0h1 [33, 34] (the crystal-field

splitting). The non-constant value of ∆h0h1 shown in Figs. 5.9 points out another

contradiction between atomistic and EMA results.

For the WZ NCs with Dh = 2.8 nm (3.6 nm) with AR< 1.3 (1.6), the FS corresponds

to the schematic of figure 5.1. For the larger ARs, the reversal of the h0 and h1 states

occurs and the FS changes qualitatively: the three states originating from h1 (see figure

5.1) are below the two states originating from h0. These values of critical ARs fit very

well with the empirical pseudopotential calculations of Ref.[115]. In loose terms we

could state that the NC’s elongation has overcome the intrinsic CF splitting. Of course

both effects work on different length scales, the CF being an atomistic structural effect

and the elongation being an overall shape effect.
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Figure 5.11: Figure corresponding to figure 5.10 but for a horizontal diameter Dh of
3.6 nm.

In Fig. 5.12 we calculate the FS of WZ NCs with different AR following the EMA

described in reference [34] and add the long-range exchange interaction as described in

reference [98]. In the EMA, the ±1U state denotes the state with higher (Upper) energy

and the ±1L state the state with lower energy, regardless of their symmetry. Therefore,

instead of the crossing shown in Fig. 5.10 and 5.11 we see an anticrossing between the
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±1U and ±1L states. Furthermore, the energy range of the FS is significantly different,

being about a factor of three larger in the EMA. Also qualitatively, both figures differ

significantly.
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Figure 5.12: Figure corresponding to Fig. 5.10 and Fig. 5.11 but calculated using EMA
for a horizontal diameter Dh of 2.8 nm.

In the next step we study the differences and the similarities between FS of WZ and

ZB NCs. In figure 5.13 and 5.14 we show the calculated oscillator strength for CdSe

NCs with Dh = 2.8 nm (figure 5.13) and Dh = 3.6 nm (figure 5.14) in the WZ and

ZB structure for varying AR. The oscillator strength corresponds to a low temperature

absorption measurement with high energy resolution (we use a broadening of 5 meV).

Note that for a low-temperature photoluminescence experiment, the dynamics of the

carriers must be taken into account and high energy states with significant oscillator

strength may not emit efficiently [113]. Transitions with xy-polarization (where z is

along the c-axis in WZ and along the crystallographic [001] direction in ZB) are shown

in blue and with z-polarization in red. The comparison between WZ and ZB “spherical”

NCs with an AR of one reveals the significant difference: for ZB NCs only one transition

is optically active and is unpolarized (x,y,z components equally strong) while the WZ

NCs show three optically active transitions split by as much as 50 meV. If we compare

the results between ZB and WZ for the extreme cases of strongly oblate (AR ≈ 0.5

for the 3.6 nm NCs and ≈ 0.75 for the 2.8 nm NCs) or strongly prolate (AR ≈ 1.8 for

both), we see a qualitatively similar FS, especially for the larger (3.6 nm) NCs. The

oblate case shows a strong low energy xy-polarized transition, split from two weaker

higher energy transitions with xy- and z-polarization (figure 5.14). Quantitatively the

splitting between the lower energy transition and the two higher energy transitions is
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significantly larger for the WZ NCs (30 meV vs. 80 meV). Interestingly, the energetic

position of the z-polarized transition is a good indicator of the AR. For small ARs

(oblate) it is found energetically above the xy-transitions, for large ARs energetically

below. We can also find very similar FS between WZ and ZB if we compare NCs with

different ARs. For example, if we compare the ZB NC with AR = 0.75 with the WZ

NC with AR = 1.30, for the smaller NC with Dh = 2.8 (figure 5.13) we see a very

similar energy structure with only rather small differences in the oscillator strength of

the z-polarized transition.
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Figure 5.13: Oscillator strength of ellipsoidal (a) ZB and (b) WZ CdSe NCs with the
same horizontal diameter of 2.8 nm but different vertical lengths, thus different aspect
ratios. Red peaks are z-polarized (along c-axis in WZ and [001] in ZB) and blue peaks
are in-plane polarized. All spectra are aligned at the ±1L peak which is marked by the
black dashed line.

