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A B S T R A C T

The attainability of ultrashort electron bunches with extremely small longitudinal
extent is crucial in many modern particle accelerator applications, such as free
electron lasers and time-resolved electron diffraction, aimed at the studying
ultrafast structural dynamics of matter. Whilst free-electron lasers require GeV
electron beams with high peak currents to produce brilliant X-ray radiation for
this purpose, ultrafast electron diffraction constitutes an alternative method where
bunches with ultralow charge below 100 fC and comparatively low energy in
the range of a few MeV are used to probe the sample. In this case, a high beam
quality with ultralow transverse emittance and ultrashort bunch length on the
femtosecond scale is also required.

The Relativistic Electron Gun for Atomic Exploration (Regae), located at the
Deutsches Elektronen-Synchrotron (Desy) in Hamburg and constructed in coop-
eration between the Max-Planck Society, the University of Hamburg and Desy,
is a conventional ∼ 5 MeV electron accelerator designed to deliver unique beam
parameters which meet the demanding requirements of time-resolved electron
diffraction experiments. The Regae beamline also serves as a test facility for
various accelerator-related concepts regarding diagnostic devices and beam dy-
namics studies. A unique radio frequency (rf) transverse deflecting structure with
minimal level of aberrations in the deflecting fields and improved rf efficiency was
installed at Regae for the diagnostics of longitudinal properties of the electron
bunch.

At Regae, a compression of the electron bunches down to the ten femtosecond
range can be achieved with the ballistic bunching mechanism. This method
is feasible at low beam energies in the range of a few MeV. Apart from space
charge effects, nonlinear contributions in the longitudinal phase space distribution
can impose a decisive limit on the achievable bunch length compression. To
overcome this problem, many large scale facilites such as the European Xfel

and Flash at Desy employ a dedicated higher harmonic cavity to linearize the
longitudinal phase space. A novel linearization method, which is based on the
controlled expansion of the electron bunch between cavities operated at the same
fundamental frequency, has previously been developed. The concept does not
require any further beamline components and is not limited to the compression
of the bunch, but can also be applied to the energy coordinate of the longitudinal
phase space.

A standard procedure for performing bunch length measurements is estab-
lished and measurement data of the ballistic bunching mechanism are presented.
Experimental results of this work confirm that the initial energy spread arising
from rf curvature in the electron gun can be compensated, thus producing a
quasi-monoenergetic beam which may be of particular interest in transmission
electron microscopy applications. Measurement data obtained at the Regae beam-
line which successfully demonstrate the applicability of the novel linearization
concept are presented.
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Z U S A M M E N FA S S U N G

Die Erzeugung von ultrakurzen Elektronenpaketen ist von ausschlaggebender
Bedeutung bei diversen modernen Beschleunigeranwendungen, wie z.B. freie
Elektronen-Laser und zeitaufgelöste Elektronendiffraktion, welche der Analyse
der Strukturdynamik von Materie dienen. Während freie Elektronen-Laser GeV
Strahlenergien mit hohem Spitzenstrom benötigen, um brillante Röntgenstrah-
lung für diese Zwecke zu erzeugen, werden in ultraschneller Elektronendiffrak-
tion Elektronenpakete mit ultrakleiner Ladung unter 100 fC und vergleichswei-
se niedriger Energie im MeV-Bereich verwendet. In diesem Fall ist eine hohe
Strahlqualität mit ultrakleiner Emittanz und ultrakurzen Elektronenpaketen im
Femtosekunden-Bereich erforderlich.

Die Relativistic Electron Gun for Atomic Exploration (Regae) am Deutschen
Elektronen-Synchrotron (Desy) in Hamburg, konstruiert in einer Kooperation
zwischen der Max-Planck Gesellschaft, der Universität Hamburg und Desy, ist ein
konventioneller ∼ 5 MeV Elektronenbeschleuniger, welcher die für zeitaufgelöste
Elektronendiffraktion notwendigen besonderen Strahlparameter zur Verfügung
stellt. Regae dient auch der Untersuchung diverser Konzepte und Entwicklungen
in Bezug auf Diagnostikelementen und Studien zu Strahldynamik. Eine speziell
gefertigte hochfrequente (hf) transversal ablenkende Struktur mit minimalem
Maß an Aberrationen in den ablenkenden Feldern und verbesserter HF-Effizienz
wurde zur Charakterisierung longitudinaler Eigenschaften der Elektronenpakete
bei Regae eingebaut.

Bei Regae wird die Kompression der Elektronenpakete bis in den zehn Fem-
tosekunden Bereich mittels des “ballistic bunching” Mechanismus erzielt. Dies
ist möglich aufgrund der niedrigen Strahlenergie im Bereich von einigen MeV.
Nebst Raumladungseffekten können Nichtlinearitäten im longitudinalen Phasen-
raum die erreichbare Kompression entscheidend begrenzen. Große Beschleuni-
geranlagen wie der European Xfel und Flash am Desy nutzen typischerweise
höherharmonische Kavitäten um den longitudinalen Phasenraum zu linearisie-
ren. Die dieser Arbeit vorangehende Entwicklung einer neuartigen Methode zur
Linearisierung des longitudinalen Phasenraums basiert auf der kontrollierten
Expansion der Elektronenpakete zwischen den Kavitäten, welche mit der gleichen
Frequenz betrieben werden. Dieses Konzept ist nicht nur auf die Kompression
der Elektronenpakete beschränkt, sondern kann auch auf die Energie-Koordinate
des longitudinalen Phasenraums angewendet werden.

Eine Standardprozedur zur Vermessung der Länge der Elektronenpakete wur-
de etabliert und Messdaten zum “ballistic bunching” Mechanismus werden
präsentiert. Experimentelle Befunde dieser Arbeit bestätigen, dass die initiale
Energiebreite aufgrund der Feldkrümmung in der Elektronen-Gun kompensiert
werden kann und somit ein quasi-monoenergetischer Elektronenstrahl produziert
wird, für den Transmissionselektronenmikroskopie ein potentieller Anwendungs-
bereich ist. Bei Regae aufgenommene Messdaten, welche die Anwendung der
neuartigen Linearisierungsmethode demonstrieren, werden präsentiert.
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1 I N T R O D U C T I O N

Many modern particle accelerator applications require high quality electron
beams with precise tuning of the longitudinal beam parameters. The production
of ultrashort electron bunches on the femtosecond scale is crucial for accelerator-
based research experiments such as free-electron lasers (FELs) [1] and ultrafast
electron diffraction (UED) [2, 3]. While FELs incorporate undulator magnets to
produce high brightness X-ray beams, UED facilities directly use the electron
beam to probe sample material. Ultimately, the objective is to gain further
insights into atomic processes by observing the atomic motion on according
timescales, thus effectively “making a molecular movie” [4]. While low energy
diffractometers employing electron beam energies around 100 keV do exist [5],
the necessity of achieving higher performances by reducing space charge effects
has given rise to research facilities operating at energies of a few MeV [6]. The
Relativistic Electron Gun for Atomic Exploration (Regae), located at the Deutsches
Elektronen-Synchrotron (Desy) is an example for such an accelerator beamline
[7]. All measurements presented in the course of this thesis were carried out at
the Regae accelerator.

Since the longitudinal characteristics of the electron bunch are crucial to the
success of such experiments, the measurement of these properties is of great
importance. The reconstruction of the longitudinal phase space quantities can be
carried out with a transverse deflecting structure (TDS) [8]. Upon passage through
a TDS, the electron bunch is sheared in the transverse direction. Each particle
receives a transverse kick dependent on its longitudinal position within the bunch.
Thus, the longitudinal coordinate is mapped to a transverse coordinate and the
longitudinal extent of the electron bunch becomes easily accessible. A uniquely
designed TDS has been installed in the Regae beamline [9]. By combining the
TDS with an energy spectrometer, the longitudinal phase space can be imaged on
a subsequent detector screen.

As experimental prerequisites continue to call for an ever decreasing longitu-
dinal extent of the particle bunches, the exigency of performing reliable bunch
length measurements compulsorily increases. Not only is the bunch length linked
to the temporal resolution of a given experimental setup, but in order to further
push the boundaries and produce even shorter bunches, an understanding of the
current limitations is indispensable.

In principle, the minimum electron bunch length which can be achieved in an
accelerator is dictated by space charge repulsion. However, nonlinear correla-
tions in the longitudinal phase space distribution may also limit the attainable
bunch compression [10]. Similar limitations apply to experiments which demand
bunches with a small energy spread instead of a small longitudinal extent. For
instance, the resolution in transmission electron microscopy experiments, which
call for a transversely focused beam on the respective target, is governed by the
existing energy spread combined with chromatic aberrations when using a long
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2 introduction

bunch [11, 12]. Nonlinearities arising from the curvature of the accelerating field
in the gun cavity limit the minimum achievable energy spread. A linearization of
the phase space distribution is needed in order to overcome these constraints.

While large research facilities such as the European Xfel [13] and Flash [14]
at Desy employ a dedicated higher harmonic cavity to combat these undesired
nonlinearities, this approach can entail high financial costs due to the complemen-
tary higher harmonic radio frequency (rf) system [15]. A novel method geared
towards the linearization of the longitudinal phase space without the use of
higher harmonics has been proposed in [16, 17]. This method is based on the
controlled expansion of the bunch between two accelerating cavities operated at
the same fundamental rf frequency, and is denoted as stretcher mode. The stretcher
mode can be applied to both axes of the longitudinal phase space, thus further
reducing either the longitudinal extent (bunch compression scheme) or the energy
spread (energy spread compensation scheme) of the bunch.

The general applicability of this novel linearization concept has been experi-
mentally demonstrated in the course of this thesis. A successful linearization in
context of the energy spread compensation scheme has been accomplished. Simi-
lar results have been gathered for the bunch compression scheme. In both cases,
first and second order contributions in the longitudinal phase space distribution
have effectively been eliminated.

Section 2 of this thesis presents an outline of linear transverse beam dynamics
in a charged particle accelerator. Longitudinal bunch dynamics are also discussed,
along with beam dynamics in a transverse deflecting structure. A full description
of the Regae beamline is given in section 3. The TDS itself is described more
thoroughly in section 4, which also includes experimental procedures and results
of bunch length measurements performed with the TDS.

In section 5, the basic features of the stretcher mode are outlined and exper-
imental findings obtained for the operation of Regae using stretcher mode are
presented. Both bunch compression and energy spread compensation scheme
were verified as a valid linearization approach. Results depicting the linearized
longitudinal phase space, where the curvature of the distribution has vanished,
are shown explicitly.

A final discussion of the results is given in section 6.

1.1 regae

The core of this Ph.D. thesis is centered around Regae [7, 18], located at the Desy

complex in Hamburg. The Regae beamline is a conventional linear accelerator
designed to produce ultra-short electron bunches with low charge. Initially, the
unique beam parameters of Regae were intended to perform UED experiments
[6], which were conducted by the group of Prof. Dr. R. J. D. Miller.

Regae is a conventional machine which includes two rf structures, namely
the electron gun cavity and the buncher cavity. A laser pulse shines on the
photo cathode in the gun cavity and thus produces an electron bunch, which is
accelerated to a maximum of 5 MeV in the rf resonator. The buncher cavity is
located about 1.5 m behind the gun and imposes a correlated energy spread on
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the electron distribution. Due to this energy spread, the electrons in the back are
accelerated, while the electrons in the front are decelerated. Thus, the electron
bunch is compressed. This method of bunch compression is known as the ballistic
bunching mechanism [10, 19]. No mean energy is gained by the bunch in the
buncher cavity. Bunch lengths below 10 fs have been measured using the ballistic
bunching mechanism at the Pegasus laboratory at the University of California
[20].

The Regae accelerator is typically operated at low bunch charges around
100 fC. Machine operation at low charge values reduces space charge effects,
which allows for a small spot size of the laser pulse on the cathode. The electron
beam then has a very low transverse emittance, which leads to a large transverse
coherence [6]. Together with the short bunch length, the high single shot quality
makes Regae a highly suitable machine for UED experiments [6, 7].

In addition to a multiplicity of low charge electron beam diagnostics, a trans-
verse deflecting structure was was specifically designed for Regae and installed
in the beamline [9]. The TDS was utilized for bunch length measurements and for
imaging the longitudinal phase space to study the stretcher mode linearization
concept in the course of this Ph.D. thesis.

1.2 astra

The program package Astra (A Space Charge Tracking Algorithm) was used as
a simulation tool. Astra is a numerical code written in Fortran 90 and developed
at Desy [21]. Within Astra, the user has the option to define and adjust external
electromagnetic fields, along with a variety of other options [22]. These elements
are taken into account upon propagation of the simulated particles through the
specified beamline. Additionally, space charge effects arising from the Coulomb
interaction between individual particles in the bunch may be incorporated into
the simulation.

The actual tracking of the particles is based on a 4th order non-adaptive Runge-
Kutta integration [22]. At each time step, the motion of the particles and the
forces acting on them is calculated. For the calculation of space charge effects,
the user can choose between a cylindrical symmetric algorithm or a full three-
dimensional calculation. The three-dimensional calculation requires a greater
number of macro-particles. This is necessary in order to avoid statistical problems.
Furthermore, an advantage of the cylindrical algorithm is that mirror charges
arising during the electron emission from the cathode are taken into account.
Therefore, the cylindrical algorithm was used for simulations with space charge
effects.

By importing external data files containing (measured) field maps, simulations
of arbitrary beamlines containing user-specified elements can be performed.





2 F U N DA M E N TA L S

In this section, an overview of the fundamental physics required for this work
is presented. A basic introduction into linear beam dynamics and the general
description of particles in a bunch is given in the first part of this section. The
second part features a brief outline on longitudinal beam dynamics. Both of these
parts are based on [23, 24, 25]. Finally, the last part of this section contains a
summary of beam dynamics in a transverse deflecting structure, which is essential
for the bunch length measurements presented in the course of this thesis.

2.1 linear beam dynamics

It is common practice to describe the motion of a particle in the bunch with
respect to the reference particle. The reference particle propagates along the
design trajectory of the machine. Since Regae is a linear accelerator, the design
trajectory in absence of deflecting electromagnetic fields is a straight line and
chosen to coincide with the z-axis of the coordinate system. It should be noted
that the term “linear beam dynamics” refers to a theoretical formalism which
only deals with linear manipulations of the particle beam. In general, a given
particle in a bunch is characterized by its six-dimensional phase space vector

~u = ( x px y py ζ pz )T, (2.1)

where x is the horizontal and y vertical distance to the design trajectory along the
z-axis, px and py are the corresponding momenta and the longitudinal coordinates
ζ and pz are given with respect to the longitudinal position and momentum of
the reference particle. More specifically, the longitudinal coordinate ζ is given by
the Galilean transformation ζ = z− ct to the co-moving frame of the reference
particle. The reference particle corresponds to the center of the bunch at ζ = 0.
For beamline sections in which the energy is constant, the transverse components
of the particle momentum ~p can be approximated by px ≈ |~p|x′ and py ≈ |~p|y′,
where the divergences are given by the derivatives x′ = dx/dz and y′ = dy/dz.
Typically, the divergence values x′ and y′ are very small. The phase space vector
is often given using the divergences instead of the actual momenta:

~u = ( x x′ y y′ ζ δp )T. (2.2)

Here δp = (|~p| − |~pr|)/|~pr| is the relative deviation between ~p and the momentum
of the reference particle ~pr.

Any element in the beamline of a particle accelerator has an influence on the
values of ~u. For example, a free drift section leads to a shift in the transverse
position of a particle, whereas a focusing element approximated as a thin lens
will alter x′ or y′. Each beamline component can be associated with a respective
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6 fundamentals

transfer matrix Mi. In linear beam dynamics, the equations of motion for a
particle propagating through a beamline are solved by

~u =M· ~u0, (2.3)

where ~u0 is the phase space vector at an initial position s0, ~u denotes the phase
space vector at an arbitrary final position s and the total transfer matrix M
describes the propagation of the particle from z0 to z. If multiple beamline
components are considered along the propagation path,M is simply given by

M =
n

∏
i=1
Mi. (2.4)

If the motion of the particle in the transverse planes is assumed to be decoupled,
the full transfer matrix simplifies to

Mdecoupled =



M11 M12 0 0 0 M16

M21 M22 0 0 0 M26

0 0 M33 M34 0 M36

0 0 M43 M44 0 M46

M51 M52 M53 M54 M55 M56

0 0 0 0 0 M66


. (2.5)

For this type of decoupled dynamics, the transverse equation of motion takes on
the form

d2x(z)
dz2 + Kx(z)x(z) = 0, (2.6)

with the magnet parameter Kx(z), which can be used to describe the effect of
deflecting and focusing/defocusing magnetic elements installed for the purpose
of guiding the electron beam through the beamline with desired beam param-
eters. The above equation assumes that all particles propagate with the same
momentum. The solution of equation 2.6 can be written as(

x

x′

)
=Mx

(
x0

x′0

)
(2.7)

with the transfer matrix [24]

Mx =

 cos
(√

Kx(z)z
)

1√
K(z)

sin
(√

Kx(z)z
)

−
√

Kx(z) sin
(√

Kx(z)z
)

cos
(√

Kx(z)z
)

 . (2.8)

Naturally, equation 2.8 also holds true for y and y′. It should be noted that
a positive K corresponds to a focusing magnet, whereas a negative K leads to
hyperbolic functions in equation 2.8 and describes a defocusing magnet.

In a free drift section of length L, Kx(z) = 0 holds true, which yields the
transfer matrix

Mx,drift =

(
1 L

0 1

)
. (2.9)
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Using the thin lens approximation for a focusing magnet, the transfer matrix is
given by [26]

Mx,f =

(
1 0

− 1
f 1

)
, (2.10)

where f is the focal length of the magnet. The underlying approximation of
equation 2.10 is valid if the focal length is much longer than the length of the
magnet. In this case, the position of the particle inside the magnet remains
constant.

For the description of an accelerator beamline, the following ansatz is commonly
made [24]: the beamline is separated into segments with K(z) = const. and the
full transfer matrix is then pieced together by matrix multiplication according
to equation 2.4. If a beamline element is characterized by K(z) 6= const., it is
possible to split the element into small slices where K(z) = const. holds true. This
procedure is only possible because the equation of motion as written in equation
2.6 is linear.

The formalism introduced above is applicable to the description of the motion
of a single particle. In order to extend this description to a generalized ensemble
of particles with an arbitrary distribution, not only the motion of individual
particles but more importantly the quantities related to the evolution of the
entire ensemble must be considered. This can be achieved with the help of the
first moment and the second central moment of the given distribution. For a
continuous normalized distribution f (x) of a variable x with x, f (x) ∈ R, the first
raw moment µ′1 is equal to the mean and defined as

µ′1 =
∫ ∞

−∞
x f (x)dx. (2.11)

The mean is identical to the expected value of x. A feasible method of indicating
the width of a distribution is the RMS-value1 xRMS, which is connected to the
second central moment µ2 via xRMS =

√
µ2. The second central moment itself can

be written as

µ2 =
∫ ∞

−∞

(
x− µ′1

)2 f (x)dx =
∫ ∞

−∞
x2 f (x)dx−

(∫ ∞

−∞
x f (x)dx

)2

(2.12)

and is also referred to as the variance var(x) of a distribution. From this point
forward in this thesis, the operators 〈·〉 and 〈·2〉 mark the calculation of the mean
and of the second central moment, respectively. In addition to this, the covariance
cov(x, y) = 〈xy〉 for two variables x and y is defined as

〈xy〉 =
∫ ∞

−∞

∫ ∞

−∞
xy f (x, y)dxdy−

∫ ∞

−∞
x f (x, y)dx

∫ ∞

−∞
y f (x, y)dy. (2.13)

It follows that cov(x, x) = var(x). Alternatively, equations 2.11 and 2.12 may also
be formulated for a discrete distribution, where N denotes the number of entries
in the given sample:

〈x〉 = ∑N
i=1 xi

N
(2.14a)

1 Root Mean Square.
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〈x2〉 = ∑N
i=1 x2

i
N

−
(

∑N
i=1 xi

N

)2

. (2.14b)

This is especially useful when dealing with pixel detectors, where the generated
output is discrete.

2.1.1 Beam Emittance

As mentioned previously in section 2.1, each particle in the bunch can be described
by its phase space vector as defined in equation 2.1. The complete particle bunch
occupies a certain area in the six-dimensional phase space where each particle
may be marked by a point. According to Liouville’s theorem [27], the phase space
distribution function is an invariant of motion, i.e. the point density around a
given point which propagates through the six-dimensional phase space is constant
over time. Due to the fact that Liouville’s theorem is valid for any arbitrary subset
of particles, it can be applied to the entire particle bunch. Since the number of
particles in the bunch can be assumed to be constant throughout the beamline,
this means that the phase space volume occupied by the bunch also remains
constant. Liouville’s theorem is only valid for Hamiltonian systems where the
interactions between particles are neglected [28]. For N particles in a bunch, this
means that∫

R6
Ndxdydζdpxdpydpz = const. (2.15)

holds true.
The emittance ε of a beam can be defined as a measure of the phase space

volume:

ε :=
phase space volume

π
. (2.16)

While it is possible to simply include all particles to calculate the phase space
volume and thus define a “100 % emittance” ε100, this may prove to be problematic
if the phase space distribution of the bunch is irregular and contains irregular
tails, as these would dominate the calculation of ε100 [23]. A more reliable and
robust definition of the phase space volume is based on the use of statistical
moments. These are often summarized in the beam matrix Σbeam, which is given
by

Σbeam,jk = 〈ujuk〉 with j, k ∈ [1, 6]. (2.17)
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Essentially, the beam matrix characterizes the phase space distribution of the
particles at a given location s0 with the help of the centroid and width of the
beam in ui and u′i with i = x, y, ζ.

Σbeam =



〈x2〉 〈xpx〉 〈xy〉 〈xpy〉 〈xζ〉 〈xpz〉
〈pxx〉 〈p2

x〉 〈pxy〉 〈px py〉 〈pxζ〉 〈px pz〉
〈yx〉 〈ypx〉 〈y2〉 〈ypy〉 〈yζ〉 〈ypz〉
〈pyx〉 〈py px〉 〈pyy〉 〈p2

y〉 〈pyζ〉 〈py pz〉
〈ζx〉 〈ζ px〉 〈ζy〉 〈ζ py〉 〈ζ2〉 〈ζ pz〉
〈pzx〉 〈pz px〉 〈pzy〉 〈pz py〉 〈pzζ〉 〈p2

z〉


(2.18)

The expression for the beam matrix is fully given in equation 2.18. A common
alternative way of portraying the beam matrix is

Σbeam =

 Σxx Σxy Σxz

Σyx Σyy Σyz

Σzx Σzy Σzz

 . (2.19)

As previously mentioned, the beam matrix can be used to construct a statistical
definition of the emittance. The full six-dimensional normalized RMS emittance
εn,6D is defined via the determinant of the beam matrix,

εn,6D =
1

m3
0c3

√
det (Σbeam), (2.20)

where m0 denotes the rest mass of the particle and c is the speed of light.
If the subsets of the phase space possess no coupling, Liouville’s theorem is

also valid for the respective subspace and the beam matrix is reduced to a block
diagonal matrix

Σbeam =

 Σxx 0 0

0 Σyy 0

0 0 Σzz

 (2.21)

and the determinant of each block on the diagonal yields the respective emittance,
as is shown in exemplary for x in the following equation [29]:

εn,x =
1

m0c

√
det (Σxx) =

1
m0c

√
〈x2〉〈p2

x〉 − 〈xpx〉2. (2.22)

In addition to the normalized emittance, the geometrical emittance εx can be
defined. The geometrical emittance can be derived from the normalized emittance
via

εx =
m0cεn,x

〈pz〉
=

εn,x

〈(βγ)〉 , (2.23)

where β = vz
c is the velocity vz normalized to the speed of light and

γ =
1√

1− β2
(2.24)
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is the Lorentz factor. Unlike the normalized emittance, the geometrical emittance
is not independent of the beam momentum. During acceleration, the geometrical
emittance decreases with increasing momentum. This effect is referred to as
adiabatic damping. Only the normalized emittance can be utilized to compare
phase space volumes at different times without the influence of kinematic factors
[23].

Similarly to the beginning of section 2.1, the momentum px can be replaced by
the divergence x′. This leads to the expression

εtr,x =
√
〈x2〉〈x′2〉 − 〈xx′〉2, (2.25)

in which εtr,x is called the trace space emittance. Except for the cases of a
significant energy spread being present or the beam being strongly convergent or
divergent, εx = εtr,x holds true [29].

In systems of linear, uncoupled beam transport, the emittance is a constant of
motion and can in principle be utilized as a measure of the beam quality. While
the general shape of the Liouville phase space volume is not necessarily specified,
it can be shown that the emittance is related to an ellipse in each dimension
irrespective of the concrete particle distribution [29]. An important difference
between the emittance and the Liouville phase space is that in certain scenarios,
for example passage through a nonlinear field, the emittance will increase even
though the phase space volume will remain constant.

Generally speaking, the emittance can be divided into a statistical and a
correlated emittance term as

ε2
x = ε2

x,st + ε2
x,cor. (2.26)

The statistical emittance εst constitutes the minimum value of the beam emittance
and is closely related to the Liouville phase space volume [30].

2.1.2 Courant-Snyder Invariant

Typically, the Courant-Snyder invariant [31] is derived by making the ansatz

x(z) = A
√

β(z) cos (ψ(z) + ψ0) (2.27)

for the transverse coordinates. The parameter β(z) is one of the three optical
functions (α(z), β(z), γ(z)), which are linked to each other via

α(z) = −1
2

dβ(z)
dz

(2.28a)

γ(z) =
1 + α2(z)

β(z)
. (2.28b)

Moreover, the optical functions satisfy βγ− α2 = 1. The parameters A and ψ(z)
will be identified more precisely below. Plugging the ansatz 2.27 into the equation
of motion for the transverse coordinates (equation 2.6) yields the expression

γ(z)x(z) + 2α(z)x(z)x′(z) + β(z)x′2(z) = A2. (2.29)
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The parameter A2 is called the Courant-Snyder invariant. Equation 2.29 actually
describes an ellipse which is centered at (x, x′) = (0, 0) and covers an area of
πA2. At a given position z1, a particle is located on an ellipse in the trace space.
Further downstream at a position z2, the particle will be on an ellipse of different
shape but with the same area. In the trace space, the evolution of an individual
particle is determined by the evolution of its respective ellipse, which in turn is
given by the evolution of β(z), and by the phase advance ψ(z) between the two
points z1 and z2, which is defined as

ψ(z) =
∫ z2

z1

1
β(z)

dz. (2.30)

and essentially defines the location of the particle on its ellipse [24, 23].
The Courant-Snyder invariant, as it is written in equation 2.29, only describes

the trajectory of a single particle. In order to extend the invariant to the entire
particle ensemble, the parameter A2 can be linked to the trace space emittance via
A2 = εtr,x and the optical functions for the particle bunch can be formulated as

αx = −〈xx′〉
εtr,x

βx =
〈x2〉
εtr,x

γx =
〈x′2〉
εtr,x

. (2.31)

All of the optical functions can be associated with geometric properties of the
ellipse. The parameters

√
βx and

√
γx correspond to the width in x and x′,

respectively. The tilt of the ellipse is given by the parameter αx.
Furthermore, the optical functions can be summarized in the matrix Σβ and

linked to the beam matrix in trace space form Σtr,xx via

Σtr,xx =

(
〈x2〉 〈xx′〉
〈xx′〉 〈x′2〉

)
= εtr,x

(
βx(z) −αx(z)

−αx(z) γx(z)

)
= εtr,xΣβx . (2.32)

The transformation of the optical functions can be performed with help of a
transfer matrix as introduced in section 2.1. If the optical functions at z1 are
known and denoted as Σβ1, then Σβ2 at a position z2 can be calculated via

Σβ2 =M1,2 · Σβ1 ·MT
1,2, (2.33)

whereM1,2 is the transfer matrix from z1 to z2 [23].

2.2 longitudinal beam dynamics

In the previous section, the discussion was concentrated on linear beam dynamics
in the transverse plane and the portrayal of an appropriate matrix formalism
to describe the beam transport. The guiding of the charged particles along a
desired path is achieved with transverse electromagnetic fields. However, these
transverse fields do not directly contribute to the acceleration of the particles. For
the purpose of acceleration, longitudinal fields are required.

In the following, only the longitudinal phase space, constructed from the
longitudinal particle position ζ in the co-moving frame and the Lorentz factor γ
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of the particle, is considered. The Lorentz factor essentially corresponds to the
energy of the particle.

At Regae, two rf cavities are installed for accelerating and compressing the
bunch, i.e. for manipulations of its longitudinal phase space. Assuming an rf
field with an electric field component

Ez(z, t) = E0 exp(i · (ωt− kz)) = E0 exp(iφ), (2.34)

where E0 is the amplitude and φ = ωt− kz is the phase with angular frequency ω

and wave number k of the rf field, the momentum of the charged particle changes
according to

dpz

dt
= eE(z, t). (2.35)

Integration of equation 2.35 through the accelerating cavity of length Lc yields
the energy increase of the particle in terms of the Lorenz factor [25]:

∆γ =
e

mec2

∫
Lc

Ez(z, t)dz. (2.36)

It should be noted that the integration along the longitudinal coordinate over
the length of the cavity is merely a simplification and that the integral should
actually be computed with respect to time instead. However, this can become
tedious due to the time-dependency of both the electric field and the velocity of
the particle [25].

Moreover, the gun cavity installed at Regae displays complex dynamics due to
the strong phase slippage [16]. This further complicates an analytical calculation
of the energy gain in the gun. The energy gain can be obtained numerically from
an Astra simulation. Alternatively, the final beam energy can be measured with
the spectrometer setup as described in section 3.2.2.

The foremost purpose of the buncher cavity at Regae is the compression of the
electron bunch. In order to achieve this, the bunch needs to be imprinted with
a negative energy correlation. This means that the electrons located in the tail
of the bunch should have a higher energy than the electrons located in the front
part of the bunch.

Both of the cavities at Regae are standing wave cavities. Therefore, it is possible
to write the longitudinal component of the electric field in the cavity as

Ez(z, φ) =
1
2
E0 (sin(φ + φ0) + sin(φ + 2kz + φ0)) , (2.37)

where φ = ωt− kz defines the phase and φ0 = const. is an additional phase offset
[16]. The second term in the above equation describes the counterpropagating
part of the standing wave inside the cavity. For particles propagating with vz = c,
φ = const. holds true. In this case, the integration in equation 2.36 can easily be
carried out for a cavity of length Lc ∝ π

2k to obtain the energy gain

∆γ =
e

mec2

∫ Lc

0
Ez(z, φ)dz

=
eE0

2mec2

[
z sin(φ + φ0)−

1
2k

cos(φ + 2kz + φ0)

]Lc

0

=
eE0Lc

2mec2 sin(φ + φ0) (2.38)



2.2 longitudinal beam dynamics 13

of a particle traveling through the cavity. By defining φ = 0 as the phase where
the energy gain of the particle reaches its maximum, as is common practice, the
phase offset φ0 is fixed. Essentially, the amplitude and phase of the cavity are the
only parameters which can be adjusted freely during machine operation.

