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Zusammenfassung

Angriffe auf IT-Systeme können zu erheblichen Störungen mit netzwerkweiten Auswirkungen
führen. Standardmäßig basiert die Angriffserkennung auf einem Intrusion Detection System
(IDS). Ein Security Operations Center (SOC) kann die Menge an resultierenden Alerts jedoch
nicht analysieren. Aufgrund dieser Flut an Alerts, werden die wirklich gefährlichen Angriffe
mit wenigen Alerts, wie die Advanced Persistent Threats (APTs), nicht erkannt. Unternehmen
setzen als Lösung Security Information and Event Management (SIEM) Systeme zur Korrelation
von Alerts und anderen sicherheitsrelevanten Daten ein. Diese Systeme fassen jedoch meistens
nur den Sicherheitsstatus der IT-Systeme zusammen. Eine Priorisierung der Alerts und ein
Kenntlichmachen der darin enthaltenen Angriffe erfolgt damit nicht. Dies wird zusätzlich durch
die beschränkte Sichtbarkeit der oft eingesetzen Netzwerk-basierten Intrusion Detection Systeme
(NIDSes) erschwert. Grund dafür ist, dass sich nicht alle Angriffsaspekte im Netzwerkverkehr
manifestieren und der interne Netzwerkverkehr dem NIDS verborgen bleibt.

Diese Dissertation präsentiert Mechanismen für eine umfassende Erkennung und Rekonstruktion
von Angriffen. Die Beiträge setzen auf zwei unterschiedlichen Ebenen an. Zum einen produziert
das Sicherheitsmonitoring qualitativ hochwertige Daten, die dann zur Erstellung von Alerts
genutzt werden können. Zum anderen zeigen Korrelationsmechanismen Zusammenhänge zwis-
chen Alerts auf und fassen die rekonstruierten Angriffe zusammen. Ganz konkret verbindet eine
gemeinsame Host- und Netzwerküberwachung entsprechende Daten in Echtzeit. Eine erweiterte
Sichtbarkeit wird dabei durch die Attributierung von Netzwerkflüssen zu Hostapplikationen
erreicht. Die Korrelation von Netzwerkflüssen untereinander ermöglicht außerdem eine robuste
Erkennung von verteilten Angriffen auch bei eingeschränkter Sichtbarkeit. Die vorgeschlagene
Korrelation von Alerts unterscheidet zwischen den Alerts von Massenangriffen und den weniger
häufig auftretenden Alerts von APTs. Nach dem Zusammenbringen und Aggregieren von Alerts
des gleichen Angriffs, werden die Angriffe weiter korreliert, um die Angriffsschritte und deren
Zusammenhänge hervorzuheben. Für die Skalierbarkeit in großen Netzen setzen die vorgestell-
ten Mechanismen auf einer verteilten Überwachungs- und Korrelationsplatform auf, was bei
entsprechendem Einsatz zu einer flächendeckenden Angriffserkennung führt. Der Betrieb als
Collaborative Intrusion Detection System (CIDS) wird durch einen weiteren Mechanismus
ermöglicht, der Zusammenfassungen von Alerts für deren Austausch erstellt.

Die entwickelten Ansätze wurden umfassend individuell als auch in Kombination auf der Basis
von realem Einsatz, Testumgebung und Simulation evaluiert. Weiterhin wurden die Beiträge
zusammen entlang einer bestimmten Abfolge diskutiert. Das Gesamtsystem erkennt Angriffe
mit hoher Genauigkeit durch die Korrelation verschiedener Informationen. In einem realen
Einsatz war die Attributierung bei mehr als 96% der TCP Verbindungen erfolgreich. In einer
realistischen Simulation wurde ein Peer-to-Peer (P2P) Botnetz auch dann robust erkannt, wenn
die NetFlows den Netzwerkverkehr von nur 5% der Bots abbilden. Zugleich fasst das System
diese, das gesamte Netzwerk bedrohende, Angriffe zusammen. Echte Alerts ließen sich in
Experimenten durch Aggregation auf 0,6% der ursprünglichen Anzahl verringern. Beim Einsatz
des Systems als CIDS, führten die Zusammenfassungen von Alerts zu einer Reduktion des
Datenverkehrs beim Austausch auf etwa 1% der Originaldaten.
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Abstract

Attacks on IT systems can have network-wide impacts with tremendous consequences. For
attack detection, the standard solution is to deploy an intrusion detection system (IDS). However,
it reports too many alerts to be all analyzed by the security operations center (SOC), even with
the help of alert correlation. This creates alert fatigue and the really sophisticated attacks, the
advanced persistent threats (APTs), that trigger only a few inconspicuous alerts, go unnoticed. To
mitigate the alert correlation problems, companies utilize security tools like security information
and event management (SIEM) systems that correlate alerts and other security-relevant data.
Although these systems provide extensive data analytics, they just summarize the overall security
status of IT systems but fail to appropriately prioritize alerts and to make attacks in the alert
data visible. A solution to achieve this is additionally impeded by the restricted visibility of
the commonly deployed network intrusion detection systems (NIDSes), because not all attack
aspects manifest in the network traffic. Furthermore, the NIDS location enables to capture the
Internet traffic of the monitored network but not the traffic between hosts inside the network.

This dissertation presents mechanisms that enable a comprehensive detection and reconstruction
of attacks. The novel contributions work towards a better overall detection accuracy at two
different stages of the intrusion detection process. First, security monitoring is enhanced to
produce high-quality monitoring data and to leverage it for an accurate reporting of alerts.
Second, novel alert correlation mechanisms identify relations among the alerts and summarize
the reconstructed attacks. In particular, a joint monitoring of hosts and the network correlates
respective monitoring data in real-time. An extended visibility is established through the
attribution of network flows to host processes. In addition, detectors leverage correlated network
flows to robustly detect the characteristics of some distributed attacks despite restricted visibility
in the monitoring data. The proposed alert correlation separates alerts belonging to high-volume
attacks from the infrequent, i.e., spatially and temporally dispersed, alerts belonging to a stealthy
APT. After aggregating and bringing together alerts of the same attack, they are correlated
to reconstruct the attacks, highlighting the performed steps and how they interconnect. To
scale with large networks, the proposed mechanisms integrate into a distributed monitoring and
correlation platform that allows comprehensive intrusion detection when deployed to several
locations inside the network. The deployment as a collaborative intrusion detection system
(CIDS) is supported by another mechanism that efficiently exchanges summaries of alerts.

The developed approaches have been extensively evaluated individually and in combination with
each other on the basis of real-world deployments, testbeds, and simulations. Furthermore, the
contributions are discussed altogether along a detection pipeline. The overall system accurately
detects attacks by correlating a variety of information. It achieved a real-time attribution for
more than 96% of TCP connections in a real-world deployment. In realistic simulations, a
peer-to-peer (P2P) botnet was detected robustly, as NetFlows covering the traffic from only 5%
of the bots were sufficient. At the same time, the concise attack summary highlights attacks that
threaten the network at large. Alert correlation experiments condensed real-world alerts into
aggregations that correspond to 0.6% of the original amount of alerts. Using alert summaries
reduced the exchange volume in a CIDS to about 1% of the full alert data.
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1 Introduction and Motivation

Since IT systems often provide critical services or hold valuable information in our digitized
society, these system have become a lucrative target for criminals. However, storing and
processing all these valuable information is no longer performed in isolated environments with
dedicated IT systems. Instead, services and data processing are implemented by IT systems that
are connected in large networks or even globally over the Internet. Thus, Internet or network
communication in general has become the backbone of our digitized society.

Recently, cybercriminals have learned that for achieving their goals, it might require them to
gain access to the organization’s network and thereby enabling access to the critical services and
valuable information the criminals target at. Especially the attacks aiming on the network at
large can have tremendous consequences for the targeted organization. Attackers advancing this
way are usually sophisticated enough to achieve their goal like dumping the customer database
with credit card information or spying on business secrets. This is already causing million dollars
of loss in revenue [Acc19]. Furthermore, the consequences of such attacks are also that the
network is left in an insecure state as the attackers are likely to still have control over the network
after achieving their goal. While a secure state might be restored with ease after an attack with
only very local and limited consequences, restoring the state of a network that is affected at
large is not that easy. Apart from the technical effort to clean all compromised systems, the
service and network operation is probably disrupted either already by the attack itself or while
recovering from it when systems have to be taken offline temporarily. This puts additional
burden on keeping the business and its critical processes running, because nowadays almost all
processes rely on IT services in the network and will be affected during a network-wide attack
or while recovering from it by some means or other.

To protect the network and its communicating hosts, it is common practice to deploy intrusion
detection systems (IDSes) that detect malicious events and report them as alerts to make
the security operations center (SOC) aware of an intrusion. The most established detection
techniques to classify the monitored events of a supervised system are signature-based and
anomaly-based intrusion detection, which identify known malicious events or unexpected events,
respectively. In case of the regularly deployed network intrusion detection systems (NIDSes), the
detection system is monitoring and analyzing the network traffic for malicious communication
of an attacker. For simple and very local attacks targeting only a single host in the network,
singleton alerts might already enable the SOC to understand the relevant aspects of the attacks
and to initiate effective countermeasures. For larger attacks or those that trigger more alerts,
alert correlation exists to highlight the relations among alerts of the same attack. The correlated
alerts reflecting the collection of malicious events of a larger attack, enable the SOC to also
understand these attacks and to mitigate them appropriately.
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1.1 Problem Statement

1.1 Problem Statement

Highly sophisticated attacks, such as advanced persistent threats (APTs) [CDH14], try to evade
intrusion detection as much as possible in the first place, leaving the SOC with potentially only
few alerts as indicator for the attack. Understanding these alarming indicators and reacting upon
them is essential to prevent the attack from turning into a severe security breach. Thus, the
detection of attacks targeting a network at large must happen as soon as possible to prevent the
attackers from steadying control and succeeding with next steps towards their goal [HCA11].
However, the SOC can rarely keep up with the regular flood of alerts from various intrusion
attempts every day, resulting in so many false positives as well. This is causing alert fatigue with
the consequences of the most important alerts not being prioritized, their relations among each
other not being unveiled, or the few traces of the sophisticated attacker not being noticed at all.
Central research questions must therefore lie in developing mechanisms that allow to equip the
SOC with the right tools to confront sophisticated attackers targeting the network at large.

Research Question Q1: How can complementing monitoring sources be utilized for network
monitoring in real-time to compensate restricted visibility?
To fully reconstruct an attack, the respective activity must be captured through monitoring in the
first place. However, some attack aspects might stay hidden from a regular network monitor and
NIDS because of restricted visibility resulting from the attack traces not becoming manifest in
the network traffic. Furthermore, network traffic tends to become encrypted for security and
privacy reasons [KDH16], and also malware is already encrypting and self-modifying its code
to evade detection [BLS13]. For the purpose of collecting and correlating logs from different
sources, security information and event management (SIEM) systems [WN05; BMZ14] are
commonly used in practice. However, besides host logs, SIEM systems usually consume only
communication summaries and network statistics but have no visibility into the traffic. Therefore,
the log data but also the correlation mechanisms are too coarse-grained to allow the detection of
sophisticated attacks.

Research Question Q2: By which mechanisms and to which extent can correlated monitoring
data be utilized to detect network- or Internet-wide attacks thoroughly with all their related
activities?
In best case, the activity of an attacker is obviously malicious from the perspective of an IDS.
However, the classification of singleton events to detect malicious ones might not always be
possible if the malicious event itself cannot be distinguished from a benign one. Especially
in distributed network attacks [ZLK10] where a lot of hosts are involved, each one is commu-
nicating with some of the others. While a singleton pair of communicating hosts might look
inconspicuous, the view on correlated pairs of communicating hosts might reveal the malicious
intent of the communication altogether.

Research Question Q3: How can low-level security alerts from an IDS be aggregated and
correlated to concisely summarize the intrusion detection result, highlighting especially network-
wide attacks like distributed or multi-step attacks?
For any malicious communication that is detected by a NIDS, an alert is reported to the SOC.
However, a singleton alert does not necessarily reflect the full attack, as the attacker probably
interacts with the targeted network several times and performs several different actions to pursue
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Chapter 1 Introduction and Motivation

a particular goal. Thus, reconstructing an attack means to identify related alerts and to assemble
them to a picture of the attack in its entirety. Alert correlation algorithms usually assist the
SOC in this task. However, presenting the collection of related alerts is not sufficient to make
the SOC develop an understanding of the attack. Instead, the alert correlation result should
to highlight certain characteristics of the attacks to allow their understanding and mitigation.
Especially attacks against many hosts at once potentially with coordinated activity from multiple
sources [ZLK10] as well as attacks that target hosts consecutively for lateral movement [Boh+17]
have to be reconstructed carefully. Otherwise, the attack is likely to be underestimated and
mitigated inappropriately.

Research Question Q4: How can alert correlation mechanisms correlate temporally and
spatially distributed alerts from APT attacks?
Especially stealthy attacks [Rud+16] and APTs [CDH14] impede the reconstruction of attacks
from alerts, because they have their activities obfuscated by long time periods in between
consecutive activities. Detecting such attacks is especially difficult because the time between
respective activities is filled with unrelated malicious activities or simply with false positives
in terms of noise from the Internet [BGD17; Son+11; BCF12]. When the SOC is considering
only recently reported alerts for alert correlation, the outcome can never bring together a new
APT alert with the previous one that already occurred quite some time ago in the past. However,
correlating new alerts with any other alert that ever occurred in the past is neither reasonable nor
computational feasible. Consequently, APT alerts are likely to never be correlated and to attract
the attention from the SOC that would be required to prioritize and handle them appropriately.

Research Question Q5: Which benefits in terms of volume savings is provided by exchanging
summaries of alerts that are reported locally by distributed IDS sensors in the network, and
what are appropriate attack representations to enable further collaborative analysis?
While network sizes and also the traffic volume grow, a single NIDS is not capable anymore
to monitor and analyze all traffic centrally. For scalability reasons, multiple sensors are dis-
tributed in the network and work together in a so-called collaborative intrusion detection system
(CIDS) [Vas+15b]. In contrast to standalone IDSes, the IDS sensors in a CIDS exchange data
among each other to collaboratively perform intrusion detection and alert correlation. A fully
distributed CIDS without a central processing node avoids a single point of failure (SPOF) but
does not scale well when every sensor exchanges the full local data with any other sensor. With
respect to alert correlation, every sensor would receive all alerts from every other sensor to poten-
tially identify a small fraction of received alerts that correlates with some local alerts. However,
when parts of a network-wide attack are captured by several sensors, a more coarse-grained
exchange of alert data could save bandwidth and processing power while still identifying alerts
that are required for assembling the big picture of the network-wide attack.

The next section briefly summarizes the answers to the questions provided by this thesis.

1.2 Contributions

Figure 1.1 illustrates how the contributions of this thesis, as described in the paragraphs given
below, are pieced together to solve the challenges of Section 1.1 during monitoring, detection,
and correlation to detect malicious events and summarize them in an attack report. Based on
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the working of a traditional NIDS, zeek-osquery extends the monitoring visibility through a
joint monitoring that correlates host and network events in real-time and provides the correlation
result for intrusion detection. In addition to the malicious communication that an NIDS already
detects, the detection of scan campaigns and peer-to-peer (P2P) botnets demonstrates how
intrusion detection can leverage the correlated events using the example of correlating the hosts’
communication relations. Based on all the network alerts that an IDS reports regularly, graph-
based alert correlation (GAC) clusters alerts to attacks and links them to multi-step attacks in
the final intrusion summary. Weak alert correlation complements the clustering by assembling
the temporally dispersed alerts of stealthy attack steps over long time periods. Collaborative
attack correlation complements the linking of attacks and their steps by enabling the efficient
identification of network-wide attacks that are captured by multiple NIDSes distributed in the
network.

zeek-osquery

Scan Campaigns &
P2P Botnets

Graph-based Alert Correlation (GAC)

Weak Alert
Correlation

Collaborative
Attack Correlation

Events Alerts Attacks SummaryIntrusion
Detection

Alert
Correlation

Attack
Correlation

Figure 1.1: Relations between the contributions of this thesis.

Fine-grained Visibility into Networks and Host Communication Restricted visibility is a
major problem for intrusion detection and threat hunters. Both require high-quality monitoring
data to detect, investigate, and reconstruct a security incident. However, the traces of an intrusion
found in network communication cannot unveil the host semantics or consequences of the
malicious communication. Thus, network monitoring and network intrusion detection can often
indicate an attack but are blind when it comes to capturing the circumstances of the attack.
Furthermore, the current trend towards traffic encryption [For18] causes the visibility of a NIDS
to become even worse. As an immediate countermeasure, Transport Layer Security (TLS)1

Proxies [ONe+16] restore visibility specifically into encrypted communication, but come with
several drawbacks [WMY18], including the violation of end-to-end encryption and privacy. To
further extend the visibility, SIEM systems [BMZ14] try to compensate the restricted visibility
of a NIDS by correlating monitoring data from several logs. Their correlation, however, is
too inaccurate because it is based on log timestamps, the log files are too coarse-grained, an
interactive retrieval of additional data is not possible, and the system itself is not scalable.

To mitigate the negative effects of restricted network visibility on the detection accuracy, this
thesis revises the idea of an early work from Snapp et al. [Sna+91] and enhances the monitoring
quality through extended visibility. Their idea of correlating data from network and host
monitors is extended and generalized for broad intrusion detection purposes. The resulting
concept has been published in [HSF20], including the open-source prototype zeek-osquery that
demonstrates the benefits arising from linking network communication to process-centric host
activity in real-time. The benefits from this fine-grained host-network correlation include a

1. Unless referring to a specific version, the protocols TLS and its outdated predecessor Secure Sockets Layer (SSL)
are used interchangeably.
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joint visibility on hosts and the network through the correlation of monitored network traffic
by host context. Because of the real-time correlation of the data during monitoring, the NIDS
Zeek [Pax99] can directly make use of the additional host context when assessing the network
communication. The experiment results for attributing network flows to the originating process
on a host demonstrate that zeek-osquery gives valuable insights into the host semantics for the
hosts’s network communication.

Collective Monitoring for the Detection of Internet-wide Attack Scenarios The real in-
tend of some malicious activities cannot be assessed by classifying them individually because
they cannot be differentiated easily from benign behavior. However, especially Internet-wide
attacks, i.e., attacks that target multiple network sites simultaneously, leave many traces that
together can unveil the attack scenario. To identify traces that belong to an attack scenario
with many hosts involved, alert aggregation can be performed to highlight predominating alert
features such as IP address or ports. The presence of a predominant feature might serve as
an indicator for coordinated activities [ZLK10] like in distributed denial-of-service (DDoS)
attacks [MMS16], port scans [BDA13; BBK11], worm spreading [KS14], and command and
control (C2) communication of botnets [GZC14]. Most existing approaches that leverage alert
aggregation to detect such scenarios require a certain level of similarity among the alerts, e.g.,
for the IP address. However, this is not always given for attack scenarios with different sources
and targets [Dai+15].

In contrast to relying on a predominant feature that indicates a coordinated attack, this thesis
leverages characteristics that are specific to particular attack scenarios. The principle for their
detection is to find network activities that together reflect scenario-specific characteristics. In the
context of this thesis, scan campaigns and P2P botnets are chosen as examples for Internet-wide
attack scenarios with special characteristics in the network communication. The detection of
these two scenarios has been published in [HWF20] and [Muh+18]. Besides traditional byte-
matching signatures, these examples demonstrate scenario-characteristic signatures that require
the collective assessing of network communication instead of individual network activities. The
experiment results indicate that scan campaigns and P2P botnets with Internet-wide scope can
generally be detected by the proposed scenario detection even if only locally deployed at one of
the targeted network sites. For better detection accuracy, multiple network sites can collaborate
in a collective monitoring to capture a larger fraction of the Internet traffic.

Alert Correlation for the Detection and Reconstruction of Network-wide Attacks The
detection of attacks is usually based on an IDS that detects low-level attack indicators like
byte patterns and reports them as alerts. However, this generates a huge amount of alerts
every day, including also false positive and low-priority alerts. Without further processing the
alerts and describing them in the picture of an attack, insufficient mitigation actions might
be chosen. Especially distributed attacks result in many alerts, but an intrusion summary of
such an attack should actually include only the most important information among all the
alerts’ details. Similarly for multi-step attacks, an intrusion summary should explain the linking
between consecutive attack steps with only the important information. Thus, aggregating and
filtering during alert correlation must be performed carefully regarding the alert details, such
that relations among alerts stay apparent and that the intrusion summary holds the most valuable
information. Otherwise, the detection result would be small and independent attacks, and the
SOC cannot see the real network-wide attack that the attack pieces actually form.
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To achieve the goal of detecting network-wide attacks and condensing respective alerts to a
concise representation, this thesis proposes an alert correlation algorithm for assembling alerts
to attacks that works in two steps: (1) identifying alerts that all describe the same action of
the attacker and then (2) linking the alerts of consecutive actions that build upon each other
to carry out the attack. A graph-based implementation of this approach named graph-based
alert correlation (GAC) has been published in [HF18]. In addition, this approach makes use of
supplementing scenario-context that is derived from the alerts themselves and incorporated into
the linking of consecutive attack steps. This has also been published in [HF19]. In summary, the
result of this alert correlation is a reduction of alert volume by summarizing the attack actions
into an intrusion report that especially highlights the links among the actions of a multi-step
attack. Experiments on real-world data demonstrate that up to 99.3% of the alerts can be
summarized this way.

Continuous Alert Correlation over Long Time Periods to Support APT Detection Alert
correlation has to process a lot of alerts every day and probably fails to link alerts from slow
and stealthy attacks because these alerts’ weak relations get lost in the shuffle. While some
noisy attacks trigger a lot of alerts in a short time period, APT-like attacks trigger only few
alerts over a long time period. As a result, regular alert correlation algorithms overlook the
relation among the temporally distributed alerts of such slow attacks. This is because most alert
correlation algorithms operate on finite sets of alerts, e.g., the last 1000 alerts or those from the
last hour. Each of these alert batches is correlated separately and, therefore, the relevant alerts
are not correlated across different batches. Also a reapplication of the correlation algorithm to
the results across alerts batches fails, because the respective alerts have probably been filtered
by then.

Based on these insights, this thesis presents an addition to regular alert correlation algorithms
that operate on alert batches. Across these batches, the addition named weak alert correlation
continuously identifies and aggregates alerts from slow but on-going attacks. This aggregation
goes on, until the alerts assemble to an attack step that fits into the context of an APT-like attack.
The continuous alert aggregation can supplement other correlation algorithms by providing
the alerts of a slow attack step that would otherwise go unnoticed. The experiments regarding
an APT attack with multiple steps indicate that this continuous alert aggregations can indeed
highlight the stealthy attacker actions.

Exchange of Attack Data for Collaborative Intrusion Detection Large networks often
have the problem that their several subnets, remote office branches, and Internet upstreams
cannot be monitored centrally by a single NIDS. Instead, these networks deploy multiple IDS
sensors that work together in a so-called CIDS [Vas+15b]. Intuitively, the intention is to combine
the information from the distributed IDS sensors. The benefit is that an alert reported by a
particular sensor can be set in relation to alerts from other sensors to get aware of network-wide
attacks that become manifest in several alerts across the different sensors. However, not all
alerts and their full details are relevant in this regard, both for efficiency and privacy reasons.
A common solution is to exchange alert summaries among the CIDS nodes, either particular
features like the attacking IP addresses [Loc+05] or feature aggregations [ZLK09]. Correlating
such kind of exchange data in a CIDS, however, requires that related alerts from different sensors
have some alert feature values in common in the first place. An attacker can easily circumvent
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this detection mechanism when using different source IPs for attacking each supervised network
segment.

To efficiently find similarities among the alerts from different sensors independently from the
feature values, this thesis defines a compact data structure that characterizes detected attacks,
enabling a collaborative attack correlation. Instead of exchanging all alerts or alert summaries
with concrete values, this attack characterization allows to identify similar attacks based on the
attack type, i.e., the attack scenario. This characterization reflects the who is attacking whom
structure and has been published in [HWF19]. Compared to exchanging full alert data, the
exchanged data volume can be reduced to 1% by using the compact data structure holding the
attack characteristics. If two attacks from different sites are identified to potentially be equal,
their related alerts can be exchanged in the aftermath to process them with further correlation
algorithms.

1.3 Outline

The remainder of this thesis is structured as follows: The background in Chapter 2 gives
an overview on intrusion detection techniques to classify malicious behavior and to detect
attacks. In addition, it presents classifications of both intrusion detection and alert correlation
algorithms.

Chapter 3 states requirements for IDSes. Apart from that, the intrusion detection process
is presented with a detailed description of the tasks required for implementing an effective
intrusion detection. Furthermore, the chapter summarizes the state of the art along the process
and discusses all related work with respect to the IDS requirements.

In Chapter 4 this thesis introduces measures for security monitoring that solve several problems
that occur at early stages in the intrusion detection process. The goal of these measures is to
achieve high-quality monitoring data, to accurately detect malicious behavior, and to report it
as alerts. The foundation for the enhanced security monitoring is the correlation of monitoring
data, based either solely on network monitoring or on a combination of host and network
monitoring.

Chapter 5 presents alert correlation algorithms that are applicable in stages towards the end of
the intrusion detection process. These algorithms process IDS alerts and return representations
of attacks with a focus on network-wide intrusions. The goal of these algorithms is not only
to detect the attacks in question, but also to overcome the additional challenges that arise from
temporally and spatially dispersed alerts.

The evaluation in Chapter 6 assembles the contributions along the intrusion detection process
in an end-to-end evaluation pipeline to demonstrate their working and relation among each other.
Different data sets and evaluation methodologies are used to conduct the experiments and to
evaluate contributions individually and in combination.

Chapter 7 concludes this thesis with a summary and an outlook for future work.

Where to find the concrete contributions and their evaluation in this thesis is illustrated in
Figure 1.2 regarding the research questions Q1-Q5 from Section 1.1.
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Chapter 1: Introduction and Motivation

Chapter 2: Background

Chapter 3: Requirements and State of the Art

Chapter 4: Security Monitoring

Section 4.1: Joint Host and Network Monitoring

Section 4.2: Scan Campaign Detection

Section 4.3: P2P Botnet Detection

Chapter 5: Correlation of Network Alerts

Section 5.2: Alert Clustering

Section 5.3: Attack Interconnection with Context

Chapter 6: Evaluation

Section 6.3: Evaluation of Joint Monitoring

Section 6.4: Evaluation of Correlated Network Communication

Section 6.5: Evaluation of Graph-based Alert Correlation
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Chapter 7: Conclusion
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Figure 1.2: Structure of this thesis and sections where to find contributions to particular
research questions.
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2 Background

This chapter provides essential background information for this thesis. Section 2.1 sketches
the communication of hosts in IP-based computer networks and summarizes attacks that target
the network as a whole. Section 2.2 describes the fundamentals of intrusion detection in
general and highlights the challenges in intrusion detection. Section 2.2 provides a classification
of countermeasures to detect intrusions in the network. Section 2.4 describes the security
monitoring and intrusion detection tools Zeek and osquery.

2.1 Computer Networks

The following explains the foundations of computer networks that enable communication among
the hosts and also the Internet. Afterwards, an overview of attacks are given that an attacker can
perform when infiltrating and taking over a network.

2.1.1 Network Infrastructure and Topology

Computer networks nowadays became quite complex because they serve so many needs in our
digitized society. With respect to commercial aspects, the computer network connects IT systems
and their components among each other to support a business process in the company. Apart
from printers, domain-specific devices such as robots in manufacturing industry, or supervisory
control and data acquisition (SCADA) systems more generally, the communicating endpoints
in a network are traditionally office systems and application servers. These hosts are supposed
to provide or access resources in the own network but also to communicate on the Internet. To
achieve compatibility among the communicating hosts, several standards like Internet Protocol
(IP), Transmission Control Protocol (TCP), and User Datagram Protocol (UDP) evolved over
time.

The term hosts in this context reflects commodity hardware and general purpose computer
systems. It includes regular personal computers as found in offices but also servers in data centers.
These hosts have in common that they implement the concept of the TCP/IP model [FS11],
i.e., the Internet protocol suite. The hosts communicate in the IP-based network by running
applications that send and receive messages. For the communication in IP-based networks,
usually one of the transport protocols TCP or UDP is usually used. While UDP is connection-
less and best-effort similar to IP itself, the connection-oriented TCP comes with some guarantees
and makes use of an explicit three-way handshake [Pos+81] to initiate the communication.
Either way, related packets in regular communication transmitted between two endpoints, i.e., IP
and port tuples, in the network are denoted as a flow. Generally, both endpoints show the intent
to participate in the flow. However, the receiver of a packet can also refuse to communicate by
aborting the TCP handshake, replying with Internet Control Message Protocol (ICMP) error
messages, or simply ignoring the packets. The communication is abstracted by the operating
system (OS) on the hosts through the use of sockets as an interface to the network packets.
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The network packets are disseminated in the local network segment, i.e., subnet, through switches
and forwarded to other hosts beyond the border of the local subnet via routers. Following this
concept, a computer network is connected to the Internet through a gateway that is the transit
point to other networks on the Internet, i.e., the Internet upstream. All communication between
the network and the Internet passes this way via the Internet service provider (ISP). Within
larger networks, the hosts are usually organized in subnets with routers and sometimes even
network address translation (NAT) in between.

Within a subnet, the communication is completely unrestricted, whereas the communication
across subnets is often inhibited and filtered by firewalls. A special subnet of a network is the
demilitarized zone (DMZ) in which public services, i.e., the Internet servers of a data center, are
located. In such a case, perimeter security distinguishes three zones: the Internet is untrusted,
internal subnets of the network are trusted, and the DMZ has a trust level in between. The
general security policy is to allow communication that is initiated from a zone with higher
trust to zones with lower trust and to block unsolicited communication in opposite direction.
The DMZ is an exception of this policy as particular services hosted in this zone are explicitly
configured to be accessible from the Internet as well. Most commonly, intrusion detection is
performed centrally at the border of the network, i.e., at the Internet upstream.

2.1.2 Attacks on Computer Networks

For an attack to have an effect on the computer network at large, the attack consequences affect
either a majority of the hosts in the network or particular hosts that are critical for the overall
network operation or business processes, respectively. The attacker is not assumed to initially
have access to the network nor to be in possession of any privileged knowledge or rights. Instead,
an attack on the computer network can origin from an unprivileged attacker on the Internet.
While the attack is going on, the attacker infiltrates the network and takes over more and more
control.

Several goals exists that an attacker with such attack on the network at large might want to
achieve. Generally, two categories of goals are distinguished: Espionage and Sabotage. Being
in control of the network, the attacker can utilize the access to various classified information for
espionage. Apart from the data files on hosts affected by the attack, the attacker can potentially
eavesdrop in the network for further classified information or to gain more knowledge about the
network operation. By the same means of access to the hosts and the network, the attacker is
eventually in the position to sabotage the network. Through the unauthorized access, the attacker
can violate the integrity of data files or network communication. This resulting consequences on
the business processes are tremendous.

To achieve their goals, attackers target the computer network at large with one or a combination
of several of the following attacks:

DDoS In a distributed denial-of-service (DDoS) [MMS16] attack, multiple sources cause an
overload situation at the target that renders a particular network service unavailable to everyone.
The overload is regarding a specific resource, including the network, computational power, or
storage capacity. Examples for DDoS attacks are smurf attacks [Kum07] to saturate the network
bandwidth, asymmetric DDoS attacks [Che+16] with operations like Transport Layer Security
(TLS) handshakes to make the server perform expensive cryptographic calculations, or TCP
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SYN flood attacks [Edd07] that cause the number of (half-opened) connections on the server to
exceed their limit in memory.

As these attacks scale with the number of attacking sources, the respective resource on the target
effectively becomes overloaded once a critical mass of sources is reached. Specifically for most
DDoS attacks, the source is not required to receive the response. Instead, spoofing and using
multiple source IP addresses gives the target a hard time to detect the attack. In fact, some DDoS
attacks even require to spoof the source IP address as in distributed reflective denial-of-service
(DRDoS) attacks [Ros14].

Port Scan Networks usually offer a limited set of their services for usage on the Internet,
e.g., web or mail servers, remote shell access over telnet or Secure Shell (SSH), or a virtual
private network (VPN), among others. Of course, some services require the user to authenticate
before being able to proceed. While unauthorized users should not be able to interact with these
services, misconfiguration or software bugs enable an attacker to remotely exploit this service.

To determine the attack surface consisting of such insecure services to infiltrate the network, an
attacker must know of their existence in the first place. Thus, the attacker searches the network
for online hosts and any public services running on them, well-known as port scan [BBK11;
BDA13]. Open ports on the hosts indicate a running service, and the port number usually
indicates the type of service, e.g., SSH on port 22. Technically, the attacker tries to connect to
an IP address and port at which a service is presumed to run. If the attempt fails, no such service
is running. However, upon successful connection, the attacker learns that this particular service
exists and is accessible from the Internet.

Worm Spreading To efficiently increase the number of infected hosts on the Internet and
infiltrated networks, the attacker makes a worm [KS14] spread to any host vulnerable to the
particular exploit. Instead of the attacker performing the exploit on every host, the infected hosts
themselves automatically try to infect more hosts. One of the first Internet-wide spreading was
been seen with the Morris worm in 1988 [Eis+89].

Even though this scalable way of exploiting hosts is an attack itself, the purpose of worm
spreading is usually only to infect as many hosts as possible with the respective malware. Once
under the control of the attacker, the infected hosts is used for consecutive steps later on. Anyhow,
the spreading itself only describes the malware that further replicates to more hosts.

Botnet An attacker that infected a large collection of hosts wants to control them efficiently.
Thus, the infected hosts, i.e., bots, are integrated into a botnet and collectively controlled by
the attacker, i.e., botmaster [Bil+12]. Thus, the bots establish a channel to the botmaster and
await commands to execute. Apart from using all bots for launching DDoS [Sch+10], sending
spam mails [Pat+09], or stealing banking credentials [And+13], the botmaster can decide to
leverage bots differently when they are identified to run in a network that is of value for the
attacker [OBr16].

In recent years, the architecture shifted from centralized botnets to peer-to-peer (P2P) botnets.
While all bots connected to a centralized command and control (C2) server [RD13] back then,
nowadays the bots interconnect among each other. These bots use their interconnections among
each other to propagate new commands from any location in the P2P botnet over multiple hops
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to every other bot in the botnet. Instead of the C2 server as a single point of failure (SPOF), the
P2P communication makes the botnet resilient to takedown attempts [Haa+16].

Stepping Stone Once the attacker is in control of a host in the target network, subsequent
attack actions are performed against the network. To hide the true origin of the attack, i.e., the
attacker on the Internet, further actions can be tunneled through this controlled host. Hosts
that relay attack traffic this way are denoted as stepping stone hosts [WR10]. Attacks though a
stepping stone are especially hard to detect because the exploited host on the internal network
is likely to have a more flexible security policy than the stricter policy that applies to Internet
hosts.

Characteristic for stepping stone attacks is that the attack traffic is tunneled through the exploited
host almost without any modifications. This is particularly true for any interactive attacks, e.g.,
those that involve telnet or SSH [ZP00]. In such a case, the incoming traffic from the attack to
the exploited host equals the outgoing traffic from the exploited host to the actual target.

Lateral Movement Another form of abusing an internal host under control of the attacker is
lateral movement [Boh+17]. In this kind of attack, the attacker cannot access the actual target
host directly because of topology or security restrictions in the network. Thus, the attacker
infects hosts on a path towards the target host.

In contrast to stepping stone attacks that cover up the attack origin, the intention of lateral
movement is to access hosts on the target network that otherwise would be unavailable to the
attacker. While in a stepping stone attack each host on the path would just relay the attack traffic,
exploited hosts along the path of lateral movement eventually establish a direct channel to the
attacker once under the control of the attacker.

2.2 Intrusion Detection

Detecting intrusions is necessary in the first place, because full protection of IT systems is not
possible. One reasons for that is security management accepting the risk because appropriate
measures are found to be too expensive or too inflexible [Sch92]. Even when trying to mitigate
all risks, wrong postulates about the attacker capabilities leave unforeseen threats unhandled.
The example of so-called nation state hackers illustrate the imbalance between the attacker’s
almost unlimited resources and the economic reasonableness for security decisions of enterprises.
Apart from that, vulnerabilities in the IT systems might remain unpatched because of compliance
reasons or because they are simply unknown to the public.

To improve the overall IT security situation, IT security management often defines a defense
strategy that includes prevention, detection, response, and recovery (PDRR) as a cycle. The
detection part of this cycle is implemented by several security tools. Apart from an intrusion
detection system (IDS), additional tools like honeypots, an intrusion prevention system (IPS), or
a security information and event management (SIEM) system might be used.
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2.2.1 Intrusion Detection Goal and Basics

For the detection of attacks, the IDS supervises computer systems and the communication
infrastructure for signs of intrusions and misuse. Similarly, an IPS detects the attacks and
additionally initiates countermeasures to stop the attack. The benefits for the overall security
situation of having an IDS in place becomes apparent in the picture of the PDRR cycle. A
successful detection of the attack and attacker, respectively, enables the initiation of attack
response mechanisms to limit the attack damage. Beyond that, knowledge about the security
incident is gained when reconstructing the attack and recovering from it. This knowledge allows
to improve on the preventive measures.

Intrusion detection starts with recording all security relevant events of the supervised system. In
general, monitoring the system this ways audits operational information, including the accessed
resource, who accessed it, at which time it was accessed, and how the resource was accessed.
The recorded audit data is specific to the type of monitored system. Examples for data an
a computer include the opening of files or the execution of programs, whereas examples for
data in the network include connection establishments and releases as well as packets that are
transmitted between specific systems. Furthermore, also application specific logs exist that
detail audit the internals at application runtime. Anyhow, the integrity of audit data must be
ensured, or otherwise the attacker can tamper with it to cover up the attack traces. The recorded
audit data collects the input of intrusion detection.
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Figure 2.1: Classification of events for intrusion detection.

Intrusion detection is an automatic analysis of this audit data, i.e., monitoring logs. The basic
idea of the analysis is to classify the recorded events. An event is the result of either a legitimate
and harmless use of the supervised system or of an attack. Thus, the analysis is supposed to
classify events into those that are legitimate and those that are malicious. Figure 2.1 illustrates
the classification of events. The nature of the events is either harmless or an attack. The detection,
i.e., classification, tries to identify the nature and labels the event with legitimate or malicious,
respectively. A positive detection reflects an events that the classification labels as malicious,
independent from the actual event nature. However, errors in classifying the events can occur.
Apart from the correct classification, i.e., true positive and true negative, the classification result
can be wrong, i.e., false positive and false negative.
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The two major classes of classification mechanisms used for the detection are based on signatures
and anomalies, respectively. The basic idea of signature detection is that attack patterns can be
described in sufficient detail. A positive detection requires the event to match such an attack
signature. Such signatures are specified as rules that describe the attack specifics. The drawbacks
of the signature-based detection are the required prior knowledge about the attacks and that new
attacks require to update the signature database. An example for a signature is the specific byte
sequence in the payload of a network message sent by a particular malware. In contrast, the
basic idea of anomaly detection is that attack behavior statistically differs from other behavior.
A positive detection requires the event to be an outlier with respect to the other events. For
that, there is a definition of normal behavior learned from training data. The drawbacks of
anomaly-based detection are a high number of false positives because legitimate behavior is
usually highly diverse and dynamic and that the anomalies cannot name the actual root cause.
An example for an anomaly is an unusually high data volume in the network when all the data
assets are stolen and uploaded to the Internet. A third mechanism is the policy-based detection.
A policy is a mix of both signatures and anomalies. The basic idea is to specify what is or
allowed or forbidden, respectively. In contrast to signatures, policies are more general to cover
the attack nature more generically. In contrast to anomalies, the deviation from a expected
behavior is described explicitly. One of the drawback is that specifying policies requires expert
knowledge about the system to protect.

Another difference between detection mechanisms is the location where they are deployed. The
scope of host-based intrusion detection is restricted to events that directly come from the host as
the supervised system. Supervising the hosts themselves result in many different and detailed
information about the hosts that can be used in the analysis. However, this requires to deploy the
mechanism on every host. In contrast, network-based intrusion detection is restricted to events
about the hosts’ communication. While this central monitoring and analysis scales better than
having it deployed on every host, it can only detect intrusions from a perspective outside of the
hosts. The mix of both perspectives is denoted as hybrid intrusion detection and combines the
benefits of host- and network-based intrusion detection.

2.2.2 Challenges in Intrusion Detection

Challenges particularly in intrusion detection exist regarding the audit data. Significant storage
capacities are required for the high data volume that auditing often generates. The high volume
renders also any manual analysis impossible, which is why the analysis should be automated as
much as possible. Another challenge is that the audit data is located on the supervised system
itself and either logs or analysis results must be transferred to a central log server or analysis
server, respectively. During both monitoring and transferring, the audit data must not be modified
by the attacker even when the supervised system gets compromised. Also the expressiveness of
audit data is a challenge when choosing which information is relevant in the first place.

Challenges in intrusion detection regarding the analysis include a limited efficiency of the
analysis and a high number of false positives. The limited efficiency stems from the central
approach that most IDSes follow. So-called agents collect audit data but the analysis is conducted
on a central evaluation unit. Since the agents only forward the collected data but perform the
analysis not even partly, the evaluation unit is the performance bottleneck. Is a problem
particularly for distributed attack variants and attacks with parallel actions. The high number
of false positive detection results is a problem that amplifies with the high data volume from
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auditing. Even small false positive rates lead to an unmanageable number of false positives in
practice.

Some challenges regarding the high data volume, especially the large number of alerts, is
addressed by alert correlation. Its goal is to reduce the alert volume and highlight the bigger
picture of an attack. However, alert correlation itself introduces new challenges as well. Most
fundamentally, alert correlation must identify which alerts are related in the first place. A
definition of such relations must somehow correspond to the definition of an attack, which
is, however, generally rather intuitive than formally described. Similarly, correlated alerts are
supposed to enable an immediate understanding of the attack and must therefore summarize the
correlated alerts from an attack perspective. Apart from the challenges of individual techniques
for assembling alerts to a bigger picture, the interpretation of the attacks is challenged by missing
alerts. In case of false negative alerts, the correlated alerts only form an incomplete picture of
the attack, while the goal is to reconstruct the full attack story.

In addition to the challenges regarding processing data in the IDS, the term IDS evasion
summarizes more of them. An attacker can bypass the detection by interacting with the
supervised system in an unintended way. Hiding the existence of interaction this way is known
as covert channel [Wen+15]. Apart from bypassing the detection, the attacker can evade the
particular detection mechanism in place. Specifically for evading signature detection, an attacker
can obfuscate or mutate the attack such that it is semantically still equal but not matching
the respective signature anymore. Specifically for evading anomaly detection, an attacker can
transform the malicious actions to make them imitate benign behavior. An example for this kind
of IDS evasion is the mimicry attack [WS02].

Another type of challenges is concerned with privacy and data protection. Auditing not only logs
malicious activity but legitimate activities as well. Thus, the log data contains user identifying
information such as user identifiers, i.e., user names, and documents their behavior, i.e., at which
times an employee has been working. The respective data is collected without granting the users
to determine themselves which data is collected regarding their person. If not secured properly,
unauthorized parties might be able to access and abuse this sensitive data.

2.3 Classification of Intrusion Detection

Intrusion detection is an active field of research with many different challenges to overcome.
Thus, the collection of approaches seen in practice and research is extremely broad. Thus, the
following classifies the major disciplines in intrusion detection.

The detection of malicious activities as alerts is performed on the basis of either hosts or the
network, and alert correlation forms the alerts to a bigger picture (cf. Section 2.4). Figure 2.2
summarizes the classification of these three disciplines. These are described with examples in
the following.

2.3.1 Network Intrusion Detection

In network intrusion detection, the detection is based on either signatures, policies, or anomalies.
While the first two are straight forward to implement in an IDS, many different techniques exists
to implement the anomaly detection. Thus, only the network anomaly detection is elaborated in
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Figure 2.2: Classification of intrusion detection.

the following. Apart from the detection mechanism, a recent research trend is on distributed
network detection.

Network Anomaly Detection Anomaly detection is a broad and active research field for the
identification of network intrusions. The four major categories of anomaly detection techniques
are listed here according to [AMH16].

• Classification-based Anomaly Detection:

The classification-based approaches define a normal traffic activity profile with the help of
event features that models the knowledge base about legitimate traffic. Any deviations
from this baseline profile are considered anomalous. Feature selection or data reduction
in general [Nis+18] is conducted before the actual classification is applied. The most
popular detection techniques include support vector machine (SVM) [Esk+02], Bayesian
network (BN) [Pea85; Kru+03a], Neural network and deep learning [Kwo+19], and
rule-based [LSM99].

26



Chapter 2 Background

• Statistical Anomaly Detection:

Approaches based on statistical theories create a profile of normal events and detects
events that make the system in its entirety to deviate from the normal. Statistical tech-
niques include mixture model [Esk00], signal processing [TJ03], and principal component
analysis [Shy+03].

• Information Theory for Anomaly Detection:

Approaches based on information theories [LX00] incorporate measures such as entropy,
conditional entropy, relative entropy, information gain, and information cost to model the
system’s normal status and to detect deviations among the events.

• Clustering-based Anomaly Detection:

The detection based on clusters leverages that legitimate events occur significantly more
often. Also known as outlier detection, the events are clustered, and any events that are
not close to a cluster’s centroid are considered malicious. Clustering-based detection
distinguishes between regular clustering and co-clustering [GN08].

Distributed Network Intrusion Detection Different variations of detection mechanisms form
the basis for distributed intrusion detection regarding both distributed data sources and distributed
classification of events.

• Cloud-based Network Intrusion Detection:

Recently, research has began to investigate moving the detection mechanisms into the
cloud [Kee+16]. To make this go along with performance benefits in terms of faster
processing, the mechanisms must be suitable for a cloud computing environment. An
example for this are detection mechanisms that scale well in such an environment when
based on the MapReduce computing platform or the Hadoop Distributed File System
(HDFS) [FMF14; Fra+11].

• Ensemble-based Network Intrusion Detection:

Approaches that apply ensemble-based data mining [FS16] combine multiple classifiers
and machine learning algorithms to achieve a better detection accuracy [Mir18]. Further-
more, the flexible structure of the approaches allow distributed implementations, which
makes the handling of large and fast changing data efficient.

• Collaborative Network Intrusion Detection:

In a collaborative intrusion detection system (CIDS) [Vas+15b], the sensors for collecting
data are distributed in the network. In addition, each sensor also at least partly analyzes
the data locally. The remaining data or intermediate analysis results, respectively, are
exchanged with the other sensors to come to a joint detection result.

• Sensor and Information Fusion:

Sensor fusion [ZKW15] incorporates data of different kind for intrusion detection. The
heterogeneous data enables a classification that considers additional context about the
events [AK17].
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2.3.2 Host Intrusion Detection

The following paragraphs describe three major categories of host intrusion detection. They are
derived from [Bri+19] with respect to the data on with they operate.

Application-based Host Intrusion Detection Often, a software bug in the application is the
vulnerability that an attacker exploits to take over the system. Thus, detecting an unintended
interaction with the application can indicate the intrusion early on. First, the logs written by
the application itself about its operation state can be used for intrusion detection. The logs
might directly include indicators for an attack like failed login attempts or indirectly indicate an
attack in terms of warnings about a malfunction. Instead on relying on application logs, other
approaches dissect the application in more detail.

A tainting framework [NS05] for running the application marks data from an untrusted source and
tracks the processing of this data by the application. This way, code injection is detected when
the untrusted input is about to be executed by the application as code. Abusing the application
can also be detection by gathering the application’s memory fingerprint and comparing it over
time [VH17]. A deviation from the learned fingerprint indicates an intrusion. More explicit
are detection approaches that check control flow integrity of the application [Gök+14]. A
static analysis of the binary models the intended control flow reflected by the call sequence of
code functions in the binary. A deviation from this model at runtime indicates a code reuse
attack that is executing the program code in an unintended way. Other approaches try to detect
malicious application before they even run, e.g., through the use of data-mining algorithms on
the binaries [Sch+00].

System-based Host Intrusion Detection System-based approaches detect intrusions in the
data produced by or on the level of the OS. The system logs in particular are a suitable data
source for the detection of attacks related to privilege escalation. Thus, both User-to-Root (U2R)
and Remote-to-Local (R2L) attacks can be detected based on the users’ login behavior [Tch+15].
While system logs are coarse-grained, system audit data provides a chronological and more
detailed description of the users’ activity and networking information about connections. Events
on this level are suited for intrusion detection with Markov chain [Ye+01] and SVM [LM04].

Also data about the file system is used for intrusion detection. File content and its integrity is
one of the main concerns in this field [KS94]. Thus, research is developing efficient and scalable
solutions to check for file integrity [Pat+04; KJL11]. Other approaches leverage the metadata
and access patterns to perform intrusion detection [Gri+03].

Specifically for the Windows OS, the Windows registry is a data source for the detection of
intrusions on OS level. This key-value database for the configuration of the OS, programs,
and hardware is often modified by malware [HB06]. Such unauthorized modifications can be
identified using anomaly detection [Hel+03].

System Calls for Host Intrusion Detection A more fine-grained data basis for intrusion
detection on OS level is the monitoring of system calls. In contrast to system-based intrusion
detection, the respective data is not provided by a system log but actively monitored by the
intrusion detection in place [24]. Processes in the user space invoke system calls to interact with
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the OS kernel for process, file, and network operations, among others. Prominent examples
of system calls are the read and write operations. In general, a system call is invoked by a
process running with the privileges of a particular user. Additional parameters might be passed
depending on the invoked system call. Often, the parameters include an identifier to reference
another system object such as processes, files, or sockets. For example, a process invokes the
write system call passing a file descriptor (fd) and an array of bytes to make the kernel send the
respective message over the particular network socket referenced by the given fd of the process.
When invoking a system call, the kernel returns the call result, which can be a status code or a
return value like received messages or object identifiers.

Approaches leverage the information of the monitored system calls in different ways to perform
intrusion detection:

• Call Sequences:

Various approaches are based on the sequences of system calls to profile the behavior of a
program over a given time period. Most often, approaches apply variations of sequential
features, i.e., n-Grams, [HFS98] or Markov models [GRS06] to classify a program as
benign or malicious.

• System Object Dependency Graph:

To model the interactions between different system objects, King et al. [KC03] introduces
the so-called system object dependency graph (SODG). The edges between nodes in
this graph, also called provenance graph, reflect the dependencies between caller and
callee with respect to the monitored system calls. This knowledge is used to track the
information flow across processes, files, and network sockets. It indirectly show which
other objects a particular object is in control of or at least influencing by providing data
input.

• Call Arguments:

A third type of approaches leverages the system call parameters. Kruegel et al. [Kru+03b]
analyze parameter features like string lengths and characters to build a models of normal
arguments for each program. Deviations from this model indicate that the program is
performing unusual kernel operations that result from the program being exploited.

2.3.3 Alert Correlation

Based on the alerts that are reported by an host- or network-based IDS, the correlation of alerts
aims to reduce and fuse them for a meaningful view on the intrusion. This is especially necessary
when having multiple potentially different IDSes in place. The six alert correlation components
are listed here according to [SG06].

Normalization The IDS vendors have their own format for logging IDS alerts, which causes
inter-operability issues when correlating the alerts. Thus, a common representation of alerts in
terms of normalization is required. The most popular and mature approach for normalization is
the Intrusion Detection Message Exchange Format (IDMEF) [DCF07]. This standard defines a
data model for the representation of IDS alerts and how they can be exchanged over a network.
Apart from describing the direct attributes of the alert, IDMEF allows the IDS to specify more
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information about the detection such as the confidence in the validity of the analysis result. In
additional, IDMEF supports the concept of alert correlation and can exchange correlation results
by signaling the relations between previously sent alerts.

However, further problems in the normalization exists that are not solved by an alert exchange
format such as IDMEF. An IDS still defines on its own the naming convention for certain
descriptions. While some fields such as IP addresses and timestamps are well defined, others
such as the classification to name the attack can be freely chosen by the alert provider. Resolving
such inconsistencies among different IDSes is currently done by a mapping created from a
database created with expert knowledge.

Aggregation The most effective component of alert correlation regarding volume reduction
is the aggregation. In extension to finding equal alerts that just differ in their timestamps a little,
alert clustering aims to find alerts with some equal attributes that have the same root cause or
effect. Alert clustering distinguishes these three major classes:

• Attribute Similarity:

Most similarity-based approaches assume that alerts from the same root cause will have
similar attributes. Thus, similarity between alerts directly depends on the similarity
between their attribute values. The similarity of attributes is usually a binary decision,
values are either equal or different [VS01]. Few other approaches widen this definition of
similarity by working with sets of already aggregated values [Jul03].

• Expert Rules:

Other approaches define the similarity between alerts for clustering by expert rules. Still
based on alert attributes, the work in [4] makes use of domain-specific expert rules based
on predicate logic.

• Data Mining:

Approached based on data mining [DC02] learn rules or mappings to decide which alerts
belong together. The approach in [ZG06] uses a SVM to learn the statistical relations of
the attack class for subsequent alerts based on the historical data. This can supersede the
manual effort to define relations manually with expert knowledge.

Correlation The correlation component aims to find causal relations among the alerts. This
component is an effective step towards the reconstruction of attack scenarios. Correlation
distinguishes these four classes of approaches:

• Scenario-based Correlation:

Approaches in this class correlate alerts based on the description of attack scenarios.
Thus, the scenario must be known and modeled for detection. Languages such as
LAMBDA [CO00] formally define the correlation and detection. For the detection,
alerts are chained sequentially in various combinations according to the possible scenario
definitions until an alert chain is found that fully matches the model [MD03]. A definition
of attack scenarios can also be provided through machine learning on labeled data by
identifying the scenario an alert belongs to [DC02].
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• Rule-based Correlation:

Rule-based correlation approaches define some type of pre- and postconditions of alerts
and chain alerts whenever the postcondition matches the precondition of a subsequent
alerts. This way, the chain of alerts evolves to attack scenarios that are not required to be
known, as in JIGSAW [TL01]. Variations of matching rules allow partial satisfaction of
conditions or define other restriction that have to be satisfied [CM02].

• Statistical Correlation:

The causality between alerts can be derived from statistical observations. In [Cup01], a
Bayesian network (BN) determines the conditional probability of an alerts to succeed in
the presence of another particular alert. Based on this, alerts of the same scenario are
identified.

• Temporal Correlation:

To correlate two alerts based on their temporal relation, approaches apply some kind
of time series analysis. The work in [QL03] makes use of the Granger causality test to
determine if an alert X is forecasting another alert Y. If so, alert X is assumed to cause
alert Y, which makes both alerts to belong to the same attack scenario.

False Alert Reduction The most effective component of alert correlation for the identification
of false analysis results is the false alert reduction. This component aims to clarify whether a
positive analysis result, i.e., an alert, is indeed a true positive or a false positive instead. Some
approaches assume alerts that frequently occur together in a pattern to reflect true positives
more likely [Man+00]. A technique to identify false positives is the use of additional context
regarding the alerts. The network topology or alert semantics are only two examples of such
context [Pie04]. Approaches use this context to verify if the attack can be successful in the first
place, e.g., if the attempted exploit is applicable to the targeted system at all. Furthermore, the
definition of attack scenarios can be used to identify false positives by considering alerts to be
false positive if they cannot be correlated [YF04]. Another way to distinguish true positives and
false positives is to assess the confidence in the analysis results of particular sensors and to fuse
these confidences for correlated alerts from different sensors [YF05].

Attack Strategy Analysis The attack strategy analysis is looking at an attack’s intention that
the attacker pursues, mostly based on the already correlated alerts. The benefit of this analysis
in comparison to the detection of particular attack scenarios is the tolerance regarding missing
alerts, i.e., false negatives. This way, the attack strategy analysis is also used to predict upcoming
attack steps that follow the previous steps. A method to model the series or combination of
attack actions that achieve a particular attack goal is the usage of attack trees [QL04]. In
this case, the root node represents the ultimate goal and sub-trees describe sub-goals that an
attacker has to achieve first. Particularly for the hypothesizing and reasoning of missed alerts or
correlated alerts, the work in [Nin+04] takes a causality correlation based on prerequisites and
consequences and combines it with a correlation based on the similarity between alert attribute
values.
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Prioritization Some alerts are more important than others. Some indicate sever consequences
in terms of violating security goals business needs, others require an immediate response. To
assign priorities to alerts, various domain information are required such as security policies, net-
work topologies, and vulnerability analysis, among others. The approach M-Correlator [PFV02]
is an example that illustrates how to generate the required information, store it in a database,
and leverage it to assign alerts an incident rank based on the outcome, priority and relevance of
alerts.

2.4 Monitoring and Intrusion Detection Systems

There is a large market for intrusion detection solutions. Apart from traditional on-premise
products, also more and more companies offer intrusion detection as a kind of service. Especially
commercial solutions try to stand out from the crowd by extending detection capabilities for
particular use-cases, combining different tasks related to intrusion detection to a all-in-one
solution, or visualizing the security status on an abstraction level suitable for management
boards.

However, all these products and services rely on very well-known principles and basics of
intrusion detection (cf. Section 2.3). In their core, the security products can be narrowed down
to a functionality similar to a traditional IDS, including the monitoring of the supervised system
and conducting a security analysis of the events. With Zeek and osquery, the following describes
a specific tool for security monitoring in the network and of hosts, respectively.

