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Abstract

The advent of phase retrieval techniques has increased the resolution in X-ray micro-
scopy by nearly an order of magnitude. With conventional imaging, X-ray microscopes
cannot reach their full potential due to the lack of strong focusing options for X-rays.
While the wavelength of X-rays is a thousand times smaller than visible light, the
resolution of X-ray microscopes is only ten times smaller than the resolution of light
microscopes. Phase retrieval algorithms are not limited by the numerical aperture of
the focusing optics and can therefore resolve much smaller features.

Conventional phase retrieval algorithms reconstruct the complex transmission func-
tion of the sample. Most microscopic samples are nearly transparent for X-rays and
are only visible through their phase contrast. The phase shift however is 2𝜋 periodic,
which means a specific phase value cannot be distinguished from another one that is
larger or smaller by 2𝜋. This phenomenon is called phase wrapping and is problematic
for samples that have a maximum phase shift of more than 2𝜋. Phase unwrapping
algorithms aim to solve these ambiguities, but are not always successful, because
phase wraps can lead to artefacts and phase singularities during the phase retrieval.
Phase wrapping is especially challenging for tomography, because the wrapped phase
is not a simple projection and also not proportional to the sample density.

In this thesis, new algorithms are developed that reconstruct the projected refractive
index of the sample instead of the complex transmission. The projected refractive
index is in a trivial way directly proportional to the refractive index of the sample.
In contrast to the phase of the transmission function, the projected refractive index
requires no phase unwrapping, as it is not limited to a specific range. This thesis
presents three refractive algorithms for three widely used phase retrieval techniques:
ptychography, holography and coherent diffractive imaging. All three refractive
algorithms are demonstrated and evaluated on simulated data sets, in the case of
refractive ptychography also on two experimental data sets. Refractive ptychography
and refractive holography surpass conventional algorithms for samples with a phase
shift of more than 2𝜋. In the case of refractive coherent diffractive imaging, the new
algorithm surpasses the conventional one even for samples with no phase wrapping.

In the second part of this thesis, a new method to scan large samples is presented.
Due to the long scan times, large samples are problematic to measure with scanning
techniques such as ptychography. To scan large samples in a shorter time, Bevis et al.
have developed multibeam ptychography, a technique that uses multiple simultaneous
beams [Ultramicroscopy, 184, 164 (2018)]. This thesis presents a set-up for X-ray
multibeam ptychography that allows arbitrary numbers and geometries of multibeams.
This is made possible through the use of a lens array manufactured with two-photon
lithography. The lens array is evaluated for a two and a six beam geometry using
experimental data. Compared to a single beam, the multibeam set-up scans the same
area up to three times faster.





Zusammenfassung

Das Aufkommen von Methoden zur Phasenrückgewinnung hat die Auflösung in der
Röntgenmikroskopie um fast eine Größenordnung verbessert. Durch das Fehlen von
stark fokussierenden Röntgenoptiken können Röntgenmikroskope mit konvention-
eller Bildgebung nicht ihr volles Potenzial entfalten. Zwar ist die Wellenlänge von
Röntgenstrahlen tausendmal kleiner als die von sichtbarem Licht, die Auflösung von
Röntgenmikroskopen übertrifft die Auflösung von Lichtmikroskopen jedoch nur um
das Zehnfache. Verfahren zur Phasenrückgewinnung sind nicht durch die numerische
Apertur der Optiken begrenzt und können daher sehr viel kleinere Details auflösen.

Konventionelle Algorithmen zur Phasenrückgewinnung rekonstruieren die kom-
plexe Transmissionsfunktion der Probe. Die meisten Proben in der Mikroskopie sind
für Röntgenstrahlen nahezu transparent und nur durch ihren Phasenkontrast sicht-
bar. Der Phasenschub ist jedoch 2𝜋 periodisch. Das bedeutet, dass ein bestimmter
Phasenwert nicht von einem anderen unterschieden werden kann, der sich genau
um 2𝜋 unterscheidet. Dieses Phänomen führt zu Sprüngen in der Phase und ist prob-
lematisch für Proben die einen maximalen Phasenschub von mehr als 2𝜋 aufweisen.
Sogenannte phase unwrapping Verfahren zielen darauf ab, diese Mehrdeutigkeiten
zu lösen, sind aber nicht immer erfolgreich weil Phasensprünge zu Artefakten und
Phasensingularitäten in der Rekonstruktion führen können. Die Mehrdeutigkeit der
Phase ist für die Tomographie eine besondere Herausforderung, da die Phasensprünge
keine einfache Projektion sind und auch nicht proportional zur Probendichte sind.

In dieser Arbeit werden neue Algorithmen entwickelt, die anstelle der komplexen
Transmission den projizierten Brechungsindex der Probe rekonstruieren. Der projiz-
ierte Brechungsindex ist auf triviale Weise direkt proportional zum Brechungsindex
der Probe. Im Gegensatz zur Phase der Transmissionfunktion ist die Projektion des
Brechungsindex nicht auf phase unwrapping angewiesen, da sie nicht auf einen bestim-
mten Bereich beschränkt ist. Diese Arbeit stellt drei refraktive Algorithmen für drei
weitverbreitete Phasenrückgewinnungstechniken vor: Ptychographie, Holographie
und kohärente diffraktive Bildgebung. Alle drei Algorithmen werden an simulier-
ten Datensätzen demonstriert, im Falle der refraktiven Ptychographie zusätzlich an
zwei experimentellen Datensätze. Die refraktive Ptychographie und die refraktive
Holographie übertreffen den jeweiligen konventionellen Algorithmus für Proben die
Phasensprünge aufweisen. Im Fall der refraktiven kohärenten diffraktiven Bildge-
bung übertrifft der neue Algorithmus den konventionallen sogar für Proben ohne



Phasensprünge.
Im zweiten Teil dieser Arbeit wird eine neue Methode zum Scannen großer Proben

vorgestellt. Aufgrund der langen Scanzeiten sind große Proben problematisch für
Rastertechniken wie die Ptychographie. Um große Proben in kürzerer Zeit zu scannen,
haben Bevis et al. die Mehrstrahl-Ptychographie entwickelt, eine Technik, bei der
mehrere Strahlen die Probe gleichzeitig scannen [Ultramicroscopy, 184, 164 (2018)].
In dieser Arbeit wird ein Aufbau für Röntgen-Mehrstrahl-Ptychographie vorgestellt,
der eine beliebige Anzahl und Geometrie von Strahlen erlaubt. Ermöglicht wird
dies durch die Verwendung eines Linsenarrays, das mit Zwei-Photonen-Lithographie
hergestellt wurde. Das Linsenarray wird in einer Zwei- und einer Sechs-Strahl-
Geometrie experimentell getestet. Im Vergleich zu einem Einzelstrahl scannt die
Mehrstrahlanordnung die gleiche Fläche bis zu dreimal schneller.
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1 Introduction

Modern synchrotron radiation sources are multi tools for science, providing a wide
range of analytic methods and techniques [Sch+19b]. Synchrotron radiation helps
to answer questions from various scientific fields ranging from chemistry [GWD13]
and biology [Wei+12] to material science [Zha+17] and cultural heritage [Jan+13].
Imaging samples in high-resolution is often crucial to solve these questions [SA10].
Compared to classical light microscopy, X-ray microscopy offers superior resolution
owing to the shorter wavelength of X-rays.

The two main characteristics of X-rays, their short wavelength and weak interaction,
make X-rays attractive for imaging as this allows to image samples in situ with high-
resolution. On the other hand, those same characteristics make it difficult to build
high-performance X-ray optics [SL12]. This lack of strong focusing options limits the
resolution in X-ray microscopy and prevents the direct imaging of atoms. In lieu of real
imaging lenses, virtual lenses are used to surpass the physical limitations. The virtual
lenses use the massive computing power of modern graphics card and multi-core
processors to calculate in silicon what is inaccessible in the real world [CN10].
The wave scattered by the sample can only be virtually propagated if the amp-

litude and phase of the wave are known. However, X-ray detectors only measure the
amplitude of the wave, the phase information is lost. To circumvent this difficulty,
Dennis Gabor invented his new microscopic principle, which recovers the missing phase
information and reconstructs the sample image [Gab48]. Gabor’s method is also
known as inline near-field holography and belongs to a group of techniques called
phase retrieval algorithms, all of which are designed to recover the phase of the
scattered wave from the amplitude measurements alone [She+15].

Most phase retrieval algorithms reconstruct both the absorption and the phase shift
of the sample. In general, the phase shift is more important as many microscopic
samples absorb X-rays only weakly. This can be problematic because the phase shift is
only defined modulo 2𝜋 and larger phase shifts are wrapped. Especially in computed
tomography, where many projections from different angles are combined to create
a 3D reconstruction of the sample, phase projections must be unwrapped before
they can be used [Gui+11]. The success of the phase unwrapping depends on the
reconstruction quality of the phase retrieval [Sto+15].
The unwrapped phase shift is proportional to the projected refractive index of

the sample [Dia+12]. If phase retrieval algorithms could reconstruct this projection
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directly, any conversion or phase unwrapping could be completely avoided. Chowdhury
et al. developed such a refractive algorithm for Fourier ptychography [Cho+19]. The
first part of this thesis expands this idea by developing refractive algorithms for more
phase retrieval methods, namely ptychography, near-field holography and coherent
diffractive imaging.

Refractive phase retrieval is especially advantageous for large samples that are tens
or hundreds of micrometer in size. That is to say, as the phase shift of these samples
is wrapped multiple times, conventional algorithms are prone to artefacts in the
reconstruction. While refractive phase retrieval solves this problem, large samples also
pose a challenge for scanning techniques such as ptychography. Because beamtime at
synchrotron radiation sources is scarce, only a small number of large scans can be
measured.

To accelerate ptychographic scans, Bevis et al. developed multibeam ptychography
[Bev+18]. By scanning the sample with multiple parallel beams, large samples can
be scanned in a fraction of the time that was previously required. Following the
pioneering work of Hirose et al. on X-ray multibeam ptychography [Hir+20], the
second part of this thesis concerns the development of an advanced, more flexible
scheme to create X-ray multibeams.

1.1 Outline

This thesis is structured as follows: In Chapter 2, an overview on the properties and
interactions of X-rays is given. In Chapter 3, a discussion of ptychography is presented
containing a derivation of the commonly used ePIE algorithm and how to adapt
ptychography to different experimental conditions.
In Chapter 4, the new refractive ptychography algorithm is developed and tested.

Three tests are presented: a simulated experiment, a scan of a 2µm zeolite particle
and a scan of a 80µm micrometeorite. In the first two tests, the respective phase shift
of the sample is small and shows only weak or no phase wrapping. Consequently,
the refractive reconstruction is nearly identical to a conventional reconstruction. In
contrast, the micrometeorite has a maximum phase shift of close to 15 rad and the
novel refractive ptychography is able to reconstruct the sample with a notably improved
quality compared to conventional ptychography.
In Chapter 5, the idea of refractive phase retrieval is expanded with the develop-

ment of refractive algorithms for holography and coherent diffractive imaging. The
newly developed algorithms are each tested on a simulated experiment. Refractive
holography fulfils the expectations and reconstructs the simulated sample without
phase wraps or artefacts. Significantly, even though the test sample for refractive CDI
has only a weak phase shift with no phase wrappings, the refractive reconstruction is
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still reliable closer to the ground truth than the conventional reconstruction.
In Chapter 6, the novel multibeam set-up is presented. In previous works a single

focusing optic was used to focus all beams. Due to the small numerical aperture of
X-ray optics, this limits the maximum separation between the individual beams and in
consequence the scan speed-up. The main distinction of this thesis is the use of a lens
array, manufactured with two-photon lithography, where each of the lenses focuses
one beam. This allows to increase the number of beams and enlarge the distance
between the beams. The performance of the lens array is verified with two scans
using two and six multibeams. The multibeam scans achieve a respective speed-up of
1.8 and 3 compared to a single beam scan.

All the results are summarized in chapter 7 together with an outlook on the possible
future developments of refractive phase retrieval and X-ray multibeam ptychography.

1.2 Contributions

The experiments presented in this thesis are the result of a team effort; this section
serves to explicitly describe for each chapter the contributions from the author, Felix
Wittwer, and from collaborations.

Chapter 4

• Derived the refractive ptychography algorithm and implemented the refractive
reconstruction code for ptycho; performed simulations.

• Assisted in the measurement of the zeolite particle during the beamtime of
Thomas Sheppard; reconstructed and analysed the scan.

• Reconstructed and analysed the micrometeorite scan.

Chapter 5

• Derived the refractive holography algorithm, implemented the reconstruction
code and performed simulations.

• Derived the reconstruction algorithm for refractive coherent diffractive imaging,
implemented the reconstruction code and performed simulations.

Chapter 6

• Planned the multibeam experiment and wrote the beamtime proposal in collab-
oration with Mikhail Lyubomirskiy.
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• Performed the experiment together with Mikhail Lyubomirskiy, Maik Kahnt,
Martin Seyrich, Frieder Koch and support from the beamline scientists.

• Reconstructed and analysed the data.



2 X-rays

X-ray radiation is the part of the electromagnetic spectrum with wavelengths between
10nm and 10pm. X-ray photons have a corresponding energy of 100 eV to several
100 keV. All experiments in this thesis used hard X-rays between 5 keV to 20 keV at
the P06 beamline at the synchrotron light source PETRA III in Hamburg. This chapter
gives an overview of the wave properties of X-rays, synchrotron radiation, different
X-ray focusing optics and the P06 beamline. A more extensive overview is given by
Als-Nielsen & McMorrow [AM11].

2.1 Wave theory

In this section, we outline how the propagation of X-rays can be described in the
paraxial approximation, how coherence distinguishes different X-ray sources and how
the interaction between X-rays and matter can be described with the complex index
of refraction. A theoretical description of optical wave theory can be found in Born &
Wolf [BW99].

2.1.1 Wave propagation

In general, the propagation and evolution of electromagnetic waves is described by
Maxwell’s equations. However, finding a closed-form solution for the propagation is
often difficult or impossible. Therefore, we will approximate the equations to find
simpler solutions. As we are only interested in the propagation of X-rays inside a
homogeneous medium that shows no polarization effects and all involved angles are
small, we can replace the full vectorial equations by a single scalar wave equation.
The X-rays at a synchrotron light source propagate mostly through air or vacuum,
which fulfil these criteria.

We base our description of wave propagation on the Huygens-Fresnel principle,
which states that every point of the wavefront is a source of a spherical secondary
wave and all these secondary waves interfere and overlap to form the new wavefront.
This principle is valid for all length scales much larger than the wavelength. In
mathematical form, the principle describes how a wave 𝜓 propagates from the (𝜉, 𝜂)
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Figure 2.1 Huygens-Fresnel principle. Each point 𝑃0 in the wavefront Σ generates a
secondary wave. The wavefront in plane 𝑧 is formed by the sum of all the secondary waves.
Adapted from [Goo05].

plane at 𝑧 = 0 to a point r = (𝑥, 𝑦, 𝑧),

𝜓(r) = 𝑧
i𝜆

∬
Σ

𝜓(𝜉, 𝜂, 0) ⋅ e
i𝑘𝑟01

𝑟2
01

d𝜉d𝜂. (2.1)

The distance 𝑟01 is given by

𝑟01 = √(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 + 𝑧2. (2.2)

A detailed derivation of Equation 2.1 is given by Goodman in [Goo05].
Equation 2.1 can be calculated in a closed form only for special cases and in general

must be calculated computationally. The propagation of a field of 𝑁 × 𝑁 elements
requires on the order of 𝑁4 calculations, due to the evaluation of the double integral
for each point. Therefore, using Equation 2.1 in iterative reconstructions, which
require thousands of propagations, is impractical. As the typical propagation dis-
tances for ptychography and holography are larger than the typical dimensions of the
wavefield, we can approximate 𝑟01 to quicken the calculation. The first approximation,
called Fresnel propagation, is best suited for intermediate propagation distances. For
even longer distances, the approximation can be simplified even further using the
Fraunhofer propagation.

Fresnel propagation

If the propagation distance 𝑧 is much larger than the extent of the wavefield, then
only points close to the optical axis contribute notably to the propagation. In this
paraxial approximation, the square root calculation of 𝑟01 can be simplified using the
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linear term of its binomial expansion, yielding

𝑟01 ≈ 𝑧 ⋅ [1 + 1
2

(𝑥 − 𝜉
𝑧

)
2

+ 1
2

(𝑦 − 𝜂
𝑧

)
2
] . (2.3)

We use Equation 2.3 to replace 𝑟01 in the exponential in Equation 2.1. As the denom-
inator in Equation 2.1 is dependent on 𝑟2

01, we can simplify Equation 2.3 even further
by dropping all terms except 𝑧. Using these two approximations, we have

𝜓𝑧(𝑥, 𝑦) = ei𝑘𝑧

i𝜆𝑧
∬

Σ
𝜓0(𝜉, 𝜂) exp{ i𝑘

2𝑧
[(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2]}d𝜉d𝜂. (2.4)

Equation 2.4 is a convolution

𝜓𝑧(𝑥, 𝑦) = ∬
Σ

𝜓0(𝜉, 𝜂)ℎ𝑧(𝑥 − 𝜉, 𝑦 − 𝜂)d𝜉d𝜂 (2.5)

of the original wavefield 𝜓0 with the Fresnel kernel

ℎ𝑧(𝑥, 𝑦) = ei𝑘𝑧

i𝜆𝑧
exp [ i𝑘

2𝑧
(𝑥2 + 𝑦2)] . (2.6)

Convolutions can be quickly calculated with Fourier transforms using the convolution
theorem. This theorem states that the Fourier transform of the convolution of two
functions is equal to the pointwise product of the Fourier transforms of the individual
functions. For our situation, this means

ℱ(𝜓𝑧) = ℱ(𝜓0 ∗ ℎ𝑧) = ℱ(𝜓0) ⋅ ℱ(ℎ𝑧). (2.7)

We can therefore write the Fresnel propagation as

𝜓𝑧 = 𝒫𝑧(𝜓) = ℱ−1 (ℱ (𝜓0) ⋅ 𝐻𝑧) , (2.8)

where 𝐻𝑧 is the Fourier transform of the Fresnel kernel ℎ𝑧

𝐻𝑧 = ei𝑘𝑧 exp (−i𝜆𝑧 [𝑞2
𝑋 + 𝑞2

𝑌] /2) , (2.9)

with the reciprocal space variables 𝑞𝑋 and 𝑞𝑌. One thing to note is that complex
conjugating the Fresnel kernel

𝐻∗
𝑧 = e−i𝑘𝑧 exp (i𝜆𝑧 [𝑞2

𝑋 + 𝑞2
𝑌] /2) = 𝐻−𝑧 (2.10)

is the same as propagating in the opposite direction.
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Fraunhofer propagation

For the longest distances, when the propagation distance is much greater than the
extensions of the wavefield

𝑧 ≫ max(𝜉2 + 𝜂2)
𝜆

, (2.11)

the terms in Equation 2.3 that do not dependent on 𝑥 or 𝑦 vanish. Conversely, only
the terms that are at most linearly dependent on 𝜉 and 𝜂 contribute to the distance

𝑟01 ≈ 𝑧 + 𝑥2 + 𝑦2

2𝑧
− 𝑥𝜉

𝑧
− 𝑦𝜂

𝑧
. (2.12)

The propagated wavefield is then given by

𝜓𝑧(𝑥, 𝑦) = ei𝑘𝑧 ⋅ ei 𝑘
2𝑧 (𝑥2+𝑦2)

i𝜆𝑧
∬

Σ
𝜓0(𝜉, 𝜂) exp [− i𝑘

𝜆𝑧
(𝑥𝜉 + 𝑦𝜂)]d𝜉d𝜂. (2.13)

If we replace 𝑥 and 𝑦 with the reciprocal space variables

𝑞𝑥 = 𝑘𝑥/𝑧
𝑞𝑦 = 𝑘𝑦/𝑧,

(2.14)

then the propagated wavefield becomes the Fourier transform of the original wave,
multiplied with a phase term

𝜓𝑧(𝑞𝑥, 𝑞𝑦) = ei𝑘𝑧 ⋅ ei 𝑧
2𝑘 (𝑞2

𝑥+𝑞2
𝑦)

i𝜆𝑧
∬

Σ
𝜓0(𝜉, 𝜂) exp [−i (𝑞𝑥𝜉 + 𝑞𝑦𝜂)]d𝜉d𝜂, (2.15)

= ei𝑘𝑧 ⋅ ei 𝑧
2𝑘 (𝑞2

𝑥+𝑞2
𝑦)

i𝜆𝑧
⋅ ℱ(𝜓0). (2.16)

This is the far-field or Fraunhofer propagation. The prefactor is often omitted.

