
Periodicity,
Surprisal,
Attention:

Skip Conditions for

Recurrent Neural Networks

Dissertation

submitted in partial fulfilment of
the requirements for the degree of

Doctor rerum naturalium
(Dr. rer. nat.)

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics

Tayfun Alpay

Hamburg, 2021

mailto:alpay@informatik.uni-hamburg.de


Day of submission:

January 04, 2021

Day of oral defense:

March 24, 2021

Dissertation Committee:

Prof. Dr. Stefan Wermter (reviewer, advisor)

Dept. of Computer Science

University of Hamburg, Germany

Prof. Dr. Chris Biemann (reviewer)

Dept. of Computer Science

University of Hamburg, Germany

Prof. Dr. Frank Steinicke (chair)

Dept. of Computer Science

University of Hamburg, Germany

II



© 2021 Tayfun Alpay

All illustrations, except where explicitly stated, are work by Tayfun Alpay
and licensed under the Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA 4.0). To view a copy of this license, visit:
https://creativecommons.org/licenses/by-sa/4.0/.
Previously published illustrations under a different license may only be used and
distributed according to that license (Sections 8.1-8.3: © 2019 IEEE, reprinted
with permission).

III

https://creativecommons.org/licenses/by-sa/4.0/




Abstract

Abstract — English

Recurrent neural networks (RNNs) are a type of artificial neural network that
can be used to learn sequential data. Leading to significant breakthroughs in deep
learning, they have been established as powerful tools for sequence learning, par-
ticularly in the domain of natural language processing. These developments have
particularly been made possible by the scalability of modern machine learning al-
gorithms, allowing researchers and practitioners to utilize both larger amounts of
data and significantly larger models. However, as the computational requirements
for most recent state-of-the-art systems keep outgrowing hardware advancements,
designing more efficient models becomes an increasingly important research goal.
At the same time, some of the core limitations of neural networks remain present
even when scaled up, suggesting the need for more fundamental advancements in
model design, before achieving further significant breakthroughs.

In this thesis, we focus on the typical limitation of recurrent neural networks to
process sequences step by step, linearly through time. As not every timestep holds
valuable information, this can be considered both computationally inefficient and
a barrier towards developing more natural and intelligent data processing. Our ef-
forts focus on contributing to the alternative paradigm of conditional computation,
a relatively new research area. Conditional computation provides an alternative to
traditional sequence processing models which process inputs and update at every
timestep. Instead, the objective is to define or learn useful constraints which al-
low the network to skip certain parts of the input sequence which are not taken
into account during training. This type of attentive processing can lead to more
computationally efficient and more interpretable models.

As our first skip condition, we investigate periodic activation with the Clockwork
RNN, comparing it to more traditional recurrent models. We develop this original
model further by integrating memory gates. Running an ablation study on the ar-
chitectural components, we take an in-depth look at the strengths and weaknesses
of a strong inductive bias for skipping. Based on these initial studies, we develop
a novel skipping mechanism based on surprisal, called Surprisal-based Activation
(SBA) which we investigate in a variety of gated architectures for language mod-
eling. After adapting SBA in hierarchical models for question answering, we inves-
tigate its compatibility to hierarchical attention mechanisms, particularly pointer
attention. We use this as a basis to develop our third approach, Attention-based
Skipping (ABS).

Our results demonstrate that modular designs and carefully constructed inductive
biases can form effective constraints that facilitate skipping in recurrent models.
Furthermore, we show that models of salience provide an alternative to more tra-
ditional compression methods, which allows us to minimize, and sometimes even
avoid, trade-offs between model performance and compression in the form of skip-
ping.
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Abstract

Zusammenfassung — Deutsch

Rekurrente neuronale Netze (RNN) bilden eine Form von künstlichen neuronalen
Netzen, die sequenzielle Daten lernen können. Durch ihren signifikanten Beitrag
zu Durchbrüchen im Bereich des Deep Learning haben sie sich als mächtiges
Werkzeug für sequenzielles Lernen, insbesondere im Bereich der Verarbeitung
natürlicher Sprache, etabiliert. Diese Entwicklungen wurden insbesondere durch
die Skalierbarkeit moderner Machine Learning Algorithmen vorangetrieben, was
folglich Forschern und Anwendern ermöglicht hat sowohl größere Datenmengen,
als auch signifikant größere Modelle einzusetzen. Dennoch haben gestiegene
Anforderungen an maschinelle Rechenleistungen über die Entwicklungen von
Hardwarekapazitäten hinaus dazu geführt, dass die Entwicklung von effizienteren
Modellen ein immer wichtigeres Forschungsziel wird. Gleichzeitig bleiben jedoch
einige der grundlegenden Bebeschränkungen von neuronalen Netzen trotz
Skalierbarkeit bestehen, was eine Notwendigkeit für weitere fundamentale
Fortschritte im Design von Modellen erforderlich macht, bevor weitere deutliche
Fortschritte ermöglicht werden.

In dieser Arbeit fokussieren wir uns auf die typische Limitierung von rekurrenten
neuronalen Netzen, welche darin besteht Sequenzen schrittweise, einem linearen
Zeitverlauf folgend, abzuarbeiten. Da nicht jeder Zeitschritt zwangsläufig wertvolle
Informationen enthält, kann dieser Umstand zum einen als rechnerisch ineffizient
angesehen werden und zum anderen auch als eine Barriere gegen die Entwick-
lung einer natürlicheren und intelligenteren Datenverarbeitung verstanden wer-
den. Unsere Anstrengungen fokussieren sich daher auf einen Beitrag zum alter-
nativen Paradigma der “bedingten Berechnung” (engl.: conditional computation),
bei dem es sich um ein relativ neues Forschungsgebiet handelt. Bedingte Berech-
nungsmodelle liefern eine Alternative zu traditionellen Sequenzverarbeitungsmod-
ellen, bei denen die Eingaben in jedem Zeitschritt verarbeitet und aktualisiert
werden. Dieser alternative Ansatz verfolgt das Ziel, nützliche Einschränkungen zu
definieren oder zu lernen, welche dem Netz erlauben gewisse Teile der Eingabese-
quenz zu überspringen (engl.: skipping), die beim Training nicht berücksichtigt
werden. Diese Art von Aufmerksamkeit gesteuerter Verarbeitung kann zu rechner-
isch effizienteren und besser interpretierbaren Modellen führen.

Als unsere erste Bedingung zum Überspringen von Verarbeitungsschritten unter-
suchen wir periodische Aktivierung mit Hilfe des sog. “Clockwork RNNs” im Ver-
gleich zu traditionelleren rekurrenten Modellen. Wir entwickeln das Originalmodell
weiter, indem wir Memory Gates integrieren. Dank einer methodischen Dekonstru-
tion ihrer jeweiligen Komponenten reflektieren wir über die Stärken und Schwächen
eines induktiven Bias für Skipping. Davon ausgehend entwickeln wir einen neuen
Skipping-Mechanismus, der auf sog. “Surprisal” basiert, die Surprisal-based Acti-
vation (SBA), welche wir auf unterschiedlichen Architekturen mit Memory Gates
für Sprachmodellierung untersuchen. Nachdem wir SBA in hierarchische Mod-
elle für das automatisierte Beantworten von Fragen adaptieren, untersuchen wir
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seine Kompatibilität mit hierarchischen Aufmerksamkeitsmechanismen, insbeson-
dere der sog. “Pointer-Aufmerksamkeit”. Wir nutzen dies als Entwicklungsgrund-
lage für unseren dritten Ansatz, dem Attention-based Skipping (ABS).

Unsere Ergebnisse zeigen, dass modulare Entwürfe und umsichtig konstruierte, in-
duktive Biase effektive Beschränkungen formen können, die das Skipping in rekur-
renten Modellen erleichtern. Darüber hinaus zeigen wir, dass Modelle für Salienz
eine Alternative zu herkömmlichen Kompressionsmethoden bieten, was uns er-
laubt, einen Kompromiss zwischen der Leistungsfähigkeit eines Modells und seiner
Komprimierung durch Skipping zu minimieren - und in manchen Fällen sogar zu
verhindern.
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Chapter 1

Introduction

“I learned to write fiction the way I learned to read fiction - by
skipping the parts that bored me.”

—Jonathan Lethem, 2013

1.1 Motivation

Imagine sitting in your car and driving from Hamburg to Berlin. At any given point
in time during this journey, you do not know precisely how much time you have
left until you reach your destination. However, every dozen miles or so, the road
presents you with a sign that tells you the remaining distance until Berlin. “How
much further?”, your kids ask from the back-seat. Naturally, you answer with an
estimate based on the last sign that you saw about half an hour earlier. Now,
imagine being asked this same question once per second for the entirety of your
journey. To make matters worse, you are forced to answer every time. In addition,
before giving your answer, you have to memorize and recall not just the last road
sign that you’ve seen but all signs that you have encountered since your departure,
even including parking signs, stop signs, speed limits etc. While most would agree
that any person capable of this feat has remarkable memory (and endurance), they
would also question why anybody would choose such a complicated process over
only providing updates after encountering a relevant road sign.

Unfortunately, this analogy captures the way Recurrent Neural Networks (RNNs)
process information, making continual predictions based on recalling past con-
text. The traditional sequence processing paradigm builds a chain of past events,
weighting important subsequences more than those that provide less information.
Nevertheless, there is no concept of “forgetting” or “jumping” back to an earlier
memory without unrolling and traversing this linked chain of events. This drawback
has given rise to recurrent models with event-based update mechanisms. Partic-
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Chapter 1. Introduction

ularly important is the ability of skipping redundant or uninformative parts of a
sequence. Recently, a novel framework, named conditional computation has been
proposed to address this research problem. In this framework, states are not forced
to update at every timestep but do this conditionally, based on other constraints.
In this thesis, we will investigate different types of constraints that allow us to de-
termine when a model should be updating and when it should be skipping.

1.2 Research Objectives

The main idea of conditional computation is to only allow a neural network to
update its internal state if a certain boolean condition is met. This condition
builds the basis for a network’s decision on when to perform a state update and
when to skip it. Consequently, designing neural networks with meaningful skipping
capabilities requires certain assumptions in the form of constraints that formalize
what separates important from unimportant input.

The main objective of this thesis is to investigate promising candidates for skip
conditions and constraints to facilitate skipping. As such, we pursue the overarch-
ing research goal of modeling skipping conditions in recurrent neural networks to
learn more efficient representations. We define “efficient representations” as com-
pressed representations that exclude redundancies as much as possible without
leading to a decline in model accuracy and approach this problem with the main
objective to develop RNN models that are capable of filtering out redundancy in
their representations by updating only when necessary.

Overall, we approach this research goal in this thesis by addressing the following
research questions:

1. Which constraints facilitate effective skipping?

2. How can we minimize, or even avoid, any trade-offs between model perfor-
mance and skipping?

In the first question, we consider different design principles for the modeling of our
architectures. Overall, we can categorize these into two types of inductive biases:
those reflected in constraints that we impose on skip conditions, and those that
are structural in the context of the network design. For structural constraints, we
primarily focus on incorporating modularity and hierarchy as design concepts to
drive units towards diverse self-organization during training and specialized rep-
resentations. For constraints on the skip conditions, we start with more restrictive
approaches (such as periodic activation) and gradually loosen these assumptions
with each approach, ending with salience-based skipping and keeping only struc-
tural biases.

In the second question, we address the problem that large amounts of skipping
can lead to critical loss of information in the encoding, causing drops in model
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accuracy. While compression rates can be adjusted to be lossless, most predictive
conditional computation approaches lead to a decreased accuracy with increased
skipping, forming a natural trade-off between accuracy and activation sparsity.
As part of this thesis, we will explore methodologies to minimize any such trade-
offs by way of not only focusing on minimizing state updates but also improving
representation qualities to maintain or even increase baseline accuracies.

Our approach to answering these questions comes with the additional
side-objectives to model networks which provide representations that are
calculated efficiently, allow near-lossless skipping, and a level of interpretability
comparable to related approaches. The three main constraints that we investigate
for skip conditions are:

1. Periodicity

2. Surprisal

3. Attention

For periodicity, we build on an existing architecture, the Clockwork RNN, and
extend it, using gating capabilities from the Long Short-Term Memory (LSTM)
model, to the Clockwork LSTM. For surprisal, we introduce a novel architecture
with fewer constraints than periodic activation. Finally, we utilize recurrent atten-
tion for a salience-based model for skipping. Overall, we use modularity as a design
principle for networks with periodic and surprisal-based activations and focus on
hierarchical abstraction in the final part of the thesis, where we explore skipping
based on surprisal and attention.

To evaluate our models, we mainly focus on applications in the domain of Natural
Language Processing (NLP), particularly language modeling and question answer-
ing. Nevertheless, we include several additional tasks to validate that our findings
generalize to other domains.

1.3 Contributions

This thesis contributes detailed studies and evaluations of different design method-
ologies for conditional computation in RNNs. Overall, we propose two completely
novel methodologies for skipping in recurrent networks, namely surprisal-based ac-
tivation and attention-based skipping. As part of this effort, we introduce two new
classes of recurrent models and three progressions on existing work, each consisting
of multiple variants, leading to a total of 24 novel models that we introduce and
study.

Summarizing our main contributions in this thesis, we:

• Evaluate periodic activation language modeling.
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• Evaluate the role of unidirectional connections in the Clockwork RNN.

• Introduce the Clockwork LSTM (4 variants).

• Introduce Surprisal-based Activation (SBA) on the SRN, LSTM (7 variants),
and Gated Recurrent Unit (GRU; 2 variants).

• Provide the first extensive evaluation of the role of the LSTM gates for zo-
neout (4 variants).

• Extend the Hierarchical Attention Network (HAN) for question answering
tasks (2 variants).

• Explore the dynamics between attention and skipping (2 variants).

• Propose a methodology capable of Attention-based Skipping (ABS) that can
be used with traditional models without modifying the underlying update
process (2 variants).

In contrast to other conditional computation approaches, our models do not lose ac-
curacy despite high skipping rates, in many cases even improving on the baselines.
With ABS, we also present an approach requiring no fine-tuning of regularization
penalties, reward functions, or hyperparameters, providing compatibility with ex-
isting recurrent layers without additional modifications. Throughout this thesis, we
perform extensive ablation studies for each introduced model. This methodology
helps us to gain a more profound knowledge of the causes and effects of incorpo-
rating specific designs in the presented models, contributing towards more funda-
mental knowledge of how to effectively model recurrent neural networks.

1.4 Thesis Outline

This thesis is structured into five different parts. While parts I and V build the
motivation and closing thoughts, respectively, the main research is presented in
the chapters of parts II-IV. Each part builds on the results from the previous but
introduces a different methodology for designing recurrent networks capable of
skipping.

Part I: Background and Motivation After this introduction in Chapter 1, we
provide some fundamental background to recurrent neural networks. In Chapter 2,
we give a brief historical overview before identifying essential design principles such
as modularity and hierarchical structure that can be found in many state-of-the-
art systems. As part of this review, we examine past and current research goals
and challenges for recurrent networks. In Chapter 3, we argue that some of these
challenges could be addressed by abandoning some of the traditional assumptions
found in the temporal processing pipelines of past models. Drawing analogies to
the human reading process and other models of time, we consequently introduce
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the recently proposed framework of conditional computation and review related
models, addressing currently open questions that we aim to contribute to with this
thesis.

Part II: Periodic Activation: We start our investigation in Chapter 4 with a
comparison between more traditional models with leaky memory and the Clock-
work RNN (CWRNN) as a proxy for conditional computation models in the con-
text of learning multiple timescales with modular networks. The CWRNN does not
update states at every timestep but based on periodic schedules referenced by an
internal clocking mechanism. We compare the memory access capabilities of the
CWRNN to alternative memory models, particularly leaky memory. We accom-
plish this with two different experiments, comparing five networks on continuous
signals and sequences of discrete tokens. Using various visualization techniques, we
take a closer look at how periodic activations self-organize. Chapter 5 extends the
original CWRNN architecture with memory gates, evaluating this novel model,
the CWLSTM, with four different gating variants on a language modeling task.
Our results and subsequent analysis demonstrate both strengths and downsides of
a periodic inductive bias.

Part III: Surprisal-Based Activation: Based on the conclusions from the
previous part, we introduce a novel skipping mechanism based on surprisal in
Chapter 6. Surprisal-based Activation (SBA) is designed to be modular and allows
the underlying RNN model to observe its own rate of activation change while pro-
cessing an input sequence and can thus inhibit updates if the information gain for
the calculated latent state is considered too low. We primarily evaluate our model
and the resulting seven variants on language modeling but also demonstrate that
our main findings can be transferred to other prediction tasks. As part of an exten-
sive evaluation in Chapter 7, we demonstrate that our SBA models have certain
regularizing properties that can lead to slightly better performance than a base-
line LSTM while simultaneously performing only 14% as many state updates. As
part of this, we evaluate three different regularization penalties and four different
variants of zoneout, improving the original algorithm.

Part IV: Hierarchical Attention and Surprisal: As successfully detecting
important inputs and filtering out uninformative redundancies or noise requires
models to have an understanding of salience, we continue our investigation with re-
current attention models. We start in Chapter 8 by exploring different approaches
towards implementing attention in a hierarchical setup performing question an-
swering tasks. Our modeling efforts focus on two different bottom-up approaches
of hierarchically building up attention representations from words to sentences.
Based on these findings, we introduce and evaluate two different skipping models
for hierarchical processing in Chapter 9. Evaluating the interplay between skipping
and attention, we find that our models maintain accuracies close to their baselines
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despite low update rates. Finally, in Chapter 10, we use attention itself as the
basis for skipping. This allows us to push the models towards their limit, skipping
most of the words in documents without a significant loss in accuracy. We achieve
this with two different methodologies, using i) a wrapper model for recurrent ar-
chitectures without introducing any additional hyperparameters, and b) ranked
attention, which gives us control over the skip rates of the networks.

Part V: Closing: In Chapter 11, we summarize our findings and conclude with
thoughts on remaining open questions and future research opportunities.

8



Chapter 2

Current Approaches and
Challenges in Modeling

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are powerful models for sequence processing
that have seen widespread use in a variety of applications in the past decade.
Many advances result from a perpetual virtuous cycle - a self-reinforcing feedback
loop - between the research community gradually enhancing models’ capabilities
and adopting more complex tasks. Therefore, practical requirements for model ca-
pabilities can vary as much as their practical applications. Nevertheless, some of
the most impactful advances in Deep Learning have come from more foundational
contributions to model design that improve the previous state of the art irrespec-
tive of the considered task scenario. The large impacts of Convolutional Neural
Networks (CNN; LeCun et al. (1989)) on vision and speech systems, or of the
Long Short-Term Memory (LSTM; Hochreiter and Schmidhuber (1997)) on most
sequence processing tasks come to mind as popular examples.

The goal of this chapter is to review the state of the art in modeling Recurrent
Neural Networks and to provide an overview of some of the most pressing research
questions that are still unanswered. By doing so, we will be discussing which future
model capabilities might be essential to the development cycle of a new generation
of universal problem solvers that are successful in a wide range of different tasks.
As we will see, some of the approaches to model these capabilities have shown a
remarkable promise in a number of different studies, whereas others have not yet
been successfully scaled up to more complex scenarios due to a number of different
reasons, indicating a potential impasse.

After providing some necessary foundations and a brief history of recurrent neu-
ral networks (Section 2.1), we will particularly focus on the topic of improving
the representations of sequence learning models as these mirror the expressiveness
and capabilities of neural models. In this context, we will introduce and review
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the challenges of learning representations that are scale-invariant in the tempo-
ral dimension, disentangled, modular, interpretable, and hierarchical. The chosen
approaches share a similar background as they are vital to learning spatial and
temporal compositionality in neural networks.

Most of the core principles explained in this chapter build the foundation for our
modeling choices throughout this thesis.

2.1 A Brief History of

Recurrent Neural Networks

The idea of using recurrence to model neural networks can be traced to the early
1980s in which some unsupervised recurrent models such as the Hopfield network
(Hopfield, 1982) started to gain some traction. Ultimately, however, it was only af-
ter Rumelhart et al. (1986) significantly contributed towards popularizing the idea
of training neural networks with backpropagation, that recurrent backpropagation
networks followed soon after. This was perhaps not coincidentally as the authors
of the seminal paper already propose a formulation of Backpropagation Through
Time (BPTT) in order to learn “sequential structures”. The idea of implementing
such sequential structures through recurrence was first introduced in the same year
by Jordan (1986) and later widely popularized by Elman (1990), who introduced
the concept of recurrent hidden units that can be trained with BPTT.

Elman’s network is nowadays often called Simple Recurrent Network (SRN) as it
provides the basic building block for more complex recurrent models of the current
Deep Learning era1. The SRN architecture has been shown to be Turing-complete,
i.e. computationally universal (Siegelmann and Sontag, 1995).

2.1.1 The Simple Recurrent Network

An SRN extends a Multi-Layer Perceptron (MLP) by adding a recurrence term
for the hidden layer before the transformation by an activation function f :

ht = f(xt Wxh + ht−1 Whh + bh) (2.1)

where xt is the input, Wxh and Whh define the respective weight matrices of the
input and recurrent layers, and bh a bias vector. Making the hidden state ht a
function of its previous input ht−1, allows the network to consider context sequen-
tially (compare Figure 2.1). The elegant simplicity of encoding states recurrently
in such a way is that, at any given timestep, the network’s representation implic-
itly encodes the past context. However, it is easy to see the difficulty in having a

1Which is often seen to have started in 2012 with Convolutional Neural Networks winning the
first ImageNet competition by a large margin (Krizhevsky et al., 2012).
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yt

xt

ht ...ht-1 ht-2

Figure 2.1: Illustration of a Simple Recurrent Network, unrolled in time.
Solid arrows denote learned weights, dashed arrows the memory access.

single state encoding represent all past events. Thus, this efficient compression can
quickly lead to memory loss, more broadly also known as catastrophic forgetting
(Parisi et al., 2019), as the window for the past context grows over time. To access
the entire temporal context, recurrent models are trained with BPTT, which can -
in theory - unfold the network over its entire history. In practice, many early stud-
ies focused on solving problems where there was no need for long-term memory
capabilities. Part of the reason for this was that researchers were quick to discover
that the capability of retrieving context in SRNs with BPTT can, even for toy
problems, be limited to less than 10 timesteps (Hochreiter, 1998). This restricted
training SRNs with backpropagation to problems where only short-term memory
was needed. The cause behind this limitation is called the Vanishing Gradient
Problem (VGP).

2.1.2 Initial Challenges and Resurgence in the
Deep Learning Era

While the difficulty of training RNNs and deep networks was experimentally ver-
ified by the late 1980s (Schmidhuber, 2015), Hochreiter (1991) was the first to
formally identify the cause which was subsequently called the vanishing or explod-
ing gradient problem. The problem arises when using standard activation functions
such as sigmoid(x) or tanh(x) activation functions in hidden layers. As backprop-
agation is based on the chain rule, each layer’s activation function derivatives have
to be multiplicatively chained together. If each of these error terms is smaller than
1, each successive multiplication will decrease the cumulative error term further,
decaying the memory exponentially with each introduced layer and causing the gra-
dient to “vanish”. Due to the range of the derivatives for sigmoid(x) and tanh(x),
this is bound to have a measurable impact after about 3 layers or timesteps. Now,
if all the error terms are actually above 1, the reverse effect occurs, where each
subsequent layer increases the error term exponentially, causing “exploding gradi-
ents”.
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Research on modeling long-term capabilities was a focus throughout the 1990s and
the vanishing gradient problem was studied from different angles such as, for ex-
ample, the perspective of dynamical systems theory (Bengio et al., 1994). The first
successful architectural solution to the vanishing gradient problem is the Long
Short-Term Memory model (Hochreiter and Schmidhuber, 1997). It approaches
the problem by keeping each error term constant (at exactly 1) through the use of
linear activations. To offset the significant limitations of linear activation, Hochre-
iter introduces non-linear memory gates that can modulate the linear memory
cell2.

Despite this achievement, subsequent improvements to the architecture (Gers et al.,
2000), and later attempts to simplify the theory behind LSTMs (Hochreiter et al.,
2001), it took another decade for LSTMs to be demonstrated on more complex
tasks such as speech recognition (Graves and Schmidhuber, 2005; Graves et al.,
2006) or handwriting recognition (Graves et al., 2009). At the same time that
LSTMs achieved state-of-the-art results on the TIMIT phoneme recognition bench-
mark (Graves, 2013), significant advances in Deep Learning (Krizhevsky et al.,
2012) started to cause a significant shift towards neural networks in machine learn-
ing research. Nevertheless, one of the most important catalysts for research was
the following rise of open source frameworks such as Theano (Bergstra et al.,
2010), Keras (Chollet et al., 2015), TensorFlow (Abadi et al., 2016), and PyTorch
(Paszke et al., 2019) along with the simultaneous transition towards GPU com-
puting which made training (initially) more cost-effective than with CPU-based
computing clusters. This development is still ongoing and has, since its start, al-
lowed more researchers to train pre-implemented networks such as LSTMs and
CNNs independently, verifying their effectiveness on a variety of different tasks
in ever-faster research development cycles. In recent years, the LSTM model has
additionally been simplified further (Greff et al., 2017). A model which only uses
two gates, the Gated Recurrent Unit (GRU) has been introduced by Bahdanau
et al. (2015), showing similar performance to LSTMs while requiring less memory
(Chung et al., 2014).

Consequently, LSTM networks, as well as more advanced models that incorporate
the LSTM, have successfully been deploying in a wide array of different sequence
learning tasks, including production environments (Schmidhuber, 2015). The prac-
tical use of Deep Learning in real-world applications has increasingly moved re-
search towards training ever-larger models on data collections that are often in the
hands of private companies. The training cost behind most of the current state-
of-the-art models makes them therefore impossible to reproduce in most academic
institutions. As an example, a single Transformer network can incur up to $981
of cloud compute costs (excluding any development costs from hyperparameter
searches), whereas a neural architecture search can cost up to $3M, simultaneously
emitting as much CO2 as five cars do on average for an entire lifetime (Strubell

2The LSTM will be introduced in more detail in Chapter 4 where we will use it in the context
of a comparative study between different recurrent memory models.
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et al., 2019). Similarly, according to one estimate (Li, 2020), training the recently
released language model GPT-3 by (Brown et al., 2020), would cost over $4.6M
using Tesla V100 cloud instances.

In this research environment, the recently proposed Transformer model (Vaswani
et al., 2017) has been shown to outperform RNNs on a large number of bench-
marks, particularly in large-scale natural language processing tasks. While Trans-
formers are sequential models, they do not model memory recurrently. Instead,
they use self-attention, which was originally proposed in the context of recurrent
models, and is repurposed in the Transformer to model sequential memory access.
Nevertheless, most of the research questions that originated from RNN research,
such as modeling long-term dependencies (Dai et al., 2019), can be transferred to
Transformers, as both architectures are similar enough to share some of the same
disadvantages.

2.2 Learning Multiscale Representations

As previously discussed, recurrence compresses state representations heavily, caus-
ing memory decay over long time spans. This is a byproduct of unrolling a network
for training, which chains each timestep together. Above all, this biases the net-
work towards the previous timestep t − 1 and without an explicit model of time,
making it difficult to learn concepts such as “time spans” or events that have a
clear beginning and end (see also Section 3.2). Consequently, ordinary RNNs are
highly non-resilient to time rescaling, and an ordinary task can be rendered im-
possible, e.g., by inserting a small number of zeros between elements of the input
sequence (Tallec and Ollivier, 2018). Therefore, designing explicit memory decay
takes central importance in efforts to improve recurrent memory access. The pre-
viously discussed and widely popular LSTM addresses this using memory gating,
which allows to dynamically scale the influence of previous states more indepen-
dently from the unrolled state representation. An alternative approach to dealing
with long-term dependencies is to model a network to operate at multiple different
timescales simultaneously.

2.2.1 Challenges with Timescales

The basic idea of multiscale learning is to have some parts of the model operate on
short timescales, accessing memory from the immediate context as usual, whereas
other parts focus on long-term dependencies, encoding sequences that happen on
longer timescales. This necessitates a mechanism that allows to either ignore the
immediate context or biases the model towards long-term relationships. Suffice to
say, the time spans encoded in “long” and “short” timescales are highly application-
specific and timescales do not have to be as binary, i.e. there can be varying
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Process Timescale Description

1 Planck time 10−44 s Shortest theoretically measurable
time interval

Shortest measured event 2.47 · 10−19 s Photon traveling across a hydrogen
molecule (Grundmann et al., 2020)

Action potential 10−3 s Single neuron spike

Visual response 1 · 102 s Reflex response

Exchange 2− 102 s Dialogue

Solar Day 24 h 1 Earth rotation

Astronomical month 27.32 d 1 orbital period of the moon

1 Semester 4 months

Solar Cycle ≈ 11 a Cyclic variation in solar activity

Human Lifespan 79 a Life expectancy (developed world)

Formation of Mnt. Everest ≈ 50 Ma Ongoing process

Half-life of 235U isotope 703.8 Ma

Table 2.1: Examples for timescales.

degrees of timescales between those two extremes in which events take place in.
Similarly, in real-world scenarios, identifying the number of timescales in a data
stream is as difficult as identifying the number of “events” and their individual
temporal boundaries. This is because neural networks, even those without recurrent
connections, usually do not encode features discretely but work with continuous
distributed representations. Without an additional mechanism to model discrete
event boundaries, they can therefore not explicitly define a time span with a clear
beginning and end.

However, timescales can even be challenging to define on a conceptual level. Ta-
ble 2.1 shows an example of different events and their timescales. As can be seen,
some time intervals can be physically measured (e.g. an astronomical month)
whereas others are merely cultural inventions (e.g. a month in the Gregorian cal-
endar). Likewise, while many scales are based on periodic events, others, such as
the formation of a mountain, do not have an exact beginning and end but are part
of a process with blurry event boundaries. Additionally, large changes in scales re-
quire the use of different units of time such as the metric prefix Ma (Million years)
or relative units such as 10−x s, as the human short-term memory has difficulty
processing measurements with many digits and is generally limited to about 7± 2
“chunks” of information (Miller, 1956).

Due to this difficulty to clearly define timescales in the context of most machine
learning applications, most multiscale models only define 2-3 timescales explicitly
(Heinrich et al., 2018; Mikolov et al., 2015; Yamashita and Tani, 2008). Alterna-
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tively, this could also be explained by a data or task bias in which more timescales
simply do not improve performance. An additional motivation for multiscale net-
works comes from computational neuroscience and the interest to model neural
oscillations and spikes that are observed to operate at different frequencies in the
brain. In this context, timescales are typically shorter and modeled with smaller
frequencies (< 60 Hz (Wang, 2003)) and micro-level activities on shorter timescales
are projected to macro-level activities on longer timescales (Déli et al., 2017). Re-
cent models of neural oscillations also give some evidence that some tasks, such
as predictive speech processing, can be broken down to only two timescales (Don-
hauser and Baillet, 2020). It is important to note, however, that neural time frames
are significantly more limited than more abstract concepts and events present in
complex machine learning problems. As there is a certain trend to move away from
biologically plausible models in machine learning, more high-level representations
could thus theoretically benefit from more timescales.

Goodfellow et al. (2016) write in their foundational book on Deep Learning that
there are three main approaches to model multiscale training: i) adding temporal
skip connections, ii) removing short-term connections for some units, and iii) using
leaky units. The first two methods are closely related and reflect the main approach
taken in this thesis. As such, these will be introduced more in-depth in Chapter 3
and applied to our own models. The leaky memory approach will be introduced
next.

2.2.2 Leaky Memory

The main idea behind leaky memory (also called leaky integration or leaky ac-
tivation) is to control the memory decay with a fixed parameter, the leak rate
α ∈ [0, 1]. The leak rate controls the amount of the previous context that is taken
into account. As per Bengio et al. (2013a), a leaky hidden layer is defined as fol-
lows:

ht = α ht−1 + (1− α) f(ht−1,xt) (2.2)

The introduced leak rate modifies the state update such that the influence of
the past state is reduced by the amount α. Therefore, letting different parts of the
network operate on different leak rates biases the model towards different long-term
dependencies and thus timescales. Nevertheless, as Pascanu et al. (2013) note, the
vanishing gradient effect is still present due to α < 1, even though the leak should
ideally expand its timescale. This is helped by the fact that leaky memory acts
similar to the momentum term in gradient descent in that it can prevent sudden
changes. This is because leaky memory is simply the exponentially weighted moving
average (EWMA), the simplest form of exponential smoothing (Brown, 1963),
applied to RNNs. Despite this simplicity, Tallec and Ollivier (2018) show that
leaky models are invariant towards time rescaling in continuous-time models, still
able to represent an input sequence x(t) if it is rescaled by α such to x(αt). They
additionally show that leaky models are invariant to time warping, the process of
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repeating each token multiple times, therefore stretching out the sequence in time.
This holds true for discrete-time models as long as the data is not sampled faster
than the model’s own sampling rate.

More generally, leaky memory is related to the theory of self-organized criticality
(Bak et al., 1988) and the separation of timescales axiom which dictates that exter-
nal inputs enter a dynamical system at a much slower rate than the timescales of
the internal dynamics (Das and Levina, 2019). In the context of machine learning,
this has been adapted to Slow Feature Analysis (SFA), an unsupervised learning
algorithm (Wiskott and Sejnowski, 2002), which is based on the more general slow-
ness principle3 and has been proposed by Becker and Hinton (1992). The slowness
principle acknowledges that events on longer timescales differ from those in shorter
timescales by the amount of temporal variation in the input signal. Consequently,
applied to RNN representations (see also Section 2.5), the slowness constraint
translates to ht ≈ ht−1.

Mozer (1992) were one of the first to suggest leaky activation in so-called Reduced
Description Networks. While this technique was perhaps most popularized by Echo
State Networks (ESN; Jaeger et al. (2007)), the general principle has been applied
in a variety of other models4. ESNs use a leak rate that is global for the entire
network. This is typically different in approaches for backpropagation-trained net-
works where leak rates act as multiscale constraints. For example, Bengio et al.
(2013a) investigate leaky memory in SRNs and sample leak rates from a prede-
termined range. Other models, such as the Multiple Timescale Recurrent Neural
Network (MTRNN), limit themselves to only two timescales, i.e. “slow” and “fast”
context units (Yamashita and Tani, 2008). Similarly, the Structurally Constrained
Recurrent Network (SCRN) by Mikolov et al. (2015) simply uses a normal SRN
layer to model shorter timescales and adds a parallel layer with leaky activation for
longer timescales. A similar grouping of units by timescales is done in the Temporal
Overdrive RNN by Futrell and Levy (2017). Modeling different leak rates for each
layer has also been proposed by Wermter et al. (1999) in Recurrent Plausibility
Networks (RPN), which uses temporal delays similar to the NARX model (Lin
et al., 1996). The NARX model has later also been extended to Temporal Kernel
Recurrent Neural Networks (TKRNN) which use leaky integrators for every unit
(Sutskever and Hinton, 2010).

As discussed previously, choosing the correct leak rate remains a difficult task for
all models as the timescales themselves are often not clearly interpretable out-
side of artificial toy tasks. As shown in Quax et al. (2020) and one of our recent
studies (Heinrich et al., 2018), it can, therefore, be more beneficial to adaptively

3This principle has also been called the prior for “temporal and spatial coherence” (Bengio,
2013; Jayaraman and Grauman, 2016) and can even be interpreted from the perspective of
Newton’s first law of motion, which dictates that external forces gradually slow down physical
objects in motion due to their velocity and momentum (Jonschkowski and Brock, 2015).

4In Chapter 4, we will show an experimental comparison between some of these models and
compare them to memory models with skip connections.
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learn the leak rates. Regardless, it is important to note that LSTMs and GRUs
inherently have this capability as the forget and reset gates act as a dynamic leak
rates which modulate the amount of context that is taken into account at each
timestep. Despite this theoretical capability, gated models are not considered mul-
tiscale models as they are outperformed in respective tasks by more specialized
architectures (see Chapter 4). This could indicate that even adaptive mechanisms
require more explicit constraints such as the slowness principle to capture specific
timescales effectively. Likewise, traditional models have no constraints that enforce
diversity between learned representations such that they can end up focusing on
different scales. Nevertheless, the GRU and LSTM have both been studied previ-
ously with leaky activations, such as in the Multiple Timescaled GRU (Kim et al.,
2016; Moirangthem et al., 2017) or the Continuous Timescale LSTM (Yu et al.,
2017c).

As discussed above, learning multiple timescales is closely linked with the idea of
having different constraints and biases in different parts of the network. Grouping
units and modularizing or partitioning layers by constraints is, therefore, an im-
portant modeling technique, which we will be reviewing next. However, most other
approaches can be grouped into modeling hierarchical structures (see Section 2.4)
or using shortcut connections and skip mechanisms (see Chapter 3), which we will
review in the respective sections.

2.3 Specialization of Units

Training units to specialize on different features is of importance for multiple dif-
ferent research goals. First, as deep neural networks are high-dimensional systems,
they are often difficult to interpret. Causes, among others, can be emerging code-
pendencies (Srivastava et al., 2014) or redundancies (Rudy Setiono and Huan Liu,
1997) between neurons, a lack of structured data (Fan et al., 2020), an exploitation
of beneficial artifacts in the data (Montavon et al., 2018), a critical information loss
from breaking down complex representations into simpler symbols (Gilpin et al.,
2018), or the previously described difficulty that representations might not recog-
nize the appropriate timescales. In contrast, units that serve a specific function
are thought to be interpretable concerning this function, which is an important re-
quirement for explainability in machine learning. Second, generative models such
the Generative Adversarial Model (GAN), can exploit distributions of specialized
units to allow the generation of specific unsupervised features, which is of high
interest for real-world applications in which users require full control and direct
influence over small features of the generated output. And finally, as discussed in
the context of learning multiple timescales, modeling multiple constraints into a
network requires a local separation between units because ordinary networks have
issues focusing on multiple features at different scales using the same representa-
tion.
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Recent research efforts on modeling specialized units have concentrated on three
key areas: i) learning disentangled representations, ii) using modularization to en-
force different constraints, and iii) competitive learning, often in the context of
avoiding catastrophic forgetting. In this section, we will be introducing these con-
cepts and give a brief review of the existing research and main challenges.

2.3.1 Disentanglement

Recently, there has been much interest in unsupervised learning of disentangled
representations for generative models. An intuitive definition of disentanglement
is that “changes in a single ground truth factor should lead to changes in the
representation” (Locatello et al., 2019). For example, given a dataset of face images,
we want a specific unit to react to features of sunglasses, while another unit focuses
on hats, maximizing their respective activations in the presence of these features.
Generating images with different sunglasses from the one unit’s distribution, a
possible goal is, e.g., to avoid the generation of any changes in the hats - even
though both concepts might be conceptually or statistically correlated through
the data. What makes this problem difficult is that features such as “sunglasses”
and “hats” are not necessarily class labels. Instead, they can be mere attributes
that the model is supposed to find and isolate in an unsupervised manner. As such,
disentangling representations can be seen as a special part in the overall research
effort to learn specialized representations.

A common ground for most approaches is to favor disentangled representations
that are both discriminable (displaying numerical variation) and explainable (by
humans). Although the exact relationship between discriminability and explain-
ability is not agreed upon (Hohman et al., 2020), it is both clear that there is no
necessary causal relationship and that there can be no unique solution for both
objectives, respectively. In particular, disentanglement requires discriminability,
whereas discriminability does not have to automatically result in disentanglement.
This already reflects the dilemma that the research community has neither found a
clear well-formed definition of what it means to learn disentangled representations
(Higgins et al., 2018). Instead, the approach is often a consequence of the specific
task that is solved. Working towards a clear definition of disentangled represen-
tations, Eastwood and Williams (2018) posit that disentanglement, completeness,
and informativeness should be required criteria. A slightly different definition by
Ridgeway and Mozer (2018) requires representations to show modularity, compact-
ness, and explicitness. In any case, most definitions have in common that the goal
is to transform low-level and high-dimensional representations into high-level and
low-dimensional symbolic variables (Higgins et al., 2018).

Due to differing perspectives on disentanglement, the topic has been approached
by a variety of different methods such as penalizing the predictability of represen-
tations (Schmidhuber, 1992), maximizing mutual information between input and
output (Hjelm et al., 2019), the F-statistic (Ridgeway and Mozer, 2018), meta-
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learning a transfer distribution (Bengio et al., 2020), factorizing (Kim and Mnih,
2018), and penalizing the total correlation between variables (Chen et al., 2018).
Most of these assume generating factors to be statistically independent. As such,
independent features have also been learned with adversarial objectives (Brakel
and Bengio, 2017).

Nevertheless, a recent large scale evaluation of popular disentanglement metrics
and objectives has found that many do not work reliably and that successfully re-
produced disentanglement is more caused by favorable hyperparameters and ran-
dom seeds (Locatello et al., 2019). The authors also postulate that the task is
fundamentally impossible without inductive biases on both models and data sets.
Similarly, Leavitt and Morcos (2020a) present evidence that regularizing for “class
selectivity” (specializing each neuron on a specific class label) can impair gener-
alization of CNNs, despite better model interpretability. Overall, these findings
suggest a current overreliance on intuition-based approaches in interpretability re-
search (Leavitt and Morcos, 2020b), a lack of robust evaluation metrics to allow
fair comparisons between models (Do and Tran, 2020), as well as a lack of repro-
ducibility on a set of diverse datasets (Locatello et al., 2019).

Moreover, the majority of the literature focuses on disentanglement in the visual
domain. While some studies have investigated the disentanglement of representa-
tions in sequential tasks (Yang et al., 2015; Goyal et al., 2019), few explicitly model
temporal characteristics such as temporal variations (Hsu et al., 2017; Higgins
et al., 2018), suggesting that research on disentangling temporal representations
is still in its infancy. A lack of research could result from the difficulty to clearly
define temporal disentanglement and, therefore, further research objectives. While
it is simple to define spatial features such as “a hat”, a temporal feature can either
be a spatial object’s movement through time or something that is entirely discon-
nected from any concrete spatial objects. We can consider movies as an example as
they are often structured in three acts with a beginning, middle, and ending. While
a human observer can distinguish the beginning of a movie from the ending if the
story is provided as context, there is usually no single scene, line of dialogue, or
visual or auditory cue that defines the feature “introductory scenes”. Rather, this
feature is correlated with time itself (in this case, the movie’s running time). As
most recurrent networks do not explicitly model time, it is therefore challenging
to learn actual temporal features. Consequently, it is an open research question
whether and how the idea of disentanglement could be transferred to the temporal
domain.

2.3.2 Modularity

Most deep learning systems are built in the form of a single large network with
stacked and layered structures, which can lead to issues with generalization (Lamb
et al., 2020; Goyal et al., 2019). This can be approached by partitioning a network
into subnetworks or modules that operate based on different priors or constraints.
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The hope is that, similar to ensemble learning, this can lead to a combination
of experts that specialize in different features or functions (Jacobs et al., 1991).
Modularized networks are different from disentangled representations so far as in
their module constraints are typically much looser as modularized networks are
typically not designed for interpretability and modeling distributions in generative
models. As a consequence, modularization has a stronger focus on modeling distinct
functions and compositionality rather than representations.

The success of modularity as a design principle is also reflected in the evolution
of biological systems (Clune et al., 2013). The brain itself is an example of a
biological network that is thought to be organized into different modules supporting
distinct aspects of behavioral function (Yue et al., 2017). It is generally thought
that ordinary artificial neural networks do not lead to the emergence of functional
modularity from learning. Csordás et al. (2020) have conducted an analysis on
FFNNs, CNNs, LSTMs, and Transformers, finding that these popular networks
fail to reuse submodules, even when performing weight sharing between different
tasks.

Applications for modularity include causal modeling (Parascandolo et al., 2018;
Ke et al., 2019), meta-learning (Alet et al., 2018; Chen et al., 2020), conditional
computation (Chapter 3), decomposing language (Andreas et al., 2016), as well as
learning multiple timescales. Besides the leaky memory approach discussed in Sub-
section 2.2.2, specialization on timescales can also be achieved by different means
using modular structures: for example, Carta et al. (2020) modularize hidden lay-
ers to separate low- and high-frequency features, adding modules to the network
iteratively to progressively learn longer dependencies. A similar approach can be
found in the Clockwork RNN which has modules operating on different update
frequencies (Koutńık et al. (2014); Chapter 4). Rahaman et al. (2020) design RNN
subsystems that interact sparsely via a bottleneck of attention. Their Spatially
Structured Recurrent Modules (S2RM) unifies the concepts of modularity and
spatio-temporal structures in a single framework. Furthermore, a number of condi-
tional computation approaches utilize modularization to learn multiple timescales
(Chapter 3).

One common challenge with training modular networks is a negative effect called
module collapse (Kirsch et al., 2018; Rosenbaum et al., 2019). It can occur if some
modules are prematurely and greedily optimized over others due to them having
simpler constraints and therefore affecting the loss function more immediately. Ul-
timately, this results in a low diversity between modules and can, in the extreme,
lead to a similar outcome as with networks without modules. This is typically ad-
dressed by regularizing for variety in the modules (Kirsch et al., 2018). Feature
diversity can also be achieved by routing. Routing networks consist of two compo-
nents: a function block (e.g. a neural network layer) and a router which chooses
a function block for recursive processing (Rosenbaum et al., 2018). In this setup,
a single expert is active at any given time. Besides module collapse, challenges
for routing networks include overfitting on spurious activations and achieving a

20



2.3. Specialization of Units

stable state after initialization (Rosenbaum et al., 2019). Additionally, as with all
previously discussed methods such as multiscale learning or disentangling repre-
sentations, testing evaluating compositionality is difficult and remains an unsolved
problem (Hupkes et al., 2020).

2.3.3 Competitive Networks

While modular networks typically achieve compositionality through the collabora-
tion of subnetworks, a slightly different approach is to let them directly compete for
the best solution. Historically, this is done in an unsupervised manner, even though
this idea has been adapted to supervised models more recently. The idea of com-
petitive learning in neural networks was first introduced by Rumelhart and Zipser
(1985) who proposed a set of hierarchically layered units where units within clus-
ters dynamically compete for propagating their activations. Self-Organizing Maps
(SOM; Kohonen (1982)) are one example of such networks that have since been
extended to more sophisticated networks such as Grow-When-Required (GWR)
networks to enable continual learning (Parisi et al., 2019).

In the context of supervised learning, competitive activation units have been pro-
posed in CNNs for learning multiscale convolutional filters (Du et al., 2018; Liao
and Carneiro, 2015). To a certain degree, max-pooling in CNNs can also be seen
as competitive though it differs from winner-take-all approaches in that reduces
the number of features (Srivastava et al., 2013). This gap is closed by maxout
networks (Goodfellow et al., 2013), which augment max-pooling with dropout in a
winner-take-all fashion. Local winner take all (LWTA) networks operate similarly
by selecting linearly activated units, binarizing the activations via thresholding
(Srivastava et al., 2013). Srivastava et al. (2015b) analyze the emerging subsys-
tems of LWTA, maxout, and ReLu networks, concluding that low interference
between subnetworks facilitates training.

In recurrent networks, lateral inhibition has been used for grouping units competi-
tively (Xie et al., 2002; Mao and Massaquoi, 2007). Currently, there is an increased
research focus on continual learning with RNNs in which competitive learning is
often utilized. Continual learning describes the scenario in which a model has to
continually learn a sequence of tasks in an incremental manner. The main dif-
ficulty of transferring knowledge between tasks is catastrophic forgetting, which
occurs when memory from a previous task is being overwritten. In this context,
Parisi et al. (2018) propose a self-organizing dual-memory model with memory
replay, whereas other approaches, inspired by predictive coding, introduce local
sparsity constraints (Ororbia et al., 2020). Nevertheless, Ehret et al. (2020) argue
in their analysis of RNNs for continual learning that regularization approaches that
enforce constraints on units offer more versatility than competing models as they
require no replay or additional parameters.
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2.4 Hierarchical Models

Most complex systems, whether physical, biological, or social, take hierarchical
forms (Simon, 1962; Ravasz and Barabási, 2003). An important attribute of hier-
archical systems is that concepts at higher levels can be decomposed into concepts
at lower levels in a top-down manner. As such, an intuitive approach to model
compositionality is to design hierarchical networks.

An early example for a hierarchical network is the Neocognitron (Fukushima, 1988)
which, inspired by cells from the brain’s visual system (Hubel and Wiesel, 1962),
alternates between layers of “S-cell” feature extractors and “C-cells” learning po-
sitional invariance and reducing the feature dimensions between layers. Convolu-
tional Neural Networks (CNN) adapt the same principle using convolution and
max-pooling (LeCun et al., 1989). As modern deep learning systems have histori-
cally emerged from CNNs (Krizhevsky et al., 2012), designing large networks with
multiple stacked layers and hierarchical representations is one of the most impor-
tant design principles of current state-of-the-art deep learning systems (Vaswani
et al., 2017; Szegedy et al., 2017; He et al., 2016).

For recurrent networks, the concept of “depth” is a bit more complicated to define
and model. On the one hand, temporal depth is an inherent architectural feature
as RNNs are unfolded in time and backpropagated through many timesteps. RNNs
can therefore be considered as “the deepest of all NNs” (Schmidhuber, 2015). On
the other hand, horizontal pathways of ordinary RNNs offer linear transitions that
are still considered shallow and without any hierarchical structure (Pascanu et al.,
2014). Therefore, it is not sufficient to stack multiple RNN layers in order to learn
temporally deep representations.

For this reason, a number of proposed “deep RNNs” modify the underlying tem-
poral transitions with more representational power. An early example of such a
model is the Deep Transition RNN (DT-RNN) by Pascanu et al. (2014), which
adds non-linear layers to the recurrent transitions. One problem with increasing
recurrence depth in such a way is that any vanishing or exploding gradient ef-
fects are amplified. As such, the authors propose the use of shortcut connections,
which effectively shorten gradient paths (Zhang et al., 2016). Shortcut connections
are, therefore, an important design principle of deep RNNs (see also Section 3.5).
Zilly et al. (2017) take the idea of deep transitions one step further with Recur-
rent Highway Networks (RHN) by adding Highway Networks (Srivastava et al.,
2015a) to the recurrent transitions of LSTM networks. More recently, attention
has also been used to model sparse transition dynamics: recurrent Independent
Mechanisms (RIM) can dynamically control information flow (Goyal et al., 2019),
even bidirectionally (Mittal et al., 2020). The main idea with these models is to
model nearly independent transition dynamics in modules. Independent units are
also modeled with the Independently Recurrent Neural Network (IndRNN; Li et al.
(2018)) which replaces the dot product with the Hadamard product and encodes
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relationships between units through a hierarchy of multiple layers. Not suffering
from the vanishing and exploding gradient problem, the authors were able to train
networks successfully with up to 21 layers.

