# UNIVERSITÄTSKLINIKUM HAMBURG-EPPENDORF

# Institut für Pathologie

Prof. Dr. Guido Sauter

### Prävalenz und klinische Signifikanz der BAP1-Expression beim Prostatakarzinom

### **Dissertation**

Zur Erlangung des Grades eines Doktors der Medizin der Medizinischen Fakultät der Universität Hamburg

vorgelegt von:

Lara Schwemmer aus Aachen

Hamburg 2020

| Angenommen von der                                               |
|------------------------------------------------------------------|
| Medizinischen Fakultät der Universität Hamburg am: 14.04.2021    |
| Veröffentlicht mit Genehmigung der                               |
| Medizinischen Fakultät der Universität Hamburg.                  |
| Prüfungsausschuss, der/die Vorsitzende: Prof. Dr. Hans Heinzer   |
| Prüfungsausschuss, zweite/r Gutachter/in: Prof. Dr. Guido Sauter |
|                                                                  |

# Inhaltsverzeichnis

| <ol> <li>Nuclear up regulation of the BRCA1-associated ubiquitinase BAP1 is associated w<br/>tumor aggressiveness in prostate cancers lacking the TMPRSS2:ERG fusion</li> </ol> |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. Darstellung der Publikation                                                                                                                                                  | 19 |
| 2.1 Einleitung                                                                                                                                                                  | 19 |
| 2.2 Material und Methoden                                                                                                                                                       | 20 |
| 2.2.1 Patienten                                                                                                                                                                 | 20 |
| 2.2.2 Tissue Microarray                                                                                                                                                         | 20 |
| 2.2.3 Immunhistochemie                                                                                                                                                          | 21 |
| 2.3 Ergebnisse                                                                                                                                                                  | 21 |
| 2.4 Diskussion                                                                                                                                                                  | 22 |
| 2.5 Zusammenfassung                                                                                                                                                             | 25 |
| 2.6 Abstract                                                                                                                                                                    | 26 |
| 3. Abkürzungsverzeichnis                                                                                                                                                        | 28 |
| 4. Literaturverzeichnis                                                                                                                                                         | 29 |
| 5. Eigenanteil                                                                                                                                                                  | 33 |
| 6. Danksagung                                                                                                                                                                   | 34 |
| 7. Lebenslauf                                                                                                                                                                   | 35 |
| 8 Fidesstattliche Erklärung                                                                                                                                                     | 35 |

**Research Paper** 

# Nuclear up regulation of the BRCA1-associated ubiquitinase BAP1 is associated with tumor aggressiveness in prostate cancers lacking the TMPRSS2:ERG fusion

Stefan Steurer<sup>1,\*</sup>, Lara Schwemmer<sup>1,\*</sup>, Claudia Hube-Magg<sup>1</sup>, Franziska Büscheck<sup>1</sup>, Doris Höflmayer<sup>1</sup>, Maria Christina Tsourlakis<sup>1</sup>, Till S. Clauditz<sup>1</sup>, Andreas M. Luebke<sup>1</sup>, Ronald Simon<sup>1</sup>, Guido Sauter<sup>1</sup>, Jakob Izbicki<sup>2</sup>, Cornelia Schroeder<sup>2</sup>, Thorsten Schlomm<sup>4</sup>, Hartwig Huland<sup>3</sup>, Hans Heinzer<sup>3</sup>, Alexander Haese<sup>3</sup>, Markus Graefen<sup>3</sup>, Cosima Göbel<sup>1</sup>, Sören Weidemann<sup>1</sup>, Patrick Lebok<sup>1</sup>, David Dum<sup>1</sup>, Christoph Fraune<sup>1</sup>, Sarah Minner<sup>1</sup> and Jan Meiners<sup>2</sup>

Correspondence to: Ronald Simon, email: r.simon@uke.de

**Keywords:** BAP1: prostate cancer: prognosis: immunohistochemistry

Received: June 27, 2019 Accepted: September 24, 2019 Published: December 24, 2019

**Copyright:** Steurer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

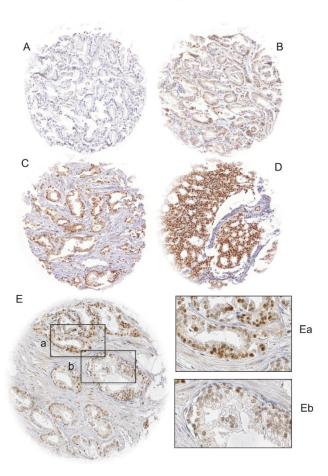
#### **ABSTRACT**

Loss of the putative tumor suppressor BAP1 is a candidate biomarker for adverse prognosis in many cancer types, but conversely for improved survival in others. Studies on the expression and prognostic role of BAP1 in prostate cancer are currently lacking. We used a tissue microarray of 17,747 individual prostate cancer samples linked with comprehensive pathological, clinical and molecular data and studied the immunohistochemical expression of BAP1. BAP1 expression was typically up regulated in cancers as compared to adjacent normal prostatic glands. In 15,857 cancers, BAP1 staining was weak in 3.3%, moderate in 41.6% and strong in 17.4%. Strong BAP1 staining was associated with advanced tumor stage (p<0.0001), high classical and quantitative Gleason grade (p<0.0001), lymph node metastasis (p<0.0001), a positive surgical margin (p=0.0019) and early biochemical recurrence (p<0.0001). BAP1 expression was linked to ERG-fusion type cancers, with strong BAP1 staining in 12% of ERG-negative, but 30% of ERG-positive cancers (p<0.0001). Subset analyses in 5,415 cancers with and 4,217 cancers without TMPRSS2:ERG fusion revealed that these associations with tumor phenotype and patient outcome were largely driven by the subset of ERG-negative tumors. Multivariate analysis revealed that the prognostic impact was independent of established prognostic features in ERG negative p<0.001) but not in ERG positive cancers. BAP1 expression was further linked to androgen receptor (AR) expression: Only 2% of AR-negative, but 33% of strongly AR expressing cancers had strong BAP1 expression (p<0.0001). In conclusion, this study shows that BAP1 up regulation is linked to prostate cancer progression and aggressiveness.

<sup>&</sup>lt;sup>1</sup>Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany

<sup>&</sup>lt;sup>2</sup>General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany

<sup>&</sup>lt;sup>3</sup>Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany


 $<sup>^{</sup>f 4}$ Department of Urology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany

<sup>\*</sup>These authors contributed equally to this work

#### INTRODUCTION

Prostate cancer (PCa) is the most diagnosed cancer among males in Western societies [1]. At this point, established prognosticators include histological analysis of biopsies to determine Gleason score and tumor extent, prostate-specific antigen (PSA) and clinical stage. However, current diagnostic analysis still proves prone to inaccuracies that could be reduced by finding a reliable and clinically applicable molecular marker. This could spare patients with otherwise harmless tumors the negative effects of treatment (e.g. incontinence and erectile dysfunction), and identify those patients with aggressive disease for whom the benefits of treatment outweigh its harm [2].

BRCA-1-associated Protein 1 (BAP1) is a nuclear deubiquitinase targeting histone modifying protein complexes that was originally named after its interaction with the E3 ubiquitin-protein ligase breast-cancer type 1 susceptibility protein (BRCA1) [3, 4]. Subsequent research revealed that BAP1 regulates many cellular pathways that are relevant for cell cycle control, cellular differentiation, gluconeogenesis, DNA damage response and apoptosis [5–7]. Al-though the mechanisms of action of BAP1 are still not fully understood, it is believed that one important function is the regulation of transcriptional silencing at the sites of DNA double-strand breakage repair [6]. BAP1 has long been considered a tumor suppressor. Mutation, genomic deletion of its locus at 3p21 or loss of BAP1



**Figure 1:** Examples of **(A)** negative, **(B)** weak, **(C)** moderate and **(D)** strong BAP1 staining in prostate cancer and **(E)** BAP1 staining of cancerous **(Ea)** and normal **(Eb)** prostate glands in the same TMA spot. Spot size is 0.6 mm at 100x (inset 400x) magnification.

www.oncotarget.com 7097 Oncotarget

expression has been reported from various tumor types such as non-small cell lung cancer [8, 9], renal cell carcinoma [10-12], gall bladder cancer [13], mesothelioma [14, 15] and uveal melanoma [16-18], and has been linked to poor prognosis in most of them [13, 17, 19]. In addition, inactivating germline mutations result in the BAP1 tumor predisposition syndrome, associated with a high risk of tumor development [20, 21]. However, the tumor-associated functions of BAP1 may be more complex than previously thought as some studies suggest a cancer-promoting role. For example, BAP1 loss or germline mutations have been linked to prolonged survival in malignant pleural mesothelioma [11, 12, 22, 23], and BAP1 overexpression appears to promote basal type breast cancers [24] and myeloid neoplasms harboring certain ATRX mutations [25]. Also, a recent meta-analysis of 26 BAP1 expression studies in 10 different cancer types concludes that the prognostic implication of BAP1 alterations depends on the tumor type [26]. Little is known about alterations of BAP1 in PCa. One study reported lack of BAP1 mutations in 45 prostate tumors [27], but data on BAP1 protein expression or its prognostic significance in this disease are currently acking.

To study the clinical impact of BAP1, we immunohistochemically analyzed more than 17.000 PCa, which have been assembled on a tissue microarray during the last 10 years.

#### RESULTS

#### Technical issues

89.4~% of 17,747 tumor samples were interpretable. The 10.6% of non-informative cases had

no tissue sample or insufficient unequivocal cancer tissue in the TMA spot.

# BAP1 expression in normal and cancerous prostate tissue

In order to estimate BAP1 expression in normal prostate glands, we studied several spots containing normal tissue. We found that BAP1 staining ranged from negative to moderate in luminal and in basal cells. In PCa, nuclear staining was seen in 62.3% of 15,857 interpretable tumors. It was considered weak in 3.3%, moderate in 41.6% and strong in 17.4% of PCa. Tissue spots with normal and cancerous glands usually showed higher BAP1 levels in the tumor cells than in normal glands, although there were also rare cases with lower relative BAP1 levels in the cancer cells. Tumors with negative findings typically also lacked BAP1 staining in the adjacent normal tissues. Representative images of nuclear BAP1 staining are shown in Figure 1.

# BAP1 expression and TMPRSS2:ERG fusion status

BAP1 staining results were compared with TMPRSS2:ERG data obtained by FISH from 6,476 and by immunohistochemistry from 9,632 tumors. Both, ERG FISH and IHC data were available from 5,365 of these cancers, and concordant results were found in 95.8% cancers. Nuclear BAP1 expression was associated withTMPRSS2:ERG rearrangement and ERG expression: Strong BAP1 positivity increased from 12-14% in 5,415 ERG-negative cancers (by IHC or FISH)

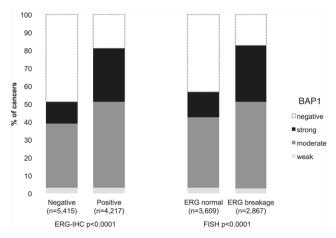



Figure 2: Association between BAP1 staining intensity and ERG status defined by immunohistochemistry (IHC) and fluorescence *in-situ* hybridization (FISH) analysis.

www.oncotarget.com 7098 Oncotarget

Table 1: Association between BAP1 immunostaining and prostate cancer phenotype

|                                       |        |          | BA   | P1 (%)   |        |          |
|---------------------------------------|--------|----------|------|----------|--------|----------|
| Parameter                             | N      | Negative | Weak | Moderate | Strong | P        |
| All cancers                           | 15 857 | 37.7     | 3.3  | 41.6     | 17.4   |          |
| Tumor stage                           |        |          |      |          |        | < 0.0001 |
| pT2                                   | 10 166 | 41.2     | 3.0  | 39.2     | 16.6   |          |
| pT3a                                  | 3 508  | 32.9     | 3.9  | 44.2     | 19.0   |          |
| pT3b-pT4                              | 2 119  | 28.7     | 3.6  | 48.5     | 19.3   |          |
| Gleason grade                         |        |          |      |          |        | < 0.0001 |
| ≤3+3                                  | 3 041  | 43.7     | 2.7  | 38.2     | 15.4   |          |
| 3+4                                   | 8 394  | 38.3     | 3.3  | 40.1     | 18.2   |          |
| 3+4 Tert.5                            | 732    | 39.1     | 3.0  | 42.2     | 15.7   |          |
| 4+3                                   | 1 543  | 30.6     | 4.0  | 47.4     | 18.0   |          |
| 4+3 Tert.5                            | 1 096  | 30.3     | 3.2  | 48.1     | 18.4   |          |
| ≥4+4                                  | 910    | 31.6     | 4.0  | 47.7     | 16.7   |          |
| Lymph node metastasis                 |        |          |      |          |        | < 0.0001 |
| N0                                    | 9 573  | 36.2     | 3.5  | 42.1     | 18.1   |          |
| N+                                    | 1 162  | 29.3     | 3.4  | 49.1     | 18.1   |          |
| Preoperative<br>PSA level (ng/<br>ml) |        |          |      |          |        | <0.0001  |
| <4                                    | 1 929  | 32.6     | 2.6  | 44.0     | 20.8   |          |
| 4-10                                  | 9 357  | 37.7     | 3.1  | 41.3     | 17.9   |          |
| 10-20                                 | 3 330  | 39.6     | 3.5  | 41.1     | 15.8   |          |
| >20                                   | 1 140  | 41.2     | 5.0  | 40.7     | 13.1   |          |
| Surgical<br>margin                    |        |          |      |          |        | 0.0019   |
| Negative                              | 12 697 | 38.4     | 3.2  | 41.2     | 17.2   |          |
| Positive                              | 3 104  | 34.8     | 3.7  | 43.2     | 18.2   |          |