2.1.2 Coherence

The frequency of X-rays is in the Peta- or even Exahertz range, due to their short
wavelength. Detectors cannot operate at these frequencies and cannot directly detect
the oscillations of the X-ray waves. X-ray detectors always average overmany oscillation
periods and only measure the mean strength of the field, even at the shortest possible
exposures. Wave phenomena such as diffraction and interference are only visible if
different parts of the wave have a constant phase relation over time and space. If the
relative phase changes, than the averaging in the detector blurs the constructive and
destructive interference. The stability of the phase relation is measured by correlating
different parts of the wave. This is mostly done in two different ways. In the first, a
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Figure 2.2 Lateral coherence. a Two waves with wavelengths 𝜆 and 𝜆 + Δ𝜆 are in phase
again after one coherence length 𝜉𝑙. b A polychromatic source emits white light. A double
slit creates two beams that overlap on the screen and form the diffraction pattern. Each
wavelength generates a different diffraction pattern, which add up incoherently. At the centre
of the pattern, they are in phase and create a maximum. With growing distance, the patterns
are more and more out of phase and the contrast vanishes. Adapted from [Sch14].

point in space is fixed and the correlation is calculated solely for the time evolution.
In the second, the correlation is calculated between different points of the wavefield
at the same time. A rigorous description of optical coherence can be found in Born &
Wolf [BW99].

Temporal/Lateral coherence

The first way to calculate the correlation is called temporal coherence because it is
determined by the time evolution of the wave. For this, the wave is correlated for
different time delays at a fixed point in space. The time over which the waves are
correlated is called the coherence time 𝜏𝑙. During this time, the wave moves a certain
distance

𝜉𝑙 = c𝜏𝑙, (2.17)

called the lateral coherence length. For the situation illustrated in Figure 2.2a, where
two monochromatic waves propagate in parallel, they are in phase every 𝑁 and 𝑁 + 1
wavelengths respectively. The coherence length is therefore

𝑁(𝜆 + Δ𝜆) = 𝜉𝑙 = (𝑁 + 1)𝜆 (2.18)
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Figure 2.3 Transverse coherence. Each point of a monochromatic, chaotic source emits
waves independent of all other points. Due to this, the waves are incoherent with each other.
Because of the different geometry and direction of each wave, they each create their own
diffraction pattern. For thin samples, the different patterns are simply transversally shifted.
Overall, this blurs the measured diffraction pattern and can possibly eliminate any fringes.
Adapted from [Sch14].

𝑁 = 𝜆/Δ𝜆 (2.19)

For narrow bandwidths, where 𝜆 ≫ Δ𝜆, the number of periods 𝑁 is very large and
nearly identical to 𝑁 + 1. Therefore, the coherence length can be approximated as

𝜉𝑙 = 𝜆
Δ𝜆

𝜆. (2.20)

For diffraction experiments, the lateral coherence length limits the possible size of the
samples. For constructive and destructive interference in a detector pixel, it is crucial
that the length difference between the path to the closest and the path to the furthest
point of the sample is smaller than the coherence length. Third-generation synchrotron
light sources typically use silicon-111 monochromators that have a bandwidth Δ𝐸/𝐸
of around 10−4. For 1Å X-rays the lateral coherence length is thus about 1µm.

Spatial/transverse coherence

Previously we described how the correlations change for a fixed point in space at
different time delays. Now, we keep the time delay fixed and look how the correlations
change between different points along the wavefront. The spatial coherence is mostly
influenced by the apparent size of the radiation source. The reason lies in the mostly
chaotic nature of the emission process in typically sources. The radiation in the
sun, an X-ray tube or a synchrotron is emitted by individual electrons, which radiate
independently of each other. The emission processes are all uncorrelated. In contrast,
a laser synchronizes the elementary emission processes via stimulated emission.
Subsequently, lasers exhibit a high degree of transverse coherence.
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To calculate the coherence length, we consider the classic double-slit experiment of
Young, illustrated in Figure 2.3. A monochromatic, extended source emits waves with
wavelength 𝜆 that are diffracted at two slits that are a distance 𝑑 apart. In the paraxial
approximation, every point of the source creates the same, but shifted, diffraction
pattern on the screen. Since the emission of each point is statistically independent
of all other points, the different diffraction patterns show no interference with each
other. Viewed from the slits, the faraway source appears under an angular size of

𝛼 = 𝑆
𝐿

. (2.21)

On the other side of the slits, the fringe maxima of the diffraction pattern occur for
integers 𝑛 under angles

𝜃 = 𝑛𝜆
𝑑

. (2.22)

Hence, the angular separation between two adjacent fringes is Δ𝜃 = 𝜆/𝑑. The
diffraction patterns created by the different points on the source are correlated, if the
source size 𝛼 is smaller than the angular separation Δ𝜃 of the fringes. The coherence
length 𝜉𝑡 is the characteristic slit separation where the two angles are equal

𝑆
𝐿

= 𝜆
𝜉𝑡

⇒ 𝜉𝑡 = 𝜆𝐿
𝑆

. (2.23)

For a typical nanofocusing beamline at a third-generation synchrotron light source, the
experiment is about 100m away from the X-ray source. The electrons that circle inside
the storage ring and create the X-rays are grouped into bunches. Each electron bunch
is about 100µm wide and slightly less than 10µm high. Consequently, the coherence
lengths for 1Å X-rays at the experiment are around 100µm in the horizontal direction
and 1000µm in the vertical one.

2.1.3 Complex index of refraction

The refractive index for X-rays is marginally smaller than one and is commonly written
as

𝑛 = 1 − 𝛿 + i𝛽, (2.24)

with small, but positive 𝛿 and 𝛽 [Tho+09]. The refractive index decrement 𝛿 is
on the order of 10−5 to 10−6 and the imaginary part 𝛽 is typically even smaller. 𝛽
accounts for photo absorption, Compton scattering and other processes that attenuate
the monochromatic beam. The real part of the refractive index is smaller than one
because X-ray waves oscillate at frequencies higher than most resonance frequencies
in atoms. Similar to a driven oscillator, the electrons then resonate out of phase
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Figure 2.4 Refractive index for platinum and beryllium. The curves are divided by the
density 𝜌 to highlight that 𝛿 follows a nearly universal curve for all elements. Deviations occur
only at absorption edges, where 𝛽 increases. The absorption is higher for elements with a
higher atomic number 𝑍.

with the wave. A refractive index smaller than one implies a phase velocity greater
than the speed of light 𝑐 in vacuum. This is no contradiction, as the relevant speed
to transmit information is the group velocity, which is always smaller than 𝑐. The
refractive index approaches one as the wavelengths become shorter, see Figure 2.4.
This trend is only disrupted close to absorption edges and for very short wavelengths,
where pair production and other new effects occur.

The wavelength of hard X-rays is in the Ångström range, the same length scale as
atomic orbitals and inter-atomic distances. As the resolution in X-ray microscopy is
currently above one nanometre, the atomic nature of all matter can be neglected and
treated as a continuous. In crystals, the atoms have long-range order, which gives
rise to Bragg peaks. For a perfect single crystal, more than 99% of the X-rays can
be reflected [Shv+10]. However, the Bragg condition is highly anisotropic and only
fulfilled for very narrow angles. The chances of randomly exciting a Bragg peak for a
natural sample are negligible. For X-ray microscopy, the complex index of refraction
is usually sufficient to describe the interaction between X-rays and the sample.
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Figure 2.5 Synchrotron diffraction experiment. Strong magnets inside an undulator force
ultra-relativistic electrons onto a slalom course. Due to this deflection, the electrons emit
very bright X-rays. For the experiment, the X-rays are monochromatized and focused onto the
sample. The resulting diffraction pattern is recorded with an imaging detector. Adapted from
[DL18].

2.2 Synchrotron radiation

This section describes the generation of X-rays at synchrotron light sources and gives
an outline of the P06 beamline at PETRA III where all experiments were performed.

2.2.1 Brightness

The brightness of a photon source is a measure of the coherent flux of the source. It
can be used as a figure-of-merit to compare different sources, for example X-ray tubes
to synchrotron light sources. For experiments using coherent photons, the difference
in brightness translates directly into the exposure time that is required to reach a
given signal-to-noise. The brightness ℬ is calculated as

ℬ = 𝐹
Ω ⋅ 𝐴 ⋅ Δ𝐸/𝐸

, (2.25)

a ratio between the photon flux 𝐹 and the source divergence Ω, the source size
𝐴 and the monochromaticity Δ𝐸/𝐸. The brightness is typically given as [ℬ] =
ph/s/mrad²/mm²/0.1%. In these units, PETRA III can reach an average brightness
above 1020 for 8 keV photons. In comparison, an X-ray tube at this energy has a
brightness of about 1010, a difference of ten orders of magnitude [Tho+09].

2.2.2 Synchrotron light sources

If electrons are forced onto a curved path by a static magnetic field, they emit synchro-
tron radiation. Synchrotron light sources use ultra-relativistic electrons to produce
highly brilliant X-rays as synchrotron radiation. With typical energies around 5GeV,
these electrons have a Lorentz factor 𝛾 of 10000 [AM11]. Due to this, the emitted
radiation is shaped by relativistic effects. The two most prominent effects are the
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Doppler shift and the relativistic addition of velocities. In the rest frame of the elec-
trons, the electrons emit radio waves in all directions. Due to the Doppler effect,
the radio waves are shifted to X-ray frequencies in the laboratory frame. A detailed
theoretical description of synchrotron radiation can be found in Jackson [Jac99]. In
general, the spectrum of synchrotron radiation is broad and covers a large part of
the electromagnetic spectrum. With the transformation from the electron rest frame
to the laboratory frame, the X-rays are collimated into a narrow cone around the
instantaneous direction of the electrons. The opening angle of the cone is 1/𝛾, around
0.1mrad for synchrotron light sources. In comparison, an X-ray tube emits X-rays into
a solid angle of 4𝜋.
At the centre of third-generation synchrotron light sources such as the ESRF or

PETRA III is an electron storage ring that circulates electrons at relativistic speeds.
Synchrotron light sources achieve the high brightness with wigglers and undulators,
special installations that are dedicated purely to produce synchrotron radiation. These
insertion devices contain a row of alternating magnets to increase the photon flux and
can tune the wavelength of the emitted radiation by changing the distance between
the magnets. Wigglers emit over a broad spectrum, whereas Undulators emit radiation
concentrated at harmonics of a specific fundamental wavelength. The width of these
undulator harmonics is a few hundred electronvolts. Each insertion device is part
of a beamline for dedicated experiments, shown schematically in Figure 2.5. All
experiments in this thesis were performed at the P06 beamline at PETRA III.

2.2.3 P06 Beamline

The P06 beamline is the hard X-ray micro-/nanoprobe beamline at PETRA III. The
beamline is specialized for scanning applications by focusing X-rays onto a sub-
micrometer spot and raster scan samples with different contrast techniques such
as X-ray fluorescence, X-ray diffraction or X-ray beam induced current. P06 houses
two experimental endstations called microprobe and nanoprobe. The microprobe is
optimized for sub-micrometer resolutions and quick scanning of large samples. The
nanoprobe is dedicated to resolutions below one hundred nanometer. To achieve this,
it has an emphasis on high stability and low background signal. The focusing optics
in the nanoprobe can achieve focal spot sizes of 40nm.

Together with P05, P06 forms sector 4 of the Max-von-Laue-hall of PETRA III, see
Figure 2.6. A detailed description of the layout and beamline components of P06 is
given by Schroer et al. [Sch+16]. The components relevant for the experiments in
this thesis are briefly described here.

The first components downstream of the source and directly before the optics hutch
are high-power slits that define the beam aperture and reduce the heat-load on all
following components. In the optics hutch, a monochromator allows to select an
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Figure 2.6 P06 beamline layout. a General layout of sector 4 which contains the two
beamlines P05 and P06. The distances are measured from the center of the undulator. b The
nanoprobe houses the Eiger detector inside an evacuated and movable flight tube. A thin
diamond window allows X-rays to enter the flight tube and is, apart from a short air path, the
only element between the sample and the detector panel. c For microprobe operation, the
Eiger detector remains in the Nanohutch to maximise the distance between the sample and
the detector. The scanning station in the Nanohutch can be moved to the side so that the
flight tube can be extended through both hutches. Original images courtesy of R. Döhrmann.
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energy band from the polychromatic spectrum that the undulator produces. The band
has a relative width Δ𝐸/𝐸 of about 10−4. The monochromator contains a pair of
silicon crystals in a vertical fixed-offset geometry and uses the (111) Bragg reflection.
With Bragg reflections, it is difficult to filter the higher harmonics 3𝐸, 5𝐸, … as these
wavelengths also fulfil the Bragg-condition. To remove these higher energies, a pair
of flat horizontally deflecting mirrors downstream of the monochromator acts as a
low-pass filter that transmits only X-rays below a certain energy. The mirrors use total
external reflection and have three different coatings made from silicon, chromium
and platinum. For a reflection angle of 2.5mrad, their respective cut-off energies are
12 keV, 20 keV and 30 keV.

The microprobe begins at 87m from the source and contains the fast shutter that
controls exposure times of 100ms or longer. The main focusing optics are a pair of
KB-mirrors with a focal length of 250mm. Alternatively, other optics like CRLs can
be used.
The nanoprobe aims for high-resolution imaging well below 100nm. To achieve

this, the experimental setup is designed with an emphasis on high stability. To this
end, the scanning unit, which houses the focusing optics and the sample scanners,
sits on a granite block and most structural elements are made from titanium and
Invar, both materials that combine a high strength with a low thermal expansion. The
nanoprobe uses laser interferometers to track the sample position with nanometer-
precision [Sch+17]. Air scattering between the sample and the detector is another
factor that limits the resolution [Rei+17]. To minimize the air path, the nanoprobe
features an in-vacuum imaging detector inside an evacuated flight-tube [Sch+19a].
The vacuum chamber can house detectors up to an Eiger 4M (Dectris, [Joh+14]) in
size.

2.3 X-ray optics

Wilhelm Röntgen already noted that normal glass lenses do not focus X-rays and he
discovered that X-rays are not reflected by mirrors [Rön95]. In fact, special optics
are required to focus X-rays for X-ray microscopy. A broad overview on various X-
ray optics can be found in Schroer & Lengeler [SL12]. In this section, we describe
three commonly used optics: Kirkpatrick-Baez-mirrors (KB-mirrors), Fresnel zone
plates (FZPs) and compound refractive lenses (CRLs). These optics were used in the
experiments in Section 4.4, Section 4.3 and Chapter 6, respectively.

2.3.1 KB-mirrors

X-rays show no regular reflection. Nevertheless, at very shallow angles they exhibit
total reflection, similar to visible light. KB-mirrors use this total reflection to focus
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Figure 2.7 Kirkpatrick-Baez-mirror set-up. Each mirror focuses the beam in one direction.
The upstreammirror focuses the beam vertically, the downstreammirror focuses it horizontally.
For the beam to be focused into a spot, the two mirrors must be well aligned. Otherwise the
beam will be astigmatic.

X-rays [KB48]. However, because the refractive index for X-rays is slightly smaller
than one, X-rays exhibit total external reflection. This means that at the air-to-mirror
interface, X-rays reflect away from the denser mirror material. The maximum numer-
ical aperture of KB-mirrors is limited by the critical angle 𝛼𝑐. The critical angle is
determined by the refractive index decrement 𝛿 of the surface material

𝛼𝑐 =
√

2𝛿. (2.26)

Because 𝛿 is on the order of 10−6, 𝛼𝑐 is in the range of a few milliradians. To maximise
the critical angle, KB-mirrors are often coated with heavy materials such as Gold or
Platinum. For perfect focusing, the surface of the mirror must be smooth to a few
Ångstroms and should not deviate more than a few nanometer from the ideal shape.
The ideal shape for a focusing X-ray mirror is an ellipsoid of revolution with one focal
point of the ellipse at the X-ray source. This way, all X-rays are focused into the second
focal point of the ellipse. Because it is easier to accurately polish a cylindrical surface
instead of an ellipsoidal one, KB-mirrors employ two crossed cylindrical mirrors.
The mirrors are curved like an elliptic cylinder, so that one mirror focuses the beam
horizontally and one vertically. Figure 2.7 illustrates how such a two mirror system
focuses the X-ray beam to a spot. It also shows how the KB-mirrors change the optical
axis after the reflection. The big advantage of KB-mirrors compared to other X-ray
optics is their achromaticity, which makes them ideal tools for spectroscopy.

2.3.2 Fresnel zone plates

Fresnel zone plates (FZPs) are diffraction gratings that are designed to diffract an
X-ray beam so that part of the beam is focused to a spot [Kir74; SR69]. They consist



18 Chapter 2: X-rays

Figure 2.8 Fresnel zone plate set-up. The zone plate diffracts the beam into different
focusing and defocusing orders. Shown here are the following orders: the first and third
focusing order; the first defocusing order and the undiffracted zeroth order. All but the first
focusing order are blocked by the central stop and the order-sorting aperture.

of concentric rings called zones, whose radii follow the formula

𝑟𝑛 = √𝑛𝜆𝑓, (2.27)

with the wavelength 𝜆 and the focal length 𝑓. The zones alternate between filled and
empty. The first zone from 𝑟0 to 𝑟1 is filled, the second zone from 𝑟1 to 𝑟2 is empty,
the next is filled again and so on. The outermost filled zone, which is also the thinnest,
determines the focal spot size.

Similar to a diffraction grating, FZPs also diffract into different orders. Each order is
characterized by an integer number and has a unique focal length. Defocusing orders
are designated by negative, focusing orders by positive numbers. The undiffracted
beam is called the zeroth order. For a clean focus, all orders but one must be filtered
out. This is achieved by a combination of two highly absorbing optical elements. The
first is a central stop upstream of the FZP that blocks all radiation close to the optical
axis. The second element is a pinhole, called order-sorting aperture (OSA). The OSA
is placed downstream of the zone plate, close to the focal plane, and it blocks all
orders except one. To fully block the direct beam, the diameter of the OSA must be
smaller than the diameter of the central stop. Compared to KB-mirrors, FZPs are
easier to produce, aberration-free and need less space for precise alignment motors.