A different approach to hierarchical RNNs is to explicitly model inductive biases
from the underlying task in a model’s structure. One such example are (Recurrent)
Graph Neural Networks, which model relational inductive biases and can be used
with graph-structured data (Wu et al., 2020). Applications in natural language
processing are especially suitable for hierarchical inductive biases as natural lan-
guage is hierarchical and often modeled in tree-like structures such as parse trees.
Hierarchical organization that is modeled in tree-like topologies has particularly
been shown to be successful for tasks such as sentiment analysis as demonstrated
by the Tree-LSTM (Tai et al., 2015) or Recursive Neural Networks which have been
used to train the Stanford Sentiment Treebank (Socher et al., 2013) and to parse
natural scene images and sentences (Socher et al., 2011). Shen et al. (2019) propose
to order neurons in their ON-LSTM to implement a hierarchical tree structure of
LSTM cells with additional multiscale learning mechanisms: lower-ranking neurons
update more frequently (retaining short-term information), while higher-ranking
neurons update less frequently (keeping long-term information). This is realized
by ensuring that each neuron can only update/forget if all its child nodes (i.e.
lower-ranking neurons) had an update/forget operation. Nevertheless, while such
models excel at tasks they were designed for, such a strong inductive bias makes
them difficult to use in tasks where the underlying assumptions do not hold. As
we will show in Chapter 8, simpler hierarchical structures that are based on char-
acters, words, and sentences (which can be found in most NLP tasks), can already
serve to improve baseline performance. Similarly, separating semantic and syn-
tactic processing has been shown to lead to compositional generalization (Russin
et al., 2020).

2.5 The Stability/Discriminability Dilemma

of Temporal Coherence

As discussed in Subsection 2.2.2, the slowness principle of enforcing temporal co-
herence can be used to modulate temporal relationships on different timescales.
In this section, we will present an informal argument as to why it is difficult to
design recurrent multiscale models that are both stable and discriminable, un-
less they have a modularized or hierarchical structure. Our analysis motivates
multiscale learning approaches for models where high- and low-level features are
distinguished by their slow-/fastness such that a sequence of learned low-level rep-
resentations changes faster than those of high-level representations. This includes
methods based on Slow Feature Analysis (SFA), traditional multiscale oscillation
models, and other models with structures of temporal variance.
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To recap, the slowness principle enforces temporal coherence, minimizing variation
between timesteps. Translated to RNN state updates, this can be formulated as
ht ≈ ht−1 such that units only change slowly over time. In order to understand the
importance of temporal coherence for recurrent networks, we have to first establish
that a class of popular recurrent memory models follows this principle. This class
is defined by leaky memory models5. To see the relationship between slowness
and leaky memory, let us consider how the range of the leak rate α affects the
representations formed by:

ht = α ht−1 + (1− α) f(ht−1xt) (2.3)

= T1 + T2

where the term T1 = α ht−1 scales the past activation and T2 = (1−α) f(ht−1,xt)
the current one. Given an α ∈ [0, 1] that is close to 1, i.e. (1 − α) = ε for a small
ε > 0 (which we denote as α <ε 1), we can then infer that the first term T1 is close
to ht−1 and the second term T2 close to 0:

T1 = α ht−1 <ε ht−1 = ht−1 − ε1, (2.4)

T2 = (1− α) f(ht−1,xt) >ε 0 = ε2, since (1− α) >ε 0, (2.5)

which leads to ht = ht−1 − ε1 + ε2, or in other words, ht ≈ ht−1, which is the
slowness constraint. Similarly, α >ε 0 leads to ht = ε1 + f(ht−1,xt) − ε2 and
therefore ht ≈ f(ht−1,xt), which describes the “fast” regular update. It follows
that leaky memory models the slowness constraint, where α modulates the degree
of slowness.

The unparameterized slowness constraint ht ≈ ht−1 can also directly be modeled
as a regularization penalty. Krueger and Memisevic (2016) demonstrate this by
penalizing the norm of successive activations:

R = β
1

T

T∑
t=1

(
‖ht‖2 − ‖ht−1‖2

)2
, (2.6)

where β ∈ [0,∞[ is a hyperparameter to weigh the cost. This norm-stabilization
mainly addresses stability issues with unbounded activation growth (such as with
ReLu activation). Naturally, it is possible to directly stabilize the hidden state
activations ht, rather than using their norm (Jonschkowski and Brock, 2015).
This leads to explicit temporal coherence between states, minimizing variations
between timesteps such that ht ≈ ht−1. However, this approach has a practical
issue: R = β 1

T

∑t=1
T (ht − ht−1)

2 = 0 can be achieved by the trivial (constant) so-
lution ht = ht−1. Such a regularization penalty negates the intended purpose and
penalizes any temporal relationships globally. Solutions involve applying this only

5Even though gated memory models such as the LSTM or GRU can be seen as dynamic
variants of leaky memory due to their forget or reset gates (see Subsection 2.2.2), this adaptivity
can theoretically cause constant resets, resulting in low temporal coherence. Gated models are
therefore not included in this observation.
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locally or conditionally6, as well as applying the slowness constraint on a map-
ping of the states such as the norm or higher-order derivatives (Jayaraman and
Grauman, 2016). Minimizing changes on higher-order derivatives of the feature
space leads to temporal coherence based more on the feature transitions than dif-
ferences.

As we have shown in Subsection 2.2.2, slowness constraints can be applied at an
arbitrary level of abstraction to encode features with varying timescales. As transi-
tion dynamics can vary dynamically, we can interpret slowness as inherently tied to
the problem of learning multiple timescales. Indeed, SFA is based on the assump-
tion that high-level features emerge from more slowly varying representations than
low-level abstractions which are separately encoded based on more frequent or
faster variations (Wiskott and Sejnowski, 2002). Above, we have reduced SFA to
the general idea of time-averaging with leaky memory to minimize representation
differences between timesteps. We can therefore investigate similarities between
SFA and time-averaging time scaling approaches.

Goroshin et al. (2015) group most SFA approaches into three categories: works
that investigate i) the feature parameterization, ii) methods to avoid trivial solu-
tions, and iii) imposing additional priors or constraints such as independence or
sparsity on learned features. They further point out that the existence of the triv-
ial (constant) solution results in an unavoidable trade-off between discriminability
and stability of the learned features which is evident from the fact that constant
features (high stability) reduce state entropy (low discriminability). We argue that
such a temporal discriminability-stability trade-off can be viewed as a special case
of the general bias-variance trade-off in machine learning since the achieved bal-
ance is entirely dependent on the learned features’ temporal variance and bias,
which in turn is dictated by the learned recurrent weights.

Under this assumption, all time-averaging approaches for redundancy elimination,
regardless of their level of abstraction, suffer from this trade-off that forces a bal-
ance or choice between stability and discriminability of temporal features (see also
Figure 2.2). It is however important to highlight that this only concerns the tem-
poral dimension since we restrict our discussion to temporal redundancy. Under
these assumptions, we can arrive at a solution for models that can achieve both: in
cases where features change over larger timescales, a high temporal discriminabil-
ity is not only unnecessary, it is by definition counterproductive. Consequently,
on the temporal dimension, discriminability is ideally inversely correlated to the
associated feature’s timescale. The ideal stability on the other hand is directly cor-
related to the timescale. That is, features encoded over longer time spans (larger
timescales) benefit from lower discriminability (and higher stability), while features
from short-term events (smaller timescales) benefit from a larger discriminability
and lower stability. Almost all multiscale models that we have reviewed in this

6As a matter of fact, the trivial solution ht = ht−1 describes the process of skipping state
updates. If this is executed conditionally, we arrive at the definition for conditional computation,
which is described in Section 3.5 and applied in all our models presented in this thesis.
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Figure 2.2: Antagonistic relationships between abstraction and timescale,
bias and variance, discriminability and stability, leading to necessary trade-
offs.

chapter comply with this principle by modeling these two functions separately un-
der different constraints, e.g., by separating dynamics with modular or hierarchical
structures.

Such architectures lead to the realization of multiple, parallel trade-off solutions,
i.e. multiple timescales. In such models, individual representations (in the form of
units, modules, or layers) and their dynamics diverge between discriminability and
stability. More generally, an ensemble of N independent models can model N dif-
ferent trade-offs. For very large N , we can then find such an ensemble that covers
the entire range, effectively eliminating the trade-off problem for the larger model
(even though it still holds for each individual representation). Note how this analo-
gous to the more general bias-variance trade-off problem which motivates ensemble
learning: individual independent models of low bias and high variance can be aver-
aged into a single model, lowering the overall variance. The same can be achieved
with regularization, which includes the above-discussed slowness constraint.

Let us briefly also address the controversial question of whether building increas-
ingly larger models can present a viable alternative to constructing inductive bi-
ases. On the one hand, there is growing evidence that, for modern deep learning
models, variance can actually decrease with growing model size (Neal et al., 2018)
and that over-parameterized complex models are better at high-dimensional inter-
polation due to their inductive bias (Belkin et al., 2019). It has also been shown
that the intrinsic dimension7 for common benchmarks is lower than previously ex-
pected (Li et al., 2018), which hints at many standard models being inherently
complex. Consequently, it is possible that, given the right inductive bias, an RNN
with increasing parameter size could lead to an improved approximation of larger

7The minimum number of parameters necessary to encode and solve a task.
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timescales instead of overfitting on short-term dependencies. On the other hand,
extremely large modern language models such as GPT-3 (Brown et al., 2020) can,
for example, produce very realistic short snippets of text but still have difficulties
maintaining narratives over longer periods of time, consistency of gender or per-
sonality (Elkins and Chun, 2020), and have a critical lack of reasoning capabilities
(Floridi and Chiriatti, 2020). This indicates that current state-of-the-art sequence
learning models still lack the appropriate inductive bias to model concepts based
on long-term relationships.

2.6 Chapter Summary

In this chapter, we have reviewed current research challenges of modeling recur-
rent neural networks. The past decade’s shift towards deep learning approaches has
brought an increased focus on improving compositionality in large networks. Like-
wise, the growing use of deep learning systems in real-world applications has led
to a stronger demand for more powerful representations that allow, e.g., symbolic
manipulation, multi-task learning, causal inference, or model interpretability.

From this perspective, we have identified several important design principles for re-
current networks such as multiple timescales, modularity, disentanglement, locally
applied constraints, and hierarchical organization. While these principles have led
to significant progress, each of the models presented in this chapter follow a linear
discrete model of time in which state updates and computations are performed
in a synchronized manner for each timestep. In the next chapter, we will intro-
duce conditional computation, an alternative framework based on asynchronous
processing, and discuss why it naturally fits the discussed objectives, addressing
many of the research challenges presented in this chapter.
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Chapter 3

Modeling
Natural Language Processing

with Conditional Computation

This chapter motivates the need for sequence learning models that do not process
inputs in a chained manner, but can skip between inputs. As such, we will be intro-
ducing the conditional computation framework and reviewing related approaches.
The presented processing methodology holds opportunities for both more com-
putationally efficient models and learning more explicit temporal representations.
As this thesis primarily concentrates on Natural Language Processing (NLP) ap-
plications, we start by giving a brief overview of deep learning methods for NLP
and introduce our main applications of language modeling and question answering
(Section 3.1). We continue by discussing the main difficulties with modeling time
(Section 3.2) before arguing how the human reading process is a familiar exam-
ple for efficiently processing sequential inputs, despite processing information very
differently than recurrent networks (Section 3.3). After briefly examining the im-
portance of efficient processing and representations for the future of deep learning
(Section 3.4), we introduce the main concepts behind the methodologies used in
this thesis which can be found under the framework of conditional computation
(Section 3.5). We end by exploring current challenges and open questions in the
field of conditional computation (Section 3.6).

3.1 Natural Language Processing

Natural Language Processing (NLP) is a wide multi-disciplinary research field
that is concerned with the automatic processing, analysis, and representation of
natural language. The purpose of NLP is to achieve human-like language process-
ing capabilities in a number of different applications (Liddy, 2001). Examples for
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core NLP applications include machine translation, document classification, senti-
ment analysis, question answering, dialogue systems, natural language generation,
summarization, named entity recognition, or parsing. The ultimate goal of NLP
research, achieving human-like performance on such tasks, is often described by
the term Natural Language Understanding (NLU) and considered AI-hard. While
current systems are able to emulate individual aspects of language understand-
ing and reading comprehension, comprehensive language understanding requires
understanding on a semantic level rather than a syntax-level. Semantic under-
standing and subsequent manipulating of high-level concepts is necessary for more
advanced goals that go beyond information retrieval, such as drawing inferences
or performing causal reasoning.

Historically, NLP research can be differentiated by symbolic, statistical, and
connectionist approaches (Liddy, 2001). While symbolic approaches represent
knowledge-based methodologies such as rule-based systems, statistical approaches
such as the Naive Bayes classifier model statistical relationships from example
documents with the aim of generalizing to unseen documents. While these
approaches have dominated early research, connectionist models (neural
networks) have extended early statistical models, and occupy a central position in
modern NLP research as the majority of current state-of-the-art systems for NLP
are based on neural networks. While this is driven by increased computational
resources and data availability, some key advances in neural network training and
modeling, particularly in representation learning, have also played a vital role. In
the following, we will briefly introduce these advances by introducing the main
applications that we use in this thesis for evaluating our models.

3.1.1 Language Modeling

Language Modeling describes the task of learning statistical models for text pre-
diction. Such language models can then, e.g., be used for autocomplete or text
generation systems. The general formulation of the task is to learn the probabil-
ity distribution of a word sequence w consisting of |w| words wi (1 < i < |w|),
where each word is conditionally dependent on the previous words of the sequence
(Russell and Norvig, 2009):

P (w) = P (w1, . . . , w|w|)

= P (w1) · · ·P (w|w| | w1, . . . , w|w|−1)

=

|w|∏
i=1

P (wi | ci)

≈
|w|∏
i=1

P (wi | wi−N+1, . . . , wi−1)

We refer to ci = w1, · · · , wi−1 as the context from which wi is predicted, which we
limit to N − 1 words to model finite memory. This gives us above approximation
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which is also known as N -grams. N -grams provide the simplest language modeling
approach by predicting the next item in the sequence based on the previous N − 1
words. While N -grams can provide useful features, neural language models have
become more popular as distributed representations scale better with larger vo-
cabulary size (Bengio et al., 2003) and require lower memory complexity (Mikolov
et al., 2012).

When using RNNs for language modeling, the goal is to now model the joint prob-
ability distribution P (w) by approximating P (wi|wi−N+1, · · · , wi−1). This means
that the RNN processes the text sequentially, word by word, continually predicting
the next word at each timestep without supervision from labels. Overall, we can
also generalize the input from a sequence of words to an arbitrary symbolic se-
quence. A single input of this sequence, also called input token, can then be based
on different resolutions such as a characters, sentences, or paragraphs.

Generally, language modeling is performed at the word level. While word-level lan-
guage models have the downside of an increased dimensionality with large vocabu-
lary sizes, they are able to work with smaller sequence lengths than character-level
language models. Even though character sequences are significantly longer, requir-
ing significantly more computational resources for training, character-level models
have no predetermined vocabulary except for the characters. Instead, models have
to learn the vocabulary on their own by continually predicting on character-level.
This leads to the additional advantage that they are able to learn novel words and
morphological aspects, though this has been shown to be difficult in practice with-
out additional information (Vania et al., 2018; Santos and Zadrozny, 2014).

As we can continually predict tokens from a trained language model, we can use it
to generate text for evaluation. While human evaluation is considered optimal for
evaluating different aspects of the produced language, it is oftentimes too labor-
intensive or expensive in practice. Evaluation metrics provide a simpler alternative,
particularly for large-scale experiments in the development stage. In general, the
quality of a trained language model is evaluated by their perplexity (PPL), i.e.
the exponentiated Cross-Entropy loss H(p,q) of a given model prediction q based
on the true label distribution p. The Cross-Entropy itself is the average per-word
log-probability:

PPL(q) = 2H(p,q)

= 2−
∑N
i=1 p(wi) log2 q(wi)

= 2−
1
N

∑N
i=1 log2 q(wi)

(3.1)

For character-level models, performance is generally reported directly in entropy,
i.e. bits per character (BPC). The perplexity expresses how many equally likely
predictions the model has on average. Therefore, a low perplexity indicates a more
confident language model that captures the underlying probabilities better than a
model with high perplexity. To avoid overfitting on low perplexities, this metric
is only used to test for generalization on validation and test sets, whereas Cross-
Entropy is typically used as the training loss.
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Besides text prediction and generation, neural language models have an additional
advantage that allows their use in a number of different tasks. As the model learns
a distributed representation for the words, it clusters words with similar context
closer in the parameter space, which can lead to the encoding of some basic se-
mantic context. Such representations, called word embeddings, can then be used as
features in other tasks.

3.1.2 Word Embeddings

Word embeddings provide distributed word representations that encode semantic
similarities between words based on their statistical co-occurrences. While embed-
dings have been studied earlier in the context of dimensionality reduction (Ben-
gio et al., 2003), they have been widely popularized after the introduction of the
word2vec algorithm by Mikolov et al. (2013). The general idea is to use a shallow
neural network to predict a word based on its surrounding context (or alternatively
predicting the surrounding context of a word). By mapping discrete word repre-
sentations (e.g. bag of words or one-hot) to continuous representations, the learned
weight matrix, in this context called the embedding matrix, then contains a con-
tinuous word vector representation for each word in the vocabulary. Word vectors
with a smaller euclidean distance can then be interpreted as more similar.

While word embeddings can be trained end-to-end to capture the statistics of
the training corpus, it is also possible to initialize the first layer of a network
with an embedding matrix that was pre-trained on a different, typically much
larger, corpus. If these embeddings are transferred to a new model and training
is continued with different data, we speak of fine-tuning these embeddings. The
practice of transfer and fine-tuning allows networks trained on smaller datasets to
include semantic relationships from more data sources. This development and the
subsequent availability of word embeddings trained on large amounts of data has
significantly contributed to the success of neural networks in a wide array of NLP
applications.

After the introduction of word2vec, subsequent approaches have attempted to in-
corporate more knowledge into embeddings. For example, GloVe (Pennington et al.,
2014) includes global corpus statistics in the form of co-occurrence probabilities.
Speer and Lowry-Duda (2017) even extend word embeddings with further knowl-
edge from ConceptNet, a multilingual semantic network about word meanings and
relationships.

Most recently, there has been an important shift away from pre-training shallow
representations, towards contextualized and hierarchical multi-layer representa-
tions. This development has culminated in Bidirectional Encoder Representations
from Transformers (BERT; Devlin et al. (2019)) which is currently considered
state of the art for a large number of NLP applications. BERT builds on and
integrates multiple prior key approaches. The first approach, Embeddings from
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Language Models (ELMo; Peters et al. (2018)) addresses the problem that tradi-
tional word embeddings only provide a single vector for a word, even if there can
be multiple meanings depending on the context. Instead of using the surrounding
context, ELMo uses all layers of a bidirectional language model, encoding the entire
history of the sequence. This provides contextualized word embeddings allowing
word-sense disambiguation, e.g., drawing gets a different word vector in the con-
text of “drawing from experience” than in “drawing a picture”. The second
development was Universal Language Model Fine-tuning (ULMFiT; Howard and
Ruder (2018)), which improves transfer learning of language models by addressing
the common issue that fine-tuning of embeddings can lead to catastrophic for-
getting. The third building block for BERT is the use of Transformers networks
which have shown better scalability on large corpora (see also Section 2.1). BERT
integrates these concepts by providing embeddings from the decoder layers of a
Transformer language model that has been trained on large amounts of text data.
These embeddings can then be transferred to other models for further fine-tuning
on other, so-called downstream tasks for prediction or classification.

3.1.3 Question Answering

Question Answering (QA) is a typical machine learning problem which is con-
cerned with the automated answering of questions. Generally, NLP research dis-
tinguishes text-based QA from Knowledge-based QA (KBQA). While text-based
QA is based on information retrieval from text documents, KBQA produced an-
swers from knowledge bases such as Freebase (Bollacker et al., 2008) or DBpedia
(Auer et al., 2007). Other forms of question answering include community-based
QA (Liu et al., 2008) or Visual Question Answering (VQA) based on images (Wu
et al., 2017).

Most text-based QA systems are focused on factoid questions. Questions like “who
is the head of state of Germany?” can be answered with one or few words
by querying simple facts (Jurafsky and Martin, 2008). In contrast, non-factoid
questions like “how do you become successful?” are less aimed at extracting
facts but at providing longer and potentially more abstract answers. As such, they
often require some form of interpretation or reasoning.

Figure 3.1 illustrates an abstract template for most existing neural network ap-
proaches for text-based QA. Most approaches lean on word embeddings in that
they assume that the answer is semantically similar to text passages that semanti-
cally relate to the question. Consequently, both document and question are encoded
by neural networks. Their respective word embeddings are then integrated into a
single representation, often by measuring similarities between embeddings through
attention mechanisms1 or a dot product. This integrated embedding, representing
parts of the text most similar to the question, is then used by a decoder to produce

1Chapter 8 provides a deeper introduction into this methodology.
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Figure 3.1: The basic components of a neural network performing text-
based question answering. Documents are encoded separately from ques-
tions and integrated into a joint representation. A decoder maps this repre-
sentation to an answer. In practice, the encoder, decoder, and integration
are modeled with arbitrarily complex multi-layer network structures and
can include additional information (e.g. from knowledge bases) or further
processing (e.g. for document or passage retrieval).

an output answer. For non-factoid questions, the output can be a sequence which
is constructed by decoder generating text. Alternatively, this can also be modeled
without sequence generation, namely as a classification problem by providing the
start and end positions in the document for the answer. If the answer is a sin-
gle word, the network can also be modeled as a classifier using a softmax output
layer.

Depending on the form and structure of the answer, different evaluation metrics
can be used to measure the performance of systems. Typical classification metrics
such as accuracy can be measured based on whether answers exactly match the
data labels. The F1-Score can be used for span-based answer labels (Rajpurkar
et al., 2016), while free responses are generally evaluated with metrics known from
machine translation or summarization, e.g., BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), or METEOR (Banerjee and Lavie, 2005). However, suchN -gram-based
metrics have been shown to perform worse on more abstractive questions (Chen
et al., 2019a).

Recent neural approaches increasingly focus on questions answering in the con-
text of reading comprehension. A particular variant of this is cloze-style question
answering (Hill et al., 2016). In a cloze-style query, a word is removed from a
text passage and the system needs to infer how to fill this slot correctly. For QA
tasks, the removed word is often part of the question, requiring the model to re-
construct the question itself by understanding its relationship to the document.
However, even though current state-of-the-art systems are capable of simplified
forms of reading comprehension, they are generally still too simplified to be con-
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sidered NLU systems as too many approaches rely on information retrieval based
on rich word representations extracted from large corpora. Advancing the state of
question answering systems is a challenging problem as it is time-consuming and
cost-intensive. This not only concerns human evaluation but especially the creation
of datasets. As hand-crafting large datasets requires significantly more effort than
in other NLP tasks (Rajpurkar et al., 2016), many datasets are crowd-sourced or
automatically generated by extracting questions from text based on specific rules.
The difficulty is to avoid data biases that come from rule-based labeling, which
can result in machine learning models to focus more on reconstructing these rules
rather than gaining a semantic understanding about the questions.

3.2 Modeling Time

3.2.1 The Problem of Time Perception

The difficulty of designing models capable of temporal abstraction can be traced
back to the difficulty of modeling time such that it reflects our own experience
and perception of time. Moreover, the perception of time is a highly subjective
experience that can differ from objective time (Van Wassenhove et al., 2008).

There is even a cultural bias to the perception of time as was first suggested by
Hall (1976). The study of chronemics has identified monochronic cultures (time
is segmented into small precise units, things are done one at a time) vs poly-
chronic cultures (multiple things can be done at the same time, time is perceived
continuously with no particular structure). While the OECD developed countries
are primarily monochronic, there are significantly more polychronic cultures in
developing countries (Hall, 2000). Würtz (2017) note that these differences even
correlate to whether cultures have high-context or low-context communication such
that, for example, polychronic cultures in South America use more nonverbal and
paraverbal communication, also drawing from the temporal context in which the
conversation takes place. Cultural differences such as these can manifest as data
biases in machine learning models.

Cognitive science has so far not identified a singular brain region for the perception
of time. Ivry and Schlerf (2008) suggest that current models can be classified
into two different categories: they either a) assume the presence of specialized,
modular, and distributed representations or b) surmise that temporal information
is not represented explicitly in the brain. Models of the latter category include
those that encode time as entirely context-dependent (Karmarkar and Buonomano,
2007). While Recurrent Neural Networks are not cognitive models, they also encode
temporal relationships only indirectly through context.

This brings certain challenges (see also Section 2.2) since most time units are dis-
crete (e.g. seconds, minutes, hours, years). If we wish to encode temporally variable
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events such as a “moment” or “dialog act” in a machine, they have to be both mod-
eled and represented based on the internal temporal model of the machine. This is
difficult for recurrent models as they model temporal relationships and time inter-
vals entirely through context and without explicit representation. Therefore, the
manner in which context memory is accessed during processing defines what kind
of relationships can be encoded. Typical RNNs model time in evenly discretized
time intervals and inputs are read sequentially in one direction. At each time step,
only the previous timestep’s context is taken into account recurrently during for-
ward passes, leading to a short-term memory bias on ordinary RNNs. Constantly
updating the internal model in every timestep, even if the input sequence pro-
vides no new information, thus provides both a computational overhead as well as
a temporal model that is strongly biased towards relationships that are chained
sequentially. Consequently, alternative temporal models have been suggested for
recurrent models.

3.2.2 Computational Models of Time

The original recurrent model utilizes difference equations to model evenly dis-
cretized time intervals. This can be generalized to continuous-time models with
differential equations (Sherstinsky, 2020). Such a system of equations has been
developed by Hopfield (1984); Hopfield and Tank (1986) in the context of asso-
ciative memory, and unified under the Continuous-Time Recurrent Neural Net-
work (CTRNN). While a continuous-time signal is more flexible than a discrete-
time signal, domains such as natural language processing use symbolic encodings
for low-level representations such as text, which are then translated into contin-
uous representations through the process of reading. Early work has therefore
suggested hybrid symbolic processing (Wermter, 1995) but the overwhelming suc-
cess of discrete-time models in deep learning (as evidenced by current state-of-
the-art sequence models) has shifted attention away from these approaches. Only
recently, interest in modeling symbolic representations has gained some momentum
in the context of providing more interpretability of neural networks (see Subsec-
tion 2.3.1).

From a neuroscientific perspective, temporal models can be classified into two dis-
tinct classes: those with encodings based on neuron firing rates vs those based on
the timing of sparse neuron spikes (where rates are decoded from spike trains).
While most current network architectures are rate-based, the latter model is re-
flected in Spiking Neural Networks (SNN), which allow more sparse activations
and processing (Ghosh-Dastidar and Adeli, 2009). Following a hybrid approach,
both models can also be incorporated into one, learning to switch between both
forms of representations (Mochizuki and Shinomoto, 2014).

However, these models still do not incorporate explicit temporal representations,
e.g., in the form of clocks or timestep counters. In this regard, previous work has
suggested parameterized sinusoidal models to provide explicit temporal reference
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points for representations (Kazemi et al., 2019; Vaswani et al., 2017; Koutńık et al.,
2014). One benefit of sinusoid encodings over simple timestep counters is that they
are numerically bounded and that the periodicity provides reoccurring reference
points similar to discrete timesteps2.

Conditional computation, and skipping in general, can be seen as a compromise
between discrete-time and continuous-time models since they operate on discrete
time steps but can warp and dilate them such that events stretch over different time
intervals. Since skipping can be implemented in current state-of-the-art networks,
it is also possible to see this as an extension of rate-based models with sparse
spiking capabilities, allowing the encoding of event-based or periodic signals.

3.3 Efficient Reading

The traditional processing model of recurrent networks is an insufficient reflection
of our own reading process. To give an example, capable readers do not always
explicitly process text word by word and letter by letter. On the contrary, there
is evidence to suggest that we process lexical units very differently from sublexical
units (Joubert et al., 2004), which is thought to be even more different outside
of alphabetic systems, such as with the Chinese language (Zhou et al., 2009).
Therefore, reading is a highly complex and non-linear process that is thought to
be guided by prediction and inference (Linderholm, 2002).

In general, the process of reading is still not fully understood on a cognitive and
psychological level. Goodman (1967) has described reading as a “psycholinguistic
guessing game, [...] involv[ing] an interaction between thought and language”. His
proposal that readers guess meaning based on syntactic, semantic, and graphic
cues, has found widespread adoption while at the same time being subject to great
criticism in a scientific debate spanning 40 years that is sometimes called “the
reading wars” (Kim, 2008) or “the never-ending debate” (Smith, 1992). Goodman’s
promotion of a whole-language (literature-based) approach stands opposed to the
idea of concentrating early language education more on phonics (Smith, 1992), i.e.
the sounds of letters and words, which has been promoted by cognitive scientists
such as Perfetti (1985) as an alternative model. As Castles et al. (2018) observe,
favoring arguments between these two different approaches have shifted for many
years, particularly in the context of defining school curricula in English-speaking
countries.

Cognitive neuroscience research on dyslexia (reading disorders) was able to iden-
tify deficits in phonological processing of speech sounds early on. As Ramus (2003)
points out, a phonological explanation for dyslexia stands opposed to an explana-
tion assuming an underlying general sensorimotor deficit that can extend to other
impairments such as auditory, visual, or motoric. Recent neuroimaging studies sup-

2We will evaluate periodic activation in Chapter 4 and Chapter 5.
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port a multisensory integration in the brain that involves phonological processing,
visual detection, as well as inference over multiple critical brain areas (D’Mello
and Gabrieli, 2018). Bottom-up approaches to studying reading have been to in-
vestigate the role of eye movements (Rayner, 1978), whereas top-down perspectives
investigate the link between reading comprehension and abilities to make inferences
from text (Castles et al., 2018).

On the other end of the spectrum of readers with impairments, stand highly effi-
cient readers who are able to read text quickly with a high level of comprehension.
This process is known as speed reading. While it is generally accepted that speed
reading involves a tradeoff between speed and accuracy (Rayner et al., 2016), the
speed threshold at which reading comprehension starts to suffer is not well stud-
ied (Bell, 2001). Similarly, the process of rereading words (supported by rapid eye
movements) has been shown to be critical for developing text comprehension dur-
ing speed reading (Schotter et al., 2014). Text skimming is a form of speed reading
that explicitly sets the goal of efficiency over full text comprehension. Typical ap-
plications for skimming include proofreading, scanning text for answers, or simply
getting a general idea about the contents.

As part of this thesis’ approach, we argue that speed reading, and more specifi-
cally skimming, is a valid and promising approach for a variety of natural language
processing tasks in which extensive text comprehension is not the goal. Typical
examples for this include sentiment analysis, document classification, question an-
swering, or summarization. In these tasks, often only a small part of the input is
actually relevant to produce the correct output. Most existing recurrent models,
however, read every single input token sequentially, without any ability to skip over
unimportant words or rereading important words in a new context. As discussed
previously, this is mostly due to time being processed linearly in discretized manner
in recurrent neural networks. As such, conditional computation (Section 3.5) can
serve as a framework for text skimming, opening up possibilities for both better
temporal representations as well as more efficient processing.

3.4 Efficient Learning

Computational requirements for deep learning models have grown significantly
in recent years, often with limited performance improvements (Thompson et al.,
2020). Particularly in the domain of natural language processing, training models
with billions of parameters requires significant optimizations w.r.t. parallelization
(Shoeybi et al., 2019) to be able to fit state-of-the-art models such as GPT-3
(Brown et al., 2020) on conventional hardware. Difficulties in deploying and repro-
ducing such large models has increased the demand for more efficient solutions. Fur-
thermore, studies have estimated that the development of modern systems causes
a significant environmental footprint (Schwartz et al., 2020; Strubell et al., 2019),
which has, e.g., led to calls to report efficiency metrics in studies (Lacoste et al.,
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2019). While trade-offs between accuracy and speed constitute novel research areas,
the compression of pre-trained large networks for the purposes of deployment on
smaller architectures, such as mobile phones, is a well-studied research topic.

A number of approaches exist to reduce the memory footprints of neural networks.
Pruning describes the process of identifying and removing weights on a trained net-
works without significant loss of accuracy. The pruning ratio can be predefined or
automatically discovered, e.g., with neural architecture search, based on identifying
efficient network structures (Liu et al., 2019b). Low-Rank Approximation (LRA), is
based on the constraint to approximate a data matrix with a lower-ranked matrix,
lowering the complexity of a model. Other dimensionality reduction techniques
such as Principle Component Analysis (PCA) can be seen as a special case of
LRA (Markovsky and Usevich, 2012). While pruning and LRA can be applied on
pre-trained models, other compression techniques need to be implemented into the
training procedure itself. A popular such example is knowledge distillation (Hinton
et al., 2015) in which a second, smaller network is trained to imitate the original,
larger network. A more technical approach is to use quantization, which reduces
the numerical precision of 32-bit floating point parameters to 8 or 4 bits.

These compression techniques have seen widespread adoption for large pre-trained
models such as BERT (Devlin et al., 2019) for use in downstream tasks. To reduce
computational requirements, BERT has, for example, been pruned (McCarley,
2019), distilled (Sanh et al., 2019), and quantized (Zafrir et al., 2019). While it
is possible to compress these large models, this does not solve the initial issue
that initial model training requires large amounts of computational resources. For
this reason, some research has focused on identifying opportunities for more cost-
effective training by using more efficient representations during the entire training
process and ignoring redundancies. Such efforts to reducing computations have
often concentrated on improving the sequence processing methodology by identi-
fying subsequences (Yu et al., 2019). Using conditional computation, deep learning
models have recently been significantly scaled up in capacity, i.e. parameter size,
without increasing the computational budget (Lepikhin et al., 2020; Bolukbasi
et al., 2017; Shazeer et al., 2017). Tao et al. (2019) even present an approach for
skipping state updates in an already pre-trained network without the need for
fine-tuning. This opens up additional possibilities for cases where opportunities
to retrain large models are limited due to financial or computational restrictions.
Overall, these initial results make conditional computation a promising research
direction for more efficient models.

3.5 Conditional Computation

The core idea of conditional computation is to utilize skip mechanisms to sparsify
state updates, vertical depth, sequential inputs, or latent representations. The
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skipping itself is controlled conditionally, sometimes based on specific constraints,
sometimes controlled with free parameters.

Generally, we speak of a skip connection when it can be active at certain times to
copy information forward in time. The concept also exists for feed-forward neural
networks and is arguably most prominently used in the ResNet in the form of
residual skip connections, which allow to dynamically “adjust” the depth (in terms
of involved layers) of the learned representations (He et al., 2016)3.

In the context of conditional computation, skip connections are often defined as
connections that allow the skipping of state updates though this does not always
have to be the case, especially on implementation-level. Some authors also define
this process as “dropping” connections or entire computation paths, although this
mostly just provides a different perspective on the same process of introducing the
concept of inactive units or paths. We consequently use both terms interchangeably
based on the context.

Conditional skipping is an inherently binary process in that states are either up-
dated or skipped. Even a reweighing of the influence or magnitude of the update
is only possible if the update is actually calculated and propagated. This leads
to a binary decision problem that is unique to skip connections. One of the first
clear proposals for conditional computations were put forward by Bengio (2013).
He proposed it as a future research path towards scaling up computations in deep
learning by designing novel architectures that are capable of sparse updates. In
this specific context, the goal is to use as few computations or active states as pos-
sible while maintaining close-to baseline accuracy. However, as we will see later,
conditional computation is not exclusively tied to reducing computational cost and
can be used for entirely different purposes such as, e.g., eliminating redundancy,
learning multiple timescales, long-term relationships, and more complex temporal
dynamics.

3.5.1 Definition

Any backpropagation neural network model that has activation functions can be
extended to perform conditional computation. The computation decision can most
generally be expressed as a binary projection of each state ht to a binary decision,
i.e. D : R→ {0, 1} such that D(ht) = dt. The main idea of conditional computation

3However, it might be more accurate to use the term “shortcut connections” for residual
learning since no calculations are actually skipped: the identity mapping and residual projection
are performed simultaneously. The point of the residual identity mapping is to rather precondition
the model with a reference of the input than to actually skip or fully mask any activations. Wang
et al. (2018) have modified the ResNet model to actually skip convolutional blocks.
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is to decide this mapping with a conditional if-then-else statement:

D(ht) =

{
1 (update) if [boolean condition]

0 (skip) else
(3.2)

where update and skip are model-specific operations that exist to model both the
process of a normal update and the hibernating process of skipping an update. For
most neural networks, a non-update is achieved by the identity mapping id(x) = x
which inhibits the activation function. For recurrent connections and activations,
this means that ht = ht−1 in most RNN models. In this context, the skip operation
is therefore also sometimes called the copy operation. For an RNN unit ht, a general
conditional update process can then be defined as:

ht =

{
F (xt, ht−1) (update) if [boolean condition]

ht−1 (skip) else
(3.3)

where F (xt, ht−1) describes the regular state update of the underlying RNN model.
Note that redefining this update rule for a vector ht, leads to a slightly more
restricted model in which all units of the state perform the same action syn-
chronously, since we have moved the level at which decisions are made from units
to layers. We can also see how this formulation incorporates the “trivial solution”
for the slowness principle discussed in Section 2.5. As such, long-term relationships
are expressed differently from slowness approaches. As skipping is based on timing,
we can therefore modulate activation frequency as opposed to only the degree to
which change occurs. This difference is illustrated in Figure 3.2 in the context of
long- vs short-term context and timescales.

One major benefit of temporal skipping by copying previous activations is that
the unaltered sequence of states leads to constant gradients along the temporal
(Zhang et al., 2016). Therefore, gradients can neither vanish nor explode during
skipping, instead being copied until the next timestep in which an activation oc-
curs. The core research question in conditional computation (and in extension,
this thesis) is to find a suitable [boolean condition]. This can be according to
criteria such as minimizing calculations, improving loss, or maximizing activation
sparsity. Indeed, many ideas have been put forward, often varying drastically in
their approach, sometimes even being proposed from a different research focus
outside of conditional computation. The following sections provide an overview of
the most important methods and studies in the field. We group skipping method-
ologies into three main categories: i) randomized conditions (Subsection 3.5.2),
ii) constrained conditions (Subsection 3.5.3), and iii) adaptive conditions (Subsec-
tion 3.5.4). While adaptive conditions are parameterized to learn the timing of
skips, constrained conditions skip based on an inductive bias such as, e.g., struc-
tural or temporal constraints. Different from these network modeling approaches,
random skipping views conditional computation through the lens of regulariza-
tion.
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Figure 3.2: (a): The slowness principle ht ≈ ht−1 leads to slower changes
in long timescale units (LTSU) than in short timescale units (STSU).
(b): Skipping with ht = ht−1 allows activations to be completely inactive.
This allows a modulation of activation frequency for purposes of encoding
long-term relationships independently from short-term context.

3.5.2 The Random Condition

The arguably simplest procedure to sample update decisions is to sample them
from a random distribution. For this purpose, we can parameterize Equation 3.3
by defining a binary decision neuron bt ∈ {0, 1} which decides whether to use the
update function F (xt, ht−1) or to swap it with the identity mapping id(xt, ht−1),
skipping the update through the copy mechanism:

ht = bt · F (xt, ht−1) + (1− bt) · id(xt, ht−1)

= bt · F (xt, ht−1) + (1− bt) · ht−1

=

{
F (xt, ht−1) if bt = 1

ht−1 if bt = 0
(3.4)

While the unit bt can be learned (see Subsection 3.5.4), it can also be sam-
pled from a random distribution. More formally, defining bt as a stochastic unit,
we can sample it from a Bernoulli distribution, i.e. bt ∼ Bernoulli(p), where
P (Bernoulli(p) = 1) = p and P (Bernoulli(p) = 0) = 1− p.
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This idea has been developed further by Krueger et al. (2017) as zoneout, a regular-
ization method for RNNs. Zoneout randomly preserves the previous activations of
hidden units and can therefore be seen as a recurrent variant of dropout (Srivastava
et al., 2014) in which temporal connections are masked with ones (skipping tem-
poral connections) instead of zeros (dropping feed-forward connections). Different
from most skipping models, sampling from a random distribution allows to define
the skip probability p explicitly. Parallel to the study by Krueger et al. (2017),
zoneout has also been proposed in the context of residual networks (Singh et al.,
2016) and is somewhat related to the concept of stochastic depth (Huang et al.,
2016), which allows training on shorter gradient paths and inference during test
time on deeper networks. However, the application focus of zoneout is to provide
regularization. As such, it is similar to dropout, in that it can slightly improve
baseline accuracy and prevent overfitting to a certain extent.

3.5.3 Constrained Conditions

To set up controlled skipping behavior, models can be designed with suitable induc-
tive biases. Historically, models with skip connections can be seen as precursors to
conditional computation. Skip connections offer a popular methodology to model
structural biases for temporal dynamics. In fact, early work on skip connections
is often formulated in the form of time delay connections for learning long-term
relationships (Lin et al., 1996; Kim, 1998; Wermter et al., 1999) (see also Subsec-
tion 2.2.2). More recently, skip connections have become more relevant again in the
context of deep networks (Zhang et al., 2016). While there is still ongoing research
on learning long-term dependencies with skipping, addressing computational effi-
ciency with skipping is a relatively new concept.

The Clockwork RNN (CWRNN; Koutńık et al. (2014)) is one of the first models
to be explicitly modeled based on Equation 3.3. It has a hidden layer that is parti-
tioned into modules, which are activated periodically at specific timesteps, leading
to different activation frequencies between units. Inactive modules simply preserve
their previous hidden activations until they are triggered to activate again. These
activation triggers are under periodic cycles, static, and chosen as hyperparame-
ters. Each module has a different periodicity, and they are ordered from high to
low update frequency while only low-frequency modules have a direct connection to
high-frequency modules4. A key disadvantage of the CWRNN is that the periodic
activation conditions are i) predefined hyperparameters and not learned, and ii)
global for the entire sequence. This can lead to challenges when dealing with vary-
ing temporal distances between dependencies or phase shifts, which are common
in real-world applications.

The CWRNN model has been extended in some related studies. Carta et al. (2020)
use periodic activations but iteratively add infrequently updated modules when re-

4See Chapter 4 for a deeper analysis.
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quired. Chung et al. (2015) generalize the CWRNN to the Gated Feedback RNN,
which uses gates to learn the temporal connectivity but is not constrained to ac-
tivate periodically. Similarities can also be found in the subsequently proposed
WaveNet model and causal and dilated convolutions. Similar to the CWRNN’s
ordered modules, causal convolutions follow a specific order connecting past to
present filters. Dilated convolutions, on the other hand, extend canonical convo-
lutions by skipping pixels, spanning a larger receptive field without more adding
more parameters. The concepts have been transferred back to recurrent models
with dilated recurrent skip connections and exponentially increasing time delays
(Chang et al., 2017). Similarly, residual connections have been adapted for re-
current networks (Yue et al., 2018). Neil et al. (2016) propose the Phased LSTM
which uses an internal oscillation model to decide how long to keep activations con-
stant. Interestingly, Yu and Liu (2018) show that similar effects to skipping can
be achieved by redesigning the input sequences such that the network operates on
sliced sequences.

3.5.4 Adaptive Conditions

While conditions can be stochastic or constraint-based, they can also be learned
adaptively. To achieve this, representations need to be mapped to binary update
decisions. The simplest form of binarization is thresholding, which is known in the
form of the original perceptron and the threshold activation function 1(x)x>θ:

fθ(ht) =

{
1 if W · xt > θ

0 else
(3.5)

Naturally, this function is non-differentiable as it has a gradient of 0 almost every-
where and is infinitely steep at the threshold θ. This function was therefore histor-
ically limited to single-layer perceptrons before backpropagation with continuous
and smooth activation functions provided a more practical alternative (Rumelhart
et al., 1986). Nevertheless, there are a number of different approaches for dealing
with non-differentiable functions in neural networks that have seen some adoption
in conditional computation frameworks. They all share the main idea of using the
original function in the forward pass and using an estimate of its gradient dur-
ing the backward pass. The three most popular gradient estimators are currently
the Straight-Through Estimator (Bengio et al., 2013b), REINFORCE (Williams,
1992), and Gumbel-Softmax (Jang et al., 2017). Table 3.1 gives an overview over
these three methods which we will be introducing in more detail next.

The Straight-Through Estimator

The idea of the Straight-Through Estimator (STE) goes back to Rosenblatt’s
original perceptron training algorithm (Rosenblatt, 1961) which differentiates the
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Name Gradient Estimator Advantage Disadvantage

Straight-
Through
Estimator

∂fθ(x)
∂x

= 1 simple biased

Gumbel-
Softmax

yi =
exp

(
(log(πi)+gi)/τ

)
∑k
j=1 exp

(
(log(πj)+gj)/τ

) relaxation
high variance (small τ),

biased (large τ)

REINFORCE

∑
b∇πb(b)Rb ≈

1
S

∑S
s=1 Ebs∼πsb [∇ log πsb(b

s)Rs
b]

unbiased high variance

Table 3.1: Comparison between the three main gradient estimators used
in conditional computation.

threshold activation function by using the derivative of the identity function as
a proxy (Yin et al., 2019). This idea has recently been proposed in a lecture by
Hinton (2013) for the purpose of backpropagating through binary activation net-
works, before being adopted by Bengio et al. (2013b) as a solution to backprop-
agating through stochastic neurons in the context of conditional computation.
Outside of conditional computation, the estimator has been used as a tool for a
number of different binarization or discretization problems such as quantization
(Chen et al., 2019b; Razavi et al., 2019; Yin et al., 2019), end-to-end training of
a chained ASR and TTS system (Tjandra et al., 2019), attentive routing in cap-
sule networks (Ahmed and Torresani, 2019), and constructing adversarial examples
(Athalye et al., 2018).

The Straight-Through Estimator differentiates a non-differentiable function fθ(x)
by treating it like the identity function:

∂fθ(x)

∂x
= 1, (3.6)

Within the framework of conditional computation, fθ(x) can be any
non-differentiable binarization function for the purpose of mapping inputs to
binary update or skip decisions such as, e.g., rounding fround(x), threshold
activation 1(x)x>θ, or the step function. In practical terms, this estimator simply
passes the previous gradient through the non-differentiable layer. Yin et al.
(2019) show that this estimated gradient correlates positively with the
population gradient if the STE function is chosen correctly. While they indicate
that there is little theoretical justification for using the identity function, its use
has prevailed in practice.

The biggest advantage of STE is its simple implementation and the fact that it
requires no additional computational resources. Its main disadvantage is that it
is biased, i.e. potentially inaccurate, since the non-differentiable function is com-
pletely replaced by the identity during the backward pass. For this reason, Chung
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et al. (2017) propose the slope annealing trick which reduces the bias by gradually
increasing the slope of the hard sigmoid function until it gets close to the step
function, lowering the difference between forward and backward pass.

REINFORCE

Another possibility to train non-differentiable functions is to use reinforcement
learning, and in particular, the policy-gradient method REINFORCE (Williams,
1992), which was originally proposed for training networks with stochastic units
and can be integrated with backpropagation. Using REINFORCE for conditional
computation requires a reinterpretation of the task as a reinforcement learning
problem, designing a reward function (which can be non-differentiable), and ap-
plying the algorithm to approximate the policy with the network. The gradient
can then be estimated as its updates are approximately proportional to the policy
updates (Sutton et al., 2000).

REINFORCE has successfully been used for a variety of different models operat-
ing with discrete symbols, such as, e.g., hard attention (Mnih et al., 2014), nat-
ural language processing with GANs (Yu et al., 2017b), or end-to-end visually
grounded dialogue systems (Strub et al., 2017). For conditional computation, RE-
INFORCE was first proposed in Bengio et al. (2013b) and later refined in Bengio
et al. (2015).

The problem formulation is as follows: assuming a set of actions consisting of binary
decisions bi ∈ {0, 1}, it is necessary to find the optimal model policy πb over the
sequence vector of decisions b = (b1, · · · , bn) under some reward Rb (Ke et al.,
2018b): ∑

b

∇πb(b)Rb = Eb∼πb [∇ log πb(b)Rb] (3.7)

Since it is intractable to infer the exact policy gradient due to the high dimension-
ality, it is also possible to approximate the above term by running S examples (Yu
et al., 2017a):

∑
b

∇πb(b)Rb ≈
1

S

S∑
s=1

Ebs∼πsb [∇ log πsb(b
s)Rs

b] (3.8)

The reward itself can then be designed by incorporating sparsity regularization,
i.e. minimizing the number of computations by setting e.g. Rb = −

∑
i bi or Rb =

∂ht
∂bt

(Ke et al., 2018b), while others define a sparsity rate (Bengio et al., 2015).
Depending on the overall setup, it can also be necessary or helpful to include
another term for the prediction (Fu and Ma, 2018; Hansen et al., 2019). Even
though REINFORCE has the advantage of being an unbiased estimator, it has
the downside of having high variance. While some authors caution that this causes
slow convergence (Jang et al., 2017), it has also been shown to lead to a faster
training process in combination with variance regularization (Bengio et al., 2015).
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A number of other tweaks have been suggested to lower the estimator’s variance
(Williams, 1992; Ke et al., 2018b; Fu and Ma, 2018).

Gumbel-Softmax

The Gumbel-Softmax distribution was independently discovered by two research
teams (Maddison et al., 2017; Jang et al., 2017) (being based on earlier work
about the Gumbel-Max trick (Maddison et al., 2014)) as a solution for applying
the reparameterization trick (Kingma and Welling, 2014) to discrete-valued, cat-
egorical random variables. While Maddison et al. (2017) have coined the phrase
“concrete distribution”, it is usually called the Gumbel-Softmax distribution as
proposed by Jang et al. (2017)5.

The continuous Gumbel-Softmax distribution approximates samples from a dis-
crete distribution. The process of drawing samples from the Gumbel distribution
is defined as follows:

gi ∼ Gumbel(0, 1) = − log(− log(Uniform(0, 1))) (3.9)

Assuming a categorical variable z with class probabilities π1 · · · πk and a
k-dimensional one-hot encoding, we then draw k independent and identically
distributed (i.i.d.) samples gi from this categorical distribution, known as the
Gumbel-Max trick (Jang et al., 2017):

z = one hot(arg max
i

[log πi + gi]) (3.10)

The intent behind arg max is to sample the class with the highest probability,
while gi serves to add i.i.d. noise to this process. It is important to note that the
noise is injected pre-normalization, i.e. on a network’s output layer y, the noise
would be added to the logits rather than to the post-softmax probabilities. In
other words: a continuous parameterization of a discrete distribution by means of
the softmax distribution can alternatively be achieved by adding Gumbel noise to
the continuous logits that need to be transformed before taking the arg max. This
is called the “Gumbel-Max” trick.