The details of the bunch compression technique at Regae are described in more
detail below.

2.2.1 Ballistic Bunching Mechanism

As stated in the previous section, a negative energy correlation must be imprinted
on the bunch to achieve a compression of the bunch length. At Regae, this is
implemented by means of the ballistic bunching mechanism [10, 19]. Due to the
fact that the mean energy of the electron beam is comparatively low, the velocity
difference arising from the negative energy correlation is, in comparison to the
mean velocity of the electron bunch, large enough for the electrons in the tail of
the bunch to outrun the preceding electrons within a reasonable distance.

Considering two particles propagating through a free drift segment from an
initial position z0 to z, the longitudinal shift between these particles is given by

∆ζ(z) =
∫ z

z0

∆β

β
dz =

∆β

β
(z− z0), (2.39)

where β denotes the average velocity of the bunch normalized to the speed of
light and ∆β is the velocity difference between the particles [10]. In first order,
the integral can be computed to yield

∆ζ(z) =
1
βr

[
dβ

dγ

∣∣∣∣
γr

δγ

]
z0

(z− z0), (2.40)

where the derivative dβ
dγ is to be evaluated at the energy γr of the reference particle,

i.e. the central particle of the bunch at ζ = 0 and of the linear approximation
[17]. The energy deviation from γr is expressed by δγ. Similarly, βr denotes
the velocity of the reference particle and the squared brackets [·]z0 signify the
evaluation of the entire respective expression at z = z0. The derivative can be
calculated directly after inversion of equation 2.24. Thus, the longitudinal shift
can ultimately be written as

∆ζ(z) =
[

1
γ3

r β2
r

δγ

]
z0

(z− z0). (2.41)

Utilization of the ballistic bunching mechanism translates to operation of the
buncher cavity at the zero-crossing, i.e. setting the cavity phase to φb = −90 deg.
In the drift section behind the buncher cavity, the longitudinal shift evolves as
specified above and the bunch length decreases until the longitudinal focus is
reached, after which the bunch length starts to increase again. As a result of the
fact that the expression in equation 2.41 scales inversely with γ3, the longitudinal
shift caused by the negative energy correlation imprinted by the buncher cavity is
strongly suppressed for higher values of γ. This means that the ballistic bunching
mechanism becomes inefficient for larger beam energies.
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The achievable compression using the ballistic bunching mechanism can be
strongly influenced by space charge forces [19, 32]. For a round beam of radius r0

consisting of particles carrying a charge q propagating through a circular beam
pipe with radius rb in vacuum, the longitudinal space charge field Ez0 in the
center of the beam is given by

Ez0 = Ez,b −
q

4πε0γ2

(
1 + 2 ln

(
rb

r0

))
∂λp(z)

∂z
, (2.42)

where Ez,b denotes the longitudinal field on the walls of the beam pipe and λp(z)
is the local linear particle density normalized to the total number of charged par-
ticles in the beam [25]. While space charge fields vanish for a continuous particle
beam with a uniform density distribution, realistic beams with variations in the
line charge distribution will experience effects from longitudinal space charge
fields [25]. Typically, this leads to an increase in bunch length by accelerating
particles in the front part of the bunch and decelerating particles in the back part
of the bunch.

While space charge effects typically scale with higher powers of 1/γ [25, 33]
and are thus more dominant for low energy beams in the MeV range, as is the
case at Regae, these effects can be mitigated by decreasing the bunch charge.
Performing measurements at ultralow bunch charges below ∼ 50 fC (at Regae)
significantly reduces space charge effects.

2.2.2 Nonlinear Effects

Despite the fact that an upright line is expected as the ideal desired distribution
in the longitudinal phase space at the position of the longitudinal focus, it has
been shown that a parabolic shape is observed in place of a straight line in
phase space [16]. This arises from the nonlinearity of the energy correlation itself.
In the gun cavity, the electron bunch occupies a certain phase interval on the
longitudinal field component, which in turn displays an extent of curvature due to
its sinusoidal shape. Combined with the substantial phase slippage between the
electron bunch and the rf field, this results in the build-up of a nonlinear energy
correlation. In addition to this, the nonlinear relation between the particle’s
energy γ and its velocity β (see equation 2.24) gives rise to a finite curvature in
the subsequent drift section.

This can be exemplified by performing a Taylor expansion of equation 2.39

around the energy of the reference particle, which has the phase space coordinates
(ζ = 0, γ = γr). This yields a modified expression of the form

∆ζ(z) =
1
βr

[
∑
n=1

1
n!

dnβ

dγn

∣∣∣∣
γr

(δγ)n

]
z0

(z− z0) (2.43)

for the longitudinal shift in the third order accumulated in a free drift section [17].
It is assumed that the energy of particle remains constant throughout propagation
through the drift. Computing the derivatives and breaking off the expansion at
the third order yields

∆ζ(z) =
[

1
γ3

r β2
r

δγ +
2− 3γ2

r
2γ6

r β4
r
(δγ)2 +

2− 5γ2
r + 4γ4

2γ9
r β6

r
(δγ)3

]
z0

(z− z0). (2.44)
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On the one hand, the higher order terms quickly become negligible for high
values of γ, leading to a suppression at high enough energies. On the other hand,
almost any type of energy distribution will display higher order contributions
and thus a nonvanishing curvature in the longitudinal phase space for low values
of γ, i.e. for lower energies.

Naturally, an analogous description can be formulated for the impact a cavity
has on the longitudinal phase space. In contrast to the drift section, which
only leads to an alteration of the longitudinal coordinate ζ of a particle, the
cavity is assumed to only affect the particle’s energy. Furthermore, this energy
change is assumed to be instantaneous, which corresponds to a form of thin lens
approximation for the cavity. In order to perform a respective Taylor expansion
of the energy gain in δφ around φ, where ±δφ is the phase interval occupied
by the bunch around the nominal accelerating phase φ, the distribution in the
longitudinal phase space must be describable by a function, i.e. it must be free of
ambiguities in φ. Making use of the fact that the accelerating phase φ corresponds
to the reference particle located at ζ = 0, the energy gain can be approximated by

∆γ =
eE0Lc

2mec2 sin(φ + δφ)

≈ eE0Lc

2mec2

(
sin(φ)− cos(φ)δφ− sin(φ)(δφ)2

2
− cos(φ)(δφ)3

6

)
(2.45)

in third order. Since a particle with a longitudinal offset of ζ implies a phase
deviation δφ = −kζ [16], the energy gain can be expressed as a function of the
longitudinal coordinate ζ:

∆γ =
eE0Lc sin(φ)

2mec2 − eE0Lck cos(φ)
2mec2 ζ − eE0Lck2 sin(φ)

4mec2 ζ2

+
eE0Lck3 cos(φ)

12mec2 ζ3.
(2.46)

Based on the expressions written in equations 2.44 and 2.46, the initial lon-
gitudinal phase space coordinates can be mapped to an arbitrary point behind
the respective cavity. Thus, it is possible to establish a description of the longi-
tudinal evolution of the bunch at the Regae beamline, where the longitudinal
phase space coordinates [ζ, γ(ζ)] can be calculated at arbitrary points within the
beamline. This description provides the basis of the phase space linearization
method presented in [17], for which experimental studies are presented in section
5.

2.3 transverse deflecting structure

Transverse rf deflecting structures provide a highly reliable and robust method
for performing measurements regarding the longitudinal bunch properties of an
electron bunch. Possible applications of a TDS in accelerator beamlines include
but are not limited to the measurement of the bunch length [34], the characteriza-
tion of the longitudinal phase space [35, 36] and even the measurement of the
transverse slice emittance [37]. The very first iris-loaded TDS was designed in
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the 1960’s at the Stanford Linear Accelerator Center (Slac) [38]. The theorem
established by Panofsky and Wenzel [39] was the basis for its design and its
intended purpose was the separation of charged particles in particle beams. This
structure was then transported to and installed at Flash, located on the Desy

campus, for longitudinal beam diagnostics [40].
A TDS has the ability of measuring bunch lengths ranging from picoseconds

all the way down to femtosecond level [41]. These measurements are single-shot
measurements. It is therefore possible to investigate shot-to-shot fluctuations
with a TDS. One major disadvantage of machine operation with a TDS is the
fact that the measurement is destructive, i.e. the beam parameters of the electron
bunch behind the TDS are of far lower quality in comparison to the initial beam
parameters in front of the TDS. However, this drawback is not of significant
relevance for the measurements performed at Regae.

At Regae, machine operation is planned for bunch lengths in the order of
10 fs at ultralow sub-pC bunch charges with a normalized emittance down to
nanometer level. Such ultrashort bunch lengths are far below the resolution of
conventional streaking camera technology. In order to cope with these design
parameters and measure the longitudinal bunch parameters, an S-band TDS has
been designed and installed at Regae [9, 42, 43].

The underlying physics of a TDS is outlined in the section below, whereas the
actual design of the TDS implemented at Regae is described in more detail in
section 4.1.

2.3.1 Beam Dynamics in a TDS

The underlying working principle of a TDS can be described as follows: a
correlation between the longitudinal position of a particle in the bunch and its
transverse momentum is introduced by the TDS, which effectively leads to a
shearing of the bunch in the transverse plane. Subsequently, the longitudinal
distribution can be imaged on a detector stream further downstream. In the
following derivations, a TDS which shears the bunch in the vertical direction y is
considered.

A relativistic electron with |~v| → c and a charge of e propagating along the
z-axis through the electromagnetic field of a TDS is affected by the Lorentz force

~FL = e
(
~E +~v× ~B

)
, (2.47)

where ~E is the electric field, ~B is the magnetic field and ~v denotes the velocity
of the particle. A thorough description and analysis of the deflecting field
in rf deflecting structures is provided in [44]. Additionally, expressions for
the field components in cylindrical coordinates can be found in [45]. After a
transformation to the Cartesian coordinate system, the Lorentz force acting in a
TDS can be written as Fx

Fy

Fz

 = eE0

 0

sin(ϕ)

ky cos(ϕ)

 , (2.48)
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where k denotes the wave number of the TDS and E0 is equal to the amplitude of
a wave E0 · exp(i(kz− ωt)). For simplicity, it is assumed that the bunch center
traverses the TDS along a straight line and interactions with the counterpropagat-
ing part of the wave are neglected. More specific and complete considerations
with respect to the unique design of the TDS at Regae are expanded upon in
section 4.1, where an outline of the deflecting fields and arising nonlinear effects
is also given.

Due to the fact that Fx = 0 and Fy is independent of the x- and z-position of
the electron, the induced deflection is free of aberration and occurs only in the
vertical direction. Moreover, the longitudinal component of FL exhibits linear
dependency on the y-position of the electron and vanishes for particles without
vertical offset (Fz(y = 0) = 0). The phase ϕ may also be expressed by ϕ = kζ + ϕ0

with the rf phase ϕ0 given relative to the center of mass of the bunch [46]. At this
point it should be noted that only the phase space coordinates relevant for the
TDS will be considered, i.e. the general phase space vector as defined in equation
2.1 is modified to

~u = ( y y′ ζ pz )T. (2.49)

Since the Lorentz force vanishes in the horizontal direction x, the motion of the
electron in the horizontal direction remains unaltered. The z-component of the
momentum is assumed to be equal to pz ≈ |~p| ≈ const. and the ζ-coordinate itself
is given relative to the center of the bunch. The divergence y′ and the vertical
coordinate y are again given in relation to the axis of the design trajectory z.

Concerning the expression for the phase ϕ = kζ + ϕ0, some fundamental
considerations with respect to bunch length measurements at Regae seem sensible.
The cavities at Regae are operated at a frequency of ν = 2.998 GHz. The wave
number can be calculated from the frequency via

k =
2πν

c
. (2.50)

For the case of machine operation without the buncher cavity, i.e. without any
form of bunch compression scheme, the electron bunch length is expected to be
on the level of 150 µm, which corresponds to approximately 500 fs. Plugging all
values into the kζ-term yields kζ ≈ 9 · 10−3. Consequently, a Taylor expansion
around kζ = 0 can be performed for the respective terms in the Lorentz force,
which leads to(

FL,y

FL,z

)
= eE0

(
sin(kζ + ϕ0)

ky cos(kζ + ϕ0)

)

≈
(

kζ cos(ϕ0) + sin(ϕ0)

ky(cos(ϕ0)− kζ sin(ϕ0))

)
. (2.51)

Subsequently, an electron entering a TDS of length LTDS with an initial phase
space vector ~u0 = (y0, y′, ζ, pz)T is considered. As previously mentioned, the TDS
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exerts a transverse kick on the electron. This leads to an alteration ∆y′ of the
angle at a position z within the TDS, which can be calculated as follows:

y′(z) = y′0 +
∫ y′(z)

0
dy′(z) = y′0 +

∫ py(z)

0

1
|~p|dpy

= y′0 +
1
|~p|c

∫ z

0
FL,ydz. (2.52)

Plugging in the approximated expression for FL,y from equation 2.51 into equation
2.52 yields

y′(z) = y′0 + ∆y′ = y′0 +
eE0z(kζ cos(ϕ0) + sin(ϕ0))

|~p|c . (2.53)

When operating a TDS in diagnostics mode, it is beneficial for the induced
deflection angle ∆y′ to be linearly dependent on the longitudinal position z,
which requires ϕ0 = 0. This means that the TDS is operated at zero-crossing2,
where no deflecting field is present for the center of the bunch [44]. As a result,
equation 2.53 is simplified to

y′(z) = y′0 +
eE0kζz
|~p|c . (2.54)

Due to the fact that the position y(z) is related to y′(z) via y′(z) = dy/dz, it is
possible to calculate y(z) as follows:

y(z) = y0 +
∫ y(z)

0
dy(z) = y0 +

∫ z

0
y′(z)dz = y0 + y′0z +

eE0kζz2

2|~p|c . (2.55)

The cumulative vertical displacement and angle at the end of the cavity can
ultimately be written as

y(z = LTDS) = y0 + y′0LTDS +
eE0kζL2

TDS
2|~p|c = y0 + y′0LTDS +

eV0kζLTDS

2|~p|c

= y0 + y′0LTDS +
KLTDSζ

2
(2.56a)

y′(z = LTDS) = y′0 + Kζ (2.56b)

where the V0 = E0LTDS is the peak effective voltage and the substitution K = eV0k
|~p|c

has been introduced. The parameter K indicates the deflection angle induced
by the TDS per unit length [44]. With the help of equation 2.56a, the vertical
component of the momentum change can also be calculated:

∆py =
∫ py(y(z=L))

0
dpy =

1
c

∫ y(z=L)

0
FL,ydy

=
eE0k

c

(
ζy0 + LTDSζy′0 +

KLTDSζ2

2

)
. (2.57)

2 It is also possible to operate a TDS at the other zero-crossing defined by ϕ0 = π.
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As a result of the longitudinal component of the Lorentz force for particles not
located at the vertical center of the bunch (y 6= 0), an electron may experience
a change in the longitudinal component of its momentum. This is a direct con-
sequence of the Panofsky-Wenzel theorem [39], according to which streaking in
the transverse plane is only possible if the transverse gradient of the longitudinal
field component does not vanish. A transverse component of the Lorentz force
requires the existence of a longitudinal electric and magnetic field [45]:

~F⊥ ∝ (~ez × ~∇Bz)⊥ ∝ ~∇⊥Ez. (2.58)

Consequently, FL,z 6= 0 and the shift in longitudinal momentum ∆pz experienced
by an electron upon passage through the TDS is equal to

∆pz =
1
c

∫ LTDS

0
FL,z(z)dz =

eE0k
c

∫ LTDS

0
y(z)dz

=
eE0k

c

(
y0LTDS +

y′0L2
TDS

2
+

KζL2
TDS

6

)
. (2.59)

Considering the fact that FL,x = 0, it is evident that the horizontal momentum
component px is not affected by the TDS. A comparison between equations
2.57 and 2.59 leads to the conclusion that each term inside the bracket in the
expression for ∆pz is much larger than the according term in ∆px. This results
from the fact that ζ ≈ 150 µm is the dominant length scale in ∆px; the strong
ζ-dependence is replaced by LTDS in ∆pz. The TDS installed at Regae has a length
of LTDS = 270 mm, which means that LTDS � ζ holds true. Therefore, the total
momentum change can be expressed by ∆|~p| ≈ ∆pz. The total relative momentum
deviation, as defined in the beginning of section 2.1, at the exit of the TDS is
equal to

δp = (δp)0 + ∆(δp) = (δp)0 +
∆p
|~p| ≈ (δp)0 +

∆pz

|~p|

= (δp)0 + Ky0 +
KLTDSy′0

2
+

K2LTDSζ

6
. (2.60)

With the help of equations 2.56a, 2.56b and 2.60, the transfer matrix for the
TDS in first order can be formulated as [47]

MTDS =


1 L KLTDS

2 0

0 1 K 0

0 0 1 0

K KLTDS
2

K2LTDS
6 1

 . (2.61)

The entries regarding x and x′ have been omitted. Moreover, the above depiction
of the transfer matrix takes the length of the structure into account. Similarly
to the transfer matrix for focusing magnets as discussed in section 2.1, the limit
LTDS → 0 can be applied. This yields a simplified thin lens form of the TDS
transfer matrix:

MTDS ≈


1 0 0 0

0 1 K 0

0 0 1 0

K 0 0 1

 . (2.62)
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The TDS acts as a free drift space with regards to the horizontal coordinates.

2.3.2 Bunch Length Reconstruction

As described in the previous section, an electron receives a transverse kick
dependent on its longitudinal position upon passage through a TDS. The ζ-
coordinate is thus mapped to the transverse plane. By measuring the transverse
beam size of the electron bunch downstream of the TDS, the bunch length inside
the TDS can be reconstructed.

In the following section, the phase space vector of an electron at the entrance
of the TDS and located at z0 will be denoted by

~u0 = ( x0 x′0 y0 y′0 ζ (δp)0 )T. (2.63)

The TDS itself will be approximated in thin lens form as represented by the
matrix given in equation 2.62. The phase space vector at the position of a detector
located at zd can be calculated via

~ud =MTDS→zd ·MTDS · ~u0, (2.64)

whereMTDS→zd denotes the transfer matrix of the beamline section downstream
of the TDS. Multiplication of the TDS transfer matrix the the initial phase space
vector yields

~ud =MTDS→zd ·



x0

x′0
y0

y′0 + Kζ

ζ

Ky0 + (δp)0


. (2.65)

On a detector screen, where the transverse distribution of the bunch is imaged,
the transverse position coordinates are decisive. Since the horizontal coordinates
x and x′ are not affected by the TDS, the vertical position y is of particular interest.
Under the assumption that the individual planes are decoupled and that the
electron bunch undergoes no further change of energy after passage through the
TDS, the vertical position yd on the detector is given by

yd =MTDS→zd,33 · y0 +MTDS→zd,34 · y′0 +MTDS→zd,34 · Kζ

= yd,off +MTDS→zd,34 · Kζ. (2.66)

In the above equation, yd,off denotes the vertical position on the detector without
the influence of the TDS, i.e. when the TDS is not activated. The additional term
MTDS→zd,34 · Kζ appears as a result of the deflection induced by the TDS.

At this point, it is helpful to express the matrix element in terms of the optical
functions and phase advance [48] as introduced in section 2.1.2, which yields

yd = yd,off +
√

βy(zd)βy(z0) sin(∆ψy)Kζ

= yd,off + Sζ, (2.67)
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where βy(z0) denotes the beta-function at the position of the TDS, βy(zd) corre-
sponds to the beta-function at the position of the detector and ∆ψy is the vertical
phase advance between z0 and zd. The parameter S which has been introduced
in equation 2.67 is also known as the shear parameter [46]

S =
√

βy(z0)β(zd) sin(∆ψy)K =
ekV0

√
βy(z0)βy(zd) sin(∆ψy)

c|~p| . (2.68)

The shear parameter essentially characterizes the deflection strength of the TDS.
From equation 2.67 it follows that the measured beam size on the detector
yRMS(zd) is in fact a combination consisting of the bunch length in the center
of the TDS ζRMS(z0) and the unperturbed beam size at the detector yRMS,off(zd),
which can be measured when the TDS itself is switched off [48]. Under the
assumption that the electrons in the bunch possess no correlation between the
vertical coordinates (y0, y′0) and the longitudinal position ζ upon entering the
TDS, the bunch length can be calculated via

ζRMS =

√
y2

RMS − y2
RMS,off

S2 . (2.69)

The bunch length is sometimes also given in units of time, which will be denoted
as ξRMS = ζRMS/c in this thesis.

The longitudinal resolution of the measurement [44, 46] performed with the
TDS is given by

Rz =
yRMS,off

S
=

yRMS,off√
βy(z0)βy(zd) sin(∆ψy)K

. (2.70)

Essentially, the resolution constitutes the (longitudinal) slice length threshold
above which it is possible to resolve the internal structure. However, this does
not render the measurement of bunch lengths below the longitudinal resolution
impossible. In principle, the knowledge of the internal structure is not required
to measure the RMS bunch length, which is reconstructed from RMS beam
sizes. Therefore, bunch length measurement is essentially limited by the screen
resolution of the detector system. Nevertheless, this limit also depends on the
shear parameter S; in any case, a maximum shear parameter is usually desirable.

Considering the longitudinal resolution, i.e. the shear parameter, it is beneficial
to adjust the machine parameters in such a way that the vertical beta-function
βy(z0) at the center of the TDS is comparatively large. In addition to this, a vertical
phase advance between z0 and zd of ∆ψy = π

2 + nπ with n ∈ N is desirable in
order to optimize the resolution.

In order to reconstruct the bunch length with the help of equation 2.69, the
vertical distribution of the bunch needs to be measured downstream of the TDS
and the shear parameter needs to be known. While the first requirement is
easily fulfilled by use of an appropriate detector, the calculation of the shear
parameter requires precise knowledge of the transfer matrix from the TDS to the
detector. However, it is also possible to directly reconstruct the shear parameter
experimentally through measurements. As can be seen in equation 2.69, the
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vertical position of the particle at the detector depends linearly on the longitudinal
position. Applying the statistical mean operator to equation 2.67 yields

〈yd〉 = 〈yd,off〉+ S〈ζ〉. (2.71)

A shift in the bunch position ∆〈yd〉 resulting from a shift ∆〈ζ〉 is therefore also
linearly dependent. The longitudinal center position of the bunch can be written
as ∆〈ζ〉 ≈ βc∆t, which means that the bunch is shifted from the rf zero phase by
a delay in time ∆t. The time delay can be rewritten as

∆t =
∆ϕ

2πν
, (2.72)

where ∆ϕ is a small shift in the rf phase around the zero-crossing (ϕ0 = 0) and ν

is the rf frequency of the TDS. Since 〈yd,off〉 remains unaffected by a shift ∆ϕ,

∆〈yd〉 =
Sβc∆ϕ

2πν
(2.73)

holds true. Consequently, performing a measurement of the mean beam position
〈yd〉 while varying the rf phase ϕ in a small range around the zero-crossing phase
ϕ0 allows the the reconstruction of the shear parameter S. More specifically, S
can be derived from a linear fit 〈yd〉 = aϕ + b as

S =
2πνa

βc
=

360◦νa
βc

, (2.74)

where a denotes the slope of the linear fit.
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Regae is a linear accelerator beamline of approximately 10 m in length. The
machine was constructed by Desy; the target chamber was provided by the Max
Planck Institut für Struktur und Dynamik der Materie (Mpsd). Originally, the
objective of Regae was to perform UED experiments. For this purpose, Regae was
specifically designed to cope with the respective experimental requirements and
thus deliver an electron beam of low energy (≈ 5 MeV) and ultrashort (∼ 10 fs)
electron bunches with very low transverse emittance for time-resolved UED.

In the year 2018, the Regae beamline underwent an extensive upgrade [16]
as part of a collaboration between Desy and the University of Hamburg. The
beamline has been adapted to enable experiments regarding the external injection
of electron bunches into a laser-plasma wakefield [49]. The well-known electron
beam produced by Regae may be used as a probing tool of the laser-driven
plasma wakefield [50].

In the course of the beamline upgrade, the Regae front-end containing the
accelerating structures has remained mostly unchanged. This segment of the
beamline is outlined in section 3.1. The rest of the beamline has been completely
rebuilt and is described in section 3.2.2.

3.1 regae front-end

The front-end of the Regae beamline contains both of the accelerating rf structures,
namely the gun cavity and buncher cavity. An overview of this section can be
seen in figure 3.1.

All of the cavities at Regae are operated in the S-band at a frequency of
2.998 GHz. The gun cavity is similar to the electron gun implemented at the
Flash accelerator, albeit scaled to a different size. Both gun and and buncher
cavity are normal conducting copper cavities. The electron gun is comprised of
1.6 cells and is in fact a photoinjector cavity. This means that the electron beam
is generated with the help of the photoelectric effect: a laser pulse shines on
the cathode material and produces an electron bunch [51]. The electron bunch
adopts the shape of the incoming laser pulse. At this point it should be noted
that the cathode marks the origin of the accelerator beamline, i.e. it is positioned
at z = 0. The charge of the electron bunch depends heavily on the cathode
material. Typically, the Regae beamline is operated with either a Molybdenum
or Cesium Telluride cathode. Experience has shown that the charge obtained
with the Cesium Telluride cathode is potentially much larger compared to the
Molybdenum cathode.

A Titanium sapphire (Ti:Sa) laser system generates an infrared (IR) laser pulse
of 800 nm wavelength. This laser system is located in the laser laboratory in the
basement of the building. Using a system of mirrors, the laser beam is transported

23
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z

Figure 3.1: Overview of the Regae front-end from the cathode to DaMon1. The cavities,
solenoids and collimators are labeled accordingly, as are the diagnostic
elements DaMon1 and the double diagnostic crosses DDC1 and DDC2. Figure
adapted from [16]; courtesy of Dr. Benno Zeitler.

upstairs into the tunnel containing the actual accelerator beamline. The laser
pulse is then frequency tripled by a third harmonic generation setup installed on
a laser table in the vicinity of the gun cavity. Subsequently, the cathode itself is
irradiated by a wavelength of 266 nm. The distance between the final lens and
the cathode is approximately 50 cm.

Moreover, a motorized attenuator is located on the laser table and can be
controlled remotely from the control room. By varying the level on laser beam
attenuation, the resulting electron bunch charge can be adjusted to meet the
requirements specified by the experimenter. A remote controlled fast shutter
is also located in the path of the laser beam. The shutter is used to acquire
background images of the respective detector system.

In addition to these existing elements, a beam stabilization setup has been
installed for the IR and UV1 section of the laser. Essentially, this setup is made
up of two cameras and two motorized mirrors. The cameras are used to image
the near- and farfield of the laser beam. Once a beam position is defined on
both cameras and the effect of the motorized mirrors on the beam position is
documented in terms of a transfer matrix, the motorized mirrors can be automated
to adjust themselves in such a way that the beam remains in the same position
on both cameras. The implementation of the stabilization setup was greatly
supported by Dr. Christian Werle from the Institut für Experimentalphysik.

Within the gun cavity, the electrons produced by the cathode laser are acceler-
ated by a longitudinal field gradient. The maximum applicable field gradient is
100 MV/m; the corresponding kinetic energy of the beam is equal to 〈E〉 = 5 MeV.
The second cavity, namely the buncher cavity, is located at z = 1.36 m (center

1 The 266 nm wavelength falls within the ultraviolet (UV) spectrum.
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position). It consists of four cells and was installed with the objective in mind of
compressing the bunch length down to the order of 10 fs via the ballistic bunching
mechanism outlined in section 2.2.1. Extensive studies regarding the beam arrival
jitter and overall stability of the rf system can be found in [52, 53]. The desired
stable operation of the cavities translates to variations of 0.01 % in amplitude and
0.01 deg in phase [52].

An important aspect to note is that buncher and gun cavity were powered by
the same klystron prior to the beamline upgrade. This posed great difficulties
when attempting to adjust the cavity parameters independently. In the course of
the upgrade, an additional klystron system was installed for the buncher cavity,
thus enabling an uncoupled operation of both cavities.

Considering the fact that the beam energy is relatively low, the use of compact
solenoid magnets is sufficient in terms of beam optics. The magnetic field and the
corresponding physics of the solenoid magnets at Regae have been previously
described and analyzed in [54]. While “Sol 1” in figure 3.1 is a single solenoid,
“Sol 2/3” is a double solenoid consisting of two single solenoids of opposite
polarity separated by a distance of 75 mm. Usually, the rotation angle θL induced
by a solenoid, also referred to as the Larmor angle, and the focal length f are
used to characterize a solenoid. In the case of a double solenoid, no rotation
is present, i.e. θL = 0 due to the fact that the Larmor angle introduced by the
first solenoid is compensated by the second solenoid. The focal length can be
calculated via [55, 56]

f =

(
e2

4〈pz〉2
∫ ∞

−∞
B2

z(z)dz
)−1

, (3.1)

where Bz(z) is the longitudinal component of the magnetic field of the solenoid.
Using the thin lens approximation, the transfer matrix of a solenoid can be
formulated based on equations 2.10 and 2.9. More precisely, a double solenoid
is approximated by two thin lens matrices (one for each solenoid of the double
solenoid) connected by a free drift matrix.

“Sol 1” is located in close proximity to the electron gun at z = 0.55 m. Due
to the fact that the beam initially shows a strong transverse divergence, the
main purpose of the solenoid is to collect and focus the full charge of the beam.
Together with “Sol 2/3”, positioned at z = 0.93 m, it is usually possible to find
machine settings which, to a certain extent, deliver a collimated electron beam
through the remainder of the beamline.

The front-end of Regae is also equipped with two collimators. These are
essentially two movable blocks of tantalum with a number of different sized holes.
The collimators are especially useful for getting rid of dark current outside of
the beam region. It is also possible to block the outer beam fractions, which can
reduce the transverse emittance [57].