www.oncotarget.com 7099 Oncotarget

Table 2: BAP1 immunostaining and prostate cancer phenotype in ERG negative cancers

|                                       |       |          | BA   | P1 (%)   |        |          |
|---------------------------------------|-------|----------|------|----------|--------|----------|
| Parameter                             | N     | Negative | Weak | Moderate | Strong | P        |
| All cancers                           | 5 415 | 48.7     | 3.3  | 35.8     | 12.2   |          |
| Tumor stage                           |       |          |      |          |        | < 0.0001 |
| pT2                                   | 3 643 | 52.1     | 2.8  | 33.8     | 11.2   |          |
| pT3a                                  | 1 079 | 45.8     | 5.1  | 36.6     | 12.5   |          |
| pT3b-pT4                              | 677   | 34.9     | 3.1  | 44.9     | 17.1   |          |
| Gleason grade                         |       |          |      |          |        | < 0.0001 |
| ≤3+3                                  | 1 090 | 58.3     | 2.8  | 29.2     | 9.7    |          |
| 3+4                                   | 2 879 | 50.2     | 3.3  | 34.9     | 11.6   |          |
| 3+4 Tert.5                            | 243   | 44.9     | 1.6  | 40.7     | 12.8   |          |
| 4+3                                   | 566   | 39.9     | 4.4  | 41.9     | 13.8   |          |
| 4+3 Tert.5                            | 328   | 36.3     | 4.0  | 43.0     | 16.8   |          |
| ≥4+4                                  | 305   | 33.8     | 3.9  | 43.9     | 18.4   |          |
| Lymph node metastasis                 |       |          |      |          |        | < 0.0001 |
| N0                                    | 3 149 | 46.0     | 3.7  | 37.2     | 13.1   |          |
| N+                                    | 310   | 31.9     | 2.9  | 46.5     | 18.7   |          |
| Preoperative<br>PSA level (ng/<br>ml) |       |          |      |          |        | 0.0482   |
| <4                                    | 578   | 44.8     | 2.9  | 38.1     | 14.2   |          |
| 4-10                                  | 3 213 | 48.8     | 3.0  | 35.9     | 12.3   |          |
| 10-20                                 | 1 167 | 50.1     | 3.3  | 35.1     | 11.4   |          |
| >20                                   | 430   | 48.8     | 6.3  | 33.0     | 11.9   |          |
| Surgical<br>margin                    |       |          |      |          |        | 0.0908   |
| Negative                              | 4 341 | 49.4     | 3.3  | 35.5     | 11.8   |          |
| Positive                              | 1 060 | 45.6     | 3.5  | 37.0     | 14.0   |          |

to 30-32% in 4,217 ERG-positive cancers (p<0.0001 each, Figure 2).

#### BAP1 expression and tumor phenotype

Strong BAP1 staining was associated with adverse tumor features, including advanced tumor stage, high Gleason grade, presence of lymph node metastasis

(p<0.0001 each) and a positive surgical margin (p=0.0019, Table 1). Because of the strong link between BAP1 overexpression and ERG rearrangement, the analysis was repeated in the subsets of ERG-negative and ERG-positive cancers. It showed that all associations were solely driven by the subset of ERG-negative cancers (Table 2), while BAP1 staining was unrelated to the analyzed features in ERG-positive cancers (Table 3).

www.oncotarget.com 7100 Oncotarget

Table 3: BAP1 immunostaining and prostate cancer phenotype in ERG positive cancers

|                                       |       |          | BAP  | 1 (%)    |        |        |
|---------------------------------------|-------|----------|------|----------|--------|--------|
| Parameter                             | N     | Negative | Weak | Moderate | Strong | P      |
| All cancers                           | 4217  | 18.8     | 3.1  | 48.1     | 30.0   |        |
| Tumor stage                           |       |          |      |          |        | 0.0065 |
| pT2                                   | 2 508 | 20.7     | 2.8  | 47.0     | 29.4   |        |
| pT3a                                  | 1 111 | 16.7     | 3.4  | 49.6     | 30.3   |        |
| pT3b-pT4                              | 580   | 14.5     | 3.8  | 50.0     | 31.7   |        |
| Gleason grade                         |       |          |      |          |        | 0.0729 |
| ≤3+3                                  | 862   | 21.9     | 2.9  | 49.8     | 25.4   |        |
| 3+4                                   | 2 412 | 18.6     | 3.1  | 46.8     | 31.5   |        |
| 3+4 Tert.5                            | 128   | 21.9     | 3.1  | 45.3     | 29.7   |        |
| 4+3                                   | 409   | 14.9     | 4.2  | 52.1     | 28.9   |        |
| 4+3 Tert.5                            | 232   | 16.4     | 3.0  | 47.8     | 32.8   |        |
| ≥4+4                                  | 171   | 17.0     | 2.3  | 51.5     | 29.2   |        |
| Lymph node<br>metastasis              |       |          |      |          |        | 0.2321 |
| N0                                    | 2 413 | 17.3     | 3.4  | 47.5     | 31.9   |        |
| N+                                    | 271   | 19.2     | 3.7  | 51.3     | 25.8   |        |
| Preoperative<br>PSA level (ng/<br>ml) |       |          |      |          |        | 0.4984 |
| <4                                    | 582   | 17.0     | 2.9  | 49.5     | 30.6   |        |
| 4-10                                  | 2 587 | 19.1     | 3.2  | 47.3     | 30.4   |        |
| 10-20                                 | 763   | 18.7     | 2.9  | 48.1     | 30.3   |        |
| >20                                   | 252   | 20.6     | 3.6  | 52.8     | 23.0   |        |
| Surgical<br>margin                    |       |          |      |          |        | 0.0639 |
| Negative                              | 3 314 | 19.6     | 3.1  | 47.7     | 29.5   |        |
| Positive                              | 884   | 15.7     | 3.1  | 49.7     | 31.6   |        |

#### BAP1 expression and tumor cell proliferation

Presence of BAP1 staining was linked to increased proliferation as determined by the Ki67 labeling index (Table 4). This association was independent of the Gleason grade as it was observed across subsets with identical Gleason score ( $\leq$ 3+3, 3+4, 3+4 tertiary 5, 4+3,  $\geq$ 4+4 p<0.0001 each and 4+3 tert. 5; p<0.0057). Again, subset analyses demonstrated that these associations

were driven from the ERG negative subset (p $\leq$ 0.0007 each).

#### BAP1 and androgen receptor (AR) expression

Data on BAP1 and AR were available from 7,151 cancers [28]. AR expression was associated with nuclear BAP1 staining. Only 2% of AR-negative, but 33% of

www.oncotarget.com 7101 Oncotarget

strongly AR expressing cancers had strong BAP1 expression (p<0.0001). This association held true regardless of the ERG fusion status (p<0.0001 each; Figure 3).

#### BAP1 expression and PSA recurrence

Nuclear BAP1 staining was linked to early biochemical recurrence (p<0.0001, Figure 4). ERG subset analysis revealed, that the prognostic impact of BAP1 expression was contributed by the ERG negative subset (p<0.0001). BAP1 expression was unrelated to patient outcome in the ERG-positive subset (p=0.1248). A further analysis in the ERG-negative subset revealed that, for subgroups with identical classical and quantitative Gleason grades, BAP1 expression only had a prognostic impact for Gleason 3+4 carcinomas (p=0,006; Figure 5).

#### Multivariate analysis

Four different scenarios were tested (Table 5). Scenarios 1 and 2 evaluated postoperatively available parameters (stage, with/without lymph node status (pN), margin status, preoperative PSA value and pathological Gleason grade). Scenario 3 was a mixed model of post- and preoperatively available parameters, while in scenario 4 the preoperative parameters were combined (Gleason grade obtained on the original biopsy, preoperative PSA, cT stage and BAP1 expression). BAP1 expression was an independent prognosticator in PCa (p<0.02) and in the ERG-negative subset (p<0.005 each).

#### DISCUSSION

In this study we show that nuclear BAP1 expression is an independent predictor of poor prognosis in ERG negative PCa.

Nuclear BAP1 staining was seen in 62% of PCa, including 17,4% tumors with strong BAP1 staining intensity. Normal prostatic epithelial tissue showed variable but generally lower BAP1 expression levels ranging between negative and moderate positive staining. That BAP1 staining intensities were often higher in cancer cells than in adjacent normal prostate glands suggests that BAP1 usually becomes overexpressed during tumor development. Comparable studies on BAP1 in prostate tissues are currently lacking in the published literature. However, the human protein atlas (https:// www.proteinatlas.org/ENSG00000163930-BAP1/tissue/ prostate) shows examples of BAP1 staining that are in line with our findings, including six samples of normal prostate glands (with low to medium intensity staining) and 23 samples of PCa with variable levels of positivity ranging from negative to strong using two different anti-BAP1 antibodies including HPA028814, which was used in our study [29].

A strong association between BAP1 up regulation, adverse tumor phenotype and clinical outcome was found in our cohort of more than 15.800 patients. Similar findings have been reported from malignant pleural mesotheliomas, where BAP1 overexpression was also linked to aggressive tumor features or shortened survival [15, 30–33]. These observations are in contrast to data described for most other tumor types that have been

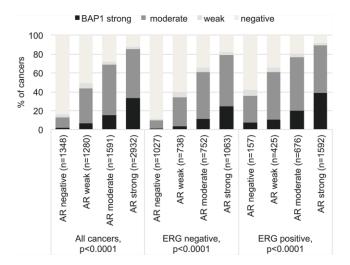



Figure 3: Correlation between BAP1 staining and androgen receptor expression in all cancers, the ERG expression negative and positive subset (IHC).

Table 4: Association between BAP1 immunostaining and Ki67 labeling index in Gleason categories and ERG-fusion subsets

| Gleason BAP1         |          | All cancers |         |       |      |          |       | ERG-fusion negative |       |      |          |       | ERG-fusion positive |       |      |          |
|----------------------|----------|-------------|---------|-------|------|----------|-------|---------------------|-------|------|----------|-------|---------------------|-------|------|----------|
| Gleason              | DAP1     | n           | Ki67LI° |       |      | P        | n     | Ki67LI              |       |      | P        | n     | Ki67LI              |       |      | P        |
| All                  | Negative | 2 243       | 2.0     | ±     | 0.06 |          | 1 706 | 1.85                | ±     | 0.07 |          | 499   | 2.39                | ±     | 0.12 |          |
|                      | Weak     | 226         | 2.9     | $\pm$ | 0.18 | -0.0001  | 131   | 3.0                 | $\pm$ | 0.24 |          | 92    | 2.72                | $\pm$ | 0.27 | -0.0001  |
|                      | Moderate | 2 613       | 3.13    | $\pm$ | 0.05 | < 0.0001 | 1 196 | 3.38                | $\pm$ | 0.08 | < 0.0001 | 1 365 | 2.93                | $\pm$ | 0.07 | < 0.0001 |
|                      | Strong   | 1 265       | 3.47    | $\pm$ | 0.07 |          | 386   | 3.86                | $\pm$ | 0.14 |          | 849   | 3.33                | $\pm$ | 0.09 |          |
| ≤3+3                 | Negative | 591         | 1.64    | $\pm$ | 0.08 |          | 442   | 1.51                | $\pm$ | 0.1  |          | 130   | 2.08                | $\pm$ | 0.17 |          |
|                      | Weak     | 39          | 3.0     | $\pm$ | 0.33 | < 0.0001 | 17    | 2.94                | $\pm$ | 0.52 | <0.0001  | 20    | 3.0                 | $\pm$ | 0.44 | 0.0015   |
|                      | Moderate | 503         | 2.4     | $\pm$ | 0.09 | < 0.0001 | 179   | 2.69                | $\pm$ | 0.16 | < 0.0001 | 307   | 2.27                | $\pm$ | 0.11 | 0.0015   |
|                      | Strong   | 229         | 2.93    | $\pm$ | 0.14 |          | 57    | 3.33                | $\pm$ | 0.28 |          | 162   | 2.86                | $\pm$ | 0.15 |          |
| 3+4                  | Negative | 1 221       | 2.0     | $\pm$ | 0.07 |          | 922   | 1.84                | $\pm$ | 0.07 |          | 284   | 2.32                | $\pm$ | 0.14 |          |
|                      | Weak     | 122         | 2.6     | $\pm$ | 0.21 | <0.0001  | 70    | 2.61                | $\pm$ | 0.27 | <0.0001  | 52    | 2.58                | $\pm$ | 0.32 | <0.0001  |
|                      | Moderate | 1 442       | 2.89    | $\pm$ | 0.06 | < 0.0001 | 639   | 2.92                | $\pm$ | 0.09 | < 0.0001 | 781   | 2.87                | $\pm$ | 0.08 | < 0.0001 |
|                      | Strong   | 749         | 3.32    | $\pm$ | 0.08 |          | 196   | 3.34                | ±     | 0.16 |          | 539   | 3.32                | $\pm$ | 0.1  |          |
| 3+4<br>Tertiary<br>5 | Negative | 99          | 2.33    | ±     | 0.26 |          | 78    | 2.21                | ±     | 0.28 |          | 21    | 2.81                | ±     | 0.57 |          |
|                      | Weak     | 6           | 5.33    | $\pm$ | 1.05 | < 0.0001 | 3     | 7.67                | $\pm$ | 1.43 | < 0.0001 | 3     | 3.0                 | $\pm$ | 1.51 | 0.1641   |
|                      | Moderate | 100         | 3.74    | $\pm$ | 0.26 |          | 64    | 3.42                | $\pm$ | 0.31 |          | 36    | 4.31                | $\pm$ | 0.44 |          |
|                      | Strong   | 50          | 3.76    | $\pm$ | 0.36 |          | 22    | 4.64                | $\pm$ | 0.53 |          | 25    | 3.2                 | $\pm$ | 0.52 |          |
| 4+3                  | Negative | 180         | 2.47    | $\pm$ | 0.25 |          | 139   | 2.34                | $\pm$ | 0.3  |          | 38    | 3.0                 | $\pm$ | 0.46 |          |
|                      | Weak     | 37          | 2.84    | $\pm$ | 0.54 |          | 24    | 2.92                | $\pm$ | 0.73 | -0.0001  | 12    | 2.83                | $\pm$ | 0.81 | 0.0000   |
|                      | Moderate | 284         | 3.84    | $\pm$ | 0.2  | < 0.0001 | 152   | 4.3                 | $\pm$ | 0.29 | < 0.0001 | 126   | 3.25                | $\pm$ | 0.25 | 0.8606   |
|                      | Strong   | 102         | 3.67    | $\pm$ | 0.33 |          | 43    | 4.05                | $\pm$ | 0.54 |          | 59    | 3.39                | $\pm$ | 0.37 |          |
| 4+3<br>Tertiary<br>5 | Negative | 93          | 2.7     | ±     | 0.38 |          | 77    | 2.49                | ±     | 0.43 |          | 15    | 3.87                | ±     | 0.91 |          |
|                      | Weak     | 9           | 3.22    | $\pm$ | 1.24 | 0.0057   | 7     | 3.57                | $\pm$ | 1.43 | 0.0007   | 2     | 2.0                 | $\pm$ | 2.5  | 0.7141   |
|                      | Moderate | 147         | 4.15    | $\pm$ | 0.31 |          | 76    | 4.72                | $\pm$ | 0.44 |          | 67    | 3.46                | $\pm$ | 0.43 |          |
|                      | Strong   | 73          | 4.56    | $\pm$ | 0.43 |          | 33    | 5.15                | $\pm$ | 0.66 |          | 38    | 4.13                | $\pm$ | 0.57 |          |
| ≥4+4                 | Negative | 58          | 2.21    | $\pm$ | 0.61 |          | 48    | 2.0                 | $\pm$ | 0.57 |          | 10    | 3.1                 | $\pm$ | 1.89 |          |
|                      | Weak     | 13          | 4.15    | $\pm$ | 1.29 |          | 10    | 4.5                 | $\pm$ | 1.25 |          | 3     | 3.0                 | $\pm$ | 3.44 | 0.6255   |
|                      | Moderate | 135         | 5.39    | $\pm$ | 0.4  | < 0.0001 | 84    | 5.42                | $\pm$ | 0.43 | < 0.0001 | 48    | 5.44                | $\pm$ | 0.86 | 0.6276   |
|                      | Strong   | 61          | 5.57    | $\pm$ | 0.59 |          | 35    | 5.69                | $\pm$ | 0.67 |          | 25    | 5.48                | $\pm$ | 1.19 |          |