For the larger structures with Dh = 3.6 (figure 5.14), the FS of “spherical” WZ

(AR=1) with prolate ZB with AR = 0.5 is very similar and can probably not be

resolved experimentally.
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Figure 5.14: Figure corresponding to figure 5.13 but for a horizontal diameter of 3.6
nm.

5.1.3 Exciton lifetime of CdSe NCs

5.1.3.1 Experiment measurement

The Photoluminescence (PL) decay can be described by a three-level system (Figure

5.15) composed of a dark ground exciton state |F 〉, a bright upper exciton state |A〉, and
a zero exciton ground state |G〉 [68]. The dark-bright energy splitting is ∆E. ΓA and

ΓF are the radiative rates of the bright and dark exciton, respectively. γ0 is the spin-

relaxation rate from bright to dark exciton state and γth = γ0NB is the spin-relaxation

rate induced by thermal mixing of bright and dark excitons, where NB = 1
exp( ∆E

kBT
)−1

is

the Bose-Einstein phonon occupation.
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Figure 5.15: Three-level system used to interpret the data. It is composed of a zero
exciton state |G〉 and two states denoted |A〉 and |F 〉, corresponding to the bright and
dark excitons.

The signal intensity I(t) is given by:

I(t) = ηAρAΓA + ηFρFΓF (5.1)

Here, ηi is the quantum yield, ρi is the time-dependent population, and Γi is the radia-

tive rate of the state i. The spectrally filtered PL decay can be fitted by biexponential

decay with characteristic times τshort and τlong as shown in figure 5.16 [11].

Figure 5.16: Time-integrated PL spectrum of InP/ZnS nano particle, with 2.9 nm core
and 2-nm thick shell. Inset: Spectrally integrated PL decay (black) and spectrally
filtered PL decay (gray) fitted by biexponential decay (red line) with characteristic
times τshort = 1.5 ns and τlong = 430 ns.
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Assuming that the thermalisation between the bright and the dark states is very fast

(γ0 � ΓA) and the quantum yield of both the bright and dark excitons is 1 [15], we

have:

I(t) = ALe
−ΓLt + ASe

−ΓSt =
ΓANB + ΓF

1 + 2NB

e−ΓLt + ΓA

[
ρA(0)− NB

1 + 2NB

]
e−ΓSt, (5.2)

with ρA(0) the population of the bright state after the nonresonant excitation. AL and

AS are the normalized amplitudes, ΓL and ΓS are the decay rates of the long and the

short component of PL decay, respectively. ΓL and ΓS are functions of the bright and

dark exciton radiative rates ΓA and ΓF.

ΓL =
ΓA + ΓF

2
− ΓA − ΓF

2
tanh

( ∆E

2kBT

)
(5.3)

ΓS = γ0(1 + 2NB) (5.4)

At very low temperatures: kBT � ∆E, tanh
(

∆E
2kBT

)
→ 1, NB = 1

exp( ∆E
kBT

)−1
→ 0,

hence:

(5.3)⇔ ΓL = ΓF

(5.4)⇔ ΓS = γ0.

Therefore, the dark exciton radiative rate and the bright-to-dark spin-flip rates can be

obtained directly from the bi-exponential decay at low temperatures.

At high temperatures: kBT � ∆E, tanh
(

∆E
2kBT

)
→ 0, NB = 1

exp( ∆E
kBT

)−1
→ ∞ and

note that ΓA � ΓF, we have:

ΓL = ΓA/2 (5.5)

ΓS →∞ and the second term in the equation (5.2) vanishes.