2.4.1 Zeek

Zeek is a network-based security tool for passive traffic analysis. This open-source security
monitor inspects all traffic on a link in depth for various purposes. These purposes include
analysis tasks even out the security domain like performance measuring or troubleshooting a
network issue. Based on the capabilities that come with the wide range of analysis options, Zeek
is also very suited for various security-related analysis tasks and detects signs of suspicious
activity.

The time when Vern Paxson began the development in 1995, people were used to name this
security monitor Bro. Recently in 2018, Vern Paxson announced the renaming to Zeek1. Back
then in 1995, he was a computer science Ph.D. student at the University of California (UC),
Berkeley, and a researcher at the Lawrence Berkeley National Laboratory (LBNL). The same
lab already began to deploy Bro operationally a few years later as an early adopter. The first
experiences with Bro have been presented at the USENIX Security Symposium in 1998 [Pax98]
and later as a refined journal article in 1999 [Pax99]. After the young history of Bro, further
development has been taken place at the International Computer Science Institute (ICSI) 2.
Long-term financial support has been coming from the National Science Foundation (NSF) 3

since 2003. That the initial creator of Zeek has been a researcher with academic background is
visible throughout the whole history of Zeek including several related scientific publications at
top-tier conferences. Thus, Zeek has been developed from the perspective of both researchers

1. https://zeek.org/2018/10/11/renaming-the-bro-project/
2. https://www.icsi.berkeley.edu/
3. https://www.nsf.gov/
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and practitioners ever since. Nowadays, Zeek is used by largest supercomputing centers, national
labs, university campuses, and even Fortune 10 companies.

Running Zeek in the network directly leads to a better understanding of what is going on in the
network through the extensive log files written by Zeek. They achieve a high-level summary of
network activities by describing every connection together with its statistics. In addition, more
log files are written that contain application-specific information about web-based applications
using the Hypertext Transfer Protocol (HTTP) protocol, the types of transmitted content in terms
of Multipurpose Internet Mail Extensions (MIME) types, Domain Name System (DNS) queries
and responses, encrypted traffic via TLS, email communication over the Simple Mail Transfer
Protocol (SMTP), and much more. All these well-structured log files provide very valuable
information about the network activity on an abstraction level that is suitable for the analysis
with external analysis tools. Alternatively, these log files are further collected, processed, and
visualized by SIEM systems.

All the valuable information and analysis result that Zeek writes to log files and beyond that
is also processed live in Zeek itself for security-related analysis. For example, Zeek reports
communication that is involving IP addresses or files known to be malicious, identifies software
on the network that is known to be vulnerable in the installed version, reports TLS certificates
that are untrusted or expired, detects SSH brute-force attacks as well as port scans, and much
more.

The powerful functionality that comes with Zeek out of the box demonstrates only a fraction of
what Zeek is capable of. Indeed, Zeek is a fully customizable and extensible platform for traffic
analysis. The analysis is based on a Turing-complete scripting language with handy pre-built
functionality for analysis in the network domain. Scripts written in this language implement
the actual analysis tasks, including also a lot of the out of the box functionality such as logging.
Thus, a Zeek deployment can be highly customized by enabling or disabling particular scripts.
Furthermore, Zeek works with a package manager to share and deploy more scripts provided by
the Zeek community. This flexibility is the major reason why some concepts of this thesis have
been realized with Zeek.

With all these extensible and customizable functionality of Zeek, the developers themselves
point out that Zeek is different to a classic signature-based IDS and was never meant so. Even
though the possibility for signature detection exists, the actual power of Zeek comes with its
scripting language that enables intrusion detection in various ways, including semantic misuse
detection, anomaly detection, and behavioral analysis. From an architectural perspective, the
security monitoring works in an event-based fashion and is layered into two major components:
the core and the script interpreter. The event dispatcher in Zeek invokes functions in the core
and handlers in the script land to process events of interest, that can emit new events on their
own. For the internal transmission and queuing of events, Zeek leverages the publish-subscribe
library Broker4. This library distributes events across the overlay of connected endpoints, even
among different processes and remote machines. The incoming stream of network packets is
first processed by the event engine, i.e., core, of Zeek. The events at this layer stand for network
activity in policy-neutral terms, i.e., the decoded network packet stream in its different layers of
the Internet model (cf. Section 2.1.1). Thus, these events just describe what is happening in the
network. Thus, also application semantics like the requested Uniform Resource Identifier (URI)
in an HTTP request are extracted from the packet stream in the Zeek core, and they themselves

4. https://docs.zeek.org/projects/broker
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are reflected by events. The other component is the policy script interpreter that executes event
handlers written in Zeek’s scripting language. These scripts react upon specific events and
perform further interpretation of them, e.g., to check if an observed Uniform Resource Locator
(URL) is known to serve malware. These scripts write analysis or detection results to log files or
send a notification directly to the security operations center (SOC).

2.4.2 osquery

The host sensor osquery 5 is an OS instrumentation framework for low-level OS analytics.
osquery provides real-time insight into the current state of the infrastructure, i.e., end devices in-
cluding servers, laptops, and desktop computers. Thus, osquery enables performance monitoring,
compliance verification, and security checks of the whole network infrastructure.

osquery has initially been developed by Facebook with the intention to be deployed in-house for
more insights into their infrastructure and released in 2014 as an open-source tool6. But also
other large companies like Airbnb, Dropbox, and Netflix have seen the benefits of monitoring
their infrastructure using osquery early on. While more and more interests and actors were
involved into the development, the facebook open source project became a project with a diverse
and active community soon. Recently in 2019, the Linux Foundation has taken over the mantel
of osquery 7. To address concerns regarding how Facebook handled the project in the past and
that they could neglect the project in the future, the Linux Foundation announced the formation
of a new foundation to support the osquery community. This foundation is dedicated to growing
and sustaining a neutral osquery ecosystem.

The fundamental idea of osquery is to exposes the OS as a high-performance relational database.
The SQL tables represent the current state of OS properties such as running processes, loaded
kernel modules, open network connections, browser plugins, hardware events, file hashes, and
much more. In the current version 4.4.0, in total 258 tables exists. Using SQL queries allows to
explore these various OS tables, making use of regular SQL features such as joining different
tables, filtering, or counting.

Analytics can make use of SQL queries in two operation modes. When running the interactive
shell osqueryi, the query result reflects the current OS state, e.g., covering all running processes.
osqueryi is the mode of choice when trying new queries or manually checking the status of
particular hosts for forensic investigations. The automated mode is the daemon osqueryd, which
regularly runs a schedule of queries. The daemon takes care of aggregating the query results over
time and generating logs which indicate state changes in the infrastructure. Configuring osquery
on all end devices in the network allows to schedule queries to be executed across the entire
infrastructure. Apart from writing log files locally to the disk of the monitored hosts, remote
logging capabilities as well as the possibility for integration into other log pipelines exists.
For large deployments, osquery defines a representational state transfer (REST) application
programming interface (API) over HTTP to a remote server to retrieve its configuration, including
schedule, and to log query results. One project that implements this API on a remote server to
manage an osquery fleet is doorman8.

5. https://osquery.io/
6. https://engineering.fb.com/security/introducing-osquery/
7. https://www.linuxfoundation.org/press-release/2019/06/the-linux-foundation-announces-intent-to-form-new-

foundation-to-support-osquery-community/
8. https://github.com/mwielgoszewski/doorman
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In general, osquery is cross platform with support for Windows, MacOS, FreeBSD, and many
Linux distributions. Thus, an SQL query is usually the same independent of the OS it is
executed on. This makes monitoring of heterogeneous devices in the entire network easier. The
running osquery itself makes sure that the query or OS table, respectively, is using the correct
mechanisms for the particularly OS to retrieve the respective OS data. However, the full set of
available tables is not applicable to every OS. While only some tables are supported on every
OS (46 table in version 4.4.0), the remaining tables are only applicable to one or a few of the
supported OSes.

From an architectural perspective, osquery is extensible through its modular plugins that add
functionality regarding tables and logging. Such custom plugins are not even required to be
compiled into the osquery binary. Instead, these plugins can be compiled in the form of an
extension independently from the osquery binary. Such an extension runs as separate process
next to osqueryi or osqueryd, respectively, and works without any modifications to the official
osquery binary. The official osquery and the extension synchronize over a Thrift interface.
Thus, the so-called osquery core running in the process of the official osquery, can make use
of all tables and logging capabilities that are either compiled into the official binary of the
extension. Table plugins define new osquery database tables and specify how the respective data
is retrieved from the OS. Logging tables implement how the query results are persistently stored
or forwarded.

2.5 Summary

This chapter has provided background information that is essential to understand and to motivate
the detection approaches in the remainder of this thesis. An introduction to the fundamentals of
computer networks has been given as wells as a summary of attacks that target the network at
large. Such attacks threaten the network operation, critical business processes, and can have
severe consequences to the overall business goals.

Furthermore, this chapter has summarized the basic principles of intrusion detection and high-
lighted the challenges that an IDS has to overcome. A classification of intrusion detection
gives insights into the different mechanisms that approaches are based on. The most variety of
mechanisms are found in the network-based intrusion detection and the anomaly detection in
particular. Based on the alerts that come from both host- and network-based IDSes, also alert
correlation has been shown to be very diverse in its goals and applied mechanisms.

The end of this chapter has presented the network-based security monitor Zeek as the main
evaluation tool that is used throughout this thesis. In addition, the host sensor osquery has been
presented as the counterpart to Zeek on hosts, which is also used in this thesis.

The next chapter discusses and analyzes the current state of the art in intrusion detection
according to prior established requirements to an IDS.
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3 Requirements and State of the Art

This chapter first describes requirements of an intrusion detection system (IDS) when performing
intrusion detection. Afterwards, the intrusion detection process is introduced and utilized to
give a classification of related work. The remaining sections then present and discuss state of
the art along these requirements. Presenting state of the art starts with security information and
event management (SIEM) systems that are widely used in practice for network-wide intrusion
detection because they collect, correlate, and visualize information from various security-related
logs. As most of the SIEM systems are commercial products, their applicability to solve the
challenges in intrusion detection is discussed in general and separately from the remaining
scientific research. Afterwards, the remainder of this chapter structures this remaining research
work into three groups according to the intrusion detection process. The first group discusses
approaches to detect network-wide attacks. The second group discusses approaches to correlate
context to assist in intrusion detection. The third group discusses approaches to reconstruct
multi-step attacks. In the end of this chapter, a discussion summarizes the requirements and the
state of the art.

3.1 Requirements to Intrusion Detection

The following defines the requirements of large-scale intrusion detection in the network that are
either functional or directly related to the quality of the system:

Detection Accuracy The IDS must achieve high accuracy in detecting attacks. The goal
is to detect any attack and to report them as a single alarm. This also includes a precise and
meaningful representation of the attack data belonging to an alarm. Any incorrect detection
leads to undetected attacks (false negatives) or false alarms (false positives). High accuracy
minimizes both.

Apart from the detection itself, i.e., the classification of malicious activities and their correlation
to attacks, the accuracy depends on the quality of the monitoring data and its collection [Zho+18].
If monitoring, i.e., the capturing of activity, overlooks the malicious activity, it would not be
evaluated and the attack not detected at all. However, as long as sufficient malicious activity is
captured, an IDS must still be able to detect the attack.

Real-Time Detection The intrusion detection is referred to as real-time or online if malicious
activity is identified right upon its occurrence. In particular, this means that the detection
algorithm can report the attack as soon as sufficient evidence is observed. Real-time detection is
required for initiating an effective attack response and mitigation already while the attack is still
going on.
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Efficiency The intrusion detection must perform efficiently and with low resource require-
ments. This means that the overhead for processing activities and alerts must be small. It must
be possible to obtain a detection result with a reasonable amount of resources.

Scalability For the applicability in large networks, usually reflected by the number of hosts in
the network, an IDS must be capable of handling an arbitrary large amount of data. To cover all
monitored hosts and their traffic respectively, the intrusion detection performance must scale
linearly with the amount of resource added [Hil90].

Easy Deployment The requirement is threefold and refers to the integration, configuration,
and maintenance of an IDS and the environment that it is applied to. First, the monitoring and
detection mechanisms need to be integrated into an existing environment, i.e., the network and
the hosts, but should not require significant changes to them. Second, the deployment should
have the ability to automatically adjust itself, without the intervention of an administrator. Last,
the IDS itself should adjust to changing threats and new attacks.

Resilience and Self-protection An IDS must perform correctly all the time, even when the
attacker is aware of the IDS in place and tries to sabotage it. The IDS itself might become a
target first so that in the aftermath, the attacker can make the original attack go unnoticed. Thus,
it is required that it cannot be deactivated by deliberate attacks.

More generally, an IDS must be resilient against internal failures and attacks. For this, it
should still maintain its capability to report alarms with acceptable accuracy. For this reason,
the detection should avoid any single points of failure (SPOF). Instead of a full IDS failure,
internal failures and attacks should be countered with graceful degradation and fast restoration
mechanisms.

Privacy As security-related data often contains sensitive information, exchanging such data
needs to be protected, e.g., when shared in a distributed IDS. For this reason, the audience
is carefully chosen to whom data is disclosed. Also privacy-enhancing technologies (PETs)
like anonymization can help to achieve (collaborative) intrusion detection while preserving the
privacy of involved users, companies, and network providers.

3.2 Classification according to the Intrusion Detection Process

The intrusion detection process guides through the different tasks that are required for successful
intrusion detection, motivated by the alert correlation process in [HF19]. The intrusion detection
process highlights the relations among monitored events, alerts, attacks, and multi-step attacks.
After introducing the process and the tasks required to detect different kind of attacks, the
process is utilized to define a classification of related work.
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3.2.1 Intrusion Detection Process

During the intrusion detection process, security-related data is monitored and analyzed to detect
any kind of attacks. For long time, intrusion detection research has been solely focusing on the
classification of observed events and the issuing of alerts for every malicious event. However,
recent research as shown that today’s complex attacks usually comprise several actions and
cannot be described nor detected by a single event. Therefore, their detection and reconstruction
requires several detection and correlation steps. For that, the input data is processed and
transformed to different representations that are explained next and illustrated in Figure 3.1.
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Figure 3.1: Intrusion detection process and classification of related work.

The input of the intrusion detection process are events that represent monitored activity, e.g.,
network packets, processes, and files. An event describes a low-level information in the
monitored environment. Such an information includes the message bytes that are transmitted in
the network, the execution of an application and its run-time parameters, or a file access along
with its content. This information is represented as event features.

In the intrusion detection process, intrusion detection refers to the scope of a traditional IDS. By
applying signature-, or anomaly, or policy-based detection, individual events are classified as
malicious or benign. If malicious, an alert is generated containing the same features like the
respective event and some detection specific features in addition to describe the type of alert.
Example alerts are the packet payload of a worm or malicious mail attachment, the file of disk
that is infected by a virus, or the failed authorization to an application.

To make results more accurate, refinement of the security-related data with additional context is
necessary. Although context can be added at any stage of the intrusion detection process, the
most value is usually added when used during event monitoring or intrusion detection. Often,
the context comes from the correlation with other events or externally from a kind of knowledge
database. For example, the context of a single event within the sequence of other events is
highly relevant for intrusion detection, e.g., an incomplete Transmission Control Protocol (TCP)
handshake as potentially part of a port scan can only be recognized when being aware of the
three-way handshake and when setting the related messages into context. But there also more
other examples for refinements with context. The alert of a detected worm message can be
matched with the applications that actually run on the targeted host. This allows to prioritize
alerts by determining the success probability of an attack. Furthermore, additional context can
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be used in the intrusion detection itself, e.g., about IP addresses or domains that are known for
malicious activities.

Based on monitored events and reported alerts, alert correlation is performed to assemble alerts
that are related to the same attack step. For attacks that comprise a single activity, this solely
relies on the intrusion detection, as the resulting alert already reflects the full attack. However,
especially for attacks that comprise similar repeated actions, events and alerts are not isolated
but must be seen in relation to reveal the full attack. This is the case for port scans or distributed
denial-of-service (DDoS) attacks, where hundreds or thousands of connections belong to the
same attack. There are actually two different approaches that are usually applied for the detection
of such attacks. The first one is to rely on the intrusion detection and to actually correlate the
alerts. This is often the case for attacks where all malicious events can be identified individually.
In the other case, the malicious events can only be identified in combination. For that, the alert
correlation might still operate on the basis of events but generates alerts that directly link the
respective events. The outcome of the alert correlation are individual attack step. Each step
eventually represents an unrelated attack but some steps might build upon each other.

The most complex attacks are multi-step attacks, i.e., such attacks where the attacker performs
several different steps in chronological order such that the previous step enables the next step
until the final goal is achieved. Compared to single-step attacks detected by alert correlation,
attack correlation reveals the relation among the attack steps in a multi-step attack. The alerts of
a multi-step attack are supposed to encompass all the different activities caused by the attacker
across the multiple attack steps. As these steps build on each other, it allows to highlight the
way and all the exploited vulnerabilities that lead to the successful attack.

3.2.2 Classification of Related Work

The intrusion detection process identifies the four different tasks intrusion detection, refinement,
alert correlation, and attack correlation (cf. Section 3.2.1). However, these tasks not only
operate on the output of the directly preceding task but can leverage all previous data and results
from earlier stages or prepare for subsequent tasks. Therefore, intrusion detection approaches
usually focus on a concrete task in the intrusion detection process but might also partly cover
aspects of the other tasks.

For a successful intrusion detection in the network, individual solutions to these four tasks might
exist but their interoperability must be given. Although being only one part of the intrusion
detection process, the intrusion detection to assess events and to report malicious events as alerts
is still the core of intrusion detection. That is probably why it has been extensively studied in the
literature for decades [AMH16; Kwo+19; WS04; KT03; DD00]. However, detecting intrusions
in large network, especially for distributed or multi-step attacks, cause other challenges. These
cannot be solved by approaches that perform on individual events only. Thus, for the scope of
this thesis, relevant work in intrusion detection is summarized in three classes and marked in
Figure 3.1 with A©, B©, and C©. Figure 3.2 and the following paragraphs detail this classification
that is also used to structure related work in Sections 3.4 - 3.6.

Network-wide Attack Detection The first class of related work contains detection approaches
that are partly comparable to the scope of a traditional IDS. This group encompasses basic
approaches that can be used in the first phase of the intrusion detection process to assess events
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Figure 3.2: Classification of related work for intrusion detection. Grey classifications are out
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regarding their maliciousness, but also to consider relations among events and alerts to assemble
them to attacks. The presentation of related work in this class focuses on approaches to detect
well-known and network-wide attack scenarios that affects several hosts simultaneously or even
larger parts of the network. As such distributed and large-scale attacks usually leave many traces
at affected hosts and cause many alerts, clustering is a common technique used by the respective
approaches. Approaches are further structured into three subclasses.

The first subclass contains approaches to detect specific distributed attack scenarios, usually on
the basis of events. This subclass addresses attacks like:

• Port scans [SHM02; Gat09; LRS03; Jun+04]

• DDoS [JK11; Sek+06; Fei+03]

• Worms [SJB04; Kru+05; Sta+04]

• Botnets [Nag+10; RVE18; CDM10; FWE+11; Nar+14; Yan+15]

The second subclass contains alert correlation approaches that aim to reduce the alert volume to
attack presentations. These approaches apply some kind of clustering or aggregation of alerts
and their features. The result is a summary of alerts that are likely to belong together, eventually
reflecting an attack that caused many similar alerts. For this reason, most of the approaches for
this purpose are

• similarity-based [VS01; Jul03; DW01]. Others are based on

• entropy [GG15] or rough set theory [ZGL18].

The third subclass contains approaches that build a collaborative intrusion detection system
(CIDS) [Vas+15b], particularly those that incorporate the exchange of data aggregations among
sensor nodes. Such approaches also eventually reveal and report large-scale attacks, as a CIDS
aims to detect attacks that are potentially relevant on a global scope. For data sharing, different
languages and protocols exist, e.g., Structured Threat Information Expression (STIX) [Bar14],
Trusted Automated Exchange of Intelligence Information (TAXII) [CDS14], or the Intrusion
Detection Message Exchange Format (IDMEF) [DCF07]. However, the more interesting
question is about which data actually has to be shared and how an algorithm uses it for intrusion
detection. For that, CIDSes exist to share either

• traffic aggregations [Cai+05a; YBJ04; AHS14] or

• alert aggregations [ZLK09; Loc+05].

Context Correlation for Network Intrusion Detection The second class of related work
contains approaches that assist in intrusion detection by providing additional context for events.
Such approaches supplement security-related raw data and clustered data with additional contex-
tual information. This includes related information to network connections, hosts, or alerts. Thus,
the goal of approaches in the second group is to enrich the information value by correlating data
from different domains. This strengthens the attack detection itself, i.e., filters false positives, or
prepares for the multi-step detection in the next step. The approaches are further structured into
three subclasses as follows.

The first subclass contains approaches to complement context of network events. The contextual
information comes from one of the four sources,
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• from the network flows themselves [AK14; SP03],

• from the Operating System [Sna+91],

• from the communicating application [AL01; Dre+05], or

• from a knowledge database about the hosts and their vulnerabilities [AK13; Mor+02].

The second subclass contains approaches that correlate logs of different semantics, effectively
linking network logs with logs of the host domain. When linked to an alert, the correlated logs
gives more insight into the attack. Depending on the log granularity, the correlation enriches log
data on one of the following levels:

• Level of analysis logs [Aba+03; Tan+14], i.e. detection results

• Level of event logs [Pei+16; Nin+04], i.e., domain-specific activities

The last subclass contains approaches for endpoint monitoring that can provide additional host
information for network intrusion detection. Approaches like [MZX16; KC03] neither perform
intrusion nor are they directly incorporated into intrusion detection. But their outcome can assist
in manual security investigations like forensics and threat-hunting.

Multi-Step Attack Reconstruction The third class of related work contains approaches that
leverage all previous data from the intrusion detection process to perform a multi-step attack
detection. This is necessary for all attacks that are composed out of several steps. Detecting
these multi-step attacks requires to link the individual steps to reveal how the attack goal was
achieved. The approaches are further structured into two subclasses.

The first subclass contains approaches for lateral movement. These approaches focus on the
reconstruction of the attack path through infected hosts. There are

• model-based approaches [RCM11; Faw+16] to detect particular paths, and

• probability-based approach [Sun+16; Wil+19] to determine the most likely paths.

The second subclass contains approaches for reconstructing the attack scenario. These ap-
proaches focus on revealing the different actions performed during an multi-step attack. There
are

• model-based approaches [Mil+19] to detect a particular attacker model,

• signature-based approaches [MSK05; NCR02] to link known intersections of steps, and

• similarity-based approaches [FA16; ZG06] to link equal alert features among steps.
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3.3 SIEM Systems

In computer and enterprise networks, a lot of security-related data is usually logged. Based
on these logs, security operators have to evaluate current threats and attacks to prioritize and
initiate effective countermeasures. However, this decision making is usually difficult in practice
because the log files are distributed in the network and contain information of different domains
or granularity. Finding related log information across these log files is therefore difficult because
of different semantics of the log entries. Alternatively, an isolated evaluation of single log files
is neither sufficient for a sound assessment of the threat level in the whole network nor to detail
the full story of a successful attack.

In fact, this requires data from several sources at different locations in the network. First of all,
traditional IDSes – both in the network and on hosts – log their detection and analysis results.
But their detection scope is limited to the monitored environment and usually excludes other
data sources that are of high relevance for intrusion detection. In addition to malware detection
through file analysis on the hosts by a host intrusion detection system (HIDS), their system
logs include valuable information such as login events, privilege escalations, or changes to
local security policies. But also unexpected high utilization of computer resources such as CPU
or RAM can be an indication for misuse. Furthermore, especially server applications such as
mail or web servers write valuable logs that summarize their operations and interactions with
the network. In addition to packet analysis results by a network intrusion detection system
(NIDS), more network functions such as routers or firewalls with their management and status
information exist. And also other central systems of the network infrastructure such as the
domain controller (DC) or the file share server can provide more insight into a security issue or
enable its detection in the first place.

As all these logs from hosts and network functions are distributed in the network, a SIEM
system [WN05; BMZ14] aims for their central collection, analysis, and visualization. SIEM
systems are popular in many enterprise environments as they effectively enable security operators
to identify many basic and frequent security issues in real-time. For that, it is explained next,
how SIEM systems achieve to

1. collect the distributed data first,

2. then analyze it for intrusion or faults, and

3. in the end, visualize the analyzed data.

For the collection of distributed data, SIEM systems require a collector to run on the monitored
hosts. It forwards the data of particular log files to a central storage for several reasons. First of
all, this storage saves the full details of all retrieved logs in a tamper-resistant and audit-proof
manner. The historical raw data is stored in a normalized and structured way so that it is suited
for compliance purposes, forensics to investigate a security issue, and accounting reports. Apart
from the benefits that come with the long-term storage capacities, the retrieved logs are also
leveraged for real-time analysis.

The main purpose of the log analysis is to highlight security-relevant relations among the log
entries through data correlation. SIEM products differ in the technology that they use for this
purpose, including logical rules, machine learning, and artificial intelligence. The most basic
analysis is data aggregation to calculate statistics and to detect when thresholds are exceeded.
Prominent examples are the utilization of resources such as CPU and bandwidth but also
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authentication attempts for Secure Shell (SSH) and web access, among others. Furthermore,
events might be correlated based on timestamps to discover related events that are caused by
the same root cause. For example, an unexpected high disk usage on a server and at the same
time an increased network usage at the respective switch port of the server can be the result of
data leakage. More sophisticated, SIEM systems can apply pattern detection to identify events
that often occur together or in sequence. This enables security operators to identify patterns of
regular operation and filter for anomalous events.

After collecting and correlating, SIEM systems report the data to security operators in an
intelligible representation so that the important information and characteristics of an incident are
clear. The most intuitive way is the visualization of the data in a dashboard. It usually highlights
the current threat level and concrete incidents. Furthermore, it keeps track of historical measures
to visually identify any trends that have to be mitigated early on. Furthermore, SIEM systems
provide mechanisms for altering the security operator of critical events and threatening trends.
This is usually done via well-established communication channels such as email.

Although SIEM systems seem to solve some of the challenges of intrusion detection, especially
related to linking information from several sources, they also have drawbacks and limitations.
The analysis quality is dependent on the analysis capabilities and the analysis language. Both,
however, are only basic compared to state of the art technologies and approaches intrusion
detection can make use of. The analysis, therefore, is usually limited to aggregations and
pattern detection based on timestamps. Especially the latter, as well as other timestamp-based
correlations of events, require precise and synchronized clocks across all monitored hosts. Any
inconsistency of timestamps across logs can result in false positive and false negative correlation
results. Another significant limitation of SIEM systems are the data sources. One drawback
is the logs itself, as they are consumed unidirectional without any possibilities to dynamically
control which data is retrieved for storage and analysis. Another drawback is the granularity of
data, especially for actual network traffic data. Although some products include traffic statistics
or even NetFlow [KB96] data, the analysis cannot make use of individual flow information
because of the analysis limitations. However, accurate intrusion detection requires fine-grained
network data such as full details of network traffic including packet headers and payload.

In summary, the main benefit of SIEM systems is the intelligible presentation of security-related
data through their basic analysis, summary, and visualization. However, these systems lack fine-
grained data and have only limited capabilities for analysis. Therefore, SIEM systems cannot
take over all aspects of intrusion detection, especially the detection of sophisticated attacks.
Instead, SIEM systems should be limited to consume only direct relevant and high-quality data
that is produced by specialized systems for monitoring and intrusion detection. Consequently,
there must exist other tools and systems that implement effective algorithms and mechanisms
for intrusion detection that feed their results into SIEM systems.

3.4 Network-wide Attack Detection

This section presents approaches for the detection of network-wide attack scenarios, i.e., those
that involve multiple attackers and/or multiple victims. Such attack scenarios like DDoS, scans,
worms, or botnets, usually consist of several malicious network activities and thus cause a lot of
similar data or alerts. The goal is to group the respective data to a single attack in an early stage
of the intrusion detection process.
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The approaches are structured into three groups (cf. Section 3.2.2). The first group contains
approaches for the detection of specific distributed attack scenarios in network data. Approaches
in the second group cluster alerts and those in the third group exchange data aggregations in
a CIDS. Especially approaches in the last two groups summarize security-related data in the
network to highlight its characteristics, eventually summarizing the network-wide attack.

3.4.1 Detecting Distributed Scenarios

The following paragraphs discuss detection approaches for specific distributed attack scenarios,
including port scans, DDoS, worm spreading, and botnets.

SPICE Staniford et al. [SHM02] propose their Stealthy Probing and Intrusion Correlation
Engine (SPICE) for the detection of port scans. The authors note that stealthy attackers can
easily evade detection when originating not more than n distinct probes within m seconds from
a single source. Based on their previous work GrIDS [Sta+96] that was not capable of detecting
stealthy port scans and only correlated scans from the same IP address, SPICE now addresses
the challenge of slow and randomized scans. To correlate scan activity across long time periods,
Staniford et al. introduce techniques to identify ongoing scans and to efficiently compare
new activity with historical activities. The architecture is composed of the monitoring sensor
Statistical Packet Anomaly Detection Engine (SPADE) and the actual correlator SPICE.

Destination Port

Source IP Source Port

Destination IP

Figure 3.3: Dependable features used in the Bayesian network.

The anomaly sensor SPADE initially detects individual scan probes, i.e., packets to determine
whether a single port is open or not. The detection of such probes is almost independent from
the actual port status. Instead of focusing on failed connection attempts, the key idea is to detect
connection attempts to IP and ports that are not expected to occur. For that, the likelihood
for a particular connection with the well-known connection 5-tuple of IP addresses, ports, and
protocol is predicted. The intuition behind this is that attackers want to extend their knowledge
about a network and therefore will also probe ports and hosts for running services that are not
known and accessed by the public. To detect such anomalies in service usage, a model with
the probabilities for concrete connection 5-tuples must be trained for the network in question.
Because counting every observed 5-tuples would be too inefficient, the authors propose to
calculate the entropy of feature combinations as conditional probabilities and to model them in
a Bayesian network (BN) [Pea85; Pea88]. Based on a real-world study, Staniford et al. suggest
a BN structure as illustrated in Figure 3.3. The resulting conditional probabilities allow to
determine the likelihood of any 5-tuples. Each conditional probability generally relies on only a
few out of the five features. The combination with additional ones would add no notable value
to the entropy. When monitoring the network with SPADE, it assigns an anomaly score to each
packet. Packets that are sufficiently anomalous according to the trained model are passed to the
correlation engine along with their anomaly scores.
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The correlation engine SPICE identifies related scan probes, i.e., events, and groups them to
port scans using a correlation graph G = (V,E). Each node in V is an anonymous event and the
edges E represent strong relations among the events. When adding a new event to the graph,
the basic idea is to find the event with the strongest relation among all events observed so far.
However, instead of calculating the strength between the new and all other events, SPICE makes
use of simulated annealing [RN95]. For that, a previous event, i.e., v ∈ V , is initially chosen
at random as current node. Starting there, G is traversed several hops along the existing edges
E until a suitable node with high correlation strength is found. For every hop in the traversal,
SPICE compares the correlation strength of the new events with both the current node and a
random neighbor. If the correlation strength with this neighbor is higher, the traversal continues
at this neighbor which becomes the current node. Alternatively, the traversal might continue
probabilistically anyhow to converge towards a stronger relation multiple hops away. Otherwise,
the traversal ends at the current node. In total, four traversal runs are performed that are likely to
end in four different nodes because of the probabilistic nature. When adding the new node to G,
edges to these four nodes are added as well.

The correlation strength in SPICE intuitively indicates scan activity that belongs to the same
attacker. For that, the correlation considers characteristics of two categories:

• The scan footprint of a scan represents the set of destination IP address and port combina-
tions an attacker is interested in.

• The script of a scan defines how it is performed, including the time sequence and the order
of scanned IP addresses and ports.

Roughly speaking, the scan footprint and the script are equal for all scan probes of the same
attack while they differ for probes of different attacks. However, many potential characteristics
exist and their significance vary among the attacks. Therefore, Staniford et al. propose several
heuristic functions hi(e1,e2) to test for specific characteristics among the features from the
connection 5-tuples of two events e1 and e2. Weighting each function hi with ci, results in the
correlation strength function f :

f (e1,e2) =
k

∑
i=1

(ci×hi(e1,e2))

The authors propose feature heuristics that test different feature combinations for equality,
proximity, separation, or covariance. To report port scans in the correlation graph G, only
edges with a correlation strength above a threshold remain. This ideally results in disconnected
subgraphs, each grouping the events of a port scan. To further maintain G, outdated events must
be removed. The lifetime of events is based on their anomaly score are calculated by SPADE.
Events with higher anomalousness are saved longer. Also, events of a port scan group are only
removed after the lifetime of every event in the group is over.

The outcome of SPICE are groups of scan events for individual port scans. The detection and
correlation is performed in an online fashion and, therefore, applicable for real-time detection.
Information about ongoing scans is saved longer so that future scan activity is assigned correctly
to previous activity, even for stealthy scans that are slow and randomized. However, SPICE has
been developed for scan attacks only and, therefore, is not universally applicable. Furthermore,
the scan is just representation by the collection of all relevant events or alerts, respectively, with
their full details, potentially including sensitive information.
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Despite the overhead that usually comes with the comparison of every new events with a large
amount of previous events, SPICE is efficient because of the simulated annealing. Also, the
various parameters and heuristics of the correlation eventually allows the detector to adapt to
high loads and to continue operation with decreased quality. However, this detection does not
scale well because of the centralized processing.

SPICE can easily be deployed on top of a standard network monitoring solution that already
provide basic monitoring of network flows.

Coordinated Scan Detection Gates [Gat09] proposes a detection algorithm for coordinated
port scans. In such a coordinated attack, the attack tasks are distributed among the multiple
sources under the control of the attacker. The author notes that such attacks usually indicate
strong and powerful attackers that want to stay undetected. To assemble the scan activity
from coordinated sources, Gates has developed an algorithm that leverages a fundamental
characteristic of coordinate attacks. This is that coordinated sources distribute the load to
achieve the common goal. Thus, the algorithm identifies scan activities that in combination
covers a large portion of the network.

Attacker Characteristic Symbol Values
Number of ports |P| One port

Multiple ports
Number of addresses |A| One address

Some addresses
All addresses of the network

Selection of addresses and ports ς In random order
following some pattern
the whole subnet or network

Selection of camouflage probes κ None
Scanning of random IP addresses and ports
Scanning to meet some property
Scanning some contiguous space or subnet

Table 3.1: Characteristics to model the scan intention of an attacker.

A port scan is modeled based on the combination of four characteristics about the attacker. As
shown in Table 3.1, this includes the ports, addresses, the sequence of scanned address and port,
and the strategy to camouflage the scan, e.g., by sending additional probes from or to other IP
addresses and ports. As the characteristics can have different values, in total 72 combinations of
different characteristics exists, each representing an adversary class. However, Gates identifies
only 21 of them to be sensible. Furthermore, the author defines the coverage and hit rate of a
scan C to further characterize the scan activity from the defenders point of view, who does not
know which might be the target and which might be camouflage:

• Coverage ζ (C): subnet of his network that is targeted by the adversary, i.e., the address
range of the targeted IP addresses.

• Hit Rate H (C): is then defined as the percentage of target IP addresses within the scanned
space.
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Together, these characteristics define the footprint using the following tuple:

F =< |P|, |A|,ζ (C),H (C),ς ,κ >

Based on this footprint F for individual scanners, Gates defines coordinated scans additionally
by the number of sources |S|, the amount of overlap Φ in scan targets, and the algorithm
A used to distribute the targets among the sources. When combining the footprints of the
individual scans belonging a coordinated scan, it results in the overall footprint of the coordinated
scan < F , |S|,Φ,A >, where F characterizes the assembled scan activity of the coordinated
scanners.

To detect the collusion between scanners, Gates is interested in scan footprints that fit together in
such a way that some large portion of the entire space is covered. In contrast to other solutions
for the set covering problem [Kar72], the amount of overlap between each of the scans should be
minimized. Gates, therefore, proposes a modified version of the Altgreedy algorithm [GW97].
The modified algorithm tries to add in the smallest sets, i.e., scans, first, because for coordinated
scanning, the larger scan is split into many smaller scans among the coordinated scanners. The
algorithms loops over the different sets and assembles them such that the coverage is maximized
while the overlap is minimized. For that, the author restricts the problem space to only the IP
addresses and ports of the scan targets.

The result of the coordinated scan detection are horizontal and strobe scans against contiguous
address spaces. This detection leverages an adversary model of coordination attacks and their
characteristics, which is to distribute tasks without any redundancy, i.e., overlap among the tasks.
This characteristic is incorporated into the solution to the set covering problem when assembling
individual scans to coordinated scans that cover a larger target network.

The accuracy in the scope of coordinated port scans is good, but not applicable to detect attacks
universally. However, the approach might be extended to at least any kind of coordinated
attacks. The attacker model can be used as attack representation to characterize the attacker after
detection. As the detection is triggered in fixed periodic time intervals, it effectively processes
scan activity in batches and therefore does not perform in real-time.

As correlating the sets of scan events is performed by simple intersections of IP address sets,
the detection is efficient. However, this centralized detection does not scale and implements no
resilience measures against internal failures. But the attacker model incorporates camouflage
such that the detection approach is able to compensate some IDS evasion.

Similar to SPICE [SHM02], the approach of coordinated scan detection [Gat09] can be easily
deployed within passive network monitoring. But in contrast to SPICE, the scan footprint
in coordinated scan detection can be cleared from internal IP addresses while still holding
characteristics about the attacker.

Motif-based Anomaly Detection Juszczyszyn et al. [JK11] propose a characterization of
network communication graphs for anomaly detection. The authors note, that the communication
structure between hosts in a larger network changes in presence of a network-wide attack. The
proposed method to measure deviations in the communication graph is based on the concept of
network motifs [Mil+02].

Motifs are a measure originally known from the analysis of complex biological networks [BO04].
However, since then they have also been applied for data analysis in computer science, e.g.,
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Figure 3.4: All possible 3-node-motifs with directed edges.

in the field of online social networks [Rot+17], application monitoring [ATF09], or network
security [Har+16]. A motif is a particular small subgraph, usually consisting of three to seven
nodes. Essential for a motif with a particular number of nodes is how they are interconnected
with edges. In the case of subgraphs with three nodes, there exists 13 different motifs, i.e.,
patterns how these nodes can be interconnected with directed edges (cf. Figure 3.4). The key
idea is that the counts of individual motifs characterize the whole graph in question. Furthermore,
Milo et al. [Mil+02] define the so-called Z-score that indicates the statistical significance of each
motif. The vector of all 13 Z-score values (in case of 3-node-motifs) characterizes the graph and
is called Triad Significance Profile (TSP).

Juszczyszyn et al. evaluate their motif-based method for anomaly detection on communication
graphs with two distributed attack scenarios. First, they simulate a network and benign traffic
based on the Barabási-Albert model for scale-free networks [BA99] and embed worm scanning,
i.e., a worm that spreads by scanning for new vulnerable hosts. Second, DDoS attacks are
embedded in real-world traffic. For each time window during the experiments, Juszczyszyn
et al. calculate and visualize the TSP of the communication graph. They conclude that the
attacks in both experiments introduce notable deviations to the communication graph and the
TSP, respectively. In particular, the presence of network-wide attacks will result in some motifs
with high density to occur more often.

Although potentially applicable for the detection of distributed bulk attacks, the motif anomaly
detection cannot identify individual attacks but can only indicate that something is malicious in
the overall network communication. For that reason, the detection accuracy is low. Also, stealthy
attacks will probably go unnoticed as their infrequent actions have no significant effect on the
overall communication graph. As the detection result only indicates the presence of a potential
attack without any details, it does not include any privacy-related information. Furthermore,
because the detection assembles batches of NetFlows to communication graphs, it is not able to
detect the anomaly in real-time.

As the anomaly detection triggers upon abnormal communication patterns among the hosts,
it is resilient against attack variations as long as they still cause significant changes in the
communication graph. However, the motif calculation is neither efficient because it is computa-
tional complex nor scalable because it cannot be distributed. As the detection is only based on
coarse-grained communication patterns among the hosts, it is easy to deploy on top of passive
network monitoring. However, it still requires the visibility of an Internet service provider (ISP)
or larger to be effective.
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BotGrep Nagaraja et al. [Nag+10] propose BotGrep, a detector for peer-to-peer (P2P) botnets
(cf. Section 2.1.2). The authors note that the distributed and structured overlay topology of
such botnets is of benefit for the botmaster, because of its resilience to churn. However, the
characteristic communication among the bots in the overlay can also be used for detection. With
BotGrep, the authors propose an algorithm that efficiently identifies P2P botnet communication
in ISP networks and separates it from other legitimate communication.

The key insight for BotGrep is that the communication graph of P2P botnets has a structure
with a fast mixing time, i.e., the convergence time of random walks to a stationary distribution.
The goal of the detection algorithm, therefore, is to identify fast-mixing components in the
communication graph G = (V,E), where any kind of communication among the hots V is
indicated by the edges E. The authors leverage short random walks on G to identify nodes in
fast-mixing subgraphs, because their state probability mass is likely to be closer to the stationary
distribution than nodes in slow-mixing subgraphs. For the calculation, BotGrep utilizes the
vector qt that saves the probability for each node i at any walk length t. It is initially set to
q0

i = 1/|V |. This vector is recursively calculated as qt = qt−1P using the transition matrix of the
random walk, where di is the degree of node i:

Pi, j =

{
1
di

if (i, j) ∈ E
0 otherwise

(3.1)

After an additional step to dampen negative effects on the probability values in qt , the k-means
clustering algorithm [Llo82] is used to extract similar nodes with similar probabilities. The result
are candidate subgraphs {Gc | c ∈ 1 . . .k} with nodes and edges among them from G. Because
an candidate subgraph Gc is likely include false positives as an artifact of the probabilistic nature
inherent in random walks, BotGrep uses a modified version of the SybilInfer [DM09] framework
to remove weakly connected nodes. In a last step, the authors highlight the need to recursively
apply their modified SybilInfer clustering and propose several termination conditions.

In summary, the detection algorithm is content agnostic and therefore, it is not affected by
the choice of ports, encryption, or other content-based stealth techniques that bots may use.
Furthermore, the detection based on the communication graph is resilient out of two reasons.
First, P2P botnet variations cannot hide their inherent distributed P2P communication as longs
as the botnet activity is not too stealthy and infrequent. Second, the P2P nature probably stays
visible in the graph even when sampling NetFlows under load. Although the detection cannot
differentiate between P2P botnets and other P2P applications, once a P2P overlay is detected, the
ground truth of a few participating nodes already allows classifying the remaining nodes in the
respective overlay. Anyway, the output of BotGrep is a set of suspicious hosts that might run a
P2P bot, which already is a good attack representation but still misses many other botnet-specific
characteristics.

The detection based on the communication graph is not suitable for real-time detection because
the monitored communication is processed in batches. But even for large communication graphs,
the random walk approach with the transition matrix is efficient. Although the naive processing
is centralized, BotGrep’s analysis can be parallelized to be scalable. For the collaborative
processes with different parties, privacy is preserved though a common identifier space. This
way, BotGrep can be deployed even in networks smaller than those of an ISP when performing
the detection collaboratively across multiple networks.
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Deep Bot Learning Van Roosmalen et al. [RVE18] propose an approach for the detection of
botnets to distinguish botnet from non-botnet traffic. For that, the authors apply deep learning
on flows of TCP and User Datagram Protocol (UDP) packets. This has several advantages over
other machine learning approaches when it comes to feature engineering and feature selection
as well as efficiency [Ben+09]. Van Roosmalen et al. evaluate their approach via the detection
of P2P botnets (cf. Section 2.1.2).

The main contribution of Van Roosmalen et al. is experimenting with different deep neural
networks (DNNs) [Sze+17] and ladder networks [Val15] regarding their application in botnet
detection. Compared to most other approaches that use some kind of higher-level features,
e.g., NetFlow statistics, the authors rely on raw header information from packets. The DNNs
are operated with supervised training or unsupervised pre-training using stacked denoising
auto-encoders (SDAs) [Vin+08], which allow discovering higher-order features. A combination
of unsupervised and supervised training is used as semi-supervised for the ladder networks.
Based on their experiments with DNNs and ladder networks, Van Roosmalen et al. chose the
most suited network configurations and hyper-parameters for the botnet detection.

For the evaluation, Van Roosmalen et al. highlight the need for mixed network traffic including
data from P2P botnets. Mixing traffic from different sources should prevent the neural network
to be trained towards recognizing the communication networks, rather than the traffic types. For
their data sets with the botnets Storm [Hol+08], Waledac [Sto+09], and Zeus [And+13], the
authors achieve a detection accuracy of 99.7%.

Although the approach accurately detects distribute P2P botnets, the detection requires to process
individual network packets and, therefore, is probably not suited for many other distributed
attacks that require to correlate several packets or events, respectively. But it is perfectly suited
for stealthy botnet attacks and real-time detection as the time between malicious events is
irrelevant and every event is assessed immediately. Trained on different data sets, this approach
might be applicable to many other attacks.

The resilience against attack variations cannot be assessed, but it is assumed that the detection
approach might still be able to detect unchanged or similar packets, even when most of the
malicious packets significantly change and are not detected. Anyway, the whole detection is
efficient, because of the applied deep learning method, but also does not scale for this reason.
Furthermore, privacy was not a focus of this detection approach. It can be easily deployed in
any environment with passive network monitoring. However, the approach must be trained for
the respective attacks.

3.4.2 IDS Alert Clustering

The following paragraphs discuss alert clustering algorithms for the generic detection of network-
wide attack scenarios.

Probabilistic Alert Correlation A seminal and early work on alert correlation was done by
Valdes et al. [VS01] as an extension of their previous work [VS00]. The authors noted that their
EMERALD [PN97] IDS sensors generate too many alerts to effectively process them manually.
In addition, they noted that relations among attacks must also be visible in the relations among
the respective alerts and among respective sensors. Because of this, they propose a concept for
multi-sensor data fusion, which in some sense is similar to today’s centralized CIDS.
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Their work on Probabilistic Alert Correlation (PAC) [VS01] is actually more a clustering of
alerts based on similarities among alert features, including source and target (hosts and ports),
class, and timing information of the attack. The goal is to group similar alerts that together
describe an individual attack. For that, PAC uses the notion of a meta-alert, that represents a
collection of alerts by basically holding a list of values for each feature of the respective alerts.
When receiving a new alert from the sensors, PAC merges it into the most similar existing
meta-alert by updating the lists of feature values. If none of the existing meta-alerts is similar
enough, the new alert leads to a new meta-alert.

PAC calculates the overall similarity between alerts and meta-alerts based on a pair-wise
comparison of their features. Note that alert features usually have a single value whereas the
features of meta-alerts are sets of values. Valdes et al. introduce different similarity metrics to
compare both single values and set of values among each other. The average similarity among all
features is between 0 and 1 and is weighted depending on expectations for specific features. For
example, in a TCP SYN-Flood attack, the source IP is likely to be spoofed. Thus, expectations
on this feature to match among the alerts can be relaxed.

Apart from the weighted overall similarity among all features, PAC introduces a situation-specific
constraint that additionally must be satisfied to merge two alerts or meta-alerts, respectively.
This constraint requires a minimum similarity for a specific feature, i.e., requires the values of
this feature to be equal or at least very close. This minimum similarity is utilized to aggregate
alerts to meta-alerts in three stages. At each stage, different features might be under constraint
for minimum similarity and the features might be weighted differently. These three stages are:

1. Thread: Describes alerts of the same attack detected by the same sensor. Thus, high
minimum similarity and high expectation is on the features sensor ID, attack class, source,
and target.

2. Incident: Describes a specific attack with all alerts that might come from several het-
erogeneous sensors. Thus, minimum similarity and expectation are low on sensor ID,
whereas expectation of attack class is moderately high and there is a minimum expectation
on source and target.

3. Report: Describes the relation of various steps in a multistage attack. Thus, the minimum
expectation on the attack class is relaxed compared to the incident stage.

When processing alerts according to these three stages, the outcome of PAC are alert clusters
that represent individual attacks. The focus of this approach is on defining different correlation
criteria for individual alert features. This is implemented by a flexible similarity comparison of
alert features that can require equality of specific features and can balance the importance of
individual features depending on specific situations.

PAC is universally applicable for alert correlation because of the multi-stage processing with
flexible feature focus. There is also a focus that potentially detects distributed attacks. However,
because of the batch processing of alerts, the correlation is not real-time capable and cannot
detect stealthy attacks. Despite the accurate and flexible correlation to detect attack steps and
basic relations among them, PAC represents attacks only by their full alert data but does not
highlight its characteristics.

The correlation is complex O(n2) regarding the number of alerts n and, therefore, inefficient as
the correlation requires to calculate the similarity of new alerts to any other alert in the current
batch. The multi-stage processing is organized hierarchical and ,thus, can be distributed to scale.
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However, the depth of the hierarchy is tied to the three aggregations stages. This hierarchical
processing is furthermore resilient against internal nodes failures by definition but not against
overload situations.

PAC can be easily integrated into an IDS environment, as it only requires access to the alerts
of deployed sensors. However, the correlation itself requires some expert knowledge about the
attack scenarios to adjust the flexible feature focus at different processing stages. Also, this
processing has no privacy measures in place.

Root Cause Analysis Julisch [Jul03] proposes a clustering of alerts for the analysis of
root causes. The author noted that the high number of daily alerts distracts the analyst from
identifying true positive and high-priority alerts. At the same time, irrelevant alerts are often a
result of security-related issues, but are caused by other problems like network faults. Because
of that, Julisch proposes to identify noisy root causes with redundant alerts and to eliminate them
afterwards [JD02]. The experimental evaluation achieves a reduction of alerts by 87%. Based
on the assumption that the same root cause triggers similar alerts, the proposed alert correlation
technique efficiently identifies such large groups of redundant alerts. The correlation leverages
a variant of the data mining technique called Attribute-oriented Induction (AOI) [HCC92;
HCC93].

A detailed understanding of the alert data is required to apply the AOI technique. An alert
consists of different features a1, . . . ,an, including source and destination IP and ports, class,
and time information of the attack. Each feature ai has a range of potential values, denoted as
domain dom(ai). For example, the value of the destination port is in [0,216−1]. Important for
AOI are generalized attribute values that are not in dom(ai), but represent a subset of them. The
relation among generalized and potential values is organized in a generalization hierarchy that
is a connected directed acyclic graph (DAG) for each feature ai. Leaves in this DAG represent
one value out of the range of potential values dom(ai), whereas intermediate nodes reflect
generalized values. Any intermediate node abstracts the values of its children, i.e., the leaves of
the subtree that is rooted by the intermediate node. The root of the generalization hierarchy for
feature ai, therefore, represents the full dom(ai).
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. . .80 443
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Figure 3.5: Example hierarchy for generalizing domain dom(dst_port).

The actual algorithm for alert clustering starts with the full set of alerts and repeatedly generalizes
them. During their generalization, more and more of their feature values are overwritten by
generalized values, consequently making the alerts more equal every iteration. Every time two
alerts become fully equal across all their features, these duplicate alerts are merged and effectively
clustered. The generalization goes on until an alert cluster exists that exceeds a minimum size.
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The outcome is the generalized alert that represents all alerts in the respective cluster. Note
that this algorithm terminates at the latest when all alert features are fully generalized. This
then represents the full alert set. In particular, for each iteration of the algorithm, one feature is
selected that is generalized by one level in the hierarchy for all alerts. Note that features can
be generalized multiple times, e.g., destination port 80 can be for example first generalized to
web port, then to privileged port, and finally to any port (cf. Figure 3.5). A heuristic is used
to efficiently select the next feature for generalization that works as follows. For each feature,
count how often the most frequent value exists. Generalize the feature with the lowest of these
counts.

The result of this algorithm are clusters of similar alerts. In contrast to calculating the similarity
among alerts based on a distance metric, this approach leverages generalization hierarchies. This
way, the similarity between alerts is defined by equal generalizations of their feature values. The
benefit of such a clustering are the respective generalized alerts, that not only represents the
clustered alerts, but also describe them concisely.

The approach is most effective for root causes that cause many alerts, such as distributed attacks,
and is thus potentially applicable for many attacks. But stealthy attacks will probably go
unnoticed as their number of alerts per processing batch is probably not significant enough to be
reported. The batch processing is also the reason why the correlation is not real-time capable.
Anyway, when an attack is detected, the representation is a small data abstraction that highlights
the attack characteristics by the most dominant alert features.

The correlation is efficient, especially because of the heuristic variant of AOI, but does not
scale as the analysis cannot be parallelized. It is partly resilient against attack variations and
obfuscation as the generalization in AOI filters any insignificant alerts and only reports alerts
that follow a dominant pattern of equal features.

The root cause analysis is easy to deploy on top of an existing IDS. There is only low initial
effort to define the generalization hierarchy for each feature domain that is, however, highly
customized to the environment for some features such as IP addresses and ports. As the attack
representation contains few details and abstracts most of them in the generalized alert form, the
root cause analysis is partially privacy-preserving.

E-Correlator The E-Correlator by GhasemiGol et al. [GG15] is an alert correlation system
based on entropy of alerts. The system’s goal is to identify and cluster alerts that belong to the
same attack. In contrast to others that rely on feature similarity among the alerts, E-Correlator
defines the alert partial entropy (APE) to find alerts with the same quantity of information. The
authors do this from raw alerts, without any predefined knowledge of attacks. Alert clusters are
finally generalized to hyper-alerts and visualized as a hyper-alert graph (HG).

For their alert clustering, GhasemiGol et al. utilize the concept of entropy and adapt it to
alerts. With the notion of entropy H(X) of a discrete random variable X , the partial entropy
Hp(X = xi) calculates the portion of the specific value xi ∈ X in H(X). Adapted to alerts, APE
for an alert is a vector of partial entropy for the individual alert features Fj ∈ F , including
source and destination IP addresses and ports, protocol, and time. Intuitively, the partial entropy
Hp(Fj = fi, j) for a specific feature value fi, j ∈ Fj is the portion fi, j that contributes to the overall
entropy H(Fj) among all possible values of feature Fj. Furthermore, GhasemiGol et al. elaborate
on the partial joint entropy to model dependent features, i.e., how to calculate the portion that
the combination of values across several features contribute to the overall entropy. Anyway,
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each alert is transferred to a vector of partial entropy values, which results in an APE matrix
with rows representing individual alerts and columns holding the partial entropy values of their
feature values.

Based on this APE matrix, the authors apply the density-based clustering algorithm density-
based spatial clustering of applications with noise (DBSCAN) by transforming each alert with
its APE as a k-dimensional vector. The result is a mapping of alerts to clusters that have a similar
APE. The next step is to transfer each of these alert clusters into a hyper-alert that summarizes
the feature values of contained alerts. Instead of creating simple lists of feature values as done
by PAC [VS01] with meta-alerts, E-Correlator utilizes AOI, similar to how Julisch applied
it for root cause analysis [Jul03]. The creation of hyper-alerts is based on the generalization
of features. A generalization hierarchy defines a step-by-step mapping of feature values to
higher-level correspondences [AZ09]. For example, IP addresses are generalized according to
their role (Workstation, Firewall, Server,. . . ) first and then to their network location (Intranet,
demilitarized zone (DMZ), Internet,. . . ). Generalization must be defined individually for each
feature and custom needs. The root of the generalization hierarchies is always the any value.
When defining and applying these generalization hierarchies to the alert clusters in E-Correlator,
the result are hyper-alerts. Each hyper-alert feature is either a concrete value that is the same
across all alerts or it is a generalized value that represents the values across all alerts.

The last step in E-Correlator is the reporting of the hyper-alerts. This last step includes an
optional filtering to select only the most important hyper-alerts. Anyhow, the authors propose
two metrics for ranking the selection of hyper-alerts. The first metric is the principle of maximum
entropy, which basically means to rank hyper-alerts according to the accumulated partial entropy
for contained alerts. The second metric is the hyper-alerts partial entropy that is the portion
each hyper-alert contributes to the overall joint entropy among all possible hyper-alert value
combinations. Finally, all or a selected subset of hyper-alerts are visualized for a high-level view.
Nodes in the HG are the generalized or non-generalized IP addresses of a hyper-alert. The edges
summarize several information of the hyper-alert, including number of alerts, protocols, source
and destination ports.

In summary, E-Correlator combines techniques used in previous works but utilizes alert entropy
instead of feature similarity among the alerts. In combination, this not only allows to cluster
alerts, but the hyper-alerts also lead to a reduction ratio of the reported alarms of above 99%.
Furthermore, because of the generalization, the hyper-alerts are an intelligible abstraction of the
clustered alerts.

The flexibility and generality of E-Correlator based on entropy has some benefits and drawbacks.
The benefits include potential universal applicability and resilience against attack variations
because the entropy of alerts of the same attack might still stay equal. This holds especially for
distributed attacks with many similar actions. But because of the alert processing in batches, the
correlation probably fails for stealthy attacks and is also not real-time capable.

The attack representation in E-Correlator is valuable because of the generalized hyper-alerts and
their visualization in the hyper-alert graph ranked according to their priority. The generalization
of alert details also provides some privacy protection. The calculation of the APE matrix is
efficient, because it can be easily calculated but does not scale. E-Correlator can be easily
deployed on top of an existing IDS and does not require any export knowledge in operation.
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3.4.3 Exchanging Data Aggregations

The following paragraphs discuss data structures that partly reflect an attacks and that are
assembled to a global attack in a CIDS.

Worm Containment Cai et al. [Cai+05a] present a collection of services for the purpose of a
cyberspace defense system [HCL05]. Based on their NetShield system [Hwa+05], they offer
security services to be used as CIDS in a collaborative fashion. In particular, the authors focus on
the mitigation of worms and attacks triggered by them, together denoted as worm containment.
One service to achieve the containment is WormShield [Cai+05c] for fast detection of worm
spreadings and another one is DDoS Defense [Cai+05b] for the traceback of DDoS attackers to
worm infections. Following, both the system and the worm-related services are explained in
detail.