 $<sup>^*</sup>$  Mean  $\pm$  standard error of the mean

analyzed for BAP1 alterations so far. Reduced BAP1 expression has been linked to poor prognosis and adverse tumor features in renal carcinoma [10–12], colorectal cancer [34], gastric adenocarcinoma [35], non-small cell lung cancer [8, 9], gall bladder cancer [13] and uveal melanoma [16–18, 36]. These data suggest that BAP1 may function differently in different tumor types. Whereas the tumor suppressive role has been attributed

to BAP1's important involvement in DNA double strand breakage repair [37], there is emerging evidence that BAP1 can also promote tumor growth when it is overexpressed in particular molecular environments. For example, target genes of BAP1 deubiquitination include mutant ATRX in myeloid neoplasms [25] and Krüppellike factor 5 (KLF5) in basal-like breast cancers [24], which both become stabilized by BAP1 and consequently

www.oncotarget.com 7103 Oncotarget

accelerate tumor growth [24, 25]. That BAP1 interacts with KLF5 is of potential interest. KLF5 is a hormone-regulated gene in PCa and may have an oncogenic or tumor suppressive role depending on posttranscriptional modifications [38–40].

Our analysis of molecularly defined tumor subgroups revealed that the prognostic impact of BAP1 was almost entirely driven by the ERG negative subset. About 50 percent of PCa carry TMPRSS2:ERG fusions [41, 42] leading to a constitutive overexpression of ERG [28]. ERG overexpression by itself had no prognostic relevance, at least in patients not receiving systemic therapy [43]. However, ERG regulates more than 1,600 genes in prostate epithelial cells. Some proteins are mitigated, others intensified. The substantially higher BAP1 expression in ERG positive (30% with strong BAP1 positivity) than in ERG negative cancers (12% with strong BAP1 positivity) provides strong in vivo evidence for an ERG-BAP1 interaction. BAP1 may be directly regulated by ERG, since analysis of the BAP1 promoter/ enhancer region using GeneHancer [44] indicates binding sites for 179 transcription factors, including one for ETS transcription factors such as ERG. A functional interaction may also exist through BAP1's binding partner BRCA1, which contributes to the regulation of WNT-signaling [45]. Activation of Wnt signaling ranks among to the best-known consequences of ERG activation [41, 46, 47], and it can be assumed that most factors involved in this pathway undergo expression changes once ERG becomes

That BAP1 expression didn't change patient outcome in the ERG positive subset argues for circumstances related to the ERG specific cellular microenvironment not only modifying BAP1 expression

levels but also impacting its biological effects. This phenomenon has been observed in earlier studies, in which various molecular features were observed that were exclusively prognostic in ERG positive (SOX9, [48]; AZGP1, [49]; HOOK3, [50] or in ERG negative cancers (YB-1, [51], p16, [52], BCAR1, [53]), but not in both groups. As an alternative explanation for the lack of prognostic impact of BAP1 in the ERG positive subset, we cannot rule out that our experimental set-up was more sensitive to expression differences at the lower level (ERG negative subset) than at the higher level (ERG positive subset). Irrespective of the underlying mechanism, the selective prognostic impact of BAP1 in ERG negative cancers demonstrate, that the applicability (and perhaps thresholds) of prognostic markers may depend on individual molecular tumor features. This represents a challenge for the development of biomarkers that, ideally are applicable to every patient

Other molecular markers with associations to BAP1 up regulation included androgen receptor and the Ki67 cell proliferation marker. The massive increase of BAP1 expression with AR expression strongly suggests a functional interaction. This is supported by one *in vitro* study showing that androgen signaling was among the pathways that become deregulated in a cell line model harboring an inactivating BAP1 mutation [54]. The massive increase of BAP1 expression with tumor cell proliferation was expected, as BAP1 regulates cell proliferation via deubiquitination of its target protein host cell factor-1 (HCF1), which plays a critical role at multiple stages of the cell cycle [55, 56]. That the impact of BAP1 on proliferation was much stronger in ERG negative than in ERG positive cancer further supports the



Figure 4: Kaplan-Meier analysis of PSA recurrence-free survival after prostatectomy and BAP1 staining.

notion that ERG activation may interfere with functions of BAP1

The results of this study suggest that BAP1 expression may represent a useful marker in ERG negative cancer. In this subset, BAP1 expression had a significant impact, which was independent of established prognostic parameters, irrespective of whether all available features or only preoperatively available prognostic parameters were included into the analysis. It should be noted, however, that its independent prognostic relevance is not the only important criterion for a prognostic feature in PCa. Most established prognostic parameters that are typically included into multivariate analyses in PCa studies are statistically strong but suffer from shortcomings in clinical practice. pT stage and nodal status cannot be determined before the prostate

is surgically removed and therefore cannot be used for preoperative therapeutic decision-making. Even in the postoperative situation, the detection rate of lymph node metastasis is highly variable and greatly depends on the extent of surgery and the pathological work-up of the removed tissue [57]. Gleason grade, the most powerful prognostic marker available preoperatively, suffers from substantial interobserver variability, reaching up to 40% in individual biopsies [58]. That BAP1 expression lacks prognostic impact in cancers with identical quantitative Gleason grade demonstrates the statistical power of the quantitative Gleason grading system, however, it is not universally applied and does not solve all issues of interobserver variability in PCa grading.

In summary, up regulation of BAP1 is associated with adverse features, rapid cell proliferation and poor

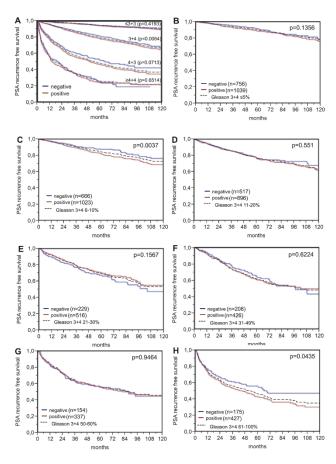



Figure 5: PSA recurrence-free survival after prostatectomy and BAP1 negative versus positive expression in subsets of the ERG expression negative cohort defined by (A) the classical Gleason score categories and (B–H) the quantitative Gleason score grades defined by the percentage of (B)  $\leq$ 5%, (C) 6-10%, (D) 11-20%, (E) 21-30%, (F) 31-49 %, (G) 50-60%, and (H)  $\geq$ 61% Gleason 4 patterns. Dashed line shows the combined result of the respective Gleason category for reference.

www.oncotarget.com 7105 Oncotarget

Table 5: Hazard ratios (95% confidence intervals) for biochemical relapse after prostatectomy of established risk factors and BAP1 expression in prostate cancer, the ERG negative and positive subsets

| Subset   | Model                       |                        | Scenario 4              | Scenario 3              | Scenario 2              | Scenario 1              |
|----------|-----------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|          | Variable                    | Analyzable (N)         | 8,171                   | 8,512                   | 8,628                   | 5,450                   |
| Total    | Gleason grade<br>biopsy     | ≥4+4 vs. ≤3+3          | 4.20 (3.69-4.77)        |                         |                         |                         |
|          | cT stage                    | T2c vs. T1c            | 1.92 (1.54-2.38)        | 1.70 (1.37-2.11)        |                         |                         |
|          | Preoperative<br>PSA level   | ≥20 vs. <4             | 3.04 (2.49-4.46)        | 2.85 (2.36-3.44)        | 1.98 (1.65-2.39)        | 1.80 (1.46-2.22)        |
|          | BAP1<br>expression          | Strong vs. negative    | <b>1.49</b> (1.27-1.77) | <b>1.38</b> (1.17-1.63) | <b>1.32</b> (1.13-1.56) | <b>1.45</b> (1.21-1.76) |
|          | Gleason grade prostatectomy | ≥4+4 vs. ≤3+3          |                         | 13.0 (10.6-15.8)        | 6.56 (5.32-8.10)        | 5.57 (4.25-7.29)        |
|          | pT stage                    | T4 vs. T2              |                         |                         | 3.06 (2.71-3.46)        | 2.77 (2.40-3.21)        |
|          | Resection margin status     | R1 vs. R0              |                         |                         | 1.39 (1.27-1.53)        | 1.25 (1.12-1.39)        |
|          | Nodal stage                 | N+ vs. N0              |                         |                         |                         | 1.46 (1.27-1.67)        |
| ERG neg. |                             | Analyzable (N)         | 3,962                   | 4,104                   | 4,144                   | 2,681                   |
|          | BAP1<br>expression          | Strong vs. negative    | 1.71 (1.38-2.12)        | 1.53 (1.24-1.88)        | 1.45 (1.18-1.79)        | 1.63 (1.28-2.08)        |
| ERG pos. |                             | Analyzable (N)         | 3,194                   | 3,355                   | 3,414                   | 2,192                   |
|          | BAP1<br>expression          | Strong vs.<br>negative | 1.44 (0.92-2.45)        | 1.47 (0.94-2.50)        | 1.29 (0.81-2.08)        | 1.24 (0.77-2.14)        |

Scenario 4 combines preoperatively available parameter (Gleason score obtained on the original biopsy, clinical tumor (cT) stage, and PSA level) with the postoperative BAP1 expression. In scenario 3 the Gleason at biopsy is replaced by the Gleason obtained on radical prostatectomy. In scenario 2, cT-stage is superseded by pathological tumor (pT) stage and surgical margin (R) status. In scenario 1 the lymph node (pN) stage is added. \*  $p \le 0.05$ , \*\*\*  $p \le 0.001$ , \*\*\*\*  $p \le 0.0001$ 

patient prognosis in PCa. BAP1 expression analysis may have prognostic utility either alone or, more likely, in combination with other biomarkers.