The dark-bright splitting ∆E can be derived from ΓA and ΓF by using the equation

(5.3). Besides, ∆E can also be obtained from the normalised amplitude of the biexpo-

nential decay, since AS = AL = 0.5 for kBT = ∆E [11].
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5.1.3.2 Theoretical calculation

The radiative lifetime for the transition from the initial excitonic state Ψi to the

final excitonic state Ψf is defined by standard perturbation theory [31]:

1

τif
=

4nF 2αω3
if

3c2
|Mif |2. (5.6)

Where n is the refractive index of the surrounding medium, F is the screening factor

and defined as F = 3ε/(εQD + 2ε) with ε = n2 and εQD is the dielectric constant of the

nanocrystal, α is the fine structure constant, ~ωif is the transition energy, c is the speed

of light in vacuum and |Mif | is the CI dipole matrix element [20]. We are studying

single excitation, hence |Mif | is given as

Mif =
∑
h,e

C
∗(i)
h,e C

(f)
h,e 〈ψh|r|ψe〉. (5.7)

Where ψh and ψe are the single-particle wavefunctions of the valence and conduc-

tion states obtained from the Ab-initio calculation and included in the CI expansion.

C
(i)
h,e, C

(f)
h,e are the coefficients of the CI expansion of the initial and final states, respec-

tively.

In our study, 〈ψh|r|ψe〉 andMif are calculated within the mxmat code and the mxdipole

code, respectively. τif is calculated from equation (5.6), the calculation is implemented

in the oscitau code.

5.1.3.3 Results

In our simulation, the semiconductor quantum dot is terminated by hydrogen or

pseudo hydrogen in order to remove all surface states that originated from dangling

bonds. In experiment, the semiconductor nanocrystals can be coated by other semi-

conductors [11, 58, 77, 97, 108]; inorganic molecules or organic ligands [28, 29, 80].

Both our calculation and experimental results show that the exciton ground state is
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optically inactive (dark exciton |F 〉 ) and right above this state is the bright exciton

state |A〉. Though the transition from and to the dark exciton state is optically inactive

it can be prompted by phonon-assisted processes. At low temperature, these processes

are very slow compared to the direct optical transition leading to a long-lived exciton

state. As mentioned earlier, at high temperature, because of the thermal population of

the higher energy bright states, the exciton lifetime is shortened rapidity and has the

value of twice the lifetime of the bright exciton |A〉 (see equation (5.5)). It is shown

experimentally and theoretically that an external magnetic field [86], [60] and surface

states [19], induce the mixing between the dark and the bright states, hence enhance

the dark exciton decay rate and reduce the bright exciton decay rate.

Figure 5.17 shows the calculated bright exciton lifetime of CdSe NCs in comparison

with experimental results which is determined at room temperature.
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Figure 5.17: The calculated radiative lifetime of the bright exciton of the WZ CdSe
QDs in comparison with experimental results. Black square and triangle present ex-
perimental results of WZ CdSe/ZnS NCs in ref.[58] and ref.[68], respectively. Orange
square shows the measurement of WZ CdSe NCs coated by organic ligand in ref.[28].
Green circle is the result obtained by the SEMP method [20]. Blue and red circles
are AEP results for WZ and ZB CdSe NCs. AEP results are in good agreement with
SEPM and experimental results of core-shell nanoparticles but significantly different
from the QDs coated by organic ligands.

The refractive index of toluene n = 1.496 is used in our calculations. Our results are

in good agreement with experimental results of core-shell nanoparticles but significantly

different from the results for the QDs coated by organic ligands. It is because the core-
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shell systems are usually quite clean in the interface and introduce much fewer defect

states compare to systems with organic ligands.

To model the effect of defect states on the exciton lifetime, we remove one passivant

of an anion atom. This removal causes surface states that are located in the band gap.

The surface states lead to the mixing of the bright and the dark states which makes the

lifetime of the bright exciton a bit longer and the lifetime of the dark exciton thousands

time shorter.