In terms of beam diagnostics, two double diagnostic crosses [58], namely DDC1

and DDC2, are implemented in the front-end section of the beamline. DDC1

is located behind the first solenoid and DDC2 is behind the buncher cavity. A
Cerium-doped LYSO2 crystal is installed as a scintillator at both diagnostic crosses
as a means of measuring the transverse electron distribution of the bunch. This

2 Lutetium Yttrium Orthosilicate.
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specific scintillator material was selected because of its high yield, which is equal
to about 30, 000 photons per MeV deposited by an incoming electron [58], and
because of its short decay time of approximately 50 ns [59, 60]. A high light yield
is extremely beneficial due to the fact that the electron collision stopping power
[61], which is responsible for scintillation light in respective materials, is close
to its minimum in the energy range of the Regae beam [58]. The imaging optics
and camera setup of DDC1 and DDC2 is described in [62]. At both diagnostic
crosses the scintillator is mounted on a linear manipulator and can be moved in
and out of the beamline.

Moreover, a dark current monitor labeled as “DaMon1” in figure 3.1 is installed
[63]. The second dark current monitor “DaMon2” is located further downstream.
DaMon1 offers a non-destructive way of measuring the total charge of the electron
bunch. Originally, the resonator was developed for charge and dark current mea-
surements at the European Xfel [64]. The electron beam induced electromagnetic
fields at certain modes upon passage through the resonator. Integrated antennas
detect the TM01 mode, of which the amplitude of the voltage is proportional to
the charge of the bunch [63]. The high sensitivity of the DaMon cavities enables
the measurement of electron bunch charges below 10 fC [65].

A number of small dipole magnets are also included in the front-end segment
of the beamline and can be used to deflect and effectively steer the electron beam
[66]. These steerers are arranged in pairs mounted orthogonal to each other,
which enables both vertical and horizontal deflection of the beam. A total of eight
steerers are placed throughout the beamline.

3.2 regae beamline upgrade

Behind DaMon1, the entire Regae beamline has been rebuilt. The transport and
incoupling of a high power laser into the Regae beamline marks the main feature
of the upgraded beamline. Before going into detail on the new beamline segment
where electrons and laser co-propagate and travel through the same pipe, a brief
description of the laser itself and its respective transport to the actual Regae

beamline will be given.

3.2.1 Laser Transport Beamline

The aforementioned laser is none other than the Angus laser system. The Angus

laser laboratory is located inside a building in the vicinity of the Regae beamline.
It is a Ti:Sa based high-power laser system with a central wavelength of 800 nm
which operates at a repetition rate of 5 Hz and provides pulse energies of about
5 J. This is achieved by use of the chirped pulse amplification technique [67]. The
laser pulses are compressed to a FWHM3 pulse duration of approximately 25 fs.
This means that the Angus laser system can generate pulses with up to 200 TW.
After the last compression of the pulse, the radial intensity profile is described

3 Full width at half maximum.
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by a super-Gaussian distribution of eighth order. At this point, the 1/e2 beam
diameter is equal to 76 mm.

Following the compressor, the laser beam is guided to Regae through the Laser
Transport Beamline (LTBL), which was originally developed by the Lux team [68].
While the majority of the laser system inside the Angus laboratory is operated in
air, the compressor and the entire LTBL are part of the vacuum system. Moreover,
the chambers were carefully designed with the objective of minimizing unwanted
effects of external vibrations [69]. After passage through the switch yard, which
allows for sending the laser beam either to the Lux or Regae experiments, the
laser is transported to the Regae tunnel over a total distance of approximately
30 m. Along this distance, seven motorized turning mirrors, each installed in
a respective turning mirror chamber, are in place. Each chamber is equipped
with a diagnostics setup to monitor the nearfield position of the laser. This is
accomplished by recording the leakage signal through the mirror with a camera
positioned outside of the chamber behind a window flange.

Behind the seventh and final turning mirror, the chamber containing the final
focusing parabola is located. Its design is based on the version installed at the
Lux beamline. The effective focal length of the parabola itself is f = 4.2 m with
the possibility of adjusting the position of the focus by ±20 mm. The parabola is
also motorized and equipped with a respective diagnostics setup.

The last mirror before the target chamber is located in the Incoupling Chamber
Regae (ICR) and referred to as the incoupling mirror. This marks the point from
which laser and electron beam propagate through the same pipe. In order for
the electrons to pass through the incoupling mirror when it is driven into the
beamline, the mirror has a small hole of 5 mm diameter. Naturally, the hole
removes a small fraction of the laser beam and has an effect on the distribution.
Therefore, a second mirror with identical parameters but without a hole has
been installed and may also be driven into the beamline to measure and study
differences.

An overview of the incoupling section is shown in figure 3.2. The path of the
Angus laser is colored red. Only the final section of the LTBL is shown, namely
the final turning mirror chamber, labeled “CR8”. The chamber housing the final
focusing parabola is named “MBA”. The mirror inside the ICR denoted as “holey
mirror” due to the aforementioned hole for the electrons to pass through. For
reasons of simplicity, the Regae front-end (in front of the ICR) and the remaining
beamline sections behind the ICR are not shown.

3.2.2 Upgraded REGAE Beamline

As mentioned in a previous section, the entire section behind DaMon1 was
affected by the beamline upgrade. An overview of the upgraded beamline can be
seen in figure 3.3; a description of the respective beamline components is given
in the following paragraphs. The first element, namely the ICR, was described
above. The holey mirror inside the ICR is located at z = 2.70 m. The ICR marks
the beginning of the co-propagation segment. Moreover, the ICR contains various
pumping ports which are vital for the differential pumping as described in [16].
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final
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Figure 3.2: Side view of the Angus laser path in the incoupling section of the beamline.
The final turning mirror chamber, focusing parabola and incoupling mirror
are labeled accordingly. The rest of the beamline downstream of the ICR is
not shown. Figure adapted from [16]; courtesy of Dr. Benno Zeitler.
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Figure 3.3: Overview of the upgraded segment of the Regae beamline, starting at Da-
Mon1. The Regae front-end up to DaMon1 has been described in the previous
section. The main components of the beamline are labeled accordingly. A
more thorough depiction of the diagnostics section behind the target chamber
is given further below. Please see the main text for a description of the
individual beamline elements.
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Behind the ICR at z = 4.29 m lies the first diagnostic setup for both laser and
electron beam. This diagnostic cross is referred to as LD1e. At LD1e, a total of
three elements can be driven into the beam path with a linear manipulator. Two
of these elements are scintillator screens; a fiber optic scintillator (FOS) [70] from
Hamamatsu Photonics and a LYSO scintillator, which is also installed at DDC1

and DDC2.
Moving on, a further double solenoid “Sol 4/5” can be found slightly behind

LD1e. While this solenoid may also be used for general adjustments of beam
optics, its main intended purpose was to focus the electron beam down to a RMS
spot size of approximately 10 µm. Such small beam sizes are required for the
laser-plasma experiments [16].

The final element before the target chamber is the beam arrival cavity (BAC).
Its main purpose is the determination of the arrival time of the electron bunch.

The new target chamber of Regae was designed by Dr. Benno Zeitler in a way
that both electron diffraction and laser-plasma experiments could be performed
[16]. Its center is located at z = 5.51 m. The chamber itself is of cylindrical shape
and has a diameter of 60 cm. Inside the target chamber there are three pillars
which can be moved up and down, thus driving elements in and out of the
beam path. A piezo-based linear stage and two piezo-based hexapod positioning
systems are mounted on the pillars. The travel range of the hexapods in the
horizontal plane is ±25 mm and ±75 mm, and ±1 mm in the vertical direction.
A highly beneficial characteristic of the hexapod positioning devices is the fact
that they offer a movement precision of only 1 nm. The hexapods are designed to
carry a maximum weight of 1.7 kg.

On two of these positioning devices, namely on the linear stage and on one
of the hexapods, permanent magnetic solenoids are mounted [71]. Both of the
permanent solenoids are surrounded by a copper-coated iron shielding to reduce
the effects unwanted stray fields may have on the electron beam. The design of
the permanent magnetic solenoids and an outline of their properties is described
in [72].

The hexapod mounted on the central movable pillar contains the plasma targets
and various diagnostic holders. Each diagnostic holder is equipped with different
diagnostic elements. FOS screens are mounted at four separate holder locations.
Three of the holders are mounted in such a way that the surface of the screens
is perpendicular to the beam axis in order to determine the electron beam axis.
Precise knowledge of the beam axis would be required for external injection
experiments. The scintillation light is recorded by a camera system located
slightly behind the target chamber. In order to measure the position of the laser
beam, sapphire plates have been installed in the same holders containing the FOS
screens. The scintillator setups and the corresponding imaging procedure has
previously been analyzed in [73].

In terms of diagnostics, an additional method of measuring the beam size has
been developed [73]. The method is based on the process of determining the
beam profile of a laser beam with a knife edge. This concept can also be applied
to electron beams. More specifically, a scattering foil with a sharp edge is driven
in to the path of the electron beam, effectively blocking a fraction of the beam.
Unlike the photons of a laser pulse, the electrons are not completely stopped
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but rather scattered by the material. However, the scattering rate of the electron
beam into any given solid angle depends on the number of electrons that hit
the scattering foil. Consequently, the electron beam size can be reconstructed
by driving the scattering foil into the beam in small steps and measuring the
transmitted fraction of the electron beam with a detector setup located further
downstream.

Another key feature of the target chamber is the large linear manipulator
mounted on top of its lid. This setup is implemented for UED experiments
and contains a load-lock system to bring the respective targets into place. Two
cameras are also mounted on the lid to observe the various components installed
inside the target chamber.

The diagnostics section of the Regae beamline begins immediately behind
the target chamber. A schematic overview of this section is shown in figure 3.4.
The first element of this section is the TDS. Its center is located at z = 6 m. A
thorough discussion of the unique design of the Regae TDS is given in section
4.1. The TDS exerts a time-dependent transverse force, i.e. dependent on the
longitudinal position of the electron within the bunch, which leads to a change
in transverse momentum. Since the resulting transverse kick is linked to the
longitudinal position, the longitudinal phase space is effectively mapped onto
the transverse plane. By imaging the transverse coordinates of the electron bunch
on a detector screen, information on the longitudinal properties of the bunch,
such as the bunch length, can be recovered with the TDS. The beam dynamics
inside a TDS have been described in section 2.3.1. The total length of the cavity
is comparatively short and amounts to only 270 mm, consisting of three regular
cells and two end cells. It has been tuned to a frequency of 2.998 MHz just like
the gun and buncher cavity. A maximum deflecting voltage of 190 kV can be
achieved with the current setup.

A further diagnostic cross is located behind the TDS at z = 6.17 m. This
diagnostic cross is referred to as “QSQ”. The imaging system for the beamline
diagnostics inside the target chamber is housed within the QSQ setup. Moreover,
a FOS and a LYSO scintillator screen are installed at this location. A sapphire plate
for determining the position of the laser beam is also included. The generated
light is reflected towards a camera by a mirror attached behind the holder.

Two quadrupole magnets are positioned behind QSQ. The quadrupoles were
installed with the intention of imaging the electrons from the laser-plasma experi-
ments. A distance of 260 mm lies between the quadrupoles. Within this space,
the final double solenoid, denoted as “Sol 6/7”, is located. It is identical to the
aforementioned solenoids Sol 4/5 and Sol 2/3. Sol 6/7 plays an indispensable
role for emittance measurements [57] and diagnostics with the TDS.

The next element in the Regae beamline is the main laser diagnostic LD2.
Similarly to the ICR, the LD2 chamber contains a holey mirror and a regular
mirror without a hole. The laser beam is sent towards a diagnostics table. It
should be noted that the diagnostic setup itself is still under construction. A
second dark current monitor, referred to as DaMon2, is installed behind the
LD2 chamber. DaMon2 may be utilized to measure and verify the charge of
the electrons accelerated in the course of the external injection experiments. In
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Figure 3.4: Overview of the diagnostics section of the Regae beamline starting at the exit
of the target chamber. The main diagnostic devices are labeled accordingly.
Please see the main text for a description of each specific element.
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practice, the DaMon2 cavity has proven to be extremely useful in context of
guiding the electron beam through the beamline.

Naturally, a method to measure the energy of the particle beam is crucial for
any accelerator. A dispersive element is installed at Regae for precisely this
purpose. The spectrometer magnet at Regae is based on a corrector magnet
originally implemented at the Hadron Electron Ring Facility (Hera), located also
on the Desy campus. The uniform and vertical magnetic field of the magnetic
dipole deflects the electrons by an angle of 90 deg in the horizontal plane towards
a detector screen.

The dispersion relations can be derived using the relations obtained from the
beam optics formalism as described in section 2.1. For off-momentum particles,
the equation of motion as given in equation 2.6 is modified to

d2xp(z)
dz2 + Kx(z)xp(z) =

δp
ρ(z)

, (3.2)

where the parameter ρ(z) denotes the bending radius of the dipole magnet. To
be more precise, the complete solution of the equation of motion is a sum of
the (unmodified) homogeneous equation 2.6, which describes on-momentum
particles, and the inhomogeneous equation above, which describes off-momentum
particles. While a general solution can be calculated with perturbation theory
using Green’s functions, it is possible to find a simplified solution for the case
of a constant bending radius ρ(z) = const. of the dipole [74]. The equation of
motion then transforms to

d2xp(z)
dz2 +

xp(z)
ρ2 =

δp
ρ

. (3.3)

A basic particulate solution is simply given by xp(z) = ρ · δp and the complete
solution can be written as

x(s) = x0 cos
(

s
ρ

)
+ x′0ρ sin

(
s
ρ

)
+ ρ · δp ·

(
1− cos

(
s
ρ

))
(3.4a)

x′(s) = − x0

ρ
sin
(

s
ρ

)
+ x′0 cos

(
s
ρ

)
+ δp sin

(
s
ρ

)
. (3.4b)

Considering the fact that the deflection angle of the spectrometer dipole at Regae

is equal to 90 deg, the horizontal transfer matrix is given by the expression

Mdipole =


0 ρ ρ

− 1
ρ 0 1

0 0 1

 . (3.5)

It follows that the deviations within the dipole magnet are equal to ∆xdipole =

ρ · δp and ∆x′dipole = δp. Due to the presence of a short drift distance L between
the exit of the dipole magnet and the actual detector screen, the offset between
off-momentum particles is additionally increased by ∆xdrift = L∆x′dipole. As a
result, the cumulative offset on the detector screen ∆xdet is given by

∆xdet = ∆xdipole + ∆xdrift = (ρ + L) · δp = Dxδp, (3.6)
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Figure 3.5: Measured calibration curve for the dipole spectrometer installed at the Regae

beamline. The position of the beam centroid 〈x〉 with respect to the screen
center xs is plotted as a function of the relative momentum deviation δp. A
linear fit (red) has been applied to the data (black).

where Dx denotes the dispersion.
A measurement of the dispersion has been carried out. In the center of the

screen, the correlation between the momentum pz and the dipole current I is
given by

〈pz〉[MeV] = 4.3
MeV

A
· I[A] + 0.054 MeV. (3.7)

The relation above has been previously determined based on Astra simulations
using field maps measured at various dipole currents. The dispersion relation can
be obtained by measuring the beam centroid on the detector screen as a function
of the beam momentum. Equivalently, a scan of the dipole current can be
performed, as each current can be associated with a respective momentum value
according to equation 3.7. Such a calibration curve for the dipole spectrometer at
Regae is given in figure 3.5, where the mean beam position 〈x〉 with respect to
the center xs of the detector screen (∆xdet = 〈x〉 − xs) is shown as a function of the
relative momentum deviation δp = (pz − 〈pz〉)/〈pz〉. Thus, the dispersion can be
derived from a linear fit to the data and is equal to |Dx| = (247.45± 0.95)mm.
The data are well described by a linear function. The evident negative slope
results from a horizontal flip of the recorded camera images.

The resolution of the dipole spectrometer can be roughly estimated using Dx.
Using xRMS ≈ 40 µm as an estimate for the horizontal beam size, taken from
Astra simulations using standard operating parameters of the beamline, the ratio
of beam size to screen distance results in xRMS/Dx ≈ 1.61 · 10−4 as an estimate
for the resolution of the spectrometer.

The screen installed in the spectrometer is a FOS and is imaged by an intensified
CCD camera. The scintillator screen has the dimensions 50× 50 mm2, although
the active area is reduced to 47× 47 mm2. Behind the scintillator, a silicon wafer
with an aluminum coating is installed. The mirror reflects the scintillation light by
90 deg and onto a camera. The installed camera is an Andor EMCCD4 iXon-885

camera [75]. The camera chip has a size of 8× 8 mm2 with pixels of 8× 8 µm2 in
size. A overview of the basic properties of this camera is presented in table 3.1.

4 Electron multiplying charge-coupled device.
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Property Andor iXon 885 Andor iXon 888

Chip size [mm] 8× 8 13× 13

Pixel size [µm] 8× 8 13× 13

Active pixels 1002× 1004 1024× 1024

Frame rate [ frames
s ] 31.4 8.9

Pixel well depth [e−] ≈ 30000 ≈ 80000

Table 3.1: Summary of some of the basic properties of the Andor iXon 885 and Andor
iXon 888 camera models. Data taken from [76].

Due to the fact that a small fraction of the Angus laser passes through the
hole in LD2, an additional and final mirror is installed inside the laser out
(LO) chamber. It is located behind the spectrometer dipole. The mirror deflects
the laser beam out of the Regae beamline. The main purpose of this setup is
to prevent any and all damage the Angus laser might inflict on the beamline
segment behind LO. Especially potential damage to the sensitive detector system
should by prevented this way.

The detector system D2 at Regae was designed by Hossein Delsim-Hashemi.
Located at z = 10.58 m, it marks the end of the beamline. A FOS of the same
format as installed at the spectrometer is used at D2, i.e. the active area is equal
to 47× 47 mm2. The orientation of the FOS is perpendicular to the beam axis
and the scintillation light, as it is the case at the other diagnostic setups, is
deflected by 90 deg towards the camera. At this specific setup, an Andor iXon
888 camera model is installed. A comparison of the basic properties between
both Andor iXon 885 and Andor iXon 888 camera models can be found in table
3.1. Cooling is applied to reach an operation temperature of −70 °C, at which a
quantum efficiency of approximately 0.925 is achieved. Here the term “quantum
efficiency” denotes the ratio between the number of charge carriers collected by
the device and the number of incident photons. Quantum efficiency can hence
be used to indicate the detector’s sensitivity to light. It should be noted that the
quantum efficiency strongly depends on the wavelength of the incident photons.
For the Andor iXon 888 camera, the quantum efficiency reaches it maximum
at a wavelength of 540 nm, which is in accordance with the scintillation light
generated by the scintillation material of the FOS [77].

As a precautionary measure, a lead shielding is placed in front of the camera to
block any scattered high-energy photons that might originate from the beginning
of the beamline. Moreover, the detector setup has been optimized to achieve
an exceptionally high charge sensitivity while retaining a reasonable spatial
resolution. Previous tests performed with this detector setup have confirmed
the ability to detect single electrons [78]. Details regarding the efficiency of the
detector system can be found in [79].

Photons generated by the FOS placed in the propagation path of the electron
beam, i.e. scintillation light, is deflected by a mirror onto the CCD chip where it
excites an electron. The quantum efficiency of the chip material, as described in
the section above, is the governing limitation of this process. Each row of pixels
is then read out pixel by pixel and the signal is digitalized in an analog-digital
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converter to 14-bit or 16-bit as specified by the user. It should be noted that if
the EM gain is activated, the amplification of the signal is carried out before its
digitalization. This has the advantage of avoiding an increase of readout noise by
the applied EM gain, which would occur if the signal amplification took place in
the analog-digital converter.

In order to reduce noise from thermal excitation on the CCD chip, a form of
cooling is necessary. Therefore, the chip is mounted on a thermoelectric cooler.
This enables the chip to be cooled down via the thermoelectric effect [80]. The
cooler has a cold end and a hot end, from where the heat is dissipated either
via air cooling in form of a fan or water cooling, with which temperatures down
to −95 °C can be reached. At Regae, air cooling to −70 °C is sufficient. The
CCD chip is mounted inside a vacuum housing. The incoming photons enter the
housing through a window equipped with an anti-reflection coating to reduce
losses in intensity.

It has previously been shown that due to the high sensitivity of the Andor
camera, the main sources of noise are shot noise of the signal and background
[79]. The consequent image processing technique is described in section 4.2.2 and
is partially based on previous work presented in [79].



4 B U N C H L E N GT H M E A S U R E M E N T S
W I T H T H E R E G A E T D S

The longitudinal parameters of a particle bunch, for example the bunch length,
are a crucial piece of information with respect to operating a particle accelerator
and related experiments. Transverse deflecting structures constitute a possible
diagnostic device in order to investigate the longitudinal phase space of charged
particle beams. By shearing the particle bunch, a TDS effectively maps the
longitudinal coordinate to a transverse coordinate, which can then easily be
measured with the help of a scintillator screen. The versatility of a TDS is
complemented by the ability to perform single-shot bunch length measurements
at a high longitudinal resolution. For these reasons, deflecting structures are a
commonly used device for longitudinal phase space diagnostics.

In order to cope with the high quality electron beam of the Regae accelerator, a
unique TDS has been specifically designed for the beamline [9]. The fundamental
considerations which ultimately lead to the cavity design are discussed in the
following section and based on [44]. The TDS was installed at the Regae beamline
in 2018.

The general operation of the TDS and the subsequent measurement procedure
in outlined in detail in section 4.2, along with the typical machine setup process.
This includes the calibration of the structure in order to determine the shear
parameter, which is required for the bunch length reconstruction. Experimental
results of bunch length measurements for an uncompressed electron bunch and
for the ballistic bunching mechanism are presented in section 4.3.3 and 4.3.4,
respectively.

4.1 design of the regae tds

The transverse rf deflecting cavity at Regae has been installed with the primary
objective of performing diagnostic measurements of the longitudinal parameters
of the electron bunch. It is the first TDS to have been developed and optimized for
bunch rotation [9]. The cavity is characterized by a minimized level of aberrations
in the field distribution along with an improvement in rf efficiency [43]. The
following contains basic considerations regarding the unique design of the Regae

TDS and is based on [44].
Generally speaking, there are a number of parameters which were of particular

interest in context of design considerations (and limitations) of the Regae TDS.
First and foremost, it must be mentioned that the Regae accelerator is capable
of producing a particle beam with very small emittance values. From an experi-
mental standpoint, it is of interest to preserve the beam quality. In other words,
the emittance growth induced by the TDS itself should be reduced as much as
reasonably possible. Furthermore, attention must be drawn to the fact that the
Regae beamline is typically operated at cavity settings which provide mean beam

37
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energies in the range of 3 to 5 MeV, i.e. |~v| < c. The longitudinal motion of the
electrons within the bunch must also be considered upon passage through the
TDS.

Last but not least, the power source of the cavity is a decisive factor, as this
dictates the strength of the shear parameter S and thus directly impacts the
resolution of the structure. A distinct feature of the TDS at the Regae beamline is
the fact that it is driven only by an amplifier and not by a separate modulator.
On the one hand, this typically implies a smaller rf power and therefore a smaller
shear parameter during operation of the TDS. On the other hand, substituting a
potentially expensive modulator setup and associated waveguide system with a
comparatively cheap amplifier greatly reduces financial expenditures. The ampli-
fier used for the TDS can provide an output power of P0 = 5 kW, which produces
an effective deflecting voltage of V0 = 190 kV in the structure. Furthermore, the
cavity has a shunt impedance of ZTDS = 7.58 MΩ and a calculated quality factor
of QTDS = 12550 [9].

Following the explanation presented in section 2.3.1, for the sake of longitudinal
diagnostics a TDS is typically operated at a phase where the central particle of
the bunch does not experience any deflection. While this is reflected in the
derivations presented in the aforementioned section, it must be noted that this
is a purely idealized case. In reality, the central particle will generally exit the
TDS with a transverse offset and/or angle and it is not possible to counteract
this by operating the cavity at a respective phase [44, 81]. Several reasons can be
identified for this behavior.

In a periodic standing wave TDS, where the transverse fields in first order can
be expressed by the fundamental spatial harmonics

Ey(z, t) =E0 sin(kz) cos(ωt + ϕ)

Bx(z, t) =− B0 cos(kz) sin(ωt + ϕ)
(4.1)

with the wave number k, angular frequency ω and amplitudes B0 and E0, the
electrons of the bunch interact with the counterpropagating wave, which leads to
an offset

∆y =
e(E0 + cβzB0) cos(2kz0)

4ckpz
LTDS (4.2)

for an electron propagating with matched energy through the TDS [44]. In the
above equation, LTDS denotes the length of the deflecting structure, pz and βz are
the longitudinal momentum and normalized velocity and the integration constant
z0 is chosen to satisfy py = 0 and corresponds to the entrance of the cavity. The
offset as written in equation 4.2 is not present in traveling wave structures.

Higher spatial harmonics pose an additional contribution to transverse kicks at
the entrance and exit of the TDS and therefore lead to transverse oscillations of
particles in the bunch [42, 82]. The transverse oscillations of a particle, induced by
the counterpropagating wave and higher spatial harmonics, lead to a reduction
of the longitudinal component of the particle’s velocity. This in turn causes phase
slippage between the particle and the rf wave. The resulting phase difference
leads to an additional offset, which can be written as

∆y =
eV0L2

TDS
12pzc

∂ϕ

∂z
=

eV0k0(βm − βz)

12pzc
L2

TDS, (4.3)
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where ∂ϕ
∂z = k0(βm − β0) describes the differential phase deviation for a structure

matched to βm and k0 denotes the wave number in vacuum [44]. Naturally, this
contribution vanishes if the TDS is matched to the velocity of the electrons.

Due to the fact that the Regae beamline provides beam energies in the order of
a few MeV, the longitudinal motion of the particles must also be considered. For
a particle traveling through the TDS with a transverse offset ∆y with respect to
the reference particle propagating along the axis of the structure, the resulting
longitudinal shift can be calculated similar to equation 2.39:

∆ζ(z) =
∫ z

z0

∆β(∆y, z′)
β

dz′. (4.4)

In the above equation, ∆β(∆y, z) denotes the velocity difference between the two
particles. In first order, this expression can be formulated as

∆ζ(z) =
∫ z

z0

1
β

∂β

∂γ
∆γ(∆y, z′)dz′ =

∫ z

z0

∆E(∆y, z′)
cpβγ2 dz′, (4.5)

where ∆E(∆y, z) describes the energy difference. According to [44], the integral
can be computed to yield

∆ζ(z) = − ekV0∆yz2

2cpβγ2LTDS
(4.6)

for z ∈ [0, LTDS] if the TDS is operated at the zero-crossing phase. For simplicity,
the entrance of the TDS has been chosen as z0 = 0. Thus, after passage through
the TDS, the bunch length has increased according to

ζRMS =

√
ζ2

0,RMS +

(
eV0kLTDSyRMS

cpzβγ2

)2

, (4.7)

where ζ2
0,RMS denotes the unperturbed bunch length and the second term in the

square root portrays the bunch lengthening effect ascribable to the longitudinal
particle motion within the TDS. The shift itself along the longitudinal axis depends
on the transverse offset ∆y relative to an on axis particle. As a result of the bunch
lengthening effect, the transverse momentum in streaking direction receives a
further contribution dependent on the transverse position of the particle [44].
This means that the electron bunch experiences transverse defocusing.

Another key aspect is the fact that a longitudinal field gradient arises from the
transverse fields in a TDS (see equation 4.1) as a result of Maxwell’s equation
~∇× ~E(~r, t) = −∂t~B(~r, t). While this field gradient can be set to zero on the central
axis, the particles traveling through the structure with an offset in streaking
direction induce an uncorrelated energy spread ERMS,u according to

ERMS,u = ekV0yRMS (4.8)

if the structure is operated at the zero-crossing phase [8]. Since the uncorrelated
energy spread exhibits the same dependencies as the inverse longitudinal resolu-
tion 1/Rz as derived in section 2.3.2, there is no free parameter left optimization
in term of the cavity design [44]. In addition to this, a linear correlated energy
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spread is also induced if the transverse particle motion during passage through
the TDS is considered. For a structure operated at zero-crossing, a correlated
energy spread ERMS,c written as

ERMS,c =
e2k2V2

0 ζRMSLTDS

6cpz
(4.9)

is built up in the TDS [8].
A shorter deflecting structure is advantageous to minimize the unwanted effects

listed above, since all (except for the induced uncorrelated energy spread) scale
with the length of the TDS. However, one critical drawback of shorter structures is
the established fact that the efficiency regarding the necessary rf power to produce
the deflecting field is reduced in comparison to structures of larger length [82].
This problem becomes particularly pronounced for deflecting structures operated
in traveling wave mode, where the rf wave is subject to attenuation as a result
of power dissipation in the boundary walls of the structure. For an S-band
cavity such as the TDS installed at Regae, operation in standing wave mode is
considered to be more effective.

Taking this into consideration, the TDS at Regae was designed to satisfy the
following conditions [9]:

1. the length of the structure should be kept small, while providing

2. a linear deflecting field with

3. high rf efficiency.

At this point, some further remarks regarding the description of the deflecting
fields are in order. Ultimately, an electromagnetic field in vacuum is characterized
by Maxwell’s equations

~∇~E(~r, t) = 0
~∇~B(~r, t) = 0

~∇× ~E(~r, t) = −∂~B(~r, t)
∂t

~∇× ~B(~r, t) = ε0µ0
∂~E(~r, t)

∂t
.

(4.10)

Two independent variables are needed to give a complete description of the field
distribution. It is common practice to select the longitudinal components of the
electric and magnetic field for this purpose. Based on the assumption that the
time-dependence is proportional to exp(iωt), the relations

∂2Er

∂z2 + k2Er =
∂2Ez

∂r∂z
− iωn

r
Bz

∂2Eθ

∂z2 + k2Eθ = −
n
r

∂Ez

∂z
+ iω

∂Bz

∂r
∂2Br

∂z2 + k2Br = −
ikn
cr
Ez +

∂2Bz

∂r∂z
∂2Bθ

∂z2 + k2Bθ = −
ik
c

∂Ez

∂r
+

n
r

∂Bz

∂z

(4.11)
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can be deduced from Maxwell’s equations written in cylindrical coordinates
(r, θ, z) with {Ez, Er, Bθ} ∝ cos(nθ) and {Bz, Br, Eθ} ∝ sin(nθ) [45]. This field
description in terms of transverse electric and magnetic waves (TE and TM) is
commonly encountered in the literature [25, 83]. A general discussion on the
representation of fields in vacuum with cylindrical symmetry can be found in
[84].

It has previously been established that the exclusive use of the TE-TM basis
is not feasible for the description of transverse deflecting structures [44, 82].
To overcome this problem, a new hybrid basis with hybrid electric and hybrid
magnetic (HE and HM) waves was introduced [84, 85]. Compared to the TE-TM
basis, one major difference is that the longitudinal field components Ez and Bz

now depend on each other. In the HE-HM basis, the fields in a TDS can be
described by a superposition of HE and HM waves of the form

~E(~r, t) = a~EHE(~r, t) + b~EHM(~r, t)
~B(~r, t) = a~BHE(~r, t) + b~BHM(~r, t),

(4.12)

where the coefficients of the superposition are essentially defined by the geometry
of the TDS.