Naturally, the arg max function is not differentiable. Since the softmax function is
by definition a smooth approximation of the arg max function, it can be used in
its stead to generate continuous k-dimensional sample vectors yi:

yi =
exp

(
(log(πi) + gi)/τ

)
∑k

j=1 exp
(

(log(πj) + gj)/τ
) (3.11)

This provides the Gumbel-Softmax distribution proposed by (Maddison et al.,
2017; Jang et al., 2017), which has a well-defined gradient for ∂y

∂π
. The temperature

5We adapt their nomenclature for this section.
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parameter τ regulates how much the Gumbel-Softmax distribution approximates
the categorical distribution. For τ → 0 the representations move closer to the one-
hot representation, while for larger τ the samples converge to a uniform distribution
over the categories. Naturally, the closer we are to the categorical distribution
(τ → 0), the higher the estimator’s variance. For this reason, Jang et al. (2017)
propose an annealing strategy for τ , decreasing it gradually towards zero during
training (similar to the slope annealing trick in REINFORCE). According to Jang
et al. (2017), it is also possible to set τ = 0, using the discretized distribution in
the forward pass, but the continuous approximation in the backward pass. Due to
its resemblance to the estimator proposed by Bengio et al. (2013b), this is called
the Straight-Through (ST) Gumbel-Softmax estimator.

Alternative Estimators

While these three discussed approaches are the most popular for conditional com-
putation (compare Table 3.2), there are alternative methods and extensions for
estimating gradients of non-differentiable functions. For example, REBAR pro-
vides lower-variance, unbiased gradient estimates for discrete latent variable mod-
els Tucker et al. (2017). RELAX generalizes this method by jointly optimizing the
original parameters with a control variate from a surrogate network, leading to
a similar result as the reparameterization trick (Grathwohl et al., 2018). REBAR
and RELAX have not yet been studied in a conditional computation setting. Wang
et al. (2018) combine REINFORCE with supervised pre-training to have the entire
training process differentiable with continuous gates that are only treated as bi-
nary at inference time. They demonstrate this approach for skipping convolutional
layers.

3.5.5 Models for Conditional Computation

While the Clockwork RNN (Koutńık et al., 2014) is an early example for a model
utilizing conditional activations, it is fully differentiable as skipped updates are
modeled in the form of skip connections that can be implemented by masking
the recurrent matrix. Similar to most models with skip connections, whether the
respective computations are actually saved, is highly dependent on implementation
details.

One of the first models utilizing adaptive skipping is the Skip RNN (Campos
et al., 2018), which uses a binary state update gate for the decision unit bt from
Equation 3.4. It uses the candidate activation to emit an update probability that
is then binarized to bt and backpropagated with the help of the Straight-Through
Estimator. By passing this activation step between timesteps, it is theoretically
possible to avoid any redundant computations in cases where bt = 0. To minimize
computation, they propose an additional regularization term that is added to the
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Estimator Model Applications

Straight-
Trough

Estimator

Skip RNN IC, AL, ST
Campos et al. (2018)

Selective Activation RNN AD/TSC
Hartvigsen et al. (2020)

constr. Hierarch.-Multisc. Hard-GRU PR
Tavarone and Badino (2018)

REINFORCE

Hierarchical Multiscale LSTM LM, HWSG
(Chung et al., 2017)

LSTM-Jump SA, DC, Q/A
(Yu et al., 2017a)

Length Adaptive Recurrent Model DC
(Huang et al., 2017)

LSTM-Shuttle SA, DC, Q/A
(Fu and Ma, 2018)

Focused Hierarchical RNN ST, Q/A
(Ke et al., 2018b)

Hierarchically Structured LSTM SA, DC
(Zhang et al., 2018)

Dynamic LSTM NER, LM, SA, ST
(Gui et al., 2019)

Structural-Jump-LSTM SA, DC, Q/A
(Hansen et al., 2019)

Gumbel-
Softmax

Variable Computation RNN MM, LM
(Jernite et al., 2017)

Skim-RNN SA, DC, Q/A
(Seo et al., 2018)

Leap-LSTM SA, DC
(Huang et al., 2019)

Clipped Maxout IC
(Lin et al., 2019)

Adaptively Scaled RNNs ST, IC, MGR, LM
(Hu et al., 2019)

Adaptive Attention Span LM
(Sukhbaatar et al., 2019)

Table 3.2: Overview of adaptive conditional computation models, their
respective gradient estimator, and the tasks they were evaluated on (LM:
language modeling, SA: sentiment analysis, DC: document classification,
Q/A: question answering, ST: synthetic tasks, IC: image classification,
AL: action localization, AD: anomaly detection, PR: phone recognition,
TSC: (continuous) time series classification, HWSG: handwriting sequence
generation, MM: music modeling, MGR: music genre recognition, NER:
named entity recognition).
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loss and minimizes the number of state updates. Similar regularization terms can
be found in most approaches reviewed in this section which generally leads to the
introduction of a hyperparameter for weighting the influence of this term. A similar
model using REINFORCE has been presented by Gui et al. (2019).

While the Skip RNN takes a decision at every timestep, the LSTM-Jump (Yu
et al., 2017a) also has the ability to stop reading a sequence at any given time,
but is additionally forced at each timestep to learn how many input tokens to skip
next. With this setup, skipping occurs on a per-input basis. In order to modulate
the skipping, there are a total of three hyperparameters for the number of al-
lowed jumps, maximum jump size, and the amount of tokens read between jumps.
The Structural-Jump-LSTM by Hansen et al. (2019) combines the two concepts
of jumping and skipping by using two separate networks to skip over words and
jump over larger structures indicated by punctuation marks. Contrary to these
methods, Huang et al. (2019) take a time-averaging approach towards modeling
skip decisions: their Leap-LSTM decides to skip based on a sliding window of
current, previous, and future timesteps. These three encodings are integrated and
fed to a softmax layer from which a binary update decision is sampled. Although
they report no variance, document classification experiments show a comparable
performance to the Skip RNN and Skim-RNN. In a different approach, Hu et al.
(2019) learn multiscale structures by explicitly defining timescales but parame-
terizing them so that they can be learned with Gumbel-Softmax. Similar to the
Clockwork RNN, their Adaptively Scaled RNN (ASRNN) stands out from these
approaches as it reads inputs at every timestep but encodes this information based
on skip connections.

It is also possible to model the skipping process in a separate network. A second
“coordinator” network can then predict which states should be updated, either
based on the input (Jernite et al., 2017) or on already partially pre-computed state
updates (Hartvigsen et al., 2020). Similar adaptive reading architectures have been
presented outside of the conditional computation framework, e.g., for varying the
input windows with 3 separate networks (Huang et al., 2017) or achieving multi-
turn reasoning (Shen et al., 2017). As skipping can lead to a loss of information,
the idea of rereading inputs has, e.g., been modeled by Fu and Ma (2018) in their
LSTM-Shuttle, which can also skip backwards in time. A different approach for this
problem is to perform “soft skips”, as demonstrated by the Skim-RNN (Seo et al.,
2018). Different from previous approaches such as the LSTM-Jump, this model
never actually skips inputs completely. They are rather “skimmed over” by passing
them to a second, smaller RNN cell while the larger main RNN cell updates based
on the remaining inputs. Since this allows the Skim-RNN to store more information
than strict skipping approaches, which compress the networks more heavily, it
is reported to hold or even slightly improve on baseline performance for some
NLP tasks. Nevertheless, while multi-network approaches have shown promising
results, further studies are necessary to understand whether these gains come from
introducing network modularity or from an increase in the parameter size as well
as an ability to ignore ineffective constraints in one of the networks. Tao et al.
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(2019) approach this question by comparing logistic regression and random forest
classifiers to feed-forward neural networks in the role of predicting skip timing and
find that neural networks are better at identifying important information.

As discussed in Chapter 2, the design of hierarchical, modular, multiscale structures
is an important research topic for recurrent networks. As conditional computation
provides a toolset to conditionally separate information processing, it fits these
concepts particularly well. An early demonstration of learning multiple timescales
in a hierarchical network is the Hierarchical Multiscale LSTM (HM-LSTM; Chung
et al. (2017)). It addresses the fundamental problem that most hierarchical models
have structural biases with regard to hierarchical boundaries (e.g., by separat-
ing character- from word-processing). In reality, hierarchical boundaries are often
less clearly defined (e.g., by including syllables) and discovering these structures
is a difficult problem (see also Subsection 2.2.1). The HM-LSTM uses a multi-
scale structure with binary boundary detectors at each layer which decide when
information is passed to higher layers and how long they keep processing.

Later studies have studied the HM-LSTM for different applications and varied
specifics of the architecture: Cherry et al. (2018) have found that using the model
for temporal compression in character-level neural machine translation results in
better performance but less compression than fixed-stride temporal pooling. Kádár
et al. (2018) show in their reproduction and ablation study that the HM-LSTM can
be simplified even further to achieve additional performance gains. Consequently,
the model has been further simplified in the Focused Hierarchical RNN which
uses less layers and adds an attention mechanism (Ke et al., 2018b). Zhang et al.
(2018) propose another related variant which learns structured representations with
REINFORCE instead of the Straight-Through Estimator. Tavarone and Badino
(2018) investigate bidirectional layers with the HM-LSTM and propose an iterative
improvement to its gating mechanism. To enforce a stricter multiscale structure,
where deeper layers activate less frequently than lower ones, they constrain the
activation of boundary gates to only fire if lower levels boundary gates fire as
well.

Finally, it is worth noting that conditional computation is not by any means limited
to the models and applications that we focus on in this thesis. For example, Lin
et al. (2019) adapt maxout for conditional computation in order to conditionally
rehearse training examples to reduce the effect of catastrophic forgetting. The
idea has also been applied to selectively learning filters in CNNs to allow better
training on new tasks (Abati et al., 2020) after conditional convolutions (Yang
et al., 2019) and dynamic channel selection (Hua et al., 2019) have been proposed
to increase model capacity without additional computational requirements. Other
studies have presented alternatives to skipping depth with residual connections
(He et al., 2016) by investigating skipping convolutional layers to adaptively scale
depth in deep networks (Wang et al., 2018). With regard to Transformer networks,
Sukhbaatar et al. (2019) have proposed to learn adaptive attention spans using a
similar mask as the one used by Jernite et al. (2017). Correia et al. (2019) build
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on this work by introducing adaptively sparse attention in Transformers. These
studies suggest a broad applicability of conditional computation to a number of
different research problems, tasks, and model designs.

3.5.6 Adaptive Computation Time

While conditional computation focuses on modeling the timing of computations
for state updates, Adaptive Computation Time (ACT; Graves (2016)) is concerned
with the computation time spent updating states. As such, ACT can be seen as an
alternative approach to model salience based on computation focus that is different
from the local skipping of CC and global weighting of attention.

This is realized by allowing the model to perform an arbitrary number of “sub-
timesteps” per input xt at timestep t. During these, the state is repeatedly acti-
vated in a loop. The update process is eventually stopped by a halting probability
which grows over time by the successive accumulation of a sigmoidal halting unit’s
output.

Initial experiments on character-level language modeling have shown that the
model increases computation at word boundaries, i.e. whenever the prediction un-
certainty is high. Further experiments integrating ACT with alternating attention
(Sordoni et al., 2016) have yielded mixed results showing i) that additional compu-
tation doesn’t always yield better performance and ii) that the model can benefit
from setting the number of computation steps as a fixed hyperparameter (Neu-
mann et al., 2016). This has been partly reproduced in an ablation study on ACT
by Fojo et al. (2018) using the parity and addition tasks. Their results indicate
that the repetition mechanism has a much larger effect than the adaptively deter-
mined differences in computation time. Since these differences are the only tool in
ACT to have more expressive power in the learned representations, the potential
of ACT to develop salience-based temporal representations seems limited.

While subsequent studies with ACT have shown some promise in the visual do-
main (Figurnov et al., 2017, 2018), studies with RNNs have mostly been confined
to evaluations on synthetic tasks and it is therefore currently an open question
whether ACT can provide an alternative approach to conditional computation
in RNNs. Similarly, current work is limited to a layer-wise application of ACT.
Therefore, it remains an open question as to how ACT would benefit in modular
or hierarchical architectures. Since ponder time seems to correlate with prediction
uncertainty (Graves, 2016), the methodology holds some promise for identifying
feature complexity and badly trained samples. As such, it would be interesting to
study whether ACT can be used for continual learning and multi-task learning. Re-
cently, there is regained interested in ACT as its addition has been shown to make
Transformers Turing-complete (Universal Transformer; Dehghani et al. (2019)),
closing an important theoretical gap between Transformers and RNNs.
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Figure 3.3: Application focus of selected studies on modeling with condi-
tional computation (N=17).

3.6 Challenges and Open Questions

Applications where a classification or prediction is based on only a small part of the
input stand to benefit the most from conditional computation. In these scenarios,
the majority of the input is either uncorrelated to class labels or simply redundant,
acting as noise. A popular method of choice for such tasks are attention models
(Galassi et al., 2020). Since attention is modeled with softmax distributions, they
share the same requirement, as heavily increasing the softmax dimensions causes
the mean probability to be lower without ever leading to actual sparsity in the
vector.

A number of tasks that fulfill these requirements can be found in the NLP domain,
especially in question answering, sentiment analysis, document classification, and
language modeling. Figure 3.3 shows a strong tendency in existing research for
adaptive conditions to focus on these tasks for benchmarking. The capability to
learn when to update could open up promising directions for a number of current
research problems, such as dealing with event-driven extremely long sequences
(e.g. raw audio data) without hand-crafted features, having adaptive computa-
tion times (Subsection 3.5.6), learning multiple timescales and their boundaries
(Subsection 2.2.2), or integrating sensory data under asynchronous sampling con-
ditions (Neil et al., 2016). The latter is particularly important for neuromorphic
architectures who process information event-based (Iyer et al., 2018). In conclusion,
future applications of conditional computation include, among others, event-based
prediction, change-point detection, sparse coding, pruning, compression, model-
ing long-term memory, improving computational efficiency, providing better inter-
pretability.

53



Chapter 3. Modeling Natural Language Processing with Conditional Comp.

Which constraints can be imposed on update conditions successfully, will influence
future applications of conditional computation. This constitutes an important re-
search question that is investigated in current research as well as in this thesis. The
majority of past suggestions either provide fully adaptive models or design struc-
tural biases in the temporal dimension (e.g. timescales) or the spatial dimension
(e.g. hierarchies and modularity).

A strong tendency for all skipping models is to lose baseline accuracy with in-
creased skipping activity. While this is a natural consequence of heavy compres-
sion, the specific compression ratios at which models can remain lossless have not
been studied well yet and require further research. Similarly, it was only recently
that research has shown that many benchmarks require significantly smaller model
capacities than previously expected and that the effects of increasing model sizes
beyond these capacities is not well understood (Li et al., 2018; Belkin et al., 2019).
In contrast to approaches that try to maximize computational efficiency are a
few that try to improve representation quality, e.g., by regularization such as in
zoneout, which can even lead to slight improvements in accuracy. Nevertheless,
balancing the trade-off between accuracy and skip rates remains one of the most
important challenges of conditional computation. Therefore, this thesis addresses
this challenge and contributes to answering the question of how we can minimize
or avoid these trade-offs.

3.7 Chapter Summary

In this chapter, we have discussed difficulties of perceiving and structuring time
which have translated to computational models of time. In this context, we have
argued for the importance of efficient sequence processing methodologies, giving the
human reading process as a practical example. Conditional computation provides
a framework for modeling sequential processing with conditional skips, preventing
networks from constantly updating each of their states in every timestep, regardless
of the importance of the processed input tokens and context.

As part of our review, we have presented stochastic, constrained, and adaptive
approaches. The current challenges in designing effective skip mechanisms for re-
current networks directly tie into our main research questions about i) identifying
suitable constraints and inductive biases for skipping, and ii) increasing skip rates
in networks without negatively affecting model performance. In the following chap-
ter, we will provide further experimental motivation by comparing the effects of
skipping in modular architectures to more traditional RNNs using leaky activation
and shortcut connections.
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Periodic Activation
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Chapter 4

From Leaky to
Periodic Activation

While traditional recurrent models regulate the scales of temporal memory dynam-
ics through leaky memory or dynamic memory decay, the conditional computation
framework suggests sparse activation by means of skipping state updates. Both the
traditional processing framework and conditional computation promote certain de-
sign concepts such as modularity and specialization of units (see Subsection 2.3.2).
In this chapter, we will provide an experimental evaluation of different recurrent
architectures implementing modular designs. The goal of this is to identify critical
design concepts for skipping networks and to get a first experimental insight into
how encodings from conditional updates differ from traditional update models. At
the same time, we investigate the advantages of stronger inductive biases for skip
constraints. For this purpose, we choose to compare the SRN as a baseline to leaky
memory models (see Subsection 2.2.2) and the LSTM which implements dynamic
memory decay. As a representative for conditional computation, we use the Clock-
work RNN, a model capable of skipping based on periodic update constraints.
The models are compared according to their ability to learn multiple timescales
in two different tasks, namely sequence generation and learning Embedded Reber
Grammar.

4.1 Motivation

Until recently RNNs were mainly of theoretical interest as their initially perceived
shortcomings proved too severe to be used in complex applications. One deficiency
that has been reported early on is the vanishing gradient problem (Bengio et al.,

Sections 4.1-4.3.3 of this chapter have previously been published in a preliminary study and
are based on Alpay et al. (2016).
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1994). When RNNs are trained with backpropagation, error signals over time van-
ish exponentially in RNNs. This has led to multiple highly specialized architec-
tures such as the Long Short-Term Memory (LSTM; Hochreiter and Schmidhuber
(1997)). Their success has sparked a renewed research interest in RNNs, which has
led to a number of recently proposed RNN architectures, including those that try
to improve control over the self-organization of temporal dynamics by learning on
multiple timescales. However, as these novel approaches have not yet been rigor-
ously compared, the fundamental principles that allow the capturing of dynamics
on different timescales are still unknown.

In this chapter, we therefore aim at contributing to the following research question:
what are key concepts that allow RNNs to build long-term memory and learn on
multiple timescales? We approach this question by investigating the Clockwork
RNN (CWRNN; Koutńık et al. (2014)), which has been shown to allow emergence
of multiple timescales by restricting update frequencies to temporal constraints. A
different method with the same effect is the use of leakage and hysteresis param-
eters that constrain the amount of change within a system between time steps.
The concept of leakage is most popularly used in the Echo State Network (ESN;
Jaeger et al. (2007)) but has also been shown to improve the Simple Recurrent
Network (SRN; Bengio et al. (2013a)). A related concept can be found in the
Recurrent Plausibility Network (RPN; Wermter et al. (1999)) which introduces a
related hysteresis parameter ϕ to perform time-averaging. It also has shortcut con-
nections, which provide shorter error propagation paths for the temporal context
layers. Shortcuts have been shown to allow better training in very deep networks
(Pascanu et al., 2014). Both shortcuts and leaky units are used in the Structurally
Constrained Recurrent Network (SCRN; Mikolov et al. (2015)) that additionally
partitions its layer into modules, similarly to the CWRNN.

As the RPN, SCRN, and CWRNN share similar architectural concepts such as
leakage, shortcuts, and partitioning the hidden layer into modules, their investi-
gation is of particular interest for studying the effect of these concepts on the
self-organization of the temporal dynamics. We evaluate these architectures on se-
quence generation and prediction tasks, using the SRN and the LSTM as a baseline.
Even though the LSTM has no specific time scaling mechanism, it is included in the
experiments due to its reported ability to capture long-term dependencies.

4.2 Investigated Recurrent Neural Network

Architectures

4.2.1 Simple Recurrent Network

The Simple Recurrent Network (SRN) is one of the earliest RNN architectures and
has originally been proposed by Elman (1990).
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Figure 4.1: Comparison of investigated RNN architectures. Figure (a)
shows an SRN unfolded in time. The RPN (b) extends the SRN with
its temporal shortcuts and the hysteresis ϕ. In case of a deep RPN, each

vertical layer h
(n)
t can have its own hysteresis value ϕn. The SCRN (c) has

an additional layer st that learns slower than in ht due to its high leakage
α = 0.95. The modules Tk of the CWRNN (d) are sorted by increasing
numbers from left to right and are only updated for t mod Ti = 0.

To recap our introduction from Subsection 2.1.1, a recurrent hidden layer is acti-
vated by an activation function f as follows (compare Figure 4.1a):

ht = f(xt Wxh + ht−1 Whh + bh) (4.1)

where xt is the input, Wxh and Whh define the respective weight matrices of the
input and recurrent layers, and bh a bias1.

1We will generally omit the bias for the purposes of brevity and clarity in this thesis. We
assume that every model used in this thesis has a corresponding bias vector added to each of its
weight matrices unless explicitly stated otherwise.
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4.2.2 Recurrent Plausibility Network

The Recurrent Plausibility Network (RPN) was originally developed to learn and
represent semantic relationships while disambiguating contextual relationships
(Wermter, 1995). It is based on the state of an unfolded SRN during truncated
BPTT, i.e. each hidden layer h has its own set of m context layers c(k)

(k ∈ {1, ...,m}) which store past activations. The main difference to an unfolded
SRN is the use of temporal shortcut connections for shorter context propagation
paths, making vanishing or exploding gradients less likely (compare Figure 4.1b).
For time step t, the units of the hidden layer h are activated as follows:

ht = f

(
xt Wxh +

m∑
k=1

c
(m)
t−1 Wmh

)
, (4.2)

where the vector c denotes the context layers, that are activated by shifting their
contents with c

(m−1)
t = c

(m)
t−1. The respective context activation for units in c(m)

is further constrained under the hysteresis parameter ϕ (Arevian and Panchev,
2007):

c
(k)
t =

{
(1− ϕ) · ht−1 + ϕ · c(k)

t−1 if k = 1,

c
(k−1)
t−1 otherwise

(4.3)

The hysteresis mechanism allows for a finer adjustment of context memory than in
the SRN. Rather than accumulating past activations in a single feedback loop, the
network is able to specifically learn the contribution between specific time frames
due to the temporal shortcuts.

4.2.3 Structurally Constrained Recurrent Network

The Structurally Constrained Recurrent Network (SCRN) was recently proposed
by Mikolov et al. (2015). The motivation behind the architecture is to achieve
specialization of hidden layers by partitioning them into parallel “modules” that
operate independently and under distinct temporal constraints. This theoretically
allows to train on multiple timescales. While the left path in the SCRN equals
a SRN with a regular hidden layer ht, the additional module st has units with
different temporal characteristics (compare Figure 4.1c). It is initialized with the
recurrent identity matrix and its updates constrained by a leakage parameter α ∈
[0, 1]. The authors set this leakage to 0.95, causing the states to change on a
much slower scale than in ht. Similarly to the RPN, this architecture makes use
of shortcut connections (Wsh) that allow ht to access long-term context which is
learned in st. The update rules of the SCRN are as follows:

st = (1− α)Wxs xt + α st−1, (4.4)

ht = fh(Wsh st + Wxh xt + Whh ht−1), (4.5)

yt = fy(Why ht + Wsy st), (4.6)
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Figure 4.2: Unrolled Clockwork RNN. Units have varying update fre-
quencies, i.e. they are updated periodically and otherwise copied between
timesteps (indicated by the dotted arrows and the copied units marked
with ©). The modules are sorted by update frequency (here, from top
to bottom: 1, 2, 4) and the unidirectional connection scheme only allows
weights from modules with long periods to those with short periods.

where fh and fy are the respective activation functions for the hidden and output
layers.

4.2.4 Clockwork Recurrent Neural Network

The discussed idea of partitioning the hidden layer into parallel modules with dis-
tinct temporal properties can also be found in the Clockwork Recurrent Neural
Network (CWRNN). While the CWRNN is also a modular multiscaling architec-
ture, it is different from the other models in that it uses no leaky memory model but
conditional computation. Therefore, the main difference is that multiple timescales
are not achieved by varying leakage but rather an external clock that determines
when a module gets updated. This means that a module m is only updated if its
clock period Tm satisfies the criterion t mod Tm = 0. Otherwise, the module is
inactive in which case the previous activation h

(m)
t−1 gets copied over:

h
(m)
t =

f
(

xt Wxm +
n∑

l=m

h
(l)
t−1 Wlm

)
if t mod Tm = 0,

h
(m)
t−1 otherwise

(4.7)

An additional constraint is that Tl > Tm for l < m, i.e. the modules are ordered by
increasing numbers from left to right (compare Figure 4.1d). Therefore, modules
on the left are updated more frequently than those on the right. Consequently,
modules with greater periods (on the right) will self-organize slower and to long-
term dependencies while those with small periods (on the left) change more often,
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focusing on short-term dependencies. The interplay between units with different
update frequencies is additionally illustrated in Figure 4.2. To achieve a stricter
separation and modularity between different temporal dynamics, modules within
each layer are only connected from right to left, i.e. infrequently updating modules
connect to more frequently updating modules2.

It is important to highlight that, compared to the other models, the CWRNN has
a strong inductive bias on periodic processing. As part of our experiments, we will
evaluate the model separately on a task that reflects this bias (learning sinusoid
sequences) and one which does not (learning grammar rules).

4.2.5 Long Short-Term Memory

The Long Short-Term Memory (LSTM) model has seen widespread use in recent
years and has lead to an increased success in using RNNs in natural language
processing applications and other real-world tasks (Greff et al., 2017). The main
advantage of the LSTM over the SRN is its capability to flexibly handle long-
term dependencies without suffering from vanishing gradients. In simple terms,
this is achieved by having a linear activation (which gives a constant gradient
that cannot vanish) on the main state vector, called the cell state ct. Since we still
need nonlinearities, we outsource this task to special “memory gates” with sigmoid
activation. These gates regulate the influence of neighboring and past states. While
leaky activation models memory as exponentially decaying over time, memory gates
are fully trainable and do therefore not have a static decay function. Instead, the
memory decay is fully based on the training data.

The LSTM has three different gates, namely the forget gate ft, the output gate
ot, and the input gate it. Combined with the cell state ct, they form the basis for
calculating the hidden state ht as follows (Greff et al., 2017):

ct = ft � ct−1 + it � ĉt (4.8)

ĉt = g(Wxc · xt + Whc · ht−1) (4.9)

ht = ot � f(ct) (4.10)

it = σ(Wxi · xt + Whi · ht−1) (4.11)

ft = σ(Wxf · xt + Whf · ht−1) (4.12)

ot = σ(Wxo · xt + Who · ht−1) (4.13)

where σ denotes the sigmoid activation function, g(x) a freely selectable activation
function (but typically tanh(x)), ĉt is the candidate activation for the cell state,
xt the input vector, and � the dot product.

2In the context of the CWRNN, we denote this connectivity scheme as “unidirectional” and
will investigate its role closer in Chapter 5 by comparing this to “bidirectional” connectivity
schemes.
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Figure 4.3: Comparison between SRN and LSTM cells. Top: Memory cell.
Bottom: Memory cell unrolled backwards in time. Yellow blocks indicate
transformations, pink circles operations (addition or dot product). Inputs
and outputs on horizontal axis (ct,ht) symbolize the memory cell recur-
rently passing values to itself between timesteps, whereas those on the
vertical axis denote the regular lateral cell input (xt) and output (ht).
LSTM figure adapted from Olah (2015).

The entire block of computation is called the memory cell and can be visually
compared against a regular SRN unit in Figure 4.3. Since ct is an internal state
that is not exposed to other cells, only ht is passed to other cells (top right in
the figure) and serves as the external representation. The cell state ct and ht are
however saved and referenced recurrently between two consecutive timesteps.

4.3 Comparative Experiments

All five architectures, the SRN, RPN, SCRN, CWRNN, and LSTM have been eval-
uated on two tasks; sequence generation of a sinusoid wave and sequence prediction
of words created by Embedded Reber Grammar. They have been trained with RM-
SProp, which divides the current gradient by a sliding average of recent gradients
(Graves, 2013). Based on preliminary experiments, momentum was empirically set
to 0.9 and the networks trained for a maximum number of 5000 epochs using early
stopping. Weights were initialized using normalized initialization, sampling from
N (0, 1/

√
n+m) where n is the number of incoming and m the number of outgoing

weights in the respective layer (Glorot and Bengio, 2010). Linear and non-linear
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activation (tanh) were explored. The forget gate bias was initialized with a higher
value of 2 to avoid initial forgetting (Jozefowicz et al., 2015). All other hyperpa-
rameters were set empirically for each network and task. Each setup was run 100
times with different random initializations.

4.3.1 Sequence Generation

In the first task, the networks have to learn how to generate a target sequence. They
receive no input while a single sequence is sequentially presented as the target. This
sequence of length 256 is a composition of three different sine waves, normalized
to [−1, 1]. A single output unit yt encodes the respective sequence value at time
step t. All networks were trained to minimize the mean squared error (MSE) with
a learning rate of γ = 10−4 and 64 hidden units. For the RPN, a context width
m = 5 and m = 15 was explored with hysteresis values of ϕ ∈ {0.1, 0.2, 0.5}.
Two variants of the SCRN were trained: i) a constant leakage of α = 0.95 and ii)
an adaptive leakage αt that is trained as described in Mikolov et al. (2015). For
the CWRNN, 8 equally sized modules with clock periods growing by the powers
of 2 (P1 = (1, 2, 4, 8, 16, 32, 64, 128)) are compared with a more coarse setup of 4
modules with the periods P2 = (1, 4, 16, 64).

The results for the best networks are depicted in Figure 4.4. The CWRNN gen-
erates the most accurate sequences, which indicates an ability to capture the un-
derlying subfrequencies, learning multiple timescales. It was also found that the
investigated clock-timings P1 (8 modules) and P2 (4 modules) perform equally well.
The SRN on the other hand merely captures the most dominant subfrequency of
the sequence while the LSTM gives a sliding average. The SCRN always converges
to the mean, being the only network which seems to be completely unable to learn
this task. Similar to the SRN, the RPN is able to capture only one subfrequency.
For the tested ϕ values, only 0.1 and 0.2 lead to convergence that is not located
around the mean. There is also a slight difference that can be observed between
these values: increasing ϕ from 0.1 to 0.2 causes an increasing phase shift, i.e. the
prediction gets increasingly delayed over time. This effect can be explained by the
fact that the temporal context, which is time-averaged by the hysteresis, will span
a larger time window with growing hysteresis values.

4.3.2 Embedded Reber Grammar

In the second task, the networks are trained to sequentially predict the next
symbol produced by Embedded Reber Grammar (ERG). The ERG is a
well-known test for RNNs. It is more difficult to learn than Reber grammar and
an SRN cannot be trained with BPTT to learn the grammar due to the presence
of long-term dependencies.
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The Embedded Reber Grammar is defined as follows:

S → btRte | bpRpe A → sA | x C → xBD | s
R → btACe | bpBDe B → tB | v D → pC | v

Similar to the sinusoid functions, ERG sequences are partially periodic as spe-
cific tokens in the state automaton can be visited repeatedly and cause recurring
subsequences. However, due to the recurrent nature of the grammar, these subse-
quences have different lengths and are therefore discontinued at each recurrence
level. These irregularities should make the task slightly more difficult than the
previous sequence generation task.

We randomly generate two different sets with respective sequence lengths of 20 and
30. Both data sets consist of 250 sequences and are further split into 60% training,
20% test, and 20% validation sets for cross validation. Each symbol is encoded with
a feature vector of size 7 (1 unit per symbol), while softmax activation in the output
layer yields the symbol probabilities. The minimized loss function is the Kullback-
Leibler divergence (Kullback, 1997). For all networks, the number of hidden units
was set to 15. For the SCRN, a learning rate of γ = 0.01 was found to be optimal,
whereas γ = 10−4 worked best for the other architectures. The CWRNN’s hidden
layer was partitioned into 5 modules with the periods P = (1, 2, 4, 8, 12). All other
hyperparameters are set as in the first task.

The results for the best trials are depicted in Figure 4.5. When trained with se-
quences of length 20, the SCRN with α = 0.95 emerges as the best performing
architecture, whereas the CWRNN seems to have the most difficulties. The LSTM
shows an average accuracy, while the RPN seems to be less prone to bad initializa-
tion than the SRN. Especially for longer sequences, a large number of SRNs yield
considerably more prediction errors than all other networks, which in turn share a
similar overall performance.

4.3.3 Experiment Summary

Our results show that parallel hidden layers, which learn under different temporal
constraints can lead to an emergence of multiple timescales in RNNs. Furthermore,
shared weights in the form of shortcut connections (such as in the SCRN and
CWRNN) allow units, which self-organize to short-term context, to take long-term
dependencies into account from specialized units that operate on a larger timescale.
While the SCRN achieves this by means of leakage, the CWRNN utilizes periodic
module activations. For the sequence generation task, the CWRNN was the only
architecture to learn the decomposition of the trained sinusoid wave into all its
subfrequencies. All other networks converged to the mean or a single subfrequency.
This suggests that the CWRNN is able to store the entire sequence in the memory
of the clocked modules, although it has half as many parameters as the SRN
(Koutńık et al., 2014). For the second task, the complete opposite can be observed;
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Figure 4.5: Average edit distances (number of wrongly predicted symbols)
for sequences of length |S| = 20 (left, blue) and |S| = 30 (right, green).
Boxes show 25% and 75% quartiles as well as the median (black line). The
best RPN trials were achieved with ϕ = 0.2.

the SCRN is able to outperform all other networks for sequence lengths of 20 while
the CWRNN has difficulties.

Our findings suggest that the SCRN and RPN seem to work better for discrete,
symbolic long-term decisions while the CWRNN is better at decomposing real-
valued signals. Partitioning hidden layers with distinct temporal constraints has
shown to be a viable method to capture different timescales.

In the following section, we will explore these hypotheses more deeply by first
analyzing the CWRNN representations for the sinusoid sequence learning task
Section 4.4, before investigating in Chapter 5 whether our initial observations on
solving discrete tasks with the CWRNN hold true if we scale up the task complexity
to the language modeling domain.

4.4 Analyzing the Clockwork RNN

Representations

As we have previously hypothesized that periodic activations cause the CWRNN
to outperform the other networks on the sinusoid sequence learning task, we now
aim to inspect them more closely. Therefore, we visualize the internal states of
the CWRNN and compare the differences in the encodings between the differ-
ent modules after (Subsection 4.4.1) and during (Subsection 4.4.3) convergence.
We continue in a similar experimental setup though we use a slightly more noisy
sequence to enforce slightly more diversity between the modules.
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Chapter 4. From Leaky to Periodic Activation

4.4.1 Activation Maps

In order to gain a deeper understanding about the representations learned by the
CWRNN, we visualize the encodings in activation maps. For this purpose, we plot
the activations of the hidden layer over time. We do this after the network loss has
converged close to 0 and show the activations that result from feeding the learned
target sequence as input.

The CWRNN networks that we showcase predict the next timestep in
sequences of length 256, using |h| = 64 hidden units, 8 modules with
P = (1, 2, 4, 8, 16, 32, 64, 128)), and tanh(·) activation. We additionally compare
the activations maps of the CWRNN to those of the SRN which serves as the
most related network architecture, and the LSTM, which is generally considered
to be the state-of-the-art RNN model and, therefore, a sensible baseline.

Investigating the resulting visualizations, we have found marginal differences when
slightly adjusting the learning rates, which would occasionally result in the over-
all activation level (minimum and maximum activation) to moderately go up or
down for the entire sequence. Regardless of this, we were able to observe the same
patterns but use this observation to only showcase networks where we have set the
common hyperparameters between the different network architectures to the same
values. In particular, we train with Adam optimization (Kingma and Ba, 2015)
and an initial learning rate of 0.01.

We give a representative example visualization in Figure 4.6, which highlights
the different network representations. As can be seen, all three networks have
very distinct representations though they share some common elements. The SRN
representations are highly redundant and most oscillations are on a short timescale.
While some long-term oscillations can be identified, they happen less frequently
than in the LSTM. This is unsurprising as the LSTM is specifically designed to deal
with long-term dependencies. Its prevailing activation pattern is caused by tracing
the learned dominant subfrequency of the target sequence (Figure 4.6: circle A).
Consequently, these units have its maximum activation maxima in the periodically
appearing descent of the valley between the target sequence’s maxima and minima
- a segment which is sufficient to reconstruct the entire subfrequency.

The same pattern can also be found in the CWRNN. Primarily, the module T8,
which activates every 8 timesteps, has picked up this frequency, indicating that
this module is mostly responsible for reconstructing the dominant subfrequency.
We have found that this frequency is learned early on during training as it provides
a rough fit to the target sequence (for more on this, see Appendix Section A.2).
Modules with smaller periods lead to very similar short-term activation patterns as
in the other networks (Figure 4.6: circle B) and are most likely used to reconstruct
the other target subfrequencies with smaller periodicity. Different from both the
SRN and the LSTM, we can observe how the global activation level slightly rises
throughout the sequences in the CWRNN. This could potentially be caused by the
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Figure 4.6: Comparison between the hidden activation maps of the SRN,
LSTM, and CWRNN after successful convergence. The network encodings
of the target sequence differ significantly from each other with regard
to the redundancies in the encoding: the SRN is highly redundant and
oscillates within short time ranges, the LSTM has smoother activations,
focusing on long-term dependencies, the CWRNN does both, depending
on the module, but offers more sparse activations overall. A: Traces from
the dominant subfrequency of the target sequence. B: Periodic short-term
features.

unidirectional connections from modules with larger activation periods who have
little to contribute at the beginning of the sequence where they haven’t updated
yet. We have found some support for this explanation in that we were able to
observe for converged networks that the majority of fitting errors occurred in the
initial few timesteps of the sequence. This hypothesis is further supported by a dif-
ferent study which was able to show fewer mistakes in earlier parts of the sequence
if the influence of slower modules is reduced (Carta et al., 2020).
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Chapter 4. From Leaky to Periodic Activation

It can also be seen that CWRNN modules with larger periods yield very neutral
activation patterns and therefore seem to contribute little to the overall sequence.
This effect has previously been observed in other conditional computation ap-
proaches with submodules and has generally been described as module collapse
(Kirsch et al., 2018). It can be the outcome if some modules are prematurely op-
timized over others due to them having simpler constraints and having a more
immediate effect on the loss function. This kind of greedy self-reinforcement can
lead to a lack of diversity in the modules. However, the under-utilization of some
modules does not necessarily have to always be a cause of module collapse. If the
underlying bias of the constraints does not fit the data bias, it is natural to assume
that avoiding these modules will all in all lead to a better error. In our case, the
modules with very low activation frequencies are simply unable to contribute much
as there are no events that occur every 64-128 timesteps that would be useful for
contributing to a smaller error.

While this reduces overall redundancy in the network representations, visualizing
the CWRNN module activations allows us to quickly infer by how many units
the network is roughly over-parameterized by, whereas this information is more
difficult to draw from the other networks due as their feature adaptation is not
localized by any predetermined module structure. On the whole, this structure
makes trained CWRNNs more easy to interpret than the SRN or LSTM.

4.4.2 Recurrent Activation Trajectories

We now remove the barely utilized modules with large periods and focus our atten-
tion on the same network configuration but with the shorter periods P = (1, 2, 4, 8).
In these networks, we were able to observe how each module is successfully able
to specialize on different subfrequencies of the target sequence T . To highlight this
behavior more distinctly, we take the recurrent activations ht of the entire sequence
and apply Principle Component Analysis (PCA) to project each module’s unit into
a 2-dimensional plane. The resulting visualization shows the activation trajectories
with regard to the principle components of the temporal activation space.

Figure 4.7 illustrates an example visualization obtained after convergence of the
previously discussed network. As can be seen, the trajectories for each module
are distinct and reflect the underlying three sinusoid subfrequencies of the learned
sequence. This is additionally indicated by the directional change in the activation
space of each module’s trajectory. The overall trajectory movement also mirrors the
overall trained sinusoid sequence. Together with the previously discussed activation
maps, this gives us additional evidence towards our hypothesis that the different
activation periods of the CWRNN allow the network to learn distinct features, in
particular the different subfrequencies of the trained sequence.
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Figure 4.7: Module-wise trajectories of the CWRNN after learning a si-
nusoid sequence (Principle components of recurrent layer activations ht
along sequence T ).

4.4.3 Recurrent Weight Trajectory Plots

So far, we have seen how the CWRNN modules can lead to the development
of distinct representations and functions. To better understand how these repre-
sentations arise, we visualize their evolution during the training procedure. For
this purpose, we develop visualizations which allow us to display how the recur-
rent weights develop from epoch to epoch. We record this information by storing
all weight values for each epoch in the high-dimensional tensor (Whh, T ) with
T = [1, . . . , nr epochs]. To project it into a two-dimensional space, we use Princi-
pal Component Analysis (Gabella et al., 2020) and use a sequential color gradient
to display each weights trajectory over time. We name the resulting plots recurrent
weight trajectory plots.

Figure 4.8 shows different weight trajectory plots for the SRN, LSTM, and
CWRNN. To successfully interpret the plots, it is important to consider the color
gradient. The dark-blue data points signify the initial epochs (1-150), whereas
the green-yellow data points show the later epochs (150-300). As we initialize
with small random weights, the weights start close to the origin. The more data
points can be found around this initial region, the longer the network has stayed
near this configuration. If this region is more sparse, the weights have more
quickly evolved away from its initial values. As can be seen, the green-yellow tails
are generally a small section of each trajectory, signaling only small changes, and
therefore how weights have started to converge to local minima between epoch
150 and 300.

The figure shows that all three networks are being optimized quite differently from
each other. For the SRN, we can observe a spiral motion which covers the weight
space almost evenly (see Figure 4.8a). Most trajectories linger around the origin
for the initial epochs but then quickly jump further away in the weight space with
a high momentum as the direction is only changed slightly before convergence. On
the one hand, this suggests that the SRN weight trajectories move to sufficient local
optima early on. On the other hand, we can see that all weight trajectories have
the same motion and differ only in their direction. Assuming that specialization
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Figure 4.8: Recurrent weight trajectory plots (|h| = 64, 300 epochs) for
the recurrent weights of the (a) SRN, (b) LSTM, and (c) CWRNN. Each
point represents the principle components of a unit’s weight at the end
of a training epoch. Training epochs are colored in ascending order from
violet to yellow. The resulting trajectories illustrate each unit’s trajectory
trough the parameter space during training. The shorter the yellow tails,
the longer the time that the parameter has converged to the respective
region. (d): CWRNN colored by module (dark: frequent; light: infrequent
activation).

between units causes differences on the optimization surface, this would indicate
a lower diversity between the weights of the SRN.

Most LSTM weights (Figure 4.8b) do not evolve much from their initial value,
instead covering a large portion of this region. Similarly to the SRN, this hints
towards most of the LSTM weights serving the same function, causing low di-
versity and large redundancy in the representations (which would confirm our
observations from the activation maps in Subsection 4.4.1). Nevertheless, a small
number of weights can be seen to shoot further away to other regions where they
slowly converge to local minima, indicating a different type of purpose for these
weights.

Similar to the previously shown activation maps, the CWRNN weights
(Figure 4.8c) indicate a combination between the optimization behavior of the
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SRN and LSTM. While the SRN’s spiral shape is more condensed into a star
shape, a large number of weights can be seen to branch out. Different from the
other networks, the CWRNN weights move away almost immediately from the
initialized values. While this slight “overshooting” often results in subsequent
directional changes in the parameter space, they settle to their local minima in a
very stable manner. Unsurprisingly, comparing the weights colored by module
(Figure 4.8d), we can see from the length of the trajectories that weights from
modules with high activation frequencies are often optimized more quickly than
those with large periods. The respective module trajectories are mostly distinct
from each other even though they share some local minima. This indicates that
modules can have overlapping purposes, likely caused by the modulo operation
allowing simultaneous updates between modules and therefore some degree of
codependencies. The degree to which codependencies occur, however is
significantly lower than in the LSTM or SRN, again demonstrating a larger
diversity between the CWRNN representations.

Appendix Section A.1 provides additional visualizations which condense our weight
trajectory plots by further clustering the trajectories depending on their closeness
in the parameter space and projecting them on topological maps using the Map-
per algorithm as outlined in (Gabella et al., 2020). The resulting maps show which
areas of the parameter space are mostly preferred during training and how many
outliers exist outside of these areas. The resulting visualizations (shown in Fig-
ure A.2) give further evidence of a larger diversity in the visited parameter space
of the CWRNN when compared to the SRN or LSTM.

4.5 Chapter Summary

In this chapter, we have explored various design concepts such as modularity that
allow the emergence of multiple timescales and long-term memory in RNNs. Leaky
and periodic activations have been investigated together with partitioning hidden
layers into modules and using shortcut connections by comparing a number of
architectures on the tasks of sequence generation and learning Embedded Reber
Grammar.

Our results give additional evidence to similar studies that partitioning hidden
layers with distinct temporal constraints is a viable method to capture different
timescales. As part of our analysis of activation patterns, we found evidence that
modular processing leads to more diversity in the representations.

The CWRNN has a strong inductive bias due to the periodic update constraint.
Evaluating it on a sinusoidal task, which reflects this bias, has shown that such a
bias outperforms other, more general models. On the other hand, in the absence
of such a bias in the data, other processing models seem to perform better. Fur-
thermore, our initial results indicate that the CWRNN is better at decomposing
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Chapter 4. From Leaky to Periodic Activation

real-valued signals than discrete, symbolic sequences. In the following Chapter 5,
we will explore this more closely by scaling up our task complexity to the lan-
guage modeling domain. In our analysis of activation maps, we were also able to
see indications for the emergence of patterns that can be observed in both the
LSTM and SRN. As we have found evidence that suggests how the LSTM leads
to more weight specialization than the SRN, we will also proceed with implement-
ing memory gates into the CWRNN to observe whether this improves the original
architecture with regard to how skipped inputs are handled.
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Chapter 5

Gated Skipping with the
Clockwork LSTM

In the previous chapter, we have outlined how the modules of the CWRNN can
lead to more diverse representations that can serve distinct functions, such as
e.g., operating on different timescales by focusing on different subfrequencies of
the learned target sequence. We were also able to observe difficulties for learning
Embedded Reber Grammar, which suggests a downside for discrete non-periodic
tasks. However, this capability is important for using the model in more complex
real-world tasks, particularly those related to natural language processing (NLP).
In order to investigate these capabilities more thoroughly, we investigate whether
periodic activations can be successfully used in language modeling, a typical NLP
benchmark for RNNs.

Current state of the art language models in the area of natural language processing
are typically based on gated recurrent models such as the LSTM or the GRU. Since
the CWRNN implements the skipping mechanism on the SRN, a more basic RNN
architecture, we hypothesize that it has an inherent performance disadvantage.
Furthermore, we will show that the introduction of memory gates allows us to
perform more fine-grained skipping where, similar to text skimming, some form of
information can be absorbed during skipping, even if the state itself does not fully
update. To this end, we propose the CWLSTM - an extension of the CWRNN
with memory gates. As we will show, this novel architecture improves heavily on
the CWRNN in terms of performance and scalability. As part of our approach, we
propose multiple possibilities for integrating the memory gates into the existing
skipping mechanism and present different variants for a CWLSTM.
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Chapter 5. Gated Skipping with the Clockwork LSTM

5.1 The Clockwork LSTM

CWLSTM Skip Targets The LSTM has two state variables, i.e. the cell state
ct and the hidden state ht. It also has three gates, namely the forget gate ft, out-
put gate ot, and input gate it (see Subsection 4.2.5). Consequently, the objective
to “skip the state” is more ambiguous than in the SRN and we are left with the
possibility to either skip the hidden state ht, the cell state ct, or both simultane-
ously. We define the set of states or gates that the network skips on as skip targets
(ST). Different skip targets lead to slightly different CWLSTM models. General-
izing all different skip targets into a single update equation for each module k in
the CWLSTM, we get the following:

τ
(m)
t =

τ
(m)
t = f

(
xt Wxm +

n∑
l=m

τ
(l)
(t−1) Wlm

)
if t mod Tm = 0

τ
(m)
(t−1) otherwise,

(5.1)

where τ ∈ {c,h, i} denotes the chosen skip target state or gate. Depending on
the chosen skip target, there are additional resulting changes to the update of the
LSTM memory cells (see Equations 4.8-4.13) within the CWLSTM:

Skip target c By skipping the cell state, the cell state candidate ĉt is never
used. This causes the CWLSTM to disregard the current forget and input gates
and to only exploit the output gate ot to update the hidden state ht:

ct = ct−1 (5.2)

ht = ot � f(ct−1) (5.3)

ot = σ(Wxo · xt + Who · ht−1) (5.4)

Skip target h By skipping h, we completely ignore the values of all states and
gates for the current timestep:

ht = ht−1 (5.5)

However, the cell state ct is actively computed in the background and passed on
to timestep t + 1, saving unused information for the future and opening up the
possibility to later refer to these events even though we skipped over them in this
timestep. Consequently, the following updates are performed for possible use in
timestep t+ 1 and later:

ct = ft � ct−1 + it � ĉt (5.6)

ĉt = g(Wxc · xt + Whc · ht−1) (5.7)

it = σ(Wxi · xt + Whi · ht−1) (5.8)

ft = σ(Wxf · xt + Whf · ht−1) (5.9)

ot = σ(Wxo · xt + Who · ht−1) (5.10)
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Skip targets c and h To avoid any background computation on ct and force a
complete skip that wipes the memory of all traces of the current timestep, we can
simultaneously skip ct and ht, leading to no other operations:

ct = ct−1 (5.11)

ht = ht−1 (5.12)

Skip target i In addition to state skipping, we also explore the idea of skipping
the input gate τ = i which avoids updates on the input gate but at the same time
allows adaptive memory decay through the forget gate. This allows the state to
change during skipped time intervals, albeit independent of the received input (see
also Subsection 6.3.2):

ct = ft � ct−1 + it � ĉt

= ft � ct−1,
(5.13)

which leads to the following state update equation for the hidden state ht:

ht = ot � f(ft � ct−1) (5.14)

ft = σ(Wxf · xt + Whf · ht−1) (5.15)

ot = σ(Wxo · xt + Who · ht−1) (5.16)

The differences between the CWLSTM variants are visualized in Figure 5.1. Skip-
ping both ct and ht leads to the most amount of skipped computations, whereas
only skipping ht leads to the least amount of saved computations since the cell
state ct requires all gates.

5.2 Language Modeling Ablation Study

So far, we have seen that the CWRNN performs exceptionally well on continuous
sequences with periodic subsequences. On the other hand, it lags behind other
networks such as the LSTM when it comes to learning Extended Reber Grammar,
where it has to deal with discrete symbols and a less obvious periodicity in the
sequences.

However, this capability is exceptionally important to apply the CWRNN success-
fully on real-world natural language processing tasks. Consequently, we scale up
the task complexity by investigating both the CWRNN and the newly introduced
CWLSTM on language modeling (see Subsection 3.1.1) with news articles. In ad-
dition, we run an ablation study on the networks to clarify how much the design
choices of the Clockwork networks contribute to the overall performance.