The NetShield system is the fundamental communication platform used for worm containment,
among others. The platform is built on a distributed hash table (DHT)-based overlay network
(based on Chord [Sto+03]) for several purposes, including attack and intrusion monitoring,
detection and defense, alert correlation, and security-update delivery across multiple admin-
istrative domains. It is supposed to operate on an Internet-wide scale. Within this system,
every administrative domain performs security services locally and exchanges data with others
to achieve a global view. The platform leverages the efficient routing, reliability, scalability,
robustness to failure, and self-organization that is inherent to the DHT overlay. In particular, the
organization of participants and content in the overlay into the same identifier space enables
everyone to determine the identifier of the responsible participant that is most close to the
identifier of the content in question. When sharing specific data that should be accumulated in
the network, the DHT overlay deterministically determines the responsible participant for this
task.

The first service towards worm containment is WormShield for the fast detection of worm
spreadings on the Internet. The authors note that worms spread disperse, meaning that infections
are initially dispersed over the entire Internet. At the same time, they note that worms spread by
sending messages that are almost equal across infected systems. This allows to automatically
derive worm signatures from the payload contents when infected systems widely scan the
Internet to infect more systems. However, because of the initially dispersed spreading, a single
network with its local visibility most likely overlooks the first traces of worm spreading as
they are yet not significant enough among the total traffic of the network. Thus, WormShield
utilizes the DHT overlay in NetShield to collectively accumulate traces of unknown worm
spreading for fast and accurate detection, especially before most vulnerable hosts are infected.
For that, each administrative domain in the NetShield system counts content blocks in packet
payloads using the Rabin footprint algorithm [Rab81]. In addition to the count, they maintain
a list of source and destination addresses associated with each content block. When the local
counter exceeds a threshold, the information about this content block is shared in the overlay
and accumulated. This way, the responsible node in the overlay assembles a global picture for
the content block in question. It generates an alarm for worm spreadings if the accumulated
count and the accumulated list of addresses both exceed a threshold on a global level.

Another service in the NetShield system regarding worms is the detection of DDoS flooding
attacks that are often triggered by spreading worms [Cai+05b]. The problem is that the origin
of the DDoS usually cannot be traced back. Deciding where the traffic physically came from,
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i.e., the path it took, is broken down to a network with ingress and egress routers. DDoS traffic
is entering the network from several ingress routers, i.e., the attack-transit routers, and leaves
the network towards the target via a specific egress router. The challenge is to identify which
of the ingress routers are actually attack-transit routers, based on the DDoS traffic observed at
the egress router. Thus, the authors propose to utilize a traffic matrix Xi, j, which is a measure
for identifying intersections of traffic S+i that is entering at ingress router ri and traffic S−j that
is leaving at egress router r j. However, collecting and correlating all traffic S+ and S− from
all routers to calculate the matrix Xi, j is practically infeasible. Thus, the authors propose a
compression of S+ and S− instead of sharing the full traffic. In particular, they aggregate traffic
in a key-pair-like fashion, i.e., counting how often a specific packet or flow is observed. Packets
are identified by the invariant IP header fields and first few bytes of payload whereas flows are
identified by the five-tuple identifier source and destination IP addresses and ports as well as
the protocol. Sharing these identifier-based counters of each router allows estimating the traffic
matrix Xi, j and identifying where the DDoS traffic was entering the network from. Compared
to sharing full traffic of N packets or flows, the required data volume to share is reduced to the
order of O(loglogN).

In summary, Cai et al. [Cai+05a] present collaborative detection methods for worm containment.
Instead of sharing full traffic with others, they use traffic aggregations. They propose identifiers
for packets, packet payloads, and flows for several purposes and share these identifiers along
with their counters and summaries. This allows efficient identification of an Internet-wide
worm spreading at an early stage and to efficiently traceback DDoS attacks that are triggered by
spreading worms.

The accuracy of worm containment to detect global worm outbreaks is good under the reasonable
assumption that the network payload of a worm is almost equal all the time. Even if a worm
propagates slowly and stealthy, payload counters can remain and be updated in the DHT for long
time until the counters exceed local and global thresholds. If the worm slows down too much to
evade the distributed detection, the propagation would basically stall. With the aim to detect the
distributed attack of a worm spreading, worm containment is not universally applicable. Also
the detection is only partly performed in real-time as the counters at many local site have to
exceed the threshold before they are merged on global level. Once a worm is detected, it is well
represented because the payload associated with the exceeded counter characterizes the worm
and can be leveraged for a detection signature. Furthermore, the representation goes along with
some more spreading information like the IP addresses, which is helpful for attack mitigation
but violates the privacy when shared with third parties.

The P2P nature of the overlay systems makes worm containment both scalable as the work is
distributed among the P2P nodes and resilient against internal failures and overload situations
as a local performance issue cannot cause global failures. But there is no solution to internal
attackers or attack variations. The hashes of observed payload patterns can efficiently be
calculated and shared in the DHT. The effort to deploy worm containment is low as it only
requires passive network monitoring at several sites that collaborate in the detection.

Multi-Dimensional Alert Correlation Zhou et al. propose Multi-Dimensional Alert Correla-
tion (MDAC) for collaborative intrusion detection [ZLK09] that works decentralized without a
central correlation server. With multi-dimensional, they refer to a correlation that is not based
on a single alert feature but multiple features at the same time. The authors noted that this
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is required to capture the important characteristics of attacks. In their approach, they lever-
age multi-dimensional alert clustering to extract relevant patterns from alerts. Doing this in a
decentralized-fashion in their CIDS leads to increased efficiency in terms of the time required
to correlate alerts. Furthermore, the authors paid attention to the parameterization of their
correlation algorithm such that a stealthy attack is detected on a global level, even when alerts
are highly distributed among the individual IDSes.

The multi-dimensional alert correlation clusters alerts based on five main features of suspicious
flows: source and destination IP addresses and ports as well as the protocol. For that, Zhou et al.
propose an algorithm named correlate-and-filter that works in two steps, first correlating alerts to
patterns and then filtering them. A pattern in this context is a combination of one to five of these
features. The term pattern instance describes a combination of feature values that correspond
to a specific pattern. In total, the authors identified eight patterns of interest {P1 . . .P8} with
combinations of one, two, three, or four features (cf. Figure 3.6). These correspond to a specific
attack scenario:

• One-dimensional: most scans (P1)

• Two-dimensional: flash crowds response [JKR02] (P2), DDoS by Trinoo [CER99] (P3),
and most worm (P4)

• Three-dimensional: reflector DoS [FBD15] (P5), SYN Flood response [CER99] (P6), and
W32/Blast worm [Bai+05] (P7)

• Four-dimensional: SQL-Slammer worm [Moo+03] (P8)

These eight patterns, i.e., predefined combinations of features, effectively limit the search space
for multi-dimensional alert patterns. Note, that the source IP is of extraordinary meaning to the
authors and so this feature is included in each of the eight patterns. Based on the insight that
these patterns build upon each other as illustrated in Figure 3.6, their relations among each other
result in a lattice structure. This lattice starts with a single-feature pattern and becomes more
specific to patterns with up to four features. In the decentralized two-stage correlation approach,
each IDS participant first performs the correlate-and-filter algorithm on its local alerts and then
the pre-processed patterns are assembled to a global view. The two steps of the algorithm are
explained next.

The first correlation step maintains a so-called pattern lattices that hold all pattern instances
observed in alerts for a specific source IP. Hence, each pattern lattice is rooted in a specific
IP address. In contrast to the lattice in Figure 3.6, the pattern lattice holds several instances
with different values combinations for the patterns P2 - P8 as respective values are observed in
alerts. Pattern instances in the pattern lattice are linked according to the lattice in Figure 3.6 and
according to common feature values. When performing the correlation step on local alerts, every
alert increases the counter of the respective instance for each of the eight patterns. The second
filter step aims to filter any insignificant or redundant pattern instance. Significance is defined
locally by a support threshold δl that is a portion of the total number of alerts from all source IP
addresses. Among the significant pattern instances that exceed this threshold, redundant patterns
are eliminated. This happens to any pattern instance in the pattern lattice that is followed by
another significant but more specific one.

The outcome of the correlate-and-filter algorithm are locally relevant pattern instances that are
shared in the CIDS. Within the CIDS, the pre-processed pattern instances and their counts can be
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P1: srcIP

P3: srcIP+
dstPort

P2: srcIP+
srcPort

P4: srcIP+
proto

P6: srcIP+
srcPort+proto

P5: srcIP+
srcPort+dstPort

P7: srcIP+
dstPort+proto

P8: srcIP+
srcPort+dstPort+proto

Figure 3.6: Relations among the eight patterns in the lattice structure.

accumulated to find the globally most relevant pattern instances. For that, the authors use a DHT-
based P2P overlay with a publish-subscribe protocol. Each participant in this overlay consists of
a detection unit that performs the correlate-and-filter algorithm locally and a correlation unit that
is capable of retrieving pre-processed patterns and to accumulate them to global relevant pattern.
P2P messages are indexed by the source address of the shared pattern so that pre-processed
patterns can efficiently be routed to the alert correlation unit of the responsible participant that in
return can notify others about globally relevant patterns for the respective source IP address.

One remaining problem in this two-stage correlation is how to set the local but also the global
support threshold δl and δg, respectively when the correlate-and-filter algorithm is applied at
both stages. The problem is as follows. Assuming a stealthy attack is detected in a centralized
variant of the CIDS using a specific global threshold δg. When this attack is uniformly spread
among the detection units, the question arises how low δl ≤ δg must be set such that every
detection unit di with ni alerts reports the respective pattern such that the accumulation of
pre-processed patterns exceeds δg globally. For that, the authors propose a probabilistic model
to estimate δl . For a given confidence, e.g., α = 0.01, the local threshold δl is calculated as

δl = δg +Zα

√
δg(1−δg)

ni

where the critical statistic is P(Z ≥ Zα) = 1−α , e.g., Z0.01 =−2.33.

In summary, multi-dimensional alert correlation allows efficient correlation of alerts for mali-
cious traffic from different network sites in the CIDS. It is efficient because the easy mining
and counting of the patterns in the lattice structure. The outcome are intelligible abstractions of
clustered alerts represented by their aggregated alert patterns, which highlights characteristic
and common features among the alerts but misses scenario-specific characteristics. That the
feature patterns are restricted by eight predefined distributed scenarios, results in only a moderate
universal applicability. Because the alert correlation to identify these patterns is performed in
batches, the detection is not real-time capable. The counters of the patterns are not updated
continuously and might exceed the local and global thresholds only after the processing of the
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next batch. But the probabilistic model for the thresholds enables to detect also stealthy attacks,
even if not enough evidence is available in a single batch otherwise.

The fully distributed publish-subscribe overlay in the CIDS results in a scalable and resilient
alert correlation. The deployment is easy as it requires only access to existing IDS alerts and
requires no export knowledge apart from the predefined attack scenarios. When sharing the
aggregated and characteristic alert patterns, third parties do not learn about the full alert data but
still some IP addresses, which partly violates the privacy.

3.4.4 Summary of Network-wide Attack Detection

This section presented several approaches for the detection of network-wide attacks that have
been discussed according to the requirements of an IDS provided at the beginning of this chapter.
Not all requirements were explicitly investigated in the original papers. Thus, some discussion
details are open to interpretation. Anyhow, Table 3.2 summarizes the overall results of this
discussion. The detection approaches were classified according to their application field, which
is either

• specific attack scenarios ([SHM02], [Gat09], [JK11], [Nag+10], [RVE18]),

• IDS alert clustering ([VS01], [Jul03], [GG15]) to find significant feature patterns among
the alerts, or

• exchanging data Aggregations ([Cai+05a], [ZLK09]) to collaboratively assemble attack
data of a larger scope.

The overall detection accuracy is assessed according to attacks in the intended scope of the
approaches. Those for specific attack scenarios usually exploit the scenario characteristics and
leverage them in the detection, e.g., the frequent failure of TCP handshakes or the communication
behavior of P2P botnets. This usually leads to a high accuracy, except for [JK11] that cannot
identify which events in particular are malicious.

In contrast, clustering approaches are usually based on some kind of similarity, e.g., feature
or entropy similarity, which is not specific to a particular attack scenarios. While similarity is
usually indeed caused among alerts of the same attack, this might also hold true for alerts of
different but similar attacks, which results in the detection being biased towards one attack and
to let the other one go unnoticed. To avoid treating different attacks falsely as one, additional
attention has to be paid to individual attack instances as in [VS01]. If the similarity criteria are
too narrow or too broad, the detection accuracy can still be okay but is likely to suffer.

The same reasoning applies to sharing approaches as they usually find locally significant and
generic data patterns based on similarity. Even when [Cai+05a] focuses on the particular attack
scenario of worm spreading, the detection is potentially error prone. It indicates a worm only by
similar packet payloads but fails to incorporate the spreading characteristic, which is that after
hosts are infected they start spreading themselves.

Also the more fine-grained aspects related to the detection accuracy allow to derive some
common rules. As the selection of related work in this section focuses network-wide attacks, all
approaches here detect distributed attacks, i.e., those that involves several attackers or victims.
Although a port scan itself is in most cases already a distributed attack that targets many hosts
in a large network, [SHM02] is likely to fail to link coordinated scanners that do not overlap
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Detection Accuracy (R1) 3 3 7 3 3 3 Ø Ø Ø Ø
- Stealthy Attacks 3 7 7 Ø 3 7 7 7 Ø 3

- Distributed Attacks Ø 3 3 3 Ø 3 3 3 3 3

- Attack Representation 7 3 7 Ø Ø Ø 3 3 3 Ø
- Universal Applicability 7 7 Ø 7 Ø 3 Ø Ø 7 Ø

Real-Time Detection (R2) 3 7 7 7 3 7 7 7 Ø 7

Efficiency (R3) 3 3 7 3 3 7 3 3 3 3

Scalability (R4) 7 7 7 3 7 Ø 7 7 3 3

Easy Deployment (R5) 3 3 Ø 3 3 Ø 3 3 3 3

Resilience and Self-protection (R6) 3 Ø Ø 3 Ø Ø Ø Ø 3 3

Privacy (R7) 7 3 3 3 7 7 Ø Ø 7 Ø

Table 3.2: Summary of network-wide attack detection approaches regarding their compli-
ance with the requirements given at the beginning of this chapter. Checkmark
symbols 3 indicate the fulfillment of these requirements, crossing symbols 7 their
non-fulfillment, average symbol Ø their partial match.

in their targets. In contrast, [Gat09] accounts also for colluding sources. There is also an issue
with distributed attacks in [RVE18] when detecting P2P botnet traffic that is by definition a
distributed attack but failing to link the traffic from several hosts to the same botnet.

Among the presented approaches some found a better way to represent the detect attacks than
others. Most approaches at least label the related alerts with a scenario-specific label or in best
case also characterize them to highlight the attack specifics. Only two approach completely fail
this requirement. In [SHM02] the insignificant scans are not filtered but any alert ends up in an
attack that is generically labeled as port scan without its characteristics. The anomaly detector
[JK11] fails this requirement because it only indicates the presence of an network-wide attack
without any details.

Only two approaches fully meet the real-time requirement. First, this is the botnet detec-
tor [Nag+10] that classifies individual traffic flows separately, It is therefore independent from
the time between two malicious events but report the first one immediately. Second, the scan
detector [SHM02] keeps the data structures of ongoing attack open and updates the currently
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detected scans with every scan event. For the same two reasons both approaches detect also
stealthy attacks, in addition to [ZLK09] where alerts can remain in the data structure potentially
for a long time. Other approaches that process events or alerts in batches are neither real-time
capable nor can they detect stealthy attacks. A special case is the approach [ZLK09] that partly
covers the real-time requirement. The attack is not reported with the first local malicious event
but immediately when enough evidence was seen at the global level.

Regarding the deployment effort, it is low or medium for all approaches. This is because there
is only passive processing of security-related data, e.g., network sniffing for scenario-specific
approach and access to IDS alerts for most clustering and sharing approaches. Both are easy
to integrate into an existing environment. Additional deployment restrictions exist for [JK11]
because this requires the network visibility of a large ISP or backbone network and for [VS01]
because this requires extensive export knowledge about attack scenarios to model appropriate
restriction on the alert features for correlation.

Apart from [JK11] and [VS01], all other approaches designed their detection algorithms to be
efficient with low overhead. Scalability is only given by the approaches [Nag+10], [Cai+05a],
and [ZLK09] that distribute their load among several machines, i.e., collaborating parties with
their monitoring sites. As distributed attacks leave many traces, all approaches in this section
have a basic resilience because they can inherently tolerate if a few events are not detected to be
malicious or not mapped to the correct attack. Although not fully covering all other aspects of
resilience, approaches are assessed better when additionally tolerating internal failures or attack
variations.

The privacy is assessed best for those approaches that abstract the details of the malicious events
when reported to humans or third parties. This ensures that no sensitive information is revealed.
The attack abstraction in [Gat09] achieves this for example by an attacker footprint that is free
from concrete IP addresses or ports. In the other cases as in [Nag+10], the identify of affected
systems is hidden when shared with others for collaboration.

3.5 Context Correlation for Network Intrusion Detection

This section presents approaches for enriching security-related data and correlating context from
different domains. It is used in the intrusion detection process to broaden the data scope and to
refine the detection result by leveraging addition contextual data.

The approaches are structured into three groups (cf. Section 3.2.2). The first group contains
approaches that extend the scope of network flows by correlating it with additional host data.
Approaches in the second group correlate entries across different log files for intrusion detection.
The last group contains approaches that provide correlated host activity that can be leveraged for
network forensics.

3.5.1 Complementing Context for Network Activity

The following paragraphs discuss approaches that enrich network activities with complementing
context for better network intrusion detection.
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DIDS An early work on distributed intrusion detection that encompasses data from both hosts
and the network is proposed by Snapp et al. [Sna+91] with their prototype Distributed Intrusion
Detection System (DIDS). It performs distributed monitoring and data reduction utilizing
monitors on individual hosts and in the network. The actual data analysis is done centrally by
the so-called DIDS director that controls the monitors and retrieves their data. The focus of
the authors is on the network-user identification problem that describes the tracking of a user
moving across the network, possibly with a new user-id on each computer. In contrast to more
recent research for the detection of lateral movement [Boh+17] or stepping stones [BGA19],
DIDS assumes attackers that break into systems by solely making use of authorization methods,
but not exploiting any software vulnerabilities to gain access.

To solve the problem of identifying the originating identity for a logged-in user on a host, Snapp
et al. introduce the concept of a network-user identification (NID). The NID of a user that
physically logs into a host is set to this local user account. However, if this original user now
remotely logs into another machine, potentially under a different user, the remote login can be
associated with the NID of the original user. This chain can be continued for any further remote
login of the originating user. For the detection of such behavior, DIDS retrieves several notable
host events as soon as they happen, including failed events, user authentications, changes to
the security state of the system, and any network access such as rlogin and rsh. In general, the
host events originate from audit trails as defined in class C2 – Controlled Access Protection –
according to the Trusted Computer System Evaluation Criteria (TCSEC), frequently referred to
as the Orange Book [Lip15]. For data reduction purposes, other than the notable host events
are retrieved by the DIDS director in an aggregated fashion. The host events from the network
monitor retrieved by the DIDS director include network activities such as rlogin and telnet
connections, the use of security-related services, and changes in network traffic patterns.

Apart from using the host and network events to solve the network-user identification problem,
the retrieved events can be analyzed at the DIDS director for several purposes. In general, the
detection utilizes a rule-based expert system that transforms the raw audit events into high-
level hypotheses about intrusions and about the overall security of the monitored environment.
Table 3.3 describes the six levels of data processing for this purpose. Of particular interest for
the network-user identification problem are the levels 1 to 3 that implement rules to track users
by their NID. At upper levels, this allows us to aggregate the activities of the same original user
over several hosts, even when using different user accounts locally on each host.

Level Name Explanation
6 Security State Overall network security level
5 Threat definition of categories of abuse
4 Context event placed in context
3 Subject definition and disambiguation of network user
2 Event OS independent representation of user action
1 Data Audit or OS provided data

Table 3.3: DIDS intrusion detection model.

The result is a correlation of network data with information about host activities. DIDS is
demonstrated with the help of identifying network users to detect a single intruder that uses
multiple accounts to launch an attack, such that the behavior can be recognized as suspicious
only if one knows that it actually originates from a single source. The correlation itself is
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universal applicable to set host activities into context and performs in real-time as activity in
placed into context in an event-based fashion. However, there are no measures to make stealthy
attacks visible. Also distributed attacks are not explicitly addressed but are easier to detect as
shown with the help of the showcase. Furthermore, regarding the accuracy, DIDS models the
intrusion data by aggregating it on six different levels towards representing the overall security
state.

DIDS is highly privacy-invasive on lower levels of the DIDS intrusion detection model as it
contains many details about user activities but it becomes more privacy-friendly on higher levels
of the model when details are abstracted. Although the context comes from the hosts distributed
in the network, the correlation itself is centralized and, therefore, not scalable. Neither is it
resilient against attacks, failures, or overload situations.

Based on its description, the correlation might be efficient in the sense that no complex compu-
tations are performed. However, efficiency of the whole system is limited as high resources are
generally required for the huge amount of host data. For the similar reasons, deploying DIDS
is not easy because it requires the control and instruction of respective hosts to participate in
intrusion detection by providing host context.

Transaction Inspection Almgren et al. [AL01] enhance intrusion detection by the concept
of transaction inspection. The basic idea is to collect transaction information from a server
application in real-time and to forward the data to a NIDS. This way, the intrusion detection
can leverage not only the analysis of network packets but retrieves also host data specifically
about the interpretation of the respective operation in the application. The result is an IDS that
is coupled with the application itself instead of reading its logs.

When complementing traditional network-based and the new host-based data collection methods,
it allows gaining a more detailed insight into transactions, e.g., to access the plaintext of an
encrypted communication. For that, Almgren et al. propose to extend applications by a module
that provides an interface to integrate a network monitor into the application. In particular, the
authors use eXpert-HTTP from EMERALD [PN97] as analysis engine. For a proof of concept,
the authors extend the web server Apache by a module that forwards data to eXpert-HTTP. The
authors noted that the internal logging in Apache is a reasonable place to insert their module
for forwarding relevant data. This is because there is a well-defined application programming
interface (API) from which their module can receive structured data and because it allows
the module to register to hooks and callbacks that are invoked in several stages when Apache
processes a request.

When considering a particular Hypertext Transfer Protocol (HTTP) request to the Apache web
server and the respective response to be a transaction, the analysis of a NIDS is limited to
the bytes transmitted in the packets. With their integration into Apache, Almgren et al. can
now leverage addition host context from the application at the several processing stages. This
includes the Uniform Resource Identifier (URI) translation that determines the path and file to
be accessed, the header parsing, access control, authentication, authorization, and Multipurpose
Internet Mail Extensions (MIME) type checking.

The result is a correlation of application semantics with the packets seen by a NIDS. The closely
tailoring to be part of the application leads to more information than external monitors could
achieve, including the interpretation of an operation on application-level. As the NIDS now
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has the ground truth about how a network packet is processed by the application, the detection
accuracy of malicious network traffic can be increased.

Getting to the internals of an application usually requires to customize it, which makes the
deployment hard or even impossible. But it is eventually universal applicable to any application.
The transaction inspection is most effective for stealthy attacks that cover their actions in
encrypted traffic but does not help in case of distributed attacks as this scope are individual
transactions, i.e., requests and their responses. The inspected transactions are not represented
in any intelligible way but they are efficiently inspected as this requires only to match ongoing
network communication with the respective application internals. This happens in real-time
because of the event-based fashion in which internals are received and correlated.

The application internals potentially reveal user sensitive information and, therefore, this ap-
proach violates the users’ privacy. The whole correlation and process is centralized and does
not scale. Also, there are no resilience measures in place against internal failures, attacks, or
overload situations.

3.5.2 Intrusion Detection through Log Correlation

The following paragraphs discuss approaches that correlate information from different log files
for better network intrusion detection.

Anomaly Correlation Abad et al. [Aba+03] present their work on anomaly correlation to
increase the accuracy of anomaly detection across different log files. The authors assume that
attacks leave attack traces in several log files. Thus, Abad et al. correlate the anomaly detection
of the different log files to be more confident in their detection result. The anomaly detection of
individual log files is based on the data mining software tool RIPPER [Coh95]. The used data
mining techniques filter out the important log data and identify different attacks that may have
occurred.

The anomaly detection itself works on the principle of predicting the next element in a sequence.
As a proof of concept, Abad et al. implement this for the logs of system calls and network
traffic. For the log of system calls, the authors define a sequence by subsequent operations
such as open and close. For the log of network traffic, a single element in the sequence is
defined by the number of network flows within consecutive 10 seconds. Predicting the next
element in a sequence of system calls or network traffic is based on the last five to 19 elements.
When RIPPER is trained with a legitimate data set, the outcome are prediction rules for the
next element in a sequence. The resulting rules are then tested to associate each rule with a
confidence level that reflects in how many test cases the rule was right in predicting the next
elements in a sequence.

When applying the prediction rules to a continuous stream of elements, i.e., system calls or
number of network flows, each observed element can either match the prediction or differ from
it. When it differs, the element is assigned a penalty that equals the confidence of the violated
prediction rule. Further processing of individual element streams is done utilizing a sliding
window of length 13. To assign a new element in the stream the label normal or abnormal, not
only its own but also the prediction of the last twelve elements are considered. Thus, for this
decision, in total 13 elements and their predicted values are evaluated. For that, the penalties of
any mismatches among these 13 elements are accumulated. When this accumulated penalty of
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the sliding window is greater than half of the number of elements in it, i.e., greater than 6.5, the
new element is classified as abnormal. In fact, this classification is not done individually for
each log file but dependent on each other. To actually correlate the anomaly detection across
system calls and network traffic, the threshold for classification on each log file depends on the
current accumulated penalty of the other log file. Intuitively, the penalty of the one log file is
incorporated into the classification of the other log file by lower its threshold. This way, there is
more confidence in true positive and true negative classifications of abnormal log entries.

In summary, the anomaly correlation based on system calls and network traffic assumes abnormal
activities to be present in both logs. However, the total required confidence can be balanced
between the two logs. Less abnormal activity in one log requires more abnormal activity in
the other log to detect an intrusion. Rephrasing this, already high abnormal activity in one log
requires only low abnormal activity in the other log to detect an intrusion.

Apart from the initial learning phase of system call and traffic sequences with RIPPER, the
prediction and its comparison with observed sequences is efficient. At operation, deviations
from known sequences indicate an attack is going on, not tailored to stealthy and distributed
attacks but potentially universally applicable. The detection result reports the deviation but
cannot abstract the attack in any meaningful way. That an attack is taking place reveals no
sensitive data, but the collection of system calls poses a high threat to privacy. As this hosts data
is retrieved and processed in an event-based fashion, the detection is real-time capable.

The anomaly correlation is neither scalable nor resilient because of the centralized processing
that cannot gracefully degrade its operation. Furthermore, compared to the easy collection of
network traffic statistics, the retrieval of system calls from hosts requires more effort to deploy
the detection.

HERCULE Pei et al. [Pei+16] propose HERCULE to reconstruct multi-step attacks via com-
munity discovery on a correlated log graph. The authors note that complex attacks encompass
several stages with each stage involving a different activity on the host, e.g., the download of
an Internet file or the start of a new process. The authors make HERCULE to observe such
activities by leveraging lightweight logs on the hosts and to correlate their log entries to a log
graph. From this graph, HERCULE extracts attack communities, i.e., log entries that are related
to the same multi-step attack. This allows reconstructing the panoramic view of the complex
attack.

HERCULE parses six log files related to resolving Domain Name System (DNS) names,
establishing network connections, accessing HTTP websites, creating processes, accessing file
objects, and attempting authentication. In total 20 log fields such as timestamp, pid, and GET
path, are extracted from the log entries among the six log files. Intuitively, two log entries
must have a common field value to be correlated. This can be a match on the same field, e.g.,
the timestamp that is available in all log files or the process name that is available for process
creations but also for object access, among others. However, a match can also happen between
different fields, e.g., the destination of a connection equals the resolved IP address in DNS. In
total, the authors define 29 such combinations to match fields within and across log files. Based
on the six log files, HERCULE creates a correlated log graph G = (V,E,D) with the nodes
vi ∈V being individual log entries and edges (v1,v2) ∈ E among them when at least one match
among the 29 combinations exists for the field values of (v1,v2). In addition, each edge holds a
vector of length 29 that encodes which of the combinations D matches.
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Based on this correlated log graph, HERCULE extracts communities [MV13], i.e., clusters
of log entries that show high density among each other with respect to equal log fields. From
a formal perspective, community clustering aims to maximize the edges within a community
and to minimize the edges between communities. However, the authors notice that not every
one of the 29 combinations of log fields has the same strength, but an edge is added to the
graph whenever at least one combination exists. For that, Pei et al. optimize the community
detection by introducing weights to the edges. This weight is based on a weight function
that takes the strength of each combination into account and depends on the combination
vector, that is assigned to every edge. In particular, quadratic programming is chosen for this
purpose as it outperforms other weight assignment algorithms that are compared by the authors.
Finally, HERCULE efficiently extracts communities on the weighted graph using the Louvain
method [Blo+08].

The outcome of HERCULE are clustered log entries that come from log files with diverse
information, both host- and network-related. Related log entries abstract a sequence of related
activities, potentially linked among hosts. If it is possible to match an alert to a log entry, then
any cluster that contains this log entry is marked as an attack. Consequently, the contained log
entries are supposed to reflect the sequential activities of the attacker.

HERCULE is not efficient as the graph creation requires to search for equal features potentially
among all other log entries, which results in an complexity of O(|V |2) where |V | is the number
of nodes, i.e., log entries. The later community forming is triggered manually for the batch of
current log entries, which is the reason why HERCULE is not real-time capable. The whole
analysis is neither scalable nor resilient. Also, it is not easy to deploy because this requires to
retrieve several logs from different places in the network and the active participation of hosts.

HERCULE is universally applicable to any attack scenarios that leave traces in the respective
log files. In contrast to stealthy attacks, distributed attacks that target several different hosts
or services might be easier to detect with the help of HERCULE. The analysis outcome, i.e.,
groups of log entries, still contain all details including any sensitive user information, which
neither abstracts the attacks with its characteristics nor does is protect the privacy of the users.

3.5.3 Endpoint Security for Network Forensics

The following paragraph discusses an approach that provides insights into host context for better
network intrusion detection.

ProTracer Ma et al. [MZX16] present ProTracer, a lightweight system for provenance tracing.
The term provenance describes the origin of information flow, e.g., the network connections
of a process or the process that was writing to a memory location. The authors identified two
principal mechanisms to achieve provenance tracing, but note that both have limited practicality.
First, provenance tracking using system-level audit logs [Kin+05] (cf. Section 2.3.2) suffers
from dependence explosion and therefore cannot be used in an online fashion. Second, also most
provenance propagation or tainting [Mun+09] approaches have a high overhead because of heavy-
weight instrumentation. With their ProTracer, Ma et al. combine the best of both provenance
mechanisms while achieving their goals with low overhead. First, the what-provenance should
answer on which objects another one depends on. And second, the how-provenance should
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detail the dependency with other objects. The outcome allows querying any system objects for
what and how both backward and forward.

The authors achieve their goals with a low overhead for several reasons. First, they implement
a lightweight kernel module for system call monitoring that is based on so-called tracepoints
instead of using the more inefficient Linux Audit system. Second, a user space daemon receives
the monitored calls as events and processes them on the fly. This daemon, in fact, alternates
between logging and tainting the provenance information in the events. It only logs when events
conduct changes to the permanent storage or the external environment such as writing a file and
sending a packet. For other events such as file reads and network receives, the daemon performs
coarse-grained tainting of the object that might propagate with further events. Tainting instead
of permanent logging effectively lowers the overall overhead because a filtering happens for two
reasons. It avoids to log redundant events and avoids to log dead events, i.e., those that have no
effects on provenance propagation.

To further optimize the performance of ProTracer, the authors leverage the concept of unit levels
as proposed in their previous work on BEEP [LZX13]. It separates the runtime execution of
a program into units, with each one representing independent tasks like processing a request.
This reduces false positives, as information flows can be isolated through the whole lifetime of
a process. Consequently, logging and tainting is based on process units and the other system
objects files and sockets.

The resulting logs filter redundant or irrelevant provenance information while being precise
and complete on provenance propagation. Therefore, this substantially reduces the space
consumption and the size of provenance graphs that are generated based on these logs and allows
us to efficiently find causally related activities while investigating a security incident.

The custom kernel module for the monitored hosts has some benefits and drawbacks. The
main drawback is the run-time modification of Linux at the kernel level. But this enables
several benefits regarding the retrieval and tainting of data. First, it is partly scalable because
of leveraging threats. Second, it is efficient in the sense of less overhead compared to the
Linux kernel audit, both regarding receiving kernel data and log volume because provenance
information is filtered before logging. The tainting for this provenance information happens in
an event-based fashion and, therefore, in real-time.

As provenance information is hold as long as it potentially propagates further, ProTracer is suited
to assist in detecting stealthy but not in distributed attacks. Anyway, its applicability is universal
as provenance tracing is independent from attack scenarios and characteristics. For this scope,
ProTracer provides a good representation of the results by logging objects tainted with their
provenance and abstracting the many related objects. This also reduces the amount of sensitive
user information that is logged. However, ProTracer provides no resilience or self-protection
measures.

3.5.4 Summary of Context Correlation

This section presented several context correlation approaches that have been discussed according
to the requirements of an IDS provided at the beginning of this chapter. Not all requirements
were explicitly investigated in the original papers. Thus, some discussion details are open
to interpretation. Anyhow, Table 3.4 summarizes the overall results of this discussion. The
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detection approaches were classified according to their assistance scope when it comes to
intrusion detection specifically in the network. Approaches either

• complement the context of particular network events ([Sna+91], [AL01]) with information
from the hosts,

• correlate intrusion data from different sources ([Aba+03], [Pei+16]) that describes the
same attack, or

• perform endpoint security ([MZX16]) that can be used for network forensics.

The approaches in this section primarily perform no intrusion detection themselves but are meant
to assist in the intrusion detection process. This is reflected in the assessments of the overall
detection accuracy. The host context from [MZX16] can be of great value for the intrusion
detection but the approach itself does not even sketch a detector. In contrast, the algorithm
in [Aba+03] is a direct blueprint for the correlation of different data sources to come up with
a detection result. The other approaches at least highlight their help for network intrusion
detection. However, apart from such showcases that might be used to demonstrate a concrete
detection scenario, the approaches’ general utilization for detection is more important for this
section. Thus, the remaining of this summary assesses the approaches’ concepts regarding
assisting in satisfying the requirements for intrusion detection.

Almost all others cannot assist in detecting stealthy attacks with long time periods between
malicious events. Most approaches have not mechanism in place to timeout event information
but still linking new to historical data. The flow-oriented approaches generally fail to link
context between different network flows, but [AL01] can at least assist in stealthy attacks that
encrypt their malicious traffic or obfuscate it my similar means. Only [MZX16] can effectively
reveal historical relations because it reflects the life cycle of system objects to out-date event
information and additionally propagates the provenance information transitively among the
objects until it is logged.

None of the approaches can effectively assist in detecting distributed attacks. But all of them are
universally applicable as they provide context that can be for intrusion detection in various ways
and for multiple purposes. Satisfying the requirement of an attack representation is, however,
highly dispersed across the approaches. While the majority just reports the full details, [Sna+91]
reports the path an originating user is path hopping through the network and [MZX16] reports
only the those provenance information that make an significant change to the system.

The event-based processing and reporting enables almost all approaches to be real-time capable.
Only [Pei+16] performs on batches of log data which leads to the analysis results being only
available at the end of each batch. The result compared to [MZX16], however, gives a more
detailed and accurate insight into relations host events for a particular attack.

The approach [Pei+16] is assessed worst regarding the efficiency requirement. This is because
the creation of the log graph requires to compared the features among all log entries which
results in a quadratic complexity. All other approaches are more efficient and most of them
fulfill this requirement completely. The fulfillment of the scalability requirement, however, is
not given by any but one approach. This one approach [MZX16] is also only partly covering
scalability because it leverages parallel processing only on the hosts themselves but not for
the main task that is performed centrally. Also the privacy is not fully addresses by any of the
approaches.
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Detection Accuracy (R1) Ø Ø 3 Ø 7

- Stealthy Attacks 7 Ø 7 7 3

- Distributed Attacks Ø 7 7 Ø 7

- Attack Representation 3 7 7 7 3

- Universal Applicability 3 3 3 3 3

Real-Time Detection (R2) 3 3 3 7 3

Efficiency (R3) Ø 3 3 7 3

Scalability (R4) 7 7 7 7 Ø
Easy Deployment (R5) Ø 7 Ø Ø 7

Resilience and Self-protection (R6) Ø Ø Ø Ø Ø
Privacy (R7) Ø 7 Ø 7 Ø

Table 3.4: Summary of context correlation approaches regarding their compliance with the
requirements given at the beginning of this chapter. Checkmark symbols 3 indicate
the fulfillment of these requirements, crossing symbols 7 their non-fulfillment,
average symbol Ø their partial match.

That most data for the approaches in this section is retrieved from the many hosts in the network
results in two consequences. First, this provides some basic resilience against internal failures
because the main task can still be performed with degraded accuracy even when data from
few hosts is missing. However, none of the approaches applies resilience measures in the data
processing itself. Second, a deployment is not easy because it requires the active participation of
hosts. And the deployment of [AL01] and [MZX16] is even harder because a modification of the
operating system (OS) or application is required to get access to the data instead of leveraging
already existing data interfaces.

3.6 Multi-Step Attack Reconstruction

This section presents approaches for the detection of mutli-step attacks, i.e., those that are not
targeting at multiple hosts at the same time but attacks that achieve their goal in a sequence
of different activities. The detection approaches here leverage all raw and already correlated
data from the intrusion detection process to reconstruct the individual actions performed by the
attacker.
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The approaches are structured into two groups (cf. Section 3.2.2). The first group contains
approaches that reconstruct that path that an attacker took during lateral movement [Nia+20].
Approaches in the second group focuses on the detection and interconnection of the attack steps
to reveal the full attack scenario.

3.6.1 Attack Path Reconstruction

The following paragraphs discuss approaches that reconstruct the sequence exploited systems
during an attacks.

Alert Correlation with Attack Graphs In their work on Alert Correlation with Attack Graphs
(ACAG), Roschke et al. [RCM11] extend the original work from Wang et al. [WLJ06] on attack
graphss (AGs) for alert correlation. The basic idea is to model attack steps an attacker can
perform in the network to achieve a specific goal [Sch99], e.g., to gain access to a specific
system or to make the system unavailable to others. In their work, Roschke et al. have a special
focus on the hosts and the sequence in which they are exploited. The authors formalize the
detection that basically requires to map alerts to the AG.

The alert correlation with attack graphs requires only a few alert attributes, including the
timestamp, source host, destination host, and classification of the alert. The AG, however,
requires to be modeled with expert knowledge about vulnerabilities and their effects. The
intention of the AG is to hold specific information about the different steps that an attacker must
perform for the attack to be successful. Intuitively, there is not a single sequence of steps, but
different combinations of steps might be possible, also depending on the attack surface. All
the different attack possibilities are encoded in the AG. For that, a vertex in the AG reflects
a specific attack step as a triple v = (im,h,r) with the impact im, the affected host h, and the
vulnerability reference r of the attack step (cf. MulVAL [OGA05]).

The correlation algorithm itself maps alerts to specific nodes in the AG. For that, alerts and nodes
must satisfy some restrictions regarding their features. The authors identified three important
alert features and how they are mapped to a vertex v in the AG: (1) the alert classification maps
to the vulnerability reference r of v, (2) the alert source host maps to the host of another node v′

in the AG, and (3) the destination host maps to the host of node v. In total, Roschke et al. give
several combinations of these three features to restrict the mapping of alerts to nodes. When
mapping alerts, the algorithm is identifying and merging duplicate alerts by equal feature values
and close timestamps.

The merged alerts that have been matched to a node in the AG, are transferred into a dependency
graph (DG) and reflected as vertices. An edge between two alerts in the DG exists, if there is a
relation between the respective mapped vertices in the AG. The authors identified three kinds of
relations in the AG that will lead to an edge in the DG. Intuitively, such an edge requires the
alerts to be in sequence towards forming a path in the AG, i.e., towards a sequence of steps that
result in a successful attack. The last step in correlation is to search for the most interesting alert
sequences. For that, the authors leverage the Floyd Warshall algorithm [Flo62; War62] to find
all the shortest paths. With that, they identify the longest shortest paths, i.e., the sequences of
dependable alerts that reflect all steps in the DG and therefore indicate a successful attack.

In summary, Roschke et al. identify sequences of alerts that match an attack defined in the AG.
This is primarily based on the IP addresses of the source and destination hosts in the alerts and
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the IP address of the host in AG vertices, among others. The result of the ACAG is basically
the sequence of hosts that are involved in the attack. Because of further information like the
vulnerability reference and the attack impact, the extracted alert path in the DG contains some
more hints about details in every attack step.

These extracted paths are a good representation and abstraction of the multi-step attack. It
is universally applicable for the detection of any multi-step attack that is specified in the AG.
Parallel actions cannot be specified in the AG for the detection of distributed attacks, instead the
approach is most effective when modeling combinations of different actions. Depending on how
long alert information remains mapped to the AG, stealthy attacks might be detected. The actual
detection with the transformation into the DG and the extraction of paths, however, is triggered
manually and, therefore, not real-time capable. The extracted paths might only report the few
targeted hosts or services and abstract more sensitive information.

The alert correlation with attack graphs is efficient because a new alert must be mapped against
a fixed set of nodes in the AG, which results in the complexity O(|V |) where |V | is the number
of nodes. However, the correlation does not scale. Furthermore, the approach is not resilient
against failures or overload situations. Integration of the correlation itself is easy with access to
the alert of an already deployed IDS. But the initial creation of the AG and its maintenance must
be customized for each environment and requires some effort.

ZePro Sun et al. [Sun+16] propose ZePro, a probabilistic approach for the detecting of multi-
step attacks that might contain zero-day exploits. When attackers perform multiple steps, the
authors note that most of the exploits used are non-zero-day that can be detected. But in case
the attacker uses a zero-day exploit in its attack path, this exploit can still be linked by a chain
with other non-zero-day exploits to reveal the full path. ZePro detects such zero-day attack
paths in two steps. First, ZePro creates an object instance graph from host data to capture the
information flow among system objects, i.e., processes, files, and sockets, also across hosts.
Second, a Bayesian network (BN) [Pea85; Pea88] incorporates intrusion evidence collected
from various information sources, i.e., intrusion alerts, to capture intrusion propagation among
the objects and to compute the most likely attack path the attacker took through the network.

The actual detection is conducted on a central machine that collects the system calls on monitored
hosts. During an offline analysis, this data is first transformed into a so-called object instance
graph. This is based on the key insight, that an intrusion propagates from one system object, i.e.,
process, file, or socket, to another object through system calls such as read and write. These
system calls highlight the information flows among the objects and therefore they are denoted as
source and sink. In contrast to provenance graphs (cf. Section 2.3.2), each node in ZePro is not
a system object ox ∈ O, but the ith instance of the object in a specific time-dependent version.
This versioning allows to encode the sequence of interactions with the object ox, i.e., via system
calls, and therefore decouples them when they are in fact not dependent, i.e., reading a file only
depends on writes that happened previously. The result is a DAG G = (V,E) with nodes V being
the system object instances srci,sink j, i, j ≥ 1 where srci and sink j are the ith instance of the
system call source and the jth instance of the system call sink, respectively. A new instance, i.e.,
version, of an object is created only if it is the sink in the system call. The edges E label the
kind of call dependency according to the system call between the most recent versions of the
source and the new version of the sink. In addition, an edge is added between the previous and
the new version of the sink to label the state transition dependency (cf. Figure 3.7).
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Figure 3.7: The infection propagation model and CPT at node sink j+1.

After parsing the system calls, an instance-graph-based BN is constructed from the nodes and
edges in the object instance graph. In general, a BN consists of nodes that represent a variable of
interest and directed edges that denote the causality relations between two nodes. The strength
of such a causality relation is indicated using a conditional probability table (CPT). In ZePro,
the intention of the BN is now to label each node with either infected or uninfected.
This is done using an infection propagation model to state the probability for each node of being
infected (cf. Figure 3.7). If not already infected, the label of a node depends on the source
srci in the respective system call that leads to the new sink version sink j+1. If the source is
already considered infected, the intrusion is propagated to the sink with a contact infection
rate τ . However, the sink can also become infected for other reasons, which is reflected by the
intrinsic infection rate ρ . Although 0 ≤ τ,ρ ≤ 1, Sun et al. propose to set ρ to a very small
constant number, whereas τ should be tuned by security experts. Once infected, objects stay
infected in any future versions until recovery operations are performed to clean the infected
system.

Apart from this infection propagation model, ZePro can incorporate intrusion evidence into the
instance-graph-based BN in two ways, i.e., towards initially labeling a specific object instance
as infected. If the infected state is detected with enough certainty or confirmed manually, the
objected instance is immediately labeled to be infected. Otherwise, the local observation model
(LOM) by Xie et al. [Xie+10] is leveraged to model observations of potential malicious activities.
In this case, the observation is added as a direct child node of the object instance in question.
The CPT of the observation then inherently indicates the false rates with respect to the state of
the real object instance.

After probability inference, each node in the instance graph receives a probability of being
infected. To reveal multi-step attack paths, ZePro extracts all relevant nodes and the edges
among them. Intuitively, this includes all nodes with high infection probabilities, e.g., above
80%. But also nodes that have both an ancestor and descendant with high infection probabilities
to allow for zero-day exploits in the model. The actual extraction is based on a depth-first search
(DFS) in the instance graph.

The result of ZePro is a path among the system objects to detail how the intrusion propagated.
The attack path can even be reconstructed across multiple hosts when establishing a network-
wide object instance graph that connects the socket objects of across monitored hosts. The
detection is based on a BN that quantitatively computes the probabilities of object instances
being infected. Connected through dependency relations, the instances with high infection
probabilities form a path, which can be viewed as a zero-day attack path.
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The quality of the instance graph is good and accurately reflects the ground truth of system
objects because their versioning and their causal dependencies among each other. However,
the system is not efficient because of the large overhead for creating the instance graph. The
actual detection based on the BN does not scale and is also not real-time capable as this is
triggered manually. Furthermore, the detection accuracy depends on the quality of the IDS
alerts that initially set the intrusion evidence that propagates through the BN. ZePro in general
is applicability to many attack scenarios but particularly fails to detect distributed attacks that
cannot be modeled by a path through the graph. But ZePro is eventually able to detect stealthy
attacks, depending on the time span for which intrusion evidence remains in the instance
graph. Anyway, the outcome is representing the multi-step attack by its path with characteristic
information about the system objects involved.

The privacy of users is threatened by collecting all system calls, but only the affected system
calls are included in the reported path. Requiring to collect this host data in the first place,
prevents an easy deployment. But no more expert knowledge is further needed in operation,
apart from the IDS alerts. Because of the centralized processing, ZePro is not resilient, nor can
it adapt to overload situations.

3.6.2 Attack Scenario Reconstruction

The following paragraphs discuss approaches that reconstruct attack scenarios that consist out
of a variety of different attack actions.

Fuzzy Attack Patterns Daneshgar et al. [FA16] present the concept of fuzzy attack patterns
that are historically relevant alerts that frequently occur in consecutive attack steps. The authors
use this concept to cluster alerts to so-called fuzzy attack events that are not only based on
feature similarity but also based on combinations of alerts that frequently occur together. The
authors propose an online model for this alert correlation to identify such related alerts in
real-time continuously from an input stream of alerts. The algorithm incorporates mechanisms
to identify complex scenarios as usually found in multi-step attacks. The system is composed
of two modules. The first module emits fuzzy attack events that are reported to the security
operator. The second module also consumes these events to mine fuzzy attack patterns, i.e.,
frequent patterns of alerts, that are fed back to the first module to improve clustering.

The first module is named online incremental fuzzy clustering module. Its goal is to cluster a
stream of alerts to fuzzy events. In particular, a fuzzy event created at timestamp t and is defined
as e = {t,{a1, . . . ,an},{m1, . . . ,mn},w} with the clustered alerts {a1, . . . ,an} and a measure
named membership degree mi ∈ [0;1] for each alert ai that describes how good the alert is
related to previous alerts in the fuzzy event. Both lists might be extended online by adding new
alerts to the event. In addition, every fuzzy event e j is associated with a time-dependable weight
w j that is increased by mi at the time an alert ai is added and that is otherwise decreased by the
fading function f (t) = α−at until another event is added. The fuzzy event is said to be stable
when its weight falls below a threshold θ or when its lifetime exceeds a threshold maxtl. Once a
fuzzy event becomes stable, it is removed from the clustering module and added to the output
queue of fuzzy attack events.

The actual clustering in the first module, i.e., deciding which events e j a new alert ai should
be added to, is based on three criteria that are individually calculated and averaged to derive
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the membership degree mi for an alert ai to a fuzzy event e j. The first criterion is the similarity
between IP addresses. For both source and destination IP address in the alert ai, a match is
searched among the union of source and destination IP addresses of all alerts in e j. The second
criterion is the time similarity between the time of the new alert ai and the time of the last alert
in the existing event e j. The similarity is 1 if the time difference di f f is within a duration
threshold and otherwise continuously decreases by the function 1−α−di f f . The third criterion
is the similarity between the alert types. For that, the highest similarity between the alert type of
ai and the types of all alerts in e j is chosen. The idea for this is based on the original work by
Zhu et al. [ZG06]. Zhu et al. use neural network approaches, Multilayer Perceptron (MLP) and
support vector machine (SVM) in particular, to learn the relation among alert types as they occur
in multi-step scenarios. In contrast to them, Daneshgar et al. eliminate the need for training
phases or expert knowledge but learn the so-called Correlation Strength between alerts online
based on historical data in an unsupervised fashion. Based on these three similarity criteria, the
alert ai is added to any e j for that the membership degree is above the threshold εMem. If not
added to at least one fuzzy event, a new one is created containing the alert. The next module
becomes active when a fuzzy events becomes stable and added to the output event queue.

The second module is named fuzzy frequent inter event pattern mining module. Its goal is
to extract frequent fuzzy patterns from the queue of fuzzy attack events and to update the
correlation strength matrix (CSM) (cf. Zhu et al. [ZG06]). State about previous fuzzy events is
maintained in a so-called inter event pattern (IEP)-tree. Intuitively, frequent patterns indicate the
alerts that statistically happened together. When having the events e1 = {t1,{A,D,E}, . . .}, e2 =
{t2,{B,E,C}, . . .}, and e3 = {t3,{D,E}, . . .}, one can derive that alert E frequently happens
after alert D. This mining happens in three steps that are performed upon every fuzzy attack
event emitted by the first module:

1. Tree-Construction: The tree is initialized with a root that stays empty all the time. As
the tree is built by adding child and sibling nodes, each path from the root towards a leaf
node indicates a length-l pattern with l being the number of alerts in the pattern. Based on
the work by Chiu et al. [Chi+11], the alerts reported in fuzzy attack events first result in
length-1 patterns associated with their number of occurrences. Once a length-1 pattern
becomes frequent, i.e., occurs more often than a threshold, the pattern can be extended
to a length-2 pattern by appending another alert that frequently follows. The following
alert is with respect to one of two dimensions, either consecutive within the same event of
within the alerts of a consecutive event. The new pattern is then added as a child of the
respective length-1 pattern.

2. Tree-Traversing: When creating new length-l patterns, they trigger updates of the Cor-
relation Strength Matrix. However, only alerts from different fuzzy attack events are
selected to propagate the correlation of the respective alert types. This makes the Correla-
tion Strength Matrix to reflect relations between consecutive steps in a multi-step attack.
Based on the membership degree mi of the alerts in the respective patterns, the correlation
strength value is updated.

3. Tree-Pruning: The last step out-date alerts because they happened a while ago. This
must also be reflected in the IEP-tree to be able to adapt to new emerging alert patterns.
However, instead of deleting the affected nodes in the tree completely, only their counter
is decreased when the respective alert times out. The authors implement this by a sliding
window over the last N emitted fuzzy attack events. New events that get inserted into the
queue result in increasing the counter of the contained alerts while removed alerts result in
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decreasing. Only if the counter falls below the threshold for frequent patterns, any pattern
containing this alert is removed.

The outcome of the alert correlation algorithm are fuzzy attack events, i.e., alert clusters, that
continuously adapt to new emerging attack scenarios. Instead of clustering alerts to aggregations
that describe a single attack step by similar alert features, the clusters based on fuzzy attack
patterns describe alerts related to the same attack that might be composed out of several steps.

Because of the event-based and continuous identification of fuzzy attack events, the detection
theoretically works in real-time. In practice the real-time requirement is only partly covered
because the reporting of attack events is delayed by the fading function for their weights. These
events represent the whole attack, but do not structure the attack according to the different
steps. Because of the three different criteria used to correlate alerts, the detection covers most
attacks and is universally applicable. Especially the criterion of IP similarity allows to identify
distributed attacks. Also stealthy attacks are partly able to detect because the fuzzy attack event
of a slow but ongoing attack will evolve until the event becomes stable.

The detection itself, i.e., identifying fuzzy attack events, is efficient because checking a new alert
against each existing attack event according to the three criteria is done by simple operations
like intersection of sets or numerical difference. However, updating the CSM through the
identification of frequent patterns is an additional overhead. But as this can be skipped, e.g.,
in overload situations, while still ensuring reasonable detection accuracy, the system is party
resilient. No alerts are filtered and will finally go into an attack event, which is not privacy
friendly but leads to all alert details to be reported. Despite the complex design of the correlation,
the system is easy to deploy because it processes existing IDS alerts and even adapts to new
attack scenarios automatically because of the frequent pattern mining.

HOLMES Milajerdi et al. [Mil+19] propose HOLMES, a system for the detection of advanced
persistent threats (APTs). The authors note that APTs follow an APT lifecycle model that
is also known as the cyber-kill-chain [HCA11]. This model describes the different stages an
APT attacker usually performs, e.g., the initial compromise, establishing a foothold, escalating
privileges, to complete its mission. HOLMES leverages this model for the correlation between
suspicious information flows to produce a detection signal that indicates the presence of a
coordinated set of activities that are part of an APT campaign. The detection is conducted in
three steps:

1. Generating alerts from low-level events that are significant to an APT behavior

2. Correlating alerts with multiple activities of the attacker to indicate an ongoing APT attack

3. Presenting the attack scenario by an intuitive summary to an analyst

The events in the first step, i.e., the alert generation, are based on raw audit data from auditd
for Linux, dtrace for BSD, and ETW for Windows. From this audit data, a provenance graph
(cf. Section 2.3.2) GP = (V,E) is created, where nodes V represent processes as subjects and
files, pipes, and sockets as objects. Edges E reflect the kind of dependencies among subjects
and objects, i.e., event names like read or write, among others. Nodes in the graph are versioned
and a new version of a subject or object is created when a new incoming edge is added, i.e.,
when the dependencies of a node change. To detect significant events that might represent APT
behavior, the authors leverage the tactics, techniques, and procedures (TTPs) as defined in the
MITRE’s ATT&CK framework [Str+18] when mapping low-level events to APT stages. In
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HOLMES, a TTP specification abstracts a particular behavior such as making memory regions
executable. A TTP, therefore, summarizes the respective audit events of the different OSes that
can be used to achieve this behavior and assigns them the APT stage in which the behavior is
usually seen. Mapping system calls to high-level specifications of malicious behavior this way,
results in alerts that are meaningful to the remaining of the APT detection.

In the second step, i.e., the alert correlation, the relation among these potential APT alerts
must be analyzed for ongoing APT attacks. For this, HOLMES leverages a concept known
as prerequisites and consequences [NCR02]. In general, this links two entities when the
consequences of the one satisfy the prerequisites of the other. In HOLMES, the TTPs define
prerequisites as rules, that reflect requirements to other TTPs that are used in the previous APT
stage. Intuitively, that two APT stages succeed according to the cyber-kill-chain is reflected by
the prerequisites. And therefore, two related APT stages are detected if there is a match of the
prerequisites for two alerts.

In the last step, i.e., the attack scenario representation, HOLMES extracts alerts that correspond
to a series of consecutive APT stages, primarily driven by the prerequisites as defined in the TTPs.
For the representation to human beings, a High-level Scenario Graph (HSG) GHSG = (A,D) is
constructed. Nodes A in the HSG represent alerts that can be related to an ongoing APT attack,
while the edges D represent information flow and causality dependencies among the alerts. To
reduce the false positive HSGs, the authors make HOLMES to learn benign patterns and create
heuristics that assign weights to nodes and paths in the GHSG based on the severity of alerts. The
latter allows to present the HSGs to the analyst ranked according to their priority. The authors of
HOLMES suggest assigning TTP severity based on the Common Attack Pattern Enumeration
and Classification (CAPEC) [MIT].

In summary, HOLMES’s detection is based on an APT’s most essential high-level behavioral
steps and the information flow dependencies between these steps. The dependencies are re-
constructed from host audit data. The result is an attack scenario that describes attack steps
following the cyber-kill-chain model. The presentation in the HSG is informational and a good
abstraction of the whole attack, including a prioritization based on severity. The detection has a
universal applicability to all attack scenarios because they all leave traces in the utilized host
data. As the focus is on a series of actions following the APT model, distributed attacks are not
reflected. Stealthy attacks are not addressed in the sense of large time spans between consecutive
actions but the approach reveals such attacks that locally mimic benign behavior.