2.3.3 Compound refractive lenses

For more than a century, X-ray lenses were thought impossible or impractical to make
[KB48; Mic91; Rön95]. As the refractive index for all elements is very close to one,
the focal length of a lens with constructable dimensions is on the order of hundreds
of meters. However, Snigirev et al. realised that stacking many individual lenses



2.3 X-ray optics 19

Figure 2.9 Compound refractive lens set-up. Concave lenses are used for focusing because
the refractive index for X-rays is smaller than one. Depending on the X-ray energy, a lens stack
contains typically 10 to 200 lenses.

shrinks the total focal length [Sni+96]. Because the refractive index for X-rays is
smaller than one, X-rays are focused by concave lenses and defocused by convex
lenses. For a thin lens, the ideal surface shape to focus a parallel beam into a point
is a circular paraboloid. For visible light, the paraboloid can be approximated by
spherical surfaces. Due to the strong curvatures of X-ray lenses, spherical lens shapes
show strong aberrations for X-rays [Len+05]. The focal length of a thin stack of 𝑁
double-curved lenses in vacuum is given by

𝑓 = 𝑅
2𝑁𝛿

, (2.28)

where 𝑅 is the radius of curvature at the apex of the paraboloid and 𝛿 is the refractive
decrement of the lens material. Typical values for the curvature and the decrement
are 100µm and 10−6 respectively. The individual focal length of such a lens is 50m,
but a stack of one hundred lenses has a focal length of only 0.5m. Effectively, stacking
multiple lenses reduces the curvature.

Most commonly, X-ray lenses are produced in a coining process by pressing two
opposing paraboloid stamps into a metal foil. The quality of the lenses depends on
the shape fidelity of the stamps and their alignment onto a single axis. While the
process is highly reproducible, the stacking of multiple lenses amplifies even small
shape errors. Shape deviations as small as 500nm per lens can already cause strong
aberrations [Sei+17].

For short focal lengths and small focal spots, so-called nano-focusing lenses (NFLs)
are produced using reactive ion-etching [Sch+03]. This approach is also used for
refractive lamellar lenses [Sei+14] and adiabatically focusing lenses [Pat+17]. The
latter offer the tightest focusing of all X-ray lenses with spot sizes below 20nm.
However, only two-dimensional features can be structured into the lens material
with etching. Alternatively, additive manufacturing methods such as 3D printing
can be employed to produce small lenses with small curvatures in arbitrary shapes.
Section 6.2 describes this in more detail.
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2.4 Phase problem

The phase problem describes the inability to directly measure the phase of X-ray waves.
The electromagnetic field of X-rays oscillates faster than any detector can measure it,
only the average amplitude of the field, the intensity, can be detected. This is an issue
especially for X-ray crystallography, which measures the far-field scattering pattern 𝐼
and aims to retrieve the original sample 𝜓 [Tay03]. The scattering pattern is related
to the sample through the Fourier transform

𝐼 = |ℱ(𝜓)|2, (2.29)

and if the phases 𝜑 were known, it could be easily inverted

𝜓 = ℱ−1 (
√

𝐼 ⋅ ei𝜑) , (2.30)

to recover the sample. Without the phase information, however, the scattering pattern
cannot be uniquely inverted, as many different objects produce the same scattering
pattern. All that can be recovered is the autocorrelation

ℱ−1(𝐼) = 𝜓 ∗ 𝜓∗. (2.31)

Phase retrieval techniques are algorithms that solve the phase problem. These
algorithms recover the phases by using additional information about the sample to
recover a unique solution [MKS00; OS08] or prepare the scattering in such a way
that the auto-correlation can be resolved [McN+92].
In holography the phase problem is often called the twin-image problem. Due to

the symmetry of the Fresnel propagation, the hologram reconstructs two solutions.
Each solution is always overlaid with the defocused wave from the other solution. Sup-
pressing or eliminating the twin image results in a unique solution and is equivalent
to recovering the missing phase information.



3 Ptychography

Ptychography is a coherent imaging technique that solves the phase problem we
described in Section 2.4 [Hop69]. Among imaging techniques, ptychography is
unique in imaging the sample independent of the quality of the imaging optics. In
ptychography, the sample is illuminated by a coherent beam that has a compact
support. For the measurement, the sample is scanned across the beam in discrete
steps. The beam is scattered by the sample and forms a diffraction pattern that is
recorded with an imaging detector. This principle set-up is illustrated in Figure 3.1.
For a successful reconstruction, it is necessary that the steps are small enough that the
illuminated areas overlap between adjacent positions; the rule of thumb is to have
60% overlap [MR09]. This ensures that parts of the sample are illuminated by two
or more probe beams and that the resulting diffraction patterns share information.
This shared information constrains the possible solutions and allows to robustly solve
the phase problem.
Ptychography reconstructs both the complex transmission of the sample and the

complex wavefield of the illuminating beam. Due to the separate reconstruction of the
two, the reconstruction of the sample is not affected by the aberrations of the beam.
Additionally, the resolution of the reconstruction is better than the beam size. An
overview on X-ray ptychography can be found in Pfeiffer [Pfe18] and a comprehensive
overview on ptychography in general can be found in Rodenburg & Maiden [RM19].
In this chapter, we shortly summarize the current state of ptychography, before

introducing the novel refractive algorithm in the next chapter. We start by describing
the commonly used ePIE algorithm for ptychography [MR09], using an approach
similar to the maximum likelihood description from Thibault & Guizar-Sicairos [TG12].
Afterwards, we will outline three different improvements to ePIE, which reduce the
noise in the reconstruction, increase the resolution of the diffraction patterns or
improve the convergence speed of the algorithm. Finally, the last section will give
details about implementing ptychography in practice.

3.1 Classic ptychography

In ptychography, the approach for the reconstruction is to model the diffraction
patterns and refine the model until the simulated diffraction patterns match the
measured patterns. It is an iterative process that improves the estimate with each



22 Chapter 3: Ptychography

qx

qy

x

y I2
I3

I1 I0

Figure 3.1 Experimental set-up for ptychography. The incoming beam is focused and
the sample is placed near the focal plane. For the scan, the sample is moved transversally to
the propagation direction. The scattered light for each scan position is recorded by an image
detector.

iteration. The reconstruction is deemed finished if the changes between subsequent
iterations are small enough. There are many different variants of this basic scheme, a
commonly used one is the extended ptychographical iterative engine (ePIE) algorithm
by Maiden & Rodenburg [MR09]. This section gives a derivation of this algorithm,
using the minimization approach of Thibault & Guizar-Sicairos [TG12].

For classic ptychography, the illuminating beam is modelled as a two-dimensional,
complex-valued field 𝑃 called probe. The wave is defined in a plane transversal to
the propagation direction. The interaction of the probe with the sample is modelled
as an element-wise multiplication with the object transmission function 𝑂, another
two-dimensional, complex-valued field. This is a good description for thin samples,
that show no multi-scattering effects and where the propagation of the probe inside
the sample volume can be neglected. A detailed evaluation of this assumption can be
found in the supporting material to Thibault et al. [Thi+08]. Under this thin sample
assumption, the scattered wavefield 𝜓 is modelled as

𝜓r = 𝑂r ⋅ 𝑃r, (3.1)

where r = (𝑥, 𝑦) describes the discreet coordinates in the field. In a ptychography
scan, the probe is moved across the object

𝜓𝑗,r = 𝑂r ⋅ 𝑃r−R𝑗
(3.2)

in step positions R𝑗 that ensure sufficient coverage of the sample. For each position,
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the far-field of the wavefield is recorded with the detector. The propagation to the
detector, situated in the Fraunhofer regime, can be described with a Fourier transform

Ψq = ℱ(𝜓) = 1√
𝑁

∑
r

𝜓r ⋅ eiqr, (3.3)

where 𝑁 is the number of elements in the field, as described in Section 2.1.1. As
we outlined for the phase problem in Section 2.4, the detectors for visible light and
for X-rays can only record the intensity of the wavefield. We therefore square the
modulus of the modelled wavefield

𝐼q = |Ψq|2. (3.4)

To reconstruct object and probe, we compare the modelled intensities to the measure-
ments using a quadratic error function

𝐿 = ∑
𝑗

∑
q

(√𝐼𝑗,q − √𝑛𝑗,q)
2

. (3.5)

This error function quantifies how well the modelled diffraction patterns 𝐼𝑗 match the
measured diffraction patterns 𝑛𝑗. In the absence of vibrations and detector noise, the
𝑛𝑗 will be Poisson distributed. Calculating the square root equalizes the shot noise
so that bright and dark pixels influence 𝐿 equally. A detailed description of various
noise models and their influence on the reconstruction can be found in Godard et al.
[God+12]. The object and probe with the minimum error solve the phase problem
owing to the redundancy of the data. Typical sizes for the object and probe are
in the megapixel range, reconstructed from gigapixels of diffraction data. To find
the minimum error, we calculate the gradient by differentiating 𝐿 with respect to
the object and probe, using Wirtinger derivatives. Appendix A.1 defines Wirtinger
derivatives and gives an overview of some important properties. We start with the
gradient with respect to the object

𝜕𝐿
𝜕𝑂r

= ∑
𝑗

∑
q

𝜕 (√𝐼𝑗,q − √𝑛𝑗,q)
2

𝜕𝐼𝑗,q
⋅

𝜕𝐼𝑗,q

𝜕𝑂r
. (3.6)

Because object and probe are symmetric in the multiplication in Equation 3.1, the
probe gradient follows similarly. We can calculate the first factor, containing the
squared difference, straightforward

𝜕 (√𝐼𝑗,q − √𝑛𝑗,q)
2

𝜕𝐼𝑗,q
= (1 −

√𝑛𝑗,q

√𝐼𝑗,q
) . (3.7)
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For the second factor in Equation 3.6, the derivative of the intensity, we use the
definition of the Fourier transform to commutate the sum and the derivative

𝜕𝐼𝑗,q

𝜕𝑂r
= Ψ∗

𝑗,q ⋅
𝜕Ψ𝑗,q

𝜕𝑂r
=

Ψ∗
𝑗,q√
𝑁

⋅ ∑
r′

eiqr′ ⋅ 𝑃r′−R𝑗

𝜕
𝜕𝑂r

𝑂r′ . (3.8)

The product rule is not applied here due to our use of Wirtinger derivatives (see Ap-
pendix A.1). Multiplying the two factors in Equation 3.6 and changing the summation
order results in a Fourier transform of the conjugated far-field

𝜕𝐿
𝜕𝑂r

= ∑
𝑗

∑
q

𝑃r−R𝑗√
𝑁

⋅ (1 −
√𝑛𝑗,q

√𝐼𝑗,q
) Ψ∗

𝑗,q ⋅ eiqr. (3.9)

We abbreviate the product of the parantheses and the wavefield as

Φ𝑗,q ∶= (1 −
√𝑛𝑗,q

√𝐼𝑗,q
) Ψ𝑗,q (3.10)

to clear up the equation. Since the difference is real, it is identical to its complex
conjugate. The gradient is now

𝜕𝐿
𝜕𝑂r

= ∑
𝑗

𝑃r−R𝑗√
𝑁

⋅ ∑
q

Φ∗
𝑗,q ⋅ eiqr. (3.11)

The sum over q is a Fourier transform

𝜕𝐿
𝜕𝑂r

= ∑
𝑗

𝑃r−R𝑗
ℱ(Φ∗

𝑗)r, (3.12)

and we can replace Φ𝑗 with its inverse Fourier transform 𝜙𝑗 = ℱ−1(Φ𝑗), to get

𝜕𝐿
𝜕𝑂r

= ∑
𝑗

𝑃r−R𝑗
ℱ([ℱ(𝜙𝑗)]

∗)r. (3.13)

Conjugating the inner Fourier transform converts it into an inverse transform, which
counteracts the outer transform. In the end only 𝜙𝑗 remains, yielding

𝜕𝐿
𝜕𝑂r

= ∑
𝑗

𝑃r−R𝑗
⋅ 𝜙∗

𝑗,r. (3.14)

The gradient for the probe is similar, using the symmetry between 𝑂 and 𝑃 in the
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multiplication, we get
𝜕𝐿
𝜕𝑃r

= ∑
𝑗

𝑂r+R𝑗
⋅ 𝜙∗

𝑗,r+R𝑗
. (3.15)

Ideally, we would set the two gradients to zero and solve for the corresponding object
and probe. This is difficult because the two equations are coupled and non-linear.
As no closed-form solution exists, we must depend on iterative methods. One of
the simplest iterative methods is line search, which searches for the minimum along
the direction given by the gradient, reducing the complexity to a one dimensional
search. At the minimum of the line, the next iteration starts by calculating the new
gradient and then searches along this new direction. However, line search requires
many evaluations of the error function in each iteration before the line minimum is
found. In the case of ptychography this is slow, as each evaluation runs a loop over all
diffraction patterns.
In place of line search, we use gradient descent. In each iteration of gradient

descent, we calculate the gradient and take one step proportional to the negative of
the gradient. The ePIE algorithm uses stochastic gradient descent, which splits the
gradient calculation and gradient step further into subiterations. For ptychography, the
natural choice for the subiterations are the individual diffraction patterns. Instead of
taking the gradient step only after we calculated the full gradient, we randomly select
a diffraction pattern and calculate the gradient only for this pattern. Then, we take the
gradient step for this diffraction pattern. In the next subiteration, we randomly select
a new diffraction pattern that was not used in the previous subiterations, calculate the
new gradient and take a step in this new direction. One iteration is complete once we
have used each diffraction pattern once. Due to the large redundancy in the dataset,
this stochastic approach converges quicker than always calculating the full gradient.

In each subiteration 𝑙, we randomly choose a diffraction pattern 𝑛𝑗 that has not yet
been used in this iteration, calculate the gradient just for this pattern and add the
negative of the respective gradient to object and probe

𝑂𝑙+1,r = 𝑂𝑙,r + 𝛼
−𝜙𝑗,r

max |𝑃𝑙,r−R𝑗
|2

⋅ 𝑃 ∗
𝑙,r−R𝑗

, (3.16a)

𝑃𝑙+1,r = 𝑃𝑙,r + 𝛽
−𝜙𝑗,r+R𝑗

max |𝑂𝑙,r+R𝑗
|2

⋅ 𝑂∗
𝑙,r+R𝑗

. (3.16b)

The factors 𝛼 and 𝛽 adjust the update strength. The division by the maximum of the
squared modulus ensures that the update remains stable and it scales the object and
probe update to the same order of magnitude. The modulus of the object is typically
between zero and one, while the probe modulus is fixed by the beam intensity during
the experiment. The conjugation switches from 𝜙 to 𝑂 and 𝑃 due to the definition
of the Wirtinger derivatives, which are defined for complex numbers 𝑧 = 𝑥 + i𝑦
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as 𝜕/𝜕𝑧 = 𝜕/𝜕𝑥 − i𝜕/𝜕𝑦. After every diffraction pattern has been used once, one
iteration is complete. Typically, the reconstruction is converged after 100 to 1000
iterations.

3.2 Parallel ptychography

The previously described ePIE algorithm is a robust ptychography algorithm for a
broad range of situations. However, ePIE has difficulties to fully converge to the
optimal solution. Iterative ptychography algorithms, such as ePIE, use two nested
loops for the reconstruction. The outer loop repeats the iterations, while the inner loop
runs in subiterations over all diffraction patterns to calculate their update contribution.
In ePIE, the object and probe are updated after every subiteration, which is similar to
a local optimization for the current diffraction pattern. As the patterns contain noise,
the local optimum of each pattern is in general different from the global optimum.
As the order in which the patterns are used in the inner loop is reshuffled in each
iteration, the object and probe never converge completely but jitter around the optimal
solution. To circumvent this, the update strengths 𝛼 and 𝛽 could be dynamically
weakened with each iteration. Alternatively, the update from each diffraction pattern
can also be applied in parallel, not sequentially. Then object and probe are only
updated once per iteration after the inner loop is finished, removing all effects from
the update order.
A second problem of ePIE is the slow reconstruction of certain sample regions.

These are those areas of the sample that were only weakly illuminated during the
scan by the dimmer parts of the probe. Due to the division in the object update by the
maximum of the probe intensity, the update in these areas becomes small. Compared
to brightly illuminated regions, it often takes a hundred times more iterations to
reconstruct these regions. In this section, we address both drawbacks with a parallel,
locally scaled ptychography algorithm. This parallel ptychography variant is also
called the error reduction approach to ptychography [God+12; Yan+11].

To derive parallel ptychography, we go back to the full gradients from Equations 3.14
and 3.15. As they average the changes from all patterns, the first drawback of ePIE is
eliminated. To correct the slow convergence of darkly illuminated sample parts, we
change the division by the maximum to a division by the summed modulus:

𝑂𝑙+1,r = 𝑂𝑙,r + 𝛼
− ∑𝑗 𝜙𝑗,r ⋅ 𝑃 ∗

𝑙,r−R𝑗

∑𝑗 |𝑃𝑙,r−R𝑗
|2 + 𝛿

(3.17a)

𝑃𝑙+1,r = 𝑃𝑙,r + 𝛽
− ∑𝑗 𝜙𝑗,r+R𝑗

⋅ 𝑂∗
𝑙,r+R𝑗

∑𝑗 |𝑂𝑙,r+R𝑗
|2 + 𝛿

. (3.17b)
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These are the parallel updates for object and probe. To avoid division by zero, a
small 𝛿 is added in the denominator, in the order of 10−3. In the case of the object
update, we can assign a physical meaning to the sum in the denominator, it is the
total illumination of the sample during the scan, the radiant exposure.

With the parallel ptychography algorithm, we can avoid the drawbacks of ePIE. Due
to the sum over all positions and patterns the order is irrelevant and weakly illuminated
sample areas converge faster as a result of the locally adapted denominator. However,
parallel ptychography has a tendency to stagnate, which is desired if object and probe
are nearly optimal, but problematic if they are far from convergence and have only few
similarities with the optimal solution. Furthermore, the weakly illuminated parts of
the sample are reconstructed faster than with ePIE, but the noise in the reconstruction
is considerably higher. This is more a consequence of the measurement than the
algorithm, nevertheless ePIE limits the noise in the reconstruction over the whole
reconstructed sample area.

In practice, it is best to start with ePIE and switch to parallel ptychography when
the reconstruction has nearly converged. This way, the robustness and speed of ePIE
are coupled with the smoothness of parallel ptychography. In addition, the sample
areas with the lowest noise are reconstructed first with high confidence and the more
uncertain areas only after the algorithms have been switched. Each scan is different
in how many iterations should be used for each algorithm. Nevertheless, running
both algorithms for the same number of iterations is in general sufficient.