The CWRNN handling of the periodic context during language modeling is il-
lustrated with an example in Figure 5.2. As can already be seen, the distance of
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Figure 5.1: Comparison of all 4 CWLSTM variants. Orange arrows denote
copy operations that are executed whenever a skip is triggered. In this
case, the computational flow is rerouted and computations marked inside
the white boxes are skipped or disregarded. If no skip is executed, the
computational flow is routed along the green paths to resume the original
update pathways.

words that share semantic meaning or any relationship is typically not periodic.
This makes it very questionable whether this type of architecture is suitable for
the given task. However, it can be argued that the CWRNN has the same capa-
bilities of a regular RNN as we always use a 1-module which processes the input
normally without any skipping. The question is therefore whether the additional
modules that periodically capture (deterministic but seemingly random) long-term
dependencies can at least lead to a regularization effect or whether they add too
much noise to the 1-module to give any comparable performance to a baseline
RNN.

We argue that the regularization potential comes from some evident similarities
to the widely used dropout and zoneout regularization methods: each Clockwork
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Figure 5.2: Illustrative example of a CWRNN with the five modules
P = (1, 2, 3, 4, 5), receiving the word cat at timestep t10 and predicting
the next output word (away) based on each module’s periodic context
window.

module receives only a predetermined part of the input sequence. While this is not
truly random, the periodic patterns are assumed to have no correlation to rela-
tionships in the underlying data. The modules could therefore be considered as an
ensemble in which each submodel receives an incomplete sequence with “dropped
out” inputs. At the same time, the architecture can also be interpreted to “drop
in” seemingly random (though deterministic) skip connections for each module.
Since CWRNNs and zoneout regularization have in common their basic skipping
principles, CWRNNs can also be seen as a form of deterministic zoneout with a
stronger bias on long-distance skipping (based on the manually set periods).

5.2.1 Experimental Setup

For our ablation study, we train on the Penn Treebank corpus, a relatively small
but well-known benchmark. The corpus includes a collection of 2499 news articles
sampled from the Wall Street Journal (WSJ). We utilize the widely-used prepro-
cessed version by Mikolov (2012) where 930k words are used as training data, 74k
words as validation data, and 82k words as test data. The most frequent 10k train-
ing words are used as the vocabulary while the remaining words are replaced by
an <unk> token.

On this dataset, we run a grid search for the CWRNN and CWLSTM, as well
as the regular LSTM and SRN as their respective baselines. We set the same
gradient descent parameters for all networks to enable a fair comparison under
the same training conditions, as the practice of individually tuning each architec-
ture separately with grid search has previously been criticized and is assumed to
have caused severe comparability issues between different neural language model-
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ing studies working on the same datasets (Melis et al., 2018). We therefore opt
to train each architecture ourselves and avoid comparisons to other architectures
from studies with different or incompletely reported experimental setups.

After initial tests, we find that a learning rate of 0.1 leads to comparable conver-
gence times on all networks using Stochastic Gradient Descent (SGD) optimization
and early stopping with holdout cross validation. Each language model has a con-
text window of 35 steps, a batch size of 20, and a very light L2 regularization scaled
by 10−7. Moreover, we explore if the networks require traditional non-linear trans-
formations in the form of tanh activation (which can cause vanishing gradients) or
whether they can also handle linear activation.

Typically, LSTMs are trained with more than |h| = 1000 hidden units on this
dataset to achieve a satisfying baseline performance (Zilly et al., 2017; Zaremba
et al., 2015). Since we’re interested in how well each clocking mechanism com-
presses information, we also explore significantly smaller networks that, to our
knowledge, have so far not been reported (|h| ∈ {50, 100, 250, 500, 1000, 1500}). As
part of the ablation study, we train all Clockwork networks with their unidirec-
tional connection scheme which connects modules only from right to left, but also
compare this to a “bidirectional”1 connection scheme which connects units in both
directions as is usual in regular RNNs. This allows us to study the impact of the
unique Clockwork connectivity scheme where where modules with lower update
frequency are connected to those with higher update frequency, but not the other
way around.

Unfortunately, the language modeling task provides no clear periodic relationships
in the data that can be extracted. This makes the choice of the clocking periods
somewhat challenging. Consequently, we base our choice according to module con-
straints that are tied to the layer size and sequence length. Conformable to our
chosen number of hidden units, we only investigate networks with five modules
as the number of modules has to be a common divisor between the chosen layer
sizes to achieve same-sized modules. Since we unroll 35 steps, we consider net-
work periods where the module with the lowest frequency is at least activated two
times. As we previously focused on exponential clocking periods, we repeat this
setup with P1 = (1, 2, 4, 8, 16) but also more linearly growing periods by exploring
P2 = (1, 2, 3, 4, 5) and P3 = (1, 2, 4, 8, 10).

It is evident that slow modules that activate only a handful times per sequence will
likely be very difficult to train, particularly in the original unidirectional connection
scheme, as these modules have very little information to work with. To properly
understand if this is actually the case and how much this affects the faster modules
with higher update frequencies, we take the period with the largest periodic update

1We use the term ”bidirectional” to contrast this scheme against the one-sided (unidirectional)
connections of the CWRNN. This connectivity pattern is equivalent to the default RNN connec-
tion scheme in which recurrent units are fully connected in both directions. Our use of the term
is not to be confused with “bidirectional RNN layers” which offer an additional layer in which
the sequence is processed backwards.
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Model ST PPL Period P

SRN – 163.4 –

CWRNN – 173.3 (1, 2, 3, 4, 5)

LSTM – 132.7 –

CWLSTM i 127.5 (1, 2, 4, 8, 16)

CWLSTM ch 130.2 (1, 2, 4, 8, 16)

CWLSTM h 128.1 (1, 2, 3, 4, 5)

CWLSTM c 124.3 (1, 2, 3, 4, 5)

Table 5.1: Best networks by test perplexity (the lower, the better) us-
ing unidirectional connections and |h| = 1000. Results include the best-
performing period configuration (ST = Skip Target).

frequency (P1 = (1, 2, 4, 8, 16)) and train five different variants of it. To this end,
we “shift” the periods to the right by adding an additional 1-module and removing
the slowest module. In other words, we observe the effect of gradually removing
the longest shortcuts by comparing P = (1, 2, 4, 8, 16) to P = (1, 1, 2, 4, 8), P =
(1, 1, 1, 2, 4), P = (1, 1, 1, 1, 2), and P = (1, 1, 1, 1, 1).

5.3 Results and Analysis

The results of the experiment are presented in this section. After a brief overview
in Subsection 5.3.1, we will separately evaluate the impact of the different activa-
tion functions (Subsection 5.3.2), connectivity schemes (Subsection 5.3.3), periods
(Subsection 5.3.4), and skip targets (Subsection 5.3.5).

5.3.1 Overview

Before discussing the main findings of the ablation study, we present a short
overview of each network’s best recorded generalization performance on the task.
The results can be compared in Table 5.1. The shown CWRNN and CWLSTM
networks all have their original (unidirectional) connection scheme, |h| = 1000
hidden units, and are chosen between those trained with P1 = (1, 2, 4, 8, 16),
P2 = (1, 2, 3, 4, 5), and P3 = (1, 2, 4, 8, 10) (the additional hyperparameters are
part of the ablation study presented in the following sections).

From this data, we can see that the CWRNN falls behind the SRN baseline no-
ticeably. As expected, the LSTM baseline performs better than both of these two
networks. This verifies the generally established importance of gated memory in
RNNs for natural language processing tasks. Interestingly, all our gated CWLSTM
networks, are able to additionally improve on the baseline LSTM.
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Comparing the gated networks against the non-gated networks reveals that pe-
riodic activations can indeed cause network performance to degrade (as in the
case of the SRN and CWRNN), likely due to the network’s difficulty to ignore
additional long-term information whenever it is not helpful. On the other hand,
this problem seems to be successfully addressed by a gated memory mechanism
which is specifically designed to allow the network to ignore any distracting long-
term dependencies with the forget gate. Consequently, adding periodic activations
to the LSTM is not leading to a deteriorating but an actually improved perfor-
mance.

Between all introduced CWLSTM variations, using the cell state c as a skip target
in the CWLSTM is leading to the best results, whereas using both cell and hidden
state leads to only slight improvements compared to the baseline CWLSTM, while
the networks with the skip targets i and h lie in-between. As we will show in the
following sections, all networks can be significantly improved by removing the orig-
inal Clockwork connection scheme and using traditional bidirectional connections,
but at the same time minimizing the periodicity in the modules. These CWLSTMs,
trained with P = (1, 1, 1, 1, 2), improve by a significant margin to 119.2 PPL for
ch (−8.4%), 119.8 PPL for c (−3.6%), 120.0 PPL for h (−6.3%), and 118.2 PPL
for i (−7.3%).

We will now turn to evaluating the results of our ablation study in the following
sections and discuss our findings regarding the impact of the architectural compo-
nents of the Clockwork networks.

5.3.2 Linear vs. Non-linear Activation

In the previous experiments with sine curve prediction and learning Embedded
Reber Grammar, we have found that the CWRNN works just as well with a lin-
ear activation function, even though the other investigated models (including the
baseline SRN) have better performance with non-linear activations. We investigate
what makes linear activations more suitable for CWRNNs by turning our focus on
the two main differences between the CWRNN and the SRN: the partitioned pe-
riodic activations and the unidirectional connection scheme which only connects
modules from right to left.

To find out which of these has the biggest impact on the variations caused by
switching the activation function, we look at the difference in the mean absolute
deviation (MAD) between all CWRNN networks trained with a unidirectional
(the default setting) and a bidirectional connection scheme (as in an SRN), while
keeping the periodic activations intact for both setups. We observe a difference
between linear and tanh activation of 9.9 PPL for the unidirectional CWRNNs and
a difference of 6.8 for the bidirectional CWRNNs. By the magnitude of both MAD
differences, we can infer that the activation function seems to play a larger role
in language modeling than in the previously investigated tasks. The effect can be
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attributed to this task’s input representations (high-dimensional word embeddings)
being quite different. This is also supported by the fact that all tanh CWRNNs
perform better than the linear networks by an average of 22.1 PPL (independent
of connection scheme), while this relationship was reversed in the previous tasks.
From the larger performance deviation caused by unidirectional connections, we
can additionally infer that these seem to have an influence on how the different
activation functions are processed.

When looking at the MAD differences between different activations for the
CWLSTM, we can similarly observe a larger difference with unidirectional
connection schemes (0.1 PPL) than with bidirectional connection schemes (0.002
PPL). However, since the overall differences are close to 0, they can mostly be
explained by small variances caused by the different random initializations.
Taken together, these results suggest that the gated mechanism of the CWLSTM
seems to make the choice of activation function significantly less important than
for the CWRNN, though using the unidirectional connections increases the
deviations.

5.3.3 Uni-/Bidirectional Connectivity

Our results validate the importance of the unidirectional connectivity scheme in
the original CWRNN architecture. As shown in Figure 5.3a, the one-sided connec-
tions are essential for stable performance. In fact, the performance of bidirectional
connections seems to correlate inversely to the number of hidden units. This indi-
cates that bidirectional connections can quickly cause overparameterization which
can lead to overfitting. While training a baseline SRN leads to a better language
model, it is still important to note that the SRN suffers from this same issue, i.e.,
only the original CWRNN architecture is able to successfully scale with additional
parameters. The figure also shows that all three investigated periods lead to no
significant differences (we will analyze the periods more in the following Subsec-
tion 5.3.4).

As we established in Subsection 5.3.1, using memory gates leads to significantly
better language models (see Figure 5.3b). Both LSTM and CWLSTM lead to
a better average perplexity, scaling positively with the network size. However,
different from the CWRNN, the connectivity scheme of the CWLSTM seems to
play a much smaller role for the three investigated periods. With the exception
of P = (1, 2, 4, 8, 10), all other CWLSTMs lead to similar results with |h| > 500,
regardless of the chosen periods or connectivity. While it is still useful to prefer
unidirectional connections (as this eliminates half of the recurrent weights), this
heavily indicates that gated memory is a necessary addition to Clockwork networks
for more complex tasks. On the other hand, we can see in Figure 5.3a how a regular
LSTM is able to outperform the CWLSTM if we train smaller networks (|h| < 500).
We need to therefore differentiate that our CWLSTM improves the CWRNN while
it does not beat the baseline LSTM for all hyperparameter configurations.
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uni (1, 2, 3, 4, 5)

uni (1, 2, 4, 8, 10)

uni (1, 2, 4, 8, 16)

(a) CWRNN (uni vs bi)

P
P
L

|h|

LSTM

bi (1, 2, 3, 4, 5)

bi (1, 2, 4, 8, 10)

bi (1, 2, 4, 8, 16)

uni (1, 2, 3, 4, 5)

uni (1, 2, 4, 8, 10)

uni (1, 2, 4, 8, 16)

(b) CWLSTM (uni vs bi)

Figure 5.3: Average validation perplexity vs network size with regard to
different periods, with the original unidirectional Clockwork connectivity
scheme (green) and without it, i.e. regular recurrent connections in both di-
rections (blue). Comparison between (a) CWRNN and (b) our CWLSTM.

Overall, our findings favor our CWLSTM architecture over both the CWRNN
and the two baseline architectures. This is not only simply due to a better per-
formance but also supported by a stronger robustness of the CWLSTM towards
its hyperparameters and a better scalability in network size. As we will show in
Subsection 5.3.5, the more surprising aspect is that eliminating most (but not all)
of the long-term periodic relationships in the bidirectional CWLSTM boosts the
results even further.

5.3.4 Impact of Large Periods

In this section, we will have a more in-depth look at how low update frequencies
impact the Clockwork modules. For this purpose, we compare networks trained
with P = (1, 2, 4, 8, 16), P = (1, 1, 2, 4, 8), P = (1, 1, 1, 2, 4), P = (1, 1, 1, 1, 2), and
P = (1, 1, 1, 1, 1) (i.e. no periodic activations).

Our results, illustrated in Figure 5.4a, confirm our previously stated hypothesis
that low update frequencies with long-distance shortcuts have a negative effect
on the CWRNN. We can observe a consistent gradual increase in the average
validation perplexity each time we remove a module with large periods from the
network and add a new module that is active at each timestep. The exception
to this is are the networks with P = (1, 1, 1, 1, 1) which indicates that the issue
is not with the periodic activations themselves but with the infrequent updates
in modules with large periods. Additionally, this is in line with previous evidence

84



5.3. Results and Analysis

P
P
L

|h|

uni (1, 1, 1, 1, 1)
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(a) CWRNN (uni, shifting periods)
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uni (1, 1, 1, 1, 1)

uni (1, 1, 1, 1, 2)

uni (1, 1, 1, 2, 4)

uni (1, 1, 2, 4, 8)

uni (1, 2, 4, 8, 16)

(b) CWLSTM (uni, shifting periods)

Figure 5.4: Average validation perplexity vs network size with regard to
successively increasing long-term dependencies in the periods (indicated
by color gradient). All networks have the original Clockwork connectivity
scheme (unidirectional). Comparison between (a) CWRNN and (b) our
CWLSTM.

that these long-term shortcuts add noise that the CWRNN is not able to deal
with.

As the LSTM’s gates are better able to suppress noise and not useful long-term
relationships by utilizing the forget gate, it is not surprising to see that the uni-
directional CWLSTM (Figure 5.4b) does not directly suffer from this issue: the
networks have mostly consistent performance for |h| > 500, which does neither
deteriorate, nor improve with larger periods. However, these differences increase
with smaller networks and if the network becomes small enough, we can observe
the same relationships as in the CWRNN.

5.3.5 CWLSTM Skip Targets

We now turn to evaluating the different skip targets of the CWLSTM and their
relationship to the chosen periods and connectivity schemes. Table 5.2 shows the
respective results for |h| = 1000.

For the original unidirectional CWLSTM and “regular” period setups, such as the
linear series P = (1, 2, 3, 4, 5) and the exponential series P = (1, 2, 4, 8, 16), using
the cell state ct as the skip target gives the best results. The slightly more irregular
P = (1, 2, 4, 8, 16) seems to cause issues for all variants. The overall worst perfor-
mance can be observed by using both cell ct and hidden state ht as skip targets
(ch). In line with previous observations, the differences between unidirectional and
bidirectional are smallest for all skip targets whenever the periods seem to work
properly.
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unidirectional bidirectional

periods c ch h i c ch h i

(1, 1, 1, 1, 1) 130.8 129.9 130.4 130.5 134.2 134.2 134.2 134.2

(1, 1, 1, 1, 2) 131.3 131.2 131.5 131.0 121.9 120.7 121.7 120.0

(1, 1, 1, 2, 4) 132.6 132.5 132.0 129.3 121.7 122.6 122.8 121.2

(1, 1, 2, 4, 8) 133.6 133.2 134.4 130.5 122.9 124.5 123.7 121.9

(1, 2, 4, 8, 10) 136.2 137.4 137.2 132.3 126.3 132.4 129.6 128.2

(1, 2, 4, 8, 16) 125.8 130.2 129.5 127.4 125.1 129.8 129.4 127.4

(1, 2, 3, 4, 5) 124.3 131.7 128.1 128.1 124.9 131.2 129.5 128.6

Table 5.2: Best recorded validation perplexities for all CWLSTM variants
with |h| = 1000. Normalized color gradient between minimum (green) and
maximum (red) perplexities.

However, as mentioned in Subsection 5.3.3, eliminating most (but not all) of the
long-term periodic relationships in the bidirectional CWLSTM gives larger perfor-
mance gains than in the original unidirectional setup. While we were previously
unable to see clear differences between the connectivity schemes for the CWLSTM,
this paints a more differentiated picture, particularly for the “shifting periods”. In
fact, there is a clear tendency that the best results are achieved by having as few
periodic activations as possible, limiting the long-term dependencies and avoiding
one-sided connections. On the one hand, this clearly demonstrates that the mecha-
nisms of the Clockwork networks tend to have an overall detrimental effect. On the
other hand, eliminating every single periodic activation (P = (1, 1, 1, 1, 1)) leads to
significantly much more issues in training and the CWLSTM is still able to beat
the LSTM baseline on commonly used network sizes.

5.4 Further Limitations and Approaches

As we have demonstrated, the original CWRNN architecture can be significantly
improved by integrating memory gates with the periodic skipping mechanism. Our
resulting CWLSTM architecture leads to better models in the language modeling
domain, consistently beating the CWRNN and SRN baselines. One of the addi-
tional advantages of the model is its capability to scale in network size without
significant performance changes. However, our ablation study hints towards the
conclusion that the use of memory gates simply mitigate existing issues in the core
mechanisms of the Clockwork architecture.
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Our experiments identify difficulties to find good hyperparameter settings
whenever larger periods are used. While the CWLSTM is much more robust
towards this issue, the general tendency is present in both architectures (compare
Table 5.2). The results of the ablation study additionally show that the
unidirectional connection scheme has a negative effect on the CWRNN. For the
CWLSTM, we can observe that gradually scaling back the impact of the core
mechanisms improves the language models, even though we generally stay above
baseline performance.

In summary, our experiments on non-periodic data show three important find-
ings:

1. Integrating memory gates into the skipping mechanism vastly improves the
performance on the language modeling task.

2. Periodic activations have a negative effect on the performance if modules
with low update frequencies (i.e. large periods) dominate.

3. If we avoid low update frequencies in the CWLSTM, the negative effects of
unidirectional connections increase.

Unfortunately, this leads to detrimental circular dependencies between the main
components of the Clockwork architecture. As a consequence, it is impossible to
fully utilize all core mechanics simultaneously without partially scaling down the
impact of at least one of the components. By comparison, the experiments on
periodic data (generating sinusoid sequences) heavily favor the characteristics of
the CWRNN over other established RNN models. As a whole, we can therefore
conclude that the inductive periodicity bias of the CWRNN is very advantageous
for continuously periodic data, whereas it is potentially disadvantageous for non-
periodic tasks. This main weakness of the periodic skipping mechanism seems
to make the CWRNN and CWLSTM inappropriate for a wide range of complex
tasks that other baseline architectures such as the LSTM are able to deal with
sufficiently.

We will now discuss the main limitations of the CWRNN and consider potential so-
lutions as well as alternative approaches towards skipping with a weaker inductive
bias.

Periodicity As demonstrated, the biggest strength of the CWRNN, the induc-
tive periodicity bias, is simultaneously its largest weakness as it requires periodic
relationships in the data. In their absence, periodic connections are not tied to
semantic meaning or any long-term relationships underlying the input (see exam-
ple in Figure 5.2). In contrast, the general idea behind shortcut connections is
to provide direct memory access to relevant previous states, secondarily avoiding
noise from irrelevant states. The way the skipping mechanism is set up, this can
naturally only be achieved by accident or if there are actual periodic relationships
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in the data. While a periodic signal can be used as a “reference point” to encode
arbitrary non-periodic relationships2, this requires the ability to phase shift either
the periodic signal itself or the encoding. This is impossible if the signal is not pa-
rameterized and if the encoding process itself only takes place within this periodic
update signal.

Dependence on System Clock While there is a case to be made that the
periods can be set up in a way to increase the number of “lucky accidents” to
have a statistically higher chance to capture more useful relationships, there is an
additional issue that makes this harder: the fact that the periodicity is immutably
tied to a system clock. This design flaw is independent of the task and domain
and significantly affects generalization capability. Specifically, the skip condition
t mod Tk = 0 ties each module’s period directly to multiples of Tk. As it is impos-
sible to dynamically learn an offset to Tk, the network can have large difficulties
generalizing to a previously trained sequence that is now slightly shifted by a few
timesteps in any direction. The missing shift invariance also makes it impossible for
the network to adapt to data that is only partially periodic, e.g. relevant in event-
based prediction tasks, as we have to assume periodicity throughout the entire se-
quence. Although it is simple to add a static offset to such that t mod (Tk+to) = 0,
it has to be trainable as we would otherwise just end up with the original issue at
timestep t+ to instead of t. However, integrating arbitrary shifts by a trainable to
would effectively remove the assumption of periodicity and lead to a fully adaptive
skipping mechanism (which we will explore in Part III and Part IV). While such
a model would arguably be more flexible, it would necessarily have to discard the
concept of a periodic inductive bias.

Adaptive Periods A simpler approach to making the periods adaptive is to
learn them based on global statistics, keeping them static throughout the sequence
and strictly enforcing periodicity. However, this does not address the problem that
periodicity can sometimes be paused only to be resumed later, potentially with
a slight offset. It might also bias the network to greedily focus on short-term re-
lationships as frequent updates provide quantitatively more error signals. Since
backpropagation cannot look ahead multiple timesteps into the future and plan
towards a later update, it will always choose to directly and immediately minimize
the error of modules with large periods. It is open how this could be addressed,
though it would be possible to use bidirectional layers in order to allow the network
to look ahead in the sequence. Regardless, whenever the adaptive mechanism de-
cides to accidentally set very large periods, the respective module would effectively
stop training for the rest of the sequence, potentially requiring additional solutions
similar to dead neurons caused by ReLu activations.

2Positional encodings in the Transformer (Vaswani et al., 2017) provide such an example.

88



5.4. Further Limitations and Approaches

Modules and Connectivity Disregarding effects from periodicity, it can be
argued that the modules, their ordering by update frequency, and the resulting
one-sided connectivity do not constitute actual design flaws. Quite contrary, our
visualizations show increased diversity as modules are actually trained on different
time scales. This effect has also been demonstrated with a number of other modular
models (see Subsection 2.3.2).

Clockwork RNN Extensions Recent work has built on addressing some of
the discussed shortcomings of the CWRNN. One such example is the Adaptive
Clockwork Convnet (ACC) which is used for semantic segmentation in videos and
operates under the assumption that the semantic content of the frames changes on
a slower timescale than the pixel differences between the video frames (Shelhamer
et al., 2016). For this purpose, skips are triggered whenever the difference between
two successive frames is larger than a predetermined threshold. As discussed pre-
viously, such an approach removes any periodicity from the model and can thus, in
the context of similar existing research, be seen as a straight-forward skipping con-
dition in a more general conditional computation approach3. While the authors of
the study posit the idea of learning periodic update functions, they do not explore
concrete methods to do so.

A separate study achieves shift invariance in their Dense Clockwork RNN
(DCWRNN) architecture at the cost of additional parameters and computational
resources (Neverova et al., 2016). They introduce Mpm parallel threads to each of
the M modules (with their respective period pm) that are all shifted with respect
to each other. While this causes all modules to constantly update, the authors
claim that this leads to a speedup in the training process.

Carta et al. (2020) address the issues around training difficulties of slow modules
by initially starting out with fast modules and adding slower modules incremen-
tally in a pre-training process before training each model fully with SGD. They
evaluate their model on the sequence generation task and are able to improve on
the mistakes which the CWRNN typically does in the first few timesteps of each
sequence (see discussion in Subsection 4.4.1). One set of later approaches that are
potentially inspired by the CWRNN are Dilated CNNs (Eppe et al., 2018) and
Dilated RNNs (Chang et al., 2017). They utilize multi-resolution skip connections
that are based on dilated causal convolutions which were first introduced with the
WaveNet architecture (van den Oord et al., 2016). The common ground for these
approaches and the CWRNN is the idea to exponentially expand the resolution of
the representations in time or space to capture multiscale features.

However, a significantly larger amount of research has since moved away from the
idea of periodic activations and towards the general idea of conditional computation
where skip conditions are either learned or have less restrictive constraints (see Sec-

3In fact, we will later introduce our Surprisal-based Activation models which operate on a
comparable thresholding mechanism.
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tion 3.5 for an overview). Similarly, the rest of this thesis will explore non-periodic
mechanisms to successfully skip updates in recurrent neural networks.

5.5 Chapter Summary

Our previous analysis of the CWRNN has shown that its inductive bias is particu-
larly useful for learning periodic relationships in data. We have confirmed initially
observed difficulties with non-periodic data by evaluating the CWRNN on a widely
known language modeling task. While we were able to significantly improve the
CWRNN by integrating memory gates in our novel CWLSTM architecture, our
ablation study demonstrates that periodic activations are inherently problematic
in a number of settings. As part of our discussion, we have identified that address-
ing this issue with more flexible adaptive skipping mechanisms can quickly lead to
abandoning the concept of periodic activations altogether.

Since most real-world applications have shifting dynamics and timescales, a single
clock rate that is fixed in time (e.g. determined by the average periodicities in the
data) seems to be not robust enough to process scale dynamics that deviate sig-
nificantly from a periodic bias. This leads to the first main issue of the CWRNN,
namely the global nature of the clock rates (periods). The other main drawback
of the CWRNN is the shift-variance caused by the hard-coded clock timing. The
exact same input sequence will result in different outcomes when placed on differ-
ent starting times t. As this is completely data independent, minor phase shifts to
previously learned input render predefined periods useless and, consequently, the
model itself impractical. This shows that both adaptive periods and data-driven
clocking necessitate each other: a model with adaptive periods will cover most
periodicities of the input but will still be susceptible to phase shifts. An adaptive
clocking mechanism, on the other hand, is by definition unpredictable before execu-
tion and is therefore incompatible with manually set static periods. Consequently,
a dynamical and robust clock needs to be both local and adaptive - a function of
time and data.

In the next part of this thesis, we will thus explore how we can continue and
further develop locally adaptive skipping mechanisms with a weaker (non-periodic)
inductive bias that also require less expert knowledge and tweaking. As part of
this effort, we will design a new skipping model, integrating the design concepts
of the previous chapters that have shown initial promise, such as partitioning the
hidden layer into modules to increase unit diversity, and jointly activating groups
of neurons in modules.
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Surprisal-Based Activation
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Chapter 6

Preserving Activations with
Surprisal-Based Activation

One of the current main challenges of Recurrent Neural Networks (RNNs) is to
dynamically adapt to multiple temporal resolutions and scales in order to learn
hierarchical representations in time. Since they operate in discrete timesteps and
update at every timestep, it is generally difficult to learn temporal features that
have a significantly different resolution than their input frequency. In particular,
many applications, such as speech recognition or video analysis, require a high
data resolution to capture very short but important events (Zelnik-Manor and
Irani, 2001). However, increasing the input resolution has the negative side effect
that task-defining events are then very sparsely distributed over the observed time
series while most data points are redundant and mostly irrelevant for the task. This
causes computational redundancy in state updates of RNNs, ultimately leading to
unnecessarily large computational graphs that are hard and expensive to train with
Back-Propagation Through Time (BPTT).

This issue with RNNs is most commonly tackled by avoiding high-resolution raw
data as input and instead relying on task-specific time-averaging features or down-
sampling where possible. There is a number of alternative approaches that can be
categorized under conditional computing (see Chapter 3) in which state updates are
optional and based on conditions. Theoretically, this allows the model to actually
learn which data points to encode, discarding the rest, which can ultimately even
be utilized to save computation time. We hypothesize that these approaches can
be utilized to train (temporal) feature-learning RNNs more efficiently in an end-
to-end manner. The capability to learn when to update could open up promising
directions for a number of current research problems (see Section 3.6).

Sections 6.2-6.5.1 of this chapter have been published as part of this thesis and are based on
Alpay et al. (2018) and Alpay et al. (2019).
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In this chapter, we introduce surprisal-based activation (SBA), an extension to
existing RNNs, which allows the inhibition of state updates based on the surprisal
over changes in the latent space over time. Preserving activations allows to store
explicit memory for an arbitrarily long time before it is accessed and aims to
avoid unnecessary changes in the encoding. We demonstrate how SBA can be
integrated with the SRN as well as gated models such as the LSTM and provide
an extensive analysis of our methodology. Compared to our previous approach of
periodic activation with the CWLSTM (Chapter 5), we use a significantly weaker
inductive bias as a skipping constraint but revisit the idea of using submodules to
increase diversity within a layer.

We start this chapter by presenting our motivation and design goals for the in-
troduced methodology in Section 6.1 before providing an overview of related work
that has influenced our approach in Section 6.2. Our method is introduced and
explained in Section 6.3. We evaluate our approach extensively on language mod-
eling in Section 6.4 and investigate whether these findings generalize to other se-
quence learning tasks in Section 6.5. We conclude with our closing thoughts in
Section 6.6.

6.1 Background and Design Goals

The primary goal for our model will be to use skip mechanisms to reduce as much
redundancy as possible, while maintaining an accuracy close to the baseline. Any
improvements beyond the baseline would signal that the network is benefiting from
sparse representations. To identify redundancy, we utilize surprisal in a modular
network design (see also Chapter 2). Before jumping to our model design, we will
briefly cover these concepts along with the required background.

Entropy

Entropy is a measure for uncertainty in the outcome of a probability distribution
P = (p1, . . . , pn), introduced by Shannon (1948) in the context of communication
and information theory. In this context, the non-negative entries of a probability
vector P sum to 1. According to Rényi et al. (1961), entropy can be quantified as
follows:

H(P ) = H(p1, . . . , pn) (6.1)

=
n∑
k=1

pk log2

( 1

pk

)
(6.2)

= −
n∑
k=1

pk log2(pk) (6.3)
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As such, entropy can also be seen as the average surprisal. Surprisal is an
information-theoretic metric that measures the amount of information conveyed
by a particular event, particularly its “unexpectedness” or “surprise”. It is
inversely related to probability so that improbable events carry more information
than probable ones. Surprisal (also called information content I) for a random
variable X is formally defined as:

I(X) = log
( 1

P (X)

)
= − log(P (X)) (6.4)

I(X) is therefore bounded between 0 and the number of bits to store X. Un-
likely events X lead to a large surprisal whereas highly probable, in our context
redundant, events lead to a low surprisal.

Lossless Compression

Source coding concerns encoding a sequence of symbols (in the context of com-
munication: a message) that is subsequently decoded at the receiving end. If the
encoding has less symbols than the source, it has been compressed. Furthermore,
if the decoded symbols of the smaller message reproduce the original sequence ex-
actly, i.e. without loss of information, we speak of lossless compression. Shannon’s
source coding theorem (Shannon, 1948) states that the entropy H(X) provides a
measurement as to how many bits X can be reduced in an encoding before we
risk losing information which is unrecoverable by the decoder. Shannon (1948) ex-
presses this quantity with relative entropy Hr(X), the ratio between the actual
and maximum entropy. The goal of compression is to reduce the amount of redun-
dancy in the sequence of symbols. The information redundancy is therefore defined
as 1−Hr(X) which gives the amount of bits by which the encoding can be reduced
while still allowing a lossless compression.

The principle of maximum entropy by Jaynes (1957) can be applied when inference
has to be made based on only partial information. It states that the distribution
with the maximum entropy should form the basis for inference as it makes the
least amount of assumptions. As such, it can be seen as a form of Occam’s razor
which is also reflected in formulations around the minimum description length
(MDL) principle which favors models fitting the data with the least amount of
parameters.

In the context of decoding, high redundancy makes it easier to decode (high pre-
dictability) even though there is little information in the code. High entropy, on the
other hand, makes it more difficult to decode (high unpredictability) even though
there is a lot of information content. In the context of reading, predictability is
correlated with word skipping (Rayner et al., 2011) as readers pay more attention
to unpredictable words.

Other measures for redundancy have been proposed such as measuring the change
in surprisal between variables (Ince, 2017). Surprisal is also used as a human sen-
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Figure 6.1: Horizontal vs vertical redundancy: Vertical redundancy is of-
ten caused by co-dependencies and over-parameterization (such as the 3
“blue” units behaving exactly the same), whereas horizontal redundancy
is primarily a consequence of the necessity to update at every timestep.

tence processing cost model in linguistics (Futrell and Levy, 2017). The underlying
assumption is that the processing cost of each word is proportional to the resulting
belief change from processing this word. This is particularly difficult for memory-
based models which have to syntactically integrate words over long time-gaps and
therefore suffer from locality effects (Futrell and Levy, 2017). In this context, it is
also important to distinguish temporal redundancy from spatial redundancy.

Redundancy in Recurrent Networks

We distinguish two types of encoding redundancy in the context of recurrent net-
works, namely vertical and horizontal redundancy (see Figure 6.1). Vertical re-
dundancy denotes correlations between units as they encode the same attributes
and features. Units can have a strong correlation, showing the same activation
patterns for all inputs, or have a weak correlation, by only sharing similar sensi-
tivity to certain inputs. Horizontal redundancy, on the other hand, occurs if units
specialize on certain features. For timesteps, in which these features do not occur,
we would therefore typically expect low activations that show weak correlations to
other units or simply produce noisy patterns as a result of overfitting.

The general idea behind preserving activations is illustrated with a color clas-
sification example in Figure 6.2: an analog continuous-time stream of data has
to be down-sampled into discrete timesteps to be processed, reducing entropy in
the process. Consequently, some timesteps might contain overlapping information
due to a low sampling rate. Modules (groups of units) specializing on distinct
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and discrete features (such as color groups) are therefore often active beyond the
boundaries of certain events. This is amplified by additional noise and the gen-
eral behavior of backpropagation, causing units to be constantly active, picking up
co-dependencies1, increasing redundancy, and making specialization difficult (see
top matrix for regular RNN). An idealized group of units learning distinct fea-
tures should be able to eliminate redundancy in such a way that the state activity
clearly reflects the respective event boundaries of features (see bottom matrix for
preserving RNN). As can be seen, preserving activations until it is “worth” updat-
ing, introduces another layer of entropy reduction (apart from the down-sampling
of the input), resulting in simpler hypotheses generation and interpretation.

However, while vertical redundancy is a clear computational and representational
issue (addressed in the field of learning disentangled representations), the benefits
and issues of horizontal redundancy are arguably harder to assess. It is easy to
propose a number of scenarios in which the continuous space between two discrete
representations (such as e.g. “red” and “yellow”) holds potentially useful informa-
tion (“orange”). Although this can only follow if this feature is in fact statistically
relevant as otherwise the network would converge to one of the two defined rep-
resentations (“red” or “yellow”). In our constructed example of Figure 6.2, the
representation for “orange” is a bad predictor for the entire dataset and therefore
a wholly redundant feature. If we expect this feature to never be relevant, eliminat-
ing the parameter space encoding “orange” would lower model complexity without
loss of information, additionally allowing us to more clearly identify the temporal
relevance of the remaining discrete features.

6.2 Preserving Activations

Some recent approaches focus on the idea of suppressing hidden unit activations
under specific conditions. The Clockwork RNN (CWRNN; Koutńık et al. (2014))
has a hidden layer that is partitioned into modules which are only activated at spe-
cific timesteps. Inactive modules simply preserve their previous hidden activations
until they are triggered to activate again. These activation triggers are under peri-
odic cycles, static, and determined empirically. It can be shown that such training
with multiple update resolutions can facilitate learning multiple timescales (see
Chapter 4). A key disadvantage of the CWRNN, however, is that the periodic
activation conditions are i) predefined and not learned, and ii) global for the en-
tire sequence. This can lead to challenges when dealing with varying temporal
distances between dependencies or phase shifts which are common in real-world
applications (see Chapter 5). This idea has been developed further as a regular-
ization method for RNNs with zoneout (Krueger et al., 2017). Zoneout randomly
preserves the previous activations of hidden units and can therefore be seen as a

1To keep model complexity low, we address horizontal redundancy directly but only indirectly
work against vertical redundancy by varying the number of available modules.
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Figure 6.2: Design goal for SBA, illustrated by the example task of color
classification. A typical RNN is constantly active and therefore picks up
co-dependencies, amplifying redundancy and making unit specialization
difficult. As a result, even a well-trained network exhibiting signs of unit
specialization is outputting redundant, irrelevant information outside of
event boundaries (marked by red vertical lines). In an ideal target design
(bottom matrix), the network would be able to have clear event bound-
aries and only update when the observed feature changes significantly
(above: timesteps 1, 4, 6, 8, 10, 11). Within these event boundaries, activi-
ties should be preserved to coincide with the labels (indicated by arrows).
Activation preservation further increases sparsity and reduces entropy, im-
proving general interpretability and computational efficiency.

variant of dropout in which connections are masked with a random mask of ones
(copy) instead of zeros (drop). In the context of recurrent architectures, zoneout
is also a special case of the CWRNN with a single module and clocking timings
that are sampled randomly at each timestep.

Skipping irrelevant information has also been achieved with RNNs trained with
reinforcement learning (Yu et al., 2017a; Johansen and Socher, 2017) although
there are successful strategies to estimate gradients for conditional computation
(Bengio et al., 2013b). Adaptively learning computational boundaries has been
achieved with gradient descent using computation penalties (Graves, 2016), binary
boundary gates (Chung et al., 2017), and time gates based on rhythmic oscillations
(Neil et al., 2016). The Skip RNN even uses binary update gates (Campos et al.,
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2018) which is similar to our approach, even though our update model enforces an
information-theoretic constraint based on surprisal.

Surprisal of the error signal has previously been proposed for a form of adaptive zo-
neout (Rocki, 2016). However, while this is fully adaptive, it depends on additional
supervised information in both training and test phases. An important feature of
surprisal is that it works well for segmentation (Griffiths et al., 2015) which we
utilize to detect information boundaries and preserve activations.

6.3 Surprisal-Based Activation

We utilize the previously discussed properties of surprisal to implicitly segment the
state update computations along boundaries of high surprisal and activity. For this
purpose, we redefine any event X as the currently calculated state ht at timestep
t which we seek to segment according to its activations.

In the following, we assume a single hidden layer ht of a standard RNN (recurrent
and fully-connected) which naturally generalizes to a multi-layer network. The
standard RNN candidate activation ĥt is calculated as follows:

ĥt = f(Wxh · xt + Whh · ht−1), (6.5)

where Wxh, Whh are the input and recurrent weight matrices, and xt, ht−1 the
input and previous state, respectively. Our aim is to now observe ĥt and to retroac-
tively determine which of the contained activations to “rewind” to the previous
timestep t−1, thus preserving them for an additional timestep. Consequently, this
determines which activations to keep from the current timestep, passing them to
the final layer output ht.

Figure 6.3 illustrates all computation steps of our approach. We start by partition-
ing our hidden layer into M modules m

(i)
t of equal size2 such that:

ĥt = [m̂
(1)
t , . . . , m̂

(M)
t ] (6.6)

The purpose of these modules is to introduce stability through majority weighting
since the decision to apply the candidate activation ĥt or to preserve ht−1 is made
independently for each module. We therefore pool the candidate activations in
the next step to compress the activations on a per-module-basis, resulting in the
pooling vector pt with |pt| = M :

pt = g(ĥt) = [g(m̂
(1)
t ), . . . , g(m̂

(M)
t )], (6.7)

2For a simplified implementation and to avoid further hyperparameters, we define the same
module size depending on M . Choices of M are thus restricted by the constraint 0 ≡ |h| mod M .
Therefore, having more modules leads to less units per module and vice versa.
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where g(·) is a pooling operator such as max or avg, applied on each module such

that each module is projected to a single element with g(m̂
(i)
t ) = p

(i)
t while the

complete pooling vector pt, which consists of all of these elements, represents the
entirety of all module projections, i.e. the locally pooled hidden layer. In the next
step, we normalize with softmax σ and calculate the surprisal st from the resulting
probability distribution:

st = I(pt) = log
( 1

σ(pt)

)
= log

(∑M
i=1 exp(p

(i)
t )

exp(pt)

)
(6.8)

As a final step, each module m
(i)
t is activated depending on their respective change

in surprisal. We choose candidate activations where the surprisal grows larger than
an experimentally determined hyperparameter θ, and otherwise preserve all states
of the i-th module:

m
(i)
t = S(m̂

(i)
t ) =

{
m̂

(i)
t if st > st−1 + θ,

m
(i)
t−1 otherwise,

(6.9)

where S(·) denotes the module-wise transformation of the activations, which is
ultimately applied on the candidate activations ĥt so that we end up with the final
hidden layer output ht:

ht = S(ĥt) = [S(m̂
(1)
t ), . . . ,S(m̂

(M)
t )] (6.10)

As a consequence, some modules end up being preserved by S(·) for this final state
ht (depending on the condition met in Equation 6.9), while others use the original
candidate activations, updating their internal model for the current timestep. We
henceforth call the resulting model RNN+S (Figure 6.3). All other parts of the
RNN are trained normally and backpropagation through time is executed without
any modifications.

For a simple interpretation of our model, it is possible to look at it without the
information-theoretic motivation which is expressed in the definition of surprisal
I (Equation 6.4). The application of surprisal in Equation 6.8 causes the pooled
activations to be projected to negative log space. This both rescales the activations
and introduces a lower bound at 0. While sequential activation comparisons are
possible in the original activation space, the negative log space is much more feasi-
ble for numerical comparisons as the difference can now be expressed regardless of
the activation scale. For example, I(0.1)−I(0.2) = I(0.0001)−I(0.0002), whereas
omitting the projection leads to a very large difference between both sides of the
equation. One benefit of this is that it allows us to look at this difference and set a
threshold θ that is mostly disconnected from the scale of our activations. Since we
additionally normalize via softmax before projecting the pooled activations (com-
pare Equation 6.8), this leads to an overall more predictable numerical range in
which we try to compare activations. From this perspective, our approach can be
seen as segmenting activations according to their change in values.
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Figure 6.3: Overview of surprisal-based activation within a hidden layer.
Module candidate activations in t that are significantly different from the
previous timestep t− 1 are kept (green), all other modules preserve their

previous states m
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It is also important to note that, while skipping redundant words eliminates these
from the processing chain, the copy mechanism itself causes an increase in redun-
dancy for the representation itself, therefore increasing surprisal for non-skipped
entries in the same timestep. Thus, high surprisal on the representation repre-
sents portions of larger activations. During sequential processing, comparing the
surprisal is therefore meant to give an understanding of how the activations of
specific units or modules change over time. As we compare condition activations
on the differences between neighboring timesteps, we can also see this as related
to the principle of temporal coherence (Subsection 2.2.2) even though we do not
enforce slowness explicitly.

We hypothesize that the combination of local pooling and preservation of previ-
ous states based on surprisal maintains the regularizing effect of zoneout, since
surprisal-based activation is specifically designed to ignore small perturbations
to hidden states, which we would expect to regularize transition dynamics. An-
other hypothesis is that our design can also lead to a self-organization process in
which modules separately learn independent features over long time distances dur-
ing which the input, and subsequently the encoding, does not undergo significant
changes.
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6.3.1 Activation Decay

One potential pitfall of preserving activations by internal surprisal is a “deadlock”
in which an encoding sequence with mostly constant surprisal is never updated.
To counteract this, we investigate the effect of activation decay. We apply decay
right before Equation 6.9 on the preserved state ht−1 and define this decayed state
to be h́t. This changes the negative condition of Equation 6.9 to preserving the
decayed version of the state:

m
(i)
t = S(m̂

(i)
t ) =

{
m̂

(i)
t if st > st−1 + θ,

ḿ
(i)
t−1 otherwise,

(6.11)

Our first approach is to apply a constant decay d = 1 − α (0 < α < 1) to the
preservation state ĥt−1 such that h́t = ht−1 · (1 − d) constantly decays by the
amount α. As a second variant, we introduce a more local and random method by
element-wise multiplying the hidden units with a decay mask:

h́t = ht−1 � dt with dt =
(
P (d

(1)
t ), · · · , P (d

(|h|)
t )

)
(6.12)

where dt is a decay vector, and P (dj = 1 − α) = pd and P (dj = 1) = (1 − pd)
are probabilities for decaying the activation of unit j by α with probability pd.
We hypothesize that this introduces variability on a sub-module level and allows
single units to counteract potential information loss from pooling. We set these
values to α = 0.01 and pd = 0.2 as the result of initial tests which indicated
that these parameters are not very sensitive as long as they remain small. Since
our initial assumption is that deadlocks are global (otherwise other interconnected
units would break locally “dead” units) and that few units have to be perturbed to
reactivate the entire system, a small probability pd of causing these perturbations
fits this intention. It is however important to note that α is dependent on the
range of the used activation function f(·). The same holds true for the threshold θ
even though it operates in the log space of the activations. Unbounded activation
functions (such as linear or ReLu activation) would result in different numerical
properties and therefore a potentially different set of values. In this chapter, our
conclusions are specifically based on working with the bounded tanh and sigmoid
activation functions.

6.3.2 Surprisal-Based Activation in the LSTM

As the LSTM has more parameters than a standard RNN, there are more possi-
bilities to apply surprisal-based activation. The LSTM has two state variables, i.e.
the cell state ct and the hidden state ht. It also has three gates, namely the forget
gate ft, output gate ot, and input gate it. Their interplay, as defined by Greff et al.
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(2017), is as follows (omitting bias for clarity):

ct = ft � ct−1 + it � ĉt (6.13)

ĉt = g(Wxc · xt + Whc · ht−1) (6.14)

ht = ot � f(ct) (6.15)

it = σ(Wxi · xt + Whi · ht−1) (6.16)

ft = σ(Wxf · xt + Whf · ht−1) (6.17)

ot = σ(Wxo · xt + Who · ht−1) (6.18)

The preservation function S(·) can therefore naturally be applied to either or both
of ct and ht. For these cases, we can apply Equation 6.9 directly on the LSTM.
We call the resulting variations Sc, Sh, and Sch.

Since the LSTM forget gate presents an alternative model of memory retrieval to
our approach (f

(i)
t = 0 causes forgetting, f

(i)
t = 1 causes remembering), we also

investigate tightly integrating both approaches, i.e. forcing an indirect activation
preservation by forcing the network to remember through the forget gates. We
therefore extend the preservation function S(·) for the forget gate:

f
(i)
t = S(f

(i)
t ,kt) :=

{
f̂
(i)
t if I(kt) > I(kt−1) + θ,

1 otherwise,
(6.19)

where I(kt) = st gives the surprisal st based on the observed vector kt. We inves-
tigate kt ∈ {ht, ct, ft} to clarify which of these qualify as the best trigger for the
forget gate. These three Sfk methods working on the forget gate do not actively

modify the cell and state but instead lead to f
(i)
t = 1 as the preservation condition.

The cell update ct therefore changes along with ht as follows:

ht = ot � g(ct)

= ot � g(ft � ct−1 + it � ĉt)

= ot � g(ct−1 + it � ĉt)

(6.20)

From ct = ct−1 + it � ĉt, it follows that the Sfk variants differ from Sc (where
ct = ct−1) by whether the input gate it is frozen along with the cell ct or not.

Setting the input gate it = 0, gives a particularly interesting variant in which the
cell does not receive any new inputs but simply decays with the forget gate (as
briefly discussed but not explored in Krueger et al. (2017)):

ct = ft � ct−1 + it � ĉt

= ft � ct−1
(6.21)

We therefore also explore this variant, calling it Sic, in which we selectively deac-
tivate the input gate to block all outside influence on the memory cell, based on
the cell:

i
(i)
t = S(i

(i)
t , ct) :=

{
î
(i)
t if I(ct) > I(ct−1) + θ,

0 otherwise.
(6.22)
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All of these discussed variants operate locally and preservations are decided for
each module. Overall, we evaluate the following seven variants of surprisal-based
activation in an LSTM:

• LSTM + Sh: Preserving hidden states with S(ĥt)

• LSTM + Sc: Preserving cell states with S(ĉt)

• LSTM + Sch: Preserving both cell and hidden states with S(ĉt), S(ĥt)

• LSTM+Sff : Setting ft = 1 based on observing the forget gate with S(ft, ft)

• LSTM + Sfh: Setting ft = 1 based on observing the hidden state with
S(ft,ht)

• LSTM +Sfc: Setting ft = 1 based on observing the cell state with S(ft, ct)

• LSTM + Sic: Setting it = 0 based on observing the cell state with S(it, ct)

To summarize, these proposed LSTM variants can be grouped into three separate
main approaches: i) those that preserve states directly (Sh, Sc, Sch), ii) those that
preserve states by forcing the forget gate to remember (Sff , Sfh, Sfc), and finally
iii) blocking all input to the memory cell (Sic). We compare and evaluate these
variants experimentally in the following sections. The objective is to find the most
successful setup and also to investigate how the introduced core mechanism inter-
acts with different parameters and how this influences the internal dynamics.

6.4 Evaluation on Language Modeling

6.4.1 Experimental Setup

To investigate the effect of surprisal-based activation, we evaluate our model with
language modeling.

While many recent studies make heavy use of regularization techniques to com-
bat the corpus’ high susceptibility for overfitting and to reach the lowest possible
perplexity, we are mainly concerned with evaluating performance gains from our
approach in controlled conditions. We therefore run our own RNN and LSTM mod-
els as a baseline and apply our method under the same experimental conditions.
Avoiding explicit regularization and task-related tuning methods also allows us
to investigate how prone our networks are towards overfitting by themselves. Our
hyperparameters for gradient descent follow (where possible) the previous state
of the art for this dataset, achieved by Recurrent Highway Networks (Zilly et al.,
2017), even though we restrict ourselves to a single medium-sized layer with 1000
hidden units in order to explore a larger hyperparameter space. Ultimately, we run
a total of 1440 different network configurations. We test variations for pooling (max
vs. average), activation decay (none, probabilistic, constant), number of modules
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Model Best Val. Test

RNN 130.4 140.8

RNN+S 131.5 126.4

LSTM 123.6 121.5

LSTM+Sch 128.4 125.7

LSTM+Sc 123.1 120.8

LSTM+Sh 123.9 120.4

LSTM+Sff 125.5 124.0

LSTM+Sfh 125.2 123.6

LSTM+Sfc 122.3 120.2

LSTM+Sic 116.3 114.4

Table 6.1: Single model validation and test perplexity (the lower, the bet-
ter) of our models (+S) compared against the LSTM and RNN baselines
on the Penn Treebank corpus.