For relativistic particles with βz → 1, the deflecting force from the main spatial
harmonic in a TDS is constant. This simplification was the basis for the derivations
in section 2.3.1. Additional nonlinear components arise for the general solution
of the deflecting fields, which have been discussed in [44]. The primary origin of
nonlinearities in the transverse components are higher spatial harmonics. For a
TDS which deflects particles along the vertical y-axis, the transverse components
of the force for the nth spatial harmonic in the vicinity of the z-axis are given by

Fx,n ≈
ekn(an + bn)ẽz,n

2

(
k4

n(x3y + xy3) + . . .
)

Fy,n ≈
ekn(an + bn)ẽz,n

2

(
1 +

k2
n(x2 + y2)

4
+ . . .

)
,

(4.13)

where ẽz,n denotes the longitudinal field component and an and bn correspond to
the coefficients as defined in equation 4.12. The wave vector k is connected to kn

via the relations

k2
n = |k2

z,n − k2| and kz,n =
k(ψ0 + 2πn)

βzψ0
(4.14)

with ψ0 as the phase advance at which the TDS is operated.
From equation 4.13 it follows that the contributions from higher harmonics

vanish only for an ' −bn. In a “conventional” disk-loaded waveguide structure,
such as the LOLA TDS [40], higher harmonics can be effectively reduced by
increasing the aperture of the iris [43], which balances the HE and HM compo-
nents in equation 4.12. Unfortunately, the radius of the iris aperture is effectively
the only degree of freedom that can be optimized in a disk-loaded waveguide
structure, and while the increase does lead to a ' −b, it also causes a loss in rf
efficiency.

In order to preserve a high efficiency while attempting to balance the field
components, the control of the rf parameters of the TDS needs to be decoupled
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Figure 4.1: Technical drawing of the deflecting structure with minimal level of aberra-
tions. The interior of the cavity can be seen.

from the control of the field distribution inside the TDS [86]. This requires the
development of structures with a more complex layout.

Ultimately, the design of the decoupled Regae TDS is a result of these con-
siderations regarding efficiency and linearity of the electromagnetic fields, i.e. a
minimal level of aberrations [9]. A technical drawing of the TDS is shown in
figure 4.1. In contrast to a disk-loaded waveguide structure with a round iris in
the center, the shape of the aperture in the Regae TDS is more complex. The
circular outline of the iris is “disturbed” by a protruding section of material. In
a decoupled structure, the deflecting field depends on the combination of the
unperturbed aperture radius and on the effective window radius between the
protruding sections.

The unique cell design of the Regae TDS is depicted in figure 4.2, where a
single cell of the deflecting structure can be seen. More specifically, one of the
three regular cells is shown. The beam axis matches the cylinder axis through the
center of the aperture. In order to meet the three conditions listed above, extensive
numerical simulations and modifications of the properties of the aperture have
been performed previously [87].

Naturally, the sophisticated cell design poses more difficulties to the machining
of the structure as compared to a LOLA-type TDS. This comes as the price for the
improved rf efficiency. In order to evaluate and select an appropriate machining
technology, a number of test cells were manufactured. The production took place
at the Center for the Advancement of Natural Discoveries using Light Emission
(Candle) in Armenia [88]. Further details regarding the results obtained with
the test cells, further design properties of the structure and of the cavity rf probes
can be found in the technical report [87].

Following the satisfactory results provided by the test cells, the actual copper
cells of the TDS were manufactured [87]. One such cell can be seen in figure
4.2. The cavity was brazed and tuned to a frequency of 2.998 MHz. A picture of
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Figure 4.2: Picture of a cell of the Regae TDS. The particular shape of the aperture can
be seen.

TDS property Value

νTDS [GHz] 2.998

LTDS [mm] 270

P0 [kW] 5

V0 [kV] 190

QTDS (calculated) 12550

ZTDS [MΩ] 7.58

Table 4.1: Overview of cavity design parameters of the Regae TDS; table adapted from
[9].

the TDS after brazing can be seen in figure 4.3. The larger flange located on the
central axis of the TDS connects the structure to the beam pipe. The rf probe is
inserted via the small flange as seen at the top of the image.

Moreover, table 4.1 lists the main parameters of the deflecting structure. The
TDS consists of three regular cells and two end cells at the entrance and exit of
the cavity. Installation of the deflecting structure into the Regae beamline took
place in course of the extensive beamline upgrade as described in section 3.2.2
with support from the Desy vacuum group [89]. A picture showing the installed
TDS can be seen in figure 4.4.

For the purpose of further classifying the Regae TDS and putting its unique
design into perspective, it is helpful to compare the structure operated at Regae

to different transverse deflecting cavities installed at other research facilities.
As previously mentioned, iris-loaded transverse deflecting rf cavities were first
constructed at Slac in the 1960s. This particular type of cavity is commonly
referred to as LOLA-type structure, owing chiefly to the names of its inventors
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Figure 4.3: Image of the brazed deflecting cavity before installation into the Regae

beamline.

Figure 4.4: Side view of the transverse deflecting structure after installation into the
Regae beamline as part of the beamline upgrade. The electrons propagate
from left to right. The entrance flange of the TDS is connected to the target
chamber, part of which can be seen on the left side of the image. The exit
flange of the TDS is connected to the QSQ diagnostic cross. A steerer magnet
is clamped over the exit flange and can be seen on the right side of the image.
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G. A. Loew, R. R. Larsen and O. A. Altenmueller [38]. A prime example for a
LOLA-type structure is the TDS currently installed in the Flash linear accelerator
as part of collaboration between Desy and Slac [40, 90]. This TDS is a normal
conducting rf structure consisting of copper and was originally built at SLAC
in 1968 and transferred to the Flash beamline in 2003 [91]. It has a total length
of LTDS = 3.64 m, which is larger by more than a factor of ∼ 10 compared to
the Regae TDS with LTDS = 0.27 m. The structure is comprised of a number of
cylindrical copper cells, each measuring 3.5 cm in length.

This TDS is a disk-loaded structure with an iris radius of 2.24 cm and a disk
thickness of 0.58 cm. Essentially, the design of the structure was dictated by
the objective to achieve a phase velocity of the fundamental spatial harmonic
equal to c [92]. Similar to the Regae TDS, the LOLA TDS is operated in the
S-band frequency range, but at a value of ν = 2.856 GHz, which is lower than
the frequency used at Regae (ν = 2.998 GHz). It should be noted that the design
frequency could not be matched to a multiple of the Flash master oscillator, since
the LOLA-TDS was originally constructed for a different accelerator. Because of
this, the operating temperature of the cavity was adapted in order to slightly shift
the resonance frequency and thus enable synchronization [93].

As suggested earlier in this section, a distinct feature of the Regae TDS is the
absence of a costly dedicated rf system. The rf pulses for the LOLA-TDS at Flash

are generated in a separate modulator. After amplification by a klystron, the rf
pulse is subsequently transported through a waveguide system spanning a total
length of approximately 75 m. The waveguide system is operated at the same
temperature as the TDS. The maximum input power is equal to 25 MW, which
produces a deflecting voltage of ≈ 29 MV [8]. The rf input power at the Regae

TDS is only 5 kW1. Moreover, the typical mean beam energy at the position of
the LOLA-TDS at Flash is equal to 〈E〉 = 500 MeV, which is again higher than
a factor of ∼ 10 compared to the typical mean beam energies measured at the
Regae beamline. Despite the fact that there are nonlinear terms in the deflecting
force arising due to β < 1, these additions are proportional to 1/(β2γ2) and are
thus suppressed for higher energies [82]. However, the nonlinearities resulting
from higher spatial harmonics are in principle still present. These unwanted
perturbations are eliminated by the concrete design of the LOLA-TDS. More
specifically, the iris radius has been adapted to satisfy a ' −b (see equation
4.12). The consequent reduction of the rf efficiency is remedied by the high input
power available for the operation of the TDS. An overview of the main LOLA
TDS parameters is given in table 4.2.

A novel type of transverse deflecting rf structure allows the user to arbitrarily
select the streaking direction. Cavities of this type are referred to as PolariX TDS
and are operated in the X-band frequency range (ν ≈ 12 GHz). Originally, the
PolariX was designed for the Compact Linear Collider (Clic) at Cern [94]. Further
developments of the structure were carried out in a collaboration between Desy,
Clic and the Paul Scherrer Institut (Psi) located in Switzerland [95]. Such cavities
are (planned to be) installed at various accelerator beamlines, such as Flash2

1 The amplifier has recently been replaced by a model providing up to 10 kW.
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TDS property Value

νTDS [GHz] 2.856

LTDS [m] 3.64

P0 [MW] 25

V0 [MV] 29

Table 4.2: Overview of cavity parameters of the LOLA TDS installed at the Flash

beamline [93].

and FlashForward [96, 97], SwissFEL [98] and at the Accelerator Research
Experiment at Sinbad

2 [99, 100].
With the PolariX TDS, it is possible to arbitrarily adjust the polarization of the

deflecting field. Thus, the direction in which the streaking of the TDS takes place
can be altered at will. This unique feature enables experimental access to a number
of bunch properties, such as the reconstruction of the three-dimensional charge
distribution [101, 102] and slice emittance measurements carried out in both
transverse planes (using the same deflecting structure) [103]. A characterization
of the complete six-dimensional phase space can be achieved. It should be noted
that these feats cannot be accomplished with a conventional LOLA-type TDS.

The Flash facility contains a total of three PolariX structures. While the
Flash2 beamline features two structures, each measuring 0.96 m in length, the
FlashForward beamline is equipped with only one PolariX TDS. In principle,
the PolariX TDS also belongs to the category of disk-loaded structures; the iris
radius is equal to 4 mm with a disk thickness of 2.6 mm. It should be noted that
the deflecting structures at both beamlines share the same rf power source, which
means that simultaneous operation of the PolariX structures at both beamlines
is currently not possible. The rf pulse generated by a dedicated modulator and
amplified by a klystron reaches an output power of 6 MW. At Flash2, klystron
and PolariX structures are connected by a waveguide of 5 m length. The expected
deflecting voltage amounts to ≈ 34 MV. The maximum deflecting voltage at
FlashForward is again slightly reduced due to waveguide losses and roughly
≈ 10 MV. As is the case with the conventional LOLA-type TDS, the reduced rf
efficiency can be ignored due to the high input power, which again comes with
the cost of a dedicated modulator, klystron and waveguide system.

4.2 measurement procedure and data analysis

This section includes a detailed description of the experimental procedure and
the subsequent analysis of the bunch length measurements performed with the
TDS at Regae. The reliable execution of high-precision measurements places
requirements on the beam properties of the accelerator. Therefore, some general
considerations regarding the desired beam parameters and the operation of the
machine to meet these demands will be discussed before addressing the core
results of the bunch length measurements with the TDS.

2 Short and Innovative Bunches at Desy.
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Upon passage through the TDS, the electron bunch receives an additional
contribution to the transverse component of its momentum. At this specific
beamline, the orientation of the TDS is such that the shearing is carried out in
the vertical direction, which means that the TDS exerts a vertical kick on the
particles in the bunch. Essentially, this vertical kick is translated into a vertical
displacement of the electrons during the drift segment behind the structure, and
the generated vertical offset depends on the longitudinal position of the particle
within the bunch. To measure this, the electron beam needs to be imaged on a
screen by use of an appropriate electron beam optics.

For experimental purposes, it is advantageous to manipulate the beam pa-
rameters in such a way that the effect the TDS has on the bunch is maximized.
Hence the initial divergence of the bunch as it enters the structure should be kept
minimal; beam size itself should be large [44]. With appropriate beam optics,
the additional transverse momentum kick imparted by the TDS is converted to a
certain finite (vertical) extent on a detector screen.

In summary, the ratio of the “stretched” vertical beam size, i.e. when the TDS is
switched on, to the unperturbed beam size when the TDS is switched off should
be at its maximum. One possible way of implementing this criterion is by use
of a solenoid to focus the beam and thus tune the phase advance between the
TDS and the detector to be equal to 90 degrees. As derived in section 2.3.2, this
optimizes the achievable bunch length resolution of the measurement setup with
the deflecting structure. In this case, the resolution can be written as [44]

Rz =
εy

y0,RMSK
, (4.15)

where εy denotes the vertical geometrical beam emittance, y0,RMS denotes the
vertical beam size in the TDS and the parameter K corresponds to the angle
induced by the TDS per unit length as defined in section 2.3.1. Therefore, it is
desirable to find machine settings which provide a beam with low transverse
emittance and a relatively large beam size of approximately 0.5 mm [44].

4.2.1 Machine Setup Procedure

Some basic considerations regarding favorable machine settings and the proce-
dure for setting up the machine for measurements will briefly be discussed.

The first step is the alignment of the UV laser on the cathode. For this purpose,
the general approach is to apply a relatively low field gradient of 30 MV/m in
the gun cavity. The reason for this is the fact that, as experience has shown,
the beam can be imaged well on the nearest scintillator screen at this particular
setting, as well as the absence of dark current at such low gradients. Moreover,
all magnets are switched off to reduce any perturbations caused by the magnetic
fields. The resulting electron beam can be imaged at the first diagnostic cross
DDC1 (see section 3.1 for a description of the Regae front-end). By turning the
last motorized mirror of the UV laser section, the position of the laser beam on
the cathode can be adjusted, which translates to a shift of the electron beam at
DDC1. If the laser beam is aligned on the cathode, changing the phase or gradient
of the gun cavity yields no significant change in electron beam position on the
scintillator screen.
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Figure 4.5: Kinetic energy gain 〈E〉 in the gun cavity in dependency of the gun phase φg
for a peak gradient of Eg = 80 MV/m simulated with Astra. The net energy
gain is maximized at φg = 0 deg. The strong phase slippage in the gun cavity
is responsible for the curious shape of the curve.

Next, a configuration of magnet settings must be determined to guide the
beam through the accelerator beamline. The field gradient in the gun cavity
was set to Eg = 80 MV/m to allow stable operation conditions. It should be
noted that a calibration of the gun gradient has been carried out by performing
an energy-phase-scan at the spectrometer prior to the experiments. Given the
assumption that the rf system remains unchanged, the calibration is valid at all
times and was therefore not repeated for each measurement. Similarly, a phase
scan of the gun where the charge measured with a DaMon device was performed.
Details on the calibration and the rf system can be found in [79].

Figure 4.5 shows an Astra simulation of the kinetic energy 〈E〉 of the electron
beam gained in the gun cavity as a function of the gun phase φg for the standard
operating gradient of Eg = 80 MV/m. Due to the fact that the kinetic energy of
the electrons upon release from the cathode material is nearly zero, the bunch
experiences phase slippage with respect to the rf field. These phase slippage
effects account for the particular profile of the curve. The phase value φg = 0
denotes the phase where the energy gain reaches its maximum. During operation,
the phase of maximum energy gain was determined using the dipole spectrometer.
As long as the decisive laser and rf parameters do not change, this phase value
remains constant.

Upon exiting the gun, the electron beam displays a large divergence. It is
therefore necessary to operate the first solenoid almost at maximum field strength
in order to “capture” the electrons and ensure propagation free of clipping on any
of the elements located in the beamline3. In practice, a current of typically 8 A was
sent through the magnet, which corresponds to a peak field of 170 mT. Solenoid
2/3 is required to reduce the divergence even further and can be used to set the
size of the electron beam inside the TDS. The beam size can be measured with the
FOS at the QSQ diagnostic cross. While the image on the scintillator technically
reflects the bunch properties at QSQ and not directly inside the TDS, it must

3 A low field strength resulted in a larger beam size, which in turn often lead to clipping of the
electron beam on the in-vacuum mirror of the cathode laser.
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be mentioned that the TDS and QSQ are separated by a distance of only 73 mm
(measured from the TDS exit flange to the QSQ scintillator screen). Hence the
change in beam size between these two elements is negligible and therefore the
beam size in the TDS is assumed to be equal to the beam size measured at QSQ
in good approximation. The various dipole steerer magnets are used to guide the
electron beam along the desired beam axis. For bunch length measurements, the
electron beam should be aligned in such a way that it traverses the TDS along
its central axis. A vertical shift from this axis in the TDS, for instance, leads to
an alteration of the beam energy. Utilization of steerer pairs in front of the TDS
enables the alignment of the electron beam so that no energy gain or loss is visible
when the TDS is switched on, which means that the beam propagates through
the deflecting structure without vertical offset from the axis.

In the beamline segment behind the deflecting cavity, deployment of the steerer
magnets is helpful to center the beam on the detector screens. Furthermore,
solenoid 6/7 is used to optimize the phase advance between TDS and detector.
As explained above, the desired phase advance is equal to 90 deg.

Once the beam axis through the Regae front-end has been defined and an
according magnet configuration has been established, collimators can be driven
into the beamline to reduce dark current. As described in section 3.1, the Regae

beamline is equipped with two collimators at DDC1 and DDC2. While the
bunch length measurement itself can be carried out without reducing the dark
current, the subsequent processing and evaluation of the images recorded with
the detector is simplified greatly when the dark current has been eliminated or at
least minimized as much as possible.

Lastly, some parameters can be fine-tuned to satisfy the requirements of the
respective measurement. This may include, for example, the adjustment of the
laser power with the attenuator setup in the UV segment of the cathode laser to
obtain a desired charge and potentially reduce space charge effects, since it is
much easier to set up the machine with higher charge and subsequent stronger
signal on the scintillator screens at the diagnostic crosses, and the alignment
of the electron beam through solenoid 6/7 to prevent the electron beam from
vanishing off the edge of the scintillator screen due to a transverse kick received
if not propagating along the magnetic axis of the solenoid.

An exemplary evolution of the transverse beam size along the beamline under
the influence of the solenoids located in the Regae front-end is shown in figure
4.6. Both horizontal and vertical beam sizes have been extracted from an Astra

simulation of an electron bunch of Q = 100 fC charge. The gun cavity and the
two solenoids Sol 1 and Sol 2/3 are the only active elements in the simulation
and have been marked gray and green, respectively. The deflecting structure
has also been marked gray. The purpose of this simulation was to identify
solenoid settings which provide an electron beam with desirable properties at
the position of the TDS, i.e. a transverse beam size of approximately 0.5 mm and
low transverse divergence during propagation through the deflecting structure
[44]. As previously mentioned, the first solenoid is set to 8 A, which produces
a maximum field of 170 mT. The abovementioned simulation has shown that
solenoid 2/3 should yield a peak field of 48 mT to achieve a beam transport as
plotted in figure 4.6.
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Figure 4.6: Astra simulation showing a preferable evolution of the transverse beam size
(of a transverse symmetric electron bunch, i.e. xRMS = yRMS, containing a
total charge of Q = 100 fC) as a function of the longitudinal position z along
the design trajectory. The gun cavity is marked gray and is located at the
beginning of the beamline. The two solenoids Sol 1 and Sol 2/3 are marked
green. While not activated in this simulation, the TDS located at z = 6 m is
also marked gray.

These values obtained from the Astra simulation were used as starting points
for the procedure of setting up the machine for various measurements. After
adjusting the solenoids to their respective values and tuning the steerer magnets
to roughly center the electron beam on the detector screens, the beam size was
evaluated at different positions along the beamline, namely at LD1e, inside
the target chamber using a FOS screen on the central hexapod, at QSQ and at
the D2 detector system. It should be mentioned that an intricate analysis of
the obtained detector images was not performed. Instead, the beam size was
determined during machine operation with help of the Regae camera tool4 by
taking a number of background images5, subtracting these from the beam images
and applying a simple relative intensity cut. This intensity cut merely sets all
pixel values below a given percentage of the maximum pixel value to zero. A
magnet configuration to achieve a desired beam transport was found by tuning
the peak fields of the magnets in an iterative procedure. Solenoid 1 was indeed
set to 170 mT, whereas the peak field of solenoid 2/3 was adapted to 51 mT. This
value deviates only slightly from the simulated value. The final solenoid in the
beamline was used to optimize the phase advance between TDS and detector by
focusing the beam to a small spot.

Naturally, these magnet settings strongly depend on the rf parameters of the
cavities. Measurements performed in context of the linearization strategy require
a different configuration than a “standard” bunch length measurement where the
gun cavity is operated at maximum energy gain. Nevertheless, the machine setup
procedure remains more or less the same and the aforementioned solenoid values
have proven to be extremely useful as a starting point, especially for setting up
the front section of the beamline.

4 The Regae camera tool is a Matlab-based tool created by Max Hachmann.
5 Typically, an average background array was calculated as the mean of ten recorded background

images.
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4.2.2 Image Processing

Essentially, measurements of beam properties can be equated with extracting
relevant information from raw data of a detector device. In the case of the
detectors installed at Regae, where the data is in form of images recorded with
a respective camera (as described towards the end of section 3.2.2), statements
regarding the length of the electron bunch can be made by analyzing the streaked
(and unstreaked) detector images. An appropriate image processing routine is
therefore a crucial element in terms of determining the beam signal within an
image. In order to develop such a routine, the properties of noise and background
present on an image need to be described and understood.

As previously mentioned in section 3.2.2, the images are recorded with Andor
EMCCD cameras installed at the dipole spectrometer and at the D2 detector
setup. While there is intrinsic electric noise in every camera, the EMCCD cameras
at Regae feature several technical aspects which lead to an effective reduction
of noise (see again section 3.2.2 and [79] for details). Moreover, shot to shot
fluctuations in the images are clearly visible. These fluctuations are of statistical
nature and manifest themselves in form of variations in the number of electrons
registered by a certain pixel of the camera chip. This type of noise is referred to
as shot noise.

In addition to this, a detector image contains not only a beam signal from
electrons released due to the UV laser, but also displays a background structure
as a result of unintentionally accelerated electrons from the cavity. As a result of
the residual roughness of the surface on the inner walls of the cavity, the high rf
field gradient gives rise to the emission of electrons. A portion of these electrons
propagates through the accelerator beamline together with the electrons produced
by the laser spot on the cathode and are commonly referred to as dark current.

Typically, the dark current overlaps with the beam signal at the detector. As long
as the assumption that the center of mass of the dark current remains constant
during experiments holds true, it is possible to eliminate the dark current on the
detector images by simply subtracting background images, i.e. camera images
where the photocathode laser has been blocked by a shutter, from the images
containing the beam signal. However, the dark current itself is also dominated
by shot noise. The subtraction of the background causes additional noise on the
images. By taking several images to increase statistics, the noise can be reduced.
The image processing routine must

1. remove the dark current background and

2. determine and isolate the beam signal from the remaining noise

in a reliable way.
The production of electrons via the UV laser on the cathode and via high field

gradients at the inner walls of the cavity can be seen as independent random
events. These processes follow a Poisson distribution

fP(k, λ) =
λk

k!
exp(−λ), (4.16)

where k ∈N can be identified with the number of electrons registered by a pixel
of a detector and λ denotes the expected value and the variance of the distribution.
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The events on each pixel can be associated with a Poisson distribution. Excluding
the small region containing the beam signal, subtracting a background array
from a complete image is equivalent to the subtraction of two images based on a
Poisson distribution. For each single pixel, the result of the subtraction follows
the Skellam distribution

fS(k, λ1, λ2) =

(
λ1

λ2

) k
2

Ik(2
√

λ1λ2) exp(−(λ1 + λ2)), (4.17)

where λ1, λ2 are the expected values of the respective Poisson distributions and
Ik denotes the modified Bessel function of the first kind [104]. In the case of
the Skellam distribution, the expected value is equal to λ1 − λ2, whereas the
variance is given by λ1 + λ2. Since the pixel values for a given pixel on both
images originate from the same source, the assumption λ1 = λ2 = λ should hold
true. This implies that the resulting distribution is centered around zero, which
will be verified shortly.

However, the incorporation of the Skellam distribution in a to the greatest
possible extent automated image processing algorithm is suboptimal. The cal-
culation of the parameters by means of a fit routine is significantly slower than
for a normal distribution, which can be utilized substitutional for the Skellam
distribution if the expected values are large enough: for λ > 30 the underlying
Poisson distribution can be approximated by a normal distribution. For even
higher values of λ, the degree of resemblance between the two distributions
continuously increases. More specifically, the Poisson distribution displays strong
asymmetry for small values of λ. It becomes more symmetric with increasing λ

and can ultimately be approximated by a normal distribution fN written as

fP(k, λ) ≈ fN(k, λ) =
1√
4πλ

exp
(
− (k− λ)2

4λ

)
, (4.18)

where mean and variance are given by µ = 0 and σ2 = 2λ, respectively [105]. The
assumption of high λ is typically fulfilled for the high pixel depths of the 14- and
16-bit images recorded with the Andor cameras. Ultimately, the subtraction of
the background array yields a normally distributed noise array centered around
µ ≈ 0 where a small image region contains the beam signal which accounts for
exceptionally high pixel values.

It should be pointed out that this is only a valid approximation as long as the
individual pixel values λk of all k pixels do not differ significantly from each
other with exception of the beam signal, i.e. apart from the beam there should
be no other structures visible on the image after background subtraction has
been performed. As a result from shot noise of the dark current and a positional
jitter of the dark current at Regae, a residual structure is typically present in the
background subtracted images. It has previously been empirically determined
that a superposition of two normal distributions is well suited for the description
of the background subtracted image [79].

The respective pixel intensity histogram of an image, after background subtrac-
tion has been carried out, is shown in figure 4.7. Both images have been recorded
at the D2 detector setup. The data points are marked in black and a double
Gaussian fit function is plotted in red. It can clearly be seen that the distribution
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Figure 4.7: Pixel intensity histogram of a background subtracted image recorded at
D2. The data points are shown marked black. A least squares fit using
the superposition of two Gaussian functions has been applied to the noise
distribution and the resulting function is shown in red. The distribution is
centered around zero.

is indeed centered around zero, which confirms that the assumption λ1 = λ2

for (nearly) all pixels in two images ”1” and ”2” (full image and background)
is justified. Upon further inspection it becomes apparent that the data differ
slightly from the the fit function at higher pixel values. This difference is caused
by the beam signal, which accounts for the asymmetry of the data. The noise
distribution itself is assumed to be symmetric around zero. Only data points
below the pixel intensity value of µ + FWHM

2.35 were considered for the fit. The
FWHM of the distribution was calculated as an estimate for the variance of the
Gaussian function and then also used as the initial parameter for the fit.

Shot noise has been identified as the dominant noise source in the image data at
Regae. In order to reduce statistical uncertainties of beam signal and background,
several images with and without beam, i.e. signal and background, are recorded.
This allows for the calculation of the average of the images, which can then be
used for further analysis. Naturally, this approach is only valid if the operating
conditions of the accelerator remain sufficiently stable.

Despite the fact that this is generally the case at Regae, a spatial jitter of the
beam and also of the dark current can clearly be seen on all detector images.
The reasons for this can be manifold. For instance, fluctuations in the electric
currents circulating through the respective magnets can lead to differences in
the generated magnetic field and therefore result in varying deflection of the
beam. Another possible contribution regarding the beam signal is the positional
jitter of the laser beam. While the installed stabilization setup does counter some
unwanted effects such as temperature drifts, small jitters still remain. Instabilities
in the rf system may also be responsible for the jitter of both beam and dark
current. At the time of the measurements presented in this thesis, the desired
variations of 0.01 % in amplitude and 0.01 deg in phase (as specified in section
3.1, see [52] for more details) could not be observed. The stability of the gun rf
system is visualized in figure 4.8, where the deviation of the readback values
from the setpoints of 80 MV/m amplitude and maximum energy gain phase are
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(a) Variation ∆Eg of the gun gradient readback value around the setpoint of 80 MV/m
accumulated over a time frame of one hour.
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(b) Variation ∆φg of the gun phase readback value around the initial setpoint accumu-
lated over a time frame of one hour.

Figure 4.8: Stability of the gun gradient (4.8a) and phase (4.8b). The rf readback values
were accumulated over the course of one hour. The dashed red lines indicate
the respective RMS value.

shown over the course of one hour. The standard deviation of gun gradient and rf
phase is equal to 0.07 MV/m (which corresponds to 0.08 % at a gradient setpoint
of Eg = 80 MV/m) and 0.06 deg, respectively. The buncher cavity was subject to
larger fluctuations of 0.5 % in amplitude and 0.12 deg in phase. Investigations
regarding the stability of the rf and laser systems at Regae and subsequent
improvements are a continuously ongoing process.

The positional jitter of the beam signal poses a problem if the RMS beam sizes
are calculated from the averaged images where summation of the images has
been applied. The variations on the two-dimensional image effectively lead to a
“smearing out” of the beam, which falsely increases the calculated RMS values.
This effect can be reduced, if not completely eliminated, by centering the image
arrays to each other. A variety of methods exist to detect the effective offset
between images. For various images analyzed and presented in the course of
this thesis, the image alignment was performed via cross-correlation. Naturally,
centering the images is not necessary when evaluating single-shot measurements.
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Generally speaking, cross-correlation gives information on the similarity of two
signal arrays plotted against the relative displacement between both arrays [106].
The functional dependency arises from “sliding” the second array over the first
array, which is why cross-correlation is also referred to as sliding dot product.
As long as the main difference between two arrays can be described purely by
displacement, cross-correlation is well suited to detect the existing offset. This
requires that there is

1. no rotation between the images and

2. no significant variation in brightness.

Since the beam intensity is affected by shot noise, the second constraint is only
fulfilled to a certain extent. For large variations in intensity, a type of normal-
ization can be applied to the images prior to calculating the cross-correlation.
However, this was not necessary for the images obtained at Regae.

For reasons of computational efficiency, the convolution of two images was
calculated rather than the cross-correlation. The two quantities are closely related:
cross-correlation is equivalent to convolution where the second image array has
been mirrored. The underlying principle of the utilization of cross-correlation to
detect the translation between two beam signal arrays can be illustrated with the
following example (see figure 4.9): consider two artificial beam signals generated
by a two-dimensional Gaussian distribution with a transverse beam size of
σx = σy = 3 pixels, which is roughly in the order of magnitude of real beam sizes
recorded at the Regae detectors (for a focused beam; see the top left subplot
in figure 4.9). The mean position of the second beam signal has been shifted
by 10 pixels from the first beam signal in the horizontal direction. Taking the
mean of both images (summation and division by number of images) yields a
horizontal beam size of xRMS = 5.83 pixels, which clearly overestimates the actual
beam size. To determine the offset between both images, the self-correlation,
i.e. the cross-correlation of the first image with itself, is calculated (see figure 4.9;
bottom right). In this case, the two-dimensional pixel coordinates where the cross-
correlation reaches its maximum correspond to the center of the image, which
is to be expected for two identical images. However, the maximum coordinates
of the cross-correlation of the first image with the second image are slightly
shifted with respect to the image center (see figure 4.9; top right). The difference
between the maxima is equal to the offset between the two beam signals. Indeed,
shifting the second image by the respective value yields the correct beam size
σx = 3.00 pixels (see figure 4.9; bottom left).