#### MATERIALS AND METHODS

#### **Patients**

The 17,747 patients had radical prostatectomy at the Department of Urology and the Martini Clinic at the University Medical Center Hamburg-Eppendorf between 1992 and 2015. Specimens were analyzed according to a standard procedure [59]. Classical Gleason categories and "quantitative" Gleason grading was performed

as described previously [58]. In brief, for quantitative Gleason grading the percentage of Gleason 4 patterns was recorded and the 3+4 and 4+3 cancers subdivided in subgroups with  $\leq$  5%, 6-10%, 11-20%, 21-30%, 31-49%, respective 50-60%, 61-80% and > 80% Gleason 4 pattern. Follow-up for the time to PSA recurrence was available for a total of 12,859 patients (median 48 months, range: 1 to 276 months; Table 6). Prostate specific antigen (PSA) levels were measured following surgery and PSA recurrence was defined as a postoperative PSA of at least 0.2 ng/ml and increasing at subsequent measurements. The TMA was manufactured as described earlier in detail [60]. A corresponding TMA database contained prior results on ERG expression, *ERG* break apart FISH

www.oncotarget.com 7106 Oncotarget

Table 6 Pathological and clinical data of the arrayed prostate cancers

|                                            | No. of patients (%) |                                      |  |  |  |  |
|--------------------------------------------|---------------------|--------------------------------------|--|--|--|--|
|                                            | Study cohort on TMA | Biochemical relapse among categories |  |  |  |  |
| Follow-up                                  |                     |                                      |  |  |  |  |
| N                                          | 14 464              | 3 612 (25%)                          |  |  |  |  |
| Mean/median-time to PSA recurrence (month) | 56.3/48.0           | -                                    |  |  |  |  |
| Age (y)                                    |                     |                                      |  |  |  |  |
| ≤50                                        | 433                 | 66 (15.2%)                           |  |  |  |  |
| 51-59                                      | 4 341               | 839 (19.3%)                          |  |  |  |  |
| 60-69                                      | 9 977               | 2 073 (20.8%)                        |  |  |  |  |
| ≥70                                        | 2 936               | 634 (21.6%)                          |  |  |  |  |
| Pretreatment PSA (ng/ml)                   |                     |                                      |  |  |  |  |
| <4                                         | 2 225               | 313 (14.1%)                          |  |  |  |  |
| 4-10                                       | 10 520              | 1 696 (16.1%)                        |  |  |  |  |
| 10-20                                      | 3 662               | 1 043 (28.5%)                        |  |  |  |  |
| >20                                        | 1 231               | 545 (44.3%)                          |  |  |  |  |
| pT stage (AJCC 2002)                       |                     |                                      |  |  |  |  |
| pT2                                        | 11 518              | 1 212 (10.5%)                        |  |  |  |  |
| pT3a                                       | 3 842               | 1 121 (29.2%)                        |  |  |  |  |
| pT3b                                       | 2 233               | 1 213 (54.3%)                        |  |  |  |  |
| pT4                                        | 85                  | 63 (74.1%)                           |  |  |  |  |
| Gleason grade                              |                     |                                      |  |  |  |  |
| ≤3+3                                       | 3 570               | 264 (7.4%)                           |  |  |  |  |
| 3+4                                        | 9 336               | 1 436 (15.4%)                        |  |  |  |  |
| 3+4 Tert.5                                 | 1 697               | 165 (9.7%)                           |  |  |  |  |
| 4+3                                        | 2 903               | 683 (23.5%)                          |  |  |  |  |
| 4+3 Tert.5                                 | 1 187               | 487 (41%)                            |  |  |  |  |
| ≥4+4                                       | 999                 | 531 (53.2%)                          |  |  |  |  |
| pN stage                                   |                     |                                      |  |  |  |  |
| pN0                                        | 10 636              | 2 243 (21.1%)                        |  |  |  |  |
| pN+                                        | 1 255               | 700 (55.8%)                          |  |  |  |  |
| Surgical margin                            |                     |                                      |  |  |  |  |
| Negative                                   | 14 297              | 2 307                                |  |  |  |  |
| Positive                                   | 3 388               | 1 304                                |  |  |  |  |

<sup>\*</sup> Numbers do not always add up to 17 747 in the different categories because of cases with missing data. Abbreviation: AJCC, American Joint Committee on Cancer.

www.oncotarget.com 7107 Oncotarget

analysis [43], Ki67 labeling index (Ki67LI) data [61], androgen receptor (AR) expression [28], and deletion status of 5q21 (*CHD1*) [62], 6q15 (*MAP3K7*) [63], *PTEN* (10q23) [64], 3p13 (*FOXP1*) [65]. The use of anonymized diagnostic leftover tissues was in accordance with local laws (HmbKHG, §12a) and approved by the local ethics committee (Ethics Commission Hamburg, WF-049/09). All work has been carried out in compliance with the Helsinki Declaration.

#### Immunohistochemistry

Freshly cut TMA sections were immunostained in one experiment. Slides were deparaffinized and exposed to 121°C in pH 7.8 Tris-EDTA buffer for 5 minutes. HPA028814 primary antibody specific for BAP1 (rabbit polyclonal antibody, Sigma-Aldrich, St. Louis, Missouri, USA, dilution 1:150) was applied at 37°C for 60 minutes. This antibody was validated by Western blot and protein array in the human protein atlas [29, 66]. Of note, the product was discontinued while manuscript was under review. Bound antibody was visualized with the EnVision Kit (Dako, Glostrup, Denmark) according to the manufacturer's directions. BAP1 staining was mainly seen in the nucleus and typically paralleled by cytoplasmic staining of lower intensity. Only nuclear staining was scored in this study. As BAP1 typically stained the nucleus in all (100%) tumor cells of a BAP1-positive tissue spot, only the staining intensity was assessed on a four-step scale: negative (0+), weak (1+), moderate (2+) and strong (3+). Scoring was done at 100-200x magnifications by a single pathologist.

#### **Statistics**

Contingency tables were analyzed with the chi²-test to search for associations between molecular parameters and tumor phenotype. Kaplan-Meier curves were calculated and the log-rank test was applied to detect differences between groups. Cox proportional hazards regression analysis was performed to test for independence and significance between pathological, molecular and clinical variables. JMP 11 was applied (SAS Institute Inc., NC, USA).

#### **ACKNOWLEDGMENTS**

We thank Wilfried Fehrle for help in revision of the manuscript and Christina Koop, Janett Lütgens, Sünje Seekamp, and Inge Brandt for excellent technical assistance.

#### CONFLICTS OF INTEREST

The authors declare no competing financial interests.

#### REFERENCES

- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68: 394–424. <a href="https://doi.org/10.3322/caac.21492">https://doi.org/10.3322/caac.21492</a>. [PubMed]
- Bell KJ, Del Mar C, Wright G, Dickinson J, Glasziou P. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int J Cancer. 2015; 137: 1749– 57. https://doi.org/10.1002/ijc.29538. [PubMed]
- Fukuda T, Tsuruga T, Kuroda T, Nishikawa H, Ohta T. Functional Link between BRCA1 and BAP1 through Histone H2A, Heterochromatin and DNA Damage Response. Curr Cancer Drug Targets. 2016; 16: 101–09. https://doi.org/10.2 174/1568009615666151030102427. [PubMed]
- Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, Ishov AM, Tommerup N, Vissing H, Sekido Y, Minna J, Borodovsky A, Schultz DC, et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene. 1998; 16: 1097–112. https://doi. org/10.1038/sj.onc.1201861. [PubMed]
- Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. BAP1 and cancer. Nat Rev Cancer. 2013; 13:153-59. https://doi.org/10.1038/nrc3459. [PubMed]
- Citterio E. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work. Front Genet. 2015; 6: 282. https://doi.org/10.3389/ fgene.2015.00282. [PubMed]
- Bononi A, Giorgi C, Patergnani S, Larson D, Verbruggen K, Tanji M, Pellegrini L, Signorato V, Olivetto F, Pastorino S, Nasu M, Napolitano A, Gaudino G, et al. BAP1 regulates IP3R3-mediated Ca<sup>2+</sup> flux to mitochondria suppressing cell transformation. Nature. 2017; 546: 549–53. <a href="https://doi.org/10.1038/nature22798">https://doi.org/10.1038/nature22798</a>. [PubMed]
- Fan LH, Tang LN, Yue L, Yang Y, Gao ZL, Shen Z. BAP1 is a good prognostic factor in advanced non-small cell lung cancer. Clin Invest Med. 2012; 35: E182–89. <a href="https://doi. org/10.25011/cim.v35i4.17146">https://doi. org/10.25011/cim.v35i4.17146</a>. [PubMed]
- Shen C, Wang Y, Wei P, Du X. BRCA1-associated protein 1 deficiency in lung adenocarcinoma predicts poor outcome and increased tumor invasion. BMC Cancer. 2016; 16:670. https://doi.org/10.1186/s12885-016-2670-x. [PubMed]
- Minardi D, Lucarini G, Milanese G, Di Primio R, Montironi R, Muzzonigro G. Loss of nuclear BAP1 protein expression is a marker of poor prognosis in patients with clear cell renal cell carcinoma. Urol Oncol. 2016; 34: 338.e11–18. https://doi.org/10.1016/j.urolonc.2016.03.006. [PubMed]
- 11. Kapur P, Christie A, Raman JD, Then MT, Nuhn P, Buchner A, Bastian P, Seitz C, Shariat SF, Bensalah K, Rioux-Leclercq N, Xie XJ, Lotan Y, et al. BAP1 immunohistochemistry predicts outcomes in a multiinstitutional cohort with clear cell renal cell carcinoma.

- J Urol. 2014; 191: 603–10. https://doi.org/10.1016/j.juro.2013.09.041. [PubMed]
- Joseph RW, Kapur P, Serie DJ, Eckel-Passow JE, Parasramka M, Ho T, Cheville JC, Frenkel E, Rakheja D, Brugarolas J, Parker A. Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Cancer. 2014; 120: 1059–67. <a href="https://doi.org/10.1002/cncr.28521">https://doi.org/10.1002/cncr.28521</a>. [PubMed]
- Hirosawa T, Ishida M, Ishii K, Kanehara K, Kudo K, Ohnuma S, Kamei T, Motoi F, Naitoh T, Selaru FM, Unno M. Loss of BAP1 expression is associated with genetic mutation and can predict outcomes in gallbladder cancer. PLoS One. 2018; 13: e0206643. https://doi.org/10.1371/ journal.pone.0206643. [PubMed]
- Pulford E, Huilgol K, Moffat D, Henderson DW, Klebe S. Malignant Mesothelioma, BAP1 Immunohistochemistry, and VEGFA: Does BAP1 Have Potential for Early Diagnosis and Assessment of Prognosis? Dis Markers. 2017; 2017: 1310478. https://doi.org/10.1155/2017/1310478. [PubMed]
- Farzin M, Toon CW, Clarkson A, Sioson L, Watson N, Andrici J, Gill AJ. Loss of expression of BAP1 predicts longer survival in mesothelioma. Pathology. 2015; 47: 302–07. https://doi.org/10.1097/PAT.0000000000000250. [PubMed]
- Kalirai H, Dodson A, Faqir S, Damato BE, Coupland SE. Lack of BAP1 protein expression in uveal melanoma is associated with increased metastatic risk and has utility in routine prognostic testing. Br J Cancer. 2014; 111: 1373–80. https://doi.org/10.1038/bjc.2014.417. [PubMed]
- Koopmans AE, Verdijk RM, Brouwer RW, van den Bosch TP, van den Berg MM, Vaarwater J, Kockx CE, Paridaens D, Naus NC, Nellist M, van IJcken WF, Kiliç E, de Klein A. Clinical significance of immunohistochemistry for detection of BAP1 mutations in uveal melanoma. Mod Pathol. 2014; 27: 1321–30. https://doi.org/10.1038/modpathol.2014.43. [PubMed]
- van de Nes JA, Nelles J, Kreis S, Metz CH, Hager T, Lohmann DR, Zeschnigk M. Comparing the Prognostic Value of BAP1 Mutation Pattern, Chromosome 3 Status, and BAP1 Immunohistochemistry in Uveal Melanoma. Am J Surg Pathol. 2016; 40: 796–805. <a href="https://doi.org/10.1097/PAS.0000000000000645">https://doi.org/10.1097/PAS.0000000000000645</a>. [PubMed]
- da Costa WH, Fares AF, Bezerra SM, Morini MA, de Toledo Benigno LA, Clavijo DA, Fornazieri L, Rocha MM, da Cunha IW, de Cassio Zequi S. Loss of BAP1 expression in metastatic tumor tissue is an event of poor prognosis in patients with metastatic clear cell renal cell carcinoma. Urol Oncol. 2019; 37: 78–85. <a href="https://doi.org/10.1016/j.urolonc.2018.10.017">https://doi.org/10.1016/j.urolonc.2018.10.017</a>. [PubMed]
- McDonnell KJ, Gallanis GT, Heller KA, Melas M, Idos GE, Culver JO, Martin SE, Peng DH, Gruber SB. A novel BAP1 mutation is associated with melanocytic neoplasms and thyroid cancer. Cancer Genet. 2016; 209: 75–81. https:// doi.org/10.1016/j.cancergen.2015.12.007. [PubMed]