5.1.4 Conclusion

We calculate the FS of colloidal CdSe QDs based on atomistic pseudopotentials and

configuration interaction theory and compare the results to recent theoretical predic-

tions based on EMA models and reveal qualitative deficiencies of the latter approach.

This calls for a new parametrization of the EMA and expresses a more general warning

about the use of continuum descriptions for small nanostructures. Especially the FS,

which has its origin in the atomistic nature may be especially challenging to model

based on a continuum description. Our results are in very good agreement with ex-

periment. We further use our methodology to compare the FS of WZ and ZB NCs

of different sizes and especially with different aspect ratios. We pinpoint similarities

between both FSs when the structures are either both (WZ, ZB) strongly oblate or

both strongly prolate. We also find very similar FS if we compare a ZB NC with AR

= 0.75 with a WZ NC with AR 1.3. We rationalize these results by a discussion of the

orbital character of the hole states that contributes to the exciton: The deviation from

spherical shape (oblate or prolate) has a similar effect on the splitting of the valence

bands as the intrinsic crystal field splitting in the WZ structure. Consequently an

oblate ZB NC can exhibit a similar top of the valence band state h0 to a “spherical”

WZ NC, and hence a similar FS. However, the FS of “spherical” ZB and WZ NCs of

similar sizes are significantly different. We further show that the z-polarized transition

may be used as an indicator for the AR. About the exciton lifetime, though ZB and WZ

CdSe spherical NCs have completely different FS, they appear to have similar bright

exciton lifetime. Additionally, the exciton lifetime is strongly affected by the ligand or

surrounding medium.
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5.2 Excitonic fine structure of InP nanocrystals

Due to the ease in synthesis and the applicable optical properties, over past decades, Cd

containing NCs have been extensively studied both theoretically and experimentally,

results in an insight into electronic and optical properties of Cd-based NCs. They are

promising for many fields of applications; however, the high toxicity of Cd-based mate-

rials is still challenging. As an alternative, InP NCs have comparable optical properties

with Cd-based NCs, and importantly InP has less toxicity. InP had not been attractive

before because InP NCs synthesis protocols were more challenging to implement due

to the use of an expensive and highly pyrophoric phosphorus precursor [6, 71, 79]. Re-

cently, new synthesis protocols based on a cheap and easy-to-use phosphorus precursor

that leads to high-quality InP NCs have been published [11, 100, 105]. These proto-

cols facilitate the production of InP NCs and should lead to more optical studies by

enabling more easy access to high-quality materials [11]. Experimental studies reveal

a Stokes shift in the range of several meV between absorption and emission spectra of

InP NCs. At low temperature, the photoluminescence stems from the thermal mixing

between the lowest dark and bright excitonic states. The temperature dependence of

photoluminescence spectra shows a bi-exponential decay enable for the calculation of

the bright and dark exciton lifetime [11, 80]. Empirical pseudopotential calculations

of the dark-bright splitting and exciton energy of InP NCs show good agreement with

the experiment [38].

5.2.1 CI convergence

As shown in figure 5.1, in ZB NCs, HOMO is four-fold degenerate and LUMO is

two-fold degenerate with spin-orbit coupling is taken into account. Therefore, without

electron-hole interaction, the first exciton level is eight-fold degenerate. In the presence

of electron-hole interaction, the lowest-energy electron with angular momentum Je = 1
2

and the highest-energy hole with angular momentum Jh = 3
2
can not be considered

separately but should be treated as a combined exchange-correlated exciton with a

total angular momentum J of 1 or 2 results in the two levels of exciton. One is

three-fold and bright, corresponds to J = 1 and the other one is five-fold and dark,

corresponds to J = 2.