Beam Intensity Cut

After formulation of an adequate theoretical description of noise and possible
centering of the signal arrays, the isolation of the beam signal from the surround-
ing noise on the image still needs to be carried out. In previous measurements
performed at Regae, a distinct halo surrounding the beam has been observed at
D2 at all times. Details on the halo are presented in [79], from which the general
considerations are summarized below.
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Figure 4.9: Illustration of array centering using cross-correlation. On the left side, un-
centered (top) and centered (bottom) image arrays based on the artificial
two-dimensional Gaussian distributions are shown; the top subplot shows the
simple addition of two uncentered Gaussians. The right side shows the self-
correlation (top) of the reference Gaussian and the cross-correlation (bottom)
of both Gaussians. The clearly visible shift in the between the correlations is
equal to the shift between the two input image arrays.

For the unstreaked and focused electron beam, signal and halo on the detector
can be described by the superposition of two Gaussian functions. The fundamen-
tal idea behind the beam intensity cut procedure is to only take the first Gaussian
function (with larger amplitude and smaller width), i.e. the beam signal, into
account. The images in or at least near the focus of the beam are selected due
to the high signal to noise ratio and good performance of the fit. Once the fit to
the horizontal and vertical beam profile has been performed, the beam intensity
Ibeam can be calculated as the integral of the associated Gaussian function

Ibeam =
∫ ∞

−∞
A1 exp

(
− (x− µ1)

2

2σ2
1

)
dx, (4.19)

where A1 is the amplitude and µ1 and σ2
1 are the mean and variance of the

distribution, respectively. The calculated intensity can then be implemented as
a form of quantile Icut in the respective pixel intensity histogram. All pixels
with intensities smaller than Icut are not considered to be part of the beam. This
procedure originates from the work presented in [79].

The effect of the beam intensity cut method is presented in figure 4.10. A
typical detector image of a focused beam recorded with the D2 detector setup
was recreated as a superposition of two Gaussian functions for the beam signal
and halo, respectively. The beam Gaussian was created with a standard deviation
of σx = σy = 10 pixels, whereas the halo Gaussian had a transverse beam size of
σx = σy = 50 pixels. Moreover, the amplitude of the beam Gaussian was set to
be 100 times larger than the halo amplitude. This approximately corresponds
to the halo (and beam) properties observed on real detector images at the D2
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(a) Artificially generated detector image before (left) and after (right) application of
the beam intensity cut routine.
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(b) Exemplary replication of the transverse profile of a Gaussian beam
surrounded by a halo at D2.

Figure 4.10: Illustration of the beam intensity cut routine. Figure 4.10a shows synthetic
detector images before (left) and after (right) image processing. The initial
beam size was set to 10 pixels. The beam intensity cut reconstructs the
RMS beam size with a percent-level precision. The discrepancy depends on
the strength of the halo. Figure 4.10b shows the transverse profile of the
unprocessed image. The Gaussian functions for the beam (red) and halo
(blue) are labeled accordingly. The beam Gaussian was used to calculate the
intensity cut value.
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detector setup6. A noise array based on a normal distribution was also added to
the image. The unprocessed image can be seen in figure 4.10a on the left. Without
the implementation of any type of intensity cut procedure, the transverse beam
size is equal to xRMS = yRMS = 25.47 pixels.

The transverse profile of the image is shown in figure 4.10b, where the two
Gaussian fit functions for the beam, colored in red, and the halo, colored in blue,
can also be seen. Next, the intensity of the beam was calculated by integrating
the beam Gaussian function. In practice this was usually done for both vertical
and horizontal coordinate, and the mean of the the two intensity values was used
for further analysis. The beam intensity was then used to define an intensity cut
value in the pixel intensity histogram. The intensity values of all pixels with fewer
entries than the threshold were set to zero. This marks the last step in the image
processing routine. The processed image is shown on the right side of figure
4.10. Based on a total of 1000 artificial beam samples of the type described above,
input beam size and processed beam size deviate by (4.54± 0.10)%. While the
reconstruction of the RMS value with the beam intensity cut is slightly erroneous,
the deviations are reasonably small and the RMS values are certainly much closer
to the initial beam size than the values calculated from the unprocessed image,
which still contains the beam halo. The deviation written above is included in
all calculated RMS beam sizes presented in the sections below where the beam
intensity cut has been applied.

Naturally, the variance of the beam Gaussian may also be interpreted as beam
size in the specific case where the beam profile can correctly be modeled by a
Gaussian function. However, this circumstance is not always given for both axes
of a detector image. For instance, an image containing a beam signal streaked
along the vertical axis by the TDS may exhibit a Gaussian shape in the horizontal
profile, but the vertical profile, i.e. the profile in streaking direction, will generally
not be describable by a Gaussian function.

Additionally, it should be noted that the difference between initial and recon-
structed beam size is affected by the amplitude of the halo. Observations during
machine operations have lead to the assessment that the beam halo at the dipole
spectrometer appears to be considerably weaker compared to the D2 detector
setup. For smaller halo amplitudes (≈ 500 times smaller with respect to the beam
amplitude), the reconstructed beam size rapidly converges towards the initial
beam size, i.e. the deviations quickly tend towards values below 1 %.

Region Growing Algorithm

A drawback of the beam intensity cut developed in [79], as summarized in the
section above, is the fact that the profile must be described by a function. However,
this function is not necessarily known; and the simple case of an underlying
Gaussian distribution is not always given. If the bunch distribution is not known
and cannot be easily described by a (simple) analytical function, a different
method of image analysis is required.

6 The beam halo at the dipole spectrometer setup appears to be considerably smaller; further
investigations are required.
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Essentially, the isolation of the beam signal from the rest of the image, con-
taining dark current and camera noise, can be expressed as a form of image
segmentation. Generally speaking, image segmentation can be defined as the
process of splitting an image into subsets of pixels grouped together [107]. These
subsets are commonly referred to as image objects. One of many existing image
segmentation methods is region growing.

A form of region growing has previously been utilized in [108] and discussed
in [54]. This region growing algorithm intrinsically confines the region of interest
to an elliptic area in the image. As such, the algorithm provides good results
only when the underlying beam distribution exhibits an elliptical shape on the
detector image.

Due to the fact that the condition of elliptical shape does not apply to some of
the streaked images recorded with the detectors at Regae, a more generalized
method of region growing was implemented [109]. A similar algorithm has been
previously used in [92].

Any seeded region growing algorithm requires an initial pixel as a starting
point from which the object is identified; this pixel is commonly referred to as
seed pixel [109]. In the case of the electron beam images recorded with the Regae

detectors, it is justified to assume that the pixel with maximum intensity belongs
to the beam. Therefore, this pixel can be selected as a reliable seed pixel. In the
next step, the eight neighboring pixels are determined. It should be noted that it
is also possible to disregard the diagonal neighbors, i.e. to only consider the four
nearest neighbors surrounding the seed pixel. For each neighbor the algorithm
determines whether or not the current pixel should be added to the region of
interest. This decision is based on a predefined threshold. If the restrictive
condition is fulfilled, the pixel is added to the region and also added to a list of
pixels to be processed, for which the procedure of determining the neighboring
pixels is repeated. To optimize the efficiency, respective pixels are only processed
once (at maximum).

The intensity threshold itself is based on the noise distribution of the back-
ground subtracted image. From the corresponding pixel intensity histogram
(see figure 4.7 for an example), both mean µ and variance σ2 are calculated.
As deduced in an earlier part of this section, the noise distribution resembles
a peaked Gaussian function and is approximately centered around zero. The
threshold7 was chosen to be µ + 5σ. In the end, all pixel intensities outside of the
region of interest are set to zero.

In cases where the streaked beam displays a large bunch length or energy
spread and is observed at the dipole spectrometer, it covers a comparatively large
portion of the camera image. This causes a rather long computation time for
the region growing algorithm. To mitigate this effect to a reasonable extent, it
is possible to apply binning to the images before applying the region growing
algorithm. In image processing, binning is defined as the combination of a
defined pixel subset into one single pixel. If the pixel subset is chosen to be of
quadratic shape consisting of N×N pixels, a total of N2 pixels are summarized in
one “large” pixel. Thus the number of pixels in the image can be greatly reduced,
which in turn speeds up the analysis procedure. However, large values of N

7 In [92], the threshold was set to 3σ.
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can potentially result in a significant loss of information. Considering the two
aforementioned effects, a pixel length was typically chosen to be in the interval
N ∈ [1, 4] when implemented in the image analysis.

4.3 experimental results

After successful adjustment of the machine settings following the procedure
described in section 4.2.1, bunch length measurements with the TDS can be
carried out. With the image data obtained with the Regae TDS, which streaks the
beam in the vertical direction, the bunch length can be reconstructed according to
equation 2.69. This requires knowledge of the vertical beam size at the detector
with and without the activated TDS. Moreover, the shear parameter S as defined
in section 2.3.1 needs to be determined in order to calculate the bunch length
from the measured beam sizes.

4.3.1 Transverse Emittance Measurement

At Regae, the transverse beam emittance can be reconstructed by means of a
solenoid scan [57]. Figure 4.11 shows the evolution of the transverse beam size
xRMS and yRMS measured at the D2 detector as a function of the solenoid current,
i.e. the focusing strength of solenoid 6/7. The beam intensity cut has been applied.
The emittance can be reconstructed from the coefficients of a fit to the data. The
fit is based on the envelope equation

yRMS =

 M2
11

2M11M12

M2
12


T

·

 c1

c2

c3

 , (4.20)

whereM is the transfer matrix from the solenoid to the D2 detector setup and
the vector components cn are given by

c1 = y2
0,RMS

c2 = y0,RMS · y′0,RMS (4.21)

c3 =
ε2

y

y2
0,RMS

+ (y′0,RMS)
2

where y0,RMS and y′0,RMS denote the RMS beam size and envelope slope at the
entrance of the solenoid [54]. Details on the fit procedure have been previously
studied and analyzed at Regae and are elaborated on in [54, 57, 79].

From the data presented in figure 4.11, the normalized horizontal and vertical
emittance was calculated to be εn,x = (94± 11) nm and εn,y = (97± 6) nm. The
transverse beam size at the position of the solenoid can also be deduced from
the fit parameters and is equal to x0,RMS = (0.550± 0.005)mm and y0,RMS =

(0.463± 0.002)mm, respectively. The fit routine and emittance calculation were
carried out by Max Hachmann.



4.3 experimental results 61

2.0 2.5 3.0 3.5
I67 [A]

0.2

0.4

0.6

x R
M

S,
y R

M
S

[m
m

] yRMS

xRMS

Figure 4.11: Vertical (red) and horizontal (blue) RMS beam size (xRMS and yRMS) as
a function of the solenoid current I67. The transverse emittance can be
reconstructed from the functional dependency between focusing strength of
the solenoid and beam size measured at D2.

4.3.2 TDS Calibration

Due to the fact that precise knowledge of the optical functions inside the TDS
required to calculate the shear parameter using equation 2.68 is generally not at
hand, a different approach is commonly used. The shear parameter is determined
experimentally by performing a phase scan of the TDS, for which the procedure
is outlined below.

After finding a suitable magnet lattice for the TDS measurements, the dipole
magnet was activated to visualize the beam on the spectrometer. Next, the TDS
was switched on. The TDS was aligned in such a way that no net energy gain
was inflicted by the structure. In practice this was verified by recording the
pixel position on the energy axis of the spectrometer camera image without the
TDS, then activating the TDS and adjusting the vertical position with one of the
steerer magnets installed in front of the TDS until the original pixel position was
re-established. The energy of the beam was measured while the beam was on the
spectrometer screen. Furthermore, DaMon1 and DaMon2 served as measurement
devices for the bunch charge. In order to negate energy related jitter and any other
potential perturbations arising from the magnetic field of the dipole spectrometer,
the beam was then directed towards the D2 detector setup by deactivating the
dipole.

In general, the TDS was operated in a mode where the rf phase was adjusted
to a value for which the center of the electron bunch experiences no deflection
from the structure and therefore propagates through the TDS along a straight
line. This principle is visualized with Astra simulations shown in figure 4.12,
where a calculated field map of the TDS was implemented8. The vertical mean
beam offset with respect to the reference orbit is shown as a function of the TDS
rf phase. The full range phase scan with ϕ ∈ [0, 2π] can be seen in figure 4.12a.
A close-up view of the range around the zero-crossing phase is shown in figure
4.12b. The linearity visible in this plot is of crucial importance for the calibration
scan to determine the shear parameter. It should be noted that in principle two

8 The field map was provided by courtesy of K. Flöttmann and V. Paramonov.
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(a) Phase scan of the TDS simulated with Astra. The mean beam
position 〈y〉 behind the structure is shown as a function of the
TDS phase ϕ. There are two phase setpoints where the beam
receives no transverse offset upon passage through the structure.
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(b) Linear regime of the TDS phase scan simulated with Astra.
The linearity is clearly visible.

Figure 4.12: Mean vertical beam offset 〈y〉 as a function of the rf phase ϕ of the TDS
simulated with Astra. Figure 4.12a shows the full range phase scan, while
figure 4.12b shows only the linear regime around the zero-crossing, which
is of special importance in context of the calibration procedure of the TDS.

zero-crossing phases exist, which can clearly be seen in the full range phase
scan. Operation at either of these phases yields identical results regarding the
measured bunch length; the only difference is the sign of the shear parameter
obtained experimentally through the calibration scan. The reconstructed bunch
length is independent of the sign of the shear parameter.

From the calibration scan performed in Astra, the theoretical shear parameter
can be determined from the linear fit to the data. This yields a shear parameter of
Ssim = 12.22 for a deflecting voltage of 190 kV and an optimized phase advance
of ∆ψy = π

2 . In a real cavity, the shear parameter will most likely be reduced
slightly due to misalignment, power losses, field imperfections and various other
deficits such as suboptimal phase advance adjustment. Nevertheless, a shear
parameter of about 10 should be feasible.
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At this point, it should be noted that the streaking direction does not necessarily
correspond to an axis defined by the pixelated camera image.

Generally speaking, the transition from the camera coordinate system to the
coordinate system defined by the TDS is given by a basis transformation. The
pixel coordinates of the camera image form a restricted vector space VB , where B
indicates the canonical basis of the camera image corresponding to the horizontal
and vertical axes of the image. The restriction is given by the fact that the pixel
vector space does not span over R, but rather over Z. The TDS coordinate system
is characterized by a different basis B′. The transformation matrixMB→B′ can
be computed if the basis vectors of B′ are known. For a set of basis vectors B′ =
(~b′1, . . . ,~b′n) of an n-dimensional vector space V, the basis vectors B = (~b1, . . . ,~bn)

can be expressed as a linear combination

~bm =
n

∑
k=1

ckm~b′k (4.22)

with m ∈ [1, n]. The coefficients ckm are summarized in the transformation matrix
MB→B′ . Since the vector space is in fact equal to the coordinate space, albeit with
the imposed restriction, the basis vectors can be written as column vectors. These
vectors can be combined in respective matricesMB andMB′ . In this case, the
transformation matrix is simply given by

MB→B′ =M−1
B′ ·MB . (4.23)

The expression simplifies if B is the canonical basis, in which caseMB→B′ =M−1
B′

holds true.
In order to determine the shear parameter and the tilt between the streaking

direction and the vertical axis of the camera image, a TDS phase scan was
performed in the linear regime characterized in figure 4.12b. Ideally, the beam
centroid only moves along the vertical axis of the camera. In reality, a small
degree of horizontal movement was also observed.

This is depicted in figure 4.13, which shows the evolution of the beam centroid
for a variety of TDS phase settings in the linear regime around the zero-crossing
phase. A total of 20 beam and background images were recorded with the
D2 detector at each setpoint of the TDS rf phase. Subtraction of the averaged
background was carried out for each beam image to eliminate the image structures
resulting from dark current. However, the array centering procedure was not
executed. The reason for this is the fact that one of the images must be selected
as a reference array to which all other images are centered. The positional jitter
visible on the D2 camera image arising from the TDS can potentially lead to a
“bad” choice of reference image, which would then affect the calculated beam
centroid position and thus impact the parameters of the fit function, leading to a
falsification of bothMB→B′ and the shear parameter. To overcome this problem,
the beam position was determined for each beam signal image individually. The
beam positions are plotted with respect to the beam centroid of the unstreaked
beam corresponding to 〈y〉 = 〈x〉 = 0.

For each rf phase setpoint, the mean beam position and variance were calculated
from the individual beam position values obtained from each beam signal image.
A linear fit has been applied to the data and is plotted as a red line in figure
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Figure 4.13: Measured position of the beam centroid on the D2 detector screen for a
variety of TDS phase values. Each data point (black) represents a different
phase setting, for which the mean beam position (〈x〉, 〈y〉) is plotted.

4.13. The measurement results imply that the streaking axis is slightly tilted with
respect to the vertical camera axis, since the beam centroid also performs a small
degree of movement along the horizontal camera axis. Based on the slope of
the linear fit to the measurement data, the angle between the streaking axis and
the axis of the camera image can be calculated. The resulting angle is on the
order of 10 mrad. From this dataset, the transformationMB→B′ can be obtained.
The image arrays can be transformed using a spline interpolation9, after which
the statistical moments of the distribution on the image can be calculated along
the vertical axis of the resulting image array. It should be noted, however, that
the effect of the transformation is usually significantly smaller than shot-to-shot
uncertainties of the measurement data. Nevertheless, a respective correction has
been applied to each image recorded with the TDS at the D2 detector.

In order to reconstruct the bunch length from the obtained image data, a
calibration of the TDS needs to performed. Essentially, the calibration of the TDS
involves the determination of the shear parameter S. As explained in section 2.3.2,
the shear parameter is experimentally accessible by making use of the fact that
the mean beam position in streaking direction depends on the rf phase at which
the deflecting structure is operated. This is a direct consequence of the fact that a
TDS is designed in such a way that the (vertical) position of a particle downstream
of the structure is connected to its longitudinal position upon passage through
the TDS.

The experimental data obtained from performing the calibration scan of the
deflecting structure installed at Regae is summarized in figure 4.14. The plot
shows the mean position 〈y〉 of the electron beam in streaking direction for a
variety of setpoints of the TDS rf phase ϕ. The data points essentially correspond
to the dataset presented in figure 4.13 and are marked black in the plot. The
electron beam had a mean kinetic energy equal to 〈E〉 = 3.667 MeV and contained
a charge of Q = (105.2± 0.8) fC per bunch. A linear fit, marked by the red line,

9 As per the default setting of the respective Scipy python module used for the rotation, a spline
interpolation of the third order was generally used [110].
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Figure 4.14: Linear fit (red) to the data (black) from the calibration scan. The mean
vertical beam position 〈y〉 at the D2 detector setup is shown as a function of
the TDS phase ϕ with respect to the zero-crossing phase ϕ0.

has been applied to the data, from which the shear parameter can be reconstructed.
It can clearly be seen that the data are well described by a linear function.

As derived in section 2.3.2, the vertical mean beam position 〈yd〉 measured with
the detector and the rf phase ϕ of the deflecting structure are linked by a linear
relation of the form 〈yd〉 = aϕ+ b with a, b ∈ R. The shear parameter S of the TDS
can be calculated from the slope of the linear fit according to equation 2.74. The
slope of the fit depicted in figure 4.14 is equal to a = (76.77± 1.42) pixels

deg . Plugging
in the calibration of the screen at the D2 detector setup, where 1 pixel = 36.40 µm,
yields a = (2.79± 0.05) mm

deg . The resulting shear parameter of the TDS for this
machine setting for 〈E〉 = 3.667 MeV is equal to S = 10.14± 0.19.

It should be noted that the procedure of determining the shear parameter from
a linear fit only works as long as the mean vertical beam offset measured on the
detector and the the rf phase of the TDS exhibit a linear correlation. Essentially,
this means that the phase interval in which the calibration scan is performed
should be confined to a small range around the zero-crossing phase where
the vertical deflection is equal to zero. Experiences gathered during machine
operation with the TDS have shown that a calibration scan where the TDS phase
is varied in 0.5 deg steps within an interval [ϕ0 −∆ϕ, ϕ0 + ∆ϕ] around the zero-
crossing phase ϕ0 with ∆ϕ = 2 deg is feasible in most cases. The data of the
calibration scan shown in figure 4.14 exemplifies this.

4.3.3 Bunch Length Measurement

In the previous section, the procedure for experimentally determining the shear
parameter was described and the obtained results were presented. The calibration
of the TDS, i.e. the shear parameter, has been measured and is equal to S =

10.14± 0.19.
The bunch length can be reconstructed with the help of equation 2.3.2. This is

possible because all required input quantities are known: the shear parameter has
been calculated from the data obtained during the calibration scan and the beam
sizes yRMS and yRMS,off have been measured with the EMCCD camera installed at



66 bunch length measurements with the regae tds

0 500

0

500

0 500
0.0 0.2 0.4 0.6 0.8 1.0x [pixels]

0.0

0.2

0.4

0.6

0.8

1.0

y
[p

ix
el

s]

101

102

103

Pi
xe

li
nt

en
si

ty
[a

.u
.]

Figure 4.15: Camera images of the unstreaked (left) and streaked (right) electron beam
recorded at the D2 detector setup. The shearing effect of the TDS along the
vertical direction is clearly visible.

the D2 detector setup. Exemplary images showing the streaked and unstreaked
electron beam are shown in figure 4.15. The effect of the TDS, which shears the
bunch along the vertical axis, can clearly be distinguished upon comparison to
the unstreaked image.

A total of 20 beam and background images were used for the reconstruction
of the bunch length. After background subtraction, the unstreaked images were
utilized as a basis for the beam intensity cut procedure, since the beam profile in
streaking direction of the streaked images did not display a Gaussian shape. From
each beam signal image, the beam intensity was calculated from the underlying
Gaussian function. The beam intensity for each shot can be seen in figure 4.16.
The error bars arise from the fact that each beam intensity value was calculated
as the mean based on the fit functions to the beam profile in both horizontal
and vertical direction. Taking only the intensity values depicted in figure 4.16

into account, the beam intensity exhibits a relative fluctuation of 1.35 % around
the mean. This is on the same order of magnitude as the relative fluctuation of
the bunch charge measured with DaMon1, which is equal to 1.13 %. Since these
fluctuations are only on the level of 1 %, the beam intensity remains sufficiently
constant on a shot-to-shot level. This confirms the applicability of the image
processing methods used in this thesis.

The results of the bunch length measurements are summarized in figure 4.17.
The reconstructed electron bunch length is shown for a total of 20 shots. The
images were recorded with the camera installed at the D2 detector setup. The
weighted mean bunch length is equal to ξ̄RMS = (454.06± 9.57) fs for a bunch
charge of approximately 100 fC, i.e. ζ̄RMS = (136.22± 2.87)µm, where the respec-
tive uncertainties have been used as weights. A summary of the main beam
properties recorded in the course of the entire TDS measurement procedure is
given in table 4.3.

With knowledge of the shear parameter S and the unstreaked beam size yRMS,off
at the position of the detector, the longitudinal resolution Rz of the TDS can be
calculated according to equation 2.70. Plugging in the respective values yields a
measured resolution of Rz/c = (33.45± 0.14) fs.

The validity of this result can be confirmed via comparison to an Astra

simulation of the Regae beamline. A required input parameter for the Astra
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Figure 4.16: Shot-to-shot beam intensity Ibeam calculated from the Gaussian fit during
the beam intensity cut procedure.
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Figure 4.17: Electron bunch length ξRMS measured with the TDS for 20 shots. The
camera images were recorded with the D2 detector and the beam intensity
cut procedure has been applied.

Beam property Measured value

〈E〉 [MeV] 3.6668± 0.0004

Q [fC] 105.9± 1.2

ξRMS [fs] 454.06± 9.57

εn,x [nm] 94± 11

εn,y [nm] 97± 6

Table 4.3: Overview of beam properties measured in the course of the TDS bunch length
measurements.
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simulation is the electron emission time, i.e. the time interval during which
electrons are emitted by the UV laser from the cathode. This corresponds to
the pulse duration of the laser pulse. A measurement of the pulse length in
the UV segment of the photocathode laser was carried out with the help of the
Desy FS-LA group. An autocorrelator (see [111] and the references therein for
a thorough description of pulse length measurements via the autocorrelation
techniques) was temporarily placed on a board next to the laser table beside the
cathode. In addition to this, a mirror was installed to couple out the laser beam
and deflect it towards the autocorrelator. The operation of the autocorrelator and
the subsequent measurements were performed with courtesy of the Desy FS-LA
Laser Operation group.

Three sets of data were taken with the autocorrelator. The measurements are
displayed in figure 4.18. It is possible to derive the intensity width, i.e. the pulse
duration, from the intensity autocorrelation width. However, this is only feasible
if the shape of the laser pulse is known. For further considerations, a Gaussian
laser pulse is assumed. In this case, the deconvolution factor between the intensity
autocorrelation width σIA and the intensity width σz,L of the laser pulse is equal
to
√

2, i.e.

σz,L =
σIA√

2
. (4.24)

Application of a Gaussian fit to the intensity autocorrelation profiles and averaging
over the three datasets yields a laser pulse length of σz,L = (370.28± 17.90) fs.

With the help of Astra, the evolution of the bunch length along the beamline
can be simulated. The laser pulse length obtained from the autocorrelation
measurements is plugged into the initial particle distribution of the simulation.
This yields a simulated bunch length of ξ0,RMS = (436.06± 8.79) fs for Q = 100 fC
at the position of the TDS if the TDS itself is not included in the simulation.
However, space charge and higher order effects arising from the TDS must also
be considered for the bunch length reconstruction. As discussed in section
4.1, the internal longitudinal motion of electrons in the bunch must be taken
into account at energies in the range of a few MeV, which leads to an induced
bunch length and transverse defocusing upon propagation through the TDS. The
reconstruction of the bunch length according to equation 2.69 implicitly assumes
that a deconvolution of the vertical beam size contribution from the bunch length
(with respect to the total streaked beam signal) can be performed by utilizing
yRMS,off, which is measured when the TDS is deactivated. From a mathematical
point of view, the unstreaked beam signal acts as a point spread function with
which the longitudinal profile is convolved in the streaked beam signal. In other
words, yRMS,off is assumed to be equal to the vertical beam size contribution of
the streaked signal. Since the TDS causes transverse defocusing, this assumption
is strictly speaking not fulfilled [44].

Simulations with Astra indicate that the induced bunch length contribution
is well below 10 fs, which is in good agreement with the analytical prediction
formulated in equation 4.7. This contribution can be neglected in the quadratic
addition with the unperturbed bunch length ξ0,RMS (see again equation 4.7).
However, transverse defocusing caused by the TDS may increase the recon-
structed bunch length. Plugging in the respective conditions and parameters
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Figure 4.18: Measured pulse length in the UV section of the photocathode laser. The
pulse length can be derived from the distribution of the intensity autocor-
relation as a function of the delay ∆t. The measurements were carried out
with the assistance of the Desy FS-LA group.
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of the measurement procedure in an Astra simulation, effectively performing
a synthetic “measurement” in Astra, yields a reconstructed bunch length of
ξRMS,sim = (437.87± 8.83) fs. Thus, transverse defocusing leads to a increase of
only about 1 fs in the reconstructed bunch length. Both transverse defocusing and
induced bunch length are kept small as a result of the comparatively short length
of the structure (LTDS = 270 mm). By operating the beamline at the design gun
gradient Eg = 100 MV/m, thereby increasing the beam energy to 〈E〉 = 5 MeV,
these effects could be suppressed even further due to the 1/γ2 scaling. In addi-
tion, it is noted in [44] that a compensation of the transverse defocusing may be
possible with appropriate beam optics. Studies regarding this aspect were not
further explored in the scope of this thesis.

Comparison of synthetically “measured” bunch length ξRMS,sim = (437.87±
8.83) fs and measured bunch length ξ̄RMS = (454.06± 9.57) fs leads to the con-
clusion that, within the scope of measuring accuracy, the experimentally recon-
structed bunch length is in outstanding agreement with the simulation results.

4.3.4 Ballistic bunching

As outlined in section 2.2.1 on the fundamentals of the ballistic bunching mecha-
nism, a compression of the electron bunch length can be achieved by operating
the buncher cavity at the zero-crossing phase, which is defined here as the phase
value φb = −90 deg where the bunch does not experience any gain in mean
energy. The buncher gradient can be tuned in a way to shift the position of the
longitudinal focus into the center of the TDS.

The principle of the ballistic bunching mechanism is illustrated in figure 4.19,
based on a simulation with Astra where the buncher phase has been set to
φb = −90 deg and the buncher gradient was adjusted to Eb = 8.5 MV/m, which
places the longitudinal focus at the position of TDS in the Regae beamline.
The gun gradient was set to Eg = 80 MV/m. In addition to this, the typical
Regae front-end magnet configuration regarding solenoid 1 and solenoid 2/3

(see section 4.2.1 for details on the general machine setup procedure) has been
included in the simulation. For visualization purposes, space charge effects were
not incorporated.

Figure 4.19a shows the evolution of the bunch length throughout the Regae

beamline. The positions of the cavities are marked in gray. After the buncher
cavity, the bunch length decreases until the longitudinal focus is reached at
z = 6 m. The position of the focus coincides with the center position of the TDS in
the beamline. This enables the measurement of the bunch length in the focus. The
TDS itself was not activated in this simulation. Moreover, the longitudinal phase
space at selected positions in the beamline is depicted in figure 4.19b. Behind
the gun cavity at z = 1 m, the particle distribution resembles a horizontal line,
which implies a relatively small energy spread but also a large bunch length. The
buncher cavity imprints a negative energy correlation onto the electron bunch,
which can be seen in the particle distribution in the longitudinal phase space at
z = 4 m. At the position of the longitudinal focus at z = 6 m, the phase space
distribution is close to a vertical line. In the beamline section behind the focus,
the bunch length increases again.
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(a) Evolution of the RMS bunch length ξRMS throughout the beamline. The gray
lines mark the positions of the gun cavity in the front, the buncher cavity at
approximately z = 1.3 m and the TDS at z = 6 m.
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(b) Visualization of the longitudinal phase space at different positions in the beamline.
A negative energy correlation is imprinted on the electron bunch in the buncher
cavity. The longitudinal focus is reached at z = 6 m, after which the bunch length
increases. The plotted lines represent quadratic functions as best fit to the actual
particle distribution.

Figure 4.19: Illustration of the ballistic bunching mechanism showing the evolution of
the bunch length ξRMS and of the longitudinal phase space at selected points
in the Regae beamline.