3.3 Upsampling ptychography

In ptychography, the diffraction patterns must be sufficiently sampled to truthfully
reconstruct the sample. Whether a diffraction pattern is sufficiently sampled or not
can be determined with the Nyquist-Shannon sampling theorem [Sha49]. According
to this theorem, a band-limited signal is sufficiently sampled if the sampling frequency
is more than twice the highest signal frequency. In the context of X-ray ptychography,
a diffraction pattern is band-limited if the probe in the sample plane has a finite
support 𝐷. The sampling frequency is given by the size 𝑝 of the detector pixels. As
the detector is situated in the far-field of the sample, the pixel size defines a field of
view 𝑆0 in the sample plane. In paraxial approximation, the field of view is given by

𝑆0 = 𝜆𝑑
𝑝

, (3.18)
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Figure 3.2 Upsampling scheme. Illustration of the detector pixel coordinates for an
upsampling of 𝑠 = 3. The detector pixels are each labelled with a unique and continuous
number. Every detector pixel 𝑢 is divided into 𝑠2 = 9 virtual subpixels 𝑣.

for a detector distance 𝑑 and wavelength 𝜆. Thus, the patterns are sufficiently sampled
if the field of view 𝑆0 is more than double the size of the support 𝐷:

2𝐷 < 𝑆0. (3.19)

If Equation 3.19 is violated and the diffraction patterns are undersampled, artefacts
appear in the reconstruction. For these cases the sampling ptychographical iterative
engine (sPIE) has been developed [Bat+14]. sPIE allows to relax the sampling
criterion by exploiting the redundancy in ptychographic measurements. It is based
on the idea of virtually upsampling the diffraction patterns by a factor 𝑠. With
upsampling, the reconstruction algorithm assumes a virtual detector with smaller
subpixels 𝑝/𝑠 to fulfil the sampling criterion. The reconstruction is similar to ePIE,
except for the far-field update, as there is a discrepancy between the number of
pixels in the measured diffraction pattern and in the simulated wavefield. Figure 3.2
illustrates how the real detector pixels and the virtual subpixels are related. For each
detector pixel 𝑢, the wavefield contains 𝑠 ⋅ 𝑠 virtual subpixels 𝑣. Equation 3.10 is
therefore updated so that the sum of the virtual subpixels in a given detector pixel is
consistent with the measured intensity 𝑛𝑗,𝑢 in the real pixel, yielding

Φ𝑗,𝑢,𝑣 ∶= ⎛⎜⎜
⎝

1 −
√𝑛𝑗,𝑢

√∑𝑠2

𝑣=1 |Ψ|2𝑗,𝑢,𝑣

⎞⎟⎟
⎠

Ψ𝑗,𝑢,𝑣. (3.20)

Here, 𝑢 addresses the pixel coordinates of the real pixels, 𝑣 addresses the coordinates
of the virtual subpixels, 𝑚 is the index of the diffraction pattern, 𝑛 represents the
measured intensity of the detector pixel, Ψ represents the upsampled wavefield and
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Φ represents the far-field update. Because it is difficult to express the sum in the
denominator of Equation 3.20 in terms of the q-coordinates, the indexing is changed
for this equation.

3.4 Momentum accelerated ptychography

How many iterations a ptychography reconstruction needs until it is converged,
depends heavily on the initial object and probe. The accuracy of the probe estimate
is the primary factor that determines how the reconstruction will converge or if at
all. Most often, a good guess of the probe can be made based on the knowledge
of the focusing optics and the experimental geometry. Having said that, optics can
potentially suffer from unknown aberrations, making an educated guess of the probe
difficult. Likewise, a diffuser of unknown structure might be used in the experiment
to increase the scattering to large angles. In both situations, it can be difficult to
make an accurate prediction of the probe, leading to slow reconstructions. The object
estimate is less important, but still influences the final result. For most ptychography
experiments with visible light or X-rays, the empty, transparent object is an appropriate
starting point. This is not the case for strongly scattering objects. If the starting probe
or object are unsuitable, the reconstruction may take several thousand iterations
before it converges.

In this section, we describe Nesterov accelerated gradients (NAGs) for ptychography.
The description follows the work from Maiden et al. [MJL17], who were the first to
demonstrate that ptychography can benefit from momentum acceleration. Adding
NAG makes ptychography algorithms more robust and accelerates the reconstruc-
tion under difficult conditions. Detailed overviews on NAG and similar momentum
accelerations were written by Ruder [Rud17] and Goh [Goh17].

The ptychography algorithms in this thesis are all error reduction algorithms. Error
reduction can be pictured as a hilly landscape over all possible parameters, where the
height at each point is defined by the error value 𝐿 for this set of parameter values 𝜃.
Minimizing the error means finding the lowest point among the hills. Gradient descent
can be pictured as a short sighted cow in this landscape. The cow can only see slightly
beyond its feet. To find the lowest point, it walks downhill in the steepest direction.
The cow descends step-by-step, going from the current parameter set 𝜃𝑙 to 𝜃𝑙+1, then
𝜃𝑙+2 and so on, each time lowering the error until the cow finds a minimum where
the landscape goes uphill in every direction. Unfortunately, it is in general hard to
find out if this is the global or a local minimum. Formally, we express the downhill
stepping of gradient descent as

𝜃𝑙+1 = 𝜃𝑙 − 𝛼∇𝐿(𝜃𝑙). (3.21)
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Figure 3.3 Comparison between Nesterov’ and simple momentum for ptychography.
This illustrates how a single object pixel evolves in the complex plane. It highlights the
difference how Nesterov momentum is applied in comparison to simple momentum. The
momentum is here added every 𝑇 = 5 subiterations. Adapted from [MJL17].

Momentum in contrast can be imagined as a cannonball that is rolling down the hill.
As it rolls down, it gains speed, becoming faster and faster. If the surface is smooth
enough, it will continue accelerating. When it reaches the bottom of a valley, it does
not stop but keeps on climbing uphill on the opposite side, losing speed. Due to this,
the cannonball can escape local minima. The name momentum is derived from the
inertia of this physical analogy. In each iteration, the momentum 𝑣 is updated and
the updated momentum is then applied to the current parameters

𝑣𝑙+1 = 𝜂𝑣𝑙 − 𝛼∇𝐿(𝜃𝑙), (3.22)

𝜃𝑙+1 = 𝜃𝑙 + 𝑣𝑙+1. (3.23)

The momentum damping factor 𝜂 acts as friction on the cannonball and is between
zero and one. The closer it is to one, the more speed the ball can pick up. Typically, 𝜂
is set to 0.9. Nesterov accelerated gradient (NAG) improves this simple momentum
by doing both, a momentum and a gradient step. First, the gradient is added to the
momentum like before. Afterwards, the momentum and the gradient are added to
the current parameters

𝑣𝑙+1 = 𝜂𝑣𝑙 − 𝛼∇𝐿(𝜃𝑙), (3.24)

𝜃𝑙+1 = 𝜃𝑙 + 𝜂𝑣𝑙+1 − 𝛼∇𝐿(𝜃𝑙). (3.25)

Nesterov accelerated gradient (NAG) updates both the gradient and the current
parameters with the local gradient. If this leads to oscillating behaviour, it can be
stabilized by reducing the step size 𝛼 of the gradient. This does not necessarily slow
down the reconstruction because the momentum can increase the convergence.
We incorporate NAG into ptychography by introducing two new complex-valued

fields 𝑣r and 𝑢r for the object and probe momentum respectively. In addition, we add
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the two corresponding momentum damping factors 𝜂obj and 𝜂prb. The gradient in
ePIE is fluctuating, changing strongly for each subiteration. For a smoother estimate,
we calculate the average gradient over multiple subiterations. We introduce a new
parameter 𝑇, that determines how many subiterations are calculated before the
momentum is added again. Figure 3.3 shows an example for 𝑇 = 5. The ePIE update
is slightly changed

𝑂′
𝑙,r = 𝑂𝑙,r + 𝛼

−𝜙𝑗,r

max |𝑃𝑙,r−R𝑗
|2

⋅ 𝑃 ∗
𝑙,r−R𝑗

, (3.26)

as a subiteration finishes now after the momentum step. The momentum step consists
of a check if 𝑇 subiterations have passed since the last momentum update. If not,
then the subiteration is finished and continues with the next diffraction pattern. If
the check is positive, then we update the momentum

𝑣𝑙,r = 𝜂obj𝑣𝑙−𝑇 ,r + (𝑂′
𝑙,r − 𝑂𝑙+1−𝑇 ,r) (3.27)

by adding the changes since the last momentum step. The new momentum is then
added to the object

𝑂𝑙+1,r = 𝑂′
𝑙,r + 𝜂obj𝑣𝑙,r, (3.28)

finishing the subiteration and resetting the counter for the next momentum step.
Figure 3.3 illustrates this procedure. For four iterations, the object is updated normally.
In the fifth iteration, after the ePIE update is applied, the momentum is updated and
then added to the object. This also shows the difference between simple momentum
and NAG because the first would add the old momentum instead of the new one.

For the reconstructions, it is best to set the object update 𝛼 between 0.1 and 0.2
and keep the probe update 𝛽 at one. The momentum step should be added after 10%
to 50% of the diffraction patterns have been used, depending on the overlap. Every
object pixel should on average be updated at least once between two momentum
steps. If there is less overlap between adjacent scan positions, then the momentum
steps should be more scarce. The momentum damping factors 𝜂obj and 𝜂prb can both
be set to 0.9. For parallel ptychography the procedure is the same, but it allows for
more frequent momentum updates as the reconstruction is more stable.
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3.5 Practical ptychography implementation

3.5.1 Resolution and field of view in ptychography

The Abbe criterion for the resolution in classical light microscopy is given by

Δ𝑥 = 𝜆
2NA

, (3.29)

half the wavelength of the light divided by the numerical aperture of the focusing lens.
In ptychography on the other hand, the resolution is not determined by the focusing
element. Instead, the detector acts as a virtual lens and the resolution is given by the
largest detectable scattering angle. For a 𝑁 × 𝑁 pixel detector with a pixel size 𝑝 that
is placed a distance 𝑑 from the sample, the resolution in ptychography is

Δ𝑥 = 𝜆
2 sin [arctan (𝑁𝑝/2𝑑)]

. (3.30)

In many situations, the largest detectable scattering angle is small and we can use
the small angle approximation and set the sine and tangent equal. With this, we get

Δ𝑥 ≈ 𝜆𝑑
𝑁𝑝

. (3.31)

For a successful ptychography reconstruction, the diffraction patterns must be correctly
resolved. The diffraction patterns are sufficiently sampled if the Nyquist condition is
fulfilled. This is the case if the probe is small enough, as the size of the probe and the
size of the speckle are inversely proportional.

3.5.2 Position refinement

High-resolution ptychography requires precise knowledge of the scan positions. In
experiments, the scanning stages always have a limited precision and the sample can
drift during the scan. Consequently, the position values are inaccurate, which limits
the resolution in the reconstruction and gives rise to artefacts. The precision can be
improved with laser interferometers, however these can only track a reference mirror
close by the sample [Hol+12; Sch+17]. As a result, the interferometers are blind
to relative movements between the sample and the reference mirror. Compared to
the other positioning errors, the relative movements are small, but they still limit the
achievable resolution.
Various algorithms have been developed to algorithmically correct faulty position

values [Mai+12; Zha+13]. Schropp et al. [Sch+13] conceived a brute-force approach
to search for the best fitting sample positions. Their approach optimizes the position
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of each diffraction pattern individually by minimizing the error from Equation A.13
between the simulated and the measured diffraction pattern. The optimisation
calculates the error for all positions in a box around the current position and chooses
the one with the lowest error. To minimize the slow down of the reconstruction, the
search is only run every 10 to 50 iterations.

3.5.3 Software

All ptychography reconstructions in this thesis were computed with the software pty-
cho. This program is written in CUDA C/C++ and uses the GPU for fast computations.
Graphics cards are ideally suited, as ptychography requires many pointwise matrix
operations which can be efficiently implemented on the parallel streaming processors
of the GPU.
ptycho was started by Wolfgang Hönig as a test to compare the performance of

ptychography on a CPU and a GPU [Hön10]. This test program was expanded
by Robert Hoppe during his PhD studies to include more features and become an
effective tool for experiments. He gives a detailed description about the design and
inner workings of ptycho in his PhD thesis [Hop19]. After Robert Hoppe finished
his studies, Felix Wittwer became the main developer and added more features, for
example the momentum from Section 3.4 or the refractive ptychography in Chapter 4.





4 Refractive Ptychography

Most phase retrieval techniques such as ptychography, coherent X-ray diffraction ima-
ging (CXDI) or inline holography reconstruct only the complex-valued transmission
function of the sample. However, the transmission function is not linearly dependent
on the object thickness or the object density and the phase shift is potentially am-
biguous. In tomography, the most commonly used algorithms work on a linear model
and the transmission must be transformed into linear projections before they can be
reconstructed tomographically. In X-ray phase tomography, especially when combined
with ptychography [Gui+11; Kah+19], both the non-linearity and the ambiguity of
the phase are a problem, as a phase shift ℎ cannot be distinguished from a shift ℎ + 2𝜋
since the phase shift is 2𝜋-periodic.
These problems could be avoided, if ptychography would directly reconstruct the

projection of the complex refractive index, as the refractive index is unambiguous and
proportional to the object thickness. In Section 4.1 we develop a novel and original
ptychography algorithm that directly reconstructs the real and imaginary part of
the projected complex refractive index. In Section 4.2 we test this new algorithm
on a simulated experiment to compare the reconstruction results to a ground truth.
We demonstrate the algorithm in Section 4.3 and Section 4.4 on two experimental
datasets with a weakly and strongly phase shifting sample, respectively.

4.1 Basics

We will start similar to Section 3.1 with the basic ptychographic model. In contrast to
the conventional model, our refractive object will be in the exponent. To differentiate
the two, we will call this new object �̃�r and it is related to 𝑂r by

𝑂r = ei�̃�r . (4.1)

To avoid confusion, we will use the following nomenclature: 𝑂 will remain the object
and �̃� will be called the refractive object. We call arg(𝑂) = ℜ(�̃�) the phase or phase
shift of the object, |𝑂| = e−ℑ(�̃�) the modulus of the object and ℑ(�̃�) the projected
absorption index. We will derive the refractive object and probe updates for �̃�r again
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via the maximum likelihood. The wavefield is now

𝜓r = ei�̃�r ⋅ 𝑃r (4.2)

and most of the calculations for 𝐿 and 𝜕𝐿/𝜕𝐼 remain the same as in Section 3.1. The
first difference occurs in Equation 3.8, where formerly the object dependence

𝜕
𝜕𝑂r

𝑂r𝑃r−R𝑗
= 1 ⋅ 𝑃r−R𝑗

(4.3)

in the derivative is one. Here, due to the invariance of the exponential function under
differentiation, the object remains unchanged except for a multiplication with the
imaginary unit

𝜕
𝜕�̃�r

ei�̃�r ⋅ 𝑃r−R𝑗
= iei�̃�r ⋅ 𝑃r−R𝑗

= i𝜓𝑗,r. (4.4)

From this new derivative, we calculate the new gradients and derive the new update
functions

�̃�𝑙+1,r = �̃�𝑙,r + 𝛼
−𝜙𝑗,r

max ∣𝜓r−R𝑗
∣
2 ⋅ (i𝜓r−R𝑗

)∗, (4.5a)

𝑃𝑙+1,r = 𝑃𝑙,r + 𝛽
−𝜙𝑗,r+R𝑗

max ∣ei�̃�𝑙,r+R𝑗 ∣
2 ⋅ e−i�̃�∗

𝑙,r+R𝑗 . (4.5b)

We will refer to this variant as the refractive ptychographical iterative engine (refPIE).
From these two updates we can derive a general rule to convert a ptychography
algorithm, for example difference-map (DM), into a refractive variant that works
directly on the effective absorption index and the phase shift:

• Wherever the object 𝑂 is a factor in a multiplication, replace it with ei�̃�

• In the object update replace the probe 𝑃 with i𝜓, the wavefield multiplied with
the imaginary unit.

4.2 Simulation tests

We test refPIE on a simulated experiment to verify that the algorithm reconstructs
the projection of the complex refractive index. The simulation imitates a typical X-ray
ptychography experiment on a weakly scattering sample. All essential parameters
are collected in Table 4.1. The simulated modulus and phase together with the probe
are shown in Figure 4.1. The sample is scanned in a 21 × 21 grid with a step size of
1µm. The total scanned area is indicated by a red square. Each position is randomly
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Figure 4.1 Ptychography simulation set-up. a The sample modulus. b The sample phase
shift. The squares in a and b indicate the scanned area, the circles show the extent of the
illumination. c The probe in complex colouring. d A typical diffraction pattern in logarithmic
display.

Table 4.1 Parameters used in simulation.

Parameters Simulation

Wavelength 1Å
Detector distance 8000mm
Detector pixel 75µm × 75µm
Image size 256 × 256 pixels
Pixel size (rec.) 41.7nm
Scan size 21 × 21
Step size 1.000 ± 0.125µm
Object modulus [0.8; 1.0]
Object phase [−𝜋/2; 0]
Probe diameter 3.5µm
Photons 109

offset by up to 0.125µm in the vertical and horizontal direction to avoid scan grid
artefacts [Thi+09]. The probe is modelled to replicate a CRL stack of 50 Beryllium
lenses at a photon energy of 12.4 keV. Each lens has two parabolic surfaces of 50µm
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curvature, and the whole stack has a focal length of 235mm with a diffraction-limited
spot size of 72nm. The sample is placed 3mm downstream of the focal plane, where
the probe extents to 3.5µm diameter. To simulate an average photon count of 109,
Poisson noise is added to each diffraction pattern.

The reconstruction is run in two ways: first with the conventional ePIE algorithm
and then with the new refPIE algorithm. Both algorithms start with a transparent
object and a 4µm sized disc with a spherical wavefront of 3mm curvature as probe.
Both reconstructions are run for 1000 iterations. The randomization seed is fixed at
the start, so that the patterns are shuffled the same way for both algorithms. This
ensures that no differences are introduced due to the subiteration order.

The reconstruction results from ptychography are not unique and can be ambigu-
ous, thereby making the comparison between different runs and/or the reference
challenging. For a more reliable comparison, these ambiguities must be removed;
Appendix A.2 describes this procedure in detail. Here, we remove the ambiguities of
the reconstructions in reference to the simulated sample.

Figure 4.2 compares the reconstructed moduli and phase shifts to the original
sample. Both reconstructions match the original sample visually, they only start
to deviate outside of the scanned area. The refractive reconstruction fulfills the
expectations. Comparing Figure 4.2b to 4.2c and Figure 4.2e to 4.2f, the differences
are imperceptible. Figure 4.2b and 4.2c both show the phase of the sample. However, it
must be stressed that they are computationally two different entities. Figure 4.2b is the
argument of the reconstructed object, whereas 4.2c is the real part of the reconstructed
object. The situation is similar for Figure 4.2e and 4.2f, where the former shows
the modulus of the reconstructed object and the latter shows the exponential of the
negative imaginary part of the reconstructed object.

To see the slight distinctions between the two reconstructed objects we look at
Figure 4.3 which shows the difference between the ePIE and refPIE reconstruction.
Figure 4.3a shows the difference between the moduli; only faint features and a few
striped patches are visible. The root mean square (rms) of the modulus difference is
only 0.24 × 10−3. The phase shift in Figure 4.3b, on the other hand, shows a stronger
difference with a slowly varying saddle. Artifacts of low spatial frequency are a known
weakness in ptychography, since it takes many iterations for local changes to affect
the whole image. Apart from this saddle, there are only small differences, similar to
the modulus in Figure 4.3a. Overall the 2.7 × 10−3 rms phase difference is an order
of magnitude larger than the modulus, but still very small compared to the total phase
range of 𝜋/2. This simulation demonstrates for weakly scattering samples that refPIE
can reconstruct directly the phase shift and effective absorption index and otherwise
behaves identical to ePIE.
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Figure 4.2 Reconstruction results of the ptychography simulation. a-c Phase shift, all
scaled to the simulated phase range. d-fModulus, all scaled to the simulated modulus range. a,
d Original. b, e ePIE reconstruction with the ambiguities removed. c, f refPIE reconstruction
with the ambiguities removed.
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a b

0.01−0.01 0.01−0.01

Figure 4.3 Difference between ePIE and refPIE reconstruction. The images are cropped
to the scanned area. a Difference between the two moduli, showing a uniform weak distribu-
tion. b Difference between the phase shifts, exhibiting a long range saddle but otherwise only
weak errors.
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Figure 4.4 Image of the zeolite and the probe. a The SEM image shows the top of the
sample pin, where the zeolite is glued with platinum. The scale bar represents 10µm, the
zeolite particle is about 2.6µm in size and the pin has a width of 30µm. b Complex coloured
display of the probe in the sample plane. The scale bar represents 2µm, the probe is a little
smaller with a diameter of roughly 1.9µm.