In the configuration-interaction calculations, the interaction between different con-

figurations and hence, the correlation effect is included. If the basis set is complete,
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then the correlation energy is exact. In practice, we use the basis set that is sufficient

to obtain useful results with reasonable effort, and what we get is then the correlation

energy of the given basis set. The convergence of the CI expansion with respect to the

size of the basis is presented in figure 5.18. As shown in figure 5.18, the convergence of

the lowest exciton levels is quite slow, while the convergence of the exchange splittings

is relatively fast. For this 16 nm in radius InP quantum dot, with the basis set of

Nv = 10 and Nc = 4 our calculated exchange splitting is converged within 0.5 meV.
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Figure 5.18: The convergence of (a) the DB splitting, (b) the first bright exciton
energy with the number of valence-band states Nv and conduction-band states Nc (not
including spin) of the InP quantum dot with D = 3.2 nm.

5.2.2 Excitonic fine structure of spherical InP NCs

Experimentally, the DB splitting of NCs can be determined from either Fluorescence

Line-Narrowing (FLN) spectra [34] or the temperature dependence of the Photolumi-

nescence (PL) decay [11]. In the first method, the first peak of FLN is attributed to the

Zero Phonon Line (ZPL) from the dark state, so its shift from the laser was taken as

a reference for the dark-bright splitting. In the second method, from the temperature

dependence of the PL decay, the dark exciton lifetime ΓF and the bright exciton life-

time ΓA are calculated at low and high-temperature limitation and used as parameters

to determine ∆DB. For CdSe NCs, both methods produce similar values of ∆DB. For

InP NCs, however, FLN spectra derive larger ∆DB compared to the other one. This

discrepancy between two methods in InP NCs can be explained by attributing the first

FLN peak to acoustic phonon sideband instead of ZPL [14]. Figure 5.19b shows a

good comparison between our calculated and experimentally measured DB splitting of

spherical InP NCs. Figure 5.19a shows our results on the diagonal Coulomb integrals

between the first lowest unoccupied and the highest occupied states in comparison
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with the EMP method in ref. [38]. The effect of electron-hole Coulomb interaction is

to lower the exciton energy levels several hundreds of meV.
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Figure 5.19: (a) The diagonal Coulomb integral between the lowest conduction state
and the highest valence state of InP quantum dots. (b) The DB splitting of InP
quantum dots. Exp 1, 2 are experimental results extracted from Ref. [78] and [11],
respectively.
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Figure 5.20: The first bright exciton energy of spherical InP quantum dots, experiment
values are taken from refs. [11, 79, 80], respectively.

We calculate the optical gaps of NCs, taking into account electron-hole interactions

and correction effect. Our results reproduce very well experimental data (see figure

5.20). The correlation energy of quantum dots with our chosen basis set is from several

meV to few tens of meV, which is small and negligible. The difference in energy between

SP and CI calculation is exciton binding energy. The exciton binding energy of spherical
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InP NCs increases from 84 meV to 350 meV when the radius of NC decreases from 26.6

Å to 9.6 Å.

5.2.3 Conclusion

We calculate the Coulomb, exchange, correlation interaction, and the band-edge exciton

energy of spherical InP NCs, providing an insight into the optical properties of spherical

InP NCs. The Coulomb interaction between electrons and holes lowers the exciton

energy several hundreds of meV. The exchange interaction split the band-edge exciton

into 5-fold degenerate dark states and 3-fold degenerate bright states. The DB splitting

is from several meV to tens of meV and decreases when the size of NC increases. In

the confinement regime, the correlation effect is small and can be neglected. The good

agreement between our results and experimental measurements indicates the efficiency

of our method.