72 bunch length measurements with the regae tds

−0.3 0.0 0.3

−0.02

−0.01

0.00

z = 1 m

−0.02 −0.01 0.00

−0.50

−0.25

0.00

0.25

0.50
z = 6 m

0.0 0.2 0.4 0.6 0.8 1.0
ζ [mm]

0.0

0.2

0.4

0.6

0.8

1.0

δγ
/

γ
r

[%
]

Figure 4.20: Particle distribution in the longitudinal phase space slightly behind the gun
at z = 1 m (left) and in the longitudinal focus at z = 6 m (right) taken from
an Astra simulation. Both distributions display a parabolic shape. The
plotted lines represent quadratic functions as best fit to the actual particle
distribution.

As explained in section 2.2.2, the particle distribution in the longitudinal phase
is not characterized by a perfectly straight line in the longitudinal focus. Instead,
a degree of curvature is visible in the phase space distribution. Closer inspection
of the particle distribution in the longitudinal phase space, of which a close-up
is shown in figure 4.20 for z = 1 m (left) in front of the buncher cavity and for
z = 6 m in the longitudinal focus (right), reveals a clear nonlinear shape in form
of a parabola. As previously discussed, the nonlinear shape of the phase space
distribution at the beginning of the beamline, i.e. behind the gun, arises from
the intrinsic nonlinear energy correlation due to the curvature of the accelerating
field in the gun and from the nonlinear relationship between the velocity and
the energy of a relativistic particle. These nonlinearities are transferred to the
phase space distribution in the longitudinal focus, where the parabolic shape of
the distribution essentially acts as a lower limit to the bunch length in context of
the ballistic bunching mechanism.

In this specific case, the bunch length in the longitudinal focus is equal to
ξ0,RMS = 7.38 fs if the gradient of the buncher cavity is adjusted in such a way
that position of the longitudinal focus coincides with the position of the center
of the TDS at z = 6 m. If space charge effects are included in the simulation, a
minimum bunch length of ξ0,RMS = 14.57 fs is expected. In this case, the gradient
of the buncher cavity needs to be adjusted slightly. Compared to the case where
the buncher cavity is switched off, this corresponds to a compression factor of
≈ 30.

Regarding the machine setup procedures, some minor adaptations were neces-
sary to provide suitable beam parameters. The main reason for these adaptations
is the focusing/defocusing effect of the buncher cavity. Additionally, the magnet
lattice of the Regae front-end was modified to ensure the correct alignment of
the beam trajectory through the buncher cavity. Ideally, the field of the buncher
does not lead to a transverse offset of the beam further downstream. At the time
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of the measurements, the laser system was only able to deliver a beam charge of
Q = 50 fC.

Once an appropriate magnet setting for the Regae front-end had been estab-
lished, the correct buncher phase, i.e. φb = −90 deg, had to be found. This was
done by deflecting the beam onto the scintillator screen of the spectrometer with
the dipole magnet, noting down the beam position on the camera image, and
then switching on the buncher cavity and tuning the buncher phase until the
original beam position was recovered. No net effect with respect to the mean
beam energy should be imparted by the buncher.

Strictly speaking, there are two buncher phase settings where the beam expe-
riences no change in energy. In order to identify the correct phase value which
leads to a compression of the bunch length, the TDS was switched on and the
beam sizes in streaking direction with and without active buncher cavity were
compared. The phase value where the streaked beam size under the effect of
the buncher cavity is smaller than the streaked beam size of the uncompressed
beam, i.e. when the buncher is not active, corresponds to the bunching phase
φb = −90 deg. The second zero crossing is located 180 deg away from the bunch-
ing phase and leads to the opposite effect, i.e. corresponds to the debunching
phase.

The exact value of the buncher gradient which yields the smallest bunch length
in the TDS needs to be determined experimentally. Essentially, the electron bunch
length was measured for a variety of buncher gradients around the suspected
minimum as determined from Astra simulations. Once suitable machine param-
eters were found, the bunch length was measured at the D2 detector setup. A
more thorough description of the measurement procedure can be found in the
preceding sections.

In the time between the first measurements of the uncompressed bunch, pre-
sented in section 4.3.3, and the measurements in context of the ballistic bunching
scheme, some improvements on the photocathode laser system were imple-
mented10. This includes the integration of a pinhole imaging setup to produce
a transverse uniform distribution in the laser pulse. However, the current state
of the laser system does not feature diagnostic elements to determine the pulse
duration or the exact spot size on the cathode.

A summary of the bunch lengths measured in the course of the buncher
gradient scan is shown in figure 4.21. The data points are marked in black. Up
to this date, the shortest measured bunch length by employment of the ballistic
bunching mechanism at Regae is ξRMS = (18.26± 1.14) fs, which corresponds to
ζRMS = 5.48 µm. This is equal to a compression factor of ≈ 25. For comparison,
the theoretical bunch length, taken from Astra simulations, is shown in the same
figure and marked in red. Here, the shortest achievable bunch length amounts to
ξ0,RMS = 14.57 fs, which is equal to ζ0,RMS =4.37 µm. The error bars in the Astra

simulations are a consequence of the uncertainty of the pulse duration of the
photocathode laser and based on the measurements presented in the previous
section.

Comparison of the bunch lengths reconstructed from the measurement data to
those obtained from Astra leads to the observation that both follow a very similar

10 The improvements were designed with the help of Dr. Chris Werle.
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Figure 4.21: Reconstructed bunch length ξRMS for a variety of buncher gradient setpoints
Eb around the minimum bunch length setting. Both measurement data
(black) and bunch lengths expected from Astra simulations (red) are shown.
Space charge effects were included in the Astra simulation. The shortest
measured bunch length at Regae is 18.26 fs.

trend. However, some differences are clearly visible. First and foremost, nearly
all measured bunch lengths are slightly higher than the simulation would predict
for the respective gradient value. The average difference between measurement
and simulation is (3.40± 1.24) fs; the deviation in the last gradient setpoint at
Eb = 10.5 MV/m is larger than the difference at the other setpoints. Moreover,
there appears to be a minor shift along the horizontal axis of the plot, which
can be seen when inspecting the gradient at which the respective bunch length
minima are located: for the data, the minimum occurred at a buncher gradient
of Eb = 10.2 MV/m, whereas the Astra simulation predicts a bunch length
minimum at a gradient of Eb = 10.1 MV/m. This can most likely be attributed to
calibration errors of the buncher cavity.

The Astra values depicted in figure 4.21 are taken from simulations without
the TDS. Performing a synthetic measurement with Astra, which includes higher
order effects from the TDS, yields a minimum reconstructed bunch length of
ξsim,RMS = 15.91 fs.

Within the scope of measuring accuracy, it appears that measurement data
and Astra simulation results are not in full agreement with each other. Having
said that, the similarity in terms of the run of the curve of the measurements
and simulation, combined with the comparable overall bunch duration scale (∼
15− 20 fs) of the results, is remarkable. Systematic errors arising from calibration
uncertainties of the buncher cavity and higher order effects of the TDS may
partially account for the differences between measurement data and simulations.
Considering the fact that a number of assumptions had to be made with respect to
the simulation parameters, the agreement between measurement and simulation
is excellent. A reasonably valid model of the Regae beamline geometry in
Astra is crucial and requires sufficiently precise knowledge of many machine
properties, which include but are not limited to the correct calibration of cavity
gradients and phases as well as calibration of the solenoid magnets, the position
of all relevant beamline elements, correct and reproducible energy measurement,
reliable charge measurement and last but not least knowledge of the input



4.4 summary 75

Beam property Measured value

〈E〉 [MeV] 3.6634± 0.0003

Q [fC] 49.6± 1.0

ξ0,RMS [fs] 18.26± 1.14

εn,x [nm] 65± 11

εn,y [nm] 69± 16

Table 4.4: Overview of beam parameters measured in the course of the ballistic bunching
measurements.

parameters of the photocathode laser. A final overview of the beam parameters
recorded in the course of the ballistic bunching measurements is given in table
4.4. Measurements of the emittance via a solenoid scan yielded a normalized
emittance of εn,x = (65± 11) nm and εn,y = (69± 16) nm, respectively.

All in all, it is likely that the sum of small deviations between the Astra model
and the actual beamline characteristics in terms of the points listed above are the
reason for the difference between the measurement data and the Astra simulation.
Especially the uncertainty regarding the properties of the photocathode laser pulse
is a major factor and requires further investigation in the future. Furthermore,
not all beamline elements have been measured and positioned by the Desy

measurement group. The exact position and orientation is not always known.
Lastly, the dipole steerer magnets used during machine operation were not
included in the simulations.

Taking all the abovementioned points into consideration, it is justified to regard
the findings as valid measurement results and the Astra model as a valid
representation of the Regae accelerator beamline.

4.4 summary

Prior to the installation of the TDS at Regae in context of the beamline upgrade,
there was no longitudinal diagnostic device included in the beamline. Neither
reconstruction of the electron bunch length nor imaging of the longitudinal phase
space was possible. In addition to this, operation of the buncher cavity was
severely limited, due to the fact that gun and buncher cavity were powered by
the same klystron. Due to the presence of significant correlations between the rf
settings, independent high precision tuning of the both cavities at the same time
was not feasible before the upgrade.

The introduction of deflecting structures dates back to the 1960s. The structure
at Regae was specifically designed to preserve the ultralow transverse beam
emittance. It is the first TDS developed to produce linear deflecting fields while
maintaining a high rf efficiency. Owing to the unique geometry of the structure, an
amplifier suffices as a power source for the TDS due to the high rf efficiency, thus
foregoing the high financial cost of another separate rf system. The structure was
installed in the course of the extensive Regae beamline upgrade, during which an
additional klystron was installed for decoupled operation of the buncher cavity.
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Following initial conditioning after the completion of the beamline upgrade, the
Regae accelerator was operated with reliable performance.

A routine for single-shot bunch length measurement operation of the TDS was
successfully established. The associated machine setup procedure was described
thoroughly and a standard magnet lattice for a bunch length measurements of
the uncompressed bunch has been determined, which is readily accessible during
machine operation.

First measurements of the uncompressed bunch length have been performed
with the TDS. A calibration scan to experimentally determine the shear parameter
of the structure yielded S = 10.14± 0.19. For the bunch length measurement,
the TDS was operated at zero-crossing. The measured bunch length is equal to
ξRMS = (454.06± 9.57) fs for a bunch charge of Q = (105.2± 0.8) fC at a beam
energy of 〈E〉 = (3.6668± 0.0004)MeV and is in excellent agreement with Astra

simulations of the Regae beamline. The longitudinal resolution of the TDS was
measured to be Rz/c = (33.45± 0.14) fs. At the time of this measurement, the
normalized transverse beam emittance was approximately 100 nm.

Application of the ballistic bunching scheme at the Regae accelerator beamline
enabled the successful production and measurement of an electron beam with a
longitudinal extent of ξ0,RMS = (18.26± 1.14) fs. This result marks the shortest
measured bunch length using the ballistic bunching mechanism at Regae up to
this date. Improvements of the laser system resulted in a normalized transverse
emittance of approximately 65 nm. In view of the general assumptions regarding
the beamline geometry of the Regae model in Astra, measurement data and
simulations are in excellent agreement.

It has been shown that bunch length measurements carried out with the TDS
produce realistic and reliable results. Since the ballistic bunching mechanism
does not include a linearization of the longitudinal phase space, the achievable
bunch length can in principle be decreased by employing a shorter pulse duration
of the photocathode laser [20]. A potential drawback of using extremely short
laser pulses (an initial pulse duration of 100 fs was used in [20]) is the fact that
the transverse emittance may deteriorate due to increased space charge forces
at the cathode. To preserve a high beam quality, it can be advantageous to start
with a comparatively long laser pulse duration.

Generally speaking, the attainability of even shorter bunch lengths can be lim-
ited by space charge effects and by higher order contributions in the longitudinal
phase space distribution. Measurement data geared towards the linearization of
the longitudinal phase space is presented in the next section.



5 LO N G I T U D I N A L P H A S E S PA C E
L I N E A R I Z AT I O N

Many electron accelerator facilities perform experiments where very short bunch
lengths are required, for example free electron lasers or time-resolved electron
diffraction. Other applications, such as time-resolved transmission electron
microscopy, greatly benefit from electron bunches characterized by an extremely
small energy spread. While the achievable longitudinal extent of the bunch is
also affected by repulsion forces arising from space charge, both bunch length
compression and energy spread minimization are both limited by nonlinear
correlations in the longitudinal phase space. These nonlinearites in the internal
structure of the electron bunch evolve as the beam propagates through the
beamline and can ultimately restrict the attainable beam parameters. In order
to overcome these limitations, the nonlinearities in the longitudinal phase space
need to be eliminated.

Large particle accelerator institutions, such as the European Xfel [13] and the
Flash accelerator at Desy [14], make use of a purpose-built cavity to linearize the
longitudinal phase space [15, 112]. This cavity is operated at a higher harmonic
frequency of the main rf system.

A novel linearization strategy without the utilization of higher harmonic fields
has previously been developed [16]. Numerical and analytical studies for the
Regae beamline demonstrating the feasibility of the method have been published
in [17]. The method itself is denoted as stretcher mode. It is based on a phase
setting of the gun cavity which leads to a controlled expansion of the bunch
up until the buncher cavity. The effect of a longitudinally “stretched” bunch
propagating through a cavity operated at the fundamental frequency of the main
rf system is similar to that of an unaltered bunch traveling through a higher
harmonic cavity. Thus, the buncher cavity - after the controlled expansion of
the bunch - can be used to linearize the longitudinal phase space and effectively
compress the electron bunch. Simulations including space charge forces have
indicated an achievable bunch length below 1 fs of the linearized bunch [17].

Essentially, the realization of the stretcher mode described above yields an
upright line in the longitudinal phase space, i.e. a compressed bunch of extremely
small longitudinal extent. However, the stretcher mode can also be employed
to achieve a “horizontal” distribution in the longitudinal phase space, which
minimizes the energy spread of the bunch. The initial energy spread accumulated
in the gun cavity can be compensated with help of the buncher cavity.

The following section briefly summarizes previous derivations presented in
[16, 17] and describes the working principle of the stretcher mode.

77
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5.1 stretcher mode

The energy gain of a particle propagating through a cavity can be written in form
of a Taylor expansion

∆γ = Ã0 + Ã1ζc + Ã2ζ2
c + Ã3ζ3

c , (5.1)

where the longitudinal particle coordinate in the co-moving frame at the position
of the cavity located at z = zc is denoted by ζc and the cavity coefficients Ãn

with n ∈ [1, 3] of the Taylor expansion are given in equation 2.46. If two cavities
are present in a beamline, as is the case at Regae, there are a total of four cavity
parameters which can freely be adjusted independent of each other, namely
the gradients and phases of the respective cavities. The underlying principle
of longitudinal phase space linearization is to have the nonlinear terms of both
cavities in equation 5.1 cancel each other out exactly by finding suitable cavity
settings. For the gun and buncher coefficients G̃n and B̃n, this implies that
G̃2 = −B̃2 and G̃3 = −B̃3. Combining this with equations 2.46 and 5.1 ultimately
translates into

1
k

tan(φg) =
1
k

tan(φb), (5.2)

where φg and φb are the rf phase values of the gun and buncher cavity and k
is the wave number at which the cavities are operated at. This in turn leads
to LgEg = −LbEb; the cavity amplitudes are proportional to the product LcEc.
Consequently, longitudinal linearization would lead to a complete deceleration of
the electron bunch, since the second cavity, i.e. the buncher cavity, would negate
the energy gained by the beam in the gun cavity.

However, this implication loses its validity if the cavities are operated at dif-
ferent frequencies, which leads to different wave numbers kg and kb. This is the
fundamental principle of a higher harmonic cavity, which can be operated at
tripled frequency so that the sum of the fields acting on the electron beam effectu-
ate a flat longitudinal profile [15, 112]. Such a type of cavity is typically installed
as an addition to the main cavities in an accelerator beamline. Considering the
fact that a separate rf system needs to be implemented for a higher harmonic
structure, this method of phase space linearization can entail high financial costs.

The method derived in [17] does not require a potentially expensive higher
harmonic cavity. Rather than employing a separate cavity operated at a higher
harmonic frequency, the proposed linearization concept relies on the controlled
expansion between the gun cavity and the buncher cavity. The increase in bunch
length effectuates a reduction in curvature in the longitudinal phase space. This
effectively increases the curvature of the field in the buncher cavity as seen by
the elongated electron bunch. The crucial point here is the fact that only gun and
buncher cavity are required and both are operated at the same fundamental rf
frequency. The resulting overall effect is comparable to that of a higher harmonic
structure in the sense that higher order contributions in the longitudinal phase
space are effectively eliminated.

The main difference between stretcher mode and a higher harmonic system
with respect to the the gun cavity is the fact that the gun cavity is operated at an
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off-crest phase in stretcher mode. This means that the gun phase is set to a value
which does not yield the maximum energy gain. As a result, the assumptions
leading to equation 5.2 do not hold true anymore. In the stretcher mode, there
exists a configuration of cavity parameters, i.e. amplitudes and phases of the gun
cavity and the buncher cavity operated at the same frequency, which produces a
linearized phase space distribution in the longitudinal focus.

At this point it should be mentioned that the linearized concept described above
is not intrinsically limited to the production of a vertical line in the longitudinal
phase space. In other words, the stretcher mode can also be utilized to minimize
the energy spread instead of the longitudinal extent of the electron bunch, thus
yielding a “horizontal” phase space distribution. A solution of the problem exists
where the configuration of the cavity parameters linearizes the longitudinal phase
space distribution in a way that the energy spread from the curvature in the gun
cavity is compensated by the buncher cavity.

Both of the linearization options are based on the same procedure, which is
summarized in the next section.

5.1.1 Linearization Procedure

In order to calculate the cavity parameters of the linearization method, a mathe-
matical procedure has been developed [17]. The foundations for this have already
been described in section 2.2.2. Essentially, it is assumed that the structure of
the particle distribution in the longitudinal phase space can be described by a
function, i.e. there are no ambiguities in ζ. The effects of the cavities and drift
sequences are written in form of a Taylor expansion.

The full details of this mathematical formalism are given in [16], on which
the following summary of the linearization procedure is based. The individual
steps are illustrated in figure 5.1, where an Astra simulation of the bunch length
evolution in stretcher mode operation is shown.

1. The electron bunch is produced at the cathode. The initial particle distri-
bution is specified externally. Apart from the requirement of possessing a
functional representation, i.e. being describable by a continuous curve, in
principle any arbitrary particle distribution can be used. Due to the fact that
the strong phase slippage within the gun make an analytical description
rather complicated and tedious [113], the energy gain the electron beam
experiences in the gun is obtained from an Astra simulation. The accuracy
of the analytical description presented in [113] is not sufficient for this pur-
pose. At the end of the gun cavity, the longitudinal phase space coordinates
are given by[

ζg, ∑
n

Gnζn
g

]
, (5.3)

where ζg denotes the longitudinal coordinate and Gn are the Taylor coeffi-
cients for energy distribution from the gun cavity.

2. The buncher cavity is separated from the gun cavity by a free drift segment.
While the mean beam energy does not change in this section, the bunch
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(a) Evolution of the electron bunch length ξRMS along the Regae beamline in stretcher mode
simulated with Astra. The positions of the gun and buncher cavities are marked gray; the
TDS position is also marked.
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(b) Evolution of the longitudinal emittance εz,n along the Regae beamline in stretcher
mode simulated with Astra. The positions of the gun and buncher cavities are
marked gray; the TDS position is also marked. It has been shown that, in order to
eliminate second order contributions to the longitudinal phase space in the focus,
the position of the minimal bunch length must coincide with a local minimum of
the longitudinal emittance.

Figure 5.1: Exemplary representation of the stretcher mode linearization scheme. The
evolution of the bunch length ξRMS (figure 5.1a) and of the longitudinal emit-
tance εz,n (figure 5.1b) are shown. The corresponding beamline sections have
been labeled according to the respective step in the linearization procedure.
The gun cavity is operated at an off-crest phase which causes the bunch
length to increase in the subsequent drift. The parameters of the buncher
cavity are set in such a way that the bunch length decreases and the second
order vanishes in the longitudinal focus. Specifically the buncher gradient
has been set to a value which places the position of the longitudinal focus at
the center of the TDS. Space charge effects were not included. Figure adapted
from [17].
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length increases due to the present energy spread. The fact that this ex-
pansion occurs in a controlled way is one of the key points of the stretcher
mode; the gun phase φg is set to an off-crest value. As already described
in section 2.2.2, this leads to the build-up of additional curvature. This
effect is represented by equation 2.44, which implicates an alteration of the
longitudinal coordinate ζ(z) in the free drift segment with zg ≤ z ≤ zb,
where zg and zb denote the positions of the gun and buncher cavity in the
beamline, respectively. In the drift interval, the phase space coordinates can
by expressed as[

∑
n

χn(z)ζn
g , ∑

n
gn(z)ζn(z)

]
, (5.4)

where χn(z) contain the coefficients of equation 2.44 and the coefficients
gn(z) replace the previous Gn in order to compensate for the kinetic effects
in the drift segment and thus preserve the value of the energy coordinate
(see [16] for a thorough mathematical derivation and description).

3. The buncher cavity leads to an energy gain of the particles in the bunch.
The buncher itself is regarded in context of the thin lens approximation,
which means that the effect on the particle’s energy is assumed to be
instantaneous. Furthermore, it is assumed that the longitudinal coordinate
remains constant. Since the energy gain resulting from the buncher can
be written in form of equation 5.1, the coefficients can be added to the
existing energy distribution of the incoming electron bunch. This leads to
an expression of the form[

∑
n

χn(zb)ζ
n
g , ∑

n
Bnζn

b

]
(5.5)

for the longitudinal phase space coordinates, in which the coefficients Bn of
the energy polynomial are a sum containing the initial energy distribution
and the effects of the buncher cavity.

4. The free drift segment behind the buncher is treated in a manner similar to
step 2. Analogously, the phase space coordinates read[

∑
n

Xn(z)ζn
b , ∑

n
bn(z)ζn(z)

]
(5.6)

for values of z in the interval zb ≤ z ≤ zf, where zf denotes the position of
the longitudinal focus.

5. In the longitudinal focus, the polynomial functions need to be evaluated
at z = zf. At this point, a description of the energy coordinate by means
of a mathematical function is no longer possible, since multiple electrons
occupy the same longitudinal coordinate at z = zf. Instead of writing the
energy coordinate as a function of ζf = ζ(zf), the value at the exit of the
buncher cavity can simply be used. This yields[

∑
n

Xn(zf)ζ
n
b , ∑

n
Bnζn

b

]
(5.7)
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Figure 5.2: Longitudinal phase space distribution at the position of the longitudinal focus
simulated with Astra. The results from two bunch compression schemes
are shown, namely the ballistic bunching mechanism (blue) and stretcher
mode (red). While the ballistic bunching mechanism leads to a parabolic
phase space distribution, the stretcher mode leads to the manifestation of
an S-shaped structure, i.e. the first and second order have successfully been
eliminated and the third order is clearly visible. Space charge forces were not
included in these simulations.

for the longitudinal phase space coordinates at the position of the longitudi-
nal focus.

With this formalism, the phase space coordinates in the gun cavity are mapped
to the position of the longitudinal focus. In order to eliminate higher order
terms of the longitudinal distribution and thus minimize the bunch length, the
coefficients Xn(zf) in equation 5.7, which depend on the cavity parameters, must
be set to zero. This leads to a set of equations depending on up to which order
the nonlinearities should be eliminated. Ultimately, the solution yields a set of
cavity parameters which yield a vertical line in the phase space distribution at
the position of the longitudinal focus. It should be noted that the rf phase of the
cavities appears in trigonometric functions in the system of equations Xn(zf) = 0,
while the amplitudes of the cavities contribute in linear terms. The method of
solution of these transcendent equations is elaborated in [16].

A correction of the second order can be achieved by solving X1 = 0 and X2 = 0.
In this case, a set of solutions exists due to the fact that the gun phase can
be chosen arbitrarily, albeit within a restricted interval. A comparison of the
longitudinal phase spaces for the ballistic bunching mechanism and the stretcher
mode is visualized in figure 5.2. Both phase space distribution were simulated
with Astra. As already discussed in section 4.3.4, the clearly visible parabolic
shape of the distribution limits the bunch length to a minimum of ξRMS = 7.38 fs.
With the use of the stretcher mode, it is possible to eliminate second order
nonlinearities. This results in an S-shaped structure in the longitudinal phase



5.1 stretcher mode 83

0.0 0.5 1.0 1.5 2.0
z [m]

0

2

4

6

E R
M

S/
〈E
〉

×10−3

Figure 5.3: Astra simulation showing the evolution of the RMS energy spread ERMS
of the electron beam in the case of the energy spread compensation scheme
of the stretcher mode. The buncher cavity is used to eliminate the energy
spread built up in the gun cavity. Both cavity positions are marked in gray.
Space charge forces were included in this simulation.

space. The bunch length in the longitudinal focus is equal to ξRMS = 358 as,
i.e. ζRMS = 107 nm (without space charge). In this case, the gun cavity parameters
were set to Eg = 80.00 MV/m and φg = 34.10 deg, and the buncher cavity
parameters were set to Eb = 14.18 MV/m and φb = −106.15 deg, respectively.

It is also possible to to apply the stretcher mode linearization procedure to the
energy coordinate, i.e. minimizing the energy spread of the particle beam. The
energy spread accumulated by the electron bunch during the emission process
in the gun cavity can be compensated by the buncher cavity. This would yield
a horizontal line instead of a vertical line distribution in the longitudinal phase
space. For this application, it is sufficient to describe the propagation of the
beam up until the buncher cavity. This corresponds to step 3 in the linearization
procedure described above. Ultimately, the coefficients Bn in equation 5.5 in step
3 must be set to zero to eliminate the nth order of the energy distribution.

An Astra simulation with a cavity configuration eliminating first and second
order contributions in the energy distribution yields an expected energy spread of
about 60 eV at a mean beam energy of 3.12 MeV, which corresponds to a relative
energy spread of ERMS/〈E〉 = 1.9 · 10−5. The initial pulse duration was set to the
value obtained in the course of the autocorrelator measurements in section 4.3.3.
The gun cavity parameters were set to Eg = 80.00 MV/m and φg = 45.00 deg,
which resulted in buncher cavity parameters equal to Eb = 9.24 MV/m and
φb = −72.80 deg, respectively.

For both energy spread compensation and bunch compression schemes of the
stretcher mode, cavity settings which eliminate first and second order contri-
butions in the longitudinal phase space have been determined for the Regae

beamline. The following section provides experimental verification as a proof of
concept for the stretcher mode as a linearization strategy.
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5.2 proof of concept

It has been shown that the achievable bunch length with the bunch compression
scheme of the stretcher mode can be below 1 fs if the cavity parameters are
adjusted so that the third order vanishes as well [17]. This is far below the
resolution of the transverse deflecting rf structure installed at Regae. Similarly, a
relative energy spread < 10−4 obtained via energy spread compensation, i.e. an
RMS energy spread of ERMS ≈ 60 eV at mean beam energies in the range of
〈E〉 = 3 MeV, cannot be resolved with the spectrometer setup installed at the
Regae beamline.

In an attempt to overcome this problem, the initial pulse duration of the
photocathode laser was increased. This increases the minimum attainable energy
spread after application of the energy spread compensation scheme, and may
also increase the bunch length in the longitudinal focus using the compression
scheme of the stretcher mode. This was accomplished by mounting glass blocks
in the UV segment of the laser propagation path. Due to the lack of diagnostic
elements, a measurement of the resulting pulse duration was not possible.

Nevertheless, it is possible to establish a proof of concept by considering the
development of the curvature in the longitudinal phase space in a parameter
region around the optimal cavity settings. If the linearization procedure is carried
out with success, the structure of the phase space distribution should give rise to
an S-shaped form, due to the fact that the first and second order vanish.

5.2.1 Energy Spread Compensation

From a practical point of view, the real cavity parameters of the energy spread
compensation scheme can be determined by fixing the parameters of the gun
cavity and performing a two-dimensional parameter scan of the buncher gradient
and phase during machine operation. In the case of second order correction, a
solution exists for each gun phase within a restricted domain; not every gun
phase value is suitable for linearization. The aforementioned calculated cavity
parameters can naturally be used as a starting point, but it is likely that the actual
machine settings will differ slightly from the cavity configuration obtained from
the theoretical model. Hence, a scan of the parameters can be used to fine-tune
the buncher cavity settings. The principle of such a scan is illustrated in figure
5.4, which shows an Astra simulation of the energy spread for a multiplicity of
buncher cavity settings for Eg = 80.00 MV/m and φg = 45.00 deg. An initial laser
pulse duration of approximately 2.1 ps was assumed as a rough estimate based
on Astra simulations in combination with the measured bunch length of about
1.4 ps. The red areas mark cavity configurations where the relative energy spread
reaches minimal values. Space charge effects were not included in this simulation
set.

For the purpose of approaching the actual measurement procedure with re-
alistic expectations and a better understanding of the behavior of the beam in
the energy spread compensation scheme, it is constructive to investigate the
characteristics of the longitudinal phase space in a buncher cavity parameter
region around the minimum energy spread. An analysis of this parameter region



5.2 proof of concept 85

-85 -80 -75 -70 -65
φb [deg]

9.5

9.4

9.3

9.2

9.1

9.0

E b
[M

V
/m

]

10−4

10−3

E R
M

S/
〈E
〉

Figure 5.4: Two-dimensional parameter scan of the buncher gradient Eb and phase φb
performed with Astra. The scan was performed around the (suspected)
optimal energy spread compensation configuration where the second order
vanishes and the relative energy spread ERMS/〈E〉 reaches its minimum. The
color code marks the value of the relative energy spread for each buncher
configuration within the scan interval. Space charge forces were not included
in these simulations.

simulated in Astra is depicted in figure 5.5. Space charge effects were excluded
in order to generate an unperturbed depiction of the internal bunch structure.
For each parameter set consisting of a distinguished amplitude and phase value
of the buncher cavity, a cubic fit of the form f (ζ) = a3ζ3 + a2ζ2 + a1ζ + a0 = γ(ζ)

has been applied to the particle distribution in the longitudinal phase space. The
first and and second order coefficients a1 and a2 are plotted together with the
relative energy spread ERMS/〈E〉 as a function of the buncher phase. The value
of the buncher gradient is specified in the title of the respective subplot.

The buncher gradient at which both first and second order fit coefficients are
equal to zero for a distinct buncher phase value marks a cavity configuration
where the longitudinal phase space is linearized in the sense of the stretcher mode
linearization model. First and second order contributions have successfully been
eliminated. Upon further inspection of the simulation results shown in figure 5.5
it becomes apparent that the linearization and energy spread minimization occur
at different cavity configurations. This is due to the fact that a non vanishing slope,
i.e. a1 6= 0, partially compensates the now dominant third order contributions
[16].