4.3 Zeolite experiment

We continue after the successful reconstruction of the simulated experiment with data
from a synchrotron radiation measurement of a zeolite particle [Kah+19; Wei+19].
The zeolite was measured at the P06 beamline at PETRA III in Hamburg using the
ptychographic nano-analytical microscope (PtyNAMi) [Sch+17; Sch+20]. Zeolites
are porous silicates that are important for catalysis due to their large inner surface.
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Table 4.2 Parameters of the zeolite experiment.

Parameters Zeolite

Energy 9 keV
Flux 2.6 × 108 ph/s
Exposure 1 s
Scan size 11 × 11
Step size 400 ± 50nm
Probe diameter 1900nm
Detector distance 2310mm
Detector pixel 75µm × 75µm
Image size 512 × 512 pixels
Pixel size (rec.) 8.3nm

Investigating their internal structure might help to produce new particles with a larger
surface-to-volume ratio. To change the properties and catalytic activity of the zeolites,
metallic atoms such as aluminium, titanium or zinc are commonly incorporated.
The zeolite in this X-ray ptychographic computed tomography (XPCT) experiment
is mostly made from silicon and titanium and has a diameter of 2.6µm. A scanning
electron micrograph of the zeolite glued to the sample holder is given in Figure 4.4a.
The zeolite itself scatters X-rays at 9 keV only weakly, but the platinum that glues
the zeolite to the sample holder is a strong scatterer and is thick enough to cause
phase wrapping in the reconstruction. To successfully reconstruct the tomogram,
these phase wraps must then be unwrapped.
The experiment was conducted at 9 keV and the X-ray beam was focused by a

combination of a central stop with a diameter of 50µm, an order sorting aperture
with a diameter of 35µm and a FZP with a diameter of 125µm and with an outermost
zone width of 70nm,. The sample was placed 1.1mm downstream of the focus, where
the beam diameter was 1.9µm. The probe in this plane is shown in Figure 4.4b in
complex colouring. The sample was scanned in an 11 × 11 grid of 400nm steps
where each scan point was randomly offset in the horizontal and vertical direction by
up to ±50nm . At every point, a diffraction pattern with 1 s exposure was recorded
with a single photon counting Eiger 4M detector [Joh+14]. The reconstructions
use 512 × 512 pixels of the Eiger image, resulting in a pixel size of 8.3nm in the
reconstructed images. All important scan parameters are summarized in Table 4.2.

First, we reconstruct the scan with ePIE. The initial guess for the reconstruction is a
transparent object and a disc of 1.8µm with a wavefront curvature of 1mm as probe.
We run ePIE for 1000 iterations. The reconstructed object is shown in Figure 4.5,
where the modulus of the air around the particle is normalized to one and the global
gradient in the phase shift is removed. Since the zeolite is comprised of light elements,
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a b

1.10.0 3.14−3.14

Figure 4.5 ePIE reconstruction of the zeolite. a Modulus of the sample. The scale bar
represents 2µm. The square marks the scan area. b Phase shift of the sample. The arrows
indicate where the line profiles in Figure 4.8 are extracted.

it is nearly invisible in the modulus of the reconstruction in Figure 4.5a. In comparison,
the platinum glue below the zeolite is much more prominent. In the reconstructed
phase shift in Figure 4.5b, the zeolite is well reconstructed and its internal structure
is easily visible. Similar to the stronger phase contrast for the zeolite, the platinum
at the bottom also has more contrast. The contrast is even strong enough to wrap
the phase shift. The second phase wrap near the bottom is already part of the vastly
bigger sample pin. The phase wraps are a problem for tomography, since it is not a
simple projection of the three-dimensional phase distribution. Solving this requires
additional procedures [CZ00; GZW88].
To circumvent the phase wraps, we reconstruct the dataset again with the refPIE

algorithm, using the same initial object and probe and the identical subiteration
shuffle. The reconstruction is run for 1000 iterations. For the comparison between
this reconstruction and the previous one using ePIE, we first look at Figure 4.6, where
the reconstruction errors over the iterations are plotted. Appendix A.3 describes how
𝐸diff, the average error per diffraction pattern, is calculated. Both algorithms converge
quickly to approximately the same error value, but ePIE is clearly faster. In particular,
in the first iterations, the error in ePIE drops much faster, has a steeper slope, and
is already well converged after 200 iterations. The error in refPIE also falls quickly,
albeit slower than ePIE, and reaches a comparative level of convergence only after
300 iterations. This margin of 100 iterations between ePIE over refPIE remains the
same for all following iterations. Nevertheless, the difference between the two after
1000 iterations is smaller than the jitter of each reconstruction.
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Figure 4.6 Error of the zeolite reconstructions comparing ePIE and refPIE. The zoom-in
shows the last 100 iterations. The error calculation is described in appendix A.3.

a b

1.10.0 1.31−6.73

Figure 4.7 refPIE reconstruction of the zeolite. a Modulus of the sample. Similar to the
previous section for the simulation, this is again the exponential of the negative imaginary
part of the reconstruction. The scale bar represents 2µm, the square marks the scan area.
b Phase shift of the sample. The arrows indicate where the line profiles in Figure 4.8 are
extracted.
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Figure 4.8 Horizontal/Vertical profiles across the zeolite phase shift. The profiles are
plotted starting from the top-left. a Horizontal profile across the ePIE and refPIE reconstruc-
tion. b Vertical profile across the ePIE and refPIE reconstruction.

Figure 4.7 shows the reconstruction result from refPIE with the inherent ambiguities
in ptychographic reconstructions removed (see Appendix A.2). Both ePIE and refPIE
reconstruct nearly the same sample modulus. They match, except for a strongly
absorbing horizontal band at the bottom of the refPIE reconstruction, outside the
region of interest. This band is caused by the vastly bigger sample holder, compare
Figure 4.4. The reconstructed phase on the other hand differs notably between the
two algorithms. In the ePIE reconstruction, the phase shift in the glue jumps from −𝜋
to 𝜋 over the span of a single pixel. Strikingly, the phase in the refPIE reconstruction
is continuous and shows no jumps. Apart from the 2𝜋 offset, the two reconstructions
are identical, as can be seen in the horizontal and vertical phase profile in Figure 4.8.
The curves only start to diverge near the edges, outside the scanned area, due to the
noise in the reconstruction.
In conclusion, this section demonstrated a successful refPIE reconstruction of

measured data that avoids the phase jumps which occur when ePIE is used. The phase
wraps in this situation were rather weak, with the total phase shift of the sample being
slightly more than 2𝜋. This situation could alternatively be resolved by shifting the
range from [−𝜋, 𝜋] to, for example, [−2𝜋, 0]. Nonetheless, refPIE manages to fulfil
the expectations and directly reconstructs the real and imaginary part of the projected
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Figure 4.9 Image of the micrometeorite and the probe. a SEM image of the micrometeor-
ite. The tip of the sample pin can be seen on the bottom right. The scale bar represents 20µm,
the particle is about 80µm in size. b Complex coloured display of the probe in the sample
plane. The scale bar represents 2µm. In the upper right corner is a two times enlarged view
of the 1.5µm × 1.5µm central region.

complex refractive index from measured data.

4.4 Micrometeorite

After the results for the reconstruction of the zeolite in the previous section, wewill now
look at a sample that is big enough to wrap the phase shift multiple times. The sample
is a micrometeorite of 80µm diameter that is scanned in a combined ptychographic-
fluorescence experiment to study its composition and structure. Micrometeorites
are extraterrestrial particles found on Earth that are between 50µm and 1mm in
size. Every year about 40000 t of new micro particles fall down, but only 10% of
these reach the ground [Mor15; TLH98]. Finding them among dust and human
pollution is difficult and most are therefore found in Antarctica or deep sea sediments.
However, if the dust from roofs that aggregates in the rain gutter is filtered and
carefully selected, micrometeorites can be found even in urban areas [Gen+17]. The
urban micrometeorite used in this study is mostly made out of olivine and traces of
iron, cobalt and nickel. Olivine is a mineral made of magnesium silicate and iron
silicate. Due to the olivine, the micrometeorite creates a strong phase shift that makes
it an ideal test case for refractive ptychography.

The experiment was performed by Dennis Brückner at the P06 beamline of PETRA III
in Hamburg, using the combined micro-/nanoprobe set-up for a long detector distance.
The 18 keV X-ray beam was focused by a pair of KB-mirrors, focal length 250mm, to
a full width at half maximum (FWHM) spot size of 110nm × 110nm. The sample
was placed 500µm behind the focus where the beam had expanded so that 50%
of the total beam intensity fell within a 190nm × 190nm circle. To quickly scan
a sample of this size, the scanning stage never stopped but moved continuously in
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Table 4.3 Parameters of the micrometeorite experiment.

Parameters Micrometeorite

Energy 18 keV
Flux 3.75 × 108 ph/s
Exposure 1ms
Scan size 100µm × 100µm
Step size 200nm × 200nm
Probe diameter 190nm
Detector distance 8752mm
Detector pixel 75µm × 75µm
Image size 128 × 128 pixels
Pixel size (rec.) 62.8nm

zigzags across the sample. These fly-scans allow acquisition rates in the kilohertz
range [Cla+14; Pel+14]. The micrometeorite was scanned over a 100µm × 100µm
area with 1ms exposure for each diffraction pattern. The velocity of the stage was
set to 200µms−1, so that it moved 200nm during one exposure. Each new line was
vertically offset similarly by 200nm. One scan recorded more than a quarter of a
million diffraction patterns in less than 9.5min. The diffraction patterns were recorded
with an Eiger 500k situated 8.75m downstream of the sample in the nanoprobe hutch.
A 7m long evacuated flight tube between sample and detector reduced air scattering
on the detector. The reconstructions use the central 128 × 128 pixels of the Eiger
images, resulting in a pixel size of 62.8nm in the ptychographic reconstruction. All
parameters are summarized in Table 4.3.
The probe is very small compared to the overall sample size, leading to a slow

convergence of long-range features in the ptychographic reconstruction. To accelerate
the convergence, we use momentum accelerated gradients for both algorithms, as
described in Section 3.4. We set the momentum damping factors 𝜂obj and 𝜂prb to
0.98 and apply the momentum to every second iteration. For this dataset the classic
sequential ptychographic update easily gets stuck in wrong solutions. To avoid this,
we use the parallel ptychography variant described in Section 3.2 for both ePIE and
refPIE. We also constrain the object modulus to only range from 0.2 to 2.0.

Both reconstructions start with a transparent object and a 250nm Gaussian with a
phase curvature of 0.75mm radius as probe. We run each reconstruction for 1000
iterations. For ePIE, the reconstructed sample modulus and phase shift are shown in
Figure 4.10. The reconstruction shows phase wraps and two phase vortices at the
top of the meteorite. These singularities are especially problematic for tomographic
reconstructions.
This problem is solved by refPIE. The refractive reconstruction is shown in Fig-
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1.050.7 3.14−3.14

Figure 4.10 ePIE reconstruction of the micrometeorite. a Modulus of the micrometeorite.
The scale bar represents 20µm. b Phase shift of the micrometeorite, showing multiple phase
wraps. A closeup of the two vortices at the top is shown in Figure 4.12a.

ba

1.050.7 1.0−15.0

Figure 4.11 refPIE reconstruction of the micrometeorite. a Modulus of the micrometeor-
ite. As before, this is again the exponential of the negative imaginary part of the reconstruction.
The scale bar represents 20µm. b Phase shift of the micrometeorite. The phase is continuous,
except for two small areas where the gradient is steepest and the algorithm has difficulties.
Close-ups of the two regions are shown in Figure 4.12b, c.
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b ca

Figure 4.12 Details from the ePIE and refPIE reconstructions of the micrometeorite. All
images have a field of view of 18µm × 18µm. a The two vortices in the ePIE reconstruction.
b The same region in the refPIE reconstruction only has a few small artefacts. c Artefact
in the top left of the refPIE reconstruction. This artefact is offset by ±2𝜋 to the rest of the
meteorite and can easily be fixed.

ure 4.11. Notably, the real part of the reconstructed projection of the complex refractive
index, the phase shift, is continuous and shows no phase wrapping, while having
a maximum phase shift of about 15 rad. Two small areas at the top and the top
left contain wrong values. These areas have the largest phase slope and both ePIE
and refPIE struggle in the reconstruction. The top left area is simply offset by 2𝜋,
which can be easily fixed. The top area is exactly where the vortices are in ePIE and
demonstrates exemplary that refPIE is able, even in challenging circumstances, to
reconstruct the unaffected parts of the sample without detriments.
The reconstruction errors 𝐸diff in Figure 4.13 for both reconstructions are nearly

identical. Here, again, refPIE falls behind in the beginning with a margin of about 20
iterations to ePIE. But at iteration 400 refPIE first catches up to ePIE and then even
overtakes it around iteration 500. Afterwards both reconstructions are converged and
show only minuscule improvements.

4.5 Conclusion

In summary, we have developed refPIE, the refractive ptychographical iterative en-
gine, which reconstructs the projected complex refractive index of the sample. We
demonstrated this capability on simulated and measured data for weakly and strongly
scattering samples. Especially the last sample, the micrometeorite, shows the ad-
vantage of avoiding phase wrapping. The strong phase shift of up to 15 rad creates
two phase jumps, which is challenging for ePIE. Phase jumps, especially if there are
multiple, are often not accurately reconstructed, which can create phase vortices. The
vortices might be removed [Sto+15], but this requires monitoring for vortices and is
no guarantee that they will not reappear in later iterations.
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Figure 4.13 Error of the micrometeorite reconstructions comparing ePIE and refPIE.
The error calculation is described in appendix A.3.

At the end of Section 4.1 we outlined how other ptychography algorithms can be
converted into a refractive variant. In the next chapter we will generalize this idea
and show that other phase retrieval techniques can also be transformed to reconstruct
the projected complex refractive index.





5 Refractive Phase Retrieval

In this chapter we generalize the principle behind refractive ptychography to other
phase retrieval techniques. For Fourier ptychography, Chowdhury et al. already demon-
strated a refractive algorithm [Cho+19]. We start in Section 5.1 with the development
of a refractive holography algorithm that allows inline near-field holography (NFH)
[Clo+99; Gab48] to reconstruct the projected refractive index. In Section 5.2 we es-
tablish a refractive CXDI algorithm that is marked by a more consistent reconstruction
result compared to the standard difference-map (DM) algorithm.

5.1 Inline near-field holography

Inline near-field holography is a phase retrieval technique similar to ptychography
[AO01; Mis73]. In holography, the sample is scanned in the X-ray beam along the
optical axis and images, called holograms, are captured at different distances. It is
also possible to reconstruct the sample from a single hologram, this is also called
Fresnel CXDI and the reconstruction is analogous to CXDI in Section 5.2. We describe
here therefore only multi-distance holography.
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I0I3
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Figure 5.1 Near-field holography set-up. The sample is placed in the collimated X-ray
beam at different distances 𝑧𝑗 from the detector. The detector records a hologram 𝐼𝑗 for each
distance.
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5.1.1 Reconstruction algorithm

A typical holography set-up is shown in Figure 5.1. The partially coherent X-ray
beam illuminates the sample, the X-rays scatter off the sample, interfere with the
original beam and both propagate to the imaging detector, which records the resulting
hologram 𝐼𝑗. For the scan, the sample is moved along the beam to different positions
𝑧𝑗, varying the propagation distance. Since the detector is positioned in the optical
near-field of the sample, the propagation can be described by Fresnel propagation, as
outlined in Section 2.1.1.
Expressed in mathematical form, the wavefield 𝜓r, describing the interference

between the original and the scattered beam, propagates over a set of distances 𝑧𝑗 to
the imaging detector

𝜓𝑗,u = 𝒫𝑧𝑗
(𝜓r), (5.1)

where the holograms
𝐼𝑗,u = |𝜓𝑗,u|2 (5.2)

are recorded. To reconstruct the sample, we back-propagate the hologram, which is
spoiled by artefacts without knowing the phases (see Section 2.4). Each hologram
is also missing specific spatial frequencies, but by measuring multiple holograms
at different propagation distances, these gaps can be filled in [Zab+05]. For the
reconstruction algorithm, similar to ptychography in Section 3.1, we start with a
quadratic error function

𝐿 = ∑
𝑗

∑
u

(√𝐼𝑗,u − √𝑛𝑗,u)
2

, (5.3)

that measures the agreement between the modelled holograms 𝐼𝑗 and the measured
holograms 𝑛𝑗. We reconstruct the sample by minimizing this error function. For this,
we need to calculate the gradient with respect to the scattered wavefield

𝜕𝐿
𝜕𝜓r

= ∑
𝑗

∑
u

𝜕 (√𝐼𝑗,u − √𝑛𝑗,u)
2

𝜕𝐼𝑗,u
⋅

𝜕𝐼𝑗,u

𝜕𝜓r
, (5.4)

similar to Section 3.1 by using Wirtinger derivatives, see Appendix A.1. The first
factor can be calculated straightforward

𝜕 (√𝐼𝑗,u − √𝑛𝑗,u)
2

𝜕𝐼𝑗,u
= (1 −

√𝑛𝑗,u

√𝐼𝑗,u
) . (5.5)

For the second factor, we need to calculate the derivative of the Fresnel propagation
we defined in Equation 2.8. Using the Fresnel kernel 𝐻𝑧 and the definition of the
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discrete Fourier transform (DFT), we get

𝜕𝐼𝑗,u

𝜕𝜓r
= 𝜓∗

𝑗,u ⋅
𝜕𝜓𝑗,u

𝜕𝜓r
(5.6)

= 𝜓∗
𝑗,u ⋅ 𝜕

𝜕𝜓r
𝒫𝑧𝑗

(𝜓r′) (5.7)

= 𝜓∗
𝑗,u ⋅ 𝜕

𝜕𝜓r
ℱ−1 (ℱ (𝜓r′) ⋅ 𝐻𝑧𝑗,q) (5.8)

= 𝜓∗
𝑗,u ⋅ 𝜕

𝜕𝜓r

1
𝑁

∑
q

e−iqu𝐻𝑧𝑗,q ∑
r′

eiqr′𝜓r′ . (5.9)

We can commutate the sums with the partial derivative and have the second factor

𝜕𝐼𝑗,u

𝜕𝜓r
= 𝜓∗

𝑗,u ⋅ 1
𝑁

∑
q

e−iqu𝐻𝑧𝑗,q ∑
r′

eiqr′𝛿rr′ (5.10)

𝜕𝐼𝑗,u

𝜕𝜓r
= 1

𝑁
⋅ 𝜓∗

𝑗,u ∑
q

𝐻𝑧𝑗,q ⋅ e−iqueiqr. (5.11)

When we combine the two factors, we get

𝜕𝐿
𝜕𝜓r

= ∑
𝑗,q,u

1
𝑁

(1 −
√𝑛𝑗,u

√𝐼𝑗,u
) 𝜓∗

𝑗,u ⋅ 𝐻𝑧𝑗,q ⋅ e−iqueiqr. (5.12)

We group the terms containing u in one sum at the end of the equation and collect
the terms depending on q in another sum:

𝜕𝐿
𝜕𝜓r

= ∑
𝑗

1
𝑁

{∑
q

𝐻𝑧𝑗,q ⋅ eiqr [∑
u

(1 −
√𝑛𝑗,u

√𝐼𝑗,u
) 𝜓∗

𝑗,u ⋅ e−iqu]} . (5.13)