The detection algorithm seems to perform mostly efficient because of simple matches and
transformations, but the overhead if high because of the volume of system calls to process.
Similarly, although the system calls are received in an event-based fashion, it is not convincing
that all three steps are executed upon every event. More likely, the creation of the HSG is
triggered manually, which causes HOLMES to only partly work in real-time.

HOLMES does not provide any measures for scalability or resilience. Despite the usage of
sensitive user information included in the system calls, the detection result as HSG abstracts is
limited to relevant actions only and furthermore abstract their details, which is privacy friendly.
Deploying HOLMES is not easy because it requires the active participation of hosts to allow
collecting the system calls. Furthermore, an extensive knowledge base is needed to model APT
attack behavior.
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SAM Meier et al. [MSK05] propose the Signature Analysis Module (SAM) for IDSes to enable
them to efficiently check for multi-step signatures [Mei04]. Referring to the Event Description
Language (EDL) [Sch04] that is based on colored Petri nets [Jen87], Meier et al. present their
modeling approach with multi-step signatures and five strategies to efficiently leverage them for
signature matching.

Signatures in the EDL are modeled with places Pi ∈P and transitions Tj ∈ T , comparable
to nodes and directed edges in a graph. In this Petri net like approach, a signature starts
with an initial place and ends either with an exit place or escape place that represent the full
signature match or an aborted match, respectively. Transitions represent events that trigger
state change from one place to another. They connect these initial and termination places to
form paths with interior places in between. Signature checking is performed using tokens that
represent signature instances and unconditionally spawn at the initial place. Following outgoing
transitions might lead to spawning tokens at successor places and eventually reaching the exit
place. For conditional traversal through the net, places P define features and transitions P
define conditions that have to match to fire the transition. If a place defines the feature userID
the tokens at this place are assigned the value of a particular ID. An outgoing transaction could
require the event type to be FileCreate and the event user to match the place user.

When using these Petri net like signatures in a naive way, it would require to check an observed
event e ∈ E against all signatures S , the contained transitions T , and their conditions C . This
does not scale well with the increasing number of incomplete signature instances, i.e., tokens.
Because of that, SAM incorporates five matching strategies that build upon each other:

1. Strategy 1 (Transition Types): As transitions require events of a particular type, transitions
can be indexed in a key-value fashion such that the type of an event is efficiently mapped
to a list of transitions.

2. Strategy 2 (Intra-Event Conditions): The so-called intra-event conditions are comparisons
between event features and constants, i.e., independent from place features or token values,
respectively. For every transition, these conditions have to be evaluated only once per
event. If successful, the inter-event conditions with input places and their tokens are
evaluated.

3. Strategy 3 (Token Values): Instead of evaluating the inter-conditions of an transition for an
event with each token at the input places separately, tokens can be indexed by their value
for efficient value matching. If a place defines multiple features, also multiple indexes
exist, each mapping to lists of tokens. Then, each feature is looked up efficiently and the
intersection of mapped tokens determines the matching tokens.

4. Strategy 4 (Common Sub-Expressions): While Strategy 2 and 3 already account for redun-
dant evaluations of the same condition for a single transaction, common sub-expressions
might sill exist in the condition blocks of different transitions. SAM identifies such
common sub-expressions and calculates their boolean value only once for each event. The
result of true or false is used across the evaluation of all transitions without calculating
the value again. In this regard, the authors highlight standard techniques for identifying
common sub-expressions [ASU88].

5. Strategy 5 (Condition Prioritization): As final optimization, the different evaluations of
conditions can be ordered such that a mismatch is detected at an early stage and that
the whole transition cannot fire. This avoids to evaluate remaining and more expensive
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condition. The authors note that conditions can be prioritized statically or dynamically
but should be optimized for failure to most effective.

In summary, SAM models multi-step signatures based on high-level Petri-nets using the signature
specification language EDL. SAM incorporates strategies to linearly scale with the number
of events to check against the complex signatures. This allows to efficiently detect multi-step
attacks in a signature-based approach. The EDL can model various attack scenarios that are then
implemented by SAM for universal applicability. This also includes stealthy attacks because
a token representing an ongoing attack stays in the Petri-net until its detection is confirmed
or aborted. But distributed attacks are not further focused in the detection. Once a signature
matches by reaching the exit place, SAM provides no better abstraction than the details on all
relevant features and conditions, which is too detailed for a reasonable attack representation.

SAM works in real-time by checking for any transitions and signature matches in the Petri-nets
upon a new event. This event processing with the central Petri-nets does not scale and is not
resilient against obfuscated data or component failures. The events, furthermore, include full
sensitive details also when presenting the detection results, which violated the user’s privacy.
Because the events also come from hosts and therefore their active participation is required, the
deployment of SAM is not as simple as with passive network monitoring.

3.6.3 Summary of Multi-Step Attack Reconstruction

This section presented several approaches for the reconstruction of multi-step attacks that have
been discussed according to the requirements of an IDS provided at the beginning of this chapter.
Not all requirements were explicitly investigated in the original papers. Thus, some discussion
details are open to interpretation. Anyhow, Table 3.5 summarizes the overall results of this
discussion. The detection approaches were classified according to the focus of the reconstruction
which is on either

• the attack path through the affected systems ([RCM11], [Sun+16]) or

• the attack scenario ([FA16], [Mil+19], [MSK05]) by interconnecting the different attack
steps.

The overall detection accuracy is assessed according to attacks in the intended scope of the
approaches. While all approaches can detect multi-step attacks, two particularly suffer from
different limitations. The scenario steps in the attack graphs of [RCM11] usually describe more
higher level steps and can hardly be modeled accurately enough to be mapped with technical IDS
alerts. Despite the mix of different correlation criteria in [FA16], alert similarity and frequent
alert patterns are likely to not be enough to find inconspicuous and rare alert relations from
multi-step attacks. Better accuracy is achieved by the remaining three approaches. The causal
relations among the system objects from system calls in [Sun+16] avoid any false positives in
comparison to relations based on feature similarity. And the BN models the propagation of
infections reasonably based on the accurate object relations. The detection accuracy is also high
in [Mil+19] and [MSK05] because their descriptions of multi-step attack scenarios are generic
enough to be sound while being technical enough to be incorporated by an algorithm without
any ambiguousness.

Only the approach based on Petri-nets with their tokens in [MSK05] support the detection of
stealthy attacks by keeping attack scenarios open until their detection is confirmed or aborted.
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Detection Accuracy (R1) Ø 3 Ø 3 3

- Stealthy Attacks Ø Ø Ø Ø 3

- Distributed Attacks 7 7 Ø 7 7

- Attack Representation 3 3 Ø 3 7

- Universal Applicability 3 Ø 3 3 3

Real-Time Detection (R2) 7 7 Ø Ø 3

Efficiency (R3) 3 7 Ø Ø 3

Scalability (R4) 7 7 7 7 7

Easy Deployment (R5) Ø Ø 3 Ø Ø
Resilience and Self-protection (R6) 7 7 Ø 7 7

Privacy (R7) Ø Ø 7 3 7

Table 3.5: Summary of multi-step attack reconstruction approaches regarding their compli-
ance with the requirements given at the beginning of this chapter. Checkmark
symbols 3 indicate the fulfillment of these requirements, crossing symbols 7 their
non-fulfillment, average symbol Ø their partial match.

Unfortunately, the same approach is assessed worst regarding the attack representation because
the detected scenario is reported by giving full details that are related to the attack. This is better
handled for example by [Mil+19] where the attacks are visualized in a graph, filtered using
benign patterns, and ranked according to the severity of alerts.

Regarding distributed attacks, only [FA16] can partly detect them. This is because it uses basic
similarity of alert features, among others, which groups alerts from or to different hosts when
some features stay equal. Regarding the universal applicability, only [Sun+16] is too narrowed
towards identifying the path of attack actions. The other approaches link attack activity in a
more generic way, such that they potentially can also be used for other purposes than linking
consecutive attacker actions to multi-step attacks.

The two approaches [FA16] and [MSK05] both implement an event-based correlation to report
detected attacks. However, [FA16] is not fully real-time capable because this approach always
waits for more alerts that might belong to the attack. In contrast, [MSK05] immediately reports
the attacks as soon as the last event regarding a scenario signature is processed. This event-based
processing in combination with well suited data structures for comparisons makes this approach
also one of the most efficient ones. There is only [RCM11] with a similar efficiency based on
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similar comparisons. However, none of the approaches are scalable as they all perform the
detection centrally.

The deployment of most approach is not easy. They either exclusively process data from hosts
and require their active participation ([Sun+16], [Mil+19]) or they require extensive expert
knowledge to implement the detection depending on the environment or scenario ([RCM11],
[MSK05]). Only the retrieval of existing IDS alerts and their self-adapting correlation as in
[FA16] can be easily deployed. This is also the only approach that partly covers the resilience
requirement as the detection relies on different criteria. This on the one hand allows to continue
operation if one criterion fails and on the other hand allows to skip the most computational
intensive criterion when under load.

With respect to privacy, [Mil+19] is assessed best because the reported attack is characterized by
its attack scenario and described by the tactics used in each step. This abstracts sensitive data in
this higher-lever report and only includes the most necessary information related to the attack.

3.7 Summary

This chapter has introduced the requirements of an IDS and analyzed the state of the art for
detecting attacks that eventually affect large portions of the monitored network. Most of the
approaches have been identified as unsuitable to implement the full intrusion detection process.

In a first step, the well-established practice of using SIEM systems for managing security
information from different machines, services, and functions in the network has been discussed.
SIEM system provide an effective way to perform simple data processing and visualization
of monitoring metrics and security analysis. Nevertheless, they usually perform the analysis
centrally and do not scale. Also, the analysis capabilities are usually limited to data aggregation,
their timestamp-based correlation, and pattern detection. This gives high-level performance and
security indicators but lacks of fine-grained information that is required to detect and report
other than simple security incidents. This is furthermore highlighted by the lack of any network
traffic information that actually goes beyond the traffic volume.

Approaches to detect network-wide attacks aim to identify parallel malicious actions of the same
kind as in distributed attacks, e.g., scans, DDoS, or botnets, where multiple hosts are involved in
the same attack step. For that, the approaches not only classify the monitored actions or events as
malicious but also group those that are related to the same attack. Scenario-specific approaches
are in general most accurate by implementing a detector that eventually reports the attack as
soon as the scenario definition is confirmed in the data. In contrast, more general approaches
are based on some definition of similarity among the events or alerts to identify and correlate
predominant attributes. This is more universally applicable but these approaches can only report
the identified patterns which are then up to the security operator to interpret. Altogether, these
approaches can only correlate related events when their common ground is directly visible in
the monitored network traffic. Otherwise, putting together the pieces of the attack requires an
extended monitoring scope.

Approaches for context correlation aim for a larger scope of monitoring to get a better vision on
and understanding of particular actions in the network. These approaches provide additional
context to assist in intrusion detection. The general problem with these approaches is that they
usually do not perform intrusion detection on their own. Instead, they sketch a concept or
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framework to correlate data from different domains. In best case, such an approach correlates
two independent detection results for better overall accuracy. But in most cases, the approaches
only correlate events without any classification for maliciousness. The actual detection algorithm
is out of scope then.

Moreover, this chapter has taken a closer look at approaches for the detection of multi-step
attacks. In contrast to distributed attacks, different actions build upon each other and are
performed by the attacker sequentially, most likely involving different systems in each step. An
interesting part of these approaches is that they can causally reconstruct the chain of steps by
interconnecting them with strong evidence based on either flows in the network or system calls
on the hosts. This focus on the linking of steps, however, has also some drawbacks. The missing
insight into the actual steps causes not all related actions and consequences within this step to
become visible, which in return has severe consequences when it comes to attack mitigation and
recovering.

Concluding, there is no one-fits-all solution to establish an accurate, efficient, and easy to deploy
IDS. Too many different kinds of attacks exist that cannot be covered by a single detector.
Thus, different approaches have to be selected along the intrusion detection process, while each
approach must overcome the challenges to accurately fulfill its specific purpose. Apart from that,
the selection of approaches must ensure a compatibility so that they effectively leverage each
other. Some approaches seem promising by following a strategy that is similar to the intrusion
detection process. PAC uses meta-alerts to first identify directly related actions and to then
interconnect them further to multi-step attacks. Fuzzy Attack Patterns incorporates different
correlation criteria to account for alerts both directly related and part of a multi-step attack.
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Intrusion detection suffers from restricted visibility, which causes false classification of events
or events to be missed by the monitoring altogether. To strengthen the accuracy of intrusion
detection, the visibility in security monitoring as a whole must be extended. This chapter
highlights two different strategies to mitigate the problem of restricted visibility by combining
monitored events for classification. The correlation of log files, as done by security information
and event management (SIEM) systems (cf. Section 3.3), however, is not sufficient to increase
the accuracy of intrusion detection because the SIEM data is too coarse-grained. Instead, the
two event correlation strategies in this chapter work even independently from each other so that
they can be combined to enhance security monitoring.

The first mitigation strategy extends the monitoring scope with respect to the supervised system.
Implementing this strategy, Section 4.1 correlates host and network data in real-time for a joint
monitoring. The result is high-quality monitoring data that highlights the link between host
and network events, which forensic investigations but also approaches for intrusion detection
can leverage. While this first strategy extends the monitoring visibility with heterogeneous data
across different domains, the second strategy correlates homogeneous events from the same
domain and directly leverages it for intrusion detection. Particularly for the network domain,
this chapter provides two examples that correlate the communication relations among hosts in a
larger network to detect certain attack scenario targeting the network at large. The detection
examples on the basis of the communication graph resulting from correlated network flows
include the attack scenarios of distributed scan campaigns in Section 4.2 and peer-to-peer (P2P)
botnets in Section 4.3.

4.1 Joint Host and Network Monitoring with zeek-osquery

An intrusion detection system (IDS) can analyze network traffic for signs of attacks and in-
trusions. However, encrypted communication limits the IDS’s visibility, and sophisticated
attackers additionally try to evade their detection. To overcome these limitations, this section
presents an approach to extend the scope of a network intrusion detection system (NIDS) with
additional data from the hosts. Implementing this concept results in the integrated open-source
zeek-osquery platform that combines the Zeek IDS with the osquery host monitor. This platform
collects, processes, and correlates host and network data at large scale, e.g., to attribute network
flows to processes and users. The platform can be flexibly extended with custom detection
scripts using host data that is both already correlated and additionally dynamically retrieved. A
distributed deployment enables it to scale with an arbitrary number of osquery hosts.

This section revises parts of the conference paper [HSF20]. The section first introduces a formal
model to correlate host and network events for attributing network communication to users and
applications. Afterward, a scalable system, i.e., zeek-osquery, is presented to collect host events
and to correlate them with network events in real-time. Last, this section discusses detecting
attack scenarios through the correlation of host and network events.
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4.1.1 Combining Host and Network Monitoring

Connecting host and network data, which is currently done with SIEM systems, extends the
monitoring visibility. However, compared to SIEM systems, a more fine-grained correlation
is required for the detection of sophisticated attackers and an interactive data retrieval is more
efficient and privacy friendly. To achieve the required extended visibility based on regular
network monitoring, the idea is to determine related context that come from the hosts, e.g., user
or process information. Network-related host activity is identified as the missing piece between
both domains. Incorporated into the following model, it introduces the attribution of traffic in
the network to applications and users on the respective hosts.

4.1.1.1 Model for Host and Network Events

An event e describes an action on the host or in the network. While a low-level event on the host
could be the start of a process, accessing a file, or authenticating a user, the only low-level event
in the network is the transmission of individual packets. In general, low-level events include any
information that is directly observed with the action, e.g., the name of the started process, the
access mode to a file, or the username used in authentication as well as the headers and payload
in a network packet.

Apart from such low-level events, also meta events exist that result from processing other
low-level or meta-events. Information in raw-level events is meant to be neutral and isolated
from other events. In contrast, particularly network events can be interpreted on different layers.
A Transmission Control Protocol (TCP)-SYN packet on session layer indicates as a connection
attempt and a Hypertext Transfer Protocol (HTTP) request on application layer indicates the
access to a particular resource on the web server. Also, the combination of events can result in
meta events, e.g., when the status code in an HTTP response matches a previous HTTP request,
or when assembling packets that belong to the same TCP connection to track its life cycle
according to the TCP state machine.

In general, an event e describes as a set of attributes A<type> that depend on the type of the
event. Its definition applies to both low-level events and meta-events:

e<type> := {ai ∈ A<type>}

The following paragraphs detail the network and host events and their types that are relevant to
attribute network flows.

Network Events Network events are triggered when hosts communicate in the network. In
today’s computer networks, communication is based on the IP protocol. Thus, a host has
at least one IP address and might use a port P to communicate via a protocol like prot ∈
{TCP,UDP, . . .}. A network event is always tied to a specific packet but is possibly also tied to
a higher layer in the Internet model, e.g., network, transport, or application layer.

The model for network events distinguishes between two major event types. Both are based on
the network 5-tuple that consists of two IP addresses, two ports, and a protocol to identify the
communication between two hosts.
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Events related to a network packet are directly direction aware, so the IP addresses reflect the
source and destination of the respective packet. Thus, packet events have at least the following
attributes:

epacket := (IPsrc, Psrc, IPdst , Pdst , prot, . . .)

In contrast, other events are related to a network flow that reflects consecutive packets on a
higher Internet layer. The flow terminology denotes the flow initiator as the originator and the
other host as the responder. Thus, flow events have at least the following attributes:

e f low := (IPorig, Porig, IPresp, Presp, prot, . . .)

Note that the IP addresses and ports in two related epacket and e f low events are actually the same.
However, the source IP and port corresponds to the originator only when flow and packet are
in the same direction. Otherwise, the packet source corresponds to the flow responder as in a
message reply.

Network-related Host Events Host events arise from actions on hosts regarding a large
number of different properties, including processes, files, users, software, and devices, among
others. Apart from the host identifier h, objects are keyed with more attributes to identify the
object and to describe the action.

By design, today’s major operating systems (OSs) identify processes by a process ID (pid).
Furthermore, processes use sockets to send and receive network packets. The identifier of a
socket is a unique ID, i.e., the combination of a file descriptor ( f d) and pid.

A process event eprocess contains the process ID pid, the path of the binary, the process ID of
the parent process ppid, the user ID uid and potentially more attributes:

eprocess := (h, pid, path, ppid, uid, . . .)

A socket event esocket contains the process ID pid and the file descriptor f d. Analogous to a
network flow, a socket abstracts a series of packets. Thus, a socket event additionally includes
the attributes of the respective network 5-tuple. However, sockets abstract the communication
from the view of a particular host. Therefore, the tuple denotes the IP addresses and ports with
local and remote according to their direction. Thus, a socket event is defined as:

esocket := (h, pid, f d, IPloc, Ploc, IPrem, Prem, prot, . . .)

In practice, OSes usually provides two kernel interfaces to retrieve process and socket events.
Particularly for Linux, this is:

• Kernel audit: Several system calls (syscalls) exist for the interaction of processes with
the kernel, including execve to spawn processes as well as bind and connect to
establish incoming and outgoing flows, respectively. The kernel audit in Linux enables
the direct retrieval of process and socket events by the monitoring of such syscalls.

• Kernal status: The kernel status data holds all attributes about current processes and
sockets. Probing this status enables retrieving processes and sockets but not directly leads
to events that indicate changes.
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Interface Resource IPloc Ploc IPrem Prem prot Retrieval

Kernel audit
bind syscall ? ? no no TCP push

connect syscall no no yes yes TCP push
Kernel status /proc/net procfs yes yes yes yes all pull

Table 4.1: Properties of socket events, depending on the interface and resource in Linux.

The data from both, kernel audit and kernel status, has different properties, as summarized in
Table 4.1 using the example for socket events in Linux. While the audit asynchronously pushes
new socket events, the status has to be frequently probed and compared with the previous one
to detect socket events. If a short-living socket starts and ends in between the probing interval,
the pull-based data retrieval from the kernel status misses respective socket events. However,
also the push-based kernel audit has a major disadvantage. Events stemming from audit include
only the parameters that syscall monitoring was able to capture, i.e., parameters that have been
explicitly set by the caller of the syscall. Thus, some relevant attributes might be missed in
respective events. For example, in case of a connect, only the destination IP address and
port are part of the call. The local IP address and port remain unknown, even when combining
several socket-related syscalls. Similar restrictions apply to the bind syscall, for which Table 4.1
has the question mark indicating that the local IP and port is available only when explicitly set
by the syscall or 0.0.0.0 and 0 otherwise when dynamically chosen.

Other Host Event Relations An essential aspect of sockets and how processes use them to
send and receive packets is that processes can depend on other processes. Assume a worm that
spreads by exploiting a vulnerable program via crafted network packets. After the process is
taken over, the worm spawns more processes to scan for potential victims and to spread by
sending crafted packets. The process that receives the initial exploit packet might spawn a child
process that, in the aftermath, sends exploit packets to more victims. For detection and forensic
reasons, it is crucial to identify the relation among these two processes. The same need to
identify the relation among processes to reconstruct relations among network flows is given by
the example of Secure Shell (SSH) chaining [ZP00]. An attacker abuses a SSH server as jump
host to obfuscate the original source, known as stepping stone attack [WRW02; WR03; WR10].
Although network-based timing analysis can detect the relation of the respective network flows
with uncertainty, incorporating the process relations from the host perspective can lead to a
better detection accuracy [CKT05].

The necessity for linking processes in a joint monitoring is more generally illustrated in Fig-
ure 4.1. It uses the notion isParent(pid1, pid2) ∈ {0,1} for two processes pid1 and pid2 on a
host h ∈ H to indicate that pid1 is the direct or indirect parent process of pid2 or that they are
the same. A network message from host h1 goes to h3 via the proxy host h2. A network monitor
alone would see two unrelated network flows between h1 and h2 as well as h2 and h3. Only when
incorporating the process relations on host h2, the big picture becomes visible. Because the
receiving process pid21 is the parent of the sending process pid22, the full path of the message
via h2 is revealed. This knowledge is essential, especially in the case of worms, SSH hopping, or
lateral movement of attackers. Other indirect relations between two processes, e.g., via files, can
be tracked using more detailed process interactions such as in [Bat+15]. For demonstrating the
capabilities of joint monitoring, the remaining of this section uses the notation of direct process
relations only.
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Figure 4.1: Host communication and process relations across different hosts.

4.1.1.2 Attributing Network Flows

The attribution of a network flow to the originating process is always conducted with respect
to the originator or the responder host (cf. Section 4.1.1.1). It requires the identification of
the respective socket on both hosts, where applicable. For simplicity, identifying the socket
for attribution is sufficient, as this is the missing link to other host activity, e.g., processes and
files [Bat+15]. The attribution relies on the distinct network 5-tuple, i.e., the respective five
attributes source IP, source port, destination IP, destination port, and protocol. These attributes
are part of both events representing a network flow e f low or socket esocket (cf. Section 4.1.1.1).

The identification of the respective socket for a network flow requires a match on the network
5-tuple between the socket and network flow. On the originator, this is a socket representing an
outgoing flow, and an incoming flow on the responder. Distinguishing the direction is relevant
as the 5-tuple for sockets reflects the IP address and port of the local and remote hosts, while
it reflects originator and responder host for network flow. On the originator host, remote IP
and port in the socket 5-tuple of the outgoing flow have to match responder IP and port of the
respective network 5-tuple. On the responder, remote IP and port in the socket 5-tuple of the
incoming flow have to match originator IP and port of the respective network 5-tuple. Figure 4.2
illustrates the originator with its outgoing socket (top left), the responder with its incoming
socket (bottom right), and the network flow with its full 5-tuple (middle).

In contrast to kernel status events, the events from kernel audit render a match on the source
of a network flow impossible, because the respective socket attributes are missed (cf. 4.1). To
account for that, sockets and network flows are correlated for attribution according to Figure 4.2
and the following three steps:

(1) Identify originator and responder hosts by the IP addresses in the network flow. This
requires a maintained list of IP addresses and hosts in the network.

(2) On the originator and responder, identify the socket(s) for which the flow destination
equals the remote or local socket info, respectively.

(3) Also, require the flow source to equal local or remote socket info, respectively.

The correlation is unambiguous when the socket attributes for step 3 are available. Otherwise,
the correlation might be vague. In case of two hosts with a connect syscall to the same
destination IP address and port, the correlation is still unambiguous because of step 1. However,
it is vague for the same host with multiple flows to the same remote IP and port (from different
source ports). Ideally, the correlation outcome is exactly one socket for the originator and the
responder. However, in case of a vague correlation, the correlation might output more then one
candidate sockets. It is then unknown, which of these candidate sockets is the correct one for
the attribution.
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Figure 4.2: Attributing a network flow to a process on originator and responder host by
matching the network tuple to the socket information on each of the hosts.

4.1.1.3 Validity of Host Events

Constant host activity including new processes and sockets grows the amount of retrieved kernel
audit and status events by time. Apart from potential storage and space constraints, maintaining
the data regarding its validity is critical to the attribution accuracy. Processes and sockets that
already terminated some time ago must not be considered for the attribution of a currently
ongoing network flow. For that, a state stores those host events that are currently valid, e.g.,
beginning with the creation of a process and ending with its termination. Thus, a state maintains
the host events according to their validity, aiming to follow the life cycle of processes and
sockets from their creation to termination.

Data from kernel status can be easily incorporated into the state, as the status reflects a current
snapshot, and comparing it to the previous snapshot allows identifying new or removed processes
and sockets, respectively. For the kernel audit, the life cycle for processes and sockets can be
followed by syscalls like execve, socket, or close. This works as long as the process
decides on its own to terminate or to close a socket. However, there will not be such an audit
event when the process crashes or the TCP connection breaks. To prevent the state from being
polluted in such cases, it regularly requires to perform a verification. This is done by probing
the host if all the processes (pid) and sockets (pid, fd) in the state are still present by the current
kernel status.

4.1.2 Monitoring with zeek-osquery

The rest of this section describes zeek-osquery, a system for the collection, analysis, and
correlation of host and network data that follows the approach from Section 4.1.1 for a joint
host and network monitoring with extended visibility. Here, the system itself based on the
existing monitoring tools Zeek (cf. Section 2.4.1) and osquery (cf. Section 2.4.2) is introduced,
explaining the scalable system design regarding communication and data processing.

4.1.2.1 Overview and Concept

The system zeek-osquery for joint host and network monitoring deploys two different monitoring
tools. The first tool is Zeek that monitors and analyzes the communication in the network, usually

90



Chapter 4 Security Monitoring

at a central location in the network, e.g., at a core router or at the upstream to the Internet. The
second tool, the host monitor osquery, runs on multiple hosts in the network to provide detailed
information about the host and its OS state via a SQL-based interface. To achieve a joint
monitoring, Zeek retrieves host events ehost from osquery hosts. The communication between
both tools is realized by the Zeek-internal event-dispatcher and communication library Broker1.
While Zeek has Broker built-in, osquery is extended by Broker to enable the communication.
To retrieve host events, Zeek sends SQL queries to osquery to subscribe to particular events
such as new processes. When osquery captures a new process, a respective event is sent to Zeek,
where any host event is analogously processed to network events natively. Hence, Zeek is now a
platform with the ability to correlate various information from both host and network events.

All the logic for retrieving host events and processing them is implemented in a novel Zeek
framework. This collection of Zeek scripts allows to easily manage osquery hosts in the network,
query the hosts for particular events, and correlate the data in event handlers. As one correlation
example, this thesis elaborates on attributing network connections (cf. Section 4.1.1.2) that
works on the basis of bridging the host-network divide [FMN05] and further enables new
capabilities for intrusion detection.

The whole system has been designed with efficiency and scalability in mind. In addition to
osquery continuously sending new host events to Zeek for logging and further analysis, Zeek
can query osquery tables on-demand to retrieve a snapshot of an osquery table, e.g., to gather
additional data about the host upon a suspicious action. This enables an interactive analysis
of hosts that reduces the amount of collected host data but still allows to investigate a specific
security issue. For large deployments, the Zeek correlation platform can be set up in a distributed
manner with multiple, communicating Zeek instances.

4.1.2.2 System Architecture

On the Zeek side, a novel Zeek framework, i.e., a collection of Zeek scripts, enables the basic
interaction with osquery hosts. The communication is realized by connecting all osquery hosts
and Zeek nodes via a publish-subscribe overlay established via Broker. Distinct topic names,
labeled as groups throughout this thesis, address specific osquery hosts or groups of them in the
overlay. Apart from some default groups, custom ones can either be pre-configured on hosts
or dynamically controlled by Zeek. It uses group labels to control the SQL queries for specific
selections of osquery hosts. An interest denotes the binding of a query to a group. It contains
additional information, e.g., whether the query is executed regularly or just once and how to
send the results back to Zeek. This way, Zeek can publish an interest over Broker to osquery
hosts in a particular group, e.g., for logged in users on all monitored servers. The new Zeek
framework enables Zeek to be capable of:

• requesting complete results to a one-time query immediately,

• scheduling queries that are regularly executed,

• removing queries from the execution schedule,

• making osquery hosts to join a group,

• making osquery hosts to leave a group.
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Figure 4.3: Communication among osquery and Zeek.

When Zeek publishes an interest via the overlay, all currently connected osquery hosts will
receive this interest and start to continuously reply with new events until Zeek revokes this
interest. While this works for osquery hosts that are connected at the time of originally publishing
the interest, others that join the overlay later cannot know about previously published but valid
interests. However, osquery hosts just joining the overlay must be aware of currently active
interests, i.e., previously published but valid interests. Thus, Zeek has to publish current interests
again but to the joining host only this time. As managing the joining hosts and resending current
interests to them introduces some additional overhead, zeek-osquery outsources this task to
a special proxy Zeek. All the others tasks regarding requesting and processing host events is
implement by an authoritative Zeek. These two roles can be carried out by a single Zeek instance
or can be separated among two Zeek instances, as illustrated in Figure 4.3:

• An authoritative Zeek is an instance that is the origin of an interest or a group. This role
defines queries and is responsible for processing any query results, i.e., host events, from
the osquery hosts.

• A proxy Zeek is an instance that accepts connections from osquery hosts and holds state
about them. Furthermore, it keeps a collection of all currently active interests and groups
that originate from any authoritative Zeek. This way, the proxy Zeek keeps state for hosts
that join later and will tell them all currently active interest without putting any additional
load on the authoritative Zeek.

Apart from meeting the concerns regarding osquery hosts that join the overlay later, the commu-
nication design including different Zeek roles enables a distributed deployment that scales when
adding more Zeek instances (cf. Section 4.1.2.3). However, before presenting the distributed
and scalable deployment, the following paragraphs detail the novel Zeek framework with the
two Zeek roles regarding requesting and processing host events.

Requesting Host Events When an authoritative Zeek defines an interest or group, it is
flooded in the overlay to all proxy Zeek instances. They store all current interests and groups
from any authoritative Zeek until the originating Zeek revokes or disconnects. Optionally, proxy
Zeek instances can act as a cache for interests and groups if an authoritative Zeek disconnects
for a short period, e.g., because of technical failure. Without this caching, proxies would
immediately update their collection and make osquery to remove respective queries from the
schedule. This is considered unnecessary if the authoritative Zeek comes up with the same
interests a second later, again resulting in updating the collection of proxies and modifying the
schedule of osquery. For this reason, the proxy Zeek can delay the removal of interests and
groups from its collection when the authoritative Zeek disconnects. If the original interests and
groups are re-published within a grace timeout, they will become stay active in the collection
without any changes to scheduled queries on the hosts.

1. https://docs.zeek.org/projects/broker
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1 event zeek_init() {
2 # Make hosts in the subnet to join the group
3 osquery::join(134.100.0.0/16, "UHH");
4 # Define the interest and its query
5 local interest = [$ev=host_processes,
6 $query="SELECT pid,name,path,
7 cmdline,uid,parent FROM processes"];
8 # Make host group to regularly execute the query
9 osquery::subscribe(interest, "UHH");

10 }

Listing 4.1: Snippet using the novel zeek-osquery framework in Zeek scripting language to
define a group and an interest.

1 event host_processes(resultInfo:osquery::ResultInfo,
2 pid:int, name:string, path:string,
3 cmdline:string, uid:int, parent:int) {
4 # Define Log mapping
5 local info: Info = [$t=network_time(),
6 $host=resultInfo$host,
7 $utype=resultInfo$utype,
8 $pid = pid,
9 $name = name,

10 $path = path,
11 $cmdline = cmdline,
12 $uid = uid,
13 $parent = parent];
14
15 # Write log entry to file
16 Log::write(LOG, info);
17 }

Listing 4.2: Snippet using the novel zeek-osquery framework in Zeek scripting language to
handle (log) query results.

When an authoritative Zeek uses the interest and group application programming interface (API)
of the osquery framework in Zeek, the framework makes sure that interest and group definitions
are maintained until they are revoked by calling another API. This includes that connected
osquery hosts are informed about any changes in group and interest definitions as soon as the
change happens. It also includes that new osquery hosts are instructed about current groups and
queries as soon as the host is connected. An example script is given in Listing 4.1 that queries
the processes of all hosts that have an IP within the subnet 134.100.0.0/16.

Processing Host Events Because of the flexible publish-subscribe overlay via Broker, os-
query hosts can establish a Broker connection to any proxy Zeek. A successful connection will
automatically trigger an application-level handshake initiated by the osquery host to announce
itself to Zeek. This handshake is required so that the proxy Zeek can hold state about its directly
connected osquery hosts. After a successful announcement, the proxy Zeek is in control of the
directly connected osquery host. This means that the osquery host from now on accepts and
executes any received interest. It is the responsibility of the proxy Zeek to filter and forward only
applicable interests to its directly connected osquery hosts. When the connection between the
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osquery host and the proxy Zeek terminates or breaks, both nodes clear their respective internal
connection state.

Although the proxy Zeek controls directly connected osquery hosts, note that query results are
forwarded back to the originating authoritative Zeek by default, which can be controlled by the
response topic used in the Broker overlay. Upon receiving the responses, the definition of an
appropriate event handler in the osquery framework is required. Listing 4.2 is such an event
handler as Zeek script snippet to log information about new and terminated processes using the
log file mechanisms of Zeek. Every handler for host events includes a ResultInfo object as
first parameter that gives general information about the event, e.g., from which osquery host, a
reference to the original query, and whether the event reflects a row added to or removed from
the osquery table. The other parameters of the handler correspond to the requested columns of
the osquery table.

While Listings 4.1 and 4.2 just document some APIs of the Zeek framework for the interaction
with osquery hosts, there is more interaction happening in the background. This includes for
examples that the proxy Zeek automatically retrieves the IP addresses of all its directly connected
osquery hosts. The IP addresses are required so that the proxy Zeek can organize the hosts into
groups based on IP addresses. Thus, to keep its own state about directly connected osquery
hosts up-to-date, a proxy Zeek itself publishes some interests to these hosts in addition to the
collection of interests from authoritative Zeeks.

4.1.2.3 Distributed and Scalable Deployment

The overlay communication can be separated in two groups: (1) Communication between Zeek
instances, denoted as Zeek backend, and (2) communication between osquery hosts and the
Zeek backend. In this design, the proxy Zeeks belong to the backend and expose themselves
as an intermediary between authoritative Zeeks and the osquery hosts (cf. Figure 4.3). The
proxy Zeek holds a collection of all interests originally published by authoritative Zeeks. A
synchronization is required to keep the collection up-to-date. Based on its collection, the proxy
Zeek schedules queries that should be executed on a specific osquery host. The query results are
returned directly to the authoritative Zeeks as host events.

Authoritative
Zeek

Authoritative
Zeek

Authoritative
Zeek

Proxy Zeek Proxy Zeek

Host HostHost Host Host Host

Correlation
Platform

Figure 4.4: Distributed setup with multiple Zeek instances.
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Figure 4.5: A query example with multiple Zeeks, in which the choice of response topics can
decrease the network load regarding number of transmitted host events.

The Zeek instances in the backend interconnect in a hierarchical structure, as illustrated in
Figure 4.4. Distributing the load among multiple Zeek instances can be achieved in three
ways:

• Resource intensive correlation tasks can run exclusively on an additional authoritative
Zeek instance. For that, another Zeek joins the overlay and publishes interests for events
that are required for detection. The resources of this instance are solely available to the
detection, and all other instances can continue using their resources to perform their tasks.

• If large amounts of osquery hosts would overwhelm a single authoritative Zeek instance,
the osquery hosts are organized in groups, with one out of multiple Zeek instances being
responsible for one group. All Zeek instances then publish interests for the same query
but to specific groups.

• To reduce the load on a single proxy Zeek instance, multiple instances can be deployed.
Then, each one needs to handle a lower number of directly connected hosts that still
receive the same interests as before.

After an osquery host joined the overlay, it is managed by the directly connected proxy Zeek
and accepts and executes any forwarded interest. However, note that interests originally come
from authoritative Zeeks and query results should also be routed back to them via the publish-
subscribe overlay. For that, the originating authoritative Zeek by default sets the response
topic to its own topic when publishing interests. If the same interest query originates from
multiple Zeeks, it is suggested to choose the same response topic across Zeek instances for
the same interest. This way, equal interests can be consolidated on the proxy Zeek, and the
query results are sent over Broker only once to multiple authoritative Zeek instances at the same
time. Figure 4.5 compares these two cases, in which two authoritative Zeeks send a interest for
the same SQL query. On the left side in Figure 4.5a, they choose individual response topics.
Consequently, the proxy handles the two interests as two different ones. In contrast, the Zeeks
choose the same response topic in Figure 4.5b. Consequently, the effectively equal interests are
handled as a single one on the proxy. Thus, the osquery host executes the respective query only
ones and sends every response event only once. Broker then takes care of efficiently routing this
message to both Zeeks, e.g., similar to IP multicast [Dee89].

Next, the architecture of the novel Zeek framework for requesting, receiving, and processing
host data is presented. More precisely, this framework includes scripts that enable the correlation
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of host data. It is referred to with the term processing pipeline. Any authoritative Zeek runs this
pipeline to perform a correlation of the received host data.

4.1.3 Event Correlation for Network Attribution

The outcome at the end of the processing pipeline, as part of the novel Zeek framework, is the
correlation of host and network events (cf. Section 4.1.1). It is Zeek-typically implemented
event-based to allow custom scripts to reuse events that are emitted within the pipeline. On this
basis, it is easily possible to create additional scripts to process those events further.

The three different stages in the processing pipeline are illustrated in Figure 4.6 and are detailed
in the remainder of this section.

Querying The first stage defines interests, i.e., SQL queries, that are sent to and scheduled on
osquery hosts. Events on this stage are a continuous stream of raw host events that directly come
from osquery. Thus, incoming events reflect updates of an osquery table, e.g., processes, users,
or sockets (cf. Section 4.1.1.1). Custom scripts can reuse these raw host events for different
purposes, including logging them to disk, performing state-less analysis of individual events, or
forwarding them to the next stage for processing in a stateful manner.

State This stage assembles raw host events from osquery to states in real-time. A state reflects
the current host status reconstructed from all previous events (cf. Section 4.1.1.3). Thus, every
new event potentially updates the state by both adding and removing state information, i.e.,
a process is added upon its creation and removed upon its termination. Updating requires
host events to report changes regarding the status of a host in the sense of new, modified, and
removed information. As regular tables in osquery allow to query for new, modified, and
removed information, Zeek can accurately reconstruct state based on these tables. However,
the so-called event-based tables often do not include removed information. Because of that,
the state is verified periodically. For that, the correlation platform utilizes one-time queries to
retrieve the state information that is not valid anymore from osquery.

In this stage, the framework emits events whenever the state changes. This stage is suited to
merge raw host events from different tables in case they describe the same class of data. For
example, information about sockets on a host can be found across the tables socket_events,
listening_ports, and process_open_sockets. However, events from all three tables are merged to
reflect a common state about host sockets.

Furthermore, holding state in the correlation platform about host information allows browsing
them efficiently without interacting with the hosts every time. This reduces the load on osquery
hosts and provides state information to other scripts.

Correlation Correlating two events is done based on a common attribute of them. More
explicitly, not only events, but also state information can be correlated. However, the correlation
is always triggered by an event. Such a trigger can be a raw host event that directly comes from
osquery, a state event that indicates a state change, or a network event that comes from Zeek
itself.
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Figure 4.6: Architecture of the processing pipeline.

As an example, an attribution is implemented to link network flows with the respective applica-
tion and user in real-time (cf. Section 4.1.1.2). For demonstrating the effect, the statistics about
every network flow in Zeek (conn.log) is extended to list the respective host, application, and
user additionally.

4.1.4 Scenario Detection with zeek-osquery

To demonstrate the new capabilities of intrusion detection using zeek-osquery (cf. Section 4.1.2),
the detection of three attacks scenarios is implemented into the processing pipeline (cf. Sec-
tion 4.1.3). All three examples make use of correlating host and network data in real-time.

Execution of Internet Files Sharing indicators of compromise is an effective way to secure
against known malware but also to investigate past attacks. Such an indicator could be the origin
of a file on the Internet, i.e., an Uniform Resource Locator (URL). The following detection
highlights the example scenario of a user executing a file downloaded from an URL in an
email.

1. Advertisement: The user receives an email with a link to download a file from a website.
This advertisement to the file, however, is an optional step and might not apply to all
executions of Internet files. The email could also have a file directly attached and is
downloaded together with the mail from the mail server.

2. Download: A user starts a download on a host either without any preceding action or
more likely by following an advertisement, as described in step 1. Anyhow, the result is
the user downloading a specific file from a specific origin, e.g., a web or mail server.

3. Execution: The user executes the downloaded file, either from where he saved it to, or the
file is directly executed from its temporary location.

If Zeek can inspect emails and web traffic, it notices the reference to the origin, e.g., the link or
attachment in an incoming mail via Simple Mail Transfer Protocol (SMTP). Zeek, furthermore,
keeps track of accessing this email by noticing the host from which the mail was retrieved
via Post Office Protocol version 3 (POP3) or Internet Message Access Protocol (IMAP) (step
1). By monitoring the network data stream the very same host, Zeek detects the download
of the file from the origin in question to this host, on which the mail containing the origin
was retrieved (step 2). Instead of keeping a copy of the file, Zeek needs only to remember its
hash. Furthermore, all executed binaries on the host are reported to Zeek (step 3) and are then
compared with the hash of the downloaded file to detect its execution.
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1 event process_binary_hash(
2 resultInfo: osquery::ResultInfo,
3 md5: string) {
4 # Known smtp attachment hashes only
5 if (md5 !in smtp_hashes) { return; }
6
7 # Get mail recipient(s)
8 print fmt("Execution of email attachment for ’%s’ on host ’%s’",

smtp_hashes[md5], resultInfo$host);
9 }

10
11 event process_state_added(host_id:string,
12 process_info: osquery::ProcessInfo) {
13 # One-time query to retrieve process binary hash
14 local query_string = fmt("SELECT md5 FROM hash WHERE path=\"%s\"",

process_info$path);
15 local query = [$ev=process_binary_hash,
16 $query=query_string];
17 osquery::execute(query, host_id);
18 }

Listing 4.3: Snippet using the novel zeek-osquery framework in Zeek scripting language to
detect the execution of SMTP attachments.

The detection of executed Internet files if demonstrated by the Zeek script in Listing 4.3 for
the execution of mail attachments. For that, the script analyzes incoming mails via SMTP and
maintains a list of hashes of executable file attachments together with the mail recipients. By
using the proposed processing pipeline for host-network correlation, the script leverages the
existing continuous stream of host events to get notified about new processes. Upon new entries
in the process state, the detection script queries the respective host for the hash of the executed
binary using the on-demand query capabilities of zeek-osquery. If the returned hash matches that
of a downloaded mail attachments, the detection identified the execution of a mail attachment.

SSH Hopping A good practice in network design is to have isolated subnets, e.g., for different
departments, offices, and goods production. For security reasons, direct communication between
these subnets is usually prohibited and restricted by a firewall. However, exceptions exist
for administration or business processes. In such a case, only specific hosts are allowed to
communicate through the firewall. A security problem arises when one of these exceptional
hosts is taken over and communicates in behave of a third host. Then, the compromised host is
abused as a jump host to enable unauthorized access to the isolated subnet by redirecting traffic
from the third host.

One possible way to realize this attack is the so-called SSH hopping or SSH chaining. It
presumes an attacker with valid SSH credentials, e.g., obtained through social engineering or
performed by an insider attacker. The attacker logs in into the first machine via SSH and uses
it as a jump host to establish further SSH connections into another subnet. In many cases,
this poses a violation of the security policy and should be detected. Although regular network
monitoring can detect incoming and outgoing SSH connections on the same host, it cannot
verify whether both are related.
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zeek-osquery can detect SSH hopping as follows: First, The detection script keeps state of
ongoing SSH sessions by leveraging native Zeek events to detect successful SSH logins. By
leveraging the flow attribution, the process on the originator and responder of the SSH session is
identified where applicable. Second, the script also browses all other currently ongoing SSH
sessions on the originator and responder hosts. It detects an SSH hopping on one of the hosts
when there is

• a pair of incoming and outgoing SSH connections to and from the same host,

• where the process for the outgoing connection is a subprocess of the process for the
incoming connection.

The latter condition is checked using the relation isParent from Section 4.1.1. It is implemented
by an on-demand query that asks the host for all parent processes of the process for the outgoing
SSH connection. The script matches the parent processes with processes for incoming SSH
connections. In the case of an intersection, this not only verifies the SSH hopping but also
reveals the user that logged in.

TLS Interception In recent years, the need for encrypted communication became stronger
to protect privacy but also to prevent eavesdropping on business secrets. However, almost all
versions of Transport Layer Security (TLS), as used for secure web browsing via Hypertext
Transfer Protocol Secure (HTTPS), were by their design vulnerable to attacks (Poodle, BEAST,
CRIME, BREACH, DROWN, and recently ROBOT) or did not prevent downgrade attacks such
as FREAK and Logjam. The latest TLS standard, version 1.3, is meant to be secure against
all previous TLS attacks and puts additional security measurements in place like authenticated
encryption with associated data (AEAD), forward secrecy, and ephemeral keys. While privacy
benefits from the new standard, intrusion detection with deep packet inspection is not possible
anymore as TLS interception is practically impossible.

As only participants in possession of the session keys can decrypt the traffic, an IDS like Zeek
would also be required to retrieve these keys to decrypt the traffic and to look into it. Recently,
a new Linux kernel feature, named in-kernel TLS (kTLS), was introduced. It allows hosts
to perform the de- and encryption of established TLS sessions in the kernel for performance
reasons. For that, a user space application provides the cryptographic material, i.e., session keys
and parameters, to the kernel using the setsockopt system call. To leverage this, an osquery
table monitors the respective system call and extracts the material. Utilizing the new processing
pipeline, Zeek retrieves and maintains the keys of ongoing TLS sessions. Currently, there is
no live decryption implemented, but the mapping of sessions and their keys which is saved for
forensic reasons.

While kTLS is not widely used yet, cryptography libraries like openssl are already developing
support for it [Fou20]. Using kTLS for traffic decryption in intrusion detection might be a
promising solution in certain environments. However, since kTLS is not yet adopted by common
applications, this theoretical scenario is not pursued in this thesis.

4.1.5 Summary of Joint Monitoring

To compensate the restricted visibility of a NIDS, the monitoring and intrusion detection platform
zeek-osquery with extended visibility has been introduced. This platform allows for a joint
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monitoring of hosts and the network and a fine-grained correlation for the monitoring data. This
approach solves the problem of the NIDS going blind because of traffic encryption and other
attacking techniques that try to evade IDS detection. With the extended visibility by hosts, the
NIDS mitigates the negative effects on intrusion detection accuracy that stem from going blind.
The mitigation generally works this way that the additional host data complements network
data that is missing relevant information because it is either out of network scope or becoming
unavailable because of traffic encryption.

The zeek-osquery platform itself is centered around the Zeek monitoring and IDS tool. Zeek
natively sniffs and analyzes network traffic, but originally lacks host context. A novel Zeek
framework extends the analysis in Zeek to retrieve and incorporate host data that is provided
through the host sensor osquery. A common channel between Zeek and osquery has been
developed to enable Zeek to request host data and osquery to serve it. In particular, the
complementing host data provides additional context for individual flows in the network. zeek-
osquery attributes network flows to the respective users and applications running on the host.
The necessary correlation of heterogeneous monitoring data from hosts and the network must be
performed in real-time for accurate results. The accuracy and the operation of zeek-osquery in
real-time is investigated in Section 6.3.1.

In a large-scale deployment of zeek-osquery, a single centrally deployed Zeek would not
be capable of processing the host data that comes from osquery running on all the hosts
in the network. Because of that, the whole platform must be efficient and scalable. These
concerns are supposed to be met by an overlay that connects the osquery hosts and a distributed
variant of the correlation platform with multiple Zeek nodes. In this overlay, Zeek nodes
can share responsibilities regarding handling osquery hosts and processing their data. While
this already reduces the load on individual Zeek nodes significantly, an efficient messaging
schema additionally minimizes the overhead. The efficiency of zeek-osquery is evaluated in
Section 6.3.2.

The goal of the new monitoring capabilities with zeek-osquery is to generally extend the network
visibility because of the additional host data. The network attribution, however, is only a
preliminary example that is performed during monitoring for the fine-grained correlation of
host and network data. Custom detection algorithms in Zeek can benefit from the resulting
visibility by leveraging the correlated monitoring data. A demonstration of the new detection
capabilities includes the scenarios of executing Internet files and SSH hopping. In addition,
the new concept of hosts assisting in the inspecting of encrypted network traffic is presented.
Section 6.3.3 investigates to which extent the new monitoring capabilities with zeek-osquery
allow for detecting such intrusion scenarios.

4.2 Scan Campaign Detection

Every targeted attack starts with reconnaissance to identify victims. A widespread technique for
such reconnaissance is port scanning to learn about accessible services that can eventually be
exploited. Thus, reconnaissance helps the attackers to identify potential victims that expose a
specific attack surface in favor of the attackers. In fact, massive port scan activity is expected
to hit any network that is connected to the Internet. Although not causing any harm directly,
detecting these scans allows the victims to anticipate upcoming attack steps. However, the
sheer flood of scan activity overwhelms security operations centers (SOCs) and renders a
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manual analysis of the scan activity impossible. Furthermore, distributed scans as part of a scan
campaign are even harder to analyze or detect in the first place.

This section presents a detection algorithm to identify related scan activity and summarize it as
scan campaigns. This is particularly challenging because multiple scanners scan collaboratively
in such a scan campaign. That these scanners are controlled by the same attacker, however, not
directly apparent. Thus, SOC would detect every single source individually, with each seeming
to scan only a few hosts and ports. Thus, the algorithm in this section identifies scanners
that collaborate in scan campaign by finding similarities in the scan activity among different
scanners.

This section revises parts of the conference paper [HWF20]. The foundations for this work
have been acquired through a supervised bachelor thesis [Reg19]. The section first models
the attacker in the scenario of a distributed scan campaign. Then, it describes the first part of
the algorithm for detecting scan campaigns with its characterization of the scan activity. This
is followed by describing second part that describes the clustering of scanners with similar
behavior into sets of coordinated scanners that collectively gain some knowledge about a target
network. The result is a description of scan campaigns that summarize the holistic scan activity
of an attacker.

4.2.1 Attacker Model for Distributed Scan Campaigns

To start a network communication, the initiator of a flow (cf. Section 2.1.1) reaches out to
a service that is known to run behind an open port on the destination host. This eventually
leads to a successful establishment of the communication and a series of packets. However,
congestion in the network or downtime of the service can lead to failed establishments without
any malicious intention of the initiator. However, the intention is different and considered
malicious if it is unknown to the initiator whether a service usually runs on a specific IP and port
tuple. Such a communication attempt to a specific IP and port tuple to verify the port status is
denoted as a scan probe. An established flow proves an open port to the initiator and, therefore,
a running service. However, most of the guessed ports are probably closed, resulting in failed
establishments. A malicious source IP that sends scan probes is denoted as a scanning node, i.e.,
scanner. Furthermore, the term port scan describes all scan probes of a specific scanner. An
IDS usually reports such failed communication attempts as port scan alerts when exceeding the
threshold for a single source IP.

Attacker

n=100 total probes

...s2s1Scanners:

each sending
≈ n/m probes

sm−1 sm

Target Network

Figure 4.7: Schema of a distributed scan campaign, in which the attacker controls scanners
(dotted lines) to make them scan a target network (solid lines).
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Typically, many ports and hosts are scanned consecutively by an attacker in a scan campaign
to gain knowledge about a target network. An attacker, whose scan activity originates from
a single scanner, can be detected because this source attempts to establish an extraordinary
amount of network flows or because many network flows from this source are not established
successfully. To camouflage the scan target or to evade detection in the first place, the attacker
can leverage multiple machines that work together as distributed scanners. In this scenario, each
scanner only originates a fraction of the overall scan activity (cf. Figure 4.7). Their individually
gained knowledge from the scans is collectively assembled and reflects the intended target of
the campaign.

The remaining of this section describes a two-step approach to detect related scan activity from
distributed scanners that are part of a larger scan campaign.

4.2.2 Characterizing Port Scans

When performing distributed campaigns, the attackers can leverage distributed scanners for
scanning the target network. The attacker might decide to speedup the scan when using
the full scanning resources in parallel. Alternatively, the attacker decides to stay undetected
by coordinating the scan activity in a distributed and stealthy fashion [Dai+15]. The two
perspectives of characterizing a large network scan are: (1) the information gained about the
target and (2) the techniques used to retrieve the information. These two perspectives are
reflected by characteristics about the attacker and the target of the scan campaign. In general,
distributed scanners are assumed to use that same technical scanning tools and therefore to show
the same scanning behavior.

The following presents ten key features that characterize a port scan from the point of view of
either the attacker or the target. Intuitively, similarity of these features among scans indicate a
relation among them. For large sets of scan activity, these features are evaluated for each scanner.
They are summarized in Table 4.2 and utilized in the second step of the algorithm to correlate
port scans (cf. Section 4.2.3). The usefulness of these ten features regarding characterizing ports
scans and identifying distributed scanners will be evaluated in Section 6.4.1.

Feature Attacker Target Values
Source Ports X [S + p, F , M ]

Destination Ports X [S + p, F , M ]
Vertical Scan X [true, false+h)]

Horizontal Scan X [true, false]
Scan Validation X [true, false]

IP Version X [v4, v6]
Target Hosts X n ∈ N

Scans Probes X n ∈ N
Source Subnet X h

Source Location X coordinates (x,y)

Table 4.2: Key features to characterize scans regarding the attacker and the target. Values are
absolute numbers (N) or in categories of Single (S ), Few (F ), Many (M ) with an
optional concrete port number p or host IP h.
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Source and Destination Ports The involved ports during a scan are of interest because of
two reasons. First, the destination port is directly related to the target of the scan. Second, the
usage of the source port across port scans contributes to fingerprinting the attacker. Instead of
only looking at actual port values P, source and destination ports are also assigned a category
depending on the number of different ports. The label Single (S ) stands for a single port, Few
(F ) abstracts the count of different ports to be in the range of [2;X ], and Many (M ) labels the
occurrence of more than X different ports. The threshold X to assign a scan with more than one
port the label either F or M is subject to evaluation.

simports(P1,P2) =


1 if label(P1)∩ label(P2) ∈ {F ,M }
1 if label(P1)∩ label(P2) = S ∧ value(P1) = value(P2)

0.5 if label(P1)∩ label(P2) = S ∧ value(P1) , value(P2)

0 otherwise

(4.1)

The similarity between source ports and destination ports simports is 0 when the categories
mismatch and 1 when the categories Few or Many match. For the Single port category, also
the port number p is required to match, otherwise the similarity is only 0.5. This is former
formalized for two port sets P1 and P2 that are checked with simports in Equation 4.1.

Vertical and Horizontal Scans An indirect characteristic of the scan target can be obtained
by observing the number of different scanned hosts and the number of different scanned ports. If
a scan encompasses more than one target host, it is classified as vertical. If a scan encompasses
more than one port on the same target host, it is classified as horizontal.

The similarity between two scans is 1 if both are labeled vertical or horizontal, respectively. If
they are labeled differently, the similarity is 0. When the scan targets a single host, i.e., not
vertical, the probes of both scanners are additionally enforced to target the same host h.

Scan Validation Not only legitimate network flows sometimes break or fail because of
technical reasons, but scans eventually fail in detecting a running service, although the respective
port is open. To compensate false negative scan results because of packet loss during the scan,
scanners might try several attempts for the same host and port. Thus, scanners are classified
according to validating their scan results when they perform more than one scan attempt per host
and port. The same classifications for two scans lead to a similarity of 1 and is 0 otherwise.

IP Version In practice, the IP protocol versions 4 and 6 are used. When the versions match,
the similarity is set to 1, and to 0 otherwise.

Magnitude of Target Hosts and Scans Probes Especially in well-coordinated scan cam-
paigns, the scan activity is equally distributed among powerful scanner machines. When each
scanner contributes equally to the knowledge gain, they scan the same amount of hosts and ports,
respectively. For statistical and operational reasons, it is unlikely to see the scan activity being
perfectly distributed among the scanners. In fact, the number of probes are expected to differ
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among the distributed scanners. The challenge in comparing these numbers is to decide if two
scanners still have roughly the same number of if the difference is to high.

simmagnitude(a,b) =

{
1 if |a−b|< min(a,b)
0 otherwise

(4.2)

Using the absolute number n ∈ N of probes and their difference for two scanners is not suitable,
because the absolute difference means different things for probe counts in the magnitude of
hundreds or thousands. Thus, the similarity of scanned hosts and ports between two port scans is
taking the order of magnitude into account. Empirical tests indicate that the following calculation
meets the concerns: The difference between two numbers a,b must be smaller than the smaller
of both numbers. In this case, the similarity is 1 and 0 otherwise (cf. Equation 4.2).