- Wang A, Papneja A, Hyrcza M, Al-Habeeb A, Ghazarian D. Gene of the month: BAP1. J Clin Pathol. 2016; 69: 750–53. https://doi.org/10.1136/jclinpath-2016-203866. [PubMed]
- Forest F, Patoir A, Dal Col P, Sulaiman A, Camy F, Laville D, Bayle-Bleuez S, Fournel P, Habougit C. Nuclear grading, BAP1, mesothelin and PD-L1 expression in malignant pleural mesothelioma: prognostic implications. Pathology. 2018; 50: 635–41. https://doi.org/10.1016/j. pathol.2018.05.002. [PubMed]
- Wang XY, Wang Z, Huang JB, Ren XD, Ye D, Zhu WW, Qin LX. Tissue-specific significance of BAP1 gene mutation in prognostic prediction and molecular taxonomy among different types of cancer. Tumour Biol. 2017; 39: 1010428317699111. <a href="https://doi.org/10.1177/1010428317699111">https://doi.org/10.1177/1010428317699111</a>. [PubMed]
- Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, Shao M, You D, Fan Z, Xia H, Liu R, Chen C. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun. 2015; 6: 8471. https://doi.org/10.1038/ncomms9471. [PubMed]
- Asada S, Goyama S, Inoue D, Shikata S, Takeda R, Fukushima T, Yonezawa T, Fujino T, Hayashi Y, Kawabata KC, Fukuyama T, Tanaka Y, Yokoyama A, et al. Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nat Commun. 2018; 9: 2733. https://doi. org/10.1038/s41467-018-05085-9. [PubMed]
- Wang Z, Wang XY, Li J, Zhu WW. Prognostic and Clinicopathological Significance of BAP1 Protein Expression in Different Types of Cancer-A Meta-Analysis. Genet Test Mol Biomarkers. 2018; 22: 115–26. <a href="https://doi.org/10.1089/gtmb.2017.0176">https://doi.org/10.1089/gtmb.2017.0176</a>. [PubMed]
- Je EM, Lee SH, Yoo NJ. Somatic mutation of a tumor suppressor gene BAP1 is rare in breast, prostate, gastric and colorectal cancers. APMIS. 2012; 120: 855–56. <a href="https://doi.org/10.1111/j.1600-0463.2012.02909.x">https://doi.org/10.1111/j.1600-0463.2012.02909.x</a>. [PubMed]
- Weischenfeldt J, Simon R, Feuerbach L, Schlangen K, Weichenhan D, Minner S, Wuttig D, Warnatz HJ, Stehr H, Rausch T, Jäger N, Gu L, Bogatyrova O, et al. Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell. 2013; 23: 159–70. <a href="https://doi.org/10.1016/j.ccr.2013.01.002">https://doi.org/10.1016/j.ccr.2013.01.002</a>. [PubMed]
- Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Björling L, Ponten F. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010; 28: 1248–50. https://doi.org/10.1038/nbt1210-1248. [PubMed]
- Arzt L, Quehenberger F, Halbwedl I, Mairinger T, Popper HH. BAP1 protein is a progression factor in malignant pleural mesothelioma. Pathol Oncol Res. 2014; 20: 145–51. https://doi.org/10.1007/s12253-013-9677-2. [PubMed]
- 31. De Rienzo A, Archer MA, Yeap BY, Dao N, Sciaranghella D, Sideris AC, Zheng Y, Holman AG, Wang YE, Dal Cin PS, Fletcher JA, Rubio R, Croft L, et al. Gender-Specific Molecular and Clinical Features Underlie Malignant Pleural

- Mesothelioma. Cancer Res. 2016; 76: 319–28. https://doi.org/10.1158/0008-5472.CAN-15-0751. [PubMed]
- McGregor SM, Dunning R, Hyjek E, Vigneswaran W, Husain AN, Krausz T. BAP1 facilitates diagnostic objectivity, classification, and prognostication in malignant pleural mesothelioma. Hum Pathol. 2015; 46: 1670–78. https://doi.org/10.1016/j.humpath.2015.06.024. [PubMed]
- Singhi AD, Krasinskas AM, Choudry HA, Bartlett DL, Pingpank JF, Zeh HJ, Luvison A, Fuhrer K, Bahary N, Seethala RR, Dacic S. The prognostic significance of BAP1, NF2, and CDKN2A in malignant peritoneal mesothelioma. Mod Pathol. 2016; 29: 14–24. https://doi.org/10.1038/ modpathol.2015.121. [PubMed]
- Tang J, Xi S, Wang G, Wang B, Yan S, Wu Y, Sang Y, Wu W, Zhang R, Kang T. Prognostic significance of BRCA1-associated protein 1 in colorectal cancer. Med Oncol. 2013; 30: 541. https://doi.org/10.1007/s12032-013-0541-8. [PubMed]
- Yan S, He F, Luo R, Wu H, Huang M, Huang C, Li Y, Zhou Z. Decreased expression of BRCA1-associated protein 1 predicts unfavorable survival in gastric adenocarcinoma. Tumour Biol. 2016; 37: 6125–33. <a href="https://doi.org/10.1007/s13277-015-3983-0">https://doi.org/10.1007/s13277-015-3983-0</a>. [PubMed]
- van Essen TH, van Pelt SI, Versluis M, Bronkhorst IH, van Duinen SG, Marinkovic M, Kroes WG, Ruivenkamp CA, Shukla S, de Klein A, Kiliç E, Harbour JW, Luyten GP, et al. Prognostic parameters in uveal melanoma and their association with BAP1 expression. Br J Ophthalmol. 2014; 98: 1738–43. <a href="https://doi.org/10.1136/bjophthalmol-2014-305047">https://doi.org/10.1136/bjophthalmol-2014-305047</a>. [PubMed]
- Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, Barbour H, Corbeil L, Hébert J, Drobetsky E, Masson JY, Di Noia JM, Affar B. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A. 2014; 111: 285–90. https://doi.org/10.1073/pnas.1309085110. [PubMed]
- Chen C, Bhalala HV, Vessella RL, Dong JT. KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer. Prostate. 2003; 55: 81–88. <a href="https://doi.org/10.1002/pros.10205">https://doi.org/10.1002/pros.10205</a>. [PubMed]
- Nakajima Y, Osakabe A, Waku T, Suzuki T, Akaogi K, Fujimura T, Homma Y, Inoue S, Yanagisawa J. Estrogen Exhibits a Biphasic Effect on Prostate Tumor Growth through the Estrogen Receptor β-KLF5 Pathway. Mol Cell Biol. 2015; 36: 144–56. <a href="https://doi.org/10.1128/MCB.00625-15">https://doi.org/10.1128/MCB.00625-15</a>. [PubMed]
- Li X, Zhang B, Wu Q, Ci X, Zhao R, Zhang Z, Xia S, Su D, Chen J, Ma G, Fu L, Dong JT. Interruption of KLF5 acetylation converts its function from tumor suppressor to tumor promoter in prostate cancer cells. Int J Cancer. 2015; 136: 536–46. https://doi.org/10.1002/ijc.29028. [PubMed]
- Brase JC, Johannes M, Mannsperger H, Fälth M, Metzger J, Kacprzyk LA, Andrasiuk T, Gade S, Meister M, Sirma H, Sauter G, Simon R, Schlomm T, et al. TMPRSS2-ERG -specific transcriptional modulation is associated with

- prostate cancer biomarkers and TGF-β signaling. BMC Cancer. 2011; 11: 507. <a href="https://doi.org/10.1186/1471-2407-11-507">https://doi.org/10.1186/1471-2407-11-507</a>. [PubMed]
- Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, Cao Q, Prensner JR, Rubin MA, Shah RB, Mehra R, Chinnaiyan AM. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 2008; 10: 177–88. https://doi.org/10.1593/neo.07822. [PubMed]
- Minner S, Enodien M, Sirma H, Luebke AM, Krohn A, Mayer PS, Simon R, Tennstedt P, Müller J, Scholz L, Brase JC, Liu AY, Schlüter H, et al. ERG status is unrelated to PSA recurrence in radically operated prostate cancer in the absence of antihormonal therapy. Clin Cancer Res. 2011; 17: 5878–88. https://doi.org/10.1158/1078-0432.CCR-11-1251. [PubMed]
- Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, Rosen N, Kohn A, Twik M, Safran M, Lancet D, Cohen D. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017; 2017. https://doi.org/10.1093/database/ bax028. [PubMed]
- Li H, Sekine M, Tung N, Avraham HK. Wild-type BRCA1, but not mutated BRCA1, regulates the expression of the nuclear form of beta-catenin. Mol Cancer Res. 2010; 8: 407–20. https://doi.org/10.1158/1541-7786.MCR-09-0403. [PubMed]
- Wu L, Zhao JC, Kim J, Jin HJ, Wang CY, Yu J. ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res. 2013; 73: 6068–79. <a href="https://doi.org/10.1158/0008-5472.CAN-13-0882">https://doi.org/10.1158/0008-5472.CAN-13-0882</a>. [PubMed]
- Li Y, Kong D, Wang Z, Ahmad A, Bao B, Padhye S, Sarkar FH. Inactivation of AR/TMPRSS2-ERG/Wnt signaling networks attenuates the aggressive behavior of prostate cancer cells. Cancer Prev Res (Phila). 2011; 4: 1495–506. https://doi.org/10.1158/1940-6207.CAPR-11-0077. [PubMed]. Erratum in: Editor's Note: Inactivation of AR/TMPRSS2-ERG/Wnt Signaling Networks Attenuates the Aggressive Behavior of Prostate Cancer Cells. [Cancer Prev Res (Phila). 2018]. https://doi.org/10.1158/1940-6207. CAPR-18-0315. [PubMed]
- Burdelski C, Bujupi E, Tsourlakis MC, Hube-Magg C, Kluth M, Melling N, Lebok P, Minner S, Koop C, Graefen M, Heinzer H, Wittmer C, Sauter G, et al. Loss of SOX9 Expression Is Associated with PSA Recurrence in ERG-Positive and PTEN Deleted Prostate Cancers. PLoS One. 2015; 10: e0128525. https://doi.org/10.1371/journal. pone.0128525. [PubMed]
- Burdelski C, Kleinhans S, Kluth M, Hube-Magg C, Minner S, Koop C, Graefen M, Heinzer H, Tsourlakis MC, Wilczak W, Marx A, Sauter G, Wittmer C, et al. Reduced AZGP1 expression is an independent predictor of early PSA recurrence and associated with ERG-fusion positive and PTEN deleted prostate cancers. Int J Cancer. 2016; 138: 1199–206. https://doi.org/10.1002/ijc.29860. [PubMed]

- Melling N, Harutyunyan L, Hube-Magg C, Kluth M, Simon R, Lebok P, Minner S, Tsourlakis MC, Koop C, Graefen M, Adam M, Haese A, Wittmer C, et al. High-Level HOOK3 Expression Is an Independent Predictor of Poor Prognosis Associated with Genomic Instability in Prostate Cancer. PLoS One. 2015; 10: e0134614. <a href="https://doi.org/10.1371/journal.pone.0134614">https://doi.org/10.1371/journal.pone.0134614</a>. [PubMed]
- 51. Heumann A, Kaya Ö, Burdelski C, Hube-Magg C, Kluth M, Lang DS, Simon R, Beyer B, Thederan I, Sauter G, Izbicki JR, Luebke AM, Hinsch A, et al. Up regulation and nuclear translocation of Y-box binding protein 1 (YB-1) is linked to poor prognosis in ERG-negative prostate cancer. Sci Rep. 2017; 7: 2056. <a href="https://doi.org/10.1038/s41598-017-02279-x">https://doi.org/10.1038/s41598-017-02279-x</a>. [PubMed]. Erratum in: Author Correction: Up regulation and nuclear translocation of Y-box binding protein 1 (YB-1) is linked to poor prognosis in ERG-negative prostate cancer. [Sci Rep. 2018]. <a href="https://doi.org/10.1038/s41598-018-30975-9">https://doi.org/10.1038/s41598-018-30975-9</a>. [PubMed]</a>
- Burdelski C, Dieckmann T, Heumann A, Hube-Magg C, Kluth M, Beyer B, Steuber T, Pompe R, Graefen M, Simon R, Minner S, Tsourlakis MC, Koop C, et al. p16 upregulation is linked to poor prognosis in ERG negative prostate cancer. Tumour Biol. 2016; 37: 12655–63. https:// doi.org/10.1007/s13277-016-5167-y. [PubMed]
- Heumann A, Heinemann N, Hube-Magg C, Lang DS, Grupp K, Kluth M, Minner S, Möller-Koop C, Graefen M, Heinzer H, Tsourlakis MC, Wilczak W, Wittmer C, et al. High BCAR1 expression is associated with early PSA recurrence in ERG negative prostate cancer. BMC Cancer. 2018; 18: 37. https://doi.org/10.1186/s12885-017-3956-3. [PubMed]
- Mori T, Sumii M, Fujishima F, Ueno K, Emi M, Nagasaki M, Ishioka C, Chiba N. Somatic alteration and depleted nuclear expression of BAP1 in human esophageal squamous cell carcinoma. Cancer Sci. 2015; 106: 1118–29. <a href="https://doi.org/10.1111/cas.12722">https://doi.org/10.1111/cas.12722</a>. [PubMed]
- Machida YJ, Machida Y, Vashisht AA, Wohlschlegel JA, Dutta A. The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J Biol Chem. 2009; 284: 34179–88. <a href="https://doi.org/10.1074/jbc.M109.046755">https://doi.org/10.1074/jbc.M109.046755</a>.
   IPubMed1
- Eletr ZM, Wilkinson KD. An emerging model for BAP1's role in regulating cell cycle progression. Cell Biochem Biophys. 2011; 60: 3–11. <a href="https://doi.org/10.1007/s12013-011-9184-6">https://doi.org/10.1007/s12013-011-9184-6</a>. [PubMed]
- Sauter G, Clauditz T, Steurer S, Wittmer C, Büscheck F, Krech T, Lutz F, Lennartz M, Harms L, Lawrenz L, Möller-Koop C, Simon R, Jacobsen F, et al. Integrating Tertiary Gleason 5 Patterns into Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens. Eur Urol. 2018; 73: 674–83. https://doi.org/10.1016/j. eururo.2017.01.015. [PubMed]
- Sauter G, Steurer S, Clauditz TS, Krech T, Wittmer C, Lutz F, Lennartz M, Janssen T, Hakimi N, Simon R, von Petersdorff-Campen M, Jacobsen F, von Loga K, et al.