From the analysis shown in figure 5.5 it can be deduced that the first and second
order contributions in the longitudinal phase space distribution are eliminated for
Eb = 9.24 MV/m and φb = −72.80 deg as parameters for the buncher cavity. Here,
the relative energy spread reads ERMS/〈E〉 = 1.3 · 10−4. Note that the relative
energy spread takes on its minimal value of ERMS/〈E〉 = 0.8 · 10−4 at a slightly
different buncher phase φb = −73.30 deg due to the reason specified above. The
mean beam energy behind the buncher cavity amounts to 〈E〉 = 3.082 MeV.
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Figure 5.5: Relative energy spread ERMS/〈E〉 (black) as well as first (blue) and second
(red) order fit coefficients a1 and a2 of a cubic fit to the longitudinal phase
space distribution for buncher phase scans simulated with Astra for a subset
of buncher gradients. The values of the fit coefficients have been scaled to the
order of magnitude of the relative energy spread. A cavity setting where both
first and second order fit coefficients vanish corresponds to energy spread
compensation in the sense of second order correction.
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An overview of the evolution of the longitudinal phase space for Eb = 9.24 MeV
in dependency of the buncher phase can be seen in figure 5.6. The phase space
distribution simulated with Astra is shown for a variety of buncher phase values,
which have been varied with a step width of 0.50 deg. A cubic fit has been applied
to each particle distribution and is plotted as a red line. It can clearly be seen
that the phase space distribution is well described by a third order polynomial
function.

Some further remarks regarding the evolution of the longitudinal phase space
are in order. First and foremost, the decrease in energy spread as the buncher
phase approaches the optimal phase value (at φb = −72.80 deg = φlin) is clearly
visible since all subplots share the same axis limits. At φb = φlin − 4.00 deg,
the distribution has a relatively large extent in δγ/γr. The vertical extent of
the distribution can be connected to the (relative) energy spread of the electron
bunch, which is equal to ERMS/〈E〉 = 6.6 · 10−4 at this point. The energy spread
then continuously decreases until the minimum value of ERMS/〈E〉 = 0.8 · 10−4

is reached, after which it begins to increase again.
Furthermore, the principle of the stretcher mode as a method of phase space

linearization can be observed in these simulations. In the parameter region around
the optimal cavity configuration at φb → φlin the unperturbed S-shape of the third
order becomes visible. As explained above, the first and second order, i.e. the
linear and quadratic fit coefficients a1 and a2, tend towards zero here, and only
higher order terms remain. For phase values further away from the linearized
setting, the second order contributes significantly and causes distortions of the
“pure” S-shape of the phase space distribution. The expected energy spread for
30 fC obtained from subsequent simulations of the energy spread compensation
scheme is around of ERMS,sim/〈E〉 = 1.5 · 10−4.

The measurements presented in the following focus on an analysis of the degree
of curvature in the longitudinal phase space distribution within a parameter
region around the optimal cavity configuration.

A similar machine setup procedure as described in section 4.2.1 was carried
out. In fact, the magnet lattice obtained from the proceedings explained in that
section was used as part of the initial parameters. The electron beam was then
visualized on the scintillator screen installed at the dipole spectrometer setup.
Starting with the accelerating phase in the gun cavity, i.e. φg = 0, the gun phase
was successively regulated towards φg = 45.00 deg (see section 5.1.1). A reference
beam image for φg = 0 is shown in figure 5.7, which represents the particle
distribution in the longitudinal phase space (ζ, γ) due to the combined effect
of TDS and dipole spectrometer. Here, δγ denotes the energy difference with
respect to the mean 〈γ〉.

During the stepwise adjustment of the gun phase, the mean beam energy
continuously decreased and because of this, the dipole current also had to be
decreased to keep the beam visible on the camera image. At the same time, a
strong increase in the energy spread of the beam could be observed. Initially, the
measured value of the relative energy spread reads ERMS/〈E〉 = (4.7± 0.1) · 10−4.

At φg = 45.00 deg, the energy spread increased to ERMS = 86 keV (according to
Astra simulations), resulting in a relative energy spread of ERMS/〈E〉 ≈ 3.1 · 10−2.
Direct measurements of the energy spread were no longer possible, due to the
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Figure 5.6: Astra simulations of the longitudinal phase space for a variety of buncher
phase settings at a fixed gradient of Eb = 9.24 MV/m. A cubic fit (red) has
been applied to each particle distribution (black). The vanishing of the first
and second order makes the third order clearly visible.
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Figure 5.7: Processed camera image of the streaked beam recorded at the dipole spec-
trometer setup. Due to the combination of TDS and dipole magnet, the
longitudinal phase space is imaged. The existing curvature of the phase
space distribution is clearly visible.

fact that the beam occupied a larger energy interval than the range defined by the
boundaries of the camera image. At this point, the mean beam energy decreased
from 3.667 MeV to 2.766 MeV1. Concurrently, a noticeable rise in total bunch
charge occurred. The attenuator in the UV segment of the photocathode laser was
adjusted to counteract this effect in order to keep the bunch charge on the level
of Q = 30 fC in order to reduce perturbations arising from space charge effects.
However, due to the drastic increase in energy spread at a constant bunch charge,
the area occupied by the beam signal on the camera image grew significantly
while the total beam intensity remained unchanged. Thus, the camera gain
of the respective Andor camera was increased to instantiate a higher apparent
brightness of the camera image. This facilitated “following” the beam visually on
the camera image while manipulating the gun phase.

Once the correct gun phase value was adjusted, some minor alterations regard-
ing the magnet settings in the Regae front-end were necessary. More specifically,
the current through the magnets in front of the buncher cavity were reduced.
Especially the focusing strength of solenoid 1 was decreased. These required
changes are a result of the lower beam energy at the respective gun phase.

Next, the buncher cavity was activated. The gradient was set to the value
Eb = 9.24 MV/m, which was obtained from previous Astra simulations. The
alignment of the electron beam through the buncher cavity was still reasonably
good, which is why no further adjustments of the steerer magnets in front of
the buncher seemed necessary. The buncher was also stepwise adjusted towards
the nominal value of φb = φlin. As was the case with the gun phase adjustment,
the dipole current had to be changed in accordance with the mean beam energy
in order to keep the beam signal on the camera image. In addition to this, the
focusing strength of solenoid 6/7 was altered in order to focus the beam onto
the scintillator screen of the dipole spectrometer. This served the purpose of
increasing the contrast of the image.

At this point, it should be noted that while the rf parameters according to
Astra provide a good starting point, it is to be expected that the real cavity

1 This value was also obtained from an Astra simulation.
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settings will differ somewhat from the simulated values. There are multiple
reasons for this, for example calibration errors of the cavities and position and
alignment inaccuracies of cavities and magnets. Instead of viewing the Astra

parameters as fixed values, from an experimental point of view it is better to
use these settings as guidelines and determine the real cavity configuration by
directly investigating the longitudinal phase space.

As the cavity parameters of the buncher approached the optimal settings
dictated by the energy spread compensation scheme, ERMS/〈E〉 of the electron
beam decreased significantly. Once a suspected optimal cavity configuration
was found, collimators were driven into the path of the beam to reduce the dark
current visible on the camera image, which posed significant complications in the
course of the image processing routines. Special care was taken to avoid cutting
away outer regions of the beam. Thus, the entire charge was transported through
the collimator. In practice, only the collimators at DDC1 provided a satisfactory
effect.

Finally, the TDS was switched on. Combined with the dipole spectrometer, it
is possible to image the longitudinal phase space. The TDS was not operated at
full power, since the curvature of the phase space distribution was already clearly
visible at lower power settings, and too high of a power setting caused the vertical
(i.e. longitudinal) extent of the beam to be larger than the boundaries of the
camera image. This was due to the extremely large bunch length. The gun cavity
is operated at a phase setting of φg = 45.00 deg, which is an expanding phase (as
is required by the stretcher mode concept). Therefore, the bunch length increases
up until the buncher cavity, which negates the expansion and after which the
bunch length remains constant. Behind the buncher cavity, the longitudinal extent
of the bunch is slightly below 4.9 ps.

Similarly to the preparations preceding the bunch length measurements pre-
sented in section 4, the electron beam was aligned through the TDS with the help
of dipole steerer magnets between the buncher cavity and the deflecting structure.
As was the case in previous measurements, the beam should not receive any net
energy gain upon passage through the structure. Moreover, the rf phase of the
TDS was adjusted to the zero-crossing, i.e. the phase was set to a value where the
central particle of the electron bunch propagates through the structure without
experiencing a change in transverse momentum.

Lastly, the peak field of solenoid 6/7 was adjusted to produce a focused beam
on the scintillator screen of the dipole spectrometer setup. Due to the fact that the
optimal buncher settings for energy spread compensation, especially the buncher
gradient, needed to be precisely determined experimentally, the solenoid current
had to be adapted according to the respective buncher gradient. This is because
the fields of the buncher cavity have a focusing/defocusing effect on the electron
beam, and the field of solenoid 6/7 had to be adjusted to preserve a focused
beam on the camera image of the spectrometer.

After satisfactory completion of the machine setup procedure, a two-dimensional
parameter scan of the buncher cavity parameters was performed. The scan repli-
cates the idea of the simulation results presented in figure 5.4. First, the buncher
gradient was fixed to a selected value. Then a scan of the buncher phase around
the phase value where the curvature was suspected to vanish was performed.
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The parameter range was chosen by visual evaluation of the live camera images
on the spectrometer screen. The TDS was active throughout the scan, so that the
longitudinal phase space was recorded for each distinct cavity configuration. Due
to both beam and dark current jitter on the camera images, the calibration of the
TDS bears an uncertainty on the level of 20 %. This can mainly be ascribed to rf
jitter of all three cavities, though the exact reason behind the dark current jitter is
still being explored.

At each buncher phase setpoint, a total of 10 beam and background images
were recorded. Background subtraction and array centering was performed as
described in section 4.2.2. Since the resulting image profiles displayed a clear
non-Gaussian shape in some cases, the beam intensity cut routine did not always
yield reliable results and thus proved to be inapplicable. Therefore, the region
growing algorithm outlined in the abovementioned section was utilized.

The recorded camera images do not depict a “pure” representation of the
longitudinal phase space. This is because the transverse distribution of the
particles in the electron bunch also contribute to the beam signal on the image.
Hence the energy axis is, strictly speaking, a convolution of the horizontal beam
profile and the energy distribution, whereas the longitudinal axis in the images
is actually a convolution of the vertical and longitudinal beam profiles. From
a purely mathematical standpoint, it is possible to perform a deconvolution of
the longitudinal and vertical charge distributions, since the unstreaked image
reflects the unperturbed vertical beam profile. Unfortunately, deconvolution
procedures using the transverse distributions recorded without the TDS did
not yield conclusive results. This can most likely be ascribed to inaccuracies
resulting from dark current jitter, which can falsify the beam signal due to the
background subtraction process, or to the presence of internal correlations within
the electron bunch between the transverse and longitudinal coordinates of the
particles. Deconvolution algorithms were therefore not utilized. A deconvolution
of the energy and horizontal distribution was not possible; however, a dispersion-
based method to measure the deconvolved energy spread was recently proposed
in [114] and could be utilized at Regae. Studies regarding the feasibility of this
method at Regae will be carried out in the future. The resolution is thus limited
by the transverse emittance.

Despite the fact that the axes of recorded camera images are strictly speaking
convolved quantities, an analysis based on the fit coefficients of the respective
distribution is still possible. A scan of the buncher cavity parameters directly
impacts the longitudinal phase space distribution and these changes manifest
themselves in the coefficients derived from an applied polynomial fit.

A quantified representation of the results is shown in figure 5.8. The buncher
phase was scanned in 0.50 deg steps in a phase interval around φlin at a fixed
buncher gradient of Eb = 8.85 MV/m. The fit coefficients of the cubic fits are
shown for each respective buncher phase setpoint. The first order coefficient a1 is
shown in blue, and the second order coefficient a2 is plotted in red. In addition
to this, a linear fit has been applied to the values of the fit coefficients. The
purpose of this is to allow a comparison to the linear progression expected from
Astra simulations shown in figure 5.5. The general progression is identical, and
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Figure 5.8: Experimental results of the energy spread compensation scheme where the
first and second order fit coefficients a1 and a2 (blue and red) vanish at nearly
the same cavity configuration. The dashed lines mark a linear fit through
the data, which constitutes the expected run of the curve dictated by Astra

simulations. The relative (convolved) energy spread E∗RMS/〈E〉 is also shown
as a function of the buncher phase φb − φlin with respect to φlin.

measurement results and Astra simulations display the same behavior for both
fit coefficients.

Each data point represents the mean value calculated from ten beam signal
arrays. The error bars stem from the respective variance and from the covariance
matrix determined in the course of the fit routine, combined with an error based
on the uncertainty of the region growing algorithm and intrinsic uncertainties of
the dipole spectrometer arising from unknown offsets and angles at the entrance
to the dipole, which is assumed to be on the level of 1 %.

Nevertheless, it can be seen that the first and second order vanish at nearly the
same cavity configuration. The buncher phase values for a1 = 0 and a2 = 0, if
deduced from the linear fit, are approximately only 0.60 deg apart from each other.
The phase value φlin marks the setpoint where the data points of the first and
second order are closest to zero. Out of all the buncher phase scans performed
at different buncher amplitude values, this particular dataset contains the cavity
settings where ∆φb,fit(a1,2) = φb(a1 = 0)− φb(a2 = 0) assumes its smallest value.
In order to effectuate ∆φb,fit(a1,2) → 0, an even finer adjustment of the buncher
gradient is required. This is beyond the currently achievable precision of the rf
parameters at the Regae beamline.

An important aspect to note is the fact that the choice of φlin for ∆φb,fit 6= 0 is
ambiguous for this specific scenario. The buncher phase is uniquely defined in
conjunction with the buncher gradient for a distinct gun phase. In other words, if
the gun phase is has been fixed, a single unique set of buncher parameters exists
in the sense of the linearization model. However, if the buncher amplitude has
not been set to the correct value as dictated by the stretcher mode, the nominal
theoretical phase value loses its validity. Naturally, this ambiguity vanishes if the
buncher gradient has been adjusted accordingly.
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The relative (convolved) energy spread as a function of the setpoint values of
the buncher phase is also displayed. It should be noted that the energy spread
was calculated from data where the TDS was switched off, since activation of
the TDS leads to an induced energy spread. Attention must be drawn to the
the fact that the plotted energy spread values still contain a contribution of the
horizontal beam size. These quantities should therefore rather be referred to
as “convolved” energy spread etc, reminiscent of the convolution of energy and
horizontal charge distribution as explained at the beginning of this section. In
other words, the pure energy spread is most definitely lower than the measured
(convolved) energy spread. The minimum value for the relative convolved energy
spread reads E∗RMS/〈E〉 = 2.9 · 10−4.

The evolution of the longitudinal phase space in a parameter subspace around
the optimal energy spread compensation settings is depicted in figure 5.9. The rf
parameters of the gun cavity were set to Eg = 80.00 MV/m and φg = 45.00 deg,
respectively. In this particular buncher phase scan, the gradient of the buncher
was set to Eb = 8.85 MV/m. The buncher phase was scanned with a step width of
0.50 deg. The processed detector images are shown in figure A.1 in the appendix
A. Array centering and region growing has been performed on each background
subtracted image. However, it is difficult to directly discern curvature changes
in the detector images. For visualization purposes, the detector images were
divided into longitudinal “slices”, where each slice essentially corresponds to
one pixel column of the detector image. For each slice, the relative deviation
δγs/〈γ〉 = (γs − 〈γ〉)/〈γ〉 of the mean slice energy γs from the the mean beam
energy 〈γ〉 was computed and plotted as a black dot in figure 5.9. Thus, each
slice distribution is reduced to its mean energy, and the evolution of the phase
space curvature is clearly recognizable.

To each individual detector image, a cubic fit of the form f (x) = a3x3 + a2x2 +

a1x + a0 = γ(x) has been applied, where x contains the longitudinal coordinate
ζ in the bunch. The pixel intensities of the image were used as relative weights
for the fit routine. The fit results are plotted as red lines in figure 5.9. Similar
properties as in the Astra simulations shown in figure 5.6 are visible. Since the
energy axis again bears the same scale for all subplots, the progression of the
energy spread can also be seen. As the buncher phase approaches the optimal
energy spread compensation value, the energy spread continuously decreases.

The linearization process can be directly observed in the data. While a high
degree of curvature is visible in the distributions at the outer limits of the phase
scan, the subplot at φb = φlin for instance constitutes a nearly perfectly linearized
distribution, where φlin is in accordance with the analysis presented in figure 5.8.

The focusing strength of solenoid 6/7 was not optimized during this specific
measurement presented above. In response to this inconvenience, a solenoid scan
with solenoid 6/7 was performed to minimize the contribution of the horizontal
beam size on the spectrometer screen. The scan was carried out at the cavity
configuration determined in the preceding paragraphs, i.e. Eb = 8.85 MV/m
and φb = φlin. The resulting (convolved) relative energy spread is as low as
E∗RMS/〈E〉 = (2.4± 0.1) · 10−4 at a mean beam energy of 〈E〉 = 3.077 MeV.

In this regard, a measurement of the beam emittance for the unstreaked beam
was also performed via the solenoid scan. At the reconstruction point inside



94 longitudinal phase space linearization

−
2 0 2

φ
lin −

3
deg

φ
lin −

2.5
deg

φ
lin −

2
deg

φ
lin −

1.5
deg

−
2 0 2

φ
lin −

1
deg

φ
lin −

0.5
deg

φ
lin

φ
lin

+
0.5

deg

−
2 0 2

φ
lin

+
1

deg
φ

lin
+

1.5
deg

φ
lin

+
2

deg
φ

lin
+

2.5
deg

−
2.5

0.0
2.5

−
2 0 2

φ
lin

+
3

deg

−
2.5

0.0
2.5

φ
lin

+
3.5

deg

−
2.5

0.0
2.5

φ
lin

+
4

deg

−
2.5

0.0
2.5

φ
lin

+
4.5

deg

0.0
0.2

0.4
0.6

0.8
1.0

ζ
[m

m
]

0.0

0.2

0.4

0.6

0.8

1.0
δγs/〈γ〉 [10−3]

Figure 5.9: Measurement of the longitudinal phase space in dependency of the buncher
phase. The gradient of the buncher cavity has been fixed to a setpoint
of Eb = 8.85 MV/m. The underlying images were recorded at the dipole
spectrometer in combination with the streaking effect of the TDS at Regae

(see figure A.1 in the appendix). The black dots mark the relative slice energy
deviation δγs with respect to 〈γ〉; see the text for a detailed explanation. A
cubic fit (red) has been applied to the distribution where the pixel intensities
of the detector images have been used as weights. The general evolution of
the longitudinal phase space is very similar to the Astra simulations shown
in figure 5.6.
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Beam property Measured value

〈E〉 [MeV] 3.077± 0.001

Q [fC] 29.2± 0.9

ERMS/〈E〉 [10−4] ≤ 2.4± 0.1

εn,x [nm] 86± 2

εn,y [nm] 113± 4

Table 5.1: Overview of beam parameters measured in the course of the energy spread
compensation scheme. Note that the upper limit of the relative energy spread
is equal to the convolved relative energy spread.

solenoid 6/7, the normalized emittance reads εn,x = (86± 2) nm in the horizontal
and εn,y = (113± 4) nm in the vertical direction, respectively. An overview of
the beam properties measured in the energy spread compensation scheme are
listed in table 5.1. The mean beam energy 〈E〉 = (3.077± 0.001)MeV is in good
agreement with the expected beam energy of 3.084 MeV in Astra simulations.
This leads to the conclusion that even though the setpoint Eb = 8.85 MV/m for
the buncher gradient differs from the simulated value Eb = 9.25 MV/m, the
machine settings are nevertheless close to the simulated cavity parameters. The
discrepancy in the buncher gradient may most likely be ascribed to calibration
errors of the cavities.

Finally, an exemplary detector image of a linearized longitudinal phase space
measured with the energy spread compensation scheme is shown in the top right
subplot figure 5.10 (φb = φlin). The detector image corresponding to the reference
case for φg = 0 without the buncher cavity is shown in the top left subplot (see
also figure 5.7). Both detector images share the same axes in ζ and δγ/〈γ〉 and
represent the particle distributions in the longitudinal phase space. Thus, it can
clearly be seen that the electron bunch length is increased in stretcher mode as a
result of the controlled expansion between gun and buncher cavity. The colorbar
indicates the (normalized) pixel intensity values. The bottom row shows the cubic
fit function (red line) for both cases, along with the relative slice energy deviation
δγs/〈γ〉 (black dots). Compared to the reference case (left), the first and second
order have been reduced significantly using energy spread compensation (right)
and the characteristic S-shape of the now dominant third order contribution can
clearly be seen. A close-up representation of the linearized distribution using
δγs/〈γ〉 is shown in figure 5.11.

A number of datasets were recorded and analyzed. The machine setup and
subsequent measurement procedure was repeatedly carried out with great success.
A relative energy spread ERMS/〈E〉 ≤ 3 · 10−4 was measured repeatedly in various
measurement shifts.

A direct comparison of the measured energy spread and Astra simulations is
difficult for several reasons. First and foremost, the relative energy spread strongly
depends on the initial phase interval occupied in the gun cavity, i.e. on the pulse
duration of the photocathode laser pulse. An experimental measurement of the
laser pulse duration could not be performed. The pulse duration utilized in the
presented simulations is itself based on an Astra simulation which produces the
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Figure 5.10: Exemplary depiction of the linearized longitudinal phase space (right)
recorded as part of the dataset shown in figure 5.9. The reference case
corresponding to standard operation mode at φg = 0 and without the
buncher cavity is also shown (left). The fit function (red) in the bottom
subplots has been weighted with the respective pixel intensities of the
detector images; the black dots mark the relative slice energy deviation
δγs/〈γ〉. For reasons of comparison, the bottom subplots share the same
axis scaling. In the reference case shown on the left, the curvature in
the longitudinal phase space can clearly be seen. In contrast to this, the
curvature in the stretcher mode (right subplots) has nearly vanished, and
the characteristic S-shape of the third order can be seen (bottom right). In
addition to this, the bunch length has increased.
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Figure 5.11: Close-up view of the bottom right subplot of figure 5.10 representing a
linearized longitudinal phase space of the electron bunch. The black dots
mark the relative slice energy deviation δγs/〈γ〉, and the red line marks
the fit through the corresponding detector image where the pixel intensities
have been used as relative weights in the fit procedure. Since first and
second order contributions have nearly been eliminated, the third order
becomes dominant.
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measured bunch length of ξRMS = (1.44± 0.10)ps. Secondly, the recorded signal
distribution on the spectrometer detector contains a contribution arising from the
horizontal beam size. The reconstructed energy spread is therefore overestimated.
Due to the fact that the the dipole not only causes an energy dependent deflection
of the electrons but also has a focusing effect on the beam, it is not possible to use
the vertical beam size on the spectrometer scintillator as an approximate estimate
for the horizontal beam size.

Recently, a method of reconstructing the pure energy energy spread has been
proposed in [114], which is based on measurements of the width of the particle
distribution (in the dispersive direction) on the camera image of the spectrometer
at different beam energies. By exploiting the different energy dependence of
(horizontal) beam size and relative energy spread, the individual contributions
can be deconvolved [114]. The potential implementation of this method at the
Regae spectrometer is currently being investigated. If the proposed method
proves to be feasible, a reconstruction of the pure energy spread may be possible.

The magnitude of the pure relative energy spread can be estimated by an
analytical calculation. The width of the measured distribution xRMS,m along the
dispersive axis on the detector screen contains contributions from the pure energy
spread ERMS, the intrinsic horizontal beam size xRMS and the detector screen
resolution Rdet. Assuming these terms are uncorrelated, the pure relative energy
spread is given by [114]

ERMS

〈E〉 =

√√√√ x2
RMS,m −

mec2βxεn,x
〈E〉 − R2

det

D2
x

, (5.8)

where Dx denotes the dispersion of the dipole spectrometer and the term mec2βxεn,x
〈E〉

describes the contribution of the intrinsic beam size to the measured distribution
width on the spectrometer screen (see [114] for details); βx denotes the beta
function at the position of the screen. Plugging in the measured dispersion from
figure 3.5 and using the pixel calibration of the installed camera setup at the
spectrometer as the resolution Rdet = 12.9 µm yields a relative energy spread of
ERMS/〈E〉 = 1.6 · 10−4 for an estimated horizontal beam size of xRMS = 40 µm
as taken from Astra simulations; note that the relation x2

RMS = βxεx has been
used. This would be in good agreement with the relative energy spread of
ERMS,sim/〈E〉 = 1.5 · 10−4 expected from Astra simulations with corresponding
cavity and beam parameters.

An important aspect which must also be addressed is the fact that even in the
measurement data with the best-case cavity configuration, the zero-crossing of
the fit coefficients, i.e. a1 = 0 and a2 = 0, still occur at phase values which are
approximately 0.60 deg apart from each other. Strictly speaking, this implies that
an optimal linearization was not achieved, i.e. the experimentally determined
φlin does not fully eliminate both first and second order contributions. A finer
adjustment of the cavity parameters would lead to an even smaller energy spread.

Last but not least, the effect of fluctuations of the cavity rf parameters on the
measurement results must be considered. Since the stretcher mode requires an
extremely high precision with respect to the cavity settings, the results can be
rather sensitive to fluctuations of the cavity parameters. For this purpose, a total
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Figure 5.12: Astra simulations showing the effect of cavity rf fluctuations on the relative
energy spread ERMS/〈E〉 in the energy spread compensation scheme. The
initial cavity configuration was set to the linearization parameters, and the
cavity fluctuations were set to 0.08 % in amplitude and 0.06 deg in phase.
The red line shows the mean relative energy spread of ĒRMS/〈E〉 = 1.6 · 10−4,
while the dashed red lines indicate the associated standard deviation.

of 999 Astra simulations runs were carried out with cavity parameter fluctuations
based on the stability observations outlined in figure 4.8. Normal distributions
of cavity amplitude and phase values with respective standard deviations of
0.08 % · Eg, 0.5 % · Eb and 0.06 deg were generated and used as input parameters
for the Astra simulations. The results of this study are shown in figure 5.12,
where the relative energy spread ERMS/〈E〉 is plotted for each separate Astra run.
The energy spread compensation parameters Eg = 80.00 MV/m, φg = 45.00 deg,
Eb = 9.24 MV/m and φb = −72.80 deg were used as initial cavity configuration.
The relative energy spread for these cavity settings, using an initial pulse duration
of 2.1 ps, reads ERMS,sim/〈E〉 = 1.5 · 10−4. As a result of the cavity fluctuations,
the expected relative energy spread amounts to ERMS,exp/〈E〉 = (1.6± 0.6) · 10−4.
Both mean and associated standard deviation have been marked with red lines in
figure 5.12.

In summary, only the convolved energy spread was accessible in direct mea-
surements, which was equal to E∗RMS/〈E〉 = (2.4± 0.1) · 10−4. Application of
the method presented in [114] may allow the reconstruction of the deconvolved
energy spread. An increased precision in tuning the cavity parameters would
allow for a more exact linearization, characterized by a1 = a2 = 0, to be carried
out. Elimination of the third order may also be possible, giving rise to an even
smaller energy spread.

All in all, the measurement data confirm the applicability of the energy spread
compensation scheme in stretcher mode operation of the Regae beamline in terms
of the longitudinal phase space evolution. It has been demonstrated that first and
second order contributions in the longitudinal phase space distribution can be
reduced significantly using energy spread compensation.
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Figure 5.13: Two-dimensional parameter scan of the buncher gradient Eb and phase φb
performed with Astra. The scan was performed around the (suspected)
optimal bunch compression cavity configuration of the stretcher mode,
where the second order vanishes and both bunch length and longitudinal
emittance assume their minimum value at the desired focus position z = 6 m
inside the TDS. The color code marks the value of the RMS bunch length
ξRMS for each buncher configuration within the scan interval. Logarithmic
scaling has been applied to the color bar. Space charge forces were not
included in these simulations.

5.2.2 Bunch Length Compression

Naturally, the findings presented above can also be transferred to the application
of the stretcher mode to bunch length compression. Since the same generalities
still apply, the basic considerations will only be outlined briefly. The measured
uncompressed bunch length of ξ̄RMS = (1.44± 0.10)ps, obtained from previous
measurements, will act as a point of reference for the indicated compression
factors.

Figure 5.13 shows Astra simulations of the RMS bunch length at the position
of the TDS (z = 6 m) for a selection of buncher settings around the optimum
configuration. An initial laser pulse duration of 2.1 ps was used; space charge
forces were excluded from these simulations. The pulse duration was taken from
an Astra simulation which produces a bunch length that coincides with the
measured value ξ̄RMS = (1.44± 0.10)ps. The existence of a minimal bunch length
(ξRMS = 8.17 fs) can clearly be seen.

The first and second order contributions b1 and b2 to the longitudinal phase
space distributions as a function of the buncher phase are shown in figure 5.14

for a refined selection of buncher gradient setpoints, along with the RMS bunch
length. The gradient value is again indicated in the title of each respective
subplot. The presented curves were taken from Astra simulations where space
charge effects were neglected. A cubic fit has been applied to each distinctive
particle distribution. This time, however, the energy deviation δγ/γr was used
as the domain. In other words, the function took on the form f (δγ/γr) =



100 longitudinal phase space linearization

b3(δγ/γr)3 + b2(δγ/γr)2 + b1δγ/γr + b0 = ζ(γ). As previously explained, a
functional description in terms of the longitudinal coordinate, i.e. γ = γ(ζ)

breaks down around in the region around the longitudinal focus. The reason for
this is the occurrence of ambiguities in ζ.

As the buncher gradient approaches the optimal setpoint, the difference φb(b1 =

0)− φb(b2 = 0) steadily decreases. In other words, the phase value where the first
order vanishes and the phase value where the second order vanishes are moved
closer together. From a physical point of view, tuning the buncher phase shifts
the position of the bunch length minimum and the position of the longitudinal
emittance minimum until both minima positions coincide at the same z-position in
the beamline. Application of the linearization procedure yields Eg = 80.00 MV/m
and φg = 34.10 deg as possible gun parameters, and Eb = 14.18 MV/m and
φb = −106.41 deg as corresponding buncher parameters, respectively. Finding
rf parameters during operation of the Regae beamline which yield b1 = 0 as
well as b2 = 0, combined with a sign change of the curvature, and verifying this
through measurements can justifiably be regarded as proof of concept for the
bunch compression scheme of the stretcher mode.