Source IP Subnet and Geolocation Another indicator for distributed scanners is the prox-
imity between them. This is eventually with respect to their topological or geographic location.
Although this does not apply when utilizing a botnet with infected machines around the globe,
it is likely to apply when using the servers of a specific provider or data center. For that, the
source IP of the scanner and the coordinates of its geolocation are leveraged.

Ideally, two scanner IPs would be checked if they belong to the same subnet, if known. Instead,
a more generic calculation is applied with a linear similarity between 0 and 1 depending on the
number of equal leading bits in the IP. If two IPs have the same prefix of length 27 bits, their
similarity is 27/32 = 0.84. For the geolocation, countries and coordinates are distinguished.
If coordinates only differ in a few degrees, the similarity is 1. The similarity is 0.5 if the
coordinates are still in the same country and 0 for different countries.

4.2.3 Correlating Port Scans

The following describes the second algorithm part to correlate scanners that are coordinated in a
scan campaign. The correlation algorithm leverages the characterization of port scans according
to the ten key features from Section 4.2.2 that fingerprint scanners and their scans regarding
both attacker and target.

Before the correlation is performed, a sanitization of the characterized scans filters false positives
that are likely caused by other technical reasons like network issues that happen from time to
time. In contrast, malicious port scans probe many hosts and ports to gain the desired knowledge,
which causes many failed communications, e.g., broken TCP flows. Thus, the threshold ε

requires a minimum number or scan probes in a port scan. If less, the respective suspicious IP is
filtered and not considered for the correlation of port scans.

Two scanners are believed to collude if the similarity of their fingerprints exceeds a threshold t.
The similarity over the ten key features is defined as a weighted average:

sim =
∑

10
i=1 s(i)∗w(i)

∑
10
i=1 w(i)

This similarity function compares each of the ten features pair-wise for two port scans. Each
feature similarity s(i) for the features i ∈ [1;10] is in the range between 0 and 1. Features can
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be assigned weights w(i) ∈ [0;1],∑w(i) = 1 when calculating the similarity among port scans
that is 0≤ sim≤ 1. These weights prioritize certain features that indicate distributed scanners
with higher certainty. The threshold t controls if two scans are similar enough regarding their
attacker and target to be assumed to belong to the same campaign.

After the similarity between any two per scans is calculated using sim(), hierarchical clustering
finds distributed scanners in the large scan alert set. This type of clustering benefits from its
parametrization as no prediction about the number of clusters or their sizes is required. Instead,
the threshold t is incorporated to allow an interactive inspection of the resulting clusters when
varying this parameter. In particular, the clustering algorithm unweighted pair group method
with arithmetic mean (UPGMA [Joh67]) is chosen for two reasons. First, the bottom-up property
of this clustering algorithm ensures that the most similar scans become clustered first. Second,
UPGMA recalculates similarities of merged clusters by averaging the similarities of all contained
elements. As most of the key features have only a few possible values (cf. Table 4.2), this tries
to preserve the clusters dominating features when searching for new elements to merge.

After characterizing the scan activity of each scanner and correlating scanners based on their
characteristics’ similarity, the result is a campaign description that identifies related scanners
and their scan activity. Aggregating the scan activity of distributed scanners allows the victim to
reconstruct the full scope of the scan campaign. Besides that, the scan description highlights
the campaign’s characteristics when looking at the most similar features among the distributed
scanners.

4.2.4 Summary of Scan Campaign Detection

A detection algorithm has been presented to detect port scan campaigns together with all the
related scan activity, even when the activity originates from different sources on the Internet.
The algorithm makes use of the combination of activities that together show a common behavior,
both regarding the attacker and target. While assessing the scan activities individually potentially
indicates the ongoing port scan, only assessing the homogeneous scan activities collectively
reveals the bigger picture of the scan campaign. Detecting campaigns with this algorithm
benefits from a better accuracy because the reduction of false positives increases the precision.
Furthermore, the right priority can be assigned to scans that seem to be small and unrelated but
would usually be ignored instead of being seen in the context of the larger campaign.

The algorithm for the detection of scan campaigns is working in two steps. It first characterizes
the scan activity for each source individually. The resulting fingerprint consists out of ten key
features that characterize the scan activity regarding the attacker and target. The second step of
the algorithm leverages these characteristics to link similar fingerprints. Their aggregated scan
activity and its fingerprint then highlights the campaign’s characteristics. The parameterization
of the ten key features and their prioritization is investigated in Section 6.4.1.2.

The more activity of the campaign is monitored, the clearer becomes the picture of the campaign.
A good detection accuracy, therefore, requires to capture a large portion of the relevant network
traffic and the scan activity in particular. Besides the application of the detection algorithm
in stub networks, their collaboration or the application in a transit network, i.e., at an Internet
service provider (ISP), would increase the detection accuracy of large scan campaigns with
Internet-wide scope. Section 6.4.1.3 investigates to which extent scan campaigns can be detected
without having a global monitoring of the Internet.
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4.3 P2P Botnet Detection

Botnets are a major threat to any Internet user and the Internet infrastructure itself. This is
not only because infected hosts can harm the individual users, e.g., by stealing their banking
credentials [And+13; OBr16]. When collectively controlled by the botmaster, the infected
hosts, i.e., bots, can also bundle their resources to perform click fraud [Wyk12] or distributed
denial-of-service (DDoS) [Sch+10]. But most important, a bot running in a network potentially
poses a foothold for the attacker in it. To effectively stop a botnet, it is necessary to identify
the bots in the first place. Especially P2P botnets are hard to take down, as bots disseminate
commands among each other and there is no central command and control (C2).

In contrast to a traditional detection on the basis of individual network flows, the characteristic
P2P communication among the bots can be leveraged to detect a botnet itself, including its
communicating bots. The detection, however, requires to capture the communication behavior
of many bots. While monitoring a local network reveals the Internet communication with remote
hosts, potential communication among the remote hosts is impossible to capture for the local
monitoring. Thus, a local measure would never be able to identify the characteristics of a P2P
botnet. Instead, large-scale monitoring data is required to correlate traffic from different network
sites. This would finally allow to detect communication characteristics among hosts that equal
those of a P2P botnet.

Based on statistical algorithms that operate on NetFlow data to identify infected machines in
large networks, this section proposes a detection algorithm based on the statistical concept of
random walks. Other algorithms presume visibility on large parts of the communication within
the botnet. In addition, so far, only structured P2P botnets have been addressed, while especially
more recent botnets shifted to unstructured P2P approaches. For their detection, this section
revisits and simplifies the BotGrep algorithm in [Nag+10] (cf. Section 3.4.1). The modified
version makes use of the less complex clustering algorithm density-based spatial clustering of
applications with noise (DBSCAN) instead of the SybilInfer algorithm [DM09]. In addition,
post-processing has been removed to reduce computational overhead.

This section revises parts of the conference paper [Muh+18] that resulted from supervising the
first author during his internship. The section first introduces a formal model that describes
the communication of P2P botnets and how this is related to benign Internet communication.
Afterward, different forms of network visibility are introduced and how they affect the monitored
botnet communication. Last, this section discusses the detection of bots in large communication
graphs using random walks.

4.3.1 Detection Model on Communication Graphs

The communication graph used for the botnet detection represents the communication in a
network, i.e., on the Internet, on the basis of hosts. The real-world communication graph
GN = (VN ,EN) consists of vertices VN representing the hosts in the network. The directed edges
EN among the vertices in the graph reflect who is talking to whom in the network. In practice,
this means that only NetFlow data is required for the proposed detection of P2P botnets.

This graph GN contains all communication among hosts, including both legitimate flows and
those that stem from botnet communication. Note that multiple network flows among two
hosts will still end up in a single edge in the graph between the respective two vertices. More
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formally, the legitimate communication in the network is modeled by the graph GL = (VL,EL),
whereas the botnet communication is modeled by the graph GB = (VB,EB). Merging both graphs
results in the overall communication graph, i.e., the set of hosts VL +VB = VN and the set of
communication relations EL +EB = EN . However, neither VL and VB nor EL and EB need to be
disjoint. In fact, it is likely that communicating bots VB also emit legitimate traffic and, therefore,
are also included in VL, i.e., VL∩VB ⊂VN . Consequently, almost every host is expected to emit
legitimate traffic, i.e., VL ≈VN , whereas the number of bots is only a small portion of the overall
hosts, i.e., VL >>VB.

The goal of the botnet detection is to analyze the communication graph GN and to extract
those nodes that are part of the botnet, i.e., b ∈ VB. Although the detection is based on the
characteristic botnet communication, i.e., the edges EB in the botnet graph GB, communication
relations among the bots are not intended to be included in the detection result.

Figure 4.8: A directed graph and its corresponding adjacency matrix with probabilities.

For an efficient implementation of the graph, the concept of an adjacency matrix as a two-
dimensional array of size |VN | × |VN | is used. Usually, the possible values 0,1 indicate the
presence of an edge only. For an efficient applicability to random walks, the definition of the
adjacency matrix is slightly adapted here. In particular, the values [0;1] in the adjacency matrix
not only indicate the presence of an edge, i.e., when the value is greater than 0, but also assign
the edges a weight, i.e., the transition probability to another node. This follows the idea of
BotGrep (cf. Section 3.4.1) and is furthermore illustrated in Figure 4.8. The matrix should
be read as follows. Each row vi ∈VN reflects a specific vertex with its outgoing edges to any
other vertex v1,v2, . . . ,v|VN |. Thus, for example the third value in the first row determines the
probability of jumping from vertex v1 to vertex v3. The sum of all probabilities in every row
must equal 1. When initially creating the adjacency matrix for a given graph, the probabilities
of outgoing edges are equally distributed, as formalized in Equation 3.1 and visualized as
example in Figure 4.8. While calculating random walks for the detection, the distribution
of probabilities changes. The details of updating the adjacency matrix is detailed later in
Section 4.3.3. In the final updated matrix, accumulating all path probabilities from vi to v j
results in the random walk’s final probability to end at v j after a fixed number of hops starting
from vi. This probability of a node to be the end-node of a random walked is then leveraged
for the P2P botnet detection in Section 4.3.3. However, first the restrictions of communication
graphs in practice are highlighted.

4.3.2 Restrictions on Communication Graphs

The communication model in Section 4.3.1 captures the ground truth of who is talking to whom
with GN = (VN ,EN). However, in practice, NetFlows as basis for communication graphs are
likely to not exactly match the ground truth, which results in the monitoring graph G′N =(V ′N ,E

′
N),
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as detailed in the following two paragraphs. They describe how the restrictions affect the
communication model.

NetFlow Restriction The first reason for restrictions is caused by an inaccurate monitoring of
communication relations. This means that not all communicating host pairs are identified, which
results in some edges in GN to be missing. Depending on the monitoring in place, this is caused
by sampling on either packet or flow level. Either way, the sampling can be unintentionally
because of unexpected overload situations or intentionally for performance reasons [Est+04]

Note that in practice not every missing packet or flow in monitoring directly causes a missing
edge in the communication graph. This is because all packets of a flow would have to be missed
before the whole flow is missing. Similarly, all flows between two hosts would have to be missed
before the edge in the graph is missing. However, a host usually establishes several flows to a
destination, e.g., parallel connections for HTTP or both control and data connection for File
Transfer Protocol (FTP). For simplicity of the communication model, however, the NetFlow
restriction effectively reflects the monitoring to miss the communication between two hosts
altogether. Furthermore, if all the communication of a host is missed, this node is not included
in VN . More formally, this results in a subset of edges

E ′N ⊆ EN with |E ′N |= k×|EN |,

where k ∈ [0,1] is the fraction of contained communication relations. The subset of vertices is
then determined by

V ′N = {vi ∈VN | ∃v j ∈VN : {(i, j),( j, i)}∩E ′N , /0}.

Visibility Restriction The second reason for restrictions is caused by the supervised system
itself, i.e., the monitored network. The monitoring system can only capture traffic that is trans-
mitted through the network, but cannot capture global. Internet traffic of other networks. This is
referred to as visibility. The result of the visibility restriction is that only the communication
of particular hosts is monitored, including any incoming and outgoing flows with any remote
host. More formally, the visibility restriction is based on an initial pick of hosts VI ⊆VN with
|VI|= k×|VN | where k ∈ [0,1] is the fraction of contained hosts. Starting with these initial host,
the restriction leads to a subset of edges that is

E ′N = {(i, j) ∈ EN | {v j,v j}∩VI , /0}.

Based on the monitored communication relations, the subset of vertices in the restricted graph
is

V ′N = {vi ∈VN | ∃v j ∈VI : {(i, j),( j, i)}∩EN , /0}.

The botnet detection with random walks has to be robust against both NetFlow and visibility
restrictions, and is subject to evaluation. The detection must work also in these cases when the
restrictions in question are in place, which cause the detection to work on G′N instead of the
global view GN . In addition, the detection must also be resilient against the restrictions so that it
is still able to detect the botnet and a majority of its bots.
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4.3.3 Botnet Detection with Random Walks

The botnet detection operates on the communication graph G′N . At the beginning of the detection,
the adjacency matrix is initialized for G′N with the probabilities described in Section 4.3.1.
The following two paragraphs describe the steps to identify the bots of a P2P botnet in the
communication graph, represented by the adjacency matrix Pi j.

Random Walks A random walk starts at round r = 0 at a random row ir=0 of Pi j and uniformly
picks one non-zero element jr=0 in this row. This is equivalent to starting at a random node and
choosing a random edge to continue the walk. When starting, the algorithm must not pick a row
that contains only zeros, because this means that the respective node is isolated and there are
no edges to continue the walk. The walk continues at round r = 1 when the destination of the
chosen edge becomes the new start of the next walking step, i.e., ir=1 = jr=0. In total, this is
repeated k times, so k represents the length of a random walk.

The botmaster benefits from the fact that bots in the P2P botnet are well-interconnected. Not
only obviously because the bots cannot simply be paralyzed by law enforcement taking down
the centralized C2 infrastructure. Especially the high density of interconnections has additional
benefits. The botmaster can take cover when submitting commands to a single bot only and
letting the botnet itself to propagate the command to the remaining bots. With higher density,
the command propagates faster. A high density also makes individual bots robust against losing
connection to the botnets when other bots turn off or get cleaned from malware. Because of these
benefits, bots in VB are expected to be well-interconnected among each other. The dense structure
will be reflected both in the botnet graph GB and the monitored graph GN . Consequently, a short
random walk starting from a node vp ∈VB will have a higher probability of ending in another
node vr ∈VB than a walk starting from an ordinary host vl ∈VL if vl <VB.

Due to this so-called fast-mixing property of the P2P subgraph, its state probability mass
is closer to the stationary probability distribution than the infected slow-mixing rest of the
network [Sin92]. The effect becomes apparent when performing a large number of random
walks on the graph. After n random walks, each of length k, the walking algorithm terminates.
Then, the probabilities of all walks are accumulated to determine the likelihood of each vertex
to be an end-node. As the authors of [Nag+10] point out, well-connected nodes with high hub
and authority ranks speed up the mixing rate. This is an unwanted effect as legitimate hubs and
authorities might attract more random walks than the well-connected botnet graph GB. However,
it can be assumed that a malicious subgraph, i.e., the botnet, has more hubs and authorities due
to its P2P topology. That is why, similarly, a dampening constant can be applied to suppress
the effect of individual well-connected nodes and thus normalize the probability distribution to
enable clustering.

The result of this first step with random walks is a vector of size |VN | that holds the normalized
probability for every host to be the end-node of a random walk.

Clustering The list of hosts and their respective probabilities now has to be filtered for hosts
with normalized probabilities that are similar to each other. Nodes of a P2P botnet will have
similar probabilities. Therefore, the density-based clustering algorithm DBSCAN is used to
cluster the resulting probability distribution with respect to the distances among the data points.
DBSCAN requires two parameters: (1) ε denoting the neighbor range for each node and (2)
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minPts as the minimum number of points a cluster should have. To avoid many small clusters,
preliminary experiments indicate that the minimum size should be set to 50, while ε = 0.6. An
advantage of DBSCAN is that it does not require the number of clusters in the data a priori,
unlike the k-means algorithm. Furthermore, DBSCAN is able to take outliers and noise into
account.

The normalized random walk state probability mass of the set of bots VB is homogeneous and
should be different from the slow-mixing rest, i.e., the uninfected hosts in the communication
graph VU = GN \GB. After clustering, the final result is the separation of hosts VN in the network
communication graph GN into hosts VB that seem to participate in a P2P botnet and into hosts
VU that communicate legitimately only. Afterwards, this would allow to extract the respective
botnet subgraph GB and leave the legitimate communication graph GL.

4.3.4 Summary of Botnet Detection

To identify communicating bots within the large amount of network communication every
day, a detection algorithm has been presented that identifies the characteristic communication
behavior of an unstructured P2P botnet among the bots. Based on the related work of Nagaraja
et al. for structured P2P botnets [Nag+10], the algorithm makes use of the combination of bot
activities that together exhibit this botnet-specific characteristics. Assessing the bots’ activities
individually would probably fail as long as no IDS signature of the particular botnet exists. In
contrast, the presented algorithm assesses the homogeneous bot activities collectively to enable
its detection in the first place and to reveal the bigger picture of the whole P2P botnet. Another
advantage of the detection algorithm is that the alerts for communicating bots are directly related
to each other. If the alerts for each bot would be reported without any relations, assembling the
bot alerts to a single botnet is an additional effort for the human operators. Instead, the output of
the presented algorithm already indicates the alerts that belong together.

The algorithm for the detection of unstructured P2P botnets is based on the key insight that a
regular communication graph on the Internet statistically differs from the communication graph
of bots within the P2P botnet. This fact stems from the P2P nature of these botnets that results
in a high density among the bots regarding their communication relations. Using a random walk
approach, the detection algorithm separates nodes in the monitored communication graph into
nodes that collectively show P2P characteristics and nodes that do not.

The more activity of the botnet is monitored, the clearer becomes the P2P characteristics among
the bots. A good detection accuracy, therefore, requires to capture a large portion of the relevant
network traffic and the bots’ activity in particular. However, several restrictions regarding the
network visibility have been presented that exist in practice, including that an Internet-wide
capture required to encompass all bots is impossible. Because of these restrictions, the detection
algorithm must not rely on full network visibility but must be resilient against incomplete
communication graphs. The experiments in Section 6.4.2 evaluate to which extent of restricted
visibility a significant statistical differences between the communication graphs is apparent.
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4.4 Summary of Security Monitoring

Security monitoring with a NIDS is challenged by restricted visibility, which causes negative
effects and lead to a decreased detection accuracy. The approaches presented in this chapter
mitigate these effects and lead to a better visibility on the attack. Their deployment is not
exclusive but should be combined along the intrusion detection process (cf. Section 3.2.1)
to be most effective. The first dimension to extend the visibility correlates host and network
data already during monitoring in real-time. In the second dimension, detection algorithms
leverage correlated monitoring data using the example of network data to identify larger attack
scenarios in the communication graphs. In their combination, the presented approaches extend
the visibility of an IDS to enable better detection accuracy

The foundation of a good detection accuracy is high-quality monitoring data. Without this, no
sufficient protection, especially against sophisticated attacks, i.e., advanced persistent threats
(APTs), can be provided in the first place. To achieve a better monitoring visibility, the zeek-
osquery platform has been presented in Section 4.1. It ties activities of the host to those in the
network and allows for the analysis of the resulting data in real-time. This integrated visibility
on the actions of the attacker sheds light on their causal connection. For that, zeek-osquery
combines the network security monitor Zeek with the host sensor osquery. A new framework
extends Zeek by the scalable orchestration of osquery sensors, interactive queries for host data,
and the analysis of this data directly in Zeek. This way, the enriched monitoring data by host
context not only assists forensic analysis through more detailed log data but also live intrusion
detection. The basis of the real-time analysis is the attribution of network flows to their host
processes. While necessary host data can be retrieved efficiently in a continuous stream of
events, additional data can be queried interactively on demand. This enables a privacy-respecting
retrieval of sensitive host data because it is dynamically retrieved for certain reasons only. This
particular use-case is demonstrated by the hosts providing cryptographic key material to assist
in the inspection of TLS connections. The zeek-osquery platform is evaluated in Section 6.3
regarding the accuracy of network attribution, performance, and its usability for intrusion
detection.

The fine-grained correlation of host and network data, however, requires administrative access to
the hosts for deploying the osquery host sensors. Although suited for certain environments, this is
not always possible. Thus, this section furthermore pursues the hardening of detection algorithms
to make them more resilient against restricted network visibility. Thus, this chapter presented
two scenario-specific detection algorithms that are based on the same common principle. The
basic idea for increasing the detection accuracy is to exploit that some scenarios cause a lot
of malicious activity. Assessing a single or few of these activities independently from the
others might not give enough evidence to detect the whole scenario. Instead, when assessing a
significant amount of the malicious activity together, the characteristics of the scenario become
clearer and give more certainty in the detection result or enable the detection in the first place.
This principle is applicable, especially for distributed attack scenarios that cause a lot of similar
activity. In contrast to detection algorithms that assess events individually and potentially report
a sheer flood of alerts, the presented algorithms already identify that the malicious activities
belong to the same attack.

In particular, this chapter presented detection algorithms that leverage correlated network data,
i.e., the communication graph, for the detection of scan campaigns with coordinated scanners
(cf. Section 4.2) and P2P botnets (cf. Section 4.3). These detection algorithms are supposed to
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detect potentially global attacks with their local network visibility only. In the case of the scan
campaigns, the characteristics of similar scanning behavior among the coordinated scanners
enables the detection to be robustness against restricted visibility. The scan activity of every
source is first characterized. In the aftermath, sources with similar characteristics are identified.
When coordinated scanners have been identified, their scan activity is aggregated. In the best
case, the aggregation reflects the whole scan campaign. But even when not all scan activity or
not every coordinated scanner is captured by the monitoring, the activity that is captured can still
be assembled to detect coordinated scanners and partly represent the scan campaign. In the case
of P2P botnets, their robust detection against restricted visibility is enabled by the characteristic
communication channels that bots establishing among each other. This communication behavior
is statistically different from regular communication behavior on the Internet like it is seen with
the common client-server pattern. From the point of view of an individual bot, one can only
guess about ongoing P2P communication. However, the view on a collection of bots reveals
their inter-connections. As the bots’ communication behavior differs significantly from others,
it is still apparent even when not all bot communication is captured. Both, the detection of scan
campaigns as well as the detection of P2P botnets, are evaluated regarding their accuracy in
Sections 6.4.1 and 6.4.2, respectively.

The next chapter continues with those approaches to an IDS that correlate alert information for a
better picture of the whole attack.
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The outcome of security monitoring reflects malicious activity that an IDS reports as alerts.
An isolated view on these low-level IDS alerts, however, misses the context of the attack they
belong to. The resulting incomplete view on attacks often renders an effective mitigation of the
attack impossible. Thus, as part of the intrusion detection process as described in Section 3.2.1,
alerts need to be summarized and correlated to obtain the bigger picture of an attack.

However, there are two particular challenges for reconstructing network-wide attacks from
their alerts. First, the large alert volume overwhelms security operators when tying to identify
relations among the alerts. Especially the big picture of distributed attacks can rarely get
assembled when the relations of alerts from coordinated sources stay hidden from the security
operators. Second, stealthy and comprehensive attacks, i.e., advanced persistent threats (APTs),
additionally impede their reconstruction because of spatially and temporally distributed alerts.
As a result, such stealthy attacks result in only a few alerts, while at the same time a large
number of alert for conventional attacks are reported. Failing to link these alerts can result in the
attacker to succeed without being noticed for a long time.

The alert correlation – the automated assembling of alerts to a descriptive summary of attacks
– therefore, has to overcome the challenges of temporally and spatially dispersed alerts. Thus,
the alert correlation algorithms presented in this chapter leverage different kinds of similarity
among alerts and attacks, respectively. The correlation outcome provides the security operators
with the attacks to their whole extend without analyzing every single alert themselves.

In particular, this chapter first defines and summarizes three stages of the alert correlation process
in Section 5.1 for the processing of IDS alerts into attack representations. The subsequent two
sections of this chapter present concrete correlation algorithms that implement these process
stages. Algorithms of the first stage in Section 5.2 group all alerts that directly belong to
the same attack or attack step. Section 5.3 presents algorithms that combine the second and
third stage to link attacks with each other based on additional information about the attack
scenario. More precisely, this chapter presents an aligned solution denoted as graph-based
alert correlation (GAC) for clustering alerts from distributed attacks (cf. Section 5.2.1) and
linking alert clusters from multi-step attacks (cf. Section 5.3.1). In addition, the weak alert
correlation complements the clustering particularly with respect to APT alerts (cf. Section 5.2.2)
and collaborative attack correlation assists in linking attacks detected in a distributed IDS
deployment (cf. Section 5.3.2).

5.1 Alert Correlation Process for Attack Detection

Alert correlation algorithms ease the task of analysis alerts by correlating alerts with each other
to obtain the bigger picture of an attack. A common approach is to group alerts based on
similar attributes [ZLK09; Jul03; Vas+15a; Loc+05] like source and destination IP, and to report
common attribute patterns (cf. Section 3.4.2). Other approaches correlate alerts of multi-step
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attacks [NCR02; Sun+16] to identify and link the individual steps of an attacker, e.g., a port
scan that is followed by an exploit of a specific vulnerability on the target host (cf. Section 3.6).
Thus, alert correlation is the overall process to make relations among alerts visible, which can
serve as indication of them belonging to a larger attack.

Alert     
Clustering     

Context
Supplementation

Attack
Interconnection

𝐶1

𝐶2𝐶3

𝐶1

𝐶2

𝐶3

DDoS

Port-Scan

Worm Spreading

Figure 5.1: General alert correlation process with example for scenario labeling.

The alert correlation process converts a set of alerts into a representation of attacks. This
correlation is an essential part of intrusion detection. However, alert correlation does not
include intrusion detection and the reporting of alerts. Instead, alert correlation algorithms
rely on sensors to classify malicious events as alerts (cf. the intrusion detection process in
Section 3.2.1).

This section gives a unified description of the alert correlation process for transparent analysis
and comparison of correlation algorithms. It is a revised version of the alert correlation process
in the journal article [HF19]. The description characterizes alert correlation algorithms by
breaking them down into their core building blocks (cf. Figure 5.1): alert clustering, context
supplementation, and attack interconnection. Depending on the goal of specific alert correlation
algorithms, individual blocks are less important or not necessary at all. If a step is not addressed,
the input of a block is also its output. The following first introduces a formal model for the alert
correlation process and then describes each building block in more detail.

IDS Network Alert An alert a ∈ A can come from arbitrary sources like a network- or host-
based IDS and indicates a potential security breach or generic malicious activity in the network.
It can be either a true positive or a false positive, depending on the performance of the underlying
intrusion detection. Every alert a ∈ A consists of a fixed vector of attributes a = (a1,a2, . . .an),
e.g., source and destination addresses, as well as source and destination ports. In case of network
intrusion detection, the classification of malicious events as alerts is based on the network
communication between hosts (cf. Chapter 4). Any network alert has a randomly assigned
unique identifier (UID), the timestamp ts of the network flow, the source and destination IP
addresses and ports as well as the transport protocol. In addition to the event’s attributes, the
alert contains the alert_type:

a := (uid, ts, src_ip, src_prt, dst_ip, dst_prt, proto, alert_type)

IDS Meta Alert An attack, or more precisely all alerts that are caused by the same malicious
action, i.e., an attack i, will result in a set of true positive alerts Si. The set of all alert sets from
different steps is given by Ŝ = {S0,S1, · · · ,Sn−1}. Applying alert correlation to this set reduces
the alert volume and results in meta alerts that abstract and reference a set of at least one IDS
alert. For that, a correlation function K clusters an alert set A into a set of clusters Ĉ, with
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each cluster Ci ∈ Ĉ being supposed to consist out of all alerts that represent a particular attack
step. In contrast to an IDS network alert, a meta alert has its own assigned UID, the time span
between first to last alert, the set of all alert ids, the set of attacker and victim IP addresses
among all alerts, and a message that describes the attack. Thus, an IDS meta alert is the set of
alerts triggered by the same attack action. It is the outcome of an alert correlation algorithm K
that transforms an alert set A into clusters Ci ∈ Ĉ:

m := (uid, ts, alert_ids, attackers, victims, message)

A multi-step attack M j ⊆ Ŝ contains several single-step attacks. The set of all multi-step attacks is
M̂ = {M0,M1, · · · ,Mm−1}. The following paragraphs describe the tasks in the intrusion detection
process as building blocks to achieve a clustering of alerts into clusters Ĉ and summarizing of
these into multi-step attacks M̂. Table 5.2 summarizes the notation that is used throughout this
chapter to refer alerts when processed by the alert correlation process.

Correlation Stage

Alert Clustering Attack Interconnection

ak ∈ A
Si ∈ Ŝ

li ∈ L
M j ∈ M̂ Ground Truth

Ci ∈ Ĉ I j ∈ Î Correlation Result

Alerts Alert
Clusters

Context
Labels

Attack
Clusters

Symbol Name

Figure 5.2: Notation used throughout the alert correlation process.

Alert Clustering The alert clustering will partition alerts into respective clusters of alerts
Ĉ = {C0,C1, · · ·Cn−1}. Each cluster Ci ∈ Ĉ is supposed to represent an attack and the alerts
that belong to it. The alert clusters are supposed to model the actual attacks Si ∈ Ŝ, so in best
case this leads to Ŝ = Ĉ. For that, two tasks will be carried out here: Alert filtering identifies
duplicates as well as false positives among alerts and attack isolation clusters alerts that belong
to the same attack.

Alert filtering takes care of filtering false positives, so that in the best case it holds true that:

∀a ∈ A : ∃Si ∈ Ŝ∧a ∈ Si ⇐⇒ ∃Ci ∈ Ĉ∧a ∈Ci

Please remember that the definition of false positive can depend on the context and the attacks to
be detected, respectively. Anyway, this does not require a mapping from alerts to clusters with
respect to attack steps. Instead, this task requires alerts to be assigned to a cluster and thus be
included as input into the next building block if and only if they are induced by an attack in Ŝ.

Attack isolation requires clustering to assign each alert out of set A to one cluster Ci ∈ Ĉ. The
correlated clusters Ĉ should reflect the original attack steps Si ⊆ A,Si ∈ Ŝ. This task may vary
from traditional clustering that aims for high homogeneity within clusters and high heterogeneity
among the clusters. Hence, the challenge of clustering in the field of alert correlation is to find an
assignment that reflects the reality, which might not be the optimal solution from a data mining
point of view.
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Context Supplementation After alerts have been filtered and clustered in the previous step,
each alert cluster is supplemented with additional context. Such context could be information
from knowledge databases, which provide information on vulnerabilities that might be exploited
in a particular attack.

Another type of information could be a description of the attack. Thus, giving the clusters a
meaningful label eases human analysis. A popular technique is to summarize alert features by
finding common attributes in alerts, e.g., the source IP of the attack that might be present in
all alerts related to a particular attack, and to suppress alert attributes that have high variance.
Description of clusters such as counting the most frequent attribute values or value combinations
is highly valuable for analysts. This might be the reason why most approaches for alert
clustering tend to search for alert subsets that result in labels that are easy to understand by
humans. Although using the most frequent attribute values works well in practice most of the
time, this has some limitations as it imposes constraints on the attacks that can be detected.

For context supplementation, each cluster in Ĉ is labeled with a label li ∈ L that gives additional
information, e.g., environmental context or cluster description.

Attack Interconnection The last building block in the alert correlation process attempts to
find relations among the alert clusters in Ĉ. The resulting attack clusters Ii ∈ Î reflect the
assembling of single attack steps Ŝ into the multi-step attacks M̂. An example is a scan for
vulnerable web services in a subnet, followed by an exploit against a server in this subnet. To
connect such attack steps, usually a combination of sequential- and causal-based correlation
mechanisms is applied.

In worst case, each alert results in an own group during alert clustering. The second step enriches
each alert with additional information, e.g., information on the vulnerability that is exploited.
Then, most effort of the correlation algorithm lies in this third block of attack interconnection,
as the definition of attacks is implemented in the dependencies between attacks.

5.2 Alert Clustering

The first stage in the alert correlation process (cf. Section 5.1) identifies alerts that are all caused
by the activities or effects of the same attack step. In particular, two challenges exist in this
process stage (cf. Section 1.1). First, there are distributed attack scenarios such as distributed
denial-of-service (DDoS), port scans, and worm spreadings. These attacks cause a bulk of
similar – almost redundant – alerts for the several affected hosts. Second, the occurrence of
alerts from slow and stealthy APT-like attacks is a good deal more infrequent compared to
alerts from bulk attacks. Consequently, the alerts’ weak relations is likely to get lost in the
shuffle. Alert clustering in this section analyses the alerts regarding similar features that indicate
relations among the alerts and overcomes the two challenges in particular.

This section combines revised parts of the conference paper [HF18] and of the supervised master
thesis [Ort19]. The section presents two alert clustering approaches for two different purposes.
The first approach processes chunks of consecutive alerts, i.e., batches, and identifies related
alerts within each alert batch. The second approach is an addition to the first one and clusters
alerts of stealthy attacks that are likely to be filtered by the first approach.
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5.2.1 Graph-based Community Clustering

The first approach for alert clustering represents alerts as nodes in a graph and adds edges
between similar alerts. This enables the search for alerts sharing similar attributes and the
clustering of alerts within these graphs afterwards. The following first describes the used graph
model, then the clustering method.

Transforming Alerts into a Graph The set of alerts A is transformed into a weighted alert
similarity graph Gattr = (A,E) that contains alerts of set A as nodes. Every edge (a1,a2) ∈ E is
weighted with the similarity s = Fsim(a1,a2) ∈ [0,1] in between two alerts a1,a2 ∈ A. Function
Fsim compares all n attributes (a0, . . . ,an−1) of the alerts, respectively, as follows:

Fsim(a1,a2) =
n−1

∑
j=0

c j ·h j(a j
1,a

j
2) (5.1)

Per attribute, an attribute-specific comparison function h j delivers a similarity value in [0,1]. All
attribute comparisons are weighted according to a vector c = (c0, . . . ,cn−1) such that ∑c j = 1.
The edge weight s determines whether a particular edge is present in the graph. The similarity
between two alerts is required to be equal or higher than a minimum similarity threshold τ , for
an edge (a1,a2) to be included in Eτ and Gτ

attr, respectively. Thus, τ controls the number of
edges |E|, by removing edges between alerts that are most probably unrelated. The weight of
edges depends on the implementation of Fsim. To choose a suitable threshold τ , it is beneficial to
know the expected alert similarity among alerts of the attacks that should be detected.

Source Destination
ID IP Port IP Port

a1 E X W P
a2 T Y W P
a3 E Z W P

(a) Example alert set.

a
1

a
3

a
2

2/4 = 0.5

3/4 = 0.75

2/4 = 0.5

 

(b) The resulting Gattr graph.

Figure 5.3: Transformation of an alert set into an alert similarity graph.

With the focus on network alerts, the most important and common attributes that should be
supported by any network intrusion detection system (NIDS) and detection method are the
four attributes: IP and port of both source and destination. Furthermore, attributes are tested
for equal values to keep the correlation algorithm free from additionally required knowledge,
such as subnets and the application type related to a port, e.g., Hypertext Transfer Protocol
(HTTP) for ports 80 and 443. Thus, according to Equation 5.1, all h j return 1 for equal attribute
values and 0 otherwise. Attribute comparison is weighted equally with c j = 1/n for any c j ∈ c.
Other examples for attribute selection and h j can be found in [VS01]. Another method to assign
weights is described by so-called log-graph in [Pei+16]. Figure 5.3b shows the alert similarity
graph with three nodes for the alerts in Figure 5.3a. E.g., Fsim(a1,a2) = 0.5 because two out of
four attributes among the alerts a1 and a2 are equal.
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Clustering Alerts within the Graph It is important to consider that usually several attackers
try to break into an IT system at the same time. Therefore, it is very likely that individual attacks
target the same host in the network without a connection between the attacks. One attack might
aim to scan for SQL injection on a specific webserver, whereas a second unrelated attack scans
for webservers in the same subnet. As both attacks hit the webport on the same server, they will
probably be linked with a non-zero similarity even in the filtered graph Gτ

attr. Therefore, alerts
of individual attack steps are further separated by clustering them, i.e., identifying subgraphs in
Gτ

attr. The motivation for clustering is illustrated for an example graph Gattr in Figure 5.4. In the
bottom one of the two isolated components, one can intuitively identify three loosely coupled
subgraphs. These clusters (marked with red circles) are no isolated components, because a
few of their alerts are similar to alerts of other clusters. These clusters are supposed to reflect
individual attack steps. That some similarity exists between the clusters eventually indicates that
they are related. Relations among the clusters, however, is out of scope at this processing stage.

Figure 5.4: Community clustering in an exemplary alert similarity graph.

The alert clustering leverages the graph structure to identify and isolate subgraphs of loosely
coupled attacks. For that, community clustering is used, especially the clique percolation
method (CPM) [Pal+05], to cut the connection between loosely coupled clusters. CPM detects
communities by searching for k-cliques, i.e., fully connected subgraphs of size k, that share
k−1 nodes. This correlates well with the homogeneous inter-connections among alerts in the
Gattr. These result, e.g., from distributed attacks, which cause several alerts with similar attribute
patterns. Furthermore, k-clique communities can also reflect uncertainty in clustering as it allows
to assign a node to several communities, i.e. clusters. Although clusters then potentially contain
alerts of unrelated attacks as well, they will more likely include all true positive alerts.

This clustering performs well, especially on bulk attacks that cause many alerts roughly at the
same time. Infrequent alerts from stealthy attacks, however, are likely to fall into separate alert
batches, for which this graph-based alert clustering fails. Such alerts are incorporated into
clustering by the following approach.
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5.2.2 Weak Alert Correlation

In addition to the bulk attacks detected by the graph-based community clustering of alerts from
Section 5.2.1, the following introduces the notion of weak alerts that are likely to result from
stealthy attacks such as APT attacks. Thus, instead of filtering those alerts as irrelevant that do
not assemble to a cluster immediately, the weak alert correlation approach can cluster these
alerts over long time instead. For that, the approach first groups weak alerts to intermediate
aggregations. This data structure enables runtime efficient updates. Furthermore, the aggregation
algorithm runs continuously and is not restricted to individual alert batches. Once an aggregation
becomes stable, the aggregation result is turned into a weak meta alert, similar to an alert
cluster.

5.2.2.1 Weak Alert Model

Compared to the number of alerts from bulk attacks, alerts from stealthy attacks are rare. Because
of their infrequent occurrence, they seem unrelated to any other alerts, although related alerts in
historical data exist. This definition of weak alerts is detailed in the following model.

Weak Alert Definition After clustering alerts in an alert set A with a correlation function K ,
some alerts remain unclustered, i.e., they are not included in any meta alert mi or belong to any
cluster Ci, respectively. Thus, an alert is considered weak, if it cannot be correlated with other
alerts and therefore cannot be related to a specific attack. Thus, weakness is a relative descriptor
for single alerts, denoted as binary function ω : a ∈ A 7→ {0,1}:

ω(a) =

{
0, if ∃Ci ∈K (A)∧a ∈Ci

1, otherwise

This results straight into the definition of what the set of weak alerts W is. It is with respect to
an alert set A that has the correlated alerts CA = ∪Ĉ, i.e., the union of all clustered alerts among
Ci ∈ Ĉ. The set of all weak alerts is defined as the set difference of all IDS alerts minus the
correlated alerts:

W = A\CA, with |W |= |A|− |CA|
Not all weak alerts in W necessarily belong to the same stealthy attack. Thus, this model further
introduces two characteristics that are used to separate weak alerts from different attacks.

Large IP networks are usually organized in subnets. Reasons for that include to limit broadcast
domains, but also to secure subnets of different trust levels, i.e., zones, by measures like firewalls.
Especially in APT attacks, lateral movement in the network of an organization is often seen
to access data or services that are not directly accessible from the Internet. To reflect this
characteristic of respective attacks, the network is assumed to be organized in zones, e.g., the
Internet, Intranet, or data center. The direction between two network zones A, B
is denoted with an arrow symbol as A→ B. Consequently, the alert direction of an alert a is
given by the network zones of its source and destination IPs:

Dir(a) := A→ B iff. a.src_ip ∈ A∧a.dst_ip ∈ B
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Another attack characteristic is how many attackers and targets are involved in the attack.
Especially distributed attacks with many involved system potentially cause many alerts. Thus, the
relations among attackers and targets and their numbers, i.e., the attack topology, characterizes
the attack type. The weak alert model distinguishes four topologies:

• One-To-One (OtO): Single attacker and target

• One-To-Many (OtM): Single attacker and multiple targets

• Many-To-One (MtO): Multiple attackers and single target

• Many-To-Many (MtM): Multiple attackers and targets

Similar to the correlation of IDS alerts to meta alerts (cf. Section 5.1), weak alerts are filtered
and correlated to reveal their relations to APT attack steps. The outcome are weak meta alerts
that have the fields label for the attack topology, the alert direction of two network zones,
and the alert frequency in addition to a regular IDS meta alert. The attack topology and alert
direction characterize the APT attack regarding lateral movement and the alert frequency is an
indication for the stealthiness of the attack. Thus, a weak meta alert is the set of weak alerts
triggered by a potentially stealthy and long-lasting attack:

wma := (uid, ts, label, direction, alert_ids, attackers, victims, f req)

The problem that arises in practice is that the correlation function K usually runs on a finite
alert set A. Thus, K is only applied on consecutive alert subsets, i.e., batches, reflecting a
certain time span. Especially alerts of temporally dispersed attacks probably spread into several
alert batches. However, unfavorable circumstances can also cause the isolation of few alerts
from bulk attacks to fall into a separate batch, eventually being classified as weak alerts.

Sensitivity and Specificity of Weakness Weak alerts that result from filtering are not nec-
essarily weak when considering multiple batches. Figure 5.5 illustrates five possibilities how
weak alerts might relate to other batches. Batches are marked gray, the colored dots depict
alerts. Green alerts are successfully correlated, blue alerts are classified as weak. For lanes
1-3, a small portion of alerts that belong to the same attack fall into another batch. Their weak
classification is false positive, as they are actually not weak across multiple batches. Ideally,
it is left up to the correlation algorithm K to compensate such cases or alternatively tolerate
them in the generation of weak meta alerts. The more interesting cases for APT detection are
the true positive classifications in lanes 4-5. Here, alerts for one attack are very low in volume
and spread over multiple batches, or it is a single alert (or very small group) which might either
be a rare outlier or belong to a single shot attack, like a malicious one-time download.

For traditional alert correlation with K , false negatives, i.e., relating not every relevant alert to
the attack (lanes 1-3), might be accepted as long as the attack is actually detected. However,
accepting false negatives for correlating weak alerts (lanes 4-5) might likely result in the APT
attack to go unnoticed. Thus, related weak alerts must be correlated, even if they are temporally
dispersed. But in contrast to K that performs on a series of finite alert batches, weak alerts have
to be correlated in a steady stream of new alerts, i.e., across batches. Thus, in the context of
stealthy and long-standing APT attacks, weak alerts have to be identified and continuously be
assembled to attack steps.
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1.
Batch i Batch i+1, . . . , j−1 Batch j

2.
Batch i Batch i+1, . . . , j−1 Batch j

3.
Batch i Batch i+1, . . . , j−1 Batch j

4.
Batch i Batch i+1, . . . , j−1 Batch j

5.
Batch i Batch i+1, . . . , j−1 Batch j

Figure 5.5: Five example cases how the spreading across batches for alerts of an attack results
in different classifications regarding weakness.

5.2.2.2 Weak Alert Aggregation

According to the filtering of weak alerts in Section 5.2.2.1, a correlation function K identifies
related alerts in an alert set A that are grouped into clusters. It leaves unclustered alerts as weak
alerts W . This correlation function is assumed to run on batches of alerts, which might results
in a few weak alerts per batch. However, the challenge is to correlate weak alerts across many
batches. For that, the following describes the continuous aggregation of weak alerts.

Characterizing Weak Alerts In the context of APT attacks and the characteristic of lateral
movement (cf. Section 2.1.2), alerts that encompass two different network zones are of particular
interest. Respective alerts are identified utilizing a host- & zone-communication graph (HZCG)
as shown in Figure 5.6. The nodes in such a directed graph are source and destination IP
addresses of weak alerts, annotated with the respective zone the IP belongs to. The edges
indicate the alert direction from one to another zone and summarize the alerts between the two
respective IP addresses. In the illustrated example, there are four attackers within Zone_1
and two targets within Zone_2. The targets partly overlap, as the attackers 172.17.0.1 and
172.12.0.2 both attack the two targets, while attackers 172.17.0.3 and 172.17.0.4 each attack a
single target only.

172.17.0.3
Zone 1

172.17.0.1
Zone 1

172.17.0.2
Zone 1

172.17.0.4
Zone 1

172.31.0.2
Zone 2

172.31.0.2
Zone 2

4 uids 1 uid 1 uid 4 uids 3 uids 1 uid

Figure 5.6: Example for weak alerts between two network zones in a HZCG.

Another fundamental characteristic of attacks is whether they are distributed, both in sense
of attackers and targets. An attack either encompasses exactly two IP addresses or there are
multiple addresses for attackers or targets. However, in the context of APT attacks, noisy attacks
with multiple addresses for attackers and targets are likely to cause enough alerts to be reported
by traditional approaches. Because of that, the weak alert aggregation focuses on the attack
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topologies OtO, OtM, and MtO only (cf. Section 5.2.2.1). The aggregation aims to identify
attacks following these patterns among the weak alerts in the HZCG. However, as probably
several unrelated attacks are going on from and to different zones as well as false positive weak
alerts exist, additional attention has to be paid to the separation between zones and individual
attacks.

Aggregating Weak Alerts The aggregation function itself can be thought of as a graph-based
group-by function on the HZCG. Each node in the graph is checked and its incoming and
outgoing edges are iterated separately. Neighbors of each node are grouped by their zone. For
example, Figure 5.6 shows that 172.17.0.1 has five alerts to Zone_2. The respective neighbor
group of node 172.17.0.1 includes the two nodes with addresses 172.31.0.2 and 172.31.0.1 as
targets. More specifically, a neighbor group consists of objects, each summarizing a neighbor
by its IP address and a count of associated alerts:

neighbor_summary :=

{
IP : IP_Address

Alerts : count(alerts)

}

In the example HZCG in Figure 5.6, six neighbor groups exist, one for each node. Finally,
neighbor groups are accumulated per zone to so-called aggregations. An aggregation agg
carries information about the time_span between the first and last alert, the direction of the two
zones, and topology label (OtO/OtM/MtO). Furthermore, an aggregation describes attackers
and targets in the form of neighbor groups but at least one of them consist of a single object
only:

agg := (time_span, direction, label, attackers, targets)

New neighbor groups are calculated whenever a HZCG is constructed, e.g., for each run of
the correlation function K on the next alert batch. Then, they must be merged into existing
aggregations. This continuously relates weak alerts across batches to the same attack while
it is ongoing. But also neighbor groups within the same batch can be condensed to fewer
aggregations.

Inserting Aggregations When a new neighbor group is created, it is directly converted to an
aggregation. The collection of aggregations is referred to as database in the following. Any new
aggregations have to be inserted into the database of existing aggregations one after another.
The pseudocode for the insert function is shown in Algorithm 1. It takes an aggregation as input
and returns either the unmodified input, in case no existing and matching aggregation could be
found in the database, or returns the merge-result of the input and an existing aggregation object
from the database.

Algorithm 1 consists of two outer conditional blocks in Lines 2 and 9. The database is queried
depending on the label field of the input aggregation. One-to-one labels must be considered
twice. In case of a one-to-X label, the database is queried for a single attacker IP (Line 3).
Likewise, in case of an X-to-one label, the database is queried for a single victim IP (Line 10).
A merge is performed if a query result is not empty. The respective field which holds many
IP addresses is merged (Lines 4 and 11). The label field is updated accordingly to represent
the many relation (Lines 6 and 13). The algorithm immediately returns the result whenever a
merge is possible. Otherwise, the new aggregation object is inserted into the database without
modifications (Line 16).
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Input: agg: Aggregation, DB: Database with existing Aggregations
Output: Inserted Aggregation

1begin
2 if agg.label = ’one-to-one’ || agg.label = ’one-to-many’ then
3 existing_agg← DB.query(

label = [’one-to-one’ OR ’one-to-many’] AND
attackers.IPs = agg.attackers.IPs AND

direction = agg.direction);

if existing_agg , Null then
4 existing_agg.victims.update(agg.victims);
5 if existing_agg.victims.size≥ 2 then
6 existing_agg.label← ’one-to-many’;

end
7 return existing_agg;

end
8 end
9 if agg.label = ’one-to-one’ || agg.label = ’many-to-one’ then

10 existing_agg← DB.query(

label = [’one-to-one’ OR ’many-to-one’] AND
victims.IPs = agg.victims.IPs AND

direction = agg.direction);

if existing_agg , Null then
11 existing_agg.attackers.update(agg.attackers);
12 if existing_agg.attackers.size≥ 2 then
13 existing_agg.label← ’many-to-one’;

end
14 return existing_agg;

end
15 end
16 DB.new_agg(agg);
17end
18return agg

Algorithm 1: Insert function to form aggregations.

The example in Figure 5.6 results in four aggregation objects after inserting the six neighbor
groups according to Algorithm 1. Two MtO aggregations exist for the targets 172.31.0.2 and
172.31.0.1, and two OtM aggregations exist for the attackers 172.17.0.1 and 172.17.0.2. Event
though a target is attacked by multiple attackers or an attacker attacks multiple targets, it does
not necessarily mean that all the respective alerts belong to the same attack. Hence, a last step
is performed by separating individual attacks among the weak alerts to generate weak meta
alerts.
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5.2.2.3 Weak Meta Alert Generation

The aggregation procedure groups all those alerts that share the exact same network direction
and label. However, the aggregated neighbor groups grow naturally with more weak alerts.
The aggregation does not highlight any relations among the weak alerts. Thus, the aggregation
process on its own cannot be used for a correlation. The following describes how to leverage the
aggregated groups to inspect each aggregation object and to extract smaller clusters of alerts
(still in a certain network direction) that are of more interest than others.

The basic idea of clustering weak alerts within an aggregation is to group attackers and targets by
their alert frequency. Intuitively, this identifies false positive weak alerts that are only considered
weak because of their disadvantageous distribution among alert batches. During aggregation,
they eventually stack up and form a large group across batches. However, even true positive
weak alerts might falsely be contained in such a stacked-up aggregation group over an extended
period of time. They can still be identified and extracted by their lower frequency.

To identify groups of alerts with different frequencies, density-based clustering is leveraged.
Such clustering algorithm benefit from how their parameters are used. In contrast to other unsu-
pervised clustering techniques, a density-based algorithm like density-based spatial clustering
of applications with noise (DBSCAN) does not require any parameterization regarding cluster
sizes or amount of clusters. Instead, DBSCAN is able to extract clusters from an unknown
corpus, solely based on the density of the appearance in the search space. The parameters of
interest are min_pts and eps. These parameters define how many points are at least required to
form one cluster (min_pts) and how big the distance between two points can be at most for them
to be grouped to the same cluster (eps). Applied to the weak alert aggregations, the distance
between two neighbors is defined by the difference between their alert counts in the respective
neighbor summaries. This can be seen as a one-dimensional space in which for each IP address
one data point, with the value of the alert count, exists. Intuitively, clusters with the lowest
alert frequency might be the most stealthy ongoing attacks. To detect even the extreme stealthy
attacks, alerts are not filtered by clustering but should end up in clusters with at least one alert.
The pseudocode in Algorithm 2 generates weak meta alerts based on input aggregations.

The generation function starts by iterating all aggregation objects at the beginning of Algorithm 2
in line 2. The algorithm body is divided into three major blocks. DBSCAN has to run with
different arguments, depending on the label of the currently iterated aggregation. In case it
is a one-to-many label (Line 4) the victims form the many entity are subject to density-based
clustering (Line 6). Similarly, the attackers are subject to density-based clustering in case of
many-to-one relations (Lines 18 and 20). A new weak meta alert is generated for each cluster
that results from DBSCAN. Therefore, the label is re-calculated based on the actually involved
IP addresses (Lines 8-11 and 22-25). Similarly, attackers and victims are re-calculated in Lines
12-13 and 26-27. The frequency calculation is defined straightforward. The number of involved
IP addresses in each cluster is divided by the total number of IP addresses in the original
aggregation object (Lines 14 and 28). Lines 32-37 show the special case that the aggregation
was already labeled with one-to-one. It is not possible to break down the frequency relations of
the involved IP addresses any further.
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Input: Aggs: List of Aggregations
Output: WMA: List of Weak Meta Alerts

1begin
2 for agg in Aggs do
3 dir← agg.direction;
4 if agg.label = ’one-to-many’ then
5 total_alerts← agg.attackers.Alerts.size();
6 clusters← DBSCAN(agg.victims);
7 for cluster in clusters do
8 label← ’one-to-one’;
9 if cluster.IPs.size()≥ 2 then

10 label← ’one-to-many’;
11 end
12 attacker← agg.attackers[0].IP;
13 victims← cluster.IPs;
14 f req← cluster.Alerts.size()/total_alerts;
15 wma← (label,dir,alerts,attacker,victims, f req);
16 WMA.add(wma);
17 end
18 else if agg.label = ’many-to-one’ then
19 total_alerts← agg.victims.Alerts.size();
20 clusters← DBSCAN(agg.attackers);
21 for cluster in clusters do
22 label← ’one-to-one’;
23 if cluster.IPs.size()≥ 2 then
24 label← ’many-to-one’;
25 end
26 victim← agg.victims[0].IP;
27 attackers← cluster.IPs;
28 f req← cluster.Alerts.size()/total_alerts;
29 wma← (label,dir,alerts,attackers,victim, f req);
30 WMA.add(wma);
31 end
32 else
33 label← ’one-to-one’;
34 victim← agg.victims[0].IP;
35 attacker← agg.attackers[0].IP;
36 alerts← agg.attackers[0].Alerts;
37 f req← 1.0;
38 wma← (label,dir,alerts,attacker,victim, f req);
39 WMA.add(wma);
40 end
41 end
42end
43return WMA

Algorithm 2: Generating weak meta alerts.
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5.2.3 Summary of Alert Clustering

To reduce the alert volume, two complementing alert clustering algorithms have been presented
that isolate alerts from different attacks and summarize respective alerts as meta alerts. These
meta alerts represent individual attacks together with all the alerts they caused. The identification
of related alerts in clustering leverages that alerts from the same attack are likely to have some
equal feature values. This is especially true for the network-wide attacks such as distributed
attacks with a lot of similar malicious activity.

For the detection of such bulk attacks, this section has presented a graphed-based algorithm
that transforms the alerts into a alert similarity graph. Alerts are presented as nodes in this
graph, and edges indicate a potential relation between two alerts that is determined by the
similarity between the alerts’ features. Within this graphs, community clustering is performed
to identify well-connected subgraphs. Each subgraph is then supposed to represent the alerts
of an individual attack. The accuracy of isolating alerts from different attacks is evaluated in
Section 6.5.1.2 and tested on real-world data in Section 6.5.2.2.

In contrast to bulk attacks, where alerts are likely to be clustered by the graph-based algorithm,
stealthy APT-like attacks cause infrequent alerts that get lost in the shuffle. While the alerts
from bulk attacks form well-interconnected subgraphs that become apparent because of their
size, the visibility of relations among the infrequent alerts seems weak, which is why they are
denoted as weak alerts. These weak alerts are unlikely to fall in the same alert batch because of
the large alert volume from other attacks in between. Consequently, the graph-based algorithm
on the basis of alert batches cannot cluster the weak alerts in the first place.

The clustering of weak alerts, therefore, requires a continuous processing of alerts across batches.
This section has presented a weak alert correlation algorithm that consumes alerts that remain
unclustered by the graph-based alert clustering. The algorithm continuously aggregates these
weak alerts until they assemble to a weak meta alert. Thus, the algorithm first transforms the
unclustered alerts of every new batch into a HZCG that summarizes the weak alerts regarding
their IP addresses and network zones. Across alert batches, the algorithm maintains aggregations
of weak alerts that are updated with every new graph. Based on the continuous aggregation, the
relations among IP addresses from the weak alerts become apparent as more and more related
alerts are aggregated during the stealthy and long-lasting APT attack. When this is the case,
density clustering is performed to extract the alerts that assemble the pattern of an APT attack
step. Section 6.6 investigates to which extent the clustering of weak alerts can supplement the
graph-based clustering to identify stealthy attack steps.

5.3 Attack Interconnection with Context

The second and third stage in the alert correlation process (cf. Section 5.1) supplement the
clustered network alerts from Section 5.2 and link the alerts from different attacks and their
steps, respectively. This linking is required, because an isolated view on the clustered alerts
eventually underestimates the network-wide attack. In fact, two clusters might actually should
be seen together because of either of the two dimensions: First, an attacker performs multiple
attacks against different network areas step-by-step to achieve the overall attack goal. Second,
an attacker widely distributes the same attack, e.g., to different network sites with individual
IDSes, such that no IDS captures the full attack but only parts of it.
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To assemble attack relations despite these challenges, attack interconnection in this section
leverages additional context. Context supplementing for the approaches here is based on
characterizing the who-targets-whom structure as a representation of the attack scenario. In
addition to the concrete feature values among the alerts, interconnection benefits from this
value-independent characterization of the attack scenario. This context is derived from the alerts
themselves and does not require an external knowledge base.