5.3 Excitonic fine structure of HgTe nanocrystals

Since the last decade HgTe colloidal NCs detectors with mechanical flexibility, wide

spectral sensing range, fast response, and high detectivity have been extensively in-

vestigated [104]. The optical band gap of HgTe NCs in the range of near-infrared

and mid-infrared is promising for infrared imaging technology [70]. Many experimen-

tal measurements have been performed to gain insight into the optical properties of

HgTe nanocrystals[2, 47, 62, 63, 67, 72, 96, 99, 104], however, the theoretical study on

HgTe nanocrystals is still limited. There have been several theoretical studies using

the tight-binding model [3], [63], in which the exciton energy and absorption spectra

of spherical QDs [3] and tetrahedral QDs with round tips [63] are calculated. In this

work, we study the optical properties of HgTe QDs using the AEP method, and obtain

a good agreement for the exciton energy with experiments. Besides, we investigate the

fine structure of the spherical HgTe NCs and absorption spectra of exciton and trion

that can be useful for experiment measurements in the future.

5.3.1 Electronic properties of HgTe nanocrystals

In figure 5.21b the eigenvalues around the HOMO and LUMO of a 3.8 nm in diameter

NCs are presented together with the states symmetry. By analyzing the symmetry
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of wavefunctions, we figure out that HOMO has Γ8 symmetry and LUMO has Γ6

symmetry. This result implies that HOMO mostly originates from Γ8 bands while

LUMO is primarily from the Γ6 bands. It should be noted that the double group

is needed to analyse the symmetry of the wavefunction in the presence of spin-orbit

coupling. Therefore the representations of Td point group in this analysis are different

from that of the analysis in figure 2.15 of chapter 2 where the spin-orbit coupling is

ignored. The HOMO and LUMO wavefunctions are shown in the inset of figure 5.21b

to be confined nicely inside the quantum dot.

(a) (b)

Figure 5.21: (a) A spherical HgTe NC with a diameter of 3.8 nm. (b) Eigenvalues of
this quantum dot, HOMO’s and LUMO’s index is 20 and 21, respectively. HOMO is
four-fold degenerate while LUMO is two-fold degenerate. The 1D plot of HOMO (e0)
and LUMO (h0) wavefunctions indicating they are nicely confined inside the quantum
dot. The symmetry of each states are shown.

Fig.5.22 shows the projection of the HOMO and LUMO wavefunctions onto the

Γ6 and Γ8 bands of HgTe bulk. The results again indicate that the HOMO of HgTe

NCs originates mostly from the Γ8 band (above 60%) and the LUMO has dominant

component from the Γ6 band (above 50%). The crossing between the Γ6 and Γ8 levels

can be explained by the molecular orbital theory, depicted in figure 5.23.

Figure 5.24 presents eigenvalues of HgTe and CdSe NCs with different sizes. Com-

pared to the CdSe NCs, the HgTe NCs have smaller SP gaps. The gap of CdSe NCs

increases from 2.1 eV to 2.6 eV as the QD diameter decreases from 5.6 nm to 2.8 nm.

The gap of HgTe NCs increases from 0.4 eV to 1.1 eV as the QD diameter decreases

from 6.9 nm to 2.5 nm.
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Figure 5.22: (a) Projection of HOMO and LUMO wavefunctions of HgTe NCs onto
the wavefunctions of the bulk system. The results show that HOMO wavefunction of
QDs is mostly from heavy hole and light hole (Γ8) bands while LUMO wavefunction is
mainly originated from the Γ6 band. (b) Band structure of HgTe bulk.
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Figure 5.23: Molecular orbital diagram of HgTe. (a) In bulk, the lowest unoccupied
(anti-bonding π∗) and the highest occupied (bonding π) states have p states character.
(b) In NCs, under the confinement effect, the bonding and anti-bonding of s and p
channels split, resulting in the crossing between the anti-bonding state σ∗ of the s and
the bonding states π and σ of the p channels. Therefore in NCs, the lowest unoccupied
state is σ∗ and has s character.