In the RMS based focus, the minimum bunch length is as low as 6.23 fs. How-
ever, the longitudinal focus in the sense of the linearization model, which results
in b1 = b2 = 0, occurs at a slightly different phase setting. Here, the bunch length
reads 10.07 fs. The position of the bunch length minimum is slightly shifted
with respect to the position where the first and second order contributions are
eliminated. The reason for this is that third order contributions are partially
compensated by the nonzero linear term b1 6= 0 at the position of the bunch
length minimum. This results in a shorter longitudinal extent compared to the
bunch duration at the position of the linearized phase space distribution.

It is again instructive to observe the evolution of the particle distribution
in the longitudinal phase space for a parameter region around the optimum
cavity configuration. Astra simulations of the longitudinal phase space for a
fixed buncher gradient, in this case Eb = 14.18 MV/m, are depicted in figure
5.15 for a variety of buncher phase values. Space charge effects were again
excluded in order to visualize the unperturbed internal bunch structure and its
progression. The buncher phase has been varied in steps of 0.50 deg around
φb = −106.41 deg = φlin.

The decrease in bunch length as the optimum cavity configuration is ap-
proached can clearly be observed, as all subplots again share the same axes. At
φb = φlin the distribution appears to resemble an upright line in the longitudinal
phase space. Closer inspection of the distribution actually reveals an S-shape
dominated by third order contributions. This has already been indicated previ-
ously in figure 5.2. At this point, the first and second order contributions nearly
vanish completely. It should be noted that the particle distributions depicted
in each subplot have been taken at z = 6 m, which coincides with the position
of the longitudinal focus for the optimal cavity parameters and of the TDS. For
deviations of the buncher phase value from the optimum, first and second order
contributions reoccur and the bunch length may increase. In point of fact, the
bunch length minimum changes its position. However, the minimum of the lon-
gitudinal emittance also changes its position. An increasing offset of the buncher
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Figure 5.14: Astra simulations of the RMS bunch duration ξRMS (black) as well as first
(blue) and second (red) order fit coefficients b1 and b2 of a cubic fit to the
longitudinal phase space distribution resulting from buncher phase scans
for a subset of buncher amplitude values. The values of the fit coefficients
have been scaled to the order of magnitude of the bunch length. Space
charge forces were not included in these simulations.
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Figure 5.15: Longitudinal phase space simulated with Astra for a variety of buncher
phase settings around φlin in the bunch compression scheme of the stretcher
mode. A cubic fit (red) has been applied to each particle distribution (black).
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phase with respect to the optimum causes a shift of bunch length minimum and
longitudinal emittance minimum along the z-coordinate. The longitudinal focus
in the sense of the linearization model is the characterized by the unique2 buncher
setting where the z-position of the bunch length minimum coincides with the
z-position of the longitudinal emittance minimum. In this case, the expected
bunch length is equal to ξRMS = 11.95 fs for an initial laser pulse duration of
2.1 ps and a bunch charge of Q = 30 fC. This would translate to a compression
factor of about 120.

In principle, the machine setup procedure for bunch length compression is the
same as for energy spread compensation, which makes sense since both schemes
fall into the category of stretcher mode. Furthermore, the idea is once again
to make use of the combination of TDS and dipole spectrometer to reconstruct
the degree of curvature in the longitudinal phase space and thus experimentally
determine the correct cavity rf parameters Eb and φb = φlin.

After stepwise adjustment of the gun phase towards the required value φg =

34.10 deg, the buncher cavity was activated. In contrast to the procedure used
for energy spread compensation, the TDS was switched on already at this point.
The purpose of this was to easily visualize the development of the bunch length.
Magnet lattice, dipole field and camera properties had to be adjusted continuously
in order to keep the beam within the visible area of the scintillator screen. While
the buncher cavity was still deactivated, the bunch length was so large that
the streaked signal covered an area much larger than the imaged region of the
scintillator screen of the dipole spectrometer. According to Astra simulations,
the expected bunch length at the position of the TDS amounts to ξRMS ≈ 9 ps.
This result makes sense since the gun cavity is operated at an expanding phase.

The buncher cavity caused a rapid decrease in bunch length as the parameters
drew near the optimal settings. Once an approximate parameter range was
established, the collimator at DDC1 was driven into the beam path to reduce dark
current. In addition to this, some minor adjustments to the focusing solenoids
in the Regae front-end were put into effect. The attenuator in the UV segment
of the photocathode laser system was fixed to produce a total bunch charge of
Q = 30 fC. The combination of deflecting structure and dipole spectrometer
enabled the reconstruction of the longitudinal phase space on the scintillator
screen at the spectrometer setup. The amplitude of the TDS itself had to be
increased to the maximum value in order to effectively visualize the curvature of
the particle distribution in the longitudinal phase space.

Analogously to the measurement procedure described regarding the energy
spread compensation scheme in section 5.2.1, a two-dimensional parameter scan
of the buncher cavity rf parameters was carried out. For each fixed value of the
buncher gradient, data were obtained for a variety of buncher phase setpoints. A
total of 10 beam and background images were recorded at each distinct cavity
configuration. Background subtraction and array centering was performed as
described in section 4.2.2. Furthermore, the region growing algorithm was ap-
plied to the images. As a result of the relatively large area covered by the beam

2 It should be reminded that such a buncher setting exists for multiple gun settings in terms of
second order correction, since the gun phase can be chosen somewhat arbitrarily. This “degree of
freedom” vanishes for third (and higher) order corrections [16].
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signal (compared to images taken during the energy spread compensation mea-
surements), neighboring pixels were grouped together as written in the section
describing the region growing algorithm. A bin width of 4 pixels proved to yield
a satisfactory balance between required computation time and reconstruction ac-
curacy and reliability. While the binning procedure does affect the reconstructed
RMS size of the signal, the effect on the fit parameters is negligible. The reason
for this is that the fit is weighted with the respective pixel intensities, and the
potentially “false” pixels at the edge of the signal can be safely disregarded with
respect to the high intensity pixels in the center of the beam, which are included
independent of the bin width.

Since the cavity configuration was chosen to effectuate a linearization of phase
space up to the second order, the first and second coefficients of the fit should
vanish at the optimal cavity settings. The progression of the fit parameters for the
longitudinal phase space evolution discussed above is shown in figure 5.16. In
this particular dataset, the gradient of the buncher cavity was fixed at a setpoint
of Eb = 13.87 MV/m. The buncher phase was scanned in steps of 0.50 deg in
a region around φlin. The bunch charge measured at DaMon2 was equal to
Q = 30 fC. A polynomial function of the form ζ(x) = b3x3 + b2x2 + b1x + b0 was
fitted to the data of each phase space distribution of the detector images, where
the fit variable x contains the energy γ of the particle and the pixel intensities
were used as weights for the fit. An inverse functional representation γ(ζ) is not
possible at this point because of the existing ambiguities around the longitudinal
focus. The plot shows the first and second order fit coefficients b1 and b2 of the
cubic fit to the longitudinal phase space distribution at the according buncher
phase setpoint. More specifically, the plotted data constitute a cavity configuration
where a compression of the electron bunch in the sense of the stretcher mode
linearization model has been put into effect. This can be deduced from the fact
that the zero-crossing phase values of the two datasets for b1 and b2 are nearly
identical.

Figure 5.17 shows an exemplary evolution of the longitudinal phase space
recorded in the course of the buncher parameter scan. The detector images are
found in figure A.2 in the appendix A. The buncher phase setting is indicated
in the title of the respective subplot, φlin is in accordance with figure 5.16. Due
to the large positional jitter on the camera image, the calibration of the TDS was
carried out at a lower output power of the amplifier and then scaled to the power
used in the measurements. Nevertheless, the uncertainty of the calibration is on
the level of 30 %.

The change in bunch length as a function of the cavity parameters, i.e. of the
buncher phase φb, can be observed nicely. The applied fit (red) is plotted together
with the energy slice centroid ζs (black); this corresponds to the same procedure
carried out in context of figure 5.9 in the energy spread compensation scheme.
The fit coefficients were used to analyze degree of curvature depending on the
current cavity settings. A noteworthy observation is the fact that the curvature of
the distribution clearly decreases as the buncher phase approaches the optimal
setting in this specific cavity configuration. Here, the curvature appears to have
vanished and the phase space distribution strongly resembles an upright line in
this representation. The general progression of the measured longitudinal phase
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Figure 5.16: Experimental results of the bunch compression scheme of the stretcher
mode. The first and second order fit coefficients b1 and b2 (indicated in blue
and red, respectively) of a cubic fit to the corresponding particle distribution
in the longitudinal phase space are shown as a function of the buncher phase
φb − φlin for a fixed buncher amplitude value, where φlin corresponds to the
buncher phase which yields a nearly linearized distribution. The dashed
lines mark a linear fit through the data, which constitutes the functional
behavior expected from Astra simulations. The data were recorded at the
eSpec of the Regae beamline.

space evolution displays a high degree of similarity to the Astra simulations
presented in figure 5.15

From a purely experimental and operational point of view, attention should be
drawn to the fact that the determination of the actual cavity rf settings of the bunch
compression scheme “in reality” proved to be far less straightforward compared
to finding appropriate settings for energy spread compensation. Admittedly,
this can already be adumbrated by comparing the two-dimensional buncher
parameter scans simulated with Astra as portrayed in figures 5.4 and 5.13,
respectively. It appears that the bunch compression scheme of the stretcher mode
is more sensitive to the settings of both cavities, i.e. the subspace of parameters
where linearization occurs and ultrashort bunch lengths can be achieved, is
extremely small. In addition, the optimization must include the placement of
the longitudinal focus at the desired position in the beamline. Coupled with the
complications of having to continuously adjust various machine setting such as
magnet lattice and TDS and spectrometer parameters during the search of the
optimal cavity configuration, manually putting the bunch compression scheme
into practice requires a great amount of effort. Further investigations geared
towards an automated routine may aid the cause of establishing the stretcher
mode as a possible standard operating mode of the beamline.

Following the experimental identification of appropriate cavity parameters, a
measurement of the electron bunch length in stretcher mode operation of the
Regae beamline was performed. In principle, the actual method of measuring
the bunch length with use of the TDS is identical to the other bunch length
measurements outlined earlier in this thesis. The same machine setup procedure
and data processing techniques were utilized.

The data of the bunch length measurement itself is depicted in figure 5.18; a
thorough description of the analysis procedure has been given in earlier sections
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Figure 5.17: Measurement of the longitudinal phase space in dependency of the buncher
phase in a region around the linearization setting φlin (with a step width
0.50 deg). The underlying images were recorded at the dipole spectrometer
in combination with the TDS operated at maximum power. The images
were processed with the binned region growing algorithm. A cubic fit (red)
has been applied to each particle distribution where the pixel intensities
have been used as weights. The black dots mark the mean longitudinal
coordinate ζs for each energy slice.
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Figure 5.18: Measurement of the RMS bunch length ξRMS at the D2 detector setup

using the bunch compression scheme of the stretcher mode at Regae. The
weighted mean bunch length is equal to ξ̄RMS = (21.86± 1.82) fs.

Beam property Measured value

〈E〉 [MeV] 2.83± 0.04

Q [fC] 32.1± 0.6

ξRMS [fs] 21.86± 1.82

εn,x [nm] 127± 35

εn,y [nm] 140± 45

Table 5.2: Overview of beam parameters measured in the course of the bunch compres-
sion scheme.

of this thesis. The reconstructed bunch length ξRMS is shown for a total of 10
recorded shots. The resulting weighted mean value of all recorded shots yields a
bunch length of ξ̄RMS = (21.86± 1.82) fs.

Furthermore, a measurement of the emittance was carried out via a solenoid
scan. The normalized transverse emittance reads εn,x = (127 ± 35) nm and
εn,y = (140± 45) nm, respectively. The large relative uncertainties are a result of
dark current jitter, which impacts the reconstructed RMS values due to significant
pixel intensity variations occurring as a result of the background subtraction
procedure. The main beam parameters are summarized in table 5.2.

Compared to the uncompressed bunch length, which was determined in pre-
vious measurements and found to be equal to ξ̄RMS = (1.44± 0.10)ps, a com-
pression factor of around 65 has been achieved. To put this into perspective,
an previous measurement using the ballistic bunching mechanism for this laser
pulse duration was evaluated, which yielded a weighted mean bunch length of
ξ̄RMS = (133.38± 2.19) fs. This implies a compression factor slightly above 10.
Simulations with Astra predict a bunch length slightly below 130 fs. Considering
the fact that the photocathode laser pulse duration could not be measured directly,
the agreement between measurement and simulations is very good. In terms
of effective compression, it is evident that the bunch compression scheme of
the stretcher mode constitutes a significant improvement in comparison to the
ballistic bunching mechanism.

Based on Astra simulations for a nominal laser pulse duration of 2.1 ps and a
bunch charge of Q = 30 fC, the linearization method should produce a bunch with
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a longitudinal extent of ξ0,RMS = 11.95 fs in the focus in the sense of the model.
Incorporating the TDS in simulations and replicating the measurement procedure
in Astra would yield a reconstructed bunch length of ξRMS,sim = 14.10 fs. Thus,
the difference between mean measured value and simulated bunch length is
equal to 7.76 fs. Therefore, within the scope of the measuring accuracy indicated
by the respective uncertainty, the bunch length expected from simulations with
the stretcher mode could not be measured. However, closer inspection of the
phase space contribution depicted in figure 5.16 reveals that while the first
and second terms have been greatly reduced, they do not entirely vanish at
φb = φlin. Thus, these nonvanishing contributions offer a possible explanation for
the slightly larger measured bunch length. In addition to this, it is possible that
the laser parameters changed in the time between the measurement shift of the
uncompressed bunch and the measurement shift dedicated to the stretcher mode.
A longer nominal laser pulse duration could, in turn, lead to a larger expected
bunch length in the longitudinal focus

Naturally, the utilized cavity parameters are subject to rf jitter around the
nominal setpoints, which can have a significant impact on the linearization results.
To quantify the effect of these fluctuations, a total of 999 Astra simulation runs
have been performed, in which the cavity parameters were sampled from normal
distributions with standard deviations of 0.08 % · Eg and 0.5 % · Eb in amplitude,
0.06 deg in gun phase and 0.12 deg in buncher phase, respectively. The standard
deviations were calculated from the cavity fluctuations within a time interval of
one hour. The optimal linearization settings Eg = 80.00 MV/m, φg = 34.10 deg,
Eb = 14.18 MV/m and φb = −106.41 deg were used as mean values of the
respective normal distributions. In this case, the longitudinal extent of the bunch
reads ξRMS,sim = 13.80 fs (the TDS has been included in the simulation). Taking
the jitter of gun and buncher cavity into account yields a mean expected bunch
length of ξ̄RMS,sim = (24.94 ± 16.84) fs, which is more than double the value
for the nominal cavity configuration. In contrast to this, the minimum bunch
length obtained in the jitter analysis is as small as 6 fs and thus below the bunch
duration expected using the linearization settings. The reason for this is that while
the linearization configuration eliminates the first and second order terms, the
absolute bunch length minimum is assumed at slightly different cavity parameters
which lead to a partial compensation of the third order by a nonzero linear term
[17].

It is important to stress the fact that this strong bunch length fluctuation
only occurs at the nominal focus position zf. Previous numerical studies have
shown that the overall minimum attainable bunch length is robust against cavity
fluctuations, whereas the position of the longitudinal focus can, in fact, be subject
to variations on the order of several mm [16].

Based on the measurements data analyzed and presented above, it can be
concluded that the longitudinal extent of an electron bunch with ultralow charge
was successfully compressed using the bunch compression scheme of the stretcher
mode. First and second order contributions to the longitudinal phase space
distribution have been reduced significantly using stretcher mode operation
settings. Thus, it has been demonstrated that the stretcher mode may be utilized
for the compression of electron bunches at few MeV beam energies.
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Figure 5.19: Astra simulations showing the effect of cavity rf fluctuations on the bunch
length ξRMS at the nominal position z = 6 m of the longitudinal focus. The
cavity parameters and their standard deviations are specified in the text..
The red line shows the mean bunch length ξ̄RMS = 24.95 fs, while the dashed
red lines indicate the associated standard deviation. The mean bunch length
is more than twice as large as the bunch length expected for ideal cavity
settings.

5.3 summary

Based on previous work presented in [16, 17], a novel phase space linearization
method, dubbed stretcher mode, has been applied to the Regae beamline. Instead
of using a higher harmonic structure, the linearization method at hand relies on
the controlled evolution from the gun cavity to the buncher cavity, which are
both operated at the same fundamental rf frequency. More specifically, cavity
configurations have been determined which linearize the longitudinal phase
space distribution by effectively eliminating first and second order contributions.
This has been done for both axes of the longitudinal phase space, i.e. one set of
parameters acts on the longitudinal coordinate ζ and minimizes the bunch length,
and the other set of parameters acts on the energy coordinate γ and minimizes
the energy spread of the bunch.

The transverse deflecting structure installed at the Regae beamline was utilized
in connection with the dipole spectrometer to record camera images representing
the particle distribution of the electron bunch in the longitudinal phase space. A
two-dimensional scan of the buncher cavity parameters was performed around
the suspected optimal cavity settings, and the evolution of the phase space distri-
bution was evaluated. It was successfully shown that cavity configurations exist
where the first and second order coefficients of the cubic fit function, applied to
the respective distribution, have vanished. Moreover, in the phase space evolution
plots it can clearly be seen that curvature changes sign. This was accomplished
for both bunch length compression and energy spread compensation schemes.
The presented results act as a valid proof of concept for the novel linearization
scheme.

In the course of the experimental data collected on the energy spread compensa-
tion scheme, measurements of the RMS energy spread itself were carried out and
evaluated. For a bunch charge of 30 fC at a mean beam energy of 〈E〉 = 3.077 MeV,
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the best measured relative energy spread with use of the stretcher mode is equal
to ERMS/〈E〉 ≤ (2.4± 0.1) · 10−4. Relative energy spreads below 3 · 10−4 have
repeatedly been obtained at various measurement shifts. Similarly, measurements
of the bunch length in context of the bunch compression scheme were carried
out. The phase space evolution verifies the applicability of the stretcher mode as
a linearization method to compress the particle bunch, and the measured bunch
length is equal to ξRMS = (21.86± 1.82) fs for a charge of Q = 30 fC. This corre-
sponds to a compression factor of about 65 with respect to the uncompressed
bunch length. Compared to the compression factor of 10 using the ballistic
bunching mechanism with identical nominal laser parameter, it is apparent that
implementation of the stretcher mode offers a significant improvement.

In summary, the results obtained from the measurement data presented in this
section verify the stretcher mode as a valid method of linearizing the longitudinal
phase space. Further studies regarding the initial parameters of the photocathode
laser pulse, optimization of cavity settings for higher order linearization and the
reconstruction of bunch length and energy spread values confirming the expected
minimum are planned for the future.



6 D I S C U S S I O N A N D O U T LO O K

The work presented in this thesis was focused on the operation of the transverse
deflecting structure at the Regae beamline and the demonstration of a novel
method for linearizing the longitudinal phase space without the use of higher
harmonic structures. A standard procedure for TDS operation and single-shot
bunch length measurements at Regae has been established and discussed. The
TDS played an indispensable role for the pilot studies of the novel linearization
technique as presented in the preceding section.

A reconstruction of the bunch length using the ballistic bunching mechanism,
which only eliminates linear correlations in the longitudinal phase space, was
successfully carried out. Given all the general assumptions regarding the beamline
model in Astra, the agreement between measurement data and simulations is
excellent. Thus, the Regae TDS has been successfully integrated into the beamline
and has proven to produce reliable measurement results. Using the ballistic
bunching mechanism, a measured bunch length below 10 fs has been reported in
an accelerator facility comparable to the Regae beamline; however, the RMS pulse
duration of the photocathode laser was intentionally reduced to 100 fs [20]. An
appropriate adjustment of the pulse duration at Regae should be able to produce
similar results.

Apart from space charge, the attainability of even shorter bunches can be
limited by nonlinear contributions in the longitudinal phase space. Pilot studies
of a novel linearization method presented in [17] were performed in the course
of this thesis, during which the TDS was used to measure and analyze the
characteristics of the longitudinal phase space distribution. The linearization
method is geared towards eliminating nonlinearities in the longitudinal phase
space in order to further compress the electron bunch. Alternatively, the method
can be used to compensate the energy spread accumulated in the gun cavity. It is
based on the controlled expansion of the bunch between gun and buncher cavity,
and thus referred to as stretcher mode.

Cavity rf parameters of the stretcher mode which eliminate first and second
order phase space contributions have been determined for the Regae beamline at
Eg = 80 MV/m with the help of Astra simulations. This was carried out for both
axes of the longitudinal phase space: one parameter set minimizes the bunch
length, the other parameter set minimizes the energy spread. Measurement data
portraying a longitudinal phase space distribution where the first and second
order have vanished, and the third order becomes clearly visible, have been
presented. Based on the results presented for the bunch compression and energy
spread compensation schemes, the applicability of the stretcher mode as a method
to linearize the longitudinal phase space has been demonstrated successfully.

Transmission electron microscopy (TEM) constitutes an exemplary potential
application of energy spread compensation [6, 11]. Substituting the typical
∼ 100 keV electrons used in conventional TEMs [115, 116] with MeV beam
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energies paves the way for single-shot picosecond resolution TEM by making use
of reduced space charge effects [11, 117]. Here, an extremely small normalized
transverse beam emittance (∼ 10 nm) is required, whereas the bunch length can
be on the picosecond level (∼ 10 ps) to reduce space charge repulsion, which can
cause emittance degradation. In this case, the chromatic aberrations caused by the
energy spread of the beam can be a limiting factor of the microscope resolution. A
relative energy spread smaller than 10−4 at a mean beam energy around 3 to 5 MeV
would prove to be highly beneficial. According to [11], the aforementioned values
are the requirements for a microscope capable of recording single-shot images
with a spatio-temporal resolution of 10 nm and 10 ps, respectively. A relative
energy spread < 10−4 is feasible using the energy spread compensation scheme
of the stretcher mode. The experimental verification of such a small relative
energy spread at Regae requires the deconvolution of the beam size contribution
on the energy spectrometer [114].

In context of bunch length measurements performed with the TDS in stretcher
mode, it should be noted that for ultrashort bunch durations on the order of 10 fs
at few MeV beam energies, higher order effects such as transverse defocusing and
bunch lengthening induced by the TDS can impact the bunch length reconstruc-
tion. Since these effects scale with 1/γ2 [44], the most effective reduction would
be achieved by operating the beamline at a higher beam energy. However, the
longitudinal shift caused by the buncher cavity in compression schemes based
on the ballistic bunching mechanism scales with 1/γ3, thereby rendering the
employment of beam energies� 5 MeV ineffective for this type of compression.
Operation of gun cavity at the design gradient of 100 MV/m would increase the
mean beam energy and thus decrease higher order effects significantly, while
preserving the viability of the ballistic bunching mechanism.

It has been conceptually shown that the stretcher mode can be used to produce
bunch lengths below 1 fs; similarly, a relative energy spread below 10−5 has
been obtained in simulations [17]. This translates to approximately an order
of magnitude smaller than the measurement results presented in this work. To
achieve such narrow distribution widths, the third order term in the longitudinal
phase space distribution must be eliminated as well, which has yet to be verified
by measurements. Apart from current limitations regarding the resolution of the
electron beam diagnostics, this would require an increased level of control of the
cavity rf parameters, as well as more stable operating conditions with respect to
cavity rf fluctuations.

The bunch compression scheme of the stretcher mode may find its application
in UED experiments, which are planned to be carried out at the Regae beamline.
UED requires ultrashort electron bunches on the femtosecond level or below to
analyze fast atomic motions [2]. The electron beam is used to probe the target
and can thus provide insights on the structural dynamics of matter. Applying
the stretcher mode to produce ultrashort bunches may allow the investigation
of processes on the sub-femtosecond level. However, this requires a stable and
high-precision operation of the beamline and of the pump laser.

Two seemingly decisive deficits of the bunch compression scheme are given
by the fact that the longitudinal focus is reached at a fixed position and that
the compression itself is essentially based on the ballistic bunching mechanism,



discussion and outlook 113

which means that the stretcher mode is not feasible for high mean beam ener-
gies. However, these drawbacks can be nullified by injecting the linearized and
compressed electron bunch into an accelerating structure, essentially exploiting
the fact that both linear and nonlinear contributions scale inversely with higher
powers of γ. It has been conceptually shown that this could freeze the longitudi-
nal phase space distribution, which would prevent the expansion of the bunch
and thus preserve the focused bunch structure in the entire subsequent beamline
segment [17]. Naturally, this also requires careful tuning of the cavity parameters
and delicate placement of the longitudinal focus at the optimal position in the
accelerating structure.

Instead of an accelerating cavity, simulations have shown that a plasma-based
acceleration scheme may be utilized, since the high field gradients in the order of
GV/m would rapidly suppress the further evolution of higher order contributions
[16]. While the external injection of a linearized and compressed electron bunch
into a plasma wakefield has been demonstrated in simulations presented in [16],
a detailed analysis of the associated parameters and experimental measurements
are yet to be carried out.

At higher beam energies� 5 MeV, compression based on ballistic bunching is
no longer feasible. Therefore, high energy accelerator facilities commonly resort
to the use of magnetic chicanes, which are based on energy-dependent differences
in path length. Measurements of sub-femtosecond bunch lengths using chicane
compression have been previously reported [118]. In principle, it should be
possible to incorporate the stretcher mode formalism in the matrix description of
a magnetic chicane and thus (pre-)compensate nonlinear contributions, including
longitudinal effects of the chicane, in the injector section, where the beam energy
is sufficiently low [16]. Further studies are required to conclude on this aspect.

Apart from the reconstructed bunch length, the internal longitudinal structure
of the linearized bunch may be of further interest, since the parameters space
associated with bunches produced in stretcher mode is in uncharted territory. To
resolve different characteristics between longitudinal slices, the slice length must
be larger than the longitudinal resolution of the TDS. Several options exist for the
purpose of resolving bunches with a longitudinal extent in the attosecond range.
One possible course of action would be to simply increase the shear parameter of
the currently installed TDS by using an amplifier with a greater output power.
Another concept relies on the use of a sub-THz-driven dielectric lined waveguide
(DLW) as a compact type of deflecting structure [119, 120]. Deflecting structures
operated at a higher frequency intrinsically have a larger wave number k, which
yields a larger shear parameter due to S ∝ k. Numerical simulations have shown
that such a (sub-)THz TDS should be capable of resolving sub-femtosecond
bunches created using the stretcher mode [121]. Using a THz-based setup with a
metal slit structure, a resolution of 2.5 fs has been demonstrated for a beam energy
around 3 MeV [122]. A setup dedicated to the generation of THz radiation has
been successfully tested and characterized in the laser laboratory at Regae [121].
Implementation of the setup along with installation of the DLW into the Regae

target chamber in the beamline is planned to be carried out in 2021. Following the
installation, the concept of the THz-driven DLW TDS will first need to be verified.
The measurement data of the DLW TDS could be compared to and validated
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by the results obtained with the Regae TDS, which is already in operation and
delivers reliable results.

In this regard, an improvement of the transverse emittance would directly
improve the longitudinal resolution of the TDS, since the resolution scales ex-
plicitly with the transverse beam emittance. The benefits of a smaller emittance
would also extend to the resolution of the energy spectrometer. In both cases,
the resolution is proportional to the beam size at the position of the detector
screen. At Regae, the emittance of the beam is essentially defined by the intrinsic
emittance of the cathode. A reduction of the emittance after the generation of the
bunch is not feasible in the current accelerator setup, apart from using collimators
to cut away fractions of the beam charge. Pushing the transverse beam emittance
to even lower values requires adaptions of the photocathode laser system.

A number of improvements have been made to the photocathode laser system
connected to the measurements performed within this thesis. This includes
the integration of a beam stabilization setup, general alignment corrections,
and the installation of a pinhole imaging setup to achieve a transverse uniform
pulse shape and reduce the transverse emittance. This resulted in a normalized
transverse emittance on the order of 30 nm in standard operation mode (without
the buncher cavity). However, the overall performance of the laser system has
not yet reached the desired level of reliability. An improved control over the
pulse duration and profile shape would be beneficial. For instance, tuning the
laser pulse to adopt a parabolic line charge density would, combined with a
cylindrical uniform transverse shape, linearize the longitudinal space charge field
in the electron bunch and thus reduce the influence of space charge effects in the
longitudinal focus [10]. In this regard, the implementation of diagnostic elements
dedicated to the measurement of the longitudinal pulse properties would be
crucial. Fine-tuning longitudinal and transverse properties of the laser pulse
can lead to an increased quality of the electron beam by further decreasing the
beam emittance or space charge effects, which would consequently improve the
resolution of both TDS and spectrometer.

Furthermore, it has been shown that the attainable bunch length in the longi-
tudinal focus using the compression scheme of the stretcher mode depends on
the initial pulse duration of the photocathode laser, and that an optimal setting
exists which balances longitudinal emittance and space charge effects[16]. A
possibility of tuning the laser pulse duration during beamline operation may give
rise to even shorter bunches. Simulations with an optimized pulse duration for
an extremely low bunch charge of 1 fC predict a bunch length below 100 as [16].
This is comparable to some of the shortest light pulses generated in attosecond
science [123, 124]. Before utilizing attosecond electron bunches in UED or other
experiments, the production and measurement of an electron bunch with such
extreme properties must be carried out.

The bunch compression and energy spread compensation schemes of the
stretcher may be put to use at accelerator research facilities where extreme
longitudinal beam parameters are required. For instance, the possible application
of bunch compression using the stretcher mode at the Berlin Energy Recovery
Linac Project (BerlinPro) [125] has been explored in numerical and analytical
studies [126], where UED experiments are planned using a superconducting rf
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cavity and a subsequent booster cavity. The beamline will also feature a transverse
deflecting cavity to measure the longitudinal properties of the beam [127].

Measurement data presented in this thesis have explicitly shown that cavity
settings determined in the stretcher mode can eliminate first and second order
contributions in the longitudinal phase space distribution of an electron bunch.
The compensation of the energy spread and the compression of the bunch length
using the stretcher mode has been verified in measurements performed at the
Regae beamline. Thus, a proof of concept for the novel linearization method
presented in [17] has been established based on experiments performed and
evaluated in the course of this thesis.
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Figure A.1: Detector images recorded using the energy spread compensation scheme of
the stretcher mode. The pixel intensity is indicated by the color bars. See
figure 5.9 and the corresponding text for details.
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Figure A.2: Detector images recorded using the bunch compression scheme of the
stretcher mode. The respective pixel intensity is indicated by the color
bars.
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