This section combines revised parts of the two conference papers [HF18] and [HWF19]. The
section presents two attack linking approaches for two different purposes. The first approach
identifies multi-step attacks, in which the steps build upon each other by exploiting one or
multiple targeted hosts to make use of them in the subsequent step. The second approach enables
the collaboration of different network sites by identifying that two sites have potentially become
a victim of the same attack.

5.3.1 Graph-based Multi-Step Detection

The first approach identifies attack steps that are part of a multi-step attack. The approach first
derives additional context about the attack scenario from the alerts of each attack step. The
attack scenario is afterwards utilized to assemble multi-step attacks based on equal IP addresses
between alerts from different attack steps.

5.3.1.1 Scenario Identification

The supplementing attack scenario is derived from the clusters of alerts that represent individual
attack steps. The goal is now to characterize the attack scenario of each cluster. For that, the
communication patterns between attackers and victims are determined. Especially distributed
attacks such as DDoS, port scans, and worms are of interest here, as they involve many systems
at the same time and thus result in a large number of different alerts.

Communication Topology Most alerts in a cluster are usually similar to each other and thus
well interconnected in Gattr (cf. Section 5.2.1). Hence, such a graph structure is inappropriate
to identify attack scenarios. Thus, per identified cluster Ci ∈ Ĉ, a less dense alert flow graph
Gflow = (V,E) is established with the nodes V to be the set of all source and destination IP
addresses in a cluster Ci. An edge (u,v) ∈ E in the graph between two nodes u,v ∈V exists, if
there is an alert a ∈Ci with the source node u as attacking IP and the destination node v as target
IP. The direction of an edge therefore indicates who attacked whom.

E
W

T

 

Figure 5.7: An exemplary alert flow graph for three hosts.
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Figure 5.7 shows the graph Gflow for the alerts in Figure 5.3a. In this example, the three alerts in
the graph Gattr in Figure 5.3b are assumed to belong to the same cluster. Gflow contains the IP
addresses E,T and W as nodes and edges from E and T to W , as the node with IP address W is
attacked by nodes with the addresses E and T .

To identify attack scenarios, the nodes’ degree in Gflow = (V,E) is used in a scheme for dis-
tributed attacks involving either multiple sources, destinations, or both. This scheme charac-
terizes nodes v ∈ V as follows: An attacker has an outgoing degree ≥ 1 and a victim has an
incoming degree ≥ 1. Moreover, in distributed attack scenarios and multi-step attacks, a node
can be attacker and victim at the same time. Four attack scenarios are distinguished and further
summarized in Table 6.12:

• One-to-One OtO: One source is attacking a single destination, which is a special case of
the other scenarios.

• One-to-Many OtM: One source is attacking multiple destinations, e.g., scanning a subnet.
Characteristic for all alerts is the same attacking source IP.

• Many-to-One MtO: Multiple sources are attacking a single destination, e.g., in a DDoS
attack. When attacking a specific service, all related alerts might have the same destination
IP and port.

• Many-to-Many MtM: Multiple sources and destinations are involved, e.g., like in a worm
spreading. Since such worms spread by targeting a specific application, alerts in this
scenario will have at least the same destination ports.

Topology Heuristics To identify the scenario of a given attack, four metrics describe how
good a cluster Ci ∈ Ĉ matches one of the given attack scenarios. The four metrics δOtO,δOtM,
δMtO, δMtM indicate the certainty between [0,1] for a match with the scenarios OtO, OtM, MtO,
and MtM, respectively. These metrics become 1 if a scenario matches perfectly and they are
smaller than 1 if the scenario and Ci do not match exactly. Each metric consists out of three
equally weighted summands that describe the three ratios of attacker number |A|, of target
number |T |, and of the difference | |A|− |T | | all to the expected value in the respective scenario.
The formulas are constructed, so that there is a linear relationship between the respective scenario
matches completely (δ = 1) or only partially (0 < δ < 1).

A cluster that perfectly matches scenario OtO contains two nodes |V |= 2, one target |T |= 1
and one attacker |A| = 1. In that case, all three summands for δOtO in Equation 5.2 become
one. When more targets or attackers are involved, the metric degrades and converges towards
zero. The scenario OtM expects one attacker and |V |−1 targets, which results in a difference of
|V |−2. Therefore, the first summand of metric δOtM in Equation 5.2 becomes 1 if |A|= 1 and
the second summand is 1 for |T |= |V |−1. This results in a difference between attackers and
target of |V |−2. δOtM becomes closer to 0, if there are more attackers or less targets. Analogous,
the scenario MtO (δMtO in Equation 5.2) expects |V |−1 attackers and one target, which results
in a difference of |V |−2. A perfectly matching MtM-cluster (δMtM in Equation 5.2) needs to
have |V | attackers and |V | targets, so that the difference between them is zero.
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(5.2)

The highest metric determines the scenario and the corresponding label l ∈ L = {MtO, OtM,
MtM, OtO}. The certainty of scenario identification and label assignment is:

δ = max(δOtO,δOtM,δMtO,δMtM)

5.3.1.2 Attack-Step Correlation

For the detection of multi-step attacks, all identified clusters Ĉ are first transformed into a
directed labeled graph that is denoted as attack similarity graph Gover = (Ĉ,E). An edge
(Ci,C j) ∈ E is included in Gover if the two clusters belong to the same multi-step attack.

The linking of attack steps utilizes the labels li, l j ∈ L of the two clusters Ci,C j ∈ Ĉ to derive a
tag Many or One for the attackers and targets For example, when a cluster is labeled with OtM,
the set of attacking IPs is tagged with One and the set of target IPs is tagged with Many.

Then, the approach compares the set of attackers from both clusters (simAA), the set of targets
from both clusters (simTT), the set of attackers of Ci with the set of targets of C j (simAT), and the
set of attackers of C j with the set of targets of Ci (simTA). For each of the four host comparisons,
the host sets X ,Y can be attackers or targets. Their tags depend on the tags of the clusters and on
the specific comparison. The calculation of the specific host similarity uses one of the following
metrics. First, the Jaccard metric J(X ,Y ) = X∩Y

X∪Y is used when the two compared sets of hosts
X ,Y are expected to be equal, i.e., both are tagged equally. Second, the overlap coefficient
S(X ,Y ) = X∩Y

X is used when one set of hosts X is expected to be part of the other set Y , i.e., their
tags are different. In this case, X is the set that is tagged with One and Y is the one tagged with
Many.

The comparison of two clusters Ci,C j with each other computes the four values as mentioned
above and then takes the maximum of it sim = max{simAA,simTT,simAT,simTA}. If sim
exceeds a predefined threshold σ , an edge (Ci,C j) with label sim is added to Gover. This has to
be done for all cluster combinations from set Ĉ. As a result, Gover contains the relations among
all identified clusters that are above threshold σ . Clusters as part of multi-step attacks then are
located on a path connecting them within this graph.
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5.3.2 Collaborative Attack Correlation

While the graph-based multi-step detection from Section 5.3.1 requires attacks to be represented
by clusters containing all related alerts, the alerts are spatially dispersed in case of a distributed
IDS deployment, i.e., a collaborative intrusion detection system (CIDS) [Vas+15b]. Thus,
the distributed alert clusters that result from clustering alerts on each IDS locally have to be
merged before being processed by the graph-based multi-step detection. However, collection and
clustering all alerts centrally does not scale and might be infeasible for large networks. Therefore,
the following approach for attack correlation performs a fine-grained characterization of alert
clusters regarding their attack scenario and efficiently identifies alert clusters that potentially
result from the same attack across different IDSes.

5.3.2.1 Comparing Attack Characteristics

The basic idea of this correlation algorithm is to transform a set of alerts into a much smaller
representation that conserves structural characteristics of attacks. For that, network motifs, specif-
ically the so-called motif signatures (cf. the motif-based anomaly detection in Section 3.4.1),
are a perfect candidate to summarize the communication structure of the hosts involved in an
attack. This allows for a comparison of structural characteristics of attacks, even without prior
knowledge of these characteristics and mostly independent from the attack size.

2
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Figure 5.8: Schema to compare the alerts of two attacks by their motif signatures.

Input to this approach for attack interconnection are clustered alerts Ci ∈ Ĉ as from the alert
clustering with graph-based community clustering and weak alert correlation (cf. Section 5.2) or
others (cf. Section 3.4.2). Referred to as attacks, alerts clusters are the input to the collaborative
attack correlation, as illustrated by the schematic overview in Figure 5.8. The following
paragraphs describe the next steps in detail, which is the transformation of attack data into
graphs, the calculation of motifs signatures, and their comparison.

Transformation of Attacks to Graphs The approach assumes that attack characteristics
manifest in the structure of the communication graph that contains the malicious communication
relations among involved hosts. This graph is derived from all alerts ai ∈C j of attack C j ∈ Ĉ,
where an alert ai has several attributes. From all attributes defined in Section 5.1, the collaborative
attack correlation requires only an alert description ai = (S:T → D:L) with source IP S and
source port T and with destination IP D and destination port L. Based on these four attributes of
alerts, the approach generates a communication structure graph Gcom for all alerts of an attack
C j. In Gcom = (V,E), nodes v ∈ V represent either a host by its IP address or the port on a
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specific host. The edges reflect who attacked whom and whether a particular port or several
different ports are used in the attack.

To build the graph Gcom for a specific attack C j, all alerts ai ∈ Ci are added to the graph
consecutively. For that, the set of nodes V is extended by nodes representing the hosts, i.e.,
{S,T}, and nodes representing their ports, i.e., {S:T,D:L}. This notation ensures that ports are
always bound to hosts. To reflect who attacked whom, the edges {(S,S:T ),(S:T,D:L),(D:L,D)}
are added to E in Gcom. Intuitively, this describes what is visualized in Figure 5.9, the port and
IP used to attack another IP on a respective port.

7

Source

𝑆 𝐷𝑆: 𝑇 𝐷: 𝐿

Destination

IP            Port Port            IP

Figure 5.9: Adding an alert (S:T → D:L) to graph Gcom.

Calculation of Scenario Signatures To get from the alerts in C j via the graph Gcom to a
smaller abstraction, the motif signature of the graph is calculated. For that, all subgraphs G′ =
(V ′,E ′)⊆ Gcom of size n, i.e., |V ′|= n, are numerated, and for each the specific motif pattern
mi with i ∈ [0,N−1] is determined (cf. the motif-based anomaly detection in Section 3.4.1).
Counting the number of occurrences for all motifs mi results in a fingerprint of the graph. The
vector that contains the absolute number of occurrences of every mi is denoted as motif signature
FA.

As FA is directly dependent on the graph size |Gcom|, it does not allow to compare the structure
of two graphs that are of different sizes. To allow such a comparison, the authors in [Mil+02]
introduce the so-called Z-Score. It uses the signature FA of graph Gcom to calculate for every mi
how much it is over- or underrepresented compared to a random graph of the same size and with
the same number of edges as Gcom. The Z-Score of a specific motif mi in a graph G is calculated
by

Z(mi) =
FA(i)−Frand(i)

sd

with FA(i) being the absolute number of motif mi in Gcom, Frand(i) being the average absolute
count of motif mi in respective random graphs, and its standard deviation sd. This is done for
every absolute number of motifs in FA. The resulting motif signature with the Z-Score values is
denoted as FZ . Any motif signature can simply be represented as an array of fixed length, e.g.,
16 to cover all possible 3-motifs (n = 3).

Comparison of Scenario Signatures Comparing two motif signatures FZ
1 and FZ

2 is sup-
posed to determine how similar they are. Their similarity should be 1, i.e., 100%, if the signatures
are equal. However, finding a metric to calculate the similarity in a meaningful manner is not
intuitive. The reason is that the values even in the Z-Score signature FZ are not limited to a
fixed range. As the graph size, i.e. attack size, still has an impact on the Z-Score values, the
values of every motif in two signatures FZ

1 and FZ
2 cannot directly be compared. Doing so

would not achieve high similarity for attacks with similar characteristics but of different size.
Therefore, another comparison between two motif signatures is designed in such a way that
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similar attack characteristics are identified even if the attacks are of different sizes. For that, a
motif that is statistically over- or underrepresented in FZ

1 should also be statistically over- or
underrepresented in FZ

2 . Furthermore, the comparison should consider how much a specific
motif is over- or underrepresented compared to the other motifs in the signature. The idea is
to not have a pairwise comparison of the motif values in FZ

1 and FZ
2 . Instead, the similarity

between FZ
1 and FZ

2 reflects how similar the relations among the motif values in FZ
1 are to the

relations among the motif values in FZ
2 .

For such a comparison, the Z-Score signatures FZ
1 and FZ

2 are interpreted as vectors~u,~v, always
of fixed length. This make a signature to look like a vector in a multi-dimensional space with the
number of dimensions equal to the length of the vectors. The higher the values in a signature, the
larger is the vector in the multi-dimensional space. The calculation becomes independent from
the vector length when determining the angle between two vectors in the multi-dimensional
space. For that, the inner product <~u,~v> and the Euclidean norms ||~u||2 and ||~v||2 are calculated
for the angle φ (Equation 5.3). This finally leads to the similarity 0≤ sim≤ 1 (Equation 5.4).

cos(φ) =
<~u,~v >
||~u||2 · ||~v||2

(5.3)

sim =
cos−1(φ)

π
(5.4)

Once the alerts of every attack Ci ∈ Ĉ are transformed into motif signatures FZ
i ∈ F̂ , the motif

signatures of the different attacks, i.e., alert sets, are compared. The goal is to find attacks with
the same characteristics. Such a comparison can be calculated efficiently as a motif signature is
of a fixed and far smaller size than the respective alert sets. For the attack correlation algorithm,
predefined characteristics of attacks can be used to identify specific attack scenarios and to
label them accordingly. Alternatively, the attack correlation operates without a knowledge
database and learns attack scenarios on its own. It labels attacks according to dynamically
derived characteristics of alert sets. Both approaches are described in the remainder of this
section. Either way, comparing the Z-Score signatures FZ to classify attack scenarios requires a
threshold τ to require a minimum similarity. Above this threshold, two signatures are assumed
to belong to the same attack scenario.

5.3.2.2 Signature-based Classification

The characteristics of already known attack scenarios are defined by reference scenarios Rx ∈ R̂.
A reference scenario Rx reflects the characteristics of a specific attack scenario and therefore is
representative for all attacks of this attack scenario and their alert sets, respectively. In fact, Rx is
just a motif signature FZ of a typical attack in the attack scenario that should be identified. It is
modeled by transforming a representative alert set A into a communication structure graph Gcom
and by computing its motif signature FZ . Hence, the set R̂ consists of small motif signatures.
The size of this set equals the number of predefined attack scenarios that should be identified.

Alert Clusters
Ci ∈ Ĉ

Motif Signatures
FZ

i ∈ F̂
Attack Clusters

I j ∈ Î
Calculating

Z-Score
Using reference
scenarios Rx ∈ R̂

Figure 5.10: Notation for signature-based classification using reference scenarios.
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When classifying an attack Ci ∈ Ĉ, its motif signature FZ
i is compared to all reference signatures

Rx ∈ R̂ using the similarity function described in Section 5.3.2.1. In general, the highest similarity
determines the attack scenario that is assigned to attack C j. However, the minimum similarity
threshold τ needs to be respected, because there could be attacks from unknown scenarios
that are not included in R̂. Hence, they should not be labeled with a known attack scenario.
Assigning all attacks Ci ∈ Ĉ to reference scenarios results in attack clusters I j ∈ Î, as illustrated in
Figure 5.10 (cf. Section 5.1). The requirement for attacks of the same scenario FZ

i ∈ I j to have a
minimum similarity τ to the respective reference scenario Rx is formalized in Equation 5.5. The
requirement of closest match among all reference scenarios R̂ is formalized in Equation 5.6.

∀FZ
i ∈ I j : sim(FZ

i ,Rx)≥ τ (5.5)

∀FZ
i ∈ I j ∀Ry ∈ R̂ : sim(FZ

i ,Rx)≥ sim(FZ
i ,Ry) (5.6)

5.3.2.3 Unsupervised Clustering

Reference signatures are not always available. However, the motif-based comparison of attack
characteristics can be used to cluster similar attacks and to dynamically derive reference scenarios
R̂ for them. This is done by learning new attack scenarios via a hierarchical clustering in two
steps. Note that the following two paragraphs for the description of these steps focus on how the
motif-based signatures can be used by machine learning to identifying similar alert cluster across
different IDSes. In combination with a communication schema, the fundamentals presented
here are directly applicable to be used in a CIDS, or they can even be incorporated into network
anomaly detection, e.g., to extend the work of Juszczyszyn et al. [JK11].

Hierarchical Clustering The first step to learn attack scenarios clusters all attacks from the
same attack scenario. For that, attacks are clustered based on the similarity of their motif
signatures FZ . Generally, the comparison of motif signatures FZ aims for high similarities
among signatures for attacks of the same scenario and low similarities of signatures for attacks
from different scenarios. The intention is that clustering the motif signatures of attacks results in
attack clusters, one for each detected attack scenario. Hierarchical clustering is most applicable
here to cluster attacks into attack scenarios for two reasons. First, it can use the similarity
threshold τ (cf. Section 5.3.2.1) as clustering parameter to intuitively control the clustering and
its outcome. And second, the visualization as dendrogram allows a manual inspection of the
potential clusters depending on τ .

As said, the clustering parameter τ in hierarchical clustering controls the minimum similarity,
i.e., maximum distance, for two attacks, so that they are still part of the same attack scenario.
Thus, τ must be chosen in a way such that (1) it is low enough to allow attacks of the same
scenario to result in one cluster and (2) it is high enough that two attacks of different scenarios
do not result in the same cluster. An example for hierarchical clustering of attacks is visualized
as dendrogram in Figure 5.11. The x-axis of the figure represents the individual attacks and
the y-axis represents 1− τ as maximum distance for two attacks or scenarios to be merged into
the same scenario. Hence, at distance 0, only equal attacks will be merged and at distance 1,
all attacks are merged into a single scenario. When stepping from 0 to 1, similar attacks or
scenarios are merged once the value on the y-axis reaches their respective distance. The idea in
hierarchical clustering is to define a cut-off distance, which determines the final clusters. The
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Figure 5.11: Hierarchical clustering for attacks from six example scenarios.

outcome are the clusters, i.e. scenarios, that all the attacks have been merged into at the specific
cut-off distance in the dendrogram.

The cut-off distance is 1−τ to form clusters I j ∈ Î of attacks FZ
i ∈ IJ with the desired maximum

heterogeneity within a cluster. The hierarchical clustering of FZ for the set of attacks merges
clusters with respect to the maximum distance within the resulting cluster, which is known as
the complete method [Sor48]. This means that attack scenarios are defined by the maximum
distance between contained attacks, which can be formally stated as in Equation 5.7.

∀I j ∈ Î : ∀FZ
1 ,FZ

2 ∈ I j sim(FZ
1 ,FZ

2 )≥ τ (5.7)

Deriving Reference Scenarios The attacks in a cluster FZ
i ∈ I j formed by hierarchical clus-

tering are supposed to belong to the same attack scenario because of their similar characteristics.
To actually extract the characteristics for each attack cluster, a motif signature FZ is derived
per cluster as reference scenario Rx ∈ R̂ to represent the new attack scenario I j ∈ Î. Instead
of constructing a signature for the attack cluster synthetically, an existing signature from the
cluster should be chosen that best represents all other signatures in the cluster is chosen. More
specifically, it should be the one with the highest similarity to every other attack on average.
This is formalized in Equation 5.8.

∀FZ
i ∈ I j :

|I j|
∑
y=0

sim(FZ
i ,FZ

y )≤
|I j|
∑
y=0

sim(Rx,FZ
y ) (5.8)

After these two steps, a set of attacks, i.e., a set of alert sets, is represented by a number of
reference scenarios that is controlled by the similarity threshold τ .

5.3.3 Summary of Attack Interconnection

To interconnect attacks, two attack correlation algorithms have been presented that identify
similarities among the attacks based on their alerts. For that, the attack correlation algorithms
consume the meta alerts, i.e., the output from alert clustering (cf. Section 5.2). The identification
of related attacks for attack interconnection leverages additional context about the attacks. The
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two presented algorithms determine the attack scenario and the who-attacked-whom characteris-
tic in particular. They, however, define this characteristic in different ways and use it for two
different purposes.

The attack scenario in the first algorithm is defined by a simple model that distinguishes four
classes of the who-attacked-whom structure. On the level of hosts, this model labels the number
of attackers as well as the number of targets with either One or Many. Labeling an attack with
this scheme results in one of four possible combinations, i.e., the attack scenario. The scenario
label is incorporated into the linking of attacks when two of them have the same host involved.
The robustness of this label against false positive alerts is evaluated in Section 6.5.1.3. Especially
in distributed attacks, quite a number of hosts might be involved in the attack. However, the
attacker might follow up on only a small number of these hosts. Comparing not only the hosts’
IP addresses among attacks but also the scenario label, assists security operators to identify the
important relations among attacks when assembling them to multi-step attacks. The result of this
multi-step attack correlation is a graph that concisely summarizes individual attacks as nodes
and highlights relations among them as edges labeled with the attack scenario. Section 6.5.2
investigates to which extent the results can help to detect multi-step attacks in the real world.

Apart from detecting multi-step attacks, the second attack correlation algorithm in this section
interconnects meta alerts that potentially describe the same attack. This is necessary for large
networks that run more than one IDS, or for Internet-wide attacks that hit more than one network
site. Either way, each IDS captures the attack only partly, and a common view on this attack
among all IDSes is required to be established. Instead of exchanging and comparing all alerts,
the attack correlation algorithm identifies candidates for the same attack on the basis of meta
alerts. This enables to efficiently exchange small attack summaries and to afterwards compare
alerts of candidate attacks only.

The attack summary in this second attack correlation algorithm differs from most algorithms
that search for common attributes among the alerts from different attacks. These approaches can
reveal if two victims are targeted by the same attacker but they cannot tell if the attacker performs
the same kind of attack in both cases. Because of this, the presented attack summary is based
on network motifs [Mil+02] to fingerprint attacks. This fingerprint abstracts the characteristic
of the attack scenario, considering not only the relations among the involved hosts but also the
ports they use. The accuracy of differentiating between attack scenarios based this abstraction
is evaluated in Section 6.7.1. The resulting abstraction can be magnitudes smaller than the
corresponding alert data and allows for a faster comparison of attacks. With the help of this motif
abstraction, the algorithm identifies known attack scenarios and is even able to learn previously
unknown scenarios. It can be deployed in a centralized or decentralized manner. To which
extent the motif-based abstractions can lower the overhead for exchanging alert information as
well as its performance on real-world alerts, is evaluated in Section 6.7.2.

5.4 Summary of Network Alert Correlation

Attack detection by correlating IDS alerts is challenged by the large alert volume, which results
in missing the big picture of the attacks and choosing suboptimal mitigation actions. The
approaches presented in this chapter assist in assembling alert information for an accurate
attack summary. Their deployment is not exclusive but should be combined along the alert
correlation process as part of the intrusion detection process (cf. Section 3.2.1) to be most
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effective. This way, several measures can be implemented that work in two different dimensions.
These dimensions are derived from the insight that some alerts describe the same malicious
root cause, while others describe different kind of malicious activity and stem from consecutive
attack steps.

Thus, the first stage in the alert correlation process achieves a volume reduction by identifying
alerts that describe the same attack and clustering them to meta alerts. Apart from one-shot
attacks with a single alert that results in a single meta alert each, the reduction in alert volume
becomes apparent especially for network-wide attacks such as distributed attacks. Instead of
having an IDS alert for every malicious network flow or every involved host of the distributed
attack, these related alerts are abstracted by a single meta alert, i.e., a cluster of alerts that
represents a single attack. After the transition to meta alerts, the alert correlation process
supplements them with addition context before linking the supplemented attack representations
for the identification of attack interconnections.

An end-to-end implementation of the full alert correlation process has been presented by graph-
based alert correlation (GAC) that consists out of a graph-based community clustering for the
detection of distributed attacks and the graph-based attack interconnection for the detection of
multi-step attacks. GAC achieves alert clustering by identifying alerts that share similar features
among each other. GAC then assigns one of four labels to each identified attack to determine the
class of distributed scenario. These labeled attacks are used by GAC afterwards when linking
attacks steps that involve the same hosts. The resulting multi-step attack graph summarizes
individual attacks and highlights relations among the attack steps with additional context about
the attack scenario. The scenario context enables to precisely describe the relations among the
involved hosts across different network- and non-network-wide attack steps. GAC and its steps
are extensively evaluated in Section 6.5.

Apart from clustering of alerts via GAC, this chapter has presented an alternative correlation
algorithm for slow and stealthy APT attacks. These attacks cause temporally dispersed alerts
that are denoted as weak alerts because a relation among these alerts is weakly visible, if visible
at all. More likely, weak alerts get lost in the shuffle of daily alerts and are filtered by GAC
as they look like unrelated or false positive alerts. As regular alert clustering overlooks these
weak alerts because of their infrequent occurrence, the algorithm for weak alert correlation
continuously aggregates them over a long time until they assemble to an APT attack step. For
that, the correlation algorithm leverage some APT characteristics that become visible in the alert
data, including the expansion to another network zone during lateral movement and a steadily
stealthy behavior even when involving multiple hosts. Once the aggregation of weak alerts
evolves to an attack step, the respective weak meta alert can be fed back to GAC for the purpose
of detecting multi-step attacks. To which extent the weak alert correlation can complement
GAC, is evaluation in Section 6.6.

Apart from linking of attacks via GAC, this chapter has presented another correlation algorithm
for the identification of similar attacks across network monitors. An attack that is not captured by
a single IDS but by multiple IDSes in parts, causes spatially dispersed alerts. Without establishing
a global picture of the attack, its consequences are tried to be mitigated independently for every
monitor instead of collaboratively working on a mitigation for the whole network. To efficiently
identify similar attacks without exchanging each and every alert, the motif-based collaborative
attack correlation exchanges and compares small fingerprints of the meta alerts. Instead of
summarizing the alert features, this fingerprint abstracts the attack scenarios regarding the
who-attacked-whom structure. This allows to identify similar attacks in a privacy-friendly
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manner, even when different sources are used per targeted network site. For a fine-grained
characterization of the attack scenario, however, not only the relations among the hosts but also
the usage pattern of ports is incorporated into the fingerprint. The accuracy of this collaborative
attack correlation is evaluated in Section 6.7.

In combination, the different alert correlation algorithms transform raw IDS alerts into a concise
attack representation. In particular, the correlation overcomes the challenges of temporally
and spatially dispersed alerts. As a result, the correlation algorithms assemble alerts from
distributed and stealthy APT attacks. Furthermore, the algorithms link alerts from related actions
to reconstruct multi-step attacks.
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This chapter conducts a common evaluation of all detection approaches presented in this thesis.
Although each approach was presented to solve a particular challenge (cf. research questions
Q1-Q5 in Section 1.1), only the combination of them covers the requirements (cf. Section 3.1)
for a complete intrusion detection process (cf. Section 3.2.1).

Section 6.1 first highlights the dependencies among the detection approaches presented in
this thesis. This first section also lists the tools and data sets that are utilized throughout this
evaluation chapter to build a common evaluation pipeline. Then, Section 6.2 qualitatively
discusses the ensemble of proposed approaches. Afterwards, the individual contributions to this
overall detection pipeline are evaluated. Section 6.3 evaluates the correlation platform zeek-
osquery for the joint monitoring of hosts and their network communication. Section 6.4 evaluates
how the detection of the network- or Internet-wide threats scan campaigns and botnets can be
based on correlated network data in particular. Afterwards, Section 6.5 evaluates the assembling
of IDS network alerts for the detection of attackers who target the network either broadly
diversified through a distributed attack or in depth through lateral movement. Sections 6.6
and 6.7 evaluate the correlation extensions for temporally and spatially dispersed alerts.

6.1 Tools and Data Sets in the Evaluation Pipeline

The overall goal of the intrusion detection process from Section 3.2.1 is to analyze events for
indicators of intrusion and to transform the intrusion information into an intelligible intrusion
summary. On this way, monitored activity is processed and transformed into four different
abstraction levels (events, alerts, attacks, intrusion summary), starting with high-volume events
and ending in a single concise summary. This is illustrated in Figure 6.1 by using intrusion
detection for the transformation of events to alerts, alert correlation for the transformation of
alerts into attacks, and attack correlation to summarize all attacks and their relations.

The other five filled boxes around the data abstraction levels in Figure 6.1 represent the five
contributions of this thesis (cf. their summaries in Section 1.2):

• zeek-osquery for detecting particular scenarios through host-network correlation (cf.
Section 4.1)

• Correlated network communication for detecting scan campaigns (cf. Section 4.2) and
peer-to-peer (P2P) botnets (cf. Section 4.3)

• Graph-based alert correlation (GAC) for clustering alerts (cf. Section 5.2.1) and detecting
multi-step attacks (cf. Section 5.3.1)

• Weak alert correlation for detecting stealthy attack steps of an advanced persistent threat
(APT) attack (cf. Section 5.2.2)

• Collaborative attack correlation for efficient identification of attacks with similar attack
scenarios reported by distributed sensors (cf. Section 5.3.2)
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Each of these contributions answers a particular research question Q1-Q5 from Section 1.1.
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Figure 6.1: Contributions of this thesis along the intrusion detection process

While Figure 6.1 illustrates how the contributions in this thesis are supposed to be combined
in an intrusion detection pipeline in practice, the evaluation of each approach is performed
individually. For that, different tools and data sets are used throughout this evaluation chapter.
They are briefly listed in the remaining paragraphs of this section and described more detailed in
the respective evaluation Sections 6.3 to 6.7.

6.1.1 Intrusion Detection Tools in the Evaluation Pipeline

The following paragraphs combine tools and approaches of this thesis along the intrusion
detection process for a common evaluation pipeline utilized in this evaluation chapter.

Intrusion Detection The thesis uses the network intrusion detection system (NIDS) Zeek (cf.
Section 2.4.1) throughout the evaluation to analyze network traffic. It processes the network
communication, i.e., the data packets, either live or from a pcap-file. The evaluation pipeline
can benefit from the Zeek log files in two ways: (1) the detection result of failed network flows,
i.e., potential port scans, can directly serve as input for the scan campaign detection. (2) Zeek not
only performs intrusion detection but also analyzes the communication for monitoring purposes.
Especially the log file about network flows and their statistics serve as input for the P2P botnet
detection. Apart from the Zeek log files, the evaluation chapter makes use of the live detection
capabilities implemented in Zeek’s scripting language. This thesis extends Zeek by some custom
detection scripts for the detection of stealthy malware used in APT attacks.

Furthermore, this thesis extends Zeek by a new correlation framework to incorporate host data.
For the retrieval of host data, the host monitor osquery (cf. Section 2.4.2) is used. It provides an
interface to query the hosts for status updates on the level of the operating system (OS), e.g.,
processes, users, and files. The combination of both tools results in the zeek-osquery prototype
for the detection of particular attack scenarios by supplementing network flows with additional
host context. Both the new correlation framework and the scenario detection of zeek-osquery
performs live and is implemented as Zeek scripts.
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Alert Correlation The IDS alerts are now required to be correlated to attacks. For that, GAC
clusters similar alerts from distributed attacks. The resulting alerts clusters, i.e., attacks, are
represented by meta alerts. Attacks, therefore, might consist out of alert clusters or just single
alerts. Apart from using alert clustering to detect noisy attacks with a high number of alerts in
short time periods, weak alert correlation works on top by assembling temporally dispersed
alerts to APT-like attack steps.

While GAC periodically reports new meta alerts, the continuous processing of the weak alert
correlation issues weak meta alerts as soon as the picture of an APT attack step becomes clear.
Both types of alert clusters together represent all attacks or attack steps, respectively.

Attack Correlation GAC then interconnects the individual attack steps to detect of multi-step
attacks. If an attack step, however, comprises not only the local network but also other networks
on the Internet, the full picture of the attack at Internet-scale must be established first. This is
where the collaborative attack correlation comes in, because it efficiently identifies similar alert
clusters, i.e., attack, from different network sites that can be potentially merged.

The input to the evaluation of the attack correlation approaches is also alert data. However,
the input differs to the large alert sets containing several attacks for the evaluation of alert
correlation approaches. For attack correlation, instead, the input alerts represent a particular
attack, potentially containing some false positive alerts. Anyhow, data sets with clustered alerts
are not available at large scale but only a few possibilities for such sets exist. To still enable a
large evaluation of the respective approaches, alternatively large sets of mixed alerts are first
clustered by GAC, before they serve as input to the multi-step detection or scenario classification,
respectively.

6.1.2 Data Sets for the Evaluation Pipeline

For the isolated evaluation of the individual approaches, the experiments use appropriate data
sets. Basically, two different types of data sets are distinguished (cf. Figure 6.1). The event
data sets describe low-level monitoring data, while the alert data sets contains the alerts for the
evaluation of alert and attack correlation algorithms. The following paragraphs describe the data
sets or their sources, respectively.

Event Data Sets The focus of the event data sets is on network communication, partly involv-
ing host activities. If possible, the experiments use real-world network captures. Depending on
the experiment, an Internet or regular campus site trace is more appropriate. Sometimes, these
sets contain the packet payloads, or have only packet headers included. Anyhow, real-world cap-
tures are not always available or they simply have no ground truth. In this case, the monitoring
takes place in a testbed that is still a real capturing but the activity follows a particular generator
to simulate user activity. The following seven data sets are used during the evaluation chapter:

E1: Real-World Internet Traffic – Capture of data packets from a backbone link on the
Internet between USA and Japan, retrieved from MawiLab [Fon+10]

E2: Real-World Campus Traffic – External NetFlow captures of real-world communication
on university campus sites, retrieved from University of Twente [Bar+10] and Czech
Technical University [Spe+09]
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E3: Real-World Campus Network Monitor – Live monitoring of a real-world network on
campus site, including data packets and host activity

E4: Real-World Botnet Communication – The communication relations among bots in a
global P2P botnet, retrieved by Strobo Crawler [Haa+16]

E5: Real-World Attack Traffic – Various external sample captures of data packets stemming
from real-world malware

E6: Testbed Network Monitor – Live monitoring in a small network testbed, including data
packets and host activity

E7: Testbed Network Capture – External monitoring in a large network testbed, including
data packets and host logs, retrieved from the University of New Brunswick [SLG18]

Table 6.1 summarizes the characteristics of these data sets for network events. If the data stems
from real-world monitoring, the set is labeled with real-world. Otherwise, the data is captured
still from real systems in a testbed, but the events stem from generated behavior patterns that
just mimic real-world situations. Some data sets are labeled malicious, if they contain almost
only attack data. If also benign data is included but the attack data is explicitly marked, the set
is labeled as mixed. Furthermore, sets are labeled with Internet if they are representative for
this scope. Some sets also contain additional monitoring data about the hosts. Last, the table
also indicates if the data set is new, i.e., an outcome of this thesis, and generally refers to the
evaluation sections that utilize the respective data set.

Set Real-World Malicious Internet Hosts New Sections
E1 yes no yes no no 6.4.1
E2 yes no no no no 6.4.2
E3 yes no no yes yes 6.3.1
E4 yes yes yes no no 6.4.2
E5 yes yes - no no 6.6
E6 no mixed no yes yes 6.3.2 + 6.3.3
E7 no mixed no yes no 6.6

Table 6.1: Event data sets and their characteristics.

Alert Data Sets Although the approaches for alert and attack correlation are not limited
to network data, their evaluation is demonstrated for network alerts only in this chapter. In
particular, the following three alert data sets are used during the evaluation chapter:

A1: Real-World Alerts – Collaborative collection of alerts for filtered network flows from
network sites around the globe, retrieved from DShield1

A2: Real-World APT Attack – Alerts resulting from analyzing mixed traffic captures based
on event data sets E5 and E7

A3: Artificial Alert Data – Generated alerts with feature patterns according to particular
attack scenarios

1. https://www.dshield.org/
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Table 6.2 summarizes the characteristics of these data sets for network events. If the data stems
from real-world intrusion detection, the set is labeled with real-world. Otherwise, the alerts are
artificially generated, i.e., not the detection result of an IDS. Furthermore, sets are labeled with
Internet if they are representative for this scope. If known, the table gives the underlying traffic
source, i.e., on which basis the alert set is created. Last, the table also indicates if the data set is
new, i.e., an outcome of this thesis, and generally refers to the evaluation sections that utilize the
respective data set.

Set Real-World Internet Traffic Source New Sections
A1 yes yes - no 6.5.2 + 6.7.2
A2 yes no E5 + E7 yes 6.6
A3 no no no yes 6.5.1 + 6.7.1

Table 6.2: Alert data sets and their characteristics.

6.2 Qualitative Discussion of Requirements

This section contains a qualitative discussion of the overall detection system containing the
contributions of this thesis. The discussion is given according to the requirements from Sec-
tion 3.1.

Detection Accuracy

The individual detection mechanisms have been designed to solve a particular problem that
currently impedes the detection of attacks with network-wide consequences in state-of-the-art
solutions. Furthermore, these mechanisms have been developed in the context of being part
of an end-to-end intrusion detection process (cf. Section 3.2.1) – from monitoring events to
summarizing the attacks. While this might restrict the individual mechanisms slightly in the task
they fulfill, it ensures their compatibility when combined in an overall detection system. As a
result, the input and output of the mechanisms in sequence are coordinated such that synergy
effects arise. This way, a variety of monitoring information is consulted in early stages of the
intrusion detection process to strengthen the classification and to verify an intrusion, so that both
the numbers of false negatives and false positives decrease. At the same time, the final output of
the detection is a concise and short summary of the attacks.

Real-Time Detection

An attack should be detected and reported as soon as possible. In the best case, the security
operations center (SOC) is notified about the security breach the same moment the attack is
happening. With respect to the intrusion detection process, this would require the whole process
implementation to be event-based and every new monitoring event to potentially update the
detection summary immediately. Hence, the real-time requirement of individual mechanisms is
discussed in the context of the intrusion detection process.

The underlying platform, zeek-osquery, with its correlation pipeline (cf. Section 4.1.3) is
indeed event-based. Every retrieved host or network event updates the states and can trigger
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a correlation. Similarly, retrieved or self generated alerts can trigger a correlation. Several
correlations can exist concurrently, with each meant to implement a detector to produce alerts or
to implement an correlation algorithm for alerts or alert clusters to summarize the attacks.

While this design enables a real-time detection in theory, most proposed detectors and alert
correlation algorithms are not designed to be event-based. Only zeek-osquery with its continuous
stream of host events and its real-time correlation of host and network data, including the
demonstrated scenarios (cf. Section 4.1.4), as well as the continuous aggregation of weak
alerts (cf. Section 5.2.2.2) are working fully event-based. The other mechanisms are triggered
periodically as they require a buffer to be filled with recent events or alerts to run on. Thus,
the actual detection might be delayed until the next run of the detector or alert correlation is
triggered. Consequently, there is a tradeoff on tweaking the buffer size between minimizing it to
reduce the delay and maximizing it to increase detection accuracy.

Nonetheless, the high volume of events and alerts is likely to frequently trigger the detectors and
alert correlations. Generally, correlations early in the intrusion detection process are working in
real-time or are expected to work at least close to it. Correlations towards the end of the process
accumulate the delays of their dependencies, i.e., other correlations and their buffers, and, thus,
work in real-time less likely.

Efficiency

To be applicable in practice, the detection mechanisms and their implementations must be
resource efficient, e.g., in terms of computational power, memory, and disk space, so that they
can run on appropriate hardware. Especially the amount of data being processed together at a
particular time directly affects the memory usage and indirectly the computational power. When
data processing happens in an event-based fashion, it has the potential to hold the single event
only and maybe a few more related information in memory. Then, the input volume for running
a detector or correlation is low and the processing is expected to not strain memory capacity too
much. Furthermore, processing small pieces of information is also expected to perform fast and,
therefore, also not straining the CPU too much.

Along the processing pipeline, many mechanisms follow this design choice. Starting with
zeek-osquery, the reconstruction of host events to state and especially the removal of outdated
events from the state, keep the memory overhead low. Only up-to-date information remains in
memory and any other event or alert information is written to log files. Security tools beyond
the scope of the intrusion detection process can make use of those files at a later time. With
respect to alert correlation, the definition of meta alerts for the abstraction of several other alerts
(cf. Section 5.1) already reduces the complexity of input data and its processing, resulting in a
relief of resources. Also the weak alert correlation reduces the data volume when aggregating
alerts over time instead of carrying over respective alerts and their full information.

The intrusion detection approaches based on correlated network data (cf. Sections 4.2 and 4.3)
have mixed properties with respect to being efficient. First of all, these detectors perform on a
large set of network flows. However, the random walk approach for the P2P botnet detection is
efficient and the similarities among the flows for the detection of scan campaigns is also easy to
calculate. In addition, both detectors are designed to be robust and, therefore, should be able
to perform equally well regarding their accuracy when reducing the input number of network
flows, e.g., by sampling the NetFlow data.
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A very computationally expensive and memory consuming task for alert correlation is the alert
clustering with GAC (cf. Section 5.2.1) and the motif calculation (cf. Section 5.3.2.1) for
collaborative attack correlation. However, the exchange of motif-based attack signatures at
least reduces the message and bandwidth overhead, as the amount of alert data exchanged in a
collaborative intrusion detection system (CIDS) is reduced to a few alert summarizes.

Scalability

In zeek-osquery as fundamental security monitoring platform, the system architecture and
distributed deployment (cf. Section 4.1.2) is designed to be scalable in many regards. From a
network and messaging perspective, the platform scales well with the number of osquery hosts
because they can be balanced among multiple proxies. Also the dissemination of messages
in the publish-subscribe overlay scales because proxies can aggregate duplicate queries, and
because of the overlay itself, a single event can be published to several hosts at once.

Furthermore, different correlations in the correlation pipeline (cf. Section 4.1.3) can be mapped
on several authoritative Zeek instances in the overlay. This way, more hardware resources can
be added to the overlay to run certain resource intensive detectors or alert correlation algorithms
on dedicated Zeek nodes. On the level of particular detectors and correlations, especially the
GAC clustering can run in parallel with respect to consecutive alert batches to cope with the
large amount of alerts.

By design, a distributed CIDS is supposed to be scalable, and with the collaborative attack
correlation (cf. Section 5.3.2), most of the intrusion detection process – up to the attack
correlation – can be distributed in the network for having each IDS sensor monitoring a small
part of the network. This does not only enable the monitoring of internal network traffic, but
also enables the whole detection system to scale with large network sizes.

Easy Deployment

The proposed detection system can be integrated easily into existing environments, because it is
based on a NIDS that is usually already deployed by most companies. On top of the existing
network monitoring and intrusion detection – independently from signature- or anomaly-based
detection techniques – the mechanisms proposed by this thesis can be added to extend the
monitoring visibility and to correlate alerts to an attack summary. Also NetFlow monitoring
required for the detection of scan campaigns and P2P botnets can be assumed to already exist in
company networks. Only the host monitoring via osquery as part of a zeek-osquery deployment
potentially requires infrastructure changes, as the network administrator needs to roll out osquery
to the hosts in the network. Apart from that, osquery retrieves its configuration, groups, and
queries from the centrally managed Zeek backend.

Neither the initial setup, nor the regular operation of the overall detection system requires a
particular knowledge base. The maintenance is easy, because the detection mechanisms are
almost adapting themselves to new threats and attacks. Probably the best example are the
motif-based attack fingerprints, that are calculated for every new attack. The unsupervised
learning (cf. Section 5.3.2.3) can then even create new attack signatures when a previously
unknown attack scenario is observed. Also the alert clustering in GAC with its flexible definition
of similarity for the attributes of alerts, requires no particular domain knowledge to run.
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Resilience and Self-protection

The distributed deployment of the zeek-osquery platform can be used to monitor several parts of
the network with multiple Zeek instances and to perform intrusion detection for each network
part locally as much as possible before correlating the detection results (cf. Section 5.3.2).
This adds resilience to the overall detection system as an attacker might achieve to disable the
detection mechanisms for parts of the network. However, it is unlikely that the attacker achieves
this for the whole network altogether.

A concrete attempt of the attacker to effectively disable the detection is to overwhelm the
detection system with artificially generated events and noise, and thereby obfuscating the original
attack. While this indeed could cause some detectors and alert correlations to be overloaded,
there is likely a stage in the processing pipeline that can still cope with the extraordinary amount
of data or that can at least log the traces of the attack at this particular processing stage (cf.
Section 4.1.3).

Privacy

Privacy can be seen as a matter of external concerns with respect to third parties gaining access
to internal information but as a matter of sensitive information being disclosed to the detection
system itself and the security operators. On these two levels, privacy concerns have been
identified while designing the detection system proposed in this thesis.

With respect to data collection, some information such as the network traffic are argued to be
mandatory to perform intrusion detection accurately. Similarly, some information about the
hosts such as processes are required for attributing network flows (cf. Section 4.1.1) to host
applications. However, some other especially more sensitive information of the hosts like file
content or Transport Layer Security (TLS) session keys are also extremely helpful for intrusion
detection. To value the privacy of the users, zeek-osquery allows for interactive data retrieval.
This way, sensitive information is only transferred to the detector if there is an explicit situation
demanding this information. Furthermore, it is not the actual file content that is collected but the
hash of the file.

On the level of alert correlation, a privacy concern arises when sharing data in a CIDS. The
mechanism to exchange alert summaries is based on the attack scenario and excludes any
concrete alert attribute values such as IP addresses or ports (cf. Section 5.3.2). The result is that
the attack itself is fingerprinted to produce the alert summary for exchanging, but it does not
contain any sensitive information about users or the involved systems.

The next sections of this chapter answer all remaining questions from Section 1.1 in an quantita-
tive evaluation.

6.3 Evaluation of Joint Monitoring with zeek-osquery

The probably most common deployment of security monitoring is a network-based IDS that
captures and analyses the network traffic of the hosts in the network. Network monitoring,
however, is giving no insight into the hosts, and the trend towards encrypted communication
additionally impedes the detection with a NIDS. zeek-osquery (cf. Section 4.1) refines the
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visibility of security monitoring to overcome these challenges. The key idea is to correlate
network data with additional monitoring data from hosts in real-time. In particular, network
flows are attributed to the application and user on the respective host.

This evaluation of zeek-osquery investigates how security monitoring can benefit from the
joint host and network monitoring. Apart from enhancing the detection accuracy, also other
requirements from Section 3.1 must be covered by the zeek-osquery system to be applicable
in the real-world. In particular, the system must be highly efficient and scalable to process the
large data volume that results from closely monitoring large networks.

This section revises parts of the conference paper [HSF20]. The section evaluates the perfor-
mance of security monitoring with zeek-osquery for a joint monitoring. First, a real-world
deployment gives insights into the benefits of extending the visibility by host data. Afterwards,
the open-source prototype is stress-tested with more hosts and host events to evaluate its scal-
ability properties. Last, a testbed with actual attacks demonstrates the benefits of the joint
monitoring regarding the enhancement of the detection accuracy.

6.3.1 Real-World Evaluation

The monitoring accuracy of zeek-osquery is determined by the success rate of correlating host
and network data. The most preliminary correlation is the attribution of network flows to the
respective application and user (cf. Section 4.1.1.2). Thus, the following real-world evaluation
in this section assesses zeek-osquery regarding identifying the application and user of a network
flow in real-time (cf. Section 4.1.3).

6.3.1.1 Evaluation Setup and Dataset

A working group of the computer science department deployed zeek-osquery on the university
campus to evaluate the accuracy of zeek-osquery under real-world conditions. Eleven employees
participated in this experiment by monitoring their eleven office machines with zeek-osquery
for three working days. The machines were running different Linux distributions, including
Ubuntu, Linux Mint, Fedora, and Arch Linux. To monitor their network traffic and to correlate
it with host events, the participating users tunneled their traffic through a virtual private network
(VPN) on the campus site that is monitored by a Zeek instance. Note that the correlation is
performed on live traffic and also in real-time during this experiment. The users have been aware
of the monitoring mechanism in place while being connected to the VPN. They could leave it
at any time to pause the monitoring. Knowing to participate in such a monitoring experiment
potentially influenced their online behavior. However, measuring the technical accuracy in this
experiment only little depends on the exact online behavior of the users. Instead, the intention is
to have a realistic and broad setup with real-world applications and traffic.

The data processed by zeek-osquery in this setup is characterized in Table 6.3. It reports
characteristics of the flows that zeek-osquery ideally should correlate with host data. Not all
recorded data flows made it into this dataset because of two reasons. First, unsolicited messages
to closed ports on monitored hosts cannot be attributed to any process in the first place. Second,
some users joined the VPN with their hosts but started osquery later. Network flows from both
situations were filtered from processing.
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Network flows Host events for state
Total TCP UDP ICMP Process Socket User Interface

344,366 273,241 70,929 196 2,793,406 776,910 51,719 7,919

Table 6.3: Characteristics of the real-world dataset.

Furthermore, the table reports the number of received host events. On average, each of the
eleven machines was monitored for 6 hours and 21 minutes per day. An individual host on
average reported 222.4 process, 20.6 socket, and 4.1 user events per minute that go into state (cf.
Section 4.1.1.3). These events sum up to 4.1 events per host and second on average. Note that
also the initial state that is retrieved from hosts upon their (re-)connects goes into the average
event rate. Thus, many initial events are retrieved every time a host joins the VPN, which
happened several times as some users decided to leave the VPN for short periods during the
day.

The following experiments provide results and experiences on how zeek-osquery enhances the
visibility and accuracy of monitoring.

6.3.1.2 Attribution of Network Flows

To assess to which extent zeek-osquery can attribute network flows to host processes in real-time,
this experiment analyses the attribution result of the real-world deployment. Table 6.4a shows
the success rate of zeek-osquery attributing the 344,366 network flows in the dataset. For 96.05%
of Transmission Control Protocol (TCP) connections and 86.61% of all flows, the responsible
processes and users are identified. False negatives are caused when: First, the host data is
not retrieved in time for real-time correlation with short-lived flows. Second, applications like
Skype use Stateless IP/ICMP Translation (SIIT) to embed the actual IPv4 destination address
into an IPv6 address. However, as the hosts in this experiment are configured with IPv4 only,
they send out the message to the embedded IPv4 address. Consequently, this causes a mismatch
between IPv4 (in the network flow) and IPv6 addresses (in host events). Third, remote hosts
sometimes try to continue a flow, although the monitored host already left the VPN. When in
the meantime, a new host joined the VPN reusing the same IP address these packets cannot
be attributed to a process on the new host. The attribution rate for User Datagram Protocol
(UDP) flows is only about 50% because Zeek retrieves host events about UDP sockets from
the audit status only (cf. Section 4.1.1.1), which is provided at discrete time slots only. Thus,
short-living sockets might be missed out. This holds especially true for Domain Name System
(DNS) requests that are responsible for 89% of the UDP flows.

All UDP TCP

86.61% 50.43% 96.05%

(a) Attribution rate.

Host Process User

Unique attributions 100% 88.53% 98.14%
Average candidates 1.00 1.17 1.02

(b) Attribution uniqueness.

Table 6.4: Attributing of network flows.

This experiment further evaluates the attributed flows with respect to a unique host, process,
and user. Table 6.4b counts the number of flows that have been attributed to a single entity and
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Zeek zeek-osquery
Rank Attributed flows: 0.06% Attributed flows: 86.61%

1 Chrome (0.01%) Firefox (23.17%)
2 Firefox (0.01%) Thunderbird (12.30%)
3 Spotify (0.01%) Spotify (6.11%)
4 Thunderbird (0.01%) Opera (5.41%)
5 Debian APT-HTTP (<0.01%) Syncthing (5.39%)
6 libdnf (<0.01%) Chromium (4.55%)
7 Wget (<0.01%) Skype (3.87%)
8 <unknown browser> (<0.01%) Seafile (3.80%)
9 OpenSSH (<0.01%) Chrome (3.56%)

10 gvfs (<0.01%) qutebrowser (3.33%)
Total 33 applications 88 applications

Table 6.5: Top 10 attributed applications among all network flows.

furthermore calculates the average number of candidate entries per attribution. Apart from the
vague correlation (cf. Section 4.1.1.2), a fast re-usage on hosts of the same process ID or socket,
i.e., file descriptor, can be a reason for multiple attribution candidates. The effects of the vague
correlation become visible, especially for DNS flows. Usually, applications use the DNS server
defined by the OS, and therefore many processes establish flows to the same server and port
combinations. When skipping the attribution of flows to the DNS servers, the unique attribution
of processes increases from 88.53% to 93.15%. Although a single user was logged in on the
monitored machines, in some cases, the user attribution overlaps with a system account, e.g., in
case of parallel DNS requests by the system and a user application.

6.3.1.3 Identification of Host Applications

For identifying communicating applications, the state of the art is to inspect network packets for
application-specific indicators like the Hypertext Transfer Protocol (HTTP) user agent. Zeek
already analyses such indicators and derives the respective application, where applicable. If
Zeek itself cannot derive the application from the network packets, zeek-osquery can still verify
the application via the correlation with host data. Table 6.5 lists the top 10 network applications
ranked by their number of attributed flows. Two outcomes are observed when comparing both
methods for identifying communicating applications: First, zeek-osquery is able to attribute
significantly more flows compared to Zeek, i.e., 298255 (86.61%) compared to 212 (0.06%).
For the Firefox browser, zeek-osquery was even able to attribute flows 2971 times more often
than Zeek. Second, zeek-osquery can identify applications that were not identified by Zeek.
This includes user applications such as Syncthing, Seafile, and Skype, but also system-
related components such as the network time synchronization daemon NTPD and the Dynamic
Host Configuration Protocol (DHCP) client dhclient.

However, also limitations of zeek-osquery have been seen in this experiment, especially when a
process launches another application that immediately starts a network flow. Because the flow
could have happened before or after the parent process with the same pid transferred control
with the execve syscall to the new child, both parent and child application are candidates for
the attribution. In this experiment, applications that are known never to communicate directly
are candidates for 0.18% of attributed flows. Also, some monitored hosts were running virtual
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Figure 6.2: Zeek performance when hosts continuously report four host events per second.

machines (VMs) with a Windows guest system behind network address translation (NAT).
While osquery runs on the Linux hypervisor host only, it attributes any traffic of the VM to the
virtualization application (2.29%). However, Zeek might still identify the Windows application
inside the VM based on identifiers in the network packets (0.01%).

In summary, zeek-osquery significantly increases the identification rate of communicating
applications. This enables to enforce the use of allowed applications and assists threat hunters
in detecting malware that covers its communication in well-known protocols, e.g., Hypertext
Transfer Protocol Secure (HTTPS), that is usually allowed to pass the firewall.

6.3.2 Performance Analysis

Apart from working accurately in general, zeek-osquery also has to do so not only for a small
network with few hosts but for large networks as well. In particular, the real-time requirement
must still be fulfilled even a large amount of data from many hosts is processed. Thus, the
following performance analysis assesses the scalability and efficiency of zeek-osquery with
an increasing number of osquery hosts and an increasing number of events. For that, two
experiments are conducted to measure the overhead of Zeek and osquery, respectively.

6.3.2.1 Zeek Overhead

The first experiment for performance analysis investigates the load on Zeek in means of CPU and
RAM for handling osquery hosts and processing host events. For that, multiple osquery hosts
establish a connection to Zeek and regularly send updates about local processes and connections.
Zeek then correlates these events to link processes to their sockets, and holds this mapping
as long as the process and connection stay alive (cf. Section 4.1.3). This mapping effectively
implements a state of flows by processes, which is denoted as host flow in the following.

As the Zeek overhead is the scope of this measurement, no full-fledged osquery hosts are required,
but rather a controllable environment to put load on Zeek. For this reason, the experiment utilizes
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a simplified Python prototype of the actual Zeek-enhanced osquery implementation. With the
same interfaces exposed like the actual implementation, the simplified prototype can be queried
by Zeek for some simple events processed during the experiment. The prototype simulates a host
to start short-lived processes and connections constantly. Each host is configured to continuously
send four events per second to Zeek, which is almost exactly the same as in the real-world
evaluation (cf. Section 6.3.1.1). This lightweight implementation also enables us to simulate a
lot of osquery hosts that run on a few physical machines only.

The total amount of the lightweight osquery instances is equally distributed among ten bare-
metal machines. Zeek takes over the role of both proxy and authoritative Zeek and is running on
another bare-metal machine. This comes close to a real-world deployment, in which Zeek runs
on a single machine, and osquery instances are distributed on different machines in the network.
All of these machines are equipped with an Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz and
8GB of RAM. Anyhow, the performance of Zeek is measured for a specific number of hosts
or host events per second, respectively. Each configuration setup runs for 20 minutes while
measuring resource utilization and correlation statistics every second. The following plots report
the average measurement value over the whole 20 minutes for each configuration.

Figure 6.2a plots the average CPU and RAM utilization of the Zeek host in dependence on the
number of connected osquery hosts. During the experiment, Zeek retrieves and logs host events
about processes and sockets, correlates them to host flows, and reconstructs their state as it is
required for the attribution of network flows. The result indicates that the resources scale linearly
with an increasing number of osquery hosts. A single host causes 0.11% CPU and 0.45MB
RAM at the Zeek instance during real-time correlation. Theoretically, to achieve 100% CPU
utilization, about 870 osquery hosts would be required, each sending four events per second.