5.3.2 Optical properties of HgTe nanocrystals

The convergence of the CI expansion with respect to the size of the basis of HgTe NC

with the diameter of 3.8 nm is presented in figure 5.25. As shown in figure 5.25, with
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Figure 5.24: Energy levels of HgTe and CdSe NCs with different sizes.

the basis set of Nv = 14 and Nc = 8 the calculated DB splitting is converged within

0.04 meV and exciton energy is converged within 0.3 meV
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Figure 5.25: The convergence of (a) the DB splitting, (b) the first bright exciton
energy with the number of valence-band states Nv and conduction-band states Nc (not
including spin) included in the CI expansion of the HgTe quantum dot with D = 3.8
nm.

Figure 5.26 represents the Coulomb integral between the lowest electron state and

the highest hole state and the DB splitting (exchange splitting) of HgTe NCs in com-

parison to CdSe NCs. The Coulomb integrals in HgTe NC are several tens of meV

smaller than in CdSe NC with the same size, while the exchange splitting in HgTe NCs

is slightly larger than in CdSe NCs.
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Figure 5.26: (a) The diagonal Coulomb integral between the highest valence sate and
the lowest conduction state, (b) The DB splitting of HgTe and CdSe QDs.

The single-particle (SP) and the optical (CI) gap of HgTe NCs with different sizes

are shown in figure 5.27. The difference in energy between SP and CI gap is the exciton

binding energy, the exciton binding energy of HgTe NCs increases from 45 meV to 320

meV when the NC size decreases from 6.9 nm to 2.5 nm.
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Figure 5.27: The single particle (SP) and the optical (CI) gap of HgTe NCs for various
sizes.

We compare the AEP calculated exciton wavelength with some experimental mea-

surements in figure 5.28 . HgTe NCs in the experiment can have nearly spherical shape

[99], tetrahedron shape [70], [63] or tetrahedron shape with round tips [63]. However,

the AEP and CI calculations are properly done for only spherical shapes. The results

of tetrahedron shape and tetrahedron shape with round tips are derived from the re-

sult of the spherical shape structure by equating the volume of the spherical NCs to

the tetrahedron or the tetrahedron with round tips to calculate their corresponding
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effective diameter. Our results are in a very good agreement with experimental results

for all types of NC shapes.
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Figure 5.28: Exciton energy measured by various groups in comparison with our cal-
culations. Experiment: Black squares show exciton energy of QDs in various shapes
including spherical, tetrahedron, multipods [70]. Blue triangles represent exciton en-
ergy for tetrahedron QDs at small size and tetrahedron with round tips QDs at bigger
size [63]. Brown triangles are exciton energy of nearly spherical QDs [99]. Theory:
Green filled circles are our calculations for spherical QDs, orange and red filled circles
are our results using the adjustment from spherical to tetrahedron with round tips and
regular tetrahedron QDs, respectively.

In figure 5.29, we compare the AEP calculated exciton wavelength with the results of

tight-binding (TB). The exciton wavelength of the tetrahedron with round tips obtained

by TB is about 0.5 µm smaller than the AEP result. The AEP result fits better to

experiment for the three largest NCs, which are claimed to have tetrahedron with round

tips shapes [63]. For spherical NCs, AEP result also shows a better agreement with

the experiment compared to the TB result.
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Figure 5.29: Comparison between our model and TB. (a) Exciton energy for tetrahe-
dron with round tips QDs: orange and red curves are fitting curves to our calculation
for tetrahedron with round tips and regular tetrahedron QDs, respectively. The black
crosses and curve show the TB result for tetrahedron with round tips QD [63]. Blue
triangles are experimental measurement for tetrahedron QDs at small size and tetrahe-
dron with round tips at bigger size [63]. (b) Exciton energy for spherical QDs: Green
curve is fitting curve to our calculation for spherical QDs, black curve is TB result for
spherical QDs [3] and brown triangles are experimental results for nearly spherical QDs
[99].
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Figure 5.30: Absorption spectra of (a) HgTe and (b) CdSe NCs with different diameters.