M ∈ {2, 4, 8, 10, 25, 50, 100, 250, 500, 1000}, and threshold θ ∈ {10−7, 10−4, 10−3}.
The LSTM models use tanh for activation, the RNN models the sigmoid activa-
tion function. Standard gradient descent is used for training with a mini-batch size
of 20, a segmented sequence length of 35, and the gradient clipped at 10. Addi-
tionally, we use tied word embeddings as described in Press and Wolf (2017). To
avoid overfitting, training stops at 30 epochs for the RNN and 20 for the LSTM
variants, or earlier when the validation perplexity stops improving. We record the
epoch with the best validation perplexity. After selecting the best models by this
validation perplexity, we then run the evaluation on the test set.

6.4.2 Generalization and Comparison to Baseline

Table 6.1 shows the overall results comparing our lowest achieved perplexities
against the baselines. As can be seen, surprisal-based activation in an RNN
(RNN+S) significantly improves the test perplexity when compared to the
baseline (RNN) which can be interpreted as an overall better generalization. It is
important to note that, using an extensive hyperparameter search, an
unregularized RNN language model can be trained to test perplexities as low as
124.7 (Mikolov, 2012), which in turn would also improve our RNN-specific
hyperparameters, and consequently also our RNN+S model. From the LSTM
variants, Sh, Sfc, and Sc show a slightly better albeit comparable performance to
a regular LSTM even though with a slightly better test result. Sch, Sff , and Sfh
fail to improve the baseline while Sic significantly outperforms the baseline by
more than 7 PPL on both validation and test set. In the following sections, all
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Figure 6.4: Comparing decay and pooling methods by validation perplexity
for all proposed models.

hyperparameter analysis is presented based on the validation set in order to not
overfit the test by model selection.

6.4.3 Pooling and Decay

The impact of pooling and decay can be seen in Figure 6.4. Average pooling yields
better perplexities for the RNN+S. The negative effect of max pooling is, however,
reduced for the LSTM+S, most likely due to a low numerical difference between
the average activations in each module and their maximum. Especially in networks
with more modules, max pooling has a more positive effect as there is a smaller
information loss in pooling smaller modules. Average pooling turns out to be espe-
cially detrimental in the LSTM whenever the hidden state is preserved (Sh, Sch),
indicating that the activation variance is larger in the hidden state ht than the cell
ct. This seems different for the sigmoid-activated gates as all gate-based methods
give a similar result for both pooling methods with max pooling yielding a better
peak performance.

The RNN+S benefits the most from applying a probabilistic unit-level decay mask
when using average pooling. It boosts the performance most significantly for Sh
and Sch which is in line with our expectation that an initially large activation
variance can be toned down by locally applying a decay, lowering the maximum
values and improving the average pooling effect. This could be potential evidence
that random variations on a lower granularity than the pooling process might
help with any surprisal-based “deadlocks” (see Section 6.3), especially when large
modules are used which seemingly makes pooling difficult.
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Figure 6.5: Heatmap showing validation perplexities (PPL) for the
RNN+S and all LSTM variants with regard to the module choice M .
While Sc gives the most consistent performance for all M , Sic gives the
overall best performance for M ∈ {500, 1000} but struggles for smaller
choices of M (as do Sch, Sh, and RNN+S).

Applying the decay globally and at a constant rate has a worse effect for almost all
models and shows itself to be an unreliable approach. For a few instances, it is on-
par with having no decay at all. One potential explanation for these observations
could be that a constant decay at best has no adverse (or beneficial) effect when
the activations are converging towards lower values, and at worst, counteracts a
change towards larger values. We would particularly expect the approaches based
on preserving through the trainable forget gate to not benefit from a constant
decay of the gate, as indeed seems to be the case.

Overall, the concept of decay turns out not to be vital for surprisal-based activation
in LSTMs as long as the preservation happens through the forget or input gate.
The probabilistic decay can potentially serve as a minor performance boost in these
cases.

6.4.4 Number of Modules

Figure 6.5 illustrates the effect of the number of modules M on the performance. As
can be seen, the LSTM variants Sch and Sh are unable to converge to good solutions
for M < 10. Since less modules equate to more units per module, the performance
drop for M < 10 can additionally be explained by the larger area of effect of
pooling which is consistent with our previous observations in Subsection 6.4.3 (see
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Sch Sh Sc Sff Sfc Sfh Sic RNN+S

0.31 0.56 0.11 0.42 0.18 0.32 0.43 4.8

Table 6.2: Mean absolute deviation (MAD) of validation perplexities with
different θ ∈ {10−7, 10−4, 10−3}, given the best configuration per model.

Section 6.5 for a deeper analysis). However, the opposite end of the spectrum,
such as for M = 1000 (where each module consists of a single unit) shows that the
absence of pooling worsens these two language models (Sch and Sh) considerably.
While this effect is even stronger for the RNN+S, the other models do not suffer
from this issue. In fact, we can observe an inverse behavior for the best model,
the LSTM+Sic, which indicates that it might have quite different dynamics. This
model shows itself to be only superior to the other methods for M ∈ {500, 1000}.
Similar to the state-based preservation methods, its results are quite different for
M < 10. The LSTM+Sic variant outperforms the others and is best for M =
|h|. It also has the added benefit that, for this specific configuration, pooling is
actually not performed (see Section 6.3) and we ultimately end up with less tunable
hyperparameters and an overall simpler model with good performance. Sff and Sc
are the only variants which are consistent for all M where the latter gives an overall
better result.

6.4.5 Threshold

The threshold hyperparameter θ ultimately proved to be quite robust to changes
for the investigated task. After choosing the best hyperparameter configuration for
each model, we have noted the mean average deviations (MAD) of their validation
perplexities by looking at different choices of θ ∈ {10−7, 10−4, 10−3}. The results
are reported in Table 6.2.

As can be seen, the deviation is largest for the RNN+S, mostly because θ = 10−7

gives better results for M < 10 than larger θ configurations. All LSTM variants
show a larger robustness towards the choice of θ while the impact is lowest on Sc
and highest on Sh. This seems to correlate with their ability to solve the given
task. Therefore, the only LSTM configuration where a significant difference can
be observed is for the Sh and Sch networks with M < 10. As can be seen from
Figure 6.5, this configuration for M leads to generally bad performance for these
two variants, which partly explains this observation.

One potential explanation for the generally low impact of θ is that it is applied
within the log-space of the state activations ct and ht (except for Sff which di-
rectly measures the forget gate activation ft). This means that networks with larger
absolute value changes between timesteps are naturally affected less by smaller θ
while networks with smaller numerical variance can be forced by larger θ to pre-
serve states more often. Following this assumption, our evaluation shows that our
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experimental setup operates below this cut-off point, i.e., the chosen θ are small
enough to enable learning but also large enough to frequently trigger the activation
preservation.

6.5 Further Analysis

6.5.1 State Analysis

As discussed in Section 6.3, our motivation for surprisal-based activation originates
from the idea to utilize surprisal to temporally segment activations according to
their change. Specifically, we look at increasing changes to apply state updates, and
block updates for decreasing or low changes. In the context of language modeling,
we hypothesize that this improves generalization by learning to preserve important
context. This can, for example, happen when the language model is being presented
with previously unseen or very rare words. Since wrong predictions can cause a
cascade of errors, we want to be able to preserve context and skip timesteps with
noisy and wrong predictions.

To investigate our hypothesis, we visualize the internal states. Figure 6.6 shows an
example sequence which is given to the LSTM+Sfc. It can be seen, how measuring
the surprisal values st on the cell state, helps in segmenting along some boundaries.
For example, both <eos> tokens lead to a change in surprisal before the end of the
sentence. The natural change of context that occurs at the sentence boundaries
is also slightly reflected in the forget gate where a slightly larger activity can be
observed in timestep 8.

A particularly interesting behavior can be observed between timesteps 13-16 where
the input is: <unk> conglomerate ssangyoung group. The surprisal map shows
very small values after processing conglomerate ssangyoung which leads to mul-
tiple triggered preservations in the forget gate, leading large parts of the network
to skip over these rare words. Since only 2 out of 6972 occurrences for the word
<unk> are followed by conglomerate in the training set, and ssangyoung only
occurs once during training, this could in fact be explained by a likely mispredic-
tion of this previously unseen context. Since we use a softmax output layer, we
believe mispredictions from rare inputs to cause mostly low and widely distributed
hidden activations. Very certain predictions, on the other hand, would lead to
specific units having high activations due to larger weights. When looking at the
hidden activations ht (top part of Figure 6.6), it is in fact difficult to recognize
very strong localized activations, which supports the hypothesis that the network
causes mispredictions during these timesteps. Assuming these mispredictions, we
can see this behavior as quite beneficial, as the predictions starting at timestep
16 will have access to the preserved context from timesteps before 13, ignoring its
previous mistakes and accessing context that it can utilize.
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Figure 6.6: LSTM+Sfc with M = |h| processing an example sequence
from left to right. The three illustrated maps are from bottom to top (same
as the order of calculation): i) the measured surprisal st on the cell ct, ii)
the forget gate activations ft after applying S(ft, ct), and iii) the resulting
hidden state activations ht.

Figure 6.7: LSTM+Sfh with M = 8 processing an example sequence
from left to right: For small M , the networks converge to a setup in which
preservations are triggered around 50% of the time, resembling standard
zoneout.

In order to deepen our understanding, we have also investigated examples that
have performed worse than the baseline. As discussed in Subsection 6.4.4, these
networks often have a low number of modules M . For these networks, we have
found that surprisal-based activation is sometimes applied seemingly at random.
Figure 6.7 shows the forget gate activations of the best trained LSTM+Sfh net-
work that has M = 8 modules (i.e. each module has 1000/8 = 125 units) and
a validation perplexity of 126. It can be seen that preservation is seemingly ap-
plied randomly, resembling standard zoneout (Krueger et al., 2017). In fact, we
have measured that preservation is applied in 50.11% of the cases for this network.
The same network, but with M = 50, leads to a significantly lower percentage of
preservation with only 6.38%. These findings could potentially explain previous
observations where M < 10 can lead to worse performance than larger M . It also
supports our hypothesis that surprisal-based activation works best when pooling
over smaller groups of neurons. For all gate-based variants, setting M = |h| or
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M = |h|/2 to apply preservation on unit-level seems to be the most consistently
safe approach. The LSTM+Sic with M = 250 has preservations occurring 23.54%
of the time. This percentage does, in fact, go up to 38.16% when raising the number
of modules to M = |h| = 1000, additionally lowering the test perplexity by about
5 points and resulting in our best recorded LSTM+Sic model. From this we can
see that frequently triggered preservations do indeed help in generalization when
using larger M3.

In conclusion, our overall results suggest that, in the context of our experiments,
the LSTM cell state is more fit than the hidden state to implement surprisal-based
activation. Both the Sch and Sfh variants give worse results while operating on
ht than Sfc and Sc, which both observe surprisal changes in the cell ct. However,
measuring and updating only ht with the Sh variant, gives a stable performance,
indicating that any manipulation of the gates should only be due to changes in
the cell states (which is also supported by the worse results for Sff . From our
conducted analysis, we can conclude that surprisal-based activation works best by
preserving the input gate using the cell state. This model, the LSTM+Sic, has also
no requirement to fine-tune the pooling method and number of modules M , making
it more convenient to use and implement than the other LSTM variants.

6.5.2 Additional Experiments

As our evaluation has so far been focused on language modeling with the Penn
Treebank corpus, we now scale up the task difficulty by training with the larger
WikiText-2 dataset and aim to validate whether our previous results can also
be transferred to other benchmark tasks such as numbers addition and sequence
copying.

Experiment 1: WikiText-2

The WikiText-2 corpus is specifically designed to be as similar as possible to the
Penn Treebank corpus while improving some of its downsides (Merity et al., 2017).
Most importantly, WikiText-2 is over 2 times larger, features a richer vocabulary
that is more than 3 times larger, and purposefully avoids preprocessing in order
to preserve the original cases, punctuations, and numbers. In addition, it features
slightly less out of vocabulary (OOV) words to be able to utilize more of the source
text. Table 6.3 shows a full comparison between the statistical properties of both
datasets.

We reuse the same optimization parameters and train each model with its best
hyperparameter configuration established on the Penn Treebank dataset. The re-

3For a deeper investigation of the emerging update rates and their relationship to the SBA
hyperparameters see Section 7.1.
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Penn Treebank WikiText-2

Train Valid Test Train Valid Test

Articles - - - 600 60 60

Tokens 887,521 70,390 78,669 2,088,628 217,646 245,569

Vocab 10,000 33,278

OOV 4.8% 2.6%

Table 6.3: Comparison between the Penn Treebank Corpus and
WikiText-2 (Merity et al., 2017). Out of vocabulary (OOV) denotes the
percentage of rare words replaced by an <unk> token.

Model Best Val. UR Test

LSTM 154.65 - 144.74

LSTM+Sch 171.68 0.50 156.93

LSTM+Sfh 156.45 0.44 145.89

LSTM+Sfc 155.67 0.98 145.22

LSTM+Sc 151.39 0.10 141.11

LSTM+Sic 149.29 0.83 138.79

Table 6.4: WikiText-2 results: networks with minimum validation perplex-
ity and their corresponding update rate (UR) and test perplexity.

sulting validation perplexities for all models are illustrated in Figure 6.8a. As can
be seen, the networks rank like in the previous language modeling task, despite the
slight increase in task difficulty, which is reflected by the overall worse perplexity
that all models, including the baseline LSTM, achieve. The training curves shown
in Figure 6.8b indicate that the Sic and Sc seem to generally perform better than
the baseline LSTM due to overfitting slower. This effect is strongest for the Sc
which also explains why it has the lowest perplexity variance of all models.

The best recorded validation perplexities and the corresponding update rates (UR)
and test perplexities of each model are summarized in Table 6.4. Test perplexity is
generally about 10 PPL points better than validation perplexity, except for the Sch
which ranks as the worst model in our comparison. Most importantly, the Sc model
achieves a very low update rate by performing only 10% of all possible updates
and skipping most of its states. Compared to the LSTM (which has no skipping
mechanism and therefore has a baseline update rate of 100%), this gives some
initial evidence that SBA with the Sc model can lead to significantly more efficient
models while simultaneously improving performance. To confirm this finding, we
perform a deeper analysis of the update rates and the resulting trade-offs with
model performance in Section 7.1.
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Figure 6.8: WikiText-2 results. (a): Boxplot comparing each model by val-
idation perplexity. (b): Learning curves for the LSTM, Sc, and Sic models.
Sc has a slightly slower learning process and is therefore in less danger of
overfitting quickly.

Experiment 2: Addition Task

To evaluate the encoding and decoding capabilities of our approach, we investigate
the sequence transduction task of addition. Each number can have up to 3 digits
and each digit is randomly picked from 0 to 9, resulting in an input string such
as “653+ 84”. The actual network input is a concatenation of one-hot vectors of
size 12 where each vector represents a digit of the addition sequence, and 2 tokens
are additionally used for ‘+’ and ‘ ’ to mark an empty position such as in ‘ 84’
due to a fixed sequence length. A sequence to sequence (seq2seq) model takes this
input sequence and maps it to the correct output sequence of digits representing
the correct answer. We generate 50000 unique sequences of which we set aside 10%
for validation. Both encoder and decoder have 128 units and the same type of layer
activated with tanh activation. For optimization, we use Adam (Kingma and Ba,
2015) with a learning rate of 0.001 and a mini-batch size of 512. We explore all
possible module sizes of M ∈ {2, 4, 8, 16, 32, 64, 128}, average and max pooling,
all 3 decay types (none, probabilistic, constant), and empirically determine the
threshold to be θ = 10−4.

Different than the previous language modeling task, we focus our attention on
evaluating convergence behavior and generalization speed for the variants, as all
networks are able to solve this comparably simple task, given enough data and
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Figure 6.9: Addition Task: Swarm plot showing the number of epochs
until the validation accuracy reaches 0.99 or greater. Shown are me-
dians of the baseline LSTM and all trained LSTM+S variants where
M ∈ {2, 4, 8, 16, 32, 64, 128}.

Model Sc Sh Sff Sfh Sfc Sch Sic RNN+S

Avg 5.02 10.35 5.03 5.42 5.26 11.13 7.09 10.18

Table 6.5: Average number of epochs to reach optimal validation per-
plexity per model in the language modeling task.

iterations (but overall need longer than on the language modeling task). Figure 6.9
illustrates how the proposed LSTM variants based on the forget gate reach the
validation accuracy threshold of 0.99 significantly faster than the baseline LSTM,
independent of the chosen number of modules M . The Sc model behaves similarly,
whereas the other variants converge slower and show larger variance due to a higher
sensitivity to M . Sch and Sh in particular, act very similar compared to the previous
task. Furthermore, the impact of activation decay turns out to be negligible as it
does not seem to change the behavior in a significant way.

When compared with the language modeling task, it can be seen that specific con-
figurations on the RNN+S are able to actually converge the fastest to the accuracy
threshold. The f-gate-based methods (Sff , Sfc, Sfh) are very consistent, while the
Sic variant learns the task later than the LSTM. This is somewhat expectable as
initially detrimental blocking of the input gate can lead to a need for more itera-
tions to self-correct, leading to a potentially higher peak accuracy but a possibility
of longer training times. Overall, the results show that surprisal-based activation
is suitable for use in a seq2seq model and can improve the generalization time.
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Since the RNN+S gave the worst performance in the language modeling task but
reaches peak performance quickest in the addition task (while the Sic performed
best but requires more epochs than the forget-gate variants), it can be deduced
that the time to convergence in the addition task is practically inversely correlated
to the performance in the language modeling task. Comparing the results from Fig-
ure 6.9 to the convergence times from the earlier task (Table 6.5), confirms that
the addition task reproduces the same general behavior that we have observed in
the language modeling task.

Experiment 3: Copy Task

The purpose of the copy task is to test a model’s capability to memorize a sequence
(Arjovsky et al., 2016). The goal is to encode a random sequence of tokens that
is to be repeated after a time lag. The copied subsequence is randomly sampled
from a set of 9 characters (represented by the numbers 1-9), whereas the following
time lag consists of a special “blank” symbol X. After the time lag, the network
receives 0 symbols and needs to generate the previously read subsequence. As an
example, given a random sequence 9132 that needs to be remembered over a time
lag of 8 steps, the network receives 9132XXXXXXXX0000 as an input sequence and
9132XXXXXXXX9132 as the target.

While most recurrent networks can solve this task easily given enough iterations
and shorter time lags, its difficulty can be scaled with increasing time lags until
the networks can no longer solve the task. Additionally, we can define a limited
number of iterations to achieve a specific accuracy threshold, penalizing networks
that need too much time until convergence. Consequently, both constraints allow
us to compare the networks by their memory limitations. Therefore, we utilize
the copy task to evaluate how our integration of SBA into the LSTM impacts its
long-term memory capabilities and, more specifically, whether SBA improves the
LSTM’s ability to model long-term relationships.

We approach this task by designing a seq2seq model, i.e. an encoder-decoder net-
work, where the encoder converts the initial sequence into a single hidden vector
which is then used by the decoder to sequentially predict the output sequence. We
choose a length of 8 characters for the copied sequence and vary the task difficulty
by using time lags of 8, 16, 24, and 32 timesteps as we find that networks start
to encounter significant memorization issues around 32 timesteps. All characters
are encoded as one-hot encodings using a softmax output and Cross Entropy loss.
Training is done using Adam optimization with an initial learning rate of 0.001,
batch size of 32, and hidden layer sizes of |h| = 128 for encoder and decoder,
respectively. We generate 10000 sequences of which we use 90% for training and
the remaining 10% for holdout cross-validation, and compare all LSTM variants
of SBA to a baseline LSTM. After an initial grid search with N = 5 trials per net-
work configuration, we pick the best parameters for the model variants and note
the point at which most networks start to fail the task, namely around time lags
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Time Lag

Model 8 16 24 32

Sc 14.6 17.8 20.6 27.2

Sch 28.2 27.4 25.4 33.6

Sff 18.6 30.8 46.4 58.4

Sfc 15.0 19.0 24.2 30.2

Sfh 16.6 24.4 52.75 58.5

Sh 24.0 22.0 21.4 29.2

Sic 19.2 26.2 47.8 —

LSTM 8.4 22.4 34.8 —

(a) Average number of epochs to achieve an
accuracy of 90%. All networks have a 100%
success rate (SR) on this threshold, with the
exceptions of the LSTM and Sic (SR=0 for
TL=32) and Sfh (SR=80% for TL=24 and
SR=40% for TL=32)

Time Lag

Model 8 16 24 32

Sc 100 100 100 100

Sch 80 80 80 20

Sff 100 100 40 0

Sfc 100 100 100 80

Sfh 100 100 20 0

Sh 40 40 100 60

Sic 100 100 40 0

LSTM 100 100 80 0

(b) Success rate for achieving a 95% accuracy
threshold within the given time frame.

Table 6.6: Copy task results. The longer the Time Lag (TL) between read-
ing (encoding) and copying (decoding), the harder the task. (a): Almost
all networks (137/140) converge above 90% accuracy, even for longer time
lags. (b): The success rate of achieving 95% accuracy is significantly lower
for longer time lags. For the maximum lag, only the Sc model is able to
always converge at high accuracy.

between 24 and 32 steps and an accuracy threshold of 95% to consider a successful
run for a single network within 75 epochs.

Table 6.6 summarizes the results of the experiment. Most networks are able to
solve the task rather quickly with time lags of 8 and 16 steps, but start to fail with
increasing time lags. Most networks achieve a 100% success rate (i.e. each of the N
trials is successful) of achieving an accuracy of 90% (Table 6.6a). However, within
the same time frame, most are unable to reach 95% accuracy with time lags of 32
timesteps (Table 6.6b). Additionally, we can observe the trend that increasing the
time lag also increases the required training time. Overall, these findings indicate
that long time lags impact the convergence process in that it is more difficult to
reach the top accuracies in the same amount of training time.

Comparing our SBA variants to the baseline LSTM, we can see that the LSTM is
significantly faster to solve the task with the shortest time lag. However, for the
longest time lag, none of the trained LSTMs reach the required accuracy threshold,
thereby failing the task. On the other hand, most SBA models achieve accuracies
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Figure 6.10: Copy Task: Comparison between an LSTM decoder (left) vs.
the Sc model (right) for time lags of 24 (top) and 32 (bottom) timesteps.
The locations of the correct targets are marked as white boxes in the ac-
tivation maps. Targets and correct predictions for the copied subsequence
are marked in blue, wrong predictions in red. The two white vertical lines
segment the initially read subsequence (first 8 steps) and the blank middle
section from the final subsequence (final 8 steps). The goal is to match
the final segment with the beginning.

between 90%-95% for the longest time lag. This indicates that the LSTM is more
biased towards short-term relationships, whereas SBA seems to be more biased
towards long-term relationships.

Comparing the different variants, we can find that Sc outperforms all other net-
works in that it never fails one of the tasks, even with the highest time lag and
accuracy threshold. It is followed by the Sfc model, which converges similarly fast.
Sic is the only SBA variant to never reach accuracies above 90% on the largest time
lag, whereas Sh gives the most consistent performance, often converging around the
same number of epochs regardless of task difficulty, but having the lowest overall
success rate for the highest accuracy threshold.

To see the difference between a baseline LSTM and SBA, we visualize the activation
maps of the respective decoders. Figure 6.10 compares the activations of the Sc
model against the baseline LSTM based on the shown representative examples. For
time lags of 24, most LSTMs are able to encode the initial sequence and produce
some sequence near the end, even though the copied output often contains mistakes
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(as shown in Figure 6.10a). The Sc model, on the other hand, is always able to
encode both the initial subsequence as well as its copy (Figure 6.10b). Compared
to the LSTM, the respective characters have much larger activations, indicating a
greater confidence in the overall prediction. The activations of the LSTM have a
smaller numerical variance, especially in the final 8 steps of the sequence, indicating
a stronger tendency to converge towards an average of the tokens. For the longest
time lag (32 steps), the LSTM fails to copy the sequence. Instead, it learns to
encode the middle section, presumably as the blanks are most frequent in the input
sequence. This seems to hinder its capability to properly encode the subsequence at
the beginning and end (Figure 6.10c). The Sc model accomplishes this task without
mistakes (Figure 6.10d), giving a similar solution to experiments with smaller time
lags.

Overall, the results for the copy task provide additional evidence that integrat-
ing SBA with the memory gates of the LSTM improves its capability to learn
long-term dependencies and memorize inputs over longer time spans. The differ-
ences between the Sc model and the other SBA variants are slightly larger than
in previous tasks, as this model consistently converges much quicker to higher ac-
curacies. This indicates that the Sc model is better at memorizing and decoding.
The SBA variants modulating the forget gates, however, show more difficulties for
this particular setup, suggesting that the forget gate itself plays an important role
for memorization in SBA, particularly as the baseline LSTM has more difficulties
with this task.

6.6 Chapter Summary

In this chapter, we have introduced a novel method to preserve activations and
skip updates in RNNs based on surprisal. By investigating and evaluating multiple
LSTM integration variants, we have also demonstrated that a baseline LSTM can
be improved by skipping based on surprisal constraints and by modeling memory
decay of skipped representations through the forget and input gates. With the
LSTM+Sic, we have presented an accurate model when applying surprisal-based
activation on unit-level (M = |h|), eliminating the necessity to fine-tune most of
the introduced hyperparameters.

Our approach provides additional evidence to the overall utility of preserving ac-
tivations and skipping state updates with neural prediction models. In particular,
the presented analysis shows the potential of using surprisal to detect and segment
context boundaries. However, further research is needed to conclusively identify
whether the detected boundaries do indeed lead to emerging hierarchical struc-
tures. As our evaluation was limited to a small set of prediction tasks, it is also
necessary to explore SBA with other types of tasks, particularly classification. As
demonstrated, surprisal-based activation can be integrated and combined with dif-
ferent types of recurrent layers. In particular, it can easily be extended to GRUs
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(Chung et al., 2014), which would lead to an additional reduction in complex-
ity. Consequently, we introduce the Surprisal-based GRU (SGRU) and evaluate it
in conjunction with more advanced architectures on question answering in Chap-
ter 9.

The evaluation in this chapter provides an initial view into the potential of SBA
even though some open questions remain. It is particularly desirable to have more
control over the trade-off between accuracy and update rate as the ideal balance
between both metrics is different for each situation and application. For this, a
deeper understanding is necessary on how the update rates develop during training
and how they are affected by the hyperparameters. The development of methods
to directly control update rates based on scenario requirements would facilitate
this further. The focus of the next chapter will be to investigate these questions,
developing the introduced model further.
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Chapter 7

Bridging the Gap Between
Surprisal-Based Activation

and Zoneout

In this chapter, we will take a closer look at controlling trade-offs between skipping
and model performance, investigating how we can reduce activations without neg-
atively impacting the performance. For this purpose, we examine the relationship
between skipping with Surprisal-based Activation (SBA) and regularization-based
skipping. Our goal is to provide a better understanding towards the question whe-
ther skipping should be driven by regularization or as part of a model’s update
function. Our evaluation will focus on two main aspects related to regularization:
i) the regularization capabilities of SBA, and ii) the use of regularization penalties
to reduce the number of state updates. As zoneout (Krueger et al., 2017) is the
most popular regularization method based on skip mechanisms, we provide a com-
parison between SBA and zoneout. As part of this analysis, we run a large ablation
study, successively removing the differences between SBA and zoneout.

An overview of our methodology is provided in Figure 7.1. We start by thoroughly
exploring the naturally emerging update rates of the introduced SBA variants
and how they can be reduced further for additional sparsity gains (Section 7.1).
In this context, we introduce different regularization penalties to the objective
function (Section 7.2) and evaluate how much control they give us over the network
behavior. The role of penalties is to provide a middle ground between precise
control over predetermined update rates (as in zoneout) and the naturally emerging
update rates of SBA which are performance-driven and not directly controllable.
Following this, we turn SBA into pure regularization method and observe how this
affects generalization (Section 7.3). Finally, we turn zoneout regularization into a
model architecture which allows us to explicitly define update rates, and compare
this to the other approaches (Section 7.4). To our knowledge, this study constitutes
the largest variety of different zoneout masks investigated to date.
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Figure 7.1: Overview over this chapter’s methodology to bring together
zoneout and SBA in the context of both skipping models and regularization
methods.

7.1 Convergence of Update Rates

Before trying to influence the update rates of our models to minimize network up-
dates, we will first systematically investigate which update rates emerge naturally
during training. We informally define the update rate u as the ratio of the number
of updated states to the number of skipped states. For example, an update rate
of 0.6 means that 60% of all state updates proceeded normally while 40% were
skipped (averaged over all units, batches, and timesteps). Introducing this second
metric allows us to quantify the skipping behavior and evaluate the relationship
to each model’s performance (using perplexity as the performance metric).

To analyze the model update rates, we repeat the main hyperparameter search
from Chapter 6 and additionally compute the update rate of each model. The
resulting update rates of all models are illustrated in Figure 7.2 and put in rela-
tion to task performance (PPL) and number of modules M ∈ {2, 4, 8, 10, 25, 50,
100, 250, 500, 1000}. What can be seen is that the Sic model, previously found to
give best task performance, is actually one of the models with both a higher up-
date rate and a larger range (from 0.5 to 0.7). Only Sic and Sfc have a similarly
large update range. For the other models, the update rates converge to a specific
point that seems to be difficult to influence significantly with a different choice
of M . Using this new perspective of evaluating the models under two different
metrics, allows us to also reevaluate Sc: while this model is only the second best
performance-wise, it can achieve this with half as many state updates on average
(uc = 0.33) than the best Sic (uic = 0.58). For M = 2 it maintains the same
performance (from 123.7 PPL to 124.1 PPL) but pushes its update rate further
down to uc = 0.26. Consequently, compared to a regular LSTM, this model allows
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Figure 7.2: (a) Valid. PPL vs. update rate for each model. Bubble size
scales with number of modules (small size indicates small M). The (b)
best average update rate vs M and (c) the PPL vs M can also separately
be seen on the right side (x-axes for M scaled logarithmically).

us to maintain baseline performance while additionally preventing 74% of all state
updates on average.

What can also be seen in Figure 7.2 is that, with growing M , there is a strong
logarithmic trend in the growth of the update rates for Sc (R2 = 0.81), Sfc (R2 =
0.87), a logarithmic decrease for Sfh (R2 = 0.91), and a slightly weaker trend for
Sch (R2 = 0.65) and Sic (R2 = 0.58). The Sff model is the only one where this
trend isn’t as clear, although this is mostly likely caused by the hyperparameter
having less influence on this model (see Subsection 6.4.4).

This shows a generally strong tendency towards a logarithmic correlation between
the naturally emerging update rates and the number of modules used in each model:
the smaller our choice for the number of modules M (i.e. more units are grouped
together in less modules), the smaller the network’s update rate. We hypothesize
that this is primarily caused by the pooling mechanism. To illustrate this with an
example (see Figure 7.3), we can compare the differences between partitioning a
layer with 12 units into M = 4 modules and into M = 2 modules. If the layer size
remains unchanged, M = 4 is equivalent to 3 units per module and M = 2 to 6
units per module. Since the decision to update or skip is done on a per-module-
basis (after pooling), it follows that the network with M = 2 will keep more units
inactive for each skip decision compared to the network with M = 2. Consequently,
the modularization via M practically determines the possible range of update rates.
The network with 2 modules can (for each timestep) only achieve update rates of
0, 0.5, and 1, whereas the network with 4 modules has more fine-grained control
and can achieve update rates of 0, 0.25, 0.5, 0.75, and 1.
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3 4

3 4

update update updateskip

(a) SBA with M = 4 modules.
Possible update rates: 0, 0.25, 0.5, 0.75, 1.

update skip

(b) SBA with M = 2 modules.
Possible update rates: 0, 0.5, 1.

Figure 7.3: Effect of number of modules M on SBA illustrated on two
examples with |h| = 12. (a) M = 4 causes a smaller number of units
to skip for each decision. (b) Each skip in M = 2 affects twice as many
units as the pooled vectors are larger. The network on the left has a more
fine-grained control over its update rates and empirically leads to larger
average per-unit update rate than the one on the right.

The fact that this more powerful network has a higher update rate can partially
be explained by the fact that update rate and accuracy seem to be positively
correlated: the network tries to optimize for a cross entropy loss and will therefore
achieve a better outcome with larger update rates close to 11. It is worth noting
that this also affects generalization as we observe similar update rates on training,
validation, and test sets.

Nevertheless, as we have seen in Figure 7.2, most SBA models with M = |h| = 1000
converge to update rates significantly lower than 1 (Sfc being the exception). Our
observation can therefore not fully be explained by the loss function favoring large
update rates. As a second reason, we can identify that the larger area of pooling,
caused by small M , additionally leads to more skip decisions for average pooling.
This is evident from the fact that outlier activations will be averaged out stronger
in a larger vector, leading to a lower change in surprisal. Max pooling, on the other
hand, has an increased chance of catching an outlier in a larger vector, leading to
more changes in the surprisal. Empirical support for this is illustrated in Figure 7.4a
for the Sic model and our overall analysis sees this pattern present for the other
models as well. Consequently, we conclude that max pooling causes more skips for
smaller modules and average pooling causes more skips for larger modules. This
difference gets smaller with growing M .

From related work (see Section 3.6), we can find that decreasing update rates can
lead to decreased performance. Aside from the aforementioned explanations, it is
also evident that a strong decrease in activations equates to a loss in information.

1This is why an optimization for mere performance can be problematic if one desires to
minimize metrics unrelated to task performance (such as the number of updates). The next section
will therefore investigate how the loss function can be modified with an additional optimization
goal unrelated to the task performance.
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Figure 7.4: (a): The effect of average (blue) vs. max (red) pooling on the
update rate and number of modules M for the model LSTM+Sic. Bubble
size and text labels indicate model perplexity. Shown are best achieved
update rates per model. Max pooling causes more skips for smaller mod-
ules, average pooling causes more skips for larger modules (M = 1000
equals no pooling operations). (b): Radial chart of the mean absolute
deviations (MAD) of the update rates, recorded over all hyperparameter
configurations (each line equals the MAD of 3 runs on one configuration).
Even though the update rates are affected by hyperparameters, the overall
deviation is very low, both generally and for each SBA variant, respectively.

The more the encoding is compressed, the likelier it is to become lossy. Ultimately,
this means that, even though we can influence the network into small update rates
by choosing small M , this will in many cases also lead to suboptimal performance.
Nevertheless, the inverse relationship between update rate and performance means
that there is a potential optimal trade-off point somewhere in the middle that can
be found by either hyperparameter optimization or careful design of the objective
function.

In order to find networks with a satisfying trade-off, we propose an initial model
selection strategy with a stronger bias on accuracy. First, we only consider networks
without activation decay and with the smallest θ. This helps us to simplify the
process as we have previously shown that these parameters have a limited influence
on the best models. Then, we select the remaining 3 configurations (with different
M and pooling) by the lowest perplexity achieved throughout 3 runs. From these
we choose the model with the lowest update rate u.

The results of this process are presented in Table 7.1. Earlier we had noted that
Sc is able to skip 74% of all updates on average. As we can see, we can now
identify networks (using max pooling and M = 2) with an even lower update
rate at u = 0.14 (mean µu = 0.14, standard deviation σu = 0.0009), i.e. 86% of
all possible updates are not performed. The important thing to note is that this

125



Chapter 7. Bridging the Gap Between SBA and Zoneout

Model Val. PPL u M pooling

LSTM 123.6 1.0 – –

LSTM+Sch 143.18 0.50 2 max

LSTM+Sff 124.95 0.46 4 max

LSTM+Sfh 125.47 0.49 25 max

LSTM+Sfc 121.73 0.92 50 max

LSTM+Sic 119.73 0.58 1000 –

LSTM+Sc 120.67 0.14 2 max

Table 7.1: Models with the lowest update rate u, selected from the three
model configurations with the lowest perplexity (PPL). No activation de-
cay applied. While the Sic is consistently accurate, the Sc is significantly
more effective at the cost of a little accuracy.

network still performs better than a regular LSTM (by about 3 PPL) and has 4
times as much activation sparsity as the Sic (u = 0.58, µu = 0.14, σu = 0.0049)
even though it only sacrifices about 1 PPL in performance. This makes the Sc
model an ideal candidate with both good performance and very sparse activity.
Generally, these results indicate that the two SBA variants Sc and Sic are able to
avoid the aforementioned trade-off between performance and skipping. However,
this seems to only be the case for specific hyperparameter configurations and the
other SBA variants even fall slightly behind the baseline performance.

Aside from hyperparameter influence, all models have in common that there is
a significantly low variance in their update rates (see Figure 7.4b). Regardless of
hyperparameter configuration, no model has an MAD over 0.08 in their update
rate. Taking our previous analysis into account, of how both pooling and module
size have measurable effects, but only shift the update rate significantly from the
mean in very specific setups, this shows us that update rates are largely fixed to
certain ranges partly determined by the hyperparameters. While the large variety
of models and hyperparameters in our study allow us to cover a large spectrum
of behavior, gradient descent seems to cause the models to always converge to a
specific update rate that satisfies the training objective. As the objective is based
on task performance and not update sparsity, adapting it for this purpose is a
potential solution that we will investigate next.

Intermediate Conclusion

To summarize, there are three main conclusions from this experiment:

First of all, task performance and update rate are generally positively correlated.
While a small amount of skips can improve the performance, a large reduction of
activity towards 0 degrades accuracy noticeably for most of the models.
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Second, adjusting the number of modules and the pooling operator allows us some
level of control when trying to find a good balance between accuracy and the
number of state updates although it requires significant analytical work in the
currently proposed approach. The only model with potential for very good accuracy
and computational efficiency is the Sc, which performs better than a regular LSTM
even though it saves 86% of all state updates.

Nevertheless, the hyperparameter influence is limited, which leads us to the third
finding: given a specific hyperparameter configuration, update rates converge to
a specific point with very little variance. When optimizing for task performance,
this gives us models that perform similar to the baseline (sometimes even slightly
better) but provide additional activation sparsity through skipping.

However, it is possible to come up with hypothetical scenarios in which we might
accept even stronger losses in model accuracy as long as the resulting model gives
a different benefit such as, e.g., increased computational efficiency. Similarly, we
can imagine scenarios where it is more important to maintain baseline accuracy
and any additional update sparsity is optional. Since the underlying choices of
such a trade-off are highly situational and entirely dependent on the use case, it
is consequently necessary to develop additional methods which allow us to more
directly and conveniently define what kind of trade-off the model should optimize
for. In the following sections we will therefore explore additional methods to more
explicitly describe to the network our notion of an optimal balance between task-
performance and skipped updates. In the next section, we will therefore start with
introducing a second objective into the objective function in the form of regu-
larization penalties which we explicitly link to the update rate that we want to
control.

7.2 Minimizing Computations with

Update Penalties

Our primary research goal is to reduce update rates as much as possible while
maintaining accuracies close to the baseline. However, until now, SBA training has
only been influenced by the cross entropy loss and the metrics that we use for
model selection. This causes a bias towards maximizing accuracy over minimizing
update rates. Therefore, we will next introduce and apply different regularization
penalties to indirectly affect the update rates in our models.

In the previous section, we have determined that optimizing task-performance
and minimizing the number of state updates can be two adversarial objectives.
Consequently, it is necessary to have mechanisms with which to describe the desired
trade-off in order to find an appropriate network by training with gradient descent
rather than manual selection after a hyperparameter search.
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In this section, we will explore if these two goals can be balanced by gradient
descent as long as they are both represented explicitly in the objective function.
This means that we define a second objective R which we add to our cross entropy
loss function LCE:

Ltotal = LCE +R (7.1)

Even though it is not directly tied to the goal of improving generalization, we call
this second objective R “regularization penalty” since we aim to penalize state
updates and achieve a form of sparsity regularization2 in the process. As a result,
we work with a more general definition of regularization in the context of this
thesis: a penalty term that (during training) shapes the solution into a desired
form according to some constraint that is not tied to the training error or the
goal of improving generalization3. For our specific use case, we will use the term
“update penalty”.

As our central approach, we propose to apply recurrent stability regularization for
the novel context of minimizing computations with SBA. As we will show, this
regularizer is complementary to the main mechanism of SBA. While this approach
has not been used for minimizing computations before, there are other regular-
izers that have been studied with similar architectures. Therefore, we test our
method against two additional methods, which have have established themselves
well enough to serve as baselines to determine which method finds the best trade-
off between performance (perplexity) and computational resources (update rate).
The first of these approaches is to use a computing budget (Campos et al., 2018)
or ponder cost (Graves, 2016) which simply accumulates the number of updates or
computational steps and adds them to the loss. The second approach is to define a
target update rate and penalize the mean deviations from it (similar to the objec-
tive function of the Leap-LSTM (Huang et al., 2019)). Each of these three different
regularization penalties is aimed at minimizing the computational cost.

7.2.1 Regularizer 1: Computational Budget (RCB)

We refer back to the previously introduced conditional update for SBA (see Equa-
tion 6.19) which leads to S(gt,kt) updating the gate gt based on the surprisal
I(kt) of gate kt, and more specifically, whether it exceeds a certain threshold such
that I(kt) > I(kt−1) + θ. Using the Iverson bracket notation, we can now quantify
each of these binary decisions S(gt,kt) such that each positive if-condition (i.e.

2Sparsity regularization requires the same trade-off between sparsity and accuracy.
3This more general perspective on regularization penalties has also recently been “rediscov-

ered” in literature on learning disentangled representations where regularization penalties are for
example introduced for information maximization instead of preventing overfitting (e.g., see (van
Steenkiste et al., 2019))
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update) leads to a 1, and each negative if-condition (i.e. skip) leads to a 0:

JItK =

{
1 if I(kt) > I(kt−1) + θ is true

0 otherwise
(7.2)

Quantifying the logical proposition used in the condition of Equation 6.19, allows
us to directly count the number of decisions in a sequence of inputs with 0 < t ≤ T .
We define this sum as the computational cost of a sequence:

RCB = λ ·
T∑
t=1

JItK, (7.3)

where the hyperparameter λ determines the regularization strength. This com-
putational budget (CB) penalty RCB is then added to the cross entropy (CE)
loss function such that Ltotal = LCE + RCB satisfies Equation 7.1. This penalty
somewhat resembles L1 regularization which penalizes large weights. The main
difference is that L1 serves to prevent overfitting by increasing representational
sparsity (setting weights to 0) while our penalty increases computational sparsity
(setting recurrent activations to 0). In addition, our constraint is not primarily
motivated by the goal to reduce overfitting, even though we would expect the
sparsification of activations to result in a better generalization due to a reduced
influence of redundant parameters.

7.2.2 Regularizer 2: Target Update Rate (RMSURE)

The idea of the second regularizer is to minimize the update rate towards a manu-
ally specified target. For this purpose, we define the target update rate ut ∈ [0, 1]
as a new hyperparameter and utilize it as follows:

RMSURE = λ · (ut − u)2, (7.4)

where, as previously, λ determines the regularization strength and u is the actual

update rate u =
∑
T JItK
T

over all sequences. Since the update rates are averaged
over the entire dataset, RMSURE is effectively the mean squared error (MSE) for
the update rate (UR), which we therefore name the “mean squared update rate
error” (MSURE).

One potential issue with this regularizer is that it requires, in addition to λ, a
second hyperparameter ut. From a practical standpoint, it might be the most
intuitive approach to set ut close to 0 (ut >ε 0). After all, this would ensure that the
update rate u is minimized as much as possible. However, we hypothesize that this
is actually not the case. To illustrate the reason, we can consider the local minimum
to which the cross entropy loss L converges at the end of training. As shown
previously, each SBA variant has its own update equilibrium to which it converges
with little variance, assuming that we only optimize for task-performance and to
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Figure 7.5: Example scenarios with idealized update-loss curves illustrate
how a lower target update rate ut might counterintuitively lead to larger
update rates than targets with a larger value that are however closer to
uUAE . Example assumes that λ is chosen such that both objectives have
roughly equal contribution in Ltotal = LCE +RMSURE .

no other secondary objective. Let us define the update rate that occurs naturally,
when optimizing for the primary metric, as the update-accuracy equilibrium (uUAE).
Then, the goal of a secondary objective is to push the update rate ut away from
uUAE towards 0 (in particular, until the loss from the decreasing accuracy gets too
large).

Figure 7.5 illustrates how the relationship between RMSURE and LCE influences
Ltotal. Without any regularization penalty, the area of the convergence is by defini-
tion uUAE±ε for some small ε that defines the valley of the local CE loss minimum.
It follows from the definition of RMSURE that it is a parabola with a vertex (min-
imum penalty) at the target rate ut and an openness scaled by λ. Let us now
assume that λ is chosen in a reasonable manner such that LCE and RMSURE have
roughly the same contribution towards Ltotal. Then, if the distance between these
two minima (|uUAE − ut|) is small, the smallest value for u would be at the lower
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border of the convergence area (because the area itself is shifted towards 0 due
to the update penalty). On the other hand, if this distance is large, RMSURE will
have a larger contribution near uUAE and since the combined loss is additive, the
convergence area will shift towards higher update rates u in general.

In conclusion, assuming that λ is chosen in such a way that one objective is not
weighted significantly more than the other, the best possible trade-off between
accuracy and update-rate is accomplished whenever the target rate ut is close to
the equilibrium defined by uUAE.

7.2.3 Regularizer 3: Norm Stabilization (RNS)

We will now turn to norm stabilization, an activation regularization method pro-
posed by Krueger and Memisevic (2016) and previously discussed in the context of
the stability-discrimination dilemma (see Section 2.5). Norm stabilization is defined
as the average squared difference between the L2 norm ‖ · ‖2 of two consecutive
hidden activations ht and ht−1, measured over a time window t = (1, ..., T ):

RNS = λ · 1

T

T∑
t=1

(
‖ht‖2 − ‖ht−1‖2

)2
, (7.5)

where λ is the regularization strength parameter familiar from the other regular-
izers. While the previous two regularization penalties RCB and RMSURE achieve
a minimization of the update rate by directly tying the update rate to a penalty,
norm stabilization is originally unrelated to update rates. Instead, it minimizes the
state difference between timesteps. Since SBA makes update decisions based on the
state changes between timesteps (expressed in surprisal), norm stabilization ends
up influencing the update rate when used in conjunction with SBA. Therefore,
RNS can only be considered an update penalty when used with SBA.

This regularizer facilitates slow feature analysis as it penalizes large state changes
between consecutive timesteps. This fits perfectly with the SBA mechanism which
only permits updates with large state changes and suppresses small changes into
inactive skip states. Consequently, we hypothesize that combining both should re-
sult in state changes getting smaller and therefore triggering more state inactivity,
further reducing computation.

7.2.4 Experimental Setup

All three regularization penalties are measured over the sequences of the entire
dataset and added to the training loss. Naturally, the regularization strength
λ ∈ (0,∞) differs for each method as they all operate on different numerical
scales. In order to find each regularizer’s suitable range for λ values, we run initial
experiments, recording how much the update penalties influence the total loss. We
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Figure 7.6: Norm Stabilization Regularizer (RNS)

call this the regularization influence RI and express it as the following ratio:

RI =
N∑
i=0

Ri

LCE,i +Ri

, (7.6)

where N is the total number of iterations over which we sum both the loss and
penalty values.

Looking at the RI values for different λ configurations, we have identified for each
regularizer the numerical range for λ in which RI is roughly in the range [0.1, 0.9].
For RMSURE, we explicitly test the target rates in the range ut = [0.1, 0.9] with
increasing step sizes of 0.1, giving 9 different combinations. Due to a significantly
larger hyperparameter space compared to other setups in this chapter, we have
chosen the best hyperparameter configuration for each SBA variant (i.e. prede-
fined M , θ, d, pooling function) such that any observed variance is only from the
regularization parameters.

7.2.5 Results

The effect of λ on the Norm Stabilizer is illustrated in Figure 7.6. As can be
seen, for λ > 0.05, all networks degrade in performance as RI gets close to 1. In
particular, λ > 1 causes the error to go up significantly for all models. This in turn
causes the update rate to go down for all models except Sc. This model seems to
actually be negatively correlated with the task performance (decreased accuracy
leads to increased update rates). As we have observed in Section 7.1 that the uUAE
of Sc is very low compared to the other models, the update rate of Sc is evidently
difficult to improve further using this update penalty.

For lower values of λ, the Norm Stabilizer is unable to effectively reduce the update
rate (Figure 7.6b). A comparison with the corresponding perplexities (Figure 7.6a)
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Epochs Epochs Epochs

PPL u PPL uPPL u

c ic chfhfffc
Valid. PPL update rate u

Computational Budget Norm Stabilizer Target Update Rate (MSURE)

Figure 7.7: Validation perplexity (solid lines) and update rate (dashed
lines), recorded after each epoch for the three proposed penalties. Band
shows 95% confidence interval.

indicates that the networks are successfully converging, mostly according to the
cross-entropy objective. Interestingly, we have observed this same behavior for all
three of the regularizers.

Figure 7.7 shows a comparison between all three regularizers. In most cases, the
Norm Stabilizer seems to lead to a slightly better loss. In some cases (e.g., Sic)
it also leads to better update rates at the time of early stopping. RMSURE starts
similarly but stops the training process earlier for all models (except Sic). The
variants skipping based on the forget gates climb in perplexity after dropping
initially. At this point in training, between epoch 7 and 10, RCB actually continues
training, whereas RMSURE stops due to the resulting spike being short enough to
not be detected by the monitoring window in early stopping.

Our results also suggest that the choice of the target ut for RMSURE has had little
influence on the actual outcome of the update rate, independent of parameteriza-
tion. One potential explanation for this could be that the update rate convergence
area (compare discussion regarding Figure 7.5) is simply too narrow. This means
that the overall variance is simply so low that the point of optimal trade-off is very
close to uUAE.

However, since all three methods are unable to significantly push down the up-
date rate during training and validation, it stands to reason that there is a more
comprehensive issue at hand that prevents the regularizers to change the update
rates significantly. As the methods themselves have been shown to work with other
models, it is most likely that the penalties simply can not achieve the desired goal
in conjunction with the core mechanisms of SBA. An alternative explanation could
be that the penalties only work in a very small range of λ (comparable to budget
regularization in the Skip RNN (Campos et al., 2018)) which our experiments were
not able to pick up.

As our regularization penalties seem to be insufficient to reduce update rates fur-
ther while maintaining baseline accuracy, we will therefore explore in the next
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section how SBA itself can be turned into a regularizer and whether this allows a
more successful approach to lowering each model’s update rate.