Figure 6.2b plots the average number of state entries for processes and connections, as well
as the average number of correlated host flows at the Zeek instance in dependence on the
number of osquery hosts. This result also indicates a linear dependency on the number of
hosts for the size of state and correlation. Because the simplified osquery hosts simulate an
equal amount of processes and connections, the three curves are expected to be identical. The
observed unsteadiness in the curves is caused by simulation randomness for the event generation
that sometimes leads to fast re-usage of process IDs or file descriptors in the process and
socket events, respectively. Thus, this experiment confirms that the state reconstruction in the
zeek-osquery processing pipeline works correctly.

6.3.2.2 osquery Overhead

The second experiment for the performance analysis investigates the load on hosts when they run
osquery and, in particular, as part of a zeek-osquery deployment. Load on hosts manifests itself
in CPU and RAM load caused by osquery, mainly to execute the SQL queries and to log query
results. The modifications to osquery mainly affect its logging, as osquery sends query results
to Zeek via Broker. Thus, this experiment abstracts the load to run osquery by simplifying the
execution of SQL queries. For that, the implementation of a dummy table in osquery with three
columns contains a predefined number of results, which is queried by Zeek. This static table is
queried in combination with different logging mechanisms to compare their overhead, including
the mechanism via Broker.
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For this experiment, the modified osquery is deployed on a desktop machine running Ubuntu
18.04 equipped with an Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz, 8GB RAM, and 256GB
SSD. The same SQL query for the static dummy table executes every ten seconds, which each
time returns 100,000 results. Table 6.6 illustrated the measurement results for the average CPU
and RAM utilization over 90 seconds for the built-in osquery logging mechanism that can either
log to a logfile or to a remote web server via TLS2. These results are compared with the Broker
logging provided by the zeek-osquery modifications and with the baseline when osquery logging
itself is turned off.

Loss [%] CPU [%] RAM [MB]
No Logging - 2.67 615

Logfile 0 6.44 1108
TLS 95 5.29 1402
Zeek 0 7.83 790

Table 6.6: Performance comparison of the different logging mechanisms.

First of all, the table verifies the correctness of logging by counting the logged results and
comparing them to the expected number of results. A correct logging is seen when using a
local logfile and also using Zeek as part of a zeek-osquery deployment. For TLS, however, it
is indicated that the logging of so many events is not possible, e.g., the status logs of osquery
report the log buffer to overflow. This leads to a result loss of 95% in this experiment. The
reason might be that the request-response pattern in HTTP causes to much delay to transfer a
large amount of results and therefore causes congestion at the sender.

Furthermore, the experiment for the osquery performance indicates that the remote logging to
Zeek via Broker promises a reliable way to send query results. It can process large amounts of
query results without stressing the osquery hosts significantly. Compared to default logging to a
logfile, the modified version requires only 1.4% more CPU and even uses 200MB less RAM.

6.3.2.3 Performance Discussion

The performance experiments indicate that zeek-osquery is an efficient platform to collect host
and network events. This efficiency is enabled by the zeek-osquery design to retrieve only raw
events from osquery hosts and not to let the hosts themselves perform resource-intensive analysis.
This way, the overhead on osquery hosts is kept small. The actual load on Zeek depends on
the amount of host events and the kind of correlations that it has to perform. For rudimentary
correlation purposes, a single Zeek instance might be suitable for a network of small to medium
size. If a single Zeek instance cannot cope with the load or if complex correlations are required,
a more scalable distributed deployment can be used, as described in Section 4.1.2.3.

6.3.3 Scenario Evaluation

The joint host and network monitoring with zeek-osquery is not only intended for better moni-
toring but explicitly for better intrusion detection, i.e., higher detection accuracy, as well. Thus,

2. Using the reference implementation mentioned in:
https://osquery.readthedocs.io/en/stable/deployment/remote/#server-testing
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the following evaluates the implementation of two scenarios from Section 4.1.4 in Zeek scripts,
namely the execution of Internet files and Secure Shell (SSH) hopping.

6.3.3.1 Deployment

The experiment uses a testbed deployment to evaluate the detection of specific scenarios with
zeek-osquery. The testbed contains Debian 10 VMs and scripts real applications to communicate
on the local network and the Internet, respectively. In particular, the experiment runs the Firefox
web browser to display random websites from the Alexa top million sites. Furthermore, the
experiment includes an email server in the testbed and runs the Thunderbird mail client to send
and receive emails with attachments. Furthermore, the Linux SSH tools are used within the
experiment to randomly login to other VMs in the testbed.

The testbed architecture looks as follows (cf. Figure 6.3): A local network with ten VMs is
monitored by zeek-osquery. Every VM runs an osquery instance, and Zeek captures both their
internal and external communication. Each VM is continuously surfing the web, writing emails
including attachments, and establishing SSH sessions to other VMs. For that, every VM is
configured with random periods between performing network actions using real applications.
Firefox uses about 5 to 50 tabs to display the start page of random websites on the Internet,
including all embedded content. Thunderbird is deployed with different mail accounts on
each VM, configured to use Post Office Protocol version 3 (POP3) for their inboxes. User
activity is simulated to write emails to each other using plain Simple Mail Transfer Protocol
(SMTP) continuously, and the emails might contain random attachments. Additionally, the VMs
randomly establish SSH connections among each other for short periods.

Zeek

Internet

…
Monitored hosts

…

Mail Server

Attacker

Mail
traffic

Web
traffic

SSH
traffic

Mirror port

SSH chaining

Phishing mail

Figure 6.3: Architecture of the testbed.

The testbed contains an additional attacker machine that (1) sends malicious mail attachments,
and (2) abuses the VMs as SSH jump hosts.
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6.3.3.2 Findings

During a runtime of six days, Zeek was analyzing over 5.61 million network flows. This amount
of network flows corresponds to the behavior of about 2.37 always-on hosts compared to the
real-world evaluation. Across the deployed VMs, web browsing caused 2.37 million connections,
sending mails caused 8,420 connections, and receiving them caused 34,560 connections. Further-
more, 62,109 SSH connections were seen in the network. The high number of connections is on
purpose, as the application scripting is intended to make extreme use of network communication
to generate a high volume of benign background traffic. To detect the few attacks within this
traffic can be considered the worst case.

During the experiment, the attacker performed each attack once. It sends a crafted mail, including
a potentially malicious executable to one of the mail accounts. As with all other received emails,
the respective user downloads the mail and attachment. For this specific email, the attachment
is executed after download. To perform SSH hopping, the attacker logs in to one of the VMs
and abuses this SSH connection to tunnel another SSH connection towards another VM in the
testbed.

The log files for the specific scenarios show that zeek-osquery detected the two attacks correctly.
Furthermore, none of the other 3,892 attachments triggered an alarm, nor was any other SSH
connection flagged as SSH hopping. For the evaluated scenarios, the detection accuracy is
100%, as there are only true positives but no false positives or false negatives. Although this
perfect accuracy might not be directly applicable to other intrusion scenarios, zeek-osquery
demonstrates the benefits of causally correlating the data from host and network monitoring.

6.3.4 Summary of Joint Monitoring

An evaluation of zeek-osquery has been presented for the mitigation of NIDSes going blind. The
open-source zeek-osquery system compensates restricted visibility into the network traffic by
complementing data from the hosts about their network communication. Through a fine-grained
correlation of the data, zeek-osquery is able to attribute network connections to users and
applications in real-time. On top, custom detection scripts can leverage the resulting data in a
correlation framework for intrusion detection or threat-hunting.

The zeek-osquery prototype has been deployed in a real-world evaluation for insights into the
data correlation and the resulting visibility. In this experiment, zeek-osquery was able to attribute
over 96% of the TCP connections in real-time. For that, hosts sent on average 4.1 host events
per second to Zeek. While a NIDS can usually just derive the type of application from the
communication protocol, the attribution with zeek-osquery reveals the concrete application on
the host. In contrast to a network-based identification of applications, zeek-osquery identifies
more than double the amount of unique applications. While this is a smaller improvement, the
benefit becomes apparent with the number of flows for which an application was identified: It is
improved by factor 1406.

Furthermore, the zeek-osquery prototype has been stress-tested to investigate its scalability and
efficiency. The resources of a central Zeek instance scales linearly with the number of monitored
osquery hosts. While a single instance can eventually monitor up to 870 hosts, a distributed
deployment allows to scale with an arbitrary number of hosts. Apart from the overhead of
running osquery itself on the host in the first place, the implemented communication channel
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to Zeek for receiving SQL requests and sending host events might cause additional overhead.
The experiments measured no significant overhead when a host running osquery is becoming
part of a zeek-osquery deployment. It even performs stable under high load, while other remote
logging mechanisms fail.

Last, the new detection capabilities with zeek-osquery have been demonstrated in a testbed, in
which hosts were running real-world network applications. Custom detection scripts leverage
the correlated host and network data from joint monitoring to detect the execution of a malicious
mail attachment and to detect an SSH stepping-stone attack.

In summary, zeek-osquery enables a fine-grained monitoring of the network and the hosts. The
evaluation of the open-source prototype highlighted both the benefits of the refined visibility for
security monitoring and the practical aspects for a real-world deployment.

Note that zeek-osquery requires to deploy the osquery sensor on the hosts. While applicable to
certain environments where the hosts run under the authority of the network operator, adminis-
trative access to the hosts is not always possible in other environments. Thus, the next section
evaluates two approaches for security monitoring that work without any help of the hosts.

6.4 Evaluation of Correlated Network Communication for Intrusion
Detection

Apart from an in-depth security monitoring with heterogeneous data sources (cf. Sections 4.1
and 6.3), the security monitoring and detection accuracy can benefit from a holistic assessing
of network traffic. For that, an attack scenario is detected across relevant events by assembling
them to a bigger picture. Such kind of scenario detection works especially for network-wide
attacks such as distributed attacks, e.g., scan campaigns (cf. Section 4.2) and P2P botnets (cf.
Section 4.3).

Instead of assessing events of an attack scenario individually, the collection of relevant events
enables the scenario detection. For such an intrusion detection based on correlated events, the
amount of monitored activities is highly relevant. The detection is assumed more accurate, the
broader and sound the visibility on the attack is. Thus, the highest accuracy is assumed when all
activity related to the attack is monitored and available as events.

However, network monitoring is usually limited to the boundaries of the own network. In case
of attacks with Internet scale, regular network monitoring cannot capture the full scenario. Thus,
this evaluation investigates how accurately such Internet-wide attacks can be detected with the
respective detection algorithms, despite a limited visibility in network monitoring.

This section revises parts of the conference papers [HWF20] and [Muh+18]. The section
evaluates the detection accuracy of two scenario-specific detection algorithms regarding limited
visibility. First, the detection results of scan campaigns is reported and compared for different
network sizes. Second, the evaluation of the P2P botnet detection investigates the required
visibility for an accurate detection.
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6.4.1 Scan Campaign Detection on the Internet

The evaluation of detecting port scan campaigns (cf. Section 4.2) performs on real-world Internet
traffic. First, a characterization of the respective data set is given. After analyzing the detection
algorithm in a parameter study, some scan campaigns in the detection results are highlighted.
These detected campaigns are compared across the perspective of the backbone infrastructure,
an Internet service provider (ISP), and an enterprise, to discuss their detection accuracy.

6.4.1.1 Visibility on Port Scans

The evaluation setup utilizes a large trace of Internet traffic that is considered as ground truth.
Based on this trace, restricted network visibility is simulated to reflect the scope for different
levels of network providers. Both the original data set and the simulated restriction are detailed
next.

Evaluation Data and Tools The traffic trace comes from the MAWILab project [Fon+10]
that monitors a transit cable between the USA and Japan. For anonymity reasons, only IP and
TCP/UDP headers are recorded in this large trace. In addition, the last byte of an IP address is
randomized consistently among the data set. This potentially effects the key features for the IP
and geolocation similarity of the detection algorithm. However, as the address modification is at
the last byte only, the distance between two IPs changes only marginally and the geolocation
stays most likely unchanged.

For the detection of scan probes, the network monitor and IDS Zeek [Pax99] is used. It analyzes
the network trace for TCP port scans, i.e., incomplete TCP connection establishments. For
that, Zeek implements a connection tracking that identifies an incomplete TCP three-way
handshake [Pos+81], e.g., because the destination port is closed or the connection remained
half opened. Apart from rare technical reasons like misconfigurations, this usually indicates an
attacker that is only interested in discovering open ports, but not in establishing a full connection.
In the MAWILab capture of 15 minutes on May, 5th 2019, Zeek detects 9,960,652 scan probes
from 199,403 unique source IP addresses, i.e., scanners, to 265,081 unique destination IP
addresses, i.e., targets.

Scope Subnet Scan Probes Scanners
Backbone 0.0.0.0/0 9,960,652 199,403

ISP 133.242.0.0/16 2,228,873 67,929
Enterprise 133.242.179.0/24 13,598 1,070

Table 6.7: Port Scan statistics for full data set and simulated network operators.

Restricting Network Visibility The MAWILab capture and therefore the detection of the port
scans are in the scope of an Internet backbone, as the traffic was recorded from a transit cable.
This reflects the ground truth with all the host communication in the data set. Hence, the full
data set is the benchmark comparison when it comes to the detection of scan campaigns from
the perspective of targeted networks. In contrast to the holistic view on the scan campaign from
the perspective of the Internet backbone, a targeted network might only be one of many targets

156



Chapter 6 Evaluation

in the campaign. Therefore, the targeted network eventually has only a limited view on the
campaign, especially when the campaign is Internet-wide.

To simulate smaller networks, the visibility of the monitoring and scan correlation is restricted
to a fraction of IP addresses, i.e., an IP subnet in the full data set. Consequently, the restricted
data sets contain only incoming and outgoing communication with respect to the monitored
subnet. Apart from the original data set as backbone scope, the restriction simulates the scope of
an ISP and an enterprise. For the respective subnets, an IP subnet is chosen that received a lot of
scans. The resulting three data sets of different scopes are summarized in Table 6.7.

6.4.1.2 Parameter Study

This first evaluation part discusses the most influencing parameters for the detection of port scan
campaigns. In this parameter study, the performance of the scan correlation on the backbone
scope is investigated in dependence on individual parameters.

False Positive Filter First, the threshold ε to filter false positive scan alerts is analyzed. This
parameter defines the minimum number of required scan probes per scanner. Together with the
scanners, their scan probes are filtered as well. Analyzing this parameter gives insight into how
large the portion of filtered scanners and scan probes is. Thus, this analysis applies different
values for ε and illustrates the portion of remaining scanners and scan probes in Figure 6.4.
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Figure 6.4: Filtering effect of the false positive filter ε on the portion of remaining scan
probes and scanners.

The plot shows a clear difference between remaining scanners and probes. The portion of
remaining probes is not in line with the portion of remaining scanners. Consequently, there is an
imbalance in the distribution of probes among the scanners. On average, each scanner originates
50 probes. However, less than 3% of the scanners remain for ε = 50. At the same time, more
than 90% of the probes remain. Furthermore, about 90% of the scanners cause 15 or less probes.
Consequently, there exists a few scanners that cause hundreds of probes. For example, for ε = 5
only 30% of the scanners are left but they still count for 96% of scan probes. For ε = 100 even
the remaining 1.26% scanners count for 88% of probes.

Sources with only a few probes are unlikely to be scanners. Instead of scan behavior, it is
more likely caused by technical failures that regularly occur on the Internet. The analysis of ε

indicates, that a large portion of false positive scanners can be filtered with a small ε .
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Port Classes The scans of each scanner can target different ports across the targeted hosts.
This analysis of port classes depends on the parameter X that defines the number of unique ports
in a scan as the threshold between the classes F ew and M any. Figure 6.5a plots the distribution
of unique ports, both source and destination ports, among the scans to decide on the parameter
X . The plots illustrates how many scans with a particular number of unique ports exists in the
real-world data set. It looks close to a exponential distribution. In further experiments, the
threshold is set to X = 10, as for the shape for the distribution function changes around this
point.
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Figure 6.5: Distribution for number of unique scanned ports among the attackers.

Figure 6.5b illustrates the resulting classes for ports when applying the parameters ε = 100 and
X = 10. For this parameter setting, the most scans are labeled with Few source ports and a
S ingle destination port.

Similarity Weights The similarity weights w(i) are designed to prioritize particular similar
features i. Prioritized features have a higher influence in the similarity calculation when it
comes to identifying related port scans. For the following experiments, the feature weights are
categorized into three groups with different weights. The strongest weight of 4 is for the two
ports. Medium strength with a weight of 2 is assigned to the vertical and horizontal property,
scan verification, and source IP and location. The lowest weight of 1 is assigned to the IP
version, and the order of magnitude for target hosts and scan probes.

Clustering Cutoff The effect of the parameter t for the cutoff in hierarchical clustering is
illustrated in Figure 6.6. For the following experiments, the clustering cutoff is set to t = 0.15 as
a reasonable value, which is in between two points where the shape significantly changes.

After this parameter study, the detection parameters are X = 10, ε between 0 and 10, and
t = 0.15. Next, the collaboration evaluation analyzes the resulting clusters, i.e., scan campaigns,
for different scopes of network visibility.

6.4.1.3 Collaboration Evaluation

Applying the correlation of port scans with the parameter values from the parameter study on the
evaluation data set, results in the campaigns summarized in Table 6.8. As the simulated scope of
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Figure 6.6: Resulting clusters depending on the parameter t.

an ISP and enterprise network restricts the visibility, the number of scanners decreases to 32%
and 4%, respectively, compared to the ground truth in the backbone scope. Consequently, also
the number of detected campaigns decreases to 9% and 1.6%, respectively.

Scope
Filter

Scan Probes Scanners Campaigns
Distributed

Accuracy
ε Scanners

Backbone 10 9,401,543 27,244 1955 19,373 (71%) 100.0%
ISP 5 2,130,215 8,617 717 5789 (67%) 94.5%

Enterprise 0 13,598 1070 32 208 (20%) 27.3%

Table 6.8: Summary of campaign detection for different visibility scopes.

Discussing the Detection Accuracy The decrease of scan probes, scanners, and campaigns
is directly caused by the restricted visibility scope. Beyond that, this experiment investigates the
consequences of this decreased on the accuracy of correlating monitored scans to campaigns.
Table 6.8 also lists the number of distributed scanners or the fraction of scanners that are
identified to collaborate in a campaign, respectively. Similar to the overall number of scanners,
also the absolute number of distributed scanners decreases with restricted visibility.

The relative number of distributed scanners also decreases with restricted visibility from 71% at
backbone scope to 20% at enterprise scope. Assuming a constant fraction of distributed scanners
at any scope, the 71% distributed scanners in the ground truth of the backbone reflects 100%
accuracy. Consequently, this then indicates an accuracy of 94.5% at ISP scope and 27.3% at
enterprise scope compared to backbone scope.

However, this accuracy calculation ignores the fact that scan campaigns might sample the global
IP space. With a smaller network scope, also the probability to be targeted by two coordinated
scanners decreases. Thus, the small enterprise network eventually cannot monitor scan probes
of different sources that belong to the same campaign in the first place.

Highlights in Comparing Campaign Characteristics Out of the 1955 detected campaigns
on backbone scope, two specific ones are characterized in detailed here. They represent many
other campaigns that have been found in the data set. Even though, they exemplary highlight
the clustering outcome as summary of a scan campaign. In particular, outcome of the same two
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campaigns is compared on all three visibility scopes. The fingerprints of the campaigns are
shown in Tables 6.9 and 6.10. Apart from the number of scan probes, the tables list the values
of the ten key features (cf. Table 4.2). The tables illustrate feature values that are equal for all
visibility scopes and others that differ among the scopes.

Enterprise ISP Backbone
Scan Probes 20 4,479 18,259
Source Ports S +30443

Destination Ports S +30443
Vertical Scan true and f alse true

Horizontal Scan f alse
Scan Validation f alse

IP version IPv4
Target Hosts 1 to 3 145 to 196 591 to 799
Port Scans 1 to 3 145 to 196 591 to 799

Source Subnet
15 27 27
addresses in 88.138.143.0/27

Source Location France

Table 6.9: Summary of a campaign from France for different network scopes.

A scan campaign from France is summarized in Table 6.9. The key features show that many
values are equal among the distributed scanners. In this campaign, 27 out of potentially 32 IP
addresses in the 88.138.143.0/27 source subnet show the same scanning properties. This is a
very strong indication for their coordination. While these 27 scanners are clustered at backbone
and ISP scope, the monitoring at enterprise scope captures only 15 of these scanners. However,
they are still clustered at this scope. Apart from the source subnet, the table reveals some other
common scan features.

Enterprise ISP Backbone
Scan Probes 2449 450,489 1,812,160
Source Ports S +46960 and S +55776

Destination Ports M
Vertical Scan true

Horizontal Scan true
Scan Validation f alse

IP version IPv4
Target Hosts 256 and 248 65,205 and 53,011 260,299 and 211,552
Port Scans 1747 and 702 343,609 and 106,880 1,382,844 and 429,316

Source Subnet 2 addresses in 185.173.217.208/28
Source Location Netherlands

Table 6.10: Summary of a campaign from Netherlands for different network scopes.

In the Netherlands campaign in Table 6.10, only two scanners are clustered. These two scanners
are in the same /28 subnet. That they use two different source ports might not be intuitive at a
first sight. However, that they both use a single source port is already a common characteristic.
Most likely, both scanners deploy the same scan tool that uses a static port that is not hard-coded
but chosen at run-time.
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For the demonstrated detection results of scan campaigns, the common features among the
scanners were highlighted. To some extent, the scanners can be correlated even at smaller
visibility scopes. Generally, the detection is likely to be successful as long as a sufficiently large
number of scan activities from a particular campaign is monitored.

6.4.2 Botnet Detection on the Internet

The evaluation of detecting P2P botnet (cf. Section 4.3) performs on real-world network and
botnet traffic. First, a characterization of the respective data sets is given. Afterwards, the
detection accuracy under two visibility restrictions is evaluated to discuss the required visibility
in network monitoring to detect P2P botnets on the Internet.

6.4.2.1 Ground Truth in Communication Graphs

Evaluating the detection algorithm ideally requires labeled real-world data. However, global
NetFlow records for real-world botnet infections that cover all bot communication with ground
truth is not available. Instead of a real-world communication graph GN with ground truth, this
graph is constructed from a background graph GL and a botnet graph GB following the model in
Section 4.3.1. For simulating a realistic infection process, the evaluation uses publicly available
real-world data for both the background and botnet graph.

The following first describes the implementation of the evaluation setup as a modular prototype.
Then, the remaining paragraphs detail the respective modules.

Modular Prototype The evaluation utilizes the modular prototype, as illustrated in Figure 6.7,
to efficiently simulate botnet infections on large networks. The architecture follows a straight-
forward design and allows separating the processing of individual steps. This means that the
analysis of input data can be performed in a pipelined manner. For example, flows of network
communication can continuously be collected in predefined time periods or until a redefined
amount of flows is collected. The actual statistical analysis and detection can then happen
separately and will not slow down the monitored system while continuing the collection of
flows.

Figure 6.7: The detection prototype is separated into modular services that allow for a dis-
tributed data collection and computation. The dotted elements have been added for
evaluation purposes.

The main components are as follows. The Reader gathers the NetFlow records, parses and
converts them into the graph data format. The Walker performs n random walks of distance k on
the graph’s adjacency matrix (cf. Section 4.3.3), which can be computed in a distributed manner
since each walk is an independent read-only operation on the graph. The dampening constant is
mapped to the resulting probability distribution in the Normalizer to reduce the influence of hub
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nodes in the network. Finally, the Clusterer uses density-based spatial clustering of applications
with noise (DBSCAN) to perform the final clustering step.

For the evaluation of the detection algorithm, this prototype is modified. Instead of collecting
live NetFlows, the Reader makes use of already captured communication, i.e., GL. In addition,
the prototype is extended by two more steps: (1) a Mapper to simulate botnet infections by
embedding GB to creating GN and (2) a Loss step to enforce limited visibility on the network.
The modules relevant for the evaluation setup are detailed next in the following paragraphs.

Reader for Data Sources For the evaluation, the Reader in the modular prototype utilizes
real-world data sets of NetFlows and botnet communication.

• Carrier Graphs GL: Due to the potentially complex structure of the carrier graph, it is
not synthesized for evaluation. Instead, two real-world networks from public datasets are
used. The first one (labeled TW07) is a NetFlow capture from the University of Twente
taken in May 2017 [Bar+10], which is converted into a directed communication graph by
taking the IP addresses as nodes and each communication flow as a directed edge. The
second carrier graph used in the evaluation (labeled CTU11) is from a NetFlow capture
from the Czech Technical University in August 2011 [Spe+09] and is converted in the
same way.

Although these sets themselves might already include communication of P2P botnets, this
is an accepted limitation in the experiments, as this situation is probably the case in the
real world.

• Botnet Graphs GB: The data for the botnet graphs is collected from various runs of the
StroboCrawler [Haa+16] software on the ZeroAccess and Sality botnets. The crawler
is specifically adapted to crawl unstructured botnets as their crawling can be more chal-
lenging due to the absence of a structured ID space [Kar+14]. The crawling has been
performed on 2016-02-24 for ZeroAccess (ZA24), and on 2016-02-25 for Sality (SA25).
Due to technical restrictions, the Sality botnet dataset only contains superpeers, i.e., only
directly reachable nodes. The ZeroAccess dataset contains directly reachable nodes and
bots behind NAT.

Mapping for Graph Construction Due to the lack of ground truth in real-world data, infec-
tions as simulated as realistic as possible. For that, the Mapper in the modular prototype embeds
a P2P botnet graph GB = (VB,EB) into a larger carrier graph GL = (VL,EL) (cf. Section 6.4.2.1).
The resulting graph GN = (VN ,EN) contains GB as an induced subgraph with VB ⊆ VN and
EB ⊆ EN . The graph GN is assumed a large communication graph based on NetFlow data as
potentially collected by an ISP. The algorithm’s classification of botnet nodes can afterwards be
compared with the ground truth obtained from this mapping process.

The construction of the network communication graph GN is a transformation f : {GL,GB}→
GN specified by Algorithm 3. The algorithm simulates the infection process on a copy of GL
– the carrier graph. For each node in the botnet graph GB, a candidate is uniformly sampled
without replacement from GL, and the relation is saved in the mapping M. After carrying out
Algorithm 3, GN represents the communication among all hosts containing both the legitimate
and botnet communication. Note that GN is still based on a centralized knowledge about all
communicating hosts.
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Data: GL,GB
Result: GN

1 initialize GN as a copy of GL;
2 create an empty mapping M;
3 foreach v in VB do
4 u R←−VC;
5 add mapping v→ u to M;
6 end

7 foreach edge (v0,v1) in EB do
8 u0 BM[v0];
9 u1 BM[v1];

10 if (u0,u1) < EN then
11 EN ∪{(u0,u1)};
12 end
13 end

Algorithm 3: The infection mapping.

Loss for Simulating Restrictions For the evaluation of the detection algorithm’s robustness
against limited vision, it is necessary to remove certain portions of the infected graph. This can be
the result of the data collection approach or simply because there is no central NetFlow database
for the whole Internet. More details about these restrictions are included in the detection model
in Section 4.3.2. The Loss module in the modular prototype (cf. Section 6.4.2.1) implements
both restrictions by two loss functions taking GN as input and returning a loss graph G′N with
the respective loss function applied:

1. Sampling to simulate NetFlow Restrictions: This restriction focuses on network-based
data collection for NetFlow records. The data is usually gathered via the network equip-
ment at various locations, e.g., network backbone, Internet upstream, or peering node.
Not all communication between hosts is visible to the network operator. Technically,
this loss function is implemented by randomly deleting edges in the graph GN . The
evaluation considers the worst case for the detection algorithm, which is that only botnet
communication, e.g., edges (vi,v j) ∈ EB, are removed.

By applying sampling, the experiments control the portion of randomly chosen edges
from EB labeled as part of a botnet and deleted them from GN to generate the input G′N to
the detection algorithm.

2. Host Monitoring to simulate Visibility Restrictions: This restriction focuses on host-
based collection for NetFlow records. On a host basis, all the hosts’ communication
data is gathered. The visibility depends on the number of hosts that are being monitored.
It equals the accumulated vision of the monitored hosts regarding their incoming and
outgoing flows. Technically, this loss function is implemented by randomly choosing a
subset from the overall hosts in GN and including all incoming and outgoing edges of the
respective hosts to simulate limited knowledge.

By applying host monitoring, the experiments control n hosts that are randomly chosen
from GN with both their incoming and outgoing edges to generate the input G′N for the
detection algorithm.
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Evaluation Data Sets Table 6.11 shows the statistical properties of the utilized carrier and
botnet graphs. The botnets have a significantly higher number of edges and a smaller diameter –
allowing messages to propagate quickly throughout the network. This means that approaches
based on random walks will be effective because the botnet subgraph shows fast-mixing proper-
ties. It can be seen that the average botnet node degree is significantly higher than the carrier
graph node degrees. Because these connections are preserved throughout the mapping process,
the average number of edges added to GN grows proportionally with the number of edges in the
botnet graph |EB|. At the same time, the number of node stays unchanged.

Carrier Graphs Botnet Graphs
TW07 CTU11 ZA24 SA25

Network Diameter 7 12 5 5
Number of Nodes 66408 38130 4805 1422
Average Node Degree 2.103 2.062 187.415 416.769
Number of Edges 139628 78626 734010 592646
Average Path Length 3.959 2.808 2.163 1.776
Average Clustering Coefficient 7×10−4 3×10−3 0.327 0.605

Table 6.11: Statistics on the graphs used during experimentation.

Based on the carrier and botnets graphs in Table 6.11, two combinations are taken for the
experiments. For that, ZA24 and SA25 are mapped according to Algorithm 3 onto CTU11 and
TW07, respectively.

1. CTU11-ZA24: The resulting infected graph has 38130 nodes and 445267 edges. Figure
6.8 demonstrates how the detection algorithm leverages the fast-mixing property. When
performing n = 10000 random walks of distance k = 3, the probability distribution for
each node is visualized as a scatter plot in Figure 6.8a. This figure plots each node index
against the normalized probability for the respective random walks. Each data point
in the scatter plot is categorized based on the ground truth obtained from the mapping
process. Botnet participants are shown as red crosses, uninfected nodes as blue dots.
Transparency has been applied, so that overlapping data is shown in a more intense color.
The normalized botnet data points are clearly separated from the slow-mixing rest.

Clustering the sanitized data with density-based DBSCAN classifies the largest and
densest cluster as a botnet, as illustrated in Figure 6.8b. Core nodes, which are at the
center of the classification, appear as green circle markers. It can be seen that the dense
area between 0.86 and 0.875 from 6.8a has been clustered. These nodes are considered
part of a botnet. The residuals above 0.875 have also been categorized due to imprecise
parametrization.

2. TW07-SA25: The second infected graph mainly differs regarding the number of nodes
in the carrier and the botnet graph. Their proportions differ in an order of magnitude
compared to CTU11-ZA24. Here, only 2% of the nodes in the resulting infected graph are
bots. This lower rate stems from both a bigger carrier network and a smaller botnet graph.
This resulting infected graph is meant to test the performance of the detection algorithm
on a large-scale network.
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(a) The random walk scatter plot with normalized
probabilities for the infection of CTU11 with
ZA24.

(b) The random walk scatter plot after DBSCAN
clustering for the infection of CTU11 with
ZA24.

Figure 6.8: Gathered plot examples.

6.4.2.2 Sampling Evaluation

In practice, a network operator has a good view on its own network, but the internal commu-
nication relationships between infected machines forming a botnet might not be visible. If
these edges do not appear in the communication graph used for analysis, it might negatively
affect the precision of the detection algorithm. This effect is investigated by the following
experiment that makes use of the loss function Sampling (cf. Section 6.4.2.1) for the infected
graphs CTU11-ZA24 and TW07-SA25.

To test the behavior of the detection algorithm under different levels of edge loss, 101 runs are
performed, each increasing the percentage of removed botnet edges l by one from 0 to 100,
according to the Sampling strategy. The results are visualized in Figure 6.9, where precision,
recall, and the respective F1 score are plotted in dependence on the edge loss parameter. The
figure includes result plots for the graphs CTU11-ZA24 and TW07-SA25 in Figure 6.9a and 6.9b,
respectively.

For Figure 6.9a, it can be observed that even with 90% of botnet edges removed, the algorithm
still reaches a precision of more than 83%. Only when over 98% of botnet edges are removed,
the precision metric drops below 50%. This result illustrates the robustness of a detection
algorithm based on random walks. With the bigger carrier network in Figure 6.9b, it can be seen
that the precision varies more. This is because the walk might start at a node that cannot be
reached in its set walking distance. Despite this limitation, the reached precision is still well
more than 80%, reaching its peak at 90%, even with 91% of the botnet edges being removed.

This experiment shows that even though certain botnet-internal communication relationships are
hidden to the operator, it is still possible to extract botnet participants at a significant precision
from the larger flow graph.
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(a) Scores for graphs CTU11 and ZA24. (b) Scores for graphs TW07 and SA25.

Figure 6.9: Detection score depending on the random removal of individual NetFlows.

6.4.2.3 Collaboration Evaluation

In most scenarios, the communication of hosts is not limited to a small network, but the
communication takes place on an Internet-scale level. The questions are:

• How does the algorithm perform in a single ISP scenario in which the ISP can only
analyze its own traffic?

• How many network operators have to collaborate to achieve a satisfying detection perfor-
mance?

The assumption that a network operator has insight into all the communication of the moni-
tored hosts is modeled by the loss function Host Monitoring (cf. Section 6.4.2.1). Thus, this
experiment investigates how many monitored hosts n are needed to reach a similar precision as
with full visibility in Section 6.4.2.2, which assumes complete knowledge of communication
relationships in a botnet.

Based on the same graphs CTU11-ZA24 and TW07-SA25, the loss function for Network Visibility
Restriction starts with one randomly chosen host to monitor n = 1 and is further increased in
steps of one until n = 100 hosts are monitored at the same time.

The results are visualized in Figure 6.10, where precision, recall, and the respective F1 score are
plotted in dependence on the number of monitored hosts. The figure includes result plots for the
graphs CTU11-ZA24 and TW07-SA25 in Figure 6.10a and 6.10b, respectively.

In general, the number of monitored hosts does not seem to have a significant influence on the
recall and F1 scores. The precision in Figure 6.10a, however, increases quite fast to 0.75 with
more of monitored hosts until n = 10. The precision then continues to increase, but much slower
to 0.9 until n = 25.

The plots visualize fluctuations in precision, which can have multiple reasons. As the monitored
hosts are randomly chosen from GN , with a too low n, the probability for a monitored host to be
either directly connected or in reachable walking distance to a botnet structure is accordingly
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(a) Scores for graphs CTU11 and ZA24. (b) Scores for graphs TW07 and SA25.

Figure 6.10: Detection score depending on the restriction to random monitored hosts.

low. Moreover, with hosts monitored in a large network, they are more likely to be not directly
connected and thus not communicating with each other. If the resulting network graph G′N has a
smaller diameter than the random walk distance, it will negatively affect the precision of the
algorithm. There are also the trivial cases, where the resulting network graph is a directed path
or consists of isolated nodes. However, these cases can be prevented by a strategic selection of
sensors or simply increasing the number of monitored hosts.

When comparing Figure 6.10a to Figure 6.10b, it can be seen that, as the carrier network grows
from 38130 to 66408 hosts, more monitored hosts are needed to provide reliable results. A
precision of 0.6 is already achieved for n = 20. While a precision greater than 80% can be
achieved with 14 monitored hosts for the first carrier network CTU11, with the second and
bigger carrier network TW07, a network of 58 monitored hosts is needed to achieve the same
precision.

Although this experiment deals with absolute numbers of monitored hosts, these numbers can be
interpreted regarding the sizes of the carrier networks and botnets. Doing so leads to a general
rule of thumb how large the set of monitored hosts needs to be to achieve the same precision as
with full knowledge on all hosts and their communication. The results of the experiments with
real-world data indicate that monitoring less than 1% of the hosts is sufficient as long as this
encompasses 5% of the bots.

6.4.3 Summary of Correlated Network Communication

An evaluation of collective detection has been presented for the scenarios scan campaign and
P2P botnet. They represent a class of network-wide attack scenarios that target multiple hosts
and cause many similar activities, i.e., network traffic. The term collective detection refers to
the classification of events. In contrast to classifying events individually, collective detection
identifies the attack scenario by the relation among the respective events. The benefits of a
collective detection include a solution to two opposed detection problems. The first problem is
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that individual malicious events might be detected but their relation and the attack scenario is
not identified. The second problem is that individual malicious events might not be detected in
the first place and the attack definitively goes unnoticed. How these two problems are solved by
collective detection becomes apparent with the two evaluated attack scenarios. The following
summarizes their evaluation regarding mitigating restricted visibility to enhance the detection
accuracy.

In the first attack scenario, i.e., scan campaigns (cf. Section 6.4.1), scanners with different source
IP addresses collaborate in a larger scan campaign. Although each scan probe is eventually
detected on its own and all scan probes can easily aggregated per source to scans, the collective
detection solves two challenges. First, a scanner with only a few probes could be a false positive
or should be filtered because the knowledge gain for the attacker is negligible. The second
challenge is to detect coordinated scanners and to reconstruct the scan campaign. Furthermore,
having identified a coordinated scanner allows to revise the decision whether it is a false positive
or true positive as part of a larger campaign.

The experiments regarding restricted visibility indicate that scan campaigns are still detectable
due to similarities among the scan activity of coordinated scanners. The detection accuracy
significantly depends on the size of the monitored network as this defines the visibility scope
and the scans that are subject to the correlation algorithm. In relation to a backbone network, an
ISP captures only 32% of the scanners but still correlates them with an accuracy of 94.5%. For
even smaller networks like /24 enterprise networks, the accuracy is significantly affected by the
restricted visibility. With only 3.9% of the scanners captured, the accuracy drops to 27.3%.

In the second attack scenario, i.e., P2P botnets (cf. Section 6.4.2), the infected hosts, i.e.,
bots, establish connections among each other to disseminate commands and updates. Without a
signature for the network packets of the specific botnet in question, the classification of individual
bot communication fails. The bigger picture of the scenario becomes visible only, when
assembling the bots’ communication relations to the botnet graph. Based on its characteristics,
the entire graph can be classified as malicious, including its bots and their interconnections.

The experiments regarding restricted visibility indicate that, even under worst-case circum-
stances, P2P botnets are still detectable due to their well-connected nature. For large ISPs, the
well-connected botnet structure is still likely to be statistically visible, although they usually
sample their NetFlow records by rates 1:128 or 1:512. Anyhow, the experiments indicate that
monitoring should encompass at least 5% of the bots. The detection is able to classify bots
of unstructured P2P botnets with high precision in large network infrastructures. However,
many false negatives might be in the detection result. Nevertheless, the identified bots are true
positives with high certainty. Leveraging the communication graph, more potential bots can be
revealed and investigated afterwards.

The evaluated scenarios demonstrate that collective detection can withstand or even mitigate
the negative effects of restricted visibility on the detection accuracy. Anyhow, collaboration
among network sides is motivated, especially for the detection of Internet-wide scenarios. The
collaboration extends the network scope and further enhances the detection accuracy.

The previous and this section have evaluated approaches for security monitoring that mitigate
restricted monitoring visibility. Their evaluation demonstrated the benefits of correlating events
from both heterogeneous and homogeneous data sources to increase the detection accuracy.
However, the number of resulting alerts from these and other detection approaches is usually too
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large to be analyzed manually. For that reason, the correlation of alerts to a bigger picture is
evaluated in the next section.

6.5 Evaluation of Graph-based Alert Correlation

A major challenge of intrusion detection is the handling and analyzing of the IDS alert data. In
particular, the large alert volume makes it hard to identify relations among the alerts. Therefore,
alert correlation assists in assembling related alerts to a bigger picture of the attack, effectively
giving a concise intrusion report. The processing tasks to correlate the alerts are described
generically by the alert correlation process in Section 5.1, and a graph-based implementation of
the tasks is given in Sections 5.2.1 and 5.3.1. Piecing these two implementations together along
the alert correlation process, results in the graph-based alert correlation (GAC) approach.

As it is with most approaches for alert correlation, also GAC is based on feature similarity
among the alerts. However, clustering the alerts is only the first step in GAC and results in a
reduction of the alert volume. For a concise intrusion report, GAC further links the alert clusters
to multi-step attacks. What is particularly special in GAC is that it leverages additional context
about the alert clusters for the linking.

This evaluation of GAC investigates how community clustering in particular helps to identify
distributed attacks in large alert sets. Furthermore, this evaluation investigates the scenario
definition in GAC as context for the reconstruction of multi-step attacks, especially under the
assumption of false positive alerts.

This section revises parts of the conference paper [HF18]. The section first evaluates every
stage of GAC according to the alert correlation process separately for correct working of the
correlation algorithm. The second part of the evaluation then demonstrate the result of GAC
when operating on real-world data without ground truth.

6.5.1 Stepwise Analysis of Process Stages

This first evaluation part creates artificial data to have both the control and the ground truth
about the data that is used for the analysis of GAC. Only by doing so, analyzes the behavior
of every correlation step systematically. For that, this stepwise analysis of GAC first describes
the data set as input for the experiments. Then, the performance of alert clustering and attack
scenario identification of GAC are conducted in independent experiments for analyzing their
correctness.

6.5.1.1 Artificial Alert Data for Analysis

Although being aware of criticism of using artificial data for testing intrusion detection [McH00],
note that the scope of GAC is not intrusion detection but alert correlation. Moreover, it is
not about generating a data set representative for the real world, but about generating input to
analyze the effectiveness of what the algorithm was designed for.

Input for the analysis of GAC consists out of alerts from one or more artificial attacks. Depending
on the process step that is analyzed, the alert data is modified to generate input variations for
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the experiment. As GAC is designed to detect distributed attacks, the attack generation makes
uses of the attack patterns according to Table 6.12. This table defines which IPs and ports are
equal for all alerts of the same attack and which are probably different and can be determined
randomly. Since GAC requires no knowledge about subnets and type of port, generating alerts
uses the full IP (0.0.0.0 to 255.255.255.255) and port range (0 to 65535). Based on these features
and pattern, different kinds of attacks are generated:

• In a horizontal Scan (OtM), one source targets several hosts on the same destination port.

• In a distributed denial-of-service (DDoS) attack (MtO), several sources target the same IP
and port combination from arbitrary source ports.

• In a Worm (MtM) spreading, each host targets a subset of other hosts on a fixed destination
port.

Scenario SrcIP SrcPort DstIP DstPort Example Similarity
OtO X X Vertical Scan (V-Scan) 2/4
OtM X X Horizontal Scan (H-Scan) 2/4

MtO
X X Service DDoS 2/4
X Distributed V-Scan 1/4

MtM X Worm 1/4

Table 6.12: Similarity values among alerts of different attack scenarios.

In reality, it is assumed that several attacks happen at the same time. Thus, the experiments
generate alerts for several attacks independently, resulting in alerts for particular attack instances.
Then, they are partially merge by mapping two hosts from different attack instances to the same
host, i.e., replacing IP X from the first and IP Y from the second alert set by a third IP Z. The
overlapping parameter determines the fraction of IPs that overlap. This input impedes alert
clustering to isolate alerts into groups of different attacks.

In addition, the experiments blur alert data via a blurring parameter β to create additional alerts
that represent isolated single alerts or false positives, e.g., as a result of an inaccurate sensor.
Blurring adds no alerts if β = 0 and adds more random alerts until β = 1. Blurring not only adds
additional alerts for the n existing hosts in the alert data, but also creates alerts for new hosts.
This is achieved by the way that blurring is implemented. It starts with randomly sampling the
existing attacking and target hosts. The set of β ·n sampled attackers and β ·n sampled targets
is each extended by another β ·n new hosts. Pairwise for the next attacker and target from the
extended sets, an alert is added until an alert is generated for every host in both sets. As a result,
on average β ·n new hosts and 1.23 ·β ·n new alerts are added.

While the experiments for clustering analysis merge the alerts for multiple attacks (via overlap-
ping parameter), the experiments for scenario identification create separate data sets. Each of
them contains a single attack plus additional alerts as false positives (via blurring parameter)
in form of a cluster to simulate an inaccurate clustering or an inaccurate sensor. The specific
parameterization to generate the alert data used in the evaluation is described in more detail
together with the results.
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6.5.1.2 Alert Clustering in Alert Similarity Graph

The first analysis experiments are regarding the alert similarity graph Gattr (cf. Section 5.2.1)
and the clustering of alerts to attack steps. The minimum similarity threshold τ is used to filter
edges in Gattr. The threshold is set to τ = 0.25 as this is the minimal value at which related
alerts stay connected for attacks in Table 6.12. On the filtered graph, community clustering
is applied to potentially result in one cluster per attack (step). The question is how to set the
clique size parameter k that determines the minimum community size. In particular, the analysis
results should indicate how to set k to achieve best clustering performance. Technically, the
clustering method clique percolation method (CPM) requires clique size k ≥ 2. And obviously,
it should be k ≤ |Gattr|, i.e., not larger than the number alerts in the graph, to allow mining of
any cluster. More specific, k should not be larger than the number alerts from the smallest attack,
i.e., min(|Si| for Si ∈ Ŝ). The following experiments investigate the performance between the
lower and upper bound of the range k ∈ [2, |Gattr|].
Apart from showing how graph-based clustering performs, the CPM method in GAC is compared
to a similar approach that is denoted as Attribute-oriented Induction (AOI) [Jul03] (cf. root
cause analysis in Section 3.4.2). AOI is an efficient algorithm to find attribute patterns in a
set of alerts to establish clusters of minimum size k, similar to GAC that employs community
clustering and forms cliques of at least size k. The following experiments report the average
results across 16 runs.

Metrics For alert filtering and attack isolation (cf. alert clustering in Section 5.1), no metrics
have been found that reflect the clustering performance to both challenges appropriately. There-
fore, this experiment applied two custom methods for evaluating both challenges individually.
They are incorporated into the standard metric accuracy ACC = T P+T N

P+N that compares the ground
truth to one identified cluster.

Alert filtering accuracy should only consider the union of alerts in original attacks as ground
truth GT =

⋃
Si∈Ŝ

⋃
a j∈Si

a j and the union of alerts in all identified clusters as detected attacks
DA =

⋃
Ci∈Ĉ

⋃
a j∈Ci

a j. The accuracy is used to evaluate the performance of DA modeling GT
by comparing these two sets of alerts.

Attack isolation accuracy should evaluate the performance of Ĉ modeling Ŝ. It describes a correct
grouping with respect to all original attacks and clusters of alerts. As the accuracy ACC can only
compare one attack and one cluster, the comparison is broken down to individual pairs of Ĉ and
Ŝ. This method aims to find which alert cluster C j ∈ Ĉ models which original attack §i ∈ Ŝ best.
The accuracy ACC is calculated for every possible combination. Hence, a mapping between
Ci ∈ Ĉ and S j ∈ Ŝ is derived under the constraint that each attack and cluster can only be mapped
once. A greedy algorithm creates a mapping such that either only single attacks or single clusters
are left unmapped. An accuracy of 0 is defined for any unmapped cluster or attack, respectively.
The total accuracy is then the average accuracy for all mapped and unmapped attacks or clusters,
respectively.

Clustering Alerts from Single Attacks Figure 6.11 illustrates the clustering results for alerts
from an unmodified DDoS attack, in which 10 hosts attack one target. The alert set consists
out of 500 alerts, so 50 alerts are generated per source on average. Therefore, the accuracy for
alert filtering (Figure 6.11a) and the attack isolation (Figure 6.11b) drops to zero for k > 500
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(b) Accuracy for attack isolation.

Figure 6.11: Accuracy for clustering alerts from a DDoS attack depending on clustering
parameter k.

for both the community clustering (CPM) in GAC and AOI. For lower values, AOI tries to
mine clusters while generalizing as few attributes as possible. If an AOI cluster, i.e., attribute
pattern, itself consists of many smaller patterns, AOI will report these smaller clusters if k allows.
This behavior is a problem when using AOI on alerts from distributed attacks, e.g., when each
source in a DDoS attack causes multiple alerts. This is the reason why the attack isolation
accuracy of AOI is below 0.3 for k ≤ 60 and why the alert filtering accuracy of AOI drops for
60≤ k ≤ 75. Community clustering, instead, can combine these smaller clusters, i.e., k-cliques,
to communities and therefore achieves an accuracy of 100% for both filtering and isolation.

The advantage of community clustering, therefore, is that it potentially works even though k is
much lower than the smallest attack. However, k has to be high enough to filter noise and to
split alerts of loosely coupled attacks. This problem is investigated in the next experiment.

Clustering Alerts from Overlapping Attacks The clustering results for three attacks over-
lapping 30% of their IP addresses are plotted in Figure 6.12. There is one DDoS with 80 alerts,
one Scan with 80 alerts and one worm for 20 hosts with a spread factor of 0.7 (266 alerts on
average). Other experiments showed a linear dependency of the clustering parameter k on the
presence of false positive alerts. The accuracy of alert filtering (Figure 6.12a) and attack isolation
(Figure 6.12b) are plotted depending on the parameter k. Community clustering (CPM) in GAC
has an alert filtering accuracy of 100% for 3≤ k≤ 80, i.e., for any k that is less or equal than the
smallest attack size. The range of k to achieve an accuracy of attack isolation of (almost) 100%
is different for the lower bound and requires 24≤ k ≤ 80. Values for k ≤ 24 make the CPM to
merge alerts of different attack steps into one cluster because of the overlapping IP addresses.
CPM achieves at least equal accuracy like AOI in the first place and can even cluster all attacks
correctly. This is because CPM achieves 100% accuracy for alert filtering and attack isolation
for the same values of k. AOI instead has its maximum accuracy of 73% for alert filtering at
k = 8 and 38% for attack isolation at k = 18 Thus, choosing a value for k in AOI is always a
balance between good alert filtering or attack isolation.

The experiment for clustering alerts of overlapping distributed attacks indicates that (1) GAC
achieves higher accuracy than AOI and (2) the clustering parameter k allows to achieve these
high accuracy for a wide range of the parameter.
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(b) Accuracy for attack isolation.

Figure 6.12: Accuracy for clustering alerts from overlapping DDoS, scan, and worm attacks
depending on clustering parameter k.

6.5.1.3 Scenario Identification on Alert Flow Graphs

GAC classifies attacks represented in the form of clustered alerts as OtO, OtM, MtO, or MtM
(cf. Section 5.3.1.1). Such an attack characterization must be error tolerant, because there
might be false positives or false negatives when clustering alerts. For that, the scenario metrics
δOtO,δOtM, δMtO, δMtM are designed to represent the confidence in labeling an alert cluster with
the respective scenarios. The metric with maximum value determines the scenario.

The following experiments evaluate the robustness of attack scenario identification on the basis
of artificially created attacks on which blurring (cf. Section 6.5.1.1) is applied to simulate false
positives in clustering. The data set contains instances of a DDoS attack with 300 attackers, a
scan attack with 300 targets, and a worm attack with 75 hosts and spreading factor 0.7. For one
repetition of an experiment, the three resultant attack clusters are each blurred with a specific
parameter β . The three blurred attack variants are then classified by GAC and they are expected
to be identified as MtO, OtM, and MtM respectively.

Effect of False Positive Alerts on the classification The first experiment investigates the
performance of scenario identification in presence of inaccurate clustering. To simulate this, the
blurring parameter β varies in between zero and one in steps of 0.01. The complete experiment
is executed 100 times, such that for every value of β , 100 blurred variants of the three attacks
are generated. This is necessary because blurring introduces randomness when generating false
positive alerts for a specific value of the blurring parameter.

The true positive rate (TPR) and the false positive rate (FPR) depending on β are plotted in
Figure 6.13a as well as the average certainty δ . The figure shows that scenario identification
in GAC can completely tolerate false positive alerts, i.e., still achieve 100% accuracy, to some
extent. It also shows that it can be TPR = 1 and the FPR = 0, even though the certainty δ < 1.
The TPR starts to decrease once the blurring parameter exceeds β ≥ 0.3.

The experiment results also indicate that classifying DDoS and scan attacks is more sensitive to
blurring than classifying worm attacks. When δ = 1, the metric δMtO for a DDoS attack is 0.52,
while the metric δMtM for a worm attack is 0.79. As a consequence of the bias towards δMtM,
blurred worm attacks are always successfully identified as MtM. On overage, the certainty δ in
identifying the three attacks over the 100 repetitions drops to 0.73 in Figure 6.13a. The TPR
drops to 0.50 and the FPR stays below 0.17.
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Figure 6.13: Accuracy for labeling alert clusters with the attack scenario.

Interpretation of the Classification Certainty The second experiment asks about the ex-
pected accuracy when a scenario is identified with a specific certainty δ . For this reason, the
three attacks are again blurred with a random β ∈ [0,1], which is repeated with a different β

10000 times. The average accuracy, i.e., fraction of correct classifications, over all repetitions
was 80%.

To detail on the accuracy, Figure 6.13b plots the average accuracy depending on the certainty
δ . During the repetitions, the scenario classifications were grouped in bins of 0.01 regarding
their resultant certainty δ and the average accuracy is calculated per bin. The actual observed
certainty values range from 0.56 to 1. As expected, a high certainty leads to high accuracy. More
specific, 100% accuracy is always achieved when the certainty δ ≥ 0.91, which is the case for
20% of the attack clusters. 53% of the clusters have been classified with a certainty δ ≥ 0.79.
The average accuracy for classifications with this certainty was 90%.

The experiments show that the majority of attacks can be correctly classified even in worst-case
situations. Also, false positive scenario labels are expected only in classifications with high
uncertainty.

6.5.2 Real-World Evaluation

The second part of the GAC evaluation performances on real-world data. For that, the full
algorithm is applied to the real-world data set that is introduced first. Afterwards, the results of
clustering, labeling, and interconnection to multi-step attacks is reported and discussed.

6.5.2.1 Real-World Alert Data Set

The SANS Internet Storm Center operates a community-based collaborative monitoring system
for Internet threats on a global level. This system is called DShield3 and collects network
incident logs, i.e., alerts, from various contributors. Every alert in DShield contains the IP and
port of the source and the target, among others. However, the target IP is hashed for anonymity
reasons. This real-world evaluation correlates DShield alerts from the days given in Table 6.13.
The table summarizes each set by the number of alerts per day, from both the years 2016 and

3. https://www.dshield.org/
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2017 to enable a representative view, and additionally reports the number of distinct attacking
and targeted IP addresses.

GAC performs on a finite set of alerts, not on an alert stream. Therefore, the data sets of 24
hours is split into alert batches, each being a separate input to an individual processing with
GAC. Experiences from other runs have shown that batches of 5000 subsequent alerts are a
reasonable size as complexity increases heavily with graph size. Anyhow, processing the alerts
in batches enables parallel runs. For that, the experiment use 16 workers in parallel on a system
with 2×8 2.2 GHz cores and 128 GB RAM. With this setup, it takes on average 1 to 1.5 minutes
per chunk depending on the data set.

Set Day Alerts Sources Targets
1 2016-08-22 4517498 395872 100675
2 2016-08-23 7238861 443981 116965
3 2016-08-24 5825579 427718 116835
4 2016-08-25 5125589 406530 100053
5 2017-08-11 3668198 281690 17531
6 2017-08-12 3937357 345382 17497
7 2017-08-13 4138175 329108 17155

Table 6.13: Days of DShield sets and their statistics.

As in Section 6.5.1, the parameter for the similarity threshold in GAC is set to τ = 0.25 to
require at least one of four attributes to be equal between two alerts. CPM is based on the clique
size k = 15 such that the smallest attack consists out of 15 similar alerts to filter false positive
alerts. The results in the following experiments represent the aggregation over all batches of the
specific day.

Although the following describes the outcome of the different stages, note that the results from
the real-world evaluation are regarding a full run of GAC, starting with IDS alerts from the
DShield data set as input and ending with the presentation of multi-step attacks in the attack
graph.

6.5.2.2 Clustering

The outcome of clustering has two properties that are important to evaluate. First, the alerts
that are not clustered and second, the grouping of the remaining into clusters. Table 6.14 shows
a classification for the assignment of alerts and the fraction of nodes per class. An alert with
assignment None was filtered and therefore not considered further. The assignment Multi is
specific for the CPM clustering and describes alerts that are grouped into more than one cluster.
Furthermore, Table 6.14 shows the number of clusters as well as the average size and standard
deviation among the clusters.

The low fraction of unassigned alerts shows that GAC encompasses almost all alerts in its
results. This is expected because the nature of distributed attacks causes a lot of alerts, whereas
a targeted attack like APT causes only few alerts which are distributed along a large time frame.
The large amount of clusters and the high standard deviation is because of the many different
clusters and shows that GAC is not limited to a specific form of clusters.
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Assignment Cluster Size
Set None Multi Clusters Avg Std

1 0.70% 9.33% 25111 195.83 776.88
2 0.84% 6.42% 31242 244.94 871.69
3 0.90% 7.33% 27235 228.02 836.50
4 0.71% 9.70% 29654 188.71 754.80
5 1.56% 21.22% 44664 98.62 459.29
6 1.37% 21.72% 49188 96.67 452.65
7 1.38% 19.67% 47289 103.78 477.97

Table 6.14: Clustering statistics for DShield sets.

6.5.2.3 Attack Scenario Identification

At this stage of GAC, each cluster is analyzed to detect the attack scenario. Table 6.15 describes
the median value that was used as certainty δ , its average value, and standard deviation. The
table also shows the fraction of clusters that are identified as OtO, OtM, and MtO.