Figure 5.30 shows the absorption spectra of HgTe and CdSe NCs with different

sizes. In both HgTe and CdSe NCs peaks of the absorption spectra are more clearly

resolved in smaller NCs. The absorption spectra require large enough basis sets to be

described appropriately. The dependence on the basis set of the absorption spectrum
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of D = 5.8 nm HgTe NC is represented in figure 5.31. The high-energy peaks stem

from deeper hole states and higher electron states, therefore more hole and electron

states are needed in the basis set. With a small basis set, only low-energy peaks are

described. The origin of the absorption peaks are shown in detail in 5.32.
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Figure 5.31: Dependence of the absorption spectra of the D = 5.8 nm HgTe NCs on
the basis set.
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Figure 5.32: Analyzing the origin of 5 resolved peaks in the absorption spectra of the
D = 5.8 HgTe NCs.

We investigate the band-edge negative trion of HgTe and CdSe NCs, figure 5.33

represents the first negative trion and the first exciton peaks of HgTe and CdSe. The

difference in energy between the negative trion peak and the exciton peak is almost

double in CdSe compare to HgTe NCs. Figure 5.34 shows the splitting between the

negative trion and the exciton peak with respect to the NCs sizes.
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Figure 5.33: Band-edge exciton and trion (-) peaks of (a) HgTe and (b) CdSe NCs at
different diameters.
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Figure 5.34: The difference in energy between the band-edge exciton and trion (-) peaks
of HgTe (red) and CdSe (blue). This splitting in CdSe is almost double that of HgTe.

5.3.3 Conclusion

Our study shows an interesting transformation in electronic properties from HgTe bulk

to HgTe NCs. In HgTe bulk the Γ6 band, with a negative effective mass, is occupied

and lay under the Γ8 band. Nevertheless, in HgTe NCs, the HOMO state is shown to

have Γ8 character and the LUMO is primarily from Γ6 band. The result on the optical

gap of HgTe NCs is in good agreement with experiment, the DB splitting is calculated

atomistically for the first time providing useful information for future studies. We

also investigate the absorption spectra of HgTe NCs in comparison to CdSe NCs. The
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difference in energy between the exciton and negative trion peaks is calculated.



Summary and Outlook

In this thesis, the newly developed AEP method is presented. The use of AEPs allows

us to bypass a self-consistent procedure and to address eigenstates around a certain re-

gion of the spectrum (e.g., around the band-gap). Therefore, AEP enables the study of

the optical properties of many-atoms systems, where mainly the energy states around

band-gap are involved. The NCs in all calculations are terminated by pseudo hydrogen

atoms and relaxed artificially by the way they are generated. To improve the underesti-

mated band-gap and effective masses that inherited from the LDA results, an empirical

correction is applied to the non-local part of norm-conserving pseudopotential.

To obtain the FS and optical properties of NCs, the screened CI theory is used

in combination with AEP methods. We focus on three materials: CdSe, InP, and

HgTe for their wide applications and fabrications. The results on CdSe NCs show good

agreement with experiments. The qualitative disagreement between AEP and EMA

results on the FS of CdSe NCs suggests an improvement of EMA. The comparison of

the WZ and ZB FS as a function of size and ellipticity show that the absorption of

significantly oblate zinc-blende nanocrystals can be very similar to "spherical" wurtzite

nanocrystals. On the other hand, if the nanocrystals have no ellipticity but different

crystal structures, the fine structure differs significantly. Conversely, structures with

high ellipticity, either oblate or prolate, with different crystal structures, show similar

fine structures. The results on InP NCs show good agreement between AEP and SEPM.

Both theories reproduce well the experimental measurements on the DB splitting and

the optical gap of NCs. The results on HgTe NCs are in good comparison with measured

optical gaps. The calculated DB splitting, size-dependent absorption spectra and the

exciton-trion splitting can be useful for further studies on this promising material.

For the outlook, the study of the exciton lifetime still needs more development.

From the SP results obtained by AEP method, the research on the biexciton and

trion is totally possible and that will contribute more understanding about the optical

properties of NCs.
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