Afterwards, we conjugate the gradient. This is necessary, since we are using Wirtinger
derivatives, which are defined as 𝜕/𝜕𝑧 = 𝜕/𝜕𝑥 − i𝜕/𝜕𝑦. This changes the sum over
u into a Fourier transform and vice versa the sum over q is changed into an inverse
Fourier transform. Conjugating the Fresnel kernel is identical to propagating in the
opposite direction, so overall we get

𝜕𝐿
𝜕𝜓r

∗
= ∑

𝑗
ℱ−1 (𝐻−𝑧𝑗

⋅ ℱ (𝜓𝑗 ⋅ [1 −
√𝑛𝑗

√𝐼𝑗
])) (5.14)

= ∑
𝑗

𝒫−𝑧𝑗
(𝜓𝑗 ⋅ [1 − √𝑛𝑗/𝐼𝑗]) (5.15)

= ∑
𝑗

𝒫−𝑧𝑗
(𝒫𝑧𝑗

(𝜓) ⋅ [1 − √𝑛𝑗/𝐼𝑗]) . (5.16)
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The gradient is the sum of the contributions of each propagation distance 𝑧𝑗. The
contributions are calculated by first propagating the wavefield over the distance 𝑧𝑗 to
the detector plane. There, the difference between the estimated hologram 𝐼𝑗 and the
measured hologram 𝑛𝑗 is calculated. The difference is then propagated back to the
sample plane.
For refractive holography, we cannot directly use the two conversion steps for

ptychography algorithms from the end of Section 4.1, since holography does not
separate the exit wavefront into illuminating probe and object. Therefore, we start
again by propagating the refractive object

𝜓𝑗,u = 𝒫𝑧𝑗
(ei�̃�r). (5.17)

We use the same nomenclature as in Chapter 4, 𝜓 will remain the exit wavefront and
�̃� will be the refractive object. We call arg(𝜓) = ℜ(�̃�) the phase shift of the object
and |𝜓| = e−ℑ(�̃�) its modulus.
The first difference in the calculation occurs in Equation 5.10. The exponential

remains unaffected by the derivative and a new multiplication with the imaginary
unit occurs. The steps afterwards are not affected, since the new term commutates
with all sums. Finally, after the complex conjugation, we end up with nearly the same
gradient

𝜕𝐿
𝜕𝜓r

∗
= −i e−i�̃�∗

r ⋅ ∑
𝑗

𝒫−𝑧𝑗
(𝒫𝑧𝑗

(ei�̃�) ⋅ [1 − √𝑛𝑗/𝐼𝑗]) , (5.18)

except for the additional factor −i exp(i�̃�∗). To ensure a stable reconstruction, we
slightly modify the two gradients in Equation 5.16 and Equation 5.18, by dividing
each by the number of holograms 𝑀 and the refractive variant also by the maximum
modulus. In the end we get

Δ𝑂 = 1
𝑀

∑
𝑗

𝒫−𝑧𝑗
(𝒫𝑧𝑗

(𝜓) ⋅ [1 − √𝑛𝑗/𝐼𝑗]) (5.19)

Δ�̃� = − i ⋅ 𝑂∗

𝑀 ⋅ max |𝑂|2
∑

𝑗
𝒫−𝑧𝑗

(𝒫𝑧𝑗
(𝑂) ⋅ [1 − √𝑛𝑗/𝐼𝑗]) (5.20)

for the normal and refractive update functions, respectively, with 𝑂 = exp (i�̃�) for
the refractive update.

5.1.2 Numerical simulation

We compare the two algorithms with a numerical simulation of polystyrene spheres.
Polystyrene contains only carbon and hydrogen atoms, the small spheres have there-
fore a negligible absorption for 1Å photons. Each sphere has a diameter of 70µm
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Figure 5.2 Holography simulation. a The sample modulus with surrounding padding.
Colour scale in arbitrary units. b The sample phase shift with surrounding padding. Colour
scale in radian. c One of the four holograms. Colour scale in photons.

a b

1.53.14 −11.5−3.14

Figure 5.3 Holographic phase reconstructions. All ambiguities were removed relative
to the original phase. Both images show the central part of the sample without the empty
padding. a Standard holography reconstruction, limited to a phase range of 2𝜋. b Refractive
holography reconstruction, the phase is continuous without any need for additional phase
unwrapping.
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Table 5.1 Parameters used in the holography simulation.

Parameters Simulation

Wavelength 1Å
Detector distance 0.15, 0.25, 0.75 and 1.0m
Fresnel number×103 66.7, 40.0, 13.3 and 10.0
Detector pixel 1µm × 1µm
Detector size 2048 × 2048 pixels
Object modulus [0.993; 1.0]
Object phase [−11.3; 0.0]
Photons/pixel 910

and a maximum phase shift of 6.40 rad. The modulus and phase shift of the sample
are shown in Figure 5.2.
Again, like in Section 4.2, the real part of the refractive object corresponds to the

phase shift and the exponential of the negative imaginary part to the modulus. For
ease of reading we call these phase shift and modulus of the refractive object. The
detector pixel size is 1µm in parallel beam geometry, the magnification is therefore
also one and the object pixel size is also 1µm. The wavelength of the X-rays is
1Å. The simulation uses four holograms from four propagation distances: 0.15m,
0.25m, 0.75m and 1.0m. To simulate photon statistics, we add Poisson noise to
each hologram equivalent to 3.8 × 109 photons on the sample. All parameters are
summarized in Table 5.1.
To accelerate the reconstruction, we add Nesterov accelerated gradient [MJL17;

Rud17]. We do this similar to momentum-accelerated ptychography in Section 3.4.
In each iteration 𝑙, we first update the momentum 𝐷𝑙 with the update function

𝐷𝑙 = 𝜂𝐷𝑙−1 + Δ𝑂, (5.21)

before we subtract the update and the momentum from the object

𝑂𝑙 = 𝑂𝑙−1 − Δ𝑂 − 𝜂𝐷𝑙. (5.22)

We set the momentum damping factor 𝜂 to 0.99 and run the standard and refractive
holography reconstruction for 2000 iterations each. To avoid local minima, we blur for
the first 1000 iterations the reconstruction with a Gaussian filter with a 𝜎 of 2 pixels.
The reconstructed phases in Figure 5.3 illustrate the difference between the two

algorithms. The phase of the refractive object is continuous and contains no phase
jumps even though the total phase range is nearly 4𝜋. Contrarily, the phase in the
standard reconstruction is wrapped and contains two phase vortices, which are an
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Figure 5.4 CXDI scheme. The sample is confined in a support. The support must be small
enough so that the detector can fully resolve the diffraction patterns.

obstacle to direct unwrapping. Both images contain weak long-range artefacts, but
the standard reconstruction contains additionally the artefacts from the vortices. The
reconstructed moduli in both reconstructions contain no significant features because
the original sample is practically transparent.

5.2 Refractive coherent diffractive imaging

Since Miao et al. have extended phasing algorithms from protein crystallography to
non-crystalline samples [Mia+99], coherent X-ray diffraction imaging (CXDI) has
become a widely used X-ray microscopy technique [CN10; Eke+15; New+10]. Unlike
ptychography or holography, CXDI is able to reconstruct the exit wavefront from a
single diffraction pattern if the sample is only inside a compact support. This allows
for fast imaging schemes such as diffraction-before-destruction performed at XFELs
[Cha+06].
CXDI is a lensless imaging technique with no optical elements between sample

and detector. In Figure 5.4, a spatially isolated sample, typically on a membrane, is
fully illuminated by a coherent X-ray beam. The beam is scattered by the sample and
the resulting far-field diffraction pattern 𝐼 is recorded by an imaging detector. The
pixels of the detector must be small enough to correctly resolve the fringes in the
diffraction pattern. As the size of the fringes is inversely proportional to the sample
size, the diffraction patterns are resolved if the sample is small and confined to a
compact support. If the propagation distance is shorter and in the Fresnel regime,
this technique is called Fresnel CXDI. The reconstruction algorithms for this case are
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nearly the same, only substituting the Fresnel for the Fraunhofer propagation.

Many algorithms have been developed to reconstruct single diffraction patterns
[Mar07]. In this section, we will modify the commonly used difference-map (DM)
algorithm to reconstruct the complex refractive index projection of the sample. The
difference-map algorithm is an iterative algorithm that can be applied in many situ-
ations where a solution under two different constraints 𝑃𝐴 and 𝑃𝐵 is sought [ERT07;
Els03]. These constraints are alternatively applied to refine the current estimate 𝑥𝑛.
The order and strength of the constraints can be adapted to the problem at hand. In
the simplest case, the update is

𝑥𝑛+1 = 𝑥𝑛 + 𝑃𝐴 (2𝑃𝐵 (𝑥𝑛) − 𝑥𝑛) − 𝑃𝐵(𝑥𝑛). (5.23)

For CXDI, the two constraints are typically given by the support in the sample plane
𝑃𝑆 and the diffraction pattern in the detector plane 𝑃𝑀. We use the phase-constrained
DM algorithm, which assumes a pure phase object with no absorption for the recon-
struction. This assumption is justified for thin samples that mostly consist of light
elements, for example biological samples.

The first projector 𝑃𝑆 constrains the wavefield 𝜓𝑛 in the (𝑥, 𝑦)-sample plane to a
phase object inside the support area 𝑆

𝑃𝑆(𝜓𝑛) = {
exp[i ⋅ arg(𝜓𝑛,r)] if r ∈ 𝑆,
exp[i ⋅ 0] if r ∉ 𝑆.

(5.24)

The second projector 𝑃𝑀 constrains the wavefield in the (𝑞𝑥, 𝑞𝑦)-detector plane to be
consistent with the measured diffraction pattern

𝑃𝑀(𝜓𝑛) = ℱ−1 (√𝐼q ⋅ exp{i ⋅ arg [ℱ (𝜓𝑛,r)]}) . (5.25)

In 𝑃𝑀, the wave is first propagated forward, then its modulus is replaced with the
square root of the diffraction pattern 𝐼 and finally it is propagated back to the sample
plane. One iteration of DM combines both projectors to update the wavefield

𝜓𝑛+1 = 𝜓𝑛 + 𝑃𝑀 (2𝑃𝑆 (𝜓𝑛) − 𝜓𝑛) − 𝑃𝑆(𝜓𝑛). (5.26)

For the refractive DM algorithm we modify the two constraints so that they act
directly on the complex refractive index. We call the refractive wavefield ̃𝜓 and the
refractive constraints ̃𝑃𝑆 and ̃𝑃𝑀. The standard and the refractive wave are related
by the exponential function:

𝜓𝑛,r = exp(i ⋅ ̃𝜓𝑛,r). (5.27)
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The modifications for ̃𝑃𝑆 are straightforward. We retain only the real part inside the
support:

̃𝑃𝑆( ̃𝜓𝑛) = {
ℜ( ̃𝜓𝑛,r) + 0i if r ∈ 𝑆,
0 + 0i if r ∉ 𝑆.

(5.28)

The modifications for ̃𝑃𝑀 are more complex, as we need to propagate the wave into
the far-field and back again. The first step is therefore to calculate the standard
wave from the refractive wave with Equation 5.27. Then, we calculate the standard
constraint using 𝑃𝑀 to get the updated wavefield 𝜓′

𝑛. Now we need to calculate the
updated refractive wave ̃𝜓′

𝑛 from 𝜓′
𝑛. For this, we work backwards from the refractive

wave to the standard wave. We start by adding zero in the form of ̃𝜓𝑛:

̃𝜓′
𝑛,r = ̃𝜓′

𝑛,r + ( ̃𝜓𝑛,r − ̃𝜓𝑛,r) . (5.29)

Afterwards, we invert Equation 5.27 to replace two of the refractive waves with the
logarithm of the standard wave

̃𝜓′
𝑛,r = − (i ⋅ log𝜓′

𝑛,r) + ̃𝜓𝑛,r + i ⋅ log𝜓𝑛,r, (5.30)

= ̃𝜓𝑛,r − i ⋅ log
𝜓′

𝑛,r

𝜓𝑛,r
. (5.31)

Because computing the logarithm is complex and computationally expensive, we
replace it by a simpler calculation. For this, we approximate the logarithm by using
the Taylor series up to the second order. The Taylor series of the logarithm around
𝑧 = 1 is

log 𝑧∣
𝑧=1

= (𝑧 − 1) − (𝑧 − 1)2

2
+ ⋯ . (5.32)

As the reconstruction converges, the fraction of 𝜓′
𝑛 and 𝜓𝑛 will approach one and the

logarithm will approach zero. Thus, the Taylor approximation will become more and
more accurate with each iteration. We combine the Taylor series with Equation 5.31
to define the refractive constraint ̃𝑃𝑀:

̃𝑃𝑀( ̃𝜓𝑛) = ̃𝜓𝑛,r − i ⋅ [(
𝜓′

𝑛,r

𝜓𝑛,r
− 1) − 1

2
(

𝜓′
𝑛,r

𝜓𝑛,r
− 1)

2

] , (5.33)

where 𝜓𝑛 is given by Equation 5.27 and 𝜓′
𝑛 by Equation 5.25.

We test the refractive and the standard DM algorithm on a simulated experiment.
For the test sample, we combine the phase shift from the ptychography test object with
a uniform amplitude. We use the same phase range of 𝜋/2 and a quadratic support
of 741 × 741 pixels. To allow sufficient oversampling, the sample is embedded into
a larger, 2048 × 2048 pixels array of uniform intensity using a mask function. The
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Table 5.2 Parameters used in the CXDI simulation.

Parameters Simulation

Wavelength 1Å
Detector distance 8192mm
Detector pixel 40µm × 40µm
Detector size 2048 × 2048 pixels
Pixel size (rec.) 10nm
Object size 7.41µm × 7.41µm
Object phase [−𝜋/2; 0]
Photons/pixel 23840

cba

Figure 5.5 CXDI simulation. a The sample phase shift with the surrounding embedding,
scaled from −𝜋/2 to 0. b The diffraction pattern in logarithmic scale. The brightest pixel
contains 9.48 × 1010 photons. c Zoomed in view of the central region, all fringes are well
resolved.

mask function, 1 − exp(−𝑑2/2𝜎2), is a function of the distance 𝑑 from the edge of the
sample. The mask is zero at the edge and goes to one in the centre of the sample. The
characteristic width 𝜎 is 20 pixels (200nm). We add Poisson noise to the diffraction
pattern to simulate a total photon count of 1011. This is equivalent to an average
radiant exposure of 238.4ph/nm2. All parameters of the simulation are summarized
in Table 5.2. Figure 5.5 shows the phase shift of the sample and the simulated
diffraction pattern.

The reconstructions, both standard and refractive, start in the detector plane with
the square root of the diffraction pattern. For the initial guess, a random phase is
assigned to each pixel and the pattern is propagated to the sample plane. For the
support 𝑆, we use the central square of 741 × 741 pixels that was used to define the
sample. We run each algorithm for 300 iterations.
Figure 5.6 compares the original sample to the reconstructions from the standard

and the refractive DM algorithm. As CXDI reconstructions can be ambiguous, all
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Figure 5.6 Reconstructed phase shift of the CXDI simulation. The empty padding around
the sample is removed. The images a-c and d,e use the same scaling respectively. a Original.
b Standard DM reconstruction with the ambiguities removed. c Refractive DM reconstruction
with the ambiguities removed. d, e Difference between the original phase shift and the
standard or refractive reconstruction, respectively.
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ambiguitites are removed as described in Section A.2. The objects reconstructed by
the two algorithms are slightly flawed. All main features are correctly reconstructed,
but the finer details suffer from reconstruction artefacts. For instance, the sky in both
reconstructions shows stripe and point patterns, while the sky in the original sample
is flat. However, the pattern in the refractive reconstruction is not as strong as in the
standard reconstruction and the fine details such as the tree lines turn out sharper.

To better highlight these artefacts and differences, we subtract each reconstruction
from the original object. The resulting reconstruction errors are shown in Figures 5.6d
and 5.6e. The artefacts in the refractive reconstruction are indeed weaker and smaller
than in the standard reconstruction. As the difference-map algorithm is deterministic
and the initial guess is random, this difference in reconstruction quality could be biased
due to different starting points. To verify that the reconstruction of the refractive
algorithm is closer to the original sample than the standard reconstruction, we run
each algorithm 50 times on the same diffraction pattern. For each run, we create
a new randomized initial guess for each algorithm. After each reconstruction, we
remove the ambiguities from the result, align it to the original sample 𝑂 as described
in Section A.2 and calculate the error 𝐸abs:

𝐸abs = ∑
r∈𝑆

∣arg (𝜓𝑛,r) − arg (𝑂r)∣
2 , (5.34a)

𝐸abs = ∑
r∈𝑆

∣ℜ ( ̃𝜓𝑛,r) − arg (𝑂r)∣
2

. (5.34b)

Equation 5.34a describes the error calculation for the standard reconstruction, Equa-
tion 5.34b for the refractive reconstruction.
All 100 errors are plotted in Figure 5.7, together with the median error for each

algorithm. The median error of the refractive reconstructions is 510.6, less than
a third of 1881.6, the median error of the standard reconstructions. This proves
that the refractive reconstructions are repeatedly closer to the original sample than
the standard reconstructions. The worst refractive reconstruction with the largest
error is still better than over 80% of the standard reconstructions and the best 90%
of the refractive reconstructions are better than all standard reconstructions. The
reconstructions shown in Figures 5.6b and 5.6c have errors of 2532.1 and 480.8,
respectively.

The result of a single CXDI reconstruction is highly dependent on the initial guess,
as Figure 5.7 illustrates. To account for this, the sample is commonly reconstructed
multiple times with different starting guesses and than averaged over all these recon-
structions [Sch+08; Sha+05]. This way, only the correctly reconstructed features
in the sample remain and the fluctuating, fine-scaled artefacts are suppressed. As
the reconstructions are not unique and can be ambiguous, the reconstructions are
aligned before we calculate the average. The average for each algorithm is shown
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Figure 5.7 Error of standard and refractive CXDI. Error Eabs between each reconstruction
and the original sample for 100 independent reconstructions, 50 with the standard and 50
with the refractive CXDI algorithm. Eabs is calculated according to Equation 5.34. The dashed
black lines show the median errors (1881.6 for standard CXDI, 510.6 for refractive CXDI).

in Figure 5.8. Compared to the single individual reconstructions in Figure 5.6, the
artefacts are imperceptible and the images are nearly indistinguishable. The only
visible difference between the original and the reconstructions is a blurring, as the
high-resolution features have the lowest signal-to-noise ratio in the diffraction pattern.
It is only in the direct differences between the original and the averages that the two
are distinguishable. The error values for both images also reflect the improved quality,
both errors are smaller than any of their respective individual reconstructions. The
error for the average of the standard reconstructions is 516.1, a third of the median
error. Strikingly, the error of the average refractive reconstruction is only 270.5, far
smaller than any individual reconstruction of either algorithm.