Certainty Factor δ Scenario
Set Med Avg Std OtO OtM MtO

1 1.0 0.918 0.143 12.50% 20.75% 66.75%
2 1.0 0.911 0.147 14.53% 24.79% 60.68%
3 1.0 0.909 0.147 14.65% 22.63% 62.73%
4 1.0 0.923 0.140 11.37% 21.18% 67.45%
5 1.0 0.922 0.142 13.84% 18.37% 67.79%
6 1.0 0.930 0.137 12.32% 16.89% 70.79%
7 1.0 0.927 0.140 13.16% 17.56% 69.28%

Table 6.15: Scenario identification statistics for DShield sets.

The certainty factor δ in Table 6.15 shows that the majority of values is expected to be between
1 and 0.75. This allows a high confidence in the identification, as Section 6.5.1.3 indicated this
range to achieve good results in theory. This is also manually verified with a sample of labels.

Most of the time, clusters whose certainty in scenario identification is δ < 0.75 are caused by
alerts with same destination port. The alert flow graph then usually consists out of several
unconnected components, where groups of IPs appear to represent unrelated attacks without any
connection among them apart from the same destination port. When these clusters consist out of
small components with a few hosts each, they are tagged with OtO. If they additionally include
a large component of many hosts, this component usually follows the properties of OtM or MtO
and the cluster is tagged respectively.

No worm-like attacks, i.e., MtM, were observed during the experiment. Independent from the
existence of such an attack in the data set, it is not possible to detect it in the DShield data set.
This is because the hashed target IPs in DShield prevent to have consistent identifiers across
attacking and targeted hosts. However, GAC was able to label every cluster, and the majority of
scenarios (> 85%) were identified as OtM or MtO.
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Figure 6.14: CDF of similarity values during the multi-step detection in the DShield sets.

6.5.2.4 Multi-Step Detection

The last stage of GAC assembles multi-stage attacks, i.e., calculates the similarity of IP addresses
among the clusters to reveal relations between attacks. The result of this multi-step detection is
illustrated in Figure 6.14 in form of a cumulative distribution function (CDF) plot. It shows the
value distribution of the inter-cluster similarity. All sets show similar results, however, only the
day 1, 4, and 5 are included in the figure for demonstration purposes.

The inter-cluster similarity in the plot is in almost all cases either 1 or < 0.5. Any two clusters
rarely have a similarity ≥ 0.5 and < 1. So one can say that if two clusters have a high similarity,
i.e., above 0.5, it is most probably 1. Despite the low value of about 5% high inter-cluster
similarities, it shows that GAC can detect significant overlap in attacks with probably high
precision. This is especially useful as it eases human analysis by clearly pointing out these
multi-stage attacks. In the DShield data sets, high similarities are usually caused by clusters
that have both high similarity among attackers (simAA) and victims (simVV). Anyway, note that
potentially not all multi-step attacks could be detected because the hashed target IP addresses in
the data sets prevent to identify hosts that are both attacked and themselves attackers.

6.5.3 Summary of Graph-based Alert Correlation

An evaluation of GAC has been presented for the correlation of alerts from distributed and
multi-step attacks to concisely summarize the network-wide intrusion. Without the assembled
view of the alerts for representing the whole attack, the attack is probably underestimated and
cannot be mitigated effectively.

In the first evaluation part, GAC has been analyzed stepwise with specially crafted input for the
different stages in the alert correlation process to test their correct behavior. For the detection
of distributed attacks through alert clustering, the analysis results indicate that the clustering
parameter τ can be chosen from a much broader range compared to other state-of-the-art alert
clustering approaches. In particular, GAC shines at both filtering alerts that are not related to any
larger attack and isolating alerts from different attacks. This then exactly results in clusters that
contain only alerts that are all related to each other. Furthermore, the labeling of alert clusters
with their attack scenarios for the linking of attack steps has been tested. The simulation of false
positive alerts in clusters highlights the role of the classification certainty δ to express the trust
in the identification of a particular scenario. Any classification with more then 91% certainty
should be safe to be accepted, and even a certainty of 79% still yields very good results. Because
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of both the accurate alert clustering and scenario labeling, the interconnection of attack steps to
multi-step attacks seems very promising.

The outcome of the full multi-step detection by GAC on real-world data has been analyzed
in the second evaluation part. The alert clustering is able to assign about 99% of the IDS
alerts to a cluster. The remaining 1% are definitively not part of a larger attack. Apart from
those clusters that clearly follow the alert pattern of a distributed attack, some other clusters
exists that seem to have some chaotic collection of alerts. Even though these clusters do not
represent a distributed attack, they are likely to contain many false positives and unrelated alerts
that can be manually filtered all together at once. Such chaotic alert clusters might also be
filtered based on the scenario label or, more specifically, on the labeling certainty. Labeling the
real-world alert clusters achieves 92% certainty on average, which is within the range of correct
classifications according to the analysis results of the first evaluation part. The most prominent
scenario is Many-to-One (MtO). The results of the multi-step detection in the last step indicate
that GAC effectively leverages the scenario labels to precisely link attacks with overlapping IP
addresses.

In summary, GAC enables alert correlation for the detection of distributed and multi-step
attacks that potentially threaten the whole network. The evaluation has successfully tested GAC
regarding both its correct working and its applicability on real-world data. However, note that
GAC is supposed to cluster alerts from attacks with many alerts only, i.e., bulk attacks. Alerts
from more stealthy attacks are expected to be filtered. To still enable their detection, the next
section evaluates the continuous aggregation of filtered alerts.

6.6 Evaluation of Weak Alert Correlation

IDS alerts of APT and other stealthy attacks usually occur infrequently over a long time period.
Regular alert clustering probably fails to identify the relations among these weak alerts. For
that, weak alert correlation (cf. Section 5.2.2) works on top of other alert clustering approaches
that identify bulk attacks. In an online fashion, weak alert correlation consumes the stream of
unclustered alerts to aggregate them to APT-like attack steps.

This evaluation of the weak alert correlation investigates how the continuous aggregation of weak
alerts helps to identify slow and stealthy APT attacks. In particular, this evaluation analyzes to
which extent the APT characteristics network direction, alert frequency, and attack topology can
be incorporated and leveraged in the detection of APT attack steps.

This section revises parts of the supervised master thesis [Ort19]. The section first constructs an
APT scenario from real-world traffic data that is the running example to be detected throughout
this evaluation. In fact, this section applies the weak alert correlation in two different ways to
demonstrate its detection capabilities. For that, the second section evaluates the algorithm on
weak alerts that remain after regular alert clustering. The third section, alternatively, evaluates
the algorithm on the full and unfiltered alert set.

6.6.1 Scenario Construction

The evaluation of the weak alert correlation constructs an APT scenario from real-world attacks
and embeds this into a background data set with benign and other malicious traffic.
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APT Scenario The constructed APT scenario in this evaluation takes place in a small network
that is made up of a single network zone with 10 nodes, denoted as zone Intranet with an IP
subnet of 172.16.0.0/24. Figure 6.15 illustrates the individual steps of an APT attack performed
over seven days. It starts with the Internet host 10.99.99.8 that uses a remote code execution
vulnerability based on EternalRomance. Afterwards, 172.16.0.1 is controlled by the attacker
and requests another piece of malware from 10.99.99.189. The malware persists. Two days
later, the infected node engages in command and control (C2) with 199.231.188.109. Another
two days later, 172.16.0.1 uses PS-EXEC – a tool for legitimate Windows remote administration
– to move laterally to 172.16.0.5 via the Server Message Block (SMB) protocol. Finally, on
the last day of observation, the newly infected node 172.16.0.5 attacks a third internal node
(172.16.0.10) with an SQL injection (and web injection) attack.

  

IP: 172.16.0.1

IP: 172.16.0.5

IP: 172.16.0.10

IP: 10.99.99.8

IP: 10.99.99.189

IP: 199.231.188.109

(1) EternalRomance RCE

(2) Trojan Download(3) Cosmic Duke C&C
(4) PS-EXEC via SMB

(5) SQL & Web Injection

InternetIntranet (10 hosts)

Figure 6.15: Attack steps of the constructed APT attack.

Mixing Data Traffic The traffic data set is based on the CSE-CIC-IDS2018 data set of the
University of New Brunswick4. Hosts in their data set run different operating systems and
establish connections to the Internet using well-known applications and protocols. This set
contains full packet payloads and also already includes some noisy attacks such as brute-force
password guessing or (D)DoS. Out of their set, the incoming and outgoing traffic of 40 monitored
IP addresses is extracted. In addition, some of these systems are consolidated by rewriting IP
addresses such that the resulting data set ended up with an Intranet of 10 communicating
machines. This data set is used for background traffic and noise.

On top of this traffic base, specific attack steps for the reflection of the APT scenario is embedded.
The PCAP data for the attack steps have been taken from the CSE-CIC-IDS2018 data set of
the University of New Brunswick (Web Injection), from ericconrad.com5 (shadow broker’s
EternalRomance and Trojan Download), the Data Exfiltration Malware samples from the

4. https://www.unb.ca/cic/datasets/ids-2018.html
5. https://www.ericconrad.com/2017/04/shadowbrokers-pcaps-etc.html
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University of Twente6 (Cosmic Duke C2), and from github.com/401trg7 (PS-EXEC). The final
data set, i.e., the mix of background traffic and the APT attack steps, results in a total of 7.7 GB
of PCAP data.

Generating IDS Alerts The Zeek IDS was used to analyze the final PCAP data. The analysis
with Zeek lead to 250,521 IDS alerts. Table 6.16 shows those IDS alerts that belong to the
known attacks – the ground truth in this experiment. As Zeek has no detection scripts for the
specific attacks in the ground truth, this evaluation enables some of them to be detected by
custom scripts. However, neither the EternalRomance exploit nor the C2 traffic triggered any
alerts in Zeek. Nevertheless, as the alert prefix indicates, relevant alerts have been generated by
the custom scripts.

Attack IDS Alert Type # Alerts
EternalRomance RCE 0
Trojan Download Conn::Content_Gap 16

Custom::Windows_Executable_Download 1
Cosmic Duke C2 0
PS-EXEC via SMB Custom::SMB_Executable_File_Transfer 1
SQL & Web injection Custom::Javascript_Web_Injection_URI 73

Custom::SQL_Web_Injection_URI 20
Custom::Web_Login_Guessing 7

Total 118

Table 6.16: Ground truth in the 250,521 Zeek IDS alerts.

Furthermore, DECANTeR analyzed HTTP sessions in the PCAP data specifically for the
detection of C2 traffic. Based on the http.log file produced by Zeek, the first 10,000 lines are
used for training and the remaining 97,013 lines are used to detect 34 HTTP anomalies in total.
One of them in fact describes the malicious C2 traffic as part of the APT attack.

Generating Meta Alerts and Weak Alerts Traditional alert correlation is used to correlate
the alert corpus and to filter weak alerts. For that, GAC has been leveraged as correlation
function K and parameterized it with a batch size of 5000 and a minimum cluster size of k = 15
(cf. Section 6.5). It produced a total of 370 meta alerts. The correlation yields interesting results.
GAC itself was already able to correlate one of the attack steps correctly. It clustered those 17
IDS alerts that belong to the trojan download into one single meta alert. However, GAC
also made mistakes. It produced two meta alerts, which both contain some of the alerts that
belong to the web injection attack. Moreover, these two meta alerts even have different
alert types. One meta alert is correctly clustered as type one-to-one, the other meta alert, however,
has the type one-to-many and groups two different victims. Hence, that meta alert groups true
positive IDS alerts together with false positives. Lastly, GAC clustered some IDS alerts twice
as part of different meta alerts. Table 6.17 summarizes the results of the GAC correlation. In
addition, it includes the C2 pattern alert reported by DECANTeR.

6. https://www.utwente.nl/en/eemcs/scs/downloads/20171127_DEM/
7. https://github.com/401trg/detections/tree/master/pcaps
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Attack Number of Algorithm
Attackers Victims Alerts

EternalRomance RCE 0
Trojan Download 1 1 17 GAC
Cosmic Duke C2 1 1 1 DECANTeR
PS-EXEC via SMB 0

SQL & Web injection
1 1 49 GAC
1 2 47 GAC

Total 114

Table 6.17: Ground truth in the 404 IDS meta alerts

The correlation with GAC left 1,593 IDS alerts uncorrelated that are consequently marked
as weak. Ten of them are related to the ground truth attacks. In particular, one alert of
type Custom::SMB_Executable_File_Transfer is related to the PS-EXEC via SMB attack.
The remaining nine alerts belong to the SQL & Web injection, that consist out of seven
Custom::Web_Login_Guessing and two Custom::Javascript_Web_Injection_URI alerts.

6.6.2 Weak Alerts Evaluation

The remaining 1,593 alerts are now subject to correlation of weak alerts. Those alerts were
filtered by GAC clustering, transferred to host- & zone-communication graph (HZCG), extracted
as neighbor groups, and continuously accumulated to aggregations across 51 alert batches.
Resulting aggregations exist for three different directions:

• Internet→ Intranet (incoming attacks)

• Intranet→ Internet (outgoing attacks)

• Intranet→ Intranet (internal attacks)

The aggregations for the third direction, i.e., for internal attacks, contain exactly the ten alerts
that belong to the SQL & Web injection and the PS-EXEC via SMB attack. In fact,
two aggregation objects exist, one for each attack. The results of generating weak meta alerts
for this direction leads to accurate results as illustrated in Table 6.18.

Attack Label Attackers Victims # Alerts
PS-EXEC via SMB OtO 172.16.0.1 172.16.0.5 1
SQL & Web injection OtO 172.16.0.5 172.16.0.10 9

Table 6.18: Weak meta alerts for direction Intranet→ Intranet.

Of more interest for clustering aggregations of weak alerts with DBSCAN are the other two
directions (Internet→ Intranet and Intranet→ Internet), as they together count
1,583 weak alerts. However, they include no alerts of the ground truth attacks, so their accuracy
cannot be evaluated here. Instead, this experiment reports the final outcome of generating weak
meta alerts for all three directions.

During correlation of weak alerts, the aggregations are updated continuously. They are indepen-
dent from the clustering, and they caused overhead of 7.84 and 8.90 seconds in the experiment
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among 32 runs. The measured time includes database queries and updates. Although the
clustering depends on the parameters min_pts and eps, the clustering overhead with DBSCAN
for the final aggregations at the end of the experiment was almost constant between 0.06 and
0.08 seconds across 32 different parameter combinations.

This experiment furthermore analyzed the number of weak meta alerts depending on the cluster-
ing parameters, in particular for min_eps ranging from 1 to 10 and eps ranging from 0.1, i.e.,
less than 1, to 100. With higher eps, neighbor IP addresses with larger differences in alert count
are grouped together, resulting in less clusters. A high value of eps = 100 dominates over the
analyzed parameter range of min_pts and leads to between 134 and 139 weak meta alerts. In
contrast, when choosing a low value for eps = 0.1, the influence of min_pts becomes effective.
The resulting number of weak meta alerts then goes from 363 when min_pts = 1 to 152 when
min_pts = 10.

This experiment indicates that filtering weak alerts and correlating them to weak meta alerts
indeed points to APT steps that otherwise would go unnoticed. This is crucial for the detection
of APT attacks as traditional alert correlation was shown to either neglect weak alerts at all (for
the PS-EXEC via SMB attack), or falsely correlate them with unrelated alerts (for the SQL
& Web injection).

6.6.3 Unfiltered Alerts Evaluation

In the previous experiment, the correlation performed on weak alerts. Intuitively, this approach
relies on the traditional correlation function K to detect any obvious and high-volume attacks
and to filter alerts as weak that do not seem to belong to those attacks. Although designed
for the correlation of weak alerts, the correlation is potentially able to correlate also unfiltered
alerts. Thus, the experiment here evaluates if the correlation of weak alerts is still possible
when performing on the whole alert set that includes the weak ones. This is relevant if the
correlation function K leaves many false positive weak alerts that have to be compensated by
the correlation.

In this experiment, the weak alert correlation processes the original 250,521 alerts from the Zeek
IDS. To avoid the few weak alerts from the APT attack to falsely be identified to be related with
some of the other alerts, the DBSCAN clustering (cf. Section 5.2.2.3) is set particularly strict.
Using the parameters minpts = 1 and eps = 0.1 generates 4,218 weak meta alerts. Although the
complete correlation took 11.8 minutes, it still processes the whole alert set faster than using
GAC as correlation function K .

Attack Label Direction Attackers Victims # Alerts

Trojan Download OtM
Intranet

172.16.0.1
10.99.99.189,

34→ Internet 23.218.54.7

PS-EXEC via SMB OtO
Intranet

172.16.0.1 172.16.0.5 1→ Intranet

SQL & Web injection OtO
Intranet

172.16.0.5 172.16.0.10 100→ Intranet
. . .

Table 6.19: Weak meta alerts that reflect an APT step.
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Three of the generated weak meta alerts for the whole alert set correspond to actual attacks in
the ground truth. They are shown in Table 6.19. The weak meta alerts for the PS-EXEC via
SMB attack and the SQL & Web injection accurately identified the respective alerts. Ac-
cording to the weak meta alert for the Trojan Download, the internal IP address 172.16.0.1
connected to two victims on the Internet during the attack. But the ground truth reveals that
the Trojan was actually downloaded from only one of these IP addresses. However, in total two
APT steps are accurately identified and a third one contains some false positive alerts.

In summary, the weak alert correlation also works on the complete alert set in general. This
is indicated by the high sensitivity in this experiment, as the correlation was able to find the
three APT steps for that Zeek IDS alerts exist. However, applied to the complete alert set, the
correlation potentially results in an enormous number of weak meta alerts unrelated to APT
attacks.

6.6.4 Summary of Weak Alert Correlation

An evaluation of weak alert correlation has been presented for the detection of slow and stealthy
attack steps. These steps would be filtered by other alert clustering approaches because of the
low and temporally dispersed alert volume.

The weak alert correlation has been evaluated using a running APT example with five steps
over seven days, assembled from real-world traffic data. The Zeek IDS analyzed the traffic
and reported 250,521 IDS alerts. Afterwards, regular alert clustering of the GAC approach (cf.
Section 6.5) first processed them into 370 meta alerts, leaving 1,593 alerts unclustered. Some of
the meta alerts already correspond to APT attack steps but two remained undetected. Working
with the unclustered alerts, the weak alert correlation algorithm successfully detected these two
remaining steps among the weak alerts. Especially the separation of network zones effectively
make the generated weak meta alerts point to the crucial APT attack steps. But also applied to
all alert data, the algorithm identified these two attack steps and one additional with some false
positives. However, the correlation should be applied to weak alerts only to avoid a high number
of false positive weak meta alerts.

In summary, reconstructing APT attacks requires to apply general intrusion detection and
traditional alert correlation in the first place. Although the weak alert correlation algorithm
alone can identify attack steps, it generates significantly more weak meta alerts compared to
applying it to weak alerts only. Anyhow, the algorithm seems to appropriately complement
traditional algorithms that fail to correlate alerts from stealthy attack steps. In contrast to the
weak alert correlation that assembles temporally dispersed alerts, the collaborative detection by
attack scenario for the detection of spatially dispersed attacks is evaluated in the next section.

6.7 Evaluation of Collaborative Attack Correlation

In case the local IDS alerts cover only a fraction of the full attack, a collaborative exchange of
alert data with other IDSes might be required to merge respective alerts for establishing a view
on the whole attack. To achieve an efficient identification of similar or potentially equal attacks
in the first place, the motif-based correlation approach in Section 5.3.2 fingerprints the attacks’
scenario regarding the relations among the hosts and the usage pattern of ports. By comparing
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attacks and identifying matching attack scenarios on the basis of this small fingerprint, the set of
exchanged IDS alerts is reduced to a smaller selection.

This evaluation of the motif-based attack correlation analyzes to which extent the motif-based
scenario fingerprint can preserve the characteristics of the attack scenario. Furthermore, the
evaluation investigates the benefits of this fingerprint regarding the reduction of the exchanged
data volume in a collaborative detection setup.

This section revises of the conference paper [HWF19]. The section first evaluates the applicabil-
ity and correctness of the motif-based fingerprint to identify similar attacks. Afterwards, this
section evaluates the applicability for collaborative attack correlation on real-world data.

6.7.1 Classification Evaluation

This first evaluation part investigates the most important properties of the motif-based classi-
fication. It particular, the motif-based abstraction of attacks is required to be small and the
fingerprinting of attacks to be characteristic for their scenarios. The fulfillment of the first
requirement is given, because the data volume, i.e., size of all alert data can be magnitudes larger
than the size of motif signatures. Thus, the following experiments investigate if a single motif
signature is representative for all variants of an attack scenario. For that, motif signatures have
to be very similar for attacks of the same attack scenario, denoted as intra-class-similarity. In
addition, the inter-class-similarity denotes the similarity between attacks from different attack
scenarios. It is required to be low such that different attack scenarios can be distinguished.

6.7.1.1 Scenario Data

Although the correlation algorithm operates on alerts, it is important to notice that the algorithm
works with abstractions of attacks, i.e., meta alerts. Hence, the input to the correlation algorithm
are alerts of specific attacks or alert clusters, respectively. To create synthetic attack data, this
experiment generates alerts for a six different attack scenarios, each of them defining a pattern
for the data generation. An instance of an attack is determined by its attack pattern and its
attack size. The values for IP and ports are randomly chosen from the full IP and port range,
respectively.

Attack Patterns The attack pattern in the experiments here fulfill two purposes: 1) Generating
synthetic alerts of attacks for the evaluation of scenario classification and 2) defining reference
scenarios used during classification. The names and characteristics of the six attack scenarios
are as follows:

• A distributed denial-of-service (DDoS) attack is characterized by alerts that all share
the same destination IP and port. Thus, multiple attackers target a specific host and
service. This attack is parameterized by α alerts that are generated on average per attacker.
Attackers use random source ports, which are reused in subsequent alerts with a probability
p.
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• A Scan attack is characterized by alerts that share the same attacker IP. Random source
ports are used to scan for the same destination port on multiple target machines. On
average α alerts are generated per target and the attacker reuse a source port with a
probability p.

• A distributed scan (D-Scan) is similar to a Scan attack but with both multiple attackers and
targets, e.g., when a Scan is coordinated by a botnet [Haa+16]. Then, tasks for scanning
all targets are split among the attackers. Characteristic for this scenario is the ratio of
attackers to targets, denoted as θ . Additionally, targets might be scanned multiple times,
i.e., from multiple attackers. In this case, α alerts are generated per target.

• A Worm attack is characterized by alerts that all share the same destination port. Addi-
tionally, all hosts are attackers and target randomly µ of other hosts via random source
ports.

• An exploration (Expl) attack is characterized by a single attacker that targets f hosts.
Each compromised host serves as source for attacks on further hosts. Each compromised
host targets f new hosts and all source and target ports are random.

• The pattern of a convergence (Conv) attacker is the opposite of an Exploration attack.
The actual target is attacked by f hosts that themselves are attacked by f hosts and so on.

These six attack patterns are parameterized during the experiments as follows. Per source
or target, α = 1.5 alerts are generated. Ports are reused with a probability p = 50% where
appropriate. In case of lateral movement in a network, it is done with a spread factor of f = 5,
which means that in each step a new compromised host targets 5 new hosts. If a scenario is
characterized by multiple attackers and targets, their ratio is θ = 0.5, which means the same
amount of attackers and targets. In the case of the worm scenario, each host attacks µ = 10% of
the other hosts.

Attack Variations In reality, not all attacks of the same attack scenario are equal with respect
to their alerts. Of course, they differ in the actual IPs and ports. The concrete values, however,
are not visible anymore in the motif signature of the attack. More interesting is the variation
in the attack size. Also, clustered alerts of an attack can contain false positives which causes
variations in the alerts of an attack.

In particular, attack variations are caused by generating attacks of different size, i.e., the
population ψ , which is the number of hosts involved in the attack. The attack patterns define
how many of the individual hosts are attackers, targets, or both. For example, in a DDoS attack
of size 100, there would be one target and 99 attackers.

Anyhow, different data sets including attack variations are used throughout the evaluation of
scenario classification. The data sets consist out of the alerts from particular attack instances,
i.e., an instantiated attack pattern of a particular population size. Note, however, that two
instances are probably never equal since the alert generation based on the pattern introduces
some randomness.
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6.7.1.2 Similarities of Scenario Classes

The first experiment investigates the intra-class similarities and inter-class similarities for attacks
of the same size ψ = 100, i.e., number of hosts. For that, the data set is made up of 1000 attack
instances for each of the six scenarios defined in Section 6.7.1.1. Then, the similarity among the
attacks is measured. Please note that the attack patterns themselves inherent some randomness,
so that two attacks of the same scenario differ in their alert data even if they are of equal size.
Apart from different IPs and ports, the relation for who of the attackers target whom of the
victims is chosen differently every time an attack instance is generated. More randomness is
introduced, because of the generation parameter α = 1.5 multiple alerts are generated for some
attackers, which also differs every time.

Lowest Intra-Class Highest Inter-Class
Similarity [%] Similarity [%] (with)

DDoS 99.64 78.77 (Worm)
Scan 99.29 73.58 (Worm)

D-Scan 88.26 73.42 (Conv)
Worm 89.98 78.77 (DDoS)
Expl 92.65 73.00 (D-Scan)
Conv 91.52 73.42 (D-Scan)

Table 6.20: Similarities for attacks with 100 hosts for six scenarios, both for the same and for
different scenarios.

Table 6.20 measures how different attacks from an individual scenario might be, i.e., the lowest
intra-class similarity. The highest variation is measured among the D-Scan attacks (lowest
similarity of 88.26%) and the most similar attacks from the same scenario are the DDoS and
Scan attacks, each with a similarity of more than 99%. The table also measures the inter-class-
similarities and reports the highest similarities per scenario in Table 6.20. There are some
attack scenarios that share characteristics. The worm is similar to DDoS and Scan with 78.77%
and 73.58%, respectively. The D-Scan is similar to Expl and Conv with 73.00% and 73.42%,
respectively.

As the lowest intra-class similarity is always higher than the highest inter-class similarity, motifs
are an appropriate abstraction for alert data to preserve the characteristics of attack scenarios.
For attacks of the same size, the results indicate that the approach can correctly classify attack
scenarios, both in sense of identifying the correct reference scenarios and detecting scenarios in
unsupervised clustering.

6.7.1.3 Scaling with Attack Size

Apart from the question if the intra-class-similarity is always higher than the inter-class-similarity,
the influence of the size of an attack is of interest. This is important because attacks can greatly
differ in their sizes, i.e., number of hosts ψ . The motif-based classification is required to detect
the attack scenario for an attack with 100 hosts but also for an attack with 1000 hosts. For that,
the next experiment generates attacks for the six attack scenarios described in Section 6.7.1.1
with different attack sizes. For the generated attacks, the intra-class similarity or the inter-class
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similarity is calculated pairwise, respectively, depending on if two attacks are from the same
scenario or not. This experiment calculates these similarities for different data sets that differ in
the range of population sizes. The population parameter ψ controls the range between the size
of smallest and largest attack, i.e., how different the attacks are with respect to their size. The
smallest attacks always encompass 100 host and the largest attacks are of sizes in the range of
100≤ ψ ≤ 1000.
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Figure 6.16: Distance between highest inter-class-similarity and lowest intra-class-similarity
for attacks of several sizes. The range for attack sizes is [100;ψ] and the similari-
ties depend on the upper bound ψ .

Figure 6.16 plots the similarities depending on the attack sizes, i.e., when increasing the range
of attack sizes in steps of 100. On the x-axis is the upper bound of the population size ψ ,
meaning a value on the y-axis depending on a specific ψ plots the similarities among attacks
of sizes [100;ψ] in steps of 100. On the y-axis is the lowest intra-class-similarity and highest
inter-class-similarity among all attack scenarios. As long as the first curve is above the second
one, it is possible to correctly classify the attacks in the respective data set. The gap between
both curves indicates the potential range to choose the classification parameter τ from to achieve
correct classifications. The results indicate that the motif-based abstraction can preserve the
attack characteristics mostly independent from the attack size. For attacks of size 100 only, the
width of the range for τ is 0.18. When clustering data sets that contain attacks of sizes between
100 and 1000, the width slowly decreases to 0.13. With respect to attack sizes between 100
and 1000 and with respect to the six attack scenarios in this experiment, the average value of τ

should be about 0.83 +/- 0.07.

6.7.1.4 Learning new Scenario Classes

Another question, especially regarding how to choose τ , is how the accuracy of learning new
scenarios depends on general knowledge of attack scenarios. While the unsupervised algorithm
(cf. Section 5.3.2.3) can detect and characterize new scenarios, it is a matter of operating the
attack clustering with an appropriate value for τ , not of specific previously defined reference
signatures. For different choices of setting τ , this experiment shows how deriving unknown
scenarios performs.

Although this evaluation defines six network-wide attack scenarios only, the motif-based classifi-
cation is not limited to them. As the attack abstraction enables the identification and comparison
of structural characteristics of attacks, the classification can potentially learn any new scenarios
as long as they sufficiently differ in their communication structure. Another potential goal is to
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(a) Based on lowest Intra-Class-Similarities.
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(b) Based on highest Inter-Class-Similarities.

Figure 6.17: Evaluation of attack clustering and classification for attacks of sizes between
100 and 1000. The clustering similarity τ and the resulting classification metrics
depend on the selection of known scenarios as start knowledge.

divide known scenarios into more fine-grained ones, i.e., differentiate a reflection DDoS from
a DDoS performed by a botnet. However, for simplicity this evaluation only defines the six
generic network-wide scenarios here and leaves more (fine-grained) scenarios to future work.

According to the results from the previous experiment (cf. Section 6.7.1.3, the more τ is towards
the upper bound of the possible range, the definition of attack scenarios becomes more strict.
This results in a higher probability for false negatives in classifications in case the attacks of a
new scenario have a higher variation than the previously known ones. However, a high τ also
ensures precise classifications by reducing false positives in classifications in case the attacks of
a new scenario share characteristics with a previously known one. If τ is set towards the lower
bound of the range, there is a higher chance that attacks will be correctly classified although
they look different than expected by the attack scenario. In turn, this increases the likelihood of
false positives.

To investigate these expectations, the experiment here uses the same data set as in Section
6.7.1.3, containing attacks from the six scenarios with 100 to 1000 hosts. However, to investigate
the learning of new scenarios, this experiment simulates a restricted start knowledge regarding
the number of known scenarios, before applying unsupervised learning and evaluating the
accuracy of the classes. This is repeated for each combination of 1 to 6 scenarios, for each
combination measuring the lowest intra-class and highest inter-class similarities as in Table 6.20
and then determining the highest and lowest possible τ for the attack scenarios as in Figure
6.16. As there are multiple possible combinations of scenarios per number of scenarios, Figure
6.17 plots the minimum, maximum, and average value for the TPR, FPR, and accuracy of
classification. As τ is based on the lowest known intra-class similarity in Figure 6.17a, attacks
from all remaining scenarios will definitively go to another class, i.e., a lower TPR is accepted
but therefore minimizing the FPR for learning new scenarios. In contrast, Figure 6.17b is based
on the highest known inter-class similarity, which maximizes the TPR but accepts a higher FPR
in return. Thus, choosing τ from the higher or lower boundary of possible range balances the
ratio between expected TPR and FPR.

The results here for unsupervised clustering describe the worst-case performance of attack
classification. For signature-based classification (cf. Section 5.3.2.2), attacks are only required
to be more similar to the reference signature of their respective scenario than to the reference
signature of a different scenario.
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6.7.2 Real-World Evaluation

After analyzing the scenario classification on artificial data for which ground truth exists, the
motif-based classification is applied on real-world data for the detection of attack scenarios.
During this real-world evaluation, the set of reference scenarios consists out of one attack with
100 host for each of the six attack scenarios in Section 6.7.1.1. However, this evaluation here
looks at both classifying real-world attacks with the help of reference scenarios and detecting
scenarios with unsupervised clustering to compare them.

As the results of Section 6.7.1 indicate that the similarity threshold should be τ ∈ [0.76;0.9], the
respective range for τ is marked on the x-axis in all following figures. Choosing τ from this
range is a prerequisite to distinguish attacks from the six reference scenarios.

6.7.2.1 Real-World Data

The real-world evaluation is using real-world data from the Internet Storm Center8 that operates
DShield9, which is a platform for sharing data from security devices, e.g., from firewalls.
The DShield logs consist of alerts from multiple sensors around the globe. The real-world
experiments here are using all alerts collected on August, 22th in 2016. These are 4,517,497
alerts in total and are a result of several attacks.

As motif-based scenario classification works on attacks, i.e., on alerts of the same attack,
the DShield alerts are first grouped into clusters. For that, the alert clustering from GAC (cf.
Section 6.5) is used that clusters alerts based on attribute similarity. In contrast to other clustering
approaches, e.g., [ZLK09; Jul03], GAC does not enforce clusters with static attribute patterns.
Instead, it identifies cliques of alerts that form a community, which allows a high diversity in the
alert clusters and therefore in the attack scenarios. Clustering algorithms with static attribute
patterns in contrast, would not be able to produce alert clusters for certain attack scenarios.
Applying GAC clustering with a minimum similarity of 0.25 in between alerts and a clique size
of 15 on the DShield data results in 34,204 clusters. They compose the data set of this real-world
evaluation.

6.7.2.2 Efficiency of Motif Signatures

An efficient data structure with low overhead for the abstraction of attacks is necessary when
sharing attack information and processing them in a distributed manner [Loc+05; YBJ04].
To evaluate the compression rate of the motif signatures for covering this requirement, this
real-world experiment measures the data size of different potential sharing scenarios, i.e., alert
representation structures, for the 34,204 attacks in the DShield data set.

For this evaluation of the compression rate, the experiment simulates the data exchange among
the nodes in a CIDS if they would share their alert data. For that, the results indicate the data
volume an individual node would send to others, when the locally monitored traffic equals the
real-world data set.

8. SANS Technology Institute, Internet Storm Center, https://isc.sans.edu
9. https://secure.dshield.org
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Figure 6.18: Classification of attacks using reference scenarios depending on similarity
threshold τ .

Table 6.21 lists the data sizes for the alert data when exchanged with all attributes, with IP
address and port only, and when only exchanging the motif signatures of attacks. Using the
motif signatures to identify similar attacks, the size is reduced to 1.12% of the full alert data and
1.43% of the alerts with relevant attributes only.

Exchanged Data Data Size
Alerts with all attributes: 449 MB
Alerts with IP/Port only: 352 MB
Motif signatures of attacks: 5.1 MB

Table 6.21: Comparison of exchanged alert volumes.

6.7.2.3 Signature-based Classification

This experiment utilizes reference-based clustering to classify attacks in the DShield data set
using the reference signatures from Section 6.7.1.1. The attacks are assigned one of the six
reference scenarios based on the similarity threshold τ . For the attacks that could not be identifies
as a reference scenario, unsupervised clustering classifies them, which results in additional
classes, i.e., unknown attack scenarios.

Figure 6.18 shows the performance of the reference-based classification depending on τ . Fig-
ure 6.18a in particular illustrates how many attacks or scenarios have been classified or detected
with the help of reference scenarios. For that, the curve labeled attacks plots the portion of the
34,204 attacks that have been assigned to one of the six reference scenarios. For a similarity
threshold τ ≤ 0.5, all attacks are assigned a reference scenario. For larger τ , the attacks have to
match the reference scenarios more closely. It is likely that the attacks obtained from the DShield
data set come with false positive alerts. Therefore, these attacks cannot be assigned a reference
scenario when close matches with the reference scenarios are required. Furthermore, the data
set can contain attacks that are not covered by the six reference scenarios and will therefore
not match any of them. In the marked range of τ , however, the signature-based classification
identifies at least 76% and up to 96% of the attacks in the DShield data set.
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Figure 6.19: Identifying scenarios with reference-based and unsupervised classification
depending on similarity threshold τ .

Furthermore, Figure 6.18a investigates the relation between the number of scenarios detected
through reference-based clustering and the number of scenarios detected through unsupervised
clustering of the remaining attacks. This plot also illustrates the portion of the total detected
scenarios that are identified with the help of a reference scenario. In the marked range of τ , they
are between 4% and 26%.

Figure 6.18b shows the distribution of reference scenarios among the identified attacks. The
portions of the scenarios are stacked, so the aggregation of all six scenarios is 100%. As expected
from a real-world data set, the most predominant attack scenarios are DDoS pattern with in
between 60% and 69% as well as Scan pattern with in between 29% and 31%. Although for
each of the six reference scenarios there is at least one attack identified in the marked range of
τ , note that not all reference scenarios can technically show up in the DShield data set. This
is because the destination IP addresses are hashed and therefore it is not possible to observe
attacks in which an individual host is both, an attacker and a victim. This excludes the scenarios
worm, expl, and conv. Considering this technical restriction, the conclusion is that in practice a
large similarity threshold τ ≤ 0.9 should be chosen to avoid an unacceptable amount of false
positive classifications.

6.7.2.4 Unsupervised Clustering

The last experiment evaluates the unsupervised clustering of the complete DShield real-world
data set. For that, hierarchical clustering (cf. Section 5.3.2.3) is applied on the DShield attacks.
Figure 6.19 reports the analysis of resulting classes depending on the similarity threshold τ .

Figure 6.19a counts the number of detected scenarios for unsupervised clustering on a log-scale.
Within the marked range of τ , this results in between 33 and 174 clusters. Defining scenarios by
higher similarities, i.e., τ , larger than 0.9, rapidly increases the number of scenarios and should
only be used for fine-grained scenarios. In particular, two curves are plotted. The one labeled
as All Attacks is the results for unsupervised clustering on the whole data set. In comparison,
the curve labeled as Remaining Attacks refers to the results of unsupervised clustering on the
attacks with unknown scenario from the previous experiment in Section 6.7.2.3. Altogether,
both numbers of detected scenarios indicate that only searching for the six reference scenarios is
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not enough. Instead, it is important to also apply unsupervised clustering at least on attacks for
which no reference scenario can be assigned.

Furthermore, this experiment compares the results of reference-based and unsupervised clus-
tering. The motivation is to find out for which value of the clustering parameter τ the two
methods give consistent results. As no ground truth exists, two metrics are defined to measure
the similarity between the reference clusters Cr

i ∈ Ĉr for respective reference signatures Rr
i ∈ R̂r

and the unsupervised clusters Cu
i ∈ Ĉu:

• The metric Equivalent indicates how close candidates among the unsupervised clusters
Cu

i ∈ Ĉu match the reference clusters Cr
i ∈ Ĉr. For that, the experiment finds the best

candidate cluster Cu
i for every reference cluster Cr

i based on the Jaccard index, i.e.,
intersection over union, which is calculated by |C

u
i ∩Cr

i |
|Cu

i ∪Cr
i |

. An unsupervised cluster Cu
i can be

matched to at most one reference cluster Cr
i . The metric represents the average Jaccard

metric for the best matches among all reference clusters Ĉr.

• The metric Homogeneity indicates the average accuracy for clusters Cu
i ∈ Ĉu that include

at least one attack identified by the reference-based classification. In each of these clusters
Cu

i , among all contained attacks, the experiment measures the fraction of attacks from the
scenario that is present in the cluster most frequently. The metric represents the average
homogeneity among all these clusters weighted by their sizes.

Figure 6.19b shows the comparison between signature-based clustering and unsupervised
clustering according to the metrics Equivalent and Homogeneity, depending on the similarity
threshold τ . For the marked range of τ , the Homogeneity is between 87% and 97% and the
Equivalent is between 56% and 72%. According to the experiment results of Section 6.7.2.3, a
similarity threshold τ close to 0.9 seems to be reasonable. Although the highest Homogeneity is
achieved for τ = 0.81, which is in the lower half of the possible values for τ , the Homogeneity
at τ = 0.9 is still at 91%. However, note that between 0.81≤ τ ≤ 0.9 the metric Homogeneity
drops to 87%. This drop correlates with the changes of the proportions among the different
attack scenarios in Figure 6.18b. From that perspective, τ = 0.9 would be recommended to find
attacks for the six scenario classes.

The two metrics Homogeneity and Equivalent for comparing signature-based clustering and
unsupervised clustering indicate the following. Clustering attacks from unknown scenarios
is done with high uncertainty. While unsupervised clustering is able to differentiate between
attacks from different scenarios, it will not be able to perfectly classify a high variability of
attacks without any previous knowledge. Hence, it is a good approach to provide as much
reference scenarios as possible and to use unsupervised clustering to learn new attack scenarios
and to create reference scenarios in a semi-supervised fashion.

6.7.3 Summary of Collaborative Attack Correlation

An evaluation of motif-based scenario classification has been presented for the collaborative
identification of similar attacks. Instead of sending all alert data to every other node in a CIDS,
the nodes can already identify candidates for attack matches based on comparing the motif-based
scenario fingerprints of the attacks. Afterwards, nodes would still need to exchange raw IDS
alerts, however, they can limit themselves to those alerts that belong to a potential match.
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The correctness of classifying the attack scenario using the motif-based attack abstraction has
been demonstrated by six attack patterns of network-wide attacks. The comparison of intra-class
and inter-class similarities, i.e., similarities of attacks from the same or different scenarios,
indicates that clustering attacks by their scenarios works, even for small attack variations that
probably occur in real world. In particular, the analysis of classifying artificial attack data results
in the recommendation to choose the clustering parameter τ in between 0.76 and 0.9.

The evaluation of the approach on real-world data details the analysis results. It further inves-
tigates the influence of the clustering parameter τ on the detected scenarios. In particular, the
best performance could be achieved when clustering attacks with a similarity of around 90%.
Apart from that, the experiment results highlight how to start with known attack scenarios and
learn new attack scenarios in a semi-supervised fashion. It is best to start with as many reference
scenarios as possible and to add scenarios from unsupervised clustering only when confirmed
manually.

In summary, the motif-based scenario classification eases the comparison of large amounts of
alert clusters. Converted into motif signatures, they are of small sizes and thus can be compared
very fast. With the help of this abstraction, the approach identifies known attack scenarios,
detects similar attacks, and can even learn about new attack scenarios.

6.8 Summary of Evaluation

This chapter has conducted a detailed evaluation of intrusion detection measures and algorithms
that perform security monitoring and alert correlation. For the fulfillment of the requirements
from Section 3.1, especially the detection accuracy, the measures are combined in a way such
that they together detect various kind of network-wide attacks and summarize them in a concise
intrusion report. For that, Section 6.1 has discussed the order in which the different measures
and algorithms have to be placed during the data processing for interoperability reasons and to
achieve effective intrusion detection. The evaluation of the partial measures and algorithms has
been given in the subsequent sections.

The evaluation results of zeek-osquery in Section 6.3 indicate that network intrusion detection
and in particular the security monitoring can leverage the fine-grained correlation with additional
monitoring data from hosts. The result is an extended visibility through linking network flows
with process information that enables insights into the semantics of network communication
on the hosts. On that basis, zeek-osquery running in a testbed successfully detected and
reconstructed the execution of malicious Internet files or SSH stepping-stones and made the hosts
to assist in analyzing encrypted traffic. The underlying correlation platform is general purpose
anyhow, and designed to scale even with large networks. This has been confirmed by stress tests
in another testbed setup. Apart from that, a small real-world deployment has demonstrated the
host-network correlation. The achieved network visibility through the attribution of network
flows performs better by factor 1406 compared to other state-of-the-art approaches and reaches
an attribution rate of over 96%. All these experiment results indicate that security monitoring
with zeek-osquery leads to high-quality monitoring data.

Section 6.4 has evaluated another approach for intrusion detection on correlated monitoring data
that requires network data only. Specifically for network- or Internet-wide attack scenarios, the
relations and similarities among network flows are exploited to detect the scenarios’ characteris-
tics in the relations among communicating hosts. This has been demonstrated for the scenarios
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distributed scan campaign and P2P botnets. Their detection is performed on the monitoring
data from the network only. The evaluation of detecting scan campaigns in Section 6.4.1 has
analyzed real-world Internet traffic for global campaigns. In addition to the detection results
from backbone level, smaller networks have been simulated to compare their detection accuracy.
Similarly, the botnet detection accuracy from the perspective of networks with different sizes
has been compared. For that, Internet hosts have been simulated to be infected by a P2P botnet
malware, based on real-world botnet communication graphs. The detection results for both
scenarios indicate that their characteristics are not only apparent on global level, but also partly
for individual networks. Particularly the botnet detection still works for a few infections within
the network with high precision, because their P2P communication pattern significantly differs
from other hosts. In contrast, large scan campaigns cannot be detected by very small networks
alone but they have to cooperate with other network sites to cover a larger fraction of the
communication.

When a network-wide attack cannot be directly detected at large from the monitoring data itself,
the other common signature- or anomaly-based mechanisms of the IDS in place eventually
report some alerts as indicators for an attack. It is the task of alert correlation to assemble these
alerts to an intrusion report, as evaluated in Sections 6.5 to 6.7.

The evaluation of analyzing the alert clustering algorithm in GAC (cf. Section 6.5.1.2) indicates
that especially distributed attacks with many alerts can effectively be assembled to attacks,
without the need of narrowing down the clustering parameters too much. The performance
on real-world alerts has been additionally demonstrated in Section 6.5.2.2. The resulting alert
clusters include up to 99.3% of the real-world alerts. The remaining unclustered alerts could
be false positives, i.e., not related to a larger attack, or they are more important than they seem
at first sight. To clarify on these alerts, weak alert correlation checks if they eventually belong
to a stealthy APT attack step. This correlation has been evaluated in Section 6.6 on an APT
scenario constructed from real-world data traffic sets, including real APT malware but also other
unrelated attacks. The results indicate that weak alert correlation complements the clustering
approach for bulk attacks in GAC and is recommended to always be used in combination. This
is because GAC already successfully detected some steps of the constructed APT attack. As
less alerts are going into the weak alert correlation this way, the results can be as fine-grained as
possible.

Before linking the alert clusters, i.e., attack steps, the attacks detected locally on sensors of a
CIDS are supposed to be compared with the attacks from the other sensors in the network to
identify global attacks and to merge the respective alert clusters. The motif-based approach
proposed for this task has been evaluated in Section 6.7. The results indicate that the motif-
based attack fingerprint preserves the scenario characteristics while enabling the reduction of
data exchange volume by about 99%. The ability to match similar attacks on the basis of this
fingerprint has been demonstrated by classifying attacks with six predefined scenarios but also
by learning new scenarios.

Section 6.5.1.3 indicates that identifying the scenario context for the multi-step detection in
GAC is robust against false positive alerts in the clusters. With the range of favorable certainty
values derived from these analysis result, the real-world evaluation of the scenario context in
Section 6.5.2.3 lets expect only few false positive context labels. Also the real-world results of
the multi-step detection conducted in Section 6.5.2.4 are promising and indicate that utilizing the
scenario context gives high-certainty reports about the relations of two cluster with overlapping
IP addresses.
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This chapter reviews the challenges of intrusion detection regarding attacks that are threatening
the network at large and summarizes the contribution of this thesis. Thus, Section 7.1 presents the
developed mechanisms in more detail and further discusses the main results of their evaluation.
Finally, future work is sketched in Section 7.2.

7.1 Summary

Once an attacker infiltrated the computer network and gained foothold, the attack potentially
affects the overall network operation regarding either a majority of hosts or particularly critical
hosts. The detection of such network-wide attacks is required to be accurate to stop the attack
entirely. Having an IDS in place alone is usually not sufficient because singleton IDS alerts only
sparsely cover the full attack story. Instead, a detailed look at the scene is required all the time
to fully capture an attack. Although a comprehensive monitoring is a fundamental step towards
accurate intrusion detection, the malicious activities still need to be detected and also concisely
summarized so that the full attack becomes apparent.

In this thesis, requirements beyond a traditional IDS have been derived to serve as a guideline
for a discussion of the current state of the art. This discussion has revealed that most known
intrusion detection approaches fail to include certain aspects of attacks in the scope of this thesis.
Approaches for the detection of attacks with a lot of similar activity such as distributed attacks
suffer from two problems. Either, they are not applicable to a broad range of attack scenarios
in the first place such as the port scan detector SPICE [SHM02]. Or the approaches exclude
any attack that is not following their definition of a malicious pattern, such as the root cause
analysis on the basis of IDS alerts [Jul03]. Also the detection of intrusions that proceed far
into the network via multiple steps is not fully provided by most of the analyzed approaches.
Only two promising approaches for this kind of attacks have been identified. ZePro [Sun+16]
reconstructs the most likely attack path through the network based on fine-grained operating
system (OS) data and infection probabilities. HOLMES [Mil+19] identifies high-level advanced
persistent threat (APT) patterns by transforming the fine-grained OS data into actions at an
intermediate abstraction level and checks for their combinations to realize an APT attack. For
this, however, particular expert knowledge about the patterns and APT steps is required. Apart
from this, further approaches have been analyzed that incorporate various data in addition to
the monitored data to assist in network intrusion detection. These approaches, however, are
eventually helpful for manual threat-hunting but rarely conduct intrusion detection themselves,
e.g., HERCULE [Pei+16] groups related activities from different logs – similarly to security
information and event management (SIEM) systems – but without classifying the groups as
malicious. At most, these approaches provide additional context to the intrusion detection.
Nevertheless, the idea of supporting the network intrusion detection with additional context and
correlated data has been adopted for this thesis and has influenced the development of measures
for a more powerful IDS.
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The detection system in this thesis has been developed as a result of the drawbacks of the
current state of the art. The presented system encompasses several mechanisms that correlate
information or derive additional context to enhance the detection. The foundation is a platform
for the fine-grained correlation of monitoring data about hosts and their network communication.
It extends the monitoring visibility in real-time so that detection algorithms and threat hunters
can benefit from the joint host and network monitoring. The application of this correlation
concept to the communication relations between hosts enables the detection of some distributed
attacks such as port scan campaigns or peer-to-peer (P2P) botnets. The detection exploits
scenario-specific characteristics that become apparent in the correlated communication relations.
Furthermore, the detection system assembles and summarizes regular IDS alerts that are reported
plentifully in daily operation to highlight attacks that spread into the network en masse or in
depth. This alert correlation also overcomes the specific challenges that come with temporally
and spatially dispersed alerts. Stealthy attacks or APTs with infrequent alerts are still detected
even when they spread over a long time period. Additionally, the system efficiently identifies and
brings together those alerts from different IDS sensors deployed in the network that belong to the
same attack against the network at large. All given mechanisms have been evaluated extensively
by simulations, on real-world data, in testbeds, and even in small real-world deployments.
Several metrics have been developed during the different experiments in this thesis to measure
each mechanism’s contribution towards an accurate detection of intrusions that pose a threat
to the network at large. The individual contributions of this thesis and their working along the
intrusion detection process are described in the following.

As a prerequisite for accurate intrusion detection, zeek-osquery enhances the quality of mon-
itoring data by a fine-grained correlation of host and network data. The additional context in
form the semantics of hosts regarding their network communication compensates that network
monitoring alone cannot capture all aspects of an attack in detail. The fine-grained correla-
tion result is available for intrusion detection in real-time or is logged and used to trace back
intrusions manually by threat hunters. Causally linking monitoring data across the host and
network domain has shown to achieve an extended visibility that sheds light on the network
communication. This not only allows to enforce fine-grained network policies on the basis of
applications, but also enables the detection when malicious files that were downloaded from
the Internet are executed on the hosts, among others. Apart from such specific use cases, the
correlation platform has been designed for various kinds of correlations and analyzed to perform
efficient and scalable also in large networks.

When the communicating hosts cannot be controlled to contribute to the host and network
correlation, intrusion detection can still benefit from correlated network data. Correlating
the communication of several hosts in the network enables the detection of some specific
network-wide attack scenarios that are seen daily on the Internet. Their detection is based
on scenario-specific characteristics that become apparent in the correlated monitoring data of
network communication. This way, bots in a P2P botnet are detected by their characteristic
communication pattern among each other and scan campaigns from different sources are detected
by the characteristic scan activity. Although these attacks often have an Internet-wide scope, the
experiments have shown that the detection not necessarily requires a global view on the Internet
traffic. The scenario characteristics are partly apparent in local monitoring data so that network
sites themselves can deploy the detection to some extent.

However, sometimes it is not directly apparent that a set of monitored activities in the network
reflects an attack. Instead, certain events seem suspicious and are reported as alerts, indicating

196



Chapter 7 Conclusion

that an attack is going on. Such alerts are reported by means of a regular IDS and equally
important for intrusion detection along with the detection results from zeek-osquery or the
detection on correlated network communication. Alert correlation, however, has to assemble
these IDS alerts to the full picture of the attack, making the attack visible to its full extend.

Specifically for attacks in the scope on this thesis, the graph-based alert correlation (GAC)
assembles alerts from two types of network-wide attacks. Although generally applicable, GAC
focuses on attacks against multiple hosts at the same time or in sequence, i.e., distributed or
multi-step attacks, respectively. The two-step approach first clusters alerts with similar attributes
to distributed attacks. These resulting alert clusters are afterwards interconnected to detect
multi-step attacks by overlapping clusters with same IP addresses. This second step of the
approach makes use of the attack scenario that GAC derives from the relation among the hosts
in an alert cluster. The evaluation indicates that the clustering covers a large variety of attacks
because of the flexible definition of alert similarity. Furthermore, both the scenario context and
the interconnection of attack steps has been evaluated to be robust against false positive alerts
and to be accurate with high certainty.

In practice, alert correlation and also GAC suffers from two challenges, referred to as temporally
and spatially dispersed alerts. They are the result from stealthy attack steps and attacks with a
target scope beyond the monitored network, respectively. The one challenge is to identify that
infrequent alerts belong together despite large time period between the occurrence of two alerts.
The other challenge is that monitoring captures the attack only partly because it targets also
other network sites the same way.

The challenge of temporally dispersed alerts from APT-like attacks is addressed by weak alert
correlation that checks unclustered alerts to belong to a slow and ongoing attack step instead
of just filtering them as irrelevant. APT characteristics are exploited when assembling such
unclustered and weak alerts to APT attack steps. The experiments have shown an APT attack
that cannot be detected by simply clustering alerts with GAC. Instead, weak alert correlation
has to assemble candidates of APT alerts over a long time period to also detect the particularly
stealthy attack steps that would have been gone unnoticed otherwise. The challenge of spatially
dispersed alerts is addressed by collaborative attack correlation. It enables an efficient exchange
and comparison of alert data to make several IDS sensors aware of that they captured parts of
the same network-wide attack. Instead of exchanging all their alerts, the sensors fingerprint their
locally observed attacks with respect to the attack’s scenario and exchange these small attack
fingerprint for an efficient comparison and identification of related alerts. The data exchange
volume has been significantly reduced in the experiments while still being able to identify attacks
that are of the same scenario type.

Even though the focus of the experiments has been to measure the contribution of each mecha-
nism regarding a successful intrusion detection of network-wide attacks, different selections
of mechanisms have been combined to conduct the experiments. Thus, the combination of all
mechanisms as an end-to-end evaluation pipeline has not only been described in theory, they
have also been selectively combined throughout their evaluation. Thus, the combination of
security monitoring and alert correlation in the overall system implements intrusion detection
for a variety of attacks that threaten the network at large.
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7.2 Future Work

The possible future work in the context of this thesis and the related publications cover different
areas of network intrusion detection.

Regarding the assistance of hosts in decrypting Transport Layer Security (TLS) connections,
additional work is required to make the plaintext payload available for intrusion detection in real-
time. So far, it has been demonstrated that TLS key material can be retrieved from the hosts and
mapped to TLS connections in the network. While this is sufficient for forensic investigations
on traffic captures, live decryption has to solve some additional challenges. These include that
the encrypted communication is potentially already ongoing whereas the key for decryption
has not been retrieved yet. Also, the decrypted messages should be analyzed transparently as it
would be with unencrypted messages.

Furthermore, future work should enhance GAC to cluster alerts from long-running bulk attacks
beyond the borders of alerts batches. While weak alert correlation solves the challenge of
clustering infrequent alerts across multiple batches, alerts of the same attack filling multiple
consecutive batches end up in one cluster per batch but should be merged to a single cluster to
represent the attack. A solution for this could carry alert clusters in their representation as meta
alert over to the next batch as long as the cluster gets extended with more alerts.

An APT attack detection needs to be developed that not only assembles respective alerts to
APT-like attack steps but also interconnects them similarly to the GAC approach by overlapping
IP addresses. The same way APT characteristics have been exploited to identify APT attack
steps, their ensemble should also be checked for particular APT characteristics. On a positive
match, the result would indicate that the attack is indeed an APT. Additional work could include
an attacker model like the intrusion kill chain [HCA11] that requires the attack to proceed along
different stages to take over the network or parts of it.

Moreover, additional future work is required regarding the detection of attack scenarios based
on the correlated network communication. This thesis has demonstrated how to detect scan
and botnet characteristics in large communication graphs. However, there are more scenarios
like distributed denial-of-service (DDoS) or worm spreading that eventually can be detected
in a similar way. While the characteristics of a worm spreading might be easily derived from
the detection approach of P2P botnets, the DDoS is a network threatening attack that shows a
fundamentally different communication pattern.

Building upon the similarity measure between two attacks based on their scenario fingerprints,
additional work is required to incorporate this measure into an collaborative intrusion detection
system (CIDS) [Vas+15b]. A distributed communication schema must be developed that allows
a CIDS node to efficiently distribute new attack fingerprints to others.

Concluding, the detection system composed out of the presented contributions in this thesis pro-
vides solutions to most of the problems security operators are faced with when detecting attacks
that are targeting the network at large. However, there is still room for further improvements.
This covers additional work towards a live decryption of TLS session in zeek-osquery, concisely
summarizing long-running bulk attacks, and detecting APT attacks in their characteristic con-
text. Furthermore, future work is required to detect more network-wide attacks like DDoS or
worm spreading by their scenario-specific characteristics in the correlated network data, and a
communication schema is required to deploy the attack similarity based on scenario fingerprints
in a distributed CIDS.
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