- Clinical Utility of Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens. Eur Urol. 2016; 69: 592–98. <a href="https://doi.org/10.1016/j.eururo.2015.10.029">https://doi.org/10.1016/j.eururo.2015.10.029</a>. [PubMed]
- Schlomm T, Iwers L, Kirstein P, Jessen B, Köllermann J, Minner S, Passow-Drolet A, Mirlacher M, Milde-Langosch K, Graefen M, Haese A, Steuber T, Simon R, et al. Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol. 2008; 21: 1371–78. <a href="https://doi. org/10.1038/modpathol.2008.104">https://doi. org/10.1038/modpathol.2008.104</a>. [PubMed]
- Kononen J, Bubendorf L, Kallioniemi A, Bärlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998; 4: 844–47. https://doi.org/10.1038/nm0798-844. [PubMed]
- 61. Minner S, Jessen B, Stiedenroth L, Burandt E, Köllermann J, Mirlacher M, Erbersdobler A, Eichelberg C, Fisch M, Brümmendorf TH, Bokemeyer C, Simon R, Steuber T, et al. Low level HER2 overexpression is associated with rapid tumor cell proliferation and poor prognosis in prostate cancer. Clin Cancer Res. 2010; 16: 1553–60. <a href="https://doi.org/10.1158/1078-0432.CCR-09-2546">https://doi.org/10.1158/1078-0432.CCR-09-2546</a>. [PubMed]
- Burkhardt L, Fuchs S, Krohn A, Masser S, Mader M, Kluth M, Bachmann F, Huland H, Steuber T, Graefen M, Schlomm T, Minner S, Sauter G, et al. CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res. 2013; 73: 2795–805. https:// doi.org/10.1158/0008-5472.CAN-12-1342. [PubMed]
- 63. Kluth M, Hesse J, Heinl A, Krohn A, Steurer S, Sirma H, Simon R, Mayer PS, Schumacher U, Grupp K, Izbicki JR, Pantel K, Dikomey E, et al. Genomic deletion of MAP3K7 at 6q12-22 is associated with early PSA recurrence in prostate cancer and absence of TMPRSS2:ERG fusions. Mod Pathol. 2013; 26: 975–83. <a href="https://doi.org/10.1038/modpathol.2012.236">https://doi.org/10.1038/modpathol.2012.236</a>. [PubMed]
- 64. Krohn A, Diedler T, Burkhardt L, Mayer PS, De Silva C, Meyer-Kornblum M, Kötschau D, Tennstedt P, Huang J, Gerhäuser C, Mader M, Kurtz S, Sirma H, et al. Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am J Pathol. 2012; 181: 401–12. https://doi.org/10.1016/j.ajpath.2012.04.026. [PubMed]
- 65. Krohn A, Seidel A, Burkhardt L, Bachmann F, Mader M, Grupp K, Eichenauer T, Becker A, Adam M, Graefen M, Huland H, Kurtz S, Steurer S, et al. Recurrent deletion of 3p13 targets multiple tumour suppressor genes and defines a distinct subgroup of aggressive ERG fusion-positive prostate cancers. J Pathol. 2013; 231: 130–41. <a href="https://doi.org/10.1002/path.4223">https://doi.org/10.1002/path.4223</a>. [PubMed]
- Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, Sanli K, von Feilitzen K, Oksvold P, et al. A pathology atlas of the human cancer transcriptome. Science. 2017; 357. <a href="https://doi.org/10.1126/science.aan2507">https://doi.org/10.1126/science.aan2507</a>. [PubMed]

18

### 2. Darstellung der Publikation

### 2.1 Einleitung

Das Prostatakarzinom ist die häufigste Tumorerkrankung des Mannes. Die Anzahl der Neuerkrankungen steigt mit zunehmendem Alter, etwa ein Drittel der Todesfälle durch Krebserkrankungen bei Männern sind darauf zurückzuführen. Die Inzidenz der klinisch oft lange inapparent verlaufenden Erkrankung hat in den letzten Jahren stetig zugenommen. (1)

Durch die ständige Verbesserung von Früherkennungsmaßnahmen, die unter anderem eine klinische Untersuchung und die Bestimmung des Prostata-spezifischen Antigens (PSA) enthält, werden viele Prostatakarzinome in frühen Stadien entdeckt. Zur Diagnosesicherung und Prognosebeurteilung werden Biopsien gewonnen und histologisch beurteilt. Die größte Rolle spielt dabei die Einteilung mit dem Gleason-Score. Aufgrund der Häufigkeit der Erkrankung besteht jedoch eine hohe Wahrscheinlichkeit, stanzbioptisch ein Karzinom zu sichern, das eventuell gar keine Symptome verursacht hätte. (2)
Zu den gängigen Therapieoptionen gehören außer der radikalen Prostatektomie, die zu einschneidenden Nebenwirkungen wie Inkontinenz und Impotenz führen kann, ebenso Bestrahlung und Hormontherapie, in Form einer Androgendeprivation. Um mögliche schlechte Verläufe abzuwenden, werden die meisten der diagnostizierten Tumorerkrankungen behandelt. Ziel der Forschung ist es deshalb, präzisere Methoden zur Prognosevorhersage eines Karzinoms zu entwickeln, um einerseits besonders aggressive Tumore zuverlässig erkennen und therapieren zu können, andererseits Patienten mit relativ harmlosen Erkrankungen potentiell schwerwiegende Nebenwirkungen zu ersparen.

BRCA-1-associated Protein 1 (BAP1) ist eine ubiquitär, aber überwiegend nukleär exprimierte Ubiquitin-Hydrolase mit Carboxylende (3). BAP1 gewann zunächst wegen seiner Rolle als Tumorsuppressor bei Lungen- und Brustkrebs an Aufmerksamkeit und wurde daher nach seiner Interaktion mit dem BCRA1-Gen benannt (4). Seit seiner Entdeckung sind verschiedene zelluläre Prozesse identifiziert worden, die von BAP1 reguliert werden. Dazu gehören Zellzyklus, Zelldifferenzierung, Glukoneogenese, DNA-damage-response (5) und Apoptose (6). Wichtige Interaktionspartner sind nukleär unter anderem die Transkriptionsfaktoren HCF1, Ying Yang1, FoxK1/K2 und ASXL1/2. Der Verlust des BAP1-Gens als somatische Mutation kann in verschiedenen Tumoren – wie nicht-kleinzelligen Lungentumoren, Nierenzellkarzinomen, Brustkrebs, Mesotheliomen und Melanomen der Uvea – vor-

kommen und ist dabei meistens durch Chromosomenaberration bedingt (3). BAP1-Genmutationen können als Keimbahnmutation autosomal dominant vererbt werden und dann zum BAP1-Tumor-Prädispositionssyndrom führen. Dies ist mit einem hohen Risiko assoziiert, an Melanomen, Mesotheliomen, Nierenzelltumoren, Tumoren des ZNS, atypischen Spitztumoren und vermutlich einem weiten Spektrum anderer Tumoren zu erkranken (7);(3). Der Einfluss auf die Prognose durch Veränderungen von BAP1 geht in neueren Studien in verschiedene Richtungen: Für Patienten mit Melanomen und Nierenzellkarzinomen wird ein schlechterer Krankheitsverlauf bei Verlust des Gens angenommen, während bei Mesotheliomen die vermehrte Expression von BAP1 mit einer eher ungünstigeren Prognose in Zusammenhang gebracht wird (8); (9); (10). Es ist deswegen anzunehmen, dass die prognostische Rolle der Mutation vom Gewebetyp abhängig ist und demnach separate Untersuchungen der verschiedenen Tumorentitäten notwendig sind. Die Immunhistochemie ist als schneller (und kostengünstiger) Weg etabliert, um die Expression von BAP1 nachzuweisen. Für das Nierenzellkarzinom und Melanome der Uvea liegen bereits Daten vor, die die Relevanz dieses Verfahrens belegen (8); (11), während für das Prostatakarzinom bislang kaum Daten zu Expression und prognostischem Wert bezüglich BAP1 zur Verfügung stehen.

Um dies zu untersuchen, wurden 17747 Prostatakarzinome in einem Tissue Microarray immunhistochemisch untersucht. Mit Hilfe einer ausgedehnten Datenbank wurde die Expression von BAP1 statistisch ausgewertet und mit Parametern wie Gleason-Score, Tumorstadium und PSA-Wert, sowie anderen molekularen Markern und der Patientenprognose korreliert.

#### 2.2 Material und Methoden

#### 2.2.1 Patienten

Von 17747 Patienten, die zwischen 1992 und 2015 am UKE und der Martiniklinik prostatektomiert wurden, waren Gewebepräparate vorhanden. Entsprechende Follow-up-Daten existierten zu 12859 dieser Patienten. Das mediane Follow-up betrug 48 Monate.

#### 2.2.2 Tissue Microarray

Bei der Tissue-Microarray-Methode können bis zu 600 Gewebestanzen mit 0,6mm Durchmesser aus verschiedenen Gewebeblöcken entnommen und in einen Empfängerblock mit

vorgefertigtem Muster übertragen werden. Die aus diesem Block mit Hilfe eines Mikrotoms entstandenen Schnitte ermöglichen es dann, eine sehr große Anzahl an Gewebeproben auf einem Objektträger zu untersuchen (12). Aus vorherigen Studien gab es Daten zum ERG-Fusionsstatus, zu Ki67 (Ki67LI), dem Androgenrezeptor (AR) und zu beim Prostatakarzinom relevanten Deletionen von 5q21, 6q15, PTEN und 3p13.

#### 2.2.3 Immunhistochemie

Mit immunhistochemischen Methoden können Schnittpräparate auf das Vorhandensein bestimmter Proteine untersucht werden. Dabei verwendet man Antikörper, die ein bestimmtes Epitop binden, sich detektieren lassen und proportional zur Zielstruktur vorhanden sind. Der in dieser Studie verwendete Antikörper ist HPA028814 (rabbit polyclonal antibody, Sigma-Aldrich, St. Louis, Missouri, USA, dilution 1:150). Im Detail wird die Vorgehensweise in der beiliegenden Publikation beschrieben.

### 2.3 Ergebnisse

- 89,4% der 17747 Tumorgewebeproben waren auswertbar. Bei den restlichen 10,6%
   lag kein Gewebe oder nicht ausreichend Tumorgewebe vor.
- Im gesunden Prostatagewebe fand sich keine bis mäßige nukleäre Färbung mit BAP1.
- Von 15857 interpretierbaren Prostatakarzinomen fand sich bei 62,3% eine nukleäre Färbung. Diese wurde bei 3,3% als schwach, bei 41,6% als mäßig und bei 17,4% als stark ausgeprägt eingestuft. Wenn sowohl normales als auch krebsbefallenes Gewebe vorhanden war, konnte in den meisten Fällen eine stärkere Färbung mit BAP1 im Tumorgewebe festgestellt werden. Nur in Einzelfällen lag der umgekehrte Fall vor.
- Die Ergebnisse der Färbung mit BAP1 wurde mit dem ERG-Status, der sowohl mit FISH als auch mit IHC untersucht wurde, verglichen. Eine Assoziation der BAP1-Expression und dem Vorliegen von TMPRSS:ERG konnte nachgewiesen werden.
   So war eine starke BAP1 Färbung bei 12-14% der ERG-negativen Tumoren und bei 30-32% der ERG-positiven Tumoren zu finden (jeweils p<0,0001).</li>
- Eine starke Expression von BAP1 war bei ERG-negativen Tumoren mit einem ungünstigen Tumorphänotyp, unter anderen dem Tumorstadium, einem hohem
   Gleason-Grad, Lymphknotenmetastasen (jeweils p<0,0001) und tumorbefallenen</li>

- Resektionsrändern (p=0,0019) assoziiert. Bei ERG-positiven Tumoren konnte kein Zusammenhang festgestellt werden.
- Auch der Zusammenhang zwischen BAP1-Färbung mit der Zunahme des Zellwachstums (durch den Ki67 labeling index bestimmt) war abhängig vom ERG-Status (≤3+3, 3+4, 3+4 Tertiärgrad 5, 4+3,4+4 jeweils p<0.0001 und 4+3 Tertiärgrad 5; p≤0.0057). Dies konnte unabhängig vom Gleason-Grad bei ERG-negativen Tumoren festgestellt werden.</li>
- Bei den 7151 vorliegenden Datensätzen fand sich eine starke BAP1-Expression nur bei 2% der AR-negativen, aber bei 33% der AR-positiven Tumoren (p<0,0001). Die Assoziation von Expression des Androgenrezeptors (AR) und BAP1 konnte sowohl bei ERG-positiven als auch bei ERG-negativen Tumoren nachgewiesen werden (jeweils p<0,0001).</li>
- In multivariaten Analysen konnte BAP1 als unabhängiger prognostischer Marker beim ERG-negativen Prostatakarzinom identifiziert werden.

#### 2.4 Diskussion

In dieser Studie zeigen wir, dass die Expression von BAP1 im Zellkern ein unabhängiger Prädiktor für eine schlechte Prognose bei ERG-negativen Prostatakarzinomen ist.