5.3 Conclusion

In this chapter, we have demonstrated that the idea to directly reconstruct the refractive
index of the sample is not limited to ptychography and can be generalized to other
phase retrieval techniques. Exemplary, we developed refractive holography and
refractive coherent diffractive imaging. Refractive holography is derived with a least-
square minimization and its performance is demonstrated on a simulated experiment.
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Figure 5.8 Averaged reconstructions of the CXDI simulation. The empty padding around
the sample is removed. The images a-c and d,e use the same scaling respectively. a Original.
b Average of 50 standard DM reconstructions. c Average of 50 refractive DM reconstructions.
Before the averaging, all reconstructions are aligned and all ambiguities removed. d,e Differ-
ence between the original phase shift and the respective averages. The calculated errors for
the averages of the standard and refractive reconstruction are 516.1 and 270.5 respectively.
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Figure 5.9 Standard and refractive real-space projectors. a In the standard projection, a
point 𝜓r is projected onto the closest point on the circle to enforce a pure phase object. The
circle is a non-convex set, as the linear combination of two projections 𝜓1 and 𝜓2 is in general
not on the circle. b The refractive projection projects a point ̃𝜓r onto the closest point on a
line parallel to the real axis. Here, the line is a convex set as a linear combination of two
projections stays on the line. Adapted from [Mar07].

Similar to refractive ptychography, the refractive holography algorithm is able to
directly reconstruct the phase shift of the sample without phase wrapping. Refractive
coherent diffractive imaging (rCXDI), the refractive variant of CXDI, is adapted from
the commonly-used difference-map (DM) algorithm. The derived refractive projectors,

̃𝑃𝑆 and ̃𝑃𝑀, should generalize to other algorithms such as relaxed averaged alternating
reflections (RAAR).
For rCXDI, the sample had no phase wraps and even in this relatively simple case,

the refractive reconstruction was still reliably closer to the ground truth than the
standard reconstruction. One probable reason for this is outlined in Figure 5.9, where
in the refractive model the set of all phase objects forms a convex set. In contrast, this
is generally not the case in the standard transmission model.
Refractive phase retrieval is an important development for X-ray microscopy as

it requires no calculation of the complex argument or logarithm, which up to now
was a necessary step for compound reconstruction schemes such as tomography or
resonant scanning. Refractive phase retrieval is especially suited for strongly phase
shifting samples with one or more phase wraps. In this case, refractive reconstruction
algorithms can minimize the influence of phase singularities, which can occur as
artefacts during the reconstruction.





6 Multibeam X-ray ptychography

Large, high-resolution ptychography scans are time-consuming and beamtime for
experiments at synchrotron light sources is limited and scarce. Continuous fly-scans
allow fast scanning of large field of views [Cla+14; Pel+14], but only by reducing the
resolution, as the same number of available photons is divided over more diffraction
patterns [HS17].

Multibeam X-ray ptychography allows to exploit hitherto unused photons to increase
the field of view without reducing the resolution. By scanning the sample with
multiple spatially separate probes, a larger area can be scanned in the same time.
This technique was developed by Bevis et al. [Bev+18] and its applicability in the
hard X-ray regime was demonstrated by Hirose et al. [Hir+20]. In both works, an
experimental set-up similar to Figure 6.1 was used.
In this chapter we describe a novel multibeam scheme that is based on multiple

independent focusing optics, which allows to use a larger fraction of the incoming flat
beam. Section 6.1 discusses the multibeam reconstruction algorithm and Section 6.2
describes how 3D nanoprinting allows to manufacture multiple X-ray optics in close
proximity. Then, Section 6.3 presents the ptychography results from multibeam
experiments using two and six simultaneous beams.

Figure 6.1 Multibeam ptychography scheme. The pinhole array A is imaged by a lens B
onto the sample C to create multiple separate probes. For X-rays, due to the small numerical
aperture of X-ray optics, only short beam separations are possible with this scheme.
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6.1 Multibeam algorithm

Many ptychography algorithms have been developed that reconstruct (partially)
incoherent data [BCR14; OHG18; TM13]. They all use the high redundancy in
ptychography measurements to describe the incoherence as an incoherent sum of
individually coherent subcases. Some of these algorithms exploit incoherence as a
feature to include more information in one scan. For example, the multiplex algorithm
from Batey et al. uses polychromatic light to measure the response of the sample to
different wavelengths in a single measurement.

The multibeam reconstruction algorithm is based on this multiplex algorithm, but
instead of scanning different wavelengths, each individually coherent probe scans a
different part of the sample. This allows to image a larger area without increasing
the sample movement range. The derivation of the multibeam algorithm is similar to
the derivation of standard ptychography in Section 3.1. In contrast to the standard
ptychography set-up in Figure 3.1, the sample is here scanned by multiple probes.
Each probe 𝑃𝑚 is offset by a constant vector S𝑚 and at every scan position R𝑗, each
probe creates its own exit wavefront

𝜓𝑗,𝑚,r = 𝑂r ⋅ 𝑃𝑚,r−R𝑗−S𝑚
. (6.1)

All the different wavefronts propagate to the detector

Ψ𝑗,𝑚,q = ℱ(𝜓𝑗,𝑚), (6.2)

where each wavefront forms its own diffraction pattern. If each probe 𝑃𝑚 is incoherent
to every other probe, their wavefronts add up incoherently on the detector

𝐼𝑗,q = ∑
𝑚

|Ψ𝑗,𝑚,q|2. (6.3)

The reconstruction must disentangle the different contributions as there is no direct
way to find out which photon originated from which probe. The update therefore
enforces for each pixel q that the sum 𝐼𝑗,q of all contributions matches the measured
photons 𝑛𝑗,q. For this, the far-field update Φ in Equation 3.10 is changed to

Φ𝑗,𝑚,q ∶= (1 −
√𝑛𝑗,q

√𝐼𝑗,q
) Ψ𝑗,𝑚,q, (6.4)

so that the denominator contains the sum of the wavefronts. Due to the large redund-
ancy in ptychography, this can still converge to a solution. From the far-field update,
the update for the probes follows directly from the ePIE update in Equation 3.16.
As before, the probe update for subiteration 𝑙 is determined by the current object
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estimate 𝑂𝑙 and 𝜙, the inverse Fourier transform of Φ, yielding

𝑃𝑙+1,𝑚,r = 𝑃𝑙,𝑚,r + 𝛽
−𝜙𝑗,𝑚,r+R𝑗+S𝑚

max |𝑂𝑙,r+R𝑗+S𝑚
|2

⋅ 𝑂∗
𝑙,r+R𝑗+S𝑚

. (6.5)

The object is updated with the changes from each wavefront 𝜙𝑚. All these changes
are summed up and applied to the object. The object update is then given by

𝑂𝑙+1,r = 𝑂𝑙,r + 𝛼 ∑
𝑚

−𝜙𝑗,𝑚,r

max |𝑃𝑙,𝑚,r−R𝑗−S𝑚
|2

⋅ 𝑃 ∗
𝑙,𝑚,r−R𝑗−S𝑚

. (6.6)

The multibeam algorithm requires mutually incoherent beams. This is not neces-
sarily the case in every experimental situation. If the probes are at least partially
coherent, the beams can show interference effects on the detector. However, this
interference between different beams can be suppressed. Without loss of generality
we consider two mutually coherent probes 𝑃1 and 𝑃2, separated by a distance S.
Behind the sample, each probe creates its own respective wavefront 𝜓1 and 𝜓2. Due to
the separation, the Fourier transform Ψ2 of the second wavefront gains a phase term
of exp(iSq). On the detector, the two wavefronts Ψ1 and Ψ2 overlap and interfere,
resulting in a diffraction pattern

𝐼q = ∣Ψ1,q + eiSqΨ2,q∣2 = |Ψ1,q|2 + |Ψ2,q|2 + 2ℜ (e−iSq ⋅ Ψ1,q ⋅ Ψ∗
2,q) . (6.7)

The last term is the interference term and depends on the coherence between the
two wavefronts. The product between the two wavefronts can be described by a
q-dependent modulus 𝑉q and phase 𝜑q

Ψ1,qΨ∗
2,q = 𝑉qei𝜑q . (6.8)

Using 𝑉q and 𝜑q, we can write the interference term in Equation 6.7 as

ℜ (e−iSqΨ1,qΨ∗
2,q) = 𝑉q cos (𝜑q − Sq) . (6.9)

In the measurement, the signal in each detector pixel is proportional to the integral
of the diffraction pattern over the area of the pixel. This is only strictly true if the
pixel response is uniform throughout the pixel area. For single photon counting pixel
detectors, this is a good approximation [Zam+18]. If the diffraction patterns are well
sampled, 𝑉 and 𝜑 can be assumed as constant for each pixel. In a single pixel of size
𝑝, the signal 𝑈 from the interference term is then the integral

𝑈 = ∬
𝑝×𝑝

𝑉 cos (𝜑 − Sq)d2𝑞 (6.10)
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Figure 6.2 Multibeam inteference. Simulation of 𝑈, the interference signal from a detector
pixel, for purely horizontal probe separations S = (𝑆, 0). The normalized results for all
possible values of 𝜑 are shown, forming the shaded area. The values are enveloped by a sinc
function which is zero for all multiples of the characteristic distance 𝑆0.

over the area 𝑝 × 𝑝 of the pixel. The strength of 𝑈 oscillates depending on the probe
separation with a characteristic oscillation period 𝑆0, see Figure 6.2. This means the
different probes can be treated as incoherent if they are integer multiples of 𝑆0 apart.
In paraxial approximation, the characteristic distance is given by

𝑆0 = 𝜆𝑑
𝑝

, (6.11)

with the X-ray wavelength 𝜆 and the sample–detector distance 𝑑. This result is identical
to Equation 3.18, the field of view in the reconstructed probe. This means the different
probes can be treated as incoherent if they are multiples of the field of view apart.

6.2 X-ray lenses by additive 3D nano-manufacturing

The previous works on multibeam ptychography by Bevis et al. [Bev+18] and Hirose
et al. [Hir+20] used only a single focusing optic to create multiple beams. For X-rays,
it would be advantageous to use multiple focusing optics in parallel so that a larger
fraction of the incoming beam can be harnessed for ptychography. However, it is
already technologically challenging to manufacture high-quality single beam X-ray
optics, as the manufacturing of complex three-dimensional objects with submicrometer
resolution requires high-precision techniques and instruments. Mechanic approaches
are capable of producing smooth surfaces with high-precision for KB-mirrors and
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a b

Figure 6.3 Two-photon lithography. The liquid resist (light grey) is exposed by two beams
with different wavelengths. The light initiates a reaction in the resist and it hardens where it
was exposed. a The ultraviolet laser is absorbed in the resist and starts polymerization (dark
gray). b The resist is transparent for a near-infrared laser, causing no polymerization. Only
in the focus is the intensity high enough for non-linear effects like two-photon absorption
to occur. As this takes place only in a small and confined volume, it can be used for highly
selective exposure of the resist as is needed for 3D printing.

CRLs, but these techniques have difficulties to create more complex structures such as
strong curvatures or cavities. Alternatively, additive 3D manufacturing, also called 3D
printing, offers more freedom in the structure design. In a bottom-up approach, the
structure is assembled by printing one volume element (voxel) at a time.
Multiphoton lithography allows rapid 3D manufacturing at the nanoscale. In

optical lithography, a resist changes chemically under light exposure and becomes
solid or resistant/vulnerable to chemical etching. This selective etching is the basis of
microelectronic and integrated circuit production. However, the resist is exposed and
developed along the entire path of the light, allowing only the construction of 2D or
very simple 3D structures through stereoscopic approaches. Figure 6.3a shows how
an ultraviolet laser beam exposes and develops the resist. As the beam gets absorbed
in the resist, how much and how quickly the resist is developed changes with the
depth.

Multiphoton lithography uses liquid resists that are transparent to near-infrared light
(around 800nm) and only harden under UV light (around 400nm). If the intensity of
a near-infrared (pulsed) laser is high enough like in Figure 6.3b, non-linear processes
such as two-photon absorption can occur in the focus region and cross the threshold
for the development of the resist. As this depends strongly on the flux density, the
size of the region can be changed by tuning the laser intensity. Typical sizes are in
the range of a few hundred nanometer. By scanning either the laser or the resist in
three spatial dimensions, free-shape structures can be created with submicrometer
resolution. Besides the high-resolution of the ”print”, the surfaces are also smooth,
with a surface roughness below 20nm [Dur+18]. After the printing, the hardened
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Figure 6.4 3D printed lens tower. a SEM image of the lens tower, showing the open top
and the openings at the bottom to empty the cavity from undeveloped, liquid resist. The
scale bar represents 50µm. b SEM view from the top of the lens tower. The parabola partially
extends beyond the tower, leaving openings. The scale bar represents 10µm. c Schematic
cut through the lens tower, highlighting the three parabolic surfaces and the openings in the
bottom half to drain the undeveloped resist.

resist structure can be removed from the still liquid resist. For this, the structure
should contain no closed voids to allow complete draining of the undeveloped, liquid
resist.

Due to the small features and smooth surfaces, multiphoton lithography offers
a cheap way to manufacture tailor-made X-ray lenses. The polymer is relatively
radiation-hard and only starts to deform and shrink after the absorption of a few
megagray [Bar+19]. Petrov et al. [Pet+17] were the first to fabricate x-ray lenses by
two-photon lithography. Their lens design however could only achieve a focus size of
5µm and their optical axis is parallel to the mounting plane, allowing multibeams
only in one direction. Mikhail Lyubomirskiy devised an improved lens tower design
[Lyu+19] with an optical axis perpendicular to the surface that is capable of sub-
micrometer focusing, see Figure 6.4. By printing multiple towers, multiple parallel
beams can be readily produced in arbitrary arrangements.
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Figure 6.5 Multibeam set-up. Each lens tower in the lens array A creates its own beam.
The tailor-made pinhole array B reduces scattering and lets up to six beams pass. Different
numbers and arrangements of multibeams can be created by selectively illuminating only
certain lens towers with different slit openings upstream of the lens array.

6.3 Multibeam experiments

In this section, two different multibeam ptychography experiments are demonstrated,
the first one using two and the second one using six beams. The experiments were
performed at the microprobe endstation of the P06 beamline at PETRA III in Hamburg.
The multibeams for both experiments were created with the same 3D printed lens
array. The lens array consists of 10 × 10 lens towers in a 47µm raster grid. Each lens
tower has a square foot print of 45µm × 45µm and a height of 600µm, leaving a
gap of 2µm between adjacent towers. Each tower contains four parabolic surfaces,
each with an apex curvature 𝑅 of 2.5µm. The lens array was designed by Mikhail
Lyubomirskiy and printed by Frieder Koch at the Paul Scherrer Institute (PSI) in
Switzerland using a Nanoscribe Photonic Professional GT and Nanoscribe’s IP-S resist.
For 7 keV X-rays, the resist has a refractive index decrement 𝛿 of 5.54 × 10−6, giving
a focal length of 113mm and a diffraction-limited spot size of 335nm.
For the experiments, the lens array was placed on a PI F-206 hexapod. Two

different Siemens star resolution test charts from NTT-AT, both model ATN/XRESO-
50HC, were used as samples for the two experiments. An intact Siemens star for the
2-beam experiment and a damaged one for the 6-beam experiment. The Siemens
stars are made of 500nm thick Tantalum and the smallest structures have a size
of 50nm. In both experiments, the sample was placed 20mm downstream of the
focal plane, where each of the probes had expanded to a size of 7.5µm. The photon
energy was set to 7 keV and the diffraction patterns were recorded with an in-vacuum
Eiger X 4M detector from Dectris [Joh+14]. The Eiger detector was situated inside
the nanoprobe endstation, 8050mm downstream of the sample, at the end of the
evacuated flight tube [Sch+19a]. With these parameters, the characteristic probe



74 Chapter 6: Multibeam X-ray ptychography

Table 6.1 Parameters of the 2-beam experiment.

Parameters 2-Beam

Energy 7 keV
Flux 4.3 × 107 ph/s
Exposure 1 s
Scan size 31 × 61
Step size 1.00 ± 0.25µm
Probe diameter 8µm
Number of probes 2
Detector distance 8050mm
Detector pixel 75µm × 75µm
Image size 512 × 512 pixels
Pixel size (rec.) 37.1nm

separation is 𝑆0 = 19µm and the distance between the lens towers is 2.5𝑆0. Ideally,
the probe separation would be 2𝑆0 or 3𝑆0 to fully suppress the interference between
the beams, but due to a calculation error this was only realised after the beamtime.
Fortunately, at this probe separation, the interference term has less than 15% of its
maximum value, compare Figure 6.2. Due to this, the reconstructions are only weakly
affected. Figure 6.5 illustrates the set-up for the multibeam optics. To suppress
scattering from the lenses, a tailor-made pinhole array was placed between the lenses
and the sample. The pinhole array was made from 100µm thick platinum foil into
which six 30µm holes were drilled by laser ablation. The holes are spaced 47µm
apart. The geometry of the hole arrangement allows different probe configurations to
be selected by utilizing the pair of horizontal and vertical slits upstream of the lens
array.

6.3.1 2-Beam experiment

For the first experiment, the slits were closed to only illuminate two vertically neigh-
bouring lenses. The Siemens star was scanned in 1µm steps in a grid of 31 × 61=1891
positions (h×v) with 1 s exposure per point. To avoid scan grid artefacts [Thi+09],
jitter was added to each scan point in the form of random horizontal and vertical off-
sets of up to ±0.25µm. The scan areas of the two probes overlap on a 30µm × 13µm
(h×v) wide area. All scan parameters are summarized in Table 6.1.

For the reconstruction, the Eiger images were cropped to 512 × 512 pixels centered
around the beam position, resulting in a pixel size of 37.1nm in the reconstruction.
The scan was reconstructed in two ways: first with the standard single beam al-
gorithms and then a second time with the corresponding multi-beam variants. The
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Figure 6.6 2-Beam ePIE reconstruction. a Reconstructed phase shift of the Siemens star.
The image is rotated 90° clockwise for easier visualization. As ePIE cannot separate the two
probes, the reconstructed object is a mix of the areas scanned by each probe. By measuring
the distance between duplicated features, the separation distance between the probes can be
accurately estimated. Here, the 0.5µm markers are 45.5µm apart, slightly deviating from the
expected distance. The scale bar in the bottom right corner represents 20µm. b Reconstructed
probe in complex colouring. The scale bar represents 10µm.

first reconstruction in Figure 6.6 was run for 500 iterations with the single beam
ePIE algorithm and afterwards refined for a further 500 iterations with the parallel
algorithm described in Section 3.2. Because the scanning stage could not move with
the necessary precision, the positions were refined during the reconstruction with
the brute-force algorithm described in Subsection 3.5.2. These corrected positions
were then used in the second, multibeam reconstruction. Besides improving the
scan positions, the single beam reconstruction was also used to provide a more ac-
curate estimate of the distance between the probes by measuring the separation
of duplicated features, for example the resolution markings. Here, the measured
distance is 45.5µm, less than the design value of 47µm. This could result from small
manufacturing errors or a slight bending of the free-standing lens towers.
With the refined scan positions and probe separation, the scan was reconstructed

anew, this time using the multibeam algorithm for the first 500 iterations, before
switching to the parallel multibeam algorithm for a further 500 iterations. The results
are shown in Figure 6.7. The two probes in Figure 6.7a and b are well reconstructed,
they are similar but not identical. However, as the lens towers have a four-fold
symmetry, the same would be expected from the probes. This is not the case and the
probes are slightly astigmatic, the vertical and horizontal focal length differ by 5mm
over the expected focal length of 113mm. Most probably, the towers are tilted due to
the neighbouring towers, as a single, individually printed tower showed no astigmatism
[Lyu+19]. In Figure 6.7c, the full diameter of the Siemens star is reconstructed, from
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Figure 6.7 2-Beam multibeam reconstruction. a,b Reconstructed probes in complex
colouring. The colour of the frame corresponds to the scan area. The scale bars represent
10µm. c Reconstructed phase shift of the Siemens star. The image is rotated 90° clockwise for
easier visualization. The blue and red dashed rectangle indicate the areas scanned by the two
probes. The white square shows a zoom-in on the central region with the 50nm structures.
The scale bar in the bottom right represents 20µm.

the outermost 4µm structures down to the 50nm spokes in the centre. The total area
scanned by both probes measures 105.5µm × 30µm, while the physically scanned
area was only 60µm × 30µm. This corresponds to a speed-up of 1.8 compared to a
single probe scanning the same field of view. The reconstruction of the central area is
free from artefacts as it was scanned by both probes. Away from the overlap area,
where only one probe scanned the sample, copies of the centre of the Siemens star
appear as artefacts. This has two reasons, the first is the incomplete suppression of
the interference between the two beams on the detector. Accurately, the interference
should be suppressed by tuning the experimental parameters as explained at the end
of Section 6.1. The second reason is the similarity between the two probes. Especially
in the relatively flat sample areas near the left and right edge of the reconstruction, the
algorithm cannot determine which probe generated which speckle in the diffraction
patterns.