7.3 The SBA Regularizer

In the previous sections, we have approached SBA from the perspective of de-
signing a neural architecture. In order to investigate the regularization capabilities
of the main mechanisms of SBA, we now turn to transforming it into an actual
regularization method.

With the goal of testing the capabilities of SBA to act as a traditional regularizer,
we keep the original training process with the SBA models but use regular LSTM
activations for the validation and test process. The main point of this experiment
is to probe the generalizability of the skip decisions themselves. In other words,
if testing with a regular LSTM improves the model, then the generalization was
worse using SBA during testing. Fundamentally, this tells us how much the SBA
representations improve generalization to unseen examples in LSTMs.

To distinguish this new setup from the previous, we call our original SBA models
SBA+M in contrast to the newly introduced regularizer variants SBA+R. We keep
our main experimental setup from Subsection 6.4.1 and run the same grid search
as we did previously, but keep all units are active during validation and testing. In-
terestingly, our results show that the overall influence of the SBA hyperparameters
is quite low. Measured by MAD, the choices for both pooling and the threshold
parameter seem to have a small effect. Only Sch and Sic show MADs over 1 PPL
for pooling (8.40 and 4.79 respectively) which is similar to that of regular SBA
models.

For all models, constant decay has the same effect as having no decay, while prob-
abilistic decay decreases performance significantly for Sc, Sch, Sff , and Sh. From
this, it can be inferred that activation decay is not helpful if SBA is only applied
at training time. To an extent, it also gives us evidence that the previously ob-
served positive effects of activation decay mostly lead to improved generalization
with the SBA mechanism. Since it has no positive effect if the testing is performed
with regular LSTMs instead of LSTM+S variants, it is likely that regular LSTMs
can mitigate representational irregularities introduced by SBA, while LSTM+S
slightly benefits from activation decay.

The only parameter that seems to be important for SBA regularization is the
number of modules M . The relative improvements from turning SBA into a reg-
ularization method are illustrated in Figure 7.8. The differences between SBA+R
and SBA+M are significant for most of the models. Moreover, while the total de-
viation along M is high, there are no trends observable that are independent of
each model, except for M = 4 being the best choice on average. Generally, lower
M seem to give better performance, which is contrary to the original SBA models.
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Figure 7.8: Relative validation PPL improvements (∆ Valid. PPL) when
SBA is only applied during training instead of both training and testing.
∆ > 0: Model performance improves when using SBA only for training
(SBA+R), ∆ < 0: Model performance improves when using SBA in both
training and testing (SBA+M baseline). Comparison is shown by number
of modules M . Bottom part of the chart (∆ ∈ [−300,−15]) is scaled
down 1:100 to improve readability.

Sic seems to only converge properly when M is neither low nor high, while Sfh
only improves for either low or high M .

Looking at the overall top test results of the entire hyperparameter search (see
Table 7.2a), restricting SBA to training time (SBA+R) leads to a measurable
effect on most models, whether it results in an increase or decrease in the top
performance. The most noteworthy change can be seen from the LSTM+Sc which
improves by 6.8 PPL and supersedes the LSTM+Sic. The LSTM+Sic model is
the only model which significantly changes its update rate by more than 30%. We
hypothesize that this is mostly because of an increase in training time (the update
rate grows monotonically during training of LSTM+Sic).

The large improvement in perplexity for SBA+R+Sc leads to the conclusion that
the original model SBA+M+Sc is worse at generalizing with the SBA mechanism
than a regular LSTM. Since the LSTM is able to make better use of these rep-
resentations without any training, it stands to reason that the LSTM simply has
more access to memory than the more restricted LSTM+Sc variant. This is also
supported by the fact that the model seems very sparse with an update rate of
only 14%.
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This gives us an indication that optimizing for two antagonistic objectives (accu-
racy vs computation) might generally benefit from changes to the early stopping
procedure which traditionally only monitors the loss. If the training procedure only
stops based on task-performance, a secondary objective, such as e.g. minimizing
the update rate, remains unmonitored. In addition, the results show that the up-
date rates themselves generalize well to regular LSTMs and that Sc representations
transfer even better to a regular LSTM than SBA itself during the testing phase.
While this tells us that some of our models do indeed have innate regularization
capabilities (particularly Sc), we still lack a clear way to directly control the update
rates and have also not fully answered the question on how far we can push the
update rates away from their natural equilibrium.

In the next section, we will introduce the possibility for having full control over
the update rates by stochastically sampling update decisions similar to zoneout.
Furthermore, we will perform the opposite procedure from the previous experiment
where we turned our models into regularizers: since zoneout is a regularization
method, we transfer the stochastic update process to models running at training
and test time and evaluate the resulting differences.

7.4 Fusing SBA and Zoneout

As the results of earlier sections have shown, explicitly minimizing the number of
state updates is difficult to achieve with regularization. While this could either
result from SBA itself or the suggested approaches, we have also stated that there
might inherently be model-specific lower bounds that prevent the update rates
from decreasing beyond a certain level unless we accept a significant tradeoff w.r.t.
model performance. To investigate this experimentally, we require the ability to
set the update rates manually. This can help in conclusively determining whether
the update rates, that are adaptively learned by SBA, can indeed be improved
further beyond the equilibrium uUAE or if they are indicative of a model-specific
lower bound.

7.4.1 Sampling Random Update Decisions

To set the update rates of the networks in a precise and controlled manner, we draw
some inspiration from the regularization method zoneout4. The main mechanism
that we adopt is to sample random decisions, which we aim to compare against
our adaptive surprisal-based update decisions from SBA.

4See Subsection 3.5.2 for an introduction to zoneout.
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Consequently, we change our main update decision function (Equation 6.9) to the
following:

Z(h
(i)
t ) =

{
F (xt,h

(i)
t−1) if b

(i)
t = 1

h
(i)
t−1 if b

(i)
t = 0,

(7.7)

where bt ∈ {0, 1}|h| is a binary decision gate vector and b
(i)
t ∈ {0, 1} represents

the i-th element of this vector (with |bt| = |ht|). We sample the decision gate from
the Bernoulli distribution with update probability p:

bt ∼ Bernoulli(p), (7.8)

whereas the distribution itself is defined such that P (Bernoulli(p) = 1) = p and
P (Bernoulli(p) = 0) = 1− p. Naturally, each element of bt is binary and models
the decision process of updating vs skipping for each unit i. Consequently, we tem-
porarily abandon the concepts from SBA about grouping units in modules, pooling,
and thresholding (activation decay on the other hand is still possible).

Similar to Equation 6.19, we can generalize zoneout such that we explicitly define
which gate or state is being preserved during inactive periods:

k
(i)
t = Z(k

(i)
t ) :=

{
Z(k

(i)
t ) if b

(i)
t = 1

k
(i)
t−1 if b

(i)
t = 0,

(7.9)

where kt can either be the LSTM cell state, hidden state, or one of the memory
gates. We denote the resulting models as Zk, respectively.

Applying the activation preservation mechanism of Z(·) instead of S(·), results in
our different SBA variants “collapsing” to multiple new variants of zoneout. For
reference, the original zoneout algorithm applies the skip mechanism to both the
cell state c and the hidden state h. We get to this variant by making Sch stochastic,
which we denote as Zch := Sch. Furthermore, with the introduction of stochastic
decision sampling, the forget-gate based variants automatically become the same
model Zf := Sff = Sfh = Sfc, while Zi := Sic and Zc := Sc. This gives us 3
novel zoneout approaches as well as the original method (Zch). As noted, zoneout
is conceptually equivalent to Sch with random decision sampling at training time.
A small difference in our implementation for Zch is that we use shared masks
between c and h which is not the case for regular zoneout (Krueger et al., 2017).
We choose this alternative approach for consistency and to minimize the differences
to SBA.

Since zoneout is a regularization technique that is only applied at training time,
we mirror our experimental setup from the previous section where we have turned
our SBA models into regularizers. Specifically, we run separate experiments for i)
zoneout regularization (ZO+R) where testing is being done by a regular LSTM
without sparse activation and ii) zoneout models (ZO+M) which additionally skip
during testing.
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Chapter 7. Bridging the Gap Between SBA and Zoneout

It is important to note that the ZO+M models are not performing random guessing
at test time since we only subject specific components of the LSTM to random
decision sampling. For example, while Zf will cause random forget gate behavior,
we are still able to remember the trained input gate and use it to process each
input xt, which leads to an LSTM output that is not entirely affected by the gate’s
randomness. Since the network has the means to explicitly learn how to overcome
this additional noise during training, we hypothesize that the resulting model is
capable of generalization.

7.4.2 Experiments and Results

For our experiment, we evaluate Zch, Zf , Zi, and Zc with update probabilities
of p = [0.1, 0.2, ..., 0.9, 1.0] and our 3 activation decay schemes. Due to the large
number of sampled decisions, we are able to observe during training that update
rates quickly approximate their expected value, i.e. the update probability p such
that u ≈ p for ZO+R and ZO+M. Overall, we have found that masking any pa-
rameter other than the hidden state leads to successful improvements over the
baseline LSTM. Since exploding gradients have led to significant difficulties train-
ing Zh, we have not investigated this variant further as model-specific changes to
the optimization procedure would have compromised a fair comparison.

The resulting test perplexities are presented in Table 7.2b, side-by-side with the
previous results for the SBA+R regularizer and the original SBA model (SBA+M).
One of the most important findings is that the adaptive mechanism of SBA gen-
erally leads to slightly smaller update rates in models compared to those with
zoneout (ZO+M). This indicates that SBA is not only able to capture the optimal
average update rate (which we measure through a grid search on zoneout), but
is capable of additional optimizations. Since zoneout yields skip decisions from a
uniform distribution and SBA decides for each unit based on its temporal and
spatial context, we see this tuning capability of SBA as the main explanation for
the smaller update rates.

However, we also observe the opposite relationship for the perplexity metric, i.e.
zoneout models (ZO+M) perform better than SBA and even zoneout regulariza-
tion itself. While this may seem somewhat surprising, it can partially be explained
by the fact that the slightly better update rates of SBA require a trade-off with ac-
curacy. Comparing the zoneout training regularizer (ZO+R) to the zoneout model
(ZO+M), we can see that our zoneout model leads to both better perplexities and
update rates compared to all variants of the standard zoneout setup.

In an overall comparison between zoneout and SBA models, SBA leads to smaller
update rates while zoneout leads to smaller perplexities on the best model configu-
rations. Comparing the zoneout training regularizer (ZO+R) to the zoneout model
(ZO+M), we can see that our zoneout models outperform their respective regular-
izer variants with regard to to both perplexities and update rates. Furthermore,
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Model SBA+M u SBA+R u

LSTM 123.6 1.00 – –

+Sch 135.9 0.50 131.3 0.59

+Sff 124.7 0.46 125.1 0.50

+Sfh 125.0 0.49 121.8 0.44

+Sfc 121.7 0.92 119.3 0.96

+Sic 119.2 0.58 120.2 0.90

+Sc 119.9 0.14 113.1 0.21

(a) Learned update rates

Model ZO+M p ZO+R p

+Zch 124.9 0.6 137.51) 0.9

+Zf 118.8 0.7 117.1 0.8

+Zi 116.0 0.7 123.0 0.9

+Zc 113.3 0.2 117.6 0.3

(b) Controlled update rates

Table 7.2: p : zoneout probability, u: average update rate of the best
model configuration. Shown are test perplexities of the best results, inde-
pendent of decay rate. SBA+M and ZO+M are models applying their skip
mechanism on training and test time, SBA-R and ZO+R are training reg-
ularizers applied at training time only. Note that u is a measured metric,
whereas p is a hyperparameter with p ≈ u. 1): ZO+R+Zch is most similar
to the original zoneout approach.

if we consider Zch as our baseline (since it is the closest to the original zoneout
approach), we can also recognize that all of our introduced concepts drastically
improve on the original zoneout regularization approach.

The authors of the original zoneout study claim that shared random masks, i.e.
reusing the same mask for both c and h seems to work worse than initializing two
separate random masks (Krueger et al., 2017). Considering that this is the main
difference between zoneout and our Zch regularizer, our results seem to validate
this claim. However, we can extend this original finding as we have shown that
shared masks only seem to be an issue when skipping both cell and hidden state.
Unfortunately, this setup is the only one considered in the original study and,
therefore, still known as the default method of applying zoneout regularization.
Therefore, we see considerable evidence that our proposed variants might improve
the original zoneout method, even though further research on different tasks is
necessary to verify our results.

7.4.3 Effects of Update Probabilities on Convergence

We will now take a more in-depth look at how the update probabilities influence
convergence and, more specifically, at which update rates the models start to dete-
riorate in performance. Setting the update rates through p allows us to push each
model variant beyond its natural update rate equilibrium and to observe whether it
can still successfully solve the given task under the enforced update sparsity. This
also allows us to directly measure the individual trade-offs between both metrics
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Figure 7.9: Comparison between zoneout regularization (ZO-R) and the
zoneout models (ZO-M), which are a simplification of SBA in which
stochastic sampling replaces the surprisal mask. Top row: Validation Per-
plexity. Bottom row: Convergence time in median epochs.

and to get an understanding as to which gates and states provide the best skipping
foundation for an ideal trade-off.

Figure 7.9 shows the effect of the update probability parameter p (which is in
practice also the expected update rate u) on ZO+R and ZO+M, respectively. As
expected, the smaller the update probability p, the longer the networks take to
converge. The trend for zoneout regularization is the same, though it fluctuates
more strongly. ZO+M with Zi and Zch is significantly more stable during training
than ZO+R regularizers as they show unstable convergence. For the other two
models Zc and Zf , ZO+R and ZO+M both show similar patterns for varying p,
although the absolute perplexity is lower for ZO+M.

As in previous experiments, Zc works best around p = 0.2 and degrades in per-
formance the more p (or u) is increased. For the other models, the ideal update
probability seems to be somewhere between 0.5 and 0.7. In addition, our previ-
ously hypothesized lower boundary for the update rates is clearly visible for two of
the ZO+M models, namely Zch and Zi. Lowering p beyond this threshold causes
a significant trade-off in performance. For the Sc model this relationship is also
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reversed: this lower bound becomes an upper bound as the network functions best
with small update rates.

To summarize, by sampling the update decisions we can further simplify SBA and
successfully control the update rates of our networks directly. This is practically
useful for the purposes of analysis and having a more fine-grained control in cases
where we specifically know how much state updates we want to perform or save.
Our zoneout variants work even better when the same network is used for test-
ing instead of a regular LSTM. If we pick the best overall model, the Sc, both
the SBA+R and the ZO+M setup give the same performance. This further adds
evidence to our hypothesis that each network has its own update-accuracy equilib-
rium uUAE to which the models tend to converge, while any update rate deviations
away from this local minimum always lead to a decrease in accuracy. While we
were able to observe some exceptions to this rule, the ideal update rate seems to
generally have a large degree of independence from the skipping method that is
used.

7.5 Chapter Summary

In this chapter, we have provided a deeper analysis of SBA. We have particularly
focused on understanding its relationship to regularization, as well as measuring
and improving the trade-off between model performance and update rate.

The different SBA model variants behave differently as they skip based on different
memory components of the LSTM. In repeatedly investigating these differences,
we were able to gain a better understanding over which memory components have
to be controlled with SBA to lead to either better-performing models, a reduction
in state updates, or a combination of both. In some instances, we have found that
SBA can eliminate significant amounts of redundancy. For example, our LSTM+Sc
model can achieve close-to baseline accuracies while eliminating/skipping 86% of
its state updates. Depending on which memory component is manipulated, the
model always converges to an update rate with low variance. Overcoming this
strong attractor for the update rates has shown to be difficult.

Extending the original formulation of SBA, we have investigated multiple possibili-
ties on how the update rates can be minimized alongside the task-related objective.
While regularization penalties have shown limited effects, we were able to show
that SBA itself has some regularizing properties. In particular, the SBA+R+Sc
representations improved significantly at test time when transferred to a regular
LSTM, highlighting that the constrained nature of SBA can sometimes lead to
issues in memory access and therefore to generalization difficulties in very sparsely
activated networks.

Finally, we have introduced and investigated multiple novel variants of zoneout
that we have redefined as models with distinct state update rules, moving zoneout
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closer to SBA. This has allowed further improvements to both our baseline and
the original zoneout algorithm. The experiments have also confirmed that SBA is
able to reach a slightly better update range than the result of a hyperparameter
grid search with zoneout. Furthermore, we have shown that zoneout can be used
as an analytical tool to practically construct networks with specific update rates,
allowing us to analyze the correlation between update rate and model performance
for a given skip mechanism.

The biggest limitation of SBA is that its implementation does not reduce the num-
ber of floating point operations. SBA can be considered a form of online pruning.
During training, SBA observes candidate activations to decide if they should be
taken into account for an update or skipped. Since the candidate activations have to
be calculated before they can be evaluated, SBA is not able to prevent these compu-
tations and only operates in hindsight. However, repeated processing and hindsight
updating has been successfully demonstrated in similar models, e.g. for multi-turn
reading (see Subsection 3.5.5). Furthermore, this form of post-processing to focus
on a subset of the features is also a typical property of recurrent neural attention
mechanisms. To an extent, our approach can therefore be seen as a form of hard
attention that is applied at the hidden layer instead of the output layer (Bah-
danau et al., 2015; Vinyals et al., 2015). In contrast to attention, which introduces
a considerable amount of additional parameters and calculations, SBA nonetheless
only adds to the computational demand in the form of a softmax, log-transform,
and pooling operation, all of which are bounded below linear complexity. In the
following chapters, we will introduce a hierarchical attention framework (Chap-
ter 8) before investigating the interplay between SBA and attention (Chapter 9)
and providing a direct comparison between surprisal and attention as a skipping
constraint (Chapter 10).

142



Part IV

Hierarchical Attention
and Surprisal

143





Chapter 8

Hierarchical Attention Networks

To improve skipping in recurrent networks by eliminating redundancies, we require
the ability to identify and focus important inputs and representations. Attention
models have been proposed in the role of such mechanisms, simulating a more
explicit model of a network’s focus during processing. The use of attention has
been shown to improve both model performance and interpretability. Similarly,
hierarchical representations have been proposed to improve learning of structured
sequences such as with natural language.

For this reason, this chapter is concerned with introducing hierarchical attention
networks. Previously, our application focus has been on language modeling which
mostly requires local context and more long-term relationships in some cases. In
the following, we turn to a task in which only few parts of the input are highly
relevant to the output and most other inputs can be discarded. More specifically,
we look at cloze-style question answering which is considered a popular reading
comprehension task.

8.1 Motivation

Attention-based recurrent architectures have recently been successfully applied to
tasks such as language modeling (Tran et al., 2016a), speech recognition (Bahdanau
et al., 2016), or machine translation (Luong et al., 2015). Recently, hierarchical
attention has been proposed in the form of the Hierarchical Attention Network
(HAN) and successfully been used for document classification (Yang et al., 2016).
The main idea of the HAN is to hierarchically apply attention mechanisms at the
word- and sentence-level. This way, the network representations are able to mirror

Sections 8.1-8.3 of this chapter have been published as part of this thesis and are based on
Alpay et al. (2019), illustrations © 2019 IEEE, reprinted with permission.
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the hierarchical structure of documents. A different task that might highly benefit
from structured representations is question answering. Assuming direct questions,
e.g. about entities, relevant information is typically very sparsely distributed over
documents used for question answering. That is, few sentences in the provided
document relate to the asked question, and of these only a few contained words
need to be queried to infer the correct answer.

Therefore, we investigate how the HAN can be used for this task and we focus on
cloze-style question answering (QA). In such recent datasets for QA, queries are
generated by removing a single word (e.g. a named entity) from a sentence which
then has to be inferred from the remaining text. This allows one to assume that
the answer to the question is a single word contained in the text document, and
that the dataset provides candidate words for the answer.

Although attention-based models are quite popular for QA tasks (Kadlec et al.,
2016; Hermann et al., 2015), few hierarchical approaches with attention mecha-
nisms have been proposed to date. Previous successful approaches for QA mostly
use shallow recurrent encoders (Chen et al., 2016) that only operate on word-level
or work with task-specific memory representations, such as the end-to-end mem-
ory network (Sukhbaatar et al., 2015). A hierarchical variant of memory networks
has also been introduced (Chandar et al., 2016) although its hierarchical memory
is fixed and not learned. A hierarchical model for long text documents has been
proposed by Choi et al. (2016). Different from our bottom-up approach of building
hierarchical representations from word- to document-level, they present a more
top-down approach where the model first selects relevant sentences before generat-
ing answers with reinforcement learning. Hierarchical models have also successfully
been used for visual question answering (Lu et al., 2016) although the structure of
images is very different from that of text documents.

Other work has investigated novel attention mechanisms that facilitate training
specifically for QA tasks. For example, the Attention Sum Reader Network (ASRN;
Kadlec et al. (2016)) assumes that the answer is contained in the document, al-
lowing it to directly point to the answer rather than inferring it from a blended
representation of words as is usual in similar models.

In this chapter, we investigate both approaches and propose a novel hierarchical
model. We adapt the original HAN to QA tasks and extend it twofold to infer an
answer from hierarchical representations: first, based on a hierarchical document
vector representation (HAN-doc-vec) and second, based on pointer sum attention
(HAN-ptr). We evaluate our models on the Children’s Book Test (CBT; Hill et al.
(2016)) and compare them to a non-hierarchical variant to ultimately address the
following research questions:

1. Does hierarchical attention facilitate the task of cloze-style question answer-
ing?

2. Does pointer sum attention work better than a blended document vector
representation for integrating hierarchical representations?
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8.2 Hierarchical Attention Network for

Question Answering

In this section, we describe the suggested models. The hierarchical structure is
realized by primarily adapting the Hierarchical Attention Network (HAN; Yang
et al. (2016)) to the QA task.

The main idea is as follows: at word level, our system encodes a sentence repre-
sentation from word representations. At the sentence level, it learns to represent
the document based on these sentence representations. This final representation is
then used to find the most likely word in the document which answers the query.
To realize this final step, we propose two variants. The first builds up a document
vector (HAN-doc-vec) from hierarchical attention that is used to infer the correct
answer from a blended representation. The second uses pointer sum attention at
the final layer (HAN-ptr) in order to compute answer probabilities directly from
the word and sentence attention values. Additionally, we evaluate our architec-
tures by realizing a non-hierarchical attention model (RAN) as an appropriate
baseline.

8.2.1 The Word Level

Our architecture assumes three different inputs, namely the text document D,
the question q (sometimes also called query), and a list of candidate words c,
which contains the correct answer. We start at the word level by embedding the
document Dinp and the question qinp into word vectors with the help of the pre-
trained embedding matrices EA and Eq (we use GloVe embeddings (Pennington
et al., 2014)). This gives us the embedded representations Demb = ED ·Dinp and
qemb = Eq · qinp.

Word Encoding

Similar to the HAN, we use Gated Recurrent Units (GRUs; Chung et al. (2014))
as recurrent sequence encoders throughout our architecture. Our main motivation
of choosing the GRU over the Long Short-Term Memory (LSTM; Greff et al.
(2017)) is that it offers similar performance for less parameters. The GRU state
ht is generally computed with the help of an update gate zt and a reset gate rt as
follows:

zt = σ(Wxz · xt + Whz · ht−1), (8.1)

rt = σ(Wxr · xt + Whr · ht−1), (8.2)

h̃t = tanh(Wxh · xt + Wrh · (rt ⊗ ht−1)), (8.3)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃, (8.4)
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where h̃t are the candidate activations, and the matrices W are trainable connec-
tions from the input or previous layer state to the current layer state. The σ denotes
the sigmoid activation function, and ⊗ signifies element-wise multiplication.

We employ a bidirectional GRU (biGRU; Bahdanau et al. (2016)), where we use
one GRU layer to read the sentences forward, from left to right, and another to
read them backward in reversed order. This gives us the forward hidden state ~ht
and the backward hidden state ~ht. Both layer encodings are then combined by
concatenation, i.e. ht = [~ht, ~ht], to receive the output of the bidirectional layer.
Therefore, by looking at both directions simultaneously, we allow the network to
capture more context around each word.

At the word level, we now encode our word embeddings for the document and the
question with two separate biGRU layers, calling the resulting encodings Dword

and q:

Dword = biGRU(Demb
t ) = [~ht(D

emb
t ), ~ht(D

emb
t )] (8.5)

q = biGRU(qembt ) = [~ht(q
emb
t ), ~ht(q

emb
t )] (8.6)

The document is processed sentence by sentence at this word level, i.e. the currently
processed sentence serves as the available context. Consequently, Dword

t encodes
contextual information for each word within its sentence.

Word Attention

In the next step, we use an attention layer so that each word can have a different
contribution to the sentence representation:

βwordi,j = qT ·Dword
i,j (8.7)

αwordi,j = softmax(βwordi,j ) (8.8)

Since the dot product acts as a similarity measure between each word and the
question, βwordi,j acts as an indicator on the relevance of the question to the j-th
word of the i-th sentence in the document encoding Dword

i,j . Applying the softmax
gives us a probability distribution which we can use as the word-level attention
values αwordi,j .

In the final step, we use these word attention values as weights for the associated
word encodings to blend them into an aggregated sentence representation:

Dblend
i =

n−1∑
k=0

αwordi,k ·Dword
i,k (8.9)

This leads to words with larger attention values being represented more promi-
nently in the sentence representations.
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8.2.2 The Sentence Level

After the end of the word level, we were able to estimate the importance of each
word w.r.t. the question. The purpose of the sentence level is to allow the same
for the sentences. This also allows us to discard previously high word attention
values in sentences with low sentence attention which are meant to contain little
information to answer the question.

Therefore, the previous steps are now mostly repeated on sentence level: we feed
the previously attained sentence representations into a biGRU encoder and gain a
document-level representation of weighted sentences by computing attention values
on the sentence representations.

Sentence Encoding

At this point, we can enrich the vector of each sentence with context informa-
tion from the whole document by feeding the sentence representations Dblend to a
sentence-level biGRU:

Dsent = biGRU(Dblend
t ) = [~ht(D

blend
t ), ~ht(D

blend
t )] (8.10)

Since this layer processes a sequence of sentence representations, this may lead to
each sentence vector Dsent

i containing information on both Dblend
i as well as the

neighboring sentences Dblend
i−1 and Dblend

i+1 .

Sentence Attention

The sentence attention is computed analogous to the word attention values:

βsenti = qT ·Dsent
i (8.11)

αsenti = softmax(βsenti ) (8.12)

Note that we use the same question vector q from the word level. Using the sentence
encodings, βsenti now indicates the similarity between this question vector and the
contextual sentence vector Dsent

i .

8.2.3 Computing the Final Output

After calculating the hierarchical attention-based representations in the previous
sections, we now introduce two different methods to infer an output answer. The
first method uses a document vector representation (HAN-doc-vec), the second
pointer sum attention (HAN-ptr) to find the correct answer word in the docu-
ment.
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Document Vector

Calculating a document vector representation after the sentence attention layer
is the most natural approach as it mirrors the production of the sentence vectors
Dblend on word-level. We therefore blend all weighted sentence vectors together to
get Ddoc:

Ddoc =
m−1∑
k=0

αsentk ·Dsent
k (8.13)

This vector sums up the entire document based on the sentence attention values.
By doing this, we have propagated the attention information of the most-likely
words from word to document level. In order to compare Ddoc with the candidate
answers c, we apply a linear transformation to reduce the vector dimension to
that of the embedded candidate vector cemb and get the final document vector
Dfinal:

Dfinal = Wf ·Ddoc + bf , (8.14)

where Wf is a weight matrix and bf are the biases.

To compute the final output using Dfinal and c, we assume that if a candidate
is the answer to the question, it should be represented more prominently in Ddoc

than the other candidates. While it is possible to simply measure the similarity be-
tween Dfinal and cemb, this would lead to a negative influence of candidate vectors
that do not have pre-trained embeddings. Therefore, we still initialize the candi-
date embeddings with pre-trained word embeddings Ec but allow the embedding
layer to update during training (different from qemb and Demb who have static
embeddings). Training the candidate embeddings end-to-end now allows the lower
recurrent layers to enrich them with semantic context.

With the candidate embeddings, we can finally calculate the final similarity and
apply a softmax to see the likelihood for each candidate ci that it is the correct
answer:

γ = cT ·Dfinal, (8.15)

P doc(ci|Dinp, qinp, cinp) = softmax(γ) (8.16)

The complete HAN-doc-vec model architecture is illustrated in Figure 8.1a.

Pointer Sum Attention

Different than the HAN-doc-vec, we also investigate how we can use the previously
computed attention values in order to directly infer the answer without computing
a document vector after the sentence level. The main idea is inspired by the work
of Kadlec et al. (2016) on their Attention Sum Reader and our resulting model
HAN-ptr integrates it in a hierarchical manner.
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Figure 8.1: Comparison between the HAN-doc-vec and the HAN-ptr.

As a first step, we combine the word and sentence attention values to get a prob-
ability distribution over all words of the document:

αdoci,j = αsenti · αwordi,j (8.17)

As a result, the overall attention αdoci,j for each word is linked with the attention it
received in its sentence i as well as the attention the sentence i itself received over
the document. This allows us to apply pointer sum attention as defined by Kadlec
et al. (2016) to our hierarchical model.

For the candidates cinp, we now sum the attention values in αdoci,j for each occurrence

of cinpi in the document Dinp. The candidate with the most cumulative attention
is chosen as the right answer. In other words, let Y (i) be the set of indices defined
by:

Y (i) = {(k, l)|Dinp
k,l = cinpi , 0 ≤ k < m, 0 ≤ l < n}, (8.18)
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Then, Y (i) includes all positions in the document where the candidate cinpi occurs,
and the overall attention of cinp is then:

P ptr(ci|Dinp, qinp, cinp) =
∑

(k,l)∈Y (i)

αdock,l (8.19)

The idea behind using pointer sum attention in such a fashion is to try to exploit
the hierarchical attention structure to produce more accurate attention values than
only calculating the attention on word level (as the ASRN does). While the doc-vec
approach continuously transforms its representations hierarchically, this method
directly uses the captured information from each hierarchical layer.

One limitation of this approach is that the pointer sum attention only looks at
candidate words in the text document, i.e. any context information about other
words is only coded indirectly through their attention values. The complete model
using the pointer sum attention is illustrated in Figure 8.1b.

8.2.4 Baseline Model

In order to investigate the impact of the hierarchical structure in our models,
we construct a baseline by removing the sentence level from the HAN-doc-vec
(illustrated in Figure 8.2). The resulting model is very similar to that of Chen
et al. (2016) except that we still build a document vector representation from the
word level, apply the linear transformation from Equation 8.14, and avoid using
their bilinear attention form as we found this method to not increase the overall
performance significantly enough to warrant a larger parameter size.

For the sake of clarity, we call this baseline the Recurrent Attention Network
(RAN). One difference to the other two models is that the network takes the
entire document sequence as input since the baseline only operates on word level.
So different than the other two models, the recurrent layers of the RAN can keep
context information between sentences.

8.2.5 Summary

To summarize, we investigate the following models with increasing
complexity:

1. RAN: Recurrent Attention Network (non-hierarchical baseline)

2. HAN-doc-vec: Hierarchical Attention Network with document vector repre-
sentation

3. HAN-ptr: Hierarchical Attention Network with pointer sum attention

Both HAN variants build up hierarchical representations on word and sentence
level. The ptr model infers the answer directly from the attention values while the
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Figure 8.2: The baseline model RAN.

doc-vec model builds an additional representation on document level to summarize
the sentences and infer the answer with trainable candidate embeddings.

8.3 Experiments

8.3.1 Dataset

We use the Children’s Book Test (CBT; Hill et al. (2016)) to evaluate our models.
The dataset is constructed from 108 children’s books which typically have a very
clear narrative structure. It is also one of the currently more popular cloze-style
datasets for automated question answering, wherein the questions and answers
are generated by removing a single word from a sentence which then has to be
inferred from the remaining text. In the CBT dataset, each document consists of
21 consecutive sentences. One word removed from the 21st sentence serves as the
answer while the remaining sentence forms the query. The reader then has to read
the previous 20 sentences (the context) and pick one from ten candidate answers
which best fit the placeholder in the query.

For this study, we investigate two different types of words that may be treated
as placeholders: Named Entities (NE) and Common Nouns (CN). These two cat-
egories have been constructed for the CBT dataset using the Stanford Core NLP
toolkit (Manning et al., 2014) and are therefore effectively treated as two different
datasets. We choose these categories as it has been shown that LSTM language
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models have difficulty achieving human performance with these two-word types in
the CBT dataset (Hill et al., 2016). It is important to note that we only use raw
text as input, i.e. there are no entity annotations that are shown to the models.
CBT-CN consists of 120,769 and CBT-NE of 108,719 training documents. Both
datasets have 2,000 validation and 2,500 test documents. The total number of
unique words is roughly 53,000 for both datasets.

8.3.2 Training Details

We use pre-trained GloVe word embeddings (Pennington et al., 2014) and in-
vestigate the three available embedding dimensions of |E| ∈ {100, 200, 300}. For
unknown words, we draw random numbers from a uniform distribution in the
same value range as the embeddings. For the number of hidden units we choose
|~h| = | ~h| ∈ {256, 384, 512} for both backward and forward layers, i.e. each bidi-
rectional hidden layer has twice as many units in total. We observed smaller sizes
leading to significantly worse accuracies, whereas larger layers led to challenging
computational requirements. The models are run on a single GPU (NVIDIA GTX
1080 Ti) using a batch size of 64, which leads to an average training time of 20 min-
utes (HAN-ptr) and 25 minutes (HAN-doc-vec) per epoch on the larger dataset.
The RAN model takes 2 hours per epoch since it receives the entire document as a
sequence. All networks train for a maximum of 7 epochs and we record the epoch
with the best validation accuracy. The recorded median number of epochs for con-
vergence is 4 for the RAN baseline and HAN-doc-vec, and 3 for the HAN-ptr. All
our models are trained using the Adam optimizer (Kingma and Ba, 2015) and the
categorical cross entropy loss. A learning rate of 0.001 is picked for both datasets
as the result of preliminary experiments. Each hyperparameter configuration is
trained 10 times with different seeds to account for randomization.

8.3.3 Evaluation

Hyperparameters

Figure 8.3 summarizes our hyperparameter evaluation on both datasets. Over-
all, smaller GloVe word embedding dimensions seem to work better than larger
ones. However, the variance is smaller for the HAN-ptr model, indicating that the
other two models could face difficulties training candidate embeddings with high
dimensionality (the HAN-ptr uses a simple lookup instead of candidate embed-
dings).

The number of hidden units per layer seems to positively correlate with the vali-
dation accuracy, although the overall variance caused by changing hidden units is
much smaller than that observed from different embeddings. This shows an overall
robustness of all models w.r.t. their parameter size.
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Common Noun Named Entity

Model valid test valid test

Humans (query) 1 - 64.4 - 52.0

Humans (query + context) 1 - 81.6 - 81.6

Maximum Frequency (context) 1 27.3 28.1 29.9 33.5

LSTMs (query) 1 61.3 54.1 50.0 40.8

LSTMs (query + context) 1 62.6 56.0 51.2 41.8

Memory Networks 1 64.2 63.0 70.4 66.6

Attention Sum Reader Network 2 68.8 63.4 73.8 68.6

RAN (non-hierarchical baseline) 60.8 57.4 64.4 58.7

HAN-doc-vec 60.4 56.4 62.9 57.7

HAN-ptr 69.1 67.7 75.5 69.9

Table 8.1: Overview and comparison of our results on the CBT dataset
for the Common Noun (CN) and Named Entity (NE) categories. Results
marked with 1 are from Hill et al. (2016), with 2 are from Kadlec et al.
(2016).

As in previous studies, our networks also have an easier time querying for named
entities than common nouns (see Table 8.1). The HAN-doc-vec model is even
slightly behind our baseline for named entities, while it gives more consistent results
for common nouns where it slightly improves on the baseline.

Test Results

After hyperparameter optimization, we select the best models based on the vali-
dation accuracy and evaluate them on the test set. Table 8.1 shows our best re-
sults for the Common Noun (CN) and Named Entity (NE) categories of the CBT
dataset. As can be seen, the HAN-doc-vec falls short to significantly improve on
our baseline RAN (especially in the NE category). This shows that the hierarchical
processing itself does not guarantee better performance. On the other hand, the
HAN-ptr gives significantly better results than both the baseline and the doc-vec
version. By comparing this result to the single model Attention Sum Reader Net-
work (ASRN), we can also conclude that the attention sum pointer is not the only
cause for the performance gain of the HAN-ptr. For common nouns, in particular,
we get a better test accuracy with the HAN-ptr. Since the ASRN also uses the
same attention mechanism, we are left to assume that our hierarchical layout is the
reason that we can partially improve on the original ASRN. The differences be-
tween the two word type categories additionally suggest that a hierarchical pointer
sum approach is more beneficial when learning common nouns.
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Figure 8.3: Swarm plot with validation accuracies. Evaluating the three
models, RAN (baseline), HAN-doc-vec, and HAN-ptr with different em-
bedding and hidden dimensions. Top: CBT-CN. Below: CBT-NE.
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However, even though our result improves on related approaches, it does not
achieve state-of-the-art results on the CBT dataset. Using a gated attention mech-
anism, Yang et al. (2017) have achieved higher test accuracies of 72.0% (CBT-CN)
and 74.9% (CBT-NE) although their model works on character- and word-level and
is therefore assumed to be significantly more computationally expensive.

8.3.4 Pointer Sum Attention on Pre-trained Models

The pointer sum attention mechanism leads to an attention distribution over the
entire document, leading to more sparsely distributed attention than in the HAN-
doc-vec. This means that the pointer sum attention should identify less crucial
words. To gain a deeper understanding of the differences between HAN-doc-vec
and HAN-ptr, we apply pointer sum attention at test time, exchanging the output
layers of the best pre-trained HAN-doc-vec and RAN model with the ptr layer.
This results in the baseline accuracy dropping from 55.28% to 41.08% and the
HAN-ptr dropping slightly from 56.24 to 53.64%.

Since both networks have trained with a different objective, it is somewhat pre-
dictable that this procedure reduces the overall performance. It is however inter-
esting to note, that the HAN-doc-vec achieves almost the same performance when
removing everything after the final sentence attention layer and inferring the an-
swer directly with the two attention layers. Our interpretation of this is that during
training, the HAN-doc-vec only transforms the information already contained in
the attention values into the document vector. It does not seem to gain much ad-
ditional information by combining the contextual sentence vectors and attention
values to form Adoc. It seems that the main challenge for the model is to come to
the point of calculating the attention values, which seems to be most critical for
the final performance.

We therefore hypothesize that HAN-doc-vec puts enough information into the
attention distribution (without losing a significant amount of accuracy) to be able
to evaluate it and to transform the attention into an answer while neglecting the
associated contextual sentence vectors. HAN-ptr is trained to do exactly this and
should, therefore, have an advantage, which may result in the better performance
that we have observed.

8.3.5 Attention Distributions

We investigate our models for differences in their attention distribution. For this
purpose, we sort words by their total cumulative attention score (in descending
order) over the test set. The “most attended” words are shown in Table 8.2. Within
each category, the models mostly share similar words. However, the differences
between the two word categories are quite large. In particular, when querying
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Common Noun Named Entity

# baseline doc-vec ptr baseline doc-vec ptr

1. business business am the the .

2. obey pay obey and , ,

3. am obey business in and the

4. so in so a to ”

5. in meddle soon of he !

Table 8.2
Words with the highest cumulative word attention score in test set.

Common Noun Named Entity

# baseline doc-vec ptr baseline doc-vec ptr

1. crouched slanderous blarney separate july somalo

2. wails murderous jewelled humph ein ralston

3. agreement seaweed shirtsleeves sixteen ralston bandmaster

4. orders disappear somalo gulped saxby shelmardine

5. scraps resolute rescue modern dancer emperor

Table 8.3
Words with the highest relative word attention score in the test set.

named entities, a lot of attention is put on stop words. The HAN-ptr seems to
even generate large attention towards punctuation.

In order to filter out very frequent words, we normalize the total attention score by
word frequency which gives us a different list (see Table 8.3). It is visible that these
words, with the highest attention score per occurrence, are very context-specific
nouns and adjectives, with many of them being uncommon. By comparing this
to the absolute attention scores, we can infer that attention is often distributed
to meaningless words. However, in relative terms, the attention scores are high-
est when rare words are encountered that share a semantic context with the an-
swer. Since we can further see that all three models produce quite different word
lists when sorted by relative attention scores, this also indicates that all three
approaches reach quite different internal models for semantic context.

Since the attention distributions naturally depend on the length of the documents,
we have further examined how the testing accuracy depends on the length of
the context document as shown in Figure 8.4. We found that the RAN and the
HAN-doc-vec show particular strengths for longer documents on common nouns
and shorter documents on named entities, while the HAN-ptr provides the best
results independent of the document lengths. From detailed data analysis we have
indications that these differences are due to the focus of RAN and HAN-doc-

158



8.3. Experiments

153 278 319 363 404  455  505  551  600  644  977 

0.50

0.55

0.60

0.65

0.70

HAN-doc-vec
HAN-ptr

RAN (baseline)av
er

ag
e 

te
st

 a
cc

ur
ac

y

number of words per document (binned)
(a) Common Noun (CN)

0.50

0.55

0.60

0.65

0.70

133 264 299 329 360  396  440  486  550  624  977 

HAN-doc-vec
HAN-ptr

RAN (baseline)av
er

ag
e 

te
st

 a
cc

ur
ac

y

number of words per document (binned)
(b) Named Entity (NE)

Figure 8.4: Average test accuracy for different bins of document lengths.

vec on specific words and sentences in the documents, which were particularly
informative for longer documents on common nouns and for shorter documents
on named entities, while HAN-ptr is a bit more independent of the document
structure.

8.3.6 Visualizing the Attention

In addition to our previous analysis on the attention distributions, we inspected
the attention values in detail. Two such examples can be seen in Figure 8.5. In the
shown document, both the HAN-doc-vec and the HAN-ptr manage to correctly
identify the right answer. The HAN-ptr, however, focuses on punctuation and stop
words noticeably often (see also Subsection 8.3.5). Although this observation seems
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more 0.34

00 0.007 no sooner had ferko entered the 0.12 palace than all eyes

01 0.004 his brothers noticed this and envy and jealousy were added
much so that they determined once more to 0.47 destroy 0.16 him .

02 0.009 they went to 0.12 the king and told him that ferko was a 0.11

03 0.006 then the king had ferko brought before him and said ` you

04 0.003 and turning to 0.50 the 0.12 two wicked brothers he said ,

05 0.059 they did not think long but replied
him to do ; no matter how difficult , he must succeed in it or die . '

let him build your majesty

06 0.001 the 0.23 king 0.13 was pleased with this proposal 0.23 , and
set to work on the following day . 0.17

07 0.003 the 0.15 two brothers were delighted , for they thought they
ferko 0.11 for 0.17 ever . 0.33

08 0.009 the 0.15 poor youth 0.27 himself was heart-broken , and cursed
crossed the boundary of the king 's 0.26 domain .

09 0.045 as he was wandering disconsolately about the meadows round

10 0.015 can i be of any help to 0.87 you ?
11 0.022 i am the 0.26 bee whose wing you healed , and would like

in some way . '
12 0.030 ferko recognised the 0.50 queen 0.17 bee , and said , ` alas
13 0.003 how could you help 0.88 me ?
14 0.023 for i have been set to 0.16 do a task which no one in the whole

him be ever such 0.17 a 0.23 genius !
15 0.651 to-morrow i must build 0.44 a 0.22 palace more beautiful

must be finished before evening . '
16 0.004 ` is 0.25 that 0.25 all ? ' 0.33
17 0.071 answered the bee , ` then you may comfort yourself ; for before

18 0.004 just stay here till i come again and tell you that it 0.10 is 0.14
19 0.031 having said this she flew merrily away , and ferko , reassured

Question:
early on the following day the whole town was on its feet , and everyone

were turned on the
handsome and the king 's 0.34 daughter herself was lost in admiration , for she

to their fear 0.18 , so

wicked magician , who
had come to the palace with the intention of carrying off the 0.10 princess . 0.16

are accused of being a,
magician who wishes to rob me of my daughter , and i condemn you
can fulfil three tasks which i shall set you to do your life shall be spared

to 0.34 death ; but
, on condition

suggest something for

in 0.10 one day a
beautiful 0.17 palace 0.11 than this , and if he fails in the attempt let him be

commanded ferko to 0.11

had now got rid of 0.11

the hour he had

the 0.14 palace 0.13 ,
wondering how he could escape 0.16 being put to 0.26 death , a little bee flew past ,

to 0.36 show my gratitude

!

world could do , let

than the king 's 0.15 , and it

the sun goes down to-
morrow night a 0.23 palace shall be built unlike any that 0.32 king has dwelt in before .

finished . 0.32 ' 0.16
by her words , lay down

on the 0.19 grass 0.30 and 0.16 slept peacefully till the next morning .

wondered how and
where the stranger would build the wonderful xxxxx .

Candidates:
admiration 0.000 domain 0.000 help 0.000 jealousy 0.000 matter 0.000 one 0.000
palace 0.999 proposal 0.000 something 0.000 task 0.001

Answer:
palace

youth ,
,

,

(...)

(...)

`

,, `
(...)

(...)

if

(a) HAN-doc-vec.

Question:
early on the following day the whole town was on its feet , and everyone wondered how and
where the stranger would build the wonderful xxxxx .

Candidates:
admiration 0.000 domain 0.001 help 0.000 jealousy 0.000 matter 0.000 one 0.000
palace 0.998 proposal 0.000 something 0.000 task 0.001

Answer:
palace

00 0.006 no sooner had ferko entered

01 0.001 his brothers noticed this , 0.19

02 0.079 they went to the king and told

03 0.013 then the king had ferko brought

04 0.001 and turning to the two wicked

05 0.210 they did not think long , but replied

06 0.005 the king was 0.15 pleased with
the following day . 0.33

07 0.002 the two brothers were delighted
ferko for ever . 0.46

08 0.005 the poor youth 0.30 himself was
the boundary of the king 's domain . 0.22

09 0.039 as he was wandering disconsolately
10 0.001 can i 0.13 be 0.19 of any help
11 0.006 i am the bee whose 0.12 wing

some way 0.14 . 0.36 '
12 0.001 ferko recognised the queen bee 0.40
13 0.000 how could 0.19 you help me ? 0.59
14 0.012 for i have been set to do a task

let him be ever such a genius ! 0.13
15 0.347 to-morrow i must build a palace 0.88

16 0.008
finished before evening . '

17 0.230 answered the bee ,
is 0.17 that 0.60 all ? 0.14 '

` then you

18 0.034 just stay here till i come again
19 0.002 having said this she flew merrily

the palace 0.25 than all eyes were turned on the
handsome youth 0.20 , and the king 's daughter herself was lost in admiration , for she

and envy and jealousy were added to their fear , so
much so that 0.11 they determined once more to destroy him . 0.40

him that ferko was a wicked magician , who had come
to the palace 0.69 with the intention of carrying off the princess . 0.12

before him , and said , ` you are accused of being a
magician who wishes to rob me of my daughter
fulfil three tasks which i shall set you to
country 0.29 ; but if you can not perform

, and i condemn you to death ; but if you
do your life shall be spared , on condition you
what i demand you shall be hung on the

brothers he said , ` suggest something for 0.17 him to

,
do ; no matter how difficult , 0.21 he must succeed in it or die . 0.18 '

let him build your majesty in one day a more
beautiful palace 0.96 than this , and if he fails in the attempt let him be hung . '

this proposal , and commanded ferko to set to work on

, 0.12 for they thought they had 0.11 now got rid of

heart-broken , and cursed the hour he had crossed

about the meadows round the palace 0.59 ,
to you ? 0.33
you healed , and would like to show my gratitude in

, 0.25 and said , ` alas !

which 0.19 no one in the whole world 0.22 could do ,

more beautiful than the king 's , and it must be
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morrow night a palace 0.70 shall be built unlike any that king has dwelt in before .
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down on the grass and slept peacefully till the next morning . 0.26

`

(...)

(...)

(...)

(b) HAN-ptr.

Figure 8.5: Illustration of an example document and the calculated word
(blue) and sentence (red) attention values. All attention values above 0.1
have been highlighted in the text document. For the HAN-ptr, the overall
attention of each word is its word attention multiplied with the sentence
attention. The right answer is “palace”.
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counter-intuitive, this model, interestingly, is able to create large attention on the
relevant sentences in which the answer word is contained. Other candidates such
as “task” (e.g. sentence 14 in Figure 8.5, right side) receive little to no attention
even though they are prominently displayed in the text. This indicates that the
generation of mostly “useless” attention values, does not seem to have a major
influence on the accuracy of the networks. For the HAN-ptr, this can be explained
by its final step in which all attention values are discarded, except for those of the
candidates. This could mean that the HAN-ptr explicitly focuses on stop words
and punctuation in the absence of embeddings which are semantically related to
the candidates, as this would never decrease the loss.

For the HAN-doc-vec and RAN approach, frequent words that do not share any
context with the candidates, are also effectively discarded due to the final dot
product which measures the similarity between document representation and the
question. In this model, “noisy” attention on frequent words can also be observed
(e.g. “the” and “to” in Figure 8.5, left side). However, the trainable candidate em-
beddings seem to play an important role as the network is very certain of the right
answer “palace”, even though the word itself receives little attention in the entire
document. Note that the attention for the 15th sentence is very high. This means
that, even though on word-level “palace” receives little attention, the network was
able to localize the correct answer with high certainty from its surrounding context
and encode this into its sentence representation.

However, the examples also show that the sentence attention mostly serves to iden-
tify the location of the answer on sentence level. Different from the word level with
its embedded context vectors, the sentence level encodings do not seem to relate
or complement each other. This may be one of the reasons why the hierarchical
models improve the performance only to a limited extent.

8.4 Chapter Summary

So far, we have evaluated how Hierarchical Attention Networks can be used for
cloze-style question answering tasks. We have presented two approaches for build-
ing hierarchical representations based on attention mechanisms. Our results indi-
cate that a hierarchical structure itself does not always necessarily lead to better
training but that it depends on how the information from the hierarchical represen-
tations is aggregated at the output layer. The pointer sum method has shown itself
to harmonize well with the hierarchical architecture in our results. Notably, our
results show that recurrent hierarchical models for complex tasks can be designed
with a comparably low parameter count and relatively fast training times. Since
publication, our results for the HAN-ptr have independently been reproduced and
verified by Alsahli and Mirzal (2020).
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When examining the sentence attention, it can be seen that the attention values
themselves mostly correlate with the likelihood of containing the correct answer.
This seems to help training, especially for the ptr model which weights word at-
tention with this likelihood.