Bei 62% der untersuchten Prostatakarzinome konnte BAP1 immunhistochemisch im Zell-kern nachgewiesen werden. Eine starke Färbung wurde bei 17,2% der Karzinome gefunden. Im gesunden Prostataepithel ist BAP1 unterschiedlich stark exprimiert, von gar nicht bis moderat. Dass die Intensität der Färbung in Krebszellen meist höher lag, lässt vermuten, dass BAP1 während der Tumorentwicklung überexprimiert wird. Bislang gibt es keine vergleichbaren Studien zu BAP1 am Prostatakarzinom, jedoch finden sich im Human Protein Atlas (<a href="https://www.proteinatlas.org/ENSG00000163930-BAP1/tissue/prostate">https://www.proteinatlas.org/ENSG00000163930-BAP1/tissue/prostate</a>) Beispiele, die zu unseren Ergebnissen passen: Es finden sich sechs Proben mit gesundem Prostatagewebe mit niedrig bis moderater Färbung und 23 Proben von Tumorgewebe, die unterschiedlich starke Färbungen aufweisen, von gar keiner bis starker Färbung. Verwendet wurden hier zwei verschiedene Antikörper, unter anderem auch der in unserer Studie verwendete HPA028814 (12).

In unserer Studie konnte an einer Kohorte mit mehr als 15800 Patienten ein deutlicher Zu-

sammenhang zwischen der Hochregulation von BAP1, dem Tumorphänotyp und dem klinischen Verlauf dargestellt werden. Ähnliche Ergebnisse sind bereits bei Pleuramesotheliomen bekannt, wo die vermehrte Expression von BAP1 mit aggressiveren Tumoren und verkürztem Überleben der Patienten einhergeht (13), (14-17). Bei den meisten anderen Tumorarten, die auf Veränderungen von BAP1 untersucht wurden, besteht jedoch der umgekehrte Zusammenhang. Im Speziellen wurde eine reduzierte Expression von BAP1 mit einer schlechteren Prognose und ungünstigen Tumormerkmalen bei Nierenkarzinomen (8, 9, 18), kolorektalen Karzinomen (19), Adenokarzinomen des Magens (20), nicht-kleinzelligen Lungenkarzinomen (21, 22), Gallenblasentumoren (23) und Melanomen der Uvea (11, 24-26) beschrieben. Diese Daten legen nahe, dass BAP1 verschiedene Rollen in verschiedenen Tumoren erfüllt. Während BAP1 als Tumorsuppressor bei der Reparatur von DNA-Strängen eine wichtige Rolle spielt (27), gibt es zunehmend Hinweise, dass Tumorwachstum durch BAP1 bei Überexpression in bestimmten molekularen Umfeldern beschleunigt werden kann. Beispielsweise werden Gene von mutierten ATRX in myelodysplastischen Syndromen (28) und Krüppel-like factor 5 (KLF5) in Basalzell-Brusttumoren (29) durch die Deubiquitinierung durch BAP1 stabilisiert, so dass das Tumorwachstum beschleunigt wird (28, 29). Die Interaktion von BAP1 mit KLF5 ist auch insofern von Interesse, als es sich um ein hormonreguliertes Gen beim Prostatakarzinom handelt und möglicherweise eine onkogene oder tumorsuppressive Rolle, je nach posttranskriptionaler Modifikation, haben kann (30-32).

In der Analyse von molekularen Tumoruntergruppen wurde gezeigt, dass der prognostische Wert von BAP1 fast ausschließlich durch die Gruppe der ERG-negativen Tumoren zustande kommt. Etwa 50% der Prostatakarzinome haben ein TMPRSS2:ERG Fusionsgen (33, 34), das zu einer vermehrten Expression von ERG führt (35). Dies allein hat keine prognostische Relevanz bei Patienten, die keine systemische Therapie erhalten (36). Allerdings reguliert ERG mehr als 1600 Gene in Epithelzellen der Prostata, so dass einige Proteine in vermehrter oder verringerter Anzahl vorliegen. Die deutlich höhere Expression von BAP1 in ERG-positiven Tumoren (30% mit starker Positivität) gegenüber ERG-negativen Tumoren (12% starke Färbung) liefert deutliche Hinweise auf eine Interaktion von ERG und BAP1. Eine direkte Regulation von BAP1 durch ERG ist denkbar, da in der Analyse der Promoter-/Enhancer-Region von BAP1 mit GeneHancer-Bindungsstellen (37) für 179 Transkriptionsfaktoren, unter anderem für ETS-Transkriptionsfaktoren wie ERG, auftauchen. Auch eine funktionelle Interaktion mit BRCA1, das zur Regulation von WNT-Signalen

(38) beiträgt, ist denkbar, da die Aktivierung von WNT-Signalkaskaden eine der bekanntesten Konsequenzen der Aktivierung von ERG ist (31, 33, 39). Es ist anzunehmen, dass die meisten in dieser Kaskade involvierten Faktoren Veränderungen erfahren, wenn ERG aktiv wird.

Da durch die Expression von BAP1 bei ERG-positiven Tumoren kein Einfluss auf den Krankheitsverlauf gezeigt werden konnte, ist anzunehmen, dass die für ERG spezifische Umgebung nicht nur die Expression von BAP1, sondern auch seinen biologischen Effekt beeinflusst. Dieses Phänomen konnte auch in früheren Studien, in denen verschiedene molekulare Eigenschaften untersucht wurden, beobachtet werden. So waren zum Beispiel SOX9 (40), AZGP1 (41) und HOOK3 (42) nur prognostisch relevant bei ERG-positiven Tumoren und YB-1 (43), p16 (44) und BCAR1 (45) nur bei ERG-negativen Tumoren. Als alternative Erklärung kann nicht ausgeschlossen werden, dass unsere Untersuchungsmethode sensibler auf Unterschiede in der Expression bei niedrigeren Konzentrationen (ERG-negative Gruppe) als bei höheren (ERG-positive Gruppe) reagiert. Unabhängig vom tatsächlichen Mechanismus zeigt der selektiv vorhandene prognostische Wert von BAP1 bei ERG-negativen Tumoren, dass die Verwendbarkeit (und vielleicht der Schwellenwert) von prognostischen Marken von individuellen molekularen Eigenschaften des Tumors abhängen könnte. Daraus ergeben sich für die Entwicklung von Biomarkern Schwierigkeiten, da diese idealerweise für alle Patienten verwendbar sein sollen.

Ebenfalls assoziiert mit der Hochregulierung von BAP1 waren der Androgenrezeptor und Ki67 als Marker für Wachstumsgeschwindigkeit. Eine funktionelle Interaktion von BAP1 mit dem AR wird durch die deutliche Zunahme der Expression des einen mit dem jeweils anderen nahegelegt. Eine in-vitro-Studie, bei der die Signalkaskade von Androgenen in einer Tumorzelllinie mit inaktiviertem BAP1 dereguliert wurde, unterstützt diese Vermutung (46). Eine Zunahme der BAP1-Expression mit Tumorzellproliferation war erwartbar, da BAP1 mit Deubiquitinierung auch den Host Cell Factor-1 (HCF-1), der eine wichtige Rolle an verschiedenen Stellen des Zellzyklus spielt (47, 48), beeinflusst. Dieser Effekt war bei ERGnegativen Tumoren ebenfalls deutlich ausgeprägter als in ERG-positiven, so dass die Veränderung der Funktion von BAP1 durch Aktivität von ERG weiter wahrscheinlicher wird.

Die Ergebnisse dieser Studie bieten Hinweise, dass die Expression von BAP1 einen hilfreichen prognostischen Marker für ERG-negative Tumoren darstellen könnte. In dieser Gruppe hatte BAP1 einen signifikanten prognostischen Effekt unabhängig von bislang

etablierten prognostischen Markern und auch davon, ob diese Parameter präoperativ vorlagen oder nicht. Jedoch gilt zu beachten, dass die statistische Unabhängigkeit der prognostischen Relevanz nicht das einzige wichtige Kriterium für die Nützlichkeit des Prognosemarkers beim Prostatakarzinom darstellt. Die meisten bisher verwendeten prognostischen Parameter, die typischerweise in multivariaten Analysen verglichen werden, sind zwar statistisch überzeugend, jedoch gestaltet sich die klinische Praxis oft schwierig. Das Tumorstadium und der Lymphknotenstatus können nicht vor der chirurgischen Entfernung der Prostata bestimmt und daher nicht für präoperative Therapieplanung genutzt werden. Selbst nach Entnahme von Lymphknoten ist die korrekte Erkennung von Metastasen schwierig, da sich hier je nach Menge von chirurgisch entnommenem Material und pathologischer Aufbereitung des Gewebes große Unterschiede ergeben (49). Der Gleason-Grad, der derzeit aussagekräftigste prognostische Marker, hängt vor allem von der individuellen Bewertung durch den Untersucher ab. Die Variabilität durch unterschiedliche Betrachter beträgt bei Biopsien bis zu 40% (50). Dass die BAP1-Expression wenig prognostischen Wert bei Tumoren mit gleichem quantitativem Gleason-Grad hat, zeigt, dass die morphologische Beurteilung von Prostatakarzinomen eine ausgezeichnete Prognoseabschätzung erlaubt, was jedoch das Problem der Interobserver-Variabilität nicht löst.

Zusammenfassend kann gesagt werden, dass die Hochregulation von BAP1 mit negativen Tumoreigenschaften, rascherer Zellteilung und schlechter Prognose für Patienten mit Prostatakarzinom assoziiert ist. Die Analyse der Expression von BAP1 kann allein, aber mit noch größerer Zuverlässigkeit in Kombination mit anderen Biomarkern zur Prognoseabschätzung verwendet werden.

### 2.5 Zusammenfassung

Der Verlust des mutmaßlichen Tumorsuppressors BAP1 kann bei vielen Krebserkrankungen ein Hinweis auf eine schlechte Prognose sein, jedoch umgekehrt bei anderen Krebsarten auf verbesserte Überlebenschancen hinweisen. Studien zur Expression und prognostischem Wert von BAP1 beim Prostatakarzinom gibt es bislang nicht. Anhand eines Tissue Microarrays von 17747 einzelnen Prostatakarzinomen, zu denen umfassende Daten zu Pathologie, Klinik und molekulare Daten vorlagen, haben wir immunhistochemisch die Expression von BAP1 untersucht. Dabei fiel eine Hochregulation der Expression des Gens in Krebszellen auffällig oft im Vergleich zu umliegendem normalem Prostatagewebe auf. Von den 15857 der krebsbefallenen Gewebeproben waren in der Immunhistochemie

3,3% schwach, 41,6% moderat und 17,4% stark angefärbt. Eine starke Färbung war mit einem weit fortgeschrittenen Krebsstadium (p<0.0001), einem hohen klassischen und quantitativen Gleason-Grad (p<0.0001), Lymphknotenmetastasen (p<0.0001), positiven Operationsrändern (p=0.0019) und einem frühzeitigen biochemisch nachweisbaren Rückfall (p<0.0001) assoziiert. Es konnte eine Verbindung der Intensität der Färbung mit BAP1 zu Krebstypen mit dem ERG Fusionsgen hergestellt werden, da starke Färbung bei 12% der ERG-negativen, jedoch bei 30% der ERG-positiven Tumoren nachgewiesen werden konnte (p<0.0001). In einer Teilanalyse von 5415 Tumorgeweben mit und 4217 ohne TMPRSS2:ERG Fusion konnte gezeigt werden, dass der Zusammenhang mit Tumorphänotyp und Prognose der Patienten hauptsächlich durch die Gruppe der ERG-negativen Tumoren zustande kommt. In einem multivarianten Analyseverfahren wurde deutlich, dass der prognostische Wert unabhängig von etablierten prognostischen Faktoren bei ERG-negativen (p<0.001), aber nicht bei ERG-positiven Tumoren war. Es ergab sich zudem ein Zusammenhang zwischen der Expression von BAP1 und der des Androgenrezeptors (AR): Nur 2% der AR-negativen, aber 33% der stark AR exprimierenden Tumoren zeigten eine starke Expression von BAP1 (p>0.0001). Zusammenfassend zeigt diese Studie, dass die Hochregulation von BAP1 mit aggressiverem Prostatakrebs zusammenhängt.

### 2.6 Abstract

Loss of the putative tumor suppressor BAP1 is a candidate biomarker for adverse prognosis in many cancer types, but conversely for improved survival in others. Studies on the expression and prognostic role of BAP1 in prostate cancer are currently lacking. We used a tissue microarray of 17,747 individual prostate cancer samples linked with comprehensive pathological, clinical and molecular data and studied the immunohistochemical expression of BAP1. BAP1 expression was typically up regulated in cancers as compared to adjacent normal prostatic glands. In 15,857 cancers, BAP1 staining was weak in 3.3%, moderate in 41.6% and strong in 17.4%. Strong BAP1 staining was associated with advanced tumor stage (p<0.0001), high classical and quantitative Gleason grade (p<0.0001), lymph node metastasis (p<0.0001), a positive surgical margin (p=0.0019) and early biochemical recurrence (p<0.0001). BAP1 expression was linked to ERG-fusion type cancers, with strong BAP1 staining in 12% of ERG-negative, but 30% of ERG-positive cancers (p<0.0001). Subset analyses in 5,415 cancers with and 4,217 cancers without TMPRSS2:ERG fusion revealed that these associations with tumor phenotype and patient outcome were largely driven by the subset of ERG-negative tumors. Multivariate analysis

revealed that the prognostic impact was independent of established prognostic features in ERG-negative p<0.001) but not in ERG-positive cancers. BAP1 expression was further linked to androgen receptor (AR) expression: Only 2% of AR-negative, but 33% of strongly AR expressing cancers had strong BAP1 expression (p<0.0001). In conclusion, this study shows that BAP1 up regulation is linked to prostate cancer progression and aggressiveness.