6.3 Multibeam experiments 77

40 42 44 46 48 50 52 54
Beam separation [µm]

0%

20%

40%

60%

80%

100%
Co

rr
ec

t b
ea

m
 o

rd
er

45.5 µm

Figure 6.8 Reconstruction sensitivity to assumed beam separation. If the beam separa-
tion that is used in the reconstruction is too far away from the true value, the reconstruction
fails to align the two object parts. In this case, the algorithm can not determine which probe
is which. The plot shows the percentage of reconstructions with the correct probe order for a
certain assumed beam separation.

Figure 6.9 Wrong beam distance.
Reconstructed object after 50 itera-
tions with an assumed beam separa-
tion of 47µm. Each probe faithfully
reconstructs one part of the object.
However, due to the wrong order of
the probes, the object is reconstructed
inside out.

6.3.2 Sensitivity to incorrect probe separation

For the 2-beam experiment, the measured probe separation differs by 1.5µm from
the design value. To analyse how sensitive the multibeam algorithm is to incorrect
probe separations, the scan was reconstructed assuming different separations from
40µm to 54µm. Each reconstruction was run for 50 iterations and was repeated 20
times to minimize random influences from the shuffling of the diffraction patterns.
Ideally, the algorithm should be able to shift the probes inside their field of view to
correct for wrong beam separations within a certain range. In the 2-beam scan for
example, the field of view of the probes is 19µm, large enough to shift the probes by
several micrometer in each direction, compare Figure 6.7a,b. However, the results
in Figure 6.8 show that the multibeam algorithm can shift the probes only inside a
small range of 2µm around the correct beam separation. For larger errors, the probes
are reconstructed in the wrong order, turning the object inside-out. This can be seen
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exemplarily in Figure 6.9.
For nearly all separations, the reconstructed probes are either always in the correct

order or always in the wrong order. Only for a few separations are some of the
reconstructions correct and some wrong. Still, only in the plateau around 46µm are
the two scan areas accurately aligned like in Figure 6.7.

All these results highlight the importance of accurately knowing the beam separation.
Because the reconstruction algorithm can shift the probes only a small distance, the
beam separation in this experiment must be correct within 2% of the true value. To
determine the separation for a new multibeam array, different methods are possible.
For two beams and simple objects, a test scan can be reconstructed with the single
beam ePIE algorithm. The distance between duplicated object features can then serve
as a close guess for the beam separation. More complex multibeam set-ups can be
characterized through an X-ray fluorescence scan of a single isolated particle using all
beams or by repeating a ptychographic scan with each beam individually and then
stitching the different scan areas to find the correct beam separation. Any multibeam
array only needs to be characterized initially. In future experiments, the refined beam
separations can be directly used.

6.3.3 6-Beam experiment

In the second experiment the slits were opened to create six simultaneous beams
in the arrangement shown in Figure 6.5. For the ptychographic measurement, the
damaged Siemens star was scanned with 1µm steps in a 121 × 121 raster grid, where
each scan position was randomly offset from the ideal grid by up to ±0.25µm. Due
to the large scan range, each of the six probes illuminates the centre of the Siemens
star at some point. At each scan point the Eiger detector was exposed for 0.3 s. All
scan parameters are summarized in Table 6.2.
For the reconstruction, the diffraction patterns were cropped around the central

beam position to 512 × 512 pixels. The distances between the beams might also differ
in the 6-beam experiment from the design values. Therefore, in the reconstruction,
the probes were initialized with a probe separation of 46µm and 92µm, based on
a compromise between the experience from the previous Subsection 6.3.2 and the
original design. For the first 500 iterations, the data was reconstructed with sPIE
(see Section 3.3), adapted for multibeams, using a 2 × 2 upsampling. Then, the
reconstruction was refined for a further 500 iterations using the parallel variant. As
the scanning stage could not achieve the necessary precision, the faulty scan positions
were refined with the position refinement described in Subsection 3.5.2. On average,
the refinement changed the positions by 400nm.

The reconstructed probes and object are shown in Figures 6.10 and 6.11, respectively.
The six probes are nearly identical due to the high reproducibility of 3D nano printing.
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Figure 6.10 6-Beam reconstruction. a-f Reconstructed probes in complex colouring. The
position of the probe in the multibeam is shown in the lower left corner of each probe. The
scale bars represent 5µm.

Table 6.2 Parameters of the 6-beam experiment.

Parameters 6-Beam

Energy 7 keV
Flux 1.9 × 108 ph/s
Exposure 0.3 s
Scan size 121 × 121
Step size 1.00 ± 0.25µm
Probe diameter 8µm
Number of probes 6
Detector distance 8050mm
Detector pixel 75µm × 75µm
Image size 512 × 512 pixels
Pixel size (rec.) 37.1nm
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0.0−1.57

Figure 6.11 6-Beam reconstruction. Reconstructed phase shift of the damaged Siemens
star. The reconstructed area measures 250µm × 250µm in 6750 × 6750 pixels. The region
at the centre of the Siemens star, outlined by the red square, is shown enlarged in Figure 6.12.
The scale bar represents 50µm.
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0.0−1.57

Figure 6.12 Detail from the 6-beam reconstruction. a Enlarged view of the central area
of the Siemens star. The red arrows mark different resolution estimates. The lower one points
to the reconstructed 50nm spokes in the centre. The top arrow points to the edge of the
500nm spokes, which have an edge spread of 200nm b Scanning electron micrograph of the
same area. The scale bars represent 5µm.

The reconstructed object shows only weak multibeam artefacts, underlining that the
probes are correctly reconstructed. Only on the left side and in the corners, faint
replicas of other object parts are visible. The white spots in the object are the areas
that were destroyed in a previous experiment by an X-ray free-electron laser (XFEL)
beam. The centre of the Siemens star in Figure 6.12 closely matches the SEM image
of the same area, with details as small as the 50nm spokes well resolved. However,
the overall resolution of the ptychography reconstruction is lower, as the sharp edges
of large scale features are blurred for up to 200nm. Different resolutions in different
parts of the reconstructed object are not unsual in ptychography and depend on the
local scattering of each feature, as demonstrated by Schropp et al. [Sch+12].

For the 6-beam experiment, the reconstructed area is more than 3.1 times larger
than the real scan area of the sample. The resolution in the reconstruction varies
between different features and ranges from 50nm to 200nm. One problem during
the reconstruction is the high similarity between the six probes. The reconstruction al-
gorithm requires many iterations to find the correct probe order, leading to multibeam
artefacts in the form of duplicated object features.
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6.4 Conclusion

In this chapter, a new scheme for multibeam X-ray ptychography was developed. This
scheme was tested and proven to be viable at the P06 beamline with a two and a six
beam experiment. Using multiple beams allows to scan large areas faster, the two
experiments achieved a speed-up of 1.8 and 3.1, respectively. In both experiments,
challenges arose from the high similarity of the different probes, making it difficult for
the algorithm to separate the contributions from each probe. This can be improved
by making the probes as unique as possible. For example, with orbital angular
momentum (OAM), the probes become mutually orthogonal. These so called vortex
beams can be easily created with refractive phase plates [Sei+19]. In combination
with 3D printing, the necessary phase plates could be directly integrated into each
lens tower, making additional alignment unnecessary.
Problematic in the multibeam experiments were the inaccurate scanning stages,

requiring position corrections of several hundred nanometres. This is not an intrinsic
problem of multibeam ptychography, but the double complication of finding the correct
positions and finding the contributions of each probe slows down the reconstruction.



7 Conclusion and Outlook

This thesis has studied two methods to advance quantitative X-ray phase microscopy.
The first is refractive phase retrieval, which allows ptychography and similar phase
retrieval techniques to directly reconstruct the projected complex refractive index of
the sample. In conventional phase retrieval, the algorithms recover only the complex
transmission of the sample and due to phase wrapping the phase shift is known only
modulo 2𝜋. Phase wrapping creates phase jumps, which can be removed with phase
unwrapping, but noise in the reconstruction can make this difficult or even impossible.
The idea to directly reconstruct the projected refractive index was first presented by
Chowdhury et al. [Cho+19] for Fourier ptychography. The projected refractive index
is not limited to a specific range and large phase shifts can be reconstructed without
phase jumps or phase wrapping. Refractive reconstruction algorithms are especially
suited for large samples that shift the phase by more than 2𝜋 and can prove difficult
to reconstruct with transmission models [Sto+15].

In this work, the idea of refractive reconstructions was extended to other phase re-
trieval techniques by developing refractive algorithms for ptychography (Section 4.1),
for inline holography (Section 5.1) and for coherent diffractive imaging (Section 5.2).
Ordinarily, these phase retrieval techniques describe the interaction between the
sample and the X-rays with a transmission model. For the new refractive algorithms,
the transmission model is changed to a complex exponential with the projected
refractive index in the exponent. Setting out from this exchange, new refractive
reconstruction algorithms were derived for all three techniques.

In all three cases, the performance of the new refractive algorithm was successfully
verified using simulated data. For ptychography, the outstanding reconstruction
quality of the refractive model was also demonstrated on two experimental datasets.
The micrometeorite sample in Section 4.4 highlights in particular the benefits for large
samples. With a strong phase shift of up to 15 rad, the micrometeorite is challenging
for the conventional ptychography algorithm, leading to phase vortex artefacts in the
reconstruction. In contrast, refractive ptychography reconstructs the micrometeorite
faithfully without vortex artefacts. After alignment and removal of a phase ramp,
the refractive reconstruction can be used directly in tomography. Because refractive
ptychography reconstructs the projected refractive index, no additional calculations
using the complex logarithm are required. This makes refractive ptychography ideally
suited for combined ptycho-tomography [Gür17; Kah+19], as it requires no conversion
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for the tomographic part.
Direct access to the real and imaginary part of the refractive index is also beneficial

for spectro-ptychography, where multiple scans at different photon energies are
combined to distinguish different elements [Hop+13]. For the combined spectro-
ptychography algorithm from Hirose et al. [Hir+17], the real and imaginary part are
calculated at every iteration. With a refractive reconstruction model, this would no
longer be necessary and the technique would also be applicable for thicker samples
with phase shifts of more than 2𝜋.

The second technique, refractive holography, is equally well suited for strongly
scattering samples as refractive ptychography. In the simulated experiment, poly-
styrene spheres with a maximum phase shift of more than 11 rad were modelled.
These spheres are challenging for the conventional holography algorithm, which
reconstructs them with phase wraps and vortex artefacts. The novel refractive holo-
graphy algorithm avoids all of these problems and reconstructs the phase of the sample
without jumps or artefacts. Again, the refractive algorithm is better suited to cope
with these challenging samples with strong phase shifts.

For the third phase retrieval technique, refractive coherent diffractive imaging,
only a weakly scattering sample was simulated, with a maximum phase shift of 𝜋/2.
Even for this small sample with no phase wrapping, the refractive reconstruction
was reliably closer to the ground truth than the conventional reconstruction. In
repeated reconstructions with different initial guesses, the refractive reconstructions
depended less on the starting values and were more consistent. In CXDI, the average
of multiple reconstructions is often better than each individual reconstruction. For
the simulation, the average of the conventional reconstructions improves the quality
to a level similar to a single refractive reconstruction. Strikingly, the average of
the refractive reconstructions is better than any single reconstruction from either
algorithm by a big margin. The only remaining errors are due to photon-noise, which
limits the resolution of fine-scale features.

All refractive experiments in this work, simulated or measured, could be described
with a thin, single-scatter model. If the effects of multiple scattering by the sample
cannot be neglected, the algorithms must be extended to include multi-slice ap-
proaches [MHR12]. This expansion, in combination with the higher coherent flux
from ultralow-emission sources [Rai16; Sch+19b; Tav+18], will make it feasible to
image millimetre-sized objects down to nanoscopic details.

Beyond the algorithmic developments in the first part, the second focus of this work
was X-ray multibeam ptychography, a technique that allows fast scanning of large
samples. In the first demonstration of this technique by Hirose et al. [Hir+20], the
multibeams were created through the demagnified imaging of a group of pinholes
onto the sample. Due to the small numerical aperture of X-ray optics, this method
achieves only small beam separations of a few micrometres. In this work, a novel way
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to create X-ray multibeams was developed, using 3D-printed refractive X-ray lenses. A
lens array with a separation of 47µm between each lens was printed using two-photon
lithography, a technique that can print millimetre-sized objects with sub-micrometre
precision.
The performance of the lens array was successfully tested for two and six beams.

For the simplest multibeam case, the two beam experiment, the sensitivity of the
reconstruction on the correct beam separation was studied, as the real value can differ
from the design value. For a successful reconstruction of the Siemens star sample,
the beam separation can deviate at most 1µm from the correct value, requiring a
precision of 2%. Due to the high repeatability of the printing process, all lenses, and
consequently all beams, are nearly identical. This similarity between the different
beams and probes is challenging for the reconstruction, as an incorrect probe separa-
tion gives rise to artefacts. These artefacts occur predominantly in flat regions of the
sample, which diffract only weakly. Nevertheless, details as small as 50nm could be
faithfully reconstructed in both experiments.

With regards to the main advantage of multibeam ptychography, the faster scanning
speed, both experiments fulfilled the expectations. Compared to a single beam scan of
the same area, the two beam experiment achieved a speed-up of 1.8 and the six beam
experiment achieved an even higher speed-up of 3.1. Ideally, the speed-up can be as
high as the number of beams. In both experiments, the scan areas of the individual
beams overlapped, which reduced the speed-up but was necessary to ensure a stable
reconstruction.
For future experiments, the probes should be more diverse by making each probe

unique. One way to maximize the uniqueness is to make the probes mutually ortho-
gonal, for example by adding a different topological charge to each probe [Sei+19].
The phase plates for the topological charges can be included directly into the lens
towers during the printing, avoiding any additional alignment. Preliminary tests were
promising and indicate fewer multibeam artefacts and a faster disentanglement of
the probes in the reconstruction.





A Appendix

A.1 Wirtinger derivatives

Wirtinger derivatives were originally defined by Wirtinger [Wir27]. This short over-
view is based on Remmert & Schumacher [RS13], which contains more details and
provides proofs to the statements given here. The Wirtinger derivatives for 𝐶1-
differentiable functions in the complex plane ℂ = ℝ2 = {(𝑥, 𝑦)|𝑥, 𝑦 ∈ ℝ} are defined
as
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These derivatives treat a complex variable 𝑧 and its conjugated variable 𝑧∗ as inde-
pendent. This can be exemplary seen for the magnitude function
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This result can be verified using the definition of the Wirtinger derivatives
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It can easily be proven that Wirtinger derivatives share many properties with the
standard derivatives. Let 𝑓 = 𝑓(𝑧, 𝑧∗) and 𝑔 = 𝑔(𝑧, 𝑧∗) be two differentiable functions
in the complex plane. Then the following statements are true

1. Linearity
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2. Product rule
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3. Chain rule
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For the proof, consider 𝑓 ∘ 𝑔 = 𝑓 (𝑔 (𝑧, 𝑧∗) , 𝑔∗(𝑧, 𝑧∗)).

4. Complex conjugation
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5. If 𝑓 is twice differentiable, then
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For higher-dimensional functions in ℂ𝑛, the Wirtinger derivatives are extended
along each dimension
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A.2 Align reconstructions and remove ambiguities

Ptychography reconstructions are not unique and can be ambiguous. Compared to the
true probe ̂𝑃 and object �̂�, the reconstructed probe 𝑃 and object 𝑂 have the following
ambiguities:

𝑃r𝑂r = (𝑎ei𝑏eicr ̂𝑃r+d) (𝑎−1e−i𝑔e−icr�̂�r+d) . (A.11)

• A scaling factor 𝑎 between probe and object

• Global phases 𝑏 and 𝑔 of probe and object

• A phase gradient along the wave vector c

• The probe and object are translationally invariant and can be shifted by an
arbitrary vector d

To compare different reconstructions, these ambiguities must be removed. A procedure
to align the object is given by Maiden et al. [MJL17] and reproduced here to align the
object 𝑂unique to the true object �̂�:

1. Estimate the global translation d by cross-correlation of the amplitude of 𝑃 and
̂𝑃 to subpixel precision, for example with the method from Guizar-Sicairos et al.

[GTF08].

2. Initialize 𝑂unique from 𝑂 and shift it by −d.

3. Select a well reconstructed subregion x𝑐 from 𝑂unique and �̂�.
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4. Estimate the phase ramp c by

a) Calculating 𝐿q = ℱ [ei arg(𝑂unique
x𝑐 �̂�∗

x𝑐)],

b) Locating the maximum of 𝐿 with subpixel precision (for example by cross
correlating it with the Fourier transform of a matrix of ones).

5. Multiply 𝑂unique with a compensating phase ramp.

6. Estimate the global scaling factor with

𝑎ei𝑔 ≈ 𝛾 =
∑x𝑐

𝑂unique
x𝑐 �̂�∗

x𝑐

∑x𝑐
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x𝑐 |2
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7. Divide 𝑂unique by 𝛾.

The procedure to align the refractive object is equivalent, the exponential ei�̃� replaces
𝑂 in multiplications and instead of dividing by 𝛾 at the end, the logarithm of 𝛾 is
subtracted.

Holography and CXDI reconstructions are similarly ambiguous and can be aligned
in an analogous way, except for the first step where the global shift d is estimated. As
there is no probe, the phases of the objects are cross-correlated instead. In general
the phases are better reconstructed and contain more signal. CXDI has one additional
ambiguity that needs to be considered, as flipping by 180° and complex conjugating
the object creates the same diffraction pattern.

A.3 Calculate reconstruction errors

The progress of the ptychography reconstruction can be tracked through the error
between the measured and the simulated diffraction patterns. For this, the individual
error 𝐸𝑖 of the current diffraction pattern 𝑛𝑖 is calculated in every subiteration. After
the wavefield is propagated to the farfield and before it is updated in Equation 3.10,
the error is calculated from

𝐸𝑖 = ∑
q

(|Ψ𝑖,q| − √𝑛𝑖,q)
2

. (A.13)

After all diffraction patterns have been used and the iteration is finished, the errors
are averaged in the reconstruction error

𝐸diff = 1
𝑁

∑
𝑖

𝐸𝑖. (A.14)
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The error for CXDI is calculated between the reconstructed and the original object.
The objects are aligned using the procedure described in Section A.2, before the errors
are calculated according to

𝐸abs = ∑
r∈𝑆

∣arg (𝜓𝑛,r) − arg (𝑂r)∣
2 , (A.15a)

𝐸abs = ∑
r∈𝑆

∣ℜ ( ̃𝜓𝑛,r) − arg (𝑂r)∣
2

. (A.15b)
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