One limitation of our approach is that we assume the output answer to be con-
tained in the document. On the other hand, the pointer sum attention is specifically
designed for this setup (Kadlec et al., 2016). Additionally, we assume that the net-
work can be provided with candidates, i.e. in the introduced form, our models are
able to be trained with cloze-style datasets but would require external knowledge
or the generation of candidates for more open questions. Future work should there-
fore concentrate on evaluating our approach on different types of QA datasets. For
example, one could continuously sample from the output layer in order to generate
answer sentences from the pointer sum attention model.

Finally, our results show that the top-down pointer attention mechanism is able
to recognize important words and sentences in the context of the question an-
swering tasks. In the context of conditional computation, this capability is vital
for a model in order to decide when to update. Therefore, we will build on the
presented research by utilizing attention mechanisms for skipping in the following
chapters.
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Chapter 9

Surprisal-Based Activation in
Hierarchical Attention Networks

So far, we have successfully demonstrated the usefulness of both hierarchical encod-
ing and cumulative attention mechanisms. In this chapter, we integrate Surprisal-
based Activation (SBA) with both concepts to achieve skipping in the recurrent
layers of the Hierarchical Attention Network (HAN). For this purpose, we propose
integrating SBA to the HAN-ptr model, which performed best in our previous
study. Our primary motivation is to utilize attention as a salience model to im-
prove the focus of the skipping model itself. Based on this, we aim to get a better
understanding on the interplay and compatibility between attention and skipping
mechanisms. We particularly focus on the capabilities to reduce the update rates as
much as possible, aiming towards minimizing any trade-offs with model accuracy.
Based on this goal, we extend SBA to skip on a per-layer- instead of per-module-
basis. We start this chapter by elaborating our motivation to link surprisal and
attention (Section 9.1) before introducing (Section 9.2) and evaluating (Section 9.3)
our Surprisal-based GRU (SGRU) model, which we subsequently extend to be able
to skip on a per-layer-basis in Section 9.4. We evaluate the proposed models on the
CBT dataset (Section 9.5) and provide an in-depth analysis in Section 9.6.

9.1 Modeling Salience with Surprisal and

Attention

For a stimulus to be perceived as important, it requires features that make it stand
out from its local neighborhood. These stimuli are called salient and the concept
of salience (or saliency) has been used to explain what drives human attention
(Parr and Friston, 2017). In vision, attention can be driven by either bottom-up
salience (how much low-level features stand out in their local neighborhood) or
by top-down salience (which aspects are relevant for the task or goal) (Melloni
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Figure 9.1: Linking activation (left) and attention schemes (right) by their
underlying representations (discrete vs. continuous) and the locality of the
mechanism’s effect (local vs. global).

et al., 2012). A similar distinction is made for linguistic salience as linguistic units
(characters, words, and sentences) are similarly hierarchical. Zarcone et al. (2016)
argue that, while linguistic salience is often related to surprisal and predictability,
it is unclear whether the two can be equated. They argue that surprisal does not
account for the interaction between high- and low-levels of processing, and that an
emphasis on attention and relevance can improve this aspect.

In the context of our hierarchical attention network, attention is modeled hier-
archically in a bottom-up fashion, where the word representations are gradually
processed by attentive mechanism into sentence representations. In the final layer,
a document representation is built which, in conjunction with the candidate em-
bedding, allows a task-driven top-down interaction with the lower-level attention
scores of the word-and sentence layers. In the following sections, we will explore how
surprisal-based activation can additional filter out important words in a bottom-up
manner, i.e. on the recurrent representations and before attention is applied.

Aside from the aforementioned discussions on a potential biological link between
surprisal and attention, we argue that there are also clear similarities for how
both concepts can be modeled in the context of artificial neural networks. Fig-
ure 9.1 illustrates these analogies between representation learning and attention
mechanisms in RNNs. While the traditional attention mechanism (also called soft
attention) is modeled as a global distribution with continuous values, hard atten-
tion discretely samples features locally, making it non-differentiable (Mnih et al.,
2014). We can find a similar situation in recurrent memory models, where leaky
and gated activations are continuous and exert a temporally global influence. On
the opposing end, we can define purely symbolic networks, e.g. by using binary
activations or Gumbel-Softmax representations, which offer discrete-valued local
representations.
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As we have shown previously, pointer attention can be interpreted as a hybrid
between soft and hard attention: while the attention scores are continuous and
encoded in a local distribution of the respective word- or sentence layer, they are
aggregated globally over all layers and the final “pointing” mechanism is discrete.
This is analog to SBA, where only some continuous activations are locally selected
for processing, while others are skipped over. The actually processed words are
then discretely chosen from a global top-down perspective. As demonstrated in
Chapter 8, pointer attention is capable of utilizing pre-attentive representations
very sparsely. This is mainly achieved by softmax normalization, which we also
use for Surprisal-based Activation to achieve high update sparsity. In traditional
(soft) attention, the softmax output, which cannot output a vector item that is
exactly 0, is not post-processed and can therefore not produce sparse distribu-
tions (Martins and Astudillo, 2016). Therefore, we hypothesize that both concepts
could be utilized jointly to increase activation sparsity effectively, maintaining the
baseline accuracy.

It is important to emphasize that pointer attention is capable of achieving high
accuracy by focusing on very few tokens in the document due to the nature of
the underlying question answering task (as illustrated in Figure 8.5). In fact, since
the answer to the given question is contained in the presented document, it is
theoretically sufficient to only pick the answer and to discard all other words1.
Unfortunately, the continuous distribution makes this difficult in practice as irrel-
evant words simply get a low attention score instead of being fully discarded in
a discrete manner by setting important words to αw = 1 and others to αw = 0.
If tokens with low attention scores appear very frequently, their aggregated score
can start getting larger than expected2. This can lead to the undesirable side effect
of amplifying redundancy and leading to either decreasing performance or worse
interpretability of the learned attention maps. Consequently, we hypothesize that
the ability of SBA to fully discard certain words can boost the ability of the pointer
attention to ignore redundancies more strongly.

9.2 The SGRU Model

Since the previously proposed HAN models for question answering are utilizing
Gated Recurrent Units (GRUs) instead of LSTMs, we will next show how the
SBA methodology can be adapted to GRUs. After introducing the Surprisal-based
GRU (SGRU), we will discuss how this model can be deployed in the existing
HAN-ptr architecture. Following this, we will give a theoretical analysis as to how

1Note that this also considers the presence of more complex semantic relationships between
the question and answer, which can be encoded in the hidden layers even though it is ultimately
discarded by the following attention mechanism.

2This is best visible in Table 8.2 where some punctuation marks have the highest cumulative
attention score.
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much we can reduce update rates in the given setup without starting to lose critical
information.

9.2.1 Model Definition

The main difference between the GRU and the LSTM is in the number of gates
and the resulting organization. Compared to the LSTM, the GRU has an update
gate zt which combines the purposes of the LSTM’s forget and input gate into a
single gate. As a result, there is no cell state and the entire hidden state content
is exposed to the outside of the cell. As these changes lead to a smaller number
of trainable parameters, updating a GRU memory cell is computationally more
efficient than an LSTM memory cell. To recap, we summarize the GRU state
update as follows:

zt = σ(Wxz · xt + Whz · ht−1), (9.1)

rt = σ(Wxr · xt + Whr · ht−1), (9.2)

h̃t = tanh(Wxh · xt + Wrh · (rt ⊗ ht−1)), (9.3)

ĥt = (1− zt)⊗ ht−1 + zt ⊗ h̃t, (9.4)

where h̃t are the GRU candidate activations, and the matrices W are trainable
connections from the input or previous layer state to the current layer state. While
ĥt = ht holds for a regular GRU update, we can now extend ĥt to a possible second
state which stands for the process of skipping, i.e. ĥt = ht−1.

To achieve this goal, we adapt the basic SBA skipping model from Section 6.3 for
the GRU, using SBA to decide between the final candidate activation ĥt and ht−1
in hindsight by max-pooling module activations in the candidate h̃t and computing
the resulting surprisal values st based on the pooling result pt:

pt = max(ĥt) = [max(m̂
(1)
t ), . . . ,max(m̂

(M)
t )], (9.5)

st = log
( 1

σ(pt)

)
= log

(∑M
i=1 exp(p

(i)
t )

exp(pt)

)
(9.6)

Afterwards, the skipping decision is made separately for each of the M modules,
leading to the final module activations m

(i)
t :

m
(i)
t = S(m̂

(i)
t ) =

{
m̂

(i)
t if st > st−1 + θ

m
(i)
t−1 otherwise,

(9.7)

where S(·) denotes the resulting SBA transformation which keeps module activa-
tions with high surprisal and discards others by copying the previous activations
and keeping the gradient constant between timesteps. The final layer activation ht
is then composed of these final modules:

ht = [m
(1)
t , . . . ,m

(M)
t ] (9.8)
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Figure 9.2: Comparison between a GRU and an SGRU cell. The condi-
tional operator “> θ” decides between a regular update (green) and a
copy operation of the previous state ht−1 (orange).

We call the resulting cell model Surprisal-based GRU (SGRU) and show an
overview and comparison to the original GRU cell in Figure 9.2.

As a result of our previous analyses from chapters 6 and 7, and to reduce the num-
ber of hyperparameters, we deliberately stick to max-pooling and avoid applying
any activation decay. Consistent with our previous HAN models, we apply SBA
on the forward layer ~ht and the backward layer ~ht separately before concatenating
the result:

biGRU(xt) = [S(~ht(xt)),S( ~ht(xt))] (9.9)

Since both layers process their input xt, this can lead to different decisions on
which inputs will be ignored in both layers, depending on whether the sequence is
processed normally or in reverse.

9.2.2 HAN-SGRU-ptr

We will now discuss the use of SGRU layers in the HAN-ptr. With the exception of
the recurrent layers, we will retain the original structure of the HAN-ptr, including
its bidirectional layers and hierarchical attention. We call the resulting model HAN-
SGRU-ptr.

If we take a look at the original HAN-ptr model, we can identify three recurrent
layers: two on world-level to process either the words in the document or the query
(the question), and one on sentence-level to process the sentence vector which is
built bottom-up from the previous two representations. This makes it possible to
deploy the SGRU in any of these three encoders.

From the structure of the question answering task, we can immediately see that
the query vector contains a higher information density than both the word or
sentence vectors of the document. This is because the query is a single sentence
which is guaranteed to provide relevant word-level context to the answer, while
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the document itself contains multiple sentences and words irrelevant to the correct
answer. Since the dot product with the query embedding is the central mechanism
to correlate similarities and filter important representations in both the word- and
sentence-level attention, removing irrelevant words from the query vector should
improve the overall task performance.

On the other hand, the query encoder receives significantly less inputs than the
word and sentence layers, meaning that a single SGRU query layer can not reduce
the total update count of the entire network by much. Since more words are pro-
cessed in the word layer, more computations can be affected, especially considering
that the document holds more words with low information gain. Finally, using the
SGRU on sentences will allow the network to potentially skip entire sentences.
While this can lead to a significantly large portion of the inputs to be ignored,
it can also have negative side effects by accidentally filtering out words that are
being used by the attention pointer.

It is important to note that these considerations describe potential behaviors in
the presented SGRU model since it does not necessarily need to skip on a per-layer
basis. Instead, the hidden layer is partitioned into modules which skip indepen-
dently of each other, meaning that words and sentences can be ignored by some
hidden units, while others can choose to process them normally. In the next sec-
tion, we will present and discuss the results for our HAN-SGRU-ptr model on the
CBT dataset, showing that this seems to actually be the case. Built on these ob-
servations, we will then suggest modifications to the SGRU in Section 9.4 in order
to force the model to operate layer-wise by synchronizing the modules and fully
skipping entire words and sentences in the model.

9.2.3 A Lower Bound for Update Rates in
the CBT Dataset

The lowest possible update rate that a model can achieve depends on the total
number of processed tokens and thus depends on the underlying task and dataset.
To be able to judge a model’s update rates properly, it is therefore necessary to
know the lower bound for update rates on the given dataset. We will now provide
these bounds to provide an indication as to how close our model’s update rates are
to the theoretical limit.

The word and query encoding tensors (for their full definition see Section 8.2) have
dimensions Dword ∈ RS×W×H and q ∈ RW×H , respectively, whereas the sentence
encoding tensor has dimension Dsent ∈ RS×H . Based on the number of sentences
per document S = 20, the maximum number of words per sentence W = 100, and
a hidden layer size of H = 256, we get the following minimum update rates per
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document for the three encoders:

usentmin =
1

S
=

1

20
= 0.05 = 5% (9.10)

uquerymin =
1

W
=

1

100
= 0.01 = 1% (9.11)

uwordmin =
1

S ·W
=

1

20 · 100
= 0.0005 = 0.05% (9.12)

It is important to understand that these lower bounds constitute no hard tech-
nical limit but rather one where we would expect an increased likelihood for the
recurrent layer to start encountering critical information loss on average. While
a degradation in one of the encoders can lead to random guessing in the overall
model, it doesn’t necessarily have to. In fact, we can identify a number of edge cases
where one of the encoders can fall slightly below this threshold without significant
degrading the model. First of all, considering that the accuracy of human subjects
on the CBT dataset is 81.6%, we can conclude that almost every fifth document is
potentially not solvable and random guessing on these documents would therefore
have no impact. Moreover, since the pointing mechanism accumulates the layer-
wise attention scores, any positional biases in the dataset can be exploited by the
model (e.g., if one of the 20 sentences contains the answer more often than the
others), potentially even more easily than in the baseline, since the pre-attentive
input stream consists of repeated tokens that are indistinguishable from each other
due to constant skipping. Moreover, as the HAN model has two input streams and
a hierarchical layout, the non-skipping layers can still contain the necessary infor-
mation to solve the task. The Pointer Sum Attention Layer in particular, operates
directly on the (unmodified) word embeddings instead of the recurrent word en-
coding. Finally, the update rates depicted above correspond to a single layer. Since
we are using bidirectional layers (and reporting the average of the forward and
backward layer), there is the possibility of one of the two layers remaining inac-
tive (u = 0) while the other focuses on the task (u ≥ uencmin). This can halve the
respective update rates from the bidirectional average to usentmin = 0.025 = 2.5%,
uquerymin = 0.005 = 0.5%, and uwordmin = 0.00025 = 0.025%.

Since update rates have a practical lower bound that is not 0, the measured update
rate u ∈ [0, 100] does not percentually explain how much lower it can go towards
its minimum umin, which is either uwordmin or uwordsent . To account for this, we can
convert the measured update rate u into the correct scale using the following linear
equation:

ũ− 100 =
100− 0

100− umin
· (u− 100)

ũ =
100 · (u− 100)

100− umin
+ 100

=
100 · (umin − u)

umin − 100

(9.13)
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The resulting effective update rate ũ ∈ [− 100·umin
100−umin , 100] then expresses for ũ > 0

how much further it can be reduced percentually towards umin as opposed to 0.
Likewise, it holds that ũ = 0 for u = umin and a negative value ũ < 0 signals a
drop below umin. While u ≈ ũ for larger update rates, the differences become more
noticeable with ũ approaching 0. We use ũ to additionally report the models’ prox-
imity to umin on the respective hierarchical level and the potential for additional
gains3.

9.3 SGRU Results

To ensure comparability with our previous experiments, we reuse all previous hy-
perparameters for training the HAN-ptr model, though we deliberately limit the
search space by using the GloVe word embeddings with dimension |E| = 100
and hidden layer sizes |h| = 256, as we have only found limited accuracy gains
for larger dimensions in the HAN-ptr (compare Subsection 8.3.3). For the SGRU,
we explore an exponentially increasing series for the number of modules M ∈
{2, 4, 8, 16, 32, 64, 128, 256} as well as thresholds θ ∈ {0.01, 0.1} which we have de-
termined to work well after preliminary experiments. As discussed in the previous
section, we additionally compare the different effects of using the SGRU in the
query, word, or sentence layers. We additionally test a configuration using SBA in
both the word and sentence layer simultaneously, purposefully not including the
query layer in order to more clearly see how sentence vectors with skipped words
are treated by the SGRU.

The overall results of the experiment for both datasets are illustrated in Figure 9.3
for CBT-CN and Figure 9.4 for CBT-NE. We present the results using the model
validation accuracy and the average validation update rate for the respective bidi-
rectional SBA layers4. On average, using an SGRU for the query layer yields a
slightly better accuracy than for the word layer, whereas skipping sentences de-
creases accuracy further, especially when the sentence vectors are hierarchically
composed of skipped words. This reinforces our hypothesis that the pointer mech-
anism is more reliant on a small number of words and that the importance of each
sentence vector is merely defined by how many of these important words it holds.
Since the skipping layers of the hierarchical model only communicate indirectly via
the intermediate attention layer, there is a possibility for disagreement between the
SGRU and the attention layer as to what is considered important. As the skip-
ping process effectively copies past states, this is particularly likely in cases where
irrelevant words are amplified by the copy mechanism of the SGRU, giving the
attention layer little to focus on if important words are overwritten by copying.

3For the remaining parts of this thesis, we consistently report accuracy and update rate u on
the scale [0, 1] in figures to allow for an easier visual comparison between both metrics. To allow
for the best numerical comparison, we consistently report both accuracy and u in percent ([0, 100])
for all tables, since the update rates between models sometimes differ by factors of up to 3000.

4Averaging the update rate of the forward and backward layers.
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Figure 9.3: HAN-SGRU-ptr (CBT-CN): Swarm plots showing accuracy
and update rates on respective y-axes, threshold θ on every x-axis, and
SBA layer locations in the columns (colored by number of modules).
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Figure 9.4: HAN-SGRU-ptr (CBT-NE): Swarm plots showing accuracy
and update rates on respective y-axes, threshold θ on every x-axis, and
SBA layer locations in the columns (colored by number of modules).



9.4. The SENS-GRU

This effect seems to be stronger when the answer to the query is a common noun
than if it is a named entity.

We can only identify minor differences for the update rates when the SGRU is
deployed in different locations, though there is a clear tendency to reach higher
update rates when we allow skipping in the word layer. We can also see clear
differences for the number of modules that we use in the SGRU layer. For the
query layer, the number of modules correlates positively with the update rate,
while M = 2 and M = 256 lead to the lowest update rates in the other configu-
rations. In other words, increasing the diversity through modularization, improves
the accuracy while simultaneously raising the update rates slightly.

The overall update rate is generally in the range of [0.3, 0.5] for a threshold θ = 0.01
and in [0.05, 0.3] for θ = 0.1 which demonstrates how the update rate can be
adjusted by tuning the threshold. Interestingly, larger differences in the update
rate do however only slightly impact the accuracies. While different thresholds
lead to measurable differences, the overall correlation between both metrics seems
to be low. We hypothesize that this is primarily a reflection of the fact that it is not
necessary to read most of the document to achieve a high accuracy. If the network
is able to only read the most important tokens which directly lead to the location
of the answer, most of the document can be ignored. In fact, we believe this to
be the reason why the hierarchical filtering mechanism of the pointer attention
mechanism is so successful.

Since we know that the given task has a very low information density (see Subsec-
tion 9.2.3), our findings suggest that the SGRU is not achieving its full potential.
Instead, increasing the diversity through modularization leads to slightly higher
update rates which in turn are likely to cause the better accuracies that we have
observed. Similarly, the update rates are capped in certain ranges which seem to
be more determined by the parameterization of the threshold θ than the task itself.
As previously discussed, this is also somewhat expected as the SGRU only decides
to skip for each module, instead of the entire hidden layer, thereby completely
discarding words. These observations indicate that a) modularization is actually
increasing the update rates instead of reducing them and b) the model itself can be
even more strict in its decisions. Therefore, we will next show how we can extend
the existing SBA model to skip for the entire layer, and investigate whether this
approach can aid us in pushing the update rates down even further.

9.4 The SENS-GRU

Surprisal-based activation synchronizes the units of each module with regard to
the decision on whether to update or skip the current input. This means that
each module can end up with a different decision, allowing the possibility for dis-
agreement between the modules. This is a relatively loose constraint which favors
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Figure 9.5: Surprisal-based ENSembling (SENS): Instead of activating the
modules independently as with SBA, they act as an ensemble and a ma-
jority voting process decides whether all modules update or skip together.

increased feature diversity over minimizing the average update rate per layer. As
shown in the previous section, the update ranges of SBA seem limited to a certain
range. We will now approach this issue by extending SBA such that it outputs a
single decision per timestep (and layer) on whether to skip or update.

Our new model differs from SBA in its final steps. It retains the familiar layer
partitioning into modules, though they are not treated independently of each other
anymore (as was the case in Equation 9.7). Instead, we calculate the resulting
update rate from each module’s candidate activations and redefine it as the update
probability of each module. In a final step, we then build an ensemble through a
majority voting process of the modules based on these probabilities. The resulting
model, which we call Surprisal-based ENSembling (SENS), is depicted in Figure 9.5.
Just like with SBA, the basic idea of SENS is mostly independent of the underlying
RNN architecture and can also be implemented with an SRN or LSTM. In this
work, we adapt SENS to the GRU architecture and name it SENS-GRU.
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Model Definition

First, we count the number of updates occurring in the M modules of the hidden
layer ht after applying standard SBA:

C(ht) =
|ht|
M
·
M∑
m=1

Js(m)
t > s

(m)
t−1 + θK, (9.14)

where J. . .K indicate Iverson brackets such that JLK = 1 if the logical proposition

L is true and JLK = 0 if L is false, and s
(m)
t is the pooled surprisal of module m at

timestep t. Since the pooling causes every module’s unit to have the same surprisal
score, we multiply by the size of each module vector |mt| = |ht|

M
to get the total

update count C(ht) over all units of the layer. We can then understand this count
as the number of “votes” cast from each hidden unit towards updating their own
module, based on their module’s surprisal scores. The total vote count in the layer
can consequently be expressed in relative terms by the ratio of units in ht that
have voted for an update at timestep t (based on the input word wt):

pt =
C(ht)
|ht|

(9.15)

This voting ratio pt ∈ [0, 1] can then be interpreted as the probability for updating
the entire layer at timestep t. We can map a probability to a binary decision bt using
a function satisfying f : [0, 1]→ {0, 1}. For this purpose, we can, e.g., stochastically
sample a binary update decision from a Bernoulli distribution bt ∼ Bernoulli(pt).
However, for a deterministic implementation we simply choose the step function
round(pt) = bt such that the layer only updates (towards the candidate ĥt) if a
simple majority of its units vote towards updating:

ht =

{
ĥt if pt ≥ 0.5,

ht−1 if pt < 0.5
(9.16)

Since round(pt) has a binary output, it is not differentiable. To overcome this prob-
lem, we use the Straight-Through Estimator (STE), a biased gradient estimator
for binary neurons, suggested by Bengio et al. (2013b) (see also Subsection 3.5.4).
This estimator approximates the step function by the identity function, thereby
passing the incoming gradient “straight through” the node during the backward
pass5:

∂ round(x)

∂x
= 1 (9.17)

The resulting SENS-GRU model has several potential advantages over the SGRU.
On the one hand, it retains the original module structure which we have empir-
ically seen to affect the self-organization and skipping behavior in the networks.

5We use the same estimator for C(ht) and any other discrete functions defined in the rest of
this chapter.
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The pooling operation still takes place and allows for diversity and different focus
between modules. On the other hand, the modules are not fully independent of
each other anymore, instead forming an ensemble-like structure through majority
voting. Most importantly, pooling a single update-skip decision for a layer allows to
skip an input token (i.e. word or sentence vectors) in its entirety, further reducing
the natural update rate of the network.

9.5 SENS-GRU Results

We train the SENS-GRU on the two CBT datasets using the same hyperparame-
ters as in the previous experiment. Table 9.1 depicts the differences between using
the SGRU and the SENS-GRU model in the HAN-ptr architecture in terms of
validation and test set accuracy. As indicated in Section 9.3, the SGRU’s main
benefit is more the reduced update rate compared to the baseline HAN-ptr rather
than a noteworthy increase in accuracy. The additional accuracy gains from the
SENS-GRU are somewhat limited, though the best configurations improve slightly
on both the HAN-ptr and the SGRU. The best results are achieved when using
a SENS-GRU layer for encoding the query (except for the test accuracy on the
CBT-CN dataset), while encoding the document’s words gives similarly good re-
sults.

The emerging relationship between validation accuracy and update rate for the
SENS-GRU models is depicted in Figure 9.6 for the CBT-CN dataset and in Fig-
ure 9.7 for the CBT-NE dataset. Figure 9.6a and Figure 9.7a depict the results
in terms of accuracy and update rate for the different encoder types using swarm
plots. Here, we include the results for a lower threshold θ = 10−7 to better il-
lustrate the effect of the threshold parameter on both metrics. Figure 9.6b and
Figure 9.7b illustrate a linear regression between accuracy and update rate, given
different threshold settings and encoder types. Here, we also give Pearson’s r and
the respective p value for the linear fit.

Compared to the SGRU6, the swarm plots show stronger differences for the number
of modules used in the encoders. This is most apparent when using SENS-GRU
word and sentence encoders. While this setup performs slightly worse than the
same setup in the SGRU, using two modules (M = 2) and a low threshold leads
to accuracies comparable to the best models of the other encoders. The largest
differences to the SGRU can be seen by the update rates that we can measure
with the SENS-GRU: they span over a significantly larger range and we can clearly
identify that the update rate negatively correlates with the number of modules
that we use. In particular, a higher number of modules, and therefore diversity,
seems to clearly reduce the update rates. For the largest threshold setting θ = 0.1,
more modules also generally lead to better accuracies. This indicates that a higher

6see Figure A.6 and Figure A.7 for a side-by-side comparison between the SGRU and SENS-
GRU models.
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Common Noun Named Entity

Model valid test valid test

HAN-ptr (baseline) 69.1 67.7 75.5 69.9

HAN-SGRU-ptr (q) 69.0 66.0 75.6 70.4

HAN-SGRU-ptr (w) 69.2 65.8 75.3 70.5

HAN-SGRU-ptr (s) 68.8 65.0 74.7 70.0

HAN-SGRU-ptr (ws) 67.5 64.1 74.5 69.8

HAN-SENS-GRU-ptr (q) 69.3 66.5 75.8 70.6

HAN-SENS-GRU-ptr (w) 69.1 65.8 75.6 70.8

HAN-SENS-GRU-ptr (s) 68.5 65.3 74.4 70.2

HAN-SENS-GRU-ptr (ws) 68.0 65.0 74.2 70.0

Table 9.1: Overview and comparison between using the SGRU vs the
SENS-GRU with the HAN-ptr architecture on the CBT dataset for the
Common Noun and Named Entity categories. Models have been trained
using the SGRU/SENS-GRU to encode the query (q), words (w), sentences
(s), or both words and sentences (ws). Best accuracies marked in bold.

diversity through modularization is highly useful when the network is set to skip
frequently according to the chosen threshold value.

While the smallest threshold value θ = 10−7 seems to replicate the results of the
original HAN-ptr by updating as much as possible, setting it to θ = 0.1 achieves
significantly lower update rates than with the SENS-GRU. In fact, the lowest
update rate among the best models is held by the SENS-GRU word encoder model
which has an update rate of u = 0.44% (ũ = 0.39%) with a validation accuracy
of 69.1% for CBT-CN, and u = 0.03% (ũ = −0.02%) with an accuracy of 75.5%
for CBT-NE. Compared to the SGRU, this yields an update rate reduction by a
factor of over 150x and yields an effective update rate ũ close to 0, which marks the
models reaching the lower bound uwordmin = 0.05%. This is significantly lower than
the world-level encoder update rates of the best SGRU model, specifically 18.8%
for CBT-CN and 48.4% for CBT-NE.

The general relationship between accuracy and update rate is illustrated in Fig-
ure 9.6b and Figure 9.7b. We consider a correlation significant if the respective p
value is below a significance level of 0.05. Except for the query encoders, a positive
correlation can be seen for most setups in CBT-NE. For the more difficult dataset
based on common nouns (CBT-CN), we can observe slightly weaker correlations
for the SENS word encoder and, therefore, also when jointly using SENS word and
sentence encoders (with θ = 10−7). The same can be observed for the combined
word and sentence encoders with θ = 0.01. For the largest threshold θ = 0.1,
this setup (word and sentence encoder) leads to a negative correlation, same for
the word encoder. Indeed, for both datasets, a low threshold results in a posi-
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Figure 9.6: Accuracy vs update rate for SENS-GRU on CBT-CN.



9.5. SENS-GRU Results
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Figure 9.7: Accuracy vs update rate for SENS-GRU on CBT-NE.
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tive correlation, whereas a high threshold leads to a negative correlation. For the
medium threshold θ = 0.01, most setups show no strong correlation. These config-
urations indicate setups where the update rate can successfully be reduced using
a SENS-GRU without affecting the baseline accuracy significantly. Furthermore,
the negative correlations indicate particularly successful configurations, where the
accuracy is highest for the models with the lowest update rate.

9.6 Analysis

In order to get a better understanding about the differences between the SENS-
GRU and SGRU, we visualize the respective attention layers and skipping decisions
with some example documents from the test corpus and directly compare the
models against each other. Since the SGRU skips on module-level and the SENS-
GRU on word- and sentence-level, we visualize the update rates of the modules on
each word for the SGRU and, conversely for the SENS-GRU, based on whether it
processed a word or not. The example shown in Figure 9.8 illustrates this difference
between the two models: as each module in the SGRU decides individually whether
to skip, most words in the document are read by at least some of the modules. This
allows the model to capture more of the inputs at the cost of potentially updating
some of the modules on irrelevant inputs. The SENS-GRU stands in contrast to
this as its modules contribute to a single synchronized decision to either read or
skip words and sentences entirely. Consequently, the model reads significantly less
parts of the document.

In the shown example, both models also give the correct answer for the given
document but the SENS-GRU model seems to only process few key words. On
sentence level, the SENS-GRU is able to only focus on sentence 16, which is one
of the sentences to contain the correct answer. In the process, other sentences are
skipped, even if other correct instances of the answer can be found. This illustrates
how skipping in the sentence encoder itself can act as a second filter for previously
processed words. For longer paragraphs that do not contain the correct answer
(see Figure A.8), both models learn to skim over parts of the sentences. Overall,
these examples illustrate how both models present a trade-off between spending
less resources reading more (SGRU) and spending more resources reading less
(SENS-GRU).

By investigating the bidirectional layers, we also find some differences between
the forward layers ~ht and the backward layers ~ht regarding their influence on
the update rates. The differences between the two layers are illustrated for both
models on word- and sentence-level encoders in Figure A.4. For some of the models,
we can see that the more modules M we provide to the models, the higher the
update rate difference between backward layer and forward layer. In particular,
more modules cause more backwards modules to update, whereas the activity for
forward modules goes slightly down. We make this observation for both word- and
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14 alice was rather doubtful whether she ought not to lie down on her face like the three gardeners , but she could
not remember ever having heard of such a rule at processions ; ` and besides , what would be the use of a
procession , ' thought she , ` if people had all to lie down upon their faces , so that they could n't see it ? '
15 so she stood still where she was , and waited .
16 when the procession came opposite to alice , they all stopped and looked at her , and the queen said severely `
who is this ? '
17 she said it to the knave of hearts , who only bowed and smiled in reply .
18 ` idiot ! '
19 said the queen , tossing her head impatiently ; and , turning to alice , she went on , ` what 's your name , child ?'

SENS-GRU (token-level skipping):

alice
Answer:

Question:
` my name is xxxxx , so please your majesty , ' said alice very politely ; but she added , to herself , ` why , they 're
only a pack of cards , after all .

Candidates:
alice first king knave miss queen queens dears processions tulip-roots

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

per-word update rate:
per-sentence update rate:

14 alice was rather doubtful whether she ought not to lie down on her face like the three gardeners , but she could
not remember ever having heard of such a rule at processions ; ` and besides , what would be the use of a
procession , ' thought she , ` if people had all to lie down upon their faces , so that they could n't see it ? '
15 so she stood still where she was , and waited .
16 when the procession came opposite to alice , they all stopped and looked at her , and the queen said severely `
who is this ? '
17 she said it to the knave of hearts , who only bowed and smiled in reply .
18 ` idiot ! '
19 said the queen , tossing her head impatiently ; and , turning to alice , she went on , `what 's your name , child ?'

SGRU (module-level skipping):

Figure 9.8: Example comparison between SGRU (top) and SENS-GRU
(bottom) on a paragraph from the test set. Different to the SGRU, the
SENS-GRU updates and skips on input-token-level, i.e. it can fully ignore
words and sentences. The highlighted values depict the average between
forward and backward layers for the bidirectional SGRU and whether one
of the two layers updated for the bidirectional SENS-GRU.

sentence-level encoders. Since having more modules leads to an increased diversity
in the activation distribution, this suggests that the activation diversity is partly
tied to how much the model utilizes in the backward layer. A potential explanation
for this could be that more fine-granular skipping in the SGRU (i.e., larger M)
could cause a more fine-grained utilization of the backward encodings.

Since the model’s output is determined by the pointer attention, it is also important
to consider the interplay between the skipping and attention distributions. For
this, we visualize both skipping and attention on an example document (compare
Figure 9.9). In the shown example, most updates are performed by both parts of
the bidirectional layer for the SGRU, whereas it is generally one of the two for
the SENS-GRU. As the SGRU uses more parameters to encode more parts of the
document, its final pointer output has a higher confidence than the SENS-GRU.
The SENS-GRU reads the correct answer in sentences 11, 14, and 16. However, the
word is only attended in sentence 11, driving the network to predict the answer
based on this sentence even though sentence-level attention for this sentence is
lower than for sentence 14. Both examples illustrate how the pointer mechanism is
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Question:
red , however , went on to say that , since ring was such a mighty man that he could do everything , it had
occurred to him to advise the xxxxx to ask him to search for these treasures , and come back with them before
christmas

Candidates:
dog prince red snati attack chess-board day left yearking king

Answer:

Legend: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

word attention:
sentence attention:update (backward layer)

update (forward layer)

great hero ; nor could red any longer say anything

that the king had lost about a year before .

and all esteemed him highly , and held him to be a

against him , though he grew still more determined

gold chess-board (0.81) , and bright gold piece

his valour , and said he knew no one like him ,

11 (0.30 ) the king was (0.98) greatly surprised at

and thanked him heartily for what he had done .

king12 (0.03) after this the set ring next to himself (0.75 ) ,0.14))

13 (0.00) one day a good (0.91) idea came into his head .
him .to destroy

14 (0.09 ) he came to the king and said he had

something (0.97) to say to him .

15 (0.40 ) ` what is that ? ' (0.37 )

16 (0.17 ) said the king .(0.97 )

17 (0.00) red said that he had just remembered the gold cloak ,

18 (0.00) ` do n't remind (0.88 ) me of them ! '

king19 (0.00) said the 0.67)

)

.0.67)

)

SGRU (module-level skipping):

and thanked him heartily for what he had done .

12 (0.02) after this the king set ring next to himself (0.95) ,

great hero ; nor could red any longer say anything

13 (0.01) one day a good (0.96) idea came into his head .

14 (0.55) he came to the king and said he had (0.32)

15 (0.20) ` what is that ? ' (0.52)

16 (0.08) said the (0.76) king .

17 (0.00) red said that he had just remembered the gold cloak ,

that the king had lost about a year before .
18 (0.00) ` do n't remind (0.93) me of them ! '

19 (0.00) said the king 0.88)

)

.

his valour , (0.11) and said he knew no one like him ,

and all esteemed him highly , and held him to be a

against him , though he grew still more determined

him .to destroy

something (0.64) to say to him .

gold chess-board (0.88) , and bright gold piece

11 (0.04) the king 0.71) was (0.16) greatly surprised at

)

SENS-GRU (token-level skipping):

0.93(king (SGRU Pointer: (0.40king (SENS-GRU Pointer:

Figure 9.9: Text example comparing the SGRU and SENS-GRU. Word
and sentence attention highlighted by red/blue background (attention val-
ues above 0.1 in brackets). Left: Since the SGRU can update with some
modules and skip with others, shown underlines denote instances where more
than 40% of modules update. Conversely, not underlined tokens are still pro-
cessed but with less units. Right: For the SENS-GRU, blue underlines denote
instances where a token is updated by the forward-layer and red underlines
those updated by the backward layer.

able to correct for small mistakes by earlier layers based on the candidate vector.

9.7 Chapter Summary

Attention and surprisal-based activation provide two alternative filters for focusing
on important inputs. In this chapter, we have investigated the interplay between
these two salience models by integrating surprisal-based activation with the hier-
archical attention network. To provide a fair comparison with baseline GRUs, we
have proposed the SGRU, an adaptation of SBA to the GRU architecture. Our
results for the SGRU show that we can improve model accuracy by increasing its
degree of modularity, suggesting a simultaneous increase in diversity.

182



9.7. Chapter Summary

Our second goal was to minimize any trade-offs between accuracy and update
rates. We have found the update rates of the SGRU to be limited to small ranges.
Along with an analysis of a lower bound for skipping, we have found some evidence
that the models have additional potential to skip even more tokens in the given
QA task. To investigate this further, we have transferred the local per-module
decision-making process of the SGRU to a global per-layer skipping process with
the SENS-GRU by using a majority voting process between modules. For this
extended model, we have found some weak or even negative correlations between
accuracy and update rate. In these cases, the model is able to maintain a high
accuracy despite large reductions in the update rates. In some instances, it is even
able to surpass the baseline accuracy of the HAN-ptr. This highlights the benefit
of pooling the local modular update decisions to a single synchronized decision
that is globally executed within each layer. For the following chapter, we will keep
this design decision but provide a direct comparison between these two different
models of salience, namely attention and surprisal, by implementing skipping based
on attention.
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Chapter 10

Attend, Skip, and Point:
Question Answering with

Hierarchical
Attention-Based Skipping

For our final chapter, we will continue to investigate the effect of attention on
skipping in hierarchical architectures for cloze-style question answering. While we
have previously focused on the emerging representations when skipping and atten-
tion are modeled separately, we will now combine both approaches into a single
layer, which we call Attention-based Skipping (ABS). By utilizing salience from
attention to skip irrelevant tokens, we are able to model an approach without the
need for additional hyperparameters. Despite the lack of a strong inductive bias in
the skipping constraints, we show that ABS consistently skips most of the words
in the documents, compressing representations at the theoretically possible limit
for lossless compression. Additionally, we present an alternative formulation with
ranked attention which allows us to precisely control the desired update rate of
the model. This allows us to have a closer look at the correlation between model
accuracy and update rates, which we find to be very weak for some of our models,
demonstrating that they can maintain baseline accuracy despite skipping over the
overwhelming majority of words in the queried documents.

10.1 Attention-Based Skipping

Recent work has investigated the utility of attention to analyze the importance
of features in order to compress or prune networks. For example, some recent
approaches have used attention masks to identify image features for compression
(Chen et al., 2019c; Liu et al., 2019a) or to compress channels (Yamamoto and
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Maeno, 2019). In the domain of natural language processing, See et al. (2016) have
investigated pruning recurrent neural networks trained for machine translation and
have found that lower layers and embeddings hold the most redundancy, whereas
the attention and softmax weights are the most important for identifying important
features. Similarly, early approaches on sentence compression with LSTMs have
proposed mapping words to binary decisions, signifying whether a word is to be
deleted or kept (Filippova et al., 2015). Attention has also been used to efficiently
find the context for a word in the context of sentence compression (Tran et al.,
2016b). Most recently, Kovaleva et al. (2019) have shown that disabling attention
heads can be useful for pruning BERT models, which are based on transformers
with self-attention.

Despite these advances, there is a very limited amount of work on how attention
can be used to skip words in the conditional computation framework. Somewhat
related to the idea of conditional computation is Adaptive Computation Time
(ACT; see also Subsection 3.5.6), which allows to allocate a dynamic number of
training iterations per input token, skipping nothing but allowing a “rereading”
of inputs. Neumann et al. (2016) have pooled attention representations to better
decide the amount of time that is spent on each entry of the input sequence by ACT.
This suggests that a similar mechanism could be used for identifying redundant
input for skipping.

Moreover, attention has previously been used in order to skip input words by
Hahn and Keller (2016). In their work, a reader network computes a probability
distribution over the input at each timestep and a decoder, an attention network
with hard attention trying to reconstruct the reader’s input, uses this probability
to decide which inputs to skip. They model and predict human text skimming
behavior, achieving results close to a surprisal-based baseline. Different from our
presented approach, however, they do not directly use the attention distribution
itself to model skipping behavior. Other approaches have modeled sparse atten-
tion through multiple passes on the attention layer: Sparse Attentive Backtracking
(SAB) implements a sparse replay mechanism after retrieving memory through at-
tention mechanisms (Ke et al., 2018a) which is in principle similar to our approach
even though ours does not require a modification of the underlying LSTM model.
Sparse attention is also used by Recurrent Independent Mechanisms (RIMs; Goyal
et al. (2019)) which allow a specialization of modules over temporal patterns. Neu-
ral Function Modules take this concept one step further performing two passes
with bidirectional feedback between lower and higher layers based on attention
(Lamb et al., 2020).

In the following, we will present our Attention-based Skipping (ABS) approach.
The key idea to our model is to utilize the attention distribution as the update prob-
ability for the encoders on word- or sentence level. The simplicity of our approach
has the upside of not introducing any additional hyperparameters and offering
compatibility to widely-used recurrent and attention models.
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10.1.1 Model Definition

To recap, the word-level attention αwordi,j is computed in the Hierarchical Atten-
tion Network with pointer attention (HAN-ptr; see also Section 8.2) from the dot
product of the query q and the word-level encoding Dword

i,j :

βwordi,j = qT ·Dword
i,j (10.1)

αwordi,j = softmax(βwordi,j ), (10.2)

where i depicts the sentence index and j the word index. The sentence attention is
then calculated in a similar fashion, except that the second input to the attention
layer constitutes the composed sentence vector αwordi,j :

βsenti = qT ·Dsent
i (10.3)

αsenti = softmax(βsenti ) (10.4)

The word- and sentence-level attention are then blended together to have a
document-level attention score which is then used by the pointer attention to
compare against the candidates:

αdoci,j = αsenti · αwordi,j (10.5)

Both αsenti and αwordi,j depict attention scores that model the importance of each
input token as a probability distribution of the respective sequence. With the goal
of only updating for important words and sentences, and skipping over others,
we can therefore directly utilize this distribution to assign update probabilities to
each input token. More generally, we model this stochastically by sampling binary
decisions bt ∈ {0, 1} from a Bernoulli distribution with probability αt such that
bt = 1 updates the layer on seeing the i-th input token at timestep t and bt = 0
skips it1:

bi,j ∼ Bernoulli(αwordi,j ) (10.6)

bi ∼ Bernoulli(αsenti ) (10.7)

By doing so, we are giving the attention mechanism full control over which states
are updated. As a consequence, this allows us to use any type of recurrent layer
in the pre-attention stage and we do not need to modify existing models like
with Surprisal-based Activation. In addition, we can use any type of attention
mechanism without modification, as long as it outputs a probability distribution
which models the relevance of each input token.

After using the attention to get the update decisions, we can then modify the
previously computed candidate activations ĥt to skip for inputs where bt = 0:

ht =

{
ĥt if bt = 1,

ht−1 if bt = 0
(10.8)

1Note that t = i since we assume no partitioned layers. The entire layer either updates or
skips for the i-th input token that is presented in timestep t.

187



Chapter 10. Attend, Skip, and Point

𝛼
h

P
u
(𝛼

)
h

^

x

{
S
ki
p
p
e
d

O
u
tp
u
t

t

{
{

U
p
d
a
te

P
ro
b
a
b
ili
ty

A
tt
e
n
ti
o
n

D
is
tr
ib
u
ti
o
n

...{

H
id
d
e
n

S
ta
te
s

{In
p
u
t

...

...

sk
ip

sk
ip

sk
ip

...

Figure 10.1: Attention-based Skipping. Dotted arrows denote information
passed between layers whereas solid arrows denote parameter updates.

Since the attention layer requires the previous recurrent layer’s output, it is im-
possible for the recurrent layer to predict its own attention distribution before
calculating its own updates. This means, that our approach can only be applied
in hindsight : after the recurrent layer’s output is known, we can calculate the
attention scores and use them as update probabilities to mask the already com-
puted updates in the recurrent layer2. After masking, this new recurrent layer then
contains skipped tokens for all low attention scores.

The entire process for Attention-Based Skipping (ABS) is illustrated in Figure 10.1
and can be summarized in these 4 steps:

1. Calculate the hidden states ĥt.

2. Calculate the respective attention scores αt.

3. Replace ĥt with ht−1, i.e. skip with probability p = 1− αt.

4. Forward the resulting vector to the higher layers as ht.

2This allows us to be more computationally efficient by avoiding a complete recalculation of
the recurrent updates and storing a second layer representation in the memory. Consequently,
the introduced computational overhead is of linear complexity and in O(|ht|).
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biGRU biGRU

Attention

Attention-Skip

word
embedding

question
embedding

(a) ABS-AS

biGRU biGRU

question
embedding

Attention

Attention-Skip

Attention

word/sentence
embedding

(b) ABS-ASA

Figure 10.2: Attention-based Skipping (ABS) with the ABS-AS (attend
& skip) model compared to the ABS-ASA (attend, skip, attend) model.
For a complete illustration of the resulting hierarchical models, see also
Figure B.6 and Figure B.7.

This does, however, open up an interesting question: since the new output ht would
lead to different attention scores, if we were to attend to it again, should we do so?
In fact, the cyclical dependency between the recurrent and attention layer allows
us to iterate through steps 1-4 an arbitrary number of times, yielding different
results each time. Nevertheless, since each iteration reduces the sequence entropy,
multiple iterations are arguably limited in their practical usefulness as there is
increasingly less unique tokens to attend to.

In the context of the HAN-ptr model, the state vector ht is used at the word-level
to compose the sentence vector. On the other hand, in the final step, the pointer
attention only considers the word-and sentence-level attention. From this, we can
see that repeating the attention has a different effect than simply doing it once and
forwarding ht. While the latter would “conserve” the original word-level attention
values, but impact the sentence vector composition due to skipped words, the
former would build new attention values that reflect what has been skipped on
word-level, more directly impacting the pointer attention.

To investigate this open question, we define two different ABS approaches. In
the first, we Attend and Skip (ABS-AS), conserving the original attention values
based on the candidate activations computed before the skipping takes place. This
approach corresponds to the 4 steps discussed above. In the second, we Attend,
Skip, and Attend (ABS-ASA), reapplying attention on the encoding after executing
the necessary skips. Both approaches can be compared in Figure 10.2. At the
sentence level, the recurrent sentence encoding is only needed to calculate the
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sentence attention for the pointer, being discarded afterwards. Therefore, ABS-AS
can only be used on word-level. ABS-ASA, on the other hand, can be used on word-
and sentence level, since the sentence-level attention is modified by the changes in
the encoder.

10.1.2 Evaluation

We evaluate the two proposed models in the HAN-ptr architecture. To ensure
comparability, we train on the CBT dataset using the same hyperparameter search
space as in the previous experiments with 10 trials for each configuration. Since the
query encoding is given as a context vector, we do not skip any query embeddings.
We evaluate the use of ABS-AS on the word-level attention, and ABS-ASA on
word- and sentence level (both independently and jointly). As before, the layers
without ABS operate normally utilizing regular GRUs.

The results are shown in Figure 10.3. Both models converge to very low update
rates in the range of [0.044, 0.051] for CBT-CN and [0.048, 0.051] for CBT-NE.
While we have observed similar rates in some SENS-GRU models (see Section 9.5),
ABS achieves this more consistently in every trial, despite the stochasticity from
sampling. This indicates a stronger structural bias, either from the presented data
or the model itself. From our previous analysis in Subsection 8.3.6, we know that
the attention softmax tends to either produce a single input token with high prob-
ability or multiple tokens with low probabilities. This bias seems to be reflected
in the update rates, as ABS seems to tend towards processing slightly less than
1 word per sentence on average3. Indeed, the average update rate of u = 0.0488
for the word-level ABS models on CBT-NE corresponds to an effective update
rate of ũ = 4.83%, whereas the average u = 0.0447 for CBT-CN corresponds to
ũ = 4.78%, meaning that the word update rates can only be reduced by an addi-
tional 4.8% before reaching the lower bound uwordmin = 0.0005. In other words, both
models achieve 95.2% of the potential gains.

Interestingly, the sentence-level ABS-ASA model actually reaches the lower bound
usentmin = 0.05. In a majority of cases, it even goes slightly below this threshold.
This happens for 6 models with CBT-CN, even though only the model with the
lowest update rate drops significantly in accuracy by 1% (red circles marked (1)
in Figure 10.3). For CBT-NE, we report a similar drop in accuracy for all 7 models
that are below this threshold (red circles marked (2) in Figure 10.3). This outper-
formance is reflected by the average-based effective update rates ũ ≈ usentmin = 0%
for CBT-CN and ũ = −0.02% for CBT-NE.

As discussed in Subsection 9.2.3, there are a number of explanations as to why
a negative effective update rate ũ, i.e. an update rate u below usentmin , does not
necessarily have to lead to worse accuracy. Since CBT-CN represents the more
difficult task with a lower baseline accuracy, the results suggest that the model, or

3Where processing exactly 1 word per sentence would lead to usentmin = 0.05.
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Figure 10.3: Validation accuracy and update rate from using ABS-ASA
(blue) in the word- (w) or sentence-level (s), as well as both (ws). ABS-AS
(green) only skips on word-level. Red circles depict models with an update
rate below usentmin = 0.05 and consequently lower accuracies.

one of the bidirectional layers, sometimes skips over some unsolvable documents
entirely, therefore not impacting the baseline accuracy negatively.

Overall, we can report a better average accuracy for the ABS-AS model than for
the ABS-ASA model. Even though they lead in terms of achieved update rates,
both models are slightly behind the best SGRU and SENS-GRU models in terms
of accuracy. The limited range of the emerging update rates suggests a very strong
tendency for the models to minimize the amount of tokens that are attended to
and processed in the representation. Based on this, we hypothesize, that artificially
increasing the update rate can improve the corresponding task accuracy.

To this end, we probe the ABS layers by only activating the words with the highest
attention scores. For each experiment, we update exactly k words per document
and compare the respective impact of three different setups, choosing k ∈ {1, 5, 10}.
Figure 10.4 shows a comparison between using the regular stochastic update pro-
cess in ABS (Figure 10.4a), and deterministically filtering out the most attended
k words (Figure 10.4b). For regular ABS, we report no significant correlation be-
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(b) Only updating the k ∈ {1, 5, 10}
words with the highest attention score.

Figure 10.4: (a) Correlation (Pearson’s r and p-value) between accuracy
and update rate between ABS-AS and ABS-ASA. (b) Correlations when
only the top k attention scores are picked per sentence (with k being the
number of processed words). Depicted models are word-level encoders on
CBT-NE. Bands depict confidence intervals with ci = 0.95.

tween accuracy and update rate (p = 0.59 for ABS-AS and p = 0.51 for ABS-ASA).
This is mostly unsurprising due to our above conclusion that most models roughly
yield the same update rate. It is similarly expected that updating only 1 word per
sentence (k = 1) leads to usentmin = 0.05. However, increasing the number of updated
words per sentence to k = 5 and k = 10 increases the update rate dramatically for
the ABS-ASA model (albeit only slightly for the ABS-AS model), eliminating the
performance gap between both models. This increase is reflected in a significant
positive linear correlation (r = 0.86 and p < 10−7), signaling that increasing the
number of updated words increases the accuracy.

In the next section, we will introduce a simple modification to ABS which will
allow us to freely assign the desired update rate as a hyperparameter for each
model. This will enable us to more directly tune the resulting equilibrium between
the accuracies and update rates. In the process, we will also evaluate which of the
two ABS models gives the best trade-off between both metrics.
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10.2 Modulating the Update Rate with

Ranked Attention

As demonstrated in the previous section, the stochastic update function leads to
a very narrow range of possible update rates, which makes it difficult to fully
understand the underlying relationship between accuracy and update rate in ABS.
To approach this issue, we propose a ranking method which allows us to directly
control the update rate in the network. We propose a simple scheme in this section
that we call ranked attention.

10.2.1 Ranking the Attention Scores

The main idea of ranked attention is to only activate hidden units with the highest
attention score. We have demonstrated a basic implementation of this idea in the
previous section, where we selected k most attended words per sentence. To be able
to modulate the number of activated units as precisely as possible, we describe the
desired update rate as a simple function of the p-th percentile η.p of the attention
scores. To consider an example, defining an update rate of u = 10% will lead to an
activation of all hidden units that have attention scores above the 90-th percentile
η.90 which is approximately 10% of the states. Following this example, we define the
relationship between the desired update rate u and the corresponding percentile p
of affected attention scores as:

u ≈ 1− p (10.9)

To define a ranking operator based on this property, we start by ranking the
attention score αt of each hidden unit ht (with 1 < t < |S|, where |S| defines the
sequence length), such that they are sorted according to αi < αj iff i < j. Then,
u(%) of the highest activations are greater than the value defined by η.(1−p)(α). We
use nearest-rank interpolation to round the percentile rank u · |α| to the index p of
the attention value closest to it. The resulting value η.u = αθ is then the smallest
value of the p-th percentile which marks the lower bound for the highest u(%) of
the attention scores. We can use this threshold to only activate the layer ht at
timesteps t where the attention values are above this level. We define the resulting
rank-operator R as follows:

ht = R(ĥt) =

{
ĥt if αt > αθ

ht−1 otherwise,
(10.10)

where the attention score αt of the hidden unit candidate activation ĥt determines
the binary update decision, depending on whether it is above the p-th percentile
(identified by αθ) or not. Considering that the attention values are defined per
timestep, all hidden units of a layer either update or skip in synchronized fashion,
as is the case for normal ABS.
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Figure 10.5: Results for ABS with ranked attention: correlation between
accuracy and update rate (Pearson’s r and p-value).

10.2.2 Evaluating ABS with Ranked Attention

Our main intent with ranked attention is to provide a more in-depth analysis for
the ABS models, by being able to modulate their update rates. The key question
that we investigate is whether increasing the update rate also increases accuracy
and under which circumstances both ABS models yield similar results on word-
level.

We train both models, the ABS-AS and the ABS-ASA, with ranked attention on
the CBT-NE dataset using update rates of u ∈ {0.1, ..., 0.9}, and measure the cor-
relation between validation accuracy and update rate. The results are visualized
in Figure 10.54. For the ABS-ASA model, we report statistically significant corre-
lations (below the significance level p < 0.05), which are moderately positive on
word-level (r = 0.51) and sentence-level (r = 0.47), whereas using ABS on both
levels gives a strong positive relationship (r = 0.74). There is no significant cor-
relation with the ABS-AS model, though we can see how the maximum accuracy
slightly improves with increased update rates.

The observation that accuracy and update rate are uncorrelated for the ABS-AS
model can by explained by two simultaneous effects. First, it can result if the
majority of activations that are skipped correlate to low attention values. This
would mean that increasing skip rates has no impact on accuracy as it only affects
tokens with low attention. Additional support for this hypothesis comes from our
previous observation that most of the attention seems to be concentrated on a
small number of words in each document. Secondly, this would require models
with low update rates to capture most of the essential tokens, as increasing their
update activity does not significantly larger accuracy gains. Since the ABS-AS
model operates under the inductive bias that all points of interest are provided by
the attention mechanism itself, both explanations would be a consequence of the
model working as intended, which is confirmed by the result that accuracy and

4A different perspective on the same data is additionally provided in the form of a swarm plot
in Figure A.5.
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update rate are not correlated. Consequently, the results for ABS-ASA suggest
that reapplying attention leads to more mistakes with lower update rates.

By comparing both models on word-level, we can conclude that the ABS-AS model
performs better with regard to both metrics. It yields the best accuracy for every
update rate, though it also has a slightly larger accuracy variance (SD = 0.60%)
than the ABS-AS model (SD = 0.55%). Therefore, it yields a better accuracy per
read word. Even though both models yield a similar top accuracy for u = 0.1, this
is mostly based on a statistical outlier from ABS-AS. On average, and based on the
intersection of the two linear regression lines, both models perform most similarly
with an update rate of u = 0.8. In conclusion, these results suggest the ABS-AS
model should be the preferred choice to implement attention-based skipping.

10.3 Comparison and Analysis

In this section, we will provide a full overview on how the ABS models compare
to our previous SBA approaches. To gain a better understanding of the differences
between the different models, we discuss additional example visualizations of the
models solving the QA task.

10.3.1 Comparison to Previous Approaches

The fact that the ABS-AS model gives no significant correlation between accuracy
and update rate, suggests that conserving the original attention values is more
beneficial than updating them based on a skipping layer. This indicates that the
attention layer has an overall larger impact than composing the sentence vector
from skipped words. Since the sentence vector’s ultimate purpose is to generate
sentence attention scores for the pointer attention, it therefore seems that the
pointer model has a slight bias towards focusing more on words than sentences.
Ultimately, a high attention score for sentences is only useful if they contain the
answer itself or a necessary semantic relationship to find the answer. Consequently,
skipping in sentences which do not meet these criteria, is expected to have a low
impact, potentially explaining this bias.

Table 10.1 summarizes our experiments on the CBT dataset. To provide a compar-
ison to other approaches, we also train word encoders with the CWRNN (Chap-
ter 4) and CWLSTM (Chapter 5) on the task. For the CWLSTM, we train all
possible skip target variants and module configurations with exponentially increas-
ing update frequencies. We find the best validation results and lowest differences
(< 0.1% on CBT-NE, < 0.7% on CBT-CN) between all skip targets for periods
P = (1, 2, 4, 8), with the skip target h slightly ahead. As the update rates of
the Clockwork models are fixed for a given number of modules and |h| (Koutńık
et al., 2014), they all lead to constant update rates of u = 55.5%. Overall, both
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Common Noun Named Entity

Model valid test u valid test u

Attention Sum Reader Network∗∗ 68.8 63.4 100∗ 73.8 68.6 100∗

RAN 60.8 57.4 100∗ 64.4 58.7 100∗

HAN-doc-vec 60.4 56.4 100∗ 62.9 57.7 100∗

HAN-ptr 69.1 67.7 100∗ 75.5 69.9 100∗

HAN-ptr (CWRNN) 63.1 59.4 55.5∗ 69.4 65.12 55.5∗

HAN-ptr (CWLSTM) 66.6 63.0 55.5∗ 72.7 67.6 55.5∗

HAN-SGRU-ptr 69.2 65.8 18.8 75.3 70.5 48.4

HAN-SENS-GRU-ptr 69.1 65.8 0.44 75.6 70.8 0.03

HAN-ABS-AS-ptr 67.9 64.4 0.04 74.5 69.5 0.05

HAN-ABS-AS-ptr (RA) 69.1 64.0 30∗ 75.4 69.3 90∗

HAN-ABS-ASA-ptr 67.6 64.5 0.04 73.7 68.6 0.05

HAN-ABS-ASA-ptr (RA) 69.0 64.0 80∗ 74.7 70.4 90∗

Table 10.1: Overview and comparison of all the proposed models in this
thesis (deployed on word-level with uwordmin = 0.05% as a lower bound) for
question answering, based on the best accuracy on the CBT dataset for
the Common Noun (CN) and Named Entity (NE) categories. All update
rates u and accuracies reported in percentage. RA = Ranked Attention,
∗: static update rates , ∗∗: Results from Kadlec et al. (2016).

CWRNN and CWLSTM encoders reach worse accuracy than regular GRUs with
the HAN-ptr baseline. This supports our previous analysis from Chapter 5 that a
fixed periodic bias is detrimental for most NLP tasks.

Based on the best measured accuracy, we get the best ABS-AS model for u =
0.9 for a validation accuracy of 75.4% (−0.1% compared to the HAN-ptr) and
a test accuracy of 69.3% (−0.6%). Similarly, we get comparable results to the
SGRU and SENS-GRU models. At the same time, ABS does not require any
hyperparameters for fine-tuning (when not using ranked attention) and consistently
yields lower update rates than both SBA models, getting close to the lower bound
in the investigated task. Similarly, SBA requires the underlying recurrent models
to be adapted, whereas ABS has the large advantage that it can be used with any
of the widely used recurrent models like GRUs or LSTMs requiring model-specific
adjustments in their implementation.

Most importantly, our results show attention can be a very efficient filter for finding
irrelevant words. Compared to the baseline HAN-ptr, we are consistently able to
reduce the amount of words encoded in the recurrent representation from 100%
down to 0.05% which corresponds to a significant reduction by a factor of 2000.
While we would normally expect strong compression rates to simultaneously cause
an irrecoverable loss of information due to the reduced number of bits to store
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the same information, the best ABS networks decrease in accuracy by only 3.2%
(CBT-CN) and 0.4% (CBT-NE) compared to the baseline.

10.3.2 Attention and Skip Distributions

To better understand the differences between the proposed models, we analyze
their behavior on exemplary test documents from the CBT dataset. In order to
provide a compact visual comparison between the models, we convert the under-
lying text document into a series of symbols. In doing so, we remove any semantic
information, but are able to better visualize where and how the models are pro-
cessing input tokens. We convert each word into a circle and mark the start for
each of the 20 sentences with a rectangle. We mark updated words and sentences
with black symbols and skipped tokens with gray symbols. Figure 10.6 shows an
example visualization, which illustrates how four different networks process the
same test document in different ways.

Using SENS-GRU layers for the word and sentence encoders (Figure 10.6a) results
in the situation where more words are read than in any of the ABS models. Similar
to the SGRU (see Section 9.6), the SENS-GRU is slightly biased towards updating
at the start of a sentence and has an increased likelihood of skipping the longer a
sentence gets. The ABS models, on the other hand, activate very sparsely over the
document and do not seem to show such a bias. In particular, the ABS-AS model
Figure 10.6b correctly reads three of the seven times that the answer is mentioned
in the text. For two of these instances, it is even able to skip all words in the
sentence that are not the answer.

Previously, we have found that skipping on word and sentence layers can be detri-
mental on model performance if the global update rate is very low. We can see
this by comparing an ABS-ASA model that was trained to skip on word- and
sentence-level (Figure 10.6c) against the same model that was only allowed to skip
on word-level (Figure 10.6d). For the first model, we can see that the correct answer
is only captured in one of the sentences. However, the increased update sparsity on
sentence level leads to the model choosing the wrong sentence, thereby not being
able to provide the correct answer. The second model only operates on word-level,
processing all of the sentences, and consequently integrating the sentence where
the answer was correctly read. Overall, this exemplifies the difficulties that most
of the models encounter when skipping many sentences.

Our initial reason to consider the two different variants ABS-AS and ABS-ASA was
that skipping based on attention leads to new representations that can recursively
lead to new attention values themselves. This is particularly important in order to
understand whether mistakes by the skipping layer are propagated to the second
attention layer or whether a second application of attention can actually correct
for mistakes. While these mistakes can result from ordinary training errors, they
can also be caused by the stochastic activation process which does not guarantee
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(d) ABS-ASA (w)

Figure 10.6: The same document is read in different ways by each of the
models. Original text (Figure A.9) has been converted into symbols: each
circle (•) represents a single word, rectangles (‚) in the first column mark
the start of a sentence, and stars (F; highlighted ) represent the positions
of the correct answer. Black symbols denote tokens which triggered a
model update in either forward or backward layer, gray symbols indicate
skips. w : word-level skipping, ws: word- and sentence-level skipping.

an update for the layer, even when the first attention layer gives high attention to
the currently processed word.

To investigate this, and to see how pre-skip and post-skip attention differ on
word level, we consider the example illustrated in Figure 10.7. Here, we visualize
timesteps, where the differences between the two attention layers are the largest.
In the shown example paragraph, the correct answer (alice) is mentioned in two
different sentences. In its first mention (sentence 4), the first attention layer yields
almost no attention to the answer, causing the model to skip over it. However,
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01

02
03
04

05

06

07

so you see , miss , we 're doing (0.31→0.27) our (0.01→0.27) best , afore she comes , to -- ' at this
moment five , who had been anxiously looking across the garden , called out ` the queen !
the queen ! (0.32→0.29) ' (0.03→0.23)
and the three gardeners instantly threw themselves flat upon (0.25→0.47) their faces .
there was a sound of many footsteps , and (0.98→0.50) alice (0.00→0.50) looked round , eager to see
the queen .
first came ten soldiers carrying clubs ; these were all shaped like the three gardeners , (0.33→0.17)
oblong (0.01→0.42) and flat , with their hands and feet at the (0.38→0.08) corners : next the ten

after these came the royal children ; there were ten of them , and the little dears came (0.00→0.25)
jumping merrily along (0.79→0.61) hand in hand , in couples : they were all ornamented with hearts .
next came the guests , mostly kings and queens , and among them alice (0.81→0.85) recognised the

were ornamented all over with diamonds , and walked two and two , as the soldiers did .courtiers ; these

(...)

Figure 10.7: ABS-ASA (attend, skip, attend) example demonstrating the
influence of skipping on word attention. Numbers indicate the attention
values before and after execution of the skipping layer (before → after).
Skipping can increase (highlighted green) or decrease (highlighted blue)
word attention. Updated words are underlined. In the shown example,
the initial word-level attention fails to capture the correct answer (alice)
in sentence 4, but the following attention-skip actually corrects for this
mistake, increasing the attention from approximately 0 to 0.5.

this actually leads to a correction by the second attention layer which raises the
attention for this word from approximately 0 to 0.5. While this behavior might
seem counter-intuitive, it can be explained by the fact that a low update proba-
bility from low attention can still eventually lead to an update, causing the model
to “peek” at the correct answer. Sentence 4 shows the flip side of this situation
as the model does not update when seeing the correct answer despite an update
probability of over 80%.

For both cases, it is important to note that all models use the pointer attention
mechanism in their final layer to integrate word- and sentence-level attention to
produce the network output. Within this setup, each model is able to perform
at high accuracies despite possible mistakes from the skipping layer, as long as
the attention layers are able to peek at and identify the correct answer. Regard-
less, our analysis suggests that ABS could benefit from a deterministic decision
function, similar to the step function in the SENS-GRU, whereas small levels of
stochasticity could still be beneficial to slightly increase variance on the update
probabilities.

10.4 Chapter Summary

In this chapter, we have examined how attention can be used to sample update and
skip decisions in the context of a question answering task. Compared to surprisal-
based activation, we were able to more consistently achieve low update rates, taking
only 0.04% of the words into account in some models. We have found a stronger
correlation between accuracy and update rate when attention representations are
based on skipped words, whereas retaining the original attention yields no cor-
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relation. These findings suggest that attention representations capture the most
important inputs and are a good basis for model compression.

One advantage of attention-based skipping over other skipping models that we
have introduced in this thesis, is that our stochastic variant introduces no addi-
tional hyperparameters, i.e. no additional effort is required for tuning the model.
While we have introduced ranked attention with the purpose of freely modulat-
ing the update rates, we have shown with the ABS-AS model that this additional
complexity is not required to consistently achieve very small update rates. Never-
theless, ranked attention offers the possibility to significantly reduce the model’s
slight losses in tasks, where a specific trade-off between accuracy and sparsity is
required. Furthermore, our model requires no modifications to the recurrent layers,
as is the case with other approaches presented in this thesis. Instead, attention-
based skipping can be used with any of the widely-used models of recurrence and
attention.

Our approach has the limitation of not being able to actually save computation
time. This is a result of the operations being performed in hindsight, not allowing
a prediction of the sparse recurrent representations before the attention scores are
known. This is a general downside of neural attention as it is not predictive but
based on representations learned in lower network layers. Nevertheless, different
to most compression and pruning algorithms that work on pre-trained represen-
tations, our model operates online during training and introduces a very small
computational overhead of O(|h|). Since our ABS model is capable of skipping
over almost all of the inputs without significant losses in accuracy, it can also serve
as an empirical baseline for other predictive skipping models as to how many input
tokens can be skipped while still solving the task successfully.

More research is needed to determine whether our findings can be adapted to
pruning and compression techniques, in order to reduce the network size. It would
particularly be interesting to investigate this in the context of networks that dy-
namically scale their size based on the input such as in Lepikhin et al. (2020). Since
recently, transformer-based networks have been outperforming RNNs on most nat-
ural language processing tasks, achieving state-of-the-art performance with mod-
els like BERT (Devlin et al., 2019). Instead of recurrence, transformers model
sequences with self-attention. As our findings show how important the attention
representations are in filtering out important input tokens, it gives additional ev-
idence as to why transformer networks might be so successful. Previous work has
shown how disabling attention heads can be useful for pruning BERT models (Ko-
valeva et al., 2019), suggesting more potential to improve the processing pipeline
of the original transformer. A natural progression of our work would therefore be
to investigate attention-based skipping in transformers.

Overall, our results indicate the usefulness of attention for compressing represen-
tations. In the future, it would also be interesting to use attention transfer from
a trained network (Zagoruyko and Komodakis, 2017) to another network that can
use these attention maps to decide which inputs should be skipped. Such a dual-
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network setup would also allow the second network to actually reduce computation
time as long as the savings from the skipping network are larger than the over-
head from introducing an attention network. In general, balancing this trade-off
is an open question and the main difficulty in designing network models that can
actually operate more efficiently in real-world applications.
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Chapter 11

Conclusion

11.1 Thesis Summary

In this thesis, we have examined three different constraints for skipping state up-
dates in recurrent networks: periodicity, surprisal, and attention. We have started
by providing a comparison between more traditional recurrent models with leaky
models and the Clockwork RNN as a representative for newer models utilizing con-
ditional computation. Extending this model with LSTM gates, we have evaluated
the roles of the Clockwork model’s core mechanisms. In aiming to improve the
methodology, we have found that its periodic bias is too rigid and that introducing
adaptivity poses additional challenges.

Aiming to improve this design in the second part of this thesis, we have set out to
find approaches with less rigid assumptions on update timings and what consti-
tutes important and redundant updates. This has led us to propose surprisal-based
activation (SBA) which skips updates if the module’s information gains are con-
sidered too low. Our evaluation with language modeling and other prediction tasks
has shown that SBA presents a viable approach that can achieve high skip rates
while sometimes even improving baseline accuracy.

In the third part of this thesis, we have integrated SBA in a hierarchical network
for question answering, investigating its relationship with attention. We have found
that we can lower the model’s update rates by utilizing the module dynamics within
a majority-voting system, leading to a single update decision per layer on each
input token. Finally, we were able to demonstrate that attention itself is an even
stronger filter than our previous two methodologies. Exploiting structural biases
from the task, attention-based skipping is able to almost exclusively focus on words
that are relevant for the classification task, ignoring the rest. Furthermore, this
approach allows us to be more flexible than related approaches since we introduce
no additional constraints and hyperparameters, and can use it with most state-of-
the-art recurrent networks without additional modifications.
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11.2 Discussion

The research presented in this thesis aimed to address the research challenge of
modeling skipping conditions in recurrent neural networks to learn more efficient
representations. We have approached this goal by investigating three different
methodologies to define update timing: periodicity, surprisal, and attention. Our
overall investigation was guided by two main research questions, which we will
address and discuss in the following.

Which constraints facilitate effective skipping?

For this question, we have focused on two types of design principles: constraints
on the skip condition and structural constraints in the network architecture and
connectivity. Generally, these constraints go hand in hand with the introduction
of additional assumptions that act as inductive biases in the model.

Concerning the skip constraints, we have found that strong inductive biases can
lead to network designs that limit the applicability of the models to certain tasks.
This is most clearly visible with periodic activations, which work best when there
is a periodic bias in the underlying sequence data that can be exploited. While
our SBA methodology works with fewer assumptions, we have initially introduced
more hyperparameters to both control and analyze the skipping behavior. In later
revisions (Chapter 9), we were able to further simplify the model, showing that
surprisal can be effective in determining update timing. Attention-based Skipping
(ABS) is the least constrained of these models as its only assumption is that the un-
derlying attention mechanism is capable of filtering out the most important words.
As attention provides a very effective mechanism for salience, this approach has led
us to achieve the lowest update rates out of any of the investigated models.

Regarding constraints on network structures, we have primarily focused on mod-
ular and hierarchical designs. Throughout our findings, a common theme is that
modularity through the grouping of units strongly facilitates training and leads to
better model performance. One explanation for this consistent observation is that
independent decision-making between groups introduces the capability to correct
for mistakes. With skipping in particular, bad module decisions can quickly lead
to irrecoverable loss of information that has a global effect. Localizing these de-
cisions allows some level of divergence between modules to compensate for such
mistakes. Network modularity was most strongly enforced in the Clockwork models
(Chapter 4, Chapter 5) and the SENS-GRU (Chapter 9). Our evaluations on these
architectures support the alternative hypothesis that modularity increases diversity
between modules. While we have seen signs that this can lead to a specialization
of units on specific attributes, additional constraints would likely be necessary to
achieve this outcome more consistently and in a manner that is easier to interpret.
On the other hand, ABS demonstrates that similar, sometimes even better, results
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can be achieved without modularity (Chapter 10). It is, however, important to
note that ABS is not devoid of structural constraints. Instead, it relies heavily on
the hierarchical network structure, in particular the pointer attention. Our eval-
uation of the Hierarchical Attention Network (HAN) in Chapter 8 demonstrates
that the mere addition of hierarchical representations does not guarantee improved
model performance but that the hierarchically built document representation plays
a critical role. As the pointer attention exploits the fact that the correct answer is
contained within the document, we can argue that this bias plays an important role
in the approach’s success. In a way, we can therefore conclude that we have primar-
ily exchanged one constraint with another, allowing the attention mechanism to
make skip decisions without any additional constraints outside of the assumption
that we can point to the correct answer and build the respective representation
in a hierarchical fashion. Ultimately, we find that carefully designed constraints
are paramount for successful skipping, while the main challenge lies in finding the
right balance in assumptions that are neither too strict nor too loose.

How can we minimize, or even avoid, any trade-offs between model
performance and skipping?

Both of our novel SBA and ABS approaches stand in contrast to related conditional
computation approaches. They do not lose accuracy despite high skipping rates, in
many cases even improving on the baselines. Therefore, our investigation confirms
that avoiding the trade-off between model performance and skipping is possible. A
key factor for this seems to be to focus less on traditional compression methods,
but to figure out effective models of salience (such as surprisal and attention) that
help the network to filter out redundancies naturally during backpropagation. In
particular, we have found global regularization penalties (Chapter 7) to be too
ineffective when used with modular structures. Instead, we have found a more
successful approach in incorporating models of salience into the state update func-
tions itself, which seems to harmonize better with the training procedure. These
observations lead to the general conclusion that trade-offs can be improved if skip
conditions are designed to improve the learned representations themselves.

Overall, our model design utilizes the foundations of gated networks such as the
LSTM and the GRU. Our respective ablation studies (Chapter 5, Chapter 6) illus-
trate that there is a large benefit in considering the role of the gates when modeling
skipping with state update functions. Depending on which type of information is
skipped with which gate, results can vary strongly. We have found evidence that
this can even extend to regularization methods such as zoneout, where our inves-
tigation in Chapter 7 has revealed that the original algorithm can be improved by
changing the skip targets to different gates. In some of these approaches, informa-
tion can be maintained passively during skipping, allowing additional opportunities
to correct for critical mistakes.
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11.3 Future Work

The main motivation for our work has been to learn sparsely updated, efficient rep-
resentations. As such, our SBA and ABS models operate in hindsight and require
the regular computation of state updates in order to analyze which states can be
dropped. Consequently, future work should try to use predictive skipping methods
to prevent these computations altogether. While some proposals have been made
for this problem (Subsection 3.5.5), saving computational cost with conditional
computation remains a very difficult problem in practice. In order to prune com-
putational graphs, both the underlying hardware and software framework need
to support dynamic differentiation and allocation of resources during execution
time. Currently, popular automatic differentiation frameworks offer very limited
support for sparse tensors, leading to no actual cost savings with matrix multi-
plications. On the other hand, we can operate on the full computation graph but
reduce energy consumption during inferencing by skipping computations partially
but effectively.

While hindsight mechanisms prevent actual pruning of computational graphs, SBA
and ABS provide both practical and analytical tools to show the existence of
networks in which the update rates can be reduced by large amounts without
degrading accuracy. This emphasizes the importance of additional research on in-
struments that can help identify minimal solutions for various tasks. This stands in
contrast to most deep learning approaches in which over-parameterization is con-
sidered a feature (Belkin et al., 2019). However, recent research suggests that most
neural systems are significantly more complex than the intrinsic dimensionality of
commonly benchmarked tasks (Li et al., 2018). In addition, recent trends suggest
increasingly lower gains from merely scaling up models along the axes of data and
parameter size, leading to additional difficulties of increased energy consumption,
training costs, hardware requirements for deployment, complex cycles for devel-
opment and quality assurance, as well as decreased interpretability (Section 3.4).
Consequently, we argue that, instead of training over-parameterized models that
are compressed after already spending large amounts of resources on training, they
should be trained more efficiently from the beginning.

We believe that efficient skip mechanisms and representations that simultaneously
improve model performance benefit heavily from models of salience to identify im-
portant features. In this thesis, we have utilized surprisal and attention to model
salience. In the future, it would be useful to extend SBA with conditional surprisal
to consider more context for skipping. Similarly, further research is necessary to
evaluate ABS with different types of attention. Especially Transformers, which
model sequences entirely with attention, could benefit from our findings. Conse-
quently, our results extend beyond traditional recurrent models and should be
investigated closer with newer sequential models to provide more efficient process-
ing.
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Throughout the thesis, we have primarily focused on NLP applications such as
language modeling and question answering. As discussed in Section 3.6, there are
many more applications that stand to profit from conditional computation. Above
all, the integration of different modalities with varying sampling rates is a chal-
lenging and unsolved problem. In typical video applications, audio channels can
have 16.000 samples for one second of data, whereas image channels only provide
30 frames. A synchronization of channels is most often achieved by down-sampling,
averaging, or using feature sets such as MFCCs. Conditional computation provides
a potential framework to efficiently operate on the raw data, picking important
samples adaptively without relying on these techniques. Similarly, additional re-
search into event-based detection could help improve models in other tasks where
long sequences need to be down-sampled or filtered for adaptive processing.

11.4 Conclusion

In conclusion, this thesis contributes to the knowledge about the modeling of ef-
fective skip mechanisms for recurrent neural networks. Modularity and hierarchy
provide useful structural constraints to separate temporal dynamics and allow spe-
cialization of units and error-correction. Models of salience can provide valuable
assets to formulate conditional updates, which learn to separate important inputs
from redundancy and noise. We have investigated both surprisal and attention as
models of salience and found that they give better results than a periodic bias that
has shown itself to be too rigid. Our models demonstrate that sparse processing
and compressed representations do not always lead to worse model performance.
While the practical saving of computational costs remains an open challenge, we
have provided approaches that can serve as a basis for future development on
models for efficient processing in sequence learning models.
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Appendix A

Additional Figures

A.1 Topological Maps

In order to project the learning surface of the networks from Subsection 4.4.3 to
an even more compact representation, we follow the procedure outlined by Gabella
et al. (2020) to build topological maps from the previously computed point clouds
using the Mapper Algorithm (Singh et al., 2007) which maps high-dimensional
data to a simplicial complex.

We achieve this by clustering 10 principle components (obtained by Principle Com-
ponent Analysis) with DBSCAN (ε = 0.2, min points per cluster: 3) and subse-
quently map each cluster to a connected graph in two dimensions. The result is a
simplicial complex which represents the topological properties of the learned pa-
rameter space, particularly which trajectories the weight parameters took during
the entire training procedure. As a result of this entire process, we reduce the num-
ber of projected nodes down from |h| · e = 64 · 50 = 3200 (|h| being the number
of recurrent units and e the number of trained epochs) to 64 to achieve a compact
visualization. For the projection itself we use the KeplerMapper1. This procedure
is illustrated with an example in Figure A.1. The end result displays connected
components as a single node and connects the nodes if they belong to the same
point cloud. Two high-dimensional point clouds that are unconnected, result in
two separate graphs that are also unconnected between each other.

The resulting visualizations are shown in Figure A.2. Both the SRN and the LSTM
parameters evolve through similar regions, while the SRN branches out to slightly
more regions near the end of the training (yellow nodes). While the LSTM has
outlier weights that appear near the end as well, they are further away from the
main parameter space of the other weights, making them appear unconnected in
the graph. The CWRNN has a more unique graph than the other networks. While
there are structural similarities, it is branching out significantly more throughout

1https://kepler-mapper.scikit-tda.org/
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A.1. Topological Maps

High-dimensional 
point cloud

Clustering each cover 
(connected components)

Mapper
result

f
ℝ

Figure A.1: Sketch of the Mapper algorithm. High-dimensional point
cloud (here: a double torus) is mapped via a filter function f (here: height)
to covers that are then clustered in order to map components to nodes in
the resulting Mapper graph. Figure adapted from Hoan (2016).

the entire training process, suggesting a larger diversity. In addition, the node col-
ors show how multiple regions of the parameter space are visited both early on
as well as late in the training process. This suggests that not all weights converge
equally fast, which is unsurprising considering that some CWRNN weight con-
straints are easier to satisfy than others (in particular those that are updated very
infrequently).
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Figure A.2: Topologies of weight evolution during training. Color denotes
training time (0, purple: start of training. 1, yellow: at the time of con-
vergence). Larger nodes have a larger neighborhood and therefore indicate
more training time spent in this region of the parameter space. Uncon-
nected small components indicate weight values that only few parameters
visit for a short time frame (typically at the end of the training, indicating
attractors around local minima).



A.2. CWRNN Activation Maps During Training
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Figure A.3: CWRNN during different training epochs. The network starts
learning the dominant frequency first (epochs 1-5). Its representations are
formed early on and until epoch 10 in the modules with periods 2,4,8, and
partly 16. Over time, only the module with P = 8 keeps this representation
while the more frequently updating modules start overwriting this with
more short-term dependencies.
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A.3 Additional Figures for the Question

Answering Task
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Figure A.4: Comparing the update rates (x-axis) of the forward and back-
ward layers for word-level and sentence-level encoders for the SGRU and
SENS-GRU (θ = 0.1) by modules M ∈ {2, . . . , 256} with the full distribu-
tion of the respective models in the two last rows. The figure shows how
the update rates of the backward layers increase with M , irrespective of
the model and hierarchical layer.
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Figure A.5: CBT-CN Results for ABS with rank-based attention mecha-
nism, where the update rate is set as a hyperparameter.
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Figure A.6: Comparison between SGRU and SENS-GRU for θ = 0.01
(CBT-NE).
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SGRU (module-level skipping):

00 ring grew terribly afraid .
01 ` how do you like them ? '
02 asked snati .
03 ` not well at all , ' said the prince .
04 ` we can do nothing else , ' said snati , ` than attack them , if it is to go well ; you will go against the little one ,

and i shall take the other . '
05 with this snati leapt at the big one , and was not long in bringing him down .
06 meanwhile the prince went against the other with fear and trembling , and by the time snati came to help him

the ox had nearly got him under , but snati was not slow in helping his master to kill it .
07 each of them then began to flay their own ox , but ring was only half through by the time snati had finished his .

SENS-GRU (token-level skipping):

00 ring grew terribly afraid .
01 ` how do you like them ? '
02 asked snati .
03 ` not well at all , ' said the prince .
04 ` we can do nothing else ' said snati , ` than attack them , if it is to go well ; you will go against the little one ,,

and i shall take the other . '
05 with this snati leapt at the big one , and was not long in bringing him down .
06 meanwhile the prince went against the other with fear and trembling , and by the time snati came to help him

the ox had nearly got him under , but snati was not slow in helping his master to kill it .
07 each of them then began to flay their own ox , but ring was only half through by the time snati had finished his .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

per-word update rate:
per-sentence update rate:

Figure A.8: Example comparing the SGRU (top) and SENS-GRU (bot-
tom) on a paragraph from the test set. Different to the SGRU, the SENS-
GRU updates and skips on input-token-level, i.e. it can fully ignore words
and sentences. The highlighted values depict the average between forward
and backward layers for the bidirectional SGRU and whether one of the
two layers updated for the bidirectional SENS-GRU. The shown example
illustrates network behavior on paragraphs that do not contain the answer.

00 ` yes , it is his business ! '
01 said five , ` and i 'll tell him -- it was for bringing the cook tulip-roots instead of onions . '
02 seven flung down his brush , and had just begun ` well , of all the unjust things -- ' when his eye chanced to fall upon alice
    , as she stood watching them , and he checked himself suddenly : the others looked round also , and all of them bowed low .

03 ` would you tell me , ' said alice , a little timidly , ` why you are painting those roses ? '
04 five and seven said nothing , but looked at two .
05 two began in a low voice , ` why the fact is , you see , miss , this here ought to have been a red rose-tree ,
    and we put a white one in by mistake ; and if the queen was to find it out , we should all have our heads cut off
    , you know .

06 so you see , miss , we 're doing our best , afore she comes , to -- ' at this moment five , who had been anxiously
    looking across the garden , called out ` the queen !

07 the queen ! '
08 and the three gardeners instantly threw themselves flat upon their faces .
09 there was a sound of many footsteps , and alice looked round , eager to see the queen .
10 first came ten soldiers carrying clubs ; these were all shaped like the three gardeners , oblong and flat , with their hands and feet at the corners
    : next the ten courtiers ; these were ornamented all over with diamonds , and walked two and two , as the soldiers did .

11 after these came the royal children ; there were ten of them , and the little dears came jumping merrily along hand in hand , in couples :
    they were all ornamented with hearts .

12 next came the guests , mostly kings and queens , and among them alice recognised the white rabbit : it was talking in a hurried nervous manner ,
    smiling at everything that was said , and went by without noticing her .

13 then followed the knave of hearts , carrying the king 's crown on a crimson velvet cushion ; and , last of all this grand procession , came
    the king and queen of hearts .

14 alice was rather doubtful whether she ought not to lie down on her face like the three gardeners , but she could not remember ever having heard of
    such a rule at processions ; ` and besides , what would be the use of a procession , ' thought she , ` if people had all
    to lie down upon their faces , so that they could n't see it ? '

15 so she stood still where she was , and waited .
16 when the procession came opposite to alice , they all stopped and looked at her , and the queen said severely ` who is this ? '
17 she said it to the knave of hearts , who only bowed and smiled in reply .
18 ` idiot ! '
19 said the queen , tossing her head impatiently ; and , turning to alice , she went on , ` what 's your name , child ? '

alice
Answer:

Question:
` my name is xxxxx so please your majesty , ' said alice very politely ; but she added , to herself , ` why , they 're, only a pack of cards , after all .

alice
Candidates:

first king knave miss queen queens dears processions tulip-roots

Figure A.9: Original document used for the visualization in Figure 10.6.
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Model Gallery

The following pages provide a brief overview of the seven main models that have
been introduced as part of this thesis. We summarize their main ideas and the
general motivation behind their design. Additional model variants are described in
the respective chapters.
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Clockwork LSTM (CWLSTM)
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(a) CWLSTM: Skip Target ct
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(b) CWLSTM: Skip Target ht
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(c) CWLSTM: Skip Targets ct and ht
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Figure B.1: Comparison between all 4 CWLSTM variants.

The Clockwork LSTM (CWLSTM) extends the Clockwork RNN (CWRNN) by
integrating the original periodic skipping mechanism with the memory gates of
the LSTM. Since the LSTM has two states and three memory gates, there are
multiple possibilities to achieve this integration. We define and evaluate the four
variants displayed above in Chapter 5.
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Surprisal-based Activation (SBA)
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Figure B.2: The SBA model.

Surprisal-based Activation (SBA) is the main architecture proposed in this thesis.
The basic idea is to partition a hidden layer into modules that are independently
allowed to decide whether they perform an update or skip the current timestep.
The decision is formed by observing the change in surprisal of the hidden encoding.
The model is introduced in Chapter 6 and further evaluated in Chapter 7 and
Chapter 9.
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Surprisal-based ENSembling (SENS)
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Figure B.3: The SENS model.

Surprisal-based ENSembling (SENS) takes the module-level decision-making pro-
cess of the SBA and uses it to determine whether the majority of the modules
want to update or skip. Based on a majority decision, the model then performs the
same action for all modules in the given timestep. Therefore, SENS differs from
SBA in that it operates on token-level, as each SENS layer takes a single decision
for each of its units. The model is discussed in Chapter 9.
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HAN-doc-vec

(Document Vector)

As one of the two proposed solu-
tions for hierarchical integration
in Chapter 8, the HAN-doc-vec
model constructs a document-
level representation that is hier-
archically based on the sentence-
and word-level representations.
This final representation is then
used to infer similarities to the
candidate list in order to find the
correct answer to the question/-
query.
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Figure B.4: HAN-doc-vec
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HAN-ptr

(Pointer Attention)

The pointer attention mecha-
nism is the other integration
mechanism discussed and evalu-
ated in Chapter 8. Instead of in-
tegrating the hierarchical repre-
sentations, it integrates the hier-
archical attention by combining
word- and sentence-level atten-
tion to point to the word that
received the most overall atten-
tion. Consequently, this mecha-
nism assumes that the correct
answer is present in the given
document.
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Figure B.5: HAN-ptr
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ABS-AS

(Attend and Skip)

The ABS-AS model is one of
the two approaches introduced
in Chapter 10 to achieve skip-
ping based on surprisal. It is the
simpler variant as it adds a sin-
gle layer in the post-attention
stage which masks the previ-
ously calculated encoding based
on the attention values. Since the
sentence level does not build a
higher-level representation when
using pointer attention, instead
forwarding the attention values,
this ABS layer can not be used
at sentence-level.
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Figure B.6: HAN-ABS-AS-ptr
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ABS-ASA

(Attend, Skip, Attend)

The second ABS model discussed
in Chapter 10, even more so than
the ABS-AS model, focuses more
on providing an accurate atten-
tion distribution. As such, the at-
tention is recalculated based on
the previous skip decisions, al-
lowing the model to incorporate
this information in higher lay-
ers directly through the attention
itself instead of only the word
and sentence vectors. Since both
word and sentence levels use at-
tention, this allows to perform
ABS in both hierarchical levels.
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Figure B.7: HAN-ABS-ASA-ptr
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Koutńık, J., Greff, K., Gomez, F., and Schmidhuber, J. (2014). A clockwork RNN.
In Xing, E. P. and Jebara, T., editors, Proceedings of the 31st International
Conference on Machine Learning (ICML), volume 32 of Proceedings of Machine
Learning Research, pages 1863–1871, Bejing, China. PMLR.

Kovaleva, O., Romanov, A., Rogers, A., and Rumshisky, A. (2019). Revealing
the dark secrets of BERT. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP), pages 4365–4374,
Hong Kong, China. Association for Computational Linguistics.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou,
L., and Weinberger, K. Q., editors, Advances in Neural Information Processing
Systems, volume 25, pages 1097–1105. Curran Associates, Inc.

Krueger, D., Maharaj, T., Kramár, J., Pezeshki, M., Ballas, N., Ke, N. R., Goyal,
A., Bengio, Y., Courville, A. C., and Pal, C. J. (2017). Zoneout: Regularizing
RNNs by randomly preserving hidden activations. In 5th International Confer-
ence on Learning Representations (ICLR), Toulon, France, April 24-26, 2017,
Conference Track Proceedings.

Krueger, D. and Memisevic, R. (2016). Regularizing RNNs by stabilizing acti-
vations. In Bengio, Y. and LeCun, Y., editors, 4th International Conference
on Learning Representations (ICLR), San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Kullback, S. (1997). Information Theory and Statistics. Courier Corporation.

Lacoste, A., Luccioni, A., Schmidt, V., and Dandres, T. (2019). Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700.

Lamb, A., Goyal, A., S lowik, A., Mozer, M., Beaudoin, P., and Bengio, Y. (2020).
Neural function modules with sparse arguments: A dynamic approach to inte-
grating information across layers. arXiv preprint arXiv:2010.08012.

Leavitt, M. L. and Morcos, A. (2020a). Selectivity considered harmful: evaluating
the causal impact of class selectivity in DNNs. arXiv preprint arXiv:2003.01262.

Leavitt, M. L. and Morcos, A. (2020b). Towards falsifiable interpretability research.
arXiv preprint arXiv:2010.12016.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and
Jackel, L. (1989). Handwritten digit recognition with a back-propagation net-
work. In Touretzky, D., editor, Advances in Neural Information Processing Sys-
tems, volume 2, pages 396–404. Morgan-Kaufmann.

248



Bibliography

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., Krikun, M., Shazeer,
N., and Chen, Z. (2020). GShard: Scaling Giant Models with Conditional Com-
putation and Automatic Sharding. arXiv preprint arXiv:2006.16668.

Li, C. (2020). Openai’s GPT-3 language model: A technical overview. https:

//lambdalabs.com/blog/demystifying-gpt-3/. Online; accessed 2020-12-31.

Li, C., Farkhoor, H., Liu, R., and Yosinski, J. (2018). Measuring the intrinsic
dimension of objective landscapes. In 6th International Conference on Learn-
ing Representations (ICLR), Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings.

Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y. (2018). Independently recurrent neu-
ral network (IndRNN): Building a longer and deeper RNN. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5457–5466.

Liao, Z. and Carneiro, G. (2015). Competitive Multi-scale Convolution. arXiv
preprint arXiv:1511.05635.

Liddy, E. D. (2001). Natural language processing. In Encyclopedia of Library and
Information Science. Marcel Decker Inc., NY, 2nd edition.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In
Text summarization branches out, pages 74–81.

Lin, M., Fu, J., and Bengio, Y. (2019). Conditional Computation for Continual
Learning. arXiv preprint arXiv:1906.06635.

Lin, T., Horne, B. G., Tino, P., and Giles, C. L. (1996). Learning long-term
dependencies in narx recurrent neural networks. IEEE Transactions on Neural
Networks, 7(6):1329–1338.

Linderholm, T. (2002). Predictive inference generation as a function of working
memory capacity and causal text constraints. Discourse processes, 34(3):259–
280.

Liu, H., Chen, T., Guo, P., Shen, Q., Cao, X., Wang, Y., and Ma, Z. (2019a).
Non-local Attention Optimized Deep Image Compression. arXiv preprint
arXiv:1904.09757.

Liu, Y., Li, S., Cao, Y., Lin, C.-Y., Han, D., and Yu, Y. (2008). Understanding
and summarizing answers in community-based question answering services. In
Proceedings of the 22nd International Conference on Computational Linguistics
(COLING), pages 497–504.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. (2019b). Rethinking the
value of network pruning. In 7th International Conference on Learning Repre-
sentations (ICLR), New Orleans, LA, USA, May 6-9, 2019.

249

https://lambdalabs.com/blog/demystifying-gpt-3/
https://lambdalabs.com/blog/demystifying-gpt-3/


Bibliography

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., and
Bachem, O. (2019). Challenging common assumptions in the unsupervised learn-
ing of disentangled representations. In Chaudhuri, K. and Salakhutdinov, R.,
editors, Proceedings of the 36th International Conference on Machine Learning
(ICML), volume 97 of Proceedings of Machine Learning Research, pages 4114–
4124, Long Beach, California, USA. PMLR.

Lu, J., Yang, J., Batra, D., and Parikh, D. (2016). Hierarchical question-image co-
attention for visual question answering. In Lee, D., Sugiyama, M., Luxburg, U.,
Guyon, I., and Garnett, R., editors, Advances in Neural Information Processing
Systems, volume 29, pages 289–297. Curran Associates, Inc.

Luong, T., Pham, H., and Manning, C. D. (2015). Effective approaches to
attention-based neural machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pages
1412–1421, Lisbon, Portugal. Association for Computational Linguistics.

Maddison, C. J., Mnih, A., and Teh, Y. W. (2017). The concrete distribution: A
continuous relaxation of discrete random variables. In 5th International Confer-
ence on Learning Representations (ICLR), Toulon, France, April 24-26, 2017,
Conference Track Proceedings.

Maddison, C. J., Tarlow, D., and Minka, T. (2014). A∗ sampling. In Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. Q., editors, Ad-
vances in Neural Information Processing Systems, volume 27, pages 3086–3094.
Curran Associates, Inc.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., and McClosky,
D. (2014). The Stanford CoreNLP natural language processing toolkit. In Pro-
ceedings of 52nd annual meeting of the association for computational linguistics
(ACL): system demonstrations, pages 55–60. Association for Computational Lin-
guistics.

Mao, Z.-H. and Massaquoi, S. G. (2007). Dynamics of winner-take-all competi-
tion in recurrent neural networks with lateral inhibition. IEEE Transactions on
neural networks, 18(1):55–69.

Markovsky, I. and Usevich, K. (2012). Low rank approximation, volume 139.
Springer.

Martins, A. and Astudillo, R. (2016). From softmax to sparsemax: A sparse model
of attention and multi-label classification. In Proceedings of The 33rd Inter-
national Conference on Machine Learning (ICML), volume 48 of Proceedings
of Machine Learning Research, pages 1614–1623, New York, New York, USA.
PMLR.

McCarley, J. S. (2019). Pruning a BERT-based question answering model. arXiv
preprint arXiv:1910.06360.

250



Bibliography

Melis, G., Dyer, C., and Blunsom, P. (2018). On the state of the art of evaluation in
neural language models. In 6th International Conference on Learning Represen-
tations (ICLR), Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings.

Melloni, L., van Leeuwen, S., Alink, A., and Müller, N. G. (2012). Interaction be-
tween bottom-up saliency and top-down control: how saliency maps are created
in the human brain. Cerebral cortex, 22(12):2943–2952.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. (2017). Pointer sentinel mixture
models. In 5th International Conference on Learning Representations (ICLR),
Toulon, France, April 24-26, 2017, Conference Track Proceedings.

Mikolov, T. (2012). Statistical language models based on neural networks. PhD
thesis, Brno University of Technology.

Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., and Ranzato, M. (2015). Learning
longer memory in recurrent neural networks. In Bengio, Y. and LeCun, Y.,
editors, 3rd International Conference on Learning Representations (ICLR), San
Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Dis-
tributed representations of words and phrases and their compositionality. In
Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger,
K. Q., editors, Advances in Neural Information Processing Systems, volume 26,
pages 3111–3119. Curran Associates, Inc.

Mikolov, T., Sutskever, I., Deoras, A., Le, H.-S., and Kombrink, S. (2012). Sub-
word language modeling with neural networks. Technical report, Faculty of
Information Technology, Brno University of Technology.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits
on our capacity for processing information. Psychological review, 63(2):81.

Mittal, S., Lamb, A., Goyal, A., Voleti, V., Shanahan, M., Lajoie, G., Mozer, M.,
and Bengio, Y. (2020). Learning to combine top-down and bottom-up signals
in recurrent neural networks with attention over modules. In III, H. D. and
Singh, A., editors, Proceedings of the 37th International Conference on Machine
Learning (ICML), volume 119 of Proceedings of Machine Learning Research,
pages 6972–6986, Virtual. PMLR.

Mnih, V., Heess, N., Graves, A., and kavukcuoglu, k. (2014). Recurrent models of
visual attention. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and
Weinberger, K. Q., editors, Advances in Neural Information Processing Systems,
volume 27, pages 2204–2212. Curran Associates, Inc.

Mochizuki, Y. and Shinomoto, S. (2014). Analog and digital codes in the brain.
Physical review. E, Statistical, nonlinear, and soft matter physics, 89(2):022705.

251



Bibliography

Moirangthem, D. S., Son, J., and Lee, M. (2017). Representing compositional-
ity based on multiple timescales gated recurrent neural networks with adaptive
temporal hierarchy for character-level language models. In Proceedings of the
2nd Workshop on Representation Learning for NLP, pages 131–138.

Montavon, G., Samek, W., and Müller, K.-R. (2018). Methods for interpreting and
understanding deep neural networks. Digital Signal Processing, 73:1–15.

Mozer, M. C. (1992). Induction of multiscale temporal structure. In Moody,
J., Hanson, S., and Lippmann, R. P., editors, Advances in Neural Information
Processing Systems, volume 4, pages 275–282. Morgan-Kaufmann.

Neal, B., Mittal, S., Baratin, A., Tantia, V., Scicluna, M., Lacoste-Julien, S., and
Mitliagkas, I. (2018). A modern take on the bias-variance tradeoff in neural
networks. arXiv preprint arXiv:1810.08591, abs/1810.08591.

Neil, D., Pfeiffer, M., and Liu, S.-C. (2016). Phased LSTM: Accelerating recur-
rent network training for long or event-based sequences. In Lee, D., Sugiyama,
M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural In-
formation Processing Systems, volume 29, pages 3882–3890. Curran Associates,
Inc.

Neumann, M., Stenetorp, P., and Riedel, S. (2016). Learning to Reason With Adap-
tive Computation. In NIPS 2016 Workshop on Interpretable Machine Learning
in Complex Systems.

Neverova, N., Wolf, C., Lacey, G., Fridman, L., Chandra, D., Barbello, B., and
Taylor, G. (2016). Learning human identity from motion patterns. IEEE Access,
4:1810–1820.

Olah, C. (2015). Understanding LSTM networks. URL: http: // colah. github.
io/ posts/ 2015-08-Understanding-LSTMs/ . Online; accessed 2020-12-31.

Ororbia, A., Mali, A., Giles, C. L., and Kifer, D. (2020). Continual learning of
recurrent neural networks by locally aligning distributed representations. IEEE
Transactions on Neural Networks and Learning Systems.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th annual
meeting of the Association for Computational Linguistics (ACL), pages 311–318.

Parascandolo, G., Kilbertus, N., Rojas-Carulla, M., and Schölkopf, B. (2018).
Learning independent causal mechanisms. In Proceedings of the 35th Inter-
national Conference on Machine Learning (ICML), volume 80 of Proceedings
of Machine Learning Research, pages 4036–4044, Stockholmsmässan, Stockholm
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