# 3. Abkürzungsverzeichnis

AR Androgenrezeptor

ATRX Alpha thalassemia/mental retardation syndrome X-linked

BAP1 BCRA1-associated protein1

BRCA1 Breast-cancer type 1 susceptibility protein

**ERG** ETS (Erythroblast transformation-specific) related gene

PTEN Phosphatase and tensin homolog

**PSA** Prostate specific Antigen

**TMA** Tissue Microarray

**TMPRSS2** Transmembrane protease serine 2 Enzym

IHC Immunhistochemie

### 4. Literaturverzeichnis

- 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
- 2. Bell KJ, Del Mar C, Wright G, Dickinson J, Glasziou P. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int J Cancer. 2015;137(7):1749-57.
- 3. Wang A, Papneja A, Hyrcza M, Al-Habeeb A, Ghazarian D. Gene of the month: BAP1. J Clin Pathol. 2016;69(9):750-3.
- 4. Pfoh R, Lacdao IK, Saridakis V. Deubiquitinases and the new therapeutic opportunities offered to cancer. Endocr Relat Cancer. 2015;22(1):T35-54.
- 5. Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. BAP1 and cancer. Nat Rev Cancer. 2013;13(3):153-9.
- 6. Bononi A, Giorgi C, Patergnani S, Larson D, Verbruggen K, Tanji M, et al. BAP1 regulates IP3R3-mediated Ca(2+) flux to mitochondria suppressing cell transformation. Nature. 2017;546(7659):549-53.
- 7. McDonnell KJ, Gallanis GT, Heller KA, Melas M, Idos GE, Culver JO, et al. A novel BAP1 mutation is associated with melanocytic neoplasms and thyroid cancer. Cancer Genet. 2016;209(3):75-81.
- 8. Kapur P, Christie A, Raman JD, Then MT, Nuhn P, Buchner A, et al. BAP1 immunohistochemistry predicts outcomes in a multi-institutional cohort with clear cell renal cell carcinoma. J Urol. 2014;191(3):603-10.
- 9. Joseph RW, Kapur P, Serie DJ, Eckel-Passow JE, Parasramka M, Ho T, et al. Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Cancer. 2014;120(7):1059-67.
- 10. Wang XY, Wang Z, Huang JB, Ren XD, Ye D, Zhu WW, et al. Tissue-specific significance of BAP1 gene mutation in prognostic prediction and molecular taxonomy among different types of cancer. Tumour Biol. 2017;39(6):1010428317699111.
- 11. Koopmans AE, Verdijk RM, Brouwer RW, van den Bosch TP, van den Berg MM, Vaarwater J, et al. Clinical significance of immunohistochemistry for detection of BAP1 mutations in uveal melanoma. Mod Pathol. 2014;27(10):1321-30.
- 12. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998;4(7):844-7.
- 13. Farzin M, Toon CW, Clarkson A, Sioson L, Watson N, Andrici J, et al. Loss of expression of BAP1 predicts longer survival in mesothelioma. Pathology. 2015;47(4):302-7.

- 14. Arzt L, Quehenberger F, Halbwedl I, Mairinger T, Popper HH. BAP1 protein is a progression factor in malignant pleural mesothelioma. Pathol Oncol Res. 2014;20(1):145-51.
- 15. De Rienzo A, Archer MA, Yeap BY, Dao N, Sciaranghella D, Sideris AC, et al. Gender-Specific Molecular and Clinical Features Underlie Malignant Pleural Mesothelioma. Cancer Res. 2016;76(2):319-28.
- 16. McGregor SM, Dunning R, Hyjek E, Vigneswaran W, Husain AN, Krausz T. BAP1 facilitates diagnostic objectivity, classification, and prognostication in malignant pleural mesothelioma. Hum Pathol. 2015;46(11):1670-8.
- 17. Singhi AD, Krasinskas AM, Choudry HA, Bartlett DL, Pingpank JF, Zeh HJ, et al. The prognostic significance of BAP1, NF2, and CDKN2A in malignant peritoneal mesothelioma. Mod Pathol. 2016;29(1):14-24.
- 18. Minardi D, Lucarini G, Milanese G, Di Primio R, Montironi R, Muzzonigro G. Loss of nuclear BAP1 protein expression is a marker of poor prognosis in patients with clear cell renal cell carcinoma. Urol Oncol. 2016;34(8):338 e11-8.
- 19. Tang J, Xi S, Wang G, Wang B, Yan S, Wu Y, et al. Prognostic significance of BRCA1-associated protein 1 in colorectal cancer. Med Oncol. 2013;30(2):541.
- 20. Yan S, He F, Luo R, Wu H, Huang M, Huang C, et al. Decreased expression of BRCA1-associated protein 1 predicts unfavorable survival in gastric adenocarcinoma. Tumour Biol. 2016;37(5):6125-33.
- 21. Fan LH, Tang LN, Yue L, Yang Y, Gao ZL, Shen Z. BAP1 is a good prognostic factor in advanced non-small cell lung cancer. Clin Invest Med. 2012;35(4):E182-9.
- 22. Shen C, Wang Y, Wei P, Du X. BRCA1-associated protein 1 deficiency in lung adenocarcinoma predicts poor outcome and increased tumor invasion. BMC Cancer. 2016;16(1):670.
- 23. Hirosawa T, Ishida M, Ishii K, Kanehara K, Kudo K, Ohnuma S, et al. Loss of BAP1 expression is associated with genetic mutation and can predict outcomes in gallbladder cancer. PLoS One. 2018;13(11):e0206643.
- 24. Kalirai H, Dodson A, Faqir S, Damato BE, Coupland SE. Lack of BAP1 protein expression in uveal melanoma is associated with increased metastatic risk and has utility in routine prognostic testing. Br J Cancer. 2014;111(7):1373-80.
- van de Nes JA, Nelles J, Kreis S, Metz CH, Hager T, Lohmann DR, et al. Comparing the Prognostic Value of BAP1 Mutation Pattern, Chromosome 3 Status, and BAP1 Immunohistochemistry in Uveal Melanoma. Am J Surg Pathol. 2016;40(6):796-805.
- 26. van Essen TH, van Pelt SI, Versluis M, Bronkhorst IH, van Duinen SG, Marinkovic M, et al. Prognostic parameters in uveal melanoma and their association with BAP1 expression. Br J Ophthalmol. 2014;98(12):1738-43.

- 27. Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A. 2014;111(1):285-90.
- 28. Asada S, Goyama S, Inoue D, Shikata S, Takeda R, Fukushima T, et al. Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nat Commun. 2018;9(1):2733.
- 29. Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, et al. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun. 2015;6:8471.
- 30. Chen C, Bhalala HV, Vessella RL, Dong JT. KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer. Prostate. 2003;55(2):81-8.
- 31. Li Y, Kong D, Wang Z, Ahmad A, Bao B, Padhye S, et al. Inactivation of AR/TMPRSS2-ERG/Wnt signaling networks attenuates the aggressive behavior of prostate cancer cells. Cancer Prev Res (Phila). 2011;4(9):1495-506.
- 32. Nakajima Y, Osakabe A, Waku T, Suzuki T, Akaogi K, Fujimura T, et al. Estrogen Exhibits a Biphasic Effect on Prostate Tumor Growth through the Estrogen Receptor beta-KLF5 Pathway. Mol Cell Biol. 2016;36(1):144-56.
- 33. Brase JC, Johannes M, Mannsperger H, Falth M, Metzger J, Kacprzyk LA, et al. TMPRSS2-ERG -specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-beta signaling. BMC Cancer. 2011;11:507.
- 34. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 2008;10(2):177-88.
- 35. Weischenfeldt J, Simon R, Feuerbach L, Schlangen K, Weichenhan D, Minner S, et al. Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell. 2013;23(2):159-70.
- 36. Minner S, Enodien M, Sirma H, Luebke AM, Krohn A, Mayer PS, et al. ERG status is unrelated to PSA recurrence in radically operated prostate cancer in the absence of antihormonal therapy. Clin Cancer Res. 2011;17(18):5878-88.
- 37. Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017;2017.
- 38. Li H, Sekine M, Tung N, Avraham HK. Wild-type BRCA1, but not mutated BRCA1, regulates the expression of the nuclear form of beta-catenin. Mol Cancer Res. 2010;8(3):407-20.
- 39. Wu L, Zhao JC, Kim J, Jin HJ, Wang CY, Yu J. ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res. 2013;73(19):6068-79.
- 40. Burdelski C, Bujupi E, Tsourlakis MC, Hube-Magg C, Kluth M, Melling N, et al. Loss of SOX9 Expression Is Associated with PSA Recurrence in ERG-Positive and PTEN Deleted Prostate Cancers. PLoS One. 2015;10(6):e0128525.

- 41. Burdelski C, Kleinhans S, Kluth M, Hube-Magg C, Minner S, Koop C, et al. Reduced AZGP1 expression is an independent predictor of early PSA recurrence and associated with ERG-fusion positive and PTEN deleted prostate cancers. Int J Cancer. 2016;138(5):1199-206.
- 42. Melling N, Harutyunyan L, Hube-Magg C, Kluth M, Simon R, Lebok P, et al. High-Level HOOK3 Expression Is an Independent Predictor of Poor Prognosis Associated with Genomic Instability in Prostate Cancer. PLoS One. 2015;10(7):e0134614.
- 43. Heumann A, Kaya O, Burdelski C, Hube-Magg C, Kluth M, Lang DS, et al. Up regulation and nuclear translocation of Y-box binding protein 1 (YB-1) is linked to poor prognosis in ERG-negative prostate cancer. Sci Rep. 2017;7(1):2056.
- 44. Burdelski C, Dieckmann T, Heumann A, Hube-Magg C, Kluth M, Beyer B, et al. p16 upregulation is linked to poor prognosis in ERG negative prostate cancer. Tumour Biol. 2016;37(9):12655-63.
- 45. Heumann A, Heinemann N, Hube-Magg C, Lang DS, Grupp K, Kluth M, et al. High BCAR1 expression is associated with early PSA recurrence in ERG negative prostate cancer. BMC Cancer. 2018;18(1):37.
- 46. Mori T, Sumii M, Fujishima F, Ueno K, Emi M, Nagasaki M, et al. Somatic alteration and depleted nuclear expression of BAP1 in human esophageal squamous cell carcinoma. Cancer Sci. 2015;106(9):1118-29.
- 47. Eletr ZM, Wilkinson KD. An emerging model for BAP1's role in regulating cell cycle progression. Cell Biochem Biophys. 2011;60(1-2):3-11.
- 48. Machida YJ, Machida Y, Vashisht AA, Wohlschlegel JA, Dutta A. The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J Biol Chem. 2009;284(49):34179-88.
- 49. Sauter G, Clauditz T, Steurer S, Wittmer C, Buscheck F, Krech T, et al. Integrating Tertiary Gleason 5 Patterns into Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens. Eur Urol. 2018;73(5):674-83.
- 50. Sauter G, Steurer S, Clauditz TS, Krech T, Wittmer C, Lutz F, et al. Clinical Utility of Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens. Eur Urol. 2016;69(4):592-8.

# 5. Eigenanteil

- Literaturrecherche zur BAP1-Expression in Tumoren, im Prostatakarzinom im Besonderen
- Mitarbeit bei der Erstellung des Tissue-Microarrays (TMA)
- Datenaufnahme bei der Auswertung der Immunfärbung
- Beitrag an der statistischen Auswertung der Daten
- Generierung der ersten Version der Publikation mit Tabellen und Abbildungen

#### Anteil der Co-Autoren:

- Studiendesign und Erstellung des Manuskripts: Stefan Steurer, Ronald Simon,
   Guido Sauter, Jan Meiners
- Datenakquise durch Hans Heinzer, Jakob Izbicki, Cornelia Schroeder, Alexander
   Haese, Markus Graefen, Hartwig Huland, Thorsten Schlomm
- Auswertung der Immunfärbung sowie pathologische Beurteilung der Tumoren: Andreas M. Lübke, Doris Höflmayer, Maria Christina Tsourlakis, Sarah Minner, Stefan Steurer, Corinna Wittmer, Franziska Büscheck
- Pathologische Datenanalyse: David Dum, Sören Weidemann
- Statistische Analyse: Claudia Hube-Magg, Cosima Göbel, Christoph Fraune
- Erstellung des Manuskriptes und Dateninterpretation: Stefan Steurer, Till S. Clauditz, Sarah Minner, Patrick Lebok
- Fachliche Revision: Ronald Simon, Guido Sauter, Stefan Steurer, Jan Meiners

# 6. Danksagung

Danke an alle, die mich bei der Anfertigung meiner Dissertation unterstützt haben!

Mein besonderer Dank gilt natürlich Herrn Prof. Sauter, ohne den dieses Projekt nicht möglich gewesen wäre, für die umfassende Unterstützung bei der Umsetzung der gesamten Arbeit. Außerdem möchte ich mich bei Stefan Steurer, Ronald Simon, Jan Meiners, Christina Koop und dem gesamten Team für die technische und fachliche Unterstützung, aber auch für die enorme Geduld in vielen schwierigen Situationen, bedanken.

Meiner Familie und meinem besten Freund René danke ich für die Ermutigungen während der Arbeit und darüber hinaus!

# 7. Lebenslauf

Dieser Teil wurde aus Gründen des Datenschutzes entfernt.

### 8. Eidesstattliche Erklärung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Ich erkläre mich einverstanden, dass meine Dissertation vom Dekanat der Medizinischen Fakultät mit einer gängigen Software zur Erkennung von Plagiaten überprüft werden kann.

| Unterschrift: |  |
|---------------|--|
